Sample records for ia phosphatidylinositol 3-kinase

  1. Phosphatidylinositol 3-kinase activity in murine motoneuron disease: the progressive motor neuropathy mouse.

    PubMed

    Wagey, R; Lurot, S; Perrelet, D; Pelech, S L; Sagot, Y; Krieger, C

    2001-01-01

    A murine model of motoneuron disease, the pmn/pmn mouse, shows a reduction in the retrograde transport of fluorescent probes applied directly onto the cut end of sciatic nerve. Brain-derived neurotrophic factor (BDNF), when co-applied with fluorescent tracers, increases the number of retrograde labelled motoneurons. We demonstrate here that spinal cord tissue from pmn/pmn mice had significantly reduced phosphatidylinositol 3-kinase activity and expression in the particulate fraction compared to controls, without changes in the activities or expression of the downstream kinases, protein kinase B/Akt or Erk1. Systemic administration of BDNF augmented phosphatidylinositol 3-kinase specific activity in spinal cord tissue from pmn/pmn and control mice, with a greater elevation in the particulate fractions of pmn/pmn mice than in controls. We examined the effect of inhibitors of phosphatidylinositol 3-kinase and mitogen-activated protein kinase kinase on the retrograde labelling of motoneurons, 24h following the direct application of inhibitors and Fluorogold to the cut end of sciatic nerve in control and pmn/pmn mice (labelling index). The mitogen-activated protein kinase kinase inhibitor PD 98059 had no effect on the labelling index in control or pmn/pmn mice. In the absence of exogenous BDNF, phosphatidylinositol 3-kinase inhibitors reduced the number of labelled motoneurons in control mice, without changing the labelling index in pmn/pmn. Co-application of phosphatidylinositol 3-kinase inhibitors with BDNF to the cut end of sciatic nerve blocked the action of BDNF on retrograde labelling in pmn/pmn mice. These results indicate that the retrograde labelling of motoneurons is mediated by phosphatidylinositol 3-kinase-dependent and -independent pathways. In pmn/pmn mice, phosphatidylinositol 3-kinase activity in spinal neurons is below the level required for optimal retrograde labelling of motoneurons and labelling can be augmented by the administration of growth

  2. Multiple Phosphatidylinositol 3-Kinases Regulate Vaccinia Virus Morphogenesis

    PubMed Central

    McNulty, Shannon; Bornmann, William; Schriewer, Jill; Werner, Chas; Smith, Scott K.; Olson, Victoria A.; Damon, Inger K.; Buller, R. Mark; Heuser, John; Kalman, Daniel

    2010-01-01

    Poxvirus morphogenesis is a complex process that involves the successive wrapping of the virus in host cell membranes. We screened by plaque assay a focused library of kinase inhibitors for those that caused a reduction in viral growth and identified several compounds that selectively inhibit phosphatidylinositol 3-kinase (PI3K). Previous studies demonstrated that PI3Ks mediate poxviral entry. Using growth curves and electron microscopy in conjunction with inhibitors, we show that that PI3Ks additionally regulate morphogenesis at two distinct steps: immature to mature virion (IMV) transition, and IMV envelopment to form intracellular enveloped virions (IEV). Cells derived from animals lacking the p85 regulatory subunit of Type I PI3Ks (p85α−/−β−/−) presented phenotypes similar to those observed with PI3K inhibitors. In addition, VV appear to redundantly use PI3Ks, as PI3K inhibitors further reduce plaque size and number in p85α−/−β−/− cells. Together, these data provide evidence for a novel regulatory mechanism for virion morphogenesis involving phosphatidylinositol dynamics and may represent a new therapeutic target to contain poxviruses. PMID:20526370

  3. Simultaneous inhibition of pan-phosphatidylinositol-3-kinases and MEK as a potential therapeutic strategy in peripheral T-cell lymphomas.

    PubMed

    Martín-Sánchez, Esperanza; Rodríguez-Pinilla, Socorro M; Sánchez-Beato, Margarita; Lombardía, Luis; Domínguez-González, Beatriz; Romero, Diana; Odqvist, Lina; García-Sanz, Pablo; Wozniak, Magdalena B; Kurz, Guido; Blanco-Aparicio, Carmen; Mollejo, Manuela; Alves, F Javier; Menárguez, Javier; González-Palacios, Fernando; Rodríguez-Peralto, José Luis; Ortiz-Romero, Pablo L; García, Juan F; Bischoff, James R; Piris, Miguel A

    2013-01-01

    Peripheral T-cell lymphomas are very aggressive hematologic malignancies for which there is no targeted therapy. New, rational approaches are necessary to improve the very poor outcome in these patients. Phosphatidylinositol-3-kinase is one of the most important pathways in cell survival and proliferation. We hypothesized that phosphatidylinositol-3-kinase inhibitors could be rationally selected drugs for treating peripheral T-cell lymphomas. Several phosphatidylinositol-3-kinase isoforms were inhibited genetically (using small interfering RNA) and pharmacologically (with CAL-101 and GDC-0941 compounds) in a panel of six peripheral and cutaneous T-cell lymphoma cell lines. Cell viability was measured by intracellular ATP content; apoptosis and cell cycle changes were checked by flow cytometry. Pharmacodynamic biomarkers were assessed by western blot. The PIK3CD gene, which encodes the δ isoform of phosphatidylinositol-3-kinase, was overexpressed in cell lines and primary samples, and correlated with survival pathways. However, neither genetic nor specific pharmacological inhibition of phosphatidylinositol-3-kinase δ affected cell survival. In contrast, the pan-phosphatidylinositol-3-kinase inhibitor GDC-0941 arrested all T-cell lymphoma cell lines in the G1 phase and induced apoptosis in a subset of them. We identified phospho-GSK3β and phospho-p70S6K as potential biomarkers of phosphatidylinositol-3-kinase inhibitors. Interestingly, an increase in ERK phosphorylation was observed in some GDC -0941-treated T-cell lymphoma cell lines, suggesting the presence of a combination of phosphatidylinositol-3-kinase and MEK inhibitors. A highly synergistic effect was found between the two inhibitors, with the combination enhancing cell cycle arrest at G0/G1 in all T-cell lymphoma cell lines, and reducing cell viability in primary tumor T cells ex vivo. These results suggest that the combined treatment of pan-phosphatidylinositol-3-kinase + MEK inhibitors could be more

  4. Role of Phosphatidylinositol 3-Kinase in Friend Spleen Focus-Forming Virus-Induced Erythroid Disease▿

    PubMed Central

    Umehara, Daigo; Watanabe, Shinya; Ochi, Haruyo; Anai, Yukari; Ahmed, Nursarat; Kannagi, Mari; Hanson, Charlotte; Ruscetti, Sandra; Nishigaki, Kazuo

    2010-01-01

    Infection of erythroid cells by Friend spleen focus-forming virus (SFFV) leads to acute erythroid hyperplasia in mice due to expression of its unique envelope glycoprotein, gp55. Erythroid cells expressing SFFV gp55 proliferate in the absence of their normal regulator, erythropoietin (Epo), because of interaction of the viral envelope protein with the erythropoietin receptor and a short form of the receptor tyrosine kinase Stk (sf-Stk), leading to constitutive activation of several signal transduction pathways. Our previous in vitro studies showed that phosphatidylinositol 3-kinase (PI3-kinase) is activated in SFFV-infected cells and is important in mediating the biological effects of the virus. To determine the role of PI3-kinase in SFFV-induced disease, mice deficient in the p85α regulatory subunit of class IA PI3-kinase were inoculated with different strains of SFFV. We observed that p85α status determined the extent of erythroid hyperplasia induced by the sf-Stk-dependent viruses SFFV-P (polycythemia-inducing strain of SFFV) and SFFV-A (anemia-inducing strain of SFFV) but not by the sf-Stk-independent SFFV variant BB6. Our data also indicate that p85α status determines the response of mice to stress erythropoiesis, consistent with a previous report showing that SFFV uses a stress erythropoiesis pathway to induce erythroleukemia. We further showed that sf-Stk interacts with p85α and that this interaction depends upon sf-Stk kinase activity and tyrosine 436 in the multifunctional docking site. Pharmacological inhibition of PI3-kinase blocked proliferation of primary erythroleukemia cells from SFFV-infected mice and the erythroleukemia cell lines derived from them. These results indicate that p85α may regulate sf-Stk-dependent erythroid proliferation induced by SFFV as well as stress-induced erythroid hyperplasia. PMID:20504929

  5. On the role of phosphatidylinositol 3-kinase, protein kinase b/Akt, and glycogen synthase kinase-3β in photodynamic injury of crayfish neurons and glial cells.

    PubMed

    Komandirov, Maxim A; Knyazeva, Evgeniya A; Fedorenko, Yulia P; Rudkovskii, Mikhail V; Stetsurin, Denis A; Uzdensky, Anatoly B

    2011-10-01

    Photodynamic treatment that causes intense oxidative stress and cell death is currently used in neurooncology. However, along with tumor cells, it may damage healthy neurons and glia. To study the involvement of signaling processes in photodynamic injury or protection of neurons and glia, we used crayfish mechanoreceptor consisting of a single neuron surrounded by glial cells. It was photosensitized with alumophthalocyanine Photosens. Application of specific inhibitors showed that phosphatidylinositol 3-kinase did not participate in photoinduced death of neurons and glia. Akt was involved in photoinduced necrosis but not in apoptosis of neurons and glia. Glycogen synthase kinase-3β participated in photoinduced apoptosis of glial cells and in necrosis of neurons. Therefore, phosphatidylinositol 3-kinase/protein kinase Akt/glycogen synthase kinase-3β pathway was not involved as a whole in photodynamic injury of crayfish neurons and glia but its components, Akt and glycogen synthase kinase-3β, independently and cell specifically regulated death of neurons and glial cells. According to these data, necrosis in this system was a controlled but not a non-regulated cell death mode. The obtained results may be used for the search of pharmacological agents selectively modulating death and survival of normal neurons and glial cells during photodynamic therapy of brain tumors.

  6. Association of p21ras with phosphatidylinositol 3-kinase.

    PubMed Central

    Sjölander, A; Yamamoto, K; Huber, B E; Lapetina, E G

    1991-01-01

    In mammalian cells, ras genes code for 21-kDa GTP-binding proteins. Increased expression and mutations in specific amino acids have been closely linked to alterations of normal cell morphology, growth, and differentiation and, in particular, to neoplastic transformation. The signal transduction induced by these p21ras proteins is largely unknown; however, the signaling pathways of several growth factors have been reported to involve phosphatidylinositol (PtdIns) 3-kinase. In the present study of a Ha-ras-transformed epithelial cell line, we demonstrated increased PtdIns 3-kinase activity in anti-phosphotyrosine and anti-receptor (insulin and hybrid insulin-like growth factor I) immunoprecipitates of cells that had been stimulated with insulin or insulin-like growth factor I. The PtdIns 3-kinase activity was also immunoprecipitated in these experiments by the anti-Ras monoclonal antibody Y13-259. The specificity of this association with p21ras was ascertained by the neutralizing effect of the antigen peptide and the absence of PtdIns 3-kinase activity in Y13-259 immunoprecipitates from cells in which the ras gene was turned off. These data indicate that PtdIns 3-kinase activity is an important step in the cascade of reactions in p21ras signal transduction, suggesting that the alterations of the cytoskeleton and growth in ras-transformed cells could be mediated by PtdIns 3-kinase activity. Images PMID:1716764

  7. Exercise activates the phosphatidylinositol 3-kinase pathway.

    PubMed

    Chen, Michael J; Russo-Neustadt, Amelia A

    2005-04-27

    Physical exercise is known to enhance psychological well-being and coping capacity. Voluntary physical exercise in rats also robustly and rapidly up-regulates hippocampal brain-derived neurotrophic factor (BDNF) mRNA levels, which are potentiated following a regimen of chronic antidepressant treatment. Increased BDNF levels are associated with enhanced activity of cyclic AMP response element binding protein (CREB). So far, relatively little is known about the intracellular signaling mechanisms mediating this effect of exercise. We wished to explore the possibility that exercise and/or antidepressant treatment activate the hippocampal phosphatidylinositol-3 (PI-3) kinase pathway, which mediates cellular survival. In young male Sprague-Dawley rats, we examined the effects of 2 weeks of daily voluntary wheel-running activity and/or tranylcypromine (n = 7 per group) on the levels of the active forms of protein-dependent kinase-1 (PDK-1), PI-3 kinase, phospho-thr308-Akt, phospho-ser473-Akt, and phospho-glycogen synthase kinase-3beta (GSK3beta; inactive form), as well as BDNF, activated CREB, and the phospho-Trk receptor, in the rat hippocampus, and compared these with sedentary saline-treated controls. Immunoblotting analyses revealed that in exercising rats, there was a significant increase in PI-3 kinase expression (4.61 times that of controls, P = 0.0161) and phosphorylation of PDK-1 (2.73 times that of controls, P = 0.0454), thr308-Akt (2.857 times that of controls, P = 0.0082), CREB (60.27 times that of controls, P = 0.05), and Trk (35.3 times that of controls, P < 0.0001) in the hippocampi of exercising animals; BDNF was also increased (3.2 times that of controls), but this was not statistically significant. In rats receiving both exercise and tranylcypromine, BDNF (4.51 times that of controls, P = 0.0068) and PI-3 kinase (4.88 times that of controls, P = 0.0103), and the phospho- forms of Trk (13.67 times that of controls, P = 0.0278), thr308-Akt (3.644 times

  8. Differential 14-3-3 affinity capture reveals new downstream targets of phosphatidylinositol 3-kinase signaling.

    PubMed

    Dubois, Fanny; Vandermoere, Franck; Gernez, Aurélie; Murphy, Jane; Toth, Rachel; Chen, Shuai; Geraghty, Kathryn M; Morrice, Nick A; MacKintosh, Carol

    2009-11-01

    We devised a strategy of 14-3-3 affinity capture and release, isotope differential (d(0)/d(4)) dimethyl labeling of tryptic digests, and phosphopeptide characterization to identify novel targets of insulin/IGF1/phosphatidylinositol 3-kinase signaling. Notably four known insulin-regulated proteins (PFK-2, PRAS40, AS160, and MYO1C) had high d(0)/d(4) values meaning that they were more highly represented among 14-3-3-binding proteins from insulin-stimulated than unstimulated cells. Among novel candidates, insulin receptor substrate 2, the proapoptotic CCDC6, E3 ubiquitin ligase ZNRF2, and signaling adapter SASH1 were confirmed to bind to 14-3-3s in response to IGF1/phosphatidylinositol 3-kinase signaling. Insulin receptor substrate 2, ZNRF2, and SASH1 were also regulated by phorbol ester via p90RSK, whereas CCDC6 and PRAS40 were not. In contrast, the actin-associated protein vasodilator-stimulated phosphoprotein and lipolysis-stimulated lipoprotein receptor, which had low d(0)/d(4) scores, bound 14-3-3s irrespective of IGF1 and phorbol ester. Phosphorylated Ser(19) of ZNRF2 (RTRAYpS(19)GS), phospho-Ser(90) of SASH1 (RKRRVpS(90)QD), and phospho- Ser(493) of lipolysis-stimulated lipoprotein receptor (RPRARpS(493)LD) provide one of the 14-3-3-binding sites on each of these proteins. Differential 14-3-3 capture provides a powerful approach to defining downstream regulatory mechanisms for specific signaling pathways.

  9. PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway.

    PubMed

    Sun, H; Lesche, R; Li, D M; Liliental, J; Zhang, H; Gao, J; Gavrilova, N; Mueller, B; Liu, X; Wu, H

    1999-05-25

    To investigate the molecular basis of PTEN-mediated tumor suppression, we introduced a null mutation into the mouse Pten gene by homologous recombination in embryonic stem (ES) cells. Pten-/- ES cells exhibited an increased growth rate and proliferated even in the absence of serum. ES cells lacking PTEN function also displayed advanced entry into S phase. This accelerated G1/S transition was accompanied by down-regulation of p27(KIP1), a major inhibitor for G1 cyclin-dependent kinases. Inactivation of PTEN in ES cells and in embryonic fibroblasts resulted in elevated levels of phosphatidylinositol 3,4,5,-trisphosphate, a product of phosphatidylinositol 3 kinase. Consequently, PTEN deficiency led to dosage-dependent increases in phosphorylation and activation of Akt/protein kinase B, a well-characterized target of the phosphatidylinositol 3 kinase signaling pathway. Akt activation increased Bad phosphorylation and promoted Pten-/- cell survival. Our studies suggest that PTEN regulates the phosphatidylinositol 3,4, 5,-trisphosphate and Akt signaling pathway and consequently modulates two critical cellular processes: cell cycle progression and cell survival.

  10. Phosphatidylinositol 3-kinase/Akt signaling pathway activates the WNK-OSR1/SPAK-NCC phosphorylation cascade in hyperinsulinemic db/db mice.

    PubMed

    Nishida, Hidenori; Sohara, Eisei; Nomura, Naohiro; Chiga, Motoko; Alessi, Dario R; Rai, Tatemitsu; Sasaki, Sei; Uchida, Shinichi

    2012-10-01

    Metabolic syndrome patients have insulin resistance, which causes hyperinsulinemia, which in turn causes aberrant increased renal sodium reabsorption. The precise mechanisms underlying this greater salt sensitivity of hyperinsulinemic patients remain unclear. Abnormal activation of the recently identified with-no-lysine kinase (WNK)-oxidative stress-responsive kinase 1 (OSR1)/STE20/SPS1-related proline/alanine-rich kinase (SPAK)-NaCl cotransporter (NCC) phosphorylation cascade results in the salt-sensitive hypertension of pseudohypoaldosteronism type II. Here, we report a study of renal WNK-OSR1/SPAK-NCC cascade activation in the db/db mouse model of hyperinsulinemic metabolic syndrome. Thiazide sensitivity was increased, suggesting greater activity of NCC in db/db mice. In fact, increased phosphorylation of OSR1/SPAK and NCC was observed. In both SpakT243A/+ and Osr1T185A/+ knock-in db/db mice, which carry mutations that disrupt the signal from WNK kinases, increased phosphorylation of NCC and elevated blood pressure were completely corrected, indicating that phosphorylation of SPAK and OSR1 by WNK kinases is required for the increased activation and phosphorylation of NCC in this model. Renal phosphorylated Akt was increased in db/db mice, suggesting that increased NCC phosphorylation is regulated by the phosphatidylinositol 3-kinase/Akt signaling cascade in the kidney in response to hyperinsulinemia. A phosphatidylinositol 3-kinase inhibitor (NVP-BEZ235) corrected the increased OSR1/SPAK-NCC phosphorylation. Another more specific phosphatidylinositol 3-kinase inhibitor (GDC-0941) and an Akt inhibitor (MK-2206) also inhibited increased NCC phosphorylation. These results indicate that the phosphatidylinositol 3-kinase/Akt signaling pathway activates the WNK-OSR1/SPAK-NCC phosphorylation cascade in db/db mice. This mechanism may play a role in the pathogenesis of salt-sensitive hypertension in human hyperinsulinemic conditions, such as the metabolic syndrome.

  11. Differential 14-3-3 Affinity Capture Reveals New Downstream Targets of Phosphatidylinositol 3-Kinase Signaling*

    PubMed Central

    Dubois, Fanny; Vandermoere, Franck; Gernez, Aurélie; Murphy, Jane; Toth, Rachel; Chen, Shuai; Geraghty, Kathryn M.; Morrice, Nick A.; MacKintosh, Carol

    2009-01-01

    We devised a strategy of 14-3-3 affinity capture and release, isotope differential (d0/d4) dimethyl labeling of tryptic digests, and phosphopeptide characterization to identify novel targets of insulin/IGF1/phosphatidylinositol 3-kinase signaling. Notably four known insulin-regulated proteins (PFK-2, PRAS40, AS160, and MYO1C) had high d0/d4 values meaning that they were more highly represented among 14-3-3-binding proteins from insulin-stimulated than unstimulated cells. Among novel candidates, insulin receptor substrate 2, the proapoptotic CCDC6, E3 ubiquitin ligase ZNRF2, and signaling adapter SASH1 were confirmed to bind to 14-3-3s in response to IGF1/phosphatidylinositol 3-kinase signaling. Insulin receptor substrate 2, ZNRF2, and SASH1 were also regulated by phorbol ester via p90RSK, whereas CCDC6 and PRAS40 were not. In contrast, the actin-associated protein vasodilator-stimulated phosphoprotein and lipolysis-stimulated lipoprotein receptor, which had low d0/d4 scores, bound 14-3-3s irrespective of IGF1 and phorbol ester. Phosphorylated Ser19 of ZNRF2 (RTRAYpS19GS), phospho-Ser90 of SASH1 (RKRRVpS90QD), and phospho- Ser493 of lipolysis-stimulated lipoprotein receptor (RPRARpS493LD) provide one of the 14-3-3-binding sites on each of these proteins. Differential 14-3-3 capture provides a powerful approach to defining downstream regulatory mechanisms for specific signaling pathways. PMID:19648646

  12. Differential regulatory functions of three classes of phosphatidylinositol and phosphoinositide 3-kinases in autophagy

    PubMed Central

    Yu, Xinlei; Long, Yun Chau; Shen, Han-Ming

    2015-01-01

    Autophagy is an evolutionarily conserved and exquisitely regulated self-eating cellular process with important biological functions. Phosphatidylinositol 3-kinases (PtdIns3Ks) and phosphoinositide 3-kinases (PI3Ks) are involved in the autophagic process. Here we aim to recapitulate how 3 classes of these lipid kinases differentially regulate autophagy. Generally, activation of the class I PI3K suppresses autophagy, via the well-established PI3K-AKT-MTOR (mechanistic target of rapamycin) complex 1 (MTORC1) pathway. In contrast, the class III PtdIns3K catalytic subunit PIK3C3/Vps34 forms a protein complex with BECN1 and PIK3R4 and produces phosphatidylinositol 3-phosphate (PtdIns3P), which is required for the initiation and progression of autophagy. The class II enzyme emerged only recently as an alternative source of PtdIns3P and autophagic initiator. However, the orthodox paradigm is challenged by findings that the PIK3CB catalytic subunit of class I PI3K acts as a positive regulator of autophagy, and PIK3C3 was thought to be an amino acid sensor for MTOR, which curbs autophagy. At present, a number of PtdIns3K and PI3K inhibitors, including specific PIK3C3 inhibitors, have been developed for suppression of autophagy and for clinical applications in autophagy-related human diseases. PMID:26018563

  13. Identification of Small Molecule Inhibitors of Phosphatidylinositol 3-Kinase and Autophagy*

    PubMed Central

    Farkas, Thomas; Daugaard, Mads; Jäättelä, Marja

    2011-01-01

    Macroautophagy (hereafter autophagy) is a lysosomal catabolic pathway that controls cellular homeostasis and survival. It has recently emerged as an attractive target for the treatment of a variety of degenerative diseases and cancer. The targeting of autophagy has, however, been hampered by the lack of specific small molecule inhibitors. Thus, we screened two small molecule kinase inhibitor libraries for inhibitors of rapamycin-induced autophagic flux. The three most potent inhibitors identified conferred profound inhibition of autophagic flux by inhibiting the formation of autophagosomes. Notably, the autophagy inhibitory effects of all three compounds were independent of their established kinase targets, i.e. ataxia telangiectasia mutated for KU55933, protein kinase C for Gö6976, and Janus kinase 3 for Jak3 inhibitor VI. Instead, we identified phosphatidylinositol 3-kinase (PtdIns3K) as a direct target of KU55933 and Gö6976. Importantly, and in contrast to the currently available inhibitors of autophagosome formation (e.g. 3-methyladenine), none of the three compounds inhibited the cell survival promoting class I phosphoinositide 3-kinase-Akt signaling at the concentrations required for effective autophagy inhibition. Accordingly, they proved to be valuable tools for investigations of autophagy-associated cell death and survival. Employing KU55399, we demonstrated that autophagy protects amino acid-starved cells against both apoptosis and necroptosis. Taken together, our data introduce new possibilities for the experimental study of autophagy and can form a basis for the development of clinically relevant autophagy inhibitors. PMID:21930714

  14. Dysregulation of the Phosphatidylinositol 3-kinase Pathway in Thyroid Neoplasia

    PubMed Central

    Paes, John E.; Ringel, Matthew D.

    2008-01-01

    The phosphatidylinositol 3-kinase (PI3K) signaling pathway is an important regulator of many cellular events, including apoptosis, proliferation, and motility. Enhanced activation of this pathway can occur through several mechanisms, such as inactivation of its negative regulator, phosphatase and tensin homolog deleted on chromosome ten (PTEN) and activating mutations and gene amplification of the gene encoding the catalytic subunit of PI3K (PIK3CA). These genetic abnormalities have been particularly associated with follicular thyroid neoplasia and anaplastic thyroid cancer, suggesting an important role for PI3K signaling in these disorders. In this review, the role of PI3K pathway activation in thyroid cancer will be discussed, with a focus on recent advances. PMID:18502332

  15. Upregulation of Phosphatidylinositol 3-Kinase (PI3K) Enhances Ethylene Biosynthesis and Accelerates Flower Senescence in Transgenic Nicotiana tabacum L.

    PubMed

    Dek, Mohd Sabri Pak; Padmanabhan, Priya; Sherif, Sherif; Subramanian, Jayasankar; Paliyath, And Gopinadhan

    2017-07-15

    Phosphatidylinositol 3-kinase (PI3K) is a key enzyme that phosphorylates phosphatidylinositol at 3'-hydroxyl position of the inositol head group initiating the generation of several phosphorylated phosphatidylinositols, collectively referred to as phosphoinositides. The function of PI3K in plant senescence and ethylene signal transduction process was studied by expression of Solanum lycopersicum PI3K in transgenic Nicotiana tabacum , and delineating its effect on flower senescence. Detached flowers of transgenic tobacco plants with overexpressed Sl - PI3K (OX) displayed accelerated senescence and reduced longevity, when compared to the flowers of wild type plants. Flowers from PI3K-overexpressing plants showed enhanced ethylene production and upregulated expression of 1-aminocyclopropane-1-carboxylic acid oxidase 1 ( ACO1 ). Real time polymerase chain reaction (PCR) analysis showed that PI3K was expressed at a higher level in OX flowers than in the control. Seedlings of OX-lines also demonstrated a triple response phenotype with characteristic exaggerated apical hook, shorter hypocotyls and increased sensitivity to 1-aminocyclopropane-1-carboxylate than the control wild type seedlings. In floral tissue from OX-lines, Solanum lycopersicum phosphatidylinositol 3-kinase green fluorescent protein (PI3K-GFP) chimera protein was localized primarily in stomata, potentially in cytoplasm and membrane adjacent to stomatal pores in the guard cells. Immunoblot analysis of PI3K expression in OX lines demonstrated increased protein level compared to the control. Results of the present study suggest that PI3K plays a crucial role in senescence by enhancing ethylene biosynthesis and signaling.

  16. Differential Association of Phosphatidylinositol 3-Kinase, SHIP-1, and PTEN with Forming Phagosomes

    PubMed Central

    Kamen, Lynn A.; Levinsohn, Jonathan

    2007-01-01

    In macrophages, enzymes that synthesize or hydrolyze phosphatidylinositol (3,4,5)-trisphosphate [PI(3,4,5)P3] regulate Fcγ receptor-mediated phagocytosis. Inhibition of phosphatidylinositol 3-kinase (PI3K) or overexpression of the lipid phosphatases phosphatase and tensin homologue (PTEN) and Src homology 2 domain-containing inositol phosphatase (SHIP-1), which hydrolyze PI(3,4,5)P3 to phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2], respectively, inhibit phagocytosis in macrophages. To examine how these enzymes regulate phagosome formation, the distributions of yellow fluorescent protein (YFP) chimeras of enzymes and pleckstrin homology (PH) domains specific for their substrates and products were analyzed quantitatively. PTEN-YFP did not localize to phagosomes, suggesting that PTEN regulates phagocytosis globally within the macrophage. SHIP1-YFP and p85-YFP were recruited to forming phagosomes. SHIP1-YFP sequestered to the leading edge and dissociated from phagocytic cups earlier than did p85-cyan fluorescent protein, indicating that SHIP-1 inhibitory activities are restricted to the early stages of phagocytosis. PH domain chimeras indicated that early during phagocytosis, PI(3,4,5)P3 was slightly more abundant than PI(3,4)P2 at the leading edge of the forming cup. These results support a model in which phagosomal PI3K generates PI(3,4,5)P3 necessary for later stages of phagocytosis, PTEN determines whether those late stages can occur, and SHIP-1 regulates when and where they occur by transiently suppressing PI(3,4,5)P3-dependent activities necessary for completion of phagocytosis. PMID:17442886

  17. Interkinase domain of kit contains the binding site for phosphatidylinositol 3' kinase.

    PubMed Central

    Lev, S; Givol, D; Yarden, Y

    1992-01-01

    Our previous analysis of the signal transduction pathway used by the c-kit-encoded receptor for the stem cell factor (SCF) indicated efficient coupling to the type I phosphatidylinositol 3' kinase (PI3K). In an attempt to localize the receptor's site of interaction with PI3K, we separately deleted either the noncatalytic 68-amino-acid-long interkinase domain or the carboxyl-terminal portion distal to the catalytic sequences. Loss of ligand-induced association of PI3K with the former deletion mutant and retention of the PI3K association by the carboxyl-terminally deleted receptor implied interactions of PI3K with the kinase insert. This was further supported by partial inhibition of the association by an anti-peptide antibody directed against the kinase insert and lack of effect of an antibody directed to the carboxyl tail of the SCF receptor. A bacterially expressed kinase insert domain was used as a fusion protein to directly test its presumed function as a PI3K association site. This protein bound PI3K from cell lysate as demonstrated by PI3K activity and by an associated phosphoprotein of 85 kDa. The association was dependent on phosphorylation of the tyrosine residues on the expressed kinase insert. On the basis of these observations, we conclude that the kinase insert domain of the SCF receptor selectively interacts with the p85 regulatory subunit of PI3K and that this association requires phosphorylation of tyrosine residues in the kinase insert region, with apparently no involvement of the bulk cytoplasmic structure or tyrosine kinase function of the receptor. Images PMID:1370584

  18. Enterovirus 3A Facilitates Viral Replication by Promoting Phosphatidylinositol 4-Kinase IIIβ–ACBD3 Interaction

    PubMed Central

    Xiao, Xia; Lei, Xiaobo; Zhang, Zhenzhen; Ma, Yijie; Qi, Jianli; Wu, Chao; Xiao, Yan; Li, Li

    2017-01-01

    ABSTRACT Like other enteroviruses, enterovirus 71 (EV71) relies on phosphatidylinositol 4-kinase IIIβ (PI4KB) for genome RNA replication. However, how PI4KB is recruited to the genome replication sites of EV71 remains elusive. Recently, we reported that a host factor, ACBD3, is needed for EV71 replication by interacting with viral 3A protein. Here, we show that ACBD3 is required for the recruitment of PI4KB to RNA replication sites. Overexpression of viral 3A or EV71 infection stimulates the interaction of PI4KB and ACBD3. Consistently, EV71 infection induces the production of phosphatidylinositol-4-phosphate (PI4P). Furthermore, PI4KB, ACBD3, and 3A are all localized to the viral-RNA replication sites. Accordingly, PI4KB or ACBD3 depletion by small interfering RNA (siRNA) leads to a reduction in PI4P production after EV71 infection. I44A or H54Y substitution in 3A interrupts the stimulation of PI4KB and ACBD3. Further analysis suggests that stimulation of ACBD3-PI4KB interaction is also important for the replication of enterovirus 68 but disadvantageous to human rhinovirus 16. These results reveal a mechanism of enterovirus replication that involves a selective strategy for recruitment of PI4KB to the RNA replication sites. IMPORTANCE Enterovirus 71, like other human enteroviruses, replicates its genome within host cells, where viral proteins efficiently utilize cellular machineries. While multiple factors are involved, it is largely unclear how viral replication is controlled. We show that the 3A protein of enterovirus 71 recruits an enzyme, phosphatidylinositol 4-kinase IIIβ, by interacting with ACBD3, which alters cellular membranes through the production of a lipid, PI4P. Consequently, the viral and host proteins form a large complex that is necessary for RNA synthesis at replication sites. Notably, PI4KB-ACBD3 interaction also differentially mediates the replication of enterovirus 68 and rhinovirus 16. These results provide new insight into the molecular

  19. The phosphatidylinositol 3-kinase inhibitor, wortmannin, inhibits insulin-induced activation of phosphatidylcholine hydrolysis and associated protein kinase C translocation in rat adipocytes.

    PubMed Central

    Standaert, M L; Avignon, A; Yamada, K; Bandyopadhyay, G; Farese, R V

    1996-01-01

    We questioned whether phosphatidylinositol 3-kinase (PI 3-kinase) and protein kinase C (PKC) function as interrelated signalling mechanisms during insulin action in rat adipocytes. Insulin rapidly activated a phospholipase D that hydrolyses phosphatidylcholine (PC), and this activation was accompanied by increases in diacylglycerol and translocative activation of PKC-alpha and PKC-beta in the plasma membrane. Wortmannin, an apparently specific PI 3-kinase inhibitor, inhibited insulin-stimulated, phospholipase D-dependent PC hydrolysis and subsequent translocation of PKC-alpha and PKC-beta to the plasma membrane. Wortmannin did not inhibit PKC directly in vitro, or the PKC-dependent effects of phorbol esters on glucose transport in intact adipocytes. The PKC inhibitor RO 31-8220 did not inhibit PI 3-kinase directly or its activation in situ by insulin, but inhibited both insulin-stimulated and phorbol ester-stimulated glucose transport. Our findings suggest that insulin acts through PI 3-kinase to activate a PC-specific phospholipase D and causes the translocative activation of PKC-alpha and PKC-beta in plasma membranes of rat adipocytes. PMID:8611143

  20. The phosphatidylinositol 3-kinase inhibitor, wortmannin, inhibits insulin-induced activation of phosphatidylcholine hydrolysis and associated protein kinase C translocation in rat adipocytes.

    PubMed

    Standaert, M L; Avignon, A; Yamada, K; Bandyopadhyay, G; Farese, R V

    1996-02-01

    We questioned whether phosphatidylinositol 3-kinase (PI 3-kinase) and protein kinase C (PKC) function as interrelated signalling mechanisms during insulin action in rat adipocytes. Insulin rapidly activated a phospholipase D that hydrolyses phosphatidylcholine (PC), and this activation was accompanied by increases in diacylglycerol and translocative activation of PKC-alpha and PKC-beta in the plasma membrane. Wortmannin, an apparently specific PI 3-kinase inhibitor, inhibited insulin-stimulated, phospholipase D-dependent PC hydrolysis and subsequent translocation of PKC-alpha and PKC-beta to the plasma membrane. Wortmannin did not inhibit PKC directly in vitro, or the PKC-dependent effects of phorbol esters on glucose transport in intact adipocytes. The PKC inhibitor RO 31-8220 did not inhibit PI 3-kinase directly or its activation in situ by insulin, but inhibited both insulin-stimulated and phorbol ester-stimulated glucose transport. Our findings suggest that insulin acts through PI 3-kinase to activate a PC-specific phospholipase D and causes the translocative activation of PKC-alpha and PKC-beta in plasma membranes of rat adipocytes.

  1. Ghrelin augments murine T-cell proliferation by activation of the phosphatidylinositol-3-kinase, extracellular signal-regulated kinase and protein kinase C signaling pathways

    PubMed Central

    Lee, Jun Ho; Patel, Kalpesh; Tae, Hyun Jin; Lustig, Ana; Kim, Jie Wan; Mattson, Mark P.; Taub, Dennis D.

    2014-01-01

    Thymic atrophy occurs during normal aging, and is accelerated by exposure to chronic stressors that elevate glucocorticoid levelsand impair the naïve T cell output. The orexigenic hormone ghrelin was recently shown to attenuate age-associated thymic atrophy. Here, we report that ghrelin enhances the proliferation of murine CD4+ primary T cells and a CD4+ T-cell line. Ghrelin induced activation of the ERK1/2 and Akt signaling pathways, via upstream activation of phosphatidylinositol-3-kinase and protein kinase C, to enhance T-cell proliferation. Moreover, ghrelin induced expression of the cell cycle proteins cyclin D1, cyclin E, cyclin-dependent kinase 2 (CDK2) and retinoblastoma phosphorylation. Finally, ghrelin activated the above-mentioned signaling pathways and stimulated thymocyte proliferation in young and older mice in vivo. PMID:25447526

  2. Defect in skeletal muscle phosphatidylinositol-3-kinase in obese insulin-resistant mice.

    PubMed Central

    Heydrick, S J; Jullien, D; Gautier, N; Tanti, J F; Giorgetti, S; Van Obberghen, E; Le Marchand-Brustel, Y

    1993-01-01

    Activation of phosphatidylinositol-3-kinase (PI3K) is one of the earliest postreceptor events in the insulin signaling pathway. Incubation of soleus muscles from lean mice with 50 nM insulin caused a 3-10-fold increase in antiphosphotyrosine-immunoprecipitable PI3K (antiPTyr-PI3K) activity within 2 min in muscle homogenates as well as both the cytosolic and membrane fractions. Insulin did not affect total PI3K activity. Both the antiPTyr-PI3K stimulation and activation of insulin receptor tyrosine kinase were dependent on hormone concentration. In muscles from obese, insulin-resistant mice, there was a 40-60% decrease in antiPTyr-PI3K activity after 2 min of insulin that was present equally in the cytosolic and membrane fractions. A significant reduction in insulin sensitivity was also observed. The defect appears to result from alterations in both insulin receptor and postreceptor signaling. Starvation of obese mice for 48 h, which is known to reverse insulin resistance, normalized the insulin response of both PI3K and the receptor tyrosine kinase. The results demonstrate that: (a) antiPTyr-PI3K activity is responsive to insulin in mouse skeletal muscle, (b) both the insulin responsiveness and sensitivity of this activity are blunted in insulin-resistant muscles from obese mice, (c) these alterations result from a combination of insulin receptor and postreceptor defects, and (d) starvation restores normal insulin responses. Images PMID:8386184

  3. The p110α and p110β Isoforms of Class I Phosphatidylinositol 3-Kinase Are Involved in Toll-Like Receptor 5 Signaling in Epithelial Cells

    PubMed Central

    Ivison, Sabine M.; Khan, Mohammed A. S.; Graham, Nicholas R.; Shobab, Leila A.; Yao, Yu; Kifayet, Arnawaz; Sly, Laura M.; Steiner, Theodore S.

    2010-01-01

    Background. Bacterial flagellin triggers inflammation in mammalian cells via Toll-like receptor (TLR) 5. Release of the chemokine IL-8 in response to flagellin involves NF-κB, p38 MAP kinase, and phosphatidylinositol 3-kinase (PI3K). However, PI3K has been reported to be either pro- or anti-inflammatory in different model systems. We hypothesized that this could be due to different activities of the p110α and β isoforms of PI3K. Results. PI3K and Akt were rapidly activated in Caco-2 colon carcinoma cells by flagellin. Using a plasmid-based shRNA delivery system and novel p110 isoform-specific inhibitors, we found that flagellin-induced IL-8 production was dependent on both p110α and p110β. However in the mouse, inhibition of p110β but not p110α reduced the increase of serum IL-6 levels induced by intraperitoneal injection of flagellin. Conclusions. These data demonstrate that the p110α and β isoforms of class IA PI3K are both required for the proinflammatory response to flagellin. PMID:20953381

  4. Phosphatidylinositol 3-kinase is a key mediator of central sensitization in painful inflammatory conditions

    PubMed Central

    Pezet, Sophie; Marchand, Fabien; D'Mello, Richard; Grist, John; Clark, Anna K.; Malcangio, Marzia; Dickenson, Anthony H.; Williams, Robert J.; McMahon, Stephen B.

    2010-01-01

    Here we show that phosphatidylinositol 3-kinase (PI3K) is a key player in the establishment of central sensitization, the spinal cord phenomenon associated with persistent afferent inputs and contributing to chronic pain states. We demonstrated electrophysiologically that PI3K is required for the full expression of spinal neuronal wind-up. In an inflammatory pain model, intrathecal administration of LY294002, a potent PI3K inhibitor, dose-dependently inhibited pain related behavior. This effect was correlated with a reduction of the phosphorylation of extracellular signal-regulated kinase (ERK) and CaMKinase II. In addition, we observed a significant decrease in the phosphorylation of the NMDA receptor subunit NR2B, decreased translocation to the plasma membrane of the GluR1 AMPA receptor subunit in the spinal cord and a reduction of evoked neuronal activity as measured using c-Fos immunohistochemistry. Our study suggests that PI3K is a major factor in the expression of central sensitization after noxious inflammatory stimuli. PMID:18417706

  5. IRS-1 activates phosphatidylinositol 3'-kinase by associating with src homology 2 domains of p85.

    PubMed Central

    Myers, M G; Backer, J M; Sun, X J; Shoelson, S; Hu, P; Schlessinger, J; Yoakim, M; Schaffhausen, B; White, M F

    1992-01-01

    IRS-1 is an insulin receptor substrate that undergoes tyrosine phosphorylation and associates with the phosphatidylinositol (PtdIns) 3'-kinase immediately after insulin stimulation. Recombinant IRS-1 protein was tyrosine phosphorylated by the insulin receptor in vitro and associated with the PtdIns 3'-kinase from lysates of quiescent 3T3 fibroblasts. Bacterial fusion proteins containing the src homology 2 domains (SH2 domains) of the 85-kDa subunit (p85) of the PtdIns 3'-kinase bound quantitatively to tyrosine phosphorylated, but not unphosphorylated, IRS-1, and this association was blocked by phosphotyrosine-containing synthetic peptides. Moreover, the phosphorylated peptides and the SH2 domains each inhibited binding of PtdIns 3'-kinase to IRS-1. Phosphorylated IRS-1 activated PtdIns 3'-kinase in anti-p85 immunoprecipitates in vitro, and this activation was blocked by SH2 domain fusion proteins. These data suggest that the interaction between PtdIns 3'-kinase and IRS-1 is mediated by tyrosine phosphorylated motifs on IRS-1 and the SH2 domains of p85, and IRS-1 activates PtdIns 3'-kinase by binding to the SH2 domains of p85. Thus, IRS-1 likely serves to transmit the insulin signal by binding and regulating intracellular enzymes containing SH2 domains. Images PMID:1332046

  6. Suppression of transforming growth factor-beta-induced apoptosis through a phosphatidylinositol 3-kinase/Akt-dependent pathway.

    PubMed

    Chen, R H; Su, Y H; Chuang, R L; Chang, T Y

    1998-10-15

    Insulin and insulin receptor substrate 1 (IRS-1) are capable of protecting liver cells from apoptosis induced by transforming growth factor-beta1 (TGF-beta). The Ras/mitogen-activated protein kinase (MAP kinase) and the phosphatidylinositol 3-kinase (PI 3-kinase)/Akt pathways are both activated upon insulin stimulation and can protect against apoptosis under certain circumstances. We investigated which of these pathways is responsible for the protective effect of insulin on TGF-beta-induced apoptosis. An activated Ras, although elicited a strong mitogenic effect, could not protect Hep3B cells from TGF-beta-induced apoptosis. Furthermore, PD98059, a selective inhibitor of MEK, did not suppress the antiapoptotic effect of insulin. In contrast, the PI 3-kinase inhibitor, LY294002, efficiently blocked the effect of insulin. Protection against TGF-beta-induced apoptosis conferred by PI 3-kinase was further verified by stable transfection of an activated PI 3-kinase. Downstream targets of PI 3-kinase involved in this protection was further investigated. An activated Akt mimicked the antiapoptotic effect of insulin, whereas a dominant-negative Akt inhibited such effect. However, rapamycin, the p70S6 kinase inhibitor, had no effect on the protectivity of insulin against TGF-beta-induced apoptosis, suggesting that the antiapoptotic target of PI 3-kinase/Akt pathway is independent or lies upstream of the p70S6 kinase. The mechanism by which PI 3-kinase/Akt pathway interferes with the apoptotic signaling of TGF-beta was explored. Activation of PI 3-kinase did not lead to a suppression of Smad hetero-oligomerization or nuclear translocation but blocked TGF-beta-induced caspase-3-like activity. In summary, the PI 3-kinase/Akt pathway, but not the Ras/MAP kinase pathway, protects against TGF-beta-induced apoptosis by inhibiting a step downstream of Smad but upstream of caspase-3.

  7. Interaction of human biliverdin reductase with Akt/protein kinase B and phosphatidylinositol-dependent kinase 1 regulates glycogen synthase kinase 3 activity: a novel mechanism of Akt activation

    PubMed Central

    Miralem, Tihomir; Lerner-Marmarosh, Nicole; Gibbs, Peter E. M.; Jenkins, Jermaine L.; Heimiller, Chelsea; Maines, Mahin D.

    2016-01-01

    Biliverdin reductase A (BVR) and Akt isozymes have overlapping pleiotropic functions in the insulin/PI3K/MAPK pathway. Human BVR (hBVR) also reduces the hemeoxygenase activity product biliverdin to bilirubin and is directly activated by insulin receptor kinase (IRK). Akt isoenzymes (Akt1–3) are downstream of IRK and are activated by phosphatidylinositol-dependent kinase 1 (PDK1) phosphorylating T308 before S473 autophosphorylation. Akt (RxRxxSF) and PDK1 (RFxFPxFS) binding motifs are present in hBVR. Phosphorylation of glycogen synthase kinase 3 (GSK3) isoforms α/β by Akts inhibits their activity; nonphosphorylated GSK3β inhibits activation of various genes. We examined the role of hBVR in PDK1/Akt1/GSK3 signaling and Akt1 in hBVR phosphorylation. hBVR activates phosphorylation of Akt1 at S473 independent of hBVR’s kinase competency. hBVR and Akt1 coimmunoprecipitated, and in-cell Förster resonance energy transfer (FRET) and glutathione S-transferase pulldown analyses identified Akt1 pleckstrin homology domain as the interactive domain. hBVR activates phosphorylation of Akt1 at S473 independent of hBVR’s kinase competency. Site-directed mutagenesis, mass spectrometry, and kinetic analyses identified S230 in hBVR 225RNRYLSF sequence as the Akt1 target. Underlined amino acids are the essential residues of the signaling motifs. In cells, hBVR-activated Akt1 increased both GSK3α/β and forkhead box of the O class transcription class 3 (FoxO3) phosphorylation and inhibited total GSK3 activity; depletion of hBVR released inhibition and stimulated glucose uptake. Immunoprecipitation analysis showed that PDK1 and hBVR interact through hBVR’s PDK1 binding 161RFGFPAFS motif and formation of the PDK1/hBVR/Akt1 complex. sihBVR blocked complex formation. Findings identify hBVR as a previously unknown coactivator of Akt1 and as a key mediator of Akt1/GSK3 pathway, as well as define a key role for hBVR in Akt1 activation by PDK1.—Miralem, T., Lerner-Marmarosh, N

  8. Interaction of human biliverdin reductase with Akt/protein kinase B and phosphatidylinositol-dependent kinase 1 regulates glycogen synthase kinase 3 activity: a novel mechanism of Akt activation.

    PubMed

    Miralem, Tihomir; Lerner-Marmarosh, Nicole; Gibbs, Peter E M; Jenkins, Jermaine L; Heimiller, Chelsea; Maines, Mahin D

    2016-08-01

    Biliverdin reductase A (BVR) and Akt isozymes have overlapping pleiotropic functions in the insulin/PI3K/MAPK pathway. Human BVR (hBVR) also reduces the hemeoxygenase activity product biliverdin to bilirubin and is directly activated by insulin receptor kinase (IRK). Akt isoenzymes (Akt1-3) are downstream of IRK and are activated by phosphatidylinositol-dependent kinase 1 (PDK1) phosphorylating T(308) before S(473) autophosphorylation. Akt (RxRxxSF) and PDK1 (RFxFPxFS) binding motifs are present in hBVR. Phosphorylation of glycogen synthase kinase 3 (GSK3) isoforms α/β by Akts inhibits their activity; nonphosphorylated GSK3β inhibits activation of various genes. We examined the role of hBVR in PDK1/Akt1/GSK3 signaling and Akt1 in hBVR phosphorylation. hBVR activates phosphorylation of Akt1 at S(473) independent of hBVR's kinase competency. hBVR and Akt1 coimmunoprecipitated, and in-cell Förster resonance energy transfer (FRET) and glutathione S-transferase pulldown analyses identified Akt1 pleckstrin homology domain as the interactive domain. hBVR activates phosphorylation of Akt1 at S(473) independent of hBVR's kinase competency. Site-directed mutagenesis, mass spectrometry, and kinetic analyses identified S(230) in hBVR (225)RNRYLSF sequence as the Akt1 target. Underlined amino acids are the essential residues of the signaling motifs. In cells, hBVR-activated Akt1 increased both GSK3α/β and forkhead box of the O class transcription class 3 (FoxO3) phosphorylation and inhibited total GSK3 activity; depletion of hBVR released inhibition and stimulated glucose uptake. Immunoprecipitation analysis showed that PDK1 and hBVR interact through hBVR's PDK1 binding (161)RFGFPAFS motif and formation of the PDK1/hBVR/Akt1 complex. sihBVR blocked complex formation. Findings identify hBVR as a previously unknown coactivator of Akt1 and as a key mediator of Akt1/GSK3 pathway, as well as define a key role for hBVR in Akt1 activation by PDK1.-Miralem, T., Lerner

  9. Role of nongenomic activation of phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase 1/2 pathways in 1,25D3-mediated apoptosis in squamous cell carcinoma cells.

    PubMed

    Ma, Yingyu; Yu, Wei-Dong; Kong, Rui-Xian; Trump, Donald L; Johnson, Candace S

    2006-08-15

    Vitamin D is a steroid hormone that regulates calcium homeostasis and bone metabolism. The active form of vitamin D [1 alpha,25-dihydroxyvitamin D(3) (1,25D3)] acts through both genomic and nongenomic pathways. 1,25D3 has antitumor effects in a variety of cancers, including colorectal, prostate, breast, ovarian, and skin cancers. 1,25D3 exerts growth-inhibitory effects in cancer cells through the induction of apoptosis, cell cycle arrest, and differentiation. The mechanisms regulating 1,25D3-induced apoptosis remain unclear. We investigated the role of nongenomic signaling in 1,25D3-mediated apoptosis in squamous cell carcinoma (SCC) cells. 1,25D3 induced rapid and sustained activation of phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) 1/2 pathways in SCC cells. These effects were nongenomic: they occurred rapidly and were not inhibited by cycloheximide or actinomycin D. To examine whether the nongenomic activation of Akt and ERK1/2 plays a role in 1,25D3-mediated apoptosis, the expression of Akt or ERK1/2 was reduced by small interfering RNA (siRNA). siRNA-Akt significantly enhanced 1,25D3-induced apoptosis as indicated by increased levels of Annexin V-positive cells and increased sub-G(1) population and DNA fragmentation. In contrast, siRNA-ERK1/2 had no effects on 1,25D3-induced apoptosis. In addition, siRNA-Akt transfection followed by 1,25D3 treatment induced apoptosis much sooner than 1,25D3 alone. siRNA-Akt and 1,25D3 induced caspase-10 activation, suppressed the expression of c-IAP1 and XIAP, and promoted 1,25D3-induced caspase-3 activation. These results support a link between 1,25D3-induced nongenomic signaling and apoptosis. 1,25D3 induces the activation of phosphatidylinositol 3-kinase/Akt, which suppresses 1,25D3-mediated apoptosis and prolongs the survival of SCC cells.

  10. Regulation of the Tumor-Suppressor Function of the Class III Phosphatidylinositol 3-Kinase Complex by Ubiquitin and SUMO.

    PubMed

    Reidick, Christina; El Magraoui, Fouzi; Meyer, Helmut E; Stenmark, Harald; Platta, Harald W

    2014-12-23

    The occurrence of cancer is often associated with a dysfunction in one of the three central membrane-involution processes-autophagy, endocytosis or cytokinesis. Interestingly, all three pathways are controlled by the same central signaling module: the class III phosphatidylinositol 3-kinase (PI3K-III) complex and its catalytic product, the phosphorylated lipid phosphatidylinositol 3-phosphate (PtdIns3P). The activity of the catalytic subunit of the PI3K-III complex, the lipid-kinase VPS34, requires the presence of the membrane-targeting factor VPS15 as well as the adaptor protein Beclin 1. Furthermore, a growing list of regulatory proteins associates with VPS34 via Beclin 1. These accessory factors define distinct subunit compositions and thereby guide the PI3K-III complex to its different cellular and physiological roles. Here we discuss the regulation of the PI3K-III complex components by ubiquitination and SUMOylation. Especially Beclin 1 has emerged as a highly regulated protein, which can be modified with Lys11-, Lys48- or Lys63-linked polyubiquitin chains catalyzed by distinct E3 ligases from the RING-, HECT-, RBR- or Cullin-type. We also point out other cross-links of these ligases with autophagy in order to discuss how these data might be merged into a general concept.

  11. Sulforaphane prevents human platelet aggregation through inhibiting the phosphatidylinositol 3-kinase/Akt pathway.

    PubMed

    Chuang, Wen-Ying; Kung, Po-Hsiung; Kuo, Chih-Yun; Wu, Chin-Chung

    2013-06-01

    Sulforaphane, a dietary isothiocyanate found in cruciferous vegetables, has been shown to exert beneficial effects in animal models of cardiovascular diseases. However, its effect on platelet aggregation, which is a critical factor in arterial thrombosis, is still unclear. In the present study, we show that sulforaphane inhibited human platelet aggregation caused by different receptor agonists, including collagen, U46619 (a thromboxane A2 mimic), protease-activated receptor 1 agonist peptide (PAR1-AP), and an ADP P2Y12 receptor agonist. Moreover, sulforaphane significantly reduced thrombus formation on a collagen-coated surface under whole blood flow conditions. In exploring the underlying mechanism, we found that sulforaphane specifically prevented phosphatidylinositol 3-kinase (PI3K)/Akt signalling, without markedly affecting other signlaling pathways involved in platelet aggregation, such as protein kinase C activation, calcium mobilisation, and protein tyrosine phosphorylation. Although sulforaphane did not directly inhibit the catalytic activity of PI3K, it caused ubiquitination of the regulatory p85 subunit of PI3K, and prevented PI3K translocation to membranes. In addition, sulforaphane caused ubiquitination and degradation of phosphoinositide-dependent kinase 1 (PDK1), which is required for Akt activation. Therefore, sulforaphane is able to inhibit the PI3K/Akt pathway at two distinct sites. In conclusion, we have demonstrated that sulforaphane prevented platelet aggregation and reduced thrombus formation in flow conditions; our data also support that the inhibition of the PI3K/Akt pathway by sulforaphane contributes it antiplatelet effects.

  12. Nucleocytoplasmic Shuttling of the Golgi Phosphatidylinositol 4-Kinase Pik1 Is Regulated by 14-3-3 Proteins and Coordinates Golgi Function with Cell Growth

    PubMed Central

    Demmel, Lars; Beck, Mike; Klose, Christian; Schlaitz, Anne-Lore; Gloor, Yvonne; Hsu, Peggy P.; Havlis, Jan; Shevchenko, Andrej; Krause, Eberhard; Kalaidzidis, Yannis

    2008-01-01

    The yeast phosphatidylinositol 4-kinase Pik1p is essential for proliferation, and it controls Golgi homeostasis and transport of newly synthesized proteins from this compartment. At the Golgi, phosphatidylinositol 4-phosphate recruits multiple cytosolic effectors involved in formation of post-Golgi transport vesicles. A second pool of catalytically active Pik1p localizes to the nucleus. The physiological significance and regulation of this dual localization of the lipid kinase remains unknown. Here, we show that Pik1p binds to the redundant 14-3-3 proteins Bmh1p and Bmh2p. We provide evidence that nucleocytoplasmic shuttling of Pik1p involves phosphorylation and that 14-3-3 proteins bind Pik1p in the cytoplasm. Nutrient deprivation results in relocation of Pik1p from the Golgi to the nucleus and increases the amount of Pik1p–14-3-3 complex, a process reversed upon restored nutrient supply. These data suggest a role of Pik1p nucleocytoplasmic shuttling in coordination of biosynthetic transport from the Golgi with nutrient signaling. PMID:18172025

  13. Class IA phosphoinositide 3-kinase regulates heart size and physiological cardiac hypertrophy.

    PubMed

    Luo, Ji; McMullen, Julie R; Sobkiw, Cassandra L; Zhang, Li; Dorfman, Adam L; Sherwood, Megan C; Logsdon, M Nicole; Horner, James W; DePinho, Ronald A; Izumo, Seigo; Cantley, Lewis C

    2005-11-01

    Class I(A) phosphoinositide 3-kinases (PI3Ks) are activated by growth factor receptors, and they regulate, among other processes, cell growth and organ size. Studies using transgenic mice overexpressing constitutively active and dominant negative forms of the p110alpha catalytic subunit of class I(A) PI3K have implicated the role of this enzyme in regulating heart size and physiological cardiac hypertrophy. To further understand the role of class I(A) PI3K in controlling heart growth and to circumvent potential complications from the overexpression of dominant negative and constitutively active proteins, we generated mice with muscle-specific deletion of the p85alpha regulatory subunit and germ line deletion of the p85beta regulatory subunit of class I(A) PI3K. Here we show that mice with cardiac deletion of both p85 subunits exhibit attenuated Akt signaling in the heart, reduced heart size, and altered cardiac gene expression. Furthermore, exercise-induced cardiac hypertrophy is also attenuated in the p85 knockout hearts. Despite such defects in postnatal developmental growth and physiological hypertrophy, the p85 knockout hearts exhibit normal contractility and myocardial histology. Our results therefore provide strong genetic evidence that class I(A) PI3Ks are critical regulators for the developmental growth and physiological hypertrophy of the heart.

  14. Effects of polyamines and calcium and sodium ions on smooth muscle cytoskeleton-associated phosphatidylinositol (4)-phosphate 5-kinase.

    PubMed

    Chen, H; Baron, C B; Griffiths, T; Greeley, P; Coburn, R F

    1998-10-01

    In many different cell types, including smooth muscle cells (Baron et al., 1989, Am. J. Physiol., 256: C375-383; Baron et al., J. Pharmacol. Exp. Ther. 266: 8-15), phosphatidylinositol (4)-phosphate 5-kinase plays a critical role in the regulation of membrane concentrations of phosphatidylinositol (4,5)-bisphosphate and formation of inositol (1,4,5)-trisphosphate. In unstimulated porcine trachealis smooth muscle, 70% of total cellular phosphatidylinositol (4)-phosphate 5-kinase activity was associated with cytoskeletal proteins and only trace activity was detectable in isolated sarcolemma. Using two different preparations, we studied cytoskeleton-associated phosphatidyl inositol (4)-phosphate 5-kinase under conditions that attempted to mimic the ionic and thermal cytoplasmic environment of living cells. The cytoskeleton-associated enzyme, studied using phosphatidylinositol (4)-phosphate substrate concentrations that produced phosphatidylinositol 4,5-bisphosphate at about 10% of the maximal rate, was sensitive to free [Mg2+], had an absolute requirement for phosphatidylserine, phosphatidic acid, or phosphatidylinositol, and included type I isoforms. At 0.5 mM free [Mg2+], physiological spermine concentrations, 0.2-0.4 mM, increased phosphatidylinositol (4)-phosphate 5-kinase activity two to four times compared to controls run without spermine. The EC50 for spermine-evoked increases in activity was 0.17 +/- 0.02 mM. Spermine-evoked enzyme activity was a function of both free [Mg2+] and substrate concentration. Cytoskeleton-associated phosphatidylinositol (4)-phosphate 5-kinase was inhibited by free [Ca2+] over a physiological range for cytoplasm--10(-8) to 10(-5) M, an effect independent of the presence of calmodulin. Na+ over the range 20 to 50 mM also inhibited this enzyme activated by 5 mM Mg2+ but had no effect on spermine-activated enzyme. Na+, Ca2+, and spermine appear to be physiological modulators of smooth muscle cytoskeleton-bound phosphatidylinositol (4

  15. Hexamethylenebisacetamide modulation of thyroglobulin and protein levels in thyroid cells is not mediated by phosphatidylinositol-3-kinase: a study with wortmannin.

    PubMed

    Aouani, A; Samih, N; Amphoux-Fazekas, T; Hovsépian, S; Fayet, G

    1999-04-01

    Hexamethylenebisacetamide (HMBA) induces in murine erythroleukemia cells (MELC) the commitment to terminal differentiation leading to globin gene expression. In the thyroid, HMBA acts as a growth factor and also as a differentiating agent. In the present paper, we studied the effect of HMBA on the very specific thyroid marker thyroglobulin (Tg) in two different thyroid cell systems, i.e., porcine cells in primary culture and ovine cells in long term culture. Using wortmannin, a specific inhibitor of phosphatidylinositol-3-kinase, we investigated whether this enzyme is involved in HMBA mode of action. We found that HMBA is a positive modulator of Tg production in porcine cells, but a negative effector in the OVNIS cell line. As all HMBA effects studied in the present paper, i.e., Tg production and total protein levels, are not inhibited by wortmannin, we suggest the non-involvement of phosphatidylinositol-3-kinase in HMBA mode of action.

  16. Nitroglycerin drives endothelial nitric oxide synthase activation via the phosphatidylinositol 3-kinase/protein kinase B pathway

    PubMed Central

    Mao, Mao; Sudhahar, Varadarajan; Ansenberger-Fricano, Kristine; Fernandes, Denise C.; Tanaka, Leonardo Y.; Fukai, Tohru; Laurindo, Francisco R.M.; Mason, Ronald P.; Vasquez-Vivar, Jeannette; Minshall, Richard D.; Stadler, Krisztian; Bonini, Marcelo G.

    2012-01-01

    Nitroglycerin (GTN) has been clinically used to treat angina pectoris and acute heart episodes for over 100 years. The effects of GTN have long been recognized and active research has contributed to the unraveling of numerous metabolic routes capable of converting GTN to the potent vasoactive messenger nitric oxide. Recently, the mechanism by which minute doses of GTN elicit robust pharmacological responses was revisited and eNOS activation was implicated as an important route mediating vasodilation induced by low GTN doses (1–50 nM). Here, we demonstrate that at such concentrations the pharmacologic effects of nitroglycerin are largely dependent on the phosphatidylinositol 3-kinase, Akt/PKB, and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) signal transduction axis. Furthermore, we demonstrate that nitroglycerin-dependent accumulation of 3,4,5-InsP3, probably because of inhibition of PTEN, is important for eNOS activation, conferring a mechanistic basis for GTN pharmacological action at pharmacologically relevant doses. PMID:22037515

  17. Regulation of the Tumor-Suppressor Function of the Class III Phosphatidylinositol 3-Kinase Complex by Ubiquitin and SUMO

    PubMed Central

    Reidick, Christina; El Magraoui, Fouzi; Meyer, Helmut E.; Stenmark, Harald; Platta, Harald W.

    2014-01-01

    The occurrence of cancer is often associated with a dysfunction in one of the three central membrane-involution processes—autophagy, endocytosis or cytokinesis. Interestingly, all three pathways are controlled by the same central signaling module: the class III phosphatidylinositol 3-kinase (PI3K-III) complex and its catalytic product, the phosphorylated lipid phosphatidylinositol 3-phosphate (PtdIns3P). The activity of the catalytic subunit of the PI3K-III complex, the lipid-kinase VPS34, requires the presence of the membrane-targeting factor VPS15 as well as the adaptor protein Beclin 1. Furthermore, a growing list of regulatory proteins associates with VPS34 via Beclin 1. These accessory factors define distinct subunit compositions and thereby guide the PI3K-III complex to its different cellular and physiological roles. Here we discuss the regulation of the PI3K-III complex components by ubiquitination and SUMOylation. Especially Beclin 1 has emerged as a highly regulated protein, which can be modified with Lys11-, Lys48- or Lys63-linked polyubiquitin chains catalyzed by distinct E3 ligases from the RING-, HECT-, RBR- or Cullin-type. We also point out other cross-links of these ligases with autophagy in order to discuss how these data might be merged into a general concept. PMID:25545884

  18. Par3 integrates Tiam1 and phosphatidylinositol 3-kinase signaling to change apical membrane identity

    PubMed Central

    Ruch, Travis R.; Bryant, David M.; Mostov, Keith E.; Engel, Joanne N.

    2017-01-01

    Pathogens can alter epithelial polarity by recruiting polarity proteins to the apical membrane, but how a change in protein localization is linked to polarity disruption is not clear. In this study, we used chemically induced dimerization to rapidly relocalize proteins from the cytosol to the apical surface. We demonstrate that forced apical localization of Par3, which is normally restricted to tight junctions, is sufficient to alter apical membrane identity through its interactions with phosphatidylinositol 3-kinase (PI3K) and the Rac1 guanine nucleotide exchange factor Tiam1. We further show that PI3K activity is required upstream of Rac1, and that simultaneously targeting PI3K and Tiam1 to the apical membrane has a synergistic effect on membrane remodeling. Thus, Par3 coordinates the action of PI3K and Tiam1 to define membrane identity, revealing a signaling mechanism that can be exploited by human mucosal pathogens. PMID:27881661

  19. A Phosphatidylinositol 3-kinase-regulated Akt-independent signaling promotes cigarette smoke-induced FRA-1 expression.

    PubMed

    Zhang, Qin; Adiseshaiah, Pavan; Kalvakolanu, Dhananjaya V; Reddy, Sekhar P

    2006-04-14

    The FRA-1 proto-oncogene is overexpressed in a variety of human tumors and is known to up-regulate the expression of genes involved in tumor progression and invasion. The phosphatidylinositol 3-kinase (PI3K)-Akt pathway is also known to regulate these cellular processes. More importantly, respiratory toxicants and carcinogens activate both the PI3K-Akt pathway and FRA-1 expression in human bronchial epithelial (HBE) cells. In this study we investigated a potential link between the PI3K-Akt pathway and the cigarette smoke (CS)-stimulated epidermal growth factor receptor-mediated FRA-1 induction in non-oncogenic HBE cells. Treatment of cells with LY294002, an inhibitor of the PI3K-Akt pathway, completely blocked CS-induced FRA-1 expression. Surprisingly pharmacological inhibition of Akt had no significant effect on CS-induced FRA-1 expression. Likewise the inhibition of protein kinase C zeta, which is a known downstream effector of PI3K, did not alter FRA-1 expression. We found that the PI3K through p21-activated kinase 1 regulates FRA-1 proto-oncogene induction by CS and the subsequent activation of the Elk1 and cAMP-response element-binding protein transcription factors that are bound to the promoter in HBE cells.

  20. Targets of B-cell antigen receptor signaling: the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase-3 signaling pathway and the Rap1 GTPase.

    PubMed

    Gold, M R; Ingham, R J; McLeod, S J; Christian, S L; Scheid, M P; Duronio, V; Santos, L; Matsuuchi, L

    2000-08-01

    In this review, we discuss the role of phosphatidylinositol 3-kinase (PI3K) and Rap 1 in B-cell receptor (BCR) signaling. PI3K produces lipids that recruit pleckstrin homology domain-containing proteins to the plasma membrane. Akt is a kinase that the BCR activates in this manner. Akt phosphorylates several transcription factors as well as proteins that regulate apoptosis and protein synthesis. Akt also regulates glycogen synthase kinase-3, a kinase whose substrates include the nuclear factor of activated T cells (NF-AT)cl and beta-catenin transcriptional activators. In addition to Akt, PI3K-derived lipids also regulate the activity and localization of other targets of BCR signaling. Thus, a key event in BCR signaling is the recruitment of PI3K to the plasma membrane where its substrates are located. This is mediated by binding of the Src homology (SH) 2 domains in PI3K to phosphotyrosine-containing sequences on membrane-associated docking proteins. The docking proteins that the BCR uses to recruit PI3K include CD19, Cbl, Gab1, and perhaps Gab2. We have shown that Gab1 colocalizes PI3K with SH2 domain-containing inositol phosphatase (SHIP) and SHP2, two enzymes that regulate PI3K-dependent signaling. In contrast to PI3K, little is known about the Rap1 GTPase. We showed that the BCR activates Rap1 via phospholipase C-dependent production of diacylglycerol. Since Rap1 is thought to regulate cell adhesion and cell polarity, it may be involved in B-cell migration.

  1. A Novel Positive Feedback Loop Mediated by the Docking Protein Gab1 and Phosphatidylinositol 3-Kinase in Epidermal Growth Factor Receptor Signaling

    PubMed Central

    Rodrigues, Gerard A.; Falasca, Marco; Zhang, Zhongtao; Ong, Siew Hwa; Schlessinger, Joseph

    2000-01-01

    The Gab1 protein is tyrosine phosphorylated in response to various growth factors and serves as a docking protein that recruits a number of downstream signaling proteins, including phosphatidylinositol 3-kinase (PI-3 kinase). To determine the role of Gab1 in signaling via the epidermal growth factor (EGF) receptor (EGFR) we tested the ability of Gab1 to associate with and modulate signaling by this receptor. We show that Gab1 associates with the EGFR in vivo and in vitro via pTyr sites 1068 and 1086 in the carboxy-terminal tail of the receptor and that overexpression of Gab1 potentiates EGF-induced activation of the mitogen-activated protein kinase and Jun kinase signaling pathways. A mutant of Gab1 unable to bind the p85 subunit of PI-3 kinase is defective in potentiating EGFR signaling, confirming a role for PI-3 kinase as a downstream effector of Gab1. Inhibition of PI-3 kinase by a dominant-interfering mutant of p85 or by Wortmannin treatment similarly impairs Gab1-induced enhancement of signaling via the EGFR. The PH domain of Gab1 was shown to bind specifically to phosphatidylinositol 3,4,5-triphosphate [PtdIns(3,4,5)P3], a product of PI-3 kinase, and is required for activation of Gab1-mediated enhancement of EGFR signaling. Moreover, the PH domain mediates Gab1 translocation to the plasma membrane in response to EGF and is required for efficient tyrosine phosphorylation of Gab1 upon EGF stimulation. In addition, overexpression of Gab1 PH domain blocks Gab1 potentiation of EGFR signaling. Finally, expression of the gene for the lipid phosphatase PTEN, which dephosphorylates PtdIns(3,4,5)P3, inhibits EGF signaling and translocation of Gab1 to the plasma membrane. These results reveal a novel positive feedback loop, modulated by PTEN, in which PI-3 kinase functions as both an upstream regulator and a downstream effector of Gab1 in signaling via the EGFR. PMID:10648629

  2. Regulation of Cdk7 activity through a phosphatidylinositol (3)-kinase/PKC-ι-mediated signaling cascade in glioblastoma

    PubMed Central

    Desai, Shraddha R.; Pillai, Prajit P.; Patel, Rekha S.; McCray, Andrea N.; Win-Piazza, Hla Y.; Acevedo-Duncan, Mildred E.

    2012-01-01

    The objective of this research was to study the potential function of protein kinase C (PKC)-ι in cell cycle progression and proliferation in glioblastoma. PKC-ι is highly overexpressed in human glioma and benign and malignant meningioma; however, little is understood about its role in regulating cell proliferation of glioblastoma. Several upstream molecular aberrations and/or loss of PTEN have been implicated to constitutively activate the phosphatidylinositol (PI) (3)-kinase pathway. PKC-ι is a targeted mediator in the PI (3)-kinase signal transduction repertoire. Results showed that PKC-ι was highly activated and overexpressed in glioma cells. PKC-ι directly associated and phosphorylated Cdk7 at T170 in a cell cycle-dependent manner, phosphorylating its downstream target, cdk2 at T160. Cdk2 has a major role in inducing G1–S phase progression of cells. Purified PKC-ι phosphorylated both endogenous and exogenous Cdk7. PKC-ι downregulation reduced Cdk7 and cdk2 phosphorylation following PI (3)-kinase inhibition, phosphotidylinositol-dependent kinase 1 knockdown as well as PKC-ι silencing (by siRNA treatment). It also diminished cdk2 activity. PKC-ι knockdown inhibited overall proliferation rates and induced apoptosis in glioma cells. These findings suggest that glioma cells may be proliferating through a novel PI (3)-kinase-/PKC-ι/Cdk7/cdk2-mediated pathway. PMID:22021906

  3. Regulation of Cdk7 activity through a phosphatidylinositol (3)-kinase/PKC-ι-mediated signaling cascade in glioblastoma.

    PubMed

    Desai, Shraddha R; Pillai, Prajit P; Patel, Rekha S; McCray, Andrea N; Win-Piazza, Hla Y; Acevedo-Duncan, Mildred E

    2012-01-01

    The objective of this research was to study the potential function of protein kinase C (PKC)-ι in cell cycle progression and proliferation in glioblastoma. PKC-ι is highly overexpressed in human glioma and benign and malignant meningioma; however, little is understood about its role in regulating cell proliferation of glioblastoma. Several upstream molecular aberrations and/or loss of PTEN have been implicated to constitutively activate the phosphatidylinositol (PI) (3)-kinase pathway. PKC-ι is a targeted mediator in the PI (3)-kinase signal transduction repertoire. Results showed that PKC-ι was highly activated and overexpressed in glioma cells. PKC-ι directly associated and phosphorylated Cdk7 at T170 in a cell cycle-dependent manner, phosphorylating its downstream target, cdk2 at T160. Cdk2 has a major role in inducing G(1)-S phase progression of cells. Purified PKC-ι phosphorylated both endogenous and exogenous Cdk7. PKC-ι downregulation reduced Cdk7 and cdk2 phosphorylation following PI (3)-kinase inhibition, phosphotidylinositol-dependent kinase 1 knockdown as well as PKC-ι silencing (by siRNA treatment). It also diminished cdk2 activity. PKC-ι knockdown inhibited overall proliferation rates and induced apoptosis in glioma cells. These findings suggest that glioma cells may be proliferating through a novel PI (3)-kinase-/PKC-ι/Cdk7/cdk2-mediated pathway.

  4. Interactions of polyomavirus middle T with the SH2 domains of the pp85 subunit of phosphatidylinositol-3-kinase.

    PubMed Central

    Yoakim, M; Hou, W; Liu, Y; Carpenter, C L; Kapeller, R; Schaffhausen, B S

    1992-01-01

    The binding of phosphatidylinositol-3-kinase to the polyomavirus middle T antigen is facilitated by tyrosine phosphorylation of middle T on residue 315. The pp85 subunit of phosphatidylinositol-3-kinase contains two SH2 domains, one in the middle of the molecule and one at the C terminus. When assayed by blotting with phosphorylated middle T, the more N-terminal SH2 domain is responsible for binding to middle T. When assayed in solution with glutathione S transferase fusions, both SH2s are capable of binding phosphorylated middle T. While both SH2 fusions can compete with intact pp85 for binding to middle T, the C-terminal SH2 is the more efficient of the two. Interaction between pp85 or its SH2 domains and middle T can be blocked by a synthetic peptide comprising the tyrosine phosphorylation sequence around middle T residue 315. Despite the fact that middle T can interact with both SH2s, these domains are not equivalent. Only the C-terminal SH2-middle T interaction was blocked by anti-SH2 antibody; the two SH2 fusions also interact with different cellular proteins. Images PMID:1380095

  5. Phosphatidylinositol-4-kinase type II alpha contains an AP-3-sorting motif and a kinase domain that are both required for endosome traffic.

    PubMed

    Craige, Branch; Salazar, Gloria; Faundez, Victor

    2008-04-01

    The adaptor complex 3 (AP-3) targets membrane proteins from endosomes to lysosomes, lysosome-related organelles and synaptic vesicles. Phosphatidylinositol-4-kinase type II alpha (PI4KIIalpha) is one of several proteins possessing catalytic domains that regulate AP-3-dependent sorting. Here we present evidence that PI4KIIalpha uniquely behaves both as a membrane protein cargo as well as an enzymatic regulator of adaptor function. In fact, AP-3 and PI4KIIalpha form a complex that requires a dileucine-sorting motif present in PI4KIIalpha. Mutagenesis of either the PI4KIIalpha-sorting motif or its kinase-active site indicates that both are necessary to interact with AP-3 and properly localize PI4KIIalpha to LAMP-1-positive endosomes. Similarly, both the kinase activity and the sorting signal present in PI4KIIalpha are necessary to rescue endosomal PI4KIIalpha siRNA-induced mutant phenotypes. We propose a mechanism whereby adaptors use canonical sorting motifs to selectively recruit a regulatory enzymatic activity to restricted membrane domains.

  6. Genetic alterations in the phosphatidylinositol-3 kinase/Akt pathway in thyroid cancer.

    PubMed

    Xing, Mingzhao

    2010-07-01

    Aberrant activation of the phosphatidylinositol-3 kinase (PI3K)/Akt pathway plays a fundamental role in thyroid tumorigenesis, particularly in follicular thyroid cancer (FTC) and aggressive thyroid cancer, such as anaplastic thyroid cancer (ATC). As the drivers of this process, many genetic alterations activating the PI3K/Akt pathway have been identified in thyroid cancer in recent years. This review summarizes the current knowledge on major genetic alterations in the PI3K/Akt pathway. These include PIK3CA mutations and genomic amplification/copy gain, Ras mutations, PTEN mutations, RET/PTC and PPARgamma/Pax8 rearrangements, as well as amplification/copy gain of PIK3CB, PDK1, Akt, and various receptor tyrosine kinase genes. Most of these genetic alterations are particularly common in FTC and many of them are even more common in ATC; they are generally less common in papillary thyroid cancer (PTC), in which the MAP kinase (MAPK) pathway activated by the BRAF mutation instead plays a major role. Methylation and, thus, epigenetic silencing of PTEN, a major negative regulator of the PI3K/Akt pathway, occurs in close association with activating genetic alterations of the PI3K/Akt pathway, constituting a unique self-enhancement mechanism for this pathway. Many of these genetic alterations are mutually exclusive in differentiated thyroid tumors, but with increasing concurrence from benign tumors to FTC to ATC. RET/PTC, Ras, and receptor tyrosine kinase could dually activate the PI3K/Akt and MAPK pathways. Most cases of ATC harbor genetic alterations in these genes or other genetic combinations that can activate both pathways. It is proposed that genetic alterations in the PI3K/Akt pathway promote thyroid cell transformation to FTC and that genetic alterations in the MAPK pathway promote cell transformation to PTC; accumulation of multiple genetic alterations that can activate both pathways promotes thyroid cancer aggressiveness and progression to ATC. Genetic alterations

  7. Estradiol regulates the insulin-like growth factor-I (IGF-I) signalling pathway: A crucial role of phosphatidylinositol 3-kinase (PI 3-kinase) in estrogens requirement for growth of MCF-7 human breast carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernard, Laurence; Legay, Christine; Adriaenssens, Eric

    2006-12-01

    Estrogens can stimulate the proliferation of estrogen-responsive breast cancer cells by increasing their proliferative response to insulin-like growth factors. With a view to investigating the molecular mechanisms implicated, we studied the effect of estradiol on the expression of proteins implicated in the insulin-like growth factor signalling pathway. Estradiol dose- and time-dependently increased the expression of insulin receptor substrate-1 and the p85/p110 subunits of phosphatidylinositol 3-kinase but did not change those of ERK2 and Akt/PKB. ICI 182,780 did not inhibit estradiol-induced IRS-1 and p85 expression. Moreover, two distinct estradiol-BSA conjugate compounds were as effective as estradiol in inducing IRS-1 and p85/p110more » expression indicating the possible implication of an estradiol membrane receptor. Comparative analysis of steroids-depleted and steroids-treated cells showed that IGF-I only stimulates cell growth in the latter condition. Nevertheless, expression of a constitutively active form of PI 3-kinase in steroid-depleted cells triggers proliferation. These results demonstrate that estradiol positively regulates essential proteins of the IGF signalling pathway and put in evidence that phosphatidylinositol 3-kinase plays a central role in the synergistic pro-proliferative action of estradiol and IGF-I.« less

  8. The EphA8 Receptor Regulates Integrin Activity through p110γ Phosphatidylinositol-3 Kinase in a Tyrosine Kinase Activity-Independent Manner

    PubMed Central

    Gu, Changkyu; Park, Soochul

    2001-01-01

    Recent genetic studies suggest that ephrins may function in a kinase-independent Eph receptor pathway. Here we report that expression of EphA8 in either NIH 3T3 or HEK293 cells enhanced cell adhesion to fibronectin via α5β1- or β3 integrins. Interestingly, a kinase-inactive EphA8 mutant also markedly promoted cell attachment to fibronectin in these cell lines. Using a panel of EphA8 point mutants, we have demonstrated that EphA8 kinase activity does not correlate with its ability to promote cell attachment to fibronectin. Analysis using EphA8 extracellular and intracellular domain mutants has revealed that enhanced cell adhesion is dependent on ephrin A binding to the extracellular domain and the juxtamembrane segment of the cytoplasmic domain of the receptor. EphA8-promoted adhesion was efficiently inhibited by wortmannin, a phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor. Additionally, we found that EphA8 had associated PI 3-kinase activity and that the p110γ isoform of PI 3-kinase is associated with EphA8. In vitro binding experiments revealed that the EphA8 juxtamembrane segment was sufficient for the formation of a stable complex with p110γ. Similar results were obtained in assay using cells stripped of endogenous ephrin A ligands by treatment with preclustered ephrin A5-Fc proteins. In addition, a membrane-targeted lipid kinase-inactive p110γ mutant was demonstrated to stably associate with EphA8 and suppress EphA8-promoted cell adhesion to fibronectin. Taken together, these results suggest the presence of a novel mechanism by which the EphA8 receptor localizes p110γ PI 3-kinase to the plasma membrane in a tyrosine kinase-independent fashion, thereby allowing access to lipid substrates to enable the signals required for integrin-mediated cell adhesion. PMID:11416136

  9. RGS16 inhibits breast cancer cell growth by mitigating phosphatidylinositol 3-kinase signaling.

    PubMed

    Liang, Genqing; Bansal, Geetanjali; Xie, Zhihui; Druey, Kirk M

    2009-08-07

    Aberrant activity of the phosphatidylinositol 3-kinase (PI3K) pathway supports growth of many tumors including those of breast, lung, and prostate. Resistance of breast cancer cells to targeted chemotherapies including tyrosine kinase inhibitors (TKI) has been linked to persistent PI3K activity, which may in part be due to increased membrane expression of epidermal growth factor (EGF) receptors (HER2 and HER3). Recently we found that proteins of the RGS (regulator of G protein signaling) family suppress PI3K activity downstream of the receptor by sequestering its p85alpha subunit from signaling complexes. Because a substantial percentage of breast tumors have RGS16 mutations and reduced RGS16 protein expression, we investigated the link between regulation of PI3K activity by RGS16 and breast cancer cell growth. RGS16 overexpression in MCF7 breast cancer cells inhibited EGF-induced proliferation and Akt phosphorylation, whereas shRNA-mediated extinction of RGS16 augmented cell growth and resistance to TKI treatment. Exposure to TKI also reduced RGS16 expression in MCF7 and BT474 cell lines. RGS16 bound the amino-terminal SH2 and inter-SH2 domains of p85alpha and inhibited its interaction with the EGF receptor-associated adapter protein Gab1. These results suggest that the loss of RGS16 in some breast tumors enhances PI3K signaling elicited by growth factors and thereby promotes proliferation and TKI evasion downstream of HER activation.

  10. Phosphatidylinositol kinase. A component of the chromaffin-granule membrane

    PubMed Central

    Phillips, John H.

    1973-01-01

    Phosphorylation of bovine chromaffin granules by ATP leads to the formation of diphosphoinositide in the granule membrane. Both phosphatidylinositol kinase and its substrate are components of this membrane, and triphosphoinositide is not formed under the conditions of the assay. The reaction is Mg2+-dependent and is stimulated by Mn2+ and F− ions. The initial reaction is rapid, with a broad pH profile and a `transition' temperature for its activation energy at 27°C. The apparent Km for ATP is 5μm. ATP, N-ethylmaleimide, Cu2+ ions and NaIO4 are inhibitory. The phospholipids of chromaffin-granule membranes have been analysed: 6.8% of the lipid P is found in phosphatidylinositol, and only 2–3% in phosphatidylserine. Comparison of the rate of phosphorylation of intact and lysed granules suggests that the sites for phosphorylation are on the outer (cytoplasmic) surface of the granules, and diphosphoinositide may therefore make an important contribution to the charge of the chromaffin granule in vivo. PMID:4360713

  11. Phosphatidylinositol 3-kinase inhibition restores Ca2+ release defects and prolongs survival in myotubularin-deficient mice

    PubMed Central

    Kutchukian, Candice; Lo Scrudato, Mirella; Tourneur, Yves; Poulard, Karine; Vignaud, Alban; Berthier, Christine; Allard, Bruno; Lawlor, Michael W.; Buj-Bello, Ana; Jacquemond, Vincent

    2016-01-01

    Mutations in the gene encoding the phosphoinositide 3-phosphatase myotubularin (MTM1) are responsible for a pediatric disease of skeletal muscle named myotubular myopathy (XLMTM). Muscle fibers from MTM1-deficient mice present defects in excitation–contraction (EC) coupling likely responsible for the disease-associated fatal muscle weakness. However, the mechanism leading to EC coupling failure remains unclear. During normal skeletal muscle EC coupling, transverse (t) tubule depolarization triggers sarcoplasmic reticulum (SR) Ca2+ release through ryanodine receptor channels gated by conformational coupling with the t-tubule voltage-sensing dihydropyridine receptors. We report that MTM1 deficiency is associated with a 60% depression of global SR Ca2+ release over the full range of voltage sensitivity of EC coupling. SR Ca2+ release in the diseased fibers is also slower than in normal fibers, or delayed following voltage activation, consistent with the contribution of Ca2+-gated ryanodine receptors to EC coupling. In addition, we found that SR Ca2+ release is spatially heterogeneous within myotubularin-deficient muscle fibers, with focally defective areas recapitulating the global alterations. Importantly, we found that pharmacological inhibition of phosphatidylinositol 3-kinase (PtdIns 3-kinase) activity rescues the Ca2+ release defects in isolated muscle fibers and increases the lifespan and mobility of XLMTM mice, providing proof of concept for the use of PtdIns 3-kinase inhibitors in myotubular myopathy and suggesting that unbalanced PtdIns 3-kinase activity plays a critical role in the pathological process. PMID:27911767

  12. Productive Entry of Foot-and-Mouth Disease Virus via Macropinocytosis Independent of Phosphatidylinositol 3-Kinase

    PubMed Central

    Han, Shi-Chong; Guo, Hui-Chen; Sun, Shi-Qi; Jin, Ye; Wei, Yan-Quan; Feng, Xia; Yao, Xue-Ping; Cao, Sui-Zhong; Xiang Liu, Ding; Liu, Xiang-Tao

    2016-01-01

    Virus entry is an attractive target for therapeutic intervention. Here, using a combination of electron microscopy, immunofluorescence assay, siRNA interference, specific pharmacological inhibitors, and dominant negative mutation, we demonstrated that the entry of foot-and-mouth disease virus (FMDV) triggered a substantial amount of plasma membrane ruffling. We also found that the internalization of FMDV induced a robust increase in fluid-phase uptake, and virions internalized within macropinosomes colocalized with phase uptake marker dextran. During this stage, the Rac1-Pak1 signaling pathway was activated. After specific inhibition on actin, Na+/H+ exchanger, receptor tyrosine kinase, Rac1, Pak1, myosin II, and protein kinase C, the entry and infection of FMDV significantly decreased. However, inhibition of phosphatidylinositol 3-kinase (PI3K) did not reduce FMDV internalization but increased the viral entry and infection to a certain extent, implying that FMDV entry did not require PI3K activity. Results showed that internalization of FMDV exhibited the main hallmarks of macropinocytosis. Moreover, intracellular trafficking of FMDV involves EEA1/Rab5-positive vesicles. The present study demonstrated macropinocytosis as another endocytic pathway apart from the clathrin-mediated pathway. The findings greatly expand our understanding of the molecular mechanisms of FMDV entry into cells, as well as provide potential insights into the entry mechanisms of other picornaviruses. PMID:26757826

  13. Interleukin-1 beta induced synthesis of protein kinase C-delta and protein kinase C-epsilon in EL4 thymoma cells: possible involvement of phosphatidylinositol 3-kinase.

    PubMed

    Varley, C L; Royds, J A; Brown, B L; Dobson, P R

    2001-01-01

    We present evidence here that the proinflammatory cytokine, interleukin-1 beta (IL-1 beta) stimulates a significant increase in protein kinase C (PKC)-epsilon and PKC-delta protein levels and increases PKC-epsilon, but not PKC-delta, transcripts in EL4 thymoma cells. Incubation of EL4 cells with IL-1 beta induced protein synthesis of PKC-epsilon (6-fold increase) by 7 h and had a biphasic effect on PKC-delta levels with peaks at 4 h (2-fold increase) and 24 h (4-fold increase). At the level of mRNA, PKC-epsilon, but not PKC-delta levels, were induced after incubation of EL4 cells with IL-1 beta. The signalling mechanisms utilized by IL-1 beta to induce the synthesis of these PKC isoforms were investigated. Two phosphatidylinositol (PI) 3-kinase-specific inhibitors, wortmannin and LY294002, inhibited IL-1 beta-induced synthesis of PKC-epsilon. However, the PI 3-kinase inhibitors had little effect on the IL-1 beta-induced synthesis of PKC-delta in these cells. Our results indicate that IL-1 beta induced both PKC-delta and PKC-epsilon expression over different time periods. Furthermore, our evidence suggests that IL-1 beta induction of PKC-epsilon, but not PKC-delta, may occur via the PI 3-kinase pathway. Copyright 2001 S. Karger AG, Basel

  14. RhoG regulates anoikis through a phosphatidylinositol 3-kinase-dependent mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamaki, Nao; Negishi, Manabu; Katoh, Hironori

    2007-08-01

    In normal epithelial cells, cell-matrix interaction is required for cell survival and proliferation, whereas disruption of this interaction causes epithelial cells to undergo apoptosis called anoikis. Here we show that the small GTPase RhoG plays an important role in the regulation of anoikis. HeLa cells are capable of anchorage-independent cell growth and acquire resistance to anoikis. We found that RNA interference-mediated knockdown of RhoG promoted anoikis in HeLa cells. Previous studies have shown that RhoG activates Rac1 and induces several cellular functions including promotion of cell migration through its effector ELMO and the ELMO-binding protein Dock180 that function as amore » Rac-specific guanine nucleotide exchange factor. However, RhoG-induced suppression of anoikis was independent of the ELMO- and Dock180-mediated activation of Rac1. On the other hand, the regulation of anoikis by RhoG required phosphatidylinositol 3-kinase (PI3K) activity, and constitutively active RhoG bound to the PI3K regulatory subunit p85{alpha} and induced the PI3K-dependent phosphorylation of Akt. Taken together, these results suggest that RhoG protects cells from apoptosis caused by the loss of anchorage through a PI3K-dependent mechanism, independent of its activation of Rac1.« less

  15. Anti-apoptotic effect of heat shock protein 90 on hypoxia-mediated cardiomyocyte damage is mediated via the phosphatidylinositol 3-kinase/AKT pathway.

    PubMed

    Wang, Wei; Peng, Yizhi; Wang, Yuanyuan; Zhao, Xiaohui; Yuan, Zhiqiang

    2009-09-01

    1. Hypoxia-induced cardiomyocyte apoptosis contributes significantly to cardiac dysfunction following trauma, shock and burn injury. There is evidence that heat shock protein (HSP) 90 is anti-apoptotic in cardiomyocytes subjected to a variety of apoptotic stimuli. Because HSP90 acts as an upstream regulator of the serine/threonine protein kinase Akt survival pathway during cellular stress, we hypothesized that HSP90 exerts a cardioprotective effect via the phosphatidylinositol 3-kinase (PI3-K)/Akt pathway. 2. Neonatal rat cardiomyocytes were subjected to normoxia or hypoxia in the absence or presence of the HSP90 inhibitor geldanamycin (1 μg/mL). Cardiomyocyte apoptosis was assessed by release of lactate dehydrogenase (LDH), terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labelling (TUNEL) staining and caspase 3 activity. Expression of HSP90, Akt, Bad and cytochrome c release was determined by western blot analysis. 3. Following exposure of cells to hypoxia, HSP90 was markedly elevated in a time-dependent manner, reaching a peak at 6 h (eightfold increase). Geldanamycin significantly increased hypoxia-induced release of LDH by 114%, the percentage of apoptotic cardiomyocytes by 102% and caspase 3 activity by 78%. Pretreatment of cells with geldanamycin also suppressed phosphorylation of both Akt and its downstream target Bad, but promoted the mitochondrial release of cytochrome c. 4. In conclusion, HSP90 activity is enhanced in cardiomyocytes following hypoxic insult. The anti-apoptotic effect of HSP90 on cardiomyocytes subjected to hypoxia is mediated, at least in part, by the PI3-K/Akt pathway. Key words: apoptosis, cardiomyocyte, heart failure, heat shock protein 90, hypoxia, phosphatidylinositol 3-kinase/Akt signalling pathway, serine/threonine protein kinase Akt.

  16. Phosphatidylinositol-3-kinase-dependent phosphorylation of SLP-76 by the lymphoma-associated ITK-SYK fusion-protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussain, Alamdar, E-mail: alamdar.hussain@ki.se; Department of Biosciences, COMSATS Institute of Information Technology, Chak Shazad Campus, Islamabad; Faryal, Rani

    Recurrent chromosomal translocations have long been implicated in various types of lymphomas and other malignancies. Novel recurrent t(5;9)(q33;q22) has been recently discovered in un-specified peripheral T-cell lymphoma. To elucidate the role of this translocation, the corresponding fusion construct encoding the N-terminal portion of the ITK kinase and the C-terminal catalytic region of the SYK kinase was generated. We herein show that the ITK-SYK fusion-protein is constitutively active. Moreover, we demonstrate that ITK-SYK is phosphorylated on key tyrosine residues and is capable of potently phosphorylating the related adapter proteins BLNK and SLP-76. In transiently transfected cells, SYK was phosphorylated at Y352more » but not detectably at the activation-loop tyrosines Y525/Y526. In contrast, ITK-SYK was phosphorylated both at Y212 and the activation-loop tyrosines Y385/Y386, corresponding to Y352 and Y525/Y526 in SYK, respectively. In resting primary lymphocytes, ITK-SYK predominantly localizes to the cell surface. In addition, we demonstrate that following stimulation, the ITK-SYK fusion-protein in cell lines translocates to the cell membrane and, moreover, that this phenomenon as well as SLP-76 phosphorylation are blocked upon phosphatidylinositol-3-kinase (PI3-kinase) inhibition.« less

  17. Inhibition of phosphatidylinositol 3-kinase causes apoptosis in retinoic acid differentiated hl-60 leukemia cells.

    PubMed

    Ma, Jin; Liu, Qiang; Zeng, Yi-Xin

    2004-01-01

    Phosphatidylinositol 3-kinase (PI3-K) signaling may inhibit apoptosis in neoplastic cells. The PI-3K inhibitor wortmannin renders cells apoptosis-prone. Inducers of differentiation may also cause apoptosis. To detect the effect of wortmannin on the survival of differentiated human acute promyeloid leukemia cells, HL-60 cells were induced to differentiation with treatment of all trans-retinoic acid (ATRA) followed by treatment with wortmannin. Results showed that apoptosis occurred in cells that underwent differentiation, but not in undifferentiated HL-60 cells. The pro-apoptotic molecule, Bad, played a role in this apoptotic mechanism. Thus, the survival of differentiated HL-60 cells induced by ATRA depends on the ability of the PI3-K pathway to transduce survival signals; the PI3-K inhibitor, wortmannin, can induce apoptosis of differentiated HL-60 cells. These results may indicate a novel method for treating cancer with differentiation induction and signal pathway regulation.

  18. SH2 domains of the p85 alpha subunit of phosphatidylinositol 3-kinase regulate binding to growth factor receptors.

    PubMed Central

    McGlade, C J; Ellis, C; Reedijk, M; Anderson, D; Mbamalu, G; Reith, A D; Panayotou, G; End, P; Bernstein, A; Kazlauskas, A

    1992-01-01

    The binding of cytoplasmic signaling proteins such as phospholipase C-gamma 1 and Ras GTPase-activating protein to autophosphorylated growth factor receptors is directed by their noncatalytic Src homology region 2 (SH2) domains. The p85 alpha regulatory subunit of phosphatidylinositol (PI) 3-kinase, which associates with several receptor protein-tyrosine kinases, also contains two SH2 domains. Both p85 alpha SH2 domains, when expressed individually as fusion proteins in bacteria, bound stably to the activated beta receptor for platelet-derived growth factor (PDGF). Complex formation required PDGF stimulation and was dependent on receptor tyrosine kinase activity. The bacterial p85 alpha SH2 domains recognized activated beta PDGF receptor which had been immobilized on a filter, indicating that SH2 domains contact autophosphorylated receptors directly. Several receptor tyrosine kinases within the PDGF receptor subfamily, including the colony-stimulating factor 1 receptor and the Steel factor receptor (Kit), also associate with PI 3-kinase in vivo. Bacterially expressed SH2 domains derived from the p85 alpha subunit of PI 3-kinase bound in vitro to the activated colony-stimulating factor 1 receptor and to Kit. We infer that the SH2 domains of p85 alpha bind to high-affinity sites on these receptors, whose creation is dependent on receptor autophosphorylation. The SH2 domains of p85 are therefore primarily responsible for the binding of PI 3-kinase to activated growth factor receptors. Images PMID:1372092

  19. Effects of Isoform-selective Phosphatidylinositol 3-Kinase Inhibitors on Osteoclasts

    PubMed Central

    Shugg, Ryan P. P.; Thomson, Ashley; Tanabe, Natsuko; Kashishian, Adam; Steiner, Bart H.; Puri, Kamal D.; Pereverzev, Alexey; Lannutti, Brian J.; Jirik, Frank R.; Dixon, S. Jeffrey; Sims, Stephen M.

    2013-01-01

    Phosphatidylinositol 3-kinases (PI3K) participate in numerous signaling pathways, and control distinct biological functions. Studies using pan-PI3K inhibitors suggest roles for PI3K in osteoclasts, but little is known about specific PI3K isoforms in these cells. Our objective was to determine effects of isoform-selective PI3K inhibitors on osteoclasts. The following inhibitors were investigated (targets in parentheses): wortmannin and LY294002 (pan-p110), PIK75 (α), GDC0941 (α, δ), TGX221 (β), AS252424 (γ), and IC87114 (δ). In addition, we characterized a new potent and selective PI3Kδ inhibitor, GS-9820, and explored roles of PI3K isoforms in regulating osteoclast function. Osteoclasts were isolated from long bones of neonatal rats and rabbits. Wortmannin, LY294002, GDC0941, IC87114, and GS-9820 induced a dramatic retraction of osteoclasts within 15–20 min to 65–75% of the initial area. In contrast, there was no significant retraction in response to vehicle, PIK75, TGX221, or AS252424. Moreover, wortmannin and GS-9820, but not PIK75 or TGX221, disrupted actin belts. We examined effects of PI3K inhibitors on osteoclast survival. Whereas PIK75, TGX221, and GS-9820 had no significant effect on basal survival, all blocked RANKL-stimulated survival. When studied on resorbable substrates, osteoclastic resorption was suppressed by wortmannin and inhibitors of PI3Kβ and PI3Kδ, but not other isoforms. These data are consistent with a critical role for PI3Kδ in regulating osteoclast cytoskeleton and resorptive activity. In contrast, multiple PI3K isoforms contribute to the control of osteoclast survival. Thus, the PI3Kδ isoform, which is predominantly expressed in cells of hematopoietic origin, is an attractive target for anti-resorptive therapeutics. PMID:24133210

  20. Neural cell adhesion molecule potentiates invasion and metastasis of melanoma cells through CAMP-dependent protein kinase and phosphatidylinositol 3-kinase pathways.

    PubMed

    Shi, Yu; Liu, Rui; Zhang, Si; Xia, Yin-Yan; Yang, Hai-Jie; Guo, Ke; Zeng, Qi; Feng, Zhi-Wei

    2011-04-01

    Neural cell adhesion molecule (NCAM) has been implicated in tumor metastasis yet its function in melanoma progression remains unclear. Here, we demonstrate that stably silencing NCAM expression in mouse melanoma B16F0 cells perturbs their cellular invasion and metastatic dissemination in vivo. The pro-invasive function of NCAM is exerted via dual mechanisms involving both cAMP-dependent protein kinase (PKA) and phosphatidylinositol 3-kinase (PI3K) pathways. Pharmacologic inhibition of PKA and PI3K leads to impaired cellular invasion. In contrast, forced expression of constitutively activated Akt, the major downstream target of PI3K, restores the defective cellular invasiveness of NCAM knock-down (KD) B16F0 cells. Furthermore, attenuation of either PKA or Akt activity in NCAM KD cells is shown to affect their common downstream target, transcription factor cAMP response element binding protein (CREB), which in turn down-regulates mRNA expression of matrix metalloproteinase-2 (MMP-2), thus contributes to impaired cellular invasion and metastasis of melanoma cells. Together, these findings indicate that NCAM potentiates cellular invasion and metastasis of melanoma cells through stimulation of PKA and PI3K signaling pathways thus suggesting the potential implication of anti-NCAM strategy in melanoma treatment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Cellular response to low dose radiation: Role of phosphatidylinositol-3 kinase like kinases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balajee, A.S.; Meador, J.A.; Su, Y.

    It is increasingly realized that human exposure either to an acute low dose or multiple chronic low doses of low LET radiation has the potential to cause different types of cancer. Therefore, the central theme of research for DOE and NASA is focused on understanding the molecular mechanisms and pathways responsible for the cellular response to low dose radiation which would not only improve the accuracy of estimating health risks but also help in the development of predictive assays for low dose radiation risks associated with tissue degeneration and cancer. The working hypothesis for this proposal is that the cellularmore » mechanisms in terms of DNA damage signaling, repair and cell cycle checkpoint regulation are different for low and high doses of low LET radiation and that the mode of action of phosphatidylinositol-3 kinase like kinases (PIKK: ATM, ATR and DNA-PK) determines the dose dependent cellular responses. The hypothesis will be tested at two levels: (I) Evaluation of the role of ATM, ATR and DNA-PK in cellular response to low and high doses of low LET radiation in simple in vitro human cell systems and (II) Determination of radiation responses in complex cell microenvironments such as human EpiDerm tissue constructs. Cellular responses to low and high doses of low LET radiation will be assessed from the view points of DNA damage signaling, DNA double strand break repair and cell cycle checkpoint regulation by analyzing the activities (i.e. post-translational modifications and kinetics of protein-protein interactions) of the key target proteins for PI-3 kinase like kinases both at the intra-cellular and molecular levels. The proteins chosen for this proposal are placed under three categories: (I) sensors/initiators include ATM ser1981, ATR, 53BP1, gamma-H2AX, MDC1, MRE11, Rad50 and Nbs1; (II) signal transducers include Chk1, Chk2, FANCD2 and SMC1; and (III) effectors include p53, CDC25A and CDC25C. The primary goal of this proposal is to elucidate the

  2. A chimeric cyclic interferon-α2b peptide induces apoptosis by sequential activation of phosphatidylinositol 3-kinase, protein kinase Cδ and p38 MAP kinase.

    PubMed

    Blank, V C; Bertucci, L; Furmento, V A; Peña, C; Marino, V J; Roguin, L P

    2013-06-10

    We have previously demonstrated that tyrosine phosphorylation of STAT1/3 and p38 mitogen-activated protein kinase (p38 MAPK) activation are involved in the apoptotic response triggered by a chimeric cyclic peptide of the interferon-α2b (IFN-α2b) in WISH cells. Since the peptide also induced serine phosphorylation of STAT proteins, in the present study we examined the kinase involved in serine STAT1 phosphorylation and the signaling effectors acting upstream such activation. We first found that p38 MAPK is involved in serine STAT1 phosphorylation, since a reduction of phophoserine-STAT1 levels was evident after incubating WISH cells with cyclic peptide in the presence of a p38 pharmacological inhibitor or a dominant-negative p38 mutant. Next, we demonstrated that the peptide induced activation of protein kinase Cδ (PKCδ). Based on this finding, the role of this kinase was then evaluated. After incubating WISH cells with a PKCδ inhibitor or after decreasing PKCδ expression levels by RNA interference, both peptide-induced serine STAT1 and p38 phosphorylation levels were significantly decreased, indicating that PKCδ functions as an upstream regulator of p38. We also showed that PKCδ and p38 activation stimulated by the peptide was inhibited by a specific pharmacological inhibitor of phosphatidylinositol 3-kinase (PI3K) or by a dominant-negative p85 PI3K-regulatory subunit, suggesting that PI3K is upstream in the signaling cascade. In addition, the role of PI3K and PKCδ in cyclic peptide-induced apoptosis was examined. Both signaling effectors were found to regulate the antiproliferative activity and the apoptotic response triggered by the cyclic peptide in WISH cells. In conclusion, we herein demonstrated that STAT1 serine phosphorylation is mediated by the sequential activation of PI3K, PKCδ and p38 MAPK. This signaling cascade contributes to the antitumor effect induced by the chimeric IFN-α2b cyclic peptide in WISH cells. Copyright © 2013 Elsevier Inc

  3. Insulin Receptor Substrate 1, the Hub Linking Follicle-stimulating Hormone to Phosphatidylinositol 3-Kinase Activation.

    PubMed

    Law, Nathan C; Hunzicker-Dunn, Mary E

    2016-02-26

    The ubiquitous phosphatidylinositol 3-kinase (PI3K) signaling pathway regulates many cellular functions. However, the mechanism by which G protein-coupled receptors (GPCRs) signal to activate PI3K is poorly understood. We have used ovarian granulosa cells as a model to investigate this pathway, based on evidence that the GPCR agonist follicle-stimulating hormone (FSH) promotes the protein kinase A (PKA)-dependent phosphorylation of insulin receptor substrate 1 (IRS1) on tyrosine residues that activate PI3K. We report that in the absence of FSH, granulosa cells secrete a subthreshold concentration of insulin-like growth factor-1 (IGF-1) that primes the IGF-1 receptor (IGF-1R) but fails to promote tyrosine phosphorylation of IRS1. FSH via PKA acts to sensitize IRS1 to the tyrosine kinase activity of the IGF-1R by activating protein phosphatase 1 (PP1) to promote dephosphorylation of inhibitory Ser/Thr residues on IRS1, including Ser(789). Knockdown of PP1β blocks the ability of FSH to activate PI3K in the presence of endogenous IGF-1. Activation of PI3K thus requires both PKA-mediated relief of IRS1 inhibition and IGF-1R-dependent tyrosine phosphorylation of IRS1. Treatment with FSH and increasing concentrations of exogenous IGF-1 triggers synergistic IRS1 tyrosine phosphorylation at PI3K-activating residues that persists downstream through protein kinase B (AKT) and FOXO1 (forkhead box protein O1) to drive synergistic expression of genes that underlies follicle maturation. Based on the ability of GPCR agonists to synergize with IGFs to enhance gene expression in other cell types, PP1 activation to relieve IRS1 inhibition may be a more general mechanism by which GPCRs act with the IGF-1R to activate PI3K/AKT. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Growth factor receptor-binding protein 10 (Grb10) as a partner of phosphatidylinositol 3-kinase in metabolic insulin action.

    PubMed

    Deng, Youping; Bhattacharya, Sujoy; Swamy, O Rama; Tandon, Ruchi; Wang, Yong; Janda, Robert; Riedel, Heimo

    2003-10-10

    The regulation of the metabolic insulin response by mouse growth factor receptor-binding protein 10 (Grb10) has been addressed in this report. We find mouse Grb10 to be a critical component of the insulin receptor (IR) signaling complex that provides a functional link between IR and p85 phosphatidylinositol (PI) 3-kinase and regulates PI 3-kinase activity. This regulatory mechanism parallels the established link between IR and p85 via insulin receptor substrate (IRS) proteins. A direct association was demonstrated between Grb10 and p85 but was not observed between Grb10 and IRS proteins. In addition, no effect of mouse Grb10 was observed on the association between IRS-1 and p85, on IRS-1-associated PI 3-kinase activity, or on insulin-mediated activation of IR or IRS proteins. A critical role of mouse Grb10 was observed in the regulation of PI 3-kinase activity and the resulting metabolic insulin response. Dominant-negative Grb10 domains, in particular the SH2 domain, eliminated the metabolic response to insulin in differentiated 3T3-L1 adipocytes. This was consistently observed for glycogen synthesis, glucose and amino acid transport, and lipogenesis. In parallel, the same metabolic responses were substantially elevated by increased levels of Grb10. A similar role of Grb10 was confirmed in mouse L6 cells. In addition to the SH2 domain, the Pro-rich amino-terminal region of Grb10 was implicated in the regulation of PI 3-kinase catalytic activity. These regulatory roles of Grb10 were extended to specific insulin mediators downstream of PI 3-kinase including PKB/Akt, glycogen synthase kinase, and glycogen synthase. In contrast, a regulatory role of Grb10 in parallel insulin response pathways including p70 S6 kinase, ubiquitin ligase Cbl, or mitogen-activated protein kinase p38 was not observed. The dissection of the interaction of mouse Grb10 with p85 and the resulting regulation of PI 3-kinase activity should help elucidate the complexity of the IR signaling

  5. Magnolol suppresses vascular endothelial growth factor-induced angiogenesis by inhibiting Ras-dependent mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt signaling pathways.

    PubMed

    Kim, Ki Mo; Kim, No Soo; Kim, Jinhee; Park, Jong-Shik; Yi, Jin Mu; Lee, Jun; Bang, Ok-Sun

    2013-01-01

    Magnolol, a hydroxylated biphenyl compound isolated from Magnolia officinalis, has been reported to possess anticancer activity. Recent studies have also demonstrated that magnolol inhibits cell growth and induces the apoptosis of cancer cells. However, the effects of magnolol on vascular endothelial growth factor (VEGF)-induced angiogenesis in endothelial cells have not been studied. In the present study, we have used human umbilical vein endothelial cells (HUVECs) to investigate the antiangiogenic effect and molecular mechanism of magnolol. Magnolol inhibited the VEGF-induced proliferation, chemotactic motility and tube formation of HUVECs in vitro as well as the vessel sprouting of the aorta ex vivo. Furthermore, magnolol inhibited VEGF-induced Ras activation and subsequently suppressed extracellular signal-regulated kinase (ERK), phosphatidylinositol-3-kinase (PI3K)/Akt and p38, but not Src and focal adhesion kinase (FAK). Interestingly, the knockdown of Ras by short interfering RNA produced inhibitory effects that were similar to the effects of magnolol on VEGF-induced angiogenic signaling events, such as ERK and Akt/eNOS activation, and resulted in the inhibition of proliferation, migration, and vessel sprouting in HUVECs. In combination, these results demonstrate that magnolol is an inhibitor of angiogenesis and suggest that this compound could be a potential candidate in the treatment of angiogenesis-related diseases.

  6. Insulin-like growth factor-mediated muscle differentiation: collaboration between phosphatidylinositol 3-kinase-Akt-signaling pathways and myogenin.

    PubMed

    Tureckova, J; Wilson, E M; Cappalonga, J L; Rotwein, P

    2001-10-19

    The differentiation and maturation of skeletal muscle require interactions between signaling pathways activated by hormones and growth factors and an intrinsic regulatory network controlled by myogenic transcription factors. Insulin-like growth factors (IGFs) play key roles in muscle development in the embryo and in regeneration in the adult. To study mechanisms of IGF action in muscle, we developed a myogenic cell line that overexpresses IGF-binding protein-5. C2BP5 cells remain quiescent in low serum differentiation medium until the addition of IGF-I. Here we use this cell line to identify signaling pathways controlling IGF-mediated differentiation. Induction of myogenin by IGF-I and myotube formation were prevented by the phosphatidylinositol (PI) 3-kinase inhibitor, LY294002, even when included 2 days after growth factor addition, whereas expression of active PI 3-kinase could promote differentiation in the absence of IGF-I. Differentiation also was induced by myogenin but was blocked by LY294002. The differentiation-promoting effects of IGF-I were mimicked by a modified membrane-targeted inducible Akt-1 (iAkt), and iAkt was able to stimulate differentiation of C2 myoblasts and primary mouse myoblasts incubated with otherwise inhibitory concentrations of LY294002. These results show that an IGF-regulated PI 3-kinase-Akt pathway controls muscle differentiation by mechanisms acting both upstream and downstream of myogenin.

  7. BKM-120 (Buparlisib): A Phosphatidyl-Inositol-3 Kinase Inhibitor with Anti-Invasive Properties in Glioblastoma.

    PubMed

    Speranza, Maria-Carmela; Nowicki, Michal O; Behera, Prajna; Cho, Choi-Fong; Chiocca, E Antonio; Lawler, Sean E

    2016-02-05

    Glioblastoma is an aggressive, invasive tumor of the central nervous system (CNS). There is a widely acknowledged need for anti-invasive therapeutics to limit glioblastoma invasion. BKM-120 is a CNS-penetrant pan-class I phosphatidyl-inositol-3 kinase (PI3K) inhibitor in clinical trials for solid tumors, including glioblastoma. We observed that BKM-120 has potent anti-invasive effects in glioblastoma cell lines and patient-derived glioma cells in vitro. These anti-migratory effects were clearly distinguishable from cytostatic and cytotoxic effects at higher drug concentrations and longer durations of drug exposure. The effects were reversible and accompanied by changes in cell morphology and pronounced reduction in both cell/cell and cell/substrate adhesion. In vivo studies showed that a short period of treatment with BKM-120 slowed tumor spread in an intracranial xenografts. GDC-0941, a similar potent and selective PI3K inhibitor, only caused a moderate reduction in glioblastoma cell migration. The effects of BKM-120 and GDC-0941 were indistinguishable by in vitro kinase selectivity screening and phospho-protein arrays. BKM-120 reduced the numbers of focal adhesions and the velocity of microtubule treadmilling compared with GDC-0941, suggesting that mechanisms in addition to PI3K inhibition contribute to the anti-invasive effects of BKM-120. Our data suggest the CNS-penetrant PI3K inhibitor BKM-120 may have anti-invasive properties in glioblastoma.

  8. Activation of phosphatidylinositol-3 kinase by nerve growth factor involves indirect coupling of the trk proto-oncogene with src homology 2 domains.

    PubMed

    Ohmichi, M; Decker, S J; Saltiel, A R

    1992-10-01

    Growth factor receptor tyrosine kinases can form stable associations with intracellular proteins that contain src homology (SH) 2 domains, including the p85 regulatory subunit of phosphatidylinositol (PI)-3 kinase. The activation of this enzyme by growth factors is evaluated in PC12 pheochromocytoma cells and NIH 3T3 fibroblasts expressing the pp140c-trk nerve growth factor (NGF) receptor (3T3-c-trk). NGF causes the rapid stimulation of PI-3 kinase activity detected in anti-phosphotyrosine, but not in anti-trk, immunoprecipitates. This effect coincides with the tyrosine phosphorylation of two proteins, with molecular masses of of 100 kd and 110 kd, that coimmunoprecipitate with p85. Similar phosphorylation patterns are induced when an immobilized fusion protein containing the amino-terminal SH2 domain of p85 is used to precipitate tyrosine-phosphorylated proteins. Thus, although NGF produces the rapid activation of PI-3 kinase through a mechanism that involves tyrosine phosphorylation, there is no evidence for tyrosine phosphorylation of p85, or for its ligand-dependent association with the NGF receptor. Perhaps another phosphoprotein may link the NGF receptor to this enzyme.

  9. Release of carrot plasma membrane-associated phosphatidylinositol kinase by phospholipase A2 and activation by a 70 kDa protein.

    PubMed

    Gross, W; Yang, W; Boss, W F

    1992-02-19

    Plasma membranes were isolated from carrot (Daucus carota L.) cells grown in suspension culture and treated with phospholipase A2 from snake or bee venom for 10 min. As a result of this treatment, phosphatidylinositol kinase activity was recovered in the soluble fraction. There was no detectable diacylglycerol kinase or phosphatidylinositol monophosphate kinase activity released from the membranes after the phospholipase A2 treatment. Treating the plasma membranes with phospholipase C or D did not release PI kinase activity. The phospholipase A2-released PI kinase was activated over 2-fold by a heat stable, soluble 70 kDa protein. The partially purified 70 kDa activator increases the Vmax but does not affect the Km of the phospholipase A2-released PI kinase.

  10. Extended treatment with selective phosphatidylinositol 3-kinase and mTOR inhibitors has effects on metabolism, growth, behaviour and bone strength.

    PubMed

    Smith, Greg C; Ong, Wee-Kiat; Costa, Jessica L; Watson, Maureen; Cornish, Jillian; Grey, Andrew; Gamble, Greg D; Dickinson, Michelle; Leung, Sophie; Rewcastle, Gordon W; Han, Weiping; Shepherd, Peter R

    2013-11-01

    The class I phosphatidylinositol 3-kinases (PtdIns3Ks) mediate the effects of many hormones and growth factors on a wide range of cellular processes, and activating mutations or gene amplifications of class I PtdIns3K isoforms are known to contribute to oncogenic processes in a range of tumours. Consequently, a number of small-molecule PtdIns3K inhibitors are under development and in clinical trial. The central signalling role of PtdIns3K in many cellular processes suggests there will be on-target side effects associated with the use of these agents. To gain insights into what these might be we investigated the effect of extended daily dosing of eight small-molecule inhibitors of class Ia PtdIns3Ks. Animals were characterized in metabolic cages to analyse food intake, oxygen consumption and movement. Insulin tolerance and body composition were analysed at the end of the experiment, the latter using EchoMRI. Bone volume and strength was assessed by micro-CT and three-point bending, respectively. Surprisingly, after sustained dosing with pan-PtdIns3K inhibitors and selective inhibitors of the p110α isoform there was a resolution of the impairments in insulin tolerance observed in drug-naïve animals treated with the same drugs. However, pan-PtdIns3K inhibitors and selective inhibitors of the p110α have deleterious effects on animal growth, animal behaviour and bone volume and strength. Together, these findings identify a range of on target effects of PtdIns3K inhibitors and suggest use of these drugs in humans may have important adverse effects on metabolism, body composition, behaviour and skeletal health. © 2013 FEBS.

  11. LY294002 inhibits glucocorticoid-induced COX-2 gene expression in cardiomyocytes through a phosphatidylinositol 3 kinase-independent mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Haipeng; Xu Beibei; Sheveleva, Elena

    2008-10-01

    Glucocorticoids induce COX-2 expression in rat cardiomyocytes. While investigating whether phosphatidylinositol 3 kinase (PI3K) plays a role in corticosterone (CT)-induced COX-2, we found that LY294002 (LY29) but not wortmannin (WM) attenuates CT from inducing COX-2 gene expression. Expression of a dominant-negative mutant of p85 subunit of PI3K failed to inhibit CT from inducing COX-2 expression. CT did not activate PI3K/AKT signaling pathway whereas LY29 and WM decreased the activity of PI3K. LY303511 (LY30), a structural analogue and a negative control for PI3K inhibitory activity of LY29, also suppressed COX-2 induction. These data suggest PI3K-independent mechanisms in regulating CT-induced COX-2 expression.more » LY29 and LY30 do not inhibit glucocorticoid receptor transactivity. Both compounds have been reported to inhibit Casein Kinase 2 activity and modulate potassium and calcium levels independent of PI3K, while LY29 has been reported to inhibit mammalian Target of Rapamycin (mTOR), and DNA-dependent Protein Kinase (DNA-PK). Inhibitor of Casein Kinase 2 (CK2), mTOR or DNA-PK failed to prevent CT from inducing COX-2 expression. Tetraethylammonium (TEA), a potassium channel blocker, and nimodipine, a calcium channel blocker, both attenuated CT from inducing COX-2 gene expression. CT was found to increase intracellular Ca{sup 2+} concentration, which can be inhibited by LY29, TEA or nimodipine. These data suggest a possible role of calcium instead of PI3K in CT-induced COX-2 expression in cardiomyocytes.« less

  12. Role of Host Type IA Phosphoinositide 3-Kinase Pathway Components in Invasin-Mediated Internalization of Yersinia enterocolitica.

    PubMed

    Dowd, Georgina C; Bhalla, Manmeet; Kean, Bernard; Thomas, Rowan; Ireton, Keith

    2016-06-01

    Many bacterial pathogens subvert mammalian type IA phosphoinositide 3-kinase (PI3K) in order to induce their internalization into host cells. How PI3K promotes internalization is not well understood. Also unclear is whether type IA PI3K affects different pathogens through similar or distinct mechanisms. Here, we performed an RNA interference (RNAi)-based screen to identify components of the type IA PI3K pathway involved in invasin-mediated entry of Yersinia enterocolitica, an enteropathogen that causes enteritis and lymphadenitis. The 69 genes targeted encode known upstream regulators or downstream effectors of PI3K. A similar RNAi screen was previously performed with the food-borne bacterium Listeria monocytogenes The results of the screen with Y. enterocolitica indicate that at least nine members of the PI3K pathway are needed for invasin-mediated entry. Several of these proteins, including centaurin-α1, Dock180, focal adhesion kinase (FAK), Grp1, LL5α, LL5β, and PLD2 (phospholipase D2), were recruited to sites of entry. In addition, centaurin-α1, FAK, PLD2, and mTOR were required for remodeling of the actin cytoskeleton during entry. Six of the human proteins affecting invasin-dependent internalization also promote InlB-mediated entry of L. monocytogenes Our results identify several host proteins that mediate invasin-induced effects on the actin cytoskeleton and indicate that a subset of PI3K pathway components promote internalization of both Y. enterocolitica and L. monocytogenes. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  13. The cytomegalovirus homolog of interleukin-10 requires phosphatidylinositol 3-kinase activity for inhibition of cytokine synthesis in monocytes.

    PubMed

    Spencer, Juliet V

    2007-02-01

    Human cytomegalovirus (CMV) has evolved numerous strategies for evading host immune defenses, including piracy of cellular cytokines. A viral homolog of interleukin-10, designated cmvIL-10, binds to the cellular IL-10 receptor and effects potent immune suppression. The signaling pathways employed by cmvIL-10 were investigated, and the classic IL-10R/JAK1/Stat3 pathway was found to be activated in monocytes. However, inhibition of JAK1 had little effect on cmvIL-10-mediated suppression of tumor necrosis factor alpha (TNF-alpha) production. Inhibition of the phosphatidylinositol 3-kinase/Akt pathway had a more significant impact on TNF-alpha levels but did not completely relieve the immune suppression, demonstrating that cmvIL-10 stimulates multiple signaling pathways to modulate cell function.

  14. Role of phosphoinositide 3-kinase IA (PI3K-IA) activation in cardioprotection induced by ouabain preconditioning.

    PubMed

    Duan, Qiming; Madan, Namrata D; Wu, Jian; Kalisz, Jennifer; Doshi, Krunal Y; Haldar, Saptarsi M; Liu, Lijun; Pierre, Sandrine V

    2015-03-01

    Acute myocardial infarction, the clinical manifestation of ischemia-reperfusion (IR) injury, is a leading cause of death worldwide. Like ischemic preconditioning (IPC) induced by brief episodes of ischemia and reperfusion, ouabain preconditioning (OPC) mediated by Na/K-ATPase signaling protects the heart against IR injury. Class I PI3K activation is required for IPC, but its role in OPC has not been investigated. While PI3K-IB is critical to IPC, studies have suggested that ouabain signaling is PI3K-IA-specific. Hence, a pharmacological approach was used to test the hypothesis that OPC and IPC rely on distinct PI3K-I isoforms. In Langendorff-perfused mouse hearts, OPC was initiated by 4 min of ouabain 10 μM and IPC was triggered by 4 cycles of 5 min ischemia and reperfusion prior to 40 min of global ischemia and 30 min of reperfusion. Without affecting PI3K-IB, ouabain doubled PI3K-IA activity and Akt phosphorylation at Ser(473). IPC and OPC significantly preserved cardiac contractile function and tissue viability as evidenced by left ventricular developed pressure and end-diastolic pressure recovery, reduced lactate dehydrogenase release, and decreased infarct size. OPC protection was blunted by the PI3K-IA inhibitor PI-103, but not by the PI3K-IB inhibitor AS-604850. In contrast, IPC-mediated protection was not affected by PI-103 but was blocked by AS-604850, suggesting that PI3K-IA activation is required for OPC while PI3K-IB activation is needed for IPC. Mechanistically, PI3K-IA activity is required for ouabain-induced Akt activation but not PKCε translocation. However, in contrast to PKCε translocation which is critical to protection, Akt activity was not required for OPC. Further studies shall reveal the identity of the downstream targets of this new PI3K IA-dependent branch of OPC. These findings may be of clinical relevance in patients at risk for myocardial infarction with underlying diseases and/or medication that could differentially affect the

  15. Effects of inhibitors of vascular endothelial growth factor receptor 2 and downstream pathways of receptor tyrosine kinases involving phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin or mitogen-activated protein kinase in canine hemangiosarcoma cell lines.

    PubMed

    Adachi, Mami; Hoshino, Yuki; Izumi, Yusuke; Sakai, Hiroki; Takagi, Satoshi

    2016-07-01

    Canine hemangiosarcoma (HSA) is a progressive malignant neoplasm with no current effective treatment. Previous studies showed that receptor tyrosine kinases and molecules within their downstream pathways involving phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (m-TOR) or mitogen-activated protein kinase (MAPK) were overexpressed in canine, human, and murine tumors, including HSA. The present study investigated the effects of inhibitors of these pathways in canine splenic and hepatic HSA cell lines using assays of cell viability and apoptosis. Inhibitors of the MAPK pathway did not affect canine HSA cell viability. However, cell viability was significantly reduced by exposure to inhibitors of vascular endothelial growth factor receptor 2 and the PI3K/Akt/m-TOR pathway; these inhibitors also induced apoptosis in these cell lines. These results suggest that these inhibitors reduce the proliferation of canine HSA cells by inducing apoptosis. Further study of these inhibitors, using xenograft mouse models of canine HSA, are warranted to explore their potential for clinical application.

  16. The role of phosphatidylinositol-3-OH-kinase (PI3-kinase) and respiratory burst enzymes in the [omim][BF4]-mediated toxic mode of action in mussel hemocytes.

    PubMed

    Belavgeni, Alexia; Dailianis, Stefanos

    2017-09-01

    The present study investigates the role of phosphatidylinositol-3-OH-kinase (PI3-kinase) and respiratory burst enzymes, NADPH oxidase and NO synthase, in the 1-methyl-3-octylimidazolium tetrafluoroborate ([omim][BF 4 ])-mediated toxic mode of action in mussel hemocytes. Specifically, cell viability (using the neutral red uptake assay) was primarily tested in hemocytes treated with different concentrations of [omim][BF 4 ] (0.1-10 mg L -1 ) and thereafter [omim][BF 4 ]-mediated oxidative (in terms of superoxide anions/O 2 - and nitric oxide/NO generation, as well as the enhancement of lipid peroxidation by-products, in terms of malondialdehyde/MDA) and genotoxic (in terms of DNA damage) effects were determined in hemocytes treated with 1 mg L -1 [omim][BF 4 ]. Moreover, in order to investigate, even indirectly and non-entirely specific, the role of PI3-kinase, NADPH oxidase and NO synthase, the [omim][BF 4 ]-mediated effects were also investigated in hemocytes pre-incubated with wortmannin (50 nM), diphenyleneiodonium chloride (DPI 10 μM) and N G -nitro- l -arginine methyl ester (l-NAME 10 μM), respectively. The results showed that [omim][BF 4 ] ability to enhance O 2 - , NO, MDA and DNA damage, via its interaction with cellular membranes, was significantly attenuated in the presence of each inhibitor in almost all cases. The current findings revealed for the first time that certain signaling molecules, such as PI3-kinase, as well as respiratory burst enzymes activation, such as NADPH oxidase and NO synthase, could merely attribute to the [omim][BF 4 ]-mediated mode of action, thus enriching our knowledge for the molecular mechanisms of ILs toxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Oleanolic acid supplement attenuates liquid fructose-induced adipose tissue insulin resistance through the insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt signaling pathway in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ying; Wang, Jianwei, E-mail: wangjianwei1968@gmail.com; Gu, Tieguang

    Oleanolic acid, a triterpenoid contained in more than 1620 plants including various fruits and foodstuffs, has numerous metabolic effects, such as hepatoprotection. However, its underlying mechanisms remain poorly understood. Adipose tissue insulin resistance (Adipo-IR) may contribute to the development and progress of metabolic abnormalities through release of excessive free fatty acids from adipose tissue. This study investigated the effect of oleanolic acid on Adipo-IR. The results showed that supplement with oleanolic acid (25 mg/kg, once daily, by oral gavage) over 10 weeks attenuated liquid fructose-induced increase in plasma insulin concentration and the homeostasis model assessment of insulin resistance (HOMA-IR) indexmore » in rats. Simultaneously, oleanolic acid reversed the increase in the Adipo-IR index and plasma non-esterified fatty acid concentrations during the oral glucose tolerance test assessment. In white adipose tissue, oleanolic acid enhanced mRNA expression of the genes encoding insulin receptor, insulin receptor substrate (IRS)-1 and phosphatidylinositol 3-kinase. At the protein level, oleanolic acid upregulated total IRS-1 expression, suppressed the increased phosphorylated IRS-1 at serine-307, and restored the increased phosphorylated IRS-1 to total IRS-1 ratio. In contrast, phosphorylated Akt to total Akt ratio was increased. Furthermore, oleanolic acid reversed fructose-induced decrease in phosphorylated-Akt/Akt protein to plasma insulin concentration ratio. However, oleanolic acid did not affect IRS-2 mRNA expression. Therefore, these results suggest that oleanolic acid supplement ameliorates fructose-induced Adipo-IR in rats via the IRS-1/phosphatidylinositol 3-kinase/Akt pathway. Our findings may provide new insights into the mechanisms of metabolic actions of oleanolic acid. - Highlights: • Adipose insulin resistance (Adipo-IR) contributes to metabolic abnormalities. • We investigated the effect of oleanolic acid (OA) on adipo

  18. Inhibition profiles of phosphatidylinositol 3-kinase inhibitors against PI3K superfamily and human cancer cell line panel JFCR39.

    PubMed

    Kong, Dexin; Dan, Shingo; Yamazaki, Kanami; Yamori, Takao

    2010-04-01

    As accumulating evidences suggest close involvement of phosphatidylinositol 3-kinase (PI3K) in various diseases particularly cancer, considerable competition occurs in development of PI3K inhibitors. Consequently, novel PI3K inhibitors such as ZSTK474, GDC-0941 and NVP-BEZ235 have been developed. Even though all these inhibitors were reported to inhibit class I PI3K but not dozens of protein kinases, whether they have different molecular targets remained unknown. To investigate such molecular target specificity, we have determined the inhibitory effects of these novel inhibitors together with classical PI3K inhibitor LY294002 on PI3K superfamily (including classes I, II, and III PI3Ks, PI4K and PI3K-related kinases) by using several novel non-radioactive biochemical assays. As a result, ZSTK474 and GDC-0941 indicated highly similar inhibition profiles for PI3K superfamily, with class I PI3K specificity much higher than NVP-BEZ235 and LY294002. We further investigated their growth inhibition effects on JFCR39, a human cancer cell line panel which we established for molecular target identification, and analysed their cell growth inhibition profiles (fingerprints) by using COMPARE analysis programme. Interestingly, we found ZSTK474 exhibited a highly similar fingerprint with GDC-0941 (r=0.863), more similar than with that of either NVP-BEZ235 or LY294002, suggesting that ZSTK474 shares more in molecular targets with GDC-0941 than with either of the other two PI3K inhibitors, consistent with the biochemical assay result. The biological implication of the difference in molecular target specificity of these PI3K inhibitors is under investigation. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  19. The inability of phosphatidylinositol 3-kinase activation to stimulate GLUT4 translocation indicates additional signaling pathways are required for insulin-stimulated glucose uptake.

    PubMed

    Isakoff, S J; Taha, C; Rose, E; Marcusohn, J; Klip, A; Skolnik, E Y

    1995-10-24

    Recent experimental evidence has focused attention to the role of two molecules, insulin receptor substrate 1 (IRS-1) and phosphatidylinositol 3-kinase (PI3-kinase), in linking the insulin receptor to glucose uptake; IRS-1 knockout mice are insulin resistant, and pharmacological inhibitors of PI3-kinase block insulin-stimulated glucose uptake. To investigate the role of PI3-kinase and IRS-1 in insulin-stimulated glucose uptake we examined whether stimulation of insulin-sensitive cells with platelet-derived growth factor (PDGF) or with interleukin 4 (IL-4) stimulates glucose uptake; the activated PDGF receptor (PDGFR) directly binds and activates PI3-kinase, whereas the IL-4 receptor (IL-4R) activates PI3-kinase via IRS-1 or the IRS-1-related molecule 4PS. We found that stimulation of 3T3-L1 adipocytes with PDGF resulted in tyrosine phosphorylation of the PDGFR and activation of PI3-kinase in these cells. To examine whether IL-4 stimulates glucose uptake, L6 myoblasts were engineered to overexpress GLUT4 as well as both chains of the IL-4R (L6/IL-4R/GLUT4); when these L6/IL-4R/GLUT4 myoblasts were stimulated with IL-4, IRS-1 became tyrosine phosphorylated and associated with PI3-kinase. Although PDGF and IL-4 can activate PI3-kinase in the respective cell lines, they do not possess insulin's ability to stimulate glucose uptake and GLUT4 translocation to the plasma membrane. These findings indicate that activation of PI3-kinase is not sufficient to stimulate GLUT4 translocation to the plasma membrane. We postulate that activation of a second signaling pathway by insulin, distinct from PI3-kinase, is necessary for the stimulation of glucose uptake in insulin-sensitive cells.

  20. Glutamine Enhances the Hypoglycemic Effect of Insulin in L6 Cells via Phosphatidylinositol-3-Kinase (PI3K)/Protein Kinase B (AKT)/Glucose Transporter 4 (GLUT4) Signaling Pathway.

    PubMed

    Wang, Caijuan; Deng, Yujiao; Yue, Yenan; Chen, Wenting; Zhang, Yu; Shi, Guifang; Wu, Zhongming

    2018-03-01

    BACKGROUND Diabetes mellitus (DM) is characterized by a decreased blood level of glutamine (Gln), which may contribute to the disturbance in the effect of insulin on skeletal muscle. Therefore, it is crucial to study how to improve the effect of insulin on skeletal muscle by increasing Gln. In the present study, we investigated the effect of Gln on the hypoglycemic action of insulin in skeletal muscle L6 cells at high glucose levels through the insulin signaling pathway and glycogen synthesis pathway. MATERIAL AND METHODS The L6 cells were cultured in and stimulated by Gln and insulin. The glutamine analogue, L-Gamma-Glutamyl-p-nitroanilide (GPNA), was used for verifying the effect of Gln. The expression of insulin signaling molecules, including phosphatidylinositol-3-kinase (PI3K), 3-phosphoinositide-dependent protein kinase-1 (PDK1), protein kinase B (AKT), protein kinase C zeta (PKCz), and glucose transporter 4 (GLUT4), were detected by real-time PCR and Western blot analysis, GLUT4 translocation was observed by immunofluorescence staining, glycogen synthase kinase (GSK) was analyzed by Western blotting, and glucose uptake was measured by glucose oxidase method (GOD). RESULTS The results demonstrated that Gln combined with insulin remarkably up-regulated PI3K and PDK1 and also increased AKT and PKCz phosphorylation. The present study shows that Gln enhanced the impact of insulin on GLUT4 and its translocation. The results of glucose uptake and GSK phosphorylation further confirmed the hypoglycemic effect of Gln accompanied with insulin. The hypoglycemic effect of Gln was reversed by GPNA. CONCLUSIONS These findings suggest that Gln enhances the hypoglycemic role of insulin through the PI3K/AKT/GLUT4 signaling pathway and glycogen synthesis pathway.

  1. Regulated Assembly of Vacuolar ATPase Is Increased during Cluster Disruption-induced Maturation of Dendritic Cells through a Phosphatidylinositol 3-Kinase/mTOR-dependent Pathway*

    PubMed Central

    Liberman, Rachel; Bond, Sarah; Shainheit, Mara G.; Stadecker, Miguel J.; Forgac, Michael

    2014-01-01

    The vacuolar (H+)-ATPases (V-ATPases) are ATP-driven proton pumps composed of a peripheral V1 domain and a membrane-embedded V0 domain. Regulated assembly of V1 and V0 represents an important regulatory mechanism for controlling V-ATPase activity in vivo. Previous work has shown that V-ATPase assembly increases during maturation of bone marrow-derived dendritic cells induced by activation of Toll-like receptors. This increased assembly is essential for antigen processing, which is dependent upon an acidic lysosomal pH. Cluster disruption of dendritic cells induces a semi-mature phenotype associated with immune tolerance. Thus, semi-mature dendritic cells are able to process and present self-peptides to suppress autoimmune responses. We have investigated V-ATPase assembly in bone marrow-derived, murine dendritic cells and observed an increase in assembly following cluster disruption. This increased assembly is not dependent upon new protein synthesis and is associated with an increase in concanamycin A-sensitive proton transport in FITC-loaded lysosomes. Inhibition of phosphatidylinositol 3-kinase with wortmannin or mTORC1 with rapamycin effectively inhibits the increased assembly observed upon cluster disruption. These results suggest that the phosphatidylinositol 3-kinase/mTOR pathway is involved in controlling V-ATPase assembly during dendritic cell maturation. PMID:24273170

  2. Autophagy promotes escape from phosphatidylinositol 3-kinase inhibition in estrogen receptor-positive breast cancer.

    PubMed

    Yang, Wei; Hosford, Sarah R; Traphagen, Nicole A; Shee, Kevin; Demidenko, Eugene; Liu, Stephanie; Miller, Todd W

    2018-03-01

    Hyperactivation of the PI3K pathway has been implicated in resistance to antiestrogen therapies in estrogen receptor α (ER)-positive breast cancer, prompting the development of therapeutic strategies to inhibit this pathway. Autophagy has tumor-promoting and -suppressing roles and has been broadly implicated in resistance to anticancer therapies, including antiestrogens. Chloroquine (CQ) is an antimalarial and amebicidal drug that inhibits autophagy in mammalian cells and human tumors. Herein, we observed that CQ inhibited proliferation and autophagy in ER + breast cancer cells. PI3K inhibition with GDC-0941 (pictilisib) induced autophagy. Inhibition of autophagy using CQ or RNA interference potentiated PI3K inhibitor-induced apoptosis. Combined inhibition of PI3K and autophagy effectively induced mitochondrial membrane depolarization, which required the BH3-only proapoptotic proteins Bim and PUMA. Treatment with GDC-0941, CQ, or the combination, significantly suppressed the growth of ER + breast cancer xenografts in mice. In an antiestrogen-resistant xenograft model, GDC-0941 synergized with CQ to provide partial, but durable, tumor regression. These findings warrant clinical evaluation of therapeutic strategies to target ER, PI3K, and autophagy for the treatment of ER + breast cancer.-Yang, W., Hosford, S. R., Traphagen, N. A., Shee, K., Demidenko, E., Liu, S., Miller, T. W. Autophagy promotes escape from phosphatidylinositol 3-kinase inhibition in estrogen receptor-positive breast cancer.

  3. mTORC1 activity repression by late endosomal phosphatidylinositol 3,4-bisphosphate.

    PubMed

    Marat, Andrea L; Wallroth, Alexander; Lo, Wen-Ting; Müller, Rainer; Norata, Giuseppe Danilo; Falasca, Marco; Schultz, Carsten; Haucke, Volker

    2017-06-02

    Nutrient sensing by mechanistic target of rapamycin complex 1 (mTORC1) on lysosomes and late endosomes (LyLEs) regulates cell growth. Many factors stimulate mTORC1 activity, including the production of phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P 3 ] by class I phosphatidylinositol 3-kinases (PI3Ks) at the plasma membrane. We investigated mechanisms that repress mTORC1 under conditions of growth factor deprivation. We identified phosphatidylinositol 3,4-bisphosphate [PI(3,4)P 2 ], synthesized by class II PI3K β (PI3KC2β) at LyLEs, as a negative regulator of mTORC1, whereas loss of PI3KC2β hyperactivated mTORC1. Growth factor deprivation induced the association of PI3KC2β with the Raptor subunit of mTORC1. Local PI(3,4)P 2 synthesis triggered repression of mTORC1 activity through association of Raptor with inhibitory 14-3-3 proteins. These results unravel an unexpected function for local PI(3,4)P 2 production in shutting off mTORC1. Copyright © 2017, American Association for the Advancement of Science.

  4. Role of protein kinase A and class II phosphatidylinositol 3-kinase C2β in the downregulation of KCa3.1 channel synthesis and membrane surface expression by lyso-globotriaosylceramide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Ju Yeon; Park, Seonghee, E-mail: sp@ewha.ac.kr

    The intermediate conductance calcium-activated potassium channel (KCa3.1) mediates proliferation of many cell types including fibroblasts, and is a molecular target for intervention in various cell proliferative diseases. Our previous study showed that reduction of KCa3.1 channel expression by lyso-globotriaosylceramide (lyso-Gb3) inhibits differentiation into myofibroblasts and collagen synthesis, which might lead to development of ascending thoracic aortic aneurysm secondary to Fabry disease. However, how lyso-Gb3 downregulates KCa3.1 channel expression is unknown. Therefore, we aimed to investigate the underlying mechanisms of lyso-Gb3-mediated KCa3.1 channel downregulation, focusing on the cAMP signaling pathway. We found that lyso-Gb3 increased the intracellular cAMP concentration by upregulationmore » of adenylyl cyclase 6 and inhibited ERK 1/2 phosphorylation through the protein kinase A (PKA) pathway, leading to the inhibition of KCa3.1 channel synthesis, not the exchange protein directly activated by cAMP (Epac) pathway. Moreover, lyso-Gb3 suppressed expression of class II phosphatidylinositol 3-kinase C2β (PI3KC2β) by PKA activation, which reduces the production of phosphatidylinositol 3-phosphate [PI(3)P], and the reduced membrane surface expression of KCa3.1 channel was recovered by increasing the intracellular levels of PI(3)P. Consequently, our findings that lyso-Gb3 inhibited both KCa3.1 channel synthesis and surface expression by increasing intracellular cAMP, and controlled surface expression through changes in PI3KC2β-mediated PI(3)P production, suggest that modulation of PKA and PI3KC2β activity to control of KCa3.1 channel expression can be an alternative important target to attenuate ascending thoracic aortic aneurysms in Fabry disease. - Highlights: • Lyso-Gb3 causes elevation of intracellular cAMP. • Lyso-Gb3 inhibits the ERK 1/2 phosphorylation through PKA, thereby reducing KCa3.1 channel synthesis. • Lyso-Gb3 reduces PI3KC2

  5. Phosphatidylinositol 3-Kinase (PI3K) δ blockade increases genomic instability in B cells

    PubMed Central

    Compagno, Mara; Wang, Qi; Pighi, Chiara; Cheong, Taek-Chin; Meng, Fei-Long; Poggio, Teresa; Yeap, Leng-Siew; Karaca, Elif; Blasco, Rafael B.; Langellotto, Fernanda; Ambrogio, Chiara; Voena, Claudia; Wiestner, Adrian; Kasar, Siddha N.; Brown, Jennifer R.; Sun, Jing; Wu, Catherine J.; Gostissa, Monica; Alt, Frederick W.; Chiarle, Roberto

    2017-01-01

    Activation-induced cytidine deaminase (AID) is a B-cell specific enzyme that targets immunoglobulin (Ig) genes to initiate class switch recombination (CSR) and somatic hypermutation (SHM)1. Through off-target activity, however, AID has a much broader impact on genomic instability by initiating oncogenic chromosomal translocations and mutations involved in lymphoma development and progression2. AID expression is tightly regulated in B cells and its overexpression leads to enhanced genomic instability and lymphoma formation3. The phosphatidylinositol 3-kinase (PI3K) δ pathway plays a key role in AID regulation by suppressing its expression in B cells4. Novel drugs for leukemia or lymphoma therapy such as idelalisib, duvelisib or ibrutinib block PI3Kδ activity directly or indirectly5–8, potentially affecting AID expression and, consequently, genomic stability in B cells. Here we show that treatment of primary mouse B cells with idelalisib or duvelisib, and to a lesser extent ibrutinib, enhanced the expression of AID and increased somatic hypermutation (SHM) and chromosomal translocation frequency to the Igh locus and to several AID off-target sites. Both these effects were completely abrogated in AID deficient B cells. PI3Kδ inhibitors or ibrutinib increased the formation of AID-dependent tumors in pristane-treated mice. Consistently, PI3Kδ inhibitors enhanced AID expression and translocation frequency to IgH and AID off-target sites in human chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL) cell lines, and patients treated with idelalisib, but not ibrutinib, showed increased SHM in AID off-targets. In summary, we show that PI3Kδ or BTK inhibitors increase genomic instability in normal and neoplastic B cells by an AID-dependent mechanism, an effect that should be carefully considered as such inhibitors are administered for years to patients. PMID:28199309

  6. N-WASP and WAVE2 acting downstream of phosphatidylinositol 3-kinase are required for myogenic cell migration induced by hepatocyte growth factor.

    PubMed

    Kawamura, Kazuhiro; Takano, Kazunori; Suetsugu, Shiro; Kurisu, Shusaku; Yamazaki, Daisuke; Miki, Hiroaki; Takenawa, Tadaomi; Endo, Takeshi

    2004-12-24

    During skeletal muscle regeneration caused by injury, muscle satellite cells proliferate and migrate toward the site of muscle injury. This migration is mainly induced by hepatocyte growth factor (HGF) secreted by intact myofibers and also released from injured muscle. However, the intracellular machinery for the satellite cell migration has not been elucidated. To examine the mechanisms of satellite cell migration, we utilized satellite cell-derived mouse C2C12 skeletal muscle cells. HGF induced reorganization of actin cytoskeleton to form lamellipodia in C2C12 myoblasts. HGF treatment facilitated both nondirectional migration of the myoblasts in phagokinetic track assay and directional chemotactic migration toward HGF in a three-dimensional migration chamber assay. Endogenous N-WASP and WAVE2 were concentrated in the lamellipodia at the leading edge of the migrating cells. Moreover, exogenous expression of wild-type N-WASP or WAVE2 promoted lamellipodial formation and migration. By contrast, expression of the dominant-negative mutant of N-WASP or WAVE2 and knockdown of N-WASP or WAVE2 expression by the RNA interference prevented the HGF-induced lamellipodial formation and migration. When the cells were treated with LY294002, an inhibitor of phosphatidylinositol 3-kinase, the HGF-induced lamellipodial formation and migration were abrogated. These results imply that both N-WASP and WAVE2, which are activated downstream of phosphati-dylinositol 3-kinase, are required for the migration through the lamellipodial formation of C2C12 cells induced by HGF.

  7. Effects of inhibitors of vascular endothelial growth factor receptor 2 and downstream pathways of receptor tyrosine kinases involving phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin or mitogen-activated protein kinase in canine hemangiosarcoma cell lines

    PubMed Central

    Adachi, Mami; Hoshino, Yuki; Izumi, Yusuke; Sakai, Hiroki; Takagi, Satoshi

    2016-01-01

    Canine hemangiosarcoma (HSA) is a progressive malignant neoplasm with no current effective treatment. Previous studies showed that receptor tyrosine kinases and molecules within their downstream pathways involving phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (m-TOR) or mitogen-activated protein kinase (MAPK) were overexpressed in canine, human, and murine tumors, including HSA. The present study investigated the effects of inhibitors of these pathways in canine splenic and hepatic HSA cell lines using assays of cell viability and apoptosis. Inhibitors of the MAPK pathway did not affect canine HSA cell viability. However, cell viability was significantly reduced by exposure to inhibitors of vascular endothelial growth factor receptor 2 and the PI3K/Akt/m-TOR pathway; these inhibitors also induced apoptosis in these cell lines. These results suggest that these inhibitors reduce the proliferation of canine HSA cells by inducing apoptosis. Further study of these inhibitors, using xenograft mouse models of canine HSA, are warranted to explore their potential for clinical application. PMID:27408334

  8. Identification of a new adapter protein that may link the common beta subunit of the receptor for granulocyte/macrophage colony-stimulating factor, interleukin (IL)-3, and IL-5 to phosphatidylinositol 3-kinase.

    PubMed

    Jücker, M; Feldman, R A

    1995-11-17

    Binding of human granulocyte/macrophage colony-stimulating factor (hGM-CSF) to its receptor induces the rapid activation of phosphatidylinositol-3 kinase (PI 3-kinase). As hGM-CSF receptor (hGMR) does not contain a consensus sequence for binding of PI 3-kinase, hGMR must use a distinct mechanism for its association with and activation of PI 3-kinase. Here, we describe the identification of a tyrosine-phosphorylated protein of 76-85 kDa (p80) that associates with the common beta subunit of hGMR and with the SH2 domains of the p85 subunit of PI 3-kinase in hGM-CSF-stimulated cells. Src/Yes and Lyn were tightly associated with the p80.PI 3-kinase complex, suggesting that p80 and other phosphotyrosyl proteins present in the complex were phosphorylated by Src family kinases. Tyrosine phosphorylation of p80 was only detected in hGM-CSF or human interleukin-3-stimulated cells, suggesting that activation of p80 might be specific for signaling via the common beta subunit. We postulate that p80 functions as an adapter protein that may participate in linking the hGM-CSF receptor to the PI 3-kinase signaling pathway.

  9. Neuronal suppressor of cytokine signaling-3 deficiency enhances hypothalamic leptin-dependent phosphatidylinositol 3-kinase signaling.

    PubMed

    Metlakunta, Anantha S; Sahu, Maitrayee; Yasukawa, Hideo; Dhillon, Sandeep S; Belsham, Denise D; Yoshimura, Akihiko; Sahu, Abhiram

    2011-05-01

    Suppressor of cytokine signaling-3 (SOCS3) is thought to be involved in the development of central leptin resistance and obesity by inhibiting STAT3 pathway. Because phosphatidylinositol 3-kinase (PI3K) pathway plays an important role in transducing leptin action in the hypothalamus, we examined whether SOCS3 exerted an inhibition on this pathway. We first determined whether leptin sensitivity in the hypothalamic PI3K pathway was increased in brain-specific Socs3-deficient (NesKO) mice. In NesKO mice, hypothalamic insulin receptor substrate-1 (IRS1)-associated PI3K activity was significantly increased at 30 min and remained elevated up to 2 h after leptin intraperitoneal injection, but in wild-type (WT) littermates, the significant increase was only at 30 min. Hypothalamic p-STAT3 levels were increased up to 5 h in NesKO as opposed to 2 h in WT mice. In food-restricted WT mice with reduced body weight, leptin increased hypothalamic PI3K activity only at 30 min, and p-STAT3 levels at 30-120 min postinjection. These results suggest increased leptin sensitivity in both PI3K and STAT3 pathways in the hypothalamus of NesKO mice, which was not due to a lean phenotype. In the next experiment with a clonal hypothalamic neuronal cell line expressing proopiomelanocortin, we observed that whereas leptin significantly increased IRS1-associated PI3K activity and p-JAK2 levels in cells transfected with control vector, it failed to do so in SOCS3-overexpressed cells. Altogether, these results imply a SOCS3 inhibition of the PI3K pathway of leptin signaling in the hypothalamus, which may be one of the mechanisms behind the development of central leptin resistance and obesity.

  10. Neuronal suppressor of cytokine signaling-3 deficiency enhances hypothalamic leptin-dependent phosphatidylinositol 3-kinase signaling

    PubMed Central

    Metlakunta, Anantha S.; Sahu, Maitrayee; Yasukawa, Hideo; Dhillon, Sandeep S.; Belsham, Denise D.; Yoshimura, Akihiko

    2011-01-01

    Suppressor of cytokine signaling-3 (SOCS3) is thought to be involved in the development of central leptin resistance and obesity by inhibiting STAT3 pathway. Because phosphatidylinositol 3-kinase (PI3K) pathway plays an important role in transducing leptin action in the hypothalamus, we examined whether SOCS3 exerted an inhibition on this pathway. We first determined whether leptin sensitivity in the hypothalamic PI3K pathway was increased in brain-specific Socs3-deficient (NesKO) mice. In NesKO mice, hypothalamic insulin receptor substrate-1 (IRS1)-associated PI3K activity was significantly increased at 30 min and remained elevated up to 2 h after leptin intraperitoneal injection, but in wild-type (WT) littermates, the significant increase was only at 30 min. Hypothalamic p-STAT3 levels were increased up to 5 h in NesKO as opposed to 2 h in WT mice. In food-restricted WT mice with reduced body weight, leptin increased hypothalamic PI3K activity only at 30 min, and p-STAT3 levels at 30–120 min postinjection. These results suggest increased leptin sensitivity in both PI3K and STAT3 pathways in the hypothalamus of NesKO mice, which was not due to a lean phenotype. In the next experiment with a clonal hypothalamic neuronal cell line expressing proopiomelanocortin, we observed that whereas leptin significantly increased IRS1-associated PI3K activity and p-JAK2 levels in cells transfected with control vector, it failed to do so in SOCS3-overexpressed cells. Altogether, these results imply a SOCS3 inhibition of the PI3K pathway of leptin signaling in the hypothalamus, which may be one of the mechanisms behind the development of central leptin resistance and obesity. PMID:21325649

  11. Phosphatidylinositol 4-Kinase IIIβ Is Required for Severe Acute Respiratory Syndrome Coronavirus Spike-mediated Cell Entry*

    PubMed Central

    Yang, Ning; Ma, Ping; Lang, Jianshe; Zhang, Yanli; Deng, Jiejie; Ju, Xiangwu; Zhang, Gongyi; Jiang, Chengyu

    2012-01-01

    Phosphatidylinositol kinases (PI kinases) play an important role in the life cycle of several viruses after infection. Using gene knockdown technology, we demonstrate that phosphatidylinositol 4-kinase IIIβ (PI4KB) is required for cellular entry by pseudoviruses bearing the severe acute respiratory syndrome-coronavirus (SARS-CoV) spike protein and that the cell entry mediated by SARS-CoV spike protein is strongly inhibited by knockdown of PI4KB. Consistent with this observation, pharmacological inhibitors of PI4KB blocked entry of SARS pseudovirions. Further research suggested that PI4P plays an essential role in SARS-CoV spike-mediated entry, which is regulated by the PI4P lipid microenvironment. We further demonstrate that PI4KB does not affect virus entry at the SARS-CoV S-ACE2 binding interface or at the stage of virus internalization but rather at or before virus fusion. Taken together, these results indicate a new function for PI4KB and suggest a new drug target for preventing SARS-CoV infection. PMID:22253445

  12. Ultrafine particulate matter impairs mitochondrial redox homeostasis and activates phosphatidylinositol 3-kinase mediated DNA damage responses in lymphocytes.

    PubMed

    Bhargava, Arpit; Tamrakar, Shivani; Aglawe, Aniket; Lad, Harsha; Srivastava, Rupesh Kumar; Mishra, Dinesh Kumar; Tiwari, Rajnarayan; Chaudhury, Koel; Goryacheva, Irina Yu; Mishra, Pradyumna Kumar

    2018-03-01

    Particulate matter (PM), broadly defined as coarse (2.5-10 μm), fine (0.1-2.5 μm) and ultrafine particles (≤0.1 μm), is a major constituent of ambient air pollution. Recent studies have linked PM exposure (coarse and fine particles) with several human diseases including cancer. However, the molecular mechanisms underlying ultrafine PM exposure induced cellular and sub-cellular repercussions are ill-defined. Since mitochondria are one of the major targets of different environmental pollutants, we herein aimed to understand the molecular repercussion of ultrafine PM exposure on mitochondrial machinery in peripheral blood lymphocytes. Upon comparative analysis, a significantly higher DCF fluorescence was observed in ultrafine PM exposed cells that confirmed the strong pro-oxidant nature of these particles. In addition, the depleted activity of antioxidant enzymes, glutathione reductase and superoxide dismutase suggested the strong association of ultrafine PM with oxidative stress. These results further coincided with mitochondrial membrane depolarization, altered mitochondrial respiratory chain enzyme activity and decline in mtDNA copy number. Moreover, the higher accumulation of DNA damage response proteins (γH2AX, pATM, p-p53), suggested that exposure to ultrafine PM induces DNA damage and triggers phosphatidylinositol 3 kinase mediated response pathway. Further, the alterations in mitochondrial machinery and redox balance among ultrafine PM exposed cells were accompanied by a considerably elevated pro-inflammatory cytokine response. Interestingly, the lower apoptosis levels observed in ultrafine particle treated cells suggest the possibility that the marked alterations may lead to the impairment of mitochondrial-nuclear cross talk. Together, our results showed that ultrafine PM, because of their smaller size possesses significant ability to disturb mitochondrial redox homeostasis and activates phosphatidylinositol 3 kinase mediated DNA damage response

  13. Identification of the Interactome of a Palmitoylated Membrane Protein, Phosphatidylinositol 4-Kinase Type II Alpha.

    PubMed

    Gokhale, Avanti; Ryder, Pearl V; Zlatic, Stephanie A; Faundez, Victor

    2016-01-01

    Phosphatidylinositol 4-kinases (PI4K) are enzymes responsible for the production of phosphatidylinositol 4-phosphates, important intermediates in several cell signaling pathways. PI4KIIα is the most abundant membrane-associated kinase in mammalian cells and is involved in a variety of essential cellular functions. However, the precise role(s) of PI4KIIα in the cell is not yet completely deciphered. Here we present an experimental protocol that uses a chemical cross-linker, DSP, combined with immunoprecipitation and immunoaffinity purification to identify novel PI4KIIα interactors. As predicted, PI4KIIα participates in transient, low-affinity interactions that are stabilized by the use of DSP. Using this optimized protocol we have successfully identified actin cytoskeleton regulators-the WASH complex and RhoGEF1, as major novel interactors of PI4KIIα. While this chapter focuses on the PI4KIIα interactome, this protocol can and has been used to generate other membrane interactome networks.

  14. Fluorescent Inhibitors as Tools To Characterize Enzymes: Case Study of the Lipid Kinase Phosphatidylinositol 4-Kinase IIIβ (PI4KB).

    PubMed

    Humpolickova, Jana; Mejdrová, Ivana; Matousova, Marika; Nencka, Radim; Boura, Evzen

    2017-01-12

    The lipid kinase phosphatidylinositol 4-kinase IIIβ (PI4KB) is an essential host factor for many positive-sense single-stranded RNA (+RNA) viruses including human pathogens hepatitis C virus (HCV), Severe acute respiratory syndrome (SARS), coxsackie viruses, and rhinoviruses. Inhibitors of PI4KB are considered to be potential broad-spectrum virostatics, and it is therefore critical to develop a biochemical understanding of the kinase. Here, we present highly potent and selective fluorescent inhibitors that we show to be useful chemical biology tools especially in determination of dissociation constants. Moreover, we show that the coumarin-labeled inhibitor can be used to image PI4KB in cells using fluorescence-lifetime imaging microscopy (FLIM) microscopy.

  15. Regulation of the plasma membrane type III phosphatidylinositol 4-kinase by positively charged compounds.

    PubMed

    Yang, W; Boss, W F

    1994-08-15

    The effects of positively charged compounds on a plasma membrane, type III phosphatidylinositol 4-kinase were studied. To determine whether the enzyme would respond differently to the compounds in a membrane-associated versus a soluble state, both the plasma membrane and solubilized (released by 0.01% (v/v) Triton X-100) PI 4-kinase were used. Spermidine, spermine, polylysine, cardiotoxin, melittin, and histone stimulated the solubilized PI 4-kinase but had little effect on or weakly stimulated the membrane-associated PI 4-kinase. Polyarginine inhibited membrane-associated PI 4-kinase 75% and inhibited the solubilized PI 4-kinase 30%, indicating that charge alone was not sufficient for activation. Polyarginine also eliminated the activation of the solubilized PI 4-kinase by a PI 4-kinase activator protein, PIK-A49. Calmodulin, a common calcium-binding protein, at micromolar levels strongly inhibited solubilized PI 4-kinase activity but did not inhibit membrane-associated PI 4-kinase activity. The inhibition of the solubilized PI 4-kinase by calmodulin was calcium independent. Calcium alone (1 microM-0.1 mM) inhibited PI 4-kinase activity only slightly (< 30%). The differential effects of the positively charged compounds on the solubilized and membrane-associated PI 4-kinase were not due to substrate availability because both enzymes were assayed in the presence of excess PI (0.6 mM) and 0.3% (v/v) Triton X-100. The data suggest that positively charged compounds affected the enzyme activity not only by interacting with the substrates or products of the reaction but also by interacting with the PI 4-kinase or regulatory components in the plasma membrane.

  16. Phosphatidylinositol 3-kinase, Cdc42, and Rac1 act downstream of Ras in integrin-dependent neurite outgrowth in N1E-115 neuroblastoma cells.

    PubMed

    Sarner, S; Kozma, R; Ahmed, S; Lim, L

    2000-01-01

    Ras and Rho family GTPases have been ascribed important roles in signalling pathways determining cellular morphology and growth. Here we investigated the roles of the GTPases Ras, Cdc42, Rac1, and Rho and that of phosphatidylinositol 3-kinase (PI 3-kinase) in the pathway leading from serum starvation to neurite outgrowth in N1E-115 neuroblastoma cells. Serum-starved cells grown on a laminin matrix exhibited integrin-dependent neurite outgrowth. Expression of dominant negative mutants of Ras, PI 3-kinase, Cdc42, or Rac1 all blocked this neurite outgrowth, while constitutively activated mutants of Ras, PI 3-kinase, or Cdc42 were each sufficient to promote outgrowth even in the presence of serum. A Ras(H40C;G12V) double mutant which binds preferentially to PI 3-kinase also promoted neurite formation. Activated Ras(G12V)-induced outgrowth required PI 3-kinase activity, but activated PI 3-kinase-induced outgrowth did not require Ras activity. Although activated Rac1 by itself did not induce neurites, neurite outgrowth induced by activated Cdc42(G12V) was Rac1 dependent. Cdc42(G12V)-induced neurites appeared to lose their normal polarization, almost doubling the average number of neurites produced by a single cell. Outgrowth induced by activated Ras or PI 3-kinase required both Cdc42 and Rac1 activity, but Cdc42(G12V)-induced outgrowth did not need Ras or PI 3-kinase activity. Active Rho(G14V) reduced outgrowth promoted by Ras(G12V). Finally, expression of dominant negative Jun N-terminal kinase or extracellular signal-regulated kinase did not inhibit outgrowth, suggesting these pathways are not essential for this process. Our results suggest a hierarchy of signalling where Ras signals through PI 3-kinase to Cdc42 and Rac1 activation (and Rho inactivation), culminating in neurite outgrowth. Thus, in the absence of serum factors, Ras may initiate cell cycle arrest and terminal differentiation in N1E-115 neuroblastoma cells.

  17. Phosphatidylinositol 3-Kinase, Cdc42, and Rac1 Act Downstream of Ras in Integrin-Dependent Neurite Outgrowth in N1E-115 Neuroblastoma Cells

    PubMed Central

    Sarner, Shula; Kozma, Robert; Ahmed, Sohail; Lim, Louis

    2000-01-01

    Ras and Rho family GTPases have been ascribed important roles in signalling pathways determining cellular morphology and growth. Here we investigated the roles of the GTPases Ras, Cdc42, Rac1, and Rho and that of phosphatidylinositol 3-kinase (PI 3-kinase) in the pathway leading from serum starvation to neurite outgrowth in N1E-115 neuroblastoma cells. Serum-starved cells grown on a laminin matrix exhibited integrin-dependent neurite outgrowth. Expression of dominant negative mutants of Ras, PI 3-kinase, Cdc42, or Rac1 all blocked this neurite outgrowth, while constitutively activated mutants of Ras, PI 3-kinase, or Cdc42 were each sufficient to promote outgrowth even in the presence of serum. A RasH40C;G12V double mutant which binds preferentially to PI 3-kinase also promoted neurite formation. Activated RasG12V-induced outgrowth required PI 3-kinase activity, but activated PI 3-kinase-induced outgrowth did not require Ras activity. Although activated Rac1 by itself did not induce neurites, neurite outgrowth induced by activated Cdc42G12V was Rac1 dependent. Cdc42G12V-induced neurites appeared to lose their normal polarization, almost doubling the average number of neurites produced by a single cell. Outgrowth induced by activated Ras or PI 3-kinase required both Cdc42 and Rac1 activity, but Cdc42G12V-induced outgrowth did not need Ras or PI 3-kinase activity. Active RhoG14V reduced outgrowth promoted by RasG12V. Finally, expression of dominant negative Jun N-terminal kinase or extracellular signal-regulated kinase did not inhibit outgrowth, suggesting these pathways are not essential for this process. Our results suggest a hierarchy of signalling where Ras signals through PI 3-kinase to Cdc42 and Rac1 activation (and Rho inactivation), culminating in neurite outgrowth. Thus, in the absence of serum factors, Ras may initiate cell cycle arrest and terminal differentiation in N1E-115 neuroblastoma cells. PMID:10594018

  18. Echinacea purpurea root extract inhibits TNF release in response to Pam3Csk4 in a phosphatidylinositol-3-kinase dependent manner.

    PubMed

    Fast, David J; Balles, John A; Scholten, Jeffrey D; Mulder, Timothy; Rana, Jatinder

    2015-10-01

    Polysaccharides derived from Echinacea have historically been shown to be immunostimulatory. We describe in this work however the anti-inflammatory effect of a water extract of Echinacea purpurea roots (EPRW) that inhibited Pam3Csk4 stimulated production of TNFα by human monocytic THP-1 cells. The polyphenols and alkylamides typically found in Echinacea extracts were absent in EPRW suggesting that the anti-inflammatory component(s) was a polysaccharide. This anti-inflammatory activity was shown to be mediated by the phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathway as chemical inhibition of PI3K abolished the EPRW anti-inflammatory effect. Demonstration of phosphorylation of Akt and ribosomal S6 proteins, downstream targets of PI3K confirmed EPRW-mediated activation of this pathway. In conclusion, this observation suggests that non-alkylamide/non-polyphenolic phytochemicals from Echinacea may contribute in part to some of the anti-inflammatory therapeutic effects such as reduced severity of symptoms that have been observed in vivo in the treatment of upper respiratory tract infections with Echinacea. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Icaritin requires Phosphatidylinositol 3 kinase (PI3K)/Akt signaling to counteract skeletal muscle atrophy following mechanical unloading

    PubMed Central

    ZHANG, Zong-Kang; LI, Jie; LIU, Jin; GUO, Baosheng; LEUNG, Albert; ZHANG, Ge; ZHANG, Bao-Ting

    2016-01-01

    Counteracting muscle atrophy induced by mechanical unloading/inactivity is of great clinical need and challenge. A therapeutic agent that could counteract muscle atrophy following mechanical unloading in safety is desired. This study showed that natural product Icaritin (ICT) could increase the phosphorylation level of Phosphatidylinositol 3 kinase (PI3K) at p110 catalytic subunit and promote PI3K/Akt signaling markers in C2C12 cells. This study further showed that the high dose ICT treatment could significantly attenuate the decreases in the phosphorylation level of PI3K at p110 catalytic subunit and its downstream markers related to protein synthesis, and inhibit the increases in protein degradation markers at mRNA and protein levels in rat soleus muscle following 28-day hindlimb unloading. In addition, the decreases in soleus muscle mass, muscle fiber cross-sectional area, twitch force, specific force, contraction time and half relaxation time could be significantly attenuated by the high dose ICT treatment. The low dose ICT treatment could moderately attenuate the above changes induced by unloading. Wortmannin, a specific inhibitor of PI3K at p110 catalytic subunit, could abolish the above effects of ICT in vitro and in vivo, indicating that PI3K/Akt signaling could be required by ICT to counteract skeletal muscle atrophy following mechanical unloading. PMID:26831566

  20. Mechanism of Poliovirus Resistance to Host Phosphatidylinositol-4 Kinase III β Inhibitor.

    PubMed

    Arita, Minetaro

    2016-02-12

    Phosphatidylinositol-4 kinase III β (PI4KB) and oxysterol-binding protein (OSBP) family I have been identified as the major targets of anti-enterovirus drug candidates. Resistance mutations in poliovirus (PV) to these inhibitors have been identified in viral 3A protein, represented by a G5318A (3A-Ala70Thr) mutation, but the mechanism of viral resistance to host PI4KB/OSBP inhibitors remained unknown. In this study, we found that a G5318A mutation enhances the basal levels of phosphatidylinositol 4-phosphate (PI4P) and of the 3A protein and decreases the levels of the 3AB protein during PV replication. The 3A protein acted as a major effector responsible for the resistance to PI4KB inhibitor, but did not enhance the PI4KB activity in vitro in contrast to the 2C, 2BC, 3AB, and 3D proteins. The 3AB protein acted as the primary target of a G5318A mutation and also as an effector. We identified novel resistance mutations to a PI4KB inhibitor [C5151U (3A-T14M) and C5366U (3A-H86Y) mutations] and found that there is a positive correlation between the extent of the resistance phenotype and the levels of the 3A proteins. These results suggested that the 3A protein overproduced by enhanced processing of the 3AB protein with the resistance mutations overcomes the inhibitory effect of PI4KB inhibitor on PV replication independently of the hyperactivation of the PI4KB/OSBP pathway.

  1. LRP1 regulates architecture of the vascular wall by controlling PDGFRbeta-dependent phosphatidylinositol 3-kinase activation.

    PubMed

    Zhou, Li; Takayama, Yoshiharu; Boucher, Philippe; Tallquist, Michelle D; Herz, Joachim

    2009-09-09

    Low density lipoprotein receptor-related protein 1 (LRP1) protects against atherosclerosis by regulating the activation of platelet-derived growth factor receptor beta (PDGFRbeta) in vascular smooth muscle cells (SMCs). Activated PDGFRbeta undergoes tyrosine phosphorylation and subsequently interacts with various signaling molecules, including phosphatidylinositol 3-kinase (PI3K), which binds to the phosphorylated tyrosine 739/750 residues in mice, and thus regulates actin polymerization and cell movement. In this study, we found disorganized actin in the form of membrane ruffling and enhanced cell migration in LRP1-deficient (LRP1-/-) SMCs. Marfan syndrome-like phenotypes such as tortuous aortas, disrupted elastic layers and abnormally activated transforming growth factor beta (TGFbeta) signaling are present in smooth muscle-specific LRP1 knockout (smLRP1-/-) mice. To investigate the role of LRP1-regulated PI3K activation by PDGFRbeta in atherogenesis, we generated a strain of smLRP1-/- mice in which tyrosine 739/750 of the PDGFRbeta had been mutated to phenylalanines (PDGFRbeta F2/F2). Spontaneous atherosclerosis was significantly reduced in the absence of hypercholesterolemia in these mice compared to smLRP1-/- animals that express wild type PDGFR. Normal actin organization was restored and spontaneous SMC migration as well as PDGF-BB-induced chemotaxis was dramatically reduced, despite continued overactivation of TGFbeta signaling, as indicated by high levels of nuclear phospho-Smad2. Our data suggest that LRP1 regulates actin organization and cell migration by controlling PDGFRbeta-dependent activation of PI3K. TGFbeta activation alone is not sufficient for the expression of the Marfan-like vascular phenotype. Thus, regulation of PI3 Kinase by PDGFRbeta is essential for maintaining vascular integrity, and for the prevention of atherosclerosis as well as Marfan syndrome.

  2. Galangin Induces Apoptosis in MCF-7 Human Breast Cancer Cells Through Mitochondrial Pathway and Phosphatidylinositol 3-Kinase/Akt Inhibition.

    PubMed

    Liu, Dan; You, Pengtao; Luo, Yan; Yang, Min; Liu, Yanwen

    2018-06-07

    The study aimed to investigate the molecular mechanism of inhibition of proliferation and apoptosis induction by galangin against MCF-7 human breast cancer cells. Cell Counting Kit-8 assay was used to assess cell viability and flow cytometry was used to detect cell apoptosis. The expression level of apoptosis-related proteins (cleaved-caspase-9, cleaved-caspase-8, cleaved-caspase-3, Bad, cleaved-Bid, Bcl-2, Bax, p-phosphatidylinositol 3-kinase [PI3K], and p-Akt) and cell cycle-related proteins (cyclin D3, cyclin B1, cyclin-dependent kinases CDK1, CDK2, CDK4, p21, p27, p53) were evaluated by Western blotting. Galangin increased the expression of Bax and decreased the expression of Bcl-2 in a concentration-dependent manner, inhibited cell viability, and induced apoptosis. Meanwhile, the expression of cleavage of caspase-9, caspase-8, caspase-3, Bid, and Bad increased significantly while the expression of p-PI3K and p-Akt proteins decreased. In addition, the protein levels of cyclin D3, cyclin B1, CDK1, CDK2, and CDK4 were downregulated while the expression levels of p21, p27, and p53 were upregulated significantly. Galangin could suppress the viability of MCF-7 cells and induce cell apoptosis via the mitochondrial pathway and PI3K/Akt inhibition as well as cell cycle arrest. © 2018 S. Karger AG, Basel.

  3. Glut-1 translocation in FRTL-5 thyroid cells: role of phosphatidylinositol 3-kinase and N-glycosylation.

    PubMed

    Samih, N; Hovsepian, S; Aouani, A; Lombardo, D; Fayet, G

    2000-11-01

    It was previously demonstrated that insulin or TSH treatment of FRTL-5 cells resulted in an elevation of glucose transport and in an increase of cell surface expression of the glucose transporter Glut-1. However, the signaling mechanisms leading to the insulin or TSH-induced increase in the cell surface expression of Glut-1 were not investigated. In the present study, we demonstrated that wortmannin and LY294002, two specific inhibitors of phosphatidylinositol 3-kinase (PI3-kinase), interfere both in the signaling pathways of insulin and TSH leading to glucose consumption enhancement and Glut-1 translocation. Two hours after insulin treatment, TSH or cAMP analog (Bu)2cAMP stimulation, glucose transport was increased and most of the intracellular Glut-1 pool was translocated to plasma membranes. Wortmannin or LY294002 blocked the insulin, (Bu)2cAMP, and the TSH-induced translocation of Glut-1. Wortmannin or LY294002 alone did not alter the basal ratio between intracellular and cell surface Glut-1 molecules. These results suggest that in FRTL-5 cells wortmannin and LY294002 inhibited the insulin, (Bu)2cAMP and TSH events leading to Glut-1 translocation from an intracellular compartment to the plasma membrane. Likewise, (Bu)2cAMP effects on glucose transport and Glut-1 translocation to plasma membrane were repressed by PI3-kinase inhibitors but not by the protein kinase A (PKA) inhibitor H89. We suggest that (Bu)2cAMP stimulates Glut-1 translocation to plasma membrane through PI3-kinase-dependent and PKA-independent signaling pathways. To further elucidate mechanisms that regulate the translocation of Glut-1 to cell membrane, we extended this study to the role played by the N-glycosylation in the translocation and in the biological activity of Glut-1 in FRTL-5 cells. For this purpose we used tunicamycin, an inhibitor of the N-glycosylation. Our experiments with tunicamycin clearly showed that both the glycosylated and unglycosylated forms of the transporter reached

  4. Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate.

    PubMed

    Franke, T F; Kaplan, D R; Cantley, L C; Toker, A

    1997-01-31

    The regulation of the serine-threonine kinase Akt by lipid products of phosphoinositide 3-kinase (PI 3-kinase) was investigated. Akt activity was found to correlate with the amount of phosphatidylinositol-3,4-bisphosphate (PtdIns-3,4-P2) in vivo, and synthetic PtdIns-3,4-P2 activated Akt both in vitro and in vivo. Binding of PtdIns-3,4-P2 occurred within the Akt pleckstrin homology (PH) domain and facilitated dimerization of Akt. Akt mutated in the PH domain was not activated by PI 3-kinase in vivo or by PtdIns-3, 4-P2 in vitro, and it was impaired in binding to PtdIns-3,4-P2. Examination of the binding to other phosphoinositides revealed that they bound to the Akt PH domain with much lower affinity than did PtdIns-3,4-P2 and failed to increase Akt activity. Thus, Akt is apparently regulated by the direct interaction of PtdIns-3,4-P2 with the Akt PH domain.

  5. Role of Phosphatidylinositol-3 Kinase Pathway in NMDA Preconditioning: Different Mechanisms for Seizures and Hippocampal Neuronal Degeneration Induced by Quinolinic Acid.

    PubMed

    Constantino, Leandra C; Binder, Luisa B; Vandresen-Filho, Samuel; Viola, Giordano G; Ludka, Fabiana K; Lopes, Mark W; Leal, Rodrigo B; Tasca, Carla I

    2018-04-20

    N-methyl D-aspartate (NMDA) preconditioning is evoked by the administration of a subtoxic dose of NMDA and is protective against neuronal excitotoxicity. This effect may involve a diversity of targets and cell signaling cascades associated to neuroprotection. Phosphatidylinositol-3 kinase/protein kinase B (PI3K/Akt) and mitogen-activated protein kinases (MAPKs) such as extracellular regulated protein kinase 1/2 (ERK1/2) and p38 MAPK pathways play a major role in neuroprotective mechanisms. However, their involvement in NMDA preconditioning was not yet fully investigated. The present study aimed to evaluate the effect of NMDA preconditioning on PI3K/Akt, ERK1/2, and p38 MAPK pathways in the hippocampus of mice and characterize the involvement of PI3K on NMDA preconditioning-evoked prevention of seizures and hippocampal cell damage induced by quinolinic acid (QA). Thus, mice received wortmannin (a PI3K inhibitor) and 15 min later a subconvulsant dose of NMDA (preconditioning) or saline. After 24 h of this treatment, an intracerebroventricular QA infusion was administered. Phosphorylation levels and total content of Akt, glycogen synthase protein kinase-3β (GSK-3β), ERK1/2, and p38 MAPK were not altered after 24 h of NMDA preconditioning with or without wortmmanin pretreatment. Moreover, after QA administration, behavioral seizures, hippocampal neuronal degeneration, and Akt activation were evaluated. Inhibition of PI3K pathway was effective in abolishing the protective effect of NMDA preconditioning against QA-induced seizures, but did not modify neuronal protection promoted by preconditioning as evaluated by Fluoro-Jade B staining. The study confirms that PI3K participates in the mechanism of protection induced by NMDA preconditioning against QA-induced seizures. Conversely, NMDA preconditioning-evoked protection against neuronal degeneration is not altered by PI3K signaling pathway inhibition. These results point to differential mechanisms regarding protection

  6. Cbl-phosphatidylinositol 3 kinase interaction differentially regulates macrophage colony-stimulating factor-mediated osteoclast survival and cytoskeletal reorganization.

    PubMed

    Adapala, Naga Suresh; Barbe, Mary F; Langdon, Wallace Y; Tsygankov, Alexander Y; Sanjay, Archana

    2010-03-01

    The Cbl protein is a key player in macrophage colony-stimulating factor (M-CSF)-induced signaling. To examine the role of Cbl in M-CSF-mediated cellular events, we used Cbl(YF/YF) knockin mice in which the regulatory tyrosine 737, which when phosphorylated binds to the p85 subunit of phosphatidylinositol 3 kinase (PI3K), is substituted to phenylalanine. In ex vivo cultures, M-CSF and receptor activator of nuclear factor-kappaB ligand-mediated differentiation of bone marrow precursors from Cbl(YF/YF) mice generated increased number of osteoclasts; however, osteoclast numbers in Cbl(YF/YF) cultures were unchanged with increasing doses of M-CSF. We found that Cbl(YF/YF) osteoclasts have enhanced intrinsic ability to survive, and this response was further augmented upon exposure to M-CSF. Treatment of osteoclasts with M-CSF-induced actin reorganization and lamellipodia formation in wild-type osteoclasts; however, in Cbl(YF/YF) osteoclasts lamellipodia formation was compromised. Collectively, these results indicate that abrogation of the Cbl-PI3K interaction, although not affecting M-CSF-induced proliferation and differentiation of precursors, is required for regulation of survival and actin cytoskeletal reorganization of mature osteoclasts.

  7. Epidermal growth factor-induced phosphatidylinositol 3-kinase activation and DNA synthesis. Identification of Grb2-associated binder 2 as the major mediator in rat hepatocytes.

    PubMed

    Kong, M; Mounier, C; Wu, J; Posner, B I

    2000-11-17

    In previous work we showed that the phosphatidylinositol 3-kinase (PI3-kinase), not the mitogen-activated protein kinase, pathway is necessary and sufficient to account for insulin- and epidermal growth factor (EGF)-induced DNA synthesis in rat hepatocytes. Here, using a dominant-negative p85, we confirmed the key role of EGF-induced PI3-kinase activation and sought to identify the mechanism by which this is effected. Our results show that EGF activates PI3-kinase with a time course similar to that of the association of p85 with three principal phosphotyrosine proteins (i. e. PY180, PY105, and PY52). We demonstrated that each formed a distinct p85-associated complex. PY180 and PY52 each constituted about 10% of EGF-activated PI3-kinase, whereas PY105 was responsible for 80%. PY105 associated with Grb2 and SHP-2, and although it behaved like Gab1, none of the latter was detected in rat liver. We therefore cloned a cDNA from rat liver, which was found to be 95% homologous to the mouse Grb2-associated binder 2 (Gab2) cDNA sequence. Using a specific Gab2 antibody, we demonstrated its expression in and association with p85, SHP-2, and Grb2 upon EGF treatment of rat hepatocytes. Gab2 accounted for most if not all of the PY105 species, since immunoprecipitation of Gab2 with specific antibodies demonstrated parallel immunodepletion of Gab2 and PY105 from the residual supernatants. We also found that the PI3-kinase activity associated with Gab2 was totally abolished by dominant negative p85. Thus, Gab2 appears to be the principal EGF-induced PY protein recruiting and activating PI3-kinase and mitogenesis.

  8. In vivo binding properties of SH2 domains from GTPase-activating protein and phosphatidylinositol 3-kinase.

    PubMed Central

    Cooper, J A; Kashishian, A

    1993-01-01

    We have used a transient expression system and mutant platelet-derived growth factor (PDGF) receptors to study the binding specificities of the Src homology 2 (SH2) regions of the Ras GTPase-activator protein (GAP) and the p85 alpha subunit of phosphatidylinositol 3-kinase (PI3 kinase). A number of fusion proteins, each tagged with an epitope allowing recognition by a monoclonal antibody, were expressed at levels comparable to those of endogenous GAP. Fusion proteins containing the central SH2-SH3-SH2 region of GAP or the C-terminal region of p85 alpha, which includes two SH2 domains, bound to PDGF receptors in response to PDGF stimulation. Both fusion proteins showed the same requirements for tyrosine phosphorylation sites in the PDGF receptor as the full-length proteins from which they were derived, i.e., binding of the GAP fusion protein was reduced by mutation of Tyr-771, and binding of the p85 fusion protein was reduced by mutation of Tyr-740, Tyr-751, or both residues. Fusion proteins containing single SH2 domains from either GAP or p85 alpha did not bind detectably to PDGF receptors in this system, suggesting that two SH2 domains in a single polypeptide cooperate to raise the affinity of binding. The sequence specificities of individual SH2 domains were deduced from the binding properties of fusion proteins containing one SH2 domain from GAP and another from p85. The results suggest that the C-terminal GAP SH2 domain specifies binding to Tyr-771, the C-terminal p85 alpha SH2 domain binds to either Tyr-740 or Tyr-751, and each protein's N-terminal SH2 domain binds to unidentified phosphorylation sites.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:8382774

  9. Acetylcholine but not adenosine triggers preconditioning through PI3-kinase and a tyrosine kinase.

    PubMed

    Qin, Qining; Downey, James M; Cohen, Michael V

    2003-02-01

    Adenosine and acetylcholine (ACh) trigger preconditioning by different signaling pathways. The involvement of phosphatidylinositol 3-kinase (PI3-kinase), a protein tyrosine kinase, and Src family tyrosine kinase in preconditioning was evaluated in isolated rabbit hearts. Either wortmannin (PI3-kinase blocker), genistein (tyrosine kinase blocker), lavendustin A (tyrosine kinase blocker), or 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolol[3,4-d]pyrimidine (PP2; Src family tyrosine kinase blocker) was given for 15 min to bracket a 5-min infusion of either adenosine or ACh (trigger phase). The hearts then underwent 30 min of regional ischemia. Infarct size for ACh alone was 9.3 +/- 3.5% of the risk zone versus 34.3 +/- 4.1% in controls. All four inhibitors blocked ACh-induced protection. When wortmannin or PP2 was infused only during the 30-min ischemic period (mediator phase), ACh-induced protection was not affected (7.4 +/- 2.1% and 9.7 +/- 1.7% infarction, respectively). Adenosine-triggered protection was not blocked by any of the inhibitors. Therefore, PI3-kinase and at least one protein tyrosine kinase, probably Src kinase, are involved in the trigger phase of ACh-induced, but not adenosine-induced, preconditioning. Neither PI3-kinase nor Src kinase is a mediator of the protection of ACh.

  10. Class IA PI3K inhibition inhibits cell growth and proliferation in mantle cell lymphoma.

    PubMed

    Tabe, Yoko; Jin, Linhua; Konopleva, Marina; Shikami, Masato; Kimura, Shinya; Andreeff, Michael; Raffeld, Mark; Miida, Takashi

    2014-01-01

    Constitutive activation of the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin signaling pathway preferentially occurs in aggressive blastoid variants of mantle cell lymphoma (MCL) and is implicated in the pathogenesis of this disease. In this study, we investigated the role of PI3K isoforms on proliferation of aggressive MCL cells. The changes in cell viability, cell cycle distribution and apoptosis induction by the PI3K isoform-selective inhibitors were evaluated. The molecular basis underlying the effects of the specific inhibition of PI3K isoforms was investigated by Western blot analysis. Our results demonstrated that a class IA PI3K isoform is most commonly involved in the constitutive activation of Akt in aggressive MCL. Treatment with a p110α isoform-specific inhibitor induced prominent cell cycle arrest followed by apoptosis through complete abolishment of phosphorylated (p)-Akt and its downstream targets. An inhibitor of isoform p110δ induced moderate cell cycle arrest with downregulation of p-Akt and p-S6K. A dual inhibitor of p110α and p110δ GDC-0941 caused more prominent cell growth inhibition compared to selective p110α or p110δ inhibitors. Inhibition of the class IB PI3K isoform p110γ did not cause cell cycle arrest or induce apoptosis in MCL cells. These findings suggest that the therapeutic ablation of class IA PI3K may be a promising strategy for the treatment of refractory, aggressive MCL. Copyright © 2013 S. Karger AG, Basel.

  11. Role of the phosphatidylinositol-3-kinase/Akt/target of rapamycin pathway during ambidensovirus infection of insect cells.

    PubMed

    Salasc, F; Mutuel, D; Debaisieux, S; Perrin, A; Dupressoir, T; Grenet, A-S Gosselin; Ogliastro, M

    2016-01-01

    The phosphatidylinositol-3-kinase (PI3K)/Akt/target of rapamycin (TOR) signalling pathway controls cell growth and survival, and is targeted by a number of viruses at different phases of their infection cycle to control translation. Whether and how insect viruses interact with this pathway remain poorly addressed. Here, we investigated the role of PI3K/Akt/TOR signalling during lethal infection of insect cells with an insect parvovirus. Using Junonia coenia densovirus (JcDV; lepidopteran ambidensovirus 1) and susceptible insect cells as experimental models, we first described JcDV cytopathology, and showed that viral infection affects cell size, cell proliferation and survival. We deciphered the role of PI3K/Akt/TOR signalling in the course of infection and found that non-structural (NS) protein expression correlates with the inhibition of TOR and the shutdown of cellular synthesis, concomitant with the burst of viral protein expression. Together, these results suggest that NS proteins control the cellular translational machinery to favour the translation of viral mRNAs at the expense of cellular mRNAs. As a consequence of TOR inhibition, cell autophagy is activated. These results highlight new functions for NS proteins in the course of multiplication of an insect parvovirus.

  12. p56Lck and p59Fyn Regulate CD28 Binding to Phosphatidylinositol 3-Kinase, Growth Factor Receptor-Bound Protein GRB-2, and T Cell-Specific Protein-Tyrosine Kinase ITK: Implications for T-Cell Costimulation

    NASA Astrophysics Data System (ADS)

    Raab, Monika; Cai, Yun-Cai; Bunnell, Stephen C.; Heyeck, Stephanie D.; Berg, Leslie J.; Rudd, Christopher E.

    1995-09-01

    T-cell activation requires cooperative signals generated by the T-cell antigen receptor ξ-chain complex (TCRξ-CD3) and the costimulatory antigen CD28. CD28 interacts with three intracellular proteins-phosphatidylinositol 3-kinase (PI 3-kinase), T cell-specific protein-tyrosine kinase ITK (formerly TSK or EMT), and the complex between growth factor receptor-bound protein 2 and son of sevenless guanine nucleotide exchange protein (GRB-2-SOS). PI 3-kinase and GRB-2 bind to the CD28 phosphotyrosine-based Tyr-Met-Asn-Met motif by means of intrinsic Src-homology 2 (SH2) domains. The requirement for tyrosine phosphorylation of the Tyr-Met-Asn-Met motif for SH2 domain binding implicates an intervening protein-tyrosine kinase in the recruitment of PI 3-kinase and GRB-2 by CD28. Candidate kinases include p56Lck, p59Fyn, ξ-chain-associated 70-kDa protein (ZAP-70), and ITK. In this study, we demonstrate in coexpression studies that p56Lck and p59Fyn phosphorylate CD28 primarily at Tyr-191 of the Tyr-Met-Asn-Met motif, inducing a 3- to 8-fold increase in p85 (subunit of PI 3-kinase) and GRB-2 SH2 binding to CD28. Phosphatase digestion of CD28 eliminated binding. In contrast to Src kinases, ZAP-70 and ITK failed to induce these events. Further, ITK binding to CD28 was dependent on the presence of p56Lck and is thus likely to act downstream of p56Lck/p59Fyn in a signaling cascade. p56Lck is therefore likely to be a central switch in T-cell activation, with the dual function of regulating CD28-mediated costimulation as well as TCR-CD3-CD4 signaling.

  13. c-Cbl promotes T cell receptor-induced thymocyte apoptosis by activating the phosphatidylinositol 3-kinase/Akt pathway.

    PubMed

    Thien, Christine B F; Dagger, Samantha A; Steer, James H; Koentgen, Frank; Jansen, Elisa S; Scott, Clare L; Langdon, Wallace Y

    2010-04-02

    The ability of thymocytes to assess T cell receptor (TCR) signaling strength and initiate the appropriate downstream response is crucial for determining their fate. We have previously shown that a c-Cbl RING finger mutant knock-in mouse, in which the E3 ubiquitin ligase activity of c-Cbl is inactivated, is highly sensitive to TCR-induced death signals that cause thymic deletion. This high intensity signal involves the enhanced tyrosine phosphorylation of the mutant c-Cbl protein promoting a marked increase in the activation of Akt. Here we show that this high intensity signal in c-Cbl RING finger mutant thymocytes also promotes the enhanced induction of two mediators of TCR-directed thymocyte apoptosis, Nur77 and the pro-apoptotic Bcl-2 family member, Bim. In contrast, a knock-in mouse harboring a mutation at Tyr-737, the site in c-Cbl that activates phosphatidylinositol 3-kinase, shows reduced TCR-mediated responses including suppression of Akt activation, a reduced induction of Nur77 and Bim, and greater resistance to thymocyte death. These findings identify tyrosine-phosphorylated c-Cbl as a critical sensor of TCR signal strength that regulates the engagement of death-promoting signals.

  14. Phosphatidyl-Inositol-3 Kinase Inhibitors Regulate Peptidoglycan-Induced Myeloid Leukocyte Recruitment, Inflammation, and Neurotoxicity in Mouse Brain.

    PubMed

    Arroyo, Daniela S; Gaviglio, Emilia A; Peralta Ramos, Javier M; Bussi, Claudio; Avalos, Maria P; Cancela, Liliana M; Iribarren, Pablo

    2018-01-01

    Acute brain injury leads to the recruitment and activation of immune cells including resident microglia and infiltrating peripheral myeloid cells (MC), which contribute to the inflammatory response involved in neuronal damage. We previously reported that TLR2 stimulation by peptidoglycan (PGN) from Staphylococcus aureus, in vitro and in vivo , induced microglial cell activation followed by autophagy induction. In this report, we evaluated if phosphatidyl-inositol-3 kinase (PI3K) pharmacological inhibitors LY294200 and 3-methyladenine (3-MA) can modulate the innate immune response to PGN in the central nervous system. We found that injection of PGN into the mouse brain parenchyma (caudate putamen) triggered an inflammatory reaction, which involved activation of microglial cells, recruitment of infiltrating MC to injection site, production of pro-inflammatory mediators, and neuronal injury. In addition, we observed the accumulation of LC3B + CD45 + cells and colocalization of LC3B and lysosomal-associated membrane protein 1 in brain cells. Besides, we found that pharmacological inhibitors of PI3K, including the classical autophagy inhibitor 3-MA, reduced the recruitment of MC, microglial cell activation, and neurotoxicity induced by brain PGN injection. Collectively, our results suggest that PI3K pathways and autophagic response may participate in the PGN-induced microglial activation and MC recruitment to the brain. Thus, inhibition of these pathways could be therapeutically targeted to control acute brain inflammatory conditions.

  15. Characterization of VPS34-IN1, a selective inhibitor of Vps34, reveals that the phosphatidylinositol 3-phosphate-binding SGK3 protein kinase is a downstream target of class III phosphoinositide 3-kinase.

    PubMed

    Bago, Ruzica; Malik, Nazma; Munson, Michael J; Prescott, Alan R; Davies, Paul; Sommer, Eeva; Shpiro, Natalia; Ward, Richard; Cross, Darren; Ganley, Ian G; Alessi, Dario R

    2014-11-01

    The Vps34 (vacuolar protein sorting 34) class III PI3K (phosphoinositide 3-kinase) phosphorylates PtdIns (phosphatidylinositol) at endosomal membranes to generate PtdIns(3)P that regulates membrane trafficking processes via its ability to recruit a subset of proteins possessing PtdIns(3)P-binding PX (phox homology) and FYVE domains. In the present study, we describe a highly selective and potent inhibitor of Vps34, termed VPS34-IN1, that inhibits Vps34 with 25 nM IC50 in vitro, but does not significantly inhibit the activity of 340 protein kinases or 25 lipid kinases tested that include all isoforms of class I as well as class II PI3Ks. Administration of VPS34-IN1 to cells induces a rapid dose-dependent dispersal of a specific PtdIns(3)P-binding probe from endosome membranes, within 1 min, without affecting the ability of class I PI3K to regulate Akt. Moreover, we explored whether SGK3 (serum- and glucocorticoid-regulated kinase-3), the only protein kinase known to interact specifically with PtdIns(3)P via its N-terminal PX domain, might be controlled by Vps34. Mutations disrupting PtdIns(3)P binding ablated SGK3 kinase activity by suppressing phosphorylation of the T-loop [PDK1 (phosphoinositide-dependent kinase 1) site] and hydrophobic motif (mammalian target of rapamycin site) residues. VPS34-IN1 induced a rapid ~50-60% loss of SGK3 phosphorylation within 1 min. VPS34-IN1 did not inhibit activity of the SGK2 isoform that does not possess a PtdIns(3)P-binding PX domain. Furthermore, class I PI3K inhibitors (GDC-0941 and BKM120) that do not inhibit Vps34 suppressed SGK3 activity by ~40%. Combining VPS34-IN1 and GDC-0941 reduced SGK3 activity ~80-90%. These data suggest SGK3 phosphorylation and hence activity is controlled by two pools of PtdIns(3)P. The first is produced through phosphorylation of PtdIns by Vps34 at the endosome. The second is due to the conversion of class I PI3K product, PtdIns(3,4,5)P3 into PtdIns(3)P, via the sequential actions of the Ptd

  16. Development of phosphocellulose paper-based screening of inhibitors of lipid kinases: case study with PI3Kβ.

    PubMed

    Yanamandra, Mahesh; Kole, Labanyamoy; Giri, Archana; Mitra, Sayan

    2014-03-15

    The phosphatidylinositol 3-kinases (PI3Ks) are lipid kinases that regulate the cellular signal transduction pathways involved in cell growth, proliferation, survival, apoptosis, and adhesion. Deregulation of these pathways are common in oncogenesis, and they are known to be altered in other metabolic disorders as well. Despite its huge potential as an attractive target in these diseases, there is an unmet need for the development of a successful inhibitor. Unlike protein kinase inhibitors, screening for lipid kinase inhibitors has been challenging. Here we report, for the first time, the development of a radioactive lipid kinase screening platform using a phosphocellulose plate that involves transfer of radiolabeled [γ-(32)P]ATP to phosphatidylinositol 4,5-phosphate forming phosphatidylinositol 3,4,5-phosphate, captured on the phosphocellulose plate. Enzyme kinetics and inhibitory properties were established in the plate format using standard inhibitors, such as LY294002, TGX-221, and wortmannin, having different potencies toward PI3K isoforms. ATP and lipid apparent Km for both were determined and IC50 values generated that matched the historical data. Here we report the use of a phosphocellulose plate for a lipid kinase assay (PI3Kβ as the target) as an excellent platform for the identification of novel chemical entities in PI3K drug discovery. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. The hepatocyte growth factor antagonist NK4 inhibits indoleamine-2,3-dioxygenase expression via the c-Met-phosphatidylinositol 3-kinase-AKT signaling pathway

    PubMed Central

    WANG, DONGDONG; SAGA, YASUSHI; SATO, NAOTO; NAKAMURA, TOSHIKAZU; TAKIKAWA, OSAMU; MIZUKAMI, HIROAKI; MATSUBARA, SHIGEKI; FUJIWARA, HIROYUKI

    2016-01-01

    Indoleamine-2,3-dioxygenase (IDO) is an immunosuppressive enzyme involved in tumor malignancy. However, the regulatory mechanism underlying its involvement remains largely uncharacterized. The present study aimed to investigate the hypothesis that NK4, an antagonist of hepatocyte growth factor (HGF), can regulate IDO and to characterize the signaling mechanism involved. Following successful transfection of the human ovarian cancer cell line SKOV-3 (which constitutively expresses IDO) with an NK4 expression vector, we observed that NK4 expression suppressed IDO expression; furthermore, NK4 expression did not suppress cancer cell growth in vitro [in the absence of natural killer (NK) cells], but did influence tumor growth in vivo. In addition, NK4 enhanced the sensitivity of cancer cells to NK cells in vitro and promoted NK cell accumulation in the tumor stroma in vivo. In an effort to clarify the mechanisms by which NK4 interacts with IDO, we performed investigations utilizing various biochemical inhibitors. The results of these investigations were as follows. First, c-Met (a receptor of HGF) tyrosine kinase inhibitor PHA-665752, and phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 both suppress IDO expression. Second, enhanced expression of PTEN (a known tumor suppressor) via negative regulation within a PI3K-AKT pathway, inhibits IDO expression. Conversely, neither the MEK1/2 inhibitor U0126 nor the STAT3 inhibitor WP1066 affects IDO expression. These results suggest that NK4 inhibits IDO expression via a c-Met-PI3K-AKT signaling pathway. PMID:27082119

  18. Novel adapter proteins that link the human GM-CSF receptor to the phosphatidylino-sitol 3-kinase and Shc/Grb2/ras signaling pathways.

    PubMed

    Jücker, M; Feldman, R A

    1996-01-01

    We have used a human GM-CSF-dependent hematopoietic cell line that responds to physiological concentrations of hGM-CSF to analyze a set of signaling events that occur in normal myelopoiesis and whose deregulation may lead to leukemogenesis. Stimulation of these cells with hGM-CSF induced the assembly of multimeric complexes that contained known and novel phosphotyrosyl proteins. One of the new proteins was a major phosphotyrosyl substrate of 76-85 kDa (p80) that was directly associated with the p85 subunit of phosphatidylinositol (PI) 3-kinase through the SH2 domains of p85. p80 also associated with the beta subunit of the activated hGM-CSF receptor, and assembly of this complex correlated with activation of PI 3-kinase. A second phosphotyrosyl protein we identified, p140, associated with the Shc and Grb2 adapter proteins by direct binding to a novel phosphotyrosine-interacting domain located at the N-terminus of Shc. and to the SH3 domains of Grb2, respectively. The Shc/p140/Grb2 complex was found to be constitutively activated in acute myeloid leukemia cells, indicating that activation of this pathway may be a necessary step in the development of some leukemias. The p80/p85/PI 3-kinase and the Shc/Grb2/p140 complexes were tightly associated with Src family kinases, which were prime candidates for phosphorylation of Shc, p80, p140 and other phosphotyrosyl substrates present in these complexes. Our studies suggest that p80 and p140 may link the hGM-CSF receptor to the PI 3-kinase and Shc/Grb2/ras signaling pathways, respectively, and that abnormal activation of hGM-CSF-dependent targets may play a role in leukemogenesis.

  19. Phosphorylation of the Grb2- and phosphatidylinositol 3-kinase p85-binding p36/38 by Syk in Lck-negative T cells.

    PubMed

    von Willebrand, M; Williams, S; Tailor, P; Mustelin, T

    1998-06-01

    Activation of the mitogen-activated protein kinase (MAPK) pathway by the T-cell antigen receptor (TCR) in T cells involves a positive role for phosphatidylinositol 3-kinase (PI3K) activity. We recently reported that over-expression of the Syk protein tyrosine kinase in the Lck-negative JCaM1 cells enabled the TCR to induce a normal activation of the Erk2 MAPK and enhanced transcription of a reporter gene driven by the nuclear factor of activated T cells and AP-1. Because this system allows us to analyse the targets for Syk in receptor-mediated signalling, we examined the role of PI3K in signalling events between the TCR-regulated Syk and the downstream activation of Erk2. We report that inhibition of PI3K by wortmannin or an inhibitory p85 construct, p85deltaiSH2, reduced the TCR-induced Syk-dependent activation of Erk2, as well as the appearance of phospho-Erk and phospho-Mek. At the same time, expression of Syk resulted in the activation-dependent phosphorylation of three proteins that bound to the src homology 2 (SH2) domains of PI3K p85. The strongest of these bands had an apparent molecular mass of 36-38 kDa on SDS gels, and it was quantitatively removed from the lysates by adsorption to a fusion protein containing the SH2 domain of Grb2. The appearance of this band was Syk dependent, and it was seen only upon triggering of the TCR complex. Thus, p36/38 was phosphorylated by Syk or a Syk-regulated kinase, and this protein may provide a link to the recruitment and activation of PI3K, as well as to the Ras-MAPK pathway, in TCR-triggered T cells.

  20. Development of highly sensitive cell-based AKT kinase ELISA for monitoring PI3K beta activity and compound efficacy.

    PubMed

    Yanamandra, Mahesh; Kole, Labanyamoy; Giri, Archana; Mitra, Sayan

    2017-01-01

    Phosphatidylinositol-3 kinase (PI3K) pathway regulates multiple cellular functions involving cell survival, growth, motility proliferation, apoptosis, and adhesion. These are deregulated in various diseases such as cancer, atherosclerosis, and inflammation. PI3Ks phosphorylate phosphatidylinositol 4,5-biphosphate (PIP2) yielding phosphatidylinositol 3, 4, 5 triphosphate (PIP3) which in turn activate AKT kinase (serine/threonine kinase), the central enzyme in regulation of metabolic functions. Due to their implications in disease pathophysiology, PI3K/AKT inhibitors became attractive targets for pharmaceutical industries. In order to assess the functional response generated by PI3K inhibitors, an appropriate cell-based screening system is essential in any screening cascade. Here we report the development of highly sensitive in-vitro cell-based kinase ELISA which quantifies the phosphorylated AKT kinase (serine 473) and total AKT kinase directly within the cells upon compound treatment. PI3Kβ overexpressing NIH3T3 cells stimulated by lysophosphatidic acid was used for PI3K/Akt pathway activation. Assay performance reliability and robustness were determined by percentage coefficient of variation (%CV) and Z factor which demonstrated an excellent agreement with assay guidelines. This 96-well plate medium throughput assay methodology was used to screen novel molecules and proved a commendable tool to study the mechanism of action property and target engagement of novel PI3K inhibitors in drug discovery.

  1. Mapping of Functional Domains of the Lipid Kinase Phosphatidylinositol 4-Kinase Type III Alpha Involved in Enzymatic Activity and Hepatitis C Virus Replication

    PubMed Central

    Harak, Christian; Radujkovic, Danijela; Taveneau, Cyntia; Reiss, Simon; Klein, Rahel; Bressanelli, Stéphane

    2014-01-01

    ABSTRACT The lipid kinase phosphatidylinositol 4-kinase III alpha (PI4KIIIα) is an endoplasmic reticulum (ER)-resident enzyme that synthesizes phosphatidylinositol 4-phosphate (PI4P). PI4KIIIα is an essential host factor for hepatitis C virus (HCV) replication. Interaction with HCV nonstructural protein 5A (NS5A) leads to kinase activation and accumulation of PI4P at intracellular membranes. In this study, we investigated the structural requirements of PI4KIIIα in HCV replication and enzymatic activity. Therefore, we analyzed PI4KIIIα mutants for subcellular localization, reconstitution of HCV replication in PI4KIIIα knockdown cell lines, PI4P induction in HCV-positive cells, and lipid kinase activity in vitro. All mutants still interacted with NS5A and localized in a manner similar to that of the full-length enzyme, suggesting multiple regions of PI4KIIIα are involved in NS5A interaction and subcellular localization. Interestingly, the N-terminal 1,152 amino acids were dispensable for HCV replication, PI4P induction, and enzymatic function, whereas further N-terminal or C-terminal deletions were deleterious, thereby defining the minimal PI4KIIIα core enzyme at a size of ca. 108 kDa. Additional deletion of predicted functional motifs within the C-terminal half of PI4KIIIα also were detrimental for enzymatic activity and for the ability of PI4KIIIα to rescue HCV replication, with the exception of a proposed nuclear localization signal, suggesting that the entire C-terminal half of PI4KIIIα is involved in the formation of a minimal enzymatic core. This view was supported by structural modeling of the PI4KIIIα C terminus, suggesting a catalytic center formed by an N- and C-terminal lobe and an armadillo-fold motif, which is preceded by three distinct alpha-helical domains probably involved in regulation of enzymatic activity. IMPORTANCE The lipid kinase PI4KIIIα is of central importance for cellular phosphatidylinositol metabolism and is a key host cell

  2. Pterostilbene protects against UVB-induced photo-damage through a phosphatidylinositol-3-kinase-dependent Nrf2/ARE pathway in human keratinocytes.

    PubMed

    Li, Huaping; Jiang, Na; Liang, Bihua; Liu, Qing; Zhang, Erting; Peng, Liqian; Deng, Huiyan; Li, Runxiang; Li, Zhenjie; Zhu, Huilan

    2017-11-01

    Ultraviolet B (UVB) irradiation is the initial etiological factor for various skin disorders, including erythema, sunburn, photoaging, and photocarcinogenesis. Pterostilbene (Pter) displayed remarkable antioxidant, anti-inflammatory, and anticarcinogenic activities. This study aimed to investigate the effective mechanism of Pter against UVB-induced photodamage in immortalized human keratinocytes. Human keratinocytes were pretreated with Pter (5 and 10 μM) for 24 h prior to UVB irradiation (300 mJ/cm 2 ). Harvested cells were analyzed by MTT, DCFH-DA, comet, western blotting, luciferase promoter, small interference RNA transfection, and quantitative real-time polymerase chain reaction assay. Pter significantly attenuated UVB-induced cell death and reactive oxygen species (ROS) generation, and effectively increased nuclear translocation of NF-E2-related factor-2 (Nrf2), expression of Nrf2-dependent antioxidant enzymes, and DNA repair activity. Moreover, the protective effects of Pter were abolished by small interference RNA-mediated Nrf2 silencing. Furthermore, Pter was also found to induce the phosphorylation of Nrf2 and the known phosphatidylinositol-3-kinase (PI3K) phosphorylated kinase, Akt. The specific inhibitor of PI3K, LY294002, successfully abrogated Pter-induced Nrf2 phosphorylation, activation of Nrf2-antioxidant response element pathway, ROS scavenging ability, and DNA repair activity. The present study indicated that Pter effectively protected against UVB-induced photodamage by increasing endogenous defense mechanisms, scavenging UVB-induced ROS, and aiding in damaged DNA repair through a PI3K-dependent activation of Nrf2/ARE pathway.

  3. Insulin-like growth factor-1 (IGF-1) promotes primordial follicle growth and reduces DNA fragmentation through the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signalling pathway.

    PubMed

    Bezerra, Maria É S; Barberino, Ricássio S; Menezes, Vanúzia G; Gouveia, Bruna B; Macedo, Taís J S; Santos, Jamile M S; Monte, Alane P O; Barros, Vanessa R P; Matos, Maria H T

    2018-05-30

    We investigated the effects of insulin-like growth factor 1 (IGF-1) on the morphology and follicular activation of ovine preantral follicles cultured in situ and whether the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway is involved in IGF-1 action in the sheep ovary. Ovine ovarian fragments were fixed for histological and terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) analyses (fresh control) or cultured in supplemented alpha-minimum essential medium (α-MEM+; control) or α-MEM+ with IGF-1 (1, 10, 50, 100 or 200ngmL-1) for 7 days. Follicles were classified as normal or atretic, primordial or growing and the oocyte and follicle diameters were measured. DNA fragmentation was evaluated by TUNEL assay. Proliferating cell nuclear antigen (PCNA) immunohistochemistry was performed on the fresh control, α-MEM+ and 100ngmL-1 IGF-1 samples. Inhibition of PI3K activity was performed through pretreatment with the PI3K inhibitor LY294002 and phosphorylated AKT (pAKT) expression was analysed after culture in the absence or presence of LY294002. IGF-1 at 100ngmL-1 increased (P<0.05) follicular activation compared with α-MEM+ and decreased TUNEL-positive cells (P<0.05) compared with other treatments. PCNA-positive cells also increased (P<0.05) in 100ngmL-1 IGF-1. LY294002 significantly inhibited follicular activation stimulated by α-MEM+ and 100ngmL-1 IGF-1 and reduced pAKT expression in follicles. Overall, IGF-1 at 100ngmL-1 promoted primordial follicle activation, cell proliferation and reduced DNA fragmentation after in situ culture through the PI3K/AKT pathway.

  4. The osmotic shock-induced glucose transport pathway in 3T3-L1 adipocytes is mediated by gab-1 and requires Gab-1-associated phosphatidylinositol 3-kinase activity for full activation.

    PubMed

    Janez, A; Worrall, D S; Imamura, T; Sharma, P M; Olefsky, J M

    2000-09-01

    Osmotic shock treatment of 3T3-L1 adipocytes causes an increase in glucose transport activity and translocation of GLUT4 protein similar to that elicited by insulin treatment. Insulin stimulation of GLUT4 translocation and glucose transport activity was completely inhibited by wortmannin, however, activation by osmotic shock was only partially blocked. Additionally, we have found that the newly identified insulin receptor substrate Gab-1 (Grb2-associated binder-1) is tyrosine-phosphorylated following sorbitol stimulation. Treatment of cells with the tyrosine kinase inhibitor genistein inhibited osmotic shock-stimulated Gab-1 phosphorylation as well as shock-induced glucose transport. Furthermore, pretreatment with the selective Src family kinase inhibitor PP2 completely inhibited the ability of sorbitol treatment to cause tyrosine phosphorylation of Gab-1. We have also shown that microinjection of anti-Gab-1 antibody inhibits osmotic shock-induced GLUT4 translocation. Furthermore, phosphorylated Gab-1 binds and activates phosphatidylinositol 3-kinase (PI3K) in response to osmotic shock. The PI3K activity associated with Gab-1 was 82% of that associated with anti-phosphotyrosine antibodies, indicating that Gab-1 is the major site for PI3K recruitment following osmotic shock stimulation. Although wortmannin only causes a partial block of osmotic shock-stimulated glucose uptake, wortmannin completely abolishes Gab-1 associated PI3K activity. This suggests that other tyrosine kinase-dependent pathways, in addition to the Gab-1-PI3K pathway, contribute to osmotic shock-mediated glucose transport. To date, Gab-1 is the first protein identified as a member of the osmotic shock signal transduction pathway.

  5. Phosphatidyl-Inositol-3 Kinase Inhibitors Regulate Peptidoglycan-Induced Myeloid Leukocyte Recruitment, Inflammation, and Neurotoxicity in Mouse Brain

    PubMed Central

    Arroyo, Daniela S.; Gaviglio, Emilia A.; Peralta Ramos, Javier M.; Bussi, Claudio; Avalos, Maria P.; Cancela, Liliana M.; Iribarren, Pablo

    2018-01-01

    Acute brain injury leads to the recruitment and activation of immune cells including resident microglia and infiltrating peripheral myeloid cells (MC), which contribute to the inflammatory response involved in neuronal damage. We previously reported that TLR2 stimulation by peptidoglycan (PGN) from Staphylococcus aureus, in vitro and in vivo, induced microglial cell activation followed by autophagy induction. In this report, we evaluated if phosphatidyl-inositol-3 kinase (PI3K) pharmacological inhibitors LY294200 and 3-methyladenine (3-MA) can modulate the innate immune response to PGN in the central nervous system. We found that injection of PGN into the mouse brain parenchyma (caudate putamen) triggered an inflammatory reaction, which involved activation of microglial cells, recruitment of infiltrating MC to injection site, production of pro-inflammatory mediators, and neuronal injury. In addition, we observed the accumulation of LC3B+ CD45+ cells and colocalization of LC3B and lysosomal-associated membrane protein 1 in brain cells. Besides, we found that pharmacological inhibitors of PI3K, including the classical autophagy inhibitor 3-MA, reduced the recruitment of MC, microglial cell activation, and neurotoxicity induced by brain PGN injection. Collectively, our results suggest that PI3K pathways and autophagic response may participate in the PGN-induced microglial activation and MC recruitment to the brain. Thus, inhibition of these pathways could be therapeutically targeted to control acute brain inflammatory conditions. PMID:29719536

  6. Interactions of phosphatidylinositol kinase, GTPase-activating protein (GAP), and GAP-associated proteins with the colony-stimulating factor 1 receptor.

    PubMed Central

    Reedijk, M; Liu, X Q; Pawson, T

    1990-01-01

    The interactions of the macrophage colony-stimulating factor 1 (CSF-1) receptor with potential targets were investigated after ligand stimulation either of mouse macrophages or of fibroblasts that ectopically express mouse CSF-1 receptors. In Rat-2 cells expressing the mouse CSF-1 receptor, full activation of the receptor and cellular transformation require exogenous CSF-1, whereas NIH 3T3 cells expressing mouse c-fms are transformed by autocrine stimulation. Activated CSF-1 receptors physically associate with a phosphatidylinositol (PI) 3'-kinase. A mutant CSF-1 receptor with a deletion of the kinase insert region was deficient in its ability to bind functional PI 3'-kinase and to induce PI 3'-kinase activity precipitable with antiphosphotyrosine antibodies. In fibroblasts, CSF-1 stimulation also induced the phosphorylation of the GTPase-activating protein (GAP)-associated protein p62 on tyrosine, although GAP itself was a relatively poor substrate. In contrast to PI 3'-kinase association, phosphorylation of p62 and GAP was not markedly affected by deletion of the kinase insert region. These results indicate that the kinase insert region selectively enhances the CSF-1-dependent association of the CSF-1 receptor with active PI 3'-kinase. The insert deletion mutant retains considerable transforming activity in NIH 3T3 cells (G. Taylor, M. Reedijk, V. Rothwell, L. Rohrschneider, and T. Pawson, EMBO J. 8:2029-2037, 1989). This mutant was more seriously impaired in Rat-2 cell transformation, although mutant-expressing Rat-2 cells still formed small colonies in soft agar in the presence of CSF-1. Therefore, phosphorylation of GAP and p62 through activation of the CSF-1 receptor does not result in full fibroblast transformation. The interaction between the CSF-1 receptor and PI 3'-kinase may contribute to c-fms fibroblast transformation and play a role in CSF-1-stimulated macrophages. Images PMID:2172781

  7. Distinct Requirements for Vacuolar Protein Sorting 34 Downstream Effector Phosphatidylinositol 3-Phosphate 5-Kinase in Podocytes Versus Proximal Tubular Cells

    PubMed Central

    Venkatareddy, Madhusudan; Verma, Rakesh; Kalinowski, Anne; Patel, Sanjeevkumar R.; Shisheva, Assia

    2016-01-01

    The mechanisms by which the glomerular filtration barrier prevents the loss of large macromolecules and simultaneously, maintains the filter remain poorly understood. Recent studies proposed that podocytes have an active role in both the endocytosis of filtered macromolecules and the maintenance of the filtration barrier. Deletion of a key endosomal trafficking regulator, the class 3 phosphatidylinositol (PtdIns) 3-kinase vacuolar protein sorting 34 (Vps34), in podocytes results in aberrant endosomal membrane morphology and podocyte dysfunction. We recently showed that the vacuolation phenotype in cultured Vps34–deficient podocytes is caused by the absence of a substrate for the Vps34 downstream effector PtdIns 3-phosphate 5-kinase (PIKfyve), which phosphorylates Vps34-generated PtdIns(3)P to produce PtdIns (3,5)P2. PIKfyve perturbation and PtdIns(3,5)P2 reduction result in massive membrane vacuolation along the endosomal system, but the cell-specific functions of PIKfyve in vivo remain unclear. We show here that the genetic deletion of PIKfyve in endocytically active proximal tubular cells resulted in the development of large cytoplasmic vacuoles caused by arrested endocytic traffic progression at a late-endosome stage. In contrast, deletion of PIKfyve in glomerular podocytes did not significantly alter the endosomal morphology, even in age 18-month-old mice. However, on culturing, the PIKfyve-deleted podocytes developed massive cytoplasmic vacuoles. In summary, these data suggest that glomerular podocytes and proximal tubules have different requirements for PIKfyve function, likely related to distinct in vivo needs for endocytic flux. PMID:26825532

  8. Induction of activator protein (AP)-1 and nuclear factor-kappaB by CD28 stimulation involves both phosphatidylinositol 3-kinase and acidic sphingomyelinase signals.

    PubMed

    Edmead, C E; Patel, Y I; Wilson, A; Boulougouris, G; Hall, N D; Ward, S G; Sansom, D M

    1996-10-15

    A major obstacle in understanding the signaling events that follow CD28 receptor ligation arises from the fact that CD28 acts as a costimulus to TCR engagement, making it difficult to assess the relative contribution of CD28 signals as distinct from those of the TCR. To overcome this problem, we have exploited the observation that activated human T cell blasts can be stimulated via the CD28 surface molecule in the absence of antigenic challenge; thus, we have been able to observe the response of normal T cells to CD28 activation in isolation. Using this system, we observed that CD28 stimulation by B7-transfected CHO cells induced a proliferative response in T cells that was not accompanied by measurable IL-2 production. However, subsequent analysis of transcription factor generation revealed that B7 stimulation induced both activator protein-1 (AP-1) and nuclear factor-kappaB (NF-kappaB) complexes, but not NF-AT. In contrast, engagement of the TCR by class II MHC/superantigen, either with or without CD28 ligation, resulted in the induction of NF-AT, AP-1, and NF-kappaB as well as IL-2 production. Using selective inhibitors, we investigated the signaling pathways involved in the CD28-mediated induction of AP-1 and NF-kappaB. This revealed that NF-kappaB generation was sensitive to chloroquine, an inhibitor of acidic sphingomyelinase, but not to the phosphatidylinositol 3-kinase inhibitor, wortmannin. In contrast, AP-1 generation was inhibited by wortmannin and was also variably sensitive to chloroquine. These data suggest that in activated normal T cells, CD28-derived signals can stimulate proliferation at least in part via NF-kappaB and AP-1 generation, and that this response uses both acidic sphingomyelinase and phosphatidylinositol 3-kinase-linked pathways.

  9. Insulin and leptin induce Glut4 plasma membrane translocation and glucose uptake in a human neuronal cell line by a phosphatidylinositol 3-kinase- dependent mechanism.

    PubMed

    Benomar, Yacir; Naour, Nadia; Aubourg, Alain; Bailleux, Virginie; Gertler, Arieh; Djiane, Jean; Guerre-Millo, Michèle; Taouis, Mohammed

    2006-05-01

    The insulin-sensitive glucose transporter Glut4 is expressed in brain areas that regulate energy homeostasis and body adiposity. In contrast with peripheral tissues, however, the impact of insulin on Glut4 plasma membrane (PM) translocation in neurons is not known. In this study, we examined the role of two anorexic hormones (leptin and insulin) on Glut4 translocation in a human neuronal cell line that express endogenous insulin and leptin receptors. We show that insulin and leptin both induce Glut4 translocation to the PM of neuronal cells and activate glucose uptake. Wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase, totally abolished insulin- and leptin-dependent Glut4 translocation and stimulation of glucose uptake. Thus, Glut4 translocation is a phosphatidylinositol 3-kinase-dependent mechanism in neuronal cells. Next, we investigated the impact of chronic insulin and leptin treatments on Glut4 expression and translocation. Chronic exposure of neuronal cells to insulin or leptin down-regulates Glut4 proteins and mRNA levels and abolishes the acute stimulation of glucose uptake in response to acute insulin or leptin. In addition, chronic treatment with either insulin or leptin impaired Glut4 translocation. A cross-desensitization between insulin and leptin was apparent, where exposure to insulin affects leptin-dependent Glut4 translocation and vice versa. This cross-desensitization could be attributed to the increase in suppressor of cytokine signaling-3 expression, which was demonstrated in response to each hormone. These results provide evidence to suggest that Glut4 translocation to neuronal PM is regulated by both insulin and leptin signaling pathways. These pathways might contribute to an in vivo glucoregulatory reflex involving a neuronal network and to the anorectic effect of insulin and leptin.

  10. WAVE2, N-WASP, and Mena facilitate cell invasion via phosphatidylinositol 3-kinase-dependent local accumulation of actin filaments.

    PubMed

    Takahashi, Kazuhide; Suzuki, Katsuo

    2011-11-01

    Cell migration is accomplished by the formation of cellular protrusions such as lamellipodia and filopodia. These protrusions result from actin filament (F-actin) rearrangement at the cell cortex by WASP/WAVE family proteins and Drosophila enabled (Ena)/vasodilator-stimulated factor proteins. However, the role of each of these actin cytoskeletal regulatory proteins in the regulation of three-dimensional cell invasion remains to be clarified. We found that platelet-derived growth factor (PDGF) induces invasion of MDA-MB-231 human breast cancer cells through invasion chamber membrane pores. This invasion was accompanied by intensive F-actin accumulation at the sites of cell infiltration. After PDGF stimulation, WAVE2, N-WASP, and a mammalian Ena (Mena) colocalized with F-actin at the sites of cell infiltration in a phosphatidylinositol 3-kinase (PI3K)-dependent manner. Depletion of WAVE2, N-WASP, or Mena by RNA interference (RNAi) abrogated both cell invasion and intensive F-actin accumulation at the invasion site. These results indicate that by mediating intensive F-actin accumulation at the sites of cell infiltration, WAVE2, N-WASP, and Mena are crucial for PI3K-dependent cell invasion induced by PDGF. Copyright © 2011 Wiley Periodicals, Inc.

  11. Exercise Training Stimulates Ischemia-Induced Neovascularization via Phosphatidylinositol 3-Kinase/Akt-Dependent Hypoxia-Induced Factor-1α Reactivation in Mice of Advanced Age

    PubMed Central

    Cheng, Xian Wu; Kuzuya, Masafumi; Kim, Weon; Song, Haizhen; Hu, Lina; Inoue, Aiko; Nakamura, Kae; Di, Qun; Sasaki, Takeshi; Tsuzuki, Michitaka; Shi, Guo-Ping; Okumura, Kenji; Murohara, Toyoaki

    2011-01-01

    Background Exercise stimulates the vascular response in pathological conditions, including ischemia; however, the molecular mechanisms by which exercise improves the impaired hypoxia-induced factor (HIF)-1α–mediated response to hypoxia associated with aging are poorly understood. Here, we report that swimming training (ST) modulates the vascular response to ischemia in aged (24-month-old) mice. Methods and Results Aged wild-type mice (MMP-2+/+) that maintained ST (swimming 1 h/d) from day 1 after surgery were randomly assigned to 4 groups that were treated with either vehicle, LY294002, or deferoxamine for 14 days. Mice that were maintained in a sedentary condition served as controls. ST increased blood flow, capillary density, and levels of p-Akt, HIF-1α, vascular endothelial growth factor, Fit-1, and matrix metalloproteinase-2 (MMP-2) in MMP-2+/+ mice. ST also increased the numbers of circulating endothelial progenitor cells and their function associated with activation of HIF-1α. All of these effects were diminished by LY294002, an inhibitor of phosphatidylinositol 3-kinase; enhanced by deferoxamine, an HIF-1α stabilizer; and impaired by knockout of MMP-2. Finally, bone marrow transplantation confirmed that ST enhanced endothelial progenitor cell homing to ischemic sites in aged mice. Conclusions ST can improve neovascularization in response to hypoxia via a phosphatidylinositol 3-kinase–dependent mechanism that is mediated by the HIF-1α/vascular endothelial growth factor/MMP-2 pathway in advanced age. PMID:20679550

  12. Phosphatidylinositol 3,4,5-trisphosphate modulation in SHIP2-deficient mouse embryonic fibroblasts.

    PubMed

    Blero, Daniel; Zhang, Jing; Pesesse, Xavier; Payrastre, Bernard; Dumont, Jacques E; Schurmans, Stéphane; Erneux, Christophe

    2005-05-01

    SHIP2, the ubiquitous SH2 domain containing inositol 5-phosphatase, includes a series of protein interacting domains and has the ability to dephosphorylate phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P(3)]in vitro. The present study, which was undertaken to evaluate the impact of SHIP2 on PtdIns(3,4,5)P(3) levels, was performed in a mouse embryonic fibroblast (MEF) model using SHIP2 deficient (-/-) MEF cells derived from knockout mice. PtdIns(3,4,5)P(3) was upregulated in serum stimulated -/- MEF cells as compared to +/+ MEF cells. Although the absence of SHIP2 had no effect on basal PtdIns(3,4,5)P(3) levels, we show here that this lipid was significantly upregulated in SHIP2 -/- cells but only after short-term (i.e. 5-10 min) incubation with serum. The difference in PtdIns(3,4,5)P(3) levels in heterozygous fibroblast cells was intermediate between the +/+ and the -/- cells. In our model, insulin-like growth factor-1 stimulation did not show this upregulation. Serum stimulated phosphoinositide 3-kinase (PI 3-kinase) activity appeared to be comparable between +/+ and -/- cells. Moreover, protein kinase B, but not mitogen activated protein kinase activity, was also potentiated in SHIP2 deficient cells stimulated by serum. The upregulation of protein kinase B activity in serum stimulated cells was totally reversed in the presence of the PI 3-kinase inhibitor LY-294002, in both +/+ and -/- cells. Altogether, these data establish a link between SHIP2 and the acute control of PtdIns(3,4,5)P(3) levels in intact cells.

  13. Predictive biomarkers of sensitivity to the phosphatidylinositol 3' kinase inhibitor GDC-0941 in breast cancer preclinical models.

    PubMed

    O'Brien, Carol; Wallin, Jeffrey J; Sampath, Deepak; GuhaThakurta, Debraj; Savage, Heidi; Punnoose, Elizabeth A; Guan, Jane; Berry, Leanne; Prior, Wei Wei; Amler, Lukas C; Belvin, Marcia; Friedman, Lori S; Lackner, Mark R

    2010-07-15

    The class I phosphatidylinositol 3' kinase (PI3K) plays a major role in proliferation and survival in a wide variety of human cancers. A key factor in successful development of drugs targeting this pathway is likely to be the identification of responsive patient populations with predictive diagnostic biomarkers. This study sought to identify candidate biomarkers of response to the selective PI3K inhibitor GDC-0941. We used a large panel of breast cancer cell lines and in vivo xenograft models to identify candidate predictive biomarkers for a selective inhibitor of class I PI3K that is currently in clinical development. The approach involved pharmacogenomic profiling as well as analysis of gene expression data sets from cells profiled at baseline or after GDC-0941 treatment. We found that models harboring mutations in PIK3CA, amplification of human epidermal growth factor receptor 2, or dual alterations in two pathway components were exquisitely sensitive to the antitumor effects of GDC-0941. We found that several models that do not harbor these alterations also showed sensitivity, suggesting a need for additional diagnostic markers. Gene expression studies identified a collection of genes whose expression was associated with in vitro sensitivity to GDC-0941, and expression of a subset of these genes was found to be intimately linked to signaling through the pathway. Pathway focused biomarkers and the gene expression signature described in this study may have utility in the identification of patients likely to benefit from therapy with a selective PI3K inhibitor. Copyright 2010 AACR.

  14. Akt activation enhances ribosomal RNA synthesis through casein kinase II and TIF-IA.

    PubMed

    Nguyen, Le Xuan Truong; Mitchell, Beverly S

    2013-12-17

    Transcription initiation factor I (TIF-IA) plays an essential role in regulating ribosomal RNA (rRNA) synthesis by tethering RNA polymerase I (Pol I) to the rDNA promoter. We have found that activated Akt enhances rRNA synthesis through the phosphorylation of casein kinase IIα (CK2α) on a threonine residue near its N terminus. CK2 in turn phosphorylates TIF-IA, thereby increasing rDNA transcription. Activated Akt also stabilizes TIF-IA, induces its translocation to the nucleolus, and enhances its interaction with Pol I. Treatment with AZD8055, an inhibitor of both Akt and mammalian target of rapamycin phosphorylation, but not with rapamycin, disrupts Akt-mediated TIF-IA stability, translocation, and activity. These data support a model in which activated Akt enhances rRNA synthesis both by preventing TIF-IA degradation and phosphorylating CK2α, which in turn phosphorylates TIF-IA. This model provides an explanation for the ability of activated Akt to promote cell proliferation and, potentially, transformation.

  15. Idelalisib, a selective inhibitor of phosphatidylinositol 3-kinase-δ, as therapy for previously treated indolent non-Hodgkin lymphoma

    PubMed Central

    Kahl, Brad S.; Leonard, John P.; Furman, Richard R.; Brown, Jennifer R.; Byrd, John C.; Wagner-Johnston, Nina D.; Coutre, Steve E.; Benson, Don M.; Peterman, Sissy; Cho, Yoonjin; Webb, Heather K.; Johnson, David M.; Yu, Albert S.; Ulrich, Roger G.; Godfrey, Wayne R.; Miller, Langdon L.; Spurgeon, Stephen E.

    2014-01-01

    Idelalisib (GS-1101, CAL-101), an oral inhibitor of phosphatidylinositol 3-kinase-δ, was evaluated in a phase I study in 64 patients with relapsed indolent non-Hodgkin lymphoma (iNHL). Patients had a median (range) age of 64 (32-91) years, 34 (53%) had bulky disease (≥1 lymph nodes ≥5 cm), and 37 (58%) had refractory disease. Patients had received a median (range) of 4 (1-10) prior therapies. Eight dose regimens of idelalisib were evaluated; idelalisib was taken once or twice daily continuously at doses ranging from 50 to 350 mg. After 48 weeks, patients still benefitting (n = 19; 30%) enrolled into an extension study. Adverse events (AEs) occurring in 20% or more patients (total%/grade ≥3%) included diarrhea (36/8), fatigue (36/3), nausea (25/3), rash (25/3), pyrexia (20/3), and chills (20/0). Laboratory abnormalities included neutropenia (44/23), anemia (31/5), thrombocytopenia (25/11), and serum transaminase elevations (48/25). Twelve (19%) patients discontinued therapy due to AEs. Idelalisib induced disease regression in 46/54 (85%) of evaluable patients achieving an overall response rate of 30/64 (47%), with 1 patient having a complete response (1.6%). Median duration of response was 18.4 months, median progression-free survival was 7.6 months. Idelalisib is well tolerated and active in heavily pretreated, relapsed/refractory patients with iNHL. These trials were registered at clinicaltrials.gov as NCT00710528 and NCT01090414. PMID:24615776

  16. Directional control of WAVE2 membrane targeting by EB1 and phosphatidylinositol 3,4,5-triphosphate.

    PubMed

    Takahashi, Kazuhide; Tanaka, Tacu; Suzuki, Katsuo

    2010-03-01

    Membrane targeting of WAVE2 along microtubules is mediated by a motor protein kinesin and requires Pak1, a downstream effector of Rac1. However, the mechanism by which WAVE2 targeting to the leading edge is directionally controlled remains largely unknown. Here we demonstrate that EB1, a microtubule plus-end-binding protein, constitutively associates with stathmin, a microtubule-destabilizing protein, in human breast cancer cells. Stimulation of the cells with insulin-like growth factor I (IGF-I) induced Pak1-dependent binding of the EB1-stathmin complex to microtubules that bear WAVE2 and colocalization of the complex with WAVE2 at the leading edge. Depletion of EB1 by small interfering RNA (siRNA) abrogated the IGF-I-induced WAVE2 targeting and stathmin binding to microtubules. On the other hand, chemotaxis chamber assays indicated that the IGF-I receptor (IGF-IR) was locally activated in the region facing toward IGF-I. In addition, IGF-I caused phosphatidylinositol 3-kinase (PI 3-kinase)-dependent production of phosphatidylinositol 3,4,5-triphosphate (PIP3) near activated IGF-IR and WAVE2 colocalization with it. Collectively, WAVE2-membrane targeting is directionally controlled by binding of the EB1-stathmin complex to WAVE2-bearing microtubules and by the interaction between WAVE2 and PIP3 produced near IGF-IR that is locally activated by IGF-I.

  17. Psoralen and Ultraviolet A Light Treatment Directly Affects Phosphatidylinositol 3-Kinase Signal Transduction by Altering Plasma Membrane Packing*

    PubMed Central

    Van Aelst, Britt; Devloo, Rosalie; Zachée, Pierre; t'Kindt, Ruben; Sandra, Koen; Vandekerckhove, Philippe; Compernolle, Veerle; Feys, Hendrik B.

    2016-01-01

    Psoralen and ultraviolet A light (PUVA) are used to kill pathogens in blood products and as a treatment of aberrant cell proliferation in dermatitis, cutaneous T-cell lymphoma, and graft-versus-host disease. DNA damage is well described, but the direct effects of PUVA on cell signal transduction are poorly understood. Because platelets are anucleate and contain archetypal signal transduction machinery, they are ideally suited to address this. Lipidomics on platelet membrane extracts showed that psoralen forms adducts with unsaturated carbon bonds of fatty acyls in all major phospholipid classes after PUVA. Such adducts increased lipid packing as measured by a blue shift of an environment-sensitive fluorescent probe in model liposomes. Furthermore, the interaction of these liposomes with lipid order-sensitive proteins like amphipathic lipid-packing sensor and α-synuclein was inhibited by PUVA. In platelets, PUVA caused poor membrane binding of Akt and Bruton's tyrosine kinase effectors following activation of the collagen glycoprotein VI and thrombin protease-activated receptor (PAR) 1. This resulted in defective Akt phosphorylation despite unaltered phosphatidylinositol 3,4,5-trisphosphate levels. Downstream integrin activation was furthermore affected similarly by PUVA following PAR1 (effective half-maximal concentration (EC50), 8.4 ± 1.1 versus 4.3 ± 1.1 μm) and glycoprotein VI (EC50, 1.61 ± 0.85 versus 0.26 ± 0.21 μg/ml) but not PAR4 (EC50, 50 ± 1 versus 58 ± 1 μm) signal transduction. Our findings were confirmed in T-cells from graft-versus-host disease patients treated with extracorporeal photopheresis, a form of systemic PUVA. In conclusion, PUVA increases the order of lipid phases by covalent modification of phospholipids, thereby inhibiting membrane recruitment of effector kinases. PMID:27687726

  18. Isoginkgetin inhibits tumor cell invasion by regulating phosphatidylinositol 3-kinase/Akt-dependent matrix metalloproteinase-9 expression.

    PubMed

    Yoon, Sang-Oh; Shin, Sejeong; Lee, Ho-Jae; Chun, Hyo-Kon; Chung, An-Sik

    2006-11-01

    Matrix metalloproteinase (MMP)-9 plays a key role in tumor invasion. Inhibitors of MMP-9 were screened from Metasequoia glyptostroboides (Dawn redwood) and one potent inhibitor, isoginkgetin, a biflavonoid, was identified. Noncytotoxic levels of isoginkgetin decreased MMP-9 production profoundly, but up-regulated the level of tissue inhibitor of metalloproteinase (TIMP)-1, an inhibitor of MMP-9, in HT1080 human fibrosarcoma cells. The major mechanism of Ras-dependent MMP-9 production in HT1080 cells was phosphatidylinositol 3-kinase (PI3K)/Akt/nuclear factor-kappaB (NF-kappaB) activation. Expression of dominant-active H-Ras and p85 (a subunit of PI3K) increased MMP-9 activity, whereas dominant-negative forms of these molecules decreased the level of MMP-9. H-Ras did not increase MMP-9 in the presence of a PI3K inhibitor, LY294002, and a NF-kappaB inhibitor, SN50. Further studies showed that isoginkgetin regulated MMP-9 production via PI3K/Akt/NF-kappaB pathway, as evidenced by the findings that isoginkgetin inhibited activities of both Akt and NF-kappaB. PI3K/Akt is a well-known key pathway for cell invasion, and isoginkgetin inhibited HT1080 tumor cell invasion substantially. Isoginkgetin was also quite effective in inhibiting the activities of Akt and MMP-9 in MDA-MB-231 breast carcinomas and B16F10 melanoma. Moreover, isoginkgetin treatment resulted in marked decrease in invasion of these cells. In summary, PI3K/Akt is a major pathway for MMP-9 expression and isoginkgetin markedly decreased MMP-9 expression and invasion through inhibition of this pathway. This suggests that isoginkgetin could be a potential candidate as a therapeutic agent against tumor invasion.

  19. Blueberry Phytochemicals Inhibit Growth and Metastatic Potential of MDA-MB-231 Breast Cancer Cells Through Modulation of the Phosphatidylinositol 3-Kinase Pathway

    PubMed Central

    Adams, Lynn S.; Phung, Sheryl; Yee, Natalie; Seeram, Navindra P.; Li, Liya; Chen, Shiuan

    2010-01-01

    Dietary phytochemicals are known to exhibit a variety of anti-carcinogenic properties. This study investigated the chemopreventive activity of blueberry extract in triple negative breast cancer cell lines in vitro and in vivo. Blueberry decreased cell proliferation in HCC38, HCC1937 and MDA-MB-231 cells with no effect on the non-tumorigenic MCF-10A cell line. Decreased metastatic potential of MDA-MB-231 cells by blueberry was shown through inhibition of cell motility using wound healing assays and migration through a PET membrane. Blueberry treatment decreased the activity of matrix metalloproteinase 9 and the secretion of urokinase-type plasminogen activator while increasing tissue inhibitor of metalloproteinase-1 and plasminogen activator inhibitor-1 secretion in MDA-MB-231 conditioned medium as shown by western blotting. Cell signaling pathways that control the expression/activation of these processes were investigated via western blotting and reporter gene assay. Treatment with blueberry decreased phosphatidylinositol 3-kinase (PI3K)/AKT and nuclear factor kappa-B (NFκB) activation in MDA-MB-231 cells where protein kinase C (PKC) and extracellular regulated kinase (ERK) were not affected. In vivo, the efficacy of blueberry to inhibit triple negative breast tumor growth was evaluated using the MDA-MB-231 xenograft model. Tumor weight and proliferation (Ki-67 expression) were decreased in blueberry treated mice, where apoptosis (caspase-3 expression) was increased compared to controls. Immunohistochemical analysis of tumors from blueberry-fed mice showed decreased activation of AKT and p65 NFκB signaling proteins with no effect on the phosphorylation of ERK. These data illustrate the inhibitory effect of blueberry phytochemicals on the growth and metastatic potential of MDA-MB-231 cells through modulation of the PI3K/AKT/NFκB pathway. PMID:20388778

  20. Phosphatidylinositol 5-phosphate 4-kinase type II beta is required for vitamin D receptor-dependent E-cadherin expression in SW480 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kouchi, Zen, E-mail: zkouchi@toyaku.ac.jp; Fujiwara, Yuki; Yamaguchi, Hideki

    2011-05-20

    Highlights: {yields} We analyzed Phosphatidylinositol 5-phosphate kinase II{beta} (PIPKII{beta}) function in cancer. {yields} PIPKII{beta} is required for vitamin D receptor-mediated E-cadherin upregulation in SW480. {yields} PIPKII{beta} suppresses cellular motility through E-cadherin induction in SW480 cells. {yields} Nuclear PIP{sub 2} but not plasma membrane-localized PIP{sub 2} mediates E-cadherin upregulation. -- Abstract: Numerous epidemiological data indicate that vitamin D receptor (VDR) signaling induced by its ligand or active metabolite 1{alpha},25-dihydroxyvitamin D{sub 3} (1{alpha},25(OH){sub 2}D{sub 3}) has anti-cancer activity in several colon cancers. 1{alpha},25(OH){sub 2}D{sub 3} induces the epithelial differentiation of SW480 colon cancer cells expressing VDR (SW480-ADH) by upregulating E-cadherin expression; however,more » its precise mechanism remains unknown. We found that phosphatidylinositol-5-phosphate 4-kinase type II beta (PIPKII{beta}) but not PIPKII{alpha} is required for VDR-mediated E-cadherin induction in SW480-ADH cells. The syntenin-2 postsynaptic density protein/disc large/zona occludens (PDZ) domain and pleckstrin homology domain of phospholipase C-delta1 (PLC{delta}1 PHD) possess high affinity for phosphatidylinositol-4,5-bisphosphate (PI(4,5)P{sub 2}) mainly localized to the nucleus and plasma membrane, respectively. The expression of syntenin-2 PDZ but not PLC{delta}1 PHD inhibited 1{alpha},25(OH){sub 2}D{sub 3}-induced E-cadherin upregulation, suggesting that nuclear PI(4,5)P{sub 2} production mediates E-cadherin expression through PIPKII{beta} in a VDR-dependent manner. PIPKII{beta} is also involved in the suppression of the cell motility induced by 1{alpha},25(OH){sub 2}D{sub 3}. These results indicate that PIPKII{beta}-mediated PI(4,5)P{sub 2} signaling is important for E-cadherin upregulation and inhibition of cellular motility induced by VDR activation.« less

  1. Korean Red Ginseng inhibits apoptosis in neuroblastoma cells via estrogen receptor β-mediated phosphatidylinositol-3 kinase/Akt signaling

    PubMed Central

    Nguyen, Cuong Thach; Luong, Truc Thanh; Kim, Gyu-Lee; Pyo, Suhkneung; Rhee, Dong-Kwon

    2014-01-01

    Background Ginseng has been shown to exert antistress effects both in vitro and in vivo. However, the effects of ginseng on stress in brain cells are not well understood. This study investigated how Korean Red Ginseng (KRG) controls hydrogen peroxide-induced apoptosis via regulation of phosphatidylinositol-3 kinase (PI3K)/Akt and estrogen receptor (ER)-β signaling. Methods Human neuroblastoma SK-N-SH cells were pretreated with KRG and subsequently exposed to H2O2. The ability of KRG to inhibit oxidative stress-induced apoptosis was assessed in MTT cytotoxicity assays. Apoptotic protein expression was examined by Western blot analysis. The roles of ER-β, PI3K, and p-Akt signaling in KRG regulation of apoptosis were studied using small interfering RNAs and/or target antagonists. Results Pretreating SK-N-SH cells with KRG decreased expression of the proapoptotic proteins p-p53 and caspase-3, but increased expression of the antiapoptotic protein BCL2. KRG pretreatment was also associated with increased ER-β, PI3K, and p-Akt expression. Conversely, ER-β inhibition with small interfering RNA or inhibitor treatment increased p-p53 and caspase-3 levels, but decreased BCL2, PI3K, and p-Akt expression. Moreover, inhibition of PI3K/Akt signaling diminished p-p53 and caspase-3 levels, but increased BCL2 expression. Conclusion Collectively, the data indicate that KRG represses oxidative stress-induced apoptosis by enhancing PI3K/Akt signaling via upregulation of ER-β expression. PMID:25535479

  2. Phosphatidylinositol 3-Kinase Plays a Vital Role in Regulation of Rice Seed Vigor via Altering NADPH Oxidase Activity

    PubMed Central

    Liu, Jian; Zhou, Jun; Xing, Da

    2012-01-01

    Phosphatidylinositol 3-kinase (PI3K) has been reported to be important in normal plant growth and stress responses. In this study, it was verified that PI3K played a vital role in rice seed germination through regulating NADPH oxidase activity. Suppression of PI3K activity by inhibitors wortmannin or LY294002 could abate the reactive oxygen species (ROS) formation, which resulted in disturbance to the seed germination. And then, the signal cascades that PI3K promoted the ROS liberation was also evaluated. Diphenylene iodonium (DPI), an NADPH oxidase inhibitor, suppressed most of ROS generation in rice seed germination, which suggested that NADPH oxidase was the main source of ROS in this process. Pharmacological experiment and RT-PCR demonstrated that PI3K promoted the expression of Os rboh9. Moreover, functional analysis by native PAGE and the measurement of the 2, 3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazo-lium-5- carboxanilide (XTT) formazan concentration both showed that PI3K promoted the activity of NADPH oxidase. Furthermore, the western blot analysis of OsRac-1 demonstrated that the translocation of Rac-1 from cytoplasm to plasma membrane, which was known as a key factor in the assembly of NADPH oxidase, was suppressed by treatment with PI3K inhibitors, resulting in the decreased activity of NADPH oxidase. Taken together, these data favored the novel conclusion that PI3K regulated NADPH oxidase activity through modulating the recruitment of Rac-1 to plasma membrane and accelerated the process of rice seed germination. PMID:22448275

  3. Bioengineered human IAS reconstructs with functional and molecular properties similar to intact IAS

    PubMed Central

    Singh, Jagmohan

    2012-01-01

    Because of its critical importance in rectoanal incontinence, we determined the feasibility to reconstruct internal anal sphincter (IAS) from human IAS smooth muscle cells (SMCs) with functional and molecular attributes similar to the intact sphincter. The reconstructs were developed using SMCs from the circular smooth muscle layer of the human IAS, grown in smooth muscle differentiation media under sterile conditions in Sylgard-coated tissue culture plates with central Sylgard posts. The basal tone in the reconstructs and its changes were recorded following 0 Ca2+, KCl, bethanechol, isoproterenol, protein kinase C (PKC) activator phorbol 12,13-dibutyrate, and Rho kinase (ROCK) and PKC inhibitors Y-27632 and Gö-6850, respectively. Western blot (WB), immunofluorescence (IF), and immunocytochemical (IC) analyses were also performed. The reconstructs developed spontaneous tone (0.68 ± 0.26 mN). Bethanechol (a muscarinic agonist) and K+ depolarization produced contraction, whereas isoproterenol (β-adrenoceptor agonist) and Y-27632 produced a concentration-dependent decrease in the tone. Maximal decrease in basal tone with Y-27632 and Gö-6850 (each 10−5 M) was 80.45 ± 3.29 and 17.76 ± 3.50%, respectively. WB data with the IAS constructs′ SMCs revealed higher levels of RhoA/ROCK, protein kinase C-potentiated inhibitor or inhibitory phosphoprotein for myosin phosphatase (CPI-17), phospho-CPI-17, MYPT1, and 20-kDa myosin light chain vs. rectal smooth muscle. WB, IF, and IC studies of original SMCs and redispersed from the reconstructs for the relative distribution of different signal transduction proteins confirmed the feasibility of reconstruction of IAS with functional properties similar to intact IAS and demonstrated the development of myogenic tone with critical dependence on RhoA/ROCK. We conclude that it is feasible to bioengineer IAS constructs using human IAS SMCs that behave like intact IAS. PMID:22790596

  4. SH2-B promotes insulin receptor substrate 1 (IRS1)- and IRS2-mediated activation of the phosphatidylinositol 3-kinase pathway in response to leptin.

    PubMed

    Duan, Chaojun; Li, Minghua; Rui, Liangyou

    2004-10-15

    Leptin regulates energy homeostasis primarily by binding and activating its long form receptor (LRb). Deficiency of either leptin or LRb causes morbid obesity. Leptin stimulates LRb-associated JAK2, thus initiating multiple pathways including the Stat3 and phosphatidylinositol (PI) 3-kinase pathways that mediate leptin biological actions. Here we report that SH2-B, a JAK2-interacting protein, promotes activation of the PI 3-kinase pathway by recruiting insulin receptor substrate 1 (IRS1) and IRS2 in response to leptin. SH2-B directly bound, via its PH and SH2 domain, to both IRS1 and IRS2 both in vitro and in intact cells and mediated formation of a JAK2/SH2-B/IRS1 or IRS2 tertiary complex. Consequently, SH2-B dramatically enhanced leptin-stimulated tyrosine phosphorylation of IRS1 and IRS2 in HEK293 cells stably expressing LRb, thus promoting association of IRS1 and IRS2 with the p85 regulatory subunit of PI 3-kinase and phosphorylation and activation of Akt. SH2-B mutants with lower affinity for IRS1 and IRS2 exhibited reduced ability to promote association of JAK2 with IRS1, tyrosine phosphorylation of IRS1, and association of IRS1 with p85 in response to leptin. Moreover, deletion of the SH2-B gene impaired leptin-stimulated tyrosine phosphorylation of endogenous IRS1 in mouse embryonic fibroblasts (MEF), which was reversed by reintroduction of SH2-B. Similarly, SH2-B promoted growth hormone-stimulated tyrosine phosphorylation of IRS1 in both HEK293 and MEF cells. Our data suggest that SH2-B is a novel mediator of the PI 3-kinase pathway in response to leptin or other hormones and cytokines that activate JAK2.

  5. Infectious bursal disease virus activates the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway by interaction of VP5 protein with the p85{alpha} subunit of PI3K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei Li; Hou Lei; Zhu Shanshan

    Phosphatidylinositol 3-kinase (PI3K)/Akt signaling is commonly activated upon virus infection and has been implicated in the regulation of diverse cellular functions such as proliferation and apoptosis. The present study demonstrated for the first time that infectious bursal disease virus (IBDV), the causative agent of a highly contagious disease in chickens, can induce Akt phosphorylation in cultured cells, by a mechanism that is dependent on PI3K. Inhibition of PI3K activation greatly enhanced virus-induced cytopathic effect and apoptotic cell death as evidenced by cleavage of poly-ADP ribose polymerase and activation of caspase-3. Investigations into the mechanism of PI3K/Akt activation revealed that IBDVmore » activates PI3K/Akt signaling through binding of the non-structural protein VP5 to regulatory subunit p85{alpha} of PI3K resulting in the suppression of premature apoptosis and improved virus growth after infection. The results presented here provide a basis for understanding molecular mechanism of IBDV infection.« less

  6. Reactive oxygen species-generating mitochondrial DNA mutation up-regulates hypoxia-inducible factor-1alpha gene transcription via phosphatidylinositol 3-kinase-Akt/protein kinase C/histone deacetylase pathway.

    PubMed

    Koshikawa, Nobuko; Hayashi, Jun-Ichi; Nakagawara, Akira; Takenaga, Keizo

    2009-11-27

    Lewis lung carcinoma-derived high metastatic A11 cells constitutively overexpress hypoxia-inducible factor (HIF)-1alpha mRNA compared with low metastatic P29 cells. Because A11 cells exclusively possess a G13997A mutation in the mitochondrial NADH dehydrogenase subunit 6 (ND6) gene, we addressed here a causal relationship between the ND6 mutation and the activation of HIF-1alpha transcription, and we investigated the potential mechanism. Using trans-mitochondrial cybrids between A11 and P29 cells, we found that the ND6 mutation was directly involved in HIF-1alpha mRNA overexpression. Stimulation of HIF-1alpha transcription by the ND6 mutation was mediated by overproduction of reactive oxygen species (ROS) and subsequent activation of phosphatidylinositol 3-kinase (PI3K)-Akt and protein kinase C (PKC) signaling pathways. The up-regulation of HIF-1alpha transcription was abolished by mithramycin A, an Sp1 inhibitor, but luciferase reporter and chromatin immunoprecipitation assays indicated that Sp1 was necessary but not sufficient for HIF-1alpha mRNA overexpression in A11 cells. On the other hand, trichostatin A, a histone deacetylase (HDAC) inhibitor, markedly suppressed HIF-1alpha transcription in A11 cells. In accordance with this, HDAC activity was high in A11 cells but low in P29 cells and in A11 cells treated with the ROS scavenger ebselene, the PI3K inhibitor LY294002, and the PKC inhibitor Ro31-8220. These results suggest that the ROS-generating ND6 mutation increases HIF-1alpha transcription via the PI3K-Akt/PKC/HDAC pathway, leading to HIF-1alpha protein accumulation in hypoxic tumor cells.

  7. Antitumor efficacy profile of PKI-402, a dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor.

    PubMed

    Mallon, Robert; Hollander, Irwin; Feldberg, Larry; Lucas, Judy; Soloveva, Veronica; Venkatesan, Aranapakam; Dehnhardt, Christoph; Delos Santos, Efren; Chen, Zecheng; Dos Santos, Osvaldo; Ayral-Kaloustian, Semiramis; Gibbons, Jay

    2010-04-01

    PKI-402 is a selective, reversible, ATP-competitive, equipotent inhibitor of class I phosphatidylinositol 3-kinases (PI3K), including PI3K-alpha mutants, and mammalian target of rapamycin (mTOR; IC(50) versus PI3K-alpha = 2 nmol/L). PKI-402 inhibited growth of human tumor cell lines derived from breast, brain (glioma), pancreas, and non-small cell lung cancer tissue and suppressed phosphorylation of PI3K and mTOR effector proteins (e.g., Akt at T308) at concentrations that matched those that inhibited cell growth. In MDA-MB-361 [breast: Her2(+) and PIK3CA mutant (E545K)], 30 nmol/L PKI-402 induced cleaved poly(ADP-ribose) polymerase (PARP), a marker for apoptosis. In vivo, PKI-402 inhibited tumor growth in MDA-MB-361, glioma (U87MG), and lung (A549) xenograft models. In MDA-MB-361, PKI-402 at 100 mg/kg (daily for 5 days, one round) reduced initial tumor volume of 260 mm(3) to 129 mm(3) and prevented tumor regrowth for 70 days. In MDA-MB-361 tumors, PKI-402 (100 mg/kg, single dose) suppressed Akt phosphorylation (at T308) and induced cleaved PARP. Suppression of phosphorylated Akt (p-Akt) was complete at 8 hours and still evident at 24 hours. Cleaved PARP was evident at 8 and 24 hours. In normal tissue (heart and lung), PKI-402 (100 mg/kg) had minimal effect on p-Akt, with no detectable cleaved PARP. Preferential accumulation of PKI-402 in tumor tissue was observed. Complete, sustained suppression of Akt phosphorylation may cause tumor regression in MDA-MB-361 and other xenograft models. We are testing whether dual PI3K/mTOR inhibitors can durably suppress p-Akt, induce cleaved PARP, and cause tumor regression in a diverse set of human tumor xenograft models. Mol Cancer Ther; 9(4); 976-84. (c)2010 AACR.

  8. In vitro multifaceted activities of a specific group of novel phosphatidylinositol 3-kinase inhibitors on hotspot mutant PIK3CA.

    PubMed

    Kong, Dexin; Yamori, Takao; Yamazaki, Kanami; Dan, Shingo

    2014-12-01

    As accumulating evidences suggest close involvement of phosphatidylinositol 3-kinase (PI3K) in cancer, novel PI3K inhibitors such as ZSTK474, GDC-0941, NVP-BEZ235 and BKM-120 have been developed for cancer therapy. A high frequency of hotspot mutations known as E542K, E545K and H1047R in the PIK3CA gene, which encodes the catalytic subunit of PI3Kα, has been found in various types of human cancers. The hotspot PIK3CA mutations also lead to resistance to therapeutics targeting epidermal growth factor receptor (EGFR), further suggesting that inhibition of hotspot mutant PIK3CA be required for a PI3K inhibitor as anticancer drug candidate. To investigate the activity of the novel PI3K inhibitors on the hotspot mutant PIK3CA, we determined the inhibition against the respective recombinant mutant PI3Kαs by biochemical assay. We further examined the activity at cellular background by determining the effect on phosphorylation of Akt (Ser473), and that on the growth of cancer cells. In addition, apoptosis and autophagy in cells with or without hotspot PIK3CA mutation induced by the four inhibitors were investigated. Our results indicated that each inhibitor exhibit comparable activity on the hotspot mutant PI3Kα to that on the wild type, which was further demonstrated by the cell-based assays. No clear correlation was shown between the PIK3CA genetic status and the sensitivity for apoptosis or autophagy induction. Interestingly, among the 4 PI3K inhibitors, BKM-120 is the weakest in PI3K inhibitory potency, but induces most potent apoptosis, suggesting that BKM-120 might have a unique mode of action. Our result shows that the PI3K inhibitors exhibit potent activity on both hotspot mutant and wild type PI3Kα, suggesting they might be used to treat patients with or without PIK3CA mutation when approved.

  9. Antimalarial efficacy of MMV390048, an inhibitor of Plasmodium phosphatidylinositol 4-kinase.

    PubMed

    Paquet, Tanya; Le Manach, Claire; Cabrera, Diego González; Younis, Yassir; Henrich, Philipp P; Abraham, Tara S; Lee, Marcus C S; Basak, Rajshekhar; Ghidelli-Disse, Sonja; Lafuente-Monasterio, María José; Bantscheff, Marcus; Ruecker, Andrea; Blagborough, Andrew M; Zakutansky, Sara E; Zeeman, Anne-Marie; White, Karen L; Shackleford, David M; Mannila, Janne; Morizzi, Julia; Scheurer, Christian; Angulo-Barturen, Iñigo; Martínez, María Santos; Ferrer, Santiago; Sanz, Laura María; Gamo, Francisco Javier; Reader, Janette; Botha, Mariette; Dechering, Koen J; Sauerwein, Robert W; Tungtaeng, Anchalee; Vanachayangkul, Pattaraporn; Lim, Chek Shik; Burrows, Jeremy; Witty, Michael J; Marsh, Kennan C; Bodenreider, Christophe; Rochford, Rosemary; Solapure, Suresh M; Jiménez-Díaz, María Belén; Wittlin, Sergio; Charman, Susan A; Donini, Cristina; Campo, Brice; Birkholtz, Lyn-Marie; Hanson, Kirsten K; Drewes, Gerard; Kocken, Clemens H M; Delves, Michael J; Leroy, Didier; Fidock, David A; Waterson, David; Street, Leslie J; Chibale, Kelly

    2017-04-26

    As part of the global effort toward malaria eradication, phenotypic whole-cell screening revealed the 2-aminopyridine class of small molecules as a good starting point to develop new antimalarial drugs. Stemming from this series, we found that the derivative, MMV390048, lacked cross-resistance with current drugs used to treat malaria. This compound was efficacious against all Plasmodium life cycle stages, apart from late hypnozoites in the liver. Efficacy was shown in the humanized Plasmodium falciparum mouse model, and modest reductions in mouse-to-mouse transmission were achieved in the Plasmodium berghei mouse model. Experiments in monkeys revealed the ability of MMV390048 to be used for full chemoprotection. Although MMV390048 was not able to eliminate liver hypnozoites, it delayed relapse in a Plasmodium cynomolgi monkey model. Both genomic and chemoproteomic studies identified a kinase of the Plasmodium parasite, phosphatidylinositol 4-kinase, as the molecular target of MMV390048. The ability of MMV390048 to block all life cycle stages of the malaria parasite suggests that this compound should be further developed and may contribute to malaria control and eradication as part of a single-dose combination treatment. Copyright © 2017, American Association for the Advancement of Science.

  10. Milrinone-induced postconditioning reduces hepatic ischemia-reperfusion injury in rats: the roles of phosphatidylinositol 3-kinase and nitric oxide.

    PubMed

    Toyoda, Tomomi; Tosaka, Shinya; Tosaka, Reiko; Maekawa, Takuji; Cho, Sungsam; Eguchi, Susumu; Nakashima, Masahiro; Sumikawa, Koji

    2014-01-01

    Ischemic postconditioning (PostC) protects the liver against ischemia-reperfusion (IR) injury. Milrinone, a phosphodiesterase 3 inhibitor, has been reported to exhibit preconditioning properties against hepatic IR injury; however, its PostC properties remain unknown. This study investigated whether milrinone has PostC properties against hepatic IR injury and the roles of phosphatidylinositol 3-kinase (PI3K) and nitric oxide synthase (NOS). Male Wistar rats were separated into six groups: (1) group S: animals that underwent sham operation without ischemia, (2) group C: ischemia followed by reperfusion with no other intervention, (3) group M: milrinone administered immediately after reperfusion, (4) group MW: wortmannin, a PI3K inhibitor, injected before milrinone administration, (5) group MN: l-NAME, a NOS inhibitor, injected before milrinone administration, and (6) group MD, milrinone administered 30 min after reperfusion. Except for group S, all groups underwent 1 h of warm ischemia of median and left lateral lobes, followed by 5 h of reperfusion. Biochemical liver function analysis and histologic examination were performed. Serum aspartate aminotransferase, alanine aminotransferase, and lactic dehydrogenase levels, histologic damage scores, and apoptotic rate in group M were significantly lower than those in group C. The inhibition of PI3K or NOS prevented this protective effect. Milrinone administered 30 min after reperfusion did not show obvious protective effects. Milrinone-induced PostC protects against hepatic IR injury when it is administered immediately after reperfusion, and PI3K and NOS may play an important role in this protective effect. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Chronic Blockade of Phosphatidylinositol 3-Kinase in the Nucleus Tractus Solitarii Is Prohypertensive in the Spontaneously Hypertensive Rat

    PubMed Central

    Zubcevic, Jasenka; Waki, Hidefumi; Diez-Freire, Carlos; Gampel, Alexandra; Raizada, Mohan K.; Paton, Julian F.R.

    2009-01-01

    Phosphatidylinositol 3-kinase (PI3K) within brain stem neurons has been implicated in hypertension in the spontaneously hypertensive rat (SHR). Previously, we demonstrated elevated expression of PI3K subunits in rostral ventrolateral medulla and paraventricular nucleus of SHRs compared with Wistar-Kyoto rats. Here, we considered expression levels of PI3K in the nucleus tractus solitarii, a pivotal region in reflex regulation of arterial pressure, and determined its functional role for arterial pressure homeostasis in SHRs and Wistar-Kyoto rats. We found elevated mRNA levels of p110β and p110δ catalytic PI3K subunits in the nucleus tractus solitarii of adult (12 to 14 weeks old) SHRs relative to the age-matched Wistar-Kyoto rats (fold differences relative to β-actin: 1.7±0.2 versus 1.01±0.08 for p110β, n=6, P<0.05; 1.62±0.15 versus 1.02±0.1 for p110δ, n=6, P<0.05). After chronic blockade of PI3K signaling in the nucleus tractus solitarii by lentiviral-mediated expression of a mutant form of p85α, systolic pressure increased from 175±3 mm Hg to 191±6 mm Hg (P<0.01) in SHRs but not in Wistar-Kyoto rats. In addition, heart rate increased (from 331±6 to 342±6 bpm; P<0.05) and spontaneous baroreflex gain decreased (from 0.7±0.07 to 0.5±0.04 ms/mm Hg; P<0.001) in the SHRs. Thus, PI3K signaling in the nucleus tractus solitarii of SHR restrains arterial pressure in this animal model of neurogenic hypertension. PMID:19015400

  12. The C-terminal SH2 domain of p85 accounts for the high affinity and specificity of the binding of phosphatidylinositol 3-kinase to phosphorylated platelet-derived growth factor beta receptor.

    PubMed Central

    Klippel, A; Escobedo, J A; Fantl, W J; Williams, L T

    1992-01-01

    Upon stimulation by its ligand, the platelet-derived growth factor (PDGF) receptor associates with the 85-kDa subunit of phosphatidylinositol (PI) 3-kinase. The 85-kDa protein (p85) contains two Src homology 2 (SH2) domains and one SH3 domain. To define the part of p85 that interacts with the PDGF receptor, a series of truncated p85 mutants was analyzed for association with immobilized PDGF receptor in vitro. We found that a fragment of p85 that contains a single Src homology domain, the C-terminal SH2 domain (SH2-C), was sufficient for directing the high-affinity interaction with the receptor. Half-maximal binding of SH2-C to the receptor was observed at an SH2-C concentration of 0.06 nM. SH2-C, like full-length p85, was able to distinguish between wild-type PDGF receptor and a mutant receptor lacking the PI 3-kinase binding site. An excess of SH2-C blocked binding of full-length p85 and PI 3-kinase to the receptor but did not interfere with the binding of two other SH2-containing proteins, phospholipase C-gamma and GTPase-activating protein. These results demonstrate that a region of p85 containing a single SH2 domain accounts both for the high affinity and specificity of binding of PI 3-kinase to the PDGF receptor. Images PMID:1312663

  13. Effect of L-arginine supplementation on the hepatic phosphatidylinositol 3-kinase signaling pathway and gluconeogenic enzymes in early intrauterine growth-restricted rats

    PubMed Central

    Luo, Kaiju; Chen, Pingyang; Li, Suping; Li, Wen; He, Mingfeng; Wang, Tao; Chen, Juncao

    2017-01-01

    The present study aimed to investigate the response of the phosphatidylinositol 3-kinase (PI3K) signaling pathway and gluconeogenic enzymes in intrauterine growth-restricted rats to dietary L-arginine (L-Arg) supplementation during the lactation period early in life. Pregnant Sprague-Dawley rats were randomly divided into a control group (CON), an intrauterine growth restriction group (IUGR) and an L-Arg group (LA). The pregnant rats in the CON group were fed a 21% protein diet, and those in the IUGR and LA groups were fed a 10% low protein diet, and all rats were fed a 21% protein diet after delivery. Water was available ad libitum to the pregnant rats during the 21-day lactation period, and the water provided to the LA group included 200 mg/kg/day L-Arg. Blood glucose, serum insulin, homeostasis model of assessment for insulin resistance (HOMA-IR), PI3K and protein kinase B (PKB) protein expression, and phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G-6-Pase) mRNA expression in the offspring rats were measured postnatally at 1, 3 and 8 weeks. No significant difference in blood glucose, serum insulin and HOMA-IR were identified at any time point among the three groups. PI3K and PKB expression was lower in the IUGR group offspring compared with that in the CON group offspring, but both were increased by dietary L-Arg supplementation. PEPCK mRNA and G-6-Pase mRNA expression levels in the offspring of the IUGR group were higher compared with those in the CON group but were downregulated following L-Arg supplementation. These results suggest that dietary L-Arg supplementation during the early lactation period promoted catch-up growth and reversed abnormalities in hepatic insulin signaling and gene expression of gluconeogenic enzymes in IUGR offspring rats. PMID:28962167

  14. Strategically timing inhibition of phosphatidylinositol 3-kinase to maximize therapeutic index in estrogen receptor alpha-positive, PIK3CA-mutant breast cancer

    PubMed Central

    Yang, Wei; Hosford, Sarah R.; Dillon, Lloye M.; Shee, Kevin; Liu, Stephanie C.; Bean, Jennifer R.; Salphati, Laurent; Pang, Jodie; Zhang, Xiaolin; Nannini, Michelle A.; Demidenko, Eugene; Bates, Darcy; Lewis, Lionel D.; Marotti, Jonathan D.; Eastman, Alan R.; Miller, Todd W.

    2016-01-01

    Purpose Phosphatidylinositol 3-kinase (PI3K) inhibitors are being developed for the treatment of estrogen receptor α (ER)-positive breast cancer in combination with anti-estrogens. Understanding the temporal response and pharmacodynamic effects of PI3K inhibition in ER+ breast cancer will provide rationale for treatment scheduling to maximize therapeutic index. Experimental Design Anti-estrogen-sensitive and -resistant ER+ human breast cancer cell lines, and mice bearing PIK3CA-mutant xenografts were treated with the anti-estrogen fulvestrant, the PI3K inhibitor GDC-0941 (pictilisib; varied doses/schedules that provided similar amounts of drug each week), or combinations. Cell viability, signaling pathway inhibition, proliferation, apoptosis, tumor volume, and GDC-0941 concentrations in plasma and tumors were temporally measured. Results Treatment with the combination of fulvestrant and GDC-0941, regardless of dose/schedule, was significantly more effective than single-agent treatments in fulvestrant-resistant tumors. Short-term, complete PI3K inhibition blocked cell growth in vitro more effectively than chronic, incomplete inhibition. Longer-term PI3K inhibition hypersensitized cells to growth factor signaling upon drug withdrawal. Different schedules of GDC-0941 elicited similar tumor responses. While weekly high-dose GDC-0941 with fulvestrant continuously suppressed PI3K signaling for 72 hours, inducing a bolus of apoptosis and inhibiting proliferation, PI3K reactivation upon GDC-0941 washout induced a proliferative burst. Fulvestrant with daily low-dose GDC-0941 metronomically suppressed PI3K for 6–9 hours/day, repeatedly inducing small amounts of apoptosis and temporarily inhibiting proliferation, followed by proliferative rebound compared to fulvestrant alone. Conclusions Continuous and metronomic PI3K inhibition elicit robust anti-cancer effects in ER+, PIK3CA-mutant breast cancer. Clinical exploration of alternate treatment schedules of PI3K inhibitors

  15. Neuromedin U Type 1 Receptor Stimulation of A-type K+ Current Requires the βγ Subunits of Go Protein, Protein Kinase A, and Extracellular Signal-regulated Kinase 1/2 (ERK1/2) in Sensory Neurons*

    PubMed Central

    Zhang, Yiming; Jiang, Dongsheng; Zhang, Yuan; Jiang, Xinghong; Wang, Fen; Tao, Jin

    2012-01-01

    Although neuromedin U (NMU) has been implicated in analgesia, the detailed mechanisms still remain unclear. In this study, we identify a novel functional role of NMU type 1 receptor (NMUR1) in regulating the transient outward K+ currents (IA) in small dorsal root ganglion (DRG) neurons. We found that NMU reversibly increased IA in a dose-dependent manner, instead the sustained delayed rectifier K+ current (IDR) was not affected. This NMU-induced IA increase was pertussis toxin-sensitive and was totally reversed by NMUR1 knockdown. Intracellular application of GDPβS (guanosine 5′-O-(2-thiodiphosphate)), QEHA peptide, or a selective antibody raised against the Gαo or Gβ blocked the stimulatory effects of NMU. Pretreatment of the cells with the protein kinase A (PKA) inhibitor or ERK inhibitor abolished the NMU-induced IA response, whereas inhibition of phosphatidylinositol 3-kinase or PKC had no such effects. Exposure of DRG neurons to NMU markedly induced the phosphorylation of ERK (p-ERK), whereas p-JNK or p-p38 was not affected. Moreover, the NMU-induced p-ERK increase was attenuated by PKA inhibition and activation of PKA by foskolin would mimic the NMU-induced IA increase. Functionally, we observed a significant decrease of the firing rate of neuronal action potential induced by NMU and pretreatment of DRG neurons with 4-AP could abolish this effect. In summary, these results suggested that NMU increases IA via activation of NMUR1 that couples sequentially to the downstream activities of Gβγ of the Go protein, PKA, and ERK, which could contribute to its physiological functions including neuronal hypoexcitability in DRG neurons. PMID:22493291

  16. Nuclear Phosphatidylinositol-Phosphate Type I Kinase α-Coupled Star-PAP Polyadenylation Regulates Cell Invasion

    PubMed Central

    A.P., Sudheesh

    2017-01-01

    ABSTRACT Star-PAP, a nuclear phosphatidylinositol (PI) signal-regulated poly(A) polymerase (PAP), couples with type I PI phosphate kinase α (PIPKIα) and controls gene expression. We show that Star-PAP and PIPKIα together regulate 3′-end processing and expression of pre-mRNAs encoding key anti-invasive factors (KISS1R, CDH1, NME1, CDH13, FEZ1, and WIF1) in breast cancer. Consistently, the endogenous Star-PAP level is negatively correlated with the cellular invasiveness of breast cancer cells. While silencing Star-PAP or PIPKIα increases cellular invasiveness in low-invasiveness MCF7 cells, Star-PAP overexpression decreases invasiveness in highly invasive MDA-MB-231 cells in a cellular Star-PAP level-dependent manner. However, expression of the PIPKIα-noninteracting Star-PAP mutant or the phosphodeficient Star-PAP (S6A mutant) has no effect on cellular invasiveness. These results strongly indicate that PIPKIα interaction and Star-PAP S6 phosphorylation are required for Star-PAP-mediated regulation of cancer cell invasion and give specificity to target anti-invasive gene expression. Our study establishes Star-PAP–PIPKIα-mediated 3′-end processing as a key anti-invasive mechanism in breast cancer. PMID:29203642

  17. Targeting the phosphatidylinositol 3-kinase/Akt/mechanistic target of rapamycin signaling pathway in B-lineage acute lymphoblastic leukemia: An update.

    PubMed

    Simioni, Carolina; Martelli, Alberto M; Zauli, Giorgio; Vitale, Marco; McCubrey, James A; Capitani, Silvano; Neri, Luca M

    2018-04-18

    Despite considerable progress in treatment protocols, B-lineage acute lymphoblastic leukemia (B-ALL) displays a poor prognosis in about 15-20% of pediatric cases and about 60% of adult patients. In addition, life-long irreversible late effects from chemo- and radiation therapy, including secondary malignancies, are a growing problem for leukemia survivors. Targeted therapy holds promising perspectives for cancer treatment as it may be more effective and have fewer side effects than conventional therapies. The phosphatidylinositol 3-phosphate kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) signaling pathway is a key regulatory cascade which controls proliferation, survival and drug-resistance of cancer cells, and it is frequently upregulated in the different subtypes of B-ALL, where it plays important roles in the pathophysiology, maintenance and progression of the disease. Moreover, activation of this signaling cascade portends a poorer prognosis in both pediatric and adult B-ALL patients. Promising preclinical data on PI3K/Akt/mTOR inhibitors have documented their anticancer activity in B-ALL and some of these novel drugs have entered clinical trials as they could lead to a longer event-free survival and reduce therapy-associated toxicity for patients with B-ALL. This review highlights the current status of PI3K/Akt/mTOR inhibitors in B-ALL, with an emphasis on emerging evidence of the superior efficacy of synergistic combinations involving the use of traditional chemotherapeutics or other novel, targeted agents. © 2018 Wiley Periodicals, Inc.

  18. Inhibition of class IA PI3K enzymes in non-small cell lung cancer cells uncovers functional compensation among isoforms.

    PubMed

    Stamatkin, Christopher; Ratermann, Kelley L; Overley, Colleen W; Black, Esther P

    2015-01-01

    Deregulation of the phosphatidylinositol 3-kinase (PI3K) pathway is central to many human malignancies while normal cell proliferation requires pathway functionality. Although inhibitors of the PI3K pathway are in clinical trials or approved for therapy, an understanding of the functional activities of pathway members in specific malignancies is needed. In lung cancers, the PI3K pathway is often aberrantly activated by mutation of genes encoding EGFR, KRAS, and PIK3CA proteins. We sought to understand whether class IA PI3K enzymes represent rational therapeutic targets in cells of non-squamous lung cancers by exploring pharmacological and genetic inhibitors of PI3K enzymes in a non-small cell lung cancer (NSCLC) cell line system. We found that class IA PI3K enzymes were expressed in all cell lines tested, but treatment of NSCLC lines with isoform-selective inhibitors (A66, TGX-221, CAL-101 and IC488743) had little effect on cell proliferation or prolonged inhibition of AKT activity. Inhibitory pharmacokinetic and pharmacodynamic responses were observed using these agents at non-isoform selective concentrations and with the pan-class I (ZSTK474) agent. Response to pharmacological inhibition suggested that PI3K isoforms may functionally compensate for one another thus limiting efficacy of single agent treatment. However, combination of ZSTK474 and an EGFR inhibitor (erlotinib) in NSCLC resistant to each single agent reduced cellular proliferation. These studies uncovered unanticipated cellular responses to PI3K isoform inhibition in NSCLC that does not correlate with PI3K mutations, suggesting that patients bearing tumors with wildtype EGFR and KRAS are unlikely to benefit from inhibitors of single isoforms but may respond to pan-isoform inhibition.

  19. A Screen for Novel Phosphoinositide 3-kinase Effector Proteins*

    PubMed Central

    Dixon, Miles J.; Gray, Alexander; Boisvert, François-Michel; Agacan, Mark; Morrice, Nicholas A.; Gourlay, Robert; Leslie, Nicholas R.; Downes, C. Peter; Batty, Ian H.

    2011-01-01

    Class I phosphoinositide 3-kinases exert important cellular effects through their two primary lipid products, phosphatidylinositol 3,4,5-trisphosphate and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2). As few molecular targets for PtdIns(3,4)P2 have yet been identified, a screen for PI 3-kinase-responsive proteins that is selective for these is described. This features a tertiary approach incorporating a unique, primary recruitment of target proteins in intact cells to membranes selectively enriched in PtdIns(3,4)P2. A secondary purification of these proteins, optimized using tandem pleckstrin homology domain containing protein-1 (TAPP-1), an established PtdIns(3,4)P2 selective ligand, yields a fraction enriched in proteins of potentially similar lipid binding character that are identified by liquid chromatography-tandem MS. Thirdly, this approach is coupled to stable isotope labeling with amino acids in cell culture using differential isotope labeling of cells stimulated in the absence and presence of the PI 3-kinase inhibitor wortmannin. This provides a ratio-metric readout that distinguishes authentically responsive components from copurifying background proteins. Enriched fractions thus obtained from astrocytoma cells revealed a subset of proteins that exhibited ratios indicative of their initial, cellular responsiveness to PI 3-kinase activation. The inclusion among these of tandem pleckstrin homology domain containing protein-1, three isoforms of Akt, switch associated protein-70, early endosome antigen-1 and of additional proteins expressing recognized lipid binding domains demonstrates the utility of this strategy and lends credibility to the novel candidate proteins identified. The latter encompass a broad set of proteins that include the gene product of TBC1D2A, a putative Rab guanine nucleotide triphosphatase activating protein (GAP) and IQ motif containing GAP1, a potential tumor promoter. A sequence comparison of the former protein indicates

  20. Liver Dysfunction and Phosphatidylinositol-3-Kinase Signalling in Early Sepsis: Experimental Studies in Rodent Models of Peritonitis

    PubMed Central

    Westermann, Martin; Lambeck, Sandro; Lupp, Amelie; Rudiger, Alain; Dyson, Alex; Carré, Jane E.; Kortgen, Andreas; Krafft, Christoph; Popp, Jürgen; Sponholz, Christoph; Fuhrmann, Valentin; Hilger, Ingrid; Claus, Ralf A.; Riedemann, Niels C.; Wetzker, Reinhard; Singer, Mervyn; Trauner, Michael; Bauer, Michael

    2012-01-01

    Background Hepatic dysfunction and jaundice are traditionally viewed as late features of sepsis and portend poor outcomes. We hypothesized that changes in liver function occur early in the onset of sepsis, yet pass undetected by standard laboratory tests. Methods and Findings In a long-term rat model of faecal peritonitis, biotransformation and hepatobiliary transport were impaired, depending on subsequent disease severity, as early as 6 h after peritoneal contamination. Phosphatidylinositol-3-kinase (PI3K) signalling was simultaneously induced at this time point. At 15 h there was hepatocellular accumulation of bilirubin, bile acids, and xenobiotics, with disturbed bile acid conjugation and drug metabolism. Cholestasis was preceded by disruption of the bile acid and organic anion transport machinery at the canalicular pole. Inhibitors of PI3K partially prevented cytokine-induced loss of villi in cultured HepG2 cells. Notably, mice lacking the PI3Kγ gene were protected against cholestasis and impaired bile acid conjugation. This was partially confirmed by an increase in plasma bile acids (e.g., chenodeoxycholic acid [CDCA] and taurodeoxycholic acid [TDCA]) observed in 48 patients on the day severe sepsis was diagnosed; unlike bilirubin (area under the receiver-operating curve: 0.59), these bile acids predicted 28-d mortality with high sensitivity and specificity (area under the receiver-operating curve: CDCA: 0.77; TDCA: 0.72; CDCA+TDCA: 0.87). Conclusions Liver dysfunction is an early and commonplace event in the rat model of sepsis studied here; PI3K signalling seems to play a crucial role. All aspects of hepatic biotransformation are affected, with severity relating to subsequent prognosis. Detected changes significantly precede conventional markers and are reflected by early alterations in plasma bile acids. These observations carry important implications for the diagnosis of liver dysfunction and pharmacotherapy in the critically ill. Further clinical work is

  1. Activation of the Phosphatidylinositol 3-Kinase/Akt Signaling Pathway during Porcine Circovirus Type 2 Infection Facilitates Cell Survival and Viral Replication

    PubMed Central

    Wei, Li; Zhu, Shanshan; Wang, Jing

    2012-01-01

    Virus infection activates host cellular signaling pathways, including the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, which regulates diverse cellular activities related to cell growth, survival, and apoptosis. The present study demonstrated for the first time that porcine circovirus type 2 (PCV2), a major causative agent of postweaning multisystemic wasting syndrome, which is an emerging and important swine disease, can transiently induce the PI3K/Akt pathway in cultured cells at an early step during PCV2 infection. Activation of the PI3K/Akt signal was also induced by UV-irradiated PCV2, indicating that virus replication was not required for this induction. Inhibition of PI3K activation leads to reduced virus yield, which is associated with decreased viral DNA replication and lower virus protein expression. However, inhibition of PI3K activation greatly enhanced apoptotic responses as evidenced by the cleavage of poly-ADP ribose polymerase and caspase-3 as well as DNA fragmentation using terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling staining during the early stage of PCV2 infection. Furthermore, the pancaspase inhibitor zVAD.fmk alleviated the reduction in Akt phosphorylation levels by inhibiting PI3K activation, indicating that the signaling promotes cell survival and thereby favors viral replication. These results reveal that an antiapoptotic role for the PI3K/Akt pathway induced by PCV2 infection to suppress premature apoptosis for improved virus growth after infection, extending our understanding of the molecular mechanism of PCV2 infection. PMID:23035228

  2. Pharmacokinetic-pharmacodynamic modeling of tumor growth inhibition and biomarker modulation by the novel phosphatidylinositol 3-kinase inhibitor GDC-0941.

    PubMed

    Salphati, Laurent; Wong, Harvey; Belvin, Marcia; Bradford, Delia; Edgar, Kyle A; Prior, Wei Wei; Sampath, Deepak; Wallin, Jeffrey J

    2010-09-01

    The phosphatidylinositol 3-kinase (PI3K) pathway is a major determinant of cell cycling and proliferation. Its deregulation, by activation or transforming mutations of the p110alpha subunit, is associated with the development of many cancers. 2-(1H-Indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine (GDC-0941) is a novel small molecule inhibitor of PI3K currently being evaluated in the clinic as an anticancer agent. The objectives of these studies were to characterize the relationships between GDC-0941 plasma concentrations and tumor reduction in MCF7.1 breast cancer xenografts and to evaluate the association between the tumor pharmacodynamic biomarker [phosphorylated (p) Akt and phosphorylated proline-rich Akt substrate of 40 kDa (pPRAS40)] responses and antitumor efficacy. MCF7.1 tumor-bearing mice were treated for up to 3 weeks with GDC-0941 at various doses (12.5-200 mg/kg) and dosing schedules (daily to weekly). An indirect response model fitted to tumor growth data indicated that the GDC-0941 plasma concentration required for tumor stasis was approximately 0.3 muM. The relationship between GDC-0941 plasma concentrations and inhibition of pAkt and pPRAS40 in tumor was also investigated after a single oral dose of 12.5, 50, or 150 mg/kg. An indirect response model was fitted to the inhibition of Akt and PRAS40 phosphorylation data and provided IC(50) estimates of 0.36 and 0.29 muM for pAkt and pPRAS40, respectively. The relationship between pAkt inhibition and tumor volume was further explored using an integrated pharmacokinetic biomarker tumor growth model, which showed that a pAkt inhibition of at least 30% was required to achieve stasis after GDC-0941 treatment of the MCF7.1 xenograft.

  3. Nuclear Phosphatidylinositol-Phosphate Type I Kinase α-Coupled Star-PAP Polyadenylation Regulates Cell Invasion.

    PubMed

    A P, Sudheesh; Laishram, Rakesh S

    2018-03-01

    Star-PAP, a nuclear phosphatidylinositol (PI) signal-regulated poly(A) polymerase (PAP), couples with type I PI phosphate kinase α (PIPKIα) and controls gene expression. We show that Star-PAP and PIPKIα together regulate 3'-end processing and expression of pre-mRNAs encoding key anti-invasive factors ( KISS1R , CDH1 , NME1 , CDH13 , FEZ1 , and WIF1 ) in breast cancer. Consistently, the endogenous Star-PAP level is negatively correlated with the cellular invasiveness of breast cancer cells. While silencing Star-PAP or PIPKIα increases cellular invasiveness in low-invasiveness MCF7 cells, Star-PAP overexpression decreases invasiveness in highly invasive MDA-MB-231 cells in a cellular Star-PAP level-dependent manner. However, expression of the PIPKIα-noninteracting Star-PAP mutant or the phosphodeficient Star-PAP (S6A mutant) has no effect on cellular invasiveness. These results strongly indicate that PIPKIα interaction and Star-PAP S6 phosphorylation are required for Star-PAP-mediated regulation of cancer cell invasion and give specificity to target anti-invasive gene expression. Our study establishes Star-PAP-PIPKIα-mediated 3'-end processing as a key anti-invasive mechanism in breast cancer. Copyright © 2018 A.P. and Laishram.

  4. Anti-hepatitis C virus activity and toxicity of type III phosphatidylinositol-4-kinase beta inhibitors.

    PubMed

    Lamarche, M J; Borawski, J; Bose, A; Capacci-Daniel, C; Colvin, R; Dennehy, M; Ding, J; Dobler, M; Drumm, J; Gaither, L A; Gao, J; Jiang, X; Lin, K; McKeever, U; Puyang, X; Raman, P; Thohan, S; Tommasi, R; Wagner, K; Xiong, X; Zabawa, T; Zhu, S; Wiedmann, B

    2012-10-01

    Type III phosphatidylinositol-4-kinase beta (PI4KIIIβ) was previously implicated in hepatitis C virus (HCV) replication by small interfering RNA (siRNA) depletion and was therefore proposed as a novel cellular target for the treatment of hepatitis C. Medicinal chemistry efforts identified highly selective PI4KIIIβ inhibitors that potently inhibited the replication of genotype 1a and 1b HCV replicons and genotype 2a virus in vitro. Replicon cells required more than 5 weeks to reach low levels of 3- to 5-fold resistance, suggesting a high resistance barrier to these cellular targets. Extensive in vitro profiling of the compounds revealed a role of PI4KIIIβ in lymphocyte proliferation. Previously proposed functions of PI4KIIIβ in insulin secretion and the regulation of several ion channels were not perturbed with these inhibitors. Moreover, PI4KIIIβ inhibitors were not generally cytotoxic as demonstrated across hundreds of cell lines and primary cells. However, an unexpected antiproliferative effect in lymphocytes precluded their further development for the treatment of hepatitis C.

  5. Anti-Hepatitis C Virus Activity and Toxicity of Type III Phosphatidylinositol-4-Kinase Beta Inhibitors

    PubMed Central

    LaMarche, M. J.; Borawski, J.; Bose, A.; Capacci-Daniel, C.; Colvin, R.; Dennehy, M.; Ding, J.; Dobler, M.; Drumm, J.; Gaither, L. A.; Gao, J.; Jiang, X.; Lin, K.; McKeever, U.; Puyang, X.; Raman, P.; Thohan, S.; Tommasi, R.; Wagner, K.; Xiong, X.; Zabawa, T.; Zhu, S.

    2012-01-01

    Type III phosphatidylinositol-4-kinase beta (PI4KIIIβ) was previously implicated in hepatitis C virus (HCV) replication by small interfering RNA (siRNA) depletion and was therefore proposed as a novel cellular target for the treatment of hepatitis C. Medicinal chemistry efforts identified highly selective PI4KIIIβ inhibitors that potently inhibited the replication of genotype 1a and 1b HCV replicons and genotype 2a virus in vitro. Replicon cells required more than 5 weeks to reach low levels of 3- to 5-fold resistance, suggesting a high resistance barrier to these cellular targets. Extensive in vitro profiling of the compounds revealed a role of PI4KIIIβ in lymphocyte proliferation. Previously proposed functions of PI4KIIIβ in insulin secretion and the regulation of several ion channels were not perturbed with these inhibitors. Moreover, PI4KIIIβ inhibitors were not generally cytotoxic as demonstrated across hundreds of cell lines and primary cells. However, an unexpected antiproliferative effect in lymphocytes precluded their further development for the treatment of hepatitis C. PMID:22825118

  6. Trypanosoma cruzi trans-sialidase: A potent and specific survival factor for human Schwann cells by means of phosphatidylinositol 3-kinase/Akt signaling

    PubMed Central

    Chuenkova, Marina V.; Furnari, Frank B.; Cavenee, Webster K.; Pereira, Miercio A.

    2001-01-01

    Patients infected with Trypanosoma cruzi may remain asymptomatic for decades and show signs of neuroregeneration in the peripheral nervous system (PNS). In the absence of such neuroregeneration, patients may die in part by extensive neuronal destruction in the gastrointestinal tract. Thus, T. cruzi may, despite their invasion of the PNS, directly prevent cell death to keep nerve destruction in check. Indeed, T. cruzi invasion of Schwann cells, their prime target in PNS, suppressed host-cell apoptosis caused by growth-factor deprivation. The trans-sialidase (TS) of T. cruzi and the Cys-rich domain of TS reproduced the antiapoptotic activity of the parasites at doses (≥3.0 nM) comparable or lower than those of bona fide mammalian growth factors. This effect was blocked by LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI3K). TS also activated Akt, a downstream effector of PI3K. Ectopic expression of TS in an unrelated parasite, Leishmania major, turned those parasites into activators of Akt in Schwann cells. In contrast, the Cys-rich domain of TS did not block apoptosis in Schwann cells overexpressing dominant-negative Akt or constitutively active PTEN, a negative regulator of PI3K/Akt signaling. The results demonstrate that T. cruzi, through its TS, triggers the survival of host Schwann cells via the PI3K/Akt pathway, suggesting a role for PI3K/Akt in the pathogenesis of Chagas' disease. PMID:11481434

  7. Targeting the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway: an emerging treatment strategy for squamous cell lung carcinoma.

    PubMed

    Beck, Joseph Thaddeus; Ismail, Amen; Tolomeo, Christina

    2014-09-01

    Squamous cell lung carcinoma accounts for approximately 30% of all non-small cell lung cancers (NSCLCs). Despite progress in the understanding of the biology of cancer, cytotoxic chemotherapy remains the standard of care for patients with squamous cell lung carcinoma, but the prognosis is generally poor. The phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway is one of the most commonly activated signaling pathways in cancer, leading to cell proliferation, survival, and differentiation. It has therefore become a major focus of clinical research. Various alterations in the PI3K/AKT/mTOR pathway have been identified in squamous cell lung carcinoma and a number of agents targeting these alterations are in clinical development for use as single agents and in combination with other targeted and conventional treatments. These include pan-PI3K inhibitors, isoform-specific PI3K inhibitors, AKT inhibitors, mTOR inhibitors, and dual PI3K/mTOR inhibitors. These agents have demonstrated antitumor activity in preclinical models of NSCLC and preliminary clinical evidence is also available for some agents. This review will discuss the role of the PI3K/AKT/mTOR pathway in cancer and how the discovery of genetic alterations in this pathway in patients with squamous cell lung carcinoma can inform the development of targeted therapies for this disease. An overview of ongoing clinical trials investigating PI3K/AKT/mTOR pathway inhibitors in squamous cell lung carcinoma will also be included. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Phosphorylation by casein kinase 2 facilitates rRNA gene transcription by promoting dissociation of TIF-IA from elongating RNA polymerase I.

    PubMed

    Bierhoff, Holger; Dundr, Miroslav; Michels, Annemieke A; Grummt, Ingrid

    2008-08-01

    The protein kinase casein kinase 2 (CK2) phosphorylates different components of the RNA polymerase I (Pol I) transcription machinery and exerts a positive effect on rRNA gene (rDNA) transcription. Here we show that CK2 phosphorylates the transcription initiation factor TIF-IA at serines 170 and 172 (Ser170/172), and this phosphorylation triggers the release of TIF-IA from Pol I after transcription initiation. Inhibition of Ser170/172 phosphorylation or covalent tethering of TIF-IA to the RPA43 subunit of Pol I inhibits rDNA transcription, leading to perturbation of nucleolar structure and cell cycle arrest. Fluorescence recovery after photobleaching and chromatin immunoprecipitation experiments demonstrate that dissociation of TIF-IA from Pol I is a prerequisite for proper transcription elongation. In support of phosphorylation of TIF-IA switching from the initiation into the elongation phase, dephosphorylation of Ser170/172 by FCP1 facilitates the reassociation of TIF-IA with Pol I, allowing a new round of rDNA transcription. The results reveal a mechanism by which the functional interplay between CK2 and FCP1 sustains multiple rounds of Pol I transcription.

  9. Strategically Timing Inhibition of Phosphatidylinositol 3-Kinase to Maximize Therapeutic Index in Estrogen Receptor Alpha-Positive, PIK3CA-Mutant Breast Cancer.

    PubMed

    Yang, Wei; Hosford, Sarah R; Dillon, Lloye M; Shee, Kevin; Liu, Stephanie C; Bean, Jennifer R; Salphati, Laurent; Pang, Jodie; Zhang, Xiaolin; Nannini, Michelle A; Demidenko, Eugene; Bates, Darcy; Lewis, Lionel D; Marotti, Jonathan D; Eastman, Alan R; Miller, Todd W

    2016-05-01

    Phosphatidylinositol 3-kinase (PI3K) inhibitors are being developed for the treatment of estrogen receptor α (ER)-positive breast cancer in combination with antiestrogens. Understanding the temporal response and pharmacodynamic effects of PI3K inhibition in ER(+) breast cancer will provide a rationale for treatment scheduling to maximize therapeutic index. Antiestrogen-sensitive and antiestrogen-resistant ER(+) human breast cancer cell lines and mice bearing PIK3CA-mutant xenografts were treated with the antiestrogen fulvestrant, the PI3K inhibitor GDC-0941 (pictilisib; varied doses/schedules that provided similar amounts of drug each week), or combinations. Cell viability, signaling pathway inhibition, proliferation, apoptosis, tumor volume, and GDC-0941 concentrations in plasma and tumors were temporally measured. Treatment with the combination of fulvestrant and GDC-0941, regardless of dose/schedule, was significantly more effective than that with single-agent treatments in fulvestrant-resistant tumors. Short-term, complete PI3K inhibition blocked cell growth in vitro more effectively than chronic, incomplete inhibition. Longer-term PI3K inhibition hypersensitized cells to growth factor signaling upon drug withdrawal. Different schedules of GDC-0941 elicited similar tumor responses. While weekly high-dose GDC-0941 with fulvestrant continuously suppressed PI3K signaling for 72 hours, inducing a bolus of apoptosis and inhibiting proliferation, PI3K reactivation upon GDC-0941 washout induced a proliferative burst. Fulvestrant with daily low-dose GDC-0941 metronomically suppressed PI3K for 6 to 9 hours/day, repeatedly inducing small amounts of apoptosis and temporarily inhibiting proliferation, followed by proliferative rebound compared with fulvestrant alone. Continuous and metronomic PI3K inhibition elicits robust anticancer effects in ER(+), PIK3CA-mutant breast cancer. Clinical exploration of alternate treatment schedules of PI3K inhibitors with antiestrogens

  10. Ste12/Fab1 phosphatidylinositol-3-phosphate 5-kinase is required for nitrogen-regulated mitotic commitment and cell size control

    PubMed Central

    Schauries, Marie; Kaczmarek, Adrian; Franz-Wachtel, Mirita; Du, Wei; Krug, Karsten; Maček, Boris; Petersen, Janni

    2017-01-01

    Tight coupling of cell growth and cell cycle progression enable cells to adjust their rate of division, and therefore size, to the demands of proliferation in varying nutritional environments. Nutrient stress promotes inhibition of Target Of Rapamycin Complex 1 (TORC1) activity. In fission yeast, reduced TORC1 activity advances mitotic onset and switches growth to a sustained proliferation at reduced cell size. A screen for mutants, that failed to advance mitosis upon nitrogen stress, identified a mutant in the PIKFYVE 1-phosphatidylinositol-3-phosphate 5-kinase fission yeast homolog Ste12. Ste12PIKFYVE deficient mutants were unable to advance the cell cycle to reduce cell size after a nitrogen downshift to poor nitrogen (proline) growth conditions. While it is well established that PI(3,5)P2 signalling is required for autophagy and that Ste12PIKFYVE mutants have enlarged vacuoles (yeast lysosomes), neither a block to autophagy or mutants that independently have enlarged vacuoles had any impact upon nitrogen control of mitotic commitment. The addition of rapamycin to Ste12PIKFYVE deficient mutants reduced cell size at division to suggest that Ste12PIKFYVE possibly functions upstream of TORC1. ste12 mutants display increased Torin1 (TOR inhibitor) sensitivity. However, no major impact on TORC1 or TORC2 activity was observed in the ste12 deficient mutants. In summary, Ste12PIKFYVE is required for nitrogen-stress mediated advancement of mitosis to reduce cell size at division. PMID:28273166

  11. Ginsenoside Rg3 increases nitric oxide production via increases in phosphorylation and expression of endothelial nitric oxide synthase: Essential roles of estrogen receptor-dependent PI3-kinase and AMP-activated protein kinase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hien, Tran Thi; Kim, Nak Doo; Pokharel, Yuba Raj

    2010-08-01

    We previously showed that ginsenosides increase nitric oxide (NO) production in vascular endothelium and that ginsenoside Rg3 (Rg3) is the most active one among ginseng saponins. However, the mechanism for Rg3-mediated nitric oxide production is still uncertain. In this study, we determined whether Rg3 affects phosphorylation and expression of endothelial nitric oxide synthase (eNOS) in ECV 304 human endothelial cells. Rg3 increased both the phosphorylation and the expression of eNOS in a concentration-dependent manner and a maximal effect was found at 10 {mu}g/ml of Rg3. The enzyme activities of phosphatidylinositol 3-kinase (PI3-kinase), c-Jun N-terminal kinase (JNK), and p38 kinase weremore » enhanced as were estrogen receptor (ER)- and glucocorticoid receptor (GR)-dependent reporter gene transcriptions in Rg3-treated endothelial cells. Rg3-induced eNOS phosphorylation required the ER-mediated PI3-kinase/Akt pathway. Moreover, Rg3 activates AMP-activated protein kinase (AMPK) through up-regulation of CaM kinase II and Rg3-stimulated eNOS phosphorylation was reversed by AMPK inhibition. The present results provide a mechanism for Rg3-stimulated endothelial NO production.« less

  12. PKC-ι promotes glioblastoma cell survival by phosphorylating and inhibiting BAD through a phosphatidylinositol 3-kinase pathway.

    PubMed

    Desai, S; Pillai, P; Win-Piazza, H; Acevedo-Duncan, M

    2011-06-01

    The focus of this research was to investigate the role of protein kinase C-iota (PKC-ι) in regulation of Bad, a pro-apoptotic BH3-only molecule of the Bcl-2 family in glioblastoma. Robust expression of PKC-ι is a hallmark of human glioma and benign and malignant meningiomas. The results were obtained from the two human glial tumor derived cell lines, T98G and U87MG. In these cells, PKC-ι co-localized and directly associated with Bad, as shown by immunofluorescence, immunoprecipitation, and Western blotting. Furthermore, in-vitro kinase activity assay showed that PKC-ι directly phosphorylated Bad at phospho specific residues, Ser-112, Ser-136 and Ser-155 which in turn induced inactivation of Bad and disruption of Bad/Bcl-XL dimer. Knockdown of PKC-ι by siRNA exhibited a corresponding reduction in Bad phosphorylation suggesting that PKC-ι may be a Bad kinase. PKC-ι knockdown also induced apoptosis in both the cell lines. Since, PKC-ι is an essential downstream mediator of the PI (3)-kinase, we hypothesize that glioma cell survival is mediated via a PI (3)-kinase/PDK1/PKC-ι/Bad pathway. Treatment with PI (3)-kinase inhibitors Wortmannin and LY294002, as well as PDK1 siRNA, inhibited PKC-ι activity and subsequent phosphorylation of Bad suggesting that PKC-ι regulates the activity of Bad in a PI (3)-kinase dependent manner. Thus, our data suggest that glioma cell survival occurs through a novel PI (3)-kinase/PDK1/PKC-ι/BAD mediated pathway. Published by Elsevier B.V.

  13. Time-resolved Ultrastructural Detection of Phosphatidylinositol 3-phosphate

    PubMed Central

    Stuffers, Susanne; Malerød, Lene; Schink, Kay Oliver; Corvera, Silvia; Stenmark, Harald; Brech, Andreas

    2010-01-01

    Phosphatidylinositol 3-phosphate [PtdIns(3)P] plays an important role in recruitment of various effector proteins in the endocytic and autophagic pathways. In an attempt to follow the distribution of PtdIns(3)P at the ultrastructural level, we are using the Fab1, YOTB, Vac1, and EEA1 (FYVE) domain, which is a zinc finger motif specifically binding to PtdIns(3)P. To follow PtdIns(3)P trafficking during a defined time window, here we have used a monomeric dimerizable FYVE probe, which binds with high avidity to PtdIns(3)P only after rapalog-induced dimerization. The probe localized to early and late endocytic compartments according to the time period of dimerization, which indicates that PtdIns(3)P is turned over via the endocytic machinery. In the functional context of epidermal growth factor (EGF) stimulation, we observed that dimerization of the probe led to clustering of mainly early endocytic structures, leaving most of the probe localized to the limiting membrane of endosomes. Interestingly, these clustered endosomes contained coats positive for the PtdIns(3)P-binding protein hepatocyte growth factor–regulated tyrosine kinase substrate (Hrs), indicating that the probe did not displace Hrs binding. We conclude that the dimerizer-inducible probe is useful for the time-resolved detection of PtdIns(3)P at the ultrastructural level, but its effects on endosome morphology after EGF stimulation need to be taken into account. (J Histochem Cytochem 58:1025–1032, 2010) PMID:20713985

  14. Activation of the EBV/C3d receptor (CR2, CD21) on human B lymphocyte surface triggers tyrosine phosphorylation of the 95-kDa nucleolin and its interaction with phosphatidylinositol 3 kinase.

    PubMed

    Barel, M; Le Romancer, M; Frade, R

    2001-03-01

    We previously demonstrated that CR2 activation on human B lymphocyte surface triggered tyrosine phosphorylation of a p95 component and its interaction with p85 subunit of phosphatidylinositol 3' (PI 3) kinase. Despite identical molecular mass of 95 kDa, this tyrosine phosphorylated p95 molecule was not CD19, the proto-oncogene Vav, or the adaptator Gab1. To identify this tyrosine phosphorylated p95 component, we first purified it by affinity chromatography on anti-phosphotyrosine mAb covalently linked to Sepharose 4B, followed by polyacrylamide gel electrophoresis. Then, the isolated 95-kDa tyrosine phosphorylated band was submitted to amino acid analysis by mass spectrometry; the two different isolated peptides were characterized by amino acid sequences 100% identical with two different domains of nucleolin, localized between aa 411--420 and 611--624. Anti-nucleolin mAb was used to confirm the antigenic properties of this p95 component. Functional studies demonstrated that CR2 activation induced, within a brief span of 2 min, tyrosine phosphorylation of nucleolin and its interaction with Src homology 2 domains of the p85 subunit of PI 3 kinase and of 3BP2 and Grb2, but not with Src homology 2 domains of Fyn and Gap. These properties of nucleolin were identical with those of the p95 previously described and induced by CR2 activation. Furthermore, tyrosine phosphorylation of nucleolin was also induced in normal B lymphocytes by CR2 activation but neither by CD19 nor BCR activation. These data support that tyrosine phosphorylation of nucleolin and its interaction with PI 3 kinase p85 subunit constitute one of the earlier steps in the specific intracellular signaling pathway of CR2.

  15. Metallothionein expression is suppressed in primary human hepatocellular carcinomas and is mediated through inactivation of CCAAT/enhancer binding protein alpha by phosphatidylinositol 3-kinase signaling cascade.

    PubMed

    Datta, Jharna; Majumder, Sarmila; Kutay, Huban; Motiwala, Tasneem; Frankel, Wendy; Costa, Robert; Cha, Hyuk C; MacDougald, Ormond A; Jacob, Samson T; Ghoshal, Kalpana

    2007-03-15

    Reactive oxygen species (ROS) resulting from chronic inflammation cause liver injury leading to transformation of regenerating hepatocytes. Metallothioneins (MT), induced at high levels by oxidative stress, are potent scavengers of ROS. Here, we report that the levels of MT-1 and MT-2A are drastically reduced in primary human hepatocellular carcinomas (HCCs) and in diethylnitrosamine-induced liver tumors in mice, which is primarily due to transcriptional repression. Expression of the transcription factor, MTF-1, essential for MT expression, and its target gene Zn-T1 that encodes the zinc transporter-1 was not significantly altered in HCCs. Inhibitors of both phosphatidylinositol 3-kinase (PI3K) and its downstream target AKT increased expression of MT genes in HCC cells but not in liver epithelial cells. Suppression of MT-1 and MT-2A by ectopic expression of the constitutively active PI3K or AKT and their up-regulation by dominant-negative PI3K or AKT mutant confirmed negative regulation of MT expression by PI3K/AKT signaling pathway. Further, treatment of cells with a specific inhibitor of glycogen synthase kinase-3 (GSK-3), a downstream effector of PI3K/AKT, inhibited MT expression specifically in HCC cells. Short interfering RNA-mediated depletion of CCAAT/enhancer binding protein alpha (C/EBPalpha), a target of GSK-3, impeded MT expression, which could not be reversed by PI3K inhibitors. DNA binding activity of C/EBPalpha and its phosphorylation at T222 and T226 by GSK-3 are required for MT expression. MTF-1 and C/EBPalpha act in concert to increase MT-2A expression, which probably explains the high level of MT expression in the liver. This study shows the role of PI3K/AKT signaling pathway and C/EBPalpha in regulation of MT expression in hepatocarcinogenesis.

  16. Phosphatidylinositol 3-Kinase: A Link Between Inflammation and Pancreatic Cancer

    PubMed Central

    Birtolo, Chiara; Go, Vay Liang W.; Ptasznik, Andrzej; Eibl, Guido; Pandol, Stephen J.

    2016-01-01

    Even though a strong association between inflammation and cancer has been widely accepted, the underlying precise molecular mechanisms are still largely unknown. A complex signaling network between tumor and stromal cells is responsible for the infiltration of inflammatory cells into the cancer micro-environment. Tumor stromal cells such as pancreatic stellate cells (PSCs) and immune cells create a microenvironment that protects cancer cells through a complex interaction, ultimately facilitating their local proliferation and their migration to different sites. Furthermore, PSCs have multiple functions related to local immunity, angiogenesis, inflammation and fibrosis. Recently, many studies have shown that members of the phosphoinositol-3-phosphate kinase (PI3K) family are activated in tumor cells, PSCs and tumor infiltrating inflammatory cells to promote cancer growth. Pro-inflammatory cytokines and chemokines secreted by immune cells and fibroblasts within the tumor environment can activate the PI3K pathway both in cancer and inflammatory cells. In this review, we focus on the central role of the PI3K pathway in regulating the cross-talk between immune/stromal cells and cancer cells. Understanding the role of the PI3K pathway in the development of chronic pancreatitis and cancer is crucial for the discovery of novel and efficacious treatment options. PMID:26658038

  17. Formation of PI 3-kinase products in platelets by thrombin, but not collagen, is dependent on synergistic autocrine stimulation, particularly through secreted ADP.

    PubMed

    Selheim, F; Idsøe, R; Fukami, M H; Holmsen, H; Vassbotn, F S

    1999-10-05

    Platelet activation by thrombin or collagen results in secretion and synthesis of several platelet agonists that enhance the responses to the primary agonists (autocrine stimulation). To disclose the effects of thrombin and collagen on the phosphorylation of 3-phosphoinositides per se we incubated platelets with five inhibitors of platelet autocrine stimulation (IAS) that act extracellularly. We found that IAS almost totally blocked thrombin-induced production of phosphatidylinositol 3,4-bisphosphate [PtdIns(3,4)P(2)] and phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P(3)]. In contrast, collagen induced massive production of PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3) in the presence of IAS. When testing the effect of each inhibitor individually we found the strongest inhibition of thrombin-induced PtdIns(3,4)P(2) production with the ADP scavenger system CP/CPK. Furthermore, we found a strong synergistic effect between exogenously added ADP and thrombin on production of PtdIns(3,4)P(2). In contrast to the results from 3-phosphorylated phosphoinositides, CP/CPK had little effect on thrombin-induced protein tyrosine phosphorylation. Our results show the importance of autocrine stimulation in thrombin-induced accumulation of 3-phosphorylated phosphoinositides and raise the question as to whether thrombin by itself is capable of inducing PI 3-K activation. In marked contrast to thrombin, collagen per se appears to be able to trigger increased production of PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3). Copyright 1999 Academic Press.

  18. Cooperation between STAT5 and phosphatidylinositol 3-kinase in the IL-3-dependent survival of a bone marrow derived cell line.

    PubMed

    Rosa Santos, S C; Dumon, S; Mayeux, P; Gisselbrecht, S; Gouilleux, F

    2000-02-24

    Cytokine-dependent activation of distinct signaling pathways is a common scheme thought to be required for the subsequent programmation into cell proliferation and survival. The PI 3-kinase/Akt, Ras/MAP kinase, Ras/NFIL3 and JAK/STAT pathways have been shown to participate in cytokine mediated suppression of apoptosis in various cell types. However the relative importance of these signaling pathways seems to depend on the cellular context. In several cases, individual inhibition of each pathway is not sufficient to completely abrogate cytokine mediated cell survival suggesting that cooperation between these pathways is required. Here we showed that individual inhibition of STAT5, PI 3-kinase or MEK activities did not or weakly affected the IL-3 dependent survival of the bone marrow derived Ba/F3 cell line. However, the simultaneous inhibition of STAT5 and PI 3-kinase activities but not that of STAT5 and MEK reduced the IL-3 dependent survival of Ba/F3. Analysis of the expression of the Bcl-2 members indicated that phosphorylation of Bad and Bcl-x expression which are respectively regulated by the PI 3-kinase/Akt pathway and STAT5 probably explain this cooperation. Furthermore, we showed by co-immunoprecipitation studies and pull down experiments with fusion proteins encoding the GST-SH2 domains of p85 that STAT5 in its phosphorylated form interacts with the p85 subunit of the PI 3-kinase. These results indicate that the activations of STAT5 and the PI 3-kinase by IL-3 in Ba/F3 cells are tightly connected and cooperate to mediate IL-3-dependent suppression of apoptosis by modulating Bad phosphorylation and Bcl-x expression.

  19. Complementation of Human Papillomavirus Type 16 E6 and E7 by Jagged1-Specific Notch1-Phosphatidylinositol 3-Kinase Signaling Involves Pleiotropic Oncogenic Functions Independent of CBF1;Su(H);Lag-1 Activation†

    PubMed Central

    Veeraraghavalu, Karthikeyan; Subbaiah, Vanitha K.; Srivastava, Sweta; Chakrabarti, Oishee; Syal, Ruchi; Krishna, Sudhir

    2005-01-01

    We have analyzed the induction and role of phosphatidylinositol 3-kinase (PI3K) by Notch signaling in human papillomavirus (HPV)-derived cancers. Jagged1, in contrast to Delta1, is preferentially upregulated in human cervical tumors. Jagged1 and not Delta1 expression sustained in vivo tumors by HPV16 oncogenes in HaCaT cells. Further, Jagged1 expression correlates with the rapid induction of PI3K-mediated epithelial-mesenchymal transition in both HaCaT cells and a human cervical tumor-derived cell line, suggestive of Delta1;Serrate/Jagged;Lag2 ligand-specific roles. Microarray analysis and dominant-negatives reveal that Notch-PI3K oncogenic functions can be independent of CBF1;Su(H);Lag-1 activation and instead relies on Deltex1, an alternative Notch effector. PMID:15919944

  20. ETP-46321, a dual p110α/δ class IA phosphoinositide 3-kinase inhibitor modulates T lymphocyte activation and collagen-induced arthritis.

    PubMed

    Aragoneses-Fenoll, L; Montes-Casado, M; Ojeda, G; Acosta, Y Y; Herranz, J; Martínez, S; Blanco-Aparicio, C; Criado, G; Pastor, J; Dianzani, U; Portolés, P; Rojo, J M

    2016-04-15

    Class IA phosphoinositide 3-kinases (PI3Ks) are essential to function of normal and tumor cells, and to modulate immune responses. T lymphocytes express high levels of p110α and p110δ class IA PI3K. Whereas the functioning of PI3K p110δ in immune and autoimmune reactions is well established, the role of p110α is less well understood. Here, a novel dual p110α/δ inhibitor (ETP-46321) and highly specific p110α (A66) or p110δ (IC87114) inhibitors have been compared concerning T cell activation in vitro, as well as the effect on responses to protein antigen and collagen-induced arthritis in vivo. In vitro activation of naive CD4(+) T lymphocytes by anti-CD3 and anti-CD28 was inhibited more effectively by the p110δ inhibitor than by the p110α inhibitor as measured by cytokine secretion (IL-2, IL-10, and IFN-γ), T-bet expression and NFAT activation. In activated CD4(+) T cells re-stimulated through CD3 and ICOS, IC87114 inhibited Akt and Erk activation, and the secretion of IL-2, IL-4, IL-17A, and IFN-γ better than A66. The p110α/δ inhibitor ETP-46321, or p110α plus p110δ inhibitors also inhibited IL-21 secretion by differentiated CD4(+) T follicular (Tfh) or IL-17-producing (Th17) helper cells. In vivo, therapeutic administration of ETP-46321 significantly inhibited responses to protein antigen as well as collagen-induced arthritis, as measured by antigen-specific antibody responses, secretion of IL-10, IL-17A or IFN-γ, or clinical symptoms. Hence, p110α as well as p110δ Class IA PI3Ks are important to immune regulation; inhibition of both subunits may be an effective therapeutic approach in inflammatory autoimmune diseases like rheumatoid arthritis. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. BDNF regulates the translation of a select group of mRNAs by a mammalian target of rapamycin-phosphatidylinositol 3-kinase-dependent pathway during neuronal development.

    PubMed

    Schratt, Gerhard M; Nigh, Elizabeth A; Chen, Wen G; Hu, Linda; Greenberg, Michael E

    2004-08-18

    Local regulation of mRNA translation plays an important role in axon guidance, synaptic development, and neuronal plasticity. Little is known, however, regarding the mechanisms that control translation in neurons, and only a few mRNAs have been identified that are locally translated within axon and dendrites. Using Affymetrix gene arrays to identify mRNAs that are newly associated with polysomes after exposure to BDNF, we identified subsets of mRNAs for which translation is enhanced in neurons at different developmental stages. In mature neurons, many of these mRNAs encode proteins that are known to function at synapses, including CamKIIalpha, NMDA receptor subunits, and the postsynaptic density (PSD) scaffolding protein Homer2. BDNF regulates the translation of Homer2 locally in the synaptodendritic compartment by activating translational initiation via a mammalian target of rapamycin-phosphatidylinositol 3-kinase-dependent pathway. These findings suggest that BDNF likely regulates synaptic function by inducing the local synthesis of numerous synaptic proteins. The local translation of the cytoskeleton-associated protein Homer2 in particular might have important implications for growth cone dynamics and dendritic spine development.

  2. PKI-179: an orally efficacious dual phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) inhibitor.

    PubMed

    Venkatesan, Aranapakam M; Chen, Zecheng; dos Santos, Osvaldo; Dehnhardt, Christoph; Santos, Efren Delos; Ayral-Kaloustian, Semiramis; Mallon, Robert; Hollander, Irwin; Feldberg, Larry; Lucas, Judy; Yu, Ker; Chaudhary, Inder; Mansour, Tarek S

    2010-10-01

    A series of mono-morpholino 1,3,5-triazine derivatives (8a-8q) bearing a 3-oxa-8-azabicyclo[3.2.1]octane were prepared and evaluated for PI3-kinase/mTOR activity. Replacement of one of the bis-morpholines in lead compound 1 (PKI-587) with 3-oxa-8-azabicyclo[3.2.1]octane and reduction of the molecular weight yielded 8m (PKI-179), an orally efficacious dual PI3-kinase/mTOR inhibitor. The in vitro activity, in vivo efficacy, and PK properties of 8m are discussed. Copyright © 2010. Published by Elsevier Ltd.

  3. Golgi-Associated Protein Kinase C-ε Is Delivered to Phagocytic Cups: Role of Phosphatidylinositol 4-Phosphate.

    PubMed

    Hanes, Cheryl M; D'Amico, Anna E; Ueyama, Takehiko; Wong, Alexander C; Zhang, Xuexin; Hynes, W Frederick; Barroso, Margarida M; Cady, Nathaniel C; Trebak, Mohamed; Saito, Naoaki; Lennartz, Michelle R

    2017-07-01

    Protein kinase C-ε (PKC-ε) at phagocytic cups mediates the membrane fusion necessary for efficient IgG-mediated phagocytosis. The C1B and pseudosubstrate (εPS) domains are necessary and sufficient for this concentration. C1B binds diacylglycerol; the docking partner for εPS is unknown. Liposome assays revealed that the εPS binds phosphatidylinositol 4-phosphate (PI4P) and PI(3,5)P 2 Wortmannin, but not LY294002, inhibits PKC-ε concentration at cups and significantly reduces the rate of phagocytosis. As Wortmannin inhibits PI4 kinase, we hypothesized that PI4P mediates the PKC-ε concentration at cups and the rate of phagocytosis. PKC-ε colocalizes with the trans -Golgi network (TGN) PI4P reporter, P4M, suggesting it is tethered at the TGN. Real-time imaging of GFP-PKC-ε-expressing macrophages revealed a loss of Golgi-associated PKC-ε during phagocytosis, consistent with a Golgi-to-phagosome translocation. Treatment with PIK93, a PI4 kinase inhibitor, reduces PKC-ε at both the TGN and the cup, decreases phagocytosis, and prevents the increase in capacitance that accompanies membrane fusion. Finally, expression of the Golgi-directed PI4P phosphatase, hSac1-K2A, recapitulates the PIK93 phenotype, confirming that Golgi-associated PI4P is critical for efficient phagocytosis. Together these data are consistent with a model in which PKC-ε is tethered to the TGN via an εPS-PI4P interaction. The TGN-associated pool of PKC-ε concentrates at the phagocytic cup where it mediates the membrane fusion necessary for phagocytosis. The novelty of these data lies in the demonstration that εPS binds PI4P and PI(3,5)P 2 and that PI4P is necessary for PKC-ε localization at the TGN, its translocation to the phagocytic cup, and the membrane fusion required for efficient Fc [γ] receptor-mediated phagocytosis. Copyright © 2017 by The American Association of Immunologists, Inc.

  4. Sustained activation of c-Jun N-terminal and extracellular signal-regulated kinases in port-wine stain blood vessels.

    PubMed

    Tan, Wenbin; Chernova, Margarita; Gao, Lin; Sun, Victor; Liu, Huaxu; Jia, Wangcun; Langer, Stephanie; Wang, Gang; Mihm, Martin C; Nelson, J Stuart

    2014-11-01

    Port-wine stain (PWS) is a congenital, progressive vascular malformation but the pathogenesis remains incompletely understood. We sought to investigate the activation status of various kinases, including extracellular signal-regulated kinase, c-Jun N-terminal kinase, AKT, phosphatidylinositol 3-kinase, P70 ribosomal S6 kinase, and phosphoinositide phospholipase C γ subunit, in PWS biopsy tissues. Immunohistochemistry was performed on 19 skin biopsy samples from 11 patients with PWS. c-Jun N-terminal kinase, extracellular signal-regulated kinase, and P70 ribosomal S6 kinase in pediatric and adult PWS blood vessels were consecutively activated. Activation of AKT and phosphatidylinositol 3-kinase was found in many adult hypertrophic PWS blood vessels but not in infants. Phosphoinositide phospholipase C γ subunit showed strong activation in nodular PWS blood vessels. Infantile PWS sample size was small. Our data suggest a subsequent activation profile of various kinases during different stages of PWS: (1) c-Jun N-terminal and extracellular signal-regulated kinases are firstly and consecutively activated in all PWS tissues, which may contribute to both the pathogenesis and progressive development of PWS; (2) AKT and phosphatidylinositol 3-kinase are subsequently activated, and are involved in the hypertrophic development of PWS blood vessels; and (3) phosphoinositide phospholipase C γ subunit is activated in the most advanced stage of PWS and may participate in nodular formation. Copyright © 2014 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  5. Myricetin inhibits UVB-induced angiogenesis by regulating PI-3 kinase in vivo

    PubMed Central

    Jung, Sung Keun; Lee, Ki Won; Byun, Sanguine; Lee, Eun Jung; Kim, Jong-Eun; Bode, Ann M.; Dong, Zigang

    2010-01-01

    Myricetin is one of the principal phytochemicals in onions, berries and red wine. Previous studies showed that myricetin exhibits potent anticancer and chemopreventive effects. The present study examined the effect of myricetin on ultraviolet (UV) B-induced angiogenesis in an SKH-1 hairless mouse skin tumorigenesis model. Topical treatment with myricetin inhibited repetitive UVB-induced neovascularization in SKH-1 hairless mouse skin. The induction of vascular endothelial growth factor, matrix metalloproteinase (MMP)-9 and MMP-13 expression by chronic UVB irradiation was significantly suppressed by myricetin treatment. Immunohistochemical and western blot analyses revealed that myricetin inhibited UVB-induced hypoxia inducible factor-1α expression in mouse skin. Western blot analysis and kinase assay data revealed that myricetin suppressed UVB-induced phosphatidylinositol-3 (PI-3) kinase activity and subsequently attenuated the UVB-induced phosphorylation of Akt/p70S6K in mouse skin lysates. A pull-down assay revealed the direct binding of PI-3 kinase and myricetin in mouse skin lysates. Our results indicate that myricetin suppresses UVB-induced angiogenesis by regulating PI-3 kinase activity in vivo in mouse skin. PMID:20008033

  6. Syk associates with clathrin and mediates phosphatidylinositol 3-kinase activation during human rhinovirus internalization.

    PubMed

    Lau, Christine; Wang, Xiaomin; Song, Lihua; North, Michelle; Wiehler, Shahina; Proud, David; Chow, Chung-Wai

    2008-01-15

    Human rhinovirus (HRV) causes the common cold. The most common acute infection in humans, HRV is a leading cause of exacerbations of asthma and chronic obstruction pulmonary disease because of its ability to exacerbate airway inflammation by altering epithelial cell biology upon binding to its receptor, ICAM-1. ICAM-1 regulates not only viral entry and replication but also signaling pathways that lead to inflammatory mediator production. We recently demonstrated the Syk tyrosine kinase to be an important mediator of HRV-ICAM-1 signaling: Syk regulates replication-independent p38 MAPK activation and IL-8 expression. In leukocytes, Syk regulates receptor-mediated internalization via PI3K. Although PI3K has been shown to regulate HRV-induced IL-8 expression and clathrin-mediated endocytosis of HRV, the role of airway epithelial Syk in this signaling pathway is not known. We postulated that Syk regulates PI3K activation and HRV endocytosis in the airway epithelium. Using confocal microscopy and immunoprecipitation, we demonstrated recruitment of the normally cytosolic Syk to the plasma membrane upon HRV16-ICAM-1 binding, along with Syk-clathrin coassociation. Subsequent incubation at 37 degrees C to permit internalization revealed redistribution of Syk to punctate structures resembling endosomes and colocalization with HRV16. Internalized HRV was not detected in cells overexpressing the kinase inactive Syk(K396R) mutant, indicating that kinase activity was necessary for endocytosis. HRV-induced PI3K activation was dependent on Syk; Syk knockdown by small interfering RNA significantly decreased phosphorylation of the PI3K substrate Akt. Together, these data reveal Syk to be an important mediator of HRV endocytosis and HRV-induced PI3K activation.

  7. Molecular alterations of Ras-Raf-mitogen-activated protein kinase and phosphatidylinositol 3-kinase-Akt signaling pathways in colorectal cancers from a tertiary hospital at Kuala Lumpur, Malaysia.

    PubMed

    Yip, Wai Kien; Choo, Chee Wei; Leong, Vincent Ching-Shian; Leong, Pooi Pooi; Jabar, Mohd Faisal; Seow, Heng Fong

    2013-10-01

    Molecular alterations in KRAS, BRAF, PIK3CA, and PTEN have been implicated in designing targeted therapy for colorectal cancer (CRC). The present study aimed to determine the status of these molecular alterations in Malaysian CRCs as such data are not available in the literature. We investigated the mutations of KRAS, BRAF, and PTEN, the gene amplification of PIK3CA, and the protein expression of PTEN and phosphatidylinositol 3-kinase (PI3K) catalytic subunit (p110α) by direct DNA sequencing, quantitative real-time PCR, and immunohistochemistry, respectively, in 49 CRC samples. The frequency of KRAS (codons 12, 13, and 61), BRAF (V600E), and PTEN mutations, and PIK3CA amplification was 25.0% (11/44), 2.3% (1/43), 0.0% (0/43), and 76.7% (33/43), respectively. Immunohistochemical staining demonstrated loss of PTEN protein in 54.5% (24/44) of CRCs and no significant difference in PI3K p110α expression between CRCs and the adjacent normal colonic mucosa (p = 0.380). PIK3CA amplification was not associated with PI3K p110α expression level, but associated with male cases (100% of male cases vs 56% of female cases harbored amplified PIK3CA, p = 0.002). PI3K p110α expression was significantly higher (p = 0.041) in poorly/moderately differentiated carcinoma compared with well-differentiated carcinoma. KRAS mutation, PIK3CA amplification, PTEN loss, and PI3K p110α expression did not correlate with Akt phosphorylation or Ki-67 expression. KRAS mutation, PIK3CA amplification, and PTEN loss were not mutually exclusive. This is the first report on CRC in Malaysia showing comparable frequency of KRAS mutation and PTEN loss, lower BRAF mutation rate, higher PIK3CA amplification frequency, and rare PTEN mutation, as compared with published reports. © 2013 APMIS. Published by John Wiley & Sons Ltd.

  8. Carbon monoxide releasing molecule induces endothelial nitric oxide synthase activation through a calcium and phosphatidylinositol 3-kinase/Akt mechanism.

    PubMed

    Yang, Po-Min; Huang, Yu-Ting; Zhang, Yu-Qi; Hsieh, Chia-Wen; Wung, Being-Sun

    2016-12-01

    The production of nitric oxide (NO) by endothelial NO synthase (eNOS) plays a major role in maintaining vascular homeostasis. This study elucidated the potential role of carbon monoxide (CO)-releasing molecules (CORMs) in NO production and explored the underlying mechanisms in endothelial cells. We observed that 25μM CORM-2 could increase NO production and stimulate an increase in the intracellular Ca 2+ level. Furthermore, ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetra acetic acid caused CORM-2-induced NO production, which was abolished by 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid tetraacetoxy-methyl ester (BAPTA-AM), indicating that intracellular Ca 2+ release plays a major role in eNOS activation. The inhibition of the IP3 receptor diminished the CORM-2-induced intracellular Ca 2+ increase and NO production. Furthermore, CORM-2 induced eNOS Ser 1179 phosphorylation and eNOS dimerization, but it did not alter eNOS expression. CORM-2 (25μM) also prolonged Akt phosphorylation, lasting for at least 12h. Pretreatment with phosphatidylinositol 3-kinase inhibitors (wortmannin or LY294002) inhibited the increases in NO production and phosphorylation but did not affect eNOS dimerization. CORM-2-induced eNOS Ser 1179 phosphorylation was intracellularly calcium-dependent, because pretreatment with an intracellular Ca 2+ chelator (BAPTA-AM) inhibited this process. Although CORM-2 increases intracellular reactive oxygen species (ROS), pretreatment with antioxidant enzyme catalase and N-acetyl-cysteine did not abolish the CORM-2-induced eNOS activity or phosphorylation, signifying that ROS is not involved in this activity. Hence, CORM-2 enhances eNOS activation through intracellular calcium release, Akt phosphorylation, and eNOS dimerization. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Ebola virus requires phosphatidylinositol (3,5) bisphosphate production for efficient viral entry.

    PubMed

    Qiu, Shirley; Leung, Anders; Bo, Yuxia; Kozak, Robert A; Anand, Sai Priya; Warkentin, Corina; Salambanga, Fabiola D R; Cui, Jennifer; Kobinger, Gary; Kobasa, Darwyn; Côté, Marceline

    2018-01-01

    For entry, Ebola virus (EBOV) requires the interaction of its viral glycoprotein with the cellular protein Niemann-Pick C1 (NPC1) which resides in late endosomes and lysosomes. How EBOV is trafficked and delivered to NPC1 and whether this is positively regulated during entry remain unclear. Here, we show that the PIKfyve-ArPIKfyve-Sac3 cellular complex, which is involved in the metabolism of phosphatidylinositol (3,5) bisphosphate (PtdIns(3,5)P 2 ), is critical for EBOV infection. Although the expression of all subunits of the complex was required for efficient entry, PIKfyve kinase activity was specifically critical for entry by all pathogenic filoviruses. Inhibition of PIKfyve prevented colocalization of EBOV with NPC1 and led to virus accumulation in intracellular vesicles with characteristics of early endosomes. Importantly, genetically-encoded phosphoinositide probes revealed an increase in PtdIns(3,5)P 2 -positive vesicles in cells during EBOV entry. Taken together, our studies suggest that EBOV requires PtdIns(3,5)P 2 production in cells to promote efficient delivery to NPC1. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Programmed Death-1 Inhibition of Phosphatidylinositol 3-Kinase/AKT/Mechanistic Target of Rapamycin Signaling Impairs Sarcoidosis CD4+ T Cell Proliferation.

    PubMed

    Celada, Lindsay J; Rotsinger, Joseph E; Young, Anjuli; Shaginurova, Guzel; Shelton, Debresha; Hawkins, Charlene; Drake, Wonder P

    2017-01-01

    Patients with progressive sarcoidosis exhibit increased expression of programmed death-1 (PD-1) receptor on their CD4 + T cells. Up-regulation of this marker of T cell exhaustion is associated with a reduction in the proliferative response to T cell receptor (TCR) stimulation, a defect that is reversed by PD-1 pathway blockade. Genome-wide association studies and microarray analyses have correlated signaling downstream from the TCR with sarcoidosis disease severity, but the mechanism is not yet known. Reduced phosphatidylinositol 3-kinase (PI3K)/AKT expression inhibits proliferation by inhibiting cell cycle progression. To test the hypothesis that PD-1 expression attenuates TCR-dependent activation of PI3K/AKT activity in progressive systemic sarcoidosis, we analyzed PI3K/AKT/mechanistic target of rapamycin (mTOR) expression at baseline and after PD-1 pathway blockade in CD4 + T cells isolated from patients with sarcoidosis and healthy control subjects. We confirmed an increased percentage of PD-1 + CD4 + T cells and reduced proliferative capacity in patients with sarcoidosis compared with healthy control subjects (P < 0.001). There was a negative correlation with PD-1 expression and proliferative capacity (r = -0.70, P < 0.001). Expression of key mediators of cell cycle progression, including PI3K and AKT, were significantly decreased. Gene and protein expression levels reverted to healthy control levels after PD-1 pathway blockade. Reduction in sarcoidosis CD4 + T cell proliferative capacity is secondary to altered expression of key mediators of cell cycle progression, including the PI3K/AKT/mTOR pathway, via PD-1 up-regulation. This supports the concept that PD-1 up-regulation drives the immunologic deficits associated with sarcoidosis severity by inducing signaling aberrancies in key mediators of cell cycle progression.

  11. Programmed Death-1 Inhibition of Phosphatidylinositol 3-Kinase/AKT/Mechanistic Target of Rapamycin Signaling Impairs Sarcoidosis CD4+ T Cell Proliferation

    PubMed Central

    Celada, Lindsay J.; Rotsinger, Joseph E.; Young, Anjuli; Shaginurova, Guzel; Shelton, Debresha; Hawkins, Charlene

    2017-01-01

    Patients with progressive sarcoidosis exhibit increased expression of programmed death-1 (PD-1) receptor on their CD4+ T cells. Up-regulation of this marker of T cell exhaustion is associated with a reduction in the proliferative response to T cell receptor (TCR) stimulation, a defect that is reversed by PD-1 pathway blockade. Genome-wide association studies and microarray analyses have correlated signaling downstream from the TCR with sarcoidosis disease severity, but the mechanism is not yet known. Reduced phosphatidylinositol 3-kinase (PI3K)/AKT expression inhibits proliferation by inhibiting cell cycle progression. To test the hypothesis that PD-1 expression attenuates TCR-dependent activation of PI3K/AKT activity in progressive systemic sarcoidosis, we analyzed PI3K/AKT/mechanistic target of rapamycin (mTOR) expression at baseline and after PD-1 pathway blockade in CD4+ T cells isolated from patients with sarcoidosis and healthy control subjects. We confirmed an increased percentage of PD-1+ CD4+ T cells and reduced proliferative capacity in patients with sarcoidosis compared with healthy control subjects (P < 0.001). There was a negative correlation with PD-1 expression and proliferative capacity (r = −0.70, P < 0.001). Expression of key mediators of cell cycle progression, including PI3K and AKT, were significantly decreased. Gene and protein expression levels reverted to healthy control levels after PD-1 pathway blockade. Reduction in sarcoidosis CD4+ T cell proliferative capacity is secondary to altered expression of key mediators of cell cycle progression, including the PI3K/AKT/mTOR pathway, via PD-1 up-regulation. This supports the concept that PD-1 up-regulation drives the immunologic deficits associated with sarcoidosis severity by inducing signaling aberrancies in key mediators of cell cycle progression. PMID:27564547

  12. [Influence of pertussis toxin on GPER-mediated activation of phosphatidylinositol 3-kinase/protein kinase B signaling induced by 17β-estradiol in endometrial carcinoma cells].

    PubMed

    Guo, Rui-xia; Lei, Jia; Wang, Xin-yan; Ge, Xin; Hu, Dong-mei; Ma, Xiu-ying; Li, Liu-xia; Qiao, Yu-huan

    2013-02-01

    To investigate the influence of pertussis toxin (PTX) on G protein-coupled estrogen receptor (GPER)-mediated activation of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling activated by 17β-estradiol (17β-E2) in endometrial carcinoma cells. Expressions of GPER protein were detected by immunohistochemical SP method in Ishikawa and HEC-1A cells. Changes of levels of GPER, ERα and ERβ protein and the activation of Akt protein were observed by western blot in the two cells after they were treated by PTX for 30 minutes at different concentrations (0, 0.1, 0.5, 1.0 µg/ml), and then co-stimulated with with 1×10(-6) mol/L 17β-E2 respectively at different time (Ishikawa 30 minutes, HEC-1A 15 minutes). (1) Immunohistochemical SP method showed that GPER was positive stained in cell cytoplasm of Ishikawa and HEC-1A cell. (2) After co-treated with PTX at different concentrations (0, 0.1, 0.5, 1.0 µg/ml) and 10(-6) mol/L 17β-E2, in Ishikawa cell, the ratio of p-Akt/Akt was 0.74 ± 0.54, 0.34 ± 0.06, 0.18 ± 0.03, 0.07 ± 0.15, the gray values of GPER was 0.872 ± 0.490, 0.395 ± 0.054, 0.145 ± 0.014, 0.034 ± 0.008, and with increasing concentration of PTX, the ratio of p-Akt/Akt and the expression of GPER decreased gradually (P < 0.05), which was most obviously when the concentration was 1.0 µg/ml (F = 63.729, P = 0.0001; F = 160.284, P = 0.0001); ERα and ERβ protein had no significant change among different groups (P > 0.05). In HEC-1A cell, the ratio of p-Akt/Akt was 0.73 ± 0.09, 0.26 ± 0.14, 0.11 ± 0.03, 0, the Gray values of GPER is 0.927 ± 0.134, 0.485 ± 0.022, 0.194 ± 0.004, 0, and with increasing concentration of PTX, the ratio of p-Akt/Akt and the expression of GPER decreased gradually (P < 0.05), which were also completely inhibited when the concentration was 1 µg/ml (F = 1039.321, P = 0.0001; F = 109.646, P = 0.0001), ERα protein had no significant differences (P > 0.05) among different groups. ERβ was negatively expressed

  13. Role of the Phosphoinositide 3-Kinase-Akt-Mammalian Target of the Rapamycin Signaling Pathway in Long-Term Potentiation and Trace Fear Conditioning Memory in Rat Medial Prefrontal Cortex

    ERIC Educational Resources Information Center

    Sui, Li; Wang, Jing; Li, Bao-Ming

    2008-01-01

    Phosphatidylinositol 3-kinase (PI3K) and its downstream targets, including Akt (also known as protein kinase B, PKB), mammalian target of rapamycin (mTOR), the 70-kDa ribosomal S6 kinase (p70S6k), and the eukaryotic initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1), may play important roles in long-term synaptic plasticity and memory in many…

  14. Expression of human choline kinase in NIH 3T3 fibroblasts increases the mitogenic potential of insulin and insulin-like growth factor I.

    PubMed

    Chung, T; Huang, J S; Mukherjee, J J; Crilly, K S; Kiss, Z

    2000-05-01

    In mammalian cells, growth factors, oncogenes, and carcinogens stimulate phosphocholine (PCho) synthesis by choline kinase (CK), suggesting that PCho may regulate cell growth. To validate the role of PCho in mitogenesis, we determined the effects of insulin, insulin-like growth factor I (IGF-I), and other growth factors on DNA synthesis in NIH 3T3 fibroblast sublines highly expressing human choline kinase (CK) without increasing phosphatidylcholine synthesis. In serum-starved CK expressor cells, insulin and IGF-I stimulated DNA synthesis, p70 S6 kinase (p70 S6K) activity, phosphatidylinositol 3-kinase (PI3K) activity, and activating phosphorylation of p42/p44 mitogen-activated protein kinases (MAPK) to greater extents than in the corresponding vector control cells. Furthermore, the CK inhibitor hemicholinium-3 (HC-3) inhibited insulin- and IGF-I-induced DNA synthesis in the CK overexpressors, but not in the vector control cells. The results indicate that high cellular levels of PCho potentiate insulin- and IGF-I-induced DNA synthesis by MAPK- and p70 S6K-regulated mechanisms.

  15. p53 is a major component of the transcriptional and apoptotic program regulated by PI 3-kinase/Akt/GSK3 signaling.

    PubMed

    Nayak, G; Cooper, G M

    2012-10-11

    The phosphatidylinositol (PI) 3-kinase/Akt signaling pathway has a prominent role in cell survival and proliferation, in part, by regulating gene expression at the transcriptional level. Previous work using global expression profiling identified FOXOs and the E-box-binding transcription factors MITF and USF1 as key targets of PI 3-kinase signaling that lead to the induction of proapoptotic and cell cycle arrest genes in response to inhibition of PI 3-kinase. In this study, we investigated the role of p53 downstream of PI 3-kinase signaling by analyzing the effects of inhibition of PI 3-kinase in Rat-1 cells, which have wild-type p53, compared with Rat-1 cells expressing a dominant-negative p53 mutant. Expression of dominant-negative p53 conferred partial resistance to apoptosis induced by inhibition of PI 3-kinase. Global gene expression profiling combined with computational and experimental analysis of transcription factor binding sites demonstrated that p53, along with FOXO, MITF and USF1, contributed to gene induction in response to PI 3-kinase inhibition. Activation of p53 was mediated by phosphorylation of the histone acetyltransferase Tip60 by glycogen synthase kinase (GSK) 3, leading to activation of p53 by acetylation. Many of the genes targeted by p53 were also targeted by FOXO and E-box-binding transcription factors, indicating that p53 functions coordinately with these factors to regulate gene expression downstream of PI 3-kinase/Akt/GSK3 signaling.

  16. Ehrlichia secretes Etf-1 to induce autophagy and capture nutrients for its growth through RAB5 and class III phosphatidylinositol 3-kinase.

    PubMed

    Lin, Mingqun; Liu, Hongyan; Xiong, Qingming; Niu, Hua; Cheng, Zhihui; Yamamoto, Akitsugu; Rikihisa, Yasuko

    2016-11-01

    Ehrlichia chaffeensis is an obligatory intracellular bacterium that causes a potentially fatal emerging zoonosis, human monocytic ehrlichiosis. E. chaffeensis has a limited capacity for biosynthesis and metabolism and thus depends mostly on host-synthesized nutrients for growth. Although the host cell cytoplasm is rich with these nutrients, as E. chaffeensis is confined within the early endosome-like membrane-bound compartment, only host nutrients that enter the compartment can be used by this bacterium. How this occurs is unknown. We found that ehrlichial replication depended on autophagy induction involving class III phosphatidylinositol 3-kinase (PtdIns3K) activity, BECN1 (Beclin 1), and ATG5 (autophagy-related 5). Ehrlichia acquired host cell preincorporated amino acids in a class III PtdIns3K-dependent manner and ehrlichial growth was enhanced by treatment with rapamycin, an autophagy inducer. Moreover, ATG5 and RAB5A/B/C were routed to ehrlichial inclusions. RAB5A/B/C siRNA knockdown, or overexpression of a RAB5-specific GTPase-activating protein or dominant-negative RAB5A inhibited ehrlichial infection, indicating the critical role of GTP-bound RAB5 during infection. Both native and ectopically expressed ehrlichial type IV secretion effector protein, Etf-1, bound RAB5 and the autophagy-initiating class III PtdIns3K complex, PIK3C3/VPS34, and BECN1, and homed to ehrlichial inclusions. Ectopically expressed Etf-1 activated class III PtdIns3K as in E. chaffeensis infection and induced autophagosome formation, cleared an aggregation-prone mutant huntingtin protein in a class III PtdIns3K-dependent manner, and enhanced ehrlichial proliferation. These data support the notion that E. chaffeensis secretes Etf-1 to induce autophagy to repurpose the host cytoplasm and capture nutrients for its growth through RAB5 and class III PtdIns3K, while avoiding autolysosomal killing.

  17. Phosphatidylinositol 3-Kinase (PI3K) Activity Bound to Insulin-like Growth Factor-I (IGF-I) Receptor, which Is Continuously Sustained by IGF-I Stimulation, Is Required for IGF-I-induced Cell Proliferation*

    PubMed Central

    Fukushima, Toshiaki; Nakamura, Yusaku; Yamanaka, Daisuke; Shibano, Takashi; Chida, Kazuhiro; Minami, Shiro; Asano, Tomoichiro; Hakuno, Fumihiko; Takahashi, Shin-Ichiro

    2012-01-01

    Continuous stimulation of cells with insulin-like growth factors (IGFs) in G1 phase is a well established requirement for IGF-induced cell proliferation; however, the molecular components of this prolonged signaling pathway that is essential for cell cycle progression from G1 to S phase are unclear. IGF-I activates IGF-I receptor (IGF-IR) tyrosine kinase, followed by phosphorylation of substrates such as insulin receptor substrates (IRS) leading to binding of signaling molecules containing SH2 domains, including phosphatidylinositol 3-kinase (PI3K) to IRS and activation of the downstream signaling pathways. In this study, we found prolonged (>9 h) association of PI3K with IGF-IR induced by IGF-I stimulation. PI3K activity was present in this complex in thyrocytes and fibroblasts, although tyrosine phosphorylation of IRS was not yet evident after 9 h of IGF-I stimulation. IGF-I withdrawal in mid-G1 phase impaired the association of PI3K with IGF-IR and suppressed DNA synthesis the same as when PI3K inhibitor was added. Furthermore, we demonstrated that Tyr1316-X-X-Met of IGF-IR functioned as a PI3K binding sequence when this tyrosine is phosphorylated. We then analyzed IGF signaling and proliferation of IGF-IR−/− fibroblasts expressing exogenous mutant IGF-IR in which Tyr1316 was substituted with Phe (Y1316F). In these cells, IGF-I stimulation induced tyrosine phosphorylation of IGF-IR and IRS-1/2, but mutated IGF-IR failed to bind PI3K and to induce maximal phosphorylation of GSK3β and cell proliferation in response to IGF-I. Based on these results, we concluded that PI3K activity bound to IGF-IR, which is continuously sustained by IGF-I stimulation, is required for IGF-I-induced cell proliferation. PMID:22767591

  18. The Gab1 docking protein links the b cell antigen receptor to the phosphatidylinositol 3-kinase/Akt signaling pathway and to the SHP2 tyrosine phosphatase.

    PubMed

    Ingham, R J; Santos, L; Dang-Lawson, M; Holgado-Madruga, M; Dudek, P; Maroun, C R; Wong, A J; Matsuuchi, L; Gold, M R

    2001-04-13

    B cell antigen receptor (BCR) signaling causes tyrosine phosphorylation of the Gab1 docking protein. This allows phosphatidylinositol 3-kinase (PI3K) and the SHP2 tyrosine phosphatase to bind to Gab1. In this report, we tested the hypothesis that Gab1 acts as an amplifier of PI3K- and SHP2-dependent signaling in B lymphocytes. By overexpressing Gab1 in the WEHI-231 B cell line, we found that Gab1 can potentiate BCR-induced phosphorylation of Akt, a PI3K-dependent response. Gab1 expression also increased BCR-induced tyrosine phosphorylation of SHP2 as well as the binding of Grb2 to SHP2. We show that the pleckstrin homology (PH) domain of Gab1 is required for BCR-induced phosphorylation of Gab1 and for Gab1 participation in BCR signaling. Moreover, using confocal microscopy, we show that BCR ligation can induce the translocation of Gab1 from the cytosol to the plasma membrane and that this requires the Gab1 PH domain as well as PI3K activity. These findings are consistent with a model in which the binding of the Gab1 PH domain to PI3K-derived lipids brings Gab1 to the plasma membrane, where it can be tyrosine-phosphorylated and then act as an amplifier of BCR signaling.

  19. WAVE2 targeting to phosphatidylinositol 3,4,5-triphosphate mediated by insulin receptor substrate p53 through a complex with WAVE2.

    PubMed

    Takahashi, Kazuhide; Suzuki, Katsuo

    2010-11-01

    Membrane targeting of WAVE2 along microtubules to phosphatidylinositol 3,4,5-triphosphate (PIP(3)) in response to an extracellular stimulus requires Rac1, Pak1, stathmin, and EB1. However, whether WAVE2 interacts directly with PIP(3) or not remains unclear. We demonstrate that insulin-like growth factor I (IGF-I) induces WAVE2 membrane targeting, accompanied by phosphorylation of Pak1 at serine 199/204 (Ser199/204) and stathmin at Ser38 in the inner cytoplasmic region. This is spatially independent of the membrane region where the IGF-I receptor (IGF-IR) is locally activated. WAVE2, phosphorylated Pak1, and phosphorylated stathmin located at the microtubule ends began to accumulate at the leading edge of cells in close proximity to PIP(3) that was produced in a phosphatidylinositol 3-kinase (PI 3-kinase)-dependent manner. The PIP(3)-beads binding assay revealed that insulin receptor substrate p53 (IRSp53) and actin rather than WAVE2 bound to PIP(3). IRSp53 constitutively associated with WAVE2 and these two proteins colocalized with PIP(3) at the leading edge after IGF-I stimulation. Suppression of IRSp53 expression by two independent small interfering RNAs (siRNAs) completely inhibited IGF-I-induced membrane targeting and local accumulation of WAVE2 at the leading edge of cells. We propose that IRSp53 constitutively forms a complex with WAVE2 and is crucial for membrane targeting followed by local accumulation of WAVE2 at the leading edge of cells through linking WAVE2 to PIP(3) that is produced near locally activated IGF-IR in response to IGF-I. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  20. Nuclear pool of phosphatidylinositol 4 phosphate 5 kinase 1α is modified by polySUMO-2 during apoptosis.

    PubMed

    Chakrabarti, Rajarshi; Bhowmick, Debajit; Bhargava, Varsha; Bhar, Kaushik; Siddhanta, Anirban

    2013-09-20

    Phosphatidylinositol 4 phosphate 5 kinase 1α (PIP5K) is mainly localized in the cytosol and plasma membrane. Studies have also indicated its prominent association with nuclear speckles. The exact nature of this nuclear pool of PIP5K is not clear. Using biochemical and microscopic techniques, we have demonstrated that the nuclear pool of PIP5K is modified by SUMO-1 in HEK-293 cells stably expressing PIP5K. Moreover, this SUMOylated pool of PIP5K increased during apoptosis. PolySUMO-2 chain conjugated PIP5K was detected by pull-down experiment using affinity-tagged RNF4, a polySUMO-2 binding protein, during late apoptosis. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Tyr721 regulates specific binding of the CSF-1 receptor kinase insert to PI 3'-kinase SH2 domains: a model for SH2-mediated receptor-target interactions.

    PubMed Central

    Reedijk, M; Liu, X; van der Geer, P; Letwin, K; Waterfield, M D; Hunter, T; Pawson, T

    1992-01-01

    Efficient binding of active phosphatidylinositol (PI) 3'-kinase to the autophosphorylated macrophage colony stimulating factor receptor (CSF-1R) requires the noncatalytic kinase insert (KI) region of the receptor. To test whether this region could function independently to bind PI 3'-kinase, the isolated CSF-1R KI was expressed in Escherichia coli, and was inducibly phosphorylated on tyrosine. The tyrosine phosphorylated form of the CSF-1R KI bound PI 3'-kinase in vitro, whereas the unphosphorylated form had no binding activity. The p85 alpha subunit of PI 3'-kinase contains two Src homology (SH)2 domains, which are implicated in the interactions of signalling proteins with activated receptors. Bacterially expressed p85 alpha SH2 domains complexed in vitro with the tyrosine phosphorylated CSF-1R KI. Binding of the CSF-1R KI to PI 3'-kinase activity, and to the p85 alpha SH2 domains, required phosphorylation of Tyr721 within the KI domain, but was independent of phosphorylation at Tyr697 and Tyr706. Tyr721 was also critical for the association of activated CSF-1R with PI 3'-kinase in mammalian cells. Complex formation between the CSF-1R and PI 3'-kinase can therefore be reconstructed in vitro in a specific interaction involving the phosphorylated receptor KI and the SH2 domains of p85 alpha. Images PMID:1314163

  2. Development of a robust flow cytometry-based pharmacodynamic assay to detect phospho-protein signals for phosphatidylinositol 3-kinase inhibitors in multiple myeloma.

    PubMed

    Li, Congfen; Takahashi, Chikara; Zhang, Liangxuan; Huseni, Mahrukh; Stankovich, Basha; Mashhedi, Haider; Lee, Joanna; French, Dorothy; Anderson, Jeff Eastham; Kim, Doris; Howell, Kathy; Brauer, Matthew J; Kowanetz, Marcin; Yan, Yibing; Humke, Eric; Ebens, Allen; Hampton, Garret; Lackner, Mark R; Hegde, Priti; Jia, Shidong

    2013-03-23

    The phosphatidylinositol 3-kinase (PI3K) pathway plays an important role in multiple myeloma (MM), a blood cancer associated with uncontrolled proliferation of bone marrow plasma cells. This study aimed to develop a robust clinical pharmacodynamic (PD) assay to measure the on-target PD effects of the selective PI3K inhibitor GDC-0941 in MM patients. We conducted an in vitro drug wash-out study to evaluate the feasibility of biochemical approaches in measuring the phosphorylation of S6 ribosomal protein (S6), one of the commonly used PD markers for PI3K pathway inhibition. We then developed a 7-color phospho-specific flow cytometry assay, or phospho flow assay, to measure the phosphorylation state of intracellular S6 in bone marrow aspirate (BMA) and peripheral blood (PB). Integrated mean fluorescence intensity (iMFI) was used to calculate fold changes of phosphorylation. Assay sensitivity was evaluated by comparing phospho flow with Meso Scale Discovery (MSD) and immunohistochemistry (IHC) assays. Finally, a sample handling method was developed to maintain the integrity of phospho signal during sample shipping and storage to ensure clinical application. The phospho flow assay provided single-cell PD monitoring of S6 phosphorylation in tumor and surrogate cells using fixed BMA and PB, assessing pathway modulation in response to GDC-0941 with sensitivity similar to that of MSD assay. The one-shot sample fixation and handling protocol herein demonstrated exceptional preservation of protein phosphorylation. In contrast, the IHC assay was less sensitive in terms of signal quantification while the biochemical approach (MSD) was less suitable to assess PD activities due to the undesirable impact associated with cell isolation on the protein phosphorylation in tumor cells. We developed a robust PD biomarker assay for the clinical evaluation of PI3K inhibitors in MM, allowing one to decipher the PD response in a relevant cell population. To our knowledge, this is the first

  3. Development of a robust flow cytometry-based pharmacodynamic assay to detect phospho-protein signals for phosphatidylinositol 3-kinase inhibitors in multiple myeloma

    PubMed Central

    2013-01-01

    Background The phosphatidylinositol 3-kinase (PI3K) pathway plays an important role in multiple myeloma (MM), a blood cancer associated with uncontrolled proliferation of bone marrow plasma cells. This study aimed to develop a robust clinical pharmacodynamic (PD) assay to measure the on-target PD effects of the selective PI3K inhibitor GDC-0941 in MM patients. Methods We conducted an in vitro drug wash-out study to evaluate the feasibility of biochemical approaches in measuring the phosphorylation of S6 ribosomal protein (S6), one of the commonly used PD markers for PI3K pathway inhibition. We then developed a 7-color phospho-specific flow cytometry assay, or phospho flow assay, to measure the phosphorylation state of intracellular S6 in bone marrow aspirate (BMA) and peripheral blood (PB). Integrated mean fluorescence intensity (iMFI) was used to calculate fold changes of phosphorylation. Assay sensitivity was evaluated by comparing phospho flow with Meso Scale Discovery (MSD) and immunohistochemistry (IHC) assays. Finally, a sample handling method was developed to maintain the integrity of phospho signal during sample shipping and storage to ensure clinical application. Results The phospho flow assay provided single-cell PD monitoring of S6 phosphorylation in tumor and surrogate cells using fixed BMA and PB, assessing pathway modulation in response to GDC-0941 with sensitivity similar to that of MSD assay. The one-shot sample fixation and handling protocol herein demonstrated exceptional preservation of protein phosphorylation. In contrast, the IHC assay was less sensitive in terms of signal quantification while the biochemical approach (MSD) was less suitable to assess PD activities due to the undesirable impact associated with cell isolation on the protein phosphorylation in tumor cells. Conclusions We developed a robust PD biomarker assay for the clinical evaluation of PI3K inhibitors in MM, allowing one to decipher the PD response in a relevant cell

  4. Serotonin type-1D receptor stimulation of A-type K(+) channel decreases membrane excitability through the protein kinase A- and B-Raf-dependent p38 MAPK pathways in mouse trigeminal ganglion neurons.

    PubMed

    Zhao, Xianyang; Zhang, Yuan; Qin, Wenjuan; Cao, Junping; Zhang, Yi; Ni, Jianqiang; Sun, Yangang; Jiang, Xinghong; Tao, Jin

    2016-08-01

    Although recent studies have implicated serotonin 5-HT1B/D receptors in the nociceptive sensitivity of primary afferent neurons, the underlying molecular and cellular mechanisms remain unclear. In this study, we identified a novel functional role of the 5-HT1D receptor subtype in regulating A-type potassium (K(+)) currents (IA) as well as membrane excitability in small trigeminal ganglion (TG) neurons. We found that the selective activation of 5-HT1D, rather than 5-HT1B, receptors reversibly increased IA, while the sustained delayed rectifier K(+) current was unaffected. The 5-HT1D-mediated IA increase was associated with a depolarizing shift in the voltage dependence of inactivation. Blocking G-protein signaling with pertussis toxin or by intracellular application of a selective antibody raised against Gαo or Gβ abolished the 5-HT1D effect on IA. Inhibition of protein kinase A (PKA), but not of phosphatidylinositol 3-kinase or protein kinase C, abolished the 5-HT1D-mediated IA increase. Analysis of phospho-p38 (p-p38) revealed that activation of 5-HT1D, but not 5-HT1B, receptors significantly activated p38, while p-ERK and p-JNK were unaffected. The p38 MAPK inhibitor SB203580, but not its inactive analogue SB202474, and inhibition of B-Raf blocked the 5-HT1D-mediated IA response. Functionally, we observed a significantly decreased action potential firing rate induced by the 5-HT1D receptors; pretreatment with 4-aminopyridine abolished this effect. Taken together, these results suggest that the activation of 5-HT1D receptors selectively enhanced IA via the Gβγ of the Go-protein, PKA, and the sequential B-Raf-dependent p38 MAPK signaling cascade. This 5-HT1D receptor effect may contribute to neuronal hypoexcitability in small TG neurons. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Glycogen Synthase Kinase 3 influences cell motility and chemotaxis by regulating PI3K membrane localization in Dictyostelium

    PubMed Central

    Sun, Tong; Kim, Bohye; Kim, Lou W.

    2013-01-01

    Glycogen Synthase Kinase 3 (GSK3) is a multifunctional kinase involved in diverse cellular activities such as metabolism, differentiation, and morphogenesis. Recent studies showed that GSK3 in Dictyostelium affects chemotaxis via TorC2 pathway and Daydreamer. Now we report that GSK3 affects PI3K membrane localization, of which mechanism has remained to be fully understood in Dictyostelium. The membrane localization domain (LD) of Phosphatidylinositol-3-kinase 1 (PI3K1) is phosphorylated on serine residues in a GSK3 dependent mechanism and PI3K1-LD exhibited biased membrane localization in gsk3− cells compared to the wild type cells. Furthermore, multiple GSK3-phosphorylation consensus sites exist in PI3K1-LD, of which phosphomimetic substitutions restored cAMP induced transient membrane localization of PI3K1-LD in gsk3− cells. Serine to alanine substitution mutants of PI3K1-LD, in contrast, displayed constitutive membrane localization in wild type cells. Biochemical analysis revealed that GSK3 dependent serine phosphorylation of PI3K1-LD is constitutive during the course of cAMP stimulation. Together, these data suggest that GSK3 dependent serine phosphorylation is a prerequisite for chemoattractant cAMP induced PI3K membrane localization. PMID:24102085

  6. Basal expression of insulin-like growth factor 1 receptor determines intrinsic resistance of cancer cells to a phosphatidylinositol 3-kinase inhibitor ZSTK474

    PubMed Central

    Isoyama, Sho; Kajiwara, Gensei; Tamaki, Naomi; Okamura, Mutsumi; Yoshimi, Hisashi; Nakamura, Naoki; Kawamura, Kento; Nishimura, Yumiko; Namatame, Nachi; Yamori, Takao; Dan, Shingo

    2015-01-01

    Drug resistance often critically limits the efficacy of molecular targeted drugs. Although pharmacological inhibition of phosphatidylinositol 3-kinase (PI3K) is an attractive therapeutic strategy for cancer therapy, molecular determinants for efficacy of PI3K inhibitors (PI3Kis) remain unclear. We previously identified that overexpression of insulin-like growth factor 1 receptor (IGF1R) contributed to the development of drug resistance after long-term exposure to PI3Kis. In this study, we examined the involvement of basal IGF1R expression in intrinsic resistance of drug-naïve cancer cells to PI3Kis and whether inhibition of IGF1R overcomes the resistance. We found that cancer cells highly expressing IGF1R showed resistance to dephosphorylation of Akt and subsequent antitumor effect by ZSTK474 treatment. Knockdown of IGF1R by siRNAs facilitated the dephosphorylation and enhanced the drug efficacy. These cells expressed tyrosine-phosphorylated insulin receptor substrate 1 at high levels, which was dependent on basal IGF1R expression. In these cells, the efficacy of ZSTK474 in vitro and in vivo was improved by its combination with the IGF1R inhibitor OSI-906. Finally, we found a significant correlation between the basal expression level of IGF1R and the inefficacy of ZSTK474 in an in vivo human cancer panel, as well as in vitro. These results suggest that basal IGF1R expression affects intrinsic resistance of cancer cells to ZSTK474, and IGF1R is a promising target to improve the therapeutic efficacy. The current results provide evidence of combination therapy of PI3Kis with IGF1R inhibitors for treating IGF1R-positive human cancers. PMID:25483727

  7. New applications for known drugs: Human glycogen synthase kinase 3 inhibitors as modulators of Aspergillus fumigatus growth.

    PubMed

    Sebastián-Pérez, Víctor; Manoli, Maria-Tsampika; Pérez, Daniel I; Gil, Carmen; Mellado, Emilia; Martínez, Ana; Espeso, Eduardo A; Campillo, Nuria E

    2016-06-30

    Invasive aspergillosis (IA) is one of the most severe forms of fungi infection. IA disease is mainly due to Aspergillus fumigatus, an air-borne opportunistic pathogen. Mortality rate caused by IA is still very high (50-95%), because of difficulty in early diagnostics and reduced antifungal treatment options, thus new and efficient drugs are necessary. The aim of this work is, using Aspergillus nidulans as non-pathogen model, to develop efficient drugs to treat IA. The recent discovered role of glycogen synthase kinase-3 homologue, GskA, in A. fumigatus human infection and our previous experience on human GSK-3 inhibitors focus our attention on this kinase as a target for the development of antifungal drugs. With the aim to identify effective inhibitors of colonial growth of A. fumigatus we use A. nidulans as an accurate model for in vivo and in silico studies. Several well-known human GSK-3β inhibitors were tested for inhibition of A. nidulans colony growth. Computational tools as docking studies and binding site prediction was used to explain the different biological profile of the tested inhibitors. Three of the five tested hGSK3β inhibitors are able to reduce completely the colonial growth by covalent bind to the enzyme. Therefore these compounds may be useful in different applications to eradicate IA. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Neurotoxicity of developmental hypothyroxinemia and hypothyroidism in rats: Impairments of long-term potentiation are mediated by phosphatidylinositol 3-kinase signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yi; Wei, Wei; Wang, Yuan

    Neurotoxicity of iodine deficiency-induced hypothyroidism during developmental period results in serious impairments of brain function, such as learning and memory. These impairments are largely irreversible, and the underlying mechanisms remain unclear. In addition to hypothyroidism, iodine deficiency may cause hypothyroxinemia, a relatively subtle form of thyroid hormone deficiency. Neurotoxicity of developmental hypothyroxinemia also potentially impairs learning and memory. However, more direct evidence of the associations between developmental hypothyroxinemia and impairments of learning and memory should be provided, and the underlying mechanisms remain to be elucidated. Thus, in the present study, we investigated the effects of developmental hypothyroxinemia and hypothyroidism onmore » long-term potentiation (LTP), a widely accepted cellular model of learning and memory, in the hippocampal CA1 region. The activation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway – a pathway closely associated with synaptic plasticity and learning and memory – was also investigated. Wistar rats were treated with iodine deficient diet or methimazole (MMZ) to induce developmental hypothyroxinemia or hypothyroidism. The results showed that developmental hypothyroxinemia caused by mild iodine deficiency and developmental hypothyroidism caused by severe iodine deficiency or MMZ significantly reduced the field-excitatory postsynaptic potential (f-EPSP) slope and the population spike (PS) amplitude. Decreased activation of the PI3K signaling pathway was also observed in rats subjected to developmental hypothyroxinemia or hypothyroidism. Our results may support the hypothesis that neurotoxicity of both developmental hypothyroxinemia and hypothyroidism causes damages to learning and memory. Our results also suggest that decreased activation of the PI3K signaling pathway may contribute to impairments of LTP caused by neurotoxicity of both developmental

  9. Role of phosphatidylinositol 3-kinase in angiotensin II regulation of norepinephrine neuromodulation in brain neurons of the spontaneously hypertensive rat.

    PubMed

    Yang, H; Raizada, M K

    1999-04-01

    Chronic stimulation of norepinephrine (NE) neuromodulation by angiotensin II (Ang II) involves activation of the Ras-Raf-MAP kinase signal transduction pathway in Wistar Kyoto (WKY) rat brain neurons. This pathway is only partially responsible for this heightened action of Ang II in the spontaneously hypertensive rat (SHR) brain neurons. In this study, we demonstrate that the MAP kinase-independent signaling pathway in the SHR neuron involves activation of PI3-kinase and protein kinase B (PKB/Akt). Ang II stimulated PI3-kinase activity in both WKY and SHR brain neurons and was accompanied by its translocation from the cytoplasmic to the nuclear compartment. Although the magnitude of stimulation by Ang II was comparable, the stimulation was more persistent in the SHR neuron compared with the WKY rat neuron. Inhibition of PI3-kinase had no significant effect in the WKY rat neuron. However, it caused a 40-50% attenuation of the Ang II-induced increase in norepinephrine transporter (NET) and tyrosine hydroxylase (TH) mRNAs and [3H]-NE uptake in the SHR neuron. In contrast, inhibition of MAP kinase completely attenuated Ang II stimulation of NET and TH mRNA levels in the WKY rat neuron, whereas it caused only a 45% decrease in the SHR neuron. However, an additive attenuation was observed when both kinases of the SHR neurons were inhibited. Ang II also stimulated PKB/Akt activity in both WKY and SHR neurons. This stimulation was 30% higher and lasted longer in the SHR neuron compared with the WKY rat neuron. In conclusion, these observations demonstrate an exclusive involvement of PI3-kinase-PKB-dependent signaling pathway in a heightened NE neuromodulatory action of Ang II in the SHR neuron. Thus, this study offers an excellent potential for the development of new therapies for the treatment of centrally mediated hypertension.

  10. Insulin-like growth factor-I extends in vitro replicative life span of skeletal muscle satellite cells by enhancing G1/S cell cycle progression via the activation of phosphatidylinositol 3'-kinase/Akt signaling pathway

    NASA Technical Reports Server (NTRS)

    Chakravarthy, M. V.; Abraha, T. W.; Schwartz, R. J.; Fiorotto, M. L.; Booth, F. W.

    2000-01-01

    Interest is growing in methods to extend replicative life span of non-immortalized stem cells. Using the insulin-like growth factor I (IGF-I) transgenic mouse in which the IGF-I transgene is expressed during skeletal muscle development and maturation prior to isolation and during culture of satellite cells (the myogenic stem cells of mature skeletal muscle fibers) as a model system, we elucidated the underlying molecular mechanisms of IGF-I-mediated enhancement of proliferative potential of these cells. Satellite cells from IGF-I transgenic muscles achieved at least five additional population doublings above the maximum that was attained by wild type satellite cells. This IGF-I-induced increase in proliferative potential was mediated via activation of the phosphatidylinositol 3'-kinase/Akt pathway, independent of mitogen-activated protein kinase activity, facilitating G(1)/S cell cycle progression via a down-regulation of p27(Kip1). Adenovirally mediated ectopic overexpression of p27(Kip1) in exponentially growing IGF-I transgenic satellite cells reversed the increase in cyclin E-cdk2 kinase activity, pRb phosphorylation, and cyclin A protein abundance, thereby implicating an important role for p27(Kip1) in promoting satellite cell senescence. These observations provide a more complete dissection of molecular events by which increased local expression of a growth factor in mature skeletal muscle fibers extends replicative life span of primary stem cells than previously known.

  11. Ehrlichia secretes Etf-1 to induce autophagy and capture nutrients for its growth through RAB5 and class III phosphatidylinositol 3-kinase

    PubMed Central

    Lin, Mingqun; Liu, Hongyan; Xiong, Qingming; Niu, Hua; Cheng, Zhihui; Yamamoto, Akitsugu; Rikihisa, Yasuko

    2016-01-01

    Ehrlichia chaffeensis is an obligatory intracellular bacterium that causes a potentially fatal emerging zoonosis, human monocytic ehrlichiosis. E. chaffeensis has a limited capacity for biosynthesis and metabolism and thus depends mostly on host-synthesized nutrients for growth. Although the host cell cytoplasm is rich with these nutrients, as E. chaffeensis is confined within the early endosome-like membrane-bound compartment, only host nutrients that enter the compartment can be used by this bacterium. How this occurs is unknown. We found that ehrlichial replication depended on autophagy induction involving class III phosphatidylinositol 3-kinase (PtdIns3K) activity, BECN1 (Beclin 1), and ATG5 (autophagy-related 5). Ehrlichia acquired host cell preincorporated amino acids in a class III PtdIns3K-dependent manner and ehrlichial growth was enhanced by treatment with rapamycin, an autophagy inducer. Moreover, ATG5 and RAB5A/B/C were routed to ehrlichial inclusions. RAB5A/B/C siRNA knockdown, or overexpression of a RAB5-specific GTPase-activating protein or dominant-negative RAB5A inhibited ehrlichial infection, indicating the critical role of GTP-bound RAB5 during infection. Both native and ectopically expressed ehrlichial type IV secretion effector protein, Etf-1, bound RAB5 and the autophagy-initiating class III PtdIns3K complex, PIK3C3/VPS34, and BECN1, and homed to ehrlichial inclusions. Ectopically expressed Etf-1 activated class III PtdIns3K as in E. chaffeensis infection and induced autophagosome formation, cleared an aggregation-prone mutant huntingtin protein in a class III PtdIns3K-dependent manner, and enhanced ehrlichial proliferation. These data support the notion that E. chaffeensis secretes Etf-1 to induce autophagy to repurpose the host cytoplasm and capture nutrients for its growth through RAB5 and class III PtdIns3K, while avoiding autolysosomal killing. PMID:27541856

  12. Targeting a Common Collaborator in Cancer Development

    PubMed Central

    Myers, Andrea P.; Cantley, Lewis C.

    2012-01-01

    In this issue of Science Translational Medicine, Wallin et al. have identified a subset of breast and ovarian cancer cell lines that show synergistic response to the combination of doxorubicin and GDC-0941, a class IA phosphatidylinositol 3-kinase (PI3K) inhibitor. Here, we discuss the potential implications of these data on the clinical development of PI3K pathway inhibitors as cancer therapeutics. PMID:20826838

  13. Negative regulatory role of PI3-kinase in TNF-induced tumor necrosis.

    PubMed

    Matschurat, Susanne; Blum, Sabine; Mitnacht-Kraus, Rita; Dijkman, Henry B P M; Kanal, Levent; De Waal, Robert M W; Clauss, Matthias

    2003-10-20

    Tissue factor is the prime initiator of blood coagulation. Expression of tissue factor in tumor endothelial cells leads to thrombus formation, occlusion of vessels and development of hemorrhagic infarctions in the tumor tissue, often followed by regression of the tumor. Tumor cells produce endogenous vascular endothelial growth factor (VEGF), which sensitizes endothelial cells for systemically administered tumor necrosis factor alpha (TNF alpha) and synergistically enhances the TNF-induced expression of tissue factor. We have analyzed the pathways involved in the induction of tissue factor in human umbilical cord vein endothelial cells (HUVECs) after combined stimulation with TNF and VEGF. By using specific low molecular weight inhibitors, we demonstrated that protein kinase C (PKC), p44/42 and p38 mitogen-activated protein (MAP) kinases, and stress-activated protein kinase (JNK) are essentially involved in the induction of tissue factor. In contrast, the application of wortmannin, an inhibitor of phosphatidylinositol 3 (PI3)-kinase, led to strongly enhanced expression of tissue factor in TNF- and VEGF-treated cells, implicating a negative regulatory role for PI3-kinase. In vivo, the application of wortmannin promoted the formation of TNF-induced hemorrhages and intratumoral necroses in murine meth A tumors. The co-injection of wortmannin lowered the effective dose of applied TNF. Therefore, it is conceivable that the treatment of TNF-sensitive tumors with a combination of TNF and wortmannin will ensure the selective damage of the tumor endothelium and minimize the risk of systemic toxicity of TNF. TNF-treatment in combination with specific inhibition of PI3-kinase is a novel concept in anti-cancer therapy. Copyright 2003 Wiley-Liss, Inc.

  14. Involvement of the PI3K/Akt/GSK3β pathway in photodynamic injury of neurons and glial cells

    NASA Astrophysics Data System (ADS)

    Komandirov, M. A.; Knyazeva, E. A.; Fedorenko, Y. P.; Rudkovskii, M. V.; Stetsurin, D. A.; Uzdensky, A. B.

    2010-10-01

    Photodynamic treatment causes intense oxidative stress and kills cells. It is currently used in neurooncology. However, along with tumor it damages surrounding healthy neuronal and glial cells. In order to study the possible role of the phosphatidylinositol 3-kinase/protein kinase Akt/glycogen synthase kinase-3β signaling pathway in photodynamic damage to normal neurons and glia, we used isolated crayfish stretch receptor that consists only of a single neuron surrounded by glial cells. It was photosensitized with alumophthalocyanine Photosens (100 nM). The laser diode (670nm, 0.4W/cm2) was used as a light source. Application of specific inhibitors of the enzymes involved in this pathway showed that phosphatidylinositol 3-kinase did not participate in photoinduced death of neurons and glia. Protein kinase Akt was involved in photoinduced necrosis but not in apoptosis of neurons and glia. Glycogen synthase kinase-3β participated in photoinduced apoptosis of glial cells and in necrosis of neurons. Therefore, the phosphatidylinositol 3-kinase/protein kinase Akt/glycogen synthase kinase-3β pathway was not involved as a whole in photodynamic injury of crayfish neurons and glial cells but its components, protein kinase Akt and glycogen synthase kinase-3β, independently and cell-specifically regulated photoinduced death of neurons and glial cells. These data showed that in this system necrosis was not non-regulated and catastrophic mode of cell death. It was controlled by some signaling proteins. The obtained results may be used for search of pharmacological agents that selectively modulate injury of normal neurons and glial cells during photodynamic therapy of brain tumors.

  15. Involvement of the PI3K/Akt/GSK3β pathway in photodynamic injury of neurons and glial cells

    NASA Astrophysics Data System (ADS)

    Komandirov, M. A.; Knyazeva, E. A.; Fedorenko, Y. P.; Rudkovskii, M. V.; Stetsurin, D. A.; Uzdensky, A. B.

    2011-03-01

    Photodynamic treatment causes intense oxidative stress and kills cells. It is currently used in neurooncology. However, along with tumor it damages surrounding healthy neuronal and glial cells. In order to study the possible role of the phosphatidylinositol 3-kinase/protein kinase Akt/glycogen synthase kinase-3β signaling pathway in photodynamic damage to normal neurons and glia, we used isolated crayfish stretch receptor that consists only of a single neuron surrounded by glial cells. It was photosensitized with alumophthalocyanine Photosens (100 nM). The laser diode (670nm, 0.4W/cm2) was used as a light source. Application of specific inhibitors of the enzymes involved in this pathway showed that phosphatidylinositol 3-kinase did not participate in photoinduced death of neurons and glia. Protein kinase Akt was involved in photoinduced necrosis but not in apoptosis of neurons and glia. Glycogen synthase kinase-3β participated in photoinduced apoptosis of glial cells and in necrosis of neurons. Therefore, the phosphatidylinositol 3-kinase/protein kinase Akt/glycogen synthase kinase-3β pathway was not involved as a whole in photodynamic injury of crayfish neurons and glial cells but its components, protein kinase Akt and glycogen synthase kinase-3β, independently and cell-specifically regulated photoinduced death of neurons and glial cells. These data showed that in this system necrosis was not non-regulated and catastrophic mode of cell death. It was controlled by some signaling proteins. The obtained results may be used for search of pharmacological agents that selectively modulate injury of normal neurons and glial cells during photodynamic therapy of brain tumors.

  16. First-in-human Phase I study of Pictilisib (GDC-0941), a potent pan-class I phosphatidylinositol-3-kinase (PI3K) inhibitor, in patients with advanced solid tumors

    PubMed Central

    Baird, Richard; Kristeleit, Rebecca; Shah, Krunal; Moreno, Victor; Clarke, Paul A.; Raynaud, Florence I.; Levy, Gallia; Ware, Joseph A; Mazina, Kathryn; Lin, Ray; Wu, Jenny; Fredrickson, Jill; Spoerke, Jill M; Lackner, Mark R; Yan, Yibing; Friedman, Lori S.; Kaye, Stan B.; Derynck, Mika K.; Workman, Paul; de Bono, Johann S.

    2014-01-01

    Purpose This first-in-human dose-escalation trial evaluated the safety, tolerability, maximal tolerated dose (MTD), dose limiting toxicities (DLTs), pharmacokinetics, pharmacodynamics and preliminary clinical activity of pictilisib (GDC-0941), an oral, potent and selective inhibitor of the Class I phosphatidylinositol-3-kinases (PI3K). Patients and Methods Sixty patients with solid tumors received pictilisib at 14 dose levels from 15 to 450mg once-daily, initially on days 1-21 every 28 days and later, utilizing continuous dosing for selected dose levels. Pharmacodynamic studies incorporated 18F-FDG-PET, and assessment of phosphorylated AKT and S6 ribosomal protein in platelet-rich plasma and tumor tissue. Results Pictilisib was well-tolerated. The most common toxicities were grade 1-2 nausea, rash and fatigue while the DLT was grade 3 maculopapular rash (450mg, 2 of 3 patients; 330mg, 1 of 7 patients). The pharmacokinetic profile was dose-proportional and supported once-daily dosing. Levels of phosphorylated serine-473 AKT were suppressed >90% in platelet rich plasma at 3 hours post-dose at the MTD and in tumor at pictilisib doses associated with AUC >20uM.hr. Significant increase in plasma insulin and glucose levels, and >25% decrease in 18F-FDG uptake by PET in 7 of 32 evaluable patients confirmed target modulation. A patient with V600E BRAF mutant melanoma and another with platinum-refractory epithelial ovarian cancer exhibiting PTEN loss and PIK3CA amplification demonstrated partial response by RECIST and GCIG-CA125 criteria, respectively. Conclusion Pictilisib was safely administered with a dose-proportional pharmacokinetic profile, on-target pharmacodynamic activity at dose levels ≥100mg and signs of antitumor activity. The recommended Phase II dose was continuous dosing at 330mg once-daily. PMID:25370471

  17. First-in-human phase I study of pictilisib (GDC-0941), a potent pan-class I phosphatidylinositol-3-kinase (PI3K) inhibitor, in patients with advanced solid tumors.

    PubMed

    Sarker, Debashis; Ang, Joo Ern; Baird, Richard; Kristeleit, Rebecca; Shah, Krunal; Moreno, Victor; Clarke, Paul A; Raynaud, Florence I; Levy, Gallia; Ware, Joseph A; Mazina, Kathryn; Lin, Ray; Wu, Jenny; Fredrickson, Jill; Spoerke, Jill M; Lackner, Mark R; Yan, Yibing; Friedman, Lori S; Kaye, Stan B; Derynck, Mika K; Workman, Paul; de Bono, Johann S

    2015-01-01

    This first-in-human dose-escalation trial evaluated the safety, tolerability, maximal-tolerated dose (MTD), dose-limiting toxicities (DLT), pharmacokinetics, pharmacodynamics, and preliminary clinical activity of pictilisib (GDC-0941), an oral, potent, and selective inhibitor of the class I phosphatidylinositol-3-kinases (PI3K). Sixty patients with solid tumors received pictilisib at 14 dose levels from 15 to 450 mg once-daily, initially on days 1 to 21 every 28 days and later, using continuous dosing for selected dose levels. Pharmacodynamic studies incorporated (18)F-FDG-PET, and assessment of phosphorylated AKT and S6 ribosomal protein in platelet-rich plasma (PRP) and tumor tissue. Pictilisib was well tolerated. The most common toxicities were grade 1-2 nausea, rash, and fatigue, whereas the DLT was grade 3 maculopapular rash (450 mg, 2 of 3 patients; 330 mg, 1 of 7 patients). The pharmacokinetic profile was dose-proportional and supported once-daily dosing. Levels of phosphorylated serine-473 AKT were suppressed >90% in PRP at 3 hours after dose at the MTD and in tumor at pictilisib doses associated with AUC >20 h·μmol/L. Significant increase in plasma insulin and glucose levels, and >25% decrease in (18)F-FDG uptake by PET in 7 of 32 evaluable patients confirmed target modulation. A patient with V600E BRAF-mutant melanoma and another with platinum-refractory epithelial ovarian cancer exhibiting PTEN loss and PIK3CA amplification demonstrated partial response by RECIST and GCIG-CA125 criteria, respectively. Pictilisib was safely administered with a dose-proportional pharmacokinetic profile, on-target pharmacodynamic activity at dose levels ≥100 mg and signs of antitumor activity. The recommended phase II dose was continuous dosing at 330 mg once-daily. ©2014 American Association for Cancer Research.

  18. Berberine activates Nrf2 nuclear translocation and inhibits apoptosis induced by high glucose in renal tubular epithelial cells through a phosphatidylinositol 3-kinase/Akt-dependent mechanism.

    PubMed

    Zhang, Xiuli; Liang, Dan; Lian, Xu; Jiang, Yan; He, Hui; Liang, Wei; Zhao, Yue; Chi, Zhi-Hong

    2016-06-01

    Apoptosis of tubular epithelial cells is a major feature of diabetic kidney disease, and hyperglycemia triggers the generation of free radicals and oxidant stress in tubular cells. Berberine (BBR) is identified as a potential anti-diabetic herbal medicine due to its beneficial effects on insulin sensitivity, glucose metabolism and glycolysis. In this study, the underlying mechanisms involved in the protective effects of BBR on high glucose-induced apoptosis were explored using cultured renal tubular epithelial cells (NRK-52E cells) and human kidney proximal tubular cell line (HK-2 cells). We identified the pivotal role of phosphatidylinositol 3-kinase (PI3K)/Akt in BBR cellular defense mechanisms and revealed the novel effect of BBR on nuclear factor (erythroid-derived 2)-related factor-2 (Nrf2) and heme oxygenase (HO)-1 in NRK-52E and HK-2 cells. BBR attenuated reactive oxygen species production, antioxidant defense (GSH and SOD) and oxidant-sensitive proteins (Nrf2 and HO-1), which also were blocked by LY294002 (an inhibitor of PI3K) in HG-treated NRK-52E and HK-2 cells. Furthermore, BBR improved mitochondrial function by increasing mitochondrial membrane potential. BBR-induced anti-apoptotic function was demonstrated by decreasing apoptotic proteins (cytochrome c, Bax, caspase3 and caspase9). All these findings suggest that BBR exerts the anti-apoptosis effects through activation of PI3K/Akt signal pathways and leads to activation of Nrf2 and induction of Nrf2 target genes, and consequently protecting the renal tubular epithelial cells from HG-induced apoptosis.

  19. 3' Phosphatase activity toward phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2] by voltage-sensing phosphatase (VSP).

    PubMed

    Kurokawa, Tatsuki; Takasuga, Shunsuke; Sakata, Souhei; Yamaguchi, Shinji; Horie, Shigeo; Homma, Koichi J; Sasaki, Takehiko; Okamura, Yasushi

    2012-06-19

    Voltage-sensing phosphatases (VSPs) consist of a voltage-sensor domain and a cytoplasmic region with remarkable sequence similarity to phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a tumor suppressor phosphatase. VSPs dephosphorylate the 5' position of the inositol ring of both phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P(3)] and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)] upon voltage depolarization. However, it is unclear whether VSPs also have 3' phosphatase activity. To gain insights into this question, we performed in vitro assays of phosphatase activities of Ciona intestinalis VSP (Ci-VSP) and transmembrane phosphatase with tensin homology (TPTE) and PTEN homologous inositol lipid phosphatase (TPIP; one human ortholog of VSP) with radiolabeled PI(3,4,5)P(3). TLC assay showed that the 3' phosphate of PI(3,4,5)P(3) was not dephosphorylated, whereas that of phosphatidylinositol 3,4-bisphosphate [PI(3,4)P(2)] was removed by VSPs. Monitoring of PI(3,4)P(2) levels with the pleckstrin homology (PH) domain from tandem PH domain-containing protein (TAPP1) fused with GFP (PH(TAPP1)-GFP) by confocal microscopy in amphibian oocytes showed an increase of fluorescence intensity during depolarization to 0 mV, consistent with 5' phosphatase activity of VSP toward PI(3,4,5)P(3). However, depolarization to 60 mV showed a transient increase of GFP fluorescence followed by a decrease, indicating that, after PI(3,4,5)P(3) is dephosphorylated at the 5' position, PI(3,4)P(2) is then dephosphorylated at the 3' position. These results suggest that substrate specificity of the VSP changes with membrane potential.

  20. Molecular modeling based approach, synthesis, and cytotoxic activity of novel benzoin derivatives targeting phosphoinostide 3-kinase (PI3Kα).

    PubMed

    Sabbah, Dima A; Saada, Musaab; Khalaf, Reema Abu; Bardaweel, Sanaa; Sweidan, Kamal; Al-Qirim, Tariq; Al-Zughier, Amani; Halim, Heba Abdel; Sheikha, Ghassan Abu

    2015-08-15

    The oncogenic potential of phosphatidylinositol 3-kinase (PI3Kα) has made it an attractive target for anticancer drug design. In this work, we describe our efforts to optimize the lead PI3Kα inhibitor 2-hydroxy-1,2-diphenylethanone (benzoin). A series of 2-oxo-1,2-diphenylethyl benzoate analogs were identified as potential PI3Kα inhibitors. Docking studies confirmed that the aromatic interaction is mediating ligand/protein complex formation and identified Lys802 and Val851 as H-bonding key residues. Our biological data in human colon carcinoma HCT116 showed that the structure analogs inhibited cell proliferation and induced apoptosis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Modulation of nucleotide sensitivity of ATP-sensitive potassium channels by phosphatidylinositol-4-phosphate 5-kinase.

    PubMed

    Shyng, S L; Barbieri, A; Gumusboga, A; Cukras, C; Pike, L; Davis, J N; Stahl, P D; Nichols, C G

    2000-01-18

    ATP-sensitive potassium channels (K(ATP) channels) regulate cell excitability in response to metabolic changes. K(ATP) channels are formed as a complex of a sulfonylurea receptor (SURx), a member of the ATP-binding cassette protein family, and an inward rectifier K(+) channel subunit (Kir6.x). Membrane phospholipids, in particular phosphatidylinositol (PI) 4,5-bisphosphate (PIP(2)), activate K(ATP) channels and antagonize ATP inhibition of K(ATP) channels when applied to inside-out membrane patches. To examine the physiological relevance of this regulatory mechanism, we manipulated membrane PIP(2) levels by expressing either the wild-type or an inactive form of PI-4-phosphate 5-kinase (PIP5K) in COSm6 cells and examined the ATP sensitivity of coexpressed K(ATP) channels. Channels from cells expressing the wild-type PIP5K have a 6-fold lower ATP sensitivity (K(1/2), the half maximal inhibitory concentration, approximately 60 microM) than the sensitivities from control cells (K(1/2) approximately 10 microM). An inactive form of the PIP5K had little effect on the K(1/2) of wild-type channels but increased the ATP-sensitivity of a mutant K(ATP) channel that has an intrinsically lower ATP sensitivity (from K(1/2) approximately 450 microM to K(1/2) approximately 100 microM), suggesting a decrease in membrane PIP(2) levels as a consequence of a dominant-negative effect of the inactive PIP5K. These results show that PIP5K activity, which regulates PIP(2) and PI-3,4,5-P(3) levels, is a significant determinant of the physiological nucleotide sensitivity of K(ATP) channels.

  2. Modulation of nucleotide sensitivity of ATP-sensitive potassium channels by phosphatidylinositol-4-phosphate 5-kinase

    PubMed Central

    Shyng, S.-L.; Barbieri, A.; Gumusboga, A.; Cukras, C.; Pike, L.; Davis, J. N.; Stahl, P. D.; Nichols, C. G.

    2000-01-01

    ATP-sensitive potassium channels (KATP channels) regulate cell excitability in response to metabolic changes. KATP channels are formed as a complex of a sulfonylurea receptor (SURx), a member of the ATP-binding cassette protein family, and an inward rectifier K+ channel subunit (Kir6.x). Membrane phospholipids, in particular phosphatidylinositol (PI) 4,5-bisphosphate (PIP2), activate KATP channels and antagonize ATP inhibition of KATP channels when applied to inside-out membrane patches. To examine the physiological relevance of this regulatory mechanism, we manipulated membrane PIP2 levels by expressing either the wild-type or an inactive form of PI-4-phosphate 5-kinase (PIP5K) in COSm6 cells and examined the ATP sensitivity of coexpressed KATP channels. Channels from cells expressing the wild-type PIP5K have a 6-fold lower ATP sensitivity (K1/2, the half maximal inhibitory concentration, ≈ 60 μM) than the sensitivities from control cells (K1/2 ≈ 10 μM). An inactive form of the PIP5K had little effect on the K1/2 of wild-type channels but increased the ATP-sensitivity of a mutant KATP channel that has an intrinsically lower ATP sensitivity (from K1/2 ≈ 450 μM to K1/2 ≈ 100 μM), suggesting a decrease in membrane PIP2 levels as a consequence of a dominant-negative effect of the inactive PIP5K. These results show that PIP5K activity, which regulates PIP2 and PI-3,4,5-P3 levels, is a significant determinant of the physiological nucleotide sensitivity of KATP channels. PMID:10639183

  3. PfIRR Interacts with HrIGF-I and Activates the MAP-kinase and PI3-kinase Signaling Pathways to Regulate Glycogen Metabolism in Pinctada fucata

    PubMed Central

    Shi, Yu; He, Mao-xian

    2016-01-01

    The insulin-induced mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways are major intracellular signaling modules and conserved among eukaryotes that are known to regulate diverse cellular processes. However, they have not been investigated in the mollusk species Pinctada fucata. Here, we demonstrate that insulin-related peptide receptor of P. fucata (pfIRR) interacts with human recombinant insulin-like growth factor I (hrIGF-I), and stimulates the MAPK and PI3K signaling pathways in P. fucata oocytes. We also show that inhibition of pfIRR by the inhibitor PQ401 significantly attenuates the basal and hrIGF-I-induced phosphorylation of MAPK and PI3K/Akt at amino acid residues threonine 308 and serine 473. Furthermore, our experiments show that there is cross-talk between the MAPK and PI3K/Akt pathways, in which MAPK kinase positively regulates the PI3K pathway, and PI3K positively regulates the MAPK cascade. Intramuscular injection of hrIGF-I stimulates the PI3K and MAPK pathways to increase the expression of pfirr, protein phosphatase 1, glucokinase, and the phosphorylation of glycogen synthase, decreases the mRNA expression of glycogen synthase kinase-3 beta, decreases glucose levels in hemocytes, and increases glycogen levels in digestive glands. These results suggest that the MAPK and PI3K pathways in P. fucata transmit the hrIGF-I signal to regulate glycogen metabolism. PMID:26911653

  4. Microinjection of the SH2 domain of the 85-kilodalton subunit of phosphatidylinositol 3-kinase inhibits insulin-induced DNA synthesis and c-fos expression.

    PubMed Central

    Jhun, B H; Rose, D W; Seely, B L; Rameh, L; Cantley, L; Saltiel, A R; Olefsky, J M

    1994-01-01

    We have investigated the functional role of the SH2 domain of the 85-kDa subunit (p85) of the phosphatidylinositol 3-kinase in the insulin signal transduction pathway. Microinjection of a bacterial fusion protein containing the N-terminal SH2 domain of p85 inhibited insulin- and other growth factor-induced DNA synthesis by 90% and c-fos protein expression by 80% in insulin-responsive rat fibroblasts. The specificity of the fusion protein was examined by in vitro precipitation experiments, which showed that the SH2 domain of p85 can independently associate with both insulin receptor substrate 1 and the insulin receptor itself in the absence of detectable binding to other phosphoproteins. The microinjection results were confirmed through the use of an affinity-purified antibody directed against p85, which gave the same phenotype. Additional studies were carried out in another cell line expressing mutant insulin receptors which lack the cytoplasmic tyrosine residues with which p85 interacts. Microinjection of the SH2 domain fusion protein also inhibited insulin signaling in these cells, suggesting that association of p85 with insulin receptor substrate 1 is a key element in insulin-mediated cell cycle progression. In addition, coinjection of purified p21ras protein with the p85 fusion protein or the antibody restored DNA synthesis, suggesting that ras function is either downstream or independent of p85 SH2 domain interaction. Images PMID:7935461

  5. A-kinase anchoring protein 150 mediates transient receptor potential family V type 1 sensitivity to phosphatidylinositol-4,5-bisphosphate.

    PubMed

    Jeske, Nathaniel A; Por, Elaine D; Belugin, Sergei; Chaudhury, Sraboni; Berg, Kelly A; Akopian, Armen N; Henry, Michael A; Gomez, Ruben

    2011-06-08

    A-kinase anchoring protein 150 (AKAP150) is a scaffolding protein that controls protein kinase A- and C-mediated phosphorylation of the transient receptor potential family V type 1 (TRPV1), dictating receptor response to nociceptive stimuli. The phospholipid phosphatidylinositol-4,5-bisphosphate (PIP(2)) anchors AKAP150 to the plasma membrane in naive conditions and also affects TRPV1 activity. In the present study, we sought to determine whether the effects of PIP(2) on TRPV1 are mediated through AKAP150. In trigeminal neurons and CHO cells, the manipulation of cellular PIP(2) led to significant changes in the association of AKAP150 and TRPV1. Following PIP(2) degradation, increased TRPV1:AKAP150 coimmunoprecipitation was observed, resulting in increased receptor response to capsaicin treatment. Phospholipase C activation in neurons isolated from AKAP150(-/-) animals indicated that PIP(2)-mediated inhibition of TRPV1 in the whole-cell environment requires expression of the scaffolding protein. Furthermore, the addition of PIP(2) to neurons isolated from AKAP150 wild-type mice reduced PKA sensitization of TRPV1 compared with isolated neurons from AKAP150(-/-) mice. These findings suggest that PIP(2) degradation increases AKAP150 association with TRPV1 in the whole-cell environment, leading to sensitization of the receptor to nociceptive stimuli.

  6. Novel benzofuran-3-one indole inhibitors of PI3 kinase-alpha and the mammalian target of rapamycin: hit to lead studies.

    PubMed

    Bursavich, Matthew G; Brooijmans, Natasja; Feldberg, Lawrence; Hollander, Irwin; Kim, Stephen; Lombardi, Sabrina; Park, Kaapjoo; Mallon, Robert; Gilbert, Adam M

    2010-04-15

    A series of benzofuran-3-one indole phosphatidylinositol-3-kinases (PI3K) inhibitors identified via HTS has been prepared. The optimized inhibitors possess single digit nanomolar activity against p110alpha (PI3K-alpha), good pharmaceutical properties, selectivity versus p110gamma (PI3K-gamma), and tunable selectivity versus the mammalian target of rapamycin (mTOR). Modeling of compounds 9 and 32 in homology models of PI3K-alpha and mTOR supports the proposed rationale for selectivity. Compounds show activity in multiple cellular proliferation assays with signaling through the PI3K pathway confirmed via phospho-Akt inhibition in PC-3 cells. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Vascular endothelial growth factor receptor 1 contributes to Escherichia coli K1 invasion of human brain microvascular endothelial cells through the phosphatidylinositol 3-kinase/Akt signaling pathway.

    PubMed

    Zhao, Wei-Dong; Liu, Wei; Fang, Wen-Gang; Kim, Kwang Sik; Chen, Yu-Hua

    2010-11-01

    Escherichia coli is the most common Gram-negative organism causing neonatal meningitis. Previous studies demonstrated that E. coli K1 invasion of brain microvascular endothelial cells (BMEC) is required for penetration into the central nervous system, but the microbe-host interactions that are involved in this process remain incompletely understood. Here we report the involvement of vascular endothelial growth factor receptor 1 (VEGFR1) expressed on human brain microvascular endothelial cells (HBMEC) in E. coli K1 invasion of HBMEC. Our results showed that treatment of confluent HBMEC with pan-VEGFR inhibitors significantly inhibited E. coli K1 invasion of HBMEC. Immunofluorescence results indicated the colocalization of VEGFR1 with E. coli K1 during bacterial invasion of HBMEC. The E. coli-induced actin cytoskeleton rearrangements in HBMEC were blocked by VEGFR inhibitors but not by VEGFR2-specific inhibitors. The small interfering RNA (siRNA) knockdown of VEGFR1 in HBMEC significantly attenuated E. coli invasion and the concomitant actin filament rearrangement. Furthermore, we found an increased association of VEGFR1 with the p85 subunit of phosphatidylinositol 3-kinase (PI3K) in HBMEC infected with E. coli K1 and that E. coli K1-triggered Akt activation in HBMEC was blocked by VEGFR1 siRNA and VEGFR inhibitors. Taken together, our results demonstrate that VEGFR1 contributes to E. coli K1 invasion of HBMEC via recruitment of the PI3K/Akt signaling pathway.

  8. CB1 Cannabinoid Receptors Modulate Kinase and Phosphatase Activity during Extinction of Conditioned Fear in Mice

    ERIC Educational Resources Information Center

    Kamprath, Kornelia; Hermann, Heike; Lutz, Beat; Marsicano, Giovanni; Cannich, Astrid; Wotjak, Carsten T.

    2004-01-01

    Cannabinoid receptors type 1 (CB1) play a central role in both short-term and long-term extinction of auditory-cued fear memory. The molecular mechanisms underlying this function remain to be clarified. Several studies indicated extracellular signal-regulated kinases (ERKs), the phosphatidylinositol 3-kinase with its downstream effector AKT, and…

  9. Phosphatidylinositol Phosphate 5-Kinase Iγi2 in Association with Src Controls Anchorage-independent Growth of Tumor Cells*

    PubMed Central

    Thapa, Narendra; Choi, Suyong; Hedman, Andrew; Tan, Xiaojun; Anderson, Richard A.

    2013-01-01

    A fundamental property of tumor cells is to defy anoikis, cell death caused by a lack of cell-matrix interaction, and grow in an anchorage-independent manner. How tumor cells organize signaling molecules at the plasma membrane to sustain oncogenic signals in the absence of cell-matrix interactions remains poorly understood. Here, we describe a role for phosphatidylinositol 4-phosphate 5-kinase (PIPK) Iγi2 in controlling anchorage-independent growth of tumor cells in coordination with the proto-oncogene Src. PIPKIγi2 regulated Src activation downstream of growth factor receptors and integrins. PIPKIγi2 directly interacted with the C-terminal tail of Src and regulated its subcellular localization in concert with talin, a cytoskeletal protein targeted to focal adhesions. Co-expression of PIPKIγi2 and Src synergistically induced the anchorage-independent growth of nonmalignant cells. This study uncovers a novel mechanism where a phosphoinositide-synthesizing enzyme, PIPKIγi2, functions with the proto-oncogene Src, to regulate oncogenic signaling. PMID:24151076

  10. Nuclear pool of phosphatidylinositol 4 phosphate 5 kinase 1α is modified by polySUMO-2 during apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakrabarti, Rajarshi; Bhowmick, Debajit; Bhargava, Varsha

    2013-09-20

    Highlights: •Nuclear pool of PIP5K is SUMOylated. •Enhancement of SUMOylated nuclear PIP5K during apoptosis. •Nuclear PIP5K is modified by polySUMO-1 during apoptosis. •Nuclear PIP5K is modified by polySUMO-2 chain during apoptosis. -- Abstract: Phosphatidylinositol 4 phosphate 5 kinase 1α (PIP5K) is mainly localized in the cytosol and plasma membrane. Studies have also indicated its prominent association with nuclear speckles. The exact nature of this nuclear pool of PIP5K is not clear. Using biochemical and microscopic techniques, we have demonstrated that the nuclear pool of PIP5K is modified by SUMO-1 in HEK-293 cells stably expressing PIP5K. Moreover, this SUMOylated pool ofmore » PIP5K increased during apoptosis. PolySUMO-2 chain conjugated PIP5K was detected by pull-down experiment using affinity-tagged RNF4, a polySUMO-2 binding protein, during late apoptosis.« less

  11. Time course of the MAPK and PI3-kinase response within 24 h of skeletal muscle overload

    NASA Technical Reports Server (NTRS)

    Carlson, C. J.; Fan, Z.; Gordon, S. E.; Booth, F. W.

    2001-01-01

    Knowledge of the molecular mechanisms by which skeletal muscle hypertrophies in response to increased mechanical loading may lead to the discovery of novel treatment strategies for muscle wasting and frailty. To gain insight into potential early signaling mechanisms associated with skeletal muscle hypertrophy, the temporal pattern of mitogen-activated protein kinase (MAPK) phosphorylation and phosphatidylinositol 3-kinase (PI3-kinase) activity during the first 24 h of muscle overload was determined in the rat slow-twitch soleus and fast-twitch plantaris muscles after ablation of the gastrocnemius muscle. p38alpha MAPK phosphorylation was elevated for the entire 24-h overload period in both muscles. In contrast, Erk 2 and p54 JNK phosphorylation were transiently increased by overload, returning to the levels of sham-operated controls by 24 h. PI3-kinase activity was increased by muscle overload only at 12 h of overload and only in the plantaris muscle. In summary, sustained elevation of p38alpha MAPK phosphorylation occurred early in response to muscle overload, identifying this pathway as a potential candidate for mediating early hypertrophic signals in response to skeletal muscle overload.

  12. 3′ Phosphatase activity toward phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2] by voltage-sensing phosphatase (VSP)

    PubMed Central

    Kurokawa, Tatsuki; Takasuga, Shunsuke; Sakata, Souhei; Yamaguchi, Shinji; Horie, Shigeo; Homma, Koichi J.; Sasaki, Takehiko; Okamura, Yasushi

    2012-01-01

    Voltage-sensing phosphatases (VSPs) consist of a voltage-sensor domain and a cytoplasmic region with remarkable sequence similarity to phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a tumor suppressor phosphatase. VSPs dephosphorylate the 5′ position of the inositol ring of both phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] upon voltage depolarization. However, it is unclear whether VSPs also have 3′ phosphatase activity. To gain insights into this question, we performed in vitro assays of phosphatase activities of Ciona intestinalis VSP (Ci-VSP) and transmembrane phosphatase with tensin homology (TPTE) and PTEN homologous inositol lipid phosphatase (TPIP; one human ortholog of VSP) with radiolabeled PI(3,4,5)P3. TLC assay showed that the 3′ phosphate of PI(3,4,5)P3 was not dephosphorylated, whereas that of phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2] was removed by VSPs. Monitoring of PI(3,4)P2 levels with the pleckstrin homology (PH) domain from tandem PH domain-containing protein (TAPP1) fused with GFP (PHTAPP1-GFP) by confocal microscopy in amphibian oocytes showed an increase of fluorescence intensity during depolarization to 0 mV, consistent with 5′ phosphatase activity of VSP toward PI(3,4,5)P3. However, depolarization to 60 mV showed a transient increase of GFP fluorescence followed by a decrease, indicating that, after PI(3,4,5)P3 is dephosphorylated at the 5′ position, PI(3,4)P2 is then dephosphorylated at the 3′ position. These results suggest that substrate specificity of the VSP changes with membrane potential. PMID:22645351

  13. AMF/PGI transactivates the MMP-3 gene through the activation of Src-RhoA-phosphatidylinositol 3-kinase signaling to induce hepatoma cell migration.

    PubMed

    Shih, Wen-Ling; Liao, Ming-Huei; Yu, Feng-Ling; Lin, Ping-Yuan; Hsu, Hsue-Yin; Chiu, Shu-Jun

    2008-11-08

    We have previously shown that AMF/PGI induces hepatoma cell migration through the induction of MMP-3. This work investigates how AMF/PGI activates the MMP-3 gene. We demonstrated that AMF/PGI transactivates the MMP-3 gene promoter through AP-1. The transactivation and induction of cell migration effect of AMF/PGI directly correlates with its enzymatic activity. Various analyses showed that AMF/PGI stimulated the Src-RhoA-PI3-kinase signaling pathway, and these three signaling molecules could form a complex. Our results demonstrate a new mechanism of AMF/PGI-induced cell migration and a link between Src-RhoA-PI3-kinase, AP-1, MMP-3 and hepatoma cell migration.

  14. Signaling by Kit protein-tyrosine kinase--the stem cell factor receptor.

    PubMed

    Roskoski, Robert

    2005-11-11

    Signaling by stem cell factor and Kit, its receptor, plays important roles in gametogenesis, hematopoiesis, mast cell development and function, and melanogenesis. Moreover, human and mouse embryonic stem cells express Kit transcripts. Stem cell factor exists as both a soluble and a membrane-bound glycoprotein while Kit is a receptor protein-tyrosine kinase. The complete absence of stem cell factor or Kit is lethal. Deficiencies of either produce defects in red and white blood cell production, hypopigmentation, and sterility. Gain-of-function mutations of Kit are associated with several human neoplasms including acute myelogenous leukemia, gastrointestinal stromal tumors, and mastocytomas. Kit consists of an extracellular domain, a transmembrane segment, a juxtamembrane segment, and a protein kinase domain that contains an insert of about 80 amino acid residues. Binding of stem cell factor to Kit results in receptor dimerization and activation of protein kinase activity. The activated receptor becomes autophosphorylated at tyrosine residues that serve as docking sites for signal transduction molecules containing SH2 domains. The adaptor protein APS, Src family kinases, and Shp2 tyrosyl phosphatase bind to phosphotyrosine 568. Shp1 tyrosyl phosphatase and the adaptor protein Shc bind to phosphotyrosine 570. C-terminal Src kinase homologous kinase and the adaptor Shc bind to both phosphotyrosines 568 and 570. These residues occur in the juxtamembrane segment of Kit. Three residues in the kinase insert domain are phosphorylated and attract the adaptor protein Grb2 (Tyr703), phosphatidylinositol 3-kinase (Tyr721), and phospholipase Cgamma (Tyr730). Phosphotyrosine 900 in the distal kinase domain binds phosphatidylinositol 3-kinase which in turn binds the adaptor protein Crk. Phosphotyrosine 936, also in the distal kinase domain, binds the adaptor proteins APS, Grb2, and Grb7. Kit has the potential to participate in multiple signal transduction pathways as a result of

  15. Structural basis for phosphatidylinositol-phosphate biosynthesis

    NASA Astrophysics Data System (ADS)

    Clarke, Oliver B.; Tomasek, David; Jorge, Carla D.; Dufrisne, Meagan Belcher; Kim, Minah; Banerjee, Surajit; Rajashankar, Kanagalaghatta R.; Shapiro, Lawrence; Hendrickson, Wayne A.; Santos, Helena; Mancia, Filippo

    2015-10-01

    Phosphatidylinositol is critical for intracellular signalling and anchoring of carbohydrates and proteins to outer cellular membranes. The defining step in phosphatidylinositol biosynthesis is catalysed by CDP-alcohol phosphotransferases, transmembrane enzymes that use CDP-diacylglycerol as donor substrate for this reaction, and either inositol in eukaryotes or inositol phosphate in prokaryotes as the acceptor alcohol. Here we report the structures of a related enzyme, the phosphatidylinositol-phosphate synthase from Renibacterium salmoninarum, with and without bound CDP-diacylglycerol to 3.6 and 2.5 Å resolution, respectively. These structures reveal the location of the acceptor site, and the molecular determinants of substrate specificity and catalysis. Functional characterization of the 40%-identical ortholog from Mycobacterium tuberculosis, a potential target for the development of novel anti-tuberculosis drugs, supports the proposed mechanism of substrate binding and catalysis. This work therefore provides a structural and functional framework to understand the mechanism of phosphatidylinositol-phosphate biosynthesis.

  16. Akt-RSK-S6-kinase Signaling Networks Activated by Oncogenic Receptor Tyrosine Kinases

    PubMed Central

    Moritz, Albrecht; Li, Yu; Guo, Ailan; Villén, Judit; Wang, Yi; MacNeill, Joan; Kornhauser, Jon; Sprott, Kam; Zhou, Jing; Possemato, Anthony; Ren, Jian Min; Hornbeck, Peter; Cantley, Lewis C.; Gygi, Steven P.; Rush, John; Comb, Michael J.

    2011-01-01

    Receptor tyrosine kinases (RTKs) activate pathways mediated by serine/threonine (Ser/Thr) kinases such as the PI3K (phosphatidylinositol 3-kinase)-Akt pathway, the Ras-MAPK (mitogen-activated protein kinase)-RSK pathway, and the mTOR (mammalian target of rapamycin)-p70 S6 pathway that control important aspects of cell growth, proliferation, and survival. The Akt, RSK, and p70 S6 family of protein kinases transmit signals by phosphorylating substrates on a RxRxxS/T motif. Here, we developed a large-scale proteomic approach to identify over 200 substrates of this kinase family in cancer cell lines driven by the c-Met, epidermal growth factor receptor (EGFR), or platelet-derived growth factor receptor a (PDGFRα) RTKs. We identified a subset of proteins with RxRxxS/T sites for which phosphorylation was decreased by RTKIs as well as by inhibitors of the PI3K, mTOR, and MAPK pathways and determined the effects of siRNA directed against these substrates on cell viability. We found that phosphorylation of the protein chaperone SGTA (small glutamine-rich tetratricopeptide repeat-containing protein alpha) at Ser305 is essential for PDGFRα stabilization and cell survival in PDGFRα-dependent cancer cells. Our approach provides a new view of RTK and Akt-RSK-S6 kinase signaling, revealing many previously unidentified Akt-RSK-S6 kinase substrates that merit further consideration as targets for combination therapy with RTKIs. PMID:20736484

  17. Roles of phosphatidylinositol 3-kinase regulatory subunit alpha, activator protein-1, and programmed cell death 4 in diagnosis of papillary thyroid carcinoma.

    PubMed

    Chen, Xiaojun; Wu, Wenjun; Chen, Xiong; Gong, Xiaohua

    2016-05-01

    This study evaluated the diagnostic values of phosphatidylinositol 3-kinase regulatory subunit alpha (P85α), activator protein-1 (AP-1), and programmed cell death 4 (PDCD4) in papillary thyroid carcinoma (PTC). P85α, AP-1, and PDCD4 expressions were detected in PTC tissues (n = 116) and thyroid papillary hyperplasia (PTH) tissues (n = 90) by immunohistochemistry, western blot, and enzyme-linked immunosorbent assay (ELISA). Associations of P85α, AP-1, and PDCD4 expressions with clinicopathological features in PTC were analyzed. Diagnostic values of P85α, AP-1, and PDCD4 in PTC were evaluated by receiver operating characteristic (ROC) curve. P85α, AP-1, and PDCD4 expression levels in PTC tissues were statistically different from those in PTH tissues (all P < 0.05). In PTC tissues, AP-1 expression was positively associated with P85α expression (r = 0.841, P < 0.01), while negatively associated with PDCD4 expression (r = -0.755, P < 0.01). P85α expression was associated with lymph node metastasis (LNM) and the degree of differentiation (both P < 0.05); AP-1 and PDCD4 expressions were associated with the degree of differentiation (both P < 0.05). The diagnostic sensitivity and specificity of P85α were 92.2 and 91.1 %, respectively, with a cutoff value of 2.100 and an area under curve (AUC) of 0.966. The diagnostic sensitivity and specificity of AP-1 reached 94.4 and 93.3 % with a cutoff value of 1.655 and an AUC of 0.987. The diagnostic sensitivity and specificity of PDCD4 were 54.4 and 85.6 % with a cutoff value of 2.025 and an AUC of 0.754. P85α, AP-1, and PDCD4 proteins may be related to the tumorigenesis and progression of PTC. Moreover, P85α, AP-1, and PDCD4 proteins may serve as potential diagnostic markers to the biological behavior of PTC.

  18. A Transformation-Defective Polyomavirus Middle T Antigen with a Novel Defect in PI3 Kinase Signaling.

    PubMed

    Denis, Deborah; Rouleau, Cecile; Schaffhausen, Brian S

    2017-01-15

    Middle T antigen (MT), the principal oncoprotein of murine polyomavirus, transforms by association with cellular proteins. Protein phosphatase 2A (PP2A), YAP, Src family tyrosine kinases, Shc, phosphatidylinositol 3-kinase (PI3K), and phospholipase C-γ1 (PLCγ1) have all been implicated in MT transformation. Mutant dl1015, with deletion of residues 338 to 347 in the C-terminal region, has been an enigma, because the basis for its transformation defect has not been apparent. This work probes the dl1015 region of MT. Because the region is proline rich, the hypothesis that it targets Src homology domain 3 (SH3) domains was tested, but mutation of the putative SH3 binding motif did not affect transformation. During this work, two point mutants, W348R and E349K, were identified as transformation defective. Extensive analysis of the E349K mutant is described here. Similar to wild-type MT, the E349K mutant associates with PP2A, YAP, tyrosine kinases, Shc, PI3 kinase, and PLCγ1. The E349K mutant was examined to determine the mechanism for its transformation defect. Assays of cell localization and membrane targeting showed no obvious difference in localization. Src association was normal as assayed by in vitro kinase and MT phosphopeptide mapping. Shc activation was confirmed by its tyrosine phosphorylation. Association of type 1 PI3K with MT was demonstrated by coimmunoprecipitation, showing both PI3K subunits and in vitro activity. Nonetheless, expression of the mutants failed to lead to the activation of two known downstream targets of PI3K, Akt and Rac-1. Strikingly, despite normal association of the E349K mutant with PI3K, cells expressing the mutant failed to elevate phosphatidylinositol (3,4,5)-trisphosphate (PIP3) in mutant-expressing cells. These results indicate a novel unsuspected aspect to PI3K control. The gene coding for middle T antigen (MT) is the murine polyomavirus oncogene most responsible for tumor formation. Its study has a history of uncovering novel

  19. Inhibition of glycogen-synthase kinase 3 stimulates glycogen synthase and glucose transport by distinct mechanisms in 3T3-L1 adipocytes.

    PubMed

    Oreña, S J; Torchia, A J; Garofalo, R S

    2000-05-26

    The role of glycogen-synthase kinase 3 (GSK3) in insulin-stimulated glucose transport and glycogen synthase activation was investigated in 3T3-L1 adipocytes. GSK3 protein was clearly present in adipocytes and was found to be more abundant than in muscle and liver cell lines. The selective GSK3 inhibitor, LiCl, stimulated glucose transport and glycogen synthase activity (20 and 65%, respectively, of the maximal (1 microm) insulin response) and potentiated the responses to a submaximal concentration (1 nm) of insulin. LiCl- and insulin-stimulated glucose transport were abolished by the phosphatidylinositol 3-kinase (PI3-kinase) inhibitor, wortmannin; however, LiCl stimulation of glycogen synthase was not. In contrast to the rapid stimulation of glucose transport by insulin, transport stimulated by LiCl increased gradually over 3-5 h reaching 40% of the maximal insulin-stimulated level. Both LiCl- and insulin-stimulated glycogen synthase activity were maximal at 25 min. However, insulin-stimulated glycogen synthase activity returned to basal after 2 h, coincident with reactivation of GSK3. After a 2-h exposure to insulin, glycogen synthase was refractory to restimulation with insulin, indicating selective desensitization of this pathway. However, LiCl could partially stimulate glycogen synthase in desensitized cells. Furthermore, coincubation with LiCl during the 2 h exposure to insulin completely blocked desensitization of glycogen synthase activity. In summary, inhibition of GSK3 by LiCl: 1) stimulated glycogen synthase activity directly and independently of PI3-kinase, 2) stimulated glucose transport at a point upstream of PI3-kinase, 3) stimulated glycogen synthase activity in desensitized cells, and 4) prevented desensitization of glycogen synthase due to chronic insulin treatment. These data are consistent with GSK3 playing a central role in the regulation of glycogen synthase activity and a contributing factor in the regulation of glucose transport in 3T3-L1

  20. Type I γ Phosphatidylinositol Phosphate 5-Kinase i5 Controls the Ubiquitination and Degradation of the Tumor Suppressor Mitogen-inducible Gene 6*

    PubMed Central

    Sun, Ming; Cai, Jinyang; Anderson, Richard A.; Sun, Yue

    2016-01-01

    Mitogen-inducible gene 6 (Mig6) is a tumor suppressor, and the disruption of Mig6 expression is associated with cancer development. Mig6 directly interacts with epidermal growth factor receptor (EGFR) to suppress the activation and downstream signaling of EGFR. Therefore, loss of Mig6 enhances EGFR-mediated signaling and promotes EGFR-dependent carcinogenesis. The molecular mechanism modulating Mig6 expression in cancer remains unclear. Here we demonstrate that type I γ phosphatidylinositol phosphate 5-kinase i5 (PIPKIγi5), an enzyme producing phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), stabilizes Mig6 expression. Knockdown of PIPKIγi5 leads to the loss of Mig6 expression, which dramatically enhances and prolongs EGFR-mediated cell signaling. Loss of PIPKIγi5 significantly promotes Mig6 protein degradation via proteasomes, but it does not affect the Mig6 mRNA level. PIPKIγi5 directly interacts with the E3 ubiquitin ligase neuronal precursor cell-expressed developmentally down-regulated 4-1 (NEDD4-1). The C-terminal domain of PIPKIγi5 and the WW1 and WW2 domains of NEDD4-1 are required for their interaction. The C2 domain of NEDD4-1 is required for its interaction with PtdIns(4,5)P2. By binding with NEDD4-1 and producing PtdIns(4,5)P2, PIPKIγi5 perturbs NEDD4-1-mediated Mig6 ubiquitination and the subsequent proteasomal degradation. Thus, loss of NEDD4-1 can rescue Mig6 expression in PIPKIγi5 knockdown cells. In this way, PIPKIγi5, NEDD4-1, and Mig6 form a novel molecular nexus that controls EGFR activation and downstream signaling. PMID:27557663

  1. Type I γ Phosphatidylinositol Phosphate 5-Kinase i5 Controls the Ubiquitination and Degradation of the Tumor Suppressor Mitogen-inducible Gene 6.

    PubMed

    Sun, Ming; Cai, Jinyang; Anderson, Richard A; Sun, Yue

    2016-10-07

    Mitogen-inducible gene 6 (Mig6) is a tumor suppressor, and the disruption of Mig6 expression is associated with cancer development. Mig6 directly interacts with epidermal growth factor receptor (EGFR) to suppress the activation and downstream signaling of EGFR. Therefore, loss of Mig6 enhances EGFR-mediated signaling and promotes EGFR-dependent carcinogenesis. The molecular mechanism modulating Mig6 expression in cancer remains unclear. Here we demonstrate that type I γ phosphatidylinositol phosphate 5-kinase i5 (PIPKIγi5), an enzyme producing phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P 2 ), stabilizes Mig6 expression. Knockdown of PIPKIγi5 leads to the loss of Mig6 expression, which dramatically enhances and prolongs EGFR-mediated cell signaling. Loss of PIPKIγi5 significantly promotes Mig6 protein degradation via proteasomes, but it does not affect the Mig6 mRNA level. PIPKIγi5 directly interacts with the E3 ubiquitin ligase neuronal precursor cell-expressed developmentally down-regulated 4-1 (NEDD4-1). The C-terminal domain of PIPKIγi5 and the WW1 and WW2 domains of NEDD4-1 are required for their interaction. The C2 domain of NEDD4-1 is required for its interaction with PtdIns(4,5)P 2 By binding with NEDD4-1 and producing PtdIns(4,5)P 2 , PIPKIγi5 perturbs NEDD4-1-mediated Mig6 ubiquitination and the subsequent proteasomal degradation. Thus, loss of NEDD4-1 can rescue Mig6 expression in PIPKIγi5 knockdown cells. In this way, PIPKIγi5, NEDD4-1, and Mig6 form a novel molecular nexus that controls EGFR activation and downstream signaling. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Phosphatidylinositol(4,5)bisphosphate and phosphatidylinositol(4)phosphate in plant tissues. [Pisum sativum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irvine, R.F.; Letcher, A.J.; Lander, D.J.

    1989-03-01

    Pea (Pisum sativum) leaf discs or swimming suspensions of Chlamydomonas eugametos were radiolabeled with ({sup 3}H)myo-inositol or ({sup 32}P)Pi and the lipids were extracted, deacylated, and their glycerol moieties removed. The resulting inositol trisphosphate and bisphosphate fractions were examined by periodate degradation, reduction and dephosphorylation, or by incubation with human red cell membranes. Their likely structures were identified as D-myo-inositol(1,4,5)trisphosphate and D-myo-inositol(1,4,)-bisphosphate. It is concluded that plants contain phosphatidylinositol(4)phosphate and phosphatidylinositol(4,5)bisphosphate; no other polyphosphoinositides were detected.

  3. Luteinizing hormone stimulates mammalian target of rapamycin signaling in bovine luteal cells via pathways independent of AKT and mitogen-activated protein kinase: modulation of glycogen synthase kinase 3 and AMP-activated protein kinase.

    PubMed

    Hou, Xiaoying; Arvisais, Edward W; Davis, John S

    2010-06-01

    LH stimulates the production of cAMP in luteal cells, which leads to the production of progesterone, a hormone critical for the maintenance of pregnancy. The mammalian target of rapamycin (MTOR) signaling cascade has recently been examined in ovarian follicles where it regulates granulosa cell proliferation and differentiation. This study examined the actions of LH on the regulation and possible role of the MTOR signaling pathway in primary cultures of bovine corpus luteum cells. Herein, we demonstrate that activation of the LH receptor stimulates the phosphorylation of the MTOR substrates ribosomal protein S6 kinase 1 (S6K1) and eukaryotic translation initiation factor 4E binding protein 1. The actions of LH were mimicked by forskolin and 8-bromo-cAMP. LH did not increase AKT or MAPK1/3 phosphorylation. Studies with pathway-specific inhibitors demonstrated that the MAPK kinase 1 (MAP2K1)/MAPK or phosphatidylinositol 3-kinase/AKT signaling pathways were not required for LH-stimulated MTOR/S6K1 activity. However, LH decreased the activity of glycogen synthase kinase 3Beta (GSK3B) and AMP-activated protein kinase (AMPK). The actions of LH on MTOR/S6K1 were mimicked by agents that modulated GSK3B and AMPK activity. The ability of LH to stimulate progesterone secretion was not prevented by rapamycin, a MTOR inhibitor. In contrast, activation of AMPK inhibited LH-stimulated MTOR/S6K1 signaling and progesterone secretion. In summary, the LH receptor stimulates a unique series of intracellular signals to activate MTOR/S6K1 signaling. Furthermore, LH-directed changes in AMPK and GSK3B phosphorylation appear to exert a greater impact on progesterone synthesis in the corpus luteum than rapamycin-sensitive MTOR-mediated events.

  4. Isoflurane postconditioning prevents opening of the mitochondrial permeability transition pore through inhibition of glycogen synthase kinase 3beta.

    PubMed

    Feng, Jianhua; Lucchinetti, Eliana; Ahuja, Preeti; Pasch, Thomas; Perriard, Jean-Claude; Zaugg, Michael

    2005-11-01

    Postischemic administration of volatile anesthetics activates reperfusion injury salvage kinases and decreases myocardial damage. However, the mechanisms underlying anesthetic postconditioning are unclear. Isolated perfused rat hearts were exposed to 40 min of ischemia followed by 1 h of reperfusion. Anesthetic postconditioning was induced by 15 min of 2.1 vol% isoflurane (1.5 minimum alveolar concentration) administered at the onset of reperfusion. In some experiments, atractyloside (10 microm), a mitochondrial permeability transition pore (mPTP) opener, and LY294002 (15 microm), a phosphatidylinositol 3-kinase inhibitor, were coadministered with isoflurane. Western blot analysis was used to determine phosphorylation of protein kinase B/Akt and its downstream target glycogen synthase kinase 3beta after 15 min of reperfusion. Myocardial tissue content of nicotinamide adenine dinucleotide served as a marker for mPTP opening. Accumulation of MitoTracker Red 580 (Molecular Probes, Invitrogen, Basel, Switzerland) was used to visualize mitochondrial function. Anesthetic postconditioning significantly improved functional recovery and decreased infarct size (36 +/- 1% in unprotected hearts vs. 3 +/- 2% in anesthetic postconditioning; P < 0.05). Isoflurane-mediated protection was abolished by atractyloside and LY294002. LY294002 inhibited isoflurane-induced phosphorylation of protein kinase B/Akt and glycogen synthase kinase 3beta and opened mPTP as determined by nicotinamide adenine dinucleotide measurements. Atractyloside, a direct opener of the mPTP, did not inhibit phosphorylation of protein kinase B/Akt and glycogen synthase kinase 3beta by isoflurane but reversed isoflurane-mediated cytoprotection. Microscopy showed accumulation of the mitochondrial tracker in isoflurane-protected functional mitochondria but no staining in mitochondria of unprotected hearts. Anesthetic postconditioning by isoflurane effectively protects against reperfusion damage by preventing

  5. Design and synthesis of imidazopyridine analogues as inhibitors of phosphoinositide 3-kinase signaling and angiogenesis.

    PubMed

    Kim, Okseon; Jeong, Yujeong; Lee, Hyunseung; Hong, Sun-Sun; Hong, Sungwoo

    2011-04-14

    Phosphatidylinositol 3-kinase α (PI3Kα) is an important regulator of intracellular signaling pathways, controlling remarkably diverse arrays of physiological processes. Because the PI3K pathway is frequently up-regulated in human cancers, the inhibition of PI3Kα can be a promising approach to cancer therapy. In this study, we have designed and synthesized a new series of imidazo[1,2-a]pyridine derivatives as PI3Kα inhibitors through the fragment-growing strategy. By varying groups at the 3- and 6-positions of imidazo[1,2-a]pyridines, we studied the structure-activity relationships (SAR) profiles and identified a series of potent PI3Kα inhibitors. Representative derivatives showed good activity in cellular proliferation and apoptosis assays. Moreover, these inhibitors exhibited noteworthy antiangiogenic activity.

  6. Ellagitannin-rich cloudberry inhibits hepatocyte growth factor induced cell migration and phosphatidylinositol 3-kinase/AKT activation in colon carcinoma cells and tumors in Min mice

    PubMed Central

    Pajari, Anne-Maria; Päivärinta, Essi; Paavolainen, Lassi; Vaara, Elina; Koivumäki, Tuuli; Garg, Ritu; Heiman-Lindh, Anu; Mutanen, Marja; Marjomäki, Varpu; Ridley, Anne J.

    2016-01-01

    Berries have been found to inhibit colon carcinogenesis in animal models, and thus represent a potential source of compounds for prevention and treatment of colorectal cancer. The mechanistic basis for their effects is not well understood. We used human colon carcinoma cells and Min mice to investigate the effects of ellagitannin-rich cloudberry (Rubus chamaemorus) extract on cancer cell migration and underlying cell signaling. Intrinsic and hepatocyte growth factor (HGF) -induced cell motility in human HT29 and HCA7 colon carcinoma cells was assessed carrying out cell scattering and scratch wound healing assays using time-lapse microscopy. Activation of Met, AKT, and ERK in cell lines and tumors of cloudberry-fed Min mice were determined using immunoprecipitation, Western blot and immunohistochemical analyses. Cloudberry extract significantly inhibited particularly HGF-induced cancer cell migration in both cell lines. Cloudberry extract inhibited the Met receptor tyrosine phosphorylation by HGF and strongly suppressed HGF-induced AKT and ERK activation in both HT29 and HCA7 cells. Consistently, cloudberry feeding (10% w/w freeze-dried berries in diet for 10 weeks) reduced the level of active AKT and prevented phosphoMet localization at the edges in tumors of Min mice. These results indicate that cloudberry reduces tumor growth and cancer cell motility by inhibiting Met signaling and consequent activation of phosphatidylinositol 3-kinase/AKT in vitro and in tumors in vivo. As the Met receptor is recognized to be a major target in cancer treatment, our results suggest that dietary phytochemicals may have therapeutic value in reducing cancer progression and metastasis. PMID:27270323

  7. PI3-kinase promotes TRPV2 activity independently of channel translocation to the plasma membrane.

    PubMed

    Penna, Aubin; Juvin, Véronique; Chemin, Jean; Compan, Vincent; Monet, Michael; Rassendren, François-A

    2006-06-01

    Cellular or chemical activators for most transient receptor potential channels of the vanilloid subfamily (TRPV) have been identified in recent years. A remarkable exception to this is TRPV2, for which cellular events leading to channel activation are still a matter of debate. Diverse stimuli such as extreme heat or phosphatidylinositol-3 kinase (PI3-kinase) regulated membrane insertion have been shown to promote TRPV2 channel activity. However, some of these results have proved difficult to reproduce and may underlie different gating mechanisms depending on the cell type in which TRPV2 channels are expressed. Here, we show that expression of recombinant TRPV2 can induce cytotoxicity that is directly related to channel activity since it can be prevented by introducing a charge substitution in the pore-forming domain of the channel, or by reducing extracellular calcium. In stably transfected cells, TRPV2 expression results in an outwardly rectifying current that can be recorded at all potentials, and in an increase of resting intracellular calcium concentration that can be partly prevented by serum starvation. Using cytotoxicity as a read-out of channel activity and direct measurements of cell surface expression of TRPV2, we show that inhibition of the PI3-kinase decreases TRPV2 channel activity but does not affect the trafficking of the channel to the plasma membrane. It is concluded that PI3-kinase induces or modulates the activity of recombinant TRPV2 channels; in contrast to the previously proposed mechanism, activation of TRPV2 channels by PI3-kinase is not due to channel translocation to the plasma membrane.

  8. Amplification of Chromosome 1q Genes Encoding the Phosphoinositide Signalling Enzymes PI4KB, AKT3, PIP5K1A and PI3KC2B in Breast Cancer

    PubMed Central

    Waugh, Mark G.

    2014-01-01

    Little is known about the possible oncogenic roles of genes encoding for the phosphatidylinositol 4-kinases, a family of enzymes that regulate an early step in phosphoinositide signalling. To address this issue, the mutational status of all four human phosphatidylinositol 4-kinases genes was analyzed across 852 breast cancer samples using the COSMIC data resource. Point mutations in the phosphatidylinositol 4-kinase genes were uncommon and appeared in less than 1% of the patient samples however, 62% of the tumours had increases in gene copy number for PI4KB which encodes the phosphatidylinositol 4-kinase IIIbeta isozyme. Extending this analysis to subsequent enzymes in the phosphoinositide signalling cascades revealed that the only PIP5K1A, PI3KC2B and AKT3 genes exhibited similar patterns of gene copy number variation. By comparison, gene copy number increases for established oncogenes such as EGFR and HER2/Neu were only evident in 20% of the samples. The PI4KB, PIP5K1A, PI3KC2B and AKT3 genes are related in that they all localize to chromosome 1q which is often structurally and numerically abnormal in breast cancer. These results demonstrate that a gene quartet encoding a potential phosphoinositide signalling pathway is amplified in a subset of breast cancers. PMID:25368680

  9. Arabidopsis phosphatidylinositol monophosphate 5-kinase 2 is involved in root gravitropism through regulation of polar auxin transport by affecting the cycling of PIN proteins.

    PubMed

    Mei, Yu; Jia, Wen-Jing; Chu, Yu-Jia; Xue, Hong-Wei

    2012-03-01

    Phosphatidylinositol monophosphate 5-kinase (PIP5K) catalyzes the synthesis of PI-4,5-bisphosphate (PtdIns(4,5)P(2)) by phosphorylation of PI-4-phosphate at the 5 position of the inositol ring, and is involved in regulating multiple developmental processes and stress responses. We here report on the functional characterization of Arabidopsis PIP5K2, which is expressed during lateral root initiation and elongation, and whose expression is enhanced by exogenous auxin. The knockout mutant pip5k2 shows reduced lateral root formation, which could be recovered with exogenous auxin, and interestingly, delayed root gravity response that could not be recovered with exogenous auxin. Crossing with the DR5-GUS marker line and measurement of free IAA content confirmed the reduced auxin accumulation in pip5k2. In addition, analysis using the membrane-selective dye FM4-64 revealed the decelerated vesicle trafficking caused by PtdIns(4,5)P(2) reduction, which hence results in suppressed cycling of PIN proteins (PIN2 and 3), and delayed redistribution of PIN2 and auxin under gravistimulation in pip5k2 roots. On the contrary, PtdIns(4,5)P(2) significantly enhanced the vesicle trafficking and cycling of PIN proteins. These results demonstrate that PIP5K2 is involved in regulating lateral root formation and root gravity response, and reveal a critical role of PIP5K2/PtdIns(4,5)P(2) in root development through regulation of PIN proteins, providing direct evidence of crosstalk between the phosphatidylinositol signaling pathway and auxin response, and new insights into the control of polar auxin transport.

  10. Mutation in fission yeast phosphatidylinositol 4-kinase Pik1 is synthetically lethal with defect in telomere protection protein Pot1.

    PubMed

    Sugihara, Asami; Nguyen, Luan Cao; Shamim, Hossain Mohammad; Iida, Tetsushi; Nakase, Mai; Takegawa, Kaoru; Senda, Mitsuhisa; Jida, Shohei; Ueno, Masaru

    2018-02-19

    Fission yeast Pik1p is one of three phosphatidylinositol 4-kinases associated with the Golgi complex, but its function is not fully understood. Deletion of pot1 + causes telomere degradation and chromosome circularization. We searched for the gene which becomes synthetically lethal with pot1Δ. We obtained a novel pik1 mutant, pik1-1, which is synthetically lethal with pot1Δ. We found phosphoinositol 4-phosphate in the Golgi was reduced in pik1-1. To investigate the mechanism of the lethality of the pot1Δ pik1-1 double mutant, we constructed the nmt-pot1-aid pik1-1 strain, where Pot1 function becomes low by drugs, which leads to telomere loss and chromosome circularization, and found pik1-1 mutation does not affect telomere resection and chromosome circularization. Thus, our results suggest that pik1 + is required for the maintenance of circular chromosomes. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. The identification of 2-(1H-indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine (GDC-0941) as a potent, selective, orally bioavailable inhibitor of class I PI3 kinase for the treatment of cancer .

    PubMed

    Folkes, Adrian J; Ahmadi, Khatereh; Alderton, Wendy K; Alix, Sonia; Baker, Stewart J; Box, Gary; Chuckowree, Irina S; Clarke, Paul A; Depledge, Paul; Eccles, Suzanne A; Friedman, Lori S; Hayes, Angela; Hancox, Timothy C; Kugendradas, Arumugam; Lensun, Letitia; Moore, Pauline; Olivero, Alan G; Pang, Jodie; Patel, Sonal; Pergl-Wilson, Giles H; Raynaud, Florence I; Robson, Anthony; Saghir, Nahid; Salphati, Laurent; Sohal, Sukhjit; Ultsch, Mark H; Valenti, Melanie; Wallweber, Heidi J A; Wan, Nan Chi; Wiesmann, Christian; Workman, Paul; Zhyvoloup, Alexander; Zvelebil, Marketa J; Shuttleworth, Stephen J

    2008-09-25

    Phosphatidylinositol-3-kinase (PI3K) is an important target in cancer due to the deregulation of the PI3K/ Akt signaling pathway in a wide variety of tumors. A series of thieno[3,2-d]pyrimidine derivatives were prepared and evaluated as inhibitors of PI3 kinase p110alpha. The synthesis, biological activity, and further profiling of these compounds are described. This work resulted in the discovery of 17, GDC-0941, which is a potent, selective, orally bioavailable inhibitor of PI3K and is currently being evaluated in human clinical trials for the treatment of cancer.

  12. Phosphatidylinositol 4-Kinase III Beta Is Essential for Replication of Human Rhinovirus and Its Inhibition Causes a Lethal Phenotype In Vivo

    PubMed Central

    Spickler, Catherine; Lippens, Julie; Laberge, Marie-Kristine; Desmeules, Sophie; Bellavance, Édith; Garneau, Michel; Guo, Tim; Hucke, Oliver; Leyssen, Pieter; Neyts, Johan; Vaillancourt, Fréderic H.; Décor, Anne; O'Meara, Jeff; Franti, Michael

    2013-01-01

    Human rhinovirus (HRV) is the predominant cause of the common cold, but more importantly, infection may have serious repercussions in asthmatics and chronic obstructive pulmonary disorder (COPD) patients. A cell-based antiviral screen against HRV was performed with a subset of our proprietary compound collection, and an aminothiazole series with pan-HRV species and enteroviral activity was identified. The series was found to act at the level of replication in the HRV infectious cycle. In vitro selection and sequencing of aminothiazole series-resistant HRV variants revealed a single-nucleotide mutation leading to the amino acid change I42V in the essential HRV 3A protein. This same mutation has been previously implicated in resistance to enviroxime, a former clinical-stage antipicornavirus agent. Enviroxime-like compounds have recently been shown to target the lipid kinase phosphatidylinositol 4-kinase III beta (PI4KIIIβ). A good correlation between PI4KIIIβ activity and HRV antiviral potency was found when analyzing the data over 80 compounds of the aminothiazole series, covering a 750-fold potency range. The mechanism of action through PI4KIIIβ inhibition was further demonstrated by small interfering RNA (siRNA) knockdown of PI4KB, which reduced HRV replication and also increased the potency of the PI4KIIIβ inhibitors. Inhibitors from two different structural classes with promising pharmacokinetic profiles and with very good selectivity for PI4KIIIβ were used to dissociate compound-related toxicity from target-related toxicity. Mortality was seen in all dosing groups of mice treated with either compound, therefore suggesting that short-term inhibition of PI4KIIIβ is deleterious. PMID:23650168

  13. Gemfibrozil, a Lipid-lowering Drug, Induces Suppressor of Cytokine Signaling 3 in Glial Cells

    PubMed Central

    Ghosh, Arunava; Pahan, Kalipada

    2012-01-01

    Glial inflammation is an important feature of several neurodegenerative disorders. Suppressor of cytokine signaling (SOCS) proteins play a crucial role in inhibiting cytokine signaling and inflammatory gene expression in various cell types, including glial cells. However, mechanisms by which SOCS genes could be up-regulated are poorly understood. This study underlines the importance of gemfibrozil, a Food and Drug Administration-approved lipid-lowering drug, in up-regulating the expression of SOCS3 in glial cells. Gemfibrozil increased the expression of Socs3 mRNA and protein in mouse astroglia and microglia in both a time- and dose-dependent manner. Interestingly, gemfibrozil induced the activation of type IA phosphatidylinositol (PI) 3-kinase and AKT. Accordingly, inhibition of PI 3-kinase and AKT by chemical inhibitors abrogated gemfibrozil-mediated up-regulation of SOCS3. Furthermore, we demonstrated that gemfibrozil induced the activation of Krüppel-like factor 4 (KLF4) via the PI 3-kinase-AKT pathway and that siRNA knockdown of KLF4 abrogated gemfibrozil-mediated up-regulation of SOCS3. Gemfibrozil also induced the recruitment of KLF4 to the distal, but not proximal, KLF4-binding site of the Socs3 promoter. This study delineates a novel property of gemfibrozil in up-regulating SOCS3 in glial cells via PI 3-kinase-AKT-mediated activation of KLF4 and suggests that gemfibrozil may find therapeutic application in neuroinflammatory and neurodegenerative disorders. PMID:22685291

  14. Probing the phosphatidylinositol 3-kinase/mammalian target of rapamycin pathway in gliomas: A phase 2 study of everolimus for recurrent adult low-grade gliomas.

    PubMed

    Wahl, Michael; Chang, Susan M; Phillips, Joanna J; Molinaro, Annette M; Costello, Joseph F; Mazor, Tali; Alexandrescu, Sanda; Lupo, Janine M; Nelson, Sarah J; Berger, Mitchel; Prados, Michael; Taylor, Jennie W; Butowski, Nicholas; Clarke, Jennifer L; Haas-Kogan, Daphne

    2017-12-01

    Activation of the phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathway is common in patients with low-grade gliomas (LGGs), but agents that inhibit this pathway, including mTOR inhibitors, have not been studied in this population. Fifty-eight patients with pathologic evidence of recurrence after they had initially been diagnosed with World Health Organization (WHO) grade II gliomas were enrolled into a prospective phase 2 clinical trial and received daily everolimus (RAD001) for 1 year or until progression. Tissue at the time of enrollment was analyzed for markers of PI3K/mTOR pathway activation. Thirty-eight patients underwent serial multiparametric magnetic resonance imaging, with the tumor volume and the perfusion metrics (the fractional blood volume [fBV] for capillary density and the transfer coefficient [K ps ] for vascular permeability) measured during treatment. The primary endpoint was progression-free survival at 6 months (PFS-6) in patients with WHO II disease at enrollment. For patients with WHO II gliomas at enrollment, the PFS-6 rate was 84%, and this met the primary endpoint (P < .001 for an improvement from the historical rate of 17%). Evidence of PI3K/mTOR activation by immunohistochemistry for phosphorylated ribosomal S6 Ser240/244 (p-S6 Ser240/244 ) was associated with worse progression-free survival (PFS; hazard ratio [HR], 3.03; P = .004) and overall survival (HR, 12.7; P = .01). Tumor perfusion decreased after 6 months (median decrease in fBV, 15%; P = .03; median decrease in K ps , 12%; P = .09), with greater decreases associated with improved PFS (HR for each 10% fBV decrease, 0.71; P = .01; HR for each 10% K ps decrease, 0.82; P = .04). Patients with recurrent LGGs demonstrated a high degree of disease stability during treatment with everolimus. PI3K/mTOR activation, as measured by immunohistochemistry for p-S6, was associated with a worse prognosis. Tumor vascular changes were

  15. Diabetes abolishes the cardioprotection induced by sevoflurane postconditioning in the rat heart in vivo: roles of glycogen synthase kinase-3β and its upstream pathways.

    PubMed

    Tai, Wenjun; Shi, Enyi; Yan, Lihui; Jiang, Xiaojing; Ma, Hong; Ai, Chunyu

    2012-11-01

    We measured the cardioprotection afforded by sevoflurane postconditioning in streptozotocin-induced diabetic rats (DRs) and determined the roles of glycogen synthase kinase (GSK), phosphatidylinositol-3-kinase/Akt, and extracellular signal-regulated kinase (ERK1/2) in such a procedure. DRs and nondiabetic rats (NDRs) were subjected to a 30-min coronary artery occlusion followed by a 120-min reperfusion. Postconditioning was achieved by inhalation of 1 minimum alveolar concentration sevoflurane at the first 5 min of reperfusion. The infarct size was determined by triphenyltetrazolium chloride staining. Expressions of GSK-3β, Akt, and ERK1/2 were measured using Western blotting. In NDRs, the infarct size was significantly decreased from 53.4% ± 7.6% to 34.9% ± 5.6% by sevoflurane postconditioning (P < 0.01). Such an anti-infarct effect was abolished completely in the DRs, as evidenced by a similar infarct size observed between the sevoflurane-treated and untreated DRs (49.3% ± 8.6% and 49.6% ± 9.3%, respectively, P > 0.05). Direct inhibition of GSK-3β by injection of SB216763 just before the start of reperfusion induced equivalent infarct-sparing effects in both NDRs (37.8% ± 3.9% and 53.4% ± 7.6% in SB216763-treated and untreated NDRs, respectively; P < 0.01) and DRs (38.8% ± 3.2% and 49.3% ± 8.6% in SB216763-treated and untreated DRs, respectively; P < 0.05). Sevoflurane postconditioning remarkably enhanced the phosphorylation of GSK-3β Ser(9), Akt Ser(473), and ERK1/2 in NDRs, which were blocked in DRs. The cardioprotection induced by sevoflurane postconditioning is abolished by diabetes. This might be due to the impairment of phosphorylation of GSK-3β and its upstream signaling pathways of phosphatidylinositol-3-kinase/Akt and ERK1/2 in the presence of diabetes. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. In vitro glucose uptake activity of Aegles marmelos and Syzygium cumini by activation of Glut-4, PI3 kinase and PPARgamma in L6 myotubes.

    PubMed

    Anandharajan, R; Jaiganesh, S; Shankernarayanan, N P; Viswakarma, R A; Balakrishnan, A

    2006-06-01

    The purpose of the present study is to investigate the effect of methanolic extracts of Aegles marmelos and Syzygium cumini on a battery of targets glucose transporter (Glut-4), peroxisome proliferator activator receptor gamma (PPARgamma) and phosphatidylinositol 3' kinase (PI3 kinase) involved in glucose transport. A. marmelos and S. cumini are anti-diabetic medicinal plants being used in Indian traditional medicine. Different solvent extracts extracted sequentially were analysed for glucose uptake activity at each step and methanol extracts were found to be significantly active at 100ng/ml dose comparable with insulin and rosiglitazone. Elevation of Glut-4, PPARgamma and PI3 kinase by A. marmelos and S. cumini in association with glucose transport supported the up-regulation of glucose uptake. The inhibitory effect of cycloheximide on A. marmelos- and S. cumini-mediated glucose uptake suggested that new protein synthesis is required for the elevated glucose transport. Current observation concludes that methanolic extracts of A. marmelos and S. cumini activate glucose transport in a PI3 kinase-dependent fashion.

  17. Rab27a controls HIV-1 assembly by regulating plasma membrane levels of phosphatidylinositol 4,5-bisphosphate

    PubMed Central

    Gerber, Pehuén Pereyra; Cabrini, Mercedes; Jancic, Carolina; Paoletti, Luciana; Banchio, Claudia; von Bilderling, Catalina; Sigaut, Lorena; Pietrasanta, Lía I.; Duette, Gabriel; Freed, Eric O.; de Saint Basile, Genevieve; Moita, Catarina Ferreira; Moita, Luis Ferreira; Amigorena, Sebastian; Benaroch, Philippe; Geffner, Jorge

    2015-01-01

    During the late stages of the HIV-1 replication cycle, the viral polyprotein Pr55Gag is recruited to the plasma membrane (PM), where it binds phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and directs HIV-1 assembly. We show that Rab27a controls the trafficking of late endosomes carrying phosphatidylinositol 4-kinase type 2 α (PI4KIIα) toward the PM of CD4+ T cells. Hence, Rab27a promotes high levels of PM phosphatidylinositol 4-phosphate and the localized production of PI(4,5)P2, therefore controlling Pr55Gag membrane association. Rab27a also controls PI(4,5)P2 levels at the virus-containing compartments of macrophages. By screening Rab27a effectors, we identified that Slp2a, Slp3, and Slac2b are required for the association of Pr55Gag with the PM and that Slp2a cooperates with Rab27a in the recruitment of PI4KIIα to the PM. We conclude that by directing the trafficking of PI4KIIα-positive endosomes toward the PM, Rab27a controls PI(4,5)P2 production and, consequently, HIV-1 replication. PMID:25940347

  18. The selective and inducible activation of endogenous PI 3-kinase in PC12 cells results in efficient NGF-mediated survival but defective neurite outgrowth.

    PubMed

    Ashcroft, M; Stephens, R M; Hallberg, B; Downward, J; Kaplan, D R

    1999-08-12

    The Trk/Nerve Growth Factor receptor mediates the rapid activation of a number of intracellular signaling proteins, including phosphatidylinositol 3-kinase (PI 3-kinase). Here, we describe a novel, NGF-inducible system that we used to specifically address the signaling potential of endogenous PI 3-kinase in NGF-mediated neuronal survival and differentiation processes. This system utilizes a Trk receptor mutant (Trk(def)) lacking sequences Y490, Y785 and KFG important for the activation of the major Trk targets; SHC, PLC-gammal, Ras, PI 3-kinase and SNT. Trk(def) was kinase active but defective for NGF-induced responses when stably expressed in PC12nnr5 cells (which lack detectable levels of TrkA and are non-responsive to NGF). The PI 3-kinase consensus binding site, YxxM (YVPM), was introduced into the insert region within the kinase domain of Trk(def). NGF-stimulated tyrosine phosphorylation of the Trk(def)+PI 3-kinase addback receptor, resulted in the direct association and selective activation of PI 3-kinase in vitro and the production of PI(3,4)P2 and PI(3,4,5)P3 in vivo (comparable to wild-type). PC12nnr5 cells stably expressing Trk(def) + PI 3-kinase, initiated neurite outgrowth but failed to stably extend and maintain these neurites in response to NGF as compared to PC12 parental cells, or PC12nnr5 cells overexpressing wild-type Trk. However, Trk(def) + PI 3-kinase was fully competent in mediating NGF-induced survival processes. We propose that while endogenous PI 3-kinase can contribute in part to neurite initiation processes, its selective activation and subsequent signaling to downstream effectors such as Akt, functions mainly to promote cell survival in the PC12 system.

  19. l-Ascorbic acid 2-phosphate promotes elongation of hair shafts via the secretion of insulin-like growth factor-1 from dermal papilla cells through phosphatidylinositol 3-kinase.

    PubMed

    Kwack, M H; Shin, S H; Kim, S R; Im, S U; Han, I S; Kim, M K; Kim, J C; Sung, Y K

    2009-06-01

    l-Ascorbic acid 2-phosphate (Asc 2-P), a derivative of l-ascorbic acid, promotes elongation of hair shafts in cultured human hair follicles and induces hair growth in mice. To investigate whether the promotion of hair growth by Asc 2-P is mediated by insulin-like growth factor-1 (IGF-1) and, if so, to investigate the mechanism of the Asc 2-P-induced IGF-1 expression. Dermal papilla (DP) cells were cultured and IGF-1 level was measured by reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay after Asc 2-P treatment in the absence or presence of LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor. Also, hair shaft elongation in cultured human scalp hair follicles and proliferation of cocultured keratinocytes were examined after Asc 2-P treatment in the absence or presence of neutralizing antibody against IGF-1. In addition, keratinocyte proliferation in cultured hair follicles after Asc 2-P treatment in the absence or presence of LY294002 was examined by Ki-67 immunostaining. IGF-1 mRNA in DP cells was upregulated and IGF-1 protein in the conditioned medium of DP cells was significantly increased after treatment with Asc 2-P. Immunohistochemical staining showed that IGF-1 staining is increased in the DP of cultured human hair follicles by Asc 2-P. The neutralizing antibody against IGF-1 significantly suppressed the Asc 2-P-mediated elongation of hair shafts in hair follicle organ culture and significantly attenuated Asc 2-P-induced growth of cocultured keratinocytes. LY294002 significantly attenuated Asc 2-P-inducible IGF-1 expression and proliferation of follicular keratinocytes in cultured hair follicles. These data show that Asc 2-P-inducible IGF-1 from DP cells promotes proliferation of follicular keratinocytes and stimulates hair follicle growth in vitro via PI3K.

  20. Involvement of protein kinase B and mitogen-activated protein kinases in experimental normothermic liver ischaemia-reperfusion injury.

    PubMed

    Cursio, R; Filippa, N; Miele, C; Van Obberghen, E; Gugenheim, J

    2006-06-01

    This study evaluated the role of protein kinase B (PKB), phosphatidylinositol 3-kinase (PI3-K), Bcl-2-associated death protein (BAD) and mitogen-activated protein kinases (MAPKs) in normothermic ischaemia-reperfusion (IR)-induced apoptosis in rat liver. Rats were divided into two groups that received either phosphate-buffered saline (control) or the caspase inhibitor Z-Asp-2,6-dichorobenzoyloxymethylketone (Z-Asp-cmk), injected intravenously 2 min before the induction of 120 min of normothermic liver ischaemia. Liver apoptosis was assessed by the terminal deoxyribonucleotidyltransferase-mediated dUTP nick end labelling (TUNEL) method. PI3-K, PKB, BAD and MAPK activities were measured in ischaemic and non-ischaemic lobes at various times after reperfusion. The number of TUNEL-positive cells was significantly decreased after pretreatment with Z-Asp-cmk. In controls, PI3-K and PKB activities and BAD phosphorylation were inhibited in ischaemic liver lobes. The MAPKs (extracellular signal-regulated kinases, c-Jun N-terminal kinase and p38) showed different patterns of activation during IR. PKB activity was not modified by pretreatment with Z-Asp-cmk. Induction of apoptosis during IR liver injury might be triggered by inactivation of the antiapoptotic PI3-K-PKB pathway and activation of the proapoptotic MAPKs. Copyright (c) 2006 British Journal of Surgery Society Ltd. Published by John Wiley & Sons, Ltd.

  1. The anti-apoptotic activity associated with phosphatidylinositol transfer protein alpha activates the MAPK and Akt/PKB pathway.

    PubMed

    Schenning, Martijn; Goedhart, Joachim; Gadella, Theodorus W J; Avram, Diana; Wirtz, Karel W A; Snoek, Gerry T

    2008-10-01

    The conditioned medium (CM) from mouse NIH3T3 fibroblast cells overexpressing phosphatidylinositol transfer protein alpha (PI-TPalpha; SPIalpha cells) demonstrates an increased anti-apoptotic activity compared with CM from wild type NIH3T3 (wtNIH3T3) cells. As previously shown, the anti-apoptotic activity acts by activating a G protein-coupled receptor, most probably a cannabinoid 1 (CB1)-like receptor as the activity was blocked by both pertussis toxin and rimonabant [M. Schenning, C.M. van Tiel, D. Van Manen, J.C. Stam, B.M. Gadella, K.W. Wirtz and G.T. Snoek, Phosphatidylinositol transfer protein alpha regulates growth and apoptosis of NIH3T3 cells: involvement of a cannabinoid 1-like receptor, J. Lipid Res. 45 (2004) 1555-1564]. The CB1 receptor appears to be expressed in mouse fibroblast cells, at levels in the order SPIalpha>wtNIH3T3>SPIbeta cells (i.e. wild type cells overexpressing PI-TPbeta). Upon incubation of SPIbeta cells with the PI-TPalpha-dependent anti-apoptotic factors, both the ERK/MAP kinase and the Akt/PKB pathway are activated in a CB1 receptor dependent manner as shown by Western blotting. In addition, activation of ERK2 was also shown by EYFP-ERK2 translocation to the nucleus, as visualized by confocal laser scanning microscopy. The subsequent activation of the anti-apoptotic transcription factor NF-kappaB is in line with the increased resistance towards UV-induced apoptosis. On the other hand, receptor activation by CM from SPIalpha cells was not linked to phospholipase C activation as the YFP-labelled C2-domain of protein kinase C was not translocated to the plasma membrane of SPIbeta cells as visualized by confocal laser scanning microscopy.

  2. Gemfibrozil, a lipid-lowering drug, induces suppressor of cytokine signaling 3 in glial cells: implications for neurodegenerative disorders.

    PubMed

    Ghosh, Arunava; Pahan, Kalipada

    2012-08-03

    Glial inflammation is an important feature of several neurodegenerative disorders. Suppressor of cytokine signaling (SOCS) proteins play a crucial role in inhibiting cytokine signaling and inflammatory gene expression in various cell types, including glial cells. However, mechanisms by which SOCS genes could be up-regulated are poorly understood. This study underlines the importance of gemfibrozil, a Food and Drug Administration-approved lipid-lowering drug, in up-regulating the expression of SOCS3 in glial cells. Gemfibrozil increased the expression of Socs3 mRNA and protein in mouse astroglia and microglia in both a time- and dose-dependent manner. Interestingly, gemfibrozil induced the activation of type IA phosphatidylinositol (PI) 3-kinase and AKT. Accordingly, inhibition of PI 3-kinase and AKT by chemical inhibitors abrogated gemfibrozil-mediated up-regulation of SOCS3. Furthermore, we demonstrated that gemfibrozil induced the activation of Krüppel-like factor 4 (KLF4) via the PI 3-kinase-AKT pathway and that siRNA knockdown of KLF4 abrogated gemfibrozil-mediated up-regulation of SOCS3. Gemfibrozil also induced the recruitment of KLF4 to the distal, but not proximal, KLF4-binding site of the Socs3 promoter. This study delineates a novel property of gemfibrozil in up-regulating SOCS3 in glial cells via PI 3-kinase-AKT-mediated activation of KLF4 and suggests that gemfibrozil may find therapeutic application in neuroinflammatory and neurodegenerative disorders.

  3. Phosphatidylinositol 3,5-Bisphosphate-Rich Membrane Domains in Endosomes and Lysosomes.

    PubMed

    Takatori, Sho; Tatematsu, Tsuyako; Cheng, Jinglei; Matsumoto, Jun; Akano, Takuya; Fujimoto, Toyoshi

    2016-02-01

    Phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2 ) has critical functions in endosomes and lysosomes. We developed a method to define nanoscale distribution of PtdIns(3,5)P2 using freeze-fracture electron microscopy. GST-ATG18-4×FLAG was used to label PtdIns(3,5)P2 and its binding to phosphatidylinositol 3-phosphate (PtdIns(3)P) was blocked by an excess of the p40(phox) PX domain. In yeast exposed to hyperosmotic stress, PtdIns(3,5)P2 was concentrated in intramembrane particle (IMP)-deficient domains in the vacuolar membrane, which made close contact with adjacent membranes. The IMP-deficient domain was also enriched with PtdIns(3)P, but was deficient in Vph1p, a liquid-disordered domain marker. In yeast lacking either PtdIns(3,5)P2 or its effector, Atg18p, the IMP-deficient, PtdIns(3)P-rich membranes were folded tightly to make abnormal tubular structures, thus showing where the vacuolar fragmentation process is arrested when PtdIns(3,5)P2 metabolism is defective. In HeLa cells, PtdIns(3,5)P2 was significantly enriched in the vesicular domain of RAB5- and RAB7-positive endosome/lysosomes of the tubulo-vesicular morphology. This biased distribution of PtdIns(3,5)P2 was also observed using fluorescence microscopy, which further showed enrichment of a retromer component, VPS35, in the tubular domain. This is the first report to show segregation of PtdIns(3,5)P2 -rich and -deficient domains in endosome/lysosomes, which should be important for endosome/lysosome functionality. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. SAR405, a PIK3C3/Vps34 inhibitor that prevents autophagy and synergizes with MTOR inhibition in tumor cells.

    PubMed

    Pasquier, Benoit

    2015-04-03

    Autophagy plays an important role in cancer and it has been suggested that it functions not only as a tumor suppressor pathway to prevent tumor initiation, but also as a prosurvival pathway that helps tumor cells endure metabolic stress and resist death triggered by chemotherapeutic agents. We recently described the discovery of inhibitors of PIK3C3/Vps34 (phosphatidylinositol 3-kinase, catalytic subunit type 3), the lipid kinase component of the class III phosphatidylinositol 3-kinase (PtdIns3K). This PtdIns3K isoform has attracted significant attention in recent years because of its role in autophagy. Following chemical optimization we identified SAR405, a low molecular mass kinase inhibitor of PIK3C3, highly potent and selective with regard to other lipid and protein kinases. We demonstrated that inhibiting the catalytic activity of PIK3C3 disrupts vesicle trafficking from late endosomes to lysosomes. SAR405 treatment also inhibits autophagy induced either by starvation or by MTOR (mechanistic target of rapamycin) inhibition. Finally our results show that combining SAR405 with everolimus, the FDA-approved MTOR inhibitor, results in a significant synergy on the reduction of cell proliferation using renal tumor cells. This result indicates a potential therapeutic application for PIK3C3 inhibitors in cancer.

  5. The canonical wnt signal restricts the glycogen synthase kinase 3/fbw7-dependent ubiquitination and degradation of eya1 phosphatase.

    PubMed

    Sun, Ye; Li, Xue

    2014-07-01

    Haploinsufficiency of Eya1 causes the branchio-oto-renal (BOR) syndrome, and abnormally high levels of Eya1 are linked to breast cancer progression and poor prognosis. Therefore, regulation of Eya1 activity is key to its tissue-specific functions and oncogenic activities. Here, we show that Eya1 is posttranslationally modified by ubiquitin and that its ubiquitination level is self-limited to prevent premature degradation. Eya1 has an evolutionarily conserved CDC4 phosphodegron (CPD) signal, a target site of glycogen synthase kinase 3 (GSK3) kinase and Fbw7 ubiquitin ligase, which is required for Eya1 ubiquitination. Genetic deletion of Fbw7 and pharmacological inhibition of GSK3 significantly decrease Eya1 ubiquitination. Conversely, activation of the phosphatidylinositol 3-kinase (PI3K)/Akt and the canonical Wnt signal suppresses Eya1 ubiquitination. Compound Eya1(+/-); Wnt9b(+/-) mutants exhibit an increased penetrance of renal defect, indicating that they function in the same genetic pathway in vivo. Together, these findings reveal that the canonical Wnt and PI3K/Akt signal pathways restrain the GSK3/Fbw7-dependent Eya1 ubiquitination, and they further suggest that dysregulation of this novel axis contributes to tumorigenesis. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  6. Erk1/2 and Akt kinases are involved in the protective effect of aniracetam in astrocytes subjected to simulated ischemia in vitro.

    PubMed

    Gabryel, Bozena; Pudelko, Anna; Malecki, Andrzej

    2004-06-28

    The present study focused on the mechanism of cytoprotective effect of aniracetam on the primary rat astrocyte cultures exposed to simulated ischemia conditions in vitro. To study these mechanisms, the aniracetam-mediated modulation of the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3-K)/Akt kinase pathways was determined. Simulated in vitro ischemia caused death of approximately 35% of astrocytes via apoptosis and decreased cell viability about 50% at 8 h. Exposure to aniracetam at concentrations of 0.1-10 microM in these conditions significantly decreased the number of apoptotic cells. Moreover, the intensification of 3-(4,5-dimethylthazol-2-yl)-2,5-diphenyltetrazolinum bromide (MTT) conversion and the decrease of lactate dehydrogenase (LDH) release after 1 and 10 microM aniracetam treatment were observed indicating a significant increase in cell viability. When cultured astrocytes were incubated during 8 h simulated ischemia with [1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio)butadiene] (U0126), an extracellular regulated kinase 1 and 2 (Erk1/2) inhibitor or wortmannin, a phosphatidylinositol 3-kinase (PI3 kinase)/Akt inhibitor, the cell apoptosis was accelerated. These effects of used kinase inhibitors (both U0126 and wortmannin) were antagonized by adding 1 and 10 microM aniracetam to the culture medium. In addition, aniracetam significantly stimulated of phospho-Erk1/2 kinase and phospho-Akt expression. Maximum levels of Erk1/2 and Akt activation were observed as a result of treatment with 10 microM aniracetam. U0126 and wortmannin markedly attenuated the effects of aniracetam on expression of activated kinases. Results of the present study indicate that both Erk1/2 and PI 3-K/Akt kinase pathways are vital for cytoprotective effect of aniracetam.

  7. Critical role of PI3-kinase/Akt activation in the PARP inhibitor induced heart function recovery during ischemia-reperfusion.

    PubMed

    Kovacs, Krisztina; Toth, Ambrus; Deres, Peter; Kalai, Tamas; Hideg, Kalman; Gallyas, Ferenc; Sumegi, Balazs

    2006-02-14

    Poly(ADP-ribose) polymerase (PARP) inhibitors protect hearts from ischemia-reperfusion (IR)-induced damages by limiting nicotinamide adenine dinucleotide (NAD+) and ATP depletion, and by other, not yet elucidated mechanisms. Our preliminary data suggested that PARP catalyzed ADP-ribosylations may affect signaling pathways in cardiomyocytes. To clarify this possibility, we studied the effect of a well-characterized (4-hydroxyquinazoline) and a novel (carboxaminobenzimidazol-derivative) PARP inhibitor on the activation of phosphatidylinositol-3-kinase (PI3-kinase)/Akt pathway in Langendorff-perfused hearts. PARP inhibitors promoted the restoration of myocardial energy metabolism (assessed by 31P nuclear magnetic resonance spectroscopy) and cardiac function compared to untreated hearts. PARP inhibitors also attenuated the infarct size and reduced the IR-induced lipid peroxidation, protein oxidation and total peroxide concentration. Moreover, PARP inhibitors facilitated Akt phosphorylation and activation, as well as the phosphorylation of its downstream target glycogen synthase kinase-3beta (GSK-3beta) in normoxia and, more robustly, during IR. Blocking PI3-kinase by wortmannin or LY294002 reduced the PARP inhibitor-elicited robust Akt and GSK-3beta phosphorylation upon ischemia-reperfusion, and significantly diminished the recovery of ATP and creatine phosphate showing the importance of Akt activation in the recovery of energy metabolism. In addition, inhibition of PI3-kinase/Akt pathway decreased the protective effect of PARP inhibitors on infarct size and the recovery of heart functions. All these data suggest that contrary to the original view, which considered preservation of NAD+ and consequently ATP pools as the exclusive underlying mechanism for the cytoprotective effect of PARP inhibitors, the activation of PI3-kinase/Akt pathway and related processes are at least equally important in the cardioprotective effects of PARP inhibitors during ischemia-reperfusion.

  8. Interleukin-2-induced survival of natural killer (NK) cells involving phosphatidylinositol-3 kinase-dependent reduction of ceramide through acid sphingomyelinase, sphingomyelin synthase, and glucosylceramide synthase.

    PubMed

    Taguchi, Yoshimitsu; Kondo, Tadakazu; Watanabe, Mitsumasa; Miyaji, Michihiko; Umehara, Hisanori; Kozutsumi, Yasunori; Okazaki, Toshiro

    2004-11-15

    Interleukin 2 (IL-2) rescued human natural killer (NK) KHYG-1 cells from apoptosis along with a reduction of ceramide. Conversely, an increase of ceramide inhibited IL-2-rescued survival. IL-2 deprivation-induced activation of acid sphingomyelinase (SMase) and inhibition of glucosylceramide synthase (GCS) and sphingomyelin synthase (SMS) were normalized by IL-2 supplementation. A phosphatidyl inositol-3 (PI-3) kinase inhibitor, LY294002, inhibited IL-2-rescued survival, but a mitogen-activated protein kinase inhibitor, PD98059, and an inhibitor of Janus tyrosine kinase/signal transducer and activator of transcription pathway, AG490, did not. LY294002 inhibited IL-2-induced reduction of ceramide through activation of acid SMase and inhibition of GCS and SMS, suggesting the positive involvement of PI-3 kinase in ceramide reduction through enzymatic regulation. Indeed, a constitutively active PI-3 kinase enhanced growth rate and ceramide reduction through inhibition of acid SMase and activation of GCS and SMS. Further, LY294002 inhibited IL-2-induced changes of transcriptional level as well as mRNA and protein levels in acid SMase and GCS but did not affect the stability of the mRNAs. These results suggest that PI-3 kinase-dependent reduction of ceramide through regulation of acid SMase, GCS, and SMS plays a role in IL-2-rescued survival of NK cells.

  9. Dual phosphorylation of Btk by Akt/protein kinase b provides docking for 14-3-3ζ, regulates shuttling, and attenuates both tonic and induced signaling in B cells.

    PubMed

    Mohammad, Dara K; Nore, Beston F; Hussain, Alamdar; Gustafsson, Manuela O; Mohamed, Abdalla J; Smith, C I Edvard

    2013-08-01

    Bruton's tyrosine kinase (Btk) is crucial for B-lymphocyte activation and development. Mutations in the Btk gene cause X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency (Xid) in mice. Using tandem mass spectrometry, 14-3-3ζ was identified as a new binding partner and negative regulator of Btk in both B-cell lines and primary B lymphocytes. The activated serine/threonine kinase Akt/protein kinase B (PKB) phosphorylated Btk on two sites prior to 14-3-3ζ binding. The interaction sites were mapped to phosphoserine pS51 in the pleckstrin homology domain and phosphothreonine pT495 in the kinase domain. The double-alanine, S51A/T495A, replacement mutant failed to bind 14-3-3ζ, while phosphomimetic aspartate substitutions, S51D/T495D, caused enhanced interaction. The phosphatidylinositol 3-kinase (PI3-kinase) inhibitor LY294002 abrogated S51/T495 phosphorylation and binding. A newly characterized 14-3-3 inhibitor, BV02, reduced binding, as did the Btk inhibitor PCI-32765 (ibrutinib). Interestingly, in the presence of BV02, phosphorylation of Btk, phospholipase Cγ2, and NF-κB increased strongly, suggesting that 14-3-3 also regulates B-cell receptor (BCR)-mediated tonic signaling. Furthermore, downregulation of 14-3-3ζ elevated nuclear translocation of Btk. The loss-of-function mutant S51A/T495A showed reduced tyrosine phosphorylation and ubiquitination. Conversely, the gain-of-function mutant S51D/T495D exhibited intense tyrosine phosphorylation, associated with Btk ubiquitination and degradation, likely contributing to the termination of BCR signaling. Collectively, this suggests that Btk could become an important new candidate for the general study of 14-3-3-mediated regulation.

  10. Dual Phosphorylation of Btk by Akt/Protein Kinase B Provides Docking for 14-3-3ζ, Regulates Shuttling, and Attenuates both Tonic and Induced Signaling in B Cells

    PubMed Central

    Nore, Beston F.; Hussain, Alamdar; Gustafsson, Manuela O.; Mohamed, Abdalla J.

    2013-01-01

    Bruton's tyrosine kinase (Btk) is crucial for B-lymphocyte activation and development. Mutations in the Btk gene cause X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency (Xid) in mice. Using tandem mass spectrometry, 14-3-3ζ was identified as a new binding partner and negative regulator of Btk in both B-cell lines and primary B lymphocytes. The activated serine/threonine kinase Akt/protein kinase B (PKB) phosphorylated Btk on two sites prior to 14-3-3ζ binding. The interaction sites were mapped to phosphoserine pS51 in the pleckstrin homology domain and phosphothreonine pT495 in the kinase domain. The double-alanine, S51A/T495A, replacement mutant failed to bind 14-3-3ζ, while phosphomimetic aspartate substitutions, S51D/T495D, caused enhanced interaction. The phosphatidylinositol 3-kinase (PI3-kinase) inhibitor LY294002 abrogated S51/T495 phosphorylation and binding. A newly characterized 14-3-3 inhibitor, BV02, reduced binding, as did the Btk inhibitor PCI-32765 (ibrutinib). Interestingly, in the presence of BV02, phosphorylation of Btk, phospholipase Cγ2, and NF-κB increased strongly, suggesting that 14-3-3 also regulates B-cell receptor (BCR)-mediated tonic signaling. Furthermore, downregulation of 14-3-3ζ elevated nuclear translocation of Btk. The loss-of-function mutant S51A/T495A showed reduced tyrosine phosphorylation and ubiquitination. Conversely, the gain-of-function mutant S51D/T495D exhibited intense tyrosine phosphorylation, associated with Btk ubiquitination and degradation, likely contributing to the termination of BCR signaling. Collectively, this suggests that Btk could become an important new candidate for the general study of 14-3-3-mediated regulation. PMID:23754751

  11. Phosphoinositide 3kinase γ participates in T cell receptor–induced T cell activation

    PubMed Central

    Alcázar, Isabela; Marqués, Miriam; Kumar, Amit; Hirsch, Emilio; Wymann, Matthias; Carrera, Ana C.; Barber, Domingo F.

    2007-01-01

    Class I phosphoinositide 3kinases (PI3Ks) constitute a family of enzymes that generates 3-phosphorylated polyphosphoinositides at the cell membrane after stimulation of protein tyrosine (Tyr) kinase–associated receptors or G protein–coupled receptors (GPCRs). The class I PI3Ks are divided into two types: class IA p85/p110 heterodimers, which are activated by Tyr kinases, and the class IB p110γ isoform, which is activated by GPCR. Although the T cell receptor (TCR) is a protein Tyr kinase–associated receptor, p110γ deletion affects TCR-induced T cell stimulation. We examined whether the TCR activates p110γ, as well as the consequences of interfering with p110γ expression or function for T cell activation. We found that after TCR ligation, p110γ interacts with Gαq/11, lymphocyte-specific Tyr kinase, and ζ-associated protein. TCR stimulation activates p110γ, which affects 3-phosphorylated polyphosphoinositide levels at the immunological synapse. We show that TCR-stimulated p110γ controls RAS-related C3 botulinum substrate 1 activity, F-actin polarization, and the interaction between T cells and antigen-presenting cells, illustrating a crucial role for p110γ in TCR-induced T cell activation. PMID:17998387

  12. Carcinogenesis of PIK3CA

    PubMed Central

    2013-01-01

    PIK3CA is the most frequently mutated oncogene in human cancers. PIK3CA is phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha. It controls cell growth, proliferation, motility, survival, differentiation and intracellular trafficking. In most of human cancer alteration occurred frequently in the alpha isoform of phosphatidylinositol 3 kinase. PIK3CA mutations were most frequent in endometrial, ovarian, colorectal, breast, cervical, squamous cell cancer of the head and neck, chondroma, thyroid carcinoma and in cancer family syndrome. Inhibition of PI3K signaling can diminish cell proliferation, and in some circumstances, promote cell death. Consequently, components of this pathway present attractive targets for cancer therapeutics. A number of PI3K pathway inhibitors have been developed and used. PI3K inhibitors (both pan-PI3K and isoform-specific PI3K inhibitors), dual PI3K-mTOR inhibitors that are catalytic site inhibitors of the p110 isoforms and mTOR (the kinase component of both mTORC1 and mTORC2), mTOR catalytic site inhibitors, and AKT inhibitors are the most advanced in the clinic. They are approved for the treatment of several carcinomas. PMID:23768168

  13. A Rapid Cytoplasmic Mechanism for PI3 Kinase Regulation by the Nuclear Thyroid Hormone Receptor, TRβ, and Genetic Evidence for Its Role in the Maturation of Mouse Hippocampal Synapses In Vivo

    PubMed Central

    Martin, Negin P.; Fernandez de Velasco, Ezequiel Marron; Mizuno, Fengxia; Scappini, Erica L.; Gloss, Bernd; Erxleben, Christian; Williams, Jason G.; Stapleton, Heather M.; Gentile, Saverio

    2014-01-01

    Several rapid physiological effects of thyroid hormone on mammalian cells in vitro have been shown to be mediated by the phosphatidylinositol 3-kinase (PI3K), but the molecular mechanism of PI3K regulation by nuclear zinc finger receptor proteins for thyroid hormone and its relevance to brain development in vivo have not been elucidated. Here we show that, in the absence of hormone, the thyroid hormone receptor TRβ forms a cytoplasmic complex with the p85 subunit of PI3K and the Src family tyrosine kinase, Lyn, which depends on two canonical phosphotyrosine motifs in the second zinc finger of TRβ that are not conserved in TRα. When hormone is added, TRβ dissociates and moves to the nucleus, and phosphatidylinositol (3, 4, 5)-trisphosphate production goes up rapidly. Mutating either tyrosine to a phenylalanine prevents rapid signaling through PI3K but does not prevent the hormone-dependent transcription of genes with a thyroid hormone response element. When the rapid signaling mechanism was blocked chronically throughout development in mice by a targeted point mutation in both alleles of Thrb, circulating hormone levels, TRβ expression, and direct gene regulation by TRβ in the pituitary and liver were all unaffected. However, the mutation significantly impaired maturation and plasticity of the Schaffer collateral synapses on CA1 pyramidal neurons in the postnatal hippocampus. Thus, phosphotyrosine-dependent association of TRβ with PI3K provides a potential mechanism for integrating regulation of development and metabolism by thyroid hormone and receptor tyrosine kinases. PMID:24932806

  14. c-Fos-activated synthesis of nuclear phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P₂] promotes global transcriptional changes.

    PubMed

    Ferrero, Gabriel O; Renner, Marianne L; Gil, Germán A; Rodríguez-Berdini, Lucia; Caputto, Beatriz L

    2014-08-01

    c-Fos is a well-recognized member of the AP-1 (activator protein-1) family of transcription factors. In addition to this canonical activity, we previously showed that cytoplasmic c-Fos activates phospholipid synthesis through a mechanism independent of its genomic AP-1 activity. c-Fos associates with particular enzymes of the lipid synthesis pathway at the endoplasmic reticulum and increases the Vmax of the reactions without modifying the Km values. This lipid synthesis activation is associated with events of differentiation and proliferation that require high rates of membrane biogenesis. Since lipid synthesis also occurs in the nucleus, and different phospholipids have been assigned transcription regulatory functions, in the present study we examine if c-Fos also acts as a regulator of phospholipid synthesis in the nucleus. Furthermore, we examine if c-Fos modulates transcription through its phospholipid synthesis activator capacity. We show that nuclear-localized c-Fos associates with and activates PI4P5K (phosphatidylinositol-4-monophosphate 5-kinase), but not with PI4KIIIβ (type IIIβ phosphatidylinositol 4-kinase) thus promoting PtdIns(4,5)P₂ (phosphatidylinositol 4,5-bisphosphate) formation, which, in turn, promotes transcriptional changes. We propose c-Fos as a key regulator of nuclear PtdIns(4,5)P₂ synthesis in response to growth signals that results in c-Fos-dependent transcriptional changes promoted by the newly synthesized lipids.

  15. Protein kinases: mechanisms and downstream targets in inflammation-mediated obesity and insulin resistance.

    PubMed

    Nandipati, Kalyana C; Subramanian, Saravanan; Agrawal, Devendra K

    2017-02-01

    Obesity-induced low-grade inflammation (metaflammation) impairs insulin receptor signaling. This has been implicated in the development of insulin resistance. Insulin signaling in the target tissues is mediated by stress kinases such as p38 mitogen-activated protein kinase, c-Jun NH2-terminal kinase, inhibitor of NF-kB kinase complex β (IKKβ), AMP-activated protein kinase, protein kinase C, Rho-associated coiled-coil containing protein kinase, and RNA-activated protein kinase. Most of these kinases phosphorylate several key regulators in glucose homeostasis. The phosphorylation of serine residues in the insulin receptor and IRS-1 molecule results in diminished enzymatic activity in the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. This has been one of the key mechanisms observed in the tissues that are implicated in insulin resistance especially in type 2 diabetes mellitus (T2-DM). Identifying the specific protein kinases involved in obesity-induced chronic inflammation may help in developing the targeted drug therapies to minimize the insulin resistance. This review is focused on the protein kinases involved in the inflammatory cascade and molecular mechanisms and their downstream targets with special reference to obesity-induced T2-DM.

  16. Autoinhibition of Bruton's tyrosine kinase (Btk) and activation by soluble inositol hexakisphosphate

    PubMed Central

    Wang, Qi; Vogan, Erik M; Nocka, Laura M; Rosen, Connor E; Zorn, Julie A; Harrison, Stephen C; Kuriyan, John

    2015-01-01

    Bruton's tyrosine kinase (Btk), a Tec-family tyrosine kinase, is essential for B-cell function. We present crystallographic and biochemical analyses of Btk, which together reveal molecular details of its autoinhibition and activation. Autoinhibited Btk adopts a compact conformation like that of inactive c-Src and c-Abl. A lipid-binding PH-TH module, unique to Tec kinases, acts in conjunction with the SH2 and SH3 domains to stabilize the inactive conformation. In addition to the expected activation of Btk by membranes containing phosphatidylinositol triphosphate (PIP3), we found that inositol hexakisphosphate (IP6), a soluble signaling molecule found in both animal and plant cells, also activates Btk. This activation is a consequence of a transient PH-TH dimerization induced by IP6, which promotes transphosphorylation of the kinase domains. Sequence comparisons with other Tec-family kinases suggest that activation by IP6 is unique to Btk. DOI: http://dx.doi.org/10.7554/eLife.06074.001 PMID:25699547

  17. Role of P-glycoprotein and breast cancer resistance protein-1 in the brain penetration and brain pharmacodynamic activity of the novel phosphatidylinositol 3-kinase inhibitor GDC-0941.

    PubMed

    Salphati, Laurent; Lee, Leslie B; Pang, Jodie; Plise, Emile G; Zhang, Xiaolin

    2010-09-01

    2-(1H-Indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine (GDC-0941) is a novel small molecule inhibitor of the phosphatidylinositol 3-kinase (PI3K) pathway currently evaluated in the clinic as an anticancer agent. The objectives of this study were to determine in vitro whether GDC-0941 was a substrate of P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp1) and to investigate the impact of these transporters on the pharmacokinetics, brain penetration, and activity of GDC-0941 in FVBn mice (wild-type) and Mdr1a/b(-/-), Bcrp1(-/-), and Mdr1a/b(-/-)/Bcrp1(-/-) knockout mice. Studies with Madin-Darby canine kidney cells transfected with P-gp or Bcrp1 established that this compound was a substrate of both transporters. After administrations to mice, GDC-0941 brain-to-plasma ratio ranged from 0.02 to 0.06 in the wild-type and Bcrp1(-/-) mice and was modestly higher in the Mdr1a/b(-/-) mice, ranging from 0.08 to 0.11. In contrast, GDC-0941 brain-to-plasma ratio in Mdr1a/b(-/-)/Bcrp1(-/-) triple knockout mice was 30-fold higher than in the wild-type mice. The plasma clearance of GDC-0941 was similar in wild-type and all knockout mice, ranging from 15 to 25 ml/(min . kg) in the wild-type mice and from 18 to 35 ml/(min . kg) in the knockout mice. Exposure after oral administration was comparable in the four strains of mice. The PI3K pathway was markedly inhibited in the brain of Mdr1a/b(-/-)/Bcrp1(-/-) mice for up to 6 h postdose, as evidenced by a 60% suppression of the phosphorylated Akt signal, whereas no inhibition was detected in the brain of wild-type mice. The concerted effects of P-gp and Bcrp1 in restricting GDC-0941 access and pathway modulation in mouse brain may have implications for the treatment of patients with brain tumors.

  18. Nerve Growth Factor (NGF) Regulates Activity of Nuclear Factor of Activated T-cells (NFAT) in Neurons via the Phosphatidylinositol 3-Kinase (PI3K)-Akt-Glycogen Synthase Kinase 3β (GSK3β) Pathway*

    PubMed Central

    Kim, Man-Su; Shutov, Leonid P.; Gnanasekaran, Aswini; Lin, Zhihong; Rysted, Jacob E.; Ulrich, Jason D.; Usachev, Yuriy M.

    2014-01-01

    The Ca2+/calcineurin-dependent transcription factor nuclear factor of activated T-cells (NFAT) plays an important role in regulating many neuronal functions, including excitability, axonal growth, synaptogenesis, and neuronal survival. NFAT can be activated by action potential firing or depolarization that leads to Ca2+/calcineurin-dependent dephosphorylation of NFAT and its translocation to the nucleus. Recent data suggest that NFAT and NFAT-dependent functions in neurons can also be potently regulated by NGF and other neurotrophins. However, the mechanisms of NFAT regulation by neurotrophins are not well understood. Here, we show that in dorsal root ganglion sensory neurons, NGF markedly facilitates NFAT-mediated gene expression induced by mild depolarization. The effects of NGF were not associated with changes in [Ca2+]i and were independent of phospholipase C activity. Instead, the facilitatory effect of NGF depended on activation of the PI3K/Akt pathway downstream of the TrkA receptor and on inhibition of glycogen synthase kinase 3β (GSK3β), a protein kinase known to phosphorylate NFAT and promote its nuclear export. Knockdown or knockout of NFATc3 eliminated this facilitatory effect. Simultaneous monitoring of EGFP-NFATc3 nuclear translocation and [Ca2+]i changes in dorsal root ganglion neurons indicated that NGF slowed the rate of NFATc3 nuclear export but did not affect its nuclear import rate. Collectively, our data suggest that NGF facilitates depolarization-induced NFAT activation by stimulating PI3K/Akt signaling, inactivating GSK3β, and thereby slowing NFATc3 export from the nucleus. We propose that NFAT serves as an integrator of neurotrophin action and depolarization-driven calcium signaling to regulate neuronal gene expression. PMID:25231981

  19. HIP1 and HIP1r stabilize receptor tyrosine kinases and bind 3-phosphoinositides via epsin N-terminal homology domains.

    PubMed

    Hyun, Teresa S; Rao, Dinesh S; Saint-Dic, Djenann; Michael, L Evan; Kumar, Priti D; Bradley, Sarah V; Mizukami, Ikuko F; Oravecz-Wilson, Katherine I; Ross, Theodora S

    2004-04-02

    Huntingtin-interacting protein 1-related (HIP1r) is the only known mammalian relative of huntingtin-interacting protein 1 (HIP1), a protein that transforms fibroblasts via undefined mechanisms. Here we demonstrate that both HIP1r and HIP1 bind inositol lipids via their epsin N-terminal homology (ENTH) domains. In contrast to other ENTH domain-containing proteins, lipid binding is preferential to the 3-phosphate-containing inositol lipids, phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 3,5-bisphosphate. Furthermore, the HIP1r ENTH domain, like that of HIP1, is necessary for lipid binding, and expression of an ENTH domain-deletion mutant, HIP1r/deltaE, induces apoptosis. Consistent with the ability of HIP1r and HIP1 to affect cell survival, full-length HIP1 and HIP1r stabilize pools of growth factor receptors by prolonging their half-life following ligand-induced endocytosis. Although HIP1r and HIP1 display only a partially overlapping pattern of protein interactions, these data suggest that both proteins share a functional homology by binding 3-phosphorylated inositol lipids and stabilizing receptor tyrosine kinases in a fashion that may contribute to their ability to alter cell growth and survival.

  20. Action of insulin on the surface morphology of hepatocytes: role of phosphatidylinositol 3-kinase in insulin-induced shape change of microvilli.

    PubMed

    Lange, K; Brandt, U; Gartzke, J; Bergmann, J

    1998-02-25

    In previous studies we have shown that the insulin-responding glucose transporter isoform of 3T3-L1 adipocytes, GluT4, is almost completely located on microvilli. Furthermore, insulin caused the integration of these microvilli into the plasma membrane, suggesting that insulin-induced stimulation of glucose uptake may be due to the destruction of the cytoskeletal diffusion barrier formed by the actin filament bundle of the microvillar shaft regions [Lange et al. (1990) FEBS Lett. 261, 459-463; Lange et al. (1990) FEBS Lett. 276, 39-41]. Similar shape changes in microvilli were observed when the transport rates of adipocytes were modulated by glucose feeding or starvation. Here we demonstrate that the action of insulin on the surface morphology of hepatocytes is identical to that on 3T3L1 adipocytes; small and narrow microvilli on the surface of unstimulated hepatocytes were rapidly shortened and dilated on top of large domed surface areas. The aspect and mechanism of this effect are closely related to "membrane ruffling" induced by insulin and other growth factors. Pretreatment of hepatocytes with the PI 3-kinase inhibitor wortmannin (100 nM), which completely prevents transport stimulation by insulin in adipocytes and other cell types, also inhibited insulin-induced shape changes in microvilli on the hepatocyte surface. In contrast, vasopressin-induced microvillar shape changes in hepatocytes [Lange et al. (1997) Exp. Cell Res. 234, 486-497] were insensitive to wortmannin pretreatment. These findings indicate that PI 3-kinase products are necessary for stimulation of submembrane microfilament dynamics and that cytoskeletal reorganization is critically involved in insulin stimulation of transport processes. The mechanism of the insulin-induced cytoskeletal reorganization can be explained on the basis of the recent finding of Lu et al. [Biochemistry 35(1996) 14027-14034] that PI 3-kinase products exhibit much higher affinity for the profilin-actin complex than the

  1. TIF-IA: An oncogenic target of pre-ribosomal RNA synthesis.

    PubMed

    Jin, Rui; Zhou, Wei

    2016-12-01

    Cancer cells devote the majority of their energy consumption to ribosome biogenesis, and pre-ribosomal RNA transcription accounts for 30-50% of all transcriptional activity. This aberrantly elevated biological activity is an attractive target for cancer therapeutic intervention if approaches can be developed to circumvent the development of side effects in normal cells. TIF-IA is a transcription factor that connects RNA polymerase I with the UBF/SL-1 complex to initiate the transcription of pre-ribosomal RNA. Its function is conserved in eukaryotes from yeast to mammals, and its activity is promoted by the phosphorylation of various oncogenic kinases in cancer cells. The depletion of TIF-IA induces cell death in lung cancer cells and mouse embryonic fibroblasts but not in several other normal tissue types evaluated in knock-out studies. Furthermore, the nuclear accumulation of TIF-IA under UTP down-regulated conditions requires the activity of LKB1 kinase, and LKB1-inactivated cancer cells are susceptible to cell death under such stress conditions. Therefore, TIF-IA may be a unique target to suppress ribosome biogenesis without significantly impacting the survival of normal tissues. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Identification and classification of genes regulated by phosphatidylinositol 3-kinase- and TRKB-mediated signalling pathways during neuronal differentiation in two subtypes of the human neuroblastoma cell line SH-SY5Y.

    PubMed

    Nishida, Yuichiro; Adati, Naoki; Ozawa, Ritsuko; Maeda, Aasami; Sakaki, Yoshiyuki; Takeda, Tadayuki

    2008-10-28

    SH-SY5Y cells exhibit a neuronal phenotype when treated with all-trans retinoic acid (RA), but the molecular mechanism of activation in the signalling pathway mediated by phosphatidylinositol 3-kinase (PI3K) is unclear. To investigate this mechanism, we compared the gene expression profiles in SK-N-SH cells and two subtypes of SH-SY5Y cells (SH-SY5Y-A and SH-SY5Y-E), each of which show a different phenotype during RA-mediated differentiation. SH-SY5Y-A cells differentiated in the presence of RA, whereas RA-treated SH-SY5Y-E cells required additional treatment with brain-derived neurotrophic factor (BDNF) for full differentiation. After exposing cells to a PI3K inhibitor, LY294002, we identified 386 genes and categorised these genes into two clusters dependent on the PI3K signalling pathway during RA-mediated differentiation in SH-SY5Y-A cells. Transcriptional regulation of the gene cluster, including 158 neural genes, was greatly reduced in SK-N-SH cells and partially impaired in SH-SY5Y-E cells, which is consistent with a defect in the neuronal phenotype of these cells. Additional stimulation with BDNF induced a set of neural genes that were down-regulated in RA-treated SH-SY5Y-E cells but were abundant in differentiated SH-SY5Y-A cells. We identified gene clusters controlled by PI3K- and TRKB-mediated signalling pathways during the differentiation of two subtypes of SH-SY5Y cells. The TRKB-mediated bypass pathway compensates for impaired neural function generated by defects in several signalling pathways, including PI3K in SH-SY5Y-E cells. Our expression profiling data will be useful for further elucidation of the signal transduction-transcriptional network involving PI3K or TRKB.

  3. Nerve growth factor (NGF) regulates activity of nuclear factor of activated T-cells (NFAT) in neurons via the phosphatidylinositol 3-kinase (PI3K)-Akt-glycogen synthase kinase 3β (GSK3β) pathway.

    PubMed

    Kim, Man-Su; Shutov, Leonid P; Gnanasekaran, Aswini; Lin, Zhihong; Rysted, Jacob E; Ulrich, Jason D; Usachev, Yuriy M

    2014-11-07

    The Ca(2+)/calcineurin-dependent transcription factor nuclear factor of activated T-cells (NFAT) plays an important role in regulating many neuronal functions, including excitability, axonal growth, synaptogenesis, and neuronal survival. NFAT can be activated by action potential firing or depolarization that leads to Ca(2+)/calcineurin-dependent dephosphorylation of NFAT and its translocation to the nucleus. Recent data suggest that NFAT and NFAT-dependent functions in neurons can also be potently regulated by NGF and other neurotrophins. However, the mechanisms of NFAT regulation by neurotrophins are not well understood. Here, we show that in dorsal root ganglion sensory neurons, NGF markedly facilitates NFAT-mediated gene expression induced by mild depolarization. The effects of NGF were not associated with changes in [Ca(2+)]i and were independent of phospholipase C activity. Instead, the facilitatory effect of NGF depended on activation of the PI3K/Akt pathway downstream of the TrkA receptor and on inhibition of glycogen synthase kinase 3β (GSK3β), a protein kinase known to phosphorylate NFAT and promote its nuclear export. Knockdown or knockout of NFATc3 eliminated this facilitatory effect. Simultaneous monitoring of EGFP-NFATc3 nuclear translocation and [Ca(2+)]i changes in dorsal root ganglion neurons indicated that NGF slowed the rate of NFATc3 nuclear export but did not affect its nuclear import rate. Collectively, our data suggest that NGF facilitates depolarization-induced NFAT activation by stimulating PI3K/Akt signaling, inactivating GSK3β, and thereby slowing NFATc3 export from the nucleus. We propose that NFAT serves as an integrator of neurotrophin action and depolarization-driven calcium signaling to regulate neuronal gene expression. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. In brain, Axl recruits Grb2 and the p85 regulatory subunit of Pl3 kinase; in vitro mutagenesis defines th requisite binding sites for downstream Akt activation

    PubMed Central

    Weinger, Jason G.; Gohari, Pouyan; Yan, Ying; Backer, Jonathan M.; Varnum, Brian; Shafit-Zagardo, Bridget

    2010-01-01

    Axl is a receptor tyrosine kinase implicated in cell survival following growth factor withdrawal and other stressors. The binding of Axl's ligand, growth arrest-specific protein 6 (Gas6), results in Axl autophosphorylation, recruitment of signaling molecules, and activation of downstream survival pathways. Pull-down assays and immunoprecipitations using wildtype and mutant Axl transfected cells determined that Axl directly binds growth factor receptor-bound protein 2 (Grb2) at pYVN and the p85 subunit of phosphatidylinositol-3 kinase (PI3 kinase) at two pYXXM sites (pY779 and pY821). Also, p85 can indirectly bind to Axl via an interaction between p85's second proline-rich region and the N-terminal SH3 domain of Grb2. Further, Grb2 and p85 can compete for binding at the pY821VNM site. Gas6-stimulation of Axl-transfected COS7 cells recruited activated PI3 kinase and phosphorylated Akt. An interaction between Axl, p85 and Grb2 was confirmed in brain homogenates, enriched populations of O4+ oligodendrocytes, and O4– flow-through prepared from day 10 mouse brain, indicating that cells with active Gas6/Axl signal through Grb2 and the PI3 kinase/Akt pathways. PMID:18346204

  5. Protein kinases: mechanisms and downstream targets in inflammation mediated obesity and insulin resistance

    PubMed Central

    Nandipati, Kalyana C; Subramanian, Saravanan; Agrawal, Devendra K

    2016-01-01

    Obesity induced low-grade inflammation (metaflammation) impairs insulin receptor signaling (IRS). This has been implicated in the development of insulin resistance. Insulin signaling in the target tissues is mediated by stress kinases such as p38 mitogen-activated protein kinase (MAPK), c-Jun NH2-terminal kinase (JNK), inhibitor of NF-kB kinase complex beta (IKKβ), AMP activated protein kinase (AMPK), protein kinase C (PKC), Rho associated coiled-coil containing protein kinase (ROCK) and RNA-activated protein kinase (PKR), etc. Most of these kinases phosphorylate several key regulators in glucose homeostasis. The phosphorylation of serine residues in the insulin receptor (IR) and IRS-1 molecule results in diminished enzymatic activity in the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. This has been one of the key mechanisms observed in the tissues that are implicated in insulin resistance especially in Type II Diabetes Mellitus (T2-DM). Identifying the specific protein kinases involved in obesity induced chronic inflammation may help in developing the targeted drug therapies to minimize the insulin resistance. This review is focused on the protein kinases involved in the inflammatory cascade and molecular mechanisms and their downstream targets with special reference to obesity induced T2-DM. PMID:27868170

  6. The dense core vesicle protein IA-2, but not IA-2β, is required for active avoidance learning.

    PubMed

    Carmona, G N; Nishimura, T; Schindler, C W; Panlilio, L V; Notkins, A L

    2014-06-06

    The islet-antigens IA-2 and IA-2β are major autoantigens in type-1 diabetes and transmembrane proteins in dense core vesicles (DCV). Recently we showed that deletion of both IA-2 and IA-2β alters the secretion of hormones and neurotransmitters and impairs behavior and learning. The present study was designed to evaluate the contribution to learning of each of these genes by using single knockout (SKO) and double knockout (DKO) mice in an active avoidance test. After 5 days of training, wild-type (WT) mice showed 60-70% active avoidance responses, whereas the DKO mice showed only 10-15% active avoidance responses. The degree of active avoidance responses in the IA-2 SKO mice was similar to that of the DKO mice, but in contrast, the IA-2β SKO mice behaved like WT mice showing 60-70% active avoidance responses. Molecular studies revealed a marked decrease in the phosphorylation of the cAMP response element-binding protein (CREB) and Ca(2+)/calmodulin-dependent protein kinase II (CAMKII) in the striatum and hippocampus of the IA-2 SKO and DKO mice, but not in the IA-2β SKO mice. To evaluate the role of CREB and CAMKII in the SKO and DKO mice, GBR-12909, which selectively blocks the dopamine uptake transporter and increases CREB and CAMKII phosphorylation, was administered. GBR-12909 restored the phosphorylation of CREB and CAMKII and increased active avoidance learning in the DKO and IA-2 SKO to near the normal levels found in the WT and IA-2β SKO mice. We conclude that in the absence of the DCV protein IA-2, active avoidance learning is impaired. Published by Elsevier Ltd.

  7. Specific phosphopeptide binding regulates a conformational change in the PI 3-kinase SH2 domain associated with enzyme activation.

    PubMed Central

    Shoelson, S E; Sivaraja, M; Williams, K P; Hu, P; Schlessinger, J; Weiss, M A

    1993-01-01

    SH2 (src-homology 2) domains define a newly recognized binding motif that mediates the physical association of target phosphotyrosyl proteins with downstream effector enzymes. An example of such phosphoprotein-effector coupling is provided by the association of phosphatidylinositol 3-kinase (PI 3-kinase) with specific phosphorylation sites within the PDGF receptor, the c-Src/polyoma virus middle T antigen complex and the insulin receptor substrate IRS-1. Notably, phosphoprotein association with the SH2 domains of p85 also stimulates an increase in catalytic activity of the PI 3-kinase p110 subunit, which can be mimicked by phosphopeptides corresponding to targeted phosphoprotein phosphorylation sites. To investigate how phosphoprotein binding to the p85 SH2 domain stimulates p110 catalytic activation, we have examined the differential effects of phosphotyrosine and PDGF receptor-, IRS-1- and c-Src-derived phosphopeptides on the conformation of an isolated SH2 domain of PI 3-kinase. Although phosphotyrosine and both activating and non-activating phosphopeptides bind to the SH2 domain, activating phosphopeptides bind with higher affinity and induce a qualitatively distinct conformational change as monitored by CD and NMR spectroscopy. Amide proton exchange and protease protection assays further show that high affinity, specific phosphopeptide binding induces non-local dynamic SH2 domain stabilization. Based on these findings we propose that specific phosphoprotein binding to the p85 subunit induces a change in SH2 domain structure which is transmitted to the p110 subunit and regulates enzymatic activity by an allosteric mechanism. Images PMID:8382612

  8. Inositolphosphoglycan mediators structurally related to glycosyl phosphatidylinositol anchors: synthesis, structure and biological activity.

    PubMed

    Martín-Lomas, M; Khiar, N; García, S; Koessler, J L; Nieto, P M; Rademacher, T W

    2000-10-02

    The preparation of the pseudopentasaccharide 1a, an inositol-phosphoglycan (IPG) that contains the conserved linear structure of glycosyl phosphatidylinositol anchors (GPI anchors), was carried out by using a highly convergent 2+3-block synthesis approach which involves imidate and sulfoxide glycosylation reactions. The preferred solution conformation of this structure was determined by using NMR spectroscopy and molecular dynamics simulations prior to carrying out quantitative structure--activity relationship studies in connection with the insulin signalling process. The ability of 1a to stimulate lipogenesis in rat adipocytes as well as to inhibit cAMP dependent protein kinase and to activate pyruvate dehydrogenase phosphatase was investigated. Compound 1a did not show any significant activity, which may be taken as a strong indication that the GPI anchors are not the precursors of the IPG mediators.

  9. Increasing Phosphatidylinositol (4,5)-Bisphosphate Biosynthesis Affects Basal Signaling and Chloroplast Metabolism in Arabidopsis thaliana

    PubMed Central

    Im, Yang Ju; Smith, Caroline M.; Phillippy, Brian Q.; Strand, Deserah; Kramer, David M.; Grunden, Amy M.; Boss, Wendy F.

    2014-01-01

    One challenge in studying the second messenger inositol(1,4,5)-trisphosphate (InsP3) is that it is present in very low amounts and increases only transiently in response to stimuli. To identify events downstream of InsP3, we generated transgenic plants constitutively expressing the high specific activity, human phosphatidylinositol 4-phosphate 5-kinase Iα (HsPIPKIα). PIP5K is the enzyme that synthesizes phosphatidylinositol (4,5)-bisphosphate (PtdIns(4,5)P2); this reaction is flux limiting in InsP3 biosynthesis in plants. Plasma membranes from transgenic Arabidopsis expressing HsPIPKIα had 2–3 fold higher PIP5K specific activity, and basal InsP3 levels in seedlings and leaves were >2-fold higher than wild type. Although there was no significant difference in photosynthetic electron transport, HsPIPKIα plants had significantly higher starch (2–4 fold) and 20% higher anthocyanin compared to controls. Starch content was higher both during the day and at the end of dark period. In addition, transcripts of genes involved in starch metabolism such as SEX1 (glucan water dikinase) and SEX4 (phosphoglucan phosphatase), DBE (debranching enzyme), MEX1 (maltose transporter), APL3 (ADP-glucose pyrophosphorylase) and glucose-6-phosphate transporter (Glc6PT) were up-regulated in the HsPIPKIα plants. Our results reveal that increasing the phosphoinositide (PI) pathway affects chloroplast carbon metabolism and suggest that InsP3 is one component of an inter-organelle signaling network regulating chloroplast metabolism. PMID:27135490

  10. Leptin modulates the expression of catabolic genes in rat nucleus pulposus cells through the mitogen-activated protein kinase and Janus kinase 2/signal transducer and activator of transcription 3 pathways.

    PubMed

    Miao, Daoyi; Zhang, Lingzhou

    2015-08-01

    Obesity has been demonstrated to be involved in the progress of intervertebral disc degeneration (IDD). However, the associated mechanisms remain to be elucidated. The purpose the present study was to examine the effect of leptin on the expression of degeneration-associated genes in rat nucleus pulposus (NP) cells, and determine the possible mechanism. Normal NP cells, obtained from Sprague Dawley rats, were identified using immunocytochemistry for the expression of collagen II and CA125, and treated with leptin and/or interleukin (IL)-β. Subsequently, the mRNA expression levels of matrix metalloproteinase (MMP)-1, MMP-3, MMP-9, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-4, ADAMTS-5, aggrecan and COL2A1 were detected by reverse transcription-quantitative polymerase chain reaction (RT-q-PCR). Alcian staining and immunocytochemistry were used to examine the expression levels of proteoglycan and collagen II. The pathway activation was investigated using western blotting, and inhibitors of the pathways were used to reveal the effect of these pathways on the NP cells. The results of the RT-qPCR demonstrated that leptin alone upregulated the mRNA expression levels of MMP-1, MMP-13, ADAMTS-4, ADAMTS-5 and COL2A1. Synergy of leptin and IL-β was found in the increased expression levels of MMP-1, MMP-3 and ADAMTS-5. The leptin-treated NP cells exhibited decreased expression of collagen II. The mitrogen-activated protein kinase (MAPK) pathway (c-Jun-N-terminal kinase, phosphorylated extracellular signal-regulated kinase and p38), phosphatidylinositol 3-kinase (PI3K)/Akt pathway and Janus kinase (JAK)2/signal transducer and activator of transcription 3 pathway were all activated by leptin, however, inhibitors of all the pathways, with the exception of the PI3K/Akt pathway, reversed the expression levels of MMP-1 and MMP-13. These results suggested that leptin promoted catabolic metabolism in the rat NP cells via the MAPK and JAK2/STAT3

  11. Leptin modulates the expression of catabolic genes in rat nucleus pulposus cells through the mitogen-activated protein kinase and Janus kinase 2/signal transducer and activator of transcription 3 pathways

    PubMed Central

    MIAO, DAOYI; ZHANG, LINGZHOU

    2015-01-01

    Obesity has been demonstrated to be involved in the progress of intervertebral disc degeneration (IDD). However, the associated mechanisms remain to be elucidated. The purpose the present study was to examine the effect of leptin on the expression of degeneration-associated genes in rat nucleus pulposus (NP) cells, and determine the possible mechanism. Normal NP cells, obtained from Sprague Dawley rats, were identified using immunocytochemistry for the expression of collagen II and CA125, and treated with leptin and/or interleukin (IL)-β. Subsequently, the mRNA expression levels of matrix metalloproteinase (MMP)-1, MMP-3, MMP-9, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-4, ADAMTS-5, aggrecan and COL2A1 were detected by reverse transcription-quantitative polymerase chain reaction (RT-q-PCR). Alcian staining and immunocytochemistry were used to examine the expression levels of proteoglycan and collagen II. The pathway activation was investigated using western blotting, and inhibitors of the pathways were used to reveal the effect of these pathways on the NP cells. The results of the RT-qPCR demonstrated that leptin alone upregulated the mRNA expression levels of MMP-1, MMP-13, ADAMTS-4, ADAMTS-5 and COL2A1. Synergy of leptin and IL-β was found in the increased expression levels of MMP-1, MMP-3 and ADAMTS-5. The leptin-treated NP cells exhibited decreased expression of collagen II. The mitrogen-activated protein kinase (MAPK) pathway (c-Jun-N-terminal kinase, phosphorylated extracellular signal-regulated kinase and p38), phosphatidylinositol 3-kinase (PI3K)/Akt pathway and Janus kinase (JAK)2/signal transducer and activator of transcription 3 pathway were all activated by leptin, however, inhibitors of all the pathways, with the exception of the PI3K/Akt pathway, reversed the expression levels of MMP-1 and MMP-13. These results suggested that leptin promoted catabolic metabolism in the rat NP cells via the MAPK and JAK2/STAT3

  12. Phosphatidylinositol 3-phosphates-at the interface between cell signalling and membrane traffic.

    PubMed

    Marat, Andrea L; Haucke, Volker

    2016-03-15

    Phosphoinositides (PIs) form a minor class of phospholipids with crucial functions in cell physiology, ranging from cell signalling and motility to a role as signposts of compartmental membrane identity. Phosphatidylinositol 3-phosphates are present at the plasma membrane and within the endolysosomal system, where they serve as key regulators of both cell signalling and of intracellular membrane traffic. Here, we provide an overview of the metabolic pathways that regulate cellular synthesis of PI 3-phosphates at distinct intracellular sites and discuss the mechanisms by which these lipids regulate cell signalling and membrane traffic. Finally, we provide a framework for how PI 3-phosphate metabolism is integrated into the cellular network. © 2016 The Authors.

  13. Differential activation of the Ras/extracellular-signal-regulated protein kinase pathway is responsible for the biological consequences induced by the Axl receptor tyrosine kinase.

    PubMed

    Fridell, Y W; Jin, Y; Quilliam, L A; Burchert, A; McCloskey, P; Spizz, G; Varnum, B; Der, C; Liu, E T

    1996-01-01

    To understand the mechanism of Axl signaling, we have initiated studies to delineate downstream components in interleukin-3-dependent 32D cells by using a chimeric receptor containing the recombinant epidermal growth factor (EGF) receptor extracellular and transmembrane domains and the Axl kinase domain (EAK [for EGF receptor-Axl kinase]). We have previously shown that upon exogenous EGF stimulation, 32D-EAK cells are capable of proliferation in the absence of interleukin-3. With this system, we determined that EAK-induced cell survival and mitogenesis are dependent upon the Ras/extracellular-signal-regulated protein kinase (ERK) cascade. Although the phosphatidylinositol-3 kinase pathway is activated upon EAK signaling, it appears to be dispensable for the biological actions of the Axl kinase. Furthermore, we demonstrated that different threshold levels of Ras/ERK activation are needed to induce a block to apoptosis or proliferation in 32D cells. Recently, we have identified an Axl ligand, GAS6. Surprisingly, GAS6-stimulated 32D-Axl cells exhibited no blockage to apoptosis or mitogenic response which is correlated with the absence of Ras/ERK activation. Taken together, these data suggest that different extracellular domains dramatically alter the intracellular response of the Axl kinase. Furthermore, our data suggest that the GAS6-Axl interaction does not induce mitogenesis and that its exact role remains to be determined.

  14. Distribution of the phosphatidylinositol 3-kinase inhibitors Pictilisib (GDC-0941) and GNE-317 in U87 and GS2 intracranial glioblastoma models-assessment by matrix-assisted laser desorption ionization imaging.

    PubMed

    Salphati, Laurent; Shahidi-Latham, Sheerin; Quiason, Cristine; Barck, Kai; Nishimura, Merry; Alicke, Bruno; Pang, Jodie; Carano, Richard A; Olivero, Alan G; Phillips, Heidi S

    2014-07-01

    Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults, and the limited available treatment options have not meaningfully impacted patient survival in the past decades. Such poor outcomes can be at least partly attributed to the inability of most drugs tested to cross the blood-brain barrier and reach all areas of the glioma. The objectives of these studies were to visualize and compare by matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry the brain and tumor distribution of the phosphatidylinositol 3-kinase (PI3K) inhibitors pictilisib (GDC-0941, 2-(1H-indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine) and GNE-317 [5-(6-(3-methoxyoxetan-3-yl)-7-methyl-4-morpholinothieno[3,2-d]pyrimidin-2-yl)pyrimidin-2-amine] in U87 and GS2 orthotopic models of GBM, models that exhibit differing blood-brain barrier characteristics. Following administration to tumor-bearing mice, pictilisib was readily detected within tumors of the contrast-enhancing U87 model whereas it was not located in tumors of the nonenhancing GS2 model. In both GBM models, pictilisib was not detected in the healthy brain. In contrast, GNE-317 was uniformly distributed throughout the brain in the U87 and GS2 models. MALDI imaging revealed also that the pictilisib signal varied regionally by up to 6-fold within the U87 tumors whereas GNE-317 intratumor levels were more homogeneous. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) analyses of the nontumored half of the brain showed pictilisib had brain-to-plasma ratios lower than 0.03 whereas they were greater than 1 for GNE-317, in agreement with their brain penetration properties. These results in orthotopic models representing either the contrast-enhancing or invasive areas of GBM clearly demonstrate the need for whole-brain distribution to potentially achieve long-term efficacy in GBM. Copyright © 2014 by The American Society for

  15. Phosphoinositide 3-kinase (PI3K) pathway alterations are associated with histologic subtypes and are predictive of sensitivity to PI3K inhibitors in lung cancer preclinical models.

    PubMed

    Spoerke, Jill M; O'Brien, Carol; Huw, Ling; Koeppen, Hartmut; Fridlyand, Jane; Brachmann, Rainer K; Haverty, Peter M; Pandita, Ajay; Mohan, Sankar; Sampath, Deepak; Friedman, Lori S; Ross, Leanne; Hampton, Garret M; Amler, Lukas C; Shames, David S; Lackner, Mark R

    2012-12-15

    Class 1 phosphatidylinositol 3-kinase (PI3K) plays a major role in cell proliferation and survival in a wide variety of human cancers. Here, we investigated biomarker strategies for PI3K pathway inhibitors in non-small-cell lung cancer (NSCLC). Molecular profiling for candidate PI3K predictive biomarkers was conducted on a collection of NSCLC tumor samples. Assays included comparative genomic hybridization, reverse-transcription polymerase chain reaction gene expression, mutation detection for PIK3CA and other oncogenes, PTEN immunohistochemistry, and FISH for PIK3CA copy number. In addition, a panel of NSCLC cell lines characterized for alterations in the PI3K pathway was screened with PI3K and dual PI3K/mTOR inhibitors to assess the preclinical predictive value of candidate biomarkers. PIK3CA amplification was detected in 37% of squamous tumors and 5% of adenocarcinomas, whereas PIK3CA mutations were found in 9% of squamous and 0% of adenocarcinomas. Total loss of PTEN immunostaining was found in 21% of squamous tumors and 4% of adenocarcinomas. Cell lines harboring pathway alterations (receptor tyrosine kinase activation, PI3K mutation or amplification, and PTEN loss) were exquisitely sensitive to the PI3K inhibitor GDC-0941. A dual PI3K/mTOR inhibitor had broader activity across the cell line panel and in tumor xenografts. The combination of GDC-0941 with paclitaxel, erlotinib, or a mitogen-activated protein-extracellular signal-regulated kinase inhibitor had greater effects on cell viability than PI3K inhibition alone. Candidate biomarkers for PI3K inhibitors have predictive value in preclinical models and show histology-specific alterations in primary tumors, suggesting that distinct biomarker strategies may be required in squamous compared with nonsquamous NSCLC patient populations. ©2012 AACR.

  16. Erythropoietin affords additional cardioprotection to preconditioned hearts by enhanced phosphorylation of glycogen synthase kinase-3 beta.

    PubMed

    Nishihara, Masahiro; Miura, Tetsuji; Miki, Takayuki; Sakamoto, Jun; Tanno, Masaya; Kobayashi, Hironori; Ikeda, Yoshihiro; Ohori, Katsuhiko; Takahashi, Akari; Shimamoto, Kazuaki

    2006-08-01

    The aim of this study was to determine whether erythropoietin (EPO) affords additional cardioprotection to the preconditioned myocardium by enhanced phosphorylation of Akt, STAT3, or glycogen synthase kinase-3beta (GSK-3 beta). Preconditioning (PC) with 5-min ischemia/5-min reperfusion and EPO (5,000 U/kg iv) reduced infarct size (as % of area at risk, %IS/AR) after 20-min ischemia in rat hearts in situ from 56.5 +/- 1.8% to 25.2 +/- 2.1% and to 36.2 +/- 2.8%, respectively. PC-induced protection was significantly inhibited by a protein kinase C inhibitor, chelerythrine (5 mg/kg), and slightly blunted by a phosphatidylinositol-3-kinase inhibitor, wortmannin (15 microg/kg). The opposite pattern of inhibition was observed for EPO-induced protection. The combination of PC and EPO further reduced %IS/AR to 8.9 +/- 1.9%, and this protection was inhibited by chelerythrine and wortmannin. The additive effects of PC and EPO on infarct size were mirrored by their effects on the level of phosphorylated GSK-3 beta at 5 min after reperfusion but not their effects on the level of phospho-Akt or phospho-STAT3. To mimic phosphorylation-induced inhibition of GSK-3 beta activity, SB-216763 (SB), a GSK-3 beta inhibitor, was administered before ischemia or 5 min before reperfusion. Infarct size was significantly reduced by preischemic injection (%IS/AR = 40.4 +/- 2.2% by 0.6 mg/kg SB and 34.0 +/- 1.8% by 1.2 mg/kg SB) and also by prereperfusion injection (%IS/AR = 32.0 +/- 2.0% by 1.2 mg/kg SB). These results suggest that EPO and PC afford additive infarct size-limiting effects by additive phosphorylation of GSK-3beta at the time of reperfusion by Akt-dependent and -independent mechanisms.

  17. A single ataxia telangiectasia gene with a product similar to PI-3 kinase.

    PubMed

    Savitsky, K; Bar-Shira, A; Gilad, S; Rotman, G; Ziv, Y; Vanagaite, L; Tagle, D A; Smith, S; Uziel, T; Sfez, S; Ashkenazi, M; Pecker, I; Frydman, M; Harnik, R; Patanjali, S R; Simmons, A; Clines, G A; Sartiel, A; Gatti, R A; Chessa, L; Sanal, O; Lavin, M F; Jaspers, N G; Taylor, A M; Arlett, C F; Miki, T; Weissman, S M; Lovett, M; Collins, F S; Shiloh, Y

    1995-06-23

    A gene, ATM, that is mutated in the autosomal recessive disorder ataxia telangiectasia (AT) was identified by positional cloning on chromosome 11q22-23. AT is characterized by cerebellar degeneration, immunodeficiency, chromosomal instability, cancer predisposition, radiation sensitivity, and cell cycle abnormalities. The disease is genetically heterogeneous, with four complementation groups that have been suspected to represent different genes. ATM, which has a transcript of 12 kilobases, was found to be mutated in AT patients from all complementation groups, indicating that it is probably the sole gene responsible for this disorder. A partial ATM complementary DNA clone of 5.9 kilobases encoded a putative protein that is similar to several yeast and mammalian phosphatidylinositol-3' kinases that are involved in mitogenic signal transduction, meiotic recombination, and cell cycle control. The discovery of ATM should enhance understanding of AT and related syndromes and may allow the identification of AT heterozygotes, who are at increased risk of cancer.

  18. Enhanced resistance in Theobroma cacao against oomycete and fungal pathogens by secretion of phosphatidylinositol-3-phosphate-binding proteins

    USDA-ARS?s Scientific Manuscript database

    The internalization of oomycete and fungal pathogen effectors into host plant cells has been reported to be blocked by proteins that bind to the effectors’ cell entry receptor, phosphatidylinositol-3-phosphate (PI3P). This finding suggested a novel strategy for disease control by engineering plants ...

  19. Localization of phosphatidylinositol signaling components in rat taste cells: Role in bitter taste transduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, P.M.; Verma, A.; Bredt, D.S.

    1990-10-01

    To assess the role of phosphatidylinositol turnover in taste transduction we have visualized, in rat tongue, ATP-dependent endoplasmic reticular accumulation of {sup 45}Ca{sup 2+}, inositol 1,4,5-trisphosphate receptor binding sites, and phosphatidylinositol turnover monitored by autoradiography of ({sup 3}H)cytidine diphosphate diacylglycerol formed from ({sup 3}H)cytidine. Accumulated {sup 45}Ca{sup 2+}, inositol 1,4,5-trisphosphate receptors, and phosphatidylinositol turnover are selectively localized to apical areas of the taste buds of circumvallate papillae, which are associated with bitter taste. Further evidence for a role of phosphatidylinositol turnover in bitter taste is our observation of a rapid, selective increase in mass levels of inositol 1,4,5-trisphosphate elicited bymore » low concentrations of denatonium, a potently bitter tastant.« less

  20. alpha-Amino-3-hydroxy-5-methyl-4-isoxazole propionate attenuates glutamate-induced caspase-3 cleavage via regulation of glycogen synthase kinase 3beta.

    PubMed

    Nishimoto, Takaaki; Kihara, Takeshi; Akaike, Akinori; Niidome, Tetsuhiro; Sugimoto, Hachiro

    2008-04-01

    Preconditioning of sublethal ischemia exhibits neuroprotection against subsequent ischemia-induced neuronal death. It has been indicated that glutamate, an excitatory amino acid, is involved in the pathogenesis of ischemia-induced neuronal death or neurodegeneration. To elucidate whether prestimulation of glutamate receptor could counter ischemia-induced neuronal death or neurodegeneration, we examined the effect of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA), an ionotropic subtype of glutamate receptor, on excess glutamate-induced excitotoxicity using primary cortical neuronal cultures. We found that AMPA exerted a neuroprotective effect in a time- and concentration-dependent manner. A blocker of phosphatidylinositol-3 kinase (PI3K), LY294002 (10 microM), significantly attenuated AMPA-induced protection. In addition, Ser473 of Akt/PKB, a downstream target of PI3K, was phosphorylated by AMPA administration (10 microM). Glycogen synthase kinase 3beta (GSK3beta), which has been reported to be inactivated by Akt, was phosphorylated at Ser9 by AMPA. Ser9-phosphorylated GSK3beta or inactivated form would be a key molecule for neuroprotection, insofar as lithium chloride (100 microM) and SB216763 (10 microM), inhibitors of GSK3beta, also induced phosphorylation of GSK3beta at Ser9 and exerted neuroprotection, respectively. Glutamate (100 microM) increased cleaved caspase-3, an apoptosis-related cysteine protease, and caspase-3 inhibitor (Ac-DEVD-CHO; 1 microM) blocked glutamate-induced excitotoxicity in our culture. AMPA (10 microM, 24 hr) and SB216763 (10 microM) prominently decreased glutamate-induced caspase-3 cleavage. These findings suggest that AMPA activates PI3K-Akt and subsequently inhibits GSK3beta and that inactivated GSK3beta attenuates glutamate-induced caspase-3 cleavage and neurotoxicity.

  1. Idelalisib, an inhibitor of phosphatidylinositol 3-kinase p110δ, for relapsed/refractory chronic lymphocytic leukemia

    PubMed Central

    Byrd, John C.; Coutre, Steven E.; Benson, Don M.; Flinn, Ian W.; Wagner-Johnston, Nina D.; Spurgeon, Stephen E.; Kahl, Brad S.; Bello, Celeste; Webb, Heather K.; Johnson, Dave M.; Peterman, Sissy; Li, Daniel; Jahn, Thomas M.; Lannutti, Brian J.; Ulrich, Roger G.; Yu, Albert S.; Miller, Langdon L.; Furman, Richard R.

    2014-01-01

    In a phase 1 trial, idelalisib (GS-1101, CAL-101), a selective inhibitor of the lipid kinase PI3Kδ, was evaluated in 54 patients with relapsed/refractory chronic lymphocytic leukemia (CLL) with adverse characteristics including bulky lymphadenopathy (80%), extensive prior therapy (median 5 [range 2-14] prior regimens), treatment-refractory disease (70%), unmutated IGHV (91%), and del17p and/or TP53 mutations (24%). Patients were treated at 6 dose levels of oral idelalisib (range 50-350 mg once or twice daily) and remained on continuous therapy while deriving clinical benefit. Idelalisib-mediated inhibition of PI3Kδ led to abrogation of Akt phosphorylation in patient CLL cells and significantly reduced serum levels of CLL-related chemokines. The most commonly observed grade ≥3 adverse events were pneumonia (20%), neutropenic fever (11%), and diarrhea (6%). Idelalisib treatment resulted in nodal responses in 81% of patients. The overall response rate was 72%, with 39% of patients meeting the criteria for partial response per IWCLL 2008 and 33% meeting the recently updated criteria of PR with treatment-induced lymphocytosis.1,2 The median progression-free survival for all patients was 15.8 months. This study demonstrates the clinical utility of inhibiting the PI3Kδ pathway with idelalisib. Our findings support the further development of idelalisib in patients with CLL. These trials were registered at clinicaltrials.gov as #NCT00710528 and #NCT01090414. PMID:24615777

  2. Involvement of stress-activated protein kinase in the cellular response to 1-beta-D-arabinofuranosylcytosine and other DNA-damaging agents.

    PubMed

    Saleem, A; Datta, R; Yuan, Z M; Kharbanda, S; Kufe, D

    1995-12-01

    The cellular response to 1-beta-D-arabinofuranosylcytosine (ara-C) includes activation of Jun/AP-1, induction of c-jun transcription, and programmed cell death. The stress-activated protein (SAP) kinases stimulate the transactivation function of c-jun by amino terminal phosphorylation. The present work demonstrates that ara-C activates p54 SAP kinase. The finding that SAP kinase is also activated by alkylating agents (mitomycin C and cisplatinum) and the topoisomerase I inhibitor 9-amino-camptothecin supports DNA damage as an initial signal in this cascade. The results demonstrate that ara-C also induces binding of SAP kinase to the SH2/SH3-containing adapter protein Grb2. SAP kinase binds to the SH3 domains of Grb2, while interaction of the p85 alpha-subunit of phosphatidylinositol 3-kinase complex. The results also demonstrate that ara-C treatment is associated with inhibition of lipid and serine kinase activities of PI 3-kinase. The potential significance of the ara-C-induced interaction between SAP kinase and PI 3-kinase is further supported by the demonstration that Wortmannin, an inhibitor of PI 3-kinase, stimulates SAP kinase activity. The finding that Wortmannin treatment is also associated with internucleosomal DNA fragmentation may support a potential link between PI 3-kinase and regulation of both SAP kinase and programmed cell death.

  3. Phosphoinositide 3-Kinase p110δ Mediates Estrogen- and FSH-Stimulated Ovarian Follicle Growth

    PubMed Central

    Li, Qian; He, Hui; Zhang, Yin-Li; Li, Xiao-Meng; Guo, Xuejiang; Huo, Ran; Bi, Ye; Li, Jing

    2013-01-01

    In the mammalian ovary, primordial follicles are generated early in life and remain dormant for prolonged periods. Their growth resumes via primordial follicle activation, and they continue to grow until the preovulatory stage under the regulation of hormones and growth factors, such as estrogen, FSH, and IGF-1. Both FSH and IGF-1 activate the phosphatidylinositol-3 kinase (PI3K)/Akt (acute transforming retrovirus thymoma protein kinase) signaling pathway in granulosa cells (GCs), yet it remains inconclusive whether the PI3K pathway is crucial for follicle growth. In this study, we investigated the p110δ isoform (encoded by the Pik3cd gene) of PI3K catalytic subunit expression in the mouse ovary and its function in fertility. Pik3cd-null females were subfertile, exhibited fewer growing follicles and more atretic antral follicles in the ovary, and responded poorly to exogenous gonadotropins compared with controls. Ovary transplantation showed that Pik3cd-null ovaries responded poorly to FSH stimulation in vitro; this confirmed that the follicle growth defect was intrinsically ovarian. In addition, estradiol (E2)-stimulated follicle growth and GC proliferation in preantral follicles was impaired in Pik3cd-null ovaries. FSH and E2 substantially activated the PI3K/Akt pathway in GCs of control mice but not in those of Pik3cd-null mice. However, primordial follicle activation and oocyte meiotic maturation were not affected by Pik3cd knockout. Taken together, our findings indicate that the p110δ isoform of the PI3K catalytic subunit is a key component of the PI3K pathway for both FSH and E2-stimulated follicle growth in ovarian GCs; however, it is not required for primordial follicle activation and oocyte development. PMID:23820902

  4. Drosophila Spidey/Kar Regulates Oenocyte Growth via PI3-Kinase Signaling

    PubMed Central

    Cinnamon, Einat; Sawala, Annick; Tittiger, Claus; Paroush, Ze'ev

    2016-01-01

    Cell growth and proliferation depend upon many different aspects of lipid metabolism. One key signaling pathway that is utilized in many different anabolic contexts involves Phosphatidylinositide 3-kinase (PI3K) and its membrane lipid products, the Phosphatidylinositol (3,4,5)-trisphosphates. It remains unclear, however, which other branches of lipid metabolism interact with the PI3K signaling pathway. Here, we focus on specialized fat metabolizing cells in Drosophila called larval oenocytes. In the presence of dietary nutrients, oenocytes undergo PI3K-dependent cell growth and contain very few lipid droplets. In contrast, during starvation, oenocytes decrease PI3K signaling, shut down cell growth and accumulate abundant lipid droplets. We now show that PI3K in larval oenocytes, but not in fat body cells, functions to suppress lipid droplet accumulation. Several enzymes of fatty acid, triglyceride and hydrocarbon metabolism are required in oenocytes primarily for lipid droplet induction rather than for cell growth. In contrast, a very long chain fatty-acyl-CoA reductase (FarO) and a putative lipid dehydrogenase/reductase (Spidey, also known as Kar) not only promote lipid droplet induction but also inhibit oenocyte growth. In the case of Spidey/Kar, we show that the growth suppression mechanism involves inhibition of the PI3K signaling pathway upstream of Akt activity. Together, the findings in this study show how Spidey/Kar and FarO regulate the balance between the cell growth and lipid storage of larval oenocytes. PMID:27500738

  5. The selectivity of protein kinase inhibitors: a further update

    PubMed Central

    Bain, Jenny; Plater, Lorna; Elliott, Matt; Shpiro, Natalia; Hastie, C. James; Mclauchlan, Hilary; Klevernic, Iva; Arthur, J. Simon C.; Alessi, Dario R.; Cohen, Philip

    2007-01-01

    The specificities of 65 compounds reported to be relatively specific inhibitors of protein kinases have been profiled against a panel of 70–80 protein kinases. On the basis of this information, the effects of compounds that we have studied in cells and other data in the literature, we recommend the use of the following small-molecule inhibitors: SB 203580/SB202190 and BIRB 0796 to be used in parallel to assess the physiological roles of p38 MAPK (mitogen-activated protein kinase) isoforms, PI-103 and wortmannin to be used in parallel to inhibit phosphatidylinositol (phosphoinositide) 3-kinases, PP1 or PP2 to be used in parallel with Src-I1 (Src inhibitor-1) to inhibit Src family members; PD 184352 or PD 0325901 to inhibit MKK1 (MAPK kinase-1) or MKK1 plus MKK5, Akt-I-1/2 to inhibit the activation of PKB (protein kinase B/Akt), rapamycin to inhibit TORC1 [mTOR (mammalian target of rapamycin)–raptor (regulatory associated protein of mTOR) complex], CT 99021 to inhibit GSK3 (glycogen synthase kinase 3), BI-D1870 and SL0101 or FMK (fluoromethylketone) to be used in parallel to inhibit RSK (ribosomal S6 kinase), D4476 to inhibit CK1 (casein kinase 1), VX680 to inhibit Aurora kinases, and roscovitine as a pan-CDK (cyclin-dependent kinase) inhibitor. We have also identified harmine as a potent and specific inhibitor of DYRK1A (dual-specificity tyrosine-phosphorylated and -regulated kinase 1A) in vitro. The results have further emphasized the need for considerable caution in using small-molecule inhibitors of protein kinases to assess the physiological roles of these enzymes. Despite being used widely, many of the compounds that we analysed were too non-specific for useful conclusions to be made, other than to exclude the involvement of particular protein kinases in cellular processes. PMID:17850214

  6. Dynamic subcellular partitioning of the nucleolar transcription factor TIF-IA under ribotoxic stress.

    PubMed

    Szymański, Jedrzej; Mayer, Christine; Hoffmann-Rohrer, Urs; Kalla, Claudia; Grummt, Ingrid; Weiss, Matthias

    2009-07-01

    TIF-IA is a basal transcription factor of RNA polymerase I (Pol I) that is a major target of the JNK2 signaling pathway in response to ribotoxic stress. Using advanced fluorescence microscopy and kinetic modeling we elucidated the subcellular localization of TIF-IA and its exchange dynamics between the nucleolus, nucleoplasm and cytoplasm upon ribotoxic stress. In steady state, the majority of (GFP-tagged) TIF-IA was in the cytoplasm and the nucleus, a minor portion (7%) localizing to the nucleoli. We observed a rapid shuttling of GFP-TIF-IA between the different cellular compartments with a mean residence time of approximately 130 s in the nucleus and only approximately 30 s in the nucleoli. The import rate from the cytoplasm to the nucleus was approximately 3-fold larger than the export rate, suggesting an importin/exportin-mediated transport rather than a passive diffusion. Upon ribotoxic stress, GFP-TIF-IA was released from the nucleoli with a half-time of approximately 24 min. Oxidative stress and inhibition of protein synthesis led to a relocation of GFP-TIF-IA with slower kinetics while osmotic stress had no effect. The observed relocation was much slower than the nucleo-cytoplasmic and nucleus-nucleolus exchange rates of GFP-TIF-IA, indicating a time-limiting step upstream of the JNK2 pathway. In support of this, time-course experiments on the activity of JNK2 revealed the activation of the JNK kinase as the rate-limiting step.

  7. Hallway gossip between Ras and PI3K pathways.

    PubMed

    Emanuel, Peter D

    2014-05-01

    In this issue of Blood, Goodwin et al investigate the pathogenesis of juvenile myelomonocytic leukemia (JMML), demonstrating that mutant Shp2 induces granulocyte macrophage-colony-stimulating factor (GM-CSF) hypersensitivity and that the p110δ subunit of phosphatidylinositol 3-kinase (PI3K) further promotes this dysregulation

  8. 75 FR 16067 - Designation for the Champaign, IL; Emmett, MI; Davenport, IA; Enid, OK; Keokuk, IA; Marshall, MI...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-31

    ... the Champaign, IL; Emmett, MI; Davenport, IA; Enid, OK; Keokuk, IA; Marshall, MI; and Omaha, NE Areas... Iowa Davenport, IA (563-322-7149). 4/1/2010 3/31/2013 Additional Locations: Dubuque, IA; Muscatine, IA...: Catoosa, OK. Keokuk Keokuk, IA (319-524-6482). 4/1/2010 3/31/2013 Additional Location: Havana, IL...

  9. Type II PI4-kinases control Weibel-Palade body biogenesis and von Willebrand factor structure in human endothelial cells.

    PubMed

    Lopes da Silva, Mafalda; O'Connor, Marie N; Kriston-Vizi, Janos; White, Ian J; Al-Shawi, Raya; Simons, J Paul; Mössinger, Julia; Haucke, Volker; Cutler, Daniel F

    2016-05-15

    Weibel-Palade bodies (WPBs) are endothelial storage organelles that mediate the release of molecules involved in thrombosis, inflammation and angiogenesis, including the pro-thrombotic glycoprotein von Willebrand factor (VWF). Although many protein components required for WPB formation and function have been identified, the role of lipids is almost unknown. We examined two key phosphatidylinositol kinases that control phosphatidylinositol 4-phosphate levels at the trans-Golgi network, the site of WPB biogenesis. RNA interference of the type II phosphatidylinositol 4-kinases PI4KIIα and PI4KIIβ in primary human endothelial cells leads to formation of an increased proportion of short WPB with perturbed packing of VWF, as exemplified by increased exposure of antibody-binding sites. When stimulated with histamine, these cells release normal levels of VWF yet, under flow, form very few platelet-catching VWF strings. In PI4KIIα-deficient mice, immuno-microscopy revealed that VWF packaging is also perturbed and these mice exhibit increased blood loss after tail cut compared to controls. This is the first demonstration that lipid kinases can control the biosynthesis of VWF and the formation of WPBs that are capable of full haemostatic function. © 2016. Published by The Company of Biologists Ltd.

  10. Imbalanced PTEN and Phosphoinositide 3-kinase signaling impairs class switch recombination1

    PubMed Central

    Chen, Xiaomi; Dollin, Yonatan; Cambier, John C.; Wang, Jing H.

    2015-01-01

    Class switch recombination (CSR) generates isotype-switched antibodies with distinct effector functions. B cells express phosphatase and tensin homolog (PTEN) and multiple isoforms of class IA phosphoinositide 3-kinase (PI3K) catalytic subunits, including p110α and p110δ, whose roles in CSR remain unknown or controversial. Here, we demonstrate a direct effect of PTEN on CSR signaling by acute deletion of Pten specifically in mature B cells, thereby excluding the developmental impact of Pten deletion. We show that mature B cell-specific PTEN overexpression enhances CSR. More importantly, we establish a critical role of p110α in CSR. Furthermore, we identify a cooperative role of p110α and p110δ in suppressing CSR. Mechanistically, dysregulation of p110α or PTEN reversely affects activation-induced deaminase expression via modulating AKT activity. Thus, our study reveals that a signaling balance between PTEN and PI3K isoforms is essential to maintain normal CSR. PMID:26500350

  11. Nrbf2 protein suppresses autophagy by modulating Atg14L protein-containing Beclin 1-Vps34 complex architecture and reducing intracellular phosphatidylinositol-3 phosphate levels.

    PubMed

    Zhong, Yu; Morris, Deanna H; Jin, Lin; Patel, Mittul S; Karunakaran, Senthil K; Fu, You-Jun; Matuszak, Emily A; Weiss, Heidi L; Chait, Brian T; Wang, Qing Jun

    2014-09-19

    Autophagy is a tightly regulated lysosomal degradation pathway for maintaining cellular homeostasis and responding to stresses. Beclin 1 and its interacting proteins, including the class III phosphatidylinositol-3 kinase Vps34, play crucial roles in autophagy regulation in mammals. We identified nuclear receptor binding factor 2 (Nrbf2) as a Beclin 1-interacting protein from Becn1(-/-);Becn1-EGFP/+ mouse liver and brain. We also found that Nrbf2-Beclin 1 interaction required the N terminus of Nrbf2. We next used the human retinal pigment epithelial cell line RPE-1 as a model system and showed that transiently knocking down Nrbf2 by siRNA increased autophagic flux under both nutrient-rich and starvation conditions. To investigate the mechanism by which Nrbf2 regulates autophagy, we demonstrated that Nrbf2 interacted and colocalized with Atg14L, suggesting that Nrbf2 is a component of the Atg14L-containing Beclin 1-Vps34 complex. Moreover, ectopically expressed Nrbf2 formed cytosolic puncta that were positive for isolation membrane markers. These results suggest that Nrbf2 is involved in autophagosome biogenesis. Furthermore, we showed that Nrbf2 deficiency led to increased intracellular phosphatidylinositol-3 phosphate levels and diminished Atg14L-Vps34/Vps15 interactions, suggesting that Nrbf2-mediated Atg14L-Vps34/Vps15 interactions likely inhibit Vps34 activity. Therefore, we propose that Nrbf2 may interact with the Atg14L-containing Beclin 1-Vps34 protein complex to modulate protein-protein interactions within the complex, leading to suppression of Vps34 activity, autophagosome biogenesis, and autophagic flux. This work reveals a novel aspect of the intricate mechanism for the Beclin 1-Vps34 protein-protein interaction network to achieve precise control of autophagy. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. ERK-dependent phosphorylation of the transcription initiation factor TIF-IA is required for RNA polymerase I transcription and cell growth.

    PubMed

    Zhao, Jian; Yuan, Xuejun; Frödin, Morten; Grummt, Ingrid

    2003-02-01

    Phosphorylation of transcription factors by mitogen-activated protein kinase (MAPK) cascades links cell signaling with the control of gene expression. Here we show that growth factors induce rRNA synthesis by activating MAPK-dependent signaling cascades that target the RNA polymerase I-specific transcription initiation factor TIF-IA. Activation of TIF-IA and ribosomal gene transcription is sensitive to PD98059, indicating that TIF-IA is targeted by MAPK in vivo. Phosphopeptide mapping and mutational analysis reveals two serine residues (S633 and S649) that are phosphorylated by ERK and RSK kinases. Replacement of S649 by alanine inactivates TIF-IA, inhibits pre-rRNA synthesis, and retards cell growth. The results provide a link between growth factor signaling, ribosome production, and cell growth, and may have a major impact on the mechanism of cell transformation.

  13. Atypical Protein Kinase C Activity in the Hypothalamus Is Required for Lipopolysaccharide-Mediated Sickness Responses

    PubMed Central

    Thaler, Joshua P.; Choi, Sun Ju; Sajan, Mini P.; Ogimoto, Kayoko; Nguyen, Hong T.; Matsen, Miles; Benoit, Stephen C.; Wisse, Brent E.; Farese, Robert V.; Schwartz, Michael W.

    2009-01-01

    By activating the Toll-like receptor 4-nuclear factor-κB signal transduction pathway, the bacterial endotoxin lipopolysaccharide (LPS) induces anorexia, weight loss, fever, and other components of the sickness response. By comparison, the hormones leptin and insulin cause anorexia without sickness via a central mechanism involving the phosphatidylinositol-3 kinase signaling pathway. In the current study, we investigated whether a common Toll-like receptor 4 and phosphatidylinositol-3 kinase signaling intermediate, atypical protein kinase Cζ/λ (aPKC), contributes to changes of energy balance induced by these stimuli. Immunohistochemistry analysis revealed that aPKC is expressed in the arcuate and paraventricular nuclei of the hypothalamus, key sites of leptin, insulin, and LPS action. Although administration of LPS, insulin, and leptin each acutely increased hypothalamic aPKC activity at doses that also reduce food intake, LPS treatment caused over 10-fold greater activation of hypothalamic a PKC signaling than that induced by leptin or insulin. Intracerebroventricular pretreatment with an aPKC inhibitor blocked anorexia induced by LPS but not insulin or leptin. Similarly, LPS-induced hypothalamic inflammation (as judged by induction of proinflammatory cytokine gene expression) and neuronal activation in the paraventricular nucleus (as judged by c-fos induction) were reduced by central aPKC inhibition. Although intracerebroventricular aPKC inhibitor administration also abolished LPS-induced fever, it had no effect on sickness-related hypoactivity or weight loss. We conclude that although hypothalamic aPKC signaling is not required for food intake inhibition by insulin or leptin, it plays a key role in inflammatory anorexia and fever induced by LPS. PMID:19819945

  14. Insulin and the phosphatidylinositol 3-kinase signaling pathway regulate Ribonuclease 7 expression in the human urinary tract.

    PubMed

    Eichler, Tad E; Becknell, Brian; Easterling, Robert S; Ingraham, Susan E; Cohen, Daniel M; Schwaderer, Andrew L; Hains, David S; Li, Birong; Cohen, Ariel; Metheny, Jackie; Tridandapani, Susheela; Spencer, John David

    2016-09-01

    Diabetes mellitus is a systemic disease associated with a deficiency of insulin production or action. Diabetic patients have an increased susceptibility to infection with the urinary tract being the most common site. Recent studies suggest that Ribonuclease 7 (RNase 7) is a potent antimicrobial peptide that plays an important role in protecting the urinary tract from bacterial insult. Because the impact of diabetes on RNase 7 expression and function are unknown, we investigated the effects of insulin on RNase 7 using human urine specimens. The urinary RNase 7 concentrations were measured in healthy control patients and insulin-deficient type 1 diabetics before and after starting insulin therapy. Compared with controls, diabetic patients had suppressed urinary RNase 7 concentrations, which increased with insulin. Using primary human urothelial cells, the mechanisms by which insulin stimulates RNase 7 synthesis were next explored. Insulin induced RNase 7 production via the phosphatidylinositide 3-kinase signaling pathway (PI3K/AKT) to shield urothelial cells from uropathogenic E. coli. In contrast, uropathogenic E. coli suppressed PI3K/AKT activity and RNase 7 production. Thus, insulin and PI3K/AKT signaling are essential for RNase 7 expression and increased infection risks in diabetic patients may be secondary to suppressed RNase 7 production. Our data may provide unique insight into novel urinary tract infection therapeutic strategies in at-risk populations. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  15. Glycogen synthase kinase 3 has a limited role in cell cycle regulation of cyclin D1 levels.

    PubMed

    Yang, Ke; Guo, Yang; Stacey, William C; Harwalkar, Jyoti; Fretthold, Jonathan; Hitomi, Masahiro; Stacey, Dennis W

    2006-08-30

    The expression level of cyclin D1 plays a vital role in the control of proliferation. This protein is reported to be degraded following phosphorylation by glycogen synthase kinase 3 (GSK3) on Thr-286. We recently showed that phosphorylation of Thr-286 is responsible for a decline in cyclin D1 levels during S phase, an event required for efficient DNA synthesis. These studies were undertaken to test the possibility that phosphorylation by GSK3 is responsible for the S phase specific decline in cyclin D1 levels, and that this event is regulated by the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway which controls GSK3. We found, however, that neither PI3K, AKT, GSK3, nor proliferative signaling activity in general is responsible for the S phase decline in cyclin D1 levels. In fact, the activity of these signaling kinases does not vary through the cell cycle of proliferating cells. Moreover, we found that GSK3 activity has little influence over cyclin D1 expression levels during any cell cycle phase. Inhibition of GSK3 activity by siRNA, LiCl, or other chemical inhibitors failed to influence cyclin D1 phosphorylation on Thr-286, even though LiCl efficiently blocked phosphorylation of beta-catenin, a known substrate of GSK3. Likewise, the expression of a constitutively active GSK3 mutant protein failed to influence cyclin D1 phosphorylation or total protein expression level. Because we were unable to identify any proliferative signaling molecule or pathway which is regulated through the cell cycle, or which is able to influence cyclin D1 levels, we conclude that the suppression of cyclin D1 levels during S phase is regulated by cell cycle position rather than signaling activity. We propose that this mechanism guarantees the decline in cyclin D1 levels during each S phase; and that in so doing it reduces the likelihood that simple over expression of cyclin D1 can lead to uncontrolled cell growth.

  16. Role of Gab1 in Heart, Placenta, and Skin Development and Growth Factor- and Cytokine-Induced Extracellular Signal-Regulated Kinase Mitogen-Activated Protein Kinase Activation

    PubMed Central

    Itoh, Motoyuki; Yoshida, Yuichi; Nishida, Keigo; Narimatsu, Masahiro; Hibi, Masahiko; Hirano, Toshio

    2000-01-01

    Gab1 is a member of the Gab/DOS (Daughter of Sevenless) family of adapter molecules, which contain a pleckstrin homology (PH) domain and potential binding sites for SH2 and SH3 domains. Gab1 is tyrosine phosphorylated upon stimulation of various cytokines, growth factors, and antigen receptors in cell lines and interacts with signaling molecules, such as SHP-2 and phosphatidylinositol 3-kinase, although its biological roles have not yet been established. To reveal the functions of Gab1 in vivo, we generated mice lacking Gab1 by gene targeting. Gab1-deficient embryos died in utero and displayed developmental defects in the heart, placenta, and skin, which were similar to phenotypes observed in mice lacking signals of the hepatocyte growth factor/scatter factor, platelet-derived growth factor, and epidermal growth factor pathways. Consistent with these observations, extracellular signal-regulated kinase mitogen-activated protein (ERK MAP) kinases were activated at much lower levels in cells from Gab1-deficient embryos in response to these growth factors or to stimulation of the cytokine receptor gp130. These results indicate that Gab1 is a common player in a broad range of growth factor and cytokine signaling pathways linking ERK MAP kinase activation. PMID:10779359

  17. Drosophila Mtm and class II PI3K coregulate a PI(3)P pool with cortical and endolysosomal functions.

    PubMed

    Velichkova, Michaella; Juan, Joe; Kadandale, Pavan; Jean, Steve; Ribeiro, Inês; Raman, Vignesh; Stefan, Chris; Kiger, Amy A

    2010-08-09

    Reversible phosphoinositide phosphorylation provides a dynamic membrane code that balances opposing cell functions. However, in vivo regulatory relationships between specific kinases, phosphatases, and phosphoinositide subpools are not clear. We identified myotubularin (mtm), a Drosophila melanogaster MTM1/MTMR2 phosphoinositide phosphatase, as necessary and sufficient for immune cell protrusion formation and recruitment to wounds. Mtm-mediated turnover of endosomal phosphatidylinositol 3-phosphate (PI(3)P) pools generated by both class II and III phosphatidylinositol 3-kinases (Pi3K68D and Vps34, respectively) is needed to down-regulate membrane influx, promote efflux, and maintain endolysosomal homeostasis. Endocytosis, but not endolysosomal size, contributes to cortical remodeling by mtm function. We propose that Mtm-dependent regulation of an endosomal PI(3)P pool has separable consequences for endolysosomal homeostasis and cortical remodeling. Pi3K68D depletion (but not Vps34) rescues protrusion and distribution defects in mtm-deficient immune cells and restores functions in other tissues essential for viability. The broad interactions between mtm and class II Pi3K68D suggest a novel strategy for rebalancing PI(3)P-mediated cell functions in MTM-related human disease.

  18. Targeting Phosphatidylinositol 4-Kinase IIIα for Radiosensitization: A Potential Model of Drug Repositioning Using an Anti-Hepatitis C Viral Agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Jeanny; Kim, Dan Hyo; Park, Ji Min

    Purpose: To investigate which isotype of phosphatidylinositol 4-kinase (PI4K) may affect radiosensitivity and examine whether anti–hepatitis C viral (HCV) agents, some of which have been shown to inhibit PI4K IIIα activity, could be repositioned as a radiosensitizer in human cancer cells. Methods and Materials: U251, BT474, and HepG2 cell lines and normal human astrocyte were used. Ribonucleic acid interference, clonogenic assays, Western blotting, immunofluorescence, annexin V assay, lysotracker staining, and β-galactosidase assay were performed. Results: Of the 4 PI4K isotypes, specific inhibition of IIIα increased radiosensitivity. For pharmacologic inhibition of PI4K IIIα, we screened 9 anti-HCV agents by half-maximal inhibitorymore » concentration assay. Simeprevir was selected, and its inhibition of PI4K IIIα activity was confirmed. Combination of simeprevir treatment and radiation significantly attenuated expression of phospho-phospho-PKC and phospho-Akt and increased radiation-induced cell death in tested cell lines. Pretreatment with simeprevir prolonged γH2AX foci formation and down-regulation of phospho-DNA-PKcs, indicating impairment of nonhomologous end-joining repair. Cells pretreated with simeprevir exhibited mixed modes of cell death, including apoptosis and autophagy. Conclusion: These data demonstrate that targeting PI4K IIIα using an anti-HCV agent is a viable approach to enhance the therapeutic efficacy of radiation therapy in various human cancers, such as glioma, breast, and hepatocellular carcinoma.« less

  19. The Dimeric Architecture of Checkpoint Kinases Mec1ATR and Tel1ATM Reveal a Common Structural Organization.

    PubMed

    Sawicka, Marta; Wanrooij, Paulina H; Darbari, Vidya C; Tannous, Elias; Hailemariam, Sarem; Bose, Daniel; Makarova, Alena V; Burgers, Peter M; Zhang, Xiaodong

    2016-06-24

    The phosphatidylinositol 3-kinase-related protein kinases are key regulators controlling a wide range of cellular events. The yeast Tel1 and Mec1·Ddc2 complex (ATM and ATR-ATRIP in humans) play pivotal roles in DNA replication, DNA damage signaling, and repair. Here, we present the first structural insight for dimers of Mec1·Ddc2 and Tel1 using single-particle electron microscopy. Both kinases reveal a head to head dimer with one major dimeric interface through the N-terminal HEAT (named after Huntingtin, elongation factor 3, protein phosphatase 2A, and yeast kinase TOR1) repeat. Their dimeric interface is significantly distinct from the interface of mTOR complex 1 dimer, which oligomerizes through two spatially separate interfaces. We also observe different structural organizations of kinase domains of Mec1 and Tel1. The kinase domains in the Mec1·Ddc2 dimer are located in close proximity to each other. However, in the Tel1 dimer they are fully separated, providing potential access of substrates to this kinase, even in its dimeric form. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Stereoscopic-3D display design: a new paradigm with Intel Adaptive Stable Image Technology [IA-SIT

    NASA Astrophysics Data System (ADS)

    Jain, Sunil

    2012-03-01

    Stereoscopic-3D (S3D) proliferation on personal computers (PC) is mired by several technical and business challenges: a) viewing discomfort due to cross-talk amongst stereo images; b) high system cost; and c) restricted content availability. Users expect S3D visual quality to be better than, or at least equal to, what they are used to enjoying on 2D in terms of resolution, pixel density, color, and interactivity. Intel Adaptive Stable Image Technology (IA-SIT) is a foundational technology, successfully developed to resolve S3D system design challenges and deliver high quality 3D visualization at PC price points. Optimizations in display driver, panel timing firmware, backlight hardware, eyewear optical stack, and synch mechanism combined can help accomplish this goal. Agnostic to refresh rate, IA-SIT will scale with shrinking of display transistors and improvements in liquid crystal and LED materials. Industry could profusely benefit from the following calls to action:- 1) Adopt 'IA-SIT S3D Mode' in panel specs (via VESA) to help panel makers monetize S3D; 2) Adopt 'IA-SIT Eyewear Universal Optical Stack' and algorithm (via CEA) to help PC peripheral makers develop stylish glasses; 3) Adopt 'IA-SIT Real Time Profile' for sub-100uS latency control (via BT Sig) to extend BT into S3D; and 4) Adopt 'IA-SIT Architecture' for Monitors and TVs to monetize via PC attach.

  1. Phase Ia/Ib study of the pan-class I PI3K inhibitor pictilisib (GDC-0941) administered as a single agent in Japanese patients with solid tumors and in combination in Japanese patients with non-squamous non-small cell lung cancer.

    PubMed

    Yamamoto, Noboru; Fujiwara, Yutaka; Tamura, Kenji; Kondo, Shunsuke; Iwasa, Satoru; Tanabe, Yuko; Horiike, Atsushi; Yanagitani, Noriko; Kitazono, Satoru; Inatani, Michiyasu; Tanaka, Jun; Nishio, Makoto

    2017-02-01

    Pictilisib (GDC-0941) is an oral class I phosphatidylinositol-3-phosphate kinase inhibitor. This phase Ia/Ib study investigated the safety, tolerability, pharmacokinetics, and pharmacodynamics of pictilisib in monotherapy or in combination with carboplatin-paclitaxel and bevacizumab (CP + BEV) in Japanese patients with advanced solid tumors or non-squamous non-small cell lung cancer. A standard 3 + 3 dose escalation design was applied. In stage 1, 140, 260, or 340 mg/day of pictilisib was administered once daily to 12 patients with advanced solid tumors. In stage 2, 260 or 340 mg/day of pictilisib was administered in combination with CP + BEV to 7 patients with advanced non-squamous non-small cell lung cancer. In stage 1, 1 of 6 patients in the 340 mg/day cohort exhibited dose limiting toxicity (DLT) of grade 3 maculopapular rash. The maximum plasma concentration and area under the curve of pictilisib were dose-dependent. A reduction in phosphorylated AKT in platelet rich plasma was observed. No patient had an objective anti-tumor response. In stage 2, DLT was observed in 1 of 3 patients in the 260 mg/day cohort (grade 3 febrile neutropenia), and 2 of 4 patients in the 340 mg/day cohort (1 each of grade 3 febrile neutropenia and grade 3 febrile neutropenia/erythema multiforme). Partial responses were observed in 3 out of 7 patients. In conclusion, pictilisib was shown to have good safety and tolerability in Japanese patients with advanced solid tumors. A recommended dose of pictilisib in monotherapy was determined to be 340 mg once daily. For combination with CP + BEV, tolerability up to 260 mg/day was confirmed.

  2. Carbon Monoxide Protects against Hepatic Ischemia/Reperfusion Injury via ROS-Dependent Akt Signaling and Inhibition of Glycogen Synthase Kinase 3β

    PubMed Central

    Kim, Hyo Jeong; Joe, Yeonsoo; Kong, Jin Sun; Jeong, Sun-Oh; Cho, Gyeong Jae; Ryter, Stefan W.

    2013-01-01

    Carbon monoxide (CO) may exert important roles in physiological and pathophysiological states through the regulation of cellular signaling pathways. CO can protect organ tissues from ischemia/reperfusion (I/R) injury by modulating intracellular redox status and by inhibiting inflammatory, apoptotic, and proliferative responses. However, the cellular mechanisms underlying the protective effects of CO in organ I/R injury remain incompletely understood. In this study, a murine model of hepatic warm I/R injury was employed to assess the role of glycogen synthase kinase-3 (GSK3) and phosphatidylinositol 3-kinase (PI3K)-dependent signaling pathways in the protective effects of CO against inflammation and injury. Inhibition of GSK3 through the PI3K/Akt pathway played a crucial role in CO-mediated protection. CO treatment increased the phosphorylation of Akt and GSK3-beta (GSK3β) in the liver after I/R injury. Furthermore, administration of LY294002, an inhibitor of PI3K, compromised the protective effect of CO and decreased the level of phospho-GSK3β after I/R injury. These results suggest that CO protects against liver damage by maintaining GSK3β phosphorylation, which may be mediated by the PI3K/Akt signaling pathway. Our study provides additional support for the therapeutic potential of CO in organ injury and identifies GSK3β as a therapeutic target for CO in the amelioration of hepatic injury. PMID:24454979

  3. Carbon monoxide protects against hepatic ischemia/reperfusion injury via ROS-dependent Akt signaling and inhibition of glycogen synthase kinase 3β.

    PubMed

    Kim, Hyo Jeong; Joe, Yeonsoo; Kong, Jin Sun; Jeong, Sun-Oh; Cho, Gyeong Jae; Ryter, Stefan W; Chung, Hun Taeg

    2013-01-01

    Carbon monoxide (CO) may exert important roles in physiological and pathophysiological states through the regulation of cellular signaling pathways. CO can protect organ tissues from ischemia/reperfusion (I/R) injury by modulating intracellular redox status and by inhibiting inflammatory, apoptotic, and proliferative responses. However, the cellular mechanisms underlying the protective effects of CO in organ I/R injury remain incompletely understood. In this study, a murine model of hepatic warm I/R injury was employed to assess the role of glycogen synthase kinase-3 (GSK3) and phosphatidylinositol 3-kinase (PI3K)-dependent signaling pathways in the protective effects of CO against inflammation and injury. Inhibition of GSK3 through the PI3K/Akt pathway played a crucial role in CO-mediated protection. CO treatment increased the phosphorylation of Akt and GSK3-beta (GSK3β) in the liver after I/R injury. Furthermore, administration of LY294002, an inhibitor of PI3K, compromised the protective effect of CO and decreased the level of phospho-GSK3β after I/R injury. These results suggest that CO protects against liver damage by maintaining GSK3β phosphorylation, which may be mediated by the PI3K/Akt signaling pathway. Our study provides additional support for the therapeutic potential of CO in organ injury and identifies GSK3β as a therapeutic target for CO in the amelioration of hepatic injury.

  4. Inhibiting Src family tyrosine kinase activity blocks glutamate signalling to ERK1/2 and Akt/PKB but not JNK in cultured striatal neurones.

    PubMed

    Crossthwaite, Andrew J; Valli, Haseeb; Williams, Robert J

    2004-03-01

    Glutamate receptor activation of mitogen-activated protein (MAP) kinase signalling cascades has been implicated in diverse neuronal functions such as synaptic plasticity, development and excitotoxicity. We have previously shown that Ca2+-influx through NMDA receptors in cultured striatal neurones mediates the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt/protein kinase B (PKB) through a phosphatidylinositol 3-kinase (PI 3-kinase)-dependent pathway. Exposing neurones to the Src family tyrosine kinase inhibitor PP2, but not the inactive analogue PP3, inhibited NMDA receptor-induced phosphorylation of ERK1/2 and Akt/PKB in a concentration-dependent manner, and reduced cAMP response element-binding protein (CREB) phosphorylation. To establish a link between Src family tyrosine kinase-mediated phosphorylation and PI 3-kinase signalling, affinity precipitation experiments were performed with the SH2 domains of the PI 3-kinase regulatory subunit p85. This revealed a Src-dependent phosphorylation of a focal adhesion kinase (FAK)-p85 complex on glutamate stimulation. Demonstrating that PI3-kinase is not ubiquitously involved in NMDA receptor signal transduction, the PI 3-kinase inhibitors wortmannin and LY294002 did not prevent NMDA receptor Ca2+-dependent phosphorylation of c-Jun N-terminal kinase 1/2 (JNK1/2). Further, inhibiting Src family kinases increased NMDA receptor-dependent JNK1/2 phosphorylation, suggesting that Src family kinase-dependent cascades may physiologically limit signalling to JNK. These results demonstrate that Src family tyrosine kinases and PI3-kinase are pivotal regulators of NMDA receptor signalling to ERK/Akt and JNK in striatal neurones.

  5. Effects of nominally selective inhibitors of the kinases PI3K, SGK1 and PKB on the insulin-dependent control of epithelial Na+ absorption.

    PubMed

    Mansley, Morag K; Wilson, Stuart M

    2010-10-01

    Insulin-induced Na(+) retention in the distal nephron may contribute to the development of oedema/hypertension in patients with type 2 diabetes. This response to insulin is usually attributed to phosphatidylinositol-3-kinase (PI3K)/serum and glucocorticoid-inducible kinase 1 (SGK1) but a role for protein kinase B (PKB) has been proposed. The present study therefore aimed to clarify the way in which insulin can evoke Na(+) retention. We examined the effects of nominally selective inhibitors of PI3K (wortmannin, PI103, GDC-0941), SGK1 (GSK650394A) and PKB (Akti-1/2) on Na(+) transport in hormone-deprived and insulin-stimulated cortical collecting duct (mpkCCD) cells, while PI3K, SGK1 and PKB activities were assayed by monitoring the phosphorylation of endogenous proteins. Wortmannin substantially inhibited basal Na(+) transport whereas PI103 and GDC-0941 had only very small effects. However, these PI3K inhibitors all abolished insulin-induced Na(+) absorption and inactivated PI3K, SGK1 and PKB fully. GSK650394A and Akti-1/2 also inhibited insulin-evoked Na(+) absorption and while GSK650394A inhibited SGK1 without affecting PKB, Akti-1/2 inactivated both kinases. While studies undertaken using PI103 and GDC-0941 show that hormone-deprived cells can absorb Na(+) independently of PI3K, PI3K seems to be essential for insulin induced Na(+) transport. Akti-1/2 does not act as a selective inhibitor of PKB and data obtained using this compound must therefore be treated with caution. GSK650394A, on the other hand, selectively inhibits SGK1 and the finding that GSK650394A suppressed insulin-induced Na(+) absorption suggests that this response is dependent upon signalling via PI3K/SGK1.

  6. Myricetin Induces Pancreatic Cancer Cell Death via the Induction of Apoptosis and Inhibition of the Phosphatidylinositol 3-Kinase (PI3K) Signaling Pathway

    PubMed Central

    Phillips, P.A.; Sangwan, V.; Borja-Cacho, D.; Dudeja, V.; Vickers, S.M.; Saluja, A.K.

    2011-01-01

    Pancreatic cancer is a the four leading cause of cancer related deaths and is adisease with poor prognosis. It is refractory to standard chemotherapeutic drugs or to novel treatment modalities, making it imperative to find new treatments. In this study, using both primary and metastatic pancreatic cancer cell lines, we have demonstrated that the flavonoid myricetin induced pancreatic cancer cell death in vitro via apoptosis, and caused a decrease in PI3 kinase activity. In vivo, treatment of orthotopic pancreatic tumors with myricetin resulted in tumor regression and decreased metastatic spread. Importantly, myricetin was non-toxic, both in vitro and in vivo, underscoring its use as a therapeutic agent against pancreatic cancer. PMID:21676539

  7. p70S6K1 (S6K1)-mediated Phosphorylation Regulates Phosphatidylinositol 4-Phosphate 5-Kinase Type I γ Degradation and Cell Invasion.

    PubMed

    Jafari, Naser; Zheng, Qiaodan; Li, Liqing; Li, Wei; Qi, Lei; Xiao, Jianyong; Gao, Tianyan; Huang, Cai

    2016-12-02

    Phosphatidylinositol 4-phosphate 5-kinase type I γ (PIPKIγ90) ubiquitination and subsequent degradation regulate focal adhesion assembly, cell migration, and invasion. However, it is unknown how upstream signals control PIPKIγ90 ubiquitination or degradation. Here we show that p70S6K1 (S6K1), a downstream target of mechanistic target of rapamycin (mTOR), phosphorylates PIPKIγ90 at Thr-553 and Ser-555 and that S6K1-mediated PIPKIγ90 phosphorylation is essential for cell migration and invasion. Moreover, PIPKIγ90 phosphorylation is required for the development of focal adhesions and invadopodia, key machineries for cell migration and invasion. Surprisingly, substitution of Thr-553 and Ser-555 with Ala promoted PIPKIγ90 ubiquitination but enhanced the stability of PIPKIγ90, and depletion of S6K1 also enhanced the stability of PIPKIγ90, indicating that PIPKIγ90 ubiquitination alone is insufficient for its degradation. These data suggest that S6K1-mediated PIPKIγ90 phosphorylation regulates cell migration and invasion by controlling PIPKIγ90 degradation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Comparative pharmacokinetics and bioavailability of escin Ia and isoescin Ia after administration of escin and of pure escin Ia and isoescin Ia in rat.

    PubMed

    Wu, Xiu-Jun; Zhang, Meng-Liang; Cui, Xiang-Yong; Gao, Feng; He, Qun; Li, Xiao-Jiao; Zhang, Ji-Wen; Fawcett, J Paul; Gu, Jing-Kai

    2012-01-06

    Escin Ia and isoescin Ia have been traditionally used clinically as the chief active ingredients of escin, a major triterpene saponin isolated from horse chestnut (Aesculus hippocastanum) seeds for the treatment of chronic venous insufficiency, hemorrhoids, inflammation and edema. To establish a sensitive LC-MS/MS method and investigate the pharmacokinetic properties of escin Ia and isoescin Ia in rats and the pharmacokinetics difference of sodium escinate with pure escin Ia and isoescin Ia. The absolute bioavailability of escin Ia and isoescin Ia and the bidirectional interconversion of them in vivo were also scarcely reported. Wister rats were administrated an intravenous (i.v.) dose (1.7 mg/kg) of sodium escinate (corresponding to 0.5mg/kg of escin Ia and 0.5mg/kg of isoescin Ia, respectively) and an i.v. dose (0.5mg/kg) or oral dose (4mg/kg) of pure escin Ia or isoescin Ia, respectively. At different time points, the concentrations of escin Ia and isoescin Ia in rat plasma were determined by LC-MS/MS method. Main pharmacokinetic parameters including t(1/2), MRT, CL, V(d), AUC and F were estimated by non-compartmental analysis using the TopFit 2.0 software package (Thomae GmbH, Germany) and statistical analysis was performed using the Student's t-test with P<0.05 as the level of significance. After administration of sodium escinate, the t(1/2) and MRT values for both escin Ia and isoescin Ia were larger than corresponding values for the compounds given alone. Absorption of escin Ia and isoescin Ia was very low with F values both <0.25%. Escin Ia and isoescin Ia were found to form the other isomer in vivo with the conversion of escin Ia to isoescin Ia being much extensive than from isoescin Ia to escin Ia. Comparison of the pharmacokinetics of escin Ia and isoescin Ia given alone and together in rat suggest that administration of herbal preparations of escin for clinical use may provide longer duration of action than administration of single isomers. The

  9. The ANKK1 kinase gene and psychiatric disorders.

    PubMed

    Ponce, Guillermo; Pérez-González, Rocío; Aragüés, María; Palomo, Tomás; Rodríguez-Jiménez, Roberto; Jiménez-Arriero, Miguel Angel; Hoenicka, Janet

    2009-07-01

    The TaqIA single nucleotide polymorphism (SNP, rs1800497), which is located in the gene that codes for the putative kinase ANKK1 (ANKK1) near the termination codon of the D2 dopamine receptor gene (DRD2; chromosome 11q22-q23), is the most studied genetic variation in a broad range of psychiatric disorders and personality traits. A large number of individual genetic association studies have found that the TaqIA SNP is linked to alcoholism and antisocial traits. In addition, it has also been related to other conditions such as schizophrenia, eating disorders, and some behavioral childhood disorders. The TaqIA A1 allele is mainly associated with addictions, antisocial disorders, eating disorders, and attention-deficit/hyperactivity disorders, while the A2 allele occurs more frequently in schizophrenic and obsessive-compulsive patients. Current data show that the TaqIA polymorphism may be a marker of both DRD2 and ANKK1 genetic variants. ANKK1 would belong to a family of kinases involved in signal transduction. This raises the question of whether signaling players intervene in the pathophysiology of psychiatric disorders. Basic research on the ANKK1 protein and its putative interaction with the D2 dopamine receptor could shed light on this issue.

  10. Arctigenin Attenuates Learning and Memory Deficits through PI3k/Akt/GSK-3β Pathway Reducing Tau Hyperphosphorylation in Aβ-Induced AD Mice.

    PubMed

    Qi, Yue; Dou, De-Qiang; Jiang, Hong; Zhang, Bing-Bing; Qin, Wen-Yan; Kang, Kai; Zhang, Na; Jia, Dong

    2017-01-01

    Arctigenin is a phenylpropanoid dibenzylbutyrolactone lignan compound possessing antitumor, anti-inflammatory, anti-influenza, antioxidant, antibacterial, and hypoglycaemic activities. Our previous study demonstrated that arctigenin exerts neuroprotective effects both in vitro and in vivo in a Parkinson's disease model. However, the exact mechanism through which arctigenin improves amyloid beta-induced memory impairment by inhibiting the production of the hyperphosphorylated tau protein is unknown. Amyloid β 1-42 was slowly administered via the intracerebroventricular route in a volume of 3 µL (≈ 410 pmmol/mouse) to mice. The mice were administered arctigenin (10, 40, or 150 mg/kg) or vehicle starting from the second day after amyloid β 1-42 injection to the end of the experiment. Behavioural tests were performed from days 9 to 15. On day 16 after the intracerebroventricular administration of amyloid β 1-42 , the mice were sacrificed for biochemical analysis. Arctigenin (10-150 mg/kg) significantly attenuated the impairment of spontaneous alternation behaviours in the Y-maze task, decreased the escape latency in the Morris water maze test, and increased the swimming times and swimming distances to the platform located in the probe test. Arctigenin attenuated the level of phosphorylated tau at the Thr-181, Thr-231, and Ser-404 sites in the hippocampus, and increased the phosphorylation levels of phosphatidylinositol-3-kinase, threonine/serine protein kinase B, and glycogen synthase kinase-3 β . Arctigenin effectively provides protection against learning and memory deficits and in inhibits hyperphosphorylated tau protein expression in the hippocampus. The possible mechanism may occur via the phosphatidylinositol-3-kinase/protein kinase B-dependent glycogen synthase kinase-3 β signalling pathway. Georg Thieme Verlag KG Stuttgart · New York.

  11. Identification and characterization of plant Haspin kinase as a histone H3 threonine kinase

    PubMed Central

    2011-01-01

    Background Haspin kinases are mitotic kinases that are well-conserved from yeast to human. Human Haspin is a histone H3 Thr3 kinase that has important roles in chromosome cohesion during mitosis. Moreover, phosphorylation of histone H3 at Thr3 by Haspin in fission yeast, Xenopus, and human is required for accumulation of Aurora B on the centromere, and the subsequent activation of Aurora B kinase activity for accurate chromosome alignment and segregation. Although extensive analyses of Haspin have been carried out in yeast and animals, the function of Haspin in organogenesis remains unclear. Results Here, we identified a Haspin kinase, designated AtHaspin, in Arabidopsis thaliana. The purified AtHaspin phosphorylated histone H3 at both Thr3 and Thr11 in vitro. Live imaging of AtHaspin-tdTomato and GFP-α-tubulin in BY-2 cells showed that AtHaspin-tdTomato localized on chromosomes during prometaphase and metaphase, and around the cell plate during cytokinesis. This localization of AtHaspin overlapped with that of phosphorylated Thr3 and Thr11 of histone H3 in BY-2 cells. AtHaspin-GFP driven by the native promoter was expressed in root meristems, shoot meristems, floral meristems, and throughout the whole embryo at stages of high cell division. Overexpression of a kinase domain mutant of AtHaspin decreased the size of the root meristem, which delayed root growth. Conclusions Our results indicated that the Haspin kinase is a histone H3 threonine kinase in A. thaliana. AtHaspin phosphorylated histone H3 at both Thr3 and Thr11 in vitro. The expression and dominant-negative analysis showed that AtHaspin may have a role in mitotic cell division during plant growth. Further analysis of coordinated mechanisms involving Haspin and Aurora kinases will shed new light on the regulation of chromosome segregation in cell division during plant growth and development. PMID:21527018

  12. Bcl-2/Bcl-xL inhibition increases the efficacy of MEK inhibition alone and in combination with PI3 kinase inhibition in lung and pancreatic tumor models.

    PubMed

    Tan, Nguyen; Wong, Maureen; Nannini, Michelle A; Hong, Rebecca; Lee, Leslie B; Price, Stephen; Williams, Karen; Savy, Pierre Pascal; Yue, Peng; Sampath, Deepak; Settleman, Jeffrey; Fairbrother, Wayne J; Belmont, Lisa D

    2013-06-01

    Although mitogen-activated protein (MAP)-extracellular signal-regulated kinase (ERK) kinase (MEK) inhibition is predicted to cause cell death by stabilization of the proapoptotic BH3-only protein BIM, the induction of apoptosis is often modest. To determine if addition of a Bcl-2 family inhibitor could increase the efficacy of a MEK inhibitor, we evaluated a panel of 53 non-small cell lung cancer and pancreatic cancer cell lines with the combination of navitoclax (ABT-263), a Bcl-2/Bcl-xL (BCL2/BCL2L1) antagonist, and a novel MAP kinase (MEK) inhibitor, G-963. The combination is synergistic in the majority of lines, with an enrichment of cell lines harboring KRAS mutations in the high synergy group. Cells exposed to G-963 arrest in G1 and a small fraction undergo apoptosis. The addition of navitoclax to G-963 does not alter the kinetics of cell-cycle arrest, but greatly increases the percentage of cells that undergo apoptosis. The G-963/navitoclax combination was more effective than either single agent in the KRAS mutant H2122 xenograft model; BIM stabilization and PARP cleavage were observed in tumors, consistent with the mechanism of action observed in cell culture. Addition of the phosphatidylinositol 3-kinase (PI3K, PIK3CA) inhibitor GDC-0941 to this treatment combination increases cell killing compared with double- or single-agent treatment. Taken together, these data suggest the efficacy of agents that target the MAPK and PI3K pathways can be improved by combination with a Bcl-2 family inhibitor. ©2013 AACR

  13. Nrdp1-Mediated ErbB3 Increase During Androgen Ablation and Its Contribution to Androgen-Independence

    DTIC Science & Technology

    2011-09-01

    after the first day. Cell lysates were immunoblotted with anti-Nrdp1 and anti-tubulin antibodies. 7 Differential regulation of Nrdp1 by...Prostate Cancer PDGFR Platelet -derived growth factor receptor PI3K Phosphatidylinositol 3-kinase PKC Protein Kinase C pRB Retinoblastoma gene product PSA... glioma . Cancer Res. 2007; 67(17):7960–7965. [PubMed: 17804702] 131. Junttila TT, Akita RW, Parsons K, Fields C, Lewis Phillips GD, Friedman LS, Sampath D

  14. Sterol carrier protein-2 functions in phosphatidylinositol transfer and signaling.

    PubMed

    Schroeder, Friedhelm; Zhou, Minglong; Swaggerty, Christina L; Atshaves, Barbara P; Petrescu, Anca D; Storey, Stephen M; Martin, Gregory G; Huang, Huan; Helmkamp, George M; Ball, Judith M

    2003-03-25

    Over 20 years ago, it was reported that liver cytosol contains at least two distinct proteins that transfer phosphatidylinositol in vitro, phosphatidylinositol transfer protein (PITP) and a pH 5.1 supernatant fraction containing sterol carrier protein-2 (SCP-2). In contrast to PITP, there has been minimal progress on the structural and functional significance of SCP-2 in phosphatidylinositol transport. As shown herein, highly purified, recombinant SCP-2 stimulated up to 13-fold the rapid (s) transfer of radiolabeled phosphatidylinositol (PI) from microsomal donor membranes to highly curved acceptor membranes. SCP-2 bound to microsomes in vitro and overexpression of SCP-2 in transfected L-cells resulted in the following: (i) redistribution of phosphatidylinositols from intracellular membranes (mitochondria and microsomes) to the plasma membrane; (ii) enhancement of insulin-mediated inositol-triphosphate production; and (iii) 5.5-fold down regulation of PITP. Like PITP, SCP-2 binds two ligands required for vesicle budding from the Golgi, PI, and fatty acyl CoA. Double immunolabeling confocal microscopy showed SCP-2 significantly colocalized with caveolin-1 in the cytoplasm (punctate) and plasma membrane of SCP-2 overexpressing hepatoma cells (72%), HT-29 cells (58%), and SCP-2 overexpressing L-cells (37%). Taken together, these data show for the first time that SCP-2 plays a hitherto unrecognized role in intracellular phosphatidylinositol transfer, distribution, and signaling.

  15. Myosin 3A kinase activity is regulated by phosphorylation of the kinase domain activation loop.

    PubMed

    Quintero, Omar A; Unrath, William C; Stevens, Stanley M; Manor, Uri; Kachar, Bechara; Yengo, Christopher M

    2013-12-27

    Class III myosins are unique members of the myosin superfamily in that they contain both a motor and kinase domain. We have found that motor activity is decreased by autophosphorylation, although little is known about the regulation of the kinase domain. We demonstrate by mass spectrometry that Thr-178 and Thr-184 in the kinase domain activation loop and two threonines in the loop 2 region of the motor domain are autophosphorylated (Thr-908 and Thr-919). The kinase activity of MYO3A 2IQ with the phosphomimic (T184E) or phosphoblock (T184A) mutations demonstrates that kinase activity is reduced 30-fold as a result of the T184A mutation, although the Thr-178 site only had a minor impact on kinase activity. Interestingly, the actin-activated ATPase activity of MYO3A 2IQ is slightly reduced as a result of the T178A and T184A mutations suggesting coupling between motor and kinase domains. Full-length GFP-tagged T184A and T184E MYO3A constructs transfected into COS7 cells do not disrupt the ability of MYO3A to localize to filopodia structures. In addition, we demonstrate that T184E MYO3A reduces filopodia elongation in the presence of espin-1, whereas T184A enhances filopodia elongation in a similar fashion to kinase-dead MYO3A. Our results suggest that as MYO3A accumulates at the tips of actin protrusions, autophosphorylation of Thr-184 enhances kinase activity resulting in phosphorylation of the MYO3A motor and reducing motor activity. The differential regulation of the kinase and motor activities allows for MYO3A to precisely self-regulate its concentration in the actin bundle-based structures of cells.

  16. Myosin 3A Kinase Activity Is Regulated by Phosphorylation of the Kinase Domain Activation Loop*

    PubMed Central

    Quintero, Omar A.; Unrath, William C.; Stevens, Stanley M.; Manor, Uri; Kachar, Bechara; Yengo, Christopher M.

    2013-01-01

    Class III myosins are unique members of the myosin superfamily in that they contain both a motor and kinase domain. We have found that motor activity is decreased by autophosphorylation, although little is known about the regulation of the kinase domain. We demonstrate by mass spectrometry that Thr-178 and Thr-184 in the kinase domain activation loop and two threonines in the loop 2 region of the motor domain are autophosphorylated (Thr-908 and Thr-919). The kinase activity of MYO3A 2IQ with the phosphomimic (T184E) or phosphoblock (T184A) mutations demonstrates that kinase activity is reduced 30-fold as a result of the T184A mutation, although the Thr-178 site only had a minor impact on kinase activity. Interestingly, the actin-activated ATPase activity of MYO3A 2IQ is slightly reduced as a result of the T178A and T184A mutations suggesting coupling between motor and kinase domains. Full-length GFP-tagged T184A and T184E MYO3A constructs transfected into COS7 cells do not disrupt the ability of MYO3A to localize to filopodia structures. In addition, we demonstrate that T184E MYO3A reduces filopodia elongation in the presence of espin-1, whereas T184A enhances filopodia elongation in a similar fashion to kinase-dead MYO3A. Our results suggest that as MYO3A accumulates at the tips of actin protrusions, autophosphorylation of Thr-184 enhances kinase activity resulting in phosphorylation of the MYO3A motor and reducing motor activity. The differential regulation of the kinase and motor activities allows for MYO3A to precisely self-regulate its concentration in the actin bundle-based structures of cells. PMID:24214986

  17. Immune responses of mussel hemocyte subpopulations are differentially regulated by enzymes of the PI 3-K, PKC, and ERK kinase families.

    PubMed

    García-García, Erick; Prado-Alvarez, Maria; Novoa, Beatriz; Figueras, Antonio; Rosales, Carlos

    2008-01-01

    Various hemocyte cell types have been described in invertebrates, but for most species a functional characterization of different hemocyte cell types is still lacking. In order to characterize some immunological properties of mussel (Mytilus galloprovincialis) hemocytes, cells were separated by flow cytometry and their capacity for phagocytosis, production of reactive oxygen species (ROS), and production of nitric oxide (NO), was examined. Phosphatidylinositol 3-kinase (PI 3-K), protein kinase C (PKC), and extracellular signal-regulated kinase (ERK) inhibitors were also used to biochemically characterize these cell responses. Four morphologically distinct subpopulations, designated R1-R4, were detected. R1, R2, and R3 cells presented different levels of phagocytosis towards zymosan, latex beads, and two bacteria species. Similarly, R1 to R3, but not R4, cells produced ROS, while all subpopulations produced NO, in response to zymosan. Internalization of all phagocytic targets was blocked by PI 3-K inhibition. In addition, internalization of latex particles, but not of bacteria, was partially blocked by PKC or ERK inhibition. Interestingly, phagocytosis of zymosan was impaired by PKC, or ERK inhibitors, only in R2 cells. Zymosan-induced ROS production was blocked by PI 3-K inhibition, but not by PKC, or ERK inhibition. In addition, zymosan-stimulated NO production was affected by PI 3-K inhibition in R1 and R2, but not in R3 or R4 cells. NO production in all cell types was unaffected by PKC inhibition, but ERK inhibition blocked it in R2 cells. These data reveal the existence of profound functional and biochemical differences in mussel hemocytes and indicate that M. galloprovincialis hemocytes are specialized cells fulfilling specific tasks in the context of host defense.

  18. The Phosphoinositide 3-Kinase Regulates Retrograde Trafficking of the Iron Permease CgFtr1 and Iron Homeostasis in Candida glabrata*

    PubMed Central

    Sharma, Vandana; Purushotham, Rajaram; Kaur, Rupinder

    2016-01-01

    The phosphoinositide 3-kinase (PI3K), which phosphorylates phosphatidylinositol and produces PI3P, has been implicated in protein trafficking, intracellular survival, and virulence in the pathogenic yeast Candida glabrata. Here, we demonstrate PI3-kinase (CgVps34) to be essential for maintenance of cellular iron homeostasis. We examine how CgVps34 regulates the fundamental process of iron acquisition, and underscore its function in vesicular trafficking as a central determinant. RNA sequencing analysis revealed iron homeostasis genes to be differentially expressed upon CgVps34 disruption. Consistently, the Cgvps34Δ mutant displayed growth attenuation in low- and high-iron media, increased intracellular iron content, elevated mitochondrial aconitase activity, impaired biofilm formation, and extenuated mouse organ colonization potential. Furthermore, we demonstrate for the first time that C. glabrata cells respond to iron limitation by expressing the iron permease CgFtr1 primarily on the cell membrane, and to iron excess via internalization of the plasma membrane-localized CgFtr1 to the vacuole. Our data show that CgVps34 is essential for the latter process. We also report that macrophage-internalized C. glabrata cells express CgFtr1 on the cell membrane indicative of an iron-restricted macrophage internal milieu, and Cgvps34Δ cells display better survival in iron-enriched medium-cultured macrophages. Overall, our data reveal the centrality of PI3K signaling in iron metabolism and host colonization. PMID:27729452

  19. Features of the Phosphatidylinositol Cycle and its Role in Signal Transduction.

    PubMed

    Epand, Richard M

    2017-08-01

    The phosphatidylinositol cycle (PI-cycle) has a central role in cell signaling. It is the major pathway for the synthesis of phosphatidylinositol and its phosphorylated forms. In addition, some lipid intermediates of the PI-cycle, including diacylglycerol and phosphatidic acid, are also important lipid signaling agents. The PI-cycle has some features that are important for the understanding of its role in the cell. As a cycle, the intermediates will be regenerated. The PI-cycle requires a large amount of metabolic energy. There are different steps of the cycle that occur in two different membranes, the plasma membrane and the endoplasmic reticulum. In order to complete the PI-cycle lipid must be transferred between the two membranes. The role of the Nir proteins in the process has recently been elucidated. The lipid intermediates of the PI-cycle are normally highly enriched with 1-stearoyl-2-arachidonoyl molecular species in mammals. This enrichment will be retained as long as the intermediates are segregated from other lipids of the cell. However, there is a significant fraction (>15 %) of lipids in the PI-cycle of normal cells that have other acyl chains. Phosphatidylinositol largely devoid of arachidonoyl chains are found in cancer cells. Phosphatidylinositol species with less unsaturation will not be as readily converted to phosphatidylinositol-3,4,5-trisphosphate, the lipid required for the activation of Akt with resulting effects on cell proliferation. Thus, the cyclical nature of the PI-cycle, its dependence on acyl chain composition and its requirement for lipid transfer between two membranes, explain many of the biological properties of this cycle.

  20. Plasma membrane associated phospholipase C from human platelets: Synergistic stimulation of phosphatidylinositol 4,5-bisphosphate hydrolysis by thrombin and guanosine 5 prime -O-(3-thiotriphosphate)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldassare, J.J.; Henderson, P.A.; Fisher, G.J.

    1989-01-10

    The effects of thrombin and GTP{gamma}S on the hydrolysis of phosphoinositides by membrane-associated phospholipase C (PLC) from human platelets were examined with endogenous ({sup 3}H)inositol-labeled membranes or with lipid vesicles containing either ({sup 3}H)phosphatidylinositol or ({sup 3}H)phosphatidylinositol 4,5-bisphosphate. GTP{gamma}S (1 {mu}M) or thrombin (1 unit/mL) did not stimulate release of inositol trisphosphate (IP{sub 3}), inositol bisphosphate (IP{sub 2}), or inositol phosphate (IP) from ({sup 3}H)inositol-labeled membranes. IP{sub 2} and IP{sub 3}, but not IP, from ({sup 3}H)inositol-labeled membranes were, however, stimulated 3-fold by GTP{gamma}S (1 {mu}M) plus thrombin (1 unit/mL). A higher concentration of GTP{gamma}S (100 {mu}M) alone also stimulatedmore » IP{sub 2} and IP{sub 3}, but not IP, release. In the presence of 1 mM calcium, release of IP{sub 2} and IP{sub 3} was increased 6-fold over basal levels; however, formation of IP was not observed. At submicromolar calcium concentration, hydrolysis of exogenous phosphatidylinositol 4,5-bisphosphate (PIP{sub 2}) by platelet membrane associated PLC was also markedly enhanced by GTP{gamma}S (100 {mu}M) or GTP{gamma}S (1 {mu}M) plus thrombin (1 unit/mL). Under identical conditions, exogenous phosphatidylinositol (PI) was not hydrolyzed. The same substrate specificity was observed when the membrane-associated PLC was activated with 1 mM calcium. Thrombin-induced hydrolysis of PIP{sub 2} was inhibited by treatment of the membranes with pertussis toxin or pretreatment of intact platelets with 12-O-tetradecanoyl-13-acetate (TPA) prior to preparation of membranes. Pertussis toxin did not inhibit GTP{gamma}S (100 {mu}M) or calcium (1 mM) dependent PIP{sub 2} breakdown, while TPA inhibited GTP{gamma}S-dependent but not calcium-dependent phospholipase C activity.« less

  1. Two-ligand priming mechanism for potentiated phosphoinositide synthesis is an evolutionarily conserved feature of Sec14-like phosphatidylinositol and phosphatidylcholine exchange proteins.

    PubMed

    Huang, Jin; Ghosh, Ratna; Tripathi, Ashutosh; Lönnfors, Max; Somerharju, Pentti; Bankaitis, Vytas A

    2016-07-15

    Lipid signaling, particularly phosphoinositide signaling, plays a key role in regulating the extreme polarized membrane growth that drives root hair development in plants. The Arabidopsis AtSFH1 gene encodes a two-domain protein with an amino-terminal Sec14-like phosphatidylinositol transfer protein (PITP) domain linked to a carboxy-terminal nodulin domain. AtSfh1 is critical for promoting the spatially highly organized phosphatidylinositol-4,5-bisphosphate signaling program required for establishment and maintenance of polarized root hair growth. Here we demonstrate that, like the yeast Sec14, the AtSfh1 PITP domain requires both its phosphatidylinositol (PtdIns)- and phosphatidylcholine (PtdCho)-binding properties to stimulate PtdIns-4-phosphate [PtdIns(4)P] synthesis. Moreover, we show that both phospholipid-binding activities are essential for AtSfh1 activity in supporting polarized root hair growth. Finally, we report genetic and biochemical evidence that the two-ligand mechanism for potentiation of PtdIns 4-OH kinase activity is a broadly conserved feature of plant Sec14-nodulin proteins, and that this strategy appeared only late in plant evolution. Taken together, the data indicate that the PtdIns/PtdCho-exchange mechanism for stimulated PtdIns(4)P synthesis either arose independently during evolution in yeast and in higher plants, or a suitable genetic module was introduced to higher plants from a fungal source and subsequently exploited by them. © 2016 Huang, Ghosh, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  2. Endothelial NOS-dependent activation of c-Jun NH(2)- terminal kinase by oxidized low-density lipoprotein

    NASA Technical Reports Server (NTRS)

    Go, Y. M.; Levonen, A. L.; Moellering, D.; Ramachandran, A.; Patel, R. P.; Jo, H.; Darley-Usmar, V. M.

    2001-01-01

    Oxidized low-density lipoprotein (oxLDL) is known to activate a number of signal transduction pathways in endothelial cells. Among these are the c-Jun NH(2)-terminal kinase (JNK), also known as stress-activated protein kinase, and extracellular signal-regulated kinase (ERK). These mitogen-activated protein kinases (MAP kinase) determine cell survival in response to environmental stress. Interestingly, JNK signaling involves redox-sensitive mechanisms and is activated by reactive oxygen and nitrogen species derived from both NADPH oxidases, nitric oxide synthases (NOS), peroxides, and oxidized low-density lipoprotein (oxLDL). The role of endothelial NOS (eNOS) in the activation of JNK in response to oxLDL has not been examined. Herein, we show that on exposure of endothelial cells to oxLDL, both ERK and JNK are activated through independent signal transduction pathways. A key role of eNOS activation through a phosphatidylinositol-3-kinase-dependent mechanism leading to phosphorylation of eNOS is demonstrated for oxLDL-dependent activation of JNK. Moreover, we show that activation of ERK by oxLDL is critical in protection against the cytotoxicity of oxLDL.

  3. Synthesis of cubic Ia-3d mesoporous silica in anionic surfactant templating system with the aid of acetate.

    PubMed

    Deng, Shao-Xin; Xu, Xue-Yan; He, Wen-Chao; Wang, Jin-Gui; Chen, Tie-Hong

    2014-08-01

    Mesoporous silica with three-dimensional (3D) bicontinuous cubic Ia-3d structure and fascinating caterpillar-like morphology was synthesized by using anionic surfactant N-lauroylsarcosine sodium (Sar-Na) as the template and 3-amionpropyltrimethoxysilane (APS) as the co-structure-directing agent (CSDA) with the aid of acetate. A phase transformation from high interfacial curvature 2D hexagonal to low interfacial curvature 3D cubic Ia-3d occurred in the presence of a proper amount of acetate. Other species of salts (excluding acetate) had the ability to induce the caterpillar-like morphology, but failed to induce the cubic Ia-3d mesostructure. Furthermore, [3-(2-aminoethyl)-aminopropyl]trimethoxysilane (DAPS) was also used as the CSDA to synthesize Ia-3d mesostructured silica under the aid of sodium acetate. After extraction of the anionic surfactants, amino and di-amine functionalized 3D bicontinuous cubic Ia-3d mesoporous silicas were obtained and used as supports to immobilize Pd nanoparticles for supported catalysts. The catalytic activity of the catalysts was tested by catalytic hydrogenation of allyl alcohol. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Leptin-induced IL-6 production is mediated by leptin receptor, insulin receptor substrate-1, phosphatidylinositol 3-kinase, Akt, NF-kappaB, and p300 pathway in microglia.

    PubMed

    Tang, Chih-Hsin; Lu, Da-Yuu; Yang, Rong-Sen; Tsai, Huei-Yann; Kao, Ming-Ching; Fu, Wen-Mei; Chen, Yuh-Fung

    2007-07-15

    Leptin, the adipocyte-secreted hormone that centrally regulates weight control, is known to function as an immunomodulatory regulator. We investigated the signaling pathway involved in IL-6 production caused by leptin in microglia. Microglia expressed the long (OBRl) and short (OBRs) isoforms of the leptin receptor. Leptin caused concentration- and time-dependent increases in IL-6 production. Leptin-mediated IL-6 production was attenuated by OBRl receptor antisense oligonucleotide, PI3K inhibitor (Ly294002 and wortmannin), Akt inhibitor (1L-6-hydroxymethyl-chiro-inositol-2-((R)-2-O-methyl-3-O-octadecylcarbonate)), NF-kappaB inhibitor (pyrrolidine dithiocarbamate), IkappaB protease inhibitor (L-1-tosylamido-2-phenylenylethyl chloromethyl ketone), IkappaBalpha phosphorylation inhibitor (Bay 117082), or NF-kappaB inhibitor peptide. Transfection with insulin receptor substrate (IRS)-1 small-interference RNA or the dominant-negative mutant of p85 and Akt also inhibited the potentiating action of leptin. Stimulation of microglia with leptin activated IkappaB kinase alpha/IkappaB kinase beta, IkappaBalpha phosphorylation, IkappaBalpha degradation, p65 phosphorylation at Ser(276), p65 and p50 translocation from the cytosol to the nucleus, and kappaB-luciferase activity. Leptin-mediated an increase of IkappaB kinase alpha/IkappaB kinase beta activity, kappaB-luciferase activity, and p65 and p50 binding to the NF-kappaB element was inhibited by wortmannin, Akt inhibitor, and IRS-1 small-interference RNA. The binding of p65 and p50 to the NF-kappaB elements, as well as the recruitment of p300 and the enhancement of histone H3 and H4 acetylation on the IL-6 promoter was enhanced by leptin. Our results suggest that leptin increased IL-6 production in microglia via the leptin receptor/IRS-1/PI3K/Akt/NF-kappaB and p300 signaling pathway.

  5. The loss of Cbl-phosphatidylinositol 3-kinase interaction perturbs RANKL-mediated signaling, inhibiting bone resorption and promoting osteoclast survival.

    PubMed

    Adapala, Naga Suresh; Barbe, Mary F; Langdon, Wallace Y; Nakamura, Mary C; Tsygankov, Alexander Y; Sanjay, Archana

    2010-11-19

    Cbl is an adaptor protein and an E3 ligase that plays both positive and negative roles in several signaling pathways that affect various cellular functions. Tyrosine 737 is unique to Cbl and is phosphorylated by Syk and Src family kinases. Phosphorylated Cbl Tyr(737) creates a binding site for the p85 regulatory subunit of PI3K, which also plays an important role in the regulation of bone resorption by osteoclasts. To investigate the role of Cbl-PI3K interaction in bone homeostasis, we examined the knock-in mice (Cbl(YF/YF)) in which the PI3K binding site in Cbl is ablated due to the mutation in the regulatory tyrosine. We report that in Cbl(YF/YF) mice, despite increased numbers of osteoclasts, bone volume is increased due to defective osteoclast function. Additionally, in ex vivo cultures, mature Cbl(YF/YF) osteoclasts showed an increased ability to survive in the presence of RANKL due to delayed onset of apoptosis. RANKL-mediated signaling is perturbed in Cbl(YF/YF) osteoclasts, and most interestingly, AKT phosphorylation is up-regulated, suggesting that the lack of PI3K sequestration by Cbl results in increased survival and decreased bone resorption. Cumulatively, these in vivo and in vitro results show that, on one hand, binding of Cbl to PI3K negatively regulates osteoclast differentiation, survival, and signaling events (e.g. AKT phosphorylation), whereas on the other hand it positively influences osteoclast function.

  6. T-Cell-Specific Loss of the PI-3-Kinase p110α Catalytic Subunit Results in Enhanced Cytokine Production and Antitumor Response

    PubMed Central

    Aragoneses-Fenoll, Laura; Ojeda, Gloria; Montes-Casado, María; Acosta-Ampudia, Yeny; Dianzani, Umberto; Portolés, Pilar; Rojo, José M.

    2018-01-01

    Class IA phosphatidylinositol 3-kinase (PI3K) catalytic subunits p110α and p110δ are targets in cancer therapy expressed at high levels in T lymphocytes. The role of p110δ PI3K in normal or pathological immune responses is well established, yet the importance of p110α subunits in T cell-dependent immune responses is not clear. To address this problem, mice with p110α conditionally deleted in CD4+ and CD8+ T lymphocytes (p110α−/−ΔT) were used. p110α−/−ΔT mice show normal development of T cell subsets, but slightly reduced numbers of CD4+ T cells in the spleen. “In vitro,” TCR/CD3 plus CD28 activation of naive CD4+ and CD8+ p110α−/−ΔT T cells showed enhanced effector function, particularly IFN-γ secretion, T-bet induction, and Akt, Erk, or P38 activation. Tfh derived from p110α−/−ΔT cells also have enhanced responses when compared to normal mice, and IL-2 expanded p110α−/−ΔT CD8+ T cells had enhanced levels of LAMP-1 and Granzyme B. By contrast, the expansion of p110α−/−ΔT iTreg cells was diminished. Also, p110α−/−ΔT mice had enhanced anti-keyhole limpet hemocyanin (KLH) IFN-γ, or IL-4 responses and IgG1 and IgG2b anti-KLH antibodies, using CFA or Alum as adjuvant, respectively. When compared to WT mice, p110α−/−ΔT mice inoculated with B16.F10 melanoma showed delayed tumor progression. The percentage of CD8+ T lymphocytes was higher and the percentage of Treg cells lower in the spleen of tumor-bearing p110α−/−ΔT mice. Also, IFN-γ production in tumor antigen-activated spleen cells was enhanced. Thus, PI3K p110α plays a significant role in antigen activation and differentiation of CD4+ and CD8+ T lymphocytes modulating antitumor immunity. PMID:29535720

  7. Activation of peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) increases the expression of prostaglandin E2 receptor subtype EP4. The roles of phosphatidylinositol 3-kinase and CCAAT/enhancer-binding protein beta.

    PubMed

    Han, ShouWei; Ritzenthaler, Jeffrey D; Wingerd, Byron; Roman, Jesse

    2005-09-30

    The prostaglandin E2 receptor subtype EP4 has been implicated in the growth and progression of human non-small cell lung carcinoma (NSCLC). However, the factors that control its expression have not been entirely elucidated. Our studies show that NSCLC cells express peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) protein and that treatment with a selective PPARbeta/delta agonist (GW501516) increases EP4 mRNA and protein levels. GW501516 induced NSCLC cell proliferation, and this effect was prevented by PPARbeta/delta antisense or EP4 short interfering RNA (siRNA). GW501516 increased the phosphorylation of Akt and decreased PTEN expression. The selective inhibitor of phosphatidylinositol 3-kinase (PI3-K), wortmannin, and PPARbeta/delta antisense, abrogated the effect of GW501516 on EP4 expression, whereas that of the inhibitor of Erk did not. GW501516 also increased EP4 promoter activity through effects on the region between -1555 and -992 bp in the EP4 promoter, and mutation of the CCAAT/enhancer-binding protein (C/EBP) site in this region abrogated the effect of GW501516. GW501516 increased not only the binding activity of C/EBP to the NF-IL6 site in the EP4 promoter, which was prevented by the inhibitor of PI3-K, but also increased C/EBPbeta protein in a dose- and PPARbeta/delta-dependent manner. The effect of GW501516 on EP4 protein was eliminated in the presence of C/EBPbeta siRNA. Finally, we showed that pretreatment of NSCLC with GW501516 further increased NSCLC cell proliferation in response to exogenous dimethyl-prostaglandin E2 (PGE2) that was diminished in the presence of PPARbeta/delta antisense and EP4 siRNA. Taken together, these findings suggest that activation of PPARbeta/delta induces PGE2 receptor subtype EP4 expression through PI3-K signals and increases human lung carcinoma cell proliferation in response to PGE2. The increase in transcription of the EP4 gene by PPARbeta/delta agonist was associated with increased C

  8. Osthole relaxes pulmonary arteries through endothelial phosphatidylinositol 3-kinase/Akt-eNOS-NO signaling pathway in rats.

    PubMed

    Yao, Li; Lu, Ping; Li, Yumei; Yang, Lijing; Feng, Hongxuan; Huang, Yong; Zhang, Dandan; Chen, Jianguo; Zhu, Daling

    2013-01-15

    Pulmonary arterial hypertension is a life-threatening disease lacking effective therapies. Osthole is a natural coumarin compound isolated from Angelica pubescens Maxim., which possesses hypotensive effect. Although its effects on isolated thoracic aorta (systemic circulating system) are clarified, it remains unclear whether Osthole relaxes isolated pulmonary arteries (PAs) (pulmonary circulating system). The aim of this study was to investigate the effects of Osthole on isolated PAs and the underlying mechanisms. We examined PA relaxation induced by Osthole in isolated human and rat PA rings with force-electricity transducers, the expression and activity of endothelial nitric oxide synthase (eNOS) and protein kinase B (Akt) with western blot, and nitric oxide (NO) production using DAF-FM DA fluorescent indicator. The results showed that Osthole elicited a dose-dependent vasorelaxation activity with phenylephrine-precontracted human and rat PA rings, which can be diminished by endothelium denudation and inhibition of eNOS, while having no effect on rat mesenteric arteries. Osthole increased NO release as well as activation of Akt and eNOS, indicated with increased phosphorylations of Akt at Ser-473 and eNOS at Ser-1177 in endothelial cells. PI3K inhibitor LY294002 also blocked Osthole induced vasodilation. In summary, dilative effect of Osthole was dependent on endothelial integrity and NO production, and was mediated by endothelial PI3K/Akt-eNOS-NO pathway. These may provide a new pulmonary vasodilator for the therapy of pulmonary arterial hypertension. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Contributions of protein kinases and β-arrestin to termination of protease-activated receptor 2 signaling.

    PubMed

    Jung, Seung-Ryoung; Seo, Jong Bae; Deng, Yi; Asbury, Charles L; Hille, Bertil; Koh, Duk-Su

    2016-03-01

    Activated Gq protein-coupled receptors (GqPCRs) can be desensitized by phosphorylation and β-arrestin binding. The kinetics and individual contributions of these two mechanisms to receptor desensitization have not been fully distinguished. Here, we describe the shut off of protease-activated receptor 2 (PAR2). PAR2 activates Gq and phospholipase C (PLC) to hydrolyze phosphatidylinositol 4,5-bisphosphate (PIP2) into diacylglycerol and inositol trisphosphate (IP3). We used fluorescent protein-tagged optical probes to monitor several consequences of PAR2 signaling, including PIP2 depletion and β-arrestin translocation in real time. During continuous activation of PAR2, PIP2 was depleted transiently and then restored within a few minutes, indicating fast receptor activation followed by desensitization. Knockdown of β-arrestin 1 and 2 using siRNA diminished the desensitization, slowing PIP2 restoration significantly and even adding a delayed secondary phase of further PIP2 depletion. These effects of β-arrestin knockdown on PIP2 recovery were prevented when serine/threonine phosphatases that dephosphorylate GPCRs were inhibited. Thus, PAR2 may continuously regain its activity via dephosphorylation when there is insufficient β-arrestin to trap phosphorylated receptors. Similarly, blockers of protein kinase C (PKC) and G protein-coupled receptor kinase potentiated the PIP2 depletion. In contrast, an activator of PKC inhibited receptor activation, presumably by augmenting phosphorylation of PAR2. Our interpretations were strengthened by modeling. Simulations supported the conclusions that phosphorylation of PAR2 by protein kinases initiates receptor desensitization and that recruited β-arrestin traps the phosphorylated state of the receptor, protecting it from phosphatases. Speculative thinking suggested a sequestration of phosphatidylinositol 4-phosphate 5 kinase (PIP5K) to the plasma membrane by β-arrestin to explain why knockdown of β-arrestin led to secondary

  10. Contributions of protein kinases and β-arrestin to termination of protease-activated receptor 2 signaling

    PubMed Central

    Jung, Seung-Ryoung; Seo, Jong Bae; Deng, Yi; Asbury, Charles L.; Hille, Bertil

    2016-01-01

    Activated Gq protein–coupled receptors (GqPCRs) can be desensitized by phosphorylation and β-arrestin binding. The kinetics and individual contributions of these two mechanisms to receptor desensitization have not been fully distinguished. Here, we describe the shut off of protease-activated receptor 2 (PAR2). PAR2 activates Gq and phospholipase C (PLC) to hydrolyze phosphatidylinositol 4,5-bisphosphate (PIP2) into diacylglycerol and inositol trisphosphate (IP3). We used fluorescent protein–tagged optical probes to monitor several consequences of PAR2 signaling, including PIP2 depletion and β-arrestin translocation in real time. During continuous activation of PAR2, PIP2 was depleted transiently and then restored within a few minutes, indicating fast receptor activation followed by desensitization. Knockdown of β-arrestin 1 and 2 using siRNA diminished the desensitization, slowing PIP2 restoration significantly and even adding a delayed secondary phase of further PIP2 depletion. These effects of β-arrestin knockdown on PIP2 recovery were prevented when serine/threonine phosphatases that dephosphorylate GPCRs were inhibited. Thus, PAR2 may continuously regain its activity via dephosphorylation when there is insufficient β-arrestin to trap phosphorylated receptors. Similarly, blockers of protein kinase C (PKC) and G protein–coupled receptor kinase potentiated the PIP2 depletion. In contrast, an activator of PKC inhibited receptor activation, presumably by augmenting phosphorylation of PAR2. Our interpretations were strengthened by modeling. Simulations supported the conclusions that phosphorylation of PAR2 by protein kinases initiates receptor desensitization and that recruited β-arrestin traps the phosphorylated state of the receptor, protecting it from phosphatases. Speculative thinking suggested a sequestration of phosphatidylinositol 4-phosphate 5 kinase (PIP5K) to the plasma membrane by β-arrestin to explain why knockdown of β-arrestin led to

  11. The Role of the Phosphatidylinositol-5-Phosphate 4-Kinases in p53-Null Breast Cancers

    DTIC Science & Technology

    2015-10-01

    autophagy ,  metabolism,  synthetic  lethal   16...phosphoinositide  kinases   breast  cancer   autophagy   metabolism   synthetic  lethal   3. ACCOMPLISHMENTS: What  were  the  major...enzymes  are  required  for   autophagy .  I   have  found  that  suppression  of  both  PIP4K2A  and  B  activity

  12. Pervanadate induces Mammalian Ste20 Kinase 3 (MST3) tyrosine phosphorylation but not activation.

    PubMed

    Kan, Wei-Chih; Lu, Te-Ling; Ling, Pin; Lee, Te-Hsiu; Cho, Chien-Yu; Huang, Chi-Ying F; Jeng, Wen-Yih; Weng, Yui-Ping; Chiang, Chun-Yen; Wu, Jin Bin; Lu, Te-Jung

    2016-07-01

    The yeast Ste20 (sterile) protein kinase, which is a serine/threonine kinase, responds to the stimulation of the G proteincoupled receptor (GPCR) pheromone receptor. Ste20 protein kinase serves as the critical component that links signaling from the GPCR/G proteins to the mitogen-activated protein kinase (MAPK) cascade in yeast. The yeast Ste20p functions as a MAP kinase kinase kinase kinase (MAP4K) in the pheromone response. Ste20-like kinases are structurally conserved from yeast to mammals. The mechanism by which MAP4K links GPCR to the MAPK pathway is less clearly defined in vertebrates. In addition to MAP4K, the tyrosine kinase cascade bridges G proteins and the MAPK pathway in vertebrate cells. Mammalian Ste20 Kinase 3 (MST3) has been categorized into the Ste20 family and has been reported to function in the regulation of cell polarity and migration. However, whether MST3 tyrosine phosphorylation regulates diverse signaling pathways is unknown. In this study, the tyrosine phosphatase inhibitor pervanadate was found to induce MST3 tyrosine phosphorylation in intact cells, and the activity of tyrosine-phosphorylated MST3 was measured. This tyrosine-directed phosphorylation was independent of MST3 activity. Parameters including protein conformation, Triton concentration and ionic concentration influenced the sensitivity of MST3 activity. Taken together, our data suggests that the serine/threonine kinase MST3 undergoes tyrosinedirected phosphorylation. The tyrosine-phosphorylated MST3 may create a docking site for the structurally conserved SH2/SH3 (Src Homology 2 and 3) domains within the Src oncoprotein. The unusual tyrosinephosphorylated MST3 may recruit MST3 to various signaling components. Copyright © 2016. Published by Elsevier Inc.

  13. Structure-guided optimization of protein kinase inhibitors reverses aminoglycoside antibiotic resistance

    PubMed Central

    Stogios, Peter J.; Spanogiannopoulos, Peter; Evdokimova, Elena; Egorova, Olga; Shakya, Tushar; Todorovic, Nick; Capretta, Alfredo; Wright, Gerard D.; Savchenko, Alexei

    2013-01-01

    SYNOPSIS Activity of the aminoglycoside phosphotransferase APH(3’)-Ia leads to resistance to aminoglycoside antibiotics in pathogenic Gram-negative bacteria, and contributes to the clinical obsolescence of this class of antibiotics. One strategy to rescue compromised antibiotics such as aminoglycosides is targeting the enzymes that confer resistance with small molecules. Previously we demonstrated that eukaryotic protein kinase (ePK) inhibitors could inhibit APH enzymes, due to the structural similarity between these two enzyme families. However, limited structural information of enzyme-inhibitor complexes hindered interpretation of the results. As well, cross-reactivity of compounds between APHs and ePKs represents an obstacle to their use as aminoglycoside adjuvants to rescue aminoglycoside antibiotic activity. Here, we structurally and functionally characterize inhibition of APH(3’)-Ia by three diverse chemical scaffolds – anthrapyrazolone, 4-anilinoquinazoline and pyrazolopyrimidine (PP) – and reveal distinctions in the binding mode of anthrapyrazolone and PP compounds to APH(3’)-Ia versus ePKs. Using this observation, we identify PP-derivatives that select against ePKs, attenuate APH(3’)-Ia activity and rescue aminoglycoside antibiotic activity against a resistant E. coli strain. The structures presented here and these inhibition studies provide an important opportunity for structure-based design of compounds to target aminoglycoside phosphotransferases for inhibition, potentially overcoming this form of antibiotic resistance. PMID:23758273

  14. Protein kinase activity of the glycolytic enzyme PGK1 regulates autophagy to promote tumorigenesis.

    PubMed

    Qian, Xu; Li, Xinjian; Lu, Zhimin

    2017-07-03

    Macroautophagy/autophagy is a cellular defense response to stress conditions and is crucial for cell homeostasis maintenance. However, the precise mechanism underlying autophagy initiation, especially in response to glutamine deprivation and hypoxia, is yet to be explored. We recently discovered that PGK1 (phosphoglycerate kinase 1), a glycolytic enzyme, functions as a protein kinase, phosphorylating BECN1/Beclin 1 to initiate autophagy. Under glutamine deprivation or hypoxia stimulation, PGK1 is acetylated at K388 by NAA10/ARD1 in an MTOR-inhibition-dependent manner, leading to the interaction between PGK1 and BECN1 and the subsequent phosphorylation of BECN1 at S30 by PGK1. This phosphorylation enhances ATG14-associated PIK3C3/VPS34-BECN1-PIK3R4/VPS15 complex activity, thereby increasing phosphatidylinositol-3-phosphate (PtdIns3P) generation in the initiation stage of autophagy. Furthermore, NAA10-dependent PGK1 acetylation and PGK1-dependent BECN1 phosphorylation are required for glutamine deprivation- and hypoxia-induced autophagy and brain tumor formation. Our work reveals the important dual roles of PGK1 as a glycolytic enzyme and a protein kinase in the mutual regulation of cell metabolism and autophagy in maintaining cell homeostasis.

  15. Interaction between Sam68 and Src family tyrosine kinases, Fyn and Lck, in T cell receptor signaling.

    PubMed

    Fusaki, N; Iwamatsu, A; Iwashima, M; Fujisawa, J i

    1997-03-07

    The Src family protein-tyrosine kinase, Fyn, is associated with the T cell receptor (TCR) and plays an important role in TCR-mediated signaling. We found that a human T cell leukemia virus type 1-infected T cell line, Hayai, overexpressed Fyn. To identify the molecules downstream of Fyn, we analyzed the tyrosine phosphorylation of cellular proteins in the cells. In Hayai, a 68-kDa protein was constitutively tyrosine-phosphorylated. The 68-kDa protein was coimmunoprecipitated with various signaling proteins such as phospholipase C gamma1, the phosphatidylinositol 3-kinase p85 subunit, Grb2, SHP-1, Cbl, and Jak3, implying that the protein might function as an adapter. Purification and microsequencing of this protein revealed that it was the RNA-binding protein, Sam68 (Src associated in mitosis, 68 kDa). Sam68 was associated with the Src homology 2 and 3 domains of Fyn and also those of another Src family kinase, Lck. CD3 cross-linking induced tyrosine phosphorylation of Sam68 in uninfected T cells. These data suggest that Sam68 participates in the signal transduction pathway downstream of TCR-coupled Src family kinases Fyn and Lck in lymphocytes, that is not only in the mitotic pathway downstream of c-Src in fibroblasts.

  16. Structure and function of APH(4)-Ia, a hygromycin B resistance enzyme.

    PubMed

    Stogios, Peter J; Shakya, Tushar; Evdokimova, Elena; Savchenko, Alexei; Wright, Gerard D

    2011-01-21

    The aminoglycoside phosphotransferase (APH) APH(4)-Ia is one of two enzymes responsible for bacterial resistance to the atypical aminoglycoside antibiotic hygromycin B (hygB). The crystal structure of APH(4)-Ia enzyme was solved in complex with hygB at 1.95 Å resolution. The APH(4)-Ia structure adapts a general two-lobe architecture shared by other APH enzymes and eukaryotic kinases, with the active site located at the interdomain cavity. The enzyme forms an extended hydrogen bond network with hygB primarily through polar and acidic side chain groups. Individual alanine substitutions of seven residues involved in hygB binding did not have significant effect on APH(4)-Ia enzymatic activity, indicating that the binding affinity is spread across a distributed network. hygB appeared as the only substrate recognized by APH(4)-Ia among the panel of 14 aminoglycoside compounds. Analysis of the active site architecture and the interaction with the hygB molecule demonstrated several unique features supporting such restricted substrate specificity. Primarily the APH(4)-Ia substrate-binding site contains a cluster of hydrophobic residues that provides a complementary surface to the twisted structure of the substrate. Similar to APH(2″) enzymes, the APH(4)-Ia is able to utilize either ATP or GTP for phosphoryl transfer. The defined structural features of APH(4)-Ia interactions with hygB and the promiscuity in regard to ATP or GTP binding could be exploited for the design of novel aminoglycoside antibiotics or inhibitors of this enzyme.

  17. Modulation of Phosphorylation of Tocopherol and Phosphatidylinositol by hTAP1/SEC14L2-Mediated Lipid Exchange

    PubMed Central

    Zingg, Jean-Marc; Libinaki, Roksan; Meydani, Mohsen; Azzi, Angelo

    2014-01-01

    The vitamin E derivative, alpha-tocopheryl phosphate (αTP), is detectable in cultured cells, plasma and tissues in small amounts, suggesting the existence of enzyme(s) with α-tocopherol (αT) kinase activity. Here, we characterize the production of αTP from αT and [γ-32P]-ATP in primary human coronary artery smooth muscle cells (HCA-SMC) using separation by thin layer chromatography (TLC) and subsequent analysis by Ultra Performance Liquid Chromatography (UPLC). In addition to αT, although to a lower amount, also γT is phosphorylated. In THP-1 monocytes, γTP inhibits cell proliferation and reduces CD36 scavenger receptor expression more potently than αTP. Both αTP and γTP activate the promoter of the human vascular endothelial growth factor (VEGF) gene with similar potency, whereas αT and γT had no significant effect. The recombinant human tocopherol associated protein 1 (hTAP1, hSEC14L2) binds both αT and αTP and stimulates phosphorylation of αT possibly by facilitating its transport and presentation to a putative αT kinase. Recombinant hTAP1 reduces the in vitro activity of the phosphatidylinositol-3-kinase gamma (PI3Kγ) indicating the formation of a stalled/inactive hTAP1/PI3Kγ heterodimer. The addition of αT, βT, γT, δT or αTP differentially stimulates PI3Kγ, suggesting facilitated egress of sequestered PI from hTAP1 to the enzyme. It is suggested that the continuous competitive exchange of different lipophilic ligands in hTAPs with cell enzymes and membranes may be a way to make these lipophiles more accessible as substrates for enzymes and as components of specific membrane domains. PMID:24983950

  18. Targeting Phosphatidylinositide3-Kinase/Akt pathway by BKM120 for radiosensitization in hepatocellular carcinoma

    PubMed Central

    Liu, Wei-Lin; Gao, Ming; Tzen, Kai-Yuan; Tsai, Chiao-Ling; Hsu, Feng-Ming; Cheng, Ann-Lii; Cheng, Jason Chia-Hsien

    2014-01-01

    Tumor control of hepatocellular carcinoma by radiotherapy remains unsatisfactory. The phosphatidylinositol 3-kinase (PI3K)/Akt pathway plays a critical role in inhibiting cancer cell death. Elevated PI3K/Akt activity is associated with increased cellular resistance to irradiation. Our aim was to determine whether the inhibition of PI3K/Akt activity by a PI3K inhibitor, BKM120, contributes to the increased sensitivity of liver cancer cells to irradiation. The hepatocellular carcinoma cell lines (Huh7 and BNL) were used to evaluate the in vitro synergism between BKM120 and irradiation. Balb/c mice bearing ectopic BNL xenografts were treated with BKM120 and/or radiotherapy to assess the in vivo response. BKM120 increased cell killing by radiation, increased the expression of apoptotic markers, and suppressed the repair of radiation-induced DNA double-strand breaks. BKM120 pretreatment inhibited radiation-induced Akt phosphorylation and enhanced the tumor-suppressive effect and radiation-induced tumor cell apoptosis in ectopic xenografts. Inhibition of mTOR phosphorylation by rapamycin enhanced the radiosensitivity of BKM120-treated hepatocellular carcinoma cells. The synergism between BKM120 and irradiation likely inhibits the activation of Akt by radiation, leading to increased cell apoptosis and suppression of DNA-double-strand breaks repair in hepatocellular carcinoma cells. These data suggest that the BKM120/radiation combination may be a strategy worthy of clinical trials. PMID:25004403

  19. The Phosphatidylinositol (3,4,5)-Trisphosphate-dependent Rac Exchanger 1·Ras-related C3 Botulinum Toxin Substrate 1 (P-Rex1·Rac1) Complex Reveals the Basis of Rac1 Activation in Breast Cancer Cells.

    PubMed

    Lucato, Christina M; Halls, Michelle L; Ooms, Lisa M; Liu, Heng-Jia; Mitchell, Christina A; Whisstock, James C; Ellisdon, Andrew M

    2015-08-21

    The P-Rex (phosphatidylinositol (3,4,5)-trisphosphate (PIP3)-dependent Rac exchanger) family (P-Rex1 and P-Rex2) of the Rho guanine nucleotide exchange factors (Rho GEFs) activate Rac GTPases to regulate cell migration, invasion, and metastasis in several human cancers. The family is unique among Rho GEFs, as their activity is regulated by the synergistic binding of PIP3 and Gβγ at the plasma membrane. However, the molecular mechanism of this family of multi-domain proteins remains unclear. We report the 1.95 Å crystal structure of the catalytic P-Rex1 DH-PH tandem domain in complex with its cognate GTPase, Rac1 (Ras-related C3 botulinum toxin substrate-1). Mutations in the P-Rex1·Rac1 interface revealed a critical role for this complex in signaling downstream of receptor tyrosine kinases and G protein-coupled receptors. The structural data indicated that the PIP3/Gβγ binding sites are on the opposite surface and markedly removed from the Rac1 interface, supporting a model whereby P-Rex1 binding to PIP3 and/or Gβγ releases inhibitory C-terminal domains to expose the Rac1 binding site. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Resveratrol Modulates Interleukin-1β-induced Phosphatidylinositol 3-Kinase and Nuclear Factor κB Signaling Pathways in Human Tenocytes

    PubMed Central

    Busch, Franziska; Mobasheri, Ali; Shayan, Parviz; Lueders, Cora; Stahlmann, Ralf; Shakibaei, Mehdi

    2012-01-01

    Resveratrol, an activator of histone deacetylase Sirt-1, has been proposed to have beneficial health effects due to its antioxidant and anti-inflammatory properties. However, the mechanisms underlying the anti-inflammatory effects of resveratrol and the intracellular signaling pathways involved are poorly understood. An in vitro model of human tenocytes was used to examine the mechanism of resveratrol action on IL-1β-mediated inflammatory signaling. Resveratrol suppressed IL-1β-induced activation of NF-κB and PI3K in a dose- and time-dependent manner. Treatment with resveratrol enhanced the production of matrix components collagen types I and III, tenomodulin, and tenogenic transcription factor scleraxis, whereas it inhibited gene products involved in inflammation and apoptosis. IL-1β-induced NF-κB and PI3K activation was inhibited by resveratrol or the inhibitors of PI3K (wortmannin), c-Src (PP1), and Akt (SH-5) through inhibition of IκB kinase, IκBα phosphorylation, and inhibition of nuclear translocation of NF-κB, suggesting that PI3K signaling pathway may be one of the signaling pathways inhibited by resveratrol to abrogate NF-κB activation. Inhibition of PI3K by wortmannin attenuated IL-1β-induced Akt and p65 acetylation, suggesting that p65 is a downstream component of PI3K/Akt in these responses. The modulatory effects of resveratrol on IL-1β-induced activation of NF-κB and PI3K were found to be mediated at least in part by the association between Sirt-1 and scleraxis and deacetylation of NF-κB and PI3K. Overall, these results demonstrate that activated Sirt-1 plays an essential role in the anti-inflammatory effects of resveratrol and this may be mediated at least in part through inhibition/deacetylation of PI3K and NF-κB. PMID:22936809

  1. Ia diastolic dysfunction: an echocardiographic grade.

    PubMed

    Pandit, Anil; Mookadam, Farouk; Hakim, Fayaz A; Mulroy, Eoin; Saadiq, Rayya; Doherty, Mairead; Cha, Stephen; Seward, James; Wilansky, Susan

    2015-01-01

    To demonstrate that a distinct group of patients with Grade Ia diastolic dysfunction who do not conform to present ASE/ESE diastolic grading exists. Echocardiographic and demographic data of the Grade Ia diastolic dysfunction were extracted and compared with that of Grades I and II in 515 patients. The mean of age of the cohort was 75 ± 9 years and body mass index did not differ significantly between the 3 groups (P = 0.45). Measurements of left atrial volume index (28.58 ± 7 mL/m(2) in I, 33 ± 10 mL/m(2) in Ia, and 39 ± 12 mL/m(2) in II P < 0.001), isovolumic relaxation time (IVRT) (100 ± 17 msec in I, 103 ± 21 msec in Ia, and 79 ± 15 msec in II P < 0.001), deceleration time (248 ± 52 msec in I, 263 ± 58 msec in Ia, and 217 ± 57 msec in II P < 0.001), medial E/e' (10 ± 3 in I, 18 ± 5.00 in Ia, and 22 ± 8 in II), and lateral E/e' (8 ± 3 in I, 15 ± 6 in Ia, and 18 ± 9 in II P < 0.001) were significantly different in grade Ia compared with I and II. These findings remained significant even after adjusting for age, gender, diabetes, and smoking. Patients with echocardiographic characteristics of relaxation abnormality (E/A ratio of <0.8) and elevated filling pressures (septal E/e' ≥15, lateral E/e' ≥12, average E/e' ≥13) should be graded as a separate Grade Ia group. © 2014, Wiley Periodicals, Inc.

  2. Comparison of angiotensin II (Ang II) effects in the internal anal sphincter (IAS) and lower esophageal sphincter smooth muscles.

    PubMed

    Rattan, Satish; Fan, Ya-Ping; Puri, Rajinder N

    2002-03-22

    Studies were performed to compare the actions of Ang II in the internal anal sphincter (IAS) vs. lower esophageal sphincter (LES) smooth muscles in vitro, in opossum and rabbit. Studies also were carried out in isolated smooth muscle cells. In opossum, Ang II produced no discernible effects in the IAS, but did produce a concentration-dependent contraction in the LES. Conversely, in the rabbit, while Ang II caused a modest response in the LES, it caused a significant contraction in the IAS. The contractile responses of Ang II in the opossum LES were mostly resistant to different neurohumoral antagonists but were antagonized by AT1 antagonist losartan. AT2 antagonist PD 123,319, rather than inhibiting, prolonged the contractile action of Ang II. The contractile actions of Ang II in the opossum LES were not modified by the tyrosine kinase inhibitors (genistein and tyrphostin 1 x 10(-6) M) but were partially attenuated by the PKC inhibitor H-7 (1 x 10(-6) M), Ca2+ channel blocker nicardipine (1 x 10(-5) M), Rho kinase inhibitor HA-1077 (1 x 10(-7) M) or p(44/42) MAP kinase inhibitor PD 98059 (5 x 10(-5) M). The combination of HA-1077 and H-7 did not cause an additive attenuation of Ang II responses. Western blot analyses revealed the presence of both AT1 and AT2 receptors. We conclude that Ang lI-induced contraction of sphincteric smooth muscle occurs primarily by the activation of AT1 receptors at the smooth muscle cells and involves multiple pathways, influx of Ca2+, and PKC, Rho kinase and p(44/42) MAP kinase.

  3. Multifunctional Role of ATM/Tel1 Kinase in Genome Stability: From the DNA Damage Response to Telomere Maintenance

    PubMed Central

    2014-01-01

    The mammalian protein kinase ataxia telangiectasia mutated (ATM) is a key regulator of the DNA double-strand-break response and belongs to the evolutionary conserved phosphatidylinositol-3-kinase-related protein kinases. ATM deficiency causes ataxia telangiectasia (AT), a genetic disorder that is characterized by premature aging, cerebellar neuropathy, immunodeficiency, and predisposition to cancer. AT cells show defects in the DNA damage-response pathway, cell-cycle control, and telomere maintenance and length regulation. Likewise, in Saccharomyces cerevisiae, haploid strains defective in the TEL1 gene, the ATM ortholog, show chromosomal aberrations and short telomeres. In this review, we outline the complex role of ATM/Tel1 in maintaining genomic stability through its control of numerous aspects of cellular survival. In particular, we describe how ATM/Tel1 participates in the signal transduction pathways elicited by DNA damage and in telomere homeostasis and its importance as a barrier to cancer development. PMID:25247188

  4. Assembly and Molecular Architecture of the Phosphoinositide 3-Kinase p85α Homodimer.

    PubMed

    LoPiccolo, Jaclyn; Kim, Seung Joong; Shi, Yi; Wu, Bin; Wu, Haiyan; Chait, Brian T; Singer, Robert H; Sali, Andrej; Brenowitz, Michael; Bresnick, Anne R; Backer, Jonathan M

    2015-12-18

    Phosphoinositide 3-kinases (PI3Ks) are a family of lipid kinases that are activated by growth factor and G-protein-coupled receptors and propagate intracellular signals for growth, survival, proliferation, and metabolism. p85α, a modular protein consisting of five domains, binds and inhibits the enzymatic activity of class IA PI3K catalytic subunits. Here, we describe the structural states of the p85α dimer, based on data from in vivo and in vitro solution characterization. Our in vitro assembly and structural analyses have been enabled by the creation of cysteine-free p85α that is functionally equivalent to native p85α. Analytical ultracentrifugation studies showed that p85α undergoes rapidly reversible monomer-dimer assembly that is highly exothermic in nature. In addition to the documented SH3-PR1 dimerization interaction, we identified a second intermolecular interaction mediated by cSH2 domains at the C-terminal end of the polypeptide. We have demonstrated in vivo concentration-dependent dimerization of p85α using fluorescence fluctuation spectroscopy. Finally, we have defined solution conditions under which the protein is predominantly monomeric or dimeric, providing the basis for small angle x-ray scattering and chemical cross-linking structural analysis of the discrete dimer. These experimental data have been used for the integrative structure determination of the p85α dimer. Our study provides new insight into the structure and assembly of the p85α homodimer and suggests that this protein is a highly dynamic molecule whose conformational flexibility allows it to transiently associate with multiple binding proteins. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Phosphoinositide 3-Kinase p110β Regulates Integrin αIIbβ3 Avidity and the Cellular Transmission of Contractile Forces*

    PubMed Central

    Schoenwaelder, Simone M.; Ono, Akiko; Nesbitt, Warwick S.; Lim, Joanna; Jarman, Kate; Jackson, Shaun P.

    2010-01-01

    Phosphoinositide (PI) 3-kinase (PI3K) signaling processes play an important role in regulating the adhesive function of integrin αIIbβ3, necessary for platelet spreading and sustained platelet aggregation. PI3K inhibitors are effective at reducing platelet aggregation and thrombus formation in vivo and as a consequence are currently being evaluated as novel antithrombotic agents. PI3K regulation of integrin αIIbβ3 activation (affinity modulation) primarily occurs downstream of Gi-coupled and tyrosine kinase-linked receptors linked to the activation of Rap1b, AKT, and phospholipase C. In the present study, we demonstrate an important role for PI3Ks in regulating the avidity (strength of adhesion) of high affinity integrin αIIbβ3 bonds, necessary for the cellular transmission of contractile forces. Using knock-out mouse models and isoform-selective PI3K inhibitors, we demonstrate that the Type Ia p110β isoform plays a major role in regulating thrombin-stimulated fibrin clot retraction in vitro. Reduced clot retraction induced by PI3K inhibitors was not associated with defects in integrin αIIbβ3 activation, actin polymerization, or actomyosin contractility but was associated with a defect in integrin αIIbβ3 association with the contractile cytoskeleton. Analysis of integrin αIIbβ3 adhesion contacts using total internal reflection fluorescence microscopy revealed an important role for PI3Ks in regulating the stability of high affinity integrin αIIbβ3 bonds. These studies demonstrate an important role for PI3K p110β in regulating the avidity of high affinity integrin αIIbβ3 receptors, necessary for the cellular transmission of contractile forces. These findings may provide new insight into the potential antithrombotic properties of PI3K p110β inhibitors. PMID:19940148

  6. The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-masswhite dwarf star

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howell, D.Andrew; Sullivan, Mark; Nugent, Peter E.

    2006-02-01

    The acceleration of the expansion of the universe, and theneed for Dark Energy, were inferred from the observations of Type Iasupernovae (SNe Ia) 1;2. There is consensus that SNeIa are thermonuclearexplosions that destroy carbon-oxygen white dwarf stars that accretematter from a companion star3, although the nature of this companionremains uncertain. SNe Ia are thought to be reliable distance indicatorsbecause they have a standard amount of fuel and a uniform trigger theyare predicted to explode when the mass of the white dwarf nears theChandrasekhar mass 4 - 1.4 solar masses. Here we show that the highredshift supernova SNLS-03D3bb has an exceptionallymore » high luminosity andlow kinetic energy that both imply a super-Chandrasekhar mass progenitor.Super-Chandrasekhar mass SNeIa shouldpreferentially occur in a youngstellar population, so this may provide an explanation for the observedtrend that overluminous SNe Ia only occur in young environments5;6. Sincethis supernova does not obey the relations that allow them to becalibrated as standard candles, and since no counterparts have been foundat low redshift, future cosmology studies will have to considercontamination from such events.« less

  7. AKAP150 mediates TRPV1 sensitivity to phosphatidylinositol-4, 5-bisphosphate

    PubMed Central

    Jeske, Nathaniel A.; Por, Elaine D.; Belugin, Sergei; Chaudhury, Sraboni; Berg, Kelly A.; Akopian, Armen N.; Henry, Michael A.; Gomez, Ruben

    2011-01-01

    A-kinase anchoring protein 150 (AKAP150) is a scaffolding protein that controls protein kinase A- and C-mediated phosphorylation of the transient receptor potential family V type 1 (TRPV1), dictating receptor response to nociceptive stimuli. The phospholipid phosphatidylinositol-4,5-bisphosphate (PIP2) anchors AKAP150 to the plasma membrane in naïve conditions, and also affects TRPV1 activity. In the present study, we sought to determine whether the effects of PIP2 on TRPV1 are mediated through AKAP150. In trigeminal neurons and CHO cells, the manipulation of cellular PIP2 led to significant changes in the association of AKAP150 and TRPV1. Following PIP2 degradation, increased TRPV1:AKAP150 co-immunoprecipitation was observed, resulting in increased receptor response to capsaicin treatment. Phospholipase C activation in neurons isolated from AKAP150−/− animals indicated that PIP2 -mediated inhibition of TRPV1 in the whole cell environment requires expression of the scaffolding protein. Furthermore, the addition of PIP2 to neurons isolated from AKAP150 wild-type mice reduced PKA-sensitization of TRPV1 compared to isolated neurons from AKAP150−/− mice. These findings suggest that PIP2 degradation increases AKAP150 association with TRPV1 in the whole cell environment, leading to sensitization of the receptor to nociceptive stimuli. PMID:21653872

  8. A Designer Fluid for Aluminum Phase Change Devices, Vol. 1 of 3: General Inorganic Aqueous Solution (IAS) Chemistry

    DTIC Science & Technology

    2016-11-17

    region, in which liquid is disconnected with the electrochemical cycle and hydrogen gas will be generated. In addition, with Q increasing, all the...179  5.3.  Importance of a Continuous Liquid Back Flow...used IAS; (c) condensed liquid from the vapor of IAS .................. 49  Figure 25: Contact angle comparison between smooth and IAS treated metal

  9. Phosphatidylinositol 3,4,5-trisphosphate activity probes for the labeling and proteomic characterization of protein binding partners.

    PubMed

    Rowland, Meng M; Bostic, Heidi E; Gong, Denghuang; Speers, Anna E; Lucas, Nathan; Cho, Wonhwa; Cravatt, Benjamin F; Best, Michael D

    2011-12-27

    Phosphatidylinositol polyphosphate lipids, such as phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P₃], regulate critical biological processes, many of which are aberrant in disease. These lipids often act as site-specific ligands in interactions that enforce membrane association of protein binding partners. Herein, we describe the development of bifunctional activity probes corresponding to the headgroup of PI(3,4,5)P₃ that are effective for identifying and characterizing protein binding partners from complex samples, namely cancer cell extracts. These probes contain both a photoaffinity tag for covalent labeling of target proteins and a secondary handle for subsequent detection or manipulation of labeled proteins. Probes bearing different secondary tags were exploited, either by direct attachment of a fluorescent dye for optical detection or by using an alkyne that can be derivatized after protein labeling via click chemistry. First, we describe the design and modular synthetic strategy used to generate multiple probes with different reporter tags of use for characterizing probe-labeled proteins. Next, we report initial labeling studies using purified protein, the PH domain of Akt, in which probes were found to label this target, as judged by in-gel detection. Furthermore, protein labeling was abrogated by controls including competition with an unlabeled PI(3,4,5)P₃ headgroup analogue as well as through protein denaturation, indicating specific labeling. In addition, probes featuring linkers of different lengths between the PI(3,4,5)P₃ headgroup and photoaffinity tag led to variations in protein labeling, indicating that a shorter linker was more effective in this case. Finally, proteomic labeling studies were performed using cell extracts; labeled proteins were observed by in-gel detection and characterized using postlabeling with biotin, affinity chromatography, and identification via tandem mass spectrometry. These studies yielded a total of 265

  10. Activation of the Ca2+-sensing receptors increases currents through inward rectifier K+ channels via activation of phosphatidylinositol 4-kinase.

    PubMed

    Liu, Chung-Hung; Chang, Hsueh-Kai; Lee, Sue-Ping; Shieh, Ru-Chi

    2016-11-01

    Inward rectifier K + channels are important for maintaining normal electrical function in many cell types. The proper function of these channels requires the presence of membrane phosphoinositide 4,5-bisphosphate (PIP 2 ). Stimulation of the Ca 2+ -sensing receptor CaR, a pleiotropic G protein-coupled receptor, activates both G q/11 , which decreases PIP 2 , and phosphatidylinositol 4-kinase (PI-4-K), which, conversely, increases PIP 2 . How membrane PIP 2 levels are regulated by CaR activation and whether these changes modulate inward rectifier K + are unknown. In this study, we found that activation of CaR by the allosteric agonist, NPSR568, increased inward rectifier K + current (I K1 ) in guinea pig ventricular myocytes and currents mediated by Kir2.1 channels exogenously expressed in HEK293T cells with a similar sensitivity. Moreover, using the fluorescent PIP 2 reporter tubby-R332H-cYFP to monitor PIP 2 levels, we found that CaR activation in HEK293T cells increased membrane PIP 2 concentrations. Pharmacological studies showed that both phospholipase C (PLC) and PI-4-K are activated by CaR stimulation with the latter played a dominant role in regulating membrane PIP 2 and, thus, Kir currents. These results provide the first direct evidence that CaR activation upregulates currents through inward rectifier K + channels by accelerating PIP 2 synthesis. The regulation of I K1 plays a critical role in the stability of the electrical properties of many excitable cells, including cardiac myocytes and neurons. Further, synthetic allosteric modulators that increase CaR activity have been used to treat hyperparathyroidism, and negative CaR modulators are of potential importance in the treatment of osteoporosis. Thus, our results provide further insight into the roles played by CaR in the cardiovascular system and are potentially valuable for heart disease treatment and drug safety.

  11. Protein Kinase C Regulates Human Pluripotent Stem Cell Self-Renewal

    PubMed Central

    Kinehara, Masaki; Kawamura, Suguru; Tateyama, Daiki; Suga, Mika; Matsumura, Hiroko; Mimura, Sumiyo; Hirayama, Noriko; Hirata, Mitsuhi; Uchio-Yamada, Kozue; Kohara, Arihiro; Yanagihara, Kana; Furue, Miho K.

    2013-01-01

    Background The self-renewal of human pluripotent stem (hPS) cells including embryonic stem and induced pluripotent stem cells have been reported to be supported by various signal pathways. Among them, fibroblast growth factor-2 (FGF-2) appears indispensable to maintain self-renewal of hPS cells. However, downstream signaling of FGF-2 has not yet been clearly understood in hPS cells. Methodology/Principal Findings In this study, we screened a kinase inhibitor library using a high-throughput alkaline phosphatase (ALP) activity-based assay in a minimal growth factor-defined medium to understand FGF-2-related molecular mechanisms regulating self-renewal of hPS cells. We found that in the presence of FGF-2, an inhibitor of protein kinase C (PKC), GF109203X (GFX), increased ALP activity. GFX inhibited FGF-2-induced phosphorylation of glycogen synthase kinase-3β (GSK-3β), suggesting that FGF-2 induced PKC and then PKC inhibited the activity of GSK-3β. Addition of activin A increased phosphorylation of GSK-3β and extracellular signal-regulated kinase-1/2 (ERK-1/2) synergistically with FGF-2 whereas activin A alone did not. GFX negated differentiation of hPS cells induced by the PKC activator, phorbol 12-myristate 13-acetate whereas Gö6976, a selective inhibitor of PKCα, β, and γ isoforms could not counteract the effect of PMA. Intriguingly, functional gene analysis by RNA interference revealed that the phosphorylation of GSK-3β was reduced by siRNA of PKCδ, PKCε, and ζ, the phosphorylation of ERK-1/2 was reduced by siRNA of PKCε and ζ, and the phosphorylation of AKT was reduced by PKCε in hPS cells. Conclusions/Significance Our study suggested complicated cross-talk in hPS cells that FGF-2 induced the phosphorylation of phosphatidylinositol-3 kinase (PI3K)/AKT, mitogen-activated protein kinase/ERK-1/2 kinase (MEK), PKC/ERK-1/2 kinase, and PKC/GSK-3β. Addition of GFX with a MEK inhibitor, U0126, in the presence of FGF-2 and activin A provided a long

  12. A Stabilized Demethoxyviridin Derivative Inhibits PI3 kinase

    PubMed Central

    Yuan, Hushan; Pupo, Monica T.; Blois, Joe; Smith, Adam; Weissleder, Ralph; Clardy, Jon; Josephson, Lee

    2009-01-01

    The viridins like demethoxyviridin (Dmv) and wortmannin (Wm) are nanomolar inhibitors of the PI3 kinases, a family of enzymes that play key roles in a host of regulatory processes. Central to the use of these compounds to investigate the role of PI3 kinase in biological systems, or as scaffolds for drug development, are the interrelated issues of stability, chemical reactivity, and bioactivity as inhibitors of PI3 kinase. We found that Dmv was an even more potent inhibitor of PI3 kinase than Wm. However, Dmv was notably less stable than Wm in PBS, with a half-life of 26 min vs Wm’s half-life of 3470 min. Dmv, like Wm, disappeared in culture media with a half-life of less than 1 min. To overcome Dmv’s instability, it was esterified at the C1 position, and then reacted with glycine at the C20 position. The resulting Dmv derivative, termed SA-DmvC20-Gly had a half-life of 218 min in PBS and 64 min in culture media. SA-DmvC20-Gly underwent an exchange reaction at the C20 position with N-acetyl lysine in a manner similar to a WmC20 derivative, WmC20-Proline. SA-DmvC20-Gly inhibited PI3 kinase with an IC50 of 44 nM, compared to Wm’s IC50 of 12 nM. These results indicate that the stability of Dmv can be manipulated by reactions at the C1 and C20 positions, while substantially maintaining its ability to inhibit PI3 kinase. Our results indicate it may be possible to obtain stabilized Dmv derivatives for use as PI3 kinase inhibitors in biological systems. PMID:19523825

  13. The Btk-dependent PIP5K1γ lipid kinase activation by Fas counteracts FasL-induced cell death.

    PubMed

    Rossin, Aurélie; Lounnas, Nadia; Durivault, Jérôme; Miloro, Giorgia; Gagnoux-Palacios, Laurent; Hueber, Anne-Odile

    2017-11-01

    The Fas/FasL system plays a critical role in death by apoptosis and immune escape of cancer cells. The Fas receptor being ubiquitously expressed in tissues, its apoptotic-inducing function, initiated upon FasL binding, is tightly regulated by several negative regulatory mechanisms to prevent inappropriate cell death. One of them, involving the non-receptor tyrosine kinase Btk, was reported mainly in B cells and only poorly described. We report here that Btk negatively regulates, through its tyrosine kinase activity, the FasL-mediated cell death in epithelial cell lines from colon cancer origin. More importantly, we show that Btk interacts not only with Fas but also with the phosphatidylinositol-4-phosphate 5-kinase, PIP5K1γ, which, upon stimulation by Fas ligand, is responsible of a rapid and transient synthesis of phosphatidylinositol-4,5-bisphosphate (PI(4,5)P 2 ). This production requires both the presence and the tyrosine kinase activity of Btk, and participates in the negative regulation of FasL-mediated cell death since knocking down PIP5K1γ expression significantly strengthens the apoptotic signal upon FasL engagement. Altogether, our data demonstrate the cooperative role of Btk and PIP5K1γ in a FasL-induced PI(4,5)P 2 production, both proteins participating to the threshold setting of FasL-induced apoptotic commitment in colorectal cell lines.

  14. Phosphatidylinositol (3,4,5)-Trisphosphate Activity Probes for the Labeling and Proteomic Characterization of Protein Binding Partners

    PubMed Central

    Rowland, Meng M.; Bostic, Heidi E.; Gong, Denghuang; Speers, Anna E.; Lucas, Nathan; Cho, Wonhwa; Cravatt, Benjamin F.; Best, Michael D.

    2013-01-01

    Phosphatidylinositol polyphosphate lipids, such as phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3), regulate critical biological processes, many of which are aberrant in disease. These lipids often act as site-specific ligands in interactions that enforce membrane-association of protein binding partners. Herein, we describe the development of bifunctional activity probes corresponding to the headgroup of PI(3,4,5)P3 that are effective for identifying and characterizing protein binding partners from complex samples, namely cancer cell extracts. These probes contain both a photoaffinity tag for covalent labeling of target proteins as well as a secondary handle for subsequent detection or manipulation of labeled proteins. Probes bearing different secondary tags were exploited, either by direct attachment of a fluorescent dye for optical detection or by using an alkyne that can be derivatized after protein labeling via click chemistry. First, we describe the design and modular synthetic strategy used to generate multiple probes with different reporter tags of use for characterizing probe-labeled proteins. Next, we report initial labeling studies using purified protein, the PH domain of Akt, in which probes were found to label this target, as judged by on-gel detection. Furthermore, protein labeling was abrogated by controls including competition with an unlabeled PI(3,4,5)P3 headgroup analog as well as through protein denaturation, indicating specific labeling. In addition, probes featuring different linker lengths between the PI(3,4,5)P3 headgroup and photoaffinity tag led to variations in protein labeling, indicating that a shorter linker was more effective in this case. Finally, proteomic labeling studies were performed using cell extracts, labeled proteins were observed by in-gel detection and characterized using post-labeling with biotin, affinity chromatography and identification via tandem mass spectrometry. These studies yielded a total of 265 proteins

  15. SH2/SH3 signaling proteins.

    PubMed

    Schlessinger, J

    1994-02-01

    SH2 and SH3 domains are small protein modules that mediate protein-protein interactions in signal transduction pathways that are activated by protein tyrosine kinases. SH2 domains bind to short phosphotyrosine-containing sequences in growth factor receptors and other phosphoproteins. SH3 domains bind to target proteins through sequences containing proline and hydrophobic amino acids. SH2 and SH3 domain containing proteins, such as Grb2 and phospholipase C gamma, utilize these modules in order to link receptor and cytoplasmic protein tyrosine kinases to the Ras signaling pathway and to phosphatidylinositol hydrolysis, respectively. The three-dimensional structures of several SH2 and SH3 domains have been determined by NMR and X-ray crystallography, and the molecular basis of their specificity is beginning to be unveiled.

  16. Protein kinases as mediators of fluid shear stress stimulated signal transduction in endothelial cells: a hypothesis for calcium-dependent and calcium-independent events activated by flow.

    PubMed

    Berk, B C; Corson, M A; Peterson, T E; Tseng, H

    1995-12-01

    Fluid shear stress regulates endothelial cell function, but the signal transduction mechanisms involved in mechanotransduction remain unclear. Recent findings demonstrate that several intracellular kinases are activated by mechanical forces. In particular, members of the mitogen-activated protein (MAP) kinase family are stimulated by hyperosmolarity, stretch, and stress such as heat shock. We propose a model for mechanotransduction in endothelial cells involving calcium-dependent and calcium-independent protein kinase pathways. The calcium-dependent pathway involves activation of phospholipase C, hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2), increases in intracellular calcium and stimulation of kinases such as calcium-calmodulin and C kinases (PKC). The calcium-independent pathway involves activation of a small GTP-binding protein and stimulation of calcium-independent PKC and MAP kinases. The calcium-dependent pathway mediates the rapid, transient response to fluid shear stress including activation of nitric oxide synthase (NOS) and ion transport. In contrast, the calcium-independent pathway mediates a slower response including the sustained activation of NOS and changes in cell morphology and gene expression. We propose that focal adhesion complexes link the calcium-dependent and calcium-independent pathways by regulating activity of phosphatidylinositol 4-phosphate (PIP) 5-kinase (which regulates PIP2 levels) and p125 focal adhesion kinase (FAK, which phosphorylates paxillin and interacts with cytoskeletal proteins). This model predicts that dynamic interactions between integrin molecules present in focal adhesion complexes and membrane events involved in mechanotransduction will be integrated by calcium-dependent and calcium-independent kinases to generate intracellular signals involved in the endothelial cell response to flow.

  17. Phosphoinositide 3-kinase-dependent Ras activation by tauroursodesoxycholate in rat liver.

    PubMed Central

    Kurz, A K; Block, C; Graf, D; Dahl, S V; Schliess, F; Häussinger, D

    2000-01-01

    Ursodesoxycholic acid, widely used for the treatment of cholestatic liver disease, causes choleretic, anti-apoptotic and immunomodulatory effects. Here the effects on choleresis of its taurine conjugate tauroursodesoxycholate (TUDC), which is present in the enterohepatic circulation, were correlated with the activation of important elements of intracellular signal transduction in cultured rat hepatocytes and perfused rat liver. TUDC induced a time- and concentration-dependent activation of the small GTP-binding protein Ras and of phosphoinositide 3-kinase (PI 3-kinase) in cultured hepatocytes. Ras activation was dependent on PI 3-kinase activity, without the involvement of protein kinase C- and genistein-sensitive tyrosine kinases. Ras activation by TUDC was followed by an activation of the mitogen-activated protein kinases extracellular-signal-regulated kinase-1 (Erk-1) and Erk-2. In perfused rat liver, PI 3-kinase inhibitors largely abolished the stimulatory effect of TUDC on taurocholate excretion, suggesting an important role for a PI 3-kinase/Ras/Erk pathway in the choleretic effect of TUDC. PMID:10926845

  18. Constitutive Macropinocytosis in Oncogene-transformed Fibroblasts Depends on Sequential Permanent Activation of Phosphoinositide 3-Kinase and Phospholipase C

    PubMed Central

    Amyere, Mustapha; Payrastre, Bernard; Krause, Ulrike; Smissen, Patrick Van Der; Veithen, Alex; Courtoy, Pierre J.

    2000-01-01

    Macropinocytosis results from the closure of lamellipodia generated by membrane ruffling, thereby reflecting cortical actin dynamics. Both transformation of Rat-1 fibroblasts by v-Src or K-Ras and stable transfection for expression of dominant-positive, wild-type phosphoinositide 3-kinase (PI3K) regulatory subunit p85α constitutively led to stress fiber disruption, cortical actin recruitment, extensive ruffling, and macropinosome formation, as measured by a selective acceleration of fluid-phase endocytosis. These alterations closely correlated with activation of PI3K and phosphatidylinositol-specific phospholipase C (PI-PLC), as assayed by 3-phosphoinositide synthesis in situ and in vitro and inositol 1,4,5 trisphosphate steady-state levels, respectively; they were abolished by stable transfection of v-Src–transformed cells for dominant-negative truncated p85α expression and by pharmacological inhibitors of PI3K and PI-PLC, indicating a requirement for both enzymes. Whereas PI3K activation resisted PI-PLC inhibition, PI-PLC activation was abolished by a PI3K inhibitor and dominant-negative transfection, thus placing PI-PLC downstream of PI3K. Together, these data suggest that permanent sequential activation of both PI3K and PI-PLC is necessary for the dramatic reorganization of the actin cytoskeleton in oncogene-transformed fibroblasts, resulting in constitutive ruffling and macropinocytosis. PMID:11029048

  19. Phosphoinositide 5- and 3-phosphatase activities of a voltage-sensing phosphatase in living cells show identical voltage dependence

    PubMed Central

    Keum, Dongil; Kim, Dong-Il; Suh, Byung-Chang

    2016-01-01

    Voltage-sensing phosphatases (VSPs) are homologs of phosphatase and tensin homolog (PTEN), a phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2] and phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] 3-phosphatase. However, VSPs have a wider range of substrates, cleaving 3-phosphate from PI(3,4)P2 and probably PI(3,4,5)P3 as well as 5-phosphate from phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and PI(3,4,5)P3 in response to membrane depolarization. Recent proposals say these reactions have differing voltage dependence. Using Förster resonance energy transfer probes specific for different PIs in living cells with zebrafish VSP, we quantitate both voltage-dependent 5- and 3-phosphatase subreactions against endogenous substrates. These activities become apparent with different voltage thresholds, voltage sensitivities, and catalytic rates. As an analytical tool, we refine a kinetic model that includes the endogenous pools of phosphoinositides, endogenous phosphatase and kinase reactions connecting them, and four exogenous voltage-dependent 5- and 3-phosphatase subreactions of VSP. We show that apparent voltage threshold differences for seeing effects of the 5- and 3-phosphatase activities in cells are not due to different intrinsic voltage dependence of these reactions. Rather, the reactions have a common voltage dependence, and apparent differences arise only because each VSP subreaction has a different absolute catalytic rate that begins to surpass the respective endogenous enzyme activities at different voltages. For zebrafish VSP, our modeling revealed that 3-phosphatase activity against PI(3,4,5)P3 is 55-fold slower than 5-phosphatase activity against PI(4,5)P2; thus, PI(4,5)P2 generated more slowly from dephosphorylating PI(3,4,5)P3 might never accumulate. When 5-phosphatase activity was counteracted by coexpression of a phosphatidylinositol 4-phosphate 5-kinase, there was accumulation of PI(4,5)P2 in parallel to PI(3,4,5)P3 dephosphorylation

  20. 3D Simulations of Supernova Remnants from Type Ia Supernova Models

    NASA Astrophysics Data System (ADS)

    Johnson, Heather; Reynolds, S. P.; Frohlich, C.; Blondin, J. M.

    2014-01-01

    Type Ia supernovae (SNe) originate from thermonuclear explosions of white dwarfs. A great deal is still unknown about the explosion mechanisms, particularly the degree of asymmetry. However, Type Ia supernova remnants (SNRs) can bear the imprint of asymmetry long after the explosion. A SNR of interest is G1.9+0.3, the youngest Galactic SNR, which demonstrates an unusual spatial distribution of elements in the ejecta. While its X-ray spectrum is dominated by synchrotron emission, spectral lines of highly ionized Si, S, and Fe are seen in a few locations, with Fe near the edge of the remnant and with strongly varying Fe/Si ratios. An asymmetric explosion within the white dwarf progenitor may be necessary to explain these unusual features of G1.9+0.3, in particular the shocked Fe at large radii. We use the VH-1 hydrodynamics code to evolve initial Type Ia explosion models in 1, 2, and 3 dimensions at an age of 100 seconds provided by other researchers to study asymmetry, the ignition properties, and the nucleosynthesis resulting from these explosions. We follow the evolution of these models interacting with a uniform external medium to a few hundred years in age. We find the abundance and location of ejecta elements from our models to be inconsistent with the observations of G1.9+0.3; while our models show asymmetric element distributions, we find no tendency for iron-group elements to be found beyond intermediate-mass elements, or for significant iron to be reverse-shocked at all at the age of G1.9+0.3. We compare the amounts of shocked iron-group and intermediate-mass elements as a function of time in the different models. Some new kind of explosion asymmetry may be required to explain G1.9+0.3. This work was performed as part of NC State University's Undergraduate Research in Computational Astrophysics (URCA) program, an REU program supported by the National Science Foundation through award AST-1032736.

  1. Gab1 Acts as an Adapter Molecule Linking the Cytokine Receptor gp130 to ERK Mitogen-Activated Protein Kinase

    PubMed Central

    Takahashi-Tezuka, Mariko; Yoshida, Yuichi; Fukada, Toshiyuki; Ohtani, Takuya; Yamanaka, Yojiro; Nishida, Keigo; Nakajima, Koichi; Hibi, Masahiko; Hirano, Toshio

    1998-01-01

    Gab1 has structural similarities with Drosophila DOS (daughter of sevenless), which is a substrate of the protein tyrosine phosphatase Corkscrew. Both Gab1 and DOS have a pleckstrin homology domain and tyrosine residues, potential binding sites for various SH2 domain-containing adapter molecules when they are phosphorylated. We found that Gab1 was tyrosine phosphorylated in response to various cytokines, such as interleukin-6 (IL-6), IL-3, alpha interferon (IFN-α), and IFN-γ. Upon the stimulation of IL-6 or IL-3, Gab1 was found to form a complex with phosphatidylinositol (PI)-3 kinase and SHP-2, a homolog of Corkscrew. Mutational analysis of gp130, the common subunit of IL-6 family cytokine receptors, revealed that neither tyrosine residues of gp130 nor its carboxy terminus was required for tyrosine phosphorylation of Gab1. Expression of Gab1 enhanced gp130-dependent mitogen-activated protein (MAP) kinase ERK2 activation. A mutation of tyrosine 759, the SHP-2 binding site of gp130, abrogated the interactions of Gab1 with SHP-2 and PI-3 kinase as well as ERK2 activation. Furthermore, ERK2 activation was inhibited by a dominant negative p85 PI-3 kinase, wortmannin, or a dominant negative Ras. These observations suggest that Gab1 acts as an adapter molecule in transmitting signals to ERK MAP kinase for the cytokine receptor gp130 and that SHP-2, PI-3 kinase, and Ras are involved in Gab1-mediated ERK activation. PMID:9632795

  2. An Autoinhibitory Role for the Pleckstrin Homology Domain of Interleukin-2-Inducible Tyrosine Kinase and Its Interplay with Canonical Phospholipid Recognition.

    PubMed

    Devkota, Sujan; Joseph, Raji E; Boyken, Scott E; Fulton, D Bruce; Andreotti, Amy H

    2017-06-13

    Pleckstrin homology (PH) domains are well-known as phospholipid binding modules, yet evidence that PH domain function extends beyond lipid recognition is mounting. In this work, we characterize a protein binding function for the PH domain of interleukin-2-inducible tyrosine kinase (ITK), an immune cell specific signaling protein that belongs to the TEC family of nonreceptor tyrosine kinases. Its N-terminal PH domain is a well-characterized lipid binding module that localizes ITK to the membrane via phosphatidylinositol 3,4,5-trisphosphate (PIP 3 ) binding. Using a combination of nuclear magnetic resonance spectroscopy and mutagenesis, we have mapped an autoregulatory protein interaction site on the ITK PH domain that makes direct contact with the catalytic kinase domain of ITK, inhibiting the phospho-transfer reaction. Moreover, we have elucidated an important interplay between lipid binding by the ITK PH domain and the stability of the autoinhibitory complex formed by full length ITK. The ITK activation loop in the kinase domain becomes accessible to phosphorylation to the exogenous kinase LCK upon binding of the ITK PH domain to PIP 3 . By clarifying the allosteric role of the ITK PH domain in controlling ITK function, we have expanded the functional repertoire of the PH domain generally and opened the door to alternative strategies to target this specific kinase in the context of immune cell signaling.

  3. Protein Kinase B Activation and Lamellipodium Formation Are Independent Phosphoinositide 3-Kinase-Mediated Events Differentially Regulated by Endogenous Ras

    PubMed Central

    van Weering, David H. J.; de Rooij, Johan; Marte, Barbara; Downward, Julian; Bos, Johannes L.; Burgering, Boudewijn M. T.

    1998-01-01

    Regulation of phosphoinositide 3-kinase (PI 3-kinase) can occur by binding of the regulatory p85 subunit to tyrosine-phosphorylated proteins and by binding of the p110 catalytic subunit to activated Ras. However, the way in which these regulatory mechanisms act to regulate PI 3-kinase in vivo is unclear. Here we show that several growth factors (basic fibroblast growth factor [bFGF], platelet-derived growth factor [PDGF], and epidermal growth factor [EGF; to activate an EGF receptor-Ret chimeric receptor]) all activate PI 3-kinase in vivo in the neuroectoderm-derived cell line SKF5. However, these growth factors differ in their ability to activate PI 3-kinase-dependent signaling. PDGF and EGF(Ret) treatment induced PI 3-kinase-dependent lamellipodium formation and protein kinase B (PKB) activation. In contrast, bFGF did not induce lamellipodium formation but activated PKB, albeit to a small extent. PDGF and EGF(Ret) stimulation resulted in binding of p85 to tyrosine-phosphorylated proteins and strong Ras activation. bFGF, however, induced only strong activation of Ras. In addition, while RasAsn17 abolished bFGF activation of PKB, PDGF- and EGF(Ret)-induced PKB activation was only partially inhibited and lamellipodium formation was unaffected. Interestingly, in contrast to activation of only endogenous Ras (bFGF), ectopic expression of activated Ras did result in lamellipodium formation. From this we conclude that, in vivo, p85 and Ras synergize to activate PI 3-kinase and that strong activation of only endogenous Ras exerts a small effect on PI 3-kinase activity, sufficient for PKB activation but not lamellipodium formation. This differential sensitivity to PI 3-kinase activation could be explained by our finding that PKB activation and lamellipodium formation are independent PI 3-kinase-induced events. PMID:9528752

  4. The Golgi localization of phosphatidylinositol transfer protein beta requires the protein kinase C-dependent phosphorylation of serine 262 and is essential for maintaining plasma membrane sphingomyelin levels.

    PubMed

    van Tiel, Claudia M; Westerman, Jan; Paasman, Marten A; Hoebens, Martha M; Wirtz, Karel W A; Snoek, Gerry T

    2002-06-21

    Recombinant mouse phosphatidylinositol transfer protein (PI-TP)beta is a substrate for protein kinase C (PKC)-dependent phosphorylation in vitro. Based on site-directed mutagenesis and two-dimensional tryptic peptide mapping, Ser(262) was identified as the major site of phosphorylation and Ser(165) as a minor phosphorylation site. The phospholipid transfer activities of wild-type PI-TP beta and PI-TP beta(S262A) were identical, whereas PI-TP beta(S165A) was completely inactive. PKC-dependent phosphorylation of Ser(262) also had no effect on the transfer activity of PI-TP beta. To investigate the role of Ser(262) in the functioning of PI-TP beta, wtPI-TP beta and PI-TP beta(S262A) were overexpressed in NIH3T3 fibroblast cells. Two-dimensional PAGE analysis of cell lysates was used to separate PI-TP beta from its phosphorylated form. After Western blotting, wtPI-TP beta was found to be 85% phosphorylated, whereas PI-TP beta(S262A) was not phosphorylated. In the presence of the PKC inhibitor GF 109203X, the phosphorylated form of wtPI-TP beta was strongly reduced. Immunolocalization showed that wtPI-TP beta was predominantly associated with the Golgi membranes. In the presence of the PKC inhibitor, wtPI-TP beta was distributed throughout the cell similar to what was observed for PI-TP beta(S262A). In contrast to wtPI-TP beta overexpressors, cells overexpressing PI-TP beta(S262A) were unable to rapidly replenish sphingomyelin in the plasma membrane upon degradation by sphingomyelinase. This implies that PKC-dependent association with the Golgi complex is a prerequisite for PI-TP beta to express its effect on sphingomyelin metabolism.

  5. Phosphatidyl inositol-3 kinase (PIK3CA) E545K mutation confers cisplatin resistance and a migratory phenotype in cervical cancer cells.

    PubMed

    Arjumand, Wani; Merry, Cole D; Wang, Chen; Saba, Elias; McIntyre, John B; Fang, Shujuan; Kornaga, Elizabeth; Ghatage, Prafull; Doll, Corinne M; Lees-Miller, Susan P

    2016-12-13

    The phosphatidylinositol-3 kinase (PI3K)/Akt/mTOR signaling pathway is activated in many human cancers. Previously, we reported that patients with early stage cervical cancer whose tumours harbour PIK3CA exon 9 or 20 mutations have worse overall survival in response to treatment with radiation and cisplatin than patients with wild-type PIK3CA. The purpose of this study was to determine whether PIK3CA-E545K mutation renders cervical cancer cells more resistant to cisplatin and/or radiation, and whether PI3K inhibition reverses the phenotype. We found that CaSki cells that are heterozygous for the PIK3CA-E545K mutation are more resistant to cisplatin or cisplatin plus radiation than either HeLa or SiHa cells that express only wild-type PIK3CA. Similarly, HeLa cells engineered to stably express PIK3CA-E545K were more resistant to cisplatin or cisplatin plus radiation than cells expressing only wild-type PIK3CA or with PIK3CA depleted. Cells expressing the PIK3CA-E545K mutation also had constitutive PI3K pathway activation and increased cellular migration and each of these phenotypes was reversed by treatment with the PI3K inhibitor GDC-0941/Pictilisib. Our results suggests that cervical cancer patients whose tumours are positive for the PIK3CA-E545K mutation may benefit from PI3K inhibitor therapy in concert with standard cisplatin and radiation therapy.

  6. Overexpression of protein kinase FA/GSK-3 alpha (a proline-directed protein kinase) correlates with human hepatoma dedifferentiation/progression.

    PubMed

    Yang, S D; Yu, J S; Yang, C C; Lee, S C; Lee, T T; Ni, M H; Kuan, C Y; Chen, H C

    1996-05-01

    Computer analysis of protein phosphorylation sites sequence revealed that transcriptional factors and viral oncoproteins are prime targets for regulation of proline-directed protein phosphorylation, suggesting an association of the proline-directed protein kinase (PDPK) family with neoplastic transformation and tumorigenesis. In this report, an immunoprecipitate activity assay of protein kinase FA/glycogen synthase kinase-3 alpha (kinase F(A)/GSK-3 alpha) (a member of PDPK family) has been optimized for human hepatoma and used to demonstrate for the first time significantly increased (P < 0.01) activity in poorly differentiated SK-Hep-1 hepatoma (24.2 +/- 2.8 units/mg) and moderately differentiated Mahlavu hepatoma (14.5 +/- 2.2 units/mg) when compared to well differentiated Hep 3B hepatoma (8.0 +/- 2.4 units/mg). Immunoblotting analysis revealed that increased activity of kinase FA/GSK-3 alpha is due to overexpression of the protein. Elevated kinase FA/GSK-3 alpha expression in human hepatoma biopsies relative to normal liver tissue was found to be even more profound. This kinase appeared to be fivefold overexpressed in well differentiated hepatoma and 13-fold overexpressed in poorly differentiated hepatoma when compared to normal liver tissue. Taken together, the results provide initial evidence that overexpression of kinase FA/GSK-3 alpha is involved in human hepatoma dedifferentiation/progression. Since kinase FA/GSK-3 alpha is a PDPK, the results further support a potential role of this kinase in human liver tumorigenesis, especially in its dedifferentiation/progression.

  7. Ovarian expressed microsomal epoxide hydrolase: Role in detoxification of 4-vinylcyclohexene diepoxide and regulation by phosphatidylinositol-3 kinase signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya, Poulomi, E-mail: poulomib@iastate.edu; Sen, Nivedita, E-mail: nsen@email.arizona.edu; Hoyer, Patricia B., E-mail: Hoyer@u.arizona.edu

    2012-01-01

    4-vinylcyclohexene diepoxide (VCD) is a metabolite of 4-vinylcyclohexene (VCH) which has the potential to be formed in the ovary through CYP2E1 activity. VCD specifically destroys primordial and small primary follicles in the rodent ovary. Mouse ovaries exposed to VCD demonstrate increased mRNA and protein expression of microsomal epoxide hydrolase (mEH), and an inactive tetrol metabolite (4-(1,2-dihydroxy)ethyl-1,2-dihydroxycyclohexane) can be formed in mouse ovarian follicles, potentially through detoxification action of mEH. In contrast, mEH can bioactivate another ovotoxic chemical, 7,12-dimethylbenz[a]anthracene (DMBA) to a more toxic compound, DMBA-3,4-diol-1,2-epoxide. Thus, the present study evaluated a functional role for mEH during detoxification of VCD. Additionally,more » because inhibition of the phosphatidyinositol-3 kinase (PI3K) signaling pathway in a previous study protected primordial follicles from VCD-induced destruction, but accelerated DMBA-induced ovotoxicity, a role for PI3K in ovarian mEH regulation was evaluated. Using a post-natal day (PND) 4 Fischer 344 rat whole ovary culture system inhibition of mEH using cyclohexene oxide during VCD exposure resulted in a greater (P < 0.05) loss of primordial and small primary follicles relative to VCD-treated ovaries. Also, relative to controls, meh mRNA was increased (P < 0.05) on day 4 of VCD (30 μM) exposure, followed by increased (P < 0.05) mEH protein after 6 days. Furthermore, inhibition of PI3K signaling increased mEH mRNA and protein expression. Thus, these results support a functional role for mEH in the rat ovary, and demonstrate the involvement of PI3K signaling in regulation of ovarian xenobiotic metabolism by mEH. -- Highlights: ► Ovarian mEH functions to metabolize VCD to a less toxic compound. ► mEH expression is increased in a temporal pattern in response to VCD exposure. ► PI3K signaling is involved in regulation of ovarian mEH expression.« less

  8. Adenovirus Protein E4-ORF1 Activation of PI3 Kinase Reveals Differential Regulation of Downstream Effector Pathways in Adipocytes.

    PubMed

    Chaudhary, Natasha; Gonzalez, Eva; Chang, Sung-Hee; Geng, Fuqiang; Rafii, Shahin; Altorki, Nasser K; McGraw, Timothy E

    2016-12-20

    Insulin activation of phosphatidylinositol 3-kinase (PI3K) regulates metabolism, including the translocation of the Glut4 glucose transporter to the plasma membrane and inactivation of the FoxO1 transcription factor. Adenoviral protein E4-ORF1 stimulates cellular glucose metabolism by mimicking growth-factor activation of PI3K. We have used E4-ORF1 as a tool to dissect PI3K-mediated signaling in adipocytes. E4-ORF1 activation of PI3K in adipocytes recapitulates insulin regulation of FoxO1 but not regulation of Glut4. This uncoupling of PI3K effects occurs despite E4-ORF1 activating PI3K and downstream signaling to levels achieved by insulin. Although E4-ORF1 does not fully recapitulate insulin's effects on Glut4, it enhances insulin-stimulated insertion of Glut4-containing vesicles to the plasma membrane independent of Rab10, a key regulator of Glut4 trafficking. E4-ORF1 also stimulates plasma membrane translocation of ubiquitously expressed Glut1 glucose transporter, an effect that is likely essential for E4-ORF1 to promote an anabolic metabolism in a broad range of cell types. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. Epigallocatechin activates haem oxygenase-1 expression via protein kinase Cδ and Nrf2

    PubMed Central

    Ogborne, Richard M.; Rushworth, Stuart A.; O’Connell, Maria A.

    2008-01-01

    The Nrf2/anti-oxidant response element (ARE) pathway plays an important role in regulating cellular anti-oxidants, including haem oxygenase-1 (HO-1). Various kinases have been implicated in the pathways leading to Nrf2 activation. Here, we investigated the effect of epigallocatechin (EGC) on ARE-mediated gene expression in human monocytic cells. EGC time and dose dependently increased HO-1 mRNA and protein expression but had minimal effect on expression of other ARE-regulated genes, including NAD(P)H:quinone oxidoreductase 1, glutathione cysteine ligase and ferritin. siRNA knock down of Nrf2 significantly inhibited EGC-induced HO-1 expression. Furthermore, inhibition of PKC by Ro-31-8220 dose dependently decreased EGC-induced HO-1 mRNA expression, whereas MAP kinase and phosphatidylinositol-3-kinase pathway inhibitors had no significant effect. EGC stimulated phosphorylation of PKCαβ and δ in THP-1 cells. PKCδ inhibition significantly decreased EGC-induced HO-1 mRNA expression, whereas PKCα- and β-specific inhibitors had no significant effect. These results demonstrate for the first time that EGC-induced HO-1 expression occurs via PKCδ and Nrf2. PMID:18586007

  10. VEGF attenuated increase of outward delayed-rectifier potassium currents in hippocampal neurons induced by focal ischemia via PI3-K pathway.

    PubMed

    Wu, K W; Yang, P; Li, S S; Liu, C W; Sun, F Y

    2015-07-09

    We recently indicated that the vascular endothelial growth factor (VEGF) protects neurons against hypoxic death via enhancement of tyrosine phosphorylation of Kv1.2, an isoform of the delayed-rectifier potassium channels through activation of the phosphatidylinositol 3-kinase (PI3-K) signaling pathway. The present study investigated whether VEGF could attenuate ischemia-induced increase of the potassium currents in the hippocampal pyramidal neurons of rats after ischemic injury. Adult male Sprague-Dawley rats were subjected to transient middle cerebral artery occlusion (MCAO) to induce brain ischemia. The whole-cell patch-clamp technique was used to record the potassium currents of hippocampal neurons in brain slices from the ischemically injured brains of the rats 24h after MCAO. We detected that transient MCAO caused a significant increase of voltage-gated potassium currents (Kv) and outward delayed-rectifier potassium currents (IK), but not outward transient potassium currents (IA), in the ipsilateral hippocampus compared with the sham. Moreover, we found that VEGF could acutely, reversibly and voltage-dependently inhibit the ischemia-induced IK increase. This inhibitory effect of VEGF could be completely abolished by wortmannin, an inhibitor of PI3-K. Our data indicate that VEGF attenuates the ischemia-induced increase of IK via activation of the PI3-K signaling pathway. Published by Elsevier Ltd.

  11. The ML1Nx2 Phosphatidylinositol 3,5-Bisphosphate Probe Shows Poor Selectivity in Cells.

    PubMed

    Hammond, Gerald R V; Takasuga, Shunsuke; Sasaki, Takehiko; Balla, Tamas

    2015-01-01

    Phosphatidylinositol (3,5)-bisphosphate (PtdIns(3,5)P2) is a quantitatively minor phospholipid in eukaryotic cells that plays a fundamental role in regulating endocytic membrane traffic. Despite its clear importance for cellular function and organism physiology, mechanistic details of its biology have so far not been fully elucidated. In part, this is due to a lack of experimental tools that specifically probe for PtdIns(3,5)P2 in cells to unambiguously identify its dynamics and site(s) of action. In this study, we have evaluated a recently reported PtdIns(3,5)P2 biosensor, GFP-ML1Nx2, for its veracity as such a probe. We report that, in live cells, the localization of this biosensor to sub-cellular compartments is largely independent of PtdIns(3,5)P2, as assessed after pharmacological, chemical genetic or genomic interventions that block the lipid's synthesis. We therefore conclude that it is unwise to interpret the localization of ML1Nx2 as a true and unbiased biosensor for PtdIns(3,5)P2.

  12. Matriptase is required for the active form of hepatocyte growth factor induced Met, focal adhesion kinase and protein kinase B activation on neural stem/progenitor cell motility.

    PubMed

    Fang, Jung-Da; Lee, Sheau-Ling

    2014-07-01

    Hepatocyte growth factor (HGF) is a chemoattractant and inducer for neural stem/progenitor (NS/P) cell migration. Although the type II transmembrane serine protease, matriptase (MTP) is an activator of the latent HGF, MTP is indispensable on NS/P cell motility induced by the active form of HGF. This suggests that MTP's action on NS/P cell motility involves mechanisms other than proteolytic activation of HGF. In the present study, we investigate the role of MTP in HGF-stimulated signaling events. Using specific inhibitors of phosphatidylinositol-3-kinase (PI3K), protein kinase B (Akt) or focal adhesion kinase (FAK), we demonstrated that in NS/P cells HGF-activated c-Met induces PI3k-Akt signaling which then leads to FAK activation. This signaling pathway ultimately induces MMP2 expression and NS/P cell motility. Knocking down of MTP in NS/P cells with specific siRNA impaired HGF-stimulation of c-Met, Akt and FAK activation, blocked HGF-induced production of MMP2 and inhibited HGF-stimulated NS/P cell motility. MTP-knockdown NS/P cells cultured in the presence of recombinant protein of MTP protease domain or transfected with the full-length wild-type but not the protease-defected MTP restored HGF-responsive events in NS/P cells. In addition to functioning as HGF activator, our data revealed novel function of MTP on HGF-stimulated c-Met signaling activation. Copyright © 2014. Published by Elsevier B.V.

  13. The p110beta isoform of phosphoinositide 3-kinase signals downstream of G protein-coupled receptors and is functionally redundant with p110gamma.

    PubMed

    Guillermet-Guibert, Julie; Bjorklof, Katja; Salpekar, Ashreena; Gonella, Cristiano; Ramadani, Faruk; Bilancio, Antonio; Meek, Stephen; Smith, Andrew J H; Okkenhaug, Klaus; Vanhaesebroeck, Bart

    2008-06-17

    The p110 isoforms of phosphoinositide 3-kinase (PI3K) are acutely regulated by extracellular stimuli. The class IA PI3K catalytic subunits (p110alpha, p110beta, and p110delta) occur in complex with a Src homology 2 (SH2) domain-containing p85 regulatory subunit, which has been shown to link p110alpha and p110delta to Tyr kinase signaling pathways. The p84/p101 regulatory subunits of the p110gamma class IB PI3K lack SH2 domains and instead couple p110gamma to G protein-coupled receptors (GPCRs). Here, we show, using small-molecule inhibitors with selectivity for p110beta and cells derived from a p110beta-deficient mouse line, that p110beta is not a major effector of Tyr kinase signaling but couples to GPCRs. In macrophages, both p110beta and p110gamma contributed to Akt activation induced by the GPCR agonist complement 5a, but not by the Tyr kinase ligand colony-stimulating factor-1. In fibroblasts, which express p110beta but not p110gamma, p110beta mediated Akt activation by the GPCR ligands stromal cell-derived factor, sphingosine-1-phosphate, and lysophosphatidic acid but not by the Tyr kinase ligands PDGF, insulin, and insulin-like growth factor 1. Introduction of p110gamma in these cells reduced the contribution of p110beta to GPCR signaling. Taken together, these data show that p110beta and p110gamma can couple redundantly to the same GPCR agonists. p110beta, which shows a much broader tissue distribution than the leukocyte-restricted p110gamma, could thus provide a conduit for GPCR-linked PI3K signaling in the many cell types where p110gamma expression is low or absent.

  14. The p110β isoform of phosphoinositide 3-kinase signals downstream of G protein-coupled receptors and is functionally redundant with p110γ

    PubMed Central

    Guillermet-Guibert, Julie; Bjorklof, Katja; Salpekar, Ashreena; Gonella, Cristiano; Ramadani, Faruk; Bilancio, Antonio; Meek, Stephen; Smith, Andrew J. H.; Okkenhaug, Klaus; Vanhaesebroeck, Bart

    2008-01-01

    The p110 isoforms of phosphoinositide 3-kinase (PI3K) are acutely regulated by extracellular stimuli. The class IA PI3K catalytic subunits (p110α, p110β, and p110δ) occur in complex with a Src homology 2 (SH2) domain-containing p85 regulatory subunit, which has been shown to link p110α and p110δ to Tyr kinase signaling pathways. The p84/p101 regulatory subunits of the p110γ class IB PI3K lack SH2 domains and instead couple p110γ to G protein-coupled receptors (GPCRs). Here, we show, using small-molecule inhibitors with selectivity for p110β and cells derived from a p110β-deficient mouse line, that p110β is not a major effector of Tyr kinase signaling but couples to GPCRs. In macrophages, both p110β and p110γ contributed to Akt activation induced by the GPCR agonist complement 5a, but not by the Tyr kinase ligand colony-stimulating factor-1. In fibroblasts, which express p110β but not p110γ, p110β mediated Akt activation by the GPCR ligands stromal cell-derived factor, sphingosine-1-phosphate, and lysophosphatidic acid but not by the Tyr kinase ligands PDGF, insulin, and insulin-like growth factor 1. Introduction of p110γ in these cells reduced the contribution of p110β to GPCR signaling. Taken together, these data show that p110β and p110γ can couple redundantly to the same GPCR agonists. p110β, which shows a much broader tissue distribution than the leukocyte-restricted p110γ, could thus provide a conduit for GPCR-linked PI3K signaling in the many cell types where p110γ expression is low or absent. PMID:18544649

  15. Modulation of Pathogenic B Cells through Inhibition of Phosphatidylinositol 3-Kinases

    DTIC Science & Technology

    2016-03-01

    of the antibodies bound to the proteins can lodge in the kidneys resulting in damage to the filtering capacity of the kidney . The disease is most...such as nuclear proteins and DNA. These antibodies can cause additional pathologic changes because immune complexes lodge in the kidney which...secreting B cells in a mouse model for lupus, which results in less kidney damage and increased lifespan. 2. KEYWORDS: Lupus, PI3K, B cell, signal

  16. Regulation of the PI3K pathway through a p85α monomer–homodimer equilibrium | Office of Cancer Genomics

    Cancer.gov

    The canonical action of the p85α regulatory subunit of phosphatidylinositol 3-kinase (PI3K) is to associate with the p110α catalytic subunit to allow stimuli-dependent activation of the PI3K pathway. We elucidate a p110α-independent role of homodimerized p85α in the positive regulation of PTEN stability and activity.

  17. Phosphoproteomics links glycogen synthase kinase-3 to RNA splicing.

    PubMed

    Khoa, Le Tran Phuc; Dou, Yali

    2017-11-03

    Protein kinases play essential biological roles by phosphorylating a diverse range of signaling molecules, but deciphering their direct physiological targets remains a challenge. A new study by Shinde et al. uses phosphoproteomics to identify glycogen synthase kinase-3 (GSK-3) substrates in mouse embryonic stem cells (mESCs), providing a broad profile of GSK-3 activity and defining a new role for this central kinase in regulating RNA splicing. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. o,p'-DDT induces cyclooxygenase-2 gene expression in murine macrophages: Role of AP-1 and CRE promoter elements and PI3-kinase/Akt/MAPK signaling pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Eun Hee; Kim, Ji Young; Kim, Hyung-Kyun

    Dichlorodiphenyltrichloroethane (DDT) has been used as an insecticide to prevent the devastation of malaria in tropical zones. However, many reports suggest that DDT may act as an endocrine disruptor and may have possible carcinogenic effects. Cyclooxygenase-2 (COX-2) acts as a link between inflammation and carcinogenesis through its involvement in tumor promotion. In the present study, we examined the effect of o,p'-DDT on COX-2 gene expression and analyzed the molecular mechanism of its activity in murine RAW 264.7 macrophages. Exposure to o,p'-DDT markedly enhanced the production of prostaglandin E{sub 2} (PGE{sub 2}), a major COX-2 metabolite, in murine macrophages. Furthermore, o,p'-DDTmore » dose-dependently increased the levels of COX-2 protein and mRNA. Transfection with human COX-2 promoter construct, electrophoretic mobility shift assays and DNA-affinity protein-binding assay experiments revealed that o,p'-DDT activated the activator protein 1 (AP-1) and cyclic AMP response element (CRE) sites, but not the NF-{kappa}B site. Phosphatidylinositol 3 (PI3)-kinase, its downstream signaling molecule, Akt, and mitogen-activated protein kinases (MAPK) were also significantly activated by the o,p'-DDT-induced AP-1 and CRE activation. These results demonstrate that o,p'-DDT induced COX-2 expression via AP-1 and CRE activation through the PI3-K/Akt/ERK, JNK, and p38 MAP kinase pathways. These findings provide further insight into the signal transduction pathways involved in the carcinogenic effects of o,p'-DDT.« less

  19. Formononetin-induced apoptosis of human prostate cancer cells through ERK1/2 mitogen-activated protein kinase inactivation.

    PubMed

    Ye, Y; Hou, R; Chen, J; Mo, L; Zhang, J; Huang, Y; Mo, Z

    2012-04-01

    Formononetin is a main active component of red clover plants (Trifolium pratense L.), and is considered as a phytoestrogen. Our previous studies demonstrated that formononetin caused cell cycle arrest at the G0/G1 phase by inactivating insulin-like growth factor 1(IGF1)/IGF1R-phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway in MCF-7 cells. In the present study, we investigated the molecular mechanisms involved in the effect of formononetin on prostate cancer cells. Our results suggested that higher concentrations of formononetin inhibited the proliferation of prostate cancer cells (LNCaP and PC-3), while the most striking effect was observed in LNCaP cells. We further found that formononetin inactivated extracellular signal-regulated kinase1/2 (ERK1/2) mitogen-activated protein kinase (MAPK) signaling pathway in a dose-dependent manner, which resulted in increased the expression levels of BCL2-associated X (Bax) mRNA and protein, and induced apoptosis in LNCaP cells. Thus, we concluded that the induced apoptosis effect of formononetin on human prostate cancer cells was related to ERK1/2 MAPK-Bax pathway. Considering that red clover plants were widely used clinically, our results provided the foundation for future development of different concentrations formononetin for treatment of prostate cancer. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Phosphatidylinositol 3-Kinase and Protein Kinase C as Molecular Determinants of Chemoresistance in Breast Cancer

    DTIC Science & Technology

    2004-07-01

    medium (Cambrex, San Diego, CA) supplemented with bovine pituitary extract . cancer contained approximately one-half the level of cer- 3-[4,5...rill et al., 1988) as modified by Yoon et al. (1999) was used. Lipid Cytochrome c Release. Cells (4 X 106) were harvested with 0.5% extract aliquots... extracted in chloroform, and the organic phase was dried under a nitrogen z 80- stream. The lipids contained in the organic phase extract were re- 70

  1. Infarct-remodeled myocardium is receptive to protection by isoflurane postconditioning: role of protein kinase B/Akt signaling.

    PubMed

    Feng, Jianhua; Fischer, Gregor; Lucchinetti, Eliana; Zhu, Min; Bestmann, Lukas; Jegger, David; Arras, Margarete; Pasch, Thomas; Perriard, Jean-Claude; Schaub, Marcus C; Zaugg, Michael

    2006-05-01

    Postinfarct remodeled myocardium exhibits numerous structural and biochemical alterations. So far, it is unknown whether postconditioning elicited by volatile anesthetics can also provide protection in the remodeled myocardium. Myocardial infarct was induced in male Wistar rats by ligation of the left anterior descending coronary artery. Six weeks later, hearts were buffer-perfused and exposed to 40 min of ischemia followed by 90 min of reperfusion. Anesthetic postconditioning was induced by 15 min of 2.1 vol% isoflurane. In some experiments, LY294002 (15 microM), a phosphatidylinositol 3-kinase inhibitor, was coadministered with isoflurane. Masson's trichrome staining, immunohistochemistry, Western blot analysis, and reverse-transcription polymerase chain reaction served to confirm remodeling. In buffer-perfused hearts, functional recovery was recorded, and acute infarct size was measured using 1% triphenyltetrazolium chloride staining and lactate dehydrogenase release during reperfusion. Western blot analysis was used to determine phosphorylation of reperfusion injury salvage kinases including protein kinase B/Akt and its downstream targets after 15 min of reperfusion. Infarct hearts exhibited typical macroscopic and molecular changes of remodeling. Isoflurane postconditioning improved functional recovery and decreased acute infarct size, as determined by triphenyltetrazolium (35 +/- 5% in unprotected hearts vs. 8 +/- 3% in anesthetic postconditioning; P < 0.05) and lactate dehydrogenase release. This protection was abolished by LY294002, which inhibited phosphorylation of protein kinase B/Akt and its downstream targets glycogen synthase kinase 3beta, endothelial nitric oxide synthase, and p70S6 kinase. Infarct-remodeled myocardium is receptive to protection by isoflurane postconditioning via protein kinase B/Akt signaling. This is the first time to demonstrate that anesthetic postconditioning retains its marked protection in diseased myocardium.

  2. Role of phosphoinositide 3-kinase regulatory isoforms in development and actin rearrangement.

    PubMed

    Brachmann, Saskia M; Yballe, Claudine M; Innocenti, Metello; Deane, Jonathan A; Fruman, David A; Thomas, Sheila M; Cantley, Lewis C

    2005-04-01

    Class Ia phosphoinositide 3-kinases (PI3Ks) are heterodimers of p110 catalytic and p85 regulatory subunits that mediate a variety of cellular responses to growth and differentiation factors. Although embryonic development is not impaired in mice lacking all isoforms of the p85alpha gene (p85alpha-/- p55alpha-/- p50alpha-/-) or in mice lacking the p85beta gene (p85beta-/-) (D. A. Fruman, F. Mauvais-Jarvis, D. A. Pollard, C. M. Yballe, D. Brazil, R. T. Bronson, C. R. Kahn, and L. C. Cantley, Nat Genet. 26:379-382, 2000; K. Ueki, C. M. Yballe, S. M. Brachmann, D. Vicent, J. M. Watt, C. R. Kahn, and L. C. Cantley, Proc. Natl. Acad. Sci. USA 99:419-424, 2002), we show here that loss of both genes results in lethality at embryonic day 12.5 (E12.5). The phenotypes of these embryos, including subepidermal blebs flanking the neural tube at E8 and bleeding into the blebs during the turning process, are similar to defects observed in platelet-derived growth factor receptor alpha null (PDGFRalpha-/-) mice (P. Soriano, Development 124:2691-2700, 1997), suggesting that PI3K is an essential mediator of PDGFRalpha signaling at this developmental stage. p85alpha-/- p55alpha+/+ p50alpha+/+ p85beta-/- mice had similar but less severe defects, indicating that p85alpha and p85beta have a critical and redundant function in development. Mouse embryo fibroblasts deficient in all p85alpha and p85beta gene products (p85alpha-/- p55alpha-/- p50alpha-/- p85beta-/-) are defective in PDGF-induced membrane ruffling. Overexpression of the Rac-specific GDP-GTP exchange factor Vav2 or reintroduction of p85alpha or p85beta rescues the membrane ruffling defect. Surprisingly, reintroduction of p50alpha also restored PDGF-dependent membrane ruffling. These results indicate that class Ia PI3K is critical for PDGF-dependent actin rearrangement but that the SH3 domain and the Rho/Rac/Cdc42-interacting domain of p85, which lacks p50alpha, are not required for this response.

  3. Dysregulation of the IGF-I/PI3K/AKT/mTOR signaling pathway in autism spectrum disorders.

    PubMed

    Chen, Jianling; Alberts, Ian; Li, Xiaohong

    2014-06-01

    The IGF-I/PI3K/AKT/mTOR signaling pathway plays an important role in the regulation of cell growth, proliferation, differentiation, motility, survival, metabolism and protein synthesis. Insulin-like growth factor-I (IGF-I) is synthesized in the liver and fibroblasts, and its biological actions are mediated by the IGF-I receptor (IGF-IR). The binding of IGF-I to IGF-IR leads to the activation of phosphatidylinositol 3-kinase (PI3K). Activated PI3K stimulates the production of phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] and phosphatidylinositol (3,4,5)-trisphosphate [PI(3,4,5)P3]. The PH domain of AKT (protein kinase B, PKB) (v-AKT murine thymoma viral oncogene homolog) binds to PI(4,5)P2 and PI(3,4,5)P3, followed by phosphorylation of the Thr308 and Ser473 regulatory sites. Tuberous sclerosis complex 1 (TSC1) and TSC2 are upstream regulators of mammalian target of rapamycin (mTOR) and downstream effectors of the PI3K/AKT signaling pathway. The activation of AKT suppresses the TSC1/TSC2 heterodimer, which is an upstream regulator of mTOR. Dysregulated IGF-I/PI3K/AKT/mTOR signaling has been shown to be associated with autism spectrum disorders (ASDs). In this review, we discuss the emerging evidence for a functional relationship between the IGF-I/PI3K/AKT/mTOR pathway and ASDs, as well as a possible role of this signaling pathway in the diagnosis and treatment of ASDs. Copyright © 2014 ISDN. Published by Elsevier Ltd. All rights reserved.

  4. LaRC(TM)-IA Copolyimides

    NASA Technical Reports Server (NTRS)

    St. Clair, Terry L.; Chang, Alice C.

    1995-01-01

    Copolyimides modified versions of LaRC(TM)-IA thermoplastic polyimide formulated by incorporating moieties of 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA) and, alternatively, isophthaloyldiphthalic anhydride (IDPA) into LaRC(TM)-IA polymer backbones. Exhibit higher glass-transition temperatures and retain greater fractions of lower-temperature shear moduli at higher temperatures. Copolyimides spun into fibers or used as adhesives, molding powders, or matrix resins in many applications, especially in fabrication of strong, lightweight structural components of aircraft.

  5. Phospholipid composition and a polybasic motif determine D6 PROTEIN KINASE polar association with the plasma membrane and tropic responses.

    PubMed

    Barbosa, Inês C R; Shikata, Hiromasa; Zourelidou, Melina; Heilmann, Mareike; Heilmann, Ingo; Schwechheimer, Claus

    2016-12-15

    Polar transport of the phytohormone auxin through PIN-FORMED (PIN) auxin efflux carriers is essential for the spatiotemporal control of plant development. The Arabidopsis thaliana serine/threonine kinase D6 PROTEIN KINASE (D6PK) is polarly localized at the plasma membrane of many cells where it colocalizes with PINs and activates PIN-mediated auxin efflux. Here, we show that the association of D6PK with the basal plasma membrane and PINs is dependent on the phospholipid composition of the plasma membrane as well as on the phosphatidylinositol phosphate 5-kinases PIP5K1 and PIP5K2 in epidermis cells of the primary root. We further show that D6PK directly binds polyacidic phospholipids through a polybasic lysine-rich motif in the middle domain of the kinase. The lysine-rich motif is required for proper PIN3 phosphorylation and for auxin transport-dependent tropic growth. Polybasic motifs are also present at a conserved position in other D6PK-related kinases and required for membrane and phospholipid binding. Thus, phospholipid-dependent recruitment to membranes through polybasic motifs might not only be required for D6PK-mediated auxin transport but also other processes regulated by these, as yet, functionally uncharacterized kinases. © 2016. Published by The Company of Biologists Ltd.

  6. Identification of EhTIF-IA: The putative E. histolytica orthologue of the human ribosomal RNA transcription initiation factor-IA.

    PubMed

    Srivastava, Ankita; Bhattacharya, Alok; Bhattacharya, Sudha; Jhingan, Gagan Deep

    2016-03-01

    Initiation of rDNA transcription requires the assembly of a specific multi-protein complex at the rDNA promoter containing the RNA Pol I with auxiliary factors. One of these factors is known as Rrn3P in yeast and Transcription Initiation Factor IA (TIF-IA) in mammals. Rrn3p/TIF-IA serves as a bridge between RNA Pol I and the pre-initiation complex at the promoter. It is phosphorylated at multiple sites and is involved in regulation of rDNA transcription in a growth-dependent manner. In the early branching parasitic protist Entamoeba histolytica, the rRNA genes are present exclusively on circular extra chromosomal plasmids. The protein factors involved in regulation of rDNA transcription in E. histolytica are not known. We have identified the E. histolytica equivalent of TIF-1A (EhTIF-IA) by homology search within the database and was further cloned and expressed. Immuno-localization studies showed that EhTIF-IA co-localized partially with fibrillarin in the peripherally localized nucleolus. EhTIF-IA was shown to interact with the RNA Pol I-specific subunit RPA12 both in vivo and in vitro. Mass spectroscopy data identified RNA Pol I-specific subunits and other nucleolar proteins to be the interacting partners of EhTIF-IA. Our study demonstrates for the first time a conserved putative RNA Pol I transcription factor TIF-IA in E. histolytica.

  7. Prediction of striatal D2 receptor binding by DRD2/ANKK1 TaqIA allele status

    PubMed Central

    Eisenstein, Sarah A.; Bogdan, Ryan; Love-Gregory, Latisha; Corral-Frías, Nadia S.; Koller, Jonathan M.; Black, Kevin J.; Moerlein, Stephen M.; Perlmutter, Joel S.; Barch, Deanna M.; Hershey, Tamara

    2016-01-01

    In humans, the A1 (T) allele of the dopamine (DA) D2 receptor/ankyrin repeat and kinase domain containing 1 (DRD2/ANKK1) TaqIA (rs1800497) single nucleotide polymorphism has been associated with reduced striatal DA D2/D3 receptor (D2/D3R) availability. However, radioligands used to estimate D2/D3R are displaceable by endogenous DA and are non-selective for D2R, leaving the relationship between TaqIA genotype and D2R specific binding uncertain. Using the positron emission tomography (PET) radioligand, (N‐[11C]methyl)benperidol ([11C]NMB), which is highly selective for D2R over D3R and is not displaceable by endogenous DA, the current study examined whether DRD2/ANKK1 TaqIA genotype predicts D2R specific binding in 2 independent samples. Sample 1 (n = 39) was composed of obese and non-obese adults; sample 2 (n = 18) was composed of healthy controls, unmedicated individuals with schizophrenia, and siblings of individuals with schizophrenia. Across both samples, A1 allele carriers (A1+) had 5-12% less striatal D2R specific binding relative to individuals homozygous for the A2 allele (A1−), regardless of body mass index or diagnostic group. This reduction is comparable to previous PET studies of D2/D3R availability (10-14%). The pooled effect size for the difference in total striatal D2R binding between A1+ and A1− was large (0.84). In summary, in line with studies using displaceable D2/D3R radioligands, our results indicate that DRD2/ANKK1 TaqIA allele status predicts striatal D2R specific binding as measured by D2R-selective [11C]NMB. These findings support the hypothesis that DRD2/ANKK1 TaqIA allele status may modify D2R, perhaps conferring risk for certain disease states. GRAPHICAL ABSTRACT We investigated the difference in striatal dopamine D2 receptor binding, as measured by PET with (N-[11C]methyl)benperidol ([11C]NMB), between A1 allele carriers (A1+) and individuals homozygous for the A2 allele (A1−) of the DRD2/ANKK1 TaqIA single nucleotide

  8. Nuclear glycogen and glycogen synthase kinase 3.

    PubMed

    Ragano-Caracciolo, M; Berlin, W K; Miller, M W; Hanover, J A

    1998-08-19

    Glycogen is the principal storage form of glucose in animal cells. It accumulates in electron-dense cytoplasmic granules and is synthesized by glycogen synthase (GS), the rate-limiting enzyme of glycogen deposition. Glycogen synthase kinase-3 (GSK-3) is a protein kinase that phosphorylates GS. Two nearly identical forms of GSK-3 exist: GSK-3 alpha and GSK-3 beta. Both are constitutively active in resting cells and their activity can be modulated by hormones and growth factors. GSK-3 is implicated in the regulation of many physiological responses in mammalian cells by phosphorylating substrates including neuronal cell adhesion molecule, neurofilaments, synapsin I, and tau. Recent observations point to functions for glycogen and glycogen metabolism in the nucleus. GSK-3 phosphorylates several transcription factors, and we have recently shown that it modifies the major nuclear pore protein p62. It also regulates PK1, a protein kinase required for maintaining the interphase state and for DNA replication in cycling Xenopus egg extracts. Recently, glycogen was shown to be required for nuclear reformation in vitro using ovulated Xenopus laevis egg lysates. Because neither glycogen nor GSK-3 has been localized to the nuclear envelope or intranuclear sites, glycogen and GSK-3 activites were measured in rat liver nuclei and nuclear reformation extracts. Significant quantities of glycogen-like material co-purified with the rat-liver nuclear envelope. GSK-3 is also highly enriched in the glycogen pellet of egg extracts of Xenopus that is required for nuclear assembly in vitro. Based on the finding that enzymes of glycogen metabolism copurify with glycogen, we propose that glycogen may serve a structural role as a scaffold for nuclear assembly and sequestration of critical kinases and phosphatases in the nucleus. Copyright 1998 Academic Press.

  9. ChIA-PET2: a versatile and flexible pipeline for ChIA-PET data analysis

    PubMed Central

    Li, Guipeng; Chen, Yang; Snyder, Michael P.; Zhang, Michael Q.

    2017-01-01

    ChIA-PET2 is a versatile and flexible pipeline for analyzing different types of ChIA-PET data from raw sequencing reads to chromatin loops. ChIA-PET2 integrates all steps required for ChIA-PET data analysis, including linker trimming, read alignment, duplicate removal, peak calling and chromatin loop calling. It supports different kinds of ChIA-PET data generated from different ChIA-PET protocols and also provides quality controls for different steps of ChIA-PET analysis. In addition, ChIA-PET2 can use phased genotype data to call allele-specific chromatin interactions. We applied ChIA-PET2 to different ChIA-PET datasets, demonstrating its significantly improved performance as well as its ability to easily process ChIA-PET raw data. ChIA-PET2 is available at https://github.com/GuipengLi/ChIA-PET2. PMID:27625391

  10. The nucleolus as a stress sensor: JNK2 inactivates the transcription factor TIF-IA and down-regulates rRNA synthesis.

    PubMed

    Mayer, Christine; Bierhoff, Holger; Grummt, Ingrid

    2005-04-15

    Cells respond to a variety of extracellular and intracellular forms of stress by down-regulating rRNA synthesis. We have investigated the mechanism underlying stress-dependent inhibition of RNA polymerase I (Pol I) transcription and show that the Pol I-specific transcription factor TIF-IA is inactivated upon stress. Inactivation is due to phosphorylation of TIF-IA by c-Jun N-terminal kinase (JNK) at a single threonine residue (Thr 200). Phosphorylation at Thr 200 impairs the interaction of TIF-IA with Pol I and the TBP-containing factor TIF-IB/SL1, thereby abrogating initiation complex formation. Moreover, TIF-IA is translocated from the nucleolus into the nucleoplasm. Substitution of Thr 200 by valine as well as knock-out of Jnk2 prevent inactivation and translocation of TIF-IA, leading to stress-resistance of Pol I transcription. Our data identify TIF-IA as a downstream target of the JNK pathway and suggest a critical role of JNK2 to protect rRNA synthesis against the harmful consequences of cellular stress.

  11. Modulation of the Fcepsilon receptor I signaling by tyrosine kinase inhibitors: search for therapeutic targets of inflammatory and allergy diseases.

    PubMed

    Lusková, Petra; Dráber, Petr

    2004-01-01

    Mast cells and basophils are major effector cells in the immunoglobulin E (IgE)-dependent allergic reactions as well as in the innate immunity. They are distributed throughout the body and, upon allergen exposure, are stimulated via the high affinity IgE receptor (FcepsilonRI) to release several pro-inflammatory mediators such as leukotrienes, immunoregulatory cytokines and histamine. FcepsilonRI-mediated signaling is initiated by tyrosine phosphorylation of FcepsilonRI subunits by Src family kinase Lyn, which is followed by an activation of Syk/Zap family kinase Syk. The activated kinases then in turn phosphorylate and activate other enzymes [phospholipase Cgamma (PLCgamma) isoforms, phosphatidylinositol-3 kinase (PI3K) isoforms, protein kinase C (PKC) isoforms, Bruton's tyrosine kinase (Btk) and others], adaptors [linker for activation of T cells (LAT), Cbl, Grb2 and others] and GTP exchange factors/GTPases (Vav, Ras, Rho, and others), and subsequently induce the mobilization of stored and extracellular Ca(2+). These and other biochemical events lead within seconds and minutes to the secretory response and later to the production of chemokines. This review is focused on the use of tyrosine kinase inhibitors specific for Src family kinases (PP1/PP2, SU6656 and CT5269), Syk kinase (piceatannol, ER-27319 and BAY 61-3606) and Btk (terreic acid and LFM-A13) for a modulation of FcepsilonRI-mediated signaling in mast cells. Potential use of the inhibitors in the treatment of inflammatory and allergy diseases as well as future directions in the development of highly specific tyrosine kinases inhibitors of new generations and their use in an intended modulation of mast cell signaling are discussed.

  12. Protein Kinase A Opposes the Phosphorylation-dependent Recruitment of Glycogen Synthase Kinase 3β to A-kinase Anchoring Protein 220.

    PubMed

    Whiting, Jennifer L; Nygren, Patrick J; Tunquist, Brian J; Langeberg, Lorene K; Seternes, Ole-Morten; Scott, John D

    2015-08-07

    The proximity of an enzyme to its substrate can influence rate and magnitude of catalysis. A-kinase anchoring protein 220 (AKAP220) is a multivalent anchoring protein that can sequester a variety of signal transduction enzymes. These include protein kinase A (PKA) and glycogen synthase kinase 3β (GSK3β). Using a combination of molecular and cellular approaches we show that GSK3β phosphorylation of Thr-1132 on AKAP220 initiates recruitment of this kinase into the enzyme scaffold. We also find that AKAP220 anchors GSK3β and its substrate β-catenin in membrane ruffles. Interestingly, GSK3β can be released from the multienzyme complex in response to PKA phosphorylation on serine 9, which suppresses GSK3β activity. The signaling scaffold may enhance this regulatory mechanism, as AKAP220 has the capacity to anchor two PKA holoenzymes. Site 1 on AKAP220 (residues 610-623) preferentially interacts with RII, whereas site 2 (residues 1633-1646) exhibits a dual specificity for RI and RII. In vitro affinity measurements revealed that site 2 on AKAP220 binds RII with ∼10-fold higher affinity than site 1. Occupancy of both R subunit binding sites on AKAP220 could provide a mechanism to amplify local cAMP responses and enable cross-talk between PKA and GSK3β. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. [6]-Shogaol inhibits α-MSH-induced melanogenesis through the acceleration of ERK and PI3K/Akt-mediated MITF degradation.

    PubMed

    Huang, Huey-Chun; Chang, Shu-Jen; Wu, Chia-Yin; Ke, Hui-Ju; Chang, Tsong-Min

    2014-01-01

    [6]-Shogaol is the main biologically active component of ginger. Previous reports showed that [6]-shogaol has several pharmacological characteristics, such as antioxidative, anti-inflammatory, antimicrobial, and anticarcinogenic properties. However, the effects of [6]-shogaol on melanogenesis remain to be elucidated. The study aimed to evaluate the potential skin whitening mechanisms of [6]-shogaol. The effects of [6]-shogaol on cell viability, melanin content, tyrosinase activity, and the expression of the tyrosinase and microphthalmia-associated transcription factor (MITF) were measured. The results revealed that [6]-shogaol effectively suppresses tyrosinase activity and the amount of melanin and that those effects are more pronounced than those of arbutin. It was also found that [6]-shogaol decreased the protein expression levels of tyrosinase-related protein 1 (TRP-1) and microphthalmia-associated transcriptional factor (MITF). In addition, the MITF mRNA levels were also effectively decreased in the presence of 20 μM [6]-shogaol. The degradation of MITF protein was inhibited by the MEK 1-inhibitor (U0126) or phosphatidylinositol-3-kinase inhibitor (PI3K inhibitor) (LY294002). Further immunofluorescence staining assay implied the involvement of the proteasome in the downregulation of MITF by [6]-shogaol. Our confocal assay results also confirmed that [6]-shogaol inhibited α-melanocyte stimulating hormone- (α-MSH-) induced melanogenesis through the acceleration of extracellular responsive kinase (ERK) and phosphatidylinositol-3-kinase- (PI3K/Akt-) mediated MITF degradation.

  14. Evidence for glycosyl-phosphatidylinositol anchoring of Toxoplasma gondii major surface antigens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomavo, S.; Schwarz, R.T.; Dubremetz, J.F.

    1989-10-01

    The four major surface antigens of Toxoplasma gondii tachyzoites (P43, P35, P30, and P22) were made water soluble by phosphatidylinositol-specific phospholipase C (PI-PLC). These antigens were biosynthetically labeled with {sup 3}H-fatty acids, ({sup 3}H)ethanolamine, and ({sup 3}H)carbohydrates. Treatment of {sup 3}H-fatty-acid-labeled parasite lysates with PI-PLC removed the radioactive label from these antigens. A cross-reacting determinant was exposed on these antigens after PI-PLC treatment.

  15. Inter-individual variation in reciprocal Ia inhibition is dependent on the descending volleys delivered from corticospinal neurons to Ia interneurons.

    PubMed

    Kubota, Shinji; Uehara, Kazumasa; Morishita, Takuya; Hirano, Masato; Funase, Kozo

    2014-02-01

    We investigated the extent to which the corticospinal inputs delivered to Ia inhibitory interneurons influence the strength of disynaptic reciprocal Ia inhibition. Seventeen healthy subjects participated in this study. The degree of reciprocal Ia inhibition was determined via short-latency (condition-test interval: 1-3ms) suppression of Sol H-reflex by conditioning stimulation of common peroneal nerve. The effect of corticospinal descending inputs on Ia inhibitory interneurons was assessed by evaluating the conditioning effect of transcranial magnetic stimulation (TMS) on the Sol H-reflex. Then, we determined the relationship between the degree of reciprocal Ia inhibition and the conditioning effect of TMS on the Sol H-reflex. We found that the degree of reciprocal Ia inhibition and the extent of change in the amplitude of the TMS-conditioned H-reflex, which was measured from short latency facilitation to inhibition, displayed a strong correlation (r=0.76, p<0.01) in the resting conditions. The extent of reciprocal Ia inhibition is affected by the corticospinal descending inputs delivered to Ia inhibitory interneurons, which might explain the inter-individual variations in reciprocal Ia inhibition. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Rho/Rho kinase and phosphoinositide 3-kinase are parallel pathways in the development of spontaneous arterial tone in deoxycorticosterone acetate-salt hypertension.

    PubMed

    Wehrwein, Erica A; Northcott, Carrie A; Loberg, Robert D; Watts, Stephanie W

    2004-06-01

    Hypertension is characterized by abnormal vascular contractility and function. Arteries from deoxycorticosterone acetate (DOCA)-salt hypertensive rats develop spontaneous tone that is not observed in arteries from normotensive rats. Inhibition of phosphoinositide 3-kinase (PI3-kinase) by 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002) reduces spontaneous tone development. The Rho/Rho-kinase pathway has been suggested to play a role in hypertension and may be dependent on PI3-kinase activity. We hypothesized that Rhokinase is involved in spontaneous tone development and that Rho/Rho-kinase is a downstream effector of PI3-kinase. Using endothelium-denuded aortic strips in isolated tissue bath, we demonstrated that (+)-(R)-trans-4-(1-aminoethyl)-N-(4-pyridyl) (Y27632) (1 microM), a Rho-kinase inhibitor, significantly reduced spontaneous tone in the DOCA aorta but that it did not affect sham aorta basal tone (DOCA 63.5 +/- 15.9 versus sham 1.2 +/- 0.4 total change in percentage of phenylephrine contraction). We examined the interaction between the PI3-kinase and Rho pathways by observing the effects of LY294002 on a Rhokinase effector, myosin phosphatase (MYPT), and Y27632 on a PI3-kinase effector, Akt, using Western blot analysis. Inhibition of PI3-kinase reduced spontaneous tone, but it had no effect on the phosphorylation status of MYPT, indicating that PI3-kinase is not a downstream effector of Rho/Rho-kinase. These data indicate that there is little interaction between the Rho/Rhokinase and PI3-kinase pathways in the DOCA-salt aorta, and the two pathways seem to operate in parallel in supporting spontaneous arterial tone. These data reflect spontaneous tone only and do not rule out the possibility of interaction between these pathways in agonist-stimulated tone.

  17. Integrated Avionics System (IAS), Integrating 3-D Technology On A Spacecraft Panel

    NASA Technical Reports Server (NTRS)

    Hunter, Don J.; Halpert, Gerald

    1999-01-01

    As spacecraft designs converge toward miniaturization, and with the volumetric and mass challenges placed on avionics, programs will continue to advance the "state of the art" in spacecraft system development with new challenges to reduce power, mass and volume. Traditionally, the trend is to focus on high-density 3-D packaging technologies. Industry has made significant progress in 3-D technologies, and other related internal and external interconnection schemes. Although new technologies have improved packaging densities, a system packaging architecture is required that not only reduces spacecraft volume and mass budgets, but increase integration efficiencies, provide modularity and flexibility to accommodate multiple missions while maintaining a low recurring cost. With these challenges in mind, a novel system packaging approach incorporates solutions that provide broader environmental applications, more flexible system interconnectivity, scalability, and simplified assembly test and integration schemes. The Integrated Avionics System (IAS) provides for a low-mass, modular distributed or centralized packaging architecture which combines ridged-flex technologies, high-density COTS hardware and a new 3-D mechanical packaging approach, Horizontal Mounted Cube (HMC). This paper will describe the fundamental elements of the IAS, HMC hardware design, system integration and environmental test results.

  18. Requirement and Redundancy of the Src Family Kinases Fyn and Lyn in Perforin-Dependent Killing of Cryptococcus neoformans by NK Cells

    PubMed Central

    Oykhman, Paul; Timm-McCann, Martina; Xiang, Richard F.; Islam, Anowara; Li, Shu Shun; Stack, Danuta; Huston, Shaunna M.; Ma, Ling Ling

    2013-01-01

    Natural killer (NK) cells directly recognize and kill fungi, such as the pathogenic fungus Cryptococcus neoformans, via cytolytic mechanisms. However, the precise signaling pathways governing this NK cell microbicidal activity and the implications for fungal recognition are still unknown. Previously, it was reported that NK cell anticryptococcal activity is mediated through a conserved phosphatidylinositol 3-kinase–extracellular signal-regulated kinase 1/2 (PI3K-ERK1/2) pathway. Using YT (a human NK-like cell line) and primary human NK cells, we sought to identify the upstream, receptor-proximal signaling elements that led to fungal cytolysis. We demonstrate that Src family kinases were activated in response to C. neoformans. Furthermore, pharmacologic inhibition with an Src kinase inhibitor blocked C. neoformans-induced downstream activation of PI3K and ERK1/2 and abrogated cryptococcal killing. At the same time, the inhibitor disrupted the polarization of perforin-containing granules toward the NK cell-cryptococcal synapse but had no effect on conjugate formation between the organism and the NK cell. Finally, small interfering RNA (siRNA) double (but not single) knockdown of two Src family kinases, Fyn and Lyn, blocked cryptococcal killing. Together these data demonstrate a mechanism whereby the Src family kinases, Fyn and Lyn, redundantly mediate anticryptococcal activity through the activation of PI3K and ERK1/2, which in turn facilitates killing by inducing the polarization of perforin-containing granules to the NK cell-cryptococcal synapse. PMID:23918783

  19. Jaceosidin, a natural flavone, promotes angiogenesis via activation of VEGFR2/FAK/PI3K/AKT/NF-κB signaling pathways in endothelial cells.

    PubMed

    Lee, Tae Hoon; Jung, Hana; Park, Keun Hyung; Bang, Myun Ho; Baek, Nam-In; Kim, Jiyoung

    2014-10-01

    Angiogenesis, the growth of new blood vessels from pre-existing vasculature, plays an important role in physiological and pathological processes such as embryonic development wound healing and revascularization of tissues after exposure to ischemia. We investigated the effects of jaceosidin, a main constituent of medicinal herbs of the genus Artemisia, on angiogenesis and signaling pathways in endothelial cells. Jaceosidin stimulated proliferation, migration and tubulogenesis of ECs as well as ex vivo sprouting from aorta rings, which are phenomena typical of angiogenesis. Jaceosidin activated vascular endothelial growth factor receptor 2 (VEGFR2, FLk-1/KDR) and angiogenic signaling molecules such as focal adhesion kinase, phosphatidylinositol 3-kinase, and its downstream target, the serine-threonine kinase AKTWe also demonstrated that jaceosidin activated the NF-κB-driven expression of a luciferase reporter gene and NF-κB binding to DNA. Jaceosidin-induced proliferation and migration of human umbilical vascular endothelial cells were strongly inhibited by the phosphatidylinositol 3-kinase inhibitor LY294002 and NF-κB inhibitor BAY11-7082, indicating that the PI3K/AKT/NF-κB signaling pathway is involved in jaceosidin-induced angiogenesis. Our results suggest that jaceosidin stimulates angiogenesis by activating the VEGFR2/FAK/PI3K/AKT/NF-κB signaling pathway and that it may be useful in developing angiogenic agents to promote the growth of collateral blood vessels in ischemic tissues. © 2014 by the Society for Experimental Biology and Medicine.

  20. Identification of glycogen synthase kinase-3 inhibitors with a selective sting for glycogen synthase kinase-3α.

    PubMed

    Lo Monte, Fabio; Kramer, Thomas; Gu, Jiamin; Anumala, Upendra Rao; Marinelli, Luciana; La Pietra, Valeria; Novellino, Ettore; Franco, Bénédicte; Demedts, David; Van Leuven, Fred; Fuertes, Ana; Dominguez, Juan Manuel; Plotkin, Batya; Eldar-Finkelman, Hagit; Schmidt, Boris

    2012-05-10

    The glycogen synthase kinase-3 (GSK-3) has been linked to the pathogenesis of colorectal cancer, diabetes, cardiovascular disease, acute myeloid leukemia (AML), and Alzheimer's disease (AD). The debate on the respective contributions of GSK-3α and GSK-3β to AD pathology and AML is ongoing. Thus, the identification of potent GSK-3α-selective inhibitors, endowed with favorable pharmacokinetic properties, may elucidate the effect of GSK-3α inhibition in AD and AML models. The analysis of all available crystallized GSK-3 structures provided a simplified scheme of the relevant hot spots responsible for ligand binding and potency. This resulted in the identification of novel scorpion shaped GSK-3 inhibitors. It is noteworthy, compounds 14d and 15b showed the highest GSK-3α selectivity reported so far. In addition, compound 14d did not display significant inhibition of 48 out of 50 kinases in the test panel. The GSK-3 inhibitors were further profiled for efficacy and toxicity in the wild-type (wt) zebrafish embryo assay.

  1. Mutant JAK3 phosphoproteomic profiling predicts synergism between JAK3 inhibitors and MEK/BCL2 inhibitors for the treatment of T-cell acute lymphoblastic leukemia

    PubMed Central

    Degryse, S; de Bock, C E; Demeyer, S; Govaerts, I; Bornschein, S; Verbeke, D; Jacobs, K; Binos, S; Skerrett-Byrne, D A; Murray, H C; Verrills, N M; Van Vlierberghe, P; Cools, J; Dun, M D

    2018-01-01

    Mutations in the interleukin-7 receptor (IL7R) or the Janus kinase 3 (JAK3) kinase occur frequently in T-cell acute lymphoblastic leukemia (T-ALL) and both are able to drive cellular transformation and the development of T-ALL in mouse models. However, the signal transduction pathways downstream of JAK3 mutations remain poorly characterized. Here we describe the phosphoproteome downstream of the JAK3(L857Q)/(M511I) activating mutations in transformed Ba/F3 lymphocyte cells. Signaling pathways regulated by JAK3 mutants were assessed following acute inhibition of JAK1/JAK3 using the JAK kinase inhibitors ruxolitinib or tofacitinib. Comprehensive network interrogation using the phosphoproteomic signatures identified significant changes in pathways regulating cell cycle, translation initiation, mitogen-activated protein kinase and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT signaling, RNA metabolism, as well as epigenetic and apoptotic processes. Key regulatory proteins within pathways that showed altered phosphorylation following JAK inhibition were targeted using selumetinib and trametinib (MEK), buparlisib (PI3K) and ABT-199 (BCL2), and found to be synergistic in combination with JAK kinase inhibitors in primary T-ALL samples harboring JAK3 mutations. These data provide the first detailed molecular characterization of the downstream signaling pathways regulated by JAK3 mutations and provide further understanding into the oncogenic processes regulated by constitutive kinase activation aiding in the development of improved combinatorial treatment regimens. PMID:28852199

  2. A hydroxychalcone derived from cinnamon functions as a mimetic for insulin in 3T3-L1 adipocytes.

    PubMed

    Jarvill-Taylor, K J; Anderson, R A; Graves, D J

    2001-08-01

    These studies investigated the ability of a hydroxychalcone from cinnamon to function as an insulin mimetic in 3T3-LI adipocytes. Comparative experiments were performed with the cinnamon methylhydroxychalcone polymer and insulin with regard to glucose uptake, glycogen synthesis. phosphatidylinositol-3-kinase dependency, glycogen synthase activation and glycogen synthase kinase-3beta activity. The phosphorylation state of the insulin receptor was also investigated. MHCP treatment stimulated glucose uptake and glycogen synthesis to a similar level as insulin. Glycogen synthesis was inhibited by both wortmannin and LY294002, inhibitors directed against the PI-3-kinase. In addition, MHCP treatment activated glycogen synthase and inhibited glycogen synthase kinase-3beta activities, known effects of insulin treatment. Analysis of the insulin receptor demonstrated that the receptor was phosphorylated upon exposure to the MHCP. This supports that the insulin cascade was triggered by MHCP. Along with comparing MHCP to insulin, experiments were done with MHCP and insulin combined. The responses observed using the dual treatment were greater than additive, indicating synergism between the two compounds. Together, these results demonstrate that the MHCP is an effective mimetic of insulin. MHCP may be useful in the treatment of insulin resistance and in the study of the pathways leading to glucose utilization in cells.

  3. Direct modification and regulation of a nuclear receptor-PIP2 complex by the nuclear inositol-lipid kinase IPMK

    PubMed Central

    Blind, Raymond D.; Suzawa, Miyuki; Ingraham, Holly A.

    2012-01-01

    Phosphatidylinositol (4,5)-bisphosphate (PIP2) is best known as a plasma membrane-bound regulatory lipid. While PIP2 and phosphoinositide-modifying enzymes coexist in the nucleus, their roles in the nucleus remain unclear. Here we show that the nuclear inositol polyphosphate multikinase (IPMK), which functions both as an inositol- and a PI3-kinase, interacts with the nuclear receptor SF-1 (NR5A1) and phosphorylates its bound ligand, PIP2. IPMK failed to recognize SF-1/PIP2 after blocking or displacing PIP2 from SF-1’s large hydrophobic pocket. In contrast to IPMK, p110 catalytic subunits of type 1 PI3-kinases were inactive on SF-1/PIP2. These and other in vitro analyses demonstrated specificity of IPMK for the SF-1/PIP2 protein/lipid complex. Once generated, SF-1/PIP3 is readily dephosphorylated by the lipid phosphatase PTEN. Importantly, decreasing IPMK or increasing PTEN expression greatly reduced SF-1 transcriptional activity. This ability of lipid kinases and phosphatases to alter the activity and directly remodel a non-membrane protein/lipid complex such SF-1/PIP2, establishes a new pathway for promoting lipid-mediated signaling in the nucleus. PMID:22715467

  4. Class IA phosphoinositide 3-kinase β and δ regulate neutrophil oxidase activation in response to Aspergillus fumigatus hyphae.

    PubMed

    Boyle, Keith B; Gyori, David; Sindrilaru, Anca; Scharffetter-Kochanek, Karin; Taylor, Philip R; Mócsai, Attila; Stephens, Len R; Hawkins, Phillip T

    2011-03-01

    An effective immune response to the ubiquitous fungus Aspergillus fumigatus is dependent upon production of reactive oxygen species (ROS) by the NADPH oxidase. This is evidenced by the acute sensitivity of oxidase-deficient humans and mice to invasive aspergillosis. Neutrophils are recruited to the lungs shortly postinfection and respond by phagocytosing conidia and mediating extracellular killing of germinated hyphae in a ROS-dependent manner. However, the signaling mechanisms regulating the generation of ROS in response to hyphae are poorly understood. PI3Ks are important regulators of numerous cellular processes, with much recent work describing unique roles for the different class I PI3K isoforms. We showed by live-cell imaging that the lipid products of class I PI3Ks accumulated at the hyphal-bound neutrophil plasma membrane. Further, we used pharmacological and genetic approaches to demonstrate essential, but overlapping, roles for PI3Kβ and PI3Kδ in the ROS and spreading responses of murine neutrophils to Aspergillus hyphae. Hyphal-induced ROS responses were substantially inhibited by deletion of the common β2-integrin subunit CD18, with only a minor, redundant role for Dectin-1. However, addition of soluble algal glucans plus the genetic deletion of CD18 were required to significantly inhibit activation of the PI3K-effector protein kinase B. Hyphal ROS responses were also totally dependent on the presence of Syk, but not its ITAM-containing adaptor proteins FcRγ or DAP12, and the Vav family of Rac-guanine nucleotide exchange factors. These results start to define the signaling network controlling neutrophil ROS responses to A. fumigatus hyphae.

  5. Yak IGF2 Promotes Fibroblast Proliferation Via Suppression of IGF1R and PI3KCG Expression

    PubMed Central

    Wang, Qi; Gong, Jishang; Du, Jiaxing; Zhang, Yong; Zhao, Xingxu

    2018-01-01

    Insulin-like growth factor 2 (IGF2) recapitulates many of the activities of insulin and promotes differentiation of myoblasts and osteoblasts, which likely contribute to genetic variations of growth potential. However, little is known about the functions and signaling properties of IGF2 variants in yaks. The over-expression vector and knockdown sequence of yak IGF2 were transfected into yak fibroblasts, and the effects were detected by a series of assays. IGF2 expression in yak muscle tissues was significantly lower than that of other tissues. In yak fibroblasts, the up-regulated expression of IGF2 inhibits expression of IGF1 and insulin-like growth factor 2 receptor (IGF2R) and significantly up-regulates expression of IGF1R. Inhibition of IGF2 expression caused the up-regulates expression of IGF1, IGF1R and IGF2R. Both over-expression and knockdown of IGF2 resulted in up-regulation of threonine protein kinase 1 (Akt1) expression and down-regulation of phosphatidylinositol 3-kinase, catalytic subunit gamma (PIK3CG). Cell cycle and cell proliferation assays revealed that over-expression of IGF2 enhanced the DNA synthesis phase and promoted yak fibroblasts proliferation. Conversely, knockdown of IGF2 decreased DNA synthesis and inhibited proliferation. These results suggested that IGF2 was negatively correlated with IGF1R and PIK3CG and demonstrated an association with the IGFs-PI3K-Akt (IGFs-phosphatidylinositol 3-kinase- threonine protein kinase) pathway in cell proliferation and provided evidence supporting the functional role of IGF2 for use in improving the production performance of yaks. PMID:29558395

  6. Positive Feedback between Transcriptional and Kinase Suppression in Nematodes with Extraordinary Longevity and Stress Resistance

    PubMed Central

    Bharill, Puneet; Shmookler Reis, Robert J.

    2009-01-01

    Insulin/IGF-1 signaling (IIS) regulates development and metabolism, and modulates aging, of Caenorhabditis elegans. In nematodes, as in mammals, IIS is understood to operate through a kinase-phosphorylation cascade that inactivates the DAF-16/FOXO transcription factor. Situated at the center of this pathway, phosphatidylinositol 3-kinase (PI3K) phosphorylates PIP2 to form PIP3, a phospholipid required for membrane tethering and activation of many signaling molecules. Nonsense mutants of age-1, the nematode gene encoding the class-I catalytic subunit of PI3K, produce only a truncated protein lacking the kinase domain, and yet confer 10-fold greater longevity on second-generation (F2) homozygotes, and comparable gains in stress resistance. Their F1 parents, like weaker age-1 mutants, are far less robust—implying that maternally contributed trace amounts of PI3K activity or of PIP3 block the extreme age-1 phenotypes. We find that F2-mutant adults have <10% of wild-type kinase activity in vitro and <60% of normal phosphoprotein levels in vivo. Inactivation of PI3K not only disrupts PIP3-dependent kinase signaling, but surprisingly also attenuates transcripts of numerous IIS components, even upstream of PI3K, and those of signaling molecules that cross-talk with IIS. The age-1(mg44) nonsense mutation results, in F2 adults, in changes to kinase profiles and to expression levels of multiple transcripts that distinguish this mutant from F1 age-1 homozygotes, a weaker age-1 mutant, or wild-type adults. Most but not all of those changes are reversed by a second mutation to daf-16, implicating both DAF-16/ FOXO–dependent and –independent mechanisms. RNAi, silencing genes that are downregulated in long-lived worms, improves oxidative-stress resistance of wild-type adults. It is therefore plausible that attenuation of those genes in age-1(mg44)-F2 adults contributes to their exceptional survival. IIS in nematodes (and presumably in other species) thus involves

  7. New Insights into Protein Kinase B/Akt Signaling: Role of Localized Akt Activation and Compartment-Specific Target Proteins for the Cellular Radiation Response.

    PubMed

    Szymonowicz, Klaudia; Oeck, Sebastian; Malewicz, Nathalie M; Jendrossek, Verena

    2018-03-18

    Genetic alterations driving aberrant activation of the survival kinase Protein Kinase B (Akt) are observed with high frequency during malignant transformation and cancer progression. Oncogenic gene mutations coding for the upstream regulators or Akt, e.g., growth factor receptors, RAS and phosphatidylinositol-3-kinase (PI3K), or for one of the three Akt isoforms as well as loss of the tumor suppressor Phosphatase and Tensin Homolog on Chromosome Ten (PTEN) lead to constitutive activation of Akt. By activating Akt, these genetic alterations not only promote growth, proliferation and malignant behavior of cancer cells by phosphorylation of various downstream signaling molecules and signaling nodes but can also contribute to chemo- and radioresistance in many types of tumors. Here we review current knowledge on the mechanisms dictating Akt's activation and target selection including the involvement of miRNAs and with focus on compartmentalization of the signaling network. Moreover, we discuss recent advances in the cross-talk with DNA damage response highlighting nuclear Akt target proteins with potential involvement in the regulation of DNA double strand break repair.

  8. Activation of brain-derived neurotrophic factor/tropomyosin-related kinase B signaling accompanying filial imprinting in domestic chicks (Gallus gallus domesticus).

    PubMed

    Yamaguchi, Shinji; Aoki, Naoya; Kobayashi, Daisuke; Kitajima, Takaaki; Iikubo, Eiji; Katagiri, Sachiko; Matsushima, Toshiya; Homma, Koichi J

    2011-12-07

    Newly hatched domestic chicks serve as an important model for experimental studies of neural and behavioral plasticity. Brain-derived neurotrophic factor (BDNF) has been shown to play a critical role in synaptic plasticity, including long-term potentiation, which underlies learning and memory in rodents. Here we show that BDNF mRNA levels increased in the intermediate medial hyperpallium apicale (IMHA), which is the caudal area of the visual Wulst, of imprinted chick brains, and the upregulation of gene expression correlated with the strength of the learned preference to the training object. In addition, activation of tropomyosin-related kinase B (TrkB)/phosphatidylinositol 3-kinase signaling was associated with filial imprinting. However, pharmacological deprivation of TrkB phosphorylation in IMHA did not impair memory formation, suggesting that activation of BDNF/TrkB signaling in IMHA is not involved in memory acquisition in filial imprinting.

  9. d-myo-Inositol-3-Phosphate Affects Phosphatidylinositol-Mediated Endomembrane Function in Arabidopsis and Is Essential for Auxin-Regulated Embryogenesis[W][OA

    PubMed Central

    Luo, Yu; Qin, Genji; Zhang, Jun; Liang, Yuan; Song, Yingqi; Zhao, Meiping; Tsuge, Tomohiko; Aoyama, Takashi; Liu, Jingjing; Gu, Hongya; Qu, Li-Jia

    2011-01-01

    In animal cells, myo-inositol is an important regulatory molecule in several physiological and biochemical processes, including signal transduction and membrane biogenesis. However, the fundamental biological functions of myo-inositol are still far from clear in plants. Here, we report the genetic characterization of three Arabidopsis thaliana genes encoding d-myo-inositol-3-phosphate synthase (MIPS), which catalyzes the rate-limiting step in de novo synthesis of myo-inositol. Each of the three MIPS genes rescued the yeast ino1 mutant, which is defective in yeast MIPS gene INO1, and they had different dynamic expression patterns during Arabidopsis embryo development. Although single mips mutants showed no obvious phenotypes, the mips1 mips2 double mutant and the mips1 mips2 mips3 triple mutant were embryo lethal, whereas the mips1 mips3 and mips1 mips2+/− double mutants had abnormal embryos. The mips phenotypes resembled those of auxin mutants. Indeed, the double and triple mips mutants displayed abnormal expression patterns of DR5:green fluorescent protein, an auxin-responsive fusion protein, and they had altered PIN1 subcellular localization. Also, membrane trafficking was affected in mips1 mips3. Interestingly, overexpression of PHOSPHATIDYLINOSITOL SYNTHASE2, which converts myo-inositol to membrane phosphatidylinositol (PtdIns), largely rescued the cotyledon and endomembrane defects in mips1 mips3. We conclude that myo-inositol serves as the main substrate for synthesizing PtdIns and phosphatidylinositides, which are essential for endomembrane structure and trafficking and thus for auxin-regulated embryogenesis. PMID:21505066

  10. HER3 expression is enhanced during progression of lung adenocarcinoma without EGFR mutation from stage 0 to IA1.

    PubMed

    Kumagai, Toru; Tomita, Yasuhiko; Nakatsuka, Shin-Ichi; Kimura, Madoka; Kunimasa, Kei; Inoue, Takako; Tamiya, Motohiro; Nishino, Kazumi; Susaki, Yoshiyuki; Kusu, Takashi; Tokunaga, Toshiteru; Okami, Jiro; Higashiyama, Masahiko; Imamura, Fumio

    2018-04-01

    Activating EGFR mutations, HER2, and HER3 are implicated in lung cancer; however, with the exception of EGFR gene amplification in lung adenocarcinoma harboring EGFR mutations, their involvement in disease progression during the early stages is poorly understood. In this paper, we focused on which receptor is correlated with lung adenocarcinoma progression in the presence or absence of EGFR mutation from stage 0 to IA1. HER2 and HER3 expression and activating EGFR mutations in surgically resected lung adenocarcinoma exhibiting ground glass nodules on chest computed tomography and re-classified to stage 0 and IA1 were examined by immunohistochemistry and peptide nucleic acid-locked nucleic acid PCR clamp method, respectively. HER2 and HER3 expression was detected in 22.2% and 86.1% of samples, respectively. The frequency of EGFR mutation was 45.7% and was not significantly different between stage 0 and IA1 (40.0% and 48.0%, respectively), suggesting that EGFR mutation does not correlate with cancer progression from stage 0 to IA1. HER2 expression also did not correlate to progression. However, not only the frequency, but also the intensity of HER3 expression was increased in stage IA1 lung adenocarcinoma, particularly in lung adenocarcinoma without EGFR mutation. HER3 tends to be intensively expressed during the progression of lung adenocarcinoma without EGFR mutation from carcinoma in situ to invasive carcinoma. © 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  11. Glycogen synthase kinase 3β promotes liver innate immune activation by restraining AMP-activated protein kinase activation.

    PubMed

    Zhou, Haoming; Wang, Han; Ni, Ming; Yue, Shi; Xia, Yongxiang; Busuttil, Ronald W; Kupiec-Weglinski, Jerzy W; Lu, Ling; Wang, Xuehao; Zhai, Yuan

    2018-07-01

    Glycogen synthase kinase 3β (Gsk3β [Gsk3b]) is a ubiquitously expressed kinase with distinctive functions in different types of cells. Although its roles in regulating innate immune activation and ischaemia and reperfusion injuries (IRIs) have been well documented, the underlying mechanisms remain ambiguous, in part because of the lack of cell-specific tools in vivo. We created a myeloid-specific Gsk3b knockout (KO) strain to study the function of Gsk3β in macrophages in a murine liver partial warm ischaemia model. Compared with controls, myeloid Gsk3b KO mice were protected from IRI, with diminished proinflammatory but enhanced anti-inflammatory immune responses in livers. In bone marrow-derived macrophages, Gsk3β deficiency resulted in an early reduction of Tnf gene transcription but sustained increase of Il10 gene transcription on Toll-like receptor 4 stimulation in vitro. These effects were associated with enhanced AMP-activated protein kinase (AMPK) activation, which led to an accelerated and higher level of induction of the novel innate immune negative regulator small heterodimer partner (SHP [Nr0b2]). The regulatory function of Gsk3β on AMPK activation and SHP induction was confirmed in wild-type bone marrow-derived macrophages with a Gsk3 inhibitor. Furthermore, we found that this immune regulatory mechanism was independent of Gsk3β Ser9 phosphorylation and the phosphoinositide 3-kinase-Akt signalling pathway. In vivo, myeloid Gsk3β deficiency facilitated SHP upregulation by ischaemia-reperfusion in liver macrophages. Treatment of Gsk3b KO mice with either AMPK inhibitor or SHP small interfering RNA before the onset of liver ischaemia restored liver proinflammatory immune activation and IRI in these otherwise protected hosts. Additionally, pharmacological activation of AMPK protected wild-type mice from liver IRI, with reduced proinflammatory immune activation. Inhibition of the AMPK-SHP pathway by liver ischaemia was demonstrated in tumour resection

  12. Mitogenic signals and transforming potential of Nyk, a newly identified neural cell adhesion molecule-related receptor tyrosine kinase.

    PubMed Central

    Ling, L; Kung, H J

    1995-01-01

    Nyk/Mer is a recently identified receptor tyrosine kinase with neural cell adhesion molecule-like structure (two immunoglobulin G-like domains and two fibronectin III-like domains) in its extracellular region and belongs to the Ufo/Axl family of receptors. The ligand for Nyk/Mer is presently unknown, as are the signal transduction pathways mediated by this receptor. We constructed and expressed a chimeric receptor (Fms-Nyk) composed of the extracellular domain of the human colony-stimulating factor 1 receptor (Fms) and the transmembrane and cytoplasmic domains of human Nyk/Mer in NIH 3T3 fibroblasts in order to investigate the mitogenic signaling and biochemical properties of Nyk/Mer. Colony-stimulating factor 1 stimulation of the Fms-Nyk chimeric receptor in transfected NIH 3T3 fibroblasts leads to a transformed phenotype and generates a proliferative response in the absence of other growth factors. We show that phospholipase C gamma, phosphatidylinositol 3-kinase/p70 S6 kinase, Shc, Grb2, Raf-1, and mitogen-activated protein kinase are downstream components of the Nyk/Mer signal transduction pathways. In addition, Nyk/Mer weakly activates p90rsk, while stress-activated protein kinase, Ras GTPase-activating protein (GAP), and GAP-associated p62 and p190 proteins are not activated or tyrosine phosphorylated by Nyk/Mer. An analysis comparing the Nyk/Mer signal cascade with that of the epidermal growth factor receptor indicates substrate preferences by these two receptors. Our results provide a detailed description of the Nyk/Mer signaling pathways. Given the structural similarity between the Ufo/Axl family receptors, some of the information may also be applied to other members of this receptor tyrosine kinase family. PMID:8524223

  13. Neuregulin 1-ErbB4-PI3K signaling in schizophrenia and phosphoinositide 3-kinase-p110δ inhibition as a potential therapeutic strategy.

    PubMed

    Law, Amanda J; Wang, Yanhong; Sei, Yoshitatsu; O'Donnell, Patricio; Piantadosi, Patrick; Papaleo, Francesco; Straub, Richard E; Huang, Wenwei; Thomas, Craig J; Vakkalanka, Radhakrishna; Besterman, Aaron D; Lipska, Barbara K; Hyde, Thomas M; Harrison, Paul J; Kleinman, Joel E; Weinberger, Daniel R

    2012-07-24

    Neuregulin 1 (NRG1) and ErbB4, critical neurodevelopmental genes, are implicated in schizophrenia, but the mediating mechanisms are unknown. Here we identify a genetically regulated, pharmacologically targetable, risk pathway associated with schizophrenia and with ErbB4 genetic variation involving increased expression of a PI3K-linked ErbB4 receptor (CYT-1) and the phosphoinositide 3-kinase subunit, p110δ (PIK3CD). In human lymphoblasts, NRG1-mediated phosphatidyl-inositol,3,4,5 triphosphate [PI(3,4,5)P3] signaling is predicted by schizophrenia-associated ErbB4 genotype and PIK3CD levels and is impaired in patients with schizophrenia. In human brain, the same ErbB4 genotype again predicts increased PIK3CD expression. Pharmacological inhibition of p110δ using the small molecule inhibitor, IC87114, blocks the effects of amphetamine in a mouse pharmacological model of psychosis and reverses schizophrenia-related phenotypes in a rat neonatal ventral hippocampal lesion model. Consistent with these antipsychotic-like properties, IC87114 increases AKT phosphorylation in brains of treated mice, implicating a mechanism of action. Finally, in two family-based genetic studies, PIK3CD shows evidence of association with schizophrenia. Our data provide insight into a mechanism of ErbB4 association with schizophrenia; reveal a previously unidentified biological and disease link between NRG1-ErbB4, p110δ, and AKT; and suggest that p110δ is a previously undescribed therapeutic target for the treatment of psychiatric disorders.

  14. 3D-QSAR and molecular docking study on bisarylmaleimide series as glycogen synthase kinase 3, cyclin dependent kinase 2 and cyclin dependent kinase 4 inhibitors: an insight into the criteria for selectivity.

    PubMed

    Dessalew, Nigus; Bharatam, Prasad V

    2007-07-01

    Selective glycogen synthase kinase 3 (GSK3) inhibition over cyclin dependent kinases such as cyclin dependent kinase 2 (CDK2) and cyclin dependent kinase 4 (CDK4) is an important requirement for improved therapeutic profile of GSK3 inhibitors. The concepts of selectivity and additivity fields have been employed in developing selective CoMFA models for these related kinases. Initially, sets of three individual CoMFA models were developed, using 36 compounds of bisarylmaleimide series to correlate with the GSK3, CDK2 and CDK4 inhibitory potencies. These models showed a satisfactory statistical significance: CoMFA-GSK3 (r(2)(con), r(2)(cv): 0.931, 0.519), CoMFA-CDK2 (0.937, 0.563), and CoMFA-CDK4 (0.892, 0.725). Three different selective CoMFA models were then developed using differences in pIC(50) values. These three models showed a superior statistical significance: (i) CoMFA-Selective1 (r(2)(con), r(2)(cv): 0.969, 0.768), (ii) CoMFA-Selective 2 (0.974, 0.835) and (iii) CoMFA-Selective3 (0.963, 0.776). The selective models were found to outperform the individual models in terms of the quality of correlation and were found to be more informative in pinpointing the structural basis for the observed quantitative differences of kinase inhibition. An in-depth comparative investigation was carried out between the individual and selective models to gain an insight into the selectivity criterion. To further validate this approach, a set of new compounds were designed which show selectivity and were docked into the active site of GSK3, using FlexX based incremental construction algorithm.

  15. Molecular cloning and characterization of a threonine/serine protein kinase lvakt from Litopenaeus vannamei

    NASA Astrophysics Data System (ADS)

    Ruan, Lingwei; Liu, Rongdiao; Xu, Xun; Shi, Hong

    2014-07-01

    The phosphatidylinositol 3-kinase (PI3K)-AKT pathway is involved in various cellular functions, including anti-apoptosis, protein synthesis, glucose metabolism and cell cycling. However, the role of the PI3K-AKT pathway in crustaceans remains unclear. In the present study, we cloned and characterized the AKT gene lvakt from Litopenaeus vannamei. The 511-residue LVAKT was highly conserved; contained a PH domain, a catalytic domain and a hydrophobic domain; and was highly expressed in the heart and gills of L. vannamei. We found, using Real-Time Quantitative PCR (Q-PCR) analysis, that lvakt was up-regulated during early white spot syndrome virus (WSSV) infection. Moreover, the PI3K-specific inhibitor, LY294002, reduced viral gene transcription, implying that the PI3K-AKT pathway might be hijacked by WSSV. Our results therefore suggest that LVAKT may play an important role in the shrimp immune response against WSSV.

  16. Gastric Inhibitory Peptide Controls Adipose Insulin Sensitivity via Activation of cAMP-response Element-binding Protein and p110β Isoform of Phosphatidylinositol 3-Kinase*

    PubMed Central

    Mohammad, Sameer; Ramos, Lavoisier S.; Buck, Jochen; Levin, Lonny R.; Rubino, Francesco; McGraw, Timothy E.

    2011-01-01

    Gastric inhibitory peptide (GIP) is an incretin hormone secreted in response to food intake. The best known function of GIP is to enhance glucose-dependent insulin secretion from pancreatic β-cells. Extra-pancreatic effects of GIP primarily occur in adipose tissues. Here, we demonstrate that GIP increases insulin-dependent translocation of the Glut4 glucose transporter to the plasma membrane and exclusion of FoxO1 transcription factor from the nucleus in adipocytes, establishing that GIP has a general effect on insulin action in adipocytes. Stimulation of adipocytes with GIP alone has no effect on these processes. Using pharmacologic and molecular genetic approaches, we show that the effect of GIP on adipocyte insulin sensitivity requires activation of both the cAMP/protein kinase A/CREB signaling module and p110β phosphoinositol-3kinase, establishing a novel signal transduction pathway modulating insulin action in adipocytes. This insulin-sensitizing effect is specific for GIP because isoproterenol, which elevates adipocyte cAMP and activates PKA/CREB signaling, does not affect adipocyte insulin sensitivity. The insulin-sensitizing activity points to a more central role for GIP in intestinal regulation of peripheral tissue metabolism, an emerging feature of inter-organ communication in the control of metabolism. PMID:22027830

  17. Mitogen-Activated Protein Kinase Kinase 3 Regulates Seed Dormancy in Barley.

    PubMed

    Nakamura, Shingo; Pourkheirandish, Mohammad; Morishige, Hiromi; Kubo, Yuta; Nakamura, Masako; Ichimura, Kazuya; Seo, Shigemi; Kanamori, Hiroyuki; Wu, Jianzhong; Ando, Tsuyu; Hensel, Goetz; Sameri, Mohammad; Stein, Nils; Sato, Kazuhiro; Matsumoto, Takashi; Yano, Masahiro; Komatsuda, Takao

    2016-03-21

    Seed dormancy has fundamental importance in plant survival and crop production; however, the mechanisms regulating dormancy remain unclear [1-3]. Seed dormancy levels generally decrease during domestication to ensure that crops successfully germinate in the field. However, reduction of seed dormancy can cause devastating losses in cereals like wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) due to pre-harvest sprouting, the germination of mature seed (grain) on the mother plant when rain occurs before harvest. Understanding the mechanisms of dormancy can facilitate breeding of crop varieties with the appropriate levels of seed dormancy [4-8]. Barley is a model crop [9, 10] and has two major seed dormancy quantitative trait loci (QTLs), SD1 and SD2, on chromosome 5H [11-19]. We detected a QTL designated Qsd2-AK at SD2 as the single major determinant explaining the difference in seed dormancy between the dormant cultivar "Azumamugi" (Az) and the non-dormant cultivar "Kanto Nakate Gold" (KNG). Using map-based cloning, we identified the causal gene for Qsd2-AK as Mitogen-activated Protein Kinase Kinase 3 (MKK3). The dormant Az allele of MKK3 is recessive; the N260T substitution in this allele decreases MKK3 kinase activity and appears to be causal for Qsd2-AK. The N260T substitution occurred in the immediate ancestor allele of the dormant allele, and the established dormant allele became prevalent in barley cultivars grown in East Asia, where the rainy season and harvest season often overlap. Our findings show fine-tuning of seed dormancy during domestication and provide key information for improving pre-harvest sprouting tolerance in barley and wheat. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Neutral endopeptidase inhibits prostate cancer cell migration by blocking focal adhesion kinase signaling.

    PubMed

    Sumitomo, M; Shen, R; Walburg, M; Dai, J; Geng, Y; Navarro, D; Boileau, G; Papandreou, C N; Giancotti, F G; Knudsen, B; Nanus, D M

    2000-12-01

    Neutral endopeptidase 24.11 (NEP, CD10) is a cell-surface enzyme expressed by prostatic epithelial cells that cleaves and inactivates neuropeptides implicated in the growth of androgen-independent prostate cancer (PC). NEP substrates such as bombesin and endothelin-1 induce cell migration. We investigated the mechanisms of NEP regulation of cell migration in PC cells, including regulation of phosphorylation on tyrosine of focal adhesion kinase (FAK). Western analyses and cell migration assays revealed an inverse correlation between NEP expression and the levels of FAK phosphorylation and cell migration in PC cell lines. Constitutively expressed NEP, recombinant NEP, and induced NEP expression using a tetracycline-repressive expression system inhibited bombesin- and endothelin-1-stimulated FAK phosphorylation and cell migration. This results from NEP-induced inhibition of neuropeptide-stimulated association of FAK with cSrc protein. Expression of a mutated catalytically inactive NEP protein also resulted in partial inhibition of FAK phosphorylation and cell migration. Coimmunoprecipitation experiments show that NEP associates with tyrosine-phosphorylated Lyn kinase, which then binds the p85 subunit of phosphatidylinositol 3-kinase (PI3-K) resulting in an NEP-Lyn-PI3-K protein complex. This complex competitively blocks FAK-PI3-K interaction, suggesting that NEP protein inhibits cell migration via a protein-protein interaction independent of its catalytic function. These experiments demonstrate that NEP can inhibit FAK phosphorylation on tyrosine and PC cell migration through multiple pathways and suggest that cell migration which contributes to invasion and metastases in PC cells can be regulated by NEP.

  19. Neutral endopeptidase inhibits prostate cancer cell migration by blocking focal adhesion kinase signaling

    PubMed Central

    Sumitomo, Makoto; Shen, Ruoqian; Walburg, Marc; Dai, Jie; Geng, Yiping; Navarro, Daniel; Boileau, Guy; Papandreou, Christos N.; Giancotti, Filippo G.; Knudsen, Beatrice; Nanus, David M.

    2000-01-01

    Neutral endopeptidase 24.11 (NEP, CD10) is a cell-surface enzyme expressed by prostatic epithelial cells that cleaves and inactivates neuropeptides implicated in the growth of androgen-independent prostate cancer (PC). NEP substrates such as bombesin and endothelin-1 induce cell migration. We investigated the mechanisms of NEP regulation of cell migration in PC cells, including regulation of phosphorylation on tyrosine of focal adhesion kinase (FAK). Western analyses and cell migration assays revealed an inverse correlation between NEP expression and the levels of FAK phosphorylation and cell migration in PC cell lines. Constitutively expressed NEP, recombinant NEP, and induced NEP expression using a tetracycline-repressive expression system inhibited bombesin- and endothelin-1–stimulated FAK phosphorylation and cell migration. This results from NEP-induced inhibition of neuropeptide-stimulated association of FAK with cSrc protein. Expression of a mutated catalytically inactive NEP protein also resulted in partial inhibition of FAK phosphorylation and cell migration. Coimmunoprecipitation experiments show that NEP associates with tyrosine-phosphorylated Lyn kinase, which then binds the p85 subunit of phosphatidylinositol 3-kinase (PI3-K) resulting in an NEP-Lyn-PI3-K protein complex. This complex competitively blocks FAK-PI3-K interaction, suggesting that NEP protein inhibits cell migration via a protein-protein interaction independent of its catalytic function. These experiments demonstrate that NEP can inhibit FAK phosphorylation on tyrosine and PC cell migration through multiple pathways and suggest that cell migration which contributes to invasion and metastases in PC cells can be regulated by NEP. PMID:11104793

  20. Karanjin from Pongamia pinnata induces GLUT4 translocation in skeletal muscle cells in a phosphatidylinositol-3-kinase-independent manner.

    PubMed

    Jaiswal, Natasha; Yadav, Prem P; Maurya, Rakesh; Srivastava, Arvind K; Tamrakar, Akhilesh K

    2011-11-16

    Insulin-stimulated glucose uptake in skeletal muscle is decreased in type 2 diabetes due to impaired translocation of insulin-sensitive glucose transporter 4 (GLUT4) from intracellular pool to plasma membrane. Augmenting glucose uptake into this tissue may help in management of type 2 diabetes. Here, the effects of an identified antihyperglycemic molecule, karanjin, isolated from the fruits of Pongamia pinnata were investigated on glucose uptake and GLUT4 translocation in skeletal muscle cells. Treatment of L6-GLUT4myc myotubes with karanjin caused a substantial increase in the glucose uptake and GLUT4 translocation to the cell surface, in a concentration-dependent fashion, without changing the total amount of GLUT4 protein and GLUT4 mRNA. This effect was associated with increased activity of AMP-activated protein kinase (AMPK). Cycloheximide treatment inhibited the effect of karanjin on GLUT4 translocation suggesting the requirement of de novo synthesis of protein. Karanjin-induced GLUT4 translocation was further enhanced with insulin and the effect is completely protected in the presence of wortmannin. Moreover, karanjin did not affect the phosphorylation of AKT (Ser-473) and did not alter the expression of the key molecules of insulin signaling cascade. We conclude that karanjin-induced increase in glucose uptake in L6 myotubes is the result of an increased translocation of GLUT4 to plasma membrane associated with activation of AMPK pathway, in a PI-3-K/AKT-independent manner. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. 3-phosphoglycerate kinase from Hydrogenomonas facilis.

    NASA Technical Reports Server (NTRS)

    Mcfadden, B. A.; Schuster, E.

    1972-01-01

    Description of studies of the kinetics of heat inactivation of phosphoglycerate kinase in the soluble fraction from Hydrogenomonas facilis, its extensive purification, and inhibition by adenosine monophosphate (AMP). No evidence was found for an enzyme which catalyzes adenosine-triphosphate-dependent conversion of 3-phosphoglycerate to 1,3-diphosphoglycerate, AMP, and phosphate.

  2. Ischemic preconditioning negatively regulates plenty of SH3s-mixed lineage kinase 3-Rac1 complex and c-Jun N-terminal kinase 3 signaling via activation of Akt.

    PubMed

    Zhang, Q-G; Han, D; Xu, J; Lv, Q; Wang, R; Yin, X-H; Xu, T-L; Zhang, G-Y

    2006-12-01

    Activation of Akt/protein kinase B has been recently reported to play an important role in ischemic tolerance. We here demonstrate that the decreased protein expression and phosphorylation of phosphatase and tensin homolog deleted from chromosome 10 (PTEN) underlie the increased Akt-Ser-473 phosphorylation in the hippocampal CA1 subfield in ischemic preconditioning (IPC). Co-immunoprecipitation analysis reveals that Akt physically interacts with Rac1, a small Rho family GTPase required for mixed lineage kinase 3 (MLK3) autophosphorylation, and both this interaction and Rac1-Ser-71 phosphorylation induced by Akt are promoted in preconditioned rats. In addition, we show that Akt activation results in the disassembly of the plenty of SH3s (POSH)-MLK3-Rac1 signaling complex and down-regulation of the activation of MLK3/c-Jun N-terminal kinase (JNK) pathway. Akt activation results in decreased serine phosphorylation of 14-3-3, a cytoplasmic anchor of Bax, and prevents ischemia-induced mitochondrial translocation of Bax, release of cytochrome c, and activation of caspase-3. The expression of Fas ligand is also decreased in the CA1 region. Akt activation protects against apoptotic neuronal death as shown in TUNEL staining following IPC. Intracerebral infusion of LY294002 before IPC reverses the increase in Akt phosphorylation and the decrease in JNK signaling activation, as well as the neuroprotective action of IPC. Our results suggest that activation of pro-apoptotic MLK3/JNK3 cascade can be suppressed through activating anti-apoptotic phosphoinositide 3-kinase/Akt pathway induced by a sublethal ischemic insult, which provides a functional link between Akt and the JNK family of stress-activated kinases in ischemic tolerance.

  3. Astragaloside IV Attenuated 3,4-Benzopyrene-Induced Abdominal Aortic Aneurysm by Ameliorating Macrophage-Mediated Inflammation.

    PubMed

    Wang, Jiaoni; Zhou, Yingying; Wu, Shaoze; Huang, Kaiyu; Thapa, Saroj; Tao, Luyuan; Wang, Jie; Shen, Yigen; Wang, Jinsheng; Xue, Yangjing; Ji, Kangting

    2018-01-01

    Abdominal aortic aneurysm (AAA), characterized by macrophage infiltration-mediated inflammation and oxidative stress, is a potentially fatal disease. Astragaloside IV (AS-IV) has been acknowledged to exhibit antioxidant and anti-inflammatory properties. This study was designed to investigate the protective effect of AS-IV against AAA formation induced by 3,4-benzopyrene (Bap) and angiotensin II (Ang II), and to explore probable mechanisms. Results showed that AS-IV decreased AAA formation, and reduced macrophage infiltration and expression of matrix metalloproteinase. Furthermore, AS-IV abrogated Bap-/Ang II-induced NF-κB activation and oxidative stress. In vitro , AS-IV inhibition of macrophage activation and NF-κB was correlated with increased phosphorylation of phosphatidylinositol 3-kinase (PI3-K)/AKT. Together, our findings suggest that AS-IV has potential as an intervention in the formation of AAA. (1)The protective effect of Astragaloside IV (AS-IV) on abdominal aortic aneurysm (AAA) is associated with its suppressing effects on inflammation in the aortic wall.(2)AS-IV abrogated 3,4-benzopyrene (Bap)/angiotensin II (Ang II)-induced nuclear factor-κB (NF-κB) activation and oxidative stress.(3)AS-IV inhibited Bap-induced RAW264.7 macrophage cells activation by inhibiting oxidative stress and NF-κB activation through phosphatidylinositol 3-kinase (PI3-K)/AKT pathway.AS-IV is a potential preventive agent for cigarette smoking-related AAA.

  4. Glycogen synthase kinase 3: more than a namesake.

    PubMed

    Rayasam, Geetha Vani; Tulasi, Vamshi Krishna; Sodhi, Reena; Davis, Joseph Alex; Ray, Abhijit

    2009-03-01

    Glycogen synthase kinase 3 (GSK3), a constitutively acting multi-functional serine threonine kinase is involved in diverse physiological pathways ranging from metabolism, cell cycle, gene expression, development and oncogenesis to neuroprotection. These diverse multiple functions attributed to GSK3 can be explained by variety of substrates like glycogen synthase, tau protein and beta catenin that are phosphorylated leading to their inactivation. GSK3 has been implicated in various diseases such as diabetes, inflammation, cancer, Alzheimer's and bipolar disorder. GSK3 negatively regulates insulin-mediated glycogen synthesis and glucose homeostasis, and increased expression and activity of GSK3 has been reported in type II diabetics and obese animal models. Consequently, inhibitors of GSK3 have been demonstrated to have anti-diabetic effects in vitro and in animal models. However, inhibition of GSK3 poses a challenge as achieving selectivity of an over achieving kinase involved in various pathways with multiple substrates may lead to side effects and toxicity. The primary concern is developing inhibitors of GSK3 that are anti-diabetic but do not lead to up-regulation of oncogenes. The focus of this review is the recent advances and the challenges surrounding GSK3 as an anti-diabetic therapeutic target.

  5. Type Ia supernovae, standardizable candles, and gravity

    NASA Astrophysics Data System (ADS)

    Wright, Bill S.; Li, Baojiu

    2018-04-01

    Type Ia supernovae (SNe Ia) are generally accepted to act as standardizable candles, and their use in cosmology led to the first confirmation of the as yet unexplained accelerated cosmic expansion. Many of the theoretical models to explain the cosmic acceleration assume modifications to Einsteinian general relativity which accelerate the expansion, but the question of whether such modifications also affect the ability of SNe Ia to be standardizable candles has rarely been addressed. This paper is an attempt to answer this question. For this we adopt a semianalytical model to calculate SNe Ia light curves in non-standard gravity. We use this model to show that the average rescaled intrinsic peak luminosity—a quantity that is assumed to be constant with redshift in standard analyses of Type Ia supernova (SN Ia) cosmology data—depends on the strength of gravity in the supernova's local environment because the latter determines the Chandrasekhar mass—the mass of the SN Ia's white dwarf progenitor right before the explosion. This means that SNe Ia are no longer standardizable candles in scenarios where the strength of gravity evolves over time, and therefore the cosmology implied by the existing SN Ia data will be different when analysed in the context of such models. As an example, we show that the observational SN Ia cosmology data can be fitted with both a model where (ΩM,ΩΛ)=(0.62 ,0.38 ) and Newton's constant G varies as G (z )=G0(1 +z )-1/4 and the standard model where (ΩM,ΩΛ)=(0.3 ,0.7 ) and G is constant, when the Universe is assumed to be flat.

  6. PI3K/Akt signalling pathway and cancer.

    PubMed

    Fresno Vara, Juan Angel; Casado, Enrique; de Castro, Javier; Cejas, Paloma; Belda-Iniesta, Cristóbal; González-Barón, Manuel

    2004-04-01

    Phosphatidylinositol-3 kinases, PI3Ks, constitute a lipid kinase family characterized by their ability to phosphorylate inositol ring 3'-OH group in inositol phospholipids to generate the second messenger phosphatidylinositol-3,4,5-trisphosphate (PI-3,4,5-P(3)). RPTK activation results in PI(3,4,5)P(3) and PI(3,4)P(2) production by PI3K at the inner side of the plasma membrane. Akt interacts with these phospholipids, causing its translocation to the inner membrane, where it is phosphorylated and activated by PDK1 and PDK2. Activated Akt modulates the function of numerous substrates involved in the regulation of cell survival, cell cycle progression and cellular growth. In recent years, it has been shown that PI3K/Akt signalling pathway components are frequently altered in human cancers. Cancer treatment by chemotherapy and gamma-irradiation kills target cells primarily by the induction of apoptosis. However, the development of resistance to therapy is an important clinical problem. Failure to activate the apoptotic programme represents an important mode of drug resistance in tumor cells. Survival signals induced by several receptors are mediated mainly by PI3K/Akt, hence this pathway may decisively contribute to the resistant phenotype. Many of the signalling pathways involved in cellular transformation have been elucidated and efforts are underway to develop treatment strategies that target these specific signalling molecules or their downstream effectors. The PI3K/Akt pathway is involved in many of the mechanisms targeted by these new drugs, thus a better understanding of this crossroad can help to fully exploit the potential benefits of these new agents.

  7. Constraining the Single-degenerate Channel of Type Ia Supernovae with Stable Iron-group Elements in SNR 3C 397

    NASA Astrophysics Data System (ADS)

    Dave, Pranav; Kashyap, Rahul; Fisher, Robert; Timmes, Frank; Townsley, Dean; Byrohl, Chris

    2017-05-01

    Recent Suzaku X-ray spectra of supernova remnant (SNR) 3C 397 indicate enhanced stable iron group element abundances of Ni, Mn, Cr, and Fe. Seeking to address key questions about the progenitor and explosion mechanism of 3C 397, we compute nucleosynthetic yields from a suite of multidimensional hydrodynamics models in the near-Chandrasekhar-mass, single-degenerate paradigm for Type Ia supernovae (SNe Ia). Varying the progenitor white dwarf (WD) internal structure, composition, ignition, and explosion mechanism, we find that the best match to the observed iron peak elements of 3C 397 are dense (central density ≥6 × 109 g cm-3), low-carbon WDs that undergo a weak, centrally ignited deflagration, followed by a subsequent detonation. The amount of 56Ni produced is consistent with a normal or bright normal SNe Ia. A pure deflagration of a centrally ignited, low central density (≃2 × 109 g cm-3) progenitor WD, frequently considered in the literature, is also found to produce good agreement with 3C 397 nucleosynthetic yields, but leads to a subluminous SN Ia event, in conflict with X-ray line width data. Additionally, in contrast to prior work that suggested a large supersolar metallicity for the WD progenitor for SNR 3C 397, we find satisfactory agreement for solar- and subsolar-metallicity progenitors. We discuss a range of implications our results have for the single-degenerate channel.

  8. SH2/SH3 adaptor proteins can link tyrosine kinases to a Ste20-related protein kinase, HPK1.

    PubMed

    Anafi, M; Kiefer, F; Gish, G D; Mbamalu, G; Iscove, N N; Pawson, T

    1997-10-31

    Ste20-related protein kinases have been implicated as regulating a range of cellular responses, including stress-activated protein kinase pathways and the control of cytoskeletal architecture. An important issue involves the identities of the upstream signals and regulators that might control the biological functions of mammalian Ste20-related protein kinases. HPK1 is a protein-serine/threonine kinase that possesses a Ste20-like kinase domain, and in transfected cells activates a protein kinase pathway leading to the stress-activated protein kinase SAPK/JNK. Here we have investigated candidate upstream regulators that might interact with HPK1. HPK1 possesses an N-terminal catalytic domain and an extended C-terminal tail with four proline-rich motifs. The SH3 domains of Grb2 bound in vitro to specific proline-rich motifs in the HPK1 tail and functioned synergistically to direct the stable binding of Grb2 to HPK1 in transfected Cos1 cells. Epidermal growth factor (EGF) stimulation did not affect the binding of Grb2 to HPK1 but induced recruitment of the Grb2.HPK1 complex to the autophosphorylated EGF receptor and to the Shc docking protein. Several activated receptor and cytoplasmic tyrosine kinases, including the EGF receptor, stimulated the tyrosine phosphorylation of the HPK1 serine/threonine kinase. These results suggest that HPK1, a mammalian Ste20-related protein-serine/threonine kinase, can potentially associate with protein-tyrosine kinases through interactions mediated by SH2/SH3 adaptors such as Grb2. Such interaction may provide a possible mechanism for cross-talk between distinct biochemical pathways following the activation of tyrosine kinases.

  9. [6]-Shogaol Inhibits α-MSH-Induced Melanogenesis through the Acceleration of ERK and PI3K/Akt-Mediated MITF Degradation

    PubMed Central

    Huang, Huey-Chun; Chang, Shu-Jen; Wu, Chia-Yin; Ke, Hui-Ju; Chang, Tsong-Min

    2014-01-01

    [6]-Shogaol is the main biologically active component of ginger. Previous reports showed that [6]-shogaol has several pharmacological characteristics, such as antioxidative, anti-inflammatory, antimicrobial, and anticarcinogenic properties. However, the effects of [6]-shogaol on melanogenesis remain to be elucidated. The study aimed to evaluate the potential skin whitening mechanisms of [6]-shogaol. The effects of [6]-shogaol on cell viability, melanin content, tyrosinase activity, and the expression of the tyrosinase and microphthalmia-associated transcription factor (MITF) were measured. The results revealed that [6]-shogaol effectively suppresses tyrosinase activity and the amount of melanin and that those effects are more pronounced than those of arbutin. It was also found that [6]-shogaol decreased the protein expression levels of tyrosinase-related protein 1 (TRP-1) and microphthalmia-associated transcriptional factor (MITF). In addition, the MITF mRNA levels were also effectively decreased in the presence of 20 μM [6]-shogaol. The degradation of MITF protein was inhibited by the MEK 1-inhibitor (U0126) or phosphatidylinositol-3-kinase inhibitor (PI3K inhibitor) (LY294002). Further immunofluorescence staining assay implied the involvement of the proteasome in the downregulation of MITF by [6]-shogaol. Our confocal assay results also confirmed that [6]-shogaol inhibited α-melanocyte stimulating hormone- (α-MSH-) induced melanogenesis through the acceleration of extracellular responsive kinase (ERK) and phosphatidylinositol-3-kinase- (PI3K/Akt-) mediated MITF degradation. PMID:25045707

  10. Phosphatidylinositide 3-kinase (PI3K) and PI3K-related kinase (PIKK) activity contributes to radioresistance in thyroid carcinomas.

    PubMed

    Burrows, Natalie; Williams, Joseph; Telfer, Brian A; Resch, Julia; Valentine, Helen R; Fitzmaurice, Richard J; Eustace, Amanda; Irlam, Joely; Rowling, Emily J; Hoang-Vu, Cuong; West, Catharine M; Brabant, Georg; Williams, Kaye J

    2016-09-27

    Anaplastic (ATC) and certain follicular thyroid-carcinomas (FTCs) are radioresistant. The Phosphatidylinositide 3-kinase (PI3K) pathway is commonly hyperactivated in thyroid-carcinomas. PI3K can modify the PI3K-related kinases (PIKKs) in response to radiation: How PIKKs interact with PI3K and contribute to radioresistance in thyroid-carcinomas is unknown. Further uncertainties exist in how these interactions function under the radioresistant hypoxic microenvironment. Under normoxia/anoxia, ATC (8505c) and FTC (FTC-133) cells were irradiated, with PI3K-inhibition (via GDC-0941 and PTEN-reconstitution into PTEN-null FTC-133s) and effects on PIKK-activation, DNA-damage, clonogenic-survival and cell cycle, assessed. FTC-xenografts were treated with 5 × 2 Gy, ± 50 mg/kg GDC-0941 (twice-daily; orally) for 14 days and PIKK-activation and tumour-growth assessed. PIKK-expression was additionally assessed in 12 human papillary thyroid-carcinomas, 13 FTCs and 12 ATCs. GDC-0941 inhibited radiation-induced activation of Ataxia-telangiectasia mutated (ATM), ATM-and Rad3-related (ATR) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs). Inhibition of ATM and DNA-PKcs was PI3K-dependent, since activation was reduced in PTEN-reconstituted FTC-133s. Inhibition of PIKK-activation was greater under anoxia: Consequently, whilst DNA-damage was increased and prolonged under both normoxia and anoxia, PI3K-inhibition only reduced clonogenic-survival under anoxia. GDC-0941 abrogated radiation-induced cell cycle arrest, an effect most likely linked to the marked inhibition of ATR-activation. Importantly, GDC-0941 inhibited radiation-induced PIKK-activation in FTC-xenografts leading to a significant increase in time taken for tumours to triple in size: 26.5 ± 5 days (radiation-alone) versus 31.5 ± 5 days (dual-treatment). PIKKs were highly expressed across human thyroid-carcinoma classifications, with ATM scoring consistently lower. Interestingly, some loss of ATM and DNA

  11. Phosphatidylinositide 3-kinase (PI3K) and PI3K-related kinase (PIKK) activity contributes to radioresistance in thyroid carcinomas

    PubMed Central

    Burrows, Natalie; Williams, Joseph; Telfer, Brian A; Resch, Julia; Valentine, Helen R; Fitzmaurice, Richard J; Eustace, Amanda; Irlam, Joely; Rowling, Emily J; Hoang-Vu, Cuong; West, Catharine M; Brabant, Georg; Williams, Kaye J

    2016-01-01

    Anaplastic (ATC) and certain follicular thyroid-carcinomas (FTCs) are radioresistant. The Phosphatidylinositide 3-kinase (PI3K) pathway is commonly hyperactivated in thyroid-carcinomas. PI3K can modify the PI3K-related kinases (PIKKs) in response to radiation: How PIKKs interact with PI3K and contribute to radioresistance in thyroid-carcinomas is unknown. Further uncertainties exist in how these interactions function under the radioresistant hypoxic microenvironment. Under normoxia/anoxia, ATC (8505c) and FTC (FTC-133) cells were irradiated, with PI3K-inhibition (via GDC-0941 and PTEN-reconstitution into PTEN-null FTC-133s) and effects on PIKK-activation, DNA-damage, clonogenic-survival and cell cycle, assessed. FTC-xenografts were treated with 5 × 2 Gy, ± 50 mg/kg GDC-0941 (twice-daily; orally) for 14 days and PIKK-activation and tumour-growth assessed. PIKK-expression was additionally assessed in 12 human papillary thyroid-carcinomas, 13 FTCs and 12 ATCs. GDC-0941 inhibited radiation-induced activation of Ataxia-telangiectasia mutated (ATM), ATM-and Rad3-related (ATR) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs). Inhibition of ATM and DNA-PKcs was PI3K-dependent, since activation was reduced in PTEN-reconstituted FTC-133s. Inhibition of PIKK-activation was greater under anoxia: Consequently, whilst DNA-damage was increased and prolonged under both normoxia and anoxia, PI3K-inhibition only reduced clonogenic-survival under anoxia. GDC-0941 abrogated radiation-induced cell cycle arrest, an effect most likely linked to the marked inhibition of ATR-activation. Importantly, GDC-0941 inhibited radiation-induced PIKK-activation in FTC-xenografts leading to a significant increase in time taken for tumours to triple in size: 26.5 ± 5 days (radiation-alone) versus 31.5 ± 5 days (dual-treatment). PIKKs were highly expressed across human thyroid-carcinoma classifications, with ATM scoring consistently lower. Interestingly, some loss of ATM and DNA

  12. Association of protein kinase FA/GSK-3alpha (a proline-directed kinase and a regulator of protooncogenes) with human cervical carcinoma dedifferentiation/progression.

    PubMed

    Yang, S D; Yu, J S; Lee, T T; Ni, M H; Yang, C C; Ho, Y S; Tsen, T Z

    1995-10-01

    Computer analysis of protein phosphorylation-sites sequence revealed that most transcriptional factors and viral oncoproteins are prime targets for regulation of proline-directed protein phosphorylation, suggesting an association of proline-directed protein kinase (PDPK) family with neoplastic transformation and tumorigenesis. In this report, an immunoprecipitate activity assay of protein kinase FA/glycogen synthase kinase-3alpha (kinase FA/GSK-3alpha) (a particular member of PDPK family) has been optimized for human cervical tissue and used to demonstrate for the first time significantly increased (P < 0.001) activity in poorly differentiated cervical carcinoma (82.8 +/- 6.6 U/mg of protein), moderately differentiated carcinoma (36.2 +/- 3.4 U/mg of protein), and well-differentiated carcinoma (18.3 +/- 2.4 U/mg of protein) from 36 human cervical carcinoma samples when compared to 12 normal controls (4.9 +/- 0.6 U/mg of protein). Immunoblotting analysis further revealed that increased activity of kinase FA/GSK-3alpha in cervical carcinoma is due to overexpression of protein synthesis of the kinase. Taken together, the results provide initial evidence that overexpression of protein synthesis and cellular activity of kinase FA/GSK-3alpha may be involved in human cervical carcinoma dedifferentiation/progression, supporting an association of proline-directed protein kinase with neoplastic transformation and tumorigenesis. Since protein kinase FA/GSK-3alpha may function as a possible regulator of transcription factors/proto-oncogenes, the results further suggest that kinase FA/GSK-3alpha may play a potential role in human cervical carcinogenesis, especially in its dedifferentiation and progression.

  13. Bacillus thuringiensis Cry1Ia10 and Vip3Aa protein interactions and their toxicity in Spodoptera spp. (Lepidoptera).

    PubMed

    Bergamasco, V B; Mendes, D R P; Fernandes, O A; Desidério, J A; Lemos, M V F

    2013-02-01

    The polyphagous pests belonging to the genus Spodoptera are considered to be among the most important causes of damage and are widely distributed throughout the Americas'. Due to the extensive use of genetically modified plants containing Bacillus thuringiensis genes that code for insecticidal proteins, resistant insects may arise. To prevent the development of resistance, pyramided plants, which express multiple insecticidal proteins that act through distinct mode of actions, can be used. This study analyzed the mechanisms of action for the proteins Cry1Ia10 and Vip3Aa on neonatal Spodoptera frugiperda, Spodoptera albula, Spodoptera eridania and Spodoptera cosmioides larvae. The interactions of these toxins with receptors on the intestinal epithelial membrane were also analyzed by binding biotinylated toxins to brush border membrane vesicles (BBMVs) from the intestines of these insects. A putative receptor of approximately 65 kDa was found by ligand blotting in all of these species. In vitro competition assays using biotinylated proteins have indicated that Vip3Aa and Cry1Ia10 do not compete for the same receptor for S. frugiperda, S. albula and S. cosmioides and that Vip3Aa was more efficient than Cry1Ia10 when tested individually, by bioassays. A synergistic effect of the toxins in S. frugiperda, S. albula and S. cosmioides was observed when they were combined. However, in S. eridania, Cry1Ia10 and Vip3Aa might compete for the same receptor and through bioassays Cry1Ia10 was more efficient than Vip3Aa and showed an antagonistic effect when the proteins were combined. These results suggest that using these genes to develop pyramided plants may not prove effective in preventing the development of resistance in S. eridiana. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Alleviation of N-Methyl-D-Aspartate Receptor-Dependent Long-Term Depression via Regulation of the Glycogen Synthase Kinase-3β Pathway in the Amygdala of a Valproic Acid-Induced Animal Model of Autism.

    PubMed

    Wu, Han-Fang; Chen, Po See; Chen, Yi-Ju; Lee, Chi-Wei; Chen, I-Tuan; Lin, Hui-Ching

    2017-09-01

    The amygdala plays crucial roles in socio-emotional behavior and cognition, both of which are abnormal in autism spectrum disorder (ASD). Valproic acid (VPA)-exposed rat offspring have demonstrated ASD phenotypes and amygdala excitatory/inhibitory imbalance. However, the role of glutamatergic synapses in this imbalance remains unclear. In this study, we used a VPA-induced ASD-like model to assess glutamatergic synapse-dependent long-term depression (LTD) and depotentiation (DPT) in the amygdala. We first confirmed that the VPA-exposed offspring exhibited sociability deficits, anxiety, depression-like behavior, and abnormal nociception thresholds. Then, electrophysiological examination showed a significantly decreased paired-pulse ratio in the amygdala. In addition, both NMDA-dependent LTD and DPT were absent from the amygdala. Furthermore, we found that the levels of glycogen synthase kinase3β (GSK-3β) phosphorylation and β-catenin were significantly higher in the amygdala of the experimental animals than in the controls. Local infusion of phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin into the amygdala reversed the increased phosphorylation level and impaired social behavior. Taken together, the results suggested that NMDA receptor-related synaptic plasticity is dysfunctional in VPA-exposed offspring. In addition, GSK-3β in the amygdala is critical for synaptic plasticity at the glutamatergic synapses and is related to social behavior. Its role in the underlying mechanism of ASD merits further investigation.

  15. Glycogen synthase kinase 3: more than a namesake

    PubMed Central

    Rayasam, Geetha Vani; Tulasi, Vamshi Krishna; Sodhi, Reena; Davis, Joseph Alex; Ray, Abhijit

    2009-01-01

    Glycogen synthase kinase 3 (GSK3), a constitutively acting multi-functional serine threonine kinase is involved in diverse physiological pathways ranging from metabolism, cell cycle, gene expression, development and oncogenesis to neuroprotection. These diverse multiple functions attributed to GSK3 can be explained by variety of substrates like glycogen synthase, τ protein and β catenin that are phosphorylated leading to their inactivation. GSK3 has been implicated in various diseases such as diabetes, inflammation, cancer, Alzheimer's and bipolar disorder. GSK3 negatively regulates insulin-mediated glycogen synthesis and glucose homeostasis, and increased expression and activity of GSK3 has been reported in type II diabetics and obese animal models. Consequently, inhibitors of GSK3 have been demonstrated to have anti-diabetic effects in vitro and in animal models. However, inhibition of GSK3 poses a challenge as achieving selectivity of an over achieving kinase involved in various pathways with multiple substrates may lead to side effects and toxicity. The primary concern is developing inhibitors of GSK3 that are anti-diabetic but do not lead to up-regulation of oncogenes. The focus of this review is the recent advances and the challenges surrounding GSK3 as an anti-diabetic therapeutic target. British Journal of Pharmacology (2009) doi:10.1111/j.1476-5381.2008.00085.x PMID:19366350

  16. Targeting phosphoinositide 3-kinase: moving towards therapy.

    PubMed

    Marone, Romina; Cmiljanovic, Vladimir; Giese, Bernd; Wymann, Matthias P

    2008-01-01

    Phosphoinositide 3-kinases (PI3K) orchestrate cell responses including mitogenic signaling, cell survival and growth, metabolic control, vesicular trafficking, degranulation, cytoskeletal rearrangement and migration. Deregulation of the PI3K pathway occurs by activating mutations in growth factor receptors or the PIK3CA locus coding for PI3Kalpha, by loss of function of the lipid phosphatase and tensin homolog deleted in chromosome ten (PTEN/MMAC/TEP1), by the up-regulation of protein kinase B (PKB/Akt), or the impairment of the tuberous sclerosis complex (TSC1/2). All these events are linked to growth and proliferation, and have thus prompted a significant interest in the pharmaceutical targeting of the PI3K pathway in cancer. Genetic targeting of PI3Kgamma (p110gamma) and PI3Kdelta (p110delta) in mice has underlined a central role of these PI3K isoforms in inflammation and allergy, as they modulate chemotaxis of leukocytes and degranulation in mast cells. Proof-of-concept molecules selective for PI3Kgamma have already successfully alleviated disease progress in murine models of rheumatoid arthritis and lupus erythematosus. As targeting PI3K moves forward to therapy of chronic, non-fatal disease, safety concerns for PI3K inhibitors increase. Many of the present inhibitor series interfere with target of rapamycin (TOR), DNA-dependent protein kinase (DNA-PK(cs)) and activity of the ataxia telangiectasia mutated gene product (ATM). Here we review the current disease-relevant knowledge for isoform-specific PI3K function in the above mentioned diseases, and review the progress of >400 recent patents covering pharmaceutical targeting of PI3K. Currently, several drugs targeting the PI3K pathway have entered clinical trials (phase I) for solid tumors and suppression of tissue damage after myocardial infarction (phases I,II).

  17. The role of phosphatidylinositol-transfer proteins at membrane contact sites.

    PubMed

    Selitrennik, Michael; Lev, Sima

    2016-04-15

    Phosphatidylinositol-transfer proteins (PITPs) have been initially identified as soluble factors that accelerate the monomeric exchange of either phosphatidylinositol (PI) or phosphatidylcholine (PC) between membrane bilayersin vitro They are highly conserved in eukaryotes and have been implicated in different cellular processes, including vesicular trafficking, signal transduction, and lipid metabolism. Recent studies suggest that PITPs function at membrane contact sites (MCSs) to facilitate the transport of PI from its synthesis site at the endoplasmic reticulum (ER) to various membrane compartments. In this review, we describe the underlying mechanism of PITPs targeting to MCSs, discuss their cellular roles and potential mode of action. © 2016 Authors; published by Portland Press Limited.

  18. The ShcA SH2 domain engages a 14-3-3/PI3'K signaling complex and promotes breast cancer cell survival.

    PubMed

    Ursini-Siegel, J; Hardy, W R; Zheng, Y; Ling, C; Zuo, D; Zhang, C; Podmore, L; Pawson, T; Muller, W J

    2012-11-29

    The ShcA adapter protein transmits activating signals downstream of receptor and cytoplasmic tyrosine kinases through the establishment of phosphotyrosine-dependent complexes. In this regard, ShcA possesses both a phosphotyrosine-binding domain (PTB) and Src homology 2 domain (SH2), which bind phosphotyrosine residues in a sequence-specific manner. Although the majority of receptor tyrosine kinases expressed in breast cancer cells bind the PTB domain, very little is known regarding the biological importance of SH2-driven ShcA signaling during mammary tumorigenesis. To address this, we employed transgenic mice expressing a mutant ShcA allele harboring a non-functional SH2 domain (ShcR397K) under the transcriptional control of the endogenous ShcA promoter. Using transplantation approaches, we demonstrate that SH2-dependent ShcA signaling within the mammary epithelial compartment is essential for breast tumor outgrowth, survival and the development of lung metastases. We further show that the ShcA SH2 domain activates the AKT pathway, potentially through a novel SH2-mediated complex between ShcA, 14-3-3ζ and the p85 regulatory subunit of phosphatidylinositol 3 (PI3') kinase. This study is the first to demonstrate that the SH2 domain of ShcA is critical for tumor survival during mammary tumorigenesis.

  19. Identification and characterization of two wheat Glycogen Synthase Kinase 3/ SHAGGY-like kinases.

    PubMed

    Bittner, Thomas; Campagne, Sarah; Neuhaus, Gunther; Rensing, Stefan A; Fischer-Iglesias, Christiane

    2013-04-18

    Plant Glycogen Synthase Kinase 3/ SHAGGY-like kinases (GSKs) have been implicated in numerous biological processes ranging from embryonic, flower, stomata development to stress and wound responses. They are key regulators of brassinosteroid signaling and are also involved in the cross-talk between auxin and brassinosteroid pathways. In contrast to the human genome that contains two genes, plant GSKs are encoded by a multigene family. Little is known about Liliopsida resp. Poaceae in comparison to Brassicaceae GSKs. Here, we report the identification and structural characterization of two GSK homologs named TaSK1 and TaSK2 in the hexaploid wheat genome as well as a widespread phylogenetic analysis of land plant GSKs. Genomic and cDNA sequence alignments as well as chromosome localization using nullisomic-tetrasomic lines provided strong evidence for three expressed gene copies located on homoeolog chromosomes for TaSK1 as well as for TaSK2. Predicted proteins displayed a clear GSK signature. In vitro kinase assays showed that TaSK1 and TaSK2 possessed kinase activity. A phylogenetic analysis of land plant GSKs indicated that TaSK1 and TaSK2 belong to clade II of plant GSKs, the Arabidopsis members of which are all involved in Brassinosteroid signaling. Based on a single ancestral gene in the last common ancestor of all land plants, paralogs were acquired and retained through paleopolyploidization events, resulting in six to eight genes in angiosperms. More recent duplication events have increased the number up to ten in some lineages. To account for plant diversity in terms of functionality, morphology and development, attention has to be devoted to Liliopsida resp Poaceae GSKs in addition to Arabidopsis GSKs. In this study, molecular characterization, chromosome localization, kinase activity test and phylogenetic analysis (1) clarified the homologous/paralogous versus homoeologous status of TaSK sequences, (2) pointed out their affiliation to the GSK multigene

  20. PI3K-GSK3 signalling regulates mammalian axon regeneration by inducing the expression of Smad1

    NASA Astrophysics Data System (ADS)

    Saijilafu; Hur, Eun-Mi; Liu, Chang-Mei; Jiao, Zhongxian; Xu, Wen-Lin; Zhou, Feng-Quan

    2013-10-01

    In contrast to neurons in the central nervous system, mature neurons in the mammalian peripheral nervous system (PNS) can regenerate axons after injury, in part, by enhancing intrinsic growth competence. However, the signalling pathways that enhance the growth potential and induce spontaneous axon regeneration remain poorly understood. Here we reveal that phosphatidylinositol 3-kinase (PI3K) signalling is activated in response to peripheral axotomy and that PI3K pathway is required for sensory axon regeneration. Moreover, we show that glycogen synthase kinase 3 (GSK3), rather than mammalian target of rapamycin, mediates PI3K-dependent augmentation of the growth potential in the PNS. Furthermore, we show that PI3K-GSK3 signal is conveyed by the induction of a transcription factor Smad1 and that acute depletion of Smad1 in adult mice prevents axon regeneration in vivo. Together, these results suggest PI3K-GSK3-Smad1 signalling as a central module for promoting sensory axon regeneration in the mammalian nervous system.

  1. Phosphatidylinositol-specific phospholipase C from Bacillus cereus combines intrinsic phosphotransferase and cyclic phosphodiesterase activities: A sup 31 P NMR study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shashidhar, M.S.; Kuppe, A.; Volwerk, J.J.

    1990-09-04

    The inositol phosphate products formed during the cleavage of phosphatidylinositol by phosphatidylinositol-specific phospholipase C from Bacillus cereus were analyzed by {sup 31}P NMR. {sup 31}P NMR spectroscopy can distinguish between the inositol phosphate species and phosphatidylinositol. Chemical shift values (with reference to phosphoric acid) observed are {minus}0.41, 3.62, 4.45, and 16.30 ppm for phosphatidylinositol, myo-inositol 1-monophosphate, myo-inositol 2-monophosphate, and myo-inositol 1,2-cyclic monophosphate, respectively. It is shown that under a variety of experimental conditions this phospholipase C cleaves phosphatidylinositol via an intramolecular phosphotransfer reaction producing diacylglycerol and D-myo-inositol 1,2-cyclic monophosphate. The authors also report the new and unexpected observation that themore » phosphatidylinositol-specific phospholipase C from B. cereus is able to hydrolyze the inositol cyclic phosphate to form D-myo-inositol 1-monophosphate. The enzyme, therefore, possesses phosphotransferase and cyclic phosphodiesterase activities. The second reaction requires thousandfold higher enzyme concentrations to be observed by {sup 31}P NMR. This reaction was shown to be regiospecific in that only the 1-phosphate was produced and stereospecific in that only D-myo-inositol 1,2-cyclic monophosphate was hydrolyzed. Inhibition with a monoclonal antibody specific for the B.cereus phospholipase C showed that the cyclic phosphodiesterase activity is intrinsic to the bacterial enzyme. They propose a two-step mechanism for the phosphatidyl-inositol-specific phospholipase C from B. cereus involving sequential phosphotransferase and cyclic phosphodiesterase activities. This mechanism bears a resemblance to the well-known two-step mechanism of pancreatic ribonuclease, RNase A.« less

  2. Berkeley Supernova Ia Program - I. Observations, data reduction and spectroscopic sample of 582 low-redshift Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Silverman, Jeffrey M.; Foley, Ryan J.; Filippenko, Alexei V.; Ganeshalingam, Mohan; Barth, Aaron J.; Chornock, Ryan; Griffith, Christopher V.; Kong, Jason J.; Lee, Nicholas; Leonard, Douglas C.; Matheson, Thomas; Miller, Emily G.; Steele, Thea N.; Barris, Brian J.; Bloom, Joshua S.; Cobb, Bethany E.; Coil, Alison L.; Desroches, Louis-Benoit; Gates, Elinor L.; Ho, Luis C.; Jha, Saurabh W.; Kandrashoff, Michael T.; Li, Weidong; Mandel, Kaisey S.; Modjaz, Maryam; Moore, Matthew R.; Mostardi, Robin E.; Papenkova, Marina S.; Park, Sung; Perley, Daniel A.; Poznanski, Dovi; Reuter, Cassie A.; Scala, James; Serduke, Franklin J. D.; Shields, Joseph C.; Swift, Brandon J.; Tonry, John L.; Van Dyk, Schuyler D.; Wang, Xiaofeng; Wong, Diane S.

    2012-09-01

    In this first paper in a series, we present 1298 low-redshift (z ≲ 0.2) optical spectra of 582 Type Ia supernovae (SNe Ia) observed from 1989 to 2008 as part of the Berkeley Supernova Ia Program (BSNIP). 584 spectra of 199 SNe Ia have well-calibrated light curves with measured distance moduli, and many of the spectra have been corrected for host-galaxy contamination. Most of the data were obtained using the Kast double spectrograph mounted on the Shane 3 m telescope at Lick Observatory and have a typical wavelength range of 3300-10 400 Å, roughly twice as wide as spectra from most previously published data sets. We present our observing and reduction procedures, and we describe the resulting SN Database, which will be an online, public, searchable data base containing all of our fully reduced spectra and companion photometry. In addition, we discuss our spectral classification scheme (using the SuperNova IDentification code, SNID; Blondin & Tonry), utilizing our newly constructed set of SNID spectral templates. These templates allow us to accurately classify our entire data set, and by doing so we are able to reclassify a handful of objects as bona fide SNe Ia and a few other objects as members of some of the peculiar SN Ia subtypes. In fact, our data set includes spectra of nearly 90 spectroscopically peculiar SNe Ia. We also present spectroscopic host-galaxy redshifts of some SNe Ia where these values were previously unknown. The sheer size of the BSNIP data set and the consistency of our observation and reduction methods make this sample unique among all other published SN Ia data sets and complementary in many ways to the large, low-redshift SN Ia spectra presented by Matheson et al. and Blondin et al. In other BSNIP papers in this series, we use these data to examine the relationships between spectroscopic characteristics and various observables such as photometric and host-galaxy properties.

  3. Constraining the Single-degenerate Channel of Type Ia Supernovae with Stable Iron-group Elements in SNR 3C 397

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dave, Pranav; Kashyap, Rahul; Fisher, Robert

    Recent Suzaku X-ray spectra of supernova remnant (SNR) 3C 397 indicate enhanced stable iron group element abundances of Ni, Mn, Cr, and Fe. Seeking to address key questions about the progenitor and explosion mechanism of 3C 397, we compute nucleosynthetic yields from a suite of multidimensional hydrodynamics models in the near-Chandrasekhar-mass, single-degenerate paradigm for Type Ia supernovae (SNe Ia). Varying the progenitor white dwarf (WD) internal structure, composition, ignition, and explosion mechanism, we find that the best match to the observed iron peak elements of 3C 397 are dense (central density ≥6 × 10{sup 9} g cm{sup −3}), low-carbon WDsmore » that undergo a weak, centrally ignited deflagration, followed by a subsequent detonation. The amount of {sup 56}Ni produced is consistent with a normal or bright normal SNe Ia. A pure deflagration of a centrally ignited, low central density (≃2 × 10{sup 9} g cm{sup −3}) progenitor WD, frequently considered in the literature, is also found to produce good agreement with 3C 397 nucleosynthetic yields, but leads to a subluminous SN Ia event, in conflict with X-ray line width data. Additionally, in contrast to prior work that suggested a large supersolar metallicity for the WD progenitor for SNR 3C 397, we find satisfactory agreement for solar- and subsolar-metallicity progenitors. We discuss a range of implications our results have for the single-degenerate channel.« less

  4. Selective blockade of protein kinase B protects the rat and human myocardium against ischaemic injury

    PubMed Central

    Linares-Palomino, José; Husainy, Muhammad A; Lai, Vien K; Dickenson, John M; Galiñanes, Manuel

    2010-01-01

    Protein kinase B (PKB/Akt) plays a critical role in cell survival but the investigation of its involvement has been limited by the lack of specific pharmacological agents. In this study, using novel PKB inhibitors (VIII and XI), we investigated the role of PKB in cardioprotection of the rat and human myocardium, the location of PKB in relation to mitoKATP channels and p38 mitogen-activated protein kinase (p38 MAPK), and whether the manipulation of PKB can overcome the unresponsiveness to protection of the diabetic myocardium. Myocardial slices from rat left ventricle and from the right atrial appendage of patients undergoing elective cardiac surgery were subjected to 90 min ischaemia/120 min reoxygenation at 37°C. Tissue injury was assessed by creatine kinase (CK) released and determination of cell necrosis and apoptosis. The results showed that blockade of PKB activity caused significant reduction of CK release and cell death, a benefit that was as potent as ischaemic preconditioning and could be reproduced by blockade of phosphatidylinositol 3-kinase (PI-3K) with wortmannin and LY 294002. The protection was time dependent with maximal benefit seen when PKB and PI-3K were inhibited before ischaemia or during both ischaemia and reoxygenation. In addition, it was revealed that PKB is located downstream of mitoKATP channels but upstream of p38 MAPK. PKB inhibition induced a similar degree of protection in the human and rat myocardium and, importantly, it reversed the unresponsiveness to protection of the diabetic myocardium. In conclusion, inhibition of PKB plays a critical role in protection of the mammalian myocardium and may represent a clinical target for the reduction of ischaemic injury. PMID:20403980

  5. The optimal protocol to reduce blood loss and blood transfusion after unilateral total knee replacement: Low-dose IA-TXA plus 30-min drain clamping versus drainage clamping for the first 3 h without IA-TXA.

    PubMed

    Park, Joo Hyun; Choi, Sung Wook; Shin, Eun Ho; Park, Myung Hoon; Kim, Myung Ku

    2017-01-01

    Although intraarticular tranexamic acid (IA-TXA) administration or drainage clamping are popular methods used to reduce blood loss after total knee replacement (TKR), the protocol remains controversial. We aimed (1) to establish new protocols through investigating whether two methods, that is, low-dose (500 mg) IA-TXA plus 30-min drain clamping and drainage clamping for the first 3 h without IA-TXA, can reduce blood loss and blood transfusion after unilateral TKR and (2) to make recommendations related to clinical application. This study, conducted from September 2014 to June 2016 related to enrolled 95 patients with primary osteoarthritis who were to have a unilateral cemented TKR, was nonrandomized and retrospective. In group A, the drain was released following tourniquet deflation. In group B, 500-mg TXA was injected into the knee joint via a drain tube after fascia closure and the drain was clamped for the first 30 min to prevent leakage. In group C, the drain was clamped for the first 3-h postoperation. Demographic characteristics and clinical data were collected, including the levels of hematocrit (Hct), the total blood loss (TBL), drained blood volume (BV), the amount of blood transfused, and any complications that developed. We found a significantly lower postoperative TBL, drained BV, decreasing Hct level, and less transfused BV in the IA-TXA injection group (group B) and the 3-h drainage clamping group (group C) compared to the conventional negative drainage group (group A; p < 0.001). There was no significant difference between groups B and C ( p = 0.99). The drainage clamping method can be safer than IA-TXA administration in patients with risk factor of venous thromboembolic complication. Furthermore, the IA-TXA administration can be more optimal than drainage clamping in patients with high bleeding tendency or lateral retinacular release during TKR, who would be concerned about postoperative wound complication.

  6. Chronic alteration in phosphatidylinositol 4,5-biphosphate levels regulates capsaicin and mustard oil responses.

    PubMed

    Patil, Mayur J; Belugin, Sergei; Akopian, Armen N

    2011-06-01

    There is an agreement that acute (in minutes) hydrolysis and accumulation of phosphatidylinositol 4,5-bisphosphate (PIP(2) ) modulate TRPV1 and TRPA1 activities. Because inflammation results in PIP(2) depletion, persisting for long periods (hours to days) in pain models and in the clinic, we examined whether chronic depletion and accumulation of PIP(2) affect capsaicin (CAP) and mustard oil (MO) responses. In addition, we wanted to evaluate whether the effects of PIP(2) depend on TRPV1 and TRPA1 coexpression and whether the PIP(2) actions vary in expression cells vs. sensory neurons. Chronic PIP(2) production was stimulated by overexpression of phosphatidylinositol-4-phosphate-5-kinase, and PIP(2) -specific phospholipid 5'-phosphatase was selected to reduce plasma membrane levels of PIP(2) . Our results demonstrate that CAP (100 nM) responses and receptor tachyphylaxis are not significantly influenced by chronic changes in PIP(2) levels in wild-type (WT) or TRPA1 null-mutant sensory neurons as well as CHO cells expressing TRPV1 alone or with TRPA1. However, low concentrations of CAP (20 nM) produced a higher response after PIP(2) depletion in cells containing TRPV1 alone but not TRPV1 together with TRPA1. MO (25 μM) responses were also not affected by PIP(2) in WT sensory neurons and cells coexpressing TRPA1 and TRPV1. In contrast, PIP(2) reduction leads to pronounced tachyphylaxis to MO in cells with both channels. Chronic effect of PIP(2) on TRPA1 activity depends on presence of the TRPV1 channel and cell type (CHO vs. sensory neurons). In summary, chronic alterations in PIP(2) levels regulate magnitude of CAP and MO responses as well as MO tachyphylaxis. This regulation depends on coexpression profile of TRPA1 and TRPV1 and cell type. Copyright © 2011 Wiley-Liss, Inc.

  7. Traffic to the malaria parasite food vacuole: a novel pathway involving a phosphatidylinositol 3-phosphate-binding protein.

    PubMed

    McIntosh, Michael T; Vaid, Ankush; Hosgood, H Dean; Vijay, Justin; Bhattacharya, Anindita; Sahani, Mayurbhai H; Baevova, Pavlina; Joiner, Keith A; Sharma, Pushkar

    2007-04-13

    Phosphatidylinositol 3-phosphate (PI3P) is a key ligand for recruitment of endosomal regulatory proteins in higher eukaryotes. Subsets of these endosomal proteins possess a highly selective PI3P binding zinc finger motif belonging to the FYVE domain family. We have identified a single FYVE domain-containing protein in Plasmodium falciparum which we term FCP. Expression and mutagenesis studies demonstrate that key residues are involved in specific binding to PI3P. In contrast to FYVE proteins in other organisms, endogenous FCP localizes to a lysosomal compartment, the malaria parasite food vacuole (FV), rather than to cytoplasmic endocytic organelles. Transfections of deletion mutants further indicate that FCP is essential for trophozoite and FV maturation and that it traffics to the FV via a novel constitutive cytoplasmic to vacuole targeting pathway. This newly discovered pathway excludes the secretory pathway and is directed by a C-terminal 44-amino acid peptide domain. We conclude that an FYVE protein that might be expected to participate in vesicle targeting in the parasite cytosol instead has a vital and functional role in the malaria parasite FV.

  8. Type Ia Supernova Cosmology

    NASA Astrophysics Data System (ADS)

    Leibundgut, B.; Sullivan, M.

    2018-03-01

    The primary agent for Type Ia supernova cosmology is the uniformity of their appearance. We present the current status, achievements and uncertainties. The Hubble constant and the expansion history of the universe are key measurements provided by Type Ia supernovae. They were also instrumental in showing time dilation, which is a direct observational signature of expansion. Connections to explosion physics are made in the context of potential improvements of the quality of Type Ia supernovae as distance indicators. The coming years will see large efforts to use Type Ia supernovae to characterise dark energy.

  9. Cortical NMDA receptor expression in human chronic alcoholism: influence of the TaqIA allele of ANKK1.

    PubMed

    Ridge, Justin P; Dodd, Peter R

    2009-10-01

    Real-time RT-PCR normalized to GAPDH was used to assay N-methyl-D-aspartate (NMDA) receptor NR1, NR2A and NR2B subunit mRNA in human autopsy cortex tissue from chronic alcoholics with and without comorbid cirrhosis of the liver and matched controls. Subunit expression was influenced by the subject's genotype. The TaqIA polymorphism selectively modulated NMDA receptor mean transcript expression in cirrhotic-alcoholic superior frontal cortex, in diametrically opposite ways in male and female subjects. Genetic make-up may differentially influence vulnerability to brain damage by altering the excitation: inhibition balance, particularly in alcoholics with comorbid cirrhosis of the liver. The TaqIA polymorphism occurs within the poorly characterised ankyrin-repeat containing kinase 1 (ANKK1) gene. Using PCR, ANKK1 mRNA transcript was detected in inferior temporal, occipital, superior frontal and primary motor cortex of control human brain. ANKK1 expression may mediate the influence of the TaqIA polymorphism on phenotype.

  10. p110α Hot Spot Mutations E545K and H1047R Exert Metabolic Reprogramming Independently of p110α Kinase Activity.

    PubMed

    Chaudhari, Aditi; Krumlinde, Daniel; Lundqvist, Annika; Akyürek, Levent M; Bandaru, Sashidhar; Skålén, Kristina; Ståhlman, Marcus; Borén, Jan; Wettergren, Yvonne; Ejeskär, Katarina; Rotter Sopasakis, Victoria

    2015-10-01

    The phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) catalytic subunit p110α is the most frequently mutated kinase in human cancer, and the hot spot mutations E542K, E545K, and H1047R are the most common mutations in p110α. Very little is known about the metabolic consequences of the hot spot mutations of p110α in vivo. In this study, we used adenoviral gene transfer in mice to investigate the effects of the E545K and H1047R mutations on hepatic and whole-body glucose metabolism. We show that hepatic expression of these hot spot mutations results in rapid hepatic steatosis, paradoxically accompanied by increased glucose tolerance, and marked glycogen accumulation. In contrast, wild-type p110α expression does not lead to hepatic accumulation of lipids or glycogen despite similar degrees of upregulated glycolysis and expression of lipogenic genes. The reprogrammed metabolism of the E545K and H1047R p110α mutants was surprisingly not dependent on altered p110α lipid kinase activity. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Src family kinase expression and subcellular localization in macrophages: implications for their role in CSF-1-induced macrophage migration.

    PubMed

    Dwyer, Amy R; Mouchemore, Kellie A; Steer, James H; Sunderland, Andrew J; Sampaio, Natalia G; Greenland, Eloise L; Joyce, David A; Pixley, Fiona J

    2016-07-01

    A major role of colony-stimulating factor-1 is to stimulate the differentiation of mononuclear phagocytic lineage cells into adherent, motile, mature macrophages. The colony-stimulating factor-1 receptor transduces colony-stimulating factor-1 signaling, and we have shown previously that phosphatidylinositol 3-kinase p110δ is a critical mediator of colony-stimulating factor-1-stimulated motility through the colony-stimulating factor-1 receptor pY721 motif. Src family kinases are also implicated in the regulation of macrophage motility and in colony-stimulating factor-1 receptor signaling, although functional redundancy of the multiple SFKs expressed in macrophages makes it challenging to delineate their specific functions. We report a comprehensive analysis of individual Src family kinase expression in macrophage cell lines and primary macrophages and demonstrate colony-stimulating factor-1-induced changes in Src family kinase subcellular localization, which provides clues to their distinct and redundant functions in macrophages. Moreover, expression of individual Src family kinases is both species specific and dependent on colony-stimulating factor-1-induced macrophage differentiation. Hck associated with the activated colony-stimulating factor-1 receptor, whereas Lyn associated with the receptor in a constitutive manner. Consistent with this, inhibitor studies revealed that Src family kinases were important for both colony-stimulating factor-1 receptor activation and colony-stimulating factor-1-induced macrophage spreading, motility, and invasion. Distinct colony-stimulating factor-1-induced changes in the subcellular localization of individual SFKs suggest specific roles for these Src family kinases in the macrophage response to colony-stimulating factor-1. © Society for Leukocyte Biology.

  12. Maintaining glycogen synthase kinase-3 activity is critical for mTOR kinase inhibitors to inhibit cancer cell growth

    PubMed Central

    Koo, Junghui; Yue, Ping; Gal, Anthony A.; Khuri, Fadlo R.; Sun, Shi-Yong

    2014-01-01

    mTOR kinase inhibitors which target both mTORC1 and mTORC2 are being evaluated in cancer clinical trials. Here we report that glycogen synthase kinase-3 (GSK3) is a critical determinant for the therapeutic response to this class of experimental drugs. Pharmacological inhibition of GSK3 antagonized their suppressive effects on the growth of cancer cells similarly to genetic attenuation of GSK3. Conversely, expression of a constitutively activated form of GSK3β sensitized cancer cells to mTOR inhibition. Consistent with these findings, higher basal levels of GSK3 activity in a panel of human lung cancer cell lines correlated with more efficacious responses. Mechanistic investigations showed that mTOR kinase inhibitors reduced cyclin D1 levels in a GSK3β-dependent manner, independent of their effects on suppressing mTORC1 signaling and cap binding. Notably, selective inhibition of mTORC2 triggered proteasome-mediated cyclin D1 degradation, suggesting that mTORC2 blockade is responsible for GSK3-dependent reduction of cyclin D1. Silencing expression of the ubiquitin E3 ligase FBX4 rescued this reduction, implicating FBX4 in mediating this effect of mTOR inhibition. Together, our findings define a novel mechanism by which mTORC2 promotes cell growth, with potential implications for understanding the clinical action of mTOR kinase inhibitors. PMID:24626091

  13. Maintaining glycogen synthase kinase-3 activity is critical for mTOR kinase inhibitors to inhibit cancer cell growth.

    PubMed

    Koo, Junghui; Yue, Ping; Gal, Anthony A; Khuri, Fadlo R; Sun, Shi-Yong

    2014-05-01

    mTOR kinase inhibitors that target both mTORC1 and mTORC2 are being evaluated in cancer clinical trials. Here, we report that glycogen synthase kinase-3 (GSK3) is a critical determinant for the therapeutic response to this class of experimental drugs. Pharmacologic inhibition of GSK3 antagonized their suppressive effects on the growth of cancer cells similarly to genetic attenuation of GSK3. Conversely, expression of a constitutively activated form of GSK3β sensitized cancer cells to mTOR inhibition. Consistent with these findings, higher basal levels of GSK3 activity in a panel of human lung cancer cell lines correlated with more efficacious responses. Mechanistic investigations showed that mTOR kinase inhibitors reduced cyclin D1 levels in a GSK3β-dependent manner, independent of their effects on suppressing mTORC1 signaling and cap binding. Notably, selective inhibition of mTORC2 triggered proteasome-mediated cyclin D1 degradation, suggesting that mTORC2 blockade is responsible for GSK3-dependent reduction of cyclin D1. Silencing expression of the ubiquitin E3 ligase FBX4 rescued this reduction, implicating FBX4 in mediating this effect of mTOR inhibition. Together, our findings define a novel mechanism by which mTORC2 promotes cell growth, with potential implications for understanding the clinical action of mTOR kinase inhibitors. ©2014 AACR.

  14. Type IA Supernovae

    NASA Technical Reports Server (NTRS)

    Wheeler, J. Craig

    1992-01-01

    Spectral calculations show that a model based on the thermonuclear explosion of a degenerate carbon/oxygen white dwarf provides excellent agreement with observations of Type Ia supernovae. Identification of suitable evolutionary progenitors remains a severe problem. General problems with estimation of supernova rates are outlined and the origin of Type Ia supernovae from double degenerate systems are discussed in the context of new rates of explosion per H band luminosity, the lack of observed candidates, and the likely presence of H in the vicinity of some SN Ia events. Re-examination of the problems of triggering Type Ia by accretion of hydrogen from a companion shows that there may be an avenue involving cataclysmic variables, especially if extreme hibernation occurs. Novae may channel accreting white dwarfs to a unique locus in accretion rate/mass space. Systems that undergo secular evolution to higher mass transfer rates could lead to just the conditions necessary for a Type Ia explosion. Tests involving fluorescence or absorption in a surrounding circumstellar medium and the detection of hydrogen stripped from a companion, which should appear at low velocity inside the white dwarf ejecta, are suggested. Possible observational confirmation of the former is described.

  15. Two classes of fast-declining Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Dhawan, Suhail; Leibundgut, B.; Spyromilio, J.; Blondin, S.

    2017-06-01

    We aim to characterise a sample of fast-declining Type Ia supernovae (SN Ia) using their bolometric and near-infrared (NIR) properties. Based on these properties, we find that fast-declining SN Ia separate into two categories based on their bolometric and NIR properties. The peak bolometric luminosity (Lmax), the phase of the first maximum relative to the optical, the NIR peak luminosity, and the occurrence of a second maximum in the NIR distinguish a group of very faint SN Ia. Fast-declining supernovae show a large range of peak bolometric luminosities (Lmax differing by up to a factor of 8). All fast-declining SN Ia with Lmax < 0.3× 1043 erg s-1 are spectroscopically classified as 91bg-like and show only a single NIR peak. SNe with Lmax > 0.5× 1043 erg s-1 appear to smoothly connect to normal SN Ia. The total ejecta mass (Mej) values for SNe with enough late time data are ≲1 M⊙, indicating a sub-Chandrasekhar mass progenitor for these SNe.

  16. Association of Factor V Secretion with Protein Kinase B Signaling in Platelets from Horses with Atypical Equine Thrombasthenia.

    PubMed

    Norris, J W; Pombo, M; Shirley, E; Blevins, G; Tablin, F

    2015-01-01

    Two congenital bleeding diatheses have been identified in Thoroughbred horses: Glanzmann thrombasthenia (GT) and a second, novel diathesis associated with abnormal platelet function in response to collagen and thrombin stimulation. Platelet dysfunction in horses with this second thrombasthenia results from a secretory defect. Two affected and 6 clinically normal horses. Ex vivo study. Washed platelets were examined for (1) expression of the αIIb-β3 integrin; (2) fibrinogen binding capacity in response to ADP and thrombin; (3) secretion of dense and α-granules; (4) activation of the mammalian target of rapamycin (mTOR)-protein kinase B (AKT) signaling pathway; and (5) cellular distribution of phosphatidylinositol-4-phosphate-3-kinase, class 2B (PIK3C2B) and SH2 containing inositol-5'-phosphatase 1 (SHIP1). Platelets from affected horses expressed normal amounts of αIIb-β3 integrin and bound fibrinogen normally in response to ADP, but bound 80% less fibrinogen in response to thrombin. α-granules only released 50% as much Factor V as control platelets, but dense granules released their contents normally. Protein kinase B (AKT) phosphorylation was reduced after thrombin activation, but mTOR Complex 2 (mTORC2) and phosphoinositide-dependent kinase 1 (PDK1) signaling were normal. SH2-containing inositol-5'-phosphatase 1 (SHIP1) did not localize to the cytoskeleton of affected platelets and was decreased overall consistent with reduced AKT phosphorylation. Defects in fibrinogen binding, granule secretion, and signal transduction are unique to this thrombasthenia, which we designate as atypical equine thrombasthenia. Copyright © The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of American College of Veterinary Internal Medicine.

  17. OncoPPi-informed discovery of mitogen-activated protein kinase kinase 3 as a novel binding partner of c-Myc | Office of Cancer Genomics

    Cancer.gov

    Mitogen-activated protein kinase kinase 3 (MKK3) is a dual threonine/tyrosine protein kinase that regulates inflammation, proliferation and apoptosis through specific phosphorylation and activation of the p38 mitogen-activated protein kinase. However, the role of MKK3 beyond p38-signaling remains elusive. Recently, we reported a protein-protein interaction (PPI) network of cancer-associated genes, termed OncoPPi, as a resource for the scientific community to generate new biological models. Analysis of the OncoPPi connectivity identified MKK3 as one of the major hub proteins in the network.

  18. Studies of ATM Kinase Activity Using Engineered ATM Sensitive to ATP Analogues (ATM-AS).

    PubMed

    Enari, Masato; Matsushima-Hibiya, Yuko; Miyazaki, Makoto; Otomo, Ryo

    2017-01-01

    Ataxia-telangiectasia mutated (ATM) protein is a member of the phosphatidylinositol 3-phosphate kinase (PI3-K)-related protein kinase (PIKK) family and is implicated in the initiation of signaling pathways following DNA double strand breaks (DSBs) elicited by exposure to ionizing irradiation (IR) or radiomimetic compounds. Loss of function of the ATM gene product results in the human genetic disorder ataxia-telangiectasia (A-T) characterized by neurodegeneration, immunodeficiency, genomic instability, and cancer predisposition. In response to DSBs, ATM is activated and phosphorylates Ser/Thr-Gln (S/T-Q) sequences on numerous proteins participating in DNA-damage responses. Among these proteins, phosphorylation of the tumor suppressor p53 at Ser15 is known as a target for ATM, which leads to the dissociation of MDM2, an E3 ubiquitin ligase, from p53 to prevent MDM2-dependent p53 degradation. Ser46 on p53 is phosphorylated in response to DSBs and contributes to the preferential transactivation of pro-apoptotic genes, such as p53AIP1, Noxa, and PUMA, to prevent tumor formation. Our group have shown that not only ATM preferentially phosphorylates S/T-Q sequences, but also Ser46, which is a noncanonical site with an S-P sequence for ATM. Ser46 on p53 is directly phosphorylated by ATM in a p53 conformation-dependent manner using the ATP analogue-accepting ATM mutant (ATM-AS) system. This protocol summarizes an approach to identify direct numerous targets for ATM kinase and is used to elucidate ATM signaling pathways in the DNA damage responses.

  19. A promiscuous liaison between IL-15 receptor and Axl receptor tyrosine kinase in cell death control

    PubMed Central

    Budagian, Vadim; Bulanova, Elena; Orinska, Zane; Thon, Lutz; Mamat, Uwe; Bellosta, Paola; Basilico, Claudio; Adam, Dieter; Paus, Ralf; Bulfone-Paus, Silvia

    2005-01-01

    Discrimination between cytokine receptor and receptor tyrosine kinase (RTK) signaling pathways is a central paradigm in signal transduction research. Here, we report a ‘promiscuous liaison' between both receptors that enables interleukin (IL)-15 to transactivate the signaling pathway of a tyrosine kinase. IL-15 protects murine L929 fibroblasts from tumor necrosis factor α (TNFα)-induced cell death, but fails to rescue them upon targeted depletion of the RTK, Axl; however, Axl-overexpressing fibroblasts are TNFα-resistant. IL-15Rα and Axl colocalize on the cell membrane and co-immunoprecipitate even in the absence of IL-15, whereby the extracellular part of Axl proved to be essential for Axl/IL-15Rα interaction. Most strikingly, IL-15 treatment mimics stimulation by the Axl ligand, Gas6, resulting in a rapid tyrosine phosphorylation of both Axl and IL-15Rα, and activation of the phosphatidylinositol 3-kinase/Akt pathway. This is also seen in mouse embryonic fibroblasts from wild-type but not Axl−/− or IL-15Rα−/− mice. Thus, IL-15-induced protection from TNFα-mediated cell death involves a hitherto unknown IL-15 receptor complex, consisting of IL-15Rα and Axl RTK, and requires their reciprocal activation initiated by ligand-induced IL-15Rα. PMID:16308569

  20. Modulation of A-type K+ channels by the short-chain cobrotoxin through the protein kinase C-delta isoform decreases membrane excitability in dorsal root ganglion neurons.

    PubMed

    Guo, Qiang; Jiang, You-Jing; Jin, Hong; Jiang, Xing-Hong; Gu, Bo; Zhang, Yi-Ming; Wang, Jian-Gong; Qin, Zheng-Hong; Tao, Jin

    2013-05-01

    A-type K(+) channels are crucial in controlling neuronal excitability, and their regulation in sensory neurons may alter pain sensation. In this study, we identified the functional role of cobrotoxin, the short-chain α-neurotoxin isolated from Naja atra venom, which acts in the regulation of the transient A-type K(+) currents (IA) and membrane excitability in dorsal root ganglion (DRG) neurons via the activation of the muscarinic M3 receptor (M3R). Our results showed that cobrotoxin increased IA in a concentration-dependent manner, whereas the sustained delayed rectifier K(+) currents (IDR) were not affected. Cobrotoxin did not affect the activation of IA markedly, however, it shifted the inactivation curve significantly in the depolarizing direction. The cobrotoxin-induced IA response was blocked by the M3R-selective antagonists DAU-5884 and 4-DAMP. An siRNA targeting the M3R in small DRG neurons abolished the cobrotoxin-induced IA increase. In addition, dialysis of the cells with the novel protein kinase C-delta isoform (PKC-δ) inhibitor δv1-1 or an siRNA targeting PKC-δ abolished the cobrotoxin-induced IA response, whereas inhibition of PKA or classic PKC activity elicited no such effects. Moreover, we observed a significant decrease in the firing rate of the neuronal action potential induced by M3R activation. Pretreatment of the cells with 4-aminopyridine, a selective blocker of IA, abolished this effect. Taken together, these results suggest that the short-chain cobrotoxin selectively enhances IA via a novel PKC-δ-dependent pathway. This effect occurred via the activation of M3R and might contribute to its neuronal hypoexcitability in small DRG neurons. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Phosphoinositide kinases and the synthesis of polyphosphoinositides in higher plant cells

    NASA Technical Reports Server (NTRS)

    Drobak, B. K.; Dewey, R. E.; Boss, W. F.; Davies, E. (Principal Investigator)

    1999-01-01

    Phosphoinositides are a family of inositol-containing phospholipids which are present in all eukaryotic cells. Although in most cells these lipids, with the exception of phosphatidylinositol, constitute only a very minor proportion of total cellular lipids, they have received immense attention by researchers in the past 15-20 years. This is due to the discovery that these lipids, rather than just having structural functions, play key roles in a wide range of important cellular processes. Much less is known about the plant phosphoinositides than about their mammalian counterparts. However, it has been established that a functional phosphoinositide system exists in plant cells and it is becoming increasingly clear that inositol-containing lipids are likely to play many important roles throughout the life of a plant. It is not our intention to give an exhaustive overview of all aspects of the field, but rather we focus on the phosphoinositide kinases responsible for the synthesis of all phosphorylated forms of phosphatidylinositol. Also, we mention some of the aspects of current phosphoinositide research which, in our opinion, are most likely to provide a suitable starting point for further research into the role of phosphoinositides in plants.

  2. Cyanidin-3-rutinoside increases glucose uptake by activating the PI3K/Akt pathway in 3T3-L1 adipocytes.

    PubMed

    Choi, Kyung Ha; Lee, Hyun Ah; Park, Mi Hwa; Han, Ji-Sook

    2017-09-01

    In this study, the effect of cyanidin-3-rutinoside (C3R) on glucose uptake by 3T3-L1 adipocytes was studied. C3R significantly increased glucose uptake, which was associated with enhanced plasma membrane glucose transporter type 4 (PM-GLUT4) expression in 3T3-L1 adipocytes. The potentiating effect of C3R on glucose uptake and PM-GLUT4 expression was related to enhanced phosphorylation of insulin receptor substrate 1 (IRS-1) and Akt, as well as augmented activation of phosphatidylinositol-3-kinase (PI3K) in the insulin signaling pathway. C3R induced glucose uptake was inhibited only by the PI3K inhibitor, but not by an AMPK inhibitor in 3T3-L1 adipocytes. Therefore, C3R likely up-regulates glucose uptake and PM-GLUT4 expression in 3T3-L1 adipocytes by activating the PI3K/Akt pathways. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Dysfunction of protein kinase FA/GSK-3 alpha in lymphocytes of patients with schizophrenic disorder.

    PubMed

    Yang, S D; Yu, J S; Lee, T T; Yang, C C; Ni, M H; Yang, Y Y

    1995-09-01

    As compared to normal people, the lymphocytes of patients with schizophrenia were found to have an impairment of ATP.Mg-dependent protein phosphatase activation. More importantly, the impaired protein phosphatase activation in the lymphocytes of schizophrenic patients could be consistently and completely restored to normal by exogenous pure protein kinase FA/glycogen synthase kinase-3 alpha (kinase FA/GSK-3 alpha) (the activating factor of ATP.Mg-dependent protein phosphatase), indicating that the molecular mechanism for the impaired protein phosphatase activation in schizophrenic patients may be due to a functional loss of kinase FA/GSK-3 alpha. Immunoblotting and kinase activity analysis in an anti-kinase FA/GSK-3 alpha immunoprecipitate further demonstrate that both cellular activities and protein levels of kinase FA/GSK-3 alpha in the lymphocytes of schizophrenic patients were greatly impared as compared to normal controls. Statistical analysis revealed that the lymphocytes isolated from 37 normal people contain kinase FA/GSK-3 alpha activity in the high levels of 14.8 +/- 2.4 units/mg of cell protein, whereas the lymphocytes of 48 patients with schizophrenic disorder contain kinase FA/GSK-3 alpha activity in the low levels of 2.8 +/- 1.6 units/mg, indicating that the different levels of kinase FA/GSK-3 alpha activity between schizophrenic patients and normal people are statistically significant. Taken together, the results provide initial evidence that patients with schizophrenic disorder may have a common impairment in the protein levels and cellular activities of kinase FA/GSK-3 alpha, a multisubstrate protein kinase and a multisubstrate protein phosphatase activator in their lymphocytes.

  4. Biological Effects of c-Mer Receptor Tyrosine Kinase in Hematopoietic Cells Depend on the Grb2 Binding Site in the Receptor and Activation of NF-κB

    PubMed Central

    Georgescu, Maria-Magdalena; Kirsch, Kathrin H.; Shishido, Tomoyuki; Zong, Chen; Hanafusa, Hidesaburo

    1999-01-01

    The c-Mer receptor tyrosine kinase (RTK) is most closely related to chicken c-Eyk and belongs to the Axl RTK subfamily. Although not detected in normal lymphocytes, c-Mer is expressed in B- and T-cell leukemia cell lines, suggesting an association with lymphoid malignancies. To gain an understanding of the role of this receptor in lymphoid cells, we expressed in murine interleukin-3 (IL-3)-dependent Ba/F3 pro-B-lymphocyte cells a constitutively active receptor, CDMer, formed from the CD8 extracellular domain and the c-Mer intracellular domain. Cells transfected with a plasmid encoding the CDMer receptor became IL-3 independent. When tyrosine (Y)-to-phenylalanine (F) mutations were introduced into c-Mer, only the Y867 change significantly reduced the IL-3-independent cell proliferation. The Y867 residue in the CDMer receptor mediated the binding of Grb2, which recruited the p85 phosphatidylinositol 3-kinase (PI 3-kinase). Despite the difference in promotion of proliferation, both the CDMer and mutant F867 receptors activated Erk in transfected cells. On the other hand, we found that both transcriptional activation of NF-κB and activation of PI 3-kinase were significantly suppressed with the F867 mutant receptor, suggesting that the activation of antiapoptotic pathways is the major mechanism for the observed phenotypic difference. Consistent with this notion, apoptosis induced by IL-3 withdrawal was strongly prevented by CDMer but not by the F867 mutant receptor. PMID:9891051

  5. The Guareschi Pyridine Scaffold as a Valuable Platform for the Identification of Selective PI3K Inhibitors.

    PubMed

    Galli, Ubaldina; Ciraolo, Elisa; Massarotti, Alberto; Margaria, Jean Piero; Sorba, Giovanni; Hirsch, Emilio; Tron, Gian Cesare

    2015-09-18

    A novel series of 4-aryl-3-cyano-2-(3-hydroxyphenyl)-6-morpholino-pyridines have been designed as potential phosphatidylinositol-3-kinase (PI3K) inhibitors. The compounds have been synthesized using the Guareschi reaction to prepare the key 4-aryl-3-cyano-2,6-dihydroxypyridine intermediate. A different selectivity according to the nature of the aryl group has been observed. Compound 9b is a selective inhibitor against the PI3Kα isoform, maintaining a good inhibitory activity. Docking studies were also performed in order to rationalize its profile of selectivity.

  6. Src-family-tyrosine kinase Lyn is critical for TLR2-mediated NF-κB activation through the PI 3-kinase signaling pathway.

    PubMed

    Toubiana, Julie; Rossi, Anne-Lise; Belaidouni, Nadia; Grimaldi, David; Pene, Frederic; Chafey, Philippe; Comba, Béatrice; Camoin, Luc; Bismuth, Georges; Claessens, Yann-Erick; Mira, Jean-Paul; Chiche, Jean-Daniel

    2015-10-01

    TLR2 has a prominent role in host defense against a wide variety of pathogens. Stimulation of TLR2 triggers MyD88-dependent signaling to induce NF-κB translocation, and activates a Rac1-PI 3-kinase dependent pathway that leads to transactivation of NF-κB through phosphorylation of the P65 NF-κB subunit. This transactivation pathway involves tyrosine phosphorylations. The role of the tyrosine kinases in TLR signaling is controversial, with discrepancies between studies using only chemical inhibitors and knockout mice. Here, we show the involvement of the tyrosine-kinase Lyn in TLR2-dependent activation of NF-κB in human cellular models, by using complementary inhibition strategies. Stimulation of TLR2 induces the formation of an activation cluster involving TLR2, CD14, PI 3-kinase and Lyn, and leads to the activation of AKT. Lyn-dependent phosphorylation of the p110 catalytic subunit of PI 3-kinase is essential to the control of PI 3-kinase biological activity upstream of AKT and thereby to the transactivation of NF-κB. Thus, Lyn kinase activity is crucial in TLR2-mediated activation of the innate immune response in human mononuclear cells. © The Author(s) 2015.

  7. Phosphorylation regulates the sensitivity of voltage-gated Kv7.2 channels towards phosphatidylinositol-4,5-bisphosphate.

    PubMed

    Salzer, Isabella; Erdem, Fatma Asli; Chen, Wei-Qiang; Heo, Seok; Koenig, Xaver; Schicker, Klaus W; Kubista, Helmut; Lubec, Gert; Boehm, Stefan; Yang, Jae-Won

    2017-02-01

    Phosphatidylinositol-4,5-bisphosphate (PIP 2 ) is a key regulator of many membrane proteins, including voltage-gated Kv7.2 channels. In this study, we identified the residues in five phosphorylation sites and their corresponding protein kinases, the former being clustered within one of four putative PIP 2 -binding domains in Kv7.2. Dephosphorylation of these residues reduced the sensitivity of Kv7.2 channels towards PIP 2 . Dephosphorylation of Kv7.2 affected channel inhibition via M 1 muscarinic receptors, but not via bradykinin receptors. Our data indicated that phosphorylation of the Kv7.2 channel was necessary to maintain its low affinity for PIP 2 , thereby ensuring the tight regulation of the channel via G protein-coupled receptors. The function of numerous ion channels is tightly controlled by G protein-coupled receptors (GPCRs). The underlying signalling mechanisms may involve phosphorylation of channel proteins and participation of phosphatidylinositol-4,5-bisphosphate (PIP 2 ). Although the roles of both mechanisms have been investigated extensively, thus far only little has been reported on their interaction in channel modulation. GPCRs govern Kv7 channels, the latter playing a major role in the regulation of neuronal excitability by determining the levels of PIP 2 and through phosphorylation. Using liquid chromatography-coupled mass spectrometry for Kv7.2 immunoprecipitates of rat brain membranes and transfected cells, we mapped a cluster of five phosphorylation sites in one of the PIP2-binding domains. To evaluate the effect of phosphorylation on PIP 2 -mediated Kv7.2 channel regulation, a quintuple alanine mutant of these serines (S427/S436/S438/S446/S455; A 5 mutant) was generated to mimic the dephosphorylated state. Currents passing through these mutated channels were less sensitive towards PIP 2 depletion via the voltage-sensitive phosphatase Dr-VSP than were wild-type channels. In vitro phosphorylation assays with the purified C-terminus of Kv7

  8. Phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) and Janus kinase/signal transducer and activator of transcription (JAK/STAT) follicular signalling is conserved in the mare ovary.

    PubMed

    Hall, Sally E; Upton, Rose M O; McLaughlin, Eileen A; Sutherland, Jessie M

    2017-09-26

    The mare ovary is unique in its anatomical structure; however, the signalling pathways responsible for physiological processes, such as follicular activation, remain uncharacterised. This provided us with the impetus to explore whether signalling molecules from important folliculogenesis pathways, phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) and Janus kinase/signal transducer and activator of transcription (JAK/STAT), are conserved in the mare ovary. Messenger RNA expression of six genes important in follicle development was measured using quantitative polymerase chain reaction and protein localisation of key pathway members (PI3K, AKT1, phosphatase and tensin homologue (PTEN), JAK1, STAT3 and suppressor of cytokine signalling 4 (SOCS4)) was compared in tissue from fetal and adult mare ovaries. Tissue from adult ovaries exhibited significantly increased levels of mRNA expression of PI3K, AKT1, PTEN, JAK1, STAT3 and SOCS4 compared with tissue from fetal ovaries. PI3K, AKT1, JAK1 and STAT3 demonstrated redistributed localisation, from pregranulosa cells in fetal development, to both the oocyte and granulosa cells of follicles in the adult ovary, whilst negative feedback molecules PTEN and SOCS4 were only localised to the granulosa cells in the adult ovary. These findings suggest that the PI3K/AKT and JAK/STAT signalling pathways are utilised during folliculogenesis in the mare, similarly to previously studied mammalian species, and may serve as useful biomarkers for assessment of ovary development in the horse.

  9. Cervical Cancer Stage IA

    MedlinePlus

    ... of the cervix and vagina. An inset shows cancer in the cervix that is up to 5 mm deep, but ... microscope is found in the tissues of the cervix. In stage IA1, the cancer is not more than 3 millimeters deep and ...

  10. The docking protein Gab1 is the primary mediator of EGF-stimulated activation of the PI-3K/Akt cell survival pathway

    PubMed Central

    Mattoon, Dawn R; Lamothe, Betty; Lax, Irit; Schlessinger, Joseph

    2004-01-01

    Background Gab1 is a docking protein that recruits phosphatidylinositol-3 kinase (PI-3 kinase) and other effector proteins in response to the activation of many receptor tyrosine kinases (RTKs). As the autophosphorylation sites on EGF-receptor (EGFR) do not include canonical PI-3 kinase binding sites, it is thought that EGF stimulation of PI-3 kinase and its downstream effector Akt is mediated by an indirect mechanism. Results We used fibroblasts isolated from Gab1-/- mouse embryos to explore the mechanism of EGF stimulation of the PI-3 kinase/Akt anti-apoptotic cell signaling pathway. We demonstrate that Gab1 is essential for EGF stimulation of PI-3 kinase and Akt in these cells and that these responses are mediated by complex formation between p85, the regulatory subunit of PI-3 kinase, and three canonical tyrosine phosphorylation sites on Gab1. Furthermore, complex formation between Gab1 and the protein tyrosine phosphatase Shp2 negatively regulates Gab1 mediated PI-3 kinase and Akt activation following EGF-receptor stimulation. We also demonstrate that tyrosine phosphorylation of ErbB3 may lead to recruitment and activation of PI-3 kinase and Akt in Gab1-/- MEFs. Conclusions The primary mechanism of EGF-induced stimulation of the PI-3 kinase/Akt anti-apoptotic pathway occurs via the docking protein Gab1. However, in cells expressing ErbB3, EGF and neuroregulin can stimulate PI-3 kinase and Akt activation in a Gab1-dependent or Gab1-independent manner. PMID:15550174

  11. The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star.

    PubMed

    Howell, D Andrew; Sullivan, Mark; Nugent, Peter E; Ellis, Richard S; Conley, Alexander J; Le Borgne, Damien; Carlberg, Raymond G; Guy, Julien; Balam, David; Basa, Stephane; Fouchez, Dominique; Hook, Isobel M; Hsiao, Eric Y; Neill, James D; Pain, Reynald; Perrett, Kathryn M; Pritchet, Christopher J

    2006-09-21

    The accelerating expansion of the Universe, and the need for dark energy, were inferred from observations of type Ia supernovae. There is a consensus that type Ia supernovae are thermonuclear explosions that destroy carbon-oxygen white dwarf stars that have accreted matter from a companion star, although the nature of this companion remains uncertain. These supernovae are thought to be reliable distance indicators because they have a standard amount of fuel and a uniform trigger: they are predicted to explode when the mass of the white dwarf nears the Chandrasekhar mass of 1.4 solar masses (M(o)). Here we show that the high-redshift supernova SNLS-03D3bb has an exceptionally high luminosity and low kinetic energy that both imply a super-Chandrasekhar-mass progenitor. Super-Chandrasekhar-mass supernovae should occur preferentially in a young stellar population, so this may provide an explanation for the observed trend that overluminous type Ia supernovae occur only in 'young' environments. As this supernova does not obey the relations that allow type Ia supernovae to be calibrated as standard candles, and as no counterparts have been found at low redshift, future cosmology studies will have to consider possible contamination from such events.

  12. A novel imidazopyridine analogue as a phosphatidylinositol 3-kinase inhibitor against human breast cancer.

    PubMed

    Lee, Hyunseung; Li, Guang-Yong; Jeong, Yujeong; Jung, Kyung Hee; Lee, Ju-Hee; Ham, Kyungrok; Hong, Sungwoo; Hong, Soon-Sun

    2012-05-01

    Potentiation of anti-breast cancer activity of an imidazopyridine-based PI3Kα inhibitor, HS-104, was investigated in human breast cancer cells. HS-104 shows strong inhibitory activity against recombinant PI3Kα isoform and the PI3K signaling pathway, resulting in anti-proliferative activity in breast cancer cells. It also induced cell cycle arrest at the G(2)/M phase as well as apoptosis. Furthermore, oral administration of HS-104 significantly inhibited the growth of tumor in SkBr3 mouse xenograft models. Therefore, HS-104 could be considered as a potential candidate for the treatment of human breast cancer. Crown Copyright © 2011. Published by Elsevier Ireland Ltd. All rights reserved.

  13. Glycogen synthase kinase-3 as drug target: from wallflower to center of attention.

    PubMed

    Van Wauwe, Jean; Haefner, Burkhard

    2003-11-01

    Some 20 years ago, glycogen synthase kinase-3 (GSK-3) was categorized as one of several protein kinases that could phosphorylate glycogen synthase and regulate the glucose metabolism pathway. Today, GSK-3 is being identified as a ubiquitous serine/threonine protein kinase that participates in a multitude of cellular processes, ranging from cell membrane-to-nucleus signaling, gene transcription, translation, cytoskeletal organization to cell cycle progression and survival. Two functional aspects make GSK-3 a peculiar kinase: its activity is constitutive and downregulated after cell activation by phosphorylation or interaction with inhibitory proteins, and the enzyme prefers substrates that are specifically prepared, that is prephosphorylated, by other kinases. Its pleiotropic but unique activities have made GSK-3 a much sought-after target for the treatment of prevalent human diseases such as type 2 diabetes and Alzheimer's disease. Recent drug discovery efforts have identified small-molecule, orally active inhibitors of GSK-3. This accomplishment may represent the first step toward the development of novel therapeutic agents.

  14. Mapping Calcium Rich Ejecta in Two Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Fesen, Robert

    2016-10-01

    Type Ia supernovae (SNe Ia) are thermonuclear explosions of white dwarfs (WDs) in close binary systems with either a non-degenerate or WD companion. SN Ia explosion computations are quite challenging, involving a complex interplay of turbulent hydrodynamics, nuclear burning, conduction, radiative transfer in iron-group rich material and possibly magnetic fields leading to significant uncertainties. Several key questions about expansion asymmetries and the overall characteristics of SNe Ia could be resolved if one could obtain direct observations of the internal kinematics and elemental distributions of young SN Ia remnants.We propose to use WFC3/UVIS to obtain images of the normal Type Ia supernova remnant 0519-69.0 and the overluminous Type Ia supernova remnant 0509-67.5 in the LMC. The Ca II on-band F390M filter and off-band F336W and FQ422M filters will be used to determine the spatial extent and density distributions of the Ca-rich ejecta via resonance line absorption. Differences in the observed on and off band Ca II fluxes for LMC stars located behind these young 400 - 600 yr old remnants will yield calcium column density estimates for multiple lines-of-sight within these remnants. These results will be compared to the calcium distribution seen in SN 1885, a subluminous SN Ia in M31, already imaged by HST.The resulting calcium density distribution maps for both a normal and overluminous SN Ia events will provide powerful insights regarding the structure and kinematics of calcium-rich ejecta in three different type Ia subclass events, and unique empirical data with which to test current SN Ia explosion models.

  15. Type Ia Supernova Light Curve Inference: Hierarchical Models for Nearby SN Ia in the Optical and Near Infrared

    NASA Astrophysics Data System (ADS)

    Mandel, Kaisey; Kirshner, R. P.; Narayan, G.; Wood-Vasey, W. M.; Friedman, A. S.; Hicken, M.

    2010-01-01

    I have constructed a comprehensive statistical model for Type Ia supernova light curves spanning optical through near infrared data simultaneously. The near infrared light curves are found to be excellent standard candles (sigma(MH) = 0.11 +/- 0.03 mag) that are less vulnerable to systematic error from dust extinction, a major confounding factor for cosmological studies. A hierarchical statistical framework incorporates coherently multiple sources of randomness and uncertainty, including photometric error, intrinsic supernova light curve variations and correlations, dust extinction and reddening, peculiar velocity dispersion and distances, for probabilistic inference with Type Ia SN light curves. Inferences are drawn from the full probability density over individual supernovae and the SN Ia and dust populations, conditioned on a dataset of SN Ia light curves and redshifts. To compute probabilistic inferences with hierarchical models, I have developed BayeSN, a Markov Chain Monte Carlo algorithm based on Gibbs sampling. This code explores and samples the global probability density of parameters describing individual supernovae and the population. I have applied this hierarchical model to optical and near infrared data of over 100 nearby Type Ia SN from PAIRITEL, the CfA3 sample, and the literature. Using this statistical model, I find that SN with optical and NIR data have a smaller residual scatter in the Hubble diagram than SN with only optical data. The continued study of Type Ia SN in the near infrared will be important for improving their utility as precise and accurate cosmological distance indicators.

  16. 77 FR 68683 - Amendment of Class E Airspace; Forest City, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ...-0654; Airspace Docket No. 12-ACE-3] Amendment of Class E Airspace; Forest City, IA AGENCY: Federal... Forest City, IA. Additional controlled airspace is necessary to accommodate new Area Navigation (RNAV... Federal Register a notice of proposed rulemaking (NPRM) to amend Class E airspace for the Forest City, IA...

  17. Glycogen Synthase Kinase 3 Protein Kinase Activity Is Frequently Elevated in Human Non-Small Cell Lung Carcinoma and Supports Tumour Cell Proliferation

    PubMed Central

    O′Flaherty, Linda; Pardo, Olivier E.; Dzien, Piotr; Phillips, Lois; Morgan, Carys; Pawade, Joya; May, Margaret T.; Sohail, Muhammad; Hetzel, Martin R.; Seckl, Michael J.; Tavaré, Jeremy M.

    2014-01-01

    Background Glycogen synthase kinase 3 (GSK3) is a central regulator of cellular metabolism, development and growth. GSK3 activity was thought to oppose tumourigenesis, yet recent studies indicate that it may support tumour growth in some cancer types including in non-small cell lung carcinoma (NSCLC). We examined the undefined role of GSK3 protein kinase activity in tissue from human NSCLC. Methods The expression and protein kinase activity of GSK3 was determined in 29 fresh frozen samples of human NSCLC and patient-matched normal lung tissue by quantitative immunoassay and western blotting for the phosphorylation of three distinct GSK3 substrates in situ (glycogen synthase, RelA and CRMP-2). The proliferation and sensitivity to the small-molecule GSK3 inhibitor; CHIR99021, of NSCLC cell lines (Hcc193, H1975, PC9 and A549) and non-neoplastic type II pneumocytes was further assessed in adherent culture. Results Expression and protein kinase activity of GSK3 was elevated in 41% of human NSCLC samples when compared to patient-matched control tissue. Phosphorylation of GSK3α/β at the inhibitory S21/9 residue was a poor biomarker for activity in tumour samples. The GSK3 inhibitor, CHIR99021 dose-dependently reduced the proliferation of three NSCLC cell lines yet was ineffective against type II pneumocytes. Conclusion NSCLC tumours with elevated GSK3 protein kinase activity may have evolved dependence on the kinase for sustained growth. Our results provide further important rationale for exploring the use of GSK3 inhibitors in treating NSCLC. PMID:25486534

  18. Germinal Center Kinases SmKIN3 and SmKIN24 Are Associated with the Sordaria macrospora Striatin-Interacting Phosphatase and Kinase (STRIPAK) Complex

    PubMed Central

    Frey, Stefan; Reschka, Eva J.; Pöggeler, Stefanie

    2015-01-01

    The striatin-interacting phosphatase and kinase (STRIPAK) complex is composed of striatin, protein phosphatase PP2A and protein kinases that regulate development in animals and fungi. In the filamentous ascomycete Sordaria macrospora, it is required for fruiting-body development and cell fusion. Here, we report on the presence and function of STRIPAK-associated kinases in ascomycetes. Using the mammalian germinal center kinases (GCKs) MST4, STK24, STK25 and MINK1 as query, we identified the two putative homologs SmKIN3 and SmKIN24 in S. macrospora. A BLASTP search revealed that both kinases are conserved among filamentous ascomycetes. The physical interaction of the striatin homolog PRO11 with SmKIN3 and SmKIN24 were verified by yeast two-hybrid (Y2H) interaction studies and for SmKIN3 by co-Immunoprecipitation (co-IP). In vivo localization found that both kinases were present at the septa and deletion of both Smkin3 and Smkin24 led to abnormal septum distribution. While deletion of Smkin3 caused larger distances between adjacent septa and increased aerial hyphae, deletion of Smkin24 led to closer spacing of septa and to sterility. Although phenotypically distinct, both kinases appear to function independently because the double-knockout strain ΔSmkin3/ΔSmkin24 displayed the combined phenotypes of each single-deletion strain. PMID:26418262

  19. Germinal Center Kinases SmKIN3 and SmKIN24 Are Associated with the Sordaria macrospora Striatin-Interacting Phosphatase and Kinase (STRIPAK) Complex.

    PubMed

    Frey, Stefan; Reschka, Eva J; Pöggeler, Stefanie

    2015-01-01

    The striatin-interacting phosphatase and kinase (STRIPAK) complex is composed of striatin, protein phosphatase PP2A and protein kinases that regulate development in animals and fungi. In the filamentous ascomycete Sordaria macrospora, it is required for fruiting-body development and cell fusion. Here, we report on the presence and function of STRIPAK-associated kinases in ascomycetes. Using the mammalian germinal center kinases (GCKs) MST4, STK24, STK25 and MINK1 as query, we identified the two putative homologs SmKIN3 and SmKIN24 in S. macrospora. A BLASTP search revealed that both kinases are conserved among filamentous ascomycetes. The physical interaction of the striatin homolog PRO11 with SmKIN3 and SmKIN24 were verified by yeast two-hybrid (Y2H) interaction studies and for SmKIN3 by co-Immunoprecipitation (co-IP). In vivo localization found that both kinases were present at the septa and deletion of both Smkin3 and Smkin24 led to abnormal septum distribution. While deletion of Smkin3 caused larger distances between adjacent septa and increased aerial hyphae, deletion of Smkin24 led to closer spacing of septa and to sterility. Although phenotypically distinct, both kinases appear to function independently because the double-knockout strain ΔSmkin3/ΔSmkin24 displayed the combined phenotypes of each single-deletion strain.

  20. Emodin induces neurite outgrowth through PI3K/Akt/GSK-3β-mediated signaling pathways in Neuro2a cells.

    PubMed

    Park, Shin-Ji; Jin, Mei Ling; An, Hyun-Kyu; Kim, Kyoung-Sook; Ko, Min Jung; Kim, Cheol Min; Choi, Young Whan; Lee, Young-Choon

    2015-02-19

    In this study, a neurite outgrowth-inducing substance was isolated from the ethylacetate extract of the Polygonum multiflorum roots and identified as emodin by gas-liquid chromatography-mass spectrometry and (1)H NMR and (13)C NMR. Emodin displayed remarkable neurite outgrowth-inducing activity in Neuro2a cells, as demonstrated by morphological changes and immunocytochemistry for class III β-tubulin. Emodin exhibited a stronger neutrophic activity than retinoic acid (RA) known as inducer of neurite outgrowth in Neuro2a cells. Emodin treatment resulted in marked increases in phosphorylation of Akt a direct downstream signaling molecule of phosphatidylinositol 3-kinase (PI3K), but upstream of glycogen synthase kinase-3β (GSK-3β) and cAMP response element-binding protein (CREB). These augmentations and neurite-bearing cells induced by emodin were remarkably reduced by the addition of PI3K inhibitor LY294002. These results demonstrate that emodin induces neuronal differentiation of Neuro2a cells via PI3K/Akt/GSK-3β pathway. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.