Science.gov

Sample records for ia sn 2005bl

  1. Type Ia supernova diversity: Studies of SN 2007qd, SN 2008Q and SN 2011fe

    NASA Astrophysics Data System (ADS)

    McClelland, Colin M.

    Type Ia supernovae (SN Ia) have proven to be incredibly useful as distance indicators and in nuclear astrophysics, but there remain many unanswered questions as to their nature. We examine three particular SN Ia at length in an attempt to provide constraints on both their theory and their application to cosmology. We first present SN 2007qd, one of the lowest-luminosity SN Ia ever discovered. It appears to belong to the SN 2002cx-like subclass of peculiar SN Ia. We observe and analyze the photospheric-phase spectra and photometry for this event and determine that, despite its extreme nature, it still appears to be a thermonuclear event rather than a core-collapse SN Ic. We also discover a possible relation between the luminosity and the low expansion velocities (2000˜7000 km/s) of similar events, and determine that they constitute a well-defined group of SN Ia. From the explosion kinematics and the content of the spectra, we argue that SN 2007qd was likely caused by a pure deflagration of a carbon and oxygen white dwarf. We then consider SN 2008Q, a SN Ia that exploded in the same early-type host galaxy as the peculiar SN 2000cx. This provided a chance for a direct comparison of two SN Ia at the same distance, extinction and host environment. We combine photometry from the ultraviolet through to the mid-infrared (MIR) and create a picture of how this SN evolved bolometrically over a span of two years. We discover that SN 2008Q was relatively bright in the ultraviolet, and characterize the possible existence of a class of SN Ia with similar UV excesses. We identify intrinsic differences between SN 2008Q and SN 2000cx, and discuss what this means for the variation in explosion and nebular physics in SN Ia events. We present next the mid-infrared and optical decay of SN 2011fe. This SN Ia exploded in the nearby galaxy M101, allowing observations of high signal-to-noise during the later phases. We examine this SN with Spitzer/IRAC MIR photometry and discover that the

  2. Constraining cosmological parameter with SN Ia

    NASA Astrophysics Data System (ADS)

    Indra Putri, A. N.; Wulandari, H. R. Tri

    2016-11-01

    A type I supemovae (SN Ia) is an exploding white dwarf, whose mass exceeds Chandrasekar limit (1.44 solar mass). If a white dwarf is in a binary system, it may accrete matter from the companion, resulting in an excess mass that cannot be balanced by the pressure of degenerated electrons in the core. SNe Ia are highly luminous objects, that they are visible from very high distances. After some corrections (stretch (s), colour (c), K-corrections, etc.), the variations in the light curves of SNe Ia can be suppressed to be no more than 10%. Their high luminosity and almost uniform intrinsic brightness at the peak light, i.e. MB ∼ -19, make SNe Ia ideal standard candle. Because of their visibility from large distances, SNe Ia can be employed as a cosmological measuring tool. It was analysis of SNe Ia data that indicated for the first time, that the universe is not only expanding, but also accelerating. This work analyzed a compilation of SNe Ia data to determine several cosmological parameters (H0, Ωm, Ωa, and w). It can be concluded from the analysis, that our universe is a flat, dark energy dominated universe, and that the cosmological constant A is a suitable candidate for dark energy.

  3. Comparison of recent SnIa datasets

    SciTech Connect

    Sanchez, J.C. Bueno; Perivolaropoulos, L.; Nesseris, S. E-mail: nesseris@nbi.ku.dk

    2009-11-01

    We rank the six latest Type Ia supernova (SnIa) datasets (Constitution (C), Union (U), ESSENCE (Davis) (E), Gold06 (G), SNLS 1yr (S) and SDSS-II (D)) in the context of the Chevalier-Polarski-Linder (CPL) parametrization w(a) = w{sub 0}+w{sub 1}(1−a), according to their Figure of Merit (FoM), their consistency with the cosmological constant (ΛCDM), their consistency with standard rulers (Cosmic Microwave Background (CMB) and Baryon Acoustic Oscillations (BAO)) and their mutual consistency. We find a significant improvement of the FoM (defined as the inverse area of the 95.4% parameter contour) with the number of SnIa of these datasets ((C) highest FoM, (U), (G), (D), (E), (S) lowest FoM). Standard rulers (CMB+BAO) have a better FoM by about a factor of 3, compared to the highest FoM SnIa dataset (C). We also find that the ranking sequence based on consistency with ΛCDM is identical with the corresponding ranking based on consistency with standard rulers ((S) most consistent, (D), (C), (E), (U), (G) least consistent). The ranking sequence of the datasets however changes when we consider the consistency with an expansion history corresponding to evolving dark energy (w{sub 0},w{sub 1}) = (−1.4,2) crossing the phantom divide line w = −1 (it is practically reversed to (G), (U), (E), (S), (D), (C)). The SALT2 and MLCS2k2 fitters are also compared and some peculiar features of the SDSS-II dataset when standardized with the MLCS2k2 fitter are pointed out. Finally, we construct a statistic to estimate the internal consistency of a collection of SnIa datasets. We find that even though there is good consistency among most samples taken from the above datasets, this consistency decreases significantly when the Gold06 (G) dataset is included in the sample.

  4. THE PRODUCTION RATE OF SN Ia EVENTS IN GLOBULAR CLUSTERS

    SciTech Connect

    Washabaugh, Pearce C.; Bregman, Joel N. E-mail: jbregman@umich.edu

    2013-01-01

    In globular clusters, dynamical evolution produces luminous X-ray emitting binaries at a rate about 200 times greater than in the field. If globular clusters also produce SN Ia at a high rate, it would account for many of the SN Ia production in early-type galaxies and provide insight into their formation. Here we use archival Hubble Space Telescope (HST) images of nearby galaxies that have hosted an SN Ia to examine the rate at which globular clusters produce these events. The location of the SN Ia is registered on an HST image obtained before the event or after the supernova (SN) faded. Of the 36 nearby galaxies examined, 21 had sufficiently good data to search for globular cluster hosts. None of the 21 SNe have a definite globular cluster counterpart, although there are some ambiguous cases. This places an upper limit to the enhancement rate of SN Ia production in globular clusters of about 42 at the 95% confidence level, which is an order of magnitude lower than the enhancement rate for luminous X-ray binaries. Even if all of the ambiguous cases are considered as having a globular cluster counterpart, the upper bound for the enhancement rate is 82 at the 95% confidence level, still a factor of several below that needed to account for half of the SN Ia events. Barring unforeseen selection effects, we conclude that globular clusters are not responsible for producing a significant fraction of the SN Ia events in early-type galaxies.

  5. SN 1991bg - A type Ia supernova with a difference

    NASA Technical Reports Server (NTRS)

    Leibundgut, Bruno; Kirshner, Robert P.; Phillips, Mark M.; Wells, Lisa A.; Suntzeff, N. B.; Hamuy, Mario; Schommer, R. A.; Walker, A. R.; Gonzalez, L.; Ugarte, P.

    1993-01-01

    While SN 1991bg is an unusual type Ia SN in such a feature as the brief duration of the photospheric phase, which ended only two weeks after maximum, it shares with other Ia SNs strong Si II and Ca II lines near maximum light. In addition, the light and color curve slopes are almost identical with the templates at late times. The spectral evolution of SN 1991bg is also unique but not unrecognizable; nevertheless, the peculiarities associated with this event complicate the fundamental question as to whether the Ia SNs make good standard candles.

  6. Premaximum observations of the type Ia SN 1990N

    NASA Technical Reports Server (NTRS)

    Leibundgut, Bruno; Kirshner, Robert P.; Filippenko, Alexei V.; Shields, Joseph C.; Foltz, Craig B.; Phillips, Mark M.; Sonneborn, George

    1991-01-01

    Spectroscopic and photometric observations of SN 1990N were obtained at ultraviolet and optical wavelengths, beginning 14 days before maximum light. The early observations reveal important differences from spectra of SN Ia's around maximum light. Photometry and spectroscopy obtained after maximum show that SN 1990N is a typical SN Ia and that most of the observed differences are due to the early epoch of the observations. The most significant characteristics are (1) the high velocities of Ca and Si up to 22,000 km/s; (2) the presence of Co and Fe 2 weeks before maximum; and (3) the more rapid increase in the UV flux compared to the optical. The most popular models for white dwarf deflagration that have provided the standard interpretation for SN Ia's at maximum light do not reproduce the high velocities of Ca II and Si II lines observed in SN 1990N.

  7. Premaximum observations of the type Ia SN 1990N

    NASA Technical Reports Server (NTRS)

    Leibundgut, Bruno; Kirshner, Robert P.; Filippenko, Alexei V.; Shields, Joseph C.; Foltz, Craig B.; Phillips, Mark M.; Sonneborn, George

    1991-01-01

    Spectroscopic and photometric observations of SN 1990N were obtained at ultraviolet and optical wavelengths, beginning 14 days before maximum light. The early observations reveal important differences from spectra of SN Ia's around maximum light. Photometry and spectroscopy obtained after maximum show that SN 1990N is a typical SN Ia and that most of the observed differences are due to the early epoch of the observations. The most significant characteristics are (1) the high velocities of Ca and Si up to 22,000 km/s; (2) the presence of Co and Fe 2 weeks before maximum; and (3) the more rapid increase in the UV flux compared to the optical. The most popular models for white dwarf deflagration that have provided the standard interpretation for SN Ia's at maximum light do not reproduce the high velocities of Ca II and Si II lines observed in SN 1990N.

  8. Spectrum synthesis of the Type Ia supernovae SN 1992A and SN 1981B

    NASA Technical Reports Server (NTRS)

    Nugent, Peter; Baron, E.; Hauschildt, Peter H.; Branch, David

    1995-01-01

    We present non-local thermodynamic equilibrium (non-LTE) synthetic spectra for the Type Ia supernovae SN 1992A and SN 1981B, near maximum light. At this epoch both supernovae were observed from the UV through the optical. This wide spectral coverage is essential for determining the density structure of a SN Ia. Our fits are in good agreement with observation and provide some insight as to the differences between these supernovae. We also discuss the application of the expanding photosphere method to SNe Ia which gives a distance that is independent of those based on the decay of Ni-56 and Cepheid variable stars.

  9. An SN-Ia in a very faint dwarf galaxy

    NASA Astrophysics Data System (ADS)

    Drake, A. J.; Mahabal, A.; Djorgovski, S. G.; Graham, M. J.; Williams, R.; Myers, A. D.; Catelan, M.; Beshore, E. C.; Larson, S. M.; Christensen, E.

    2009-03-01

    Further to Atel#1937, we confirm the discovery of a type Ia supernova with Palomar 200 observations. The CRTS discovery has the following parameters:

    CSS090213:030920+160505 Discovery 2009-02-13 UT 03:45:55 RA 03:09:19.79 Dec 16:05:05.3 Type SN Ia
    The spectrum of CSS090213:030920+160505 (taken on Feb 25th UT) shows this to be an SN-Ia, 12 days past maximum light with redshift z=0.031+/-0.006.

  10. The circumstellar environment of pre-SN Ia systems

    NASA Astrophysics Data System (ADS)

    Harvey, E.; Redman, M. P.; Boumis, P.; Kopsacheili, M.; Akras, S., Sabin, L.; Jurkic, T.

    2016-06-01

    Here we explore the possible preexisting circumstellar debris of supernova type Ia systems. Classical, symbiotic and recurrent novae all accrete onto roughly solar mass white dwarfs from main sequence or Mira type companions and result in thermonuclear runaways and expulsion of the accreted material at high velocity. The expelled material forms a fast moving shell that eventually slows to planetary nebula expansion velocities within several hundred years. All such systems are recurrent and thousands of shells (each of about 0.001 Mo) snow plough into the environment. As these systems involve common envelope binaries the material is distributed in a non-spherical shell. These systems could be progenitors of some SN Ia and thus explode into environments with large amounts of accumulated gas and dust distributed in thin non-spherical shells. Such shells should be observable around 100 years after a SN Ia event in a radio flash as the SN Ia debris meets that of the ejected material of the systems previous incarnation.

  11. Properties of SN Ia progenitors from light curves and spectra

    NASA Astrophysics Data System (ADS)

    Höflich, P.; Dragulin, P.; Mitchell, J.; Penney, B.; Sadler, B.; Diamond, T.; Gerardy, C.

    2013-04-01

    With recent advances in theory and observations, direct connections emerge between the progenitors of Type Ia Supernovae (SNe Ia) and the observed light curves and spectra. A direct link is important for our understanding of the supernovae physics, the diversity of SNe Ia and the use of SNe Ia for high-precision cosmology because the details of the explosion depends sensitively on the initial conditions and the explosion scenario(s) realized in nature. Do SNe Ia originate from SD- or DD systems, and do they lead to M Ch mass explosions or dynamical mergers? Does the statistical distribtion of SNe Ia depend on their environment which can be expected to change with redshift? In this contribution, we will exam from the theoretical point of view the tell-tails for this connection, their consistency with the observations, and future directions. In a first section, we present the physics of the explosion, light curves and spectral formation in a nutshell to help understanding the connection. For details of the progenitor evolution and explosion physics, we refer to reviews and the other contributions in this issue. Each of the topical sections starts with a brief general review followed by a more detailed discussion of specific results. Because the youth of the field, some bias is unavoidable towards results obtained within our collaborations (and FSU). The imprint of the metallicity, progenitor stars and properties such as the central density of the exploding WD are presented. IR spectroscopy, polarimetry and imaging of SNR remnants are discussed as a tool to test for the WD properties, magnetic fields and asymmetries. We discuss different classes of Type Ia supernovae, and their environment. Possible correlations between the spectroscopic and light curve properties of SN Ia are discussed. Finally, the overall emerging picture and future developments are discussed.

  12. SN Ia archaeology: Searching for the relics of progenitors past

    NASA Astrophysics Data System (ADS)

    Woods, Tyrone E.; Gilfanov, Marat; Clocchiatti, Alejandro; Rest, Armin

    2016-06-01

    Despite the critical role that SNe Ia play in the chemical enrichment of the Universe and their great importance in measuring cosmological distances, we still don't know for certain how they arise. In the canonical form of the ``single-degenerate'' scenario, a white dwarf grows through the nuclear burning of matter accreted at its surface from some companion star. This renders it a hot, luminous object (a supersoft X-ray source or SSS, 10^5-10^6K, 10^{38} erg/s) for up to a million years prior to explosion. Past efforts to directly detect the progenitors of very recent, nearby SNe Ia in archival soft X-ray images have produced only upper limits, and are only constraining assuming progenitors with much higher temperatures than known SSSs. In this talk, I will outline an alternative approach: given that such objects should be strong sources of ionizing radiation, one may instead search the environment surrounding nearby SN Ia remnants for interstellar matter ionized by the progenitor. Such fossil nebulae should extend out to tens of parsecs and linger for roughly the recombination timescale in the ISM, of order 10,000 — 100,000 years. Progress on this front has been hampered by the failure to detect nebulae surrounding most known SSSs using 1m class telescopes in the early 1990s. I will present new benchmark calculations for the emission-line nebulae expected to surround such objects, demonstrating that previous non-detections are entirely consistent with the low ISM densities expected in the vicinity of most SN Ia progenitors (Woods & Gilfanov, 2016). Modern large optical telescopes are now well able to reach the required limiting surface brightness needed to find such faint emission. With this in mind, I will introduce our new narrow-band survey for fossil nebulae surrounding young Magellanic SN Ia remnants and SSSs, already underway using the Magellan Baade telescope (PI: Alejandro Clocchiatti). In addition to opening a new era of SN Ia archaeology, I will show

  13. SN IA in the IR: RAISIN A progress report

    NASA Astrophysics Data System (ADS)

    Kirshner, Robert P.; The RAISIN TEAM

    2014-01-01

    SN Ia have proven to be a powerful tool for cosmology. Near-IR observations of SN Ia promise even better results because the supernovae are more nearly standard candles at those wavelengths and absorption by dust is diminished by a factor of 4 compared to rest-frame B-band observations. Near IR observations of cosmologically-distant SN Ia discovered with PanSTARRS are underway using the infrared camera on the Hubble Space Telescope (GO-13046). These targets are discovered in the difference images created in the CfA/JHU pipeline, confirmed spectroscopically at the MMT, Magellan, Gemini, or Keck, and inserted in a non-disruptive way into the HST observing schedule for WFC3-IR. We have observed over 20 SN Ia in the range 0.2 < z < 0.5 during Cycle 21 and this is a progress report on the analysis. The final results require a repeat observation after the supernova has faded. Those will be completed in 2014, but we have a sufficient sample of objects for which the supernova is well separated from the host galaxy to illustrate the power of this technique. Preliminary analysis shows HST data can reduce the uncertainty in the distance to each supernova by a factor or 2. Sufficiently large supernova samples have been gathered at all redshifts so that statistical errors in interesting parameters (like the dark energy equation-of-state index (1 +w)), have been driven down to the same level as the systematic errors (about 7%). Further progress is limited by our ability to master the systematic errors. These include the correction for luminosity based on the light curve shape and the correction based on intrinsic color and reddening by dust. Since SN IA behave better in the IR in both these ways, there is reason to expect that this approach will be effective in driving down the systematic errors over time. If we are diligent in building up the size of the sample that is observed in the rest-frame infrared, we can expect more certain knowledge of the properties of dark energy

  14. Origin of Galactic Type-Ia supernovae: SN 1572 and SN 1006

    NASA Astrophysics Data System (ADS)

    González-Hernández, J. I.; Ruiz-Lapuente, P.; Tabernero, H. M.; Montes, D.; Canal, R.; Méndez, J.; Bedin, L. R.

    2015-05-01

    We have been searching for surviving companions of progenitors of Galactic Type-Ia supernovae, in particular SN 1572 and SN 1006. These companion stars are expected to show peculiarities: (i) to be probably more luminous than the Sun, (ii) to have high radial velocity and proper motion, (iii) to be possibly enriched in metals from the SNIa ejecta, and (iv) to be located at the distance of the SNIa remnant. We have been characterizing possible candidate stars using high-resolution spectroscopic data taken at 10m-Keck and 8.2m-VLT facilities. We have identified a very promising candidate companion (Tycho G) for SN 1572 (see Ruiz-Lapuente et al. 2004; however for a different view see Kerzendorf et al., 2012) but we have not found any candidate companion for SN 1006, suggesting that SN event occurred in 1006 could have been the result of the merging of two white dwarfs (see González-Hernández et al., 2012). Adding these results to the evidence from the other direct searches, the clear minority of cases (20% or less) seem to disfavour the single-degenerate channel or that preferentially the single-degenerate escenario would involve main-sequence companions less massive than the Sun. Therefore, it appears to be very important to continue investigating these and other Galactic Type-Ia SNe such as the Johannes Kepler SN 1604.

  15. Constraints on dark energy with the LOSS SN Ia sample

    NASA Astrophysics Data System (ADS)

    Ganeshalingam, Mohan; Li, Weidong; Filippenko, Alexei V.

    2013-08-01

    We present a cosmological analysis of the Lick Observatory Supernova Search (LOSS) Type Ia supernova (SN Ia) photometry sample introduced by Ganeshalingam et al. These supernovae (SNe) provide an effective anchor point to estimate cosmological parameters when combined with data sets at higher redshift. The data presented by Ganeshalingam et al. have been rereduced in the natural system of the Katzman Automatic Imaging Telescope (KAIT) and Nickel telescopes to minimize systematic uncertainties. We have run the light-curve-fitting software SALT2 on our natural-system light curves to measure light-curve parameters for LOSS light curves and available SN Ia data sets in the literature. We present a Hubble diagram of 586 SNe in the redshift range z = 0.01-1.4 with a residual scatter of 0.176 mag. Of the 226 low-z SNe Ia in our sample, 91 objects are from LOSS, including 45 without previously published distances. Assuming a flat Universe, we find that the best fit for the dark energy equation-of-state parameter w = -0.86^{+0.13}_{-0.16} (stat) ±0.11 (sys) from SNe alone, consistent with a cosmological constant. Our data prefer a Universe with an accelerating rate of expansion with 99.999 per cent confidence. When looking at Hubble residuals as a function of host-galaxy morphology, we do not see evidence for a significant trend, although we find a somewhat reduced scatter in Hubble residuals from SNe residing within a projected distance <10 kpc of the host-galaxy nucleus (σ = 0.156 mag). Similar to the results of Blondin, Mandel and Kirshner and Silverman et al., we find that Hubble residuals do not correlate with the expansion velocity of Si II λ6355 measured in optical spectra near maximum light. Our data are consistent with no presence of a local `Hubble bubble.' Improvements in cosmological analyses within low-z samples can be achieved by better constraining calibration uncertainties in the zero-points of photometric systems.

  16. Abundance stratification in Type Ia supernovae - V. SN 1986G bridging the gap between normal and subluminous SNe Ia

    NASA Astrophysics Data System (ADS)

    Ashall, C.; Mazzali, P. A.; Pian, E.; James, P. A.

    2016-12-01

    A detailed spectroscopic analysis of SN 1986G has been performed. SN 1986G `bridges the gap' between normal and subluminous Type Ia supernovae (SNe Ia). The abundance tomography technique is used to determine the abundance distribution of the elements in the ejecta. SN 1986G was found to be a low-energy Chandrasekhar mass explosion. Its kinetic energy was 70 per cent of the standard W7 model (0.9 × 1051 erg). Oxygen dominates the ejecta from the outermost layers down to ˜9000 km s-1, intermediate mass elements (IMEs) dominate from ˜9000 to ˜3500 km s-1 with Ni and Fe dominating the inner layers < ˜3500 km s-1. The final masses of the main elements in the ejecta were found to be, O = 0.33 M⊙, IME = 0.69 M⊙, stable NSE = 0.21 M⊙, 56Ni = 0.14 M⊙. An upper limit of the carbon mass is set at C = 0.02 M⊙. The spectra of SN 1986G consist of almost exclusively singly ionized species. SN 1986G can be thought of as a low-luminosity extension of the main population of SN Ia, with a large deflagration phase that produced more IMEs than a standard SN Ia.

  17. GAMMA RAYS FROM TYPE Ia SUPERNOVA SN 2014J

    SciTech Connect

    Churazov, E.; Sunyaev, R.; Grebenev, S.; Bikmaev, I.; Bravo, E.; Chugai, N.; Jean, P.; Knödlseder, J.; Lebrun, F.

    2015-10-10

    The whole set of INTEGRAL observations of Type Ia supernova SN 2014J, covering the period 19–162 days after the explosion, has been analyzed. For spectral fitting the data are split into early and late periods covering days 19–35 and 50–162, respectively, optimized for {sup 56}Ni and {sup 56}Co lines. As expected for the early period, much of the gamma-ray signal is confined to energies below ∼200 keV, while for the late period it is strongest above 400 keV. In particular, in the late period, {sup 56}Co lines at 847 and 1248 keV are detected at 4.7σ and 4.3σ, respectively. The light curves in several representative energy bands are calculated for the entire period. The resulting spectra and light curves are compared with a subset of models. We confirm our previous finding that the gamma-ray data are broadly consistent with the expectations for canonical one-dimensional models, such as delayed detonation or deflagration models for a near-Chandrasekhar mass white dwarf. Late optical spectra (day 136 after the explosion) show rather symmetric Co and Fe line profiles, suggesting that, unless the viewing angle is special, the distribution of radioactive elements is symmetric in the ejecta.

  18. SN 2015bp: adding to the growing population of transitional Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Srivastav, Shubham; Anupama, G. C.; Sahu, D. K.; Ravikumar, C. D.

    2017-04-01

    Photometric and spectroscopic observations of Type Ia supernova 2015bp are presented, spanning ˜-6 to ˜+141 d since B-band maximum. Also presented are unpublished HCT spectra of type Ia iPTF13ebh between -11 and +34 d since B-band maximum. SN 2015bp shows rapidly declining light curves with Δm15(B) = 1.72 ± 0.04. The I-band light curve shows a clear secondary maximum and peaks before the B-band maximum, placing SN 2015bp in the transitional category of SNe Ia. The spectral evolution of SN 2015bp resembles other transitional SNe Ia rather than 1991bg-like events. The C II λ6580 feature is detected in both SN 2015bp and iPTF13ebh, though it is present till the epoch of B-band maximum in the case of SN 2015bp. The velocity gradients of Si II λ6355 place SN 2015bp and iPTF13ebh in the FAINT subclass, whereas pseudo-equivalent widths of Si II features place them in the Cool (CL) subclass of SNe Ia. The bolometric light curve of SN 2015bp indicates that ˜0.2 M⊙ of 56Ni was synthesized in the explosion, with a total ejected mass of ˜0.9 M⊙, suggesting a sub-Chandrasekhar mass white dwarf progenitor.

  19. Early observations of the nearby Type Ia supernova SN 2015F

    NASA Astrophysics Data System (ADS)

    Cartier, R.; Sullivan, M.; Firth, R. E.; Pignata, G.; Mazzali, P.; Maguire, K.; Childress, M. J.; Arcavi, I.; Ashall, C.; Bassett, B.; Crawford, S. M.; Frohmaier, C.; Galbany, L.; Gal-Yam, A.; Hosseinzadeh, G.; Howell, D. A.; Inserra, C.; Johansson, J.; Kasai, E. K.; McCully, C.; Prajs, S.; Prentice, S.; Schulze, S.; Smartt, S. J.; Smith, K. W.; Smith, M.; Valenti, S.; Young, D. R.

    2017-02-01

    We present photometry and time series spectroscopy of the nearby Type Ia supernova (SN Ia) SN 2015F over -16 d to +80 d relative to maximum light, obtained as part of the Public ESO Spectroscopic Survey of Transient Objects. SN 2015F is a slightly sub-luminous SN Ia with a decline rate of Δm15(B) = 1.35 ± 0.03 mag, placing it in the region between normal and SN 1991bg-like events. Our densely sampled photometric data place tight constraints on the epoch of first light and form of the early-time light curve. The spectra exhibit photospheric C II λ6580 absorption until -4 days, and high-velocity Ca II is particularly strong at <-10 d at expansion velocities of ≃23 000 km s-1. At early times, our spectral modelling with SYN++ shows strong evidence for iron-peak elements (Fe II, Cr II, Ti II, and V II) expanding at velocities >14 000 km s-1, suggesting mixing in the outermost layers of the SN ejecta. Although unusual in SN Ia spectra, including V II in the modelling significantly improves the spectral fits. Intriguingly, we detect an absorption feature at ˜6800 Å that persists until maximum light. Our favoured explanation for this line is photospheric Al II, which has never been claimed before in SNe Ia, although detached high-velocity C II material could also be responsible. In both cases, the absorbing material seems to be confined to a relatively narrow region in velocity space. The nucleosynthesis of detectable amounts of Al II would argue against a low-metallicity white dwarf progenitor. We also show that this 6800 Å feature is weakly present in other normal SN Ia events and common in the SN 1991bg-like sub-class.

  20. The Curious Case of SN 2011dn: Was It A Peculiar Type Ia Supernova?

    NASA Astrophysics Data System (ADS)

    Rachubo, Alisa; Salvo, Chris; Leonard, Douglas C.; Duong, Nhieu; Horst, Chuck; Khandrika, Harish G.; Sumandal, Julienne; Moustakas, John

    2014-06-01

    Type Ia supernovae (SNe Ia) are excellent cosmological distance indicators due to the uniformity in their light curves. This led to the major discovery of the accelerated expansion of the universe (Riess et al. 1998, Perlmutter et al. 1999). However, SNe Ia are not so uniform as one may expect, as there are many ‘peculiar’ SNe Ia that exhibit differences in photometry and spectroscopy from normal SNe Ia. One of the goals of supernova cosmology today is to produce a cleaner sample of SNe Ia by removing the peculiar SNe Ia from the sample. A useful parameter for identifying peculiar SNe Ia based on photometry is Δm15(B), which measures the decrease in B-band magnitude 15 days after the peak of the light curve (Phillips et al. 1993). For typical SNe Ia the standard value is Δm15(B) = 1.1. Peculiar SNe Ia of the overluminous type show a slower decline, with its prototypical member SN 1991T having Δm15(B) = 0.80 (Hicken et al. 2009), while peculiar SNe Ia of the subluminous type show a faster decline, with its prototypical member SN 1991bg having Δm15(B) = 1.87 (Hicken et al. 2009). Here we present optical photometry and spectroscopy of SN 2011dn, which were obtained as part of the MOunt LAguna SUpernova Survey (MOLASUS). Based on its pre-maximum spectrum, which showed strong absorption lines of Fe III λ4404 and Fe III λ5129, along with a weak Si II λ6355 absorption line, SN 2011dn was classified as a SN 1991T-like event (Koff et al. 2011). However, in an earlier preliminary analysis of the light curves - based on point-spread-function photometry - we proposed that SN 2011dn might have had a higher than expected Δm15(B) value of 1.08 (Salvo et al. 2012). Since SN 2011dn is embedded in its host galaxy UGC 11501, it is possible that some of the light from the host galaxy was measured, which may have influenced the measured Δm15(B) value. Here, we employ galaxy-subtraction techniques to isolate the supernova light from its host galaxy, and generate more

  1. The Peculiar SN 2005hk: Do Some Type Ia Supernovae Explode As Deflagrations?

    SciTech Connect

    Phillips, M.M.; Li, W.; Frieman, J.A.; Blinnikov, S.I.; DePoy, D.; Prieto, J.L.; Milne, P.; Contreras, C.; Folatelli, Gaston; Morrell, N.; Hamuy, M.; Suntzeff, N.B.; Roth, M.; Gonzalez, S.; Krzeminski, W.; Filippenko, A.V.; Freedman, W.L.; Chornock, R.; Jha, S.; Madore, B.F.; Persson, S.E.; /Las Campanas Observ. /UC, Berkeley, Astron. Dept. /Chicago U., Astron. Astrophys. Ctr. /KICP, Chicago /Fermilab /Moscow, ITEP /Garching, Max Planck Inst. /Ohio State U., Dept. Astron. /Arizona U., Astron. Dept. - Steward Observ. /Chile U., Santiago /Texas A-M /Carnegie Inst. Observ. /KIPAC, Menlo Park /Caltech, IPAC /Notre Dame U. /South African Astron. Observ. /Cape Town U. /Washington U., Seattle, Astron. Dept. /New Mexico State U. /Chicago U., FLASH /Baltimore, Space Telescope Sci.

    2006-11-14

    We present extensive u{prime}g{prime}r{prime}i{prime} BV RIY JHK{sub s} photometry and optical spectroscopy of SN 2005hk. These data reveal that SN 2005hk was nearly identical in its observed properties to SN 2002cx, which has been called 'the most peculiar known type Ia supernova'. Both supernovae exhibited high ionization SN 1991T-like pre-maximum spectra, yet low peak luminosities like SN 1991bg. The spectra reveal that SN 2005hk, like SN 2002cx, exhibited expansion velocities that were roughly half those of typical type Ia supernovae. The R and I light curves of both supernovae were also peculiar in not displaying the secondary maximum observed for normal type Ia supernovae. Our Y JH photometry of SN 2005hk reveals the same peculiarity in the near-infrared. By combining our optical and near-infrared photometry of SN 2005hk with published ultraviolet light curves obtained with the Swift satellite, we are able to construct a bolometric light curve from {approx} 10 days before to {approx}60 days after B maximum. The shape and unusually low peak luminosity of this light curve, plus the low expansion velocities and absence of a secondary maximum at red and near-infrared wavelengths, are all in reasonable agreement with model calculations of a 3D deflagration which produces {approx} 0.25 M{sub {circle_dot}} of {sup 56}Ni.

  2. Predicting the amount of hydrogen stripped by the SN explosion for SN 2002cx-like SNe Ia

    SciTech Connect

    Liu, Zheng-Wei; Chen, X. F.; Wang, B.; Han, Z. W.; Kromer, M.; Fink, M.; Röpke, F. K.; Pakmor, R.

    2013-12-01

    The most favored progenitor scenarios for Type Ia supernovae (SNe Ia) involve the single-degenerate (SD) scenario and the double-degenerate scenario. The absence of stripped hydrogen (H) in the nebular spectra of SNe Ia challenges the SD progenitor models. Recently, it was shown that pure deflagration explosion models of Chandrasekhar-mass white dwarfs, ignited off-center, reproduce the characteristic observational features of 2002cx-like SNe Ia very well. In this work we predict, for the first time, the amount of stripped H for the off-center, pure deflagration explosions. We find that their low kinetic energies lead to inefficient H mass stripping (≲ 0.01 M {sub ☉}), indicating that the stripped H may be hidden in (observed) late-time spectra of SN 2002cx-like SNe Ia.

  3. UV-Optical Observation of Type Ia Supernova SN 2013dy in NGC 7250

    NASA Astrophysics Data System (ADS)

    Zhai, Qian; Zhang, Ju-Jia; Wang, Xiao-Feng; Zhang, Tian-Meng; Liu, Zheng-Wei; Brown, Peter J.; Huang, Fan; Zhao, Xu-Lin; Chang, Liang; Yi, Wei-Min; Wang, Chuan-Jun; Xin, Yu-Xin; Wang, Jian-Guo; Lun, Bao-Li; Zhang, Xi-Liang; Fan, Yu-Feng; Zheng, Xiang-Ming; Bai, Jin-Ming

    2016-05-01

    Extensive and independent observations of Type Ia supernova (SN Ia) SN 2013dy are presented, including a larger set of UBVRI photometry and optical spectra from a few days before the peak brightness to ˜ 200 days after explosion, and ultraviolet (UV) photometry spanning from t ≈ -10 days to t ≈ +15 days refers to the B band maximum. The peak brightness (i.e., MB = -19.65 ± 0.40 mag; Lmax = [1.95 ± 0.55] × 1043 erg s-1) and the mass of synthesized 56Ni (i.e., M(56Ni) = 0.90 ± 0.26 M⊙) are calculated, and they conform to the expectation for an SN Ia with a slow decline rate (i.e., Δm15(B) = 0.90 ± 0.03 mag). However, the near infrared (NIR) brightness of this SN (i.e., MH = -17.33 ± 0.30 mag) is at least 1.0 mag fainter than usual. Besides, spectroscopy classification reveals that SN 2013dy resides on the border of “core normal” and “shallow silicon” subclasses in the Branch et al. classification scheme, or on the border of the “normal velocity” SNe Ia and 91T/99aa-like events in the Wang et al. system. These suggest that SN 2013dy is a slow-declining SN Ia located on the transitional region of nominal spectroscopic subclasses and might not be a typical normal sample of SNe Ia.

  4. Himalayan Chandra Telescope Observations of Type-Ia Supernova SN 2010at

    NASA Astrophysics Data System (ADS)

    Patel, Brandon; Anupama, G.; Sahu, D. K.

    2012-01-01

    We present BVRI photometry and spectroscopy of Type Ia Supernova SN 2010at. SN 2010at is located in the MCG+13-09-010 galaxy (z =0.04) and was discovered on 03-19-2010. Our analysis focuses on the follow up observations taken with the 2-meter Himalayan Chandra Telescope from 2010-03-21 to 2010-05-24. We present the light curve and color evolution of SN 2010at, along with MLCS2k2 and SALT-II light curve fits. We find that SN 2010at's color and photometric evolution are similar to SN 1999ac, but SN 2010at is brighter at maximum. Spectroscopically, SN 2010at appears to be normal at early times. This work was funded by the National Science Foundation's Office of International Science and Education, Grant Number 0854436: International Research Experience for Students, and managed by the National Solar Observatory's Global Oscillation Network.

  5. On Type IIn/Ia-CSM supernovae as exemplified by SN 2012ca*

    NASA Astrophysics Data System (ADS)

    Inserra, C.; Fraser, M.; Smartt, S. J.; Benetti, S.; Chen, T.-W.; Childress, M.; Gal-Yam, A.; Howell, D. A.; Kangas, T.; Pignata, G.; Polshaw, J.; Sullivan, M.; Smith, K. W.; Valenti, S.; Young, D. R.; Parker, S.; Seccull, T.; McCrum, M.

    2016-07-01

    We present the complete set of ultra-violet, optical and near-infrared photometry and spectroscopy for SN 2012ca, covering the period from 6 d prior to maximum light, until 531 d after maximum. The spectroscopic time series for SN 2012ca is essentially unchanged over 1.5 yr, and appear to be dominated at all epochs by signatures of interaction with a dense circumstellar medium (CSM) rather than the underlying supernova (SN). SN 2012ca is a member of the set of type of the ambiguous IIn/Ia-CSM SNe, the nature of which have been debated extensively in the literature. The two leading scenarios are either a Type Ia SN exploding within a dense CSM from a non-degenerate, evolved companion, or a core-collapse SN from a massive star. While some members of the population have been unequivocally associated with Type Ia SNe, in other cases the association is less certain. While it is possible that SN 2012ca does arise from a thermonuclear SN, this would require a relatively high (between 20 and 70 per cent) efficiency in converting kinetic energy to optical luminosity, and a massive (˜2.3-2.6 M⊙) circumstellar medium. On the basis of energetics, and the results of simple modelling, we suggest that SN 2012ca is more likely associated with a core-collapse SN. This would imply that the observed set of similar SNe to SN 2012ca is in fact originated by two populations, and while these are drawn from physically distinct channels, they can have observationally similar properties.

  6. Central Elemental Abundance Ratios In the Perseus Cluster: Resonant Scattering or SN Ia Enrichment?

    NASA Technical Reports Server (NTRS)

    Dupke, Renato A.; Arnaud, Keith; White, Nicholas E. (Technical Monitor)

    2001-01-01

    We have determined abundance ratios in the core of the Perseus Cluster for several elements. These ratios indicate a central dominance of Type 1a supernova (SN Ia) ejects similar to that found for A496, A2199 and A3571. Simultaneous analysis of ASCA spectra from SIS1, GIS2, and GIS3 shows that the ratio of Ni to Fe abundances is approx. 3.4 +/- 1.1 times solar within the central 4'. This ratio is consistent with (and more precise than) that observed in other clusters whose central regions are dominated by SN Ia ejecta. Such a large Ni overabundance is predicted by "convective deflagration" explosion models for SNe Ia such as W7 but is inconsistent with delayed detonation models. We note that with current instrumentation the Ni K(alpha) line is confused with Fe K(beta) and that the Ni overabundance we observe has been interpreted by others as an anomalously large ratio of Fe K(beta) to Fe K(alpha) caused by resonant scattering in the Fe K(alpha) line. We argue that a central enhancement of SN Ia ejecta and hence a high ratio of Ni to Fe abundances are naturally explained by scenarios that include the generation of chemical gradients by suppressed SN Ia winds or ram pressure stripping of cluster galaxies. It is not necessary to suppose that the intracluster gas is optically thick to resonant scattering of the Fe K(alpha) line.

  7. Central Elemental Abundance Ratios In the Perseus Cluster: Resonant Scattering or SN Ia Enrichment?

    NASA Technical Reports Server (NTRS)

    Dupke, Renato A.; Arnaud, Keith; White, Nicholas E. (Technical Monitor)

    2001-01-01

    We have determined abundance ratios in the core of the Perseus Cluster for several elements. These ratios indicate a central dominance of Type 1a supernova (SN Ia) ejects similar to that found for A496, A2199 and A3571. Simultaneous analysis of ASCA spectra from SIS1, GIS2, and GIS3 shows that the ratio of Ni to Fe abundances is approx. 3.4 +/- 1.1 times solar within the central 4'. This ratio is consistent with (and more precise than) that observed in other clusters whose central regions are dominated by SN Ia ejecta. Such a large Ni overabundance is predicted by "convective deflagration" explosion models for SNe Ia such as W7 but is inconsistent with delayed detonation models. We note that with current instrumentation the Ni K(alpha) line is confused with Fe K(beta) and that the Ni overabundance we observe has been interpreted by others as an anomalously large ratio of Fe K(beta) to Fe K(alpha) caused by resonant scattering in the Fe K(alpha) line. We argue that a central enhancement of SN Ia ejecta and hence a high ratio of Ni to Fe abundances are naturally explained by scenarios that include the generation of chemical gradients by suppressed SN Ia winds or ram pressure stripping of cluster galaxies. It is not necessary to suppose that the intracluster gas is optically thick to resonant scattering of the Fe K(alpha) line.

  8. Hubble Residuals of Nearby SN Ia Are Correlated with Host Galaxy Masses

    SciTech Connect

    Kelly, Patrick L.; Hicken, Malcolm; Burke, David L.; Mandel, Kaisey S.; Kirshner, Robert P.; /Harvard-Smithsonian Ctr. Astrophys.

    2010-05-03

    From Sloan Digital Sky Survey u{prime} g{prime} r{prime} i{prime} z{prime} imaging, we estimate the stellar masses of the host galaxies of 70 low redshift SN Ia (0.015 < z < 0.08) from the hosts absolute luminosities and mass-to-light ratios. These nearby SN were discovered largely by searches targeting luminous galaxies, and we find that their host galaxies are substantially more massive than the hosts of SN discovered by the flux-limited Supernova Legacy Survey. Testing four separate light curve fitters, we detect {approx}2.5{sigma} correlations of Hubble residuals with both host galaxy size and stellar mass, such that SN Ia occurring in physically larger, more massive hosts are {approx}10% brighter after light curve correction. The Hubble residual is the deviation of the inferred distance modulus to the SN, calculated from its apparent luminosity and light curve properties, away from the expected value at the SN redshift. Marginalizing over linear trends in Hubble residuals with light curve parameters shows that the correlations cannot be attributed to a light curve-dependent calibration error. Combining 180 higher-redshift ESSENCE, SNLS, and HigherZ SN with 30 nearby SN whose host masses are less than 10{sup 10.8} M{circle_dot} n a cosmology fit yields 1 + w = 0.22{sub -0.108}{sup +0.152}, while a combination where the 30 nearby SN instead have host masses greater than 10{sup 10.8} M{circle_dot} yields 1 + w = ?0.03{sub -0.143}{sup +0.217}. Progenitor metallicity, stellar population age, and dust extinction correlate with galaxy mass and may be responsible for these systematic effects. Host galaxy measurements will yield improved distances to SN Ia.

  9. Optical and NIR observations of the nearby type Ia supernova SN 2014J

    NASA Astrophysics Data System (ADS)

    Srivastav, Shubham; Ninan, J. P.; Kumar, B.; Anupama, G. C.; Sahu, D. K.; Ojha, D. K.; Prabhu, T. P.

    2016-03-01

    Optical and NIR observations of the Type Ia supernova SN 2014J in M82 are presented. The observed light curves are found to be similar to normal Type Ia supernovae (SNe Ia), with a decline rate parameter Δm15(B) = 1.08 ± 0.03. The supernova reached B-band maximum on JD 2456690.14, at an apparent magnitude mB(max) = 11.94. The optical spectra show a red continuum with deep interstellar Na I absorption, but otherwise resemble those of normal SNe Ia. The Si II λ6355 feature indicates a velocity of ˜12 000 km s-1 at B-band maximum, which places SN 2014J at the border of the normal velocity and high velocity group of SNe Ia. The velocity evolution of SN 2014J places it in the Low Velocity Gradient subclass, whereas the equivalent widths of Si II features near B-band maximum place it at the border of the core normal and Broad Line subclasses of SNe Ia. An analytic model fit to the bolometric light curve indicates that a total of ˜1.3 M⊙ was ejected in the explosion, and the ejected 56Ni mass MNi ˜ 0.6 M⊙. The low [Fe III] λ4701 to [Fe II] λ5200 ratio in the nebular spectra of SN 2014J hints towards clumpiness in the ejecta. Optical broad-band, linear polarimetric observations of SN 2014J obtained on four epochs indicate an almost constant polarization (PR ˜2.7 per cent; θ ˜ 37°), which suggests that the polarization signal is of interstellar origin.

  10. SN 2014J at M82 - I. A middle-class Type Ia supernova by all spectroscopic metrics

    NASA Astrophysics Data System (ADS)

    Galbany, L.; Moreno-Raya, M. E.; Ruiz-Lapuente, P.; González Hernández, J. I.; Méndez, J.; Vallely, P.; Baron, E.; Domínguez, I.; Hamuy, M.; López-Sánchez, A. R.; Mollá, M.; Catalán, S.; Cooke, E. A.; Fariña, C.; Génova-Santos, R.; Karjalainen, R.; Lietzen, H.; McCormac, J.; Riddick, F. C.; Rubiño-Martín, J. A.; Skillen, I.; Tudor, V.; Vaduvescu, O.

    2016-03-01

    We present the intensive spectroscopic follow up of the Type Ia supernova (SN Ia) 2014J in the starburst galaxy M82. Twenty-seven optical spectra have been acquired from 2014 January 22 to September 1 with the Isaac Newton and William Herschel Telescopes. After correcting the observations for the recession velocity of M82 and for Milky Way and host galaxy extinction, we measured expansion velocities from spectral line blueshifts and pseudo-equivalent width of the strongest features in the spectra, which gives an idea on how elements are distributed within the ejecta. We position SN 2014J in the Benetti, Branch et al. and Wang et al. diagrams. These diagrams are based on properties of the Si II features and provide dynamical and chemical information about the SN ejecta. The nearby SN 2011fe, which showed little evidence for reddening in its host galaxy, is shown as a reference for comparisons. SN 2014J is a border-line object between the Core-normal and Broad-line groups, which corresponds to an intermediate position between low-velocity gradient and high-velocity gradient objects. SN 2014J follows the R(Si II)-Δm15 correlation, which confirms its classification as a relatively normal SN Ia. Our description of the SN Ia in terms of the evolution of the pseudo-equivalent width of various ions as well as the position in the various diagrams put this specific SN Ia into the overall sample of SN Ia.

  11. Spectroscopic Classification of ASASSN-16gp as a Type Ia SN

    NASA Astrophysics Data System (ADS)

    Strader, Jay; Chomiuk, Laura; Prieto, Jose L.

    2016-07-01

    We obtained an optical spectrum of ASASSN-16gp (ATel #9199) on UT July 6.96 with the Goodman Spectrograph on the SOAR telescope. Classification with SNID (Blondin and Tonry 2007, ApJ, 666, 1024) indicates ASASSN-16gp is a normal Type Ia SN observed at 20-30 days after peak.

  12. Spectral Sequences of Type Ia Supernovae. I. Connecting Normal and Subluminous SNe Ia and the Presence of Unburned Carbon

    NASA Astrophysics Data System (ADS)

    Heringer, E.; van Kerkwijk, M. H.; Sim, S. A.; Kerzendorf, W. E.

    2017-09-01

    Type Ia supernovae (SNe Ia) are generally agreed to arise from thermonuclear explosions of carbon–oxygen white dwarfs. The actual path to explosion, however, remains elusive, with numerous plausible parent systems and explosion mechanisms suggested. Observationally, SNe Ia have multiple subclasses, distinguished by their light curves and spectra. This raises the question of whether these indicate that multiple mechanisms occur in nature or that explosions have a large but continuous range of physical properties. We revisit the idea that normal and 91bg-like SNe can be understood as part of a spectral sequence in which changes in temperature dominate. Specifically, we find that a single ejecta structure is sufficient to provide reasonable fits of both the normal SN Ia SN 2011fe and the 91bg-like SN 2005bl, provided that the luminosity and thus temperature of the ejecta are adjusted appropriately. This suggests that the outer layers of the ejecta are similar, thus providing some support for a common explosion mechanism. Our spectral sequence also helps to shed light on the conditions under which carbon can be detected in premaximum SN Ia spectra—we find that emission from iron can “fill in” the carbon trough in cool SNe Ia. This may indicate that the outer layers of the ejecta of events in which carbon is detected are relatively metal-poor compared to events in which carbon is not detected.

  13. The dependence of the AV prior for SN Ia on host mass and disc inclination

    NASA Astrophysics Data System (ADS)

    Holwerda, B. W.; Keel, W. C.; Kenworthy, M. A.; Mack, K. J.

    2015-08-01

    Type Ia supernovae (SNe Ia) are used as `standard candles' for cosmological distance scales. To fit their light-curve shape-absolute luminosity relation, one needs to assume an intrinsic colour and a likelihood of host galaxy extinction or a convolution of these, a colour distribution prior. The host galaxy extinction prior is typically assumed to be an exponential drop-off for the current supernova programmes (P(A_V) ∝ e^{-A_V/τ_0}). We explore the validity of this prior using the distribution of extinction values inferred when two galaxies accidentally overlap (an occulting galaxy pair). We correct the supernova luminosity distances from the SDSS-III supernova projects (SDSS-SN) by matching the host galaxies to one of three templates from occulting galaxy pairs based on the host galaxy mass and the AV-bias-prior-scale (τ0) relation from Jha et al. We find that introducing an AV prior that depends on host mass results in lowered luminosity distances for the SDSS-SN on average but it does not reduce the scatter in individual measurements. This points, in our view, to the need for many more occulting galaxy templates to match to SN Ia host galaxies to rule out this possible source of scatter in the SN Ia distance measurements. We match occulting galaxy templates based on both mass and projected radius and we find that one should match by stellar mass first with radius as a secondary consideration. We discuss the caveats of the current approach: the lack of enough radial coverage, the small sample of priors (occulting pairs with HST data), the effect of gravitationally interacting as well as occulting pairs, and whether an exponential distribution is appropriate. Our aim is to convince the reader that a library of occulting galaxy pairs observed with HST will provide sufficient priors to improve (optical) SN Ia measurements to the next required accuracy in cosmology.

  14. VizieR Online Data Catalog: Soft X-ray emission of Type Ia SN progenitors (Nielsen+, 2012)

    NASA Astrophysics Data System (ADS)

    Nielsen, M. T. B.; Voss, R.; Nelemans, G.

    2013-04-01

    By searching the Chandra Data Archive, we found pre-explosion images taken with the Advanced CCD Imaging Spectrometer (ACIS-S) at the positions of 10 nearby (<25Mpc) SNe Ia. The SNe in question are SN2002cv, SN2003cg, SN2004W, SN2006X, SN2006dd, SN2006mr, SN2007gi, SN2007sr, SN2008fp and SN2011fe. No obvious sources were found on the pre-explosion images for any of these SNe. For SN2002cv, SN2003cg, SN2004W, SN2006X, SN2006dd, SN2006mr, SN2007gi and SN2008fp, only a single pre-explosion Chandra image exists for each of the SNe, and SN2006dd and SN2006mr are on the same image. Several of these images have long (>30ks) exposure times. For SN2007sr and SN2011fe, multiple pre-explosion Chandra images exist, and these can be combined to give very long (several 100ks) exposure times. (3 data files).

  15. Power-law cosmology, SN Ia, and BAO

    SciTech Connect

    Dolgov, Aleksander; Halenka, Vitali; Tkachev, Igor E-mail: vithal@umich.edu

    2014-10-01

    We revise observational constraints on the class of models of modified gravity which at low redshifts lead to a power-law cosmology. To this end we use available public data on Supernova Ia and on baryon acoustic oscillations. We show that the expansion regime a(t) ∼ t{sup β} with β close to 3/2 in a spatially flat universe is a good fit to these data.

  16. SN 2010LP—A TYPE IA SUPERNOVA FROM A VIOLENT MERGER OF TWO CARBON-OXYGEN WHITE DWARFS

    SciTech Connect

    Kromer, M.; Taubenberger, S.; Seitenzahl, I. R.; Hillebrandt, W.; Pakmor, R.; Pignata, G.; Fink, M.; Röpke, F. K.; Sim, S. A.

    2013-11-20

    SN 2010lp is a subluminous Type Ia supernova (SN Ia) with slowly evolving lightcurves. Moreover, it is the only subluminous SN Ia observed so far that shows narrow emission lines of [O I] in late-time spectra, indicating unburned oxygen close to the center of the ejecta. Most explosion models for SNe Ia cannot explain the narrow [O I] emission. Here, we present hydrodynamic explosion and radiative transfer calculations showing that the violent merger of two carbon-oxygen white dwarfs of 0.9 and 0.76 M {sub ☉} adequately reproduces the early-time observables of SN 2010lp. Moreover, our model predicts oxygen close to the center of the explosion ejecta, a pre-requisite for narrow [O I] emission in nebular spectra as observed in SN 2010lp.

  17. Low mass SN IA and the late light curve

    NASA Astrophysics Data System (ADS)

    Colgate, S. A.; Fryer, C. L.; Hand, K. P.

    1995-01-01

    The late bolometric light curves of type Ia supernovae, when measured accurately over several years, show an exponential decay with a 56d half-life over a drop in luminosity of 8 magnitudes (10 half-lives). The late-time light curve is thought to be governed by the decay of Co56, whose 77d half-life must then be modified to account for the observed decay time. Two mechanisms, both relying upon the positron fraction of the Co56 decay, have been proposed to explain this modification. One explanation requires a large amount of emission at infra-red wavelengths where it would not be detected. The other explanation has proposed a progressive transparency or leakage of the high energy positrons (Colgate, Petschek and Kriese). For the positrons to leak out of the expanding nebula at the required rate necessary to produce the modified 56d exponential, the mass of the ejecta from a one foe (1051 erg in kinetic energy) explosion must be small, Mejec = 0.4M(circle dot) with Mejec (proportional to) KE0.5. Thus, in this leakage explanation, any reasonable estimate of the total energy of the explosion requires that the ejected mass be very much less than the Chandrasekhar mass of 1.4M(circle dot). This is very difficult to explain with the 'canonical' Chandrasekhar-mass thermonuclear explosion that disintegrates the original white dwarf star. This result leads us to pursue alternate mechanisms of type Ia supernovae. These mechanisms include sub-Chandrasekhar thermonuclear explosions and the accretion induced collapse of Chandrasekhar mass white dwarfs. We will summarize the advantages and disadvantages of both mechanisms with considerable detail spent on our new accretion induced collapse simulations. These mechanisms lead to lower Ni56 production and hence result in type Ia supernovae with luminosities decreased down to (approximately) 50% that predicted by the 'standard' model.

  18. The hypervelocity hot subdwarf US 708 - remnant of a double-detonation SN Ia?

    NASA Astrophysics Data System (ADS)

    Geier, Stephan

    2013-10-01

    Type Ia supernovae {SN Ia} are the most important standard candles for measuring the expansion history of the universe. The thermonuclear explosion of a white dwarf can explain their observed properties, but neither the progenitor systems nor any stellar remnants have been conclusively identified. Underluminous SN Ia have been proposed to originate from a so-called double-detonation of a white dwarf. After a critical amount of helium is deposited on the surface through accretion from a close companion, the helium is ignited causing a detonation wave that triggers the explosion of the white dwarf itself. The helium star will then be ejected at so large a velocity that it will escape the Galaxy. The predicted properties of this remnant are an excellent match to the so-called hypervelocity star US 708, a hot, helium-rich star moving at more than 750 km/s, sufficient to leave the Galaxy.Here we propose medium-resolution COS spectroscopy to measure the vsini of the hypervelocity He-sdO US 708 for the first time and to search for abundance anomalies caused by pollution through an SN Ia event. This will allow us to test the double-detonation scenario with sdB donor empirically.

  19. VizieR Online Data Catalog: SN Ia host-galaxy/cosmological parameters (Campbell+, 2016)

    NASA Astrophysics Data System (ADS)

    Campbell, H.; Fraser, M.; Gilmore, G.

    2016-11-01

    We have investigated correlations between SNe Ia light curves and their host galaxies and look at the effect on the cosmological constraints. For this we have used the sample of 581 photometrically classified SNe Ia from Campbell et al. (2013, Cat. J/ApJ/763/88). This sample was assembled from three years of photometry from the SDSS-II SN Survey, together with BOSS spectroscopy of the host galaxies of transients. We use the stellar population parameters derived from the BOSS DR10 results (Ahn et al., 2012ApJS..203...21A, Cat V/139) (1 data file).

  20. Low mass SN Ia and the late light curve

    SciTech Connect

    Colgate, S.A.; Fryer, C.L.; Hand, K.P.

    1995-12-31

    The late bolometric light curves of type Ia supernovae, when measured accurately over several years, show an exponential decay with a 56d half-life over a drop in luminosity of 8 magnitudes (10 half-lives). The late-time light curve is thought to be governed by the decay of Co{sup 56}, whose 77d half-life must then be modified to account for the observed decay time. Two mechanisms, both relying upon the positron fraction of the Co{sup 56} decay, have been proposed to explain this modification. One explanation requires a large amount of emission at infra-red wavelengths where it would not be detected. The other explanation has proposed a progressive transparency or leakage of the high energy positrons (Colgate, Petschek and Kriese, 1980). For the positrons to leak out of the expanding nebula at the required rate necessary to produce the modified 56d exponential, the mass of the ejecta from a one foe (10{sup 51} erg in kinetic energy) explosion must be small, M{sub ejec} = 0.4M{sub {circle_dot}} with M{sub ejec} {proportional_to} KE{sup 0.5}. Thus, in this leakage explanation, any reasonable estimate of the total energy of the explosion requires that the ejected mass be very much less than the Chandrasekhar mass of 1.4M{sub {circle_dot}}. This is very difficult to explain with the ``canonical`` Chandrasekhar-mass thermonuclear explosion that disintegrates the original white dwarf star. This result leads us to pursue alternate mechanisms of type Ia supernovae. These mechanisms include sub-Chandrasekhar thermonuclear explosions and the accretion induced collapse of Chandrasekhar mass white dwarfs. We will summarize the advantages and disadvantages of both mechanisms with considerable detail spent on our new accretion induced collapse simulations. These mechanisms lead to lower Ni{sup 56} production and hence result in type Ia supernovae with luminosities decreased down to {approximately} 50% that predicted by the ``standard`` model.

  1. EARLY-PHASE PHOTOMETRY AND SPECTROSCOPY OF TRANSITIONAL TYPE Ia SN 2012ht: DIRECT CONSTRAINT ON THE RISE TIME

    SciTech Connect

    Yamanaka, Masayuki; Nogami, Daisaku; Maeda, Keiichi; Kawabata, Miho; Masumoto, Kazunari; Matsumoto, Katsura; Tanaka, Masaomi; Takaki, Katsutoshi; Ueno, Issei; Itoh, Ryosuke; Kawabata, Koji S.; Moritani, Yuki; Akitaya, Hiroshi; Yoshida, Michitoshi; Arai, Akira; Honda, Satoshi; Nishiyama, Koichi; Kabashima, Fujio

    2014-02-20

    We report photometric and spectroscopic observations of the nearby Type Ia Supernova (SN Ia) 2012ht from –15.8 days to +49.1 days after B-band maximum. The decline rate of the light curve is Δm {sub 15}(B) = 1.39 ± 0.05 mag, which is intermediate between normal and subluminous SNe Ia, and similar to that of the ''transitional'' Type Ia SN 2004eo. The spectral line profiles also closely resemble those of SN 2004eo. We were able to observe SN 2012ht at a very early phase, when it was still rising and was about three magnitudes fainter than at the peak. The rise time to the B-band maximum is estimated to be 17.6 ± 0.5 days and the time of the explosion is MJD 56277.98 ± 0.13. SN 2012ht is the first transitional SN Ia whose rise time is directly measured without using light curve templates, and the fifth SN Ia overall. This rise time is consistent with those of the other four SNe within the measurement error, even including the extremely early detection of SN 2013dy. The rising part of the light curve can be fitted by a quadratic function, and shows no sign of a shock-heating component due to the interaction of the ejecta with a companion star. The rise time is significantly longer than that inferred for subluminous SNe such as SN 1991bg, which suggests that a progenitor and/or explosion mechanism of transitional SNe Ia are more similar to normal SNe Ia rather than to subluminous SNe Ia.

  2. Discovery of Cepheids in NGC 5253: Absolute peak brightness of SN Ia 1895B and SN Ia 1972E and the value of H(sub 0)

    NASA Technical Reports Server (NTRS)

    Saha, A.; Sandage, Allan; Labhardt, Lukas; Schwengeler, Hans; Tammann, G. A.; Panagia, N.; Macchetto, F. D.

    1995-01-01

    Observations of the Hubble Space Telescope (HST) between 1993 May 31 and 1993 July 19 in 20 epochs in the F555W passband and five epochs in the F785LP passband have led to the discovery of 14 Cepheids in the Amorphous galaxy NGC 5253. The apparent V distance modulus is (m-M)(sub AV) = 28.08 +/- 0.10 determined from the 12 Cepheids with normal amplitudes. The distance modulus using the F785LP data is consistent with the V value to within the errors. Five methods used to determine the internal reddening are consistent with zero differential reddening, accurate to a level of E(B-V) less than 0.05 mag, over the region occupied by Cepheids and the two supernovae (SNe) produced by NGC 5253. The apparent magnitudes at maximum for the two SNe in NGC 5253 are adopted as B(sub max) = 8.33 +/- 0.2 mag for SN 1895B, and B(sub max) = 8.56 +/- 0.1 and V(sub max) = 8.60 +/- 0.1 for SN 1972E which is a prototype SN of Type Ia. The apparent magnitude system used by Walker (1923) for SN 1859B has been corrected to the modern B scale and zero point to determine its adopted B(sub max) value.

  3. SN~2012cg: Evidence for Interaction Between a Normal Type Ia Supernova and a Non-degenerate Binary Companion

    NASA Astrophysics Data System (ADS)

    Marion, G. H.; Brown, Peter J.; Vinkó, Jozsef; Silverman, Jeffrey M.; Sand, David J.; Challis, Peter; Kirshner, Robert P.; Wheeler, J. Craig; Berlind, Perry; Brown, Warren R.; Calkins, Michael L.; Camacho, Yssavo; Dhungana, Govinda; Foley, Ryan J.; Friedman, Andrew S.; Graham, Melissa L.; Howell, D. Andrew; Hsiao, Eric Y.; Irwin, Jonathan M.; Jha, Saurabh W.; Kehoe, Robert; Macri, Lucas M.; Maeda, Keiichi; Mandel, Kaisey; McCully, Curtis; Pandya, Viraj; Rines, Kenneth J.; Wilhelmy, Steven; Zheng, Weikang

    2016-04-01

    We report evidence for excess blue light from the Type Ia supernova (Sn Ia) SN 2012cg at 15 and 16 days before maximum B-band brightness. The emission is consistent with predictions for the impact of the supernova on a non-degenerate binary companion. This is the first evidence for emission from a companion to a normal SN Ia. Sixteen days before maximum light, the B-V color of SN 2012cg is 0.2 mag bluer than for other normal SN Ia. At later times, this supernova has a typical SN Ia light curve, with extinction-corrected {M}B=-19.62+/- 0.02 mag and {{Δ }}{m}15(B)=0.86+/- 0.02. Our data set is extensive, with photometry in seven filters from five independent sources. Early spectra also show the effects of blue light, and high-velocity features are observed at early times. Near maximum, the spectra are normal with a silicon velocity vSi = -10,500 km s-1. Comparing the early data with models by Kasen favors a main-sequence companion of about six solar masses. It is possible that many other SN Ia have main-sequence companions that have eluded detection because the emission from the impact is fleeting and faint.

  4. Sodium Absorption Systems toward SN Ia 2014J Originate on Interstellar Scales

    NASA Astrophysics Data System (ADS)

    Maeda, K.; Tajitsu, A.; Kawabata, K. S.; Foley, R. J.; Honda, S.; Moritani, Y.; Tanaka, M.; Hashimoto, O.; Ishigaki, M.; Simon, J. D.; Phillips, M. M.; Yamanaka, M.; Nogami, D.; Arai, A.; Aoki, W.; Nomoto, K.; Milisavljevic, D.; Mazzali, P. A.; Soderberg, A. M.; Schramm, M.; Sato, B.; Harakawa, H.; Morrell, N.; Arimoto, N.

    2016-01-01

    Na i D absorbing systems toward Type Ia supernovae (SNe Ia) have been intensively studied over the last decade with the aim of finding circumstellar material (CSM), which is an indirect probe of the progenitor system. However, it is difficult to deconvolve CSM components from non-variable, and often dominant, components created by interstellar material (ISM). We present a series of high-resolution spectra of SN Ia 2014J from before maximum brightness to ≳250 days after maximum brightness. The late-time spectrum provides unique information for determining the origin of the Na i D absorption systems. The deep late-time observation allows us to probe the environment around the SN at a large scale, extending to ≳40 pc. We find that a spectrum of diffuse light in the vicinity, but not directly in the line of sight, of the SN has absorbing systems nearly identical to those obtained for the “pure” SN line of sight. Therefore, basically all Na i D systems seen toward SN 2014J must originate from foreground material that extends to at least ∼40 pc in projection and none at the CSM scale. A fluctuation in the column densities at a scale of ∼20 pc is also identified. After subtracting the diffuse, “background” spectrum, the late-time Na i D profile along the SN line of sight is consistent with profiles near maximum brightness. The lack of variability on a ∼1 year timescale is consistent with the ISM interpretation for the gas. Based on data collected at the Subaru Telescope and Okayama 1.88 m Telescope, which are operated by the National Astronomical Observatory of Japan, and at the Gunma 1.5 m Telescope operated by the Gunma Astronomical Observatory.

  5. TYCHO SN 1572: A NAKED Ia SUPERNOVA REMNANT WITHOUT AN ASSOCIATED AMBIENT MOLECULAR CLOUD

    SciTech Connect

    Tian, W. W.; Leahy, D. A.

    2011-03-10

    The historical supernova remnant (SNR) Tycho SN 1572 originates from the explosion of a normal Type Ia supernova that is believed to have originated from a carbon-oxygen white dwarf in a binary system. We analyze the 21 cm continuum, H I, and {sup 12}CO-line data from the Canadian Galactic Plane Survey in the direction of SN 1572 and the surrounding region. We construct H I absorption spectra to SN 1572 and three nearby compact sources. We conclude that SN 1572 has no molecular cloud interaction, which argues against previous claims that a molecular cloud is interacting with the SNR. This new result does not support a recent claim that dust, newly detected by AKARI, originates from such an SNR-cloud interaction. We suggest that the SNR has a kinematic distance of 2.5-3.0 kpc based on a nonlinear rotational curve model. Very high energy {gamma}-ray emission from the remnant has been detected by the VERITAS telescope, so our result shows that its origin should not be an SNR-cloud interaction. Both radio and X-ray observations support that SN 1572 is an isolated Type Ia SNR.

  6. Spectroscopic Observations and Analysis of the Unusual Type Ia SN1999ac

    SciTech Connect

    Garavini, G.; Aldering, G.; Amadon, A.; Amanullah, R.; Astier,P.; Balland, C.; Blanc, G.; Conley, A.; Dahlen, T.; Deustua, S.E.; Ellis,R.; Fabbro, S.; Fadeyev, V.; Fan, X.; Folatelli, G.; Frye, B.; Gates,E.L.; Gibbons, R.; Goldhaber, G.; Goldman, B.; Goobar, A.; Groom, D.E.; Haissinski, J.; Hardin, D.; Hook, I.; Howell, D.A.; Kent, S.; Kim, A.G.; Knop, R.A.; Kowalski, M.; Kuznetsova, N.; Lee, B.C.; Lidman, C.; Mendez,J.; Miller, G.J.; Moniez, M.; Mouchet, M.; Mourao, A.; Newberg, H.; Nobili, S.; Nugent, P.E.; Pain, R.; Perdereau, O.; Perlmutter, S.; Quimby, R.; Regnault, N.; Rich, J.; Richards, G.T.; Ruiz-Lapuente, P.; Schaefer, B.E.; Schahmaneche, K.; Smith, E.; Spadafora, A.L.; Stanishev,V.; Thomas, R.C.; Walton, N.A.; Wang, L.; Wood-Vasey, W.M.

    2005-07-12

    The authors present optical spectra of the peculiar Type Ia supernova (SN Ia) 1999ac. The data extend from -15 to +42 days with respect to B-band maximum and reveal an event that is unusual in several respects. prior to B-band maximum, the spectra resemble those of SN 1999aa, a slowly declining event, but possess stronger Si II and Ca II signatures (more characteristic of a spectroscopically normal SN). Spectra after B-band maximum appear more normal. The expansion velocities inferred from the Iron lines appear to be lower than average; whereas, the expansion velocity inferred from Calcium H and K are higher than average. The expansion velocities inferred from the Iron lines appear to be lower than average; whereas, the expansion velocity inferred from Calcium H and K are higher than average. The expansion velocities inferred from Si II are among the slowest ever observed, though SN 1999ac is not particularly dim. The analysis of the parameters v{sub 10}(Si II), R(Si II), v, and {Delta}m{sub 15} further underlines the unique characteristics of SN 1999ac. They find convincing evidence of C II {lambda}6580 in the day -15 spectrum with ejection velocity v > 16,000 km s{sup -1}, but this signature disappears by day -9. This rapid evolution at early times highlights the importance of extremely early-time spectroscopy.

  7. SPECTROPOLARIMETRY OF THE TYPE Ia SN 2007sr TWO MONTHS AFTER MAXIMUM LIGHT

    SciTech Connect

    Zelaya, P.; Quinn, J. R.; Clocchiatti, A.; Baade, D.; Patat, F.; Hoeflich, P.; Maund, J.; Wang, L.; Wheeler, J. C.

    2013-02-01

    We present late-time spectropolarimetric observations of SN 2007sr, obtained with the Very Large Telescope at the ESO Paranal Observatory when the object was 63 days after maximum light. The late-time spectrum displays strong line polarization in the Ca II absorption features. SN 2007sr adds to the case of some normal Type Ia supernovae that show high line polarization or repolarization at late times, a fact that might be connected with the presence of high-velocity features at early times.

  8. Application of Bayesian graphs to SN Ia data analysis and compression

    NASA Astrophysics Data System (ADS)

    Ma, Cong; Corasaniti, Pier-Stefano; Bassett, Bruce A.

    2016-12-01

    Bayesian graphical models are an efficient tool for modelling complex data and derive self-consistent expressions of the posterior distribution of model parameters. We apply Bayesian graphs to perform statistical analyses of Type Ia supernova (SN Ia) luminosity distance measurements from the joint light-curve analysis (JLA) data set. In contrast to the χ2 approach used in previous studies, the Bayesian inference allows us to fully account for the standard-candle parameter dependence of the data covariance matrix. Comparing with χ2 analysis results, we find a systematic offset of the marginal model parameter bounds. We demonstrate that the bias is statistically significant in the case of the SN Ia standardization parameters with a maximal 6σ shift of the SN light-curve colour correction. In addition, we find that the evidence for a host galaxy correction is now only 2.4σ. Systematic offsets on the cosmological parameters remain small, but may increase by combining constraints from complementary cosmological probes. The bias of the χ2 analysis is due to neglecting the parameter-dependent log-determinant of the data covariance, which gives more statistical weight to larger values of the standardization parameters. We find a similar effect on compressed distance modulus data. To this end, we implement a fully consistent compression method of the JLA data set that uses a Gaussian approximation of the posterior distribution for fast generation of compressed data. Overall, the results of our analysis emphasize the need for a fully consistent Bayesian statistical approach in the analysis of future large SN Ia data sets.

  9. Spectroscopic Classification of ASASSN-16cu as a Type Ia SN

    NASA Astrophysics Data System (ADS)

    Strader, Jay; Chomiuk, Laura; Shishkovsky, Laura

    2016-03-01

    We obtained an optical spectrum of ASASSN-16cu (ATel #8796) on UT March 29.37 with the Goodman Spectrograph on the SOAR telescope. Classification with SNID (Blondin and Tonry 2007, ApJ, 666, 1024) indicates ASASSN-16cu is a normal Type Ia SN observed at about 70 days after peak. The redshift is consistent with proposed host galaxy IC 4723 (z=0.011128, via NED).

  10. Late-time Photometry of Type Ia Supernova SN 2012cg Reveals the Radioactive Decay of 57 Co

    NASA Astrophysics Data System (ADS)

    Graur, Or; Zurek, David; Shara, Michael M.; Riess, Adam G.; Seitenzahl, Ivo R.; Rest, Armin

    2016-03-01

    Seitenzahl et al. have predicted that roughly three years after its explosion, the light we receive from a Type Ia supernova (SN Ia) will come mostly from reprocessing of electrons and X-rays emitted by the radioactive decay chain 57Co → 57Fe, instead of positrons from the decay chain 56Co → 56Fe that dominates the SN light at earlier times. Using the Hubble Space Telescope, we followed the light curve of the SN Ia SN 2012cg out to 1055 days after maximum light. Our measurements are consistent with the light curves predicted by the contribution of energy from the reprocessing of electrons and X-rays emitted by the decay of 57Co, offering evidence that 57Co is produced in SN Ia explosions. However, the data are also consistent with a light echo ∼14 mag fainter than SN 2012cg at peak. Assuming no light-echo contamination, the mass ratio of 57Ni and 56Ni produced by the explosion, a strong constraint on any SN Ia explosion models, is {0.043}-0.011+0.012, roughly twice Solar. In the context of current explosion models, this value favors a progenitor white dwarf with a mass near the Chandrasekhar limit.

  11. Observations of the Type Ia Supernova SN2014J with FLITECAM/SOFIA

    NASA Astrophysics Data System (ADS)

    Hamilton, Ryan Thomas; Vacca, William; Shenoy, Sachindev; Savage, Maureen; Becklin, Eric; McLean, Ian; Logsdon, Sarah; ProposersSN2014J SOFIA, DDT

    2015-08-01

    We present near-infrared (NIR) spectra of the normal Type Ia supernova (SN Ia) SN2014J obtained with FLITECAM aboard SOFIA. Spectra were obtained 17 - 25 days after maximum B light, covering wavelengths between 1.1 and 3.4 μm. Our 2.8 - 3.4 μm data represent one of the first ~3 μm spectra of a SN Ia ever published. The first and final sets of spectra, obtained on 2014 Feb. 19 and 2014 Feb. 27 respectively, span the entire 1.5 - 2.7 μm range. The spectra are characterized by a wealth of strong emission features, with the peak near 1.77 μm showing a full width at half maximum of ~12,000 km s-1. This feature is seen to decrease in width and shift by 0.02 μm between the first and last sets. We compare the observations to the recent non-LTE delayed detonation models of Dessart et al. (2014) and find that the models agree with the spectra remarkably well in the 1.5 - 2.7 μm wavelength range. Based on this comparison we identify the ~1.77 μm emission peak as a blend of permitted lines of Co II, with the observed shift resulting from a change of contributions from the various components. Identifications of the prominent lines in the observed spectra suggest that the NIR spectra of normal SNe Ia at this stage of their evolution are dominated by emission lines at the systemic radial velocities, not highly blue-shifted absorption features as has been claimed in the past for other SNe Ia. Although the models match the observed H and K band spectra fairly well, they are not as successful at reproducing the spectra in the J band or between 2.8 μm and 3.4 μm. Additionally, an emission feature at ~2 μm due to [Co III] can be clearly seen on Feb. 27, while the models predict that it should have faded considerably by this time. These observations also demonstrate the promise of SOFIA for future SN observations, by allowing access to wavelength regions inaccessible from the ground, and serve to draw attention to the usefulness of the regions between the standard ground

  12. Preliminary NIR Late Light Curve of the Type Ia Supernova SN2009nr

    NASA Astrophysics Data System (ADS)

    Heath, Jonathan; Bryngelson, G.

    2013-01-01

    Type Ia supernovae (SNe Ia) are important in determining the expansion of the universe based on the uniformity of their light curves. It is essential to understand the behavior of these supernovae in order to strengthen our confidence in their use as standard candles. A small, but increasing number of SNe Ia have been observed later than the 200 day epoch in the near-infrared (NIR). Most of these exhibit a flattening of the NIR power, even as the visible light declines at a steady rate. It is unclear as to exactly what causes this behavior, and how typical it is. In order to characterize the late behavior of SNe Ia, images of the supernova SN2009nr were analyzed using the Image Reduction and Analysis Facility (IRAF). These images were taken with the 4m Mayall Telescope at Kitt Peak National-Observatory using the FLAMINGOS IR Imaging Spectrometer. The supernova’s magnitude was normalized with respect to the magnitudes of known stars so that traits related to the supernova may be compared to others. We present preliminary NIR (J, H, K) light curves of the observed supernova and compare them to other SNe Ia observed at these epochs.

  13. Photometric and Spectroscopic Observations of SN 2012dn, a Super-Chandra Candidate Type-Ia Supernova

    NASA Astrophysics Data System (ADS)

    Parrent, Jerod T.; Transient Factory, Palomar; Cumbres Observatory Global Telescope Network, Las

    2013-01-01

    Currently, there is no singular standard model picture of type-Ia supernovae (SNe Ia) with a parameter-space of predictions that overlap the observed, diverse array of SN Ia properties. The same can be said for the super-luminous versions of SNe Ia, those thought to originate from up to 2.4 solar mass progenitor systems. To make matters worse, we remain in the dark-ages of astronomy regarding the interpretation of their observed spectra. In short, line-blending due to resonant line-scattering alone prevents making clear the compositional makeup of the outermost ejected layers. Since simulations of violent merger and single degenerate scenarios are both able to roughly reproduce spectroscopic observations, the direct mapping of the ejecta via spectrum synthesis measurements is of high importance. For example, with the closest SN Ia to date, SN 2011fe, we were able to map (in velocity space) the composition of the outer layers of ejecta. We did this by evolving simple P-Cygni-blends of synthetic spectra over the course of the first month (post-explosion), with an average of 1.8 days between observations by which to compare. As a result, SN 2011fe gave a clearer picture of the compositional structure of a ''normal'' SN Ia. We now have another chance to put this measure of SN Ia diversity into practice with the discovery of a brighter than normal southern hemisphere object, SN 2012dn. Here we present g-, r-, and i-band photometric observations obtained at Faulkes Telescope South, as well as optical time-series spectra from Gemini-North, Gemini-South, SALT, and MMT facilities. With 19 spectroscopic observations spanning its first month, post-explosion, we are able to measure the relative velocities of the periodic table in the outermost layers of ejected material. This serves as a means for distinguishing the origin of SNe Ia and their various forms.

  14. SALT spectroscopic classification of SN 2017azk (= PS17bii) as a type-Ia supernova near maximum light

    NASA Astrophysics Data System (ADS)

    Jha, S. W.; Dettman, K.; Pan, Y.-C.; Foley, R. J.; Rest, A.; Scolnic, D.; Vaisanen, P.

    2017-02-01

    We obtained SALT (+RSS) spectroscopy of SN 2017azk (= PS17bii) on 2017 Feb 24.0 UT, covering the wavelength range 340-920 nm. Cross-correlation of the supernova spectrum with a template library using SNID (Blondin & Tonry 2007, ApJ, 666, 1024) shows SN 2017azk is a type-Ia supernova near maximum light.

  15. SALT spectroscopic classification of SN 2017erp as a type-Ia supernova well before maximum light

    NASA Astrophysics Data System (ADS)

    Jha, S. W.; Camacho, Y.; Dettman, K.; Pan, Y.-C.; Foley, R. J.; Rest, A.; Scolnic, D.; Skelton, R.

    2017-06-01

    We obtained SALT (+RSS) spectroscopy of SN 2017erp (discovered by K. Itagaki) on 2017 Jun 13.9 UT, covering the wavelength range 350-940 nm. Cross-correlation of the supernova spectrum with a template library using SNID (Blondin & Tonry 2007, ApJ, 666, 1024) shows SN 2017erp is a type-Ia supernova before maximum light.

  16. From cosmic deceleration to acceleration: new constraints from SN Ia and BAO/CMB

    SciTech Connect

    Giostri, R.; Santos, M. Vargas dos; Waga, I.; Reis, R.R.R.; Calvão, M.O.; Lago, B. L. E-mail: vargas@if.ufrj.br E-mail: ribamar@if.ufrj.br E-mail: brunolz@if.ufrj.br

    2012-03-01

    We use type Ia supernovae (SN Ia) data in combination with recent baryonic acoustic oscillations (BAO) and cosmic microwave background (CMB) observations to constrain a kink-like parametrization of the deceleration parameter (q). This q-parametrization can be written in terms of the initial (q{sub i}) and present (q{sub 0}) values of the deceleration parameter, the redshift of the cosmic transition from deceleration to acceleration (z{sub t}) and the redshift width of such transition (τ). By assuming a flat space geometry, q{sub i} = 1/2 and adopting a likelihood approach to deal with the SN Ia data we obtain, at the 68% confidence level (C.L.), that: z{sub t} = 0.56{sup +0.13}{sub −0.10}, τ = 0.47{sup +0.16}{sub −0.20} and q{sub 0} = −0.31{sup +0.11}{sub −0.11} when we combine BAO/CMB observations with SN Ia data processed with the MLCS2k2 light-curve fitter. When in this combination we use the SALT2 fitter we get instead, at the same C.L.: z{sub t} = 0.64{sup +0.13}{sub −0.07}, τ = 0.36{sup +0.11}{sub −0.17} and q{sub 0} = −0.53{sup +0.17}{sub −0.13}. Our results indicate, with a quite general and model independent approach, that MLCS2k2 favors Dvali-Gabadadze-Porrati-like cosmological models, while SALT2 favors ΛCDM-like ones. Progress in determining the transition redshift and/or the present value of the deceleration parameter depends crucially on solving the issue of the difference obtained when using these two light-curve fitters.

  17. Possible detection of singly ionized oxygen in the Type Ia SN 2010kg

    NASA Astrophysics Data System (ADS)

    Barna, B.; Vinko, J.; Silverman, J. M.; Marion, G. H.; Wheeler, J. C.

    2016-04-01

    We present direct spectroscopic modelling of 11 high signal-to-noise ratio observed spectra of the Type Ia supernova (SN) 2010kg, taken between -10 and +5 d with respect to B-maximum. The synthetic spectra, calculated with the SYN++ code, span the range between 4100 and 8500 Å. Our results are in good agreement with previous findings for other Type Ia SNe. Most of the spectral features are formed at or close to the photosphere, but some ions, like Fe II and Mg II, also form features at ˜2000-5000 km s-1 above the photosphere. The well-known high-velocity features of the Ca II IR-triplet as well as Si II λ6355 are also detected. The single absorption feature at ˜4400 Å, which usually has been identified as due to Si III, is poorly fit with Si III in SN 2010kg. We find that the fit can be improved by assuming that this feature is due to either C III or O II, located in the outermost part of the ejecta, ˜4000-5000 km s-1 above the photosphere. Since the presence of C III is unlikely, because of the lack of the necessary excitation/ionization conditions in the outer ejecta, we identify this feature as due to O II. The simultaneous presence of O I and O II is in good agreement with the optical depth calculations and the temperature distribution in the ejecta of SN 2010kg. This could be the first identification of singly ionized oxygen in a Type Ia SN atmosphere.

  18. SODIUM ABSORPTION SYSTEMS TOWARD SN Ia 2014J ORIGINATE ON INTERSTELLAR SCALES

    SciTech Connect

    Maeda, K.; Nogami, D.; Tajitsu, A.; Kawabata, K. S.; Foley, R. J.; Honda, S.; Arai, A.; Moritani, Y.; Ishigaki, M.; Nomoto, K.; Schramm, M.; Tanaka, M.; Aoki, W.; Hashimoto, O.; Simon, J. D.; Phillips, M. M.; Yamanaka, M.; Milisavljevic, D.; Soderberg, A. M.; Mazzali, P. A.; and others

    2016-01-10

    Na i D absorbing systems toward Type Ia supernovae (SNe Ia) have been intensively studied over the last decade with the aim of finding circumstellar material (CSM), which is an indirect probe of the progenitor system. However, it is difficult to deconvolve CSM components from non-variable, and often dominant, components created by interstellar material (ISM). We present a series of high-resolution spectra of SN Ia 2014J from before maximum brightness to ≳250 days after maximum brightness. The late-time spectrum provides unique information for determining the origin of the Na i D absorption systems. The deep late-time observation allows us to probe the environment around the SN at a large scale, extending to ≳40 pc. We find that a spectrum of diffuse light in the vicinity, but not directly in the line of sight, of the SN has absorbing systems nearly identical to those obtained for the “pure” SN line of sight. Therefore, basically all Na i D systems seen toward SN 2014J must originate from foreground material that extends to at least ∼40 pc in projection and none at the CSM scale. A fluctuation in the column densities at a scale of ∼20 pc is also identified. After subtracting the diffuse, “background” spectrum, the late-time Na i D profile along the SN line of sight is consistent with profiles near maximum brightness. The lack of variability on a ∼1 year timescale is consistent with the ISM interpretation for the gas.

  19. SN 2007ir is a Type Ia supernova, M31 2007-10a is a FeII Nova

    NASA Astrophysics Data System (ADS)

    Gal-Yam, Avishay; Quimby, Robert

    2007-10-01

    We observed SN 2007ir (Thrasher et al., CBET 1067; Silverman et al., CBET 1077) with the Double Beam Spectrograph (DBSP) on the Palomar 200" telescope on Oct. 9.48, UT. Comparison to archival supernova spectra via the Superfit package (Howell et al. 2005, ApJ, 634, 1190), shows that SN 2007ir is a Type Ia. The spectra are quite similar to SN 1994D at 25 days after maximum light (Patat et al., 1996, MNRAS, 278, 111).

  20. Constraints on reconstructed dark energy model from SN Ia and BAO/CMB observations

    NASA Astrophysics Data System (ADS)

    Mamon, Abdulla Al; Bamba, Kazuharu; Das, Sudipta

    2017-01-01

    The motivation of the present work is to reconstruct a dark energy model through the dimensionless dark energy function X( z), which is the dark energy density in units of its present value. In this paper, we have shown that a scalar field φ having a phenomenologically chosen X( z) can give rise to a transition from a decelerated to an accelerated phase of expansion for the universe. We have examined the possibility of constraining various cosmological parameters (such as the deceleration parameter and the effective equation of state parameter) by comparing our theoretical model with the latest Type Ia Supernova (SN Ia), Baryon Acoustic Oscillations (BAO) and Cosmic Microwave Background (CMB) radiation observations. Using the joint analysis of the SN Ia+BAO/CMB dataset, we have also reconstructed the scalar potential from the parametrized X( z). The relevant potential is found, a polynomial in φ . From our analysis, it has been found that the present model favors the standard Λ CDM model within 1σ confidence level.

  1. Evolving Newton's constant, extended gravity theories, and SnIa data analysis

    SciTech Connect

    Nesseris, S.; Perivolaropoulos, L.

    2006-05-15

    If Newton's constant G evolves on cosmological timescales as predicted by extended gravity theories then Type Ia supernovae (SnIa) cannot be treated as standard candles. The magnitude-redshift datasets however can still be useful. They can be used to simultaneously fit for both H(z) and G(z) (so that local G(z) constraints are also satisfied) in the context of appropriate parametrizations. Here we demonstrate how this analysis can be done by applying it to the Gold SnIa dataset. We compare the derived effective equation of state parameter w(z) at best fit with the corresponding result obtained by neglecting the evolution G(z). We show that even though the results clearly differ from each other, in both cases the best fit w(z) crosses the phantom divide w=-1. We then attempt to reconstruct a scalar-tensor theory that predicts the derived best fit forms of H(z) and G(z). Since the best fit G(z) fixes the scalar-tensor potential evolution F(z), there is no ambiguity in the reconstruction and the potential U(z) can be derived uniquely. The particular reconstructed scalar-tensor theory, however, involves a change of sign of the kinetic term {phi}{sup '}(z){sup 2} as in the minimally coupled case.

  2. A light curve and its analysis of Type Ia SN 1604

    NASA Astrophysics Data System (ADS)

    Lee, Eun Hee; Lee, Dae-Young; Mihn, Byeong-Hee

    2015-08-01

    SN 1604, known as Kepler’s supernova, was first detected by European observers, but a full light curve including its peak brightness and initial decline part can only be completed by extra data from Korean royal astronomers of four centuries ago. Nowadays, it is considered one of the Type Ia galactic supernovae, which show the empirical correlation between decline rate and peak luminosity - so called Phillips relation or width-luminosity (W-L) relation. Here, we reconstruct a new light curve based on both the Korean and European records of SN 1604. Using this light curve and W-L relation, we present an observed rise time and decline rates after peak, and derive its absolute peak magnitude and distance. In this study, observed rise time (≈ 19±1 days) shows a good agreement with typical mean time of Type Ia SNe, while the initial decline rates such as Δm15(V) and Δm20(V) represent steeper and faster values than the extra-galactic SNe Ia. Moreover, its absolute peak magnitude and distance derived from the W-L relation show much fainter and nearer values, respectively than the estimated results by different methods

  3. Infrared Spectra of the Subluminous Type Ia Supernova SN 1999by

    NASA Astrophysics Data System (ADS)

    Höflich, Peter; Gerardy, Christopher L.; Fesen, Robert A.; Sakai, Shoko

    2002-04-01

    Near-infrared (NIR) spectra of the subluminous Type Ia supernova SN 1999by are presented that cover the time evolution from about 4 days before to 2 weeks after maximum light. Analysis of these data was accomplished through the construction of an extended set of delayed detonation (DD) models covering the entire range of normal to subluminous SNe Ia. The explosion, light curves, and time evolution of the synthetic spectra were calculated self-consistently for each model, with the only free parameters being the initial structure of the white dwarf and the description of the nuclear burning front during the explosion. From these, one model was selected for SN 1999by by matching the synthetic and observed optical light curves, principally the rapid brightness decline. DD models require a minimum amount of burning during the deflagration phase, which implies a lower limit for the 56Ni mass of about 0.1Msolar and consequently a lower limit for the SN brightness. The models that best match the optical light curve of SN 1999by were those with a 56Ni production close to this theoretical minimum. The data are consistent with little or no interstellar reddening [E(B-V)<=0.12 mag], and we derive a distance of 11+/-2.5 Mpc for SN 1999by, in agreement with other estimates. Without any modification, the synthetic spectra from this subluminous model match reasonably well the observed IR spectra taken on 1999 May 6, 10, 16, and 24. These dates correspond roughly to -4, 0, 6, and 14 days after maximum light. Prior to maximum, the NIR spectra of SN 1999by are dominated by products of explosive carbon burning (O, Mg) and Si. Spectra taken after maximum light are dominated by products of incomplete Si burning. Unlike the behavior of normal Type Ia SNe, lines from iron-group elements begin to show up only in our last spectrum taken about 2 weeks after maximum light. The implied distribution of elements in velocity space agrees well with the DD model predictions for a subluminous SN Ia

  4. Asymmetries in the bright and moderately extincted SN Ia ASASSN-14lp

    NASA Astrophysics Data System (ADS)

    Porter, Amber L.; Milne, Peter; Williams, Grant; Mauerhan, Jon; Leising, Mark D.; Smith, Paul S.

    2017-01-01

    Spectropolarimetry of supernovae, or measuring the polarization of their light as a function of wavelength, records the intricate details about the geometry of the explosion for each epoch obtained. The Type Ia supernova (SN Ia) ASASSN-14lp was the second brightest supernova in 2014 and suffers from a moderate amount of extinction (Shappee et al. 2016). We obtained spectropolarimetric observations spanning -9 to +150 days, relative to B-maximum, using the CCD Imaging/Spectropolarimeter (SPOL) on the 1.5-m Kuiper, 2.3-m Bok, and 6.5-m MMT telescopes and the Kast spectrograph on the 3-m Shane telescope at Lick Observatory. We investigate the evolution of the polarization intrinsic to the supernova which describes asymmetries in the ejecta of the explosion and comment on the extragalactic dust of the host galaxy, NGC 4666.

  5. Optical and ultraviolet observations of the narrow-lined type Ia SN 2012fr in NGC 1365

    SciTech Connect

    Zhang, Ju-Jia; Bai, Jin-Ming; Wang, Bo; Liu, Zheng-Wei; Wang, Xiao-Feng; Zhao, Xu-Lin; Chen, Jun-Cheng; Zhang, Tian-Meng E-mail: baijinming@ynao.ac.cn

    2014-07-01

    Extensive optical and ultraviolet (UV) observations of the type Ia supernova (SN Ia) 2012fr are presented in this paper. It has a relatively high luminosity, with an absolute B-band peak magnitude of about –19.5 mag and a smaller post-maximum decline rate than normal SNe Ia (e.g., Δm {sub 15}(B) =0.85 ± 0.05 mag). Based on the UV and optical light curves, we derived that a {sup 56}Ni mass of about 0.88 M {sub ☉} was synthesized in the explosion. The earlier spectra are characterized by noticeable high-velocity features of Si II λ6355 and Ca II with velocities in the range of ∼22, 000-25, 000 km s{sup –1}. At around the maximum light, these spectral features are dominated by the photospheric components which are noticeably narrower than normal SNe Ia. The post-maximum velocity of the photosphere remains almost constant at ∼12,000 km s{sup –1} for about one month, reminiscent of the behavior of some luminous SNe Ia like SN 1991T. We propose that SN 2012fr may represent a subset of the SN 1991T-like SNe Ia viewed in a direction with a clumpy or shell-like structure of ejecta, in terms of a significant level of polarization reported in Maund et al. in 2013.

  6. Spitzer observations of SN 2014J and properties of mid-IR emission in Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Johansson, J.; Goobar, A.; Kasliwal, M. M.; Helou, G.; Masci, F.; Tinyanont, S.; Jencson, J.; Cao, Y.; Fox, O. D.; Kromer, M.; Amanullah, R.; Banerjee, D. P. K.; Joshi, V.; Jerkstrand, A.; Kankare, E.; Prince, T. A.

    2017-04-01

    SN 2014J in M 82 is the closest Type Ia supernova (SN Ia) in decades. The proximity allows for detailed studies of supernova physics and provides insights into the circumstellar and interstellar environment. In this work, we analyse Spitzer mid-infrared (mid-IR) data of SN 2014J in the 3.6 and 4.5 μm wavelength range, together with several other nearby and well-studied SNe Ia. We compile the first composite mid-IR light-curve templates from our sample of SNe Ia, spanning the range from before peak brightness well into the nebular phase. Our observations indicate that SNe Ia form a very homogeneous class of objects at these wavelengths. Using the low-reddening supernovae for comparison, we constrain possible thermal emission from circumstellar dust around the highly reddened SN 2014J. We also study SNe 2006X and 2007le, where the presence of matter in the circumstellar environment has been suggested. No significant mid-IR excess is detected, allowing us to place upper limits on the amount of pre-existing dust in the circumstellar environment. For SN 2014J, Mdust ≲ 10- 5 M⊙ within rdust ∼ 1017 cm, which is insufficient to account for the observed extinction. Similar limits are obtained for SNe 2006X and 2007le.

  7. Spectroscopic Classification of SN 2017ghm as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Vinko, J.; Wheeler, J. C.; Wang, X.; Li, W.; Li, Z.; Xiang, D.; Rui, L.; Lin, H.; Xu, Z.; Li, B.; Zhao, H.; Wang, L.; Tan, H.; Zhang, J.

    2017-09-01

    An optical spectrum (range 360-680 nm) of SN 2017ghm (=PTSS-17uyml), discovered by the PMO-Tsinghua Supernova Survey (PTSS, http://www.cneost.org/ptss/), was obtained with the new "Low Resolution Spectrograph-2" (LRS2) on the 10m Hobby-Eberly Telescope at McDonald Observatory by S. Rostopchin on 2017 Aug 31.17 UT. The spectrum is consistent with that of a heavily reddened Type Ia supernova (with Av > 2.3 mag) around maximum light.

  8. Early Observations and Analysis of the Type Ia SN 2014J in M82

    NASA Astrophysics Data System (ADS)

    Marion, G. H.; Sand, D. J.; Hsiao, E. Y.; Banerjee, D. P. K.; Valenti, S.; Stritzinger, M. D.; Vinkó, J.; Joshi, V.; Venkataraman, V.; Ashok, N. M.; Amanullah, R.; Binzel, R. P.; Bochanski, J. J.; Bryngelson, G. L.; Burns, C. R.; Drozdov, D.; Fieber-Beyer, S. K.; Graham, M. L.; Howell, D. A.; Johansson, J.; Kirshner, R. P.; Milne, P. A.; Parrent, J.; Silverman, J. M.; Vervack, R. J., Jr.; Wheeler, J. C.

    2015-01-01

    We present optical and near infrared (NIR) observations of the nearby Type Ia SN 2014J. Seventeen optical and 23 NIR spectra were obtained from 10 days before (-10d) to 10 days after (+10d) the time of maximum B-band brightness. The relative strengths of absorption features and their patterns of development can be compared at one day intervals throughout most of this period. Carbon is not detected in the optical spectra, but we identify C I λ1.0693 in the NIR spectra. Mg II lines with high oscillator strengths have higher initial velocities than other Mg II lines. We show that the velocity differences can be explained by differences in optical depths due to oscillator strengths. The spectra of SN 2014J show that it is a normal SN Ia, but many parameters are near the boundaries between normal and high-velocity subclasses. The velocities for O I, Mg II, Si II, S II, Ca II, and Fe II suggest that SN 2014J has a layered structure with little or no mixing. That result is consistent with the delayed detonation explosion models. We also report photometric observations, obtained from -10d to +29d, in the UBVRIJH and Ks bands. The template fitting package SNooPy is used to interpret the light curves and to derive photometric parameters. Using RV = 1.46, which is consistent with previous studies, SNooPy finds that AV = 1.80 for E(B - V)host = 1.23 ± 0.06 mag. The maximum B-band brightness of -19.19 ± 0.10 mag was reached on February 1.74 UT ± 0.13 days and the supernova has a decline parameter, Δm 15, of 1.12 ± 0.02 mag.

  9. EARLY OBSERVATIONS AND ANALYSIS OF THE TYPE Ia SN 2014J IN M82

    SciTech Connect

    Marion, G. H.; Vinkó, J.; Sand, D. J.; Hsiao, E. Y.; Banerjee, D. P. K.; Joshi, V.; Venkataraman, V.; Ashok, N. M.; Valenti, S.; Howell, D. A.; Stritzinger, M. D.; Amanullah, R.; Johansson, J.; Binzel, R. P.; Bochanski, J. J.; Bryngelson, G. L.; Burns, C. R.; Drozdov, D.; Fieber-Beyer, S. K.; Graham, M. L.; and others

    2015-01-01

    We present optical and near infrared (NIR) observations of the nearby Type Ia SN 2014J. Seventeen optical and 23 NIR spectra were obtained from 10 days before (–10d) to 10 days after (+10d) the time of maximum B-band brightness. The relative strengths of absorption features and their patterns of development can be compared at one day intervals throughout most of this period. Carbon is not detected in the optical spectra, but we identify C I λ1.0693 in the NIR spectra. Mg II lines with high oscillator strengths have higher initial velocities than other Mg II lines. We show that the velocity differences can be explained by differences in optical depths due to oscillator strengths. The spectra of SN 2014J show that it is a normal SN Ia, but many parameters are near the boundaries between normal and high-velocity subclasses. The velocities for O I, Mg II, Si II, S II, Ca II, and Fe II suggest that SN 2014J has a layered structure with little or no mixing. That result is consistent with the delayed detonation explosion models. We also report photometric observations, obtained from –10d to +29d, in the UBVRIJH and K{sub s} bands. The template fitting package SNooPy is used to interpret the light curves and to derive photometric parameters. Using R{sub V} = 1.46, which is consistent with previous studies, SNooPy finds that A{sub V} = 1.80 for E(B – V){sub host} = 1.23 ± 0.06 mag. The maximum B-band brightness of –19.19 ± 0.10 mag was reached on February 1.74 UT ± 0.13 days and the supernova has a decline parameter, Δm {sub 15}, of 1.12 ± 0.02 mag.

  10. Chandra Observations of the Nearest Type Ia SN in 25 Years

    NASA Astrophysics Data System (ADS)

    Hughes, John

    2010-09-01

    No SN Ia has been detected in the X-ray band during outburst. The most careful limits have been set using a 20 ks Chandra observation of SN 2002bo in NGC 3190 (22 Mpc), which was observed 9.3 days after explosion (Hughes et al. 2007), resulting in limits on the circumstellar medium (CSM) of w = dot M/ v_w < 1.2E15 g/cm, assuming a wind density profile rho_w = dot M/(4pi v_w r^2). This limit is comparable to the limits set by the nondetection of Halpha flux from SN 1994D and SN 2001el, although they are less constraining than limits set in the radio (Panagia et al. 2006). X-ray constraints are based on direct calculation of the expected emission using well-understood physics (i.e., bremsstrahlung emission, Comptonization), while radio limits are subject to large systematic uncertainties because the efficiency for generating synchrotron radiation in the shocked wind and ejecta is not known. We will work with Nikolai Chugai to model and intepret the results.

  11. Nebular spectra and abundance tomography of the Type Ia supernova SN 2011fe: a normal SN Ia with a stable Fe core

    NASA Astrophysics Data System (ADS)

    Mazzali, P. A.; Sullivan, M.; Filippenko, A. V.; Garnavich, P. M.; Clubb, K. I.; Maguire, K.; Pan, Y.-C.; Shappee, B.; Silverman, J. M.; Benetti, S.; Hachinger, S.; Nomoto, K.; Pian, E.

    2015-07-01

    A series of optical and one near-infrared nebular spectra covering the first year of the Type Ia supernova SN 2011fe are presented and modelled. The density profile that proved best for the early optical/ultraviolet spectra, `ρ-11fe', was extended to lower velocities to include the regions that emit at nebular epochs. Model ρ-11fe is intermediate between the fast deflagration model W7 and a low-energy delayed-detonation. Good fits to the nebular spectra are obtained if the innermost ejecta are dominated by neutron-rich, stable Fe-group species, which contribute to cooling but not to heating. The correct thermal balance can thus be reached for the strongest [Fe II] and [Fe III] lines to be reproduced with the observed ratio. The 56Ni mass thus obtained is ˜0.47 ± 0.05 M⊙. The bulk of 56Ni has an outermost velocity of ˜8500 km s-1. The mass of stable iron is ˜0.23 ± 0.03 M⊙. Stable Ni has low abundance, ˜10-2 M⊙. This is sufficient to reproduce an observed emission line near 7400 Å. A sub-Chandrasekhar explosion model with mass 1.02 M⊙ and no central stable Fe does not reproduce the observed line ratios. A mock model where neutron-rich Fe-group species are located above 56Ni following recent suggestions is also shown to yield spectra that are less compatible with the observations. The densities and abundances in the inner layers obtained from the nebular analysis, combined with those of the outer layers previously obtained, are used to compute a synthetic bolometric light curve, which compares favourably with the light curve of SN 2011fe.

  12. On the nature of Type IIn/Ia-CSM supernovae: optical and near-infrared spectra of SN 2012ca and SN 2013dn

    NASA Astrophysics Data System (ADS)

    Fox, Ori D.; Silverman, Jeffrey M.; Filippenko, Alexei V.; Mauerhan, Jon; Becker, Juliette; Borish, H. Jacob; Cenko, S. Bradley; Clubb, Kelsey I.; Graham, Melissa; Hsiao, Eric; Kelly, Patrick L.; Lee, William H.; Marion, G. H.; Milisavljevic, Dan; Parrent, Jerod; Shivvers, Isaac; Skrutskie, Michael; Smith, Nathan; Wilson, John; Zheng, Weikang

    2015-02-01

    A growing subset of Type Ia supernovae (SNe Ia) shows evidence via narrow emission lines for unexpected interaction with a dense circumstellar medium (SNe IIn/Ia-CSM). The precise nature of the progenitor, however, remains debated owing to spectral ambiguities arising from a strong contribution from the CSM interaction. Late-time spectra offer potential insight if the post-shock cold, dense shell becomes sufficiently thin and/or the ejecta begin to cross the reverse shock. To date, only a few high-quality spectra of this kind exist. Here we report on the late-time optical and infrared spectra of the SNe Ia-CSM 2012ca and 2013dn. These SNe Ia-CSM spectra exhibit low [Fe III]/[Fe II] ratios and strong [Ca II] at late epochs. Such characteristics are reminiscent of the super-Chandrasekhar-mass candidate SN 2009dc, for which these features suggested a low-ionization state due to high densities, although the broad Fe features admittedly show similarities to the blue `quasi-continuum' observed in some core collapse SNe Ibn and IIn. Neither SN 2012ca nor any of the other SNe Ia-CSM in this paper show evidence for broad oxygen, carbon, or magnesium in their spectra. Similar to the interacting Type IIn SN 2005ip, a number of high-ionization lines are identified in SN 2012ca, including [S III], [Ar III], [Ar X], [Fe VIII], [Fe X], and possibly [Fe XI]. The total bolometric energy output does not exceed 1051 erg, but does require a large kinetic-to-radiative conversion efficiency. All of these observations taken together suggest that SNe Ia-CSM are more consistent with a thermonuclear explosion than a core collapse event, although detailed radiative transfer models are certainly necessary to confirm these results.

  13. Cepheid Calibration of the Peak Brightness of SNe Ia. V. SN 1981B in NGC 4536

    NASA Astrophysics Data System (ADS)

    Saha, A.; Sandage, Allan; Labhardt, Lukas; Tammann, G. A.; Macchetto, F. D.; Panagia, N.

    1996-07-01

    Observations have been made with the Hubble Space Telescope between 1994 June and August over a 67 day interval, comprising 17 epochs in the F555W band and 5 epochs in the F814W band. The target was a region of an outlying spiral arm of NGC 4536 [Sbc(s)I-II), a galaxy that was parent to the type Ia supernova SN 1981B. Seventy-three Cepheids were found with periods ranging between 5.4 and 65 days. The apparent distance modulus of NGC 4536 is (m - M)_AV_ = 31.23 +/- 0.05 and (m - M)_AB_ = 31.27 +/- 0.05. There is no statistically significant differential absorption between the Cepheids inside and outside the spiral arm, or between the Cepheids and the position of the supernova (SN). The resulting absolute magnitudes of SN 1981B are M_V_(max) = - 19.32 +/- 0.12 and M_B_(max) = - 19.29 +/- 0.13 using the apparent modulus of NGC 4536 and the apparent magnitudes of SN 1981B as if there is no differential extinction between them. If we correct the SN for reddening, determined independently of the Cepheids, and then use the true modulus of NGC 4536 of (m - M)_0_ = 31.10 +/- 0.13, the SN values are M_B_(max) = - 19.46 +/- 0.24 and M_V_(max) = - 19.44 +/- 0.21. Combining these calibrations With the three calibrations previously available for the SNe 1895B, 1937C, and 1972E, determined in the first four papers of this series, gives the interim calibrations of = - 19.48 +/- 0.12 and = - 19.47 +/- 0.10. These require interim Hubble constants of H_0_(B) = 55 +/- 3(internal) km s^-1^ Mpc^-1^, and H_0_(V) = 58 +/- 3(internal) km s^-1^ Mpc^-1^. Improvement is expected when the fifth and sixth calibrators, SN 1960F in NGC 4496A and SN 1990N in NGC 4639, are added to the four available here. When these data are available, any putative decay rate-absolute magnitude correlation can also begin to be studied directly from the Cepheid calibrations themselves.

  14. Type Ia Supernovae and Their Environment:Theory and Applications to SN 2014J

    NASA Astrophysics Data System (ADS)

    Dragulin, Paul; Hoeflich, Peter

    2016-02-01

    We present theoretical semi-analytic models for the interaction of stellar winds with the interstellar medium (ISM) or prior mass loss implemented in our code SPICE, assuming spherical symmetry and power-law ambient density profiles and using the Π-theorem. This allows us to test a wide variety of configurations, their functional dependencies, and to find classes of solutions for given observations. Here, we study Type Ia Supernova (SN Ia) surroundings of single and double degenerate systems, and their observational signatures. Winds may originate from the progenitor prior to the white dwarf (WD) stage, the WD, a donor star, or an accretion disk (AD). For MCh explosions, the AD wind dominates and produces a low-density void several light years across, surrounded by a dense shell. The bubble explains the lack of observed interaction in late time SN light curves for, at least, several years. The shell produces narrow ISM lines Doppler shifted by 10-100 km s-1, and equivalent widths of ≈100 mÅ and ≈1 mÅ in cases of ambient environments with constant density and produced by prior mass loss, respectively. For SN2014J, both mergers and MCh mass explosions have been suggested based on radio and narrow lines. As a consistent and most likely solution, we find an AD wind running into an environment produced by the red giant wind of the progenitor during the pre-WD stage, and a short delay, 0.013-1.4 Myr, between the WD formation and the explosion. Our framework may be applied more generally to stellar winds and star formation feedback in large scale galactic evolution simulations.

  15. SALT spectroscopic classification of PS16atu (SN 2016atv) as a type-Ia supernova after maximum light

    NASA Astrophysics Data System (ADS)

    Jha, S. W.; Pan, Y.-C.; Foley, R. J.; Rest, A.; Scolnic, D.; Kotze, M.

    2016-03-01

    We obtained SALT (+RSS) spectroscopy of PS16atu (SN 2016atv) on 2016 Mar 10.1 UT, covering the wavelength range 350-920 nm. Cross-correlation of the spectrum with a template library using SNID (Blondin & Tonry 2007, ApJ, 666, 1024) shows PS16atu is a type-Ia supernova approximately a week past maximum light.

  16. VizieR Online Data Catalog: Host galaxies of Type Ia SN from PTF (Pan+, 2014)

    NASA Astrophysics Data System (ADS)

    Pan, Y.-C.; Sullivan, M.; Maguire, K.; Hook, I. M.; Nugent, P. E.; Howell, D. A.; Arcavi, I.; Botyanszki, J.; Cenko, S. B.; Derose, J.; Fakhouri, H. K.; Gal-Yam, A.; Hsiao, E.; Kulkarni, S. R.; Laher, R. R.; Lidman, C.; Nordin, J.; Walker, E. S.; Xu, D.

    2014-11-01

    The SNe Ia studied in this paper were discovered by the PTF, a project which operated from 2009 to 2012 and used the CFH12k wide-field survey camera mounted on the Samuel Oschin 48 inch telescope (P48) at the Palomar Observatory. The observational cadences used to discover the SNe ranged from hours up to ~5d. SN candidates were identified in image subtraction data and ranked using both simple cuts on the detection parameters and a machine learning algorithm (Bloom et al. 2012PASP..124.1175B), and then visually confirmed by members of the PTF collaboration or, from mid-2010 onwards, via the citizen science project 'Galaxy Zoo: Supernova' (Smith et al., 2011MNRAS.412.1309S). The latter identified eight of the SNe studied in this paper. (4 data files).

  17. Nearby Supernova Factory Observations of SN 2006D: On SporadicCarbon Signatures in Early Type Ia Supernova Spectra

    SciTech Connect

    Thomas, R.C.; Aldering, G.; Antilogus, P.; Aragon, C.; Bailey,S.; Baltay, C.; Baron, E.; Bauer, A.; Buton, C.; Bongard, S.; Copin, Y.; Gangler, E.; Gilles, S.; Kessler, R.; Loken, S.; Nugent, P.; Pain, R.; Parrent, J.; Pecontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Rigaudier, G.; Runge, K.; Scalzo, R.; Smadja, G.; Wang, L.; Weaver, B.A.

    2006-10-12

    We present four spectra of the Type Ia supernova SN Ia 2006Dextending from -7 to +13 days with respect to B-band maximum. The spectrainclude the strongest signature of unburned material at photosphericvelocities observed in a SN Ia to date. The earliest spectrum exhibits CII absorption features below 14,000 km/s, including a distinctive C IIlambda 6580 absorption feature. The carbon signatures dissipate as the SNapproaches peak brightness. In addition to discussing implications ofphotospheric-velocity carbon for white dwarf explosion models, we outlinesome factors that may influence the frequency of its detection before andaround peak brightness. Two effects are explored in this regard,including depopulation of the C II optical levels by non-LTE effects, andline-of-sight effects resulting from a clumpy distribution of unburnedmaterial with low volume-filling factor.

  18. Is There Evidence for a Hubble Bubble? The Nature of SN Ia Colors And Dust in External Galaxies

    SciTech Connect

    Conley, A.; Carlberg, R.G.; Guy, J.; Howell, D.A.; Jha, S.; Riess, A.G.; Sullivan, M.; /Toronto U., Astron. Dept.

    2007-06-06

    We examine recent evidence from the luminosity-redshift relation of Type Ia Supernovae for the {approx} 3 {sigma} detection of a ''Hubble bubble'' -- a departure of the local value of the Hubble constant from its globally averaged value. By comparing the MLCS2k2 fits used in that study to the results from other light-curve fitters applied to the same data, we demonstrate that this is related to the interpretation of SN color excesses (after correction for a light-curve shape-color relation) and the presence of a color gradient across the local sample. If the slope of the linear relation ({beta}) between SN color excess and luminosity is fit empirically, then the bubble disappears. If, on the other hand, the color excess arises purely from Milky-Way like dust, then SN data clearly favors a Hubble bubble. We demonstrate that SN data give {beta} {approx} 2, instead of the {beta} {approx} 4 one would expect from purely Milky-Way-like dust. This suggests that either SN intrinsic colors are more complicated than can be described with a single light-curve shape parameter, or that dust around SN is unusual. Disentangling these possibilities is both a challenge and an opportunity for large-survey SN Ia cosmology.

  19. Testing ΛCDM at the lowest redshifts with SN Ia and galaxy velocities

    NASA Astrophysics Data System (ADS)

    Huterer, Dragan; Shafer, Daniel L.; Scolnic, Daniel M.; Schmidt, Fabian

    2017-05-01

    Peculiar velocities of objects in the nearby universe are correlated due to the gravitational pull of large-scale structure. By measuring these velocities, we have a unique opportunity to test the cosmological model at the lowest redshifts. We perform this test, using current data to constrain the amplitude of the ``signal'' covariance matrix describing the velocities and their correlations. We consider a new, well-calibrated ``Supercal'' set of low-redshift SNe Ia as well as a set of distances derived from the fundamental plane relation of 6dFGS galaxies. Analyzing the SN and galaxy data separately, both results are consistent with the peculiar velocity signal of our fiducial ΛCDM model, ruling out the noise-only model with zero peculiar velocities at greater than 7σ (SNe) and 8σ (galaxies). When the two data sets are combined appropriately, the precision of the test increases slightly, resulting in a constraint on the signal amplitude of A = 1.05-0.21+0.25, where A = 1 corresponds to our fiducial model. Equivalently, we report an 11% measurement of the product of the growth rate and amplitude of mass fluctuations evaluated at zeff = 0.02, f σ8 = 0.428-0.045+0.048, valid for our fiducial ΛCDM model. We explore the robustness of the results to a number of conceivable variations in the analysis and find that individual variations shift the preferred signal amplitude by less than ~0.5σ. We briefly discuss our Supercal SN Ia results in comparison with our previous results using the JLA compilation.

  20. A Swift Look at SN 2011fe: The Earliest Ultraviolet Observations of a Type Ia Supernova

    NASA Technical Reports Server (NTRS)

    Oates, Samantha; Holland, Stephen; Immler, Stefan; Brown, Peter J.; Dawson, Kyle S.; DePasquale, Massimiliano; Gronwall, Caryl; Kuin, Paul; Mazzali, Paolo; Miline, Peter; Siegel, Michael

    2012-01-01

    We present the earliest ultraviolet (UV) observations of the bright Type Ia supernova SN 2011fe/PTF11kly in the nearby galaxy M101 at a distance of only 6.4 Mpc. It was discovered shortly after explosion by the Palomar Transient Factory and first observed by Swift/UVOT about a day after explosion. The early UV light is well-defined, with approx. 20 data points per filter in the 5 days after explosion. With these early UV observations, we extend the near-UV template of SNe Ia to earlier times for comparison with observations at low and high redshift and report fits from semiempirical models of the explosion. We find the early UV count rates to be well fit by the superposition of two parabolic curves. Finally, we use the early UV flux measurements to examine a possible shock interaction with a non-degenerate companion. We find that even a solar mass companion at a distance of a few solar radii is unlikely at more than 95% confidence.

  1. The Type Ia Supernova 2004S, a Clone of SN 2001el, and the Optimal Photometric Bands for Extinction Estimation

    NASA Astrophysics Data System (ADS)

    Krisciunas, Kevin; Garnavich, Peter M.; Stanishev, Vallery; Suntzeff, Nicholas B.; Prieto, Jose Luis; Espinoza, Juan; Gonzalez, David; Salvo, Maria Elena; Elias de la Rosa, Nancy; Smartt, Stephen J.; Maund, Justyn R.; Kudritzki, Rolf-Peter

    2007-01-01

    We present optical (UBVRI) and near-IR (YJHK) photometry of the normal Type Ia supernova (SN) 2004S. We also present eight optical spectra and one near-IR spectrum of SN 2004S. The light curves and spectra are nearly identical to those of SN 2001el. This is the first time we have seen optical and IR light curves of two Type Ia SNe match so closely. Within the one parameter family of light curves for normal Type Ia SNe, that two objects should have such similar light curves implies that they had identical intrinsic colors and produced similar amounts of 56Ni. From the similarities of the light-curve shapes we obtain a set of extinctions as a function of wavelength that allows a simultaneous solution for the distance modulus difference of the two objects, the difference of the host galaxy extinctions, and RV. Since SN 2001el had roughly an order of magnitude more host galaxy extinction than SN 2004S, the value of RV=2.15+0.24-0.22 pertains primarily to dust in the host galaxy of SN 2001el. We have also shown via Monte Carlo simulations that adding rest-frame J-band photometry to the complement of BVRI photometry of Type Ia SNe decreases the uncertainty in the distance modulus by a factor of 2.7. A combination of rest-frame optical and near-IR photometry clearly gives more accurate distances than using rest-frame optical photometry alone. Based in part on observations taken at the Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under cooperative agreement with the National Science Foundation. Also based on observations made with ESO telescopes at the La Silla and Paranal Observatories under program IDs 074.D-0340 and 074.A-9008.

  2. OPTICAL OBSERVATIONS OF THE TYPE IA SUPERNOVA SN 2011fe IN M101 FOR NEARLY 500 DAYS

    SciTech Connect

    Zhang, Kaicheng; Wang, Xiaofeng; Zhao, Xulin; Chen, Jia; Chen, Juncheng; Huang, Fang; Mo, Jun; Rui, Liming; Song, Hao; Sai, Hanna; Li, Wenxiong; Zhang, JuJia; Bai, Jinming; Zhang, Tianmeng; Wu, Chao; Ganeshalingam, Mohan; Li, Weidong; Filippenko, Alexei V.; Zheng, Weikang; Wang, Lifan

    2016-03-20

    We present well-sampled optical observations of the bright Type Ia supernova (SN Ia) SN 2011fe in M101. Our data, starting from ∼16 days before maximum light and extending to ∼463 days after maximum, provide an unprecedented time series of spectra and photometry for a normal SN Ia. Fitting the early-time rising light curve, we find that the luminosity evolution of SN 2011fe follows a t{sup n} law, with the index n being close to 2.0 in the VRI bands but slightly larger in the U and B bands. Combining the published ultraviolet (UV) and near-infrared (NIR) photometry, we derive the contribution of UV/NIR emission relative to the optical. SN 2011fe is found to have stronger UV emission and reaches its UV peak a few days earlier than other SNe Ia with similar Δm{sub 15}(B), suggestive of less trapping of high-energy photons in the ejecta. Moreover, the U-band light curve shows a notably faster decline at late phases (t ≈ 100–300 days), which also suggests that the ejecta may be relatively transparent to UV photons. These results favor the notion that SN 2011fe might have a progenitor system with relatively lower metallicity. On the other hand, the early-phase spectra exhibit prominent high-velocity features (HVFs) of O i λ7773 and the Ca ii NIR triplet, but only barely detectable in Si ii 6355. This difference can be caused by either an ionization/temperature effect or an abundance enhancement scenario for the formation of HVFs; it suggests that the photospheric temperature of SN 2011fe is intrinsically low, perhaps owing to incomplete burning during the explosion of the white dwarf.

  3. ON THE NATURE OF THE PROGENITOR OF THE Type Ia SN2011fe IN M101

    SciTech Connect

    Liu Jifeng; Di Stefano, Rosanne; Wang Tao; Moe, Maxwell

    2012-04-20

    The explosion of a Type Ia supernova, SN2011fe, in the nearby Pinwheel galaxy (M101 at 6.4 Mpc) provides an opportunity to study pre-explosion images and search for the progenitor, which should consist of a white dwarf (WD), possibly surrounded by an accretion disk, in orbit with another star. We report on our use of deep Chandra observations and Hubble Space Telescope observations to limit the luminosity and temperature of the pre-explosion WD. It is found that if the spectrum was a blackbody, then pre-SN WDs with steady nuclear burning of the highest possible temperatures and luminosities are excluded assuming moderate n{sub H} values, but values of kT between roughly 10 eV and 60 eV are permitted even if the WD was emitting at the Eddington luminosity. This allows the progenitor to be an accreting nuclear-burning WD with an expanded photosphere 4-100 times the WD itself, or a super-critically accreting WD blowing off an optically thick strong wind, or possibly a recurrent nova with luminosities an order of magnitude lower than Eddington. The observations are also consistent with a double degenerate scenario, or a spinning down WD that has been spun up by accretion from the donor.

  4. On the Nature of the Progenitor of the Type Ia SN2011fe in M101

    NASA Astrophysics Data System (ADS)

    Liu, Jifeng; Di Stefano, Rosanne; Wang, Tao; Moe, Maxwell

    2012-04-01

    The explosion of a Type Ia supernova, SN2011fe, in the nearby Pinwheel galaxy (M101 at 6.4 Mpc) provides an opportunity to study pre-explosion images and search for the progenitor, which should consist of a white dwarf (WD), possibly surrounded by an accretion disk, in orbit with another star. We report on our use of deep Chandra observations and Hubble Space Telescope observations to limit the luminosity and temperature of the pre-explosion WD. It is found that if the spectrum was a blackbody, then pre-SN WDs with steady nuclear burning of the highest possible temperatures and luminosities are excluded assuming moderate n H values, but values of kT between roughly 10 eV and 60 eV are permitted even if the WD was emitting at the Eddington luminosity. This allows the progenitor to be an accreting nuclear-burning WD with an expanded photosphere 4-100 times the WD itself, or a super-critically accreting WD blowing off an optically thick strong wind, or possibly a recurrent nova with luminosities an order of magnitude lower than Eddington. The observations are also consistent with a double degenerate scenario, or a spinning down WD that has been spun up by accretion from the donor.

  5. Very-high-energy gamma-ray observations of the Type Ia Supernova SN 2014J with the MAGIC telescopes

    NASA Astrophysics Data System (ADS)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Arcaro, C.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; López-Coto, R.; Majumdar, P.; Makariev, M.; Mallot, K.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Toyama, T.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zanin, R.

    2017-06-01

    Context. In this work we present data from observations with the MAGIC telescopes of SN 2014J detected on January 21 2014, the closest Type Ia supernova since Imaging Air Cherenkov Telescopes started to operate. Aims: We aim to probe the possibility of very-high-energy (VHE; E ≥ 100 GeV) gamma rays produced in the early stages of Type Ia supernova explosions. Methods: We performed follow-up observations after this supernova (SN) explosion for five days, between January 27 and February 2 2014. We searched for gamma-ray signals in the energy range between 100 GeV and several TeV from the location of SN 2014J using data from a total of 5.5 h of observations. Prospects for observing gamma rays of hadronic origin from SN 2014J in the near future are also being addressed. Results: No significant excess was detected from the direction of SN 2014J. Upper limits at 95% confidence level on the integral flux, assuming a power-law spectrum, dF/dE ∝ E- Γ, with a spectral index of Γ = 2.6, for energies higher than 300 GeV and 700 GeV, are established at 1.3 × 10-12 and 4.1 × 10-13 photons cm-2 s-1, respectively. Conclusions: For the first time, upper limits on the VHE emission of a Type Ia supernova are established. The energy fraction isotropically emitted into TeV gamma rays during the first 10 days after the supernova explosion for energies greater than 300 GeV is limited to 10-6 of the total available energy budget ( 1051 erg). Within the assumed theoretical scenario, the MAGIC upper limits on the VHE emission suggest that SN 2014J will not be detectable in the future by any current or planned generation of Imaging Atmospheric Cherenkov Telescopes.

  6. SALT spectroscopic classification of ASASSN-17bu (= SN 2017yv) as a type-Ia supernova before maximum light

    NASA Astrophysics Data System (ADS)

    Jha, S. W.; Kotze, M.

    2017-02-01

    We obtained SALT (+RSS) spectroscopy of ASASSN-17bu (= SN 2017yv; ATel #10033) on 2017 Feb 3.9 UT, covering the wavelength range 350-940 nm. Cross-correlation of the supernova spectrum with a template library using SNID (Blondin & Tonry 2007, ApJ, 666, 1024) shows ASASSN-17bu is a type-Ia supernova several days before maximum light.

  7. SALT spectroscopic classification of DLT17ar (= SN 2017cyy) as a type-Ia supernova before maximum light

    NASA Astrophysics Data System (ADS)

    Jha, S. W.; Sand, D.; Tartaglia, L.; Valenti, S.; Kuhn, R.

    2017-04-01

    We obtained SALT (+RSS) spectroscopy of DLT17ar (= SN 2017cyy) on 2017 Apr 12.8 UT, covering the wavelength range 350-725 nm under cloudy conditions. Cross-correlation of the noisy supernova spectrum with a template library using SNID (Blondin & Tonry 2007, ApJ, 666, 1024) shows DLT17ar is a type-Ia supernova before maximum light.

  8. The End of Amnesia: Measuring the Metallicities of Type Ia SN Progenitors with Manganese Lines in Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Badenes, Carles; Bravo, Eduardo; Hughes, John P.

    2009-05-01

    The Mn to Cr mass ratio in supernova ejecta has recently been proposed as a tracer of Type Ia SN progenitor metallicity. We review the advantages and problems of this observable quantity, and discuss them in the framework of the Tycho Supernova Remnant. The fluxes of the Mn and Cr Kα lines in the X-ray spectra of Tycho observed by the Suzaku satellite suggests a progenitors of supersolar metallicity.

  9. Spectroscopic Observations of SN 2012fr: A Luminous, Normal Type Ia Supernova with Early High-velocity Features and a Late Velocity Plateau

    NASA Astrophysics Data System (ADS)

    Childress, M. J.; Scalzo, R. A.; Sim, S. A.; Tucker, B. E.; Yuan, F.; Schmidt, B. P.; Cenko, S. B.; Silverman, J. M.; Contreras, C.; Hsiao, E. Y.; Phillips, M.; Morrell, N.; Jha, S. W.; McCully, C.; Filippenko, A. V.; Anderson, J. P.; Benetti, S.; Bufano, F.; de Jaeger, T.; Forster, F.; Gal-Yam, A.; Le Guillou, L.; Maguire, K.; Maund, J.; Mazzali, P. A.; Pignata, G.; Smartt, S.; Spyromilio, J.; Sullivan, M.; Taddia, F.; Valenti, S.; Bayliss, D. D. R.; Bessell, M.; Blanc, G. A.; Carson, D. J.; Clubb, K. I.; de Burgh-Day, C.; Desjardins, T. D.; Fang, J. J.; Fox, O. D.; Gates, E. L.; Ho, I.-T.; Keller, S.; Kelly, P. L.; Lidman, C.; Loaring, N. S.; Mould, J. R.; Owers, M.; Ozbilgen, S.; Pei, L.; Pickering, T.; Pracy, M. B.; Rich, J. A.; Schaefer, B. E.; Scott, N.; Stritzinger, M.; Vogt, F. P. A.; Zhou, G.

    2013-06-01

    We present 65 optical spectra of the Type Ia SN 2012fr, 33 of which were obtained before maximum light. At early times, SN 2012fr shows clear evidence of a high-velocity feature (HVF) in the Si II λ6355 line that can be cleanly decoupled from the lower velocity "photospheric" component. This Si II λ6355 HVF fades by phase -5 subsequently, the photospheric component exhibits a very narrow velocity width and remains at a nearly constant velocity of ~12,000 km s-1 until at least five weeks after maximum brightness. The Ca II infrared triplet exhibits similar evidence for both a photospheric component at v ≈ 12,000 km s-1 with narrow line width and long velocity plateau, as well as an HVF beginning at v ≈ 31,000 km s-1 two weeks before maximum. SN 2012fr resides on the border between the "shallow silicon" and "core-normal" subclasses in the Branch et al. classification scheme, and on the border between normal and high-velocity Type Ia supernovae (SNe Ia) in the Wang et al. system. Though it is a clear member of the "low velocity gradient" group of SNe Ia and exhibits a very slow light-curve decline, it shows key dissimilarities with the overluminous SN 1991T or SN 1999aa subclasses of SNe Ia. SN 2012fr represents a well-observed SN Ia at the luminous end of the normal SN Ia distribution and a key transitional event between nominal spectroscopic subclasses of SNe Ia.

  10. Lensing Effects on the Brightness of SN Ia, When Using the Sinusoidal Potential.

    NASA Astrophysics Data System (ADS)

    Dadras, M. J.; Bartlett, D. F.; Motl, P.

    2004-05-01

    In this paper the effects of gravitational lensing of SN Ia are studied, for the case when the Newtonian potential is replaced by the sinusoidal potential (GM/r -> (GM cos[kr])/r). First we treat the point-mass case, then move on to the instance of a diffuse mass. As one might guess, with this new potential, the plot of the bending angle (α ) with respect to impact parameter (b) goes from dropping off as b-1, to having oscillations that die off as the b-1/2. This in turn will cause dramatic effects on magnification and brightness. In principle the value of the cosmological deceleration parameter (q0), can be determined by a measurement of the ratio of α to b. Wambsganss et al (1997) and Holz (1998) discussed the effects of weak gravitational lensing from large-scale structure on determining q0 within standard cosmology. Following their reasoning, we extend that work to the case of the sinusoidal potential.

  11. Early and late time VLT spectroscopy of SN 2001el - progenitor constraints for a type Ia supernova

    NASA Astrophysics Data System (ADS)

    Mattila, S.; Lundqvist, P.; Sollerman, J.; Kozma, C.; Baron, E.; Fransson, C.; Leibundgut, B.; Nomoto, K.

    2005-11-01

    We present early time high-resolution (VLT/UVES) and late time low-resolution (VLT/FORS) optical spectra of the normal type Ia supernova, SN 2001el. The high-resolution spectra were obtained 9 and 2 days before (B-band) maximum light. This was in order to allow the detection of narrow hydrogen and/or helium emission lines from the circumstellar medium of the supernova. No such lines were detected in our data. We therefore use these spectra together with photoionisation models to derive upper limits of 9×10-6 {M}_⊙ yr-1 and 5×10-5 {M}_⊙ yr-1 for the mass loss rate from the progenitor system of SN 2001el assuming velocities of 10 km s-1 and 50 km s-1, respectively, for a wind extending to outside at least a few × 1015 cm away from the supernova explosion site. So far, these are the best Hα based upper limits obtained for a type Ia supernova, and exclude a symbiotic star in the upper mass loss rate regime (so called Mira type stars) from being the progenitor of SN 2001el. The low-resolution spectrum was obtained in the nebular phase of the supernova, 400 days after the maximum light, to search for any hydrogen rich gas originating from the supernova progenitor system. However, we see no signs of Balmer lines in our spectrum. Therefore, we model the late time spectra to derive an upper limit of 0.03 M⊙ for solar abundance material present at velocities lower than 1000 km s-1 within the supernova explosion site. According to numerical simulations of Marietta et al. (2000) this is less than the expected mass lost by a subgiant, red giant or a main-sequence secondary star at a small binary separation as a result of the SN explosion. Our data therefore exclude these scenarios as the progenitor of SN 2001el. Finally, we discuss the origin of high velocity Ca II lines previously observed in a few type Ia supernovae before the maximum light. We see both the Ca II IR triplet and the H&K lines in our earliest (-9 days) spectrum at a very high velocity of up to 34 000

  12. Early Radio and X-Ray Observations of the Youngest Nearby Type Ia Supernova PTF 11kly (SN 2011fe)

    NASA Technical Reports Server (NTRS)

    Horesh, Assaf; Kulkarni, S. R.; Fox, Derek B.; Carpenter, John; Kasliwal, Mansi M.; Ofek, Eran O.; Quimby, Robert; Gal-Yam, Avishay; Cenko, S. Bradley; deBruyn, A. G.; hide

    2012-01-01

    On August 24 (UT) the Palomar Transient Factory (PTF) discovered PTF11kly (SN 2011fe), the youngest and most nearby type Ia supernova (SN Ia) in decades. We followed this event up in the radio (centimeter and millimeter bands) and X-ray bands, starting about a day after the estimated explosion time. We present our analysis of the radio and X-ray observations, yielding the tightest constraints yet placed on the pre-explosion mass-loss rate from the progenitor system of this supernova. We find a robust limit of M(raised dot) less than or equal to 10(exp -8) (w /100 kilometers per second ) solar mass yr(exp -1) from sensitive X-ray non-detections, as well as a similar limit from radio data, which depends, however, on assumptions about microphysical parameters. We discuss our results in the context of single-degenerate models for SNe Ia and find that our observations modestly disfavor symbiotic progenitor models involving a red giant donor, but cannot constrain systems accreting from main sequence or sub-giant stars, including the popular supersoft channel. In view of the proximity of PTF11kly and the sensitivity of our prompt observations we would have to wait for a long time (decade or longer) in order to more meaningfully probe the circumstellar matter of Ia supernovae.

  13. EARLY RADIO AND X-RAY OBSERVATIONS OF THE YOUNGEST NEARBY TYPE Ia SUPERNOVA PTF 11kly (SN 2011fe)

    SciTech Connect

    Horesh, Assaf; Kulkarni, S. R.; Carpenter, John; Kasliwal, Mansi M.; Ofek, Eran O.; Fox, Derek B.; Quimby, Robert; Gal-Yam, Avishay; Cenko, S. Bradley; De Bruyn, A. G.; Kamble, Atish; Wijers, Ralph A. M. J.; Van der Horst, Alexander J.; Kouveliotou, Chryssa; Podsiadlowski, Philipp; Sullivan, Mark; Maguire, Kate; Howell, D. Andrew; Nugent, Peter E.; Gehrels, Neil; and others

    2012-02-10

    On 2011 August 24 (UT) the Palomar Transient Factory (PTF) discovered PTF11kly (SN 2011fe), the youngest and most nearby Type Ia supernova (SN Ia) in decades. We followed this event up in the radio (centimeter and millimeter bands) and X-ray bands, starting about a day after the estimated explosion time. We present our analysis of the radio and X-ray observations, yielding the tightest constraints yet placed on the pre-explosion mass-loss rate from the progenitor system of this supernova. We find a robust limit of M-dot {approx}<10{sup -8}(w/100 km s{sup -1}) M{sub sun} yr{sup -1} from sensitive X-ray non-detections, as well as a similar limit from radio data, which depends, however, on assumptions about microphysical parameters. We discuss our results in the context of single-degenerate models for SNe Ia and find that our observations modestly disfavor symbiotic progenitor models involving a red giant donor, but cannot constrain systems accreting from main-sequence or sub-giant stars, including the popular supersoft channel. In view of the proximity of PTF11kly and the sensitivity of our prompt observations, we would have to wait for a long time (a decade or longer) in order to more meaningfully probe the circumstellar matter of SNe Ia.

  14. The Origin of the Near-infrared Excess in SN Ia 2012dn: Circumstellar Dust around the Super-Chandrasekhar Supernova Candidate

    NASA Astrophysics Data System (ADS)

    Nagao, Takashi; Maeda, Keiichi; Yamanaka, Masayuki

    2017-02-01

    The nature of progenitors of the so-called super-Chandrasekhar candidate Type Ia supernovae (SC-SNe Ia) has been actively debated. Recently, Yamanaka et al. reported a near-infrared (NIR) excess for SN 2012dn and proposed that the excess originates from an echo by circumstellar (CS) dust. In this paper, we examine a detailed distribution of the CS dust around SN 2012dn and investigate implications of the CS dust echo scenario for general cases of SC-SNe Ia. We find that a disk/bipolar CS medium configuration reproduces the NIR excess fairly well, where the radial density distribution is given by a stationary mass loss. The inner radius of the CS dust is 0.04 pc. The mass-loss rate of the progenitor system is estimated to be 1.2× {10}-5 and 3.2× {10}-6 M⊙ yr‑1 for the disk and bipolar CS medium configurations, respectively, which adds further support for the single-degenerate scenario. Our models limit SN 2009dc, another SC-SN Ia, to have a dust mass less than 0.16 times that of SN 2012dn. While this may merely indicate some variation on the CS environment among SC-SNe Ia, this could raise another interesting possibility. There could be two classes among SC-SNe Ia: the brighter SC-SNe Ia in a clean environment (SN 2009dc) and the fainter SC-SNe Ia in a dusty environment (SN 2012dn).

  15. "New" B and V Photometry of the "Old" Type IA Supernova SN 1937C: Implications for HO

    NASA Astrophysics Data System (ADS)

    Pierce, Michael J.; Jacoby, George H.

    1995-12-01

    We have digitized and analyzed the original Baade and Zwicky 18 in. Palomar Schmidt films of the type Ia supernova SN 1937C. The data set consists of 76 films in the photographic bandpass mpg and a series of 50 previously unreduced photovisual (m_pv_) films. These data were supplemented by the three known, prediscovery plates of SN 1937C taken by Leutenegger and Grenat. The films and plates were scanned using the KPNO PDS microdensitometer and calibrated by fitting the integrated photographic density to a magnitude sequence of local standards on each film/plate. The resulting calibrations have typical rms dispersions of 0.06 and 0.04 mag for m_pg_ and m_pv_, respectively. Our magnitudes at the earliest epochs are systematically 0.30 mag fainter than those reported by Baade & Zwicky, with the two datasets converging by the eighth observation, about 11 days after maximum. We converted our mpg and mpv photometry to B and V using transformations determined both theoretically using synthetic photometry of spectrophotometric standards, and empirically using the local standard stars. The B and V light curves and B - V color evolution of SN 1937C were fitted with template light curves from previously well-observed supernovae to obtain B_max_= 8.94+/- 0.03, V_max_ = 9.00+/-0.03, and (B - V)_B(max)_ = -0.08 +/- 0.04. These correspond to M(B_max_)= - 19.42 and M( V_max_)= - 19.36 when combined with the Cepheid distance to IC 4182, the host galaxy. In comparing our results with the visual photometry of Beyer we found evidence for a color term which when applied to Beyer's data, leads to V_max_ = 8.87. We stress the importance of determining accurate color terms in the photometry of SN Ia due to the wide color range (from B - V ~ 0 to B - V ~1) through which they evolve over the first 30 days after maximum. The SN 1937C light curves were best fit by templates with very slow rates of decline. The correlation between decline rate and luminosity implies that SN 1937C, with {DELTA

  16. Cepheid Calibration of the Peak Brightness of SNe Ia.. 9; SN 1989B in NGC 3627

    NASA Technical Reports Server (NTRS)

    Saha, A.; Sandage, Allan; Tammann, G. A.; Labhardt, Lukas; Macchetto, F. D.; Panagia, N.

    1999-01-01

    Repeated imaging observations have been made of NGC 3627 with the Hubble Space Telescope in 1997/98, over an interval of 58 days. Images were obtained on 12 epochs in the F555W band and on five epochs in the F8141,V band. The galaxy hosted the prototypical, "Branch normal", type la supernova SN 1989B. A total of 83 variables have been found, of which 68 are definite Cepheid variables with periods ranging from 75 days to 3.85 days. The de-reddened distance modulus is determined to be (m - M)(sub 0) = 30.22 +/- 0.12 (internal uncertainty) using a subset of the Cepheid data whose reddening and error parameters are secure. The photometric data of Wells et al. (1994), combined with the Cepheid data for NGC 3627 give MB(max) = -19.36 +/- 0.18 and M(sub V)(max) = -19.34 +/- 0.16 for SN 1989B. Combined with the previous six calibrations in this program, plus two additional calibrations determined by others gives the mean absolute magnitudes at maximum of (M(sub B)) = -19.48 +/- 0.07 for "Brunch normal" SNe Ia at this interim stage in the calibration program. Using the argument by Wells et al. (1994) that SN 1989B here is virtually identical in decay rate and colors at maximum with SN 198ON in NGC 1316 in the Fornax cluster, and that such identity means nearly identical absolute magnitude, it follows that the difference in the distance modulus of NGC 3627 and NGC 1316 is 1.62 +/- 0.03 mag. Thus the NGC 3627 modulus implies that (m - M)(sub 0) = 31.84 for NGC 1316. The second parameter correlations of M(max) of blue SNe la with decay rate, color at maximum, and Hubble type are re-investigated. The dependence of (M(max)) on decay rate is non-linear, showing a minimum for decay rates between 1.0 less than ADelta(sub m)15 less than 1.6. Magnitudes corrected for decay rate show no dependence on Hubble type, but a dependence on color remains. Correcting both the fiducial sample of 34 SNe la with decay-rate data and the current eight calibrating SNe la for the correlation with

  17. X-Ray Observations of Type Ia Supernovae with Swift: Evidence of Circumstellar Interaction for SN 2005ke

    NASA Astrophysics Data System (ADS)

    Immler, S.; Brown, P. J.; Milne, P.; The, L.-S.; Petre, R.; Gehrels, N.; Burrows, D. N.; Nousek, J. A.; Williams, C. L.; Pian, E.; Mazzali, P. A.; Nomoto, K.; Chevalier, R. A.; Mangano, V.; Holland, S. T.; Roming, P. W. A.; Greiner, J.; Pooley, D.

    2006-09-01

    We present a study of the early (days to weeks) X-ray and UV properties of eight Type Ia supernovae (SNe Ia) that have been extensively observed with the X-Ray Telescope (XRT) and UV/Optical Telescope (UVOT) on board Swift, ranging from 5 to 132 days after the outburst. SN 2005ke is tentatively detected (at a 3-3.6 σ level of significance) in X-rays based on deep monitoring with the XRT ranging from 8 to 120 days after the outburst. The inferred X-ray luminosity [L0.3-2=(2+/-1)×1038 ergs s-1 0.3-2 keV band] is likely caused by interaction of the SN shock with circumstellar material (CSM) deposited by a stellar wind from the progenitor's companion star with a mass-loss rate of M˙~3×10-6 Msolar yr-1 (vw/10 km s-1). Evidence of CSM interaction in X-rays is independently confirmed by an excess of UV emission, as observed with the UVOT on board Swift, starting around 35 days after the explosion. The nondetection of SN 2005ke with Chandra 105 days after the outburst implies a rate of decline steeper than LX~t-0.75, consistent with the decline expected from the interaction of the SN shock with a spherically symmetric CSM (t-1). None of the other seven SNe Ia is detected in X-rays or shows a UV excess, which allows us to put tight constraints on the mass-loss rates of the progenitor systems.

  18. Constraints on kinematic model from recent cosmic observations: SN Ia, BAO and observational Hubble data

    SciTech Connect

    Xu, Lixin; Li, Wenbo; Lu, Jianbo E-mail: liwenbo10@yahoo.com.cn

    2009-07-01

    In this paper, linear first order expansion of deceleration parameter q(z) = q{sub 0}+q{sub 1}(1−a) (M{sub 1}), constant jerk j = j{sub 0} (M{sub 2}) and third order expansion of luminosity distance (M{sub 3}) are confronted with cosmic observations: SCP 307 SN Ia, BAO and observational Hubble data (OHD). Likelihood is implemented to find the best fit model parameters. All these models give the same prediction of the evolution of the universe which is undergoing accelerated expansion currently and experiences a transition from decelerated expansion to accelerated expansion. But, the transition redshift depends on the concrete parameterized form of the model assumed. M{sub 1} and M{sub 2} give value of transition redshift about z{sub t} ∼ 0.6. M{sub 3} gives a larger one, say z{sub t} ∼ 1. The χ{sup 2}/dof implies almost the same goodness of the models. But, for its badness of evolution of deceleration parameter at high redshift z > 1, M{sub 3} can not be reliable. M{sub 1} and M{sub 2} are compatible with ΛCDM model at the 2σ and 1σ confidence levels respectively. M{sub 3} is not compatible with ΛCDM model at 2σ confidence level. From M{sub 1} and M{sub 2} models, one can conclude that the cosmic data favor a cosmological model having j{sub 0} < −1.

  19. The late-time light curve of the Type Ia supernova SN 2011fe

    NASA Astrophysics Data System (ADS)

    Dimitriadis, G.; Sullivan, M.; Kerzendorf, W.; Ruiter, A. J.; Seitenzahl, I. R.; Taubenberger, S.; Doran, G. B.; Gal-Yam, A.; Laher, R. R.; Maguire, K.; Nugent, P.; Ofek, E. O.; Surace, J.

    2017-07-01

    We present late-time optical R-band imaging data from the Palomar Transient Factory (PTF) for the nearby Type Ia supernova SN 2011fe. The stacked PTF light curve provides densely sampled coverage down to R ≃ 22 mag over 200-620 d past explosion. Combining with literature data, we estimate the pseudo-bolometric light curve for this event from 200 to 1600 d after explosion, and constrain the likely near-infrared (Near-IR) contribution. This light curve shows a smooth decline consistent with radioactive decay, except over ˜450 to ˜600 d where the light curve appears to decrease faster than expected based on the radioactive isotopes presumed to be present, before flattening at around 600 d. We model the 200-1600 d pseudo-bolometric light curve with the luminosity generated by the radioactive decay chains of 56Ni, 57Ni and 55Co, and find it is not consistent with models that have full positron trapping and no infrared catastrophe (IRC); some additional energy escape other than optical/near-IR photons is required. However, the light curve is consistent with models that allow for positron escape (reaching 75 per cent by day 500) and/or an IRC (with 85 per cent of the flux emerging in non-optical wavelengths by day 600). The presence of the 57Ni decay chain is robustly detected, but the 55Co decay chain is not formally required, with an upper mass limit estimated at 0.014 M⊙. The measurement of the 57Ni/56Ni mass ratio is subject to significant systematic uncertainties, but all of our fits require a high ratio >0.031 (>1.3 in solar abundances).

  20. The Extinction properties of and distance to the highly reddened Type~Ia supernova SN 2012cu

    NASA Astrophysics Data System (ADS)

    Huang, Xiaosheng; Raha, Zachary; Aldering, Greg Scott; Antilogus, Pierre; Bailey, Stephen J.; Charles, Baltay; Barbary, Kyle H.; Baugh, Derek; Boone, Kyle; Bongard, Sebastien; Buton, Clement; Chen, Juncheng; Chotard, Nicolas; Copin, Yannick; Fagrelius, Parker; Fakhouri, Hannah; Feindt, Ulrich; Fouchez, Dominique; Gangler, Emmanuel; Hayden, Brian; Hillebrandt, Wolfgang; Kim, Alex G.; Kowalski, Marek; Leget, Pierre-Francois; Lombardo, Simona; Nordin, Jakob; Pain, Reynald; Pecontal, Emmanuel; Pereira, Rui; Perlmutter, Saul; Rabinowitz, David L.; Rigault, Mickael; Rubin, David; Runge, Karl; Saunders, Clare; Smadja, Gerard; Sofiatti, Caroline; Stocker, Andrew; Suzuki, Nao; Taubenberger, Stefan; Tao, Charling; Thomas, Rollin

    2017-01-01

    Correction of Type Ia SN brightnesses for extinction by dust has proven to be a vexing problem. Here we study the dust foreground to the highly reddened SN 2012cu, which is projected onto a dust lane in the galaxy NGC 4772. The analysis is based on multi-epoch, spectrophotometric observations spanning 3,300 - 9,200 A, obtained by the Nearby Supernova Factory. Phase-matched comparison of the spectroscopically twinned SN 2012cu and SN 2011fe across 10 epochs results in the best-fit color excess of (E(B - V ), RMS) = (1.00, 0.03) and total-to-selective extinction ratio of (RV , RMS) = (2.95, 0.09) toward SN 2012cu within its host galaxy. We further identify several diffuse interstellar bands, and compare the 5780 A band with the dust-to-band ratio for the Milky Way. Overall, we find the foreground dust-extinction properties for SN 2012cu to be consistent with those of the Milky Way. Furthermore we find no evidence for significant time variation in any of these extinction tracers. We also compare the dust extinction curves of Cardelli et al. (1989), O’Donnell (1994), and Fitzpatrick (1999), and find the predictions of Fitzpatrick (1999) fit SN 2012cu the best. Finally, the distance to NGC4772, the host of SN 2012cu, at a redshift of z = 0.0035, often assigned to the Virgo Southern Extension, is determined to be 16.6±1.1 Mpc. We compare this result with distance measurements in the literature.

  1. THE VERY EARLY LIGHT CURVE OF SN 2015F IN NGC 2442: A POSSIBLE DETECTION OF SHOCK-HEATED COOLING EMISSION AND CONSTRAINTS ON SN Ia PROGENITOR SYSTEM

    SciTech Connect

    Im, Myungshin; Choi, Changsu; Kim, Jae-Woo; Yoon, Sung-Chul; Ehgamberdiev, Shuhrat A.; Monard, Libert A. G.; Sung, Hyun-Il E-mail: changsu@astro.snu.ac.kr

    2015-11-15

    The main progenitor candidates of Type Ia supernovae (SNe Ia) are white dwarfs in binary systems where the companion star is another white dwarf (double degenerate (DD) system) or a less-evolved, non-degenerate star with R{sub *} ≳ 0.1 R{sub ⊙} (single degenerate system). However, no direct observational evidence exists to tell us which progenitor system is more common. Recent studies suggest that the light curve of a supernova shortly after its explosion can be used to set a limit on the progenitor size, R{sub *}. Here, we report high-cadence monitoring observations of SN 2015F, a normal SN Ia in the galaxy NGC 2442, starting about 84 days before the first light time. Using our daily cadence data, we capture the emergence of the radioactively powered light curve; more importantly, with >97.4% confidence, we detect possible dim precursor emission that appears roughly 1.5 days before the rise of the radioactively powered emission. The signal is consistent with theoretical expectations for a progenitor system involving a companion star with R{sub *} ≃ 0.1–1 R{sub ⊙} or a prompt explosion of a DD system, but is inconsistent with the typically invoked size of a white dwarf progenitor of R{sub *} ∼ 0.01 R{sub ⊙}. Upper limits on the precursor emission also constrain the progenitor size to be R{sub *} ≲ 0.1 R{sub ⊙} with a companion star size of R{sub *} ≲ 1.0 R{sub ⊙}, excluding a very large companion star in the progenitor system. Additionally, we find that the distance to SN 2015F is 23.9 ± 0.4 Mpc.

  2. The Very Early Light Curve of SN 2015F in NGC 2442: A Possible Detection of Shock-heated Cooling Emission and Constraints on SN Ia Progenitor System

    NASA Astrophysics Data System (ADS)

    Im, Myungshin; Choi, Changsu; Yoon, Sung-Chul; Kim, Jae-Woo; Ehgamberdiev, Shuhrat A.; Monard, Libert A. G.; Sung, Hyun-Il

    2015-11-01

    The main progenitor candidates of Type Ia supernovae (SNe Ia) are white dwarfs in binary systems where the companion star is another white dwarf (double degenerate (DD) system) or a less-evolved, non-degenerate star with R* ≳ 0.1 R⊙ (single degenerate system). However, no direct observational evidence exists to tell us which progenitor system is more common. Recent studies suggest that the light curve of a supernova shortly after its explosion can be used to set a limit on the progenitor size, R*. Here, we report high-cadence monitoring observations of SN 2015F, a normal SN Ia in the galaxy NGC 2442, starting about 84 days before the first light time. Using our daily cadence data, we capture the emergence of the radioactively powered light curve; more importantly, with >97.4% confidence, we detect possible dim precursor emission that appears roughly 1.5 days before the rise of the radioactively powered emission. The signal is consistent with theoretical expectations for a progenitor system involving a companion star with R* ≃ 0.1-1 R⊙ or a prompt explosion of a DD system, but is inconsistent with the typically invoked size of a white dwarf progenitor of R* ˜ 0.01 R⊙. Upper limits on the precursor emission also constrain the progenitor size to be R* ≲ 0.1 R⊙ with a companion star size of R* ≲ 1.0 R⊙, excluding a very large companion star in the progenitor system. Additionally, we find that the distance to SN 2015F is 23.9 ± 0.4 Mpc.

  3. The Changing Nature of QU Carinae: SN Ia Progenitor or a Hoax?

    NASA Astrophysics Data System (ADS)

    Kafka, Stella

    2013-01-01

    The race to the elusive Type Ia supernovae (SNe Ia) progenitors is at its zenith, with numerous clues from SNe Ia ejecta and a dearth of observational candidates. Still, the single degenerate channel is a viable route of mass accumulation onto a white dwarf to the Chandrasekhar limit. I present long-term high resolution spectroscopy of QU Carinae, one of the most promising single degenerate SNe Ia progenitors. I discuss its highly variable nature and compare it to current scenarios for mass accumulation onto high-mass white dwarfs, eventually leading to WD detonation and to a supernova explosion.

  4. An Empirical Fitting Method for Type Ia Supernova Light Curves: A Case Study of SN 2011fe

    NASA Astrophysics Data System (ADS)

    Zheng, WeiKang; Filippenko, Alexei V.

    2017-03-01

    We present a new empirical fitting method for the optical light curves of Type Ia supernovae (SNe Ia). We find that a variant broken-power-law function provides a good fit, with the simple assumption that the optical emission is approximately the blackbody emission of the expanding fireball. This function is mathematically analytic and is derived directly from the photospheric velocity evolution. When deriving the function, we assume that both the blackbody temperature and photospheric velocity are constant, but the final function is able to accommodate these changes during the fitting procedure. Applying it to the case study of SN 2011fe gives a surprisingly good fit that can describe the light curves from the first-light time to a few weeks after peak brightness, as well as over a large range of fluxes (∼5 mag, and even ∼7 mag in the g band). Since SNe Ia share similar light-curve shapes, this fitting method has the potential to fit most other SNe Ia and characterize their properties in large statistical samples such as those already gathered and in the near future as new facilities become available.

  5. Classification of PSN J20065788-5625312 as a Type Ia SN near max with WiFeS

    NASA Astrophysics Data System (ADS)

    Childress, M.; Scalzo, R.; Yuan, F.; Schmidt, B.; Tucker, B.

    2013-07-01

    We report spectroscopic classification of PSN J20065788-5625312 as a SN Ia near max based on a 40 minute spectrum obtained with the Wide Field Spectrograph (WiFeS - Dopita et al., 2007, ApSS, 310, 255) on the ANU 2.3m telescope at Siding Spring Observatory, NSW Australia, using the B3000/R3000 gratings (3500-9800 A, 1 A resolution). PSN J20065788-5625312 was discovered by Peter Marples and Greg Bock on 2013 July 31.51 at 17.4 mag, and our spectrum with WiFeS on 2013 July 31.64 indicates it is a Type Ia around maximum light.

  6. Cepheid Calibration of the Peak Brightness of Type IA Supernovae. VI. SN 1960F in NGC 4496A

    NASA Astrophysics Data System (ADS)

    Saha, A.; Sandage, Allan; Labhardt, Lukas; Tammann, G. A.; Macchetto, F. D.; Panagia, N.

    1996-12-01

    Cepheid variables have been found in the SBcII galaxy NGC 4496A, parent to the Type Ia supernova 1960F. Of the 130 variables discovered with the Hubble Space Telescope (HST) over a 70 day observing internal from 1994 June to August, comprising 17 epochs in the F555W band and four epochs in the F814W band, 95 are bona fide Cepheids. The periods range from 7 days to greater than 70 days, with the mean magnitudes ranging from = 24.4 to 26.8. The distance modulus of NGC 4496A, based on the Cepheids, is (rn-Al)0 = 31.03±0.14, where a formal reddening of E(V-I) = 0.04±0.06 derived from the colors of the Cepheids has been used to account for possible extinction. There is no measurable differential reddening over the field. The absolute magnitudes of SN 1960F at maximum are M(B)max = -19.43±0.17 and M(V)max =-19.52±0.21. Combining these absolute magnitudes with the Hubble diagrams of "Branch normal" Type Ia supernovae (SNe Ia), determined earlier, gives Hubble constants, based on SN 1960F alone, of HO(B)=56±9 km s-1, (1) and H0(V) = 55±9 km s-1. (2) Combining the calibration of SN 1960F here with six other extant calibrations set out in Paper VII gives interim mean absolute magnitude calibrations of M(B) = -19.45±0.07 and 4M(V) max = -19.47±0.07, with no evidence for appreciable dependence on the light-curve decay rate. These mean interim calibrations require H0(B) = 57±4 km s-1 and H0(V) = 58±4 km s-1 Mpc-1.

  7. Cepheid Calibration of the Peak Brightness of Type Ia Supernovae. XI. SN 1998aq in NGC 3982

    NASA Astrophysics Data System (ADS)

    Saha, A.; Sandage, Allan; Tammann, G. A.; Dolphin, A. E.; Christensen, J.; Panagia, N.; Macchetto, F. D.

    2001-11-01

    Repeated imaging observations have been made of NGC 3982 with the Hubble Space Telescope between 2000 March and May, over an interval of 53 days. Images were obtained on 12 epochs in the F555W band and on five epochs in the F814W band. The galaxy hosted the Type Ia supernova (SN Ia) SN 1998aq. A total of 26 Cepheid candidates were identified, with periods ranging from 10 to 45 days, using photometry with the DoPHOT program. The dereddened distance to NGC 3982 is estimated from these data using various criteria to maximize signal-to-noise ratio and reliability: the values lie between 31.71 and 31.82, with uncertainties in the mean of typically +/-0.14 mag for each case. A parallel analysis using photometry with HSTphot discovered 13 variables, yielding a distance modulus of 31.85+/-0.16. The final adopted modulus is (M-m)0=31.72+/-0.14 (22+/-1.5 Mpc). Photometry of SN 1998aq that is available in the literature is used in combination with the derived distance to NGC 3982 to obtain the peak absolute magnitude of this supernova. The lower limit (no extinction within the host galaxy) for MV is -19.47+/-0.15 mag. Corrections for decline rate and intrinsic color to carry these to the reduced system of Parodi and collaborators have been performed. The derived luminosities at hand are fully consistent with the mean of the eight normal SNe Ia previously calibrated with Cepheids. Together they yield H0~60+/-2(internal) km s-1 Mpc-1 based on an assumed LMC distance modulus of 18.50. We point out that correcting some of the systematic errors and including uncertainty estimates due to them leads to H0=58.7+/-6.3(internal) km s-1 Mpc-1.

  8. MID-IR SPECTRA OF TYPE Ia SN 2014J IN M82 SPANNING THE FIRST 4 MONTHS

    SciTech Connect

    Telesco, Charles M.; Li, Dan; Barnes, Peter J.; Mariñas, Naibí; Zhang, Han; Höflich, Peter; Álvarez, Carlos; Fernández, Sergio; Rebolo, Rafael; Hough, James H.; Levenson, N. A.; Pantin, Eric; Roche, Patrick E-mail: phoeflich77@gmail.com

    2015-01-10

    We present a time series of 8-13 μm spectra and photometry for SN 2014J obtained 57, 81, 108, and 137 days after the explosion using CanariCam on the Gran Telescopio Canarias. This is the first mid-IR time series ever obtained for a Type Ia supernova (SN Ia). These observations can be understood within the framework of the delayed detonation model and the production of ∼0.6 M {sub ☉} of {sup 56}Ni, consistent with the observed brightness, the brightness decline relation, and the γ-ray fluxes. The [Co III] line at 11.888 μm is particularly useful for evaluating the time evolution of the photosphere and measuring the amount of {sup 56}Ni and thus the mass of the ejecta. Late-time line profiles of SN 2014J are rather symmetric and not shifted in the rest frame. We see argon emission, which provides a unique probe of mixing in the transition layer between incomplete burning and nuclear statistical equilibrium. We may see [Fe III] and [Ni IV] emission, both of which are observed to be substantially stronger than indicated by our models. If the latter identification is correct, then we are likely observing stable Ni, which might imply central mixing. In addition, electron capture, also required for stable Ni, requires densities larger than ∼1 × 10{sup 9} g cm{sup –3}, which are expected to be present only in white dwarfs close to the Chandrasekhar limit. This study demonstrates that mid-IR studies of SNe Ia are feasible from the ground and provide unique information, but it also indicates the need for better atomic data.

  9. Nearby Supernova Factory Observations of SN 2005gj: Another TypeIa Supernova in a Massive Circumstellar Envelope

    SciTech Connect

    Aldering, G.; Antilogus, P.; Bailey, S.; Baltay, C.; Bauer, A.; Blanc, N.; Bongard, S.; Copin, Y.; Gangler, E.; Gilles, S.; Kessler, R.; Kocevski, D.; Lee, B.C.; Loken, S.; Nugent, P.; Pain, R.; Pecontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Rigaudier, G.; Scalzo, R.; Smadja, G.; Thomas, R.C.; Wang, L.; Weaver, B.A.; Rabinowitz, D.; Bauer, A.

    2006-06-01

    We report the independent discovery and follow-up observations of supernova 2005gj by the Nearby Supernova Factory. This is the second confirmed case of a ''hybrid'' Type Ia/IIn supernova, which like the prototype SN 2002ic, we interpret as the explosion of a white dwarf interacting with a circumstellar medium. Our early-phase photometry of SN 2005gj shows that the strength of the interaction between the supernova ejecta and circumstellar material is much stronger than for SN 2002ic. Our .rst spectrum shows a hot continuum with broad and narrow H{alpha} emission. Later spectra, spanning over 4 months from outburst, show clear Type Ia features combined with broad and narrow H{gamma}, H{beta},H{alpha} and He I {lambda}{lambda}5876,7065 in emission. At higher resolution, P Cygni profiles are apparent. Surprisingly, we also observe an inverted P Cygni profile for [O III] {lambda}5007. We find that the lightcurve and measured velocity of the unshocked circumstellar material imply mass loss as recently as 8 years ago. This is in contrast to SN 2002ic, for which an inner cavity in the circumstellar material was inferred. Within the context of the thin-shell approximation, the early lightcurve is well-described by a flat radial density profile for the circumstellar material. However, our decomposition of the spectra into Type Ia and shock emission components allows for little obscuration of the supernova, suggesting an aspherical or clumpy distribution for the circumstellar material. We suggest that the emission line velocity profiles arise from electron scattering rather than the kinematics of the shock. This is supported by the inferred high densities, and the lack of evidence for evolution in the line widths. Ground- and space-based photometry, and Keck spectroscopy, of the host galaxy are used to ascertain that the host galaxy has low metallicity (Z/Z{sub {circle_dot}} < 0.3; 95% confidence) and that this galaxy is undergoing a significant star formation event that

  10. Classification of PSN J06234727-6519484 as a post-max Type Ia SN with WiFeS

    NASA Astrophysics Data System (ADS)

    Childress, M.; Scalzo, R.; Yuan, F.; Schmidt, B.; Tucker, B.

    2013-11-01

    We report spectroscopic classification of PSN J06234727-6519484 with the Wide Field Spectrograph (WiFeS - Dopita et al., 2007, ApSS, 310, 255) on the ANU 2.3m telescope at Siding Spring Observatory, NSW Australia, using the B3000/R3000 gratings (3500-9800 A, 1 A resolution). PSN J06234727-6519484 was discovered by Parker on 2013 Nov 13.61 at mag 17.9 in PGC 75726. A 40 minute spectrum of the SN on 2013 Nov 14.70 shows this object to be a type Ia supernova about 10 days after maximum light.

  11. Classification of PSN J05421980-2532399 as a pre-max Type Ia SN with WiFeS

    NASA Astrophysics Data System (ADS)

    Childress, M.; Scalzo, R.; Yuan, F.; Schmidt, B.; Tucker, B.

    2014-01-01

    We report spectroscopic classification of PSN J05421980-2532399 with the Wide Field Spectrograph (WiFeS - Dopita et al., 2007, ApSS, 310, 255) on the ANU 2.3m telescope at Siding Spring Observatory, NSW Australia, using the B3000/R3000 gratings (3500-9800 A, 1 A resolution). PSN J05421980-2532399 was discovered by Parker on 2014 Jan 17.52 at mag 17.0 in PGC 17633. An 80 minute spectrum of the SN on 2014 Jan 18.56 shows this object to be a type Ia supernova a few days before maximum light.

  12. Classification of PSN J13075109-0052004 as a pre-max Type Ia SN with WiFeS

    NASA Astrophysics Data System (ADS)

    Childress, M.; Scalzo, R.; Tucker, B.; Yuan, F.; Schmidt, B.

    2013-07-01

    We report spectroscopic classification of PSN J13075109-0052004 with the Wide Field Spectrograph (WiFeS - Dopita et al., 2007, ApSS, 310, 255) on the ANU 2.3m telescope at Siding Spring Observatory, NSW Australia, using the B3000/R3000 gratings (3500-9800 A, 1 A resolution). PSN J13075109-0052004 was discovered by Stu Parker on 2013 July 29 at mag 17.4. A 40 minute WiFeS spectrum of the SN on 2013 July 31 indicates this is a Type Ia supernova a few days before maximum light.

  13. Spectroscopic Classification of SN 2016ilf as a Peculiar SN 2002cx-like Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Zhang, Jujia; Chang, Liang; Wang, Xiaofeng; Li, Wenxiong; Rui, Liming; Xiang, Danfeng; Zhang, Tianmeng; Xu, Zhijian; Tan, Hanjie

    2016-11-01

    We obtained an optical spectrum (range 380-900 nm) of SN 2016ilf, discovered by the Tsinghua-NAOC Transient Survey (TNTS), on UT Nov.25.7 2016 with the 2.4 m telescope (LJT + YFOSC) at LiJiang Observatory of Yunnan Observatories (YNAO).

  14. Spectroscopic Classification of SN 2017cal (=ASASSN-17dh) as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Xiang, Danfeng; Rui, Liming; Wang, Xiaofeng; Jia, Junjun; Zhang, Bo; Zhang, Tianmeng; Zhang, Jujia

    2017-03-01

    We obtained an optical spectrum (range 360-860 nm) of SN 2017cal (=ASASSN-17dh, see ATEL 10156), discovered by All Sky Automated Survey for SuperNovae (ASAS-SN), on UT Mar.09.9 2017 with the 2.16-m telescope (+BFOSC) at Xinglong Station of National Astronomical Observatories of China (NAOC).

  15. Spectroscopic Classification of SN 2017hq as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Xiang, Danfeng; Rui, Liming; Wang, Xiaofeng; Zhang, Liyun; Xiao, Feng; Zhang, Jinbo; Zhang, Tianmeng

    2017-01-01

    We obtained an optical spectrum (range 360-850 nm) of SN 2017hq (=ASASSN-17am), discovered by All Sky Automated Survey for SuperNovae (ASAS-SN), on UT Jan.13.9 2017 with the 2.16-m telescope (+BFOSC) at Xinglong Station of National Astronomical Observatories of China (NAOC).

  16. TYPE Ia SUPERNOVA PROPERTIES AS A FUNCTION OF THE DISTANCE TO THE HOST GALAXY IN THE SDSS-II SN SURVEY

    SciTech Connect

    Galbany, Lluis; Miquel, Ramon; Oestman, Linda; Brown, Peter J.; Olmstead, Matthew D.; Cinabro, David; D'Andrea, Chris B.; Nichol, Robert C.; Frieman, Joshua; Jha, Saurabh W.; Marriner, John; Nordin, Jakob; Sako, Masao; Schneider, Donald P.; Smith, Mathew; Sollerman, Jesper; Pan, Kaike; Snedden, Stephanie; Bizyaev, Dmitry; Brewington, Howard; and others

    2012-08-20

    We use Type Ia supernovae (SNe Ia) discovered by the Sloan Digital Sky Survey-II SN Survey to search for dependencies between SN Ia properties and the projected distance to the host-galaxy center, using the distance as a proxy for local galaxy properties (local star formation rate, local metallicity, etc.). The sample consists of almost 200 spectroscopically or photometrically confirmed SNe Ia at redshifts below 0.25. The sample is split into two groups depending on the morphology of the host galaxy. We fit light curves using both MLCS2K2 and SALT2, and determine color (A{sub V} , c) and light-curve shape ({Delta}, x{sub 1}) parameters for each SN Ia, as well as its residual in the Hubble diagram. We then correlate these parameters with both the physical and the normalized distances to the center of the host galaxy and look for trends in the mean values and scatters of these parameters with increasing distance. The most significant (at the 4{sigma} level) finding is that the average fitted A{sub V} from MLCS2K2 and c from SALT2 decrease with the projected distance for SNe Ia in spiral galaxies. We also find indications that supernovae (SNe) in elliptical galaxies tend to have narrower light curves if they explode at larger distances, although this may be due to selection effects in our sample. We do not find strong correlations between the residuals of the distance moduli with respect to the Hubble flow and the galactocentric distances, which indicates a limited correlation between SN magnitudes after standardization and local host metallicity.

  17. Type Ia Supernova Properties as a Function of the Distance to the Host Galaxy in the SDSS-II SN Survey

    SciTech Connect

    Galbany, Lluis; et al.

    2012-08-20

    We use type-Ia supernovae (SNe Ia) discovered by the SDSS-II SN Survey to search for dependencies between SN Ia properties and the projected distance to the host galaxy center, using the distance as a proxy for local galaxy properties (local star-formation rate, local metallicity, etc.). The sample consists of almost 200 spectroscopically or photometrically confirmed SNe Ia at redshifts below 0.25. The sample is split into two groups depending on the morphology of the host galaxy. We fit light-curves using both MLCS2k2 and SALT2, and determine color (AV, c) and light-curve shape (delta, x1) parameters for each SN Ia, as well as its residual in the Hubble diagram. We then correlate these parameters with both the physical and the normalized distances to the center of the host galaxy and look for trends in the mean values and scatters of these parameters with increasing distance. The most significant (at the 4-sigma level) finding is that the average fitted AV from MLCS2k2 and c from SALT2 decrease with the projected distance for SNe Ia in spiral galaxies. We also find indications that SNe in elliptical galaxies tend to have narrower light-curves if they explode at larger distances, although this may be due to selection effects in our sample. We do not find strong correlations between the residuals of the distance moduli with respect to the Hubble flow and the galactocentric distances, which indicates a limited correlation between SN magnitudes after standardization and local host metallicity.

  18. Spectroscopic Classification of SN 2017cbr as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Zhang, Jujia; Wang, Jianguo; Li, Wenxiong; Wang, Xiaofeng; Tan, Hanjie; Zhang, Tianmeng; Zhou, Xu; Mo, Jun; Rui, Liming; Xiang, Danfeng

    2017-03-01

    We obtained an optical spectrum (range 340-900 nm) of SN 2017cbr, discovered by the Tsinghua-NAOC Transient Survey (TNTS), on UT Mar.22.7 2017 with the 2.4 m telescope (LJT + YFOSC) at LiJiang Gaomeigu Observatory of Yunnan Observatories (YNAO).

  19. Spectroscopic Classification of SN 2017ckp as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Zhang, Jujia; Wang, Xiaofeng; Xu, Zhijian; Li, Wenxiong; Li, Bin; Yang, Zesheng; Tan, Hanjie; Zhao, Haibin; Wang, Lifan

    2017-04-01

    We obtained an optical spectrum (range 340-900 nm) of SN 2017ckp (=PTSS-17npa), discovered by the PMO-Tsinghua Supernova Survey (PTSS, http://www.cneost.org/ptss/), on UT Apr.05.82 2017 with the 2.4 m telescope (LJT + YFOSC) at LiJiang Gaomeigu Observatory of Yunnan Observatories (YNAO).

  20. Spectroscopic Classification of SN 2017ckc as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Zhang, Jujia; Wang, Xiaofeng; Xu, Zhijian; Li, Wenxiong; Li, Bin; Yang, Zesheng; Tan, Hanjie; Zhao, Haibin; Wang, Lifan

    2017-04-01

    We obtained an optical spectrum (range 370-880 nm) of SN 2017ckc (=PTSS-17nip), discovered by the PMO-Tsinghua Supernova Survey (PTSS, http://www.cneost.org/ptss/), on UT Apr.06.82 2017 with the 2.4 m telescope (LJT + YFOSC) at LiJiang Gaomeigu Observatory of Yunnan Observatories (YNAO).

  1. Spectroscopic Classification of SN 2017bke as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Zhang, Jujia; Zhang, Xiliang; Wang, Xiaofeng; Li, Wenxiong; Li, Bin; Xu, Zhijian; Tan, Hanjie; Zhao, Haibin; Wang, Lifan; Rui, Liming; ), Zesheng Yang

    2017-02-01

    We obtained an optical spectrum (range 340-880 nm) of SN 2017bke (=PTSS-17hcz),discovered by the PMO-Tsinghua Supernova Survey (PTSS, http://www.cneost.org/ptss/), on UT Feb.25.7 2017 with the 2.4 m telescope (LJT + YFOSC) at LiJiang Gaomeigu Observatory of Yunnan Observatories (YNAO).

  2. Spectroscopic Classification of SN 2017aap as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Zhang, Jujia; Xin, Yuxin; Xu, Zhijian; Li, Wenxiong; Wang, Xiaofeng; Li, Bin; Zhao, Haibin; Wang, Lifan; Tan, Hanjie; Rui, Liming; Yang, Zesheng

    2017-02-01

    We obtained an optical spectrum (range 340-830 nm) of SN 2017aap (=PTSS-17die), discovered by the PMO-Tsinghua Supernova Survey (PTSS, http://www.cneost.org/ptss/), on UT Feb.02.9 2017 with the 2.4 m telescope (LJT + YFOSC) at LiJiang Gaomeigu Observatory of Yunnan Observatories (YNAO).

  3. Spectroscopic Classification of SN 2017aas as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Zhang, Jujia; Lu, Kaixin; Xu, Zhijian; Li, Wenxiong; Wang, Xiaofeng; Li, Bin; Zhao, Haibin; Wang, Lifan; Tan, Hanjie; Rui, Liming; Yang, Zesheng

    2017-02-01

    We obtained an optical spectrum (range 340-830 nm) of SN 2017aas (=PTSS-17dib),discovered by the PMO-Tsinghua Supernova Survey (PTSS, http://www.cneost.org/ptss/), on UT Feb.04.86 2017 with the 2.4 m telescope (LJT + YFOSC) at LiJiang Gaomeigu Observatory of Yunnan Observatories (YNAO).

  4. Spectroscopic Classification of SN 2016blg (=PTSS-16cfd) as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Zhang, Jujia; Zheng, Xiangming; Wang, Xiaofeng; Li, Wenxiong; Rui, Liming; Yang, Zesheng; Xu, Zhijian; Li, Bin; Zhao, Haibin; Wang, Lifan

    2016-04-01

    We obtained an optical spectrum (range 320-850 nm) of SN 2016blg(=PTSS-16cfd), discovered by the PMO-Tsinghua Supernova Survey (PTSS: http://119.78.210.3/ptss2/ ), on UT Apr.04.7 2016 with the 2.4-m telescope (+YFOSC) at LiJiang Gaomeigu Station of Yunnan Astronomical Observatories (YNAO).

  5. Spectroscopic Classification of SN 2017ckp as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Zhang, Jujia; Wang, Xiaofeng; Xu, Zhijian; Li, Wenxiong; Li, Bin; Yang, Zesheng; Tan, Hanjie; Zhao, Haibin; Wang, Lifan

    2017-04-01

    We obtained an optical spectrum (range 340-900 nm) of SN 2017ckp (=PTSS-17npa), discovered by the PMO-Tsinghua Supernova Survey (PTSS, http://www.cneost.org/ptss/), on UT Apr.05.82 2017 with the 2.4 m telescope (LJT + YFOSC) at LiJiang Gaomeigu Observatory of Yunnan Observatories (YNAO).

  6. Spectroscopic Classification of SN 2016cck (=PTSS-16efw) as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Zhang, Jujia; Wang, Jianguo; Wang, Xiaofeng; Li, Wenxiong; Yang, Zesheng; Li, Bin; Xu, Zhijian; Zhao, Haibin; Wang, Lifan

    2016-05-01

    We obtained an optical spectrum (range 340-900 nm) of SN 2016cck (=PTSS-16efw), discovered by the PMO-Tsinghua Supernova Survey (PTSS: http://119.78.210.3/ptss2/), on UT May 05.8 2016 with the 2.4 m telescope ( LJT + YFOSC) at LiJiang Observatory of Yunnan Observatories (YNAO).

  7. Spectroscopic Classification of SN 2016blh (=PTSS-16cfg) as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Zhang, Jujia; Zheng, Xiangming; Wang, Xiaofeng; Li, Wenxiong; Yang, Zesheng; Xu, Zhijian; Li, Bin; Zhao, Haibin; Wang, Lifan

    2016-04-01

    We obtained an optical spectrum (range 340-890 nm) of SN 2016blh(=PTSS-16cfg), discovered by the PMO-Tsinghua Supernova Survey (PTSS: http://119.78.210.3/ptss2/ ), on UT Apr.03.7 2016 with the 2.4-m telescope (+YFOSC) at LiJiang Gaomeigu Station of Yunnan Astronomical Observatories (YNAO).

  8. Spectroscopic Classification of SN 2016flv(= PTSS-16mvt) as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Rui, Liming; Wang, Xiaofeng; Li, Wenxiong; Yang, Zesheng; Zhang, Ziyang; Xu, Zhijian; Li, Bin; Wang, Lifan; Zhao, Haibin; Xiao, Feng; Zhang, Tianmeng; Zhou, Fan; Zhang, Jujia; Han, Jietan

    2016-08-01

    We obtained an optical spectrum (range 390-840 nm) of SN 2016flv(= PTSS-16mvt), discovered by PMO-Tsinghua Supernova Survey (http://119.78.210.3/ptss2/), on UT Aug.28.6 2016 with the 2.16-m telescope (+BFOSC) at Xinglong Station of National Astronomical Observatories of China (NAOC).

  9. Spectroscopic Classification of SN 2016cdg (=PTSS-16gyb) as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Zhang, Jujia; Zheng, Xiangming; Wang, Xiaofeng; Li, Wenxiong; Yang, Zesheng; Li, Bin; Xu, Zhijian; Zhao, Haibin; Wang, Lifan

    2016-05-01

    We obtained an optical spectrum (range 340-900 nm) of SN 2016cnv (=PTSS-16gif), discovered by the PMO-Tsinghua Supernova Survey (PTSS: http://119.78.210.3/ptss2/), on UT May 26.71 2016 with the 2.4 m telescope (LJT + YFOSC) at LiJiang Observatory of Yunnan Observatories (YNAO).

  10. Spectroscopic Classification of SN 2017ckc as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Zhang, Jujia; Wang, Xiaofeng; Xu, Zhijian; Li, Wenxiong; Li, Bin; Yang, Zesheng; Tan, Hanjie; Zhao, Haibin; Wang, Lifan

    2017-04-01

    We obtained an optical spectrum (range 370-880 nm) of SN 2017ckc (=PTSS-17nip), discovered by the PMO-Tsinghua Supernova Survey (PTSS, http://www.cneost.org/ptss/), on UT Apr.06.82 2017 with the 2.4 m telescope (LJT + YFOSC) at LiJiang Gaomeigu Observatory of Yunnan Observatories (YNAO).

  11. Spectroscopic Classification of SN 2017aap as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Zhang, Jujia; Xin, Yuxin; Xu, Zhijian; Li, Wenxiong; Wang, Xiaofeng; Li, Bin; Zhao, Haibin; Wang, Lifan; Tan, Hanjie; Rui, Liming; Yang, Zesheng

    2017-02-01

    We obtained an optical spectrum (range 340-830 nm) of SN 2017aap (=PTSS-17die), discovered by the PMO-Tsinghua Supernova Survey (PTSS, http://www.cneost.org/ptss/), on UT Feb.02.9 2017 with the 2.4 m telescope (LJT + YFOSC) at LiJiang Gaomeigu Observatory of Yunnan Observatories (YNAO).

  12. Spectroscopic Classification of AT SN 2016cce (=PTSS-16dzd) as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Zhang, Jujia; Zhang, Xiliang; Wang, Xiaofeng; Li, Wenxiong; Yang, Zesheng; Li, Bin; Xu, Zhijian; Zhao, Haibin; Wang, Lifan

    2016-05-01

    We obtained an optical spectrum (range 345-910 nm) of SN 2016cce (=PTSS-16dzd), discovered by the PMO-Tsinghua Supernova Survey (PTSS: http://119.78.210.3/ptss2/ ), on UT Apr.30.7 2016 with the 2.4-m telescope (+YFOSC) at LiJiang Gaomeigu Station of Yunnan Astronomical Observatories (YNAO).

  13. Spectroscopic Classification of SN 2017cne as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Xiang, Danfeng; Rui, Liming; Wang, Xiaofeng; Xu, Zhijian; Li, Wenxiong; Yang, Zesheng; Li, Bin; Tan, Hanjie; Zhao, Haibin; Wang, Lifan; Meng, Xianmin; Wang, J.; Jia, Junjun; Zhang, Tianmeng; Zhang, Jujia

    2017-04-01

    We obtained an optical spectrum (range 360-840 nm) of SN 2017cne (=PTSS-17ntl),discovered by PMO-Tsinghua Supernova Survey (PTSS, http://www.cneost.org/ptss/), on UT Mar.31.76 2017 with the 2.16-m telescope (+BFOSC) at Xinglong Station of National Astronomical Observatories of China (NAOC).

  14. Spectrocopic Classification of SN 2016ayg (PTSS-16hs) as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Zhang, Jujia; Wang, Xiaofeng; Li, Wenxiong; Yang, Zesheng; Li, Bin; Zhao, Haibin; Wang, Lifan

    2016-03-01

    We obtained an optical spectrum (range 330-880 nm) of SN 2016ayg, discovered by the PMO-Tsinghua Supernova Survey (PTSS), on UT Mar.12.6 2016 with the 2.4-m telescope (+YFOSC) at LiJiang Gaomeigu Station of Yunnan Astronomical Observatories (YNAO).

  15. Spectroscopic Classification of SN 2017ejd (=PTSS-17tal) as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Xiang, Danfeng; Zhang, Kaicheng; Rui, Liming; Wang, Xiaofeng; Li, Wenxiong; Tan, Hanjie; Li, Bin; Xu, Zhijian; Zhao, Haibin; Wang, Lifan; Jia, Junjun; Zhang, Tianmeng; Xiao, Jujia Zhang Feng; Zhang, Tianmeng; Zhang, Jujia

    2017-05-01

    We obtained an optical spectrum (range 360-850 nm) of SN 2017ejd(=PTSS-17tal), discovered by the PMO-Tsinghua Supernova Survey (PTSS,http://www.cneost.org/ptss/ ), on UT May 30.7 2017 with the 2.16-m telescope (+BFOSC) at Xinglong Station of National Astronomical Observatories of China (NAOC).

  16. Classification of SN 2016gmg (=PTSS-16opy), as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Zhang, Jujia; Xin, Yuxin; Chang, Liang; Wang, Jianguo; Wang, Xiaofeng; Li, Wenxiong; Yang, Zesheng; Li, Bin; Xu, Zhijian; Zhao, Haibin; Wang, Lifan

    2016-09-01

    We obtained an optical spectrum (range 340-900 nm) of SN 2016gmg (=PTSS-16opy), discovered by the PMO-Tsinghua Supernova Survey (PTSS: http://119.78.210.3/ptss2/), on UT Sep. 29.55 2016 with the 2.4 m telescope (LJT + YFOSC) at LiJiang Observatory of Yunnan Observatories (YNAO).

  17. Spectroscopic Classification of SN 2017mt as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Zhang, Jujia; Xin, Yuxin; Wang, Xiaofeng; Li, Wenxiong; Rui, Liming; Xu, Zhijian; Li, Bin; Zhao, Haibin; Wang, Lifan; Tan, Hanjie; Xiao, Feng; Zhang, Tianmeng

    2017-01-01

    We obtained an optical spectrum (range 370-870 nm) of SN 2017mt, discovered by the PMO-Tsinghua Supernova Survey (PTSS), on UT Jan.27.9 2017 with the 2.4 m telescope (LJT + YFOSC) at LiJiang Observatory of Yunnan Observatories (YNAO).

  18. Spectroscopic Classification of SN 2017ms as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Zhang, Jujia; Zheng, Xiangming; Wang, Xiaofeng; Li, Wenxiong; Rui, Liming; Xu, Zhijian; Li, Bin; Zhao, Haibin; Wang, Lifan; Tan, Hanjie; Xiao, Feng; Zhang, Tianmeng

    2017-01-01

    We obtained an optical spectrum (range 330-870 nm) of SN 2017ms(= PTSS-17dfc), discovered by the PMO-Tsinghua Supernova Survey (PTSS), on UT Jan.23.88 2017 with the 2.4 m telescope (LJT + YFOSC) at LiJiang Gaomeigu Observatory of Yunnan Observatories (YNAO).

  19. Spectroscopic Classification of SN 2017dgi (=PTSS-17qjg) as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Xiang, Danfeng; Rui, Liming; Wang, Xiaofeng; Li, Wenxiong; Tan, Hanjie; Xu, Zhijian; Li, Bin; Zhao, Haibin; Wang, Lifan; Yang, Qian; Wu, Xuebin; Jia, Junjun; Zhang, Tianmeng; Yang, Zesheng; Zhang, Jujia

    2017-04-01

    We obtained an optical spectrum (range 390-830 nm) of SN 2017dgi (=PTSS-17qjg),discovered by PMO-Tsinghua Supernova Survey (PTSS, http://www.cneost.org/ptss/), on UT Apr.23.56 2017 with the 2.16-m telescope (+BFOSC) at Xinglong Station of National Astronomical Observatories of China (NAOC).

  20. Spectroscopic Classification of SN 2017aas as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Zhang, Jujia; Lu, Kaixin; Xu, Zhijian; Li, Wenxiong; Wang, Xiaofeng; Li, Bin; Zhao, Haibin; Wang, Lifan; Tan, Hanjie; Rui, Liming; Yang, Zesheng

    2017-02-01

    We obtained an optical spectrum (range 340-830 nm) of SN 2017aas (=PTSS-17dib),discovered by the PMO-Tsinghua Supernova Survey (PTSS, http://www.cneost.org/ptss/), on UT Feb.04.86 2017 with the 2.4 m telescope (LJT + YFOSC) at LiJiang Gaomeigu Observatory of Yunnan Observatories (YNAO).

  1. Spectroscopic Classification of SN 2017bke as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Zhang, Jujia; Zhang, Xiliang; Wang, Xiaofeng; Li, Wenxiong; Li, Bin; Xu, Zhijian; Tan, Hanjie; Zhao, Haibin; Wang, Lifan; Rui, Liming; ), Zesheng Yang

    2017-02-01

    We obtained an optical spectrum (range 340-880 nm) of SN 2017bke (=PTSS-17hcz),discovered by the PMO-Tsinghua Supernova Survey (PTSS, http://www.cneost.org/ptss/), on UT Feb.25.7 2017 with the 2.4 m telescope (LJT + YFOSC) at LiJiang Gaomeigu Observatory of Yunnan Observatories (YNAO).

  2. Spectroscopic Classification of SN 2016cdg (=PTSS-16gif) as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Zhang, Jujia; Yi, Weimin; Wang, Xiaofeng; Li, Wenxiong; Yang, Zesheng; Li, Bin; Xu, Zhijian; Zhao, Haibin; Wang, Lifan

    2016-05-01

    We obtained an optical spectrum (range 340-900 nm) of SN 2016cdg (=PTSS-16gif), discovered by the PMO-Tsinghua Supernova Survey (PTSS: http://119.78.210.3/ptss2/), on UT May 19.75 2016 with the 2.4 m telescope ( LJT + YFOSC) at LiJiang Observatory of Yunnan Observatories (YNAO).

  3. Spectroscopic Classification of SN 2017mu as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Zhang, Jujia; Xin, Yuxin; Wang, Xiaofeng; Li, Wenxiong; Rui, Liming; Xu, Zhijian; Li, Bin; Zhao, Haibin; Wang, Lifan; Yang, Hanjie Tan Zesheng; Song, Hao

    2017-01-01

    We obtained an optical spectrum (range 340-800 nm) of SN 2017mu (=PTSS-17dgm), discovered by the PMO-Tsinghua Supernova Survey (PTSS), on UT Jan.26.7 2017 with the 2.4 m telescope (LJT + YFOSC) at LiJiang Observatory of Yunnan Observatories (YNAO).

  4. Spectroscopic Classification of SN 2017lf as a Highly Reddened Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Rui, Liming; Wang, Yuanhao; Li, Wenxiong; Wang, Xiaofeng; Dai, Zhibin; Zhang, Tianmeng; Zhou, Xu; Xiao, Feng; Tan, Hanjie; Xu, Zhijian; Xiang, Danfeng; Mo, Jun; Song, Hao

    2017-01-01

    We obtained an optical spectrum (range 380-870 nm) of SN 2017lf, discovered by the Tsinghua-NAOC Transient Survey (TNTS) and iPTF independently,on UT Jan.23.6 2017 with the 2.16-m telescope (+BFOSC) at Xinglong Station of National Astronomical Observatories of China (NAOC).

  5. Spectroscopic Classification of SN 2016cor as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Zhang, Jujia; Zhang, Tianmeng; Li, Wenxiong; Wang, Xiaofeng

    2016-05-01

    We obtained an optical spectrum (range 380-870 nm) of SN 2016cor (AT2016cor), discovered by the Tsinghua-NAOC Transient Survey (TNTS), on UT May 31.68 2016 with the 2.4 m telescope (LJT + YFOSC) at Lijiang Observatory of Yunnan Observatories (YNAO).

  6. Spectroscopic Classification of SN 2016aqz as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Rui, Liming; Wang, Xiaofeng; Huang, Fang; Zhai, Meng; Zhang, Tianmeng

    2016-03-01

    We report an optical spectrum (range 380-850 nm) of SN 2016aqz (ATEL #8763) that was obtained on UT Mar.02.69 2016 with the 2.16-m telescope (+BFOSC) at the Xinglong Station of National Astronomical Observatories of China (NAOC).

  7. Spectroscopic Classification of SN 2017nh as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Rui, Liming; Wang, Xiaofeng; Xiang, Danfeng; Wu, Hong; Jia, Junjun; Zhai, Meng; Zhang, Tianmeng; Zhang, Jujia

    2017-01-01

    We obtained an optical spectrum (range 380-870 nm) of SN 2017nh (=ASASSN-17bc), discovered by the All Sky Automated Survey for SuperNovae,on UT Jan.24.6 2017 with the 2.16-m telescope (+BFOSC) at Xinglong Station of National Astronomical Observatories of China (NAOC).

  8. Spectroscopic Classification of SN 2017coa as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Xiang, Danfeng; Rui, Liming; Wang, Xiaofeng; Tan, Hanjie; Li, Wenxiong; Zhang, Tianmeng; Xu, Zhijian; Yang, Zesheng; Song, Hao; Mo, Jun; Wang, Yuanhao; Zhou, Ziheng; Meng, Xianmin; Qian, Shenban; Jia, Junjun; Zhou, Xu; Zhang, Jujia

    2017-04-01

    We obtained an optical spectrum (range 360-840 nm) of SN 2017coa,discovered by Tsinghua-NAOC Transient Survey (TNTS), on UT Mar.31.49 2017 with the 2.16-m telescope (+BFOSC) at Xinglong Station of National Astronomical Observatories of China (NAOC).

  9. Spectroscopic Classification of SN 2017cne as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Xiang, Danfeng; Rui, Liming; Wang, Xiaofeng; Xu, Zhijian; Li, Wenxiong; Yang, Zesheng; Li, Bin; Tan, Hanjie; Zhao, Haibin; Wang, Lifan; Meng, Xianmin; Wang, J.; Jia, Junjun; Zhang, Tianmeng; Zhang, Jujia

    2017-04-01

    We obtained an optical spectrum (range 360-840 nm) of SN 2017cne (=PTSS-17ntl),discovered by PMO-Tsinghua Supernova Survey (PTSS, http://www.cneost.org/ptss/), on UT Mar.31.76 2017 with the 2.16-m telescope (+BFOSC) at Xinglong Station of National Astronomical Observatories of China (NAOC).

  10. Spectroscopic Classification of SN 2016gvd as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Zhang, Jujia; Zhang, Xiliang; Wang, Xiaofeng

    2016-10-01

    We obtained an optical spectrum (range 320-840 nm) of SN 2016gvd, discovered by Krisztián Sárneczky, Róbert Szakáts et al.(see ATel #9646), on UT Oct.23.7 2016 with the 2.4 m telescope (LJT + YFOSC) at LiJiang Observatory of Yunnan Observatories (YNAO).

  11. Spectroscopic Classification of SN 2017hn as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Xiang, Danfeng; Rui, Liming; Wang, Xiaofeng; Zhang, Jujia; Yu, Xiaoguang; Zhang, Liyun; Jia, Junjun; Zhai, Meng; Zhang, Tianmeng

    2017-01-01

    We obtained an optical spectrum (range 360-860 nm) of SN 2017hn, discovered by R.Gagliano, R. Post, E. Weinberg, Jack Newton, and Tim Puckett, on UT Jan.11.9 2017 with the 2.16-m telescope (+BFOSC) at Xinglong Station of National Astronomical Observatories of China (NAOC).

  12. Spectroscopic Classification of SN2016igr as a Normal Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Bostroem, K. A.; Valenti, S.; Tartaglia, L.

    2016-12-01

    We report that a CCD spectrum (range 350-1050 nm) of SN2016igr was obtained on Dec 1, 5.95 UT, with the 3-m Shane reflector (+Kast) at Lick Observatory. We classified the event via cross-correlation with a library of supernova spectra using the "SuperNova IDentification" code (SNID; Blondin & Tonry 2007, Ap.J.

  13. Spectroscopic Classification of SN 2017yi as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Rui, Liming; Wang, Xiaofeng; Xiang, Danfeng; Li, Wenxiong; Jia, Junjun; He, Min; Zhang, Tianmeng; Wu, Zhenyu; Zhang, Jujia

    2017-02-01

    We obtained an optical spectrum (range 370-850 nm) of SN 2017yi, discovered by J. Vales,on UT Feb.01.5 2017 with the 2.16-m telescope (+BFOSC) at Xinglong Station of National Astronomical Observatories of China (NAOC).

  14. Spectroscopic Classification of SN 2017mu as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Zhang, Jujia; Xin, Yuxin; Wang, Xiaofeng; Li, Wenxiong; Rui, Liming; Xu, Zhijian; Li, Bin; Zhao, Haibin; Wang, Lifan; Yang, Hanjie Tan Zesheng; Song, Hao

    2017-01-01

    We obtained an optical spectrum (range 340-800 nm) of SN 2017mu (=PTSS-17dgm), discovered by the PMO-Tsinghua Supernova Survey (PTSS), on UT Jan.26.7 2017 with the 2.4 m telescope (LJT + YFOSC) at LiJiang Observatory of Yunnan Observatories (YNAO).

  15. Spectroscopic Classification of SN 2017mt as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Zhang, Jujia; Xin, Yuxin; Wang, Xiaofeng; Li, Wenxiong; Rui, Liming; Xu, Zhijian; Li, Bin; Zhao, Haibin; Wang, Lifan; Tan, Hanjie; Xiao, Feng; Zhang, Tianmeng

    2017-01-01

    We obtained an optical spectrum (range 370-870 nm) of SN 2017mt, discovered by the PMO-Tsinghua Supernova Survey (PTSS), on UT Jan.27.9 2017 with the 2.4 m telescope (LJT + YFOSC) at LiJiang Observatory of Yunnan Observatories (YNAO).

  16. Spectroscopic Classification of SN 2017mf as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Zhang, Jujia; Zheng, Xiangming; Wang, Xiaofeng

    2017-01-01

    We obtained an optical spectrum (range 340-900 nm) of SN 2017mf, discovered by Fabio Briganti and Paolo Campaner (ISSP), on UT Jan.22.95 2017 with the 2.4 m telescope (LJT + YFOSC) at LiJiang Gaomeigu Observatory of Yunnan Observatories (YNAO).

  17. Spectroscopic classification of Gaia16cdi (SN 2016iyf) as Type Ia supernova with SEDM

    NASA Astrophysics Data System (ADS)

    Blagorodnova, N.; Neill, James D.; Walters, R.

    2016-12-01

    The Caltech Time Domain Astronomy group reports the classification of Gaia16cdi (SN 2016iyf), discovered by the Gaia ESA survey. The follow-up spectroscopic observations were performed with the Spectral Energy Distribution Machine (SEDM) (http://www.astro.caltech.edu/sedm/, range 350-950nm, spectral resolution R 100) on Palomar 60-inch (P60) telescope.

  18. No X-rays from the very nearby type Ia SN 2014J: Constraints on its environment

    SciTech Connect

    Margutti, R.; Parrent, J.; Kamble, A.; Soderberg, A. M.; Milisavljevic, D.; Drout, M. R.; Kirshner, R.; Foley, R. J.

    2014-07-20

    Deep X-ray observations of the post-explosion environment around the very nearby Type Ia SN 2014J (d{sub L} = 3.5 Mpc) reveal no X-ray emission down to a luminosity L{sub x} < 7 × 10{sup 36} erg s{sup –1} (0.3-10 keV) at δt ∼ 20 days after the explosion. We interpret this limit in the context of inverse Compton emission from upscattered optical photons by the supernova shock and constrain the pre-explosion mass-loss rate of the stellar progenitor system to be M-dot <10{sup −9} M{sub ⊙} yr{sup −1} (for wind velocity v{sub w} = 100 km s{sup –1}). Alternatively, the SN shock might be expanding into a uniform medium with density n{sub CSM} < 3 cm{sup –3}. These results rule out single-degenerate (SD) systems with steady mass loss until the terminal explosion and constrain the fraction of transferred material lost at the outer Lagrangian point to be ≤1%. The allowed progenitors are (1) white dwarf-white dwarf progenitors, (2) SD systems with unstable hydrogen burning experiencing recurrent nova eruptions with recurrence time t < 300 yr, and (3) stars where the mass loss ceases before the explosion.

  19. Du Pont Classification of ASASSN-16jc as a Young SN Ia

    NASA Astrophysics Data System (ADS)

    Shappee, Benjamin J.; Prieto, J. L.; Rich, J.; Seibert, M.; Madore, B.; Poetrodjojo, Henry; D'Agostino, Joshua

    2016-08-01

    We report optical spectroscopy (range 370-910 nm) of ASASSN-16jc discovered by the All-Sky Automated Survey for Supernovae (ASAS-SN; Shappee et al. 2014, ApJ, 788, 48) using the du Pont 2.5-m telescope (+ WFCCD) at Las Campanas Observatory on Aug. 24 2016 UT. We performed a cross-correlation with a library of supernova spectra using the "Supernova Identification" code (SNID; Blondin and Tonry 2007, Ap.J. 666, 1024).

  20. Bright New Type Ia Supernova in the Pinwheel Galaxy (M101): Physical Properties of SN 2011fe From Photometry and Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gouravajhala, S.; Guinan, E. F.; Strolger, L.; Gott, A.

    2012-06-01

    (Abstract only) We report on the preliminary multi-wavelength photometry and spectroscopy of SN 2011fe, a bright, new Type-Ia supernova (SN Ia) that occurred in the spiral galaxy M101 (Pinwheel Galaxy). One of the closest and brightest SN Ia in the last forty years, the supernova was discovered on August 24, 2011, by the Palomar Transient Factory during the star's initial rapid rise (Nugent et al. 2011). SN Iae occur in binary systems in which a degenerate white dwarf component accretes mass from its companion star (or undergoes a merger with another white dwarf), overcomes the Chandrasekhar limit, and deflagrates in a spectacular explosion. The peak brightnesses of most SN Iae are remarkably similar. This allows SN Iae to be used as accurate cosmic distance indicators and thus they are crucial to understanding cosmology, dark energy, and inflation. SN 2011fe is being extensively observed over a wide range of wavelengths by both amateur and professional astronomers (including several AAVSO members). The UBVRI photometric observations discussed here are being carried out with the 1.3-meter Robotically Controlled Telescope (RCT) located at Kitt Peak National Observatory. The RCT data show a peak apparent magnitude of mV (max) ~ +10.0 mag, in agreement with other measures. Using the M 101 distance modulus of (mV - MV)0 = 29.04 (~21 million LY) as determined by Shappee and Stanek (2011), and assuming interstellar reddening of AV = 0.03 (from E(B-V) = 0.008) toward the objects in SN 2011fe's neighborhood, we estimate the absolute magnitude in the V band of SN 2011fe to be MV = -19.07 mag, which appears to be slightly under-luminous than the SN Iae average of = -19.30 (Hillebrandt and Niemeyer 2000). Visual and IR spectroscopic data gathered from Buil and Theirry (2011) show strong absorption features, especially those of Co II ~ 3995 Å, Si II ~ 6150 Å, Fe II/Mg II blends ~ 4500 Å, and the Ca II near-IR triplet ~ 8250 Å. Crucially, the spectrum shows no hydrogen

  1. SALT spectroscopic classification of LSQ16acz (= PS16bby = SN 2016bew) as a type-Ia supernova approaching maximum light

    NASA Astrophysics Data System (ADS)

    Jha, S. W.; Pan, Y.-C.; Foley, R. J.; Rest, A.; Scolnic, D.; Kotze, M.

    2016-03-01

    We obtained SALT (+RSS) spectroscopy of LSQ16acz (= PS16bby = SN 2016bew; Baltay et al. 2013, PASP, 125, 683) on 2016 Mar 14.9 UT, covering the wavelength range 340-920 nm. Cross-correlation of the spectrum with a template library using SNID (Blondin & Tonry 2007, ApJ, 666, 1024) shows LSQ16acz is a type-Ia supernova a few days before maximum light.

  2. THE FUNDAMENTAL METALLICITY RELATION REDUCES TYPE Ia SN HUBBLE RESIDUALS MORE THAN HOST MASS ALONE

    SciTech Connect

    Hayden, Brian T.; Garnavich, Peter M.; Gupta, Ravi R.; Sako, Masao; Mannucci, Filippo; Nichol, Robert C.

    2013-02-20

    Type Ia supernova Hubble residuals have been shown to correlate with host galaxy mass, imposing a major obstacle for their use in measuring dark energy properties. Here, we calibrate the fundamental metallicity relation (FMR) of Mannucci et al. for host mass and star formation rates measured from broadband colors alone. We apply the FMR to the large number of hosts from the SDSS-II sample of Gupta et al. and find that the scatter in the Hubble residuals is significantly reduced when compared with using only stellar mass (or the mass-metallicity relation) as a fit parameter. Our calibration of the FMR is restricted to only star-forming galaxies and in the Hubble residual calculation we include only hosts with log(SFR) > - 2. Our results strongly suggest that metallicity is the underlying source of the correlation between Hubble residuals and host galaxy mass. Since the FMR is nearly constant between z = 2 and the present, use of the FMR along with light-curve width and color should provide a robust distance measurement method that minimizes systematic errors.

  3. GROWING WHITE DWARFS TO THE CHANDRASEKHAR LIMIT: THE PARAMETER SPACE OF THE SINGLE DEGENERATE SN Ia CHANNEL

    SciTech Connect

    Hillman, Y.; Prialnik, D.; Kovetz, A.; Shara, M. M.

    2016-03-10

    Can a white dwarf (WD), accreting hydrogen-rich matter from a non-degenerate companion star, ever exceed the Chandrasekhar mass and explode as a SN Ia? We explore the range of accretion rates that allow a WD to secularly grow in mass, and derive limits on the accretion rate and on the initial mass that will allow it to reach 1.4M{sub ⊙}—the Chandrasekhar mass. We follow the evolution through a long series of hydrogen flashes, during which a thick helium shell accumulates. This determines the effective helium mass accretion rate for long-term, self-consistent evolutionary runs with helium flashes. We find that net mass accumulation always occurs despite helium flashes. Although the amount of mass lost during the first few helium shell flashes is a significant fraction of that accumulated prior to the flash, that fraction decreases with repeated helium shell flashes. Eventually no mass is ejected at all during subsequent flashes. This unexpected result occurs because of continual heating of the WD interior by the helium shell flashes near its surface. The effect of heating is to lower the electron degeneracy throughout the WD, especially in the outer layers. This key result yields helium burning that is quasi-steady state, instead of explosive. We thus find a remarkably large parameter space within which long-term, self-consistent simulations show that a WD can grow in mass and reach the Chandrasekhar limit, despite its helium flashes.

  4. Cepheid Calibration of the Peak Brightness of Type IA Supernovae: Calibration of SN 1990N in NGC 4639 Averaged with Six Earlier Type IA Supernova Calibrations to Give H 0 Directly

    NASA Astrophysics Data System (ADS)

    Sandage, Allan; Saha, A.; Tammann, G. A.; Labhardt, Lukas; Panagia, N.; Macchetto, F. D.

    1996-03-01

    Periods and light curves have been measured with the Hubble Space Telescope for 20 Cepheids in NGC 4639, parent galaxy to the Type Ia, prototypical supernova SN 1990N. The periods range from 17 to 69 days. The mean apparent magnitudes, averaged over the light curves, range from = 25.6 to = 27.3. Well-determined period-luminosity relations exist in V and I. Corrected for differential extinction, these give a true modulus for NGC 4639 of (m - M)0 = 32.00 +/- 0.23. Combining the light curves for SN 1990N with this modulus gives MB(max) = -19.30 +/- 0.23 and MV(max) = -19.39 +/- 0.23. This, together with six previous calibrations of Type Ia supernovae, gives the mean calibrations of "Branch normal" supernovae to date as = -19.47 +/- 0.07 and = -19.48 +/- 0.07. The resulting Hubble constants, reading the Type Ia supernova Hubble diagrams at very large redshifts beyond any possible local velocity anomalies, give global values of the Hubble constant of H0(B) = 56 +/- 4 (internal) km s-1 Mpc-1 and H0(V) = 58 +/- 4 (internal) km s-1 Mpc-1.

  5. Expectations for the Hard X-Ray Continuum and Gamma-Ray Line Fluxes from the Type Ia Supernova SN 2014J in M82

    NASA Astrophysics Data System (ADS)

    The, Lih-Sin; Burrows, Adam

    2014-05-01

    The hard X-ray continuum and gamma-ray lines from a Type Ia supernova dominate its integrated photon emissions and can provide unique diagnostics of the mass of the ejecta, the 56Ni yield and spatial distribution, its kinetic energy and expansion speed, and the mechanism of explosion. Such signatures and their time behavior "X-ray" the bulk debris field in direct fashion, and do not depend on the ofttimes problematic and elaborate UV, optical, and near-infrared spectroscopy and radiative transfer that have informed the study of these events for decades. However, to date no hard photons have ever been detected from a Type Ia supernova in explosion. With the advent of the supernova SN 2014J in M82, at a distance of ~3.5 Mpc, this situation may soon change. Both NuSTAR and INTEGRAL have the potential to detect SN 2014J, and, if spectra and light curves can be measured, would usefully constrain the various explosion models published during the last ~30 yr. In support of these observational campaigns, we provide predictions for the hard X-ray continuum and gamma-line emissions for 15 Type Ia explosion models gleaned from the literature. The model set, containing as it does deflagration, delayed detonation, merger detonation, pulsational delayed detonation, and sub-Chandrasekhar helium detonation models, collectively spans a wide range of properties, and hence signatures. We provide a brief discussion of various diagnostics (with examples), but importantly make the spectral and line results available electronically to aid in the interpretation of the anticipated data.

  6. The dependence of the evolution of Type Ia SN progenitors on the C-burning rate uncertainty and parameters of convective boundary mixing

    NASA Astrophysics Data System (ADS)

    Chen, Michael C.; Herwig, Falk; Denissenkov, Pavel A.; Paxton, Bill

    2014-05-01

    Evolution of a Type Ia supernova (SN Ia) progenitor requires formation of a CO white dwarf (WD), which implies a dependence on the C-burning rate (CBR). It can also be affected by the recently identified possibility of C-flame quenching by convective boundary mixing. We present first results of our study of the combined effect of these two potential sources of uncertainty on the SN Ia progenitor evolution. We consider the possibility that the CBR is higher than its currently recommended value by as much as a factor of 1000 if unidentified resonances are important, or that it is significantly lower because of the hindrance effect. For stellar models that assume the Schwarzschild boundary for convection, the maximum initial mass for the formation of CO WDs increases from Mi ≈ 5.5 M⊙ for the CBR factor of 1000 to Mi ≳ 7.0 M⊙ for the CBR factor of 0.01. For C-flame quenching models, hybrid C-O-Ne WDs form for a range of initial mass of ΔMi ≈ 1 M⊙, which increases a fraction of stars that form WDs capable of igniting C in a thermonuclear runaway. The most extreme case is found for the CBR factor of 0.1 that is supported by the hindrance model. This nuclear physics assumption, combined with C-flame quenching, leads to the formation of a hybrid C-O-Ne WD with a mass of 1.3 M⊙. Such WDs do not need to accrete much mass to reach the Chandrasekhar limit.

  7. Expectations for the hard x-ray continuum and gamma-ray line fluxes from the typE IA supernova SN 2014J in M82

    SciTech Connect

    The, Lih-Sin; Burrows, Adam E-mail: burrows@astro.princeton.edu

    2014-05-10

    The hard X-ray continuum and gamma-ray lines from a Type Ia supernova dominate its integrated photon emissions and can provide unique diagnostics of the mass of the ejecta, the {sup 56}Ni yield and spatial distribution, its kinetic energy and expansion speed, and the mechanism of explosion. Such signatures and their time behavior 'X-ray' the bulk debris field in direct fashion, and do not depend on the ofttimes problematic and elaborate UV, optical, and near-infrared spectroscopy and radiative transfer that have informed the study of these events for decades. However, to date no hard photons have ever been detected from a Type Ia supernova in explosion. With the advent of the supernova SN 2014J in M82, at a distance of ∼3.5 Mpc, this situation may soon change. Both NuSTAR and INTEGRAL have the potential to detect SN 2014J, and, if spectra and light curves can be measured, would usefully constrain the various explosion models published during the last ∼30 yr. In support of these observational campaigns, we provide predictions for the hard X-ray continuum and gamma-line emissions for 15 Type Ia explosion models gleaned from the literature. The model set, containing as it does deflagration, delayed detonation, merger detonation, pulsational delayed detonation, and sub-Chandrasekhar helium detonation models, collectively spans a wide range of properties, and hence signatures. We provide a brief discussion of various diagnostics (with examples), but importantly make the spectral and line results available electronically to aid in the interpretation of the anticipated data.

  8. Analysis of the flux and polarization spectra of the type Ia supernova SN 2001el: Exploring the geometry of the high-velocity Ejecta

    SciTech Connect

    Kasen, Daniel; Nugent, Peter; Wang, Lifan; Howell, D.A.; Wheeler, J. Craig; Hoeflich, Peter; Baade, Dietrich; Baron, E.; Hauschildt, P.H.

    2003-01-15

    SN 2001el is the first normal Type Ia supernova to show a strong, intrinsic polarization signal. In addition, during the epochs prior to maximum light, the CaII IR triplet absorption is seen distinctly and separately at both normal photospheric velocities and at very high velocities. The unusual, high-velocity triplet absorption is highly polarized, with a different polarization angle than the rest of the spectrum. The unique observation allows us to construct a relatively detailed picture of the layered geometrical structure of the supernova ejecta: in our interpretation, the ejecta layers near the photosphere (v approximately 10,000 km/s) obey a near axial symmetry, while a detached, high-velocity structure (v approximately 18,000-25,000 $ km/s) of CaII line opacity deviates from the photospheric axisymmetry. By partially obscuring the underlying photosphere, the high-velocity structure causes a more incomplete cancellation of the polarization of the photospheric light, and so gives rise to the polarization peak of the high-velocity IR triplet feature. In an effort to constrain the ejecta geometry, we develop a technique for calculating 3-D synthetic polarization spectra and use it to generate polarization profiles for several parameterized configurations. In particular, we examine the case where the inner ejecta layers are ellipsoidal and the outer, high-velocity structure is one of four possibilities: a spherical shell, an ellipsoidal shell, a clumped shell, or a toroid. The synthetic spectra rule out the clearly discriminated if observations are obtained from several different lines of sight. Thus, assuming the high velocity structure observed for SN 2001el is a consistent feature of at least known subset of type Ia supernovae, future observations and analyses such as these may allow one to put strong constraints on the ejecta geometry and hence on supernova progenitors and explosion mechanisms.

  9. SALT spectroscopic classification of SN 2017lm (= ATLAS17aix) as a type-Ia supernova near maximum light

    NASA Astrophysics Data System (ADS)

    Jha, S. W.; Dettman, K.; Pan, Y.-C.; Foley, R. J.; Rest, A.; Scolnic, D.; Kuhn, R.

    2017-01-01

    We obtained SALT (+RSS) spectroscopy of SN 2017lm (= ATLAS17aix) on 2017 Jan 19.8 UT, covering the wavelength range 350-930 nm. The longslit was also placed through the host galaxy nucleus, and numerous emission lines yield a host redshift z = 0.03052.

  10. Spectrocopic classification of SN 2017glx (PSP17B) as a young 91T-like type Ia supernova

    NASA Astrophysics Data System (ADS)

    Zhang, Jujia; Lu, Kaixin; Wang, Xiaofeng; Xiang, Danfeng; Rui, Liming; Lin, Han; Xu, Zhijian

    2017-09-01

    We obtained an optical spectrum (range 350-890 nm) of SN 2017glx (PSP17B), discovered by XOSS, on UT 2017 Sep. 04.7 with the Li-Jiang 2.4 m telescope (LJT+YFOSC) at Li-Jiang Observatory of Yunnan Observatories.

  11. Spectroscopic Classification of SN 2016cnv (=PTSS-16gyb) as a Type Ia Supernova (corrections for ATel#9083)

    NASA Astrophysics Data System (ADS)

    Zhang, Jujia; Zheng, Xiangming; Wang, Xiaofeng; Li, Wenxiong; Yang, Zesheng; Li, Bin; Xu, Zhijian; Zhao, Haibin; Wang, Lifan

    2016-05-01

    We obtained an optical spectrum (range 340-900 nm) of SN 2016cnv (=PTSS-16gyb), discovered by the PMO-Tsinghua Supernova Survey (PTSS: http://119.78.210.3/ptss2/), on UT May 26.71 2016 with the 2.4 m telescope (LJT + YFOSC) at LiJiang Observatory of Yunnan Observatories (YNAO).

  12. WiFeS Classification of SMT17kdl/SN2017edm as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Tucker, B. E.; Moller, A.; Armstrong, P.; Mould, J.; Uddin, S.; Muthukrishna, D.; Panther, F. H.; Ruiter, A.; Ridden-Harper, R.; Schmidt, B. P.; Sommer, N. E.; Zhang, B.; Seitenzahl, I.

    2017-05-01

    We obtained a spectrum of SMT17kdl/SN2017edm on 2017-05-26 using the Wide Field Spectrograph (WiFeS - Dopita et al., 2007, ApSS, 310, 255) on the ANU 2.3m telescope at Siding Spring Observatory near Coonabarabran, NSW, Australia, using the B3000/R3000 gratings (3500-9800 A, 1 A resolution).

  13. SALT spectroscopic classification of PS16eho (= SN 2016gcr) as a type-Ia supernova after maximum light

    NASA Astrophysics Data System (ADS)

    Jha, S. W.; Dettman, K.; Pan, Y.-C.; Foley, R. J.; Rest, A.; Scolnic, D.; Kotze, M.

    2016-09-01

    We obtained SALT (+RSS) spectroscopy of PS16eho (= SN 2016gcr) on 2016 Sep 12.0 UT, covering the wavelength range 350-930 nm. The spectrum is significantly contaminated with host galaxy light, and we confirm the redshift of the host galaxy 2MASX J22321713-2342106 z = 0.065 (Colless et al. 2003, 2dFGRS, arXiv:astroph/0306581; via NED) with numerous absorption and emission lines.

  14. SALT spectroscopic classification of PS16eqv (= SN 2016hjk) as a type-Ia supernova before maximum light

    NASA Astrophysics Data System (ADS)

    Jha, S. W.; Dettman, K.; Pan, Y.-C.; Foley, R. J.; Rest, A.; Scolnic, D.; Kniazev, A.

    2016-10-01

    We obtained SALT (+RSS) spectroscopy of PS16eqv (= SN 2016hjk) on 2016 Oct 27.1 UT, covering the wavelength range 340-920 nm. An extraction of the spectrum of the host-galaxy nucleus (also placed on the slit) reveals numerous absorption lines and confirms the redshift of 2MASX J02314347-2500088 at z = 0.085 (Colless et al. 2003, 2dFGRS, arXiv:astroph/0306581; via NED).

  15. Dark Matter Ignition of Type Ia Supernovae.

    PubMed

    Bramante, Joseph

    2015-10-02

    Recent studies of low redshift type Ia supernovae (SN Ia) indicate that half explode from less than Chandrasekhar mass white dwarfs, implying ignition must proceed from something besides the canonical criticality of Chandrasekhar mass SN Ia progenitors. We show that 1-100 PeV mass asymmetric dark matter, with imminently detectable nucleon scattering interactions, can accumulate to the point of self-gravitation in a white dwarf and collapse, shedding gravitational potential energy by scattering off nuclei, thereby heating the white dwarf and igniting the flame front that precedes SN Ia. We combine data on SN Ia masses with data on the ages of SN Ia-adjacent stars. This combination reveals a 2.8σ inverse correlation between SN Ia masses and ignition ages, which could result from increased capture of dark matter in 1.4 vs 1.1 solar mass white dwarfs. Future studies of SN Ia in galactic centers will provide additional tests of dark-matter-induced type Ia ignition. Remarkably, both bosonic and fermionic SN Ia-igniting dark matter also resolve the missing pulsar problem by forming black holes in ≳10  Myr old pulsars at the center of the Milky Way.

  16. The Effects of Common Envelope and Tidal Evolution On the Properties of X-ray Binaries, CVs and SN Ia

    NASA Astrophysics Data System (ADS)

    Moe, Maxwell C.; Di Stefano, R.

    2011-09-01

    Population synthesis studies provide an excellent testbed for determining the consequences and significance of certain binary processes that lead to accretion onto a compact object. We investigated the recent observational constraints of the common envelope (CE) efficiency parameter with particular regard to the dependence on the mass ratio of the binary. In our population synthesis calculations, we also implemented binary tidal interactions prior to Roche lobe overflow, such as tidal capture of and spin up by the companion, synchronization, and enhanced equatorial mass loss of the giant that can significantly alter the evolution of the system. Finally, we analyzed these binary interactions in the context of nuclear burning on white dwarfs, accreting X-ray binaries, cataclysmic variables, progenitors of Type Ia supernovae, and other high energy binary phenomena.

  17. A high-resolution X-ray and optical study of SN 1006: asymmetric expansion and small-scale structure in a type IA supernova remnant

    SciTech Connect

    Winkler, P. Frank; Williams, Brian J.; Petre, Robert; Hwang, Una; Reynolds, Stephen P.; Long, Knox S.; Katsuda, Satoru E-mail: brian.j.williams@nasa.gov E-mail: reynolds@ncsu.edu

    2014-02-01

    We introduce a deep (670 ks) X-ray survey of the entire SN 1006 remnant from the Chandra X-Ray Observatory, together with a deep Hα image of SN 1006 from the 4 m Blanco telescope at CTIO. Comparison with Chandra images from 2003 gives the first measurement of the X-ray proper motions around the entire periphery, carried out over a 9 yr baseline. We find that the expansion velocity varies significantly with azimuth. The highest velocity of ∼7400 km s{sup –1} (almost 2.5 times that in the northwest (NW)) is found along the southeast (SE) periphery, where both the kinematics and the spectra indicate that most of the X-ray emission stems from ejecta that have been decelerated little, if at all. Asymmetries in the distribution of ejecta are seen on a variety of spatial scales. Si-rich ejecta are especially prominent in the SE quadrant, while O and Mg are more uniformly distributed, indicating large-scale asymmetries arising from the explosion itself. Neon emission is strongest in a sharp filament just behind the primary shock along the NW rim, where the pre-shock density is highest. Here the Ne is likely interstellar, while Ne within the shell may include a contribution from ejecta. Within the interior of the projected shell we find a few isolated 'bullets' of what appear to be supernova ejecta that are immediately preceded by bowshocks seen in Hα, features that we interpret as ejecta knots that have reached relatively dense regions of the surrounding interstellar medium, but that appear in the interior in projection. Recent three-dimensional hydrodynamic models for Type Ia supernovae display small-scale features that strongly resemble the ones seen in X-rays in SN 1006; an origin in the explosion itself or from subsequent hydrodynamic instabilities both remain viable options. We have expanded the search for precursor X-ray emission ahead of a synchrotron-dominated shock front, as expected from diffusive shock acceleration theory, to numerous regions along both

  18. A High-Resolution X-Ray and Optical Study of SN1006: Asymmetric Expansion and Small-Scale Structure in a Type Ia Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Winkler, P. Frank; Williams, Brian J.; Reynolds, Stephen P.; Petre, Robert; Long, Knox S.; Katsuda, Satoru; Hwang, Una

    2014-01-01

    We introduce a deep (670 ks) X-ray survey of the entire SN 1006 remnant from the Chandra X-Ray Observatory, together with a deep Ha image of SN 1006 from the 4 m Blanco telescope at CTIO. Comparison with Chandra images from 2003 gives the first measurement of the X-ray proper motions around the entire periphery, carried out over a 9 yr baseline. We find that the expansion velocity varies significantly with azimuth. The highest velocity of approx.7400 km/s (almost 2.5 times that in the northwest (NW)) is found along the southeast (SE) periphery, where both the kinematics and the spectra indicate that most of the X-ray emission stems from ejecta that have been decelerated little, if at all. Asymmetries in the distribution of ejecta are seen on a variety of spatial scales. Si-rich ejecta are especially prominent in the SE quadrant, while O and Mg are more uniformly distributed, indicating large-scale asymmetries arising from the explosion itself. Neon emission is strongest in a sharp filament just behind the primary shock along the NWrim, where the pre-shock density is highest. Here the Ne is likely interstellar, while Ne within the shell may include a contribution from ejecta. Within the interior of the projected shell we find a few isolated "bullets" of what appear to be supernova ejecta that are immediately preceded by bowshocks seen in Ha, features that we interpret as ejecta knots that have reached relatively dense regions of the surrounding interstellar medium, but that appear in the interior in projection. Recent three-dimensional hydrodynamic models for Type Ia supernovae display small-scale features that strongly resemble the ones seen in X-rays in SN 1006; an origin in the explosion itself or from subsequent hydrodynamic instabilities both remain viable options. We have expanded the search for precursor X-ray emission ahead of a synchrotron-dominated shock front, as expected from diffusive shock acceleration theory, to numerous regions along both the

  19. Defining photometric peculiar type Ia supernovae

    SciTech Connect

    González-Gaitán, S.; Pignata, G.; Förster, F.; Gutiérrez, C. P.; Bufano, F.; Galbany, L.; Hamuy, M.; De Jaeger, T.; Hsiao, E. Y.; Phillips, M. M.; Folatelli, G.; Anderson, J. P.

    2014-11-10

    We present a new photometric identification technique for SN 1991bg-like type Ia supernovae (SNe Ia), i.e., objects with light curve characteristics such as later primary maxima and the absence of a secondary peak in redder filters. This method is capable of selecting this sub-group from the normal type Ia population. Furthermore, we find that recently identified peculiar sub-types such as SNe Iax and super-Chandrasekhar SNe Ia have photometric characteristics similar to 91bg-like SNe Ia, namely, the absence of secondary maxima and shoulders at longer wavelengths, and can also be classified with our technique. The similarity of these different SN Ia sub-groups perhaps suggests common physical conditions. This typing methodology permits the photometric identification of peculiar SNe Ia in large upcoming wide-field surveys either to study them further or to obtain a pure sample of normal SNe Ia for cosmological studies.

  20. Infrared Light Curves of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Friedman, Andrew S.; Kirshner, R. P.; Wood-Vasey, M.; Bloom, J. S.; Mandel, K.; Challis, P.; Hicken, M.; Narayan, G.; Foley, R.; Rest, A.; Modjaz, M.; Starr, D.; Blondin, S.; Blake, C.; CfA Supernova Group; PAIRITEL Collaboration

    2010-01-01

    For my Astronomy Ph.D. thesis at Harvard University, I used the PAIRITEL 1.3m robotic telescope at the Fred Lawrence Whipple Observatory on Mt. Hopkins, Arizona to observe Near-Infrared (NIR) JHKs band light curves of over 100 Type Ia Supernovae (SN Ia) in nearby galaxies, compiling a data set that will more than quintuple the number of NIR SN Ia light curves in the literature. With this data, we confirm and strengthen the claim that SN Ia are more standard in NIR luminosity, less sensitive to dust extinction, and crucial to reducing systematic distance errors due to the degeneracy between intrinsic color variation and reddening of light by dust, arguably the most dominant systematic error in SN Ia cosmology. Uncertainty in our knowledge of the distributions of host galaxy dust properties is a major obstacle to obtaining consistent dark energy constraints with different SN Ia cosmological analysis methods. As such, I develop a color curve model using optical and NIR data to estimate the most probable amount of dust extinction and the properties of the host galaxy dust for each SN Ia. Continuing a comprehensive ground based optical and NIR program to observe low redshift SN Ia is one of the best ways to improve the precision and accuracy of SN Ia as standardizeable candles and cosmological distance indicators moving forward. Such data will critically inform the design of the NASA/DOE Joint Dark Energy Mission, and indeed any future cosmology experiment designed to measure cosmic acceleration and dark energy with a sample of high redshift SN Ia. This work has been supported by an NSF Graduate Research Fellowship and a NASA GSRP Fellowship.

  1. CfA Nearby Supernova Ia Light Curves

    NASA Astrophysics Data System (ADS)

    Hicken, Malcolm; Berlind, P.; Blondin, S.; Calkins, M.; Challis, P.; Esquerdo, G.; Everett, M.; Fernandez, J.; Jha, S.; Kirshner, R. P.; Latham, D.; Modjaz, M.; Rest, A.; Wood-Vasey, M.

    2007-12-01

    Type Ia supernovae (SN Ia) are central in measuring the accelerated expansion of the Universe and the properties of the underlying dark energy. Nearby SN Ia are compared with distant ones to establish the history of cosmic expansion. In fact, current efforts in SN Ia cosmology are constrained by the limited number of well-observed nearby SN Ia. A significantly improved sample of nearby SN Ia, fully covering the space of Ia properties, is needed to maximize the utility of high-redshift SN Ia. Our ongoing project at the CfA has collected such a set of 170 SN Ia. We have used the FLWO 1.2m telescope. About half of our objects were observed in UBVRI with the 4Shooter camera and have an average of 10 epochs each while the other half was taken in UBVr'i' with the Keplercam instrument and have an average of 17 epochs each. We have now reduced this sample of over 25000 images and present calibrated light curves of these SN Ia along with an analysis of their properties. The CfA Supernova program is supported in part by the National Science Foundation through grant AST-0606772 to Harvard University.

  2. Infrared Light Curves of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Friedman, Andrew Samuel

    2012-05-01

    This thesis presents the CfAIR2 data set, which includes over 4000 near-Infrared (NIR) JHK8-band measurements of 104 Type Ia Supernovae (SN Ia) observed from 2005-2011 using PAIRITEL, the 1.3-m Peters Automated InfraRed Imaging TELescope at the Fred Lawrence Whipple Observatory (FLWO) on Mount Hopkins, Arizona. While the discovery of dark energy and most subsequent supernova cosmology has been performed using optical and Ultraviolet wavelength observations of SN Ia, a growing body of evidence suggests that NIR SN Ia observations will be crucial for future cosmological studies. Whereas SN Ia observed at optical wavelengths have been shown to be excellent standardizeable candles, using empirical correlations between luminosity, light curve shape, and color, the CfAIR2 data set strengthens the evidence that SN Ia at NIR wavelengths are essentially standard candles, even without correction for light-curve shape or for reddening. CfAIR2 was obtained as part of the CfA Supernova Program, an ongoing multi-wavelength follow-up effort at FLWO designed to observe high-quality, densely sampled light curves and spectra of hundreds of low-redshift SN Ia. CfAIR2 is the largest homogeneously observed and processed NIR data set of its kind to date, nearly tripling the number of individual JHK8-band observations and nearly doubling the set of SN Ia with published NIR light curves in the literature. Matched only by the recently published Carnegie Supernova Project sample, CfAIR2 complements the large and growing set of low-redshift optical and NIR SN Ia observations obtained by the CfA and other programs, making this data set a unique and particularly valuable local universe anchor for future supernova cosmology.

  3. Type IA Supernovae

    NASA Technical Reports Server (NTRS)

    Wheeler, J. Craig

    1992-01-01

    Spectral calculations show that a model based on the thermonuclear explosion of a degenerate carbon/oxygen white dwarf provides excellent agreement with observations of Type Ia supernovae. Identification of suitable evolutionary progenitors remains a severe problem. General problems with estimation of supernova rates are outlined and the origin of Type Ia supernovae from double degenerate systems are discussed in the context of new rates of explosion per H band luminosity, the lack of observed candidates, and the likely presence of H in the vicinity of some SN Ia events. Re-examination of the problems of triggering Type Ia by accretion of hydrogen from a companion shows that there may be an avenue involving cataclysmic variables, especially if extreme hibernation occurs. Novae may channel accreting white dwarfs to a unique locus in accretion rate/mass space. Systems that undergo secular evolution to higher mass transfer rates could lead to just the conditions necessary for a Type Ia explosion. Tests involving fluorescence or absorption in a surrounding circumstellar medium and the detection of hydrogen stripped from a companion, which should appear at low velocity inside the white dwarf ejecta, are suggested. Possible observational confirmation of the former is described.

  4. Sampling the probability distribution of Type Ia Supernova lightcurve parameters in cosmological analysis

    NASA Astrophysics Data System (ADS)

    Dai, Mi; Wang, Yun

    2016-06-01

    In order to obtain robust cosmological constraints from Type Ia supernova (SN Ia) data, we have applied Markov Chain Monte Carlo (MCMC) to SN Ia lightcurve fitting. We develop a method for sampling the resultant probability density distributions (pdf) of the SN Ia lightcuve parameters in the MCMC likelihood analysis to constrain cosmological parameters, and validate it using simulated data sets. Applying this method to the `joint lightcurve analysis (JLA)' data set of SNe Ia, we find that sampling the SN Ia lightcurve parameter pdf's leads to cosmological parameters closer to that of a flat Universe with a cosmological constant, compared to the usual practice of using only the best-fitting values of the SN Ia lightcurve parameters. Our method will be useful in the use of SN Ia data for precision cosmology.

  5. THE AGES OF TYPE Ia SUPERNOVA PROGENITORS

    SciTech Connect

    Brandt, Timothy D.; Aubourg, Eric; Strauss, Michael A.; Tojeiro, Rita; Heavens, Alan; Jimenez, Raul

    2010-09-15

    Using light curves and host galaxy spectra of 101 Type Ia supernovae (SNe Ia) with redshift z {approx}< 0.3 from the Sloan Digital Sky Survey Supernova Survey (SDSS-SN), we derive the SN Ia rate as a function of progenitor age (the delay time distribution, DTD). We use the VESPA stellar population synthesis algorithm to analyze the SDSS spectra of all galaxies in the field searched by SDSS-SN, giving us a reference sample of 77,000 galaxies for our SN Ia hosts. Our method does not assume any a priori shape for the DTD and is therefore minimally parametric. We present the DTD in physical units for high-stretch (luminous, slow declining) and low-stretch (subluminous, fast declining) supernovae in three progenitor age bins. We find strong evidence of two progenitor channels: one that produces high-stretch SNe Ia {approx}<400 Myr after the birth of the progenitor system, and one that produces low-stretch SNe Ia with a delay {approx}>2.4 Gyr. We find that each channel contributes roughly half of the Type Ia rate in our reference sample. We also construct the average spectra of high-stretch and low-stretch SN Ia host galaxies, and find that the difference of these spectra looks like a main-sequence B star with nebular emission lines indicative of star formation. This supports our finding that there are two populations of SNe Ia, and indicates that the progenitors of high-stretch supernovae are at the least associated with very recent star formation in the last few tens of Myr. Our results provide valuable constraints for models of Type Ia progenitors and may help improve the calibration of SNe Ia as standard candles.

  6. LINKING TYPE Ia SUPERNOVA PROGENITORS AND THEIR RESULTING EXPLOSIONS

    SciTech Connect

    Foley, Ryan J.; Kirshner, Robert P.; Simon, Joshua D.; Burns, Christopher R.; Gal-Yam, Avishay; Hamuy, Mario; Morrell, Nidia I.; Phillips, Mark M.; Shields, Gregory A.; Sternberg, Assaf

    2012-06-20

    Comparing the ejecta velocities at maximum brightness and narrow circumstellar/interstellar Na D absorption line profiles of a sample of 23 Type Ia supernovae (SNe Ia), we determine that the properties of SN Ia progenitor systems and explosions are intimately connected. As demonstrated by Sternberg et al., half of all SNe Ia with detectable Na D absorption at the host-galaxy redshift in high-resolution spectroscopy have Na D line profiles with significant blueshifted absorption relative to the strongest absorption component, which indicates that a large fraction of SN Ia progenitor systems have strong outflows. In this study, we find that SNe Ia with blueshifted circumstellar/interstellar absorption systematically have higher ejecta velocities and redder colors at maximum brightness relative to the rest of the SN Ia population. This result is robust at a 98.9%-99.8% confidence level, providing the first link between the progenitor systems and properties of the explosion. This finding is further evidence that the outflow scenario is the correct interpretation of the blueshifted Na D absorption, adding additional confirmation that some SNe Ia are produced from a single-degenerate progenitor channel. An additional implication is that either SN Ia progenitor systems have highly asymmetric outflows that are also aligned with the SN explosion or SNe Ia come from a variety of progenitor systems where SNe Ia from systems with strong outflows tend to have more kinetic energy per unit mass than those from systems with weak or no outflows.

  7. Spectroscopy of SN 2016hnk (= ATLAS16dpc) with SOAR and SALT: A Peculiar Type-Ia Supernova Similar to PTF09dav

    NASA Astrophysics Data System (ADS)

    Pan, Y.-C.; Duarte, A. S.; Foley, R. J.; Jha, S. W.; Rest, A.; Scolnic, D.; Kniazev, A.

    2016-11-01

    We obtained spectroscopic observations of SN 2016hnk (= ATLAS16dpc) with the Goodman spectrograph on the Southern Astrophysical Research (SOAR) telescope on UT 2016 Oct 30.3 and with the Robert Stobie Spectrograph (RSS) on the Southern African Large Telescope (SALT) on UT 2016 Oct 31.0.

  8. SALT spectroscopic classification of PS16fbb (= Gaia16bvg = SN 2016ick) as a type-Ia supernova at maximum light

    NASA Astrophysics Data System (ADS)

    Jha, S. W.; Dettman, K.; Pan, Y.-C.; Foley, R. J.; Rest, A.; Scolnic, D.; Kotze, M.

    2016-11-01

    We obtained SALT (+RSS) spectroscopy of PS16fbb (= Gaia16bvg = SN 2016ick) on 2016 Nov 25.9 UT, covering the wavelength range 340-920 nm. Emission and absorption lines from the anonymous host galaxy give a redshift z = 0.0525.

  9. What sodium absorption lines tell us about Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Soker, Noam

    2014-10-01

    We propose that the sodium responsible for the variable Na ID absorption lines in some Type Ia supernovae (SN Ia) originate mainly from dust residing at ˜1 pc from the supernovae. In this Na-from-dust absorption (NaDA) model, the process by which the SN Ia peak luminosity releases sodium from dust at ˜1 pc from the SN is similar to the processes by which solar radiation releases sodium from cometary dust when comets approach a distance of ≲ 1 au from the Sun. The dust grains are not sublimated but rather stay intact, and release sodium by photon-stimulated desorption (or photosputtering). Some of the Na might start in the gas phase before the explosion. Weakening in absorption strength is caused by Na-ionizing radiation of the SN. We apply the NaDA model to SN 2006X and SN 2007le, and find it to comply better with the observed time variability of the Na ID absorption lines than the Na recombination model. The mass in the dusty shell of the NaDA model is much too high to be accounted for in the single-degenerate scenario for SN Ia. Therefore, the presence of variable Na ID lines in some SN Ia further weakens the already very problematic single-degenerate scenario for SN Ia.

  10. High-resolution UVES/VLT spectra of white dwarfs observed for the ESO SN Ia Progenitor Survey. III. DA white dwarfs

    NASA Astrophysics Data System (ADS)

    Koester, D.; Voss, B.; Napiwotzki, R.; Christlieb, N.; Homeier, D.; Lisker, T.; Reimers, D.; Heber, U.

    2009-10-01

    Context: The ESO Supernova Ia Progenitor Survey (SPY) took high-resolution spectra of more than 1000 white dwarfs and pre-white dwarfs. About two thirds of the stars observed are hydrogen-dominated DA white dwarfs. Here we present a catalog and detailed spectroscopic analysis of the DA stars in the SPY. Aims: Atmospheric parameters effective temperature and surface gravity are determined for normal DAs. Double-degenerate binaries, DAs with magnetic fields or dM companions, are classified and discussed. Methods: The spectra are compared with theoretical model atmospheres using a χ2 fitting technique. Results: Our final sample contains 615 DAs, which show only hydrogen features in their spectra, although some are double-degenerate binaries. 187 are new detections or classifications. We also find 10 magnetic DAs (4 new) and 46 DA+dM pairs (10 new). Based on data obtained at the Paranal Observatory of the European Southern Observatory for programmes 165.H-0588 and 167.D-0407.

  11. Type Ia Supernovae: Colors, Rates, and Progenitors

    NASA Astrophysics Data System (ADS)

    Heringer, Epson; Pritchet, Chris; Kezwer, Jason; Graham, Melissa L.; Sand, David; Bildfell, Chris

    2017-01-01

    The rate of type Ia supernovae (SNe Ia) in a galaxy depends not only on stellar mass, but also on star formation history (SFH). Here we show that two simple observational quantities (g ‑ r or u ‑ r host galaxy color, and r-band luminosity), coupled with an assumed delay time distribution (DTD) (the rate of SNe Ia as a function of time for an instantaneous burst of star formation), are sufficient to accurately determine a galaxy’s SN Ia rate, with very little sensitivity to the precise details of the SFH. Using this result, we compare observed and predicted color distributions of SN Ia hosts for the MENeaCS cluster supernova survey, and for the SDSS Stripe 82 supernova survey. The observations are consistent with a continuous DTD, without any cutoff. For old progenitor systems, the power-law slope for the DTD is found to be -{1.50}-0.15+0.19. This result favors the double degenerate scenario for SN Ia, though other interpretations are possible. We find that the late-time slopes of the DTD are different at the 1σ level for low and high stretch supernova, which suggest a single degenerate (SD) scenario for the latter. However, due to ambiguity in the current models’ DTD predictions, SD progenitors can neither be confirmed as causing high stretch supernovae nor ruled out from contributing to the overall sample.

  12. Ultraviolet diversity of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Foley, Ryan J.; Pan, Yen-Chen; Brown, P.; Filippenko, A. V.; Fox, O. D.; Hillebrandt, W.; Kirshner, R. P.; Marion, G. H.; Milne, P. A.; Parrent, J. T.; Pignata, G.; Stritzinger, M. D.

    2016-09-01

    Ultraviolet (UV) observations of Type Ia supernovae (SNe Ia) probe the outermost layers of the explosion, and UV spectra of SNe Ia are expected to be extremely sensitive to differences in progenitor composition and the details of the explosion. Here, we present the first study of a sample of high signal-to-noise ratio SN Ia spectra that extend blueward of 2900 Å. We focus on spectra taken within 5 d of maximum brightness. Our sample of 10 SNe Ia spans, the majority of the parameter space of SN Ia optical diversity. We find that SNe Ia have significantly more diversity in the UV than in the optical, with the spectral variance continuing to increase with decreasing wavelengths until at least 1800 Å (the limit of our data). The majority of the UV variance correlates with optical light-curve shape, while there are no obvious and unique correlations between spectral shape and either ejecta velocity or host-galaxy morphology. Using light-curve shape as the primary variable, we create a UV spectral model for SNe Ia at peak brightness. With the model, we can examine how individual SNe vary relative to expectations based on only their light-curve shape. Doing this, we confirm an excess of flux for SN 2011fe at short wavelengths, consistent with its progenitor having a subsolar metallicity. While most other SNe Ia do not show large deviations from the model, ASASSN-14lp has a deficit of flux at short wavelengths, suggesting that its progenitor was relatively metal rich.

  13. Asymmetric Explosion of Type Ia Supernovae and Their Observational Signatures

    SciTech Connect

    Maeda, Keiichi

    2010-06-01

    The nature of Type Ia supernova (SN Ia) explosions has not yet been clarified, despite their importance in astrophysics and cosmology. Recent theoretical investigations suggest that asymmetric distribution of initial thermonuclear sparks may be a key in the SN Ia explosion mechanism. In this paper, the first observational evidence of the asymmetry in SN Ia explosions is presented: We have found that late-time nebular spectra of various SNe Ia show a diversity in wavelengths of emission lines. This feature is inconsistent with any spherically symmetric explosion models, and indicates that the innermost region, a likely product of the deflagration wave propagation, shows an off-set with respect to the explosion center. The diversity in the emission-line wavelengths could naturally be explained by a combination of different viewing angles.

  14. THE ULTRAVIOLET BRIGHTEST TYPE Ia SUPERNOVA 2011de

    SciTech Connect

    Brown, Peter J.

    2014-11-20

    We present and discuss the ultraviolet (UV)/optical photometric light curves and absolute magnitudes of the Type Ia supernova (SN Ia) 2011de from the Swift Ultraviolet/Optical Telescope. We find it to be the UV brightest SN Ia yet observed—more than a factor of 10 brighter than normal SNe Ia in the mid-ultraviolet. We find that the UV/optical brightness and broad light curve evolution can be modeled with additional flux from the shock of the ejecta hitting a relatively large red giant companion separated by 6 × 10{sup 13} cm. However, the post-maximum behavior of other UV-bright SNe Ia can also be modeled in a similar manner, including objects with UV spectroscopy or pre-maximum photometry which is inconsistent with this model. This suggests that similar UV luminosities can be intrinsic or caused by other forms of shock interaction. The high velocities reported for SN 2011de make it distinct from the UV-bright ''super-Chandrasekhar'' SNe Ia and the NUV-blue group of normal SNe Ia. SN 2011de is an extreme example of the UV variations in SNe Ia.

  15. HOST GALAXY PROPERTIES AND HUBBLE RESIDUALS OF TYPE Ia SUPERNOVAE FROM THE NEARBY SUPERNOVA FACTORY

    SciTech Connect

    Childress, M.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K.; Hsiao, E. Y.; Kim, A. G.; Loken, S.; Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Guy, J.; Baltay, C.; Buton, C.; Kerschhaggl, M.; Kowalski, M.; Chotard, N.; Copin, Y.; Gangler, E. [Universite de Lyon, F-69622, Lyon; Universite de Lyon 1, Villeurbanne; CNRS and others

    2013-06-20

    We examine the relationship between Type Ia supernova (SN Ia) Hubble residuals and the properties of their host galaxies using a sample of 115 SNe Ia from the Nearby Supernova Factory. We use host galaxy stellar masses and specific star formation rates fitted from photometry for all hosts, as well as gas-phase metallicities for a subset of 69 star-forming (non-active galactic nucleus) hosts, to show that the SN Ia Hubble residuals correlate with each of these host properties. With these data we find new evidence for a correlation between SN Ia intrinsic color and host metallicity. When we combine our data with those of other published SN Ia surveys, we find the difference between mean SN Ia brightnesses in low- and high-mass hosts is 0.077 {+-} 0.014 mag. When viewed in narrow (0.2 dex) bins of host stellar mass, the data reveal apparent plateaus of Hubble residuals at high and low host masses with a rapid transition over a short mass range (9.8 {<=} log (M{sub *}/M{sub Sun }) {<=} 10.4). Although metallicity has been a favored interpretation for the origin of the Hubble residual trend with host mass, we illustrate how dust in star-forming galaxies and mean SN Ia progenitor age both evolve along the galaxy mass sequence, thereby presenting equally viable explanations for some or all of the observed SN Ia host bias.

  16. Search for Type Ia supernova NUV-optical subclasses

    NASA Astrophysics Data System (ADS)

    Cinabro, David; Scolnic, Daniel; Kessler, Richard; Li, Ashley; Miller, Jake

    2017-04-01

    In response to a recently reported observation of evidence for two classes of Type Ia supernovae (SNe Ia) distinguished by their brightness in the rest-frame near-ultraviolet (NUV), we search for the phenomenon in publicly available light-curve data. We use the SNANA supernova analysis package to simulate SN Ia light curves in the Sloan Digital Sky Survey (SDSS) Supernova Search and the Supernova Legacy Survey (SNLS) with a model of two distinct ultraviolet classes of SNe Ia and a conventional model with a single broad distribution of SN-Ia ultraviolet brightnesses. We compare simulated distributions of rest-frame colours with these two models to those observed in 158 SNe Ia in the SDSS and SNLS data. The SNLS sample of 99 SNe Ia is in clearly better agreement with a model with one class of SN Ia light curves and shows no evidence for distinct NUV sub-classes. The SDSS sample of 59 SNe Ia with poorer colour resolution does not distinguish between the two models.

  17. Photometric Analysis Of Sn2011dn

    NASA Astrophysics Data System (ADS)

    Salvo, Christopher; Leonard, D. C.; Sumandal, J.; Horst, C.

    2012-01-01

    Type Ia supernovae (SNe Ia) have been extensively studied and used as standard candles. There are different sub types of SNe Ia, that include over-luminous (SN 1991T-like), under-luminous (SN 1991bg-like), and peculiar (e.g., SN2000cx, SN 2002cx, SN 2005hk). These sub-types reveal themselves through spectral and photometric differences from "normal" SNe Ia. Here we report on the collection and reduction of photometric data of supernova SN 2011dn during the course of a 41 day period, which started a few days before maximum. A pre-maximum spectrum provided a tentative SN 1991T-like classification (Koff et al. 2011) for this event, from which a broad, slowly declining light-curve with low Delta M_15(B) was anticipated. However, preliminary reduction (i.e., without the benefit of galaxy subtraction) and analysis of our light curves suggest that SN 2011dn did not confirm this prediction. In this poster we will discuss the peculiar nature of SN2011dn and compare it to other SNe Ia that have exhibited similar characteristics. We acknowledge support from the National Science Foundation (grants AST-1009571 and AST-0850564) under which this work was carried out.

  18. Type Ia Supernova Carbon Footprints

    NASA Astrophysics Data System (ADS)

    Thomas, R. C.; Aldering, G.; Antilogus, P.; Aragon, C.; Bailey, S.; Baltay, C.; Bongard, S.; Buton, C.; Canto, A.; Childress, M.; Chotard, N.; Copin, Y.; Fakhouri, H. K.; Gangler, E.; Hsiao, E. Y.; Kerschhaggl, M.; Kowalski, M.; Loken, S.; Nugent, P.; Paech, K.; Pain, R.; Pecontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Rigault, M.; Rubin, D.; Runge, K.; Scalzo, R.; Smadja, G.; Tao, C.; Weaver, B. A.; Wu, C.; Brown, P. J.; Milne, P. A.; Nearby Supernova Factory

    2011-12-01

    We present convincing evidence of unburned carbon at photospheric velocities in new observations of five Type Ia supernovae (SNe Ia) obtained by the Nearby Supernova Factory. These SNe are identified by examining 346 spectra from 124 SNe obtained before +2.5 days relative to maximum. Detections are based on the presence of relatively strong C II λ6580 absorption "notches" in multiple spectra of each SN, aided by automated fitting with the SYNAPPS code. Four of the five SNe in question are otherwise spectroscopically unremarkable, with ions and ejection velocities typical of SNe Ia, but spectra of the fifth exhibit high-velocity (v > 20, 000 km s-1) Si II and Ca II features. On the other hand, the light curve properties are preferentially grouped, strongly suggesting a connection between carbon-positivity and broadband light curve/color behavior: three of the five have relatively narrow light curves but also blue colors and a fourth may be a dust-reddened member of this family. Accounting for signal to noise and phase, we estimate that 22+10 - 6% of SNe Ia exhibit spectroscopic C II signatures as late as -5 days with respect to maximum. We place these new objects in the context of previously recognized carbon-positive SNe Ia and consider reasonable scenarios seeking to explain a physical connection between light curve properties and the presence of photospheric carbon. We also examine the detailed evolution of the detected carbon signatures and the surrounding wavelength regions to shed light on the distribution of carbon in the ejecta. Our ability to reconstruct the C II λ6580 feature in detail under the assumption of purely spherical symmetry casts doubt on a "carbon blobs" hypothesis, but does not rule out all asymmetric models. A low volume filling factor for carbon, combined with line-of-sight effects, seems unlikely to explain the scarcity of detected carbon in SNe Ia by itself.

  19. Correction to ATel 10128: Spectral Comparison Object SN 1999em -> SN 1999ee

    NASA Astrophysics Data System (ADS)

    Wang, Xiaofeng

    2017-02-01

    We report a correction to the spectroscopic classification announced in ATel #10128. The spectral comparison shows that SN 2017bke is similar to type Ia supernova SN 1999ee (which was incorrectly typed as SN 1999em) at t = -7 days from the maximum light. We apologize for any confusion caused by this typo error.

  20. Quantitative comparison between Type Ia supernova spectra at low and high redshifts: A case study

    SciTech Connect

    Supernova Cosmology Project; Nugent, Peter E; Garavini, G.; Folatelli, G.; Nobili, S.; Aldering, G.; Amanullah, R.; Antilogus, P.; Astier, P.; Blanc, G.; Bronder, J.; Burns, M.S.; Conley, A.; Deustua, S. E.; Doi, M.; Fabbro, S.; Fadeyev, V.; Gibbons, R.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hook, I.; Howell, D. A.; Kashikawa, N.; Kim, A. G.; Kowalski, M.; Kuznetsova, N.; Lee, B. C.; Lidman, C.; Mendez, J.; Morokuma, T.; Motohara, K.; Nugent, P. E.; Pain, R.; Perlmutter, S.; Quimby, R.; Raux, J.; Regnault, N.; Ruiz-Lapuente, P.; Sainton, G.; Schahmaneche, K.; Smith, E.; Spadafora, A. L.; Stanishev, V.; Thomas, R. C.; Walton, N. A.; Wang, L.; Wood-Vasey, W. M.; Yasuda, N.

    2008-03-24

    We develop a method to measure the strength of the absorption features in type Ia supernova (SN Ia) spectra and use it to make a quantitative comparisons between the spectra of type Ia supernovae at low and high redshifts. In this case study, we apply the method to 12 high-redshift (0.212 = z = 0.912) SNe Ia observed by the Supernova Cosmology Project. Through measurements of the strengths of these features and of the blueshift of theabsorption minimum in Ca ii H&K, we show that the spectra of the high-redshift SNe Ia are quantitatively similar to spectra of nearby SNe Ia (z< 0.15). One supernova in our high redshift sample, SN 2002fd at z = 0.279, is found to have spectral characteristics that are associated with peculiar SN 1991T/SN 1999aa-like supernovae.

  1. Velocity distributions of surviving companion stars of type Ia supernovae in the Milky Way

    NASA Astrophysics Data System (ADS)

    Jia, S.; Wang, B.; Han, Z.

    2014-01-01

    The companion stars of type Ia supernovae (SNe Ia) would survive the explosions and show peculiar properties in the single-degenerate (SD) scenario. Whit different SD SN Ia channels, we obtained the velocity distributions of the surviving companion stars in the Milky Way. All properties presented may be verified by future observations.

  2. A TYPE Ia SUPERNOVA AT REDSHIFT 1.55 IN HUBBLE SPACE TELESCOPE INFRARED OBSERVATIONS FROM CANDELS

    SciTech Connect

    Rodney, Steven A.; Riess, Adam G.; Jones, David O.; Dahlen, Tomas; Ferguson, Henry C.; Casertano, Stefano; Grogin, Norman A.; Strolger, Louis-Gregory; Hjorth, Jens; Frederiksen, Teddy F.; Weiner, Benjamin J.; Mobasher, Bahram; Challis, Peter; Kirshner, Robert P.; Filippenko, Alexei V.; Garnavich, Peter; Hayden, Brian; Graur, Or; Jha, Saurabh W.; and others

    2012-02-10

    We report the discovery of a Type Ia supernova (SN Ia) at redshift z = 1.55 with the infrared detector of the Wide Field Camera 3 (WFC3-IR) on the Hubble Space Telescope (HST). This object was discovered in CANDELS imaging data of the Hubble Ultra Deep Field and followed as part of the CANDELS+CLASH Supernova project, comprising the SN search components from those two HST multi-cycle treasury programs. This is the highest redshift SN Ia with direct spectroscopic evidence for classification. It is also the first SN Ia at z > 1 found and followed in the infrared, providing a full light curve in rest-frame optical bands. The classification and redshift are securely defined from a combination of multi-band and multi-epoch photometry of the SN, ground-based spectroscopy of the host galaxy, and WFC3-IR grism spectroscopy of both the SN and host. This object is the first of a projected sample at z > 1.5 that will be discovered by the CANDELS and CLASH programs. The full CANDELS+CLASH SN Ia sample will enable unique tests for evolutionary effects that could arise due to differences in SN Ia progenitor systems as a function of redshift. This high-z sample will also allow measurement of the SN Ia rate out to z Almost-Equal-To 2, providing a complementary constraint on SN Ia progenitor models.

  3. New Limits on the Nature of Type Ia Supernova Progenitors

    NASA Astrophysics Data System (ADS)

    Woods, Tyrone; Gilfanov, Marat

    2012-09-01

    To date, the question of which progenitor channel can reproduce the observed rate of type Ia supernovae (Sn Ia) remains unresolved. The single degenerate scenario posits that a white dwarf accretes stably from a companion star until reaching the Chandrasekhar mass. This requires that nuclear burning process at least 0.3 solar masses of hydrogen, the resulting energy release from which easily dominates the total luminosity of the WD (while nuclear burning is steady). In elliptical galaxies, measurements of the total observed soft X-ray emission have already placed strong upper limits on how much of this luminosity may be radiated in X-rays, limiting the possible contribution of "supersoft sources" to the Sn Ia rate. However, a population of single degenerate progenitors large enough to reproduce the Sn Ia rate would also easily provide among the dominant sources of ionizing photons, dramatically hardening the local ionizing UV background. This opens a new avenue for constraining the progenitors of Sn Ia, through consideration of the nebular emission now found in many early-type galaxies by large spectroscopic surveys such as SAURON. Modeling the predicted line ratios using the photoionization code MAPPINGS III, and demanding that they be consistent with those observed, allows us to place new constraints on the total contribution of the single degenerate channel to the Sn Ia rate in elliptical galaxies.

  4. Cervical Cancer Stage IA

    MedlinePlus

    ... hyphen, e.g. -historical Searches are case-insensitive Cervical Cancer Stage IA Add to My Pictures View / ... 1500x1200 View Download Large: 3000x2400 View Download Title: Cervical Cancer Stage IA Description: Stage IA1 and IA2 ...

  5. Calibrating Gamma Ray Bursts from SN Ia

    NASA Astrophysics Data System (ADS)

    Montiel, Ariadna; Bretón, Nora

    2011-10-01

    To consider GRBs as standard candles, the circularity problem should be surmounted. To do this GRBs are calibrated at low redshifts using SNIa data and then extrapolating the calibration to higher redshifts. In this work we apply GRBs calibration to estimate the Hubble parameter, H(z), from the luminosity distance extracted from the calibration and, knowing H(z), we study the parameter w(z) of the equation of state of dark energy.

  6. Type Ia supernovae yielding distances with 3-4% precision

    SciTech Connect

    Kelly, Patrick L.; Filippenko, Alexei V.; Burke, David L.; Hicken, Malcolm; Ganeshalingam, Mohan; Zheng, Weikang

    2015-01-26

    The luminosities of Type Ia supernovae (SN), the thermonuclear explosions of white dwarf stars, vary systematically with their intrinsic color and light-curve decline rate. These relationships have been used to calibrate their luminosities to within ~0.14–0.20 mag from broadband optical light curves, yielding individual distances accurate to ~7–10%. Here we identify a subset of SN Ia that erupt in environments having high ultraviolet surface brightness and star-formation surface density. When we apply a steep model extinction law, these SN can be calibrated to within ~0.065–0.075 mag, corresponding to ~3–4% in distance — the best yet with SN Ia by a substantial margin. The small scatter suggests that variations in only one or two progenitor properties account for their light-curve-width/color/luminosity relation.

  7. On the relative frequencies of spectroscopically normal and peculiar type Ia supernovae

    NASA Technical Reports Server (NTRS)

    Branch, David; Fisher, Adam; Nugent, Peter

    1993-01-01

    After defining what we mean by spectroscopically 'normal' and 'peculiar' Type Ia supernove, we report the results of an attempt to subclassify 84 SNe Ia either as normal or as like one of the recent, peculiar SNe Ia: 1991T, 1991bg, or 1986G. Only SNe 1957A and 1960H are found to have been certifiably abnormal, with SN 1957A; appearing to have been like SN 1991bg, and SN 1960H having been like SN 1991bg or SN 1988G; SNe 1971I and 1980I are under suspicion of having been like SN 1986G, and SN 1988G of having been like SN 1991T. Of the SNe Ia we have been able to classify either as normal or as peculiar, 89% (or 83%, counting those under suspicion as peculiar) are normal. Our main conclusion is that the observational sample of SNe Ia is strongly peaked at 'spectroscopically normal.' We further conclude that when arranged in the photometric sequence of Phillips (1993) SNe Ia also form a spectroscopic sequence, and that peculiar SNe Ia are over-represented in the Phillips sample.

  8. Luminosity distributions of Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Ashall, C.; Mazzali, P.; Sasdelli, M.; Prentice, S. J.

    2016-08-01

    We have assembled a data set of 165 low redshift, z < 0.06, publicly available Type Ia supernovae (SNe Ia). We produce maximum light magnitude (MB and MV) distributions of SNe Ia to explore the diversity of parameter space that they can fill. Before correction for host galaxy extinction we find that the mean MB and MV of SNe Ia are -18.58 ± 0.07 and -18.72 ± 0.05 mag, respectively. Host galaxy extinction is corrected using a new method based on the SN spectrum. After correction, the mean values of MB and MV of SNe Ia are -19.10 ± 0.06 and -19.10 ± 0.05 mag, respectively. After correction for host galaxy extinction, `normal' SNe Ia (Δm15(B) < 1.6 mag) fill a larger parameter space in the width-luminosity relation than previously suggested, and there is evidence for luminous SNe Ia with large Δm15(B). We find a bimodal distribution in Δm15(B), with a pronounced lack of transitional events at Δm15(B) = 1.6 mag. We confirm that faster, low-luminosity SNe tend to come from passive galaxies. Dividing the sample by host galaxy type, SNe Ia from star-forming (S-F) galaxies have a mean MB = -19.20 ± 0.05 mag, while SNe Ia from passive galaxies have a mean MB = -18.57 ± 0.24 mag. Even excluding fast declining SNe, `normal' (MB < -18 mag) SNe Ia from S-F and passive galaxies are distinct. In the V band, there is a difference of 0.4 ± 0.13 mag between the median (MV) values of the `normal' SN Ia population from passive and S-F galaxies. This is consistent with (˜15 ± 10) per cent of `normal' SNe Ia from S-F galaxies coming from an old stellar population.

  9. Turbulence in Type Ia Supernovae Simulations

    NASA Astrophysics Data System (ADS)

    Fisher, Robert

    2012-03-01

    Type Ia supernovae are among the most energetic explosions in the known universe, releasing 10^51 ergs of kinetic energy in their ejecta, with 0.7 solar masses of radioactive Ni-56 synthesized during the explosion. The discovery of the Phillips relation enabled the use of Type Ia supernova (SN Ia) as standardizable cosmological candles, and has ushered in a new era of astronomy leading to the discovery of the acceleration of the universe, leading to the 2011 Nobel Prize in physics. The nature of the Type Ia progenitors, as well as their precise explosion mechanism, remains a subject of active investigation, both observationally as well as theoretically. It is known that the progenitors of Type Ia supernovae are near-Chandrasekhar mass white dwarfs in binary systems, though competing models suggest the companion is either a red giant or main sequence star (the so-called ``single-degenerate channel'') or another white dwarf (the ``double-degenerate channel''). In this talk, I will present recent results of three -dimensional models of the single-degenerate channel of Type Ia supernovae. I will also discuss prospects for modeling the double-degenerate channel of Type Ia supernovae, which have recently enjoyed increased favor from observers and theorists.

  10. Rates and progenitors of type Ia supernovae

    SciTech Connect

    Wood-Vasey, William Michael

    2004-01-01

    The remarkable uniformity of Type Ia supernovae has allowed astronomers to use them as distance indicators to measure the properties and expansion history of the Universe. However, Type Ia supernovae exhibit intrinsic variation in both their spectra and observed brightness. The brightness variations have been approximately corrected by various methods, but there remain intrinsic variations that limit the statistical power of current and future observations of distant supernovae for cosmological purposes. There may be systematic effects in this residual variation that evolve with redshift and thus limit the cosmological power of SN Ia luminosity-distance experiments. To reduce these systematic uncertainties, we need a deeper understanding of the observed variations in Type Ia supernovae. Toward this end, the Nearby Supernova Factory has been designed to discover hundreds of Type Ia supernovae in a systematic and automated fashion and study them in detail. This project will observe these supernovae spectrophotometrically to provide the homogeneous high-quality data set necessary to improve the understanding and calibration of these vital cosmological yardsticks. From 1998 to 2003, in collaboration with the Near-Earth Asteroid Tracking group at the Jet Propulsion Laboratory, a systematic and automated searching program was conceived and executed using the computing facilities at Lawrence Berkeley National Laboratory and the National Energy Research Supercomputing Center. An automated search had never been attempted on this scale. A number of planned future large supernovae projects are predicated on the ability to find supernovae quickly, reliably, and efficiently in large datasets. A prototype run of the SNfactory search pipeline conducted from 2002 to 2003 discovered 83 SNe at a final rate of 12 SNe/month. A large, homogeneous search of this scale offers an excellent opportunity to measure the rate of Type Ia supernovae. This thesis presents a new method for

  11. Berkeley Supernova Ia Program - I. Observations, data reduction and spectroscopic sample of 582 low-redshift Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Silverman, Jeffrey M.; Foley, Ryan J.; Filippenko, Alexei V.; Ganeshalingam, Mohan; Barth, Aaron J.; Chornock, Ryan; Griffith, Christopher V.; Kong, Jason J.; Lee, Nicholas; Leonard, Douglas C.; Matheson, Thomas; Miller, Emily G.; Steele, Thea N.; Barris, Brian J.; Bloom, Joshua S.; Cobb, Bethany E.; Coil, Alison L.; Desroches, Louis-Benoit; Gates, Elinor L.; Ho, Luis C.; Jha, Saurabh W.; Kandrashoff, Michael T.; Li, Weidong; Mandel, Kaisey S.; Modjaz, Maryam; Moore, Matthew R.; Mostardi, Robin E.; Papenkova, Marina S.; Park, Sung; Perley, Daniel A.; Poznanski, Dovi; Reuter, Cassie A.; Scala, James; Serduke, Franklin J. D.; Shields, Joseph C.; Swift, Brandon J.; Tonry, John L.; Van Dyk, Schuyler D.; Wang, Xiaofeng; Wong, Diane S.

    2012-09-01

    In this first paper in a series, we present 1298 low-redshift (z ≲ 0.2) optical spectra of 582 Type Ia supernovae (SNe Ia) observed from 1989 to 2008 as part of the Berkeley Supernova Ia Program (BSNIP). 584 spectra of 199 SNe Ia have well-calibrated light curves with measured distance moduli, and many of the spectra have been corrected for host-galaxy contamination. Most of the data were obtained using the Kast double spectrograph mounted on the Shane 3 m telescope at Lick Observatory and have a typical wavelength range of 3300-10 400 Å, roughly twice as wide as spectra from most previously published data sets. We present our observing and reduction procedures, and we describe the resulting SN Database, which will be an online, public, searchable data base containing all of our fully reduced spectra and companion photometry. In addition, we discuss our spectral classification scheme (using the SuperNova IDentification code, SNID; Blondin & Tonry), utilizing our newly constructed set of SNID spectral templates. These templates allow us to accurately classify our entire data set, and by doing so we are able to reclassify a handful of objects as bona fide SNe Ia and a few other objects as members of some of the peculiar SN Ia subtypes. In fact, our data set includes spectra of nearly 90 spectroscopically peculiar SNe Ia. We also present spectroscopic host-galaxy redshifts of some SNe Ia where these values were previously unknown. The sheer size of the BSNIP data set and the consistency of our observation and reduction methods make this sample unique among all other published SN Ia data sets and complementary in many ways to the large, low-redshift SN Ia spectra presented by Matheson et al. and Blondin et al. In other BSNIP papers in this series, we use these data to examine the relationships between spectroscopic characteristics and various observables such as photometric and host-galaxy properties.

  12. Type-Ia Supernova Rates to Redshift 2.4 from Clash: The Cluster Lensing and Supernova Survey with Hubble

    NASA Technical Reports Server (NTRS)

    Graur, O.; Rodney, S. A.; Maoz, D.; Riess, A. G.; Jha, S. W.; Postman, M.; Dahlen, T.; Holoien, T. W.-S.; McCully, C.; Patel, B.; Strolger, L.-G.; Benitez, N.; Coe, D.; Jouvel, S.; Medezinski, E.; Molino, A.; Nonino, M.; Bradley, L.; Koehemoer, A.; Balestra, I.; Cenko, S. B.; Clubb, K. I.; Dickinson, M. E.; Filippenko, A. V.; Frederiksen, T. F.; Garnavich, P.; Hjorth, J.; Jones, D. O.; Leibundgut, B.; Matheson, T.; Mobasher, B.; Rosati, P.; Silverman, J. M.; U., V.; Jedruszczuk, K.

    2014-01-01

    We present the supernova (SN) sample and Type-Ia SN (SN Ia) rates from the Cluster Lensing And Supernova survey with Hubble (CLASH). Using the Advanced Camera for Surveys and the Wide Field Camera 3 on the Hubble Space Telescope (HST), we have imaged 25 galaxy-cluster fields and parallel fields of non-cluster galaxies. We report a sample of 27 SNe discovered in the parallel fields. Of these SNe, approximately 13 are classified as SN Ia candidates, including four SN Ia candidates at redshifts z greater than 1.2.We measure volumetric SN Ia rates to redshift 1.8 and add the first upper limit on the SN Ia rate in the range z greater than 1.8 and less than 2.4. The results are consistent with the rates measured by the HST/ GOODS and Subaru Deep Field SN surveys.We model these results together with previous measurements at z less than 1 from the literature. The best-fitting SN Ia delay-time distribution (DTD; the distribution of times that elapse between a short burst of star formation and subsequent SN Ia explosions) is a power law with an index of 1.00 (+0.06(0.09))/(-0.06(0.10)) (statistical) (+0.12/-0.08) (systematic), where the statistical uncertainty is a result of the 68% and 95% (in parentheses) statistical uncertainties reported for the various SN Ia rates (from this work and from the literature), and the systematic uncertainty reflects the range of possible cosmic star-formation histories. We also test DTD models produced by an assortment of published binary population synthesis (BPS) simulations. The shapes of all BPS double-degenerate DTDs are consistent with the volumetric SN Ia measurements, when the DTD models are scaled up by factors of 3-9. In contrast, all BPS single-degenerate DTDs are ruled out by the measurements at greater than 99% significance level.

  13. Type-Ia supernova rates to redshift 2.4 from clash: The cluster lensing and supernova survey with Hubble

    SciTech Connect

    Graur, O.; Rodney, S. A.; Riess, A. G.; Medezinski, E.; Maoz, D.; Jha, S. W.; Holoien, T. W.-S.; McCully, C.; Patel, B.; Postman, M.; Dahlen, T.; Strolger, L.-G.; Coe, D.; Bradley, L.; Koekemoer, A.; Benítez, N.; Molino, A.; Jouvel, S.; Nonino, M.; Balestra, I.; and others

    2014-03-01

    We present the supernova (SN) sample and Type-Ia SN (SN Ia) rates from the Cluster Lensing And Supernova survey with Hubble (CLASH). Using the Advanced Camera for Surveys and the Wide Field Camera 3 on the Hubble Space Telescope (HST), we have imaged 25 galaxy-cluster fields and parallel fields of non-cluster galaxies. We report a sample of 27 SNe discovered in the parallel fields. Of these SNe, ∼13 are classified as SN Ia candidates, including four SN Ia candidates at redshifts z > 1.2. We measure volumetric SN Ia rates to redshift 1.8 and add the first upper limit on the SN Ia rate in the range 1.8 < z < 2.4. The results are consistent with the rates measured by the HST/GOODS and Subaru Deep Field SN surveys. We model these results together with previous measurements at z < 1 from the literature. The best-fitting SN Ia delay-time distribution (DTD; the distribution of times that elapse between a short burst of star formation and subsequent SN Ia explosions) is a power law with an index of −1.00{sub −0.06(0.10)}{sup +0.06(0.09)} (statistical){sub −0.08}{sup +0.12} (systematic), where the statistical uncertainty is a result of the 68% and 95% (in parentheses) statistical uncertainties reported for the various SN Ia rates (from this work and from the literature), and the systematic uncertainty reflects the range of possible cosmic star-formation histories. We also test DTD models produced by an assortment of published binary population synthesis (BPS) simulations. The shapes of all BPS double-degenerate DTDs are consistent with the volumetric SN Ia measurements, when the DTD models are scaled up by factors of 3-9. In contrast, all BPS single-degenerate DTDs are ruled out by the measurements at >99% significance level.

  14. Type Ia supernova rate studies from the SDSS-II Supernova Study

    SciTech Connect

    Dilday, Benjamin

    2008-08-01

    The author presents new measurements of the type Ia SN rate from the SDSS-II Supernova Survey. The SDSS-II Supernova Survey was carried out during the Fall months (Sept.-Nov.) of 2005-2007 and discovered ~ 500 spectroscopically confirmed SNe Ia with densely sampled (once every ~ 4 days), multi-color light curves. Additionally, the SDSS-II Supernova Survey has discovered several hundred SNe Ia candidates with well-measured light curves, but without spectroscopic confirmation of type. This total, achieved in 9 months of observing, represents ~ 15-20% of the total SNe Ia discovered worldwide since 1885. The author describes some technical details of the SN Survey observations and SN search algorithms that contributed to the extremely high-yield of discovered SNe and that are important as context for the SDSS-II Supernova Survey SN Ia rate measurements.

  15. Evidence for Ni-56 yields Co-56 yields Fe-56 decay in type Ia supernovae

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc J.; Kirshner, Robert P.; Pinto, Philip A.; Leibundgut, Bruno

    1994-01-01

    In the prevailing picture of Type Ia supernovae (SN Ia), their explosive burning produces Ni-56, and the radioactive decay chain Ni-56 yields Co-56 yields Fe-56 powers the subsequent emission. We test a central feature of this theory by measuring the relative strengths of a (Co III) emission feature near 5900 A and a (Fe III) emission feature near 4700 A. We measure 38 spectra from 13 SN Ia ranging from 48 to 310 days after maximum light. When we compare the observations with a simple multilevel calculation, we find that the observed Fe/Co flux ratio evolves as expected when the Fe-56/Co-56 abundance ratio follows from Ni-56 yields Co-56 yields Fe-56 decay. From this agreement, we conclude that the cobalt and iron atoms we observe through SN Ia emission lines are produced by the radioactive decay of Ni-56, just as predicted by a wide range of models for SN Ia explosions.

  16. Neutronization During Carbon Simmering In Type Ia Supernova Progenitors

    NASA Astrophysics Data System (ADS)

    Martínez-Rodríguez, Héctor; Piro, Anthony L.; Schwab, Josiah; Badenes, Carles

    2016-07-01

    When a Type Ia supernova (SN Ia) progenitor first ignites carbon in its core, it undergoes ˜103-104 years of convective burning prior to the onset of thermonuclear runaway. This carbon simmering phase is important for setting the thermal profile and composition of the white dwarf. Using the MESA stellar evolution code, we follow this convective burning and examine the production of neutron-rich isotopes. The neutron content of the SN fuel has important consequences for the ensuing nucleosynthesis, and in particular, for the production of secondary Fe-peak nuclei like Mn and stable Ni. These elements have been observed in the X-ray spectra of SN remnants like Tycho, Kepler, and 3C 397, and their yields can provide valuable insights into the physics of SNe Ia and the properties of their progenitors. We find that weak reactions during simmering can at most generate a neutron excess of ≈ 3 × 10-4. This is ≈ 70% lower than that found in previous studies that do not take the full density and temperature profile of the simmering region into account. Our results imply that the progenitor metallicity is the main contributor to the neutron excess in SN Ia fuel for Z ≳ 1/3 Z ⊙. Alternatively, at lower metallicities, this neutron excess provides a floor that should be present in any centrally-ignited SN Ia scenario.

  17. Gravitational wave emission from the single-degenerate channel of Type Ia supernovae.

    PubMed

    Falta, David; Fisher, Robert; Khanna, Gaurav

    2011-05-20

    The thermonuclear explosion of a C/O white dwarf as a Type Ia supernova (SN Ia) generates a kinetic energy comparable to that released by a massive star during a SN II event. Current observations and theoretical models have established that SNe Ia are asymmetric, and therefore--like SNe II--potential sources of gravitational wave (GW) radiation. We perform the first detailed calculations of the GW emission for a SN Ia of any type within the single-degenerate channel. The gravitationally confined detonation (GCD) mechanism predicts a strongly polarized GW burst in the frequency band around 1 Hz. Third-generation spaceborne GW observatories currently in planning may be able to detect this predicted signal from SNe Ia at distances up to 1 Mpc. If observable, GWs may offer a direct probe into the first few seconds of the SNe Ia detonation.

  18. THE IMPACT OF METALLICITY ON THE RATE OF TYPE Ia SUPERNOVAE

    SciTech Connect

    Kistler, Matthew D.; Stanek, K. Z.; Kochanek, Christopher S.; Thompson, Todd A.; Prieto, Jose L.

    2013-06-20

    The metallicity of a star strongly affects both its evolution and the properties of the stellar remnant that results from its demise. It is generally accepted that stars with initial masses below {approx}8 M{sub Sun} leave behind white dwarfs and that some sub-population of these lead to Type Ia supernovae (SNe Ia). However, it is often tacitly assumed that metallicity has no effect on the rate of SNe Ia. We propose that a consequence of the effects of metallicity is to significantly increase the SN Ia rate in lower-metallicity galaxies, in contrast to previous expectations. This is because lower-metallicity stars leave behind higher-mass white dwarfs, which should be easier to bring to explosion. We first model SN Ia rates in relation to galaxy masses and ages alone, finding that the elevation in the rate of SNe Ia in lower-mass galaxies measured by Lick Observatory SN Search is readily explained. However, we then see that models incorporating this effect of metallicity agree just as well. Using the same parameters to estimate the cosmic SN Ia rate, we again find good agreement with data up to z Almost-Equal-To 2. We suggest that this degeneracy warrants more detailed examination of host galaxy metallicities. We discuss additional implications, including for hosts of high-z SNe Ia, the SN Ia delay time distribution, super-Chandrasekhar SNe, and cosmology.

  19. K-corrections and spectral templates of Type Ia supernovae

    SciTech Connect

    Nugent, Peter E; Hsiao, E.Y.; Conley, A.; Howell, D.A.; Sullivan, M.; Pritchet, C.J.; Carlberg, R.G.; Nugent, P.E.; Phillips, M.M.

    2007-03-20

    With the advent of large dedicated Type Ia supernova (SN Ia) surveys, K-corrections of SNe Ia and their uncertainties have become especially important in the determination of cosmological parameters. While K-corrections are largely driven by SN Ia broadband colors, it is shown here that the diversity in spectral features of SNe Ia can also be important. For an individual observation, the statistical errors from the inhomogeneity in spectral features range from 0.01 (where the observed and rest-frame filters are aligned) to 0.04 (where the observed and rest-frame filters are misaligned). To minimize the systematic errors caused by an assumed SN Ia spectral energy distribution (SED), we outline a prescription for deriving a mean spectral template time series that incorporates a large and heterogeneous sample of observed spectra. We then remove the effects of broadband colors and measure the remaining uncertainties in the K-corrections associated with the diversity in spectral features. Finally, we present a template spectroscopic sequence near maximum light for further improvement on the K-correction estimate. A library of ~;;600 observed spectra of ~;;100 SNe Ia from heterogeneous sources is used for the analysis.

  20. How to Find Gravitationally Lensed Type Ia supernovae

    SciTech Connect

    Goldstein, Daniel A.; Nugent, Peter E.

    2016-12-29

    Type Ia supernovae (SNe Ia) that are multiply imaged by gravitational lensing can extend the SN Ia Hubble diagram to very high redshifts (z ≳ 2), probe potential SN Ia evolution, and deliver high-precision constraints on H0, w, and Ωm via time delays. However, only one, iPTF16geu, has been found to date, and many more are needed to achieve these goals. To increase the multiply imaged SN Ia discovery rate, we present a simple algorithm for identifying gravitationally lensed SN Ia candidates in cadenced, wide-field optical imaging surveys. The technique is to look for supernovae that appear to be hosted by elliptical galaxies, but that have absolute magnitudes implied by the apparent hosts' photometric redshifts that are far brighter than the absolute magnitudes of normal SNe Ia (the brightest type of supernovae found in elliptical galaxies). Importantly, this purely photometric method does not require the ability to resolve the lensed images for discovery. Active galactic nuclei, the primary sources of contamination that affect the method, can be controlled using catalog cross-matches and color cuts. Highly magnified core-collapse SNe will also be discovered as a byproduct of the method. Using a Monte Carlo simulation, we forecast that the Large Synoptic Survey Telescope can discover up to 500 multiply imaged SNe Ia using this technique in a 10 year z-band search, more than an order of magnitude improvement over previous estimates. Finally, we also predict that the Zwicky Transient Facility should find up to 10 multiply imaged SNe Ia using this technique in a 3 year R-band search - despite the fact that this survey will not resolve a single system.

  1. How to Find Gravitationally Lensed Type Ia supernovae

    DOE PAGES

    Goldstein, Daniel A.; Nugent, Peter E.

    2016-12-29

    Type Ia supernovae (SNe Ia) that are multiply imaged by gravitational lensing can extend the SN Ia Hubble diagram to very high redshifts (z ≳ 2), probe potential SN Ia evolution, and deliver high-precision constraints on H0, w, and Ωm via time delays. However, only one, iPTF16geu, has been found to date, and many more are needed to achieve these goals. To increase the multiply imaged SN Ia discovery rate, we present a simple algorithm for identifying gravitationally lensed SN Ia candidates in cadenced, wide-field optical imaging surveys. The technique is to look for supernovae that appear to be hostedmore » by elliptical galaxies, but that have absolute magnitudes implied by the apparent hosts' photometric redshifts that are far brighter than the absolute magnitudes of normal SNe Ia (the brightest type of supernovae found in elliptical galaxies). Importantly, this purely photometric method does not require the ability to resolve the lensed images for discovery. Active galactic nuclei, the primary sources of contamination that affect the method, can be controlled using catalog cross-matches and color cuts. Highly magnified core-collapse SNe will also be discovered as a byproduct of the method. Using a Monte Carlo simulation, we forecast that the Large Synoptic Survey Telescope can discover up to 500 multiply imaged SNe Ia using this technique in a 10 year z-band search, more than an order of magnitude improvement over previous estimates. Finally, we also predict that the Zwicky Transient Facility should find up to 10 multiply imaged SNe Ia using this technique in a 3 year R-band search - despite the fact that this survey will not resolve a single system.« less

  2. How to Find Gravitationally Lensed Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Goldstein, Daniel A.; Nugent, Peter E.

    2017-01-01

    Type Ia supernovae (SNe Ia) that are multiply imaged by gravitational lensing can extend the SN Ia Hubble diagram to very high redshifts (z ≳ 2), probe potential SN Ia evolution, and deliver high-precision constraints on H0, w, and Ωm via time delays. However, only one, iPTF16geu, has been found to date, and many more are needed to achieve these goals. To increase the multiply imaged SN Ia discovery rate, we present a simple algorithm for identifying gravitationally lensed SN Ia candidates in cadenced, wide-field optical imaging surveys. The technique is to look for supernovae that appear to be hosted by elliptical galaxies, but that have absolute magnitudes implied by the apparent hosts’ photometric redshifts that are far brighter than the absolute magnitudes of normal SNe Ia (the brightest type of supernovae found in elliptical galaxies). Importantly, this purely photometric method does not require the ability to resolve the lensed images for discovery. Active galactic nuclei, the primary sources of contamination that affect the method, can be controlled using catalog cross-matches and color cuts. Highly magnified core-collapse SNe will also be discovered as a byproduct of the method. Using a Monte Carlo simulation, we forecast that the Large Synoptic Survey Telescope can discover up to 500 multiply imaged SNe Ia using this technique in a 10 year z-band search, more than an order of magnitude improvement over previous estimates. We also predict that the Zwicky Transient Facility should find up to 10 multiply imaged SNe Ia using this technique in a 3 year R-band search—despite the fact that this survey will not resolve a single system.

  3. REVEALING TYPE Ia SUPERNOVA PHYSICS WITH COSMIC RATES AND NUCLEAR GAMMA RAYS

    SciTech Connect

    Horiuchi, Shunsaku; Beacom, John F. E-mail: beacom@mps.ohio-state.ed

    2010-11-01

    Type Ia supernovae (SNe Ia) remain mysterious despite their central importance in cosmology and their rapidly increasing discovery rate. The progenitors of SNe Ia can be probed by the delay time between progenitor birth and explosion as SNe Ia. The explosions and progenitors of SNe Ia can be probed by MeV nuclear gamma rays emitted in the decays of radioactive nickel and cobalt into iron. We compare the cosmic star formation and SN Ia rates, finding that their different redshift evolution requires a large fraction of SNe Ia to have large delay times. A delay-time distribution of the form t {sup -}{alpha} with {alpha} = 1.0 {+-} 0.3 provides a good fit, implying that 50% of SNe Ia explode more than {approx}1 Gyr after progenitor birth. The extrapolation of the cosmic SN Ia rate to z = 0 agrees with the rate we deduce from catalogs of local SNe Ia. We investigate prospects for gamma-ray telescopes to exploit the facts that escaping gamma rays directly reveal the power source of SNe Ia and uniquely provide tomography of the expanding ejecta. We find large improvements relative to earlier studies by Gehrels et al. in 1987 and Timmes and Woosley in 1997 due to larger and more certain SN Ia rates and advances in gamma-ray detectors. The proposed Advanced Compton Telescope, with a narrow-line sensitivity {approx}60 times better than that of current satellites, would, on an annual basis, detect up to {approx}100 SNe Ia (3{sigma}) and provide revolutionary model discrimination for SNe Ia within 20 Mpc, with gamma-ray light curves measured with {approx}10{sigma} significance daily for {approx}100 days. Even more modest improvements in detector sensitivity would open a new and invaluable astronomy with frequent SN Ia gamma-ray detections.

  4. DIVERSITY OF TYPE Ia SUPERNOVAE IMPRINTED IN CHEMICAL ABUNDANCES

    SciTech Connect

    Tsujimoto, Takuji; Shigeyama, Toshikazu

    2012-12-01

    A time delay of Type Ia supernova (SN Ia) explosions hinders the imprint of their nucleosynthesis on stellar abundances. However, some occasional cases give birth to stars that avoid enrichment of their chemical compositions by massive stars and thereby exhibit an SN-Ia-like elemental feature including a very low [Mg/Fe] ( Almost-Equal-To - 1). We highlight the elemental feature of Fe-group elements for two low-Mg/Fe objects detected in nearby galaxies, and propose the presence of a class of SNe Ia that yield the low abundance ratios of [Cr, Mn, Ni/Fe]. Our novel models of chemical evolution reveal that our proposed class of SNe Ia (slow SNe Ia) is associated with ones exploding on a long timescale after their stellar birth and give a significant impact on the chemical enrichment in the Large Magellanic Cloud (LMC). In the Galaxy, on the other hand, this effect is unseen due to the overwhelming enrichment by the major class of SNe Ia that explode promptly (prompt SNe Ia) and eject a large amount of Fe-group elements. This nicely explains the different [Cr, Mn, Ni/Fe] features between the two galaxies as well as the puzzling feature seen in the LMC stars exhibiting very low Ca but normal Mg abundances. Furthermore, the corresponding channel of slow SN Ia is exemplified by performing detailed nucleosynthesis calculations in the scheme of SNe Ia resulting from a 0.8 + 0.6 M{sub Sun} white dwarf merger.

  5. Testing the Standardizability of Type Ia Supernovae with the Cepheid Distance of a Twin Supernova

    NASA Astrophysics Data System (ADS)

    Foley, Ryan

    2014-10-01

    Having nearly identical optical light-curve shapes, colors, and spectra, SN 2011by and 2011fe are "twin" Type Ia supernovae (SN Ia). As such, these "standardizable candles" should have identical luminosities. But using independent distance measurements to these SN, their peak luminosity differs by 0.6 mag --- significantly larger than the typical scatter amongst all SN Ia. Differences in their UV spectra indicate that the SN have different metallicities, which could account for the luminosity difference. On the other hand, the distance to SN 2011by, from a Tully-Fisher measurement, may be wrong. We propose to measure a Cepheid distance to SN 2011by to determine if metallicity or an imprecise measurement is causing this large difference.The implications are far reaching for SN cosmology. If the current distance is correct, changing progenitor metallicity could cause large distance biases with redshift. If the distance is revised to bring SN 2011by in line with SN 2011fe, we will infer that metallicity differences are not a large bias for SN cosmology.In the latter case, these data will also provide an additional SN with which we can measure the Hubble constant. Since the number of SN calibrators (only 8 published) limits the precision of our measurement of the Hubble constant, these observations can have a large impact on this measurement.

  6. Type Determination for SN 2005ea

    NASA Astrophysics Data System (ADS)

    Gal-Yam, A.; Leonard, D. C.

    2005-10-01

    A. Gal-Yam and D. Leonard report for the CCCP: We have observed SN 2005ea (Gray and Lane; IAUC #8600) with the DBSP spectrograph mounted on the Hale 200" telescope at Palomar Observatory on 2005 October 25 UT, under poor conditions. Reduction of the noisy red spectrum shows it is similar to that of SN Ia 1994D around 30 days after maximum light (Filippenko 1997, ARA&A, 35, 309). We therefore tentatively identify this event as a type Ia SN.

  7. THE FIRST MAXIMUM-LIGHT ULTRAVIOLET THROUGH NEAR-INFRARED SPECTRUM OF A TYPE Ia SUPERNOVA

    SciTech Connect

    Foley, Ryan J.; Marion, G. Howie; Challis, Peter; Kirshner, Robert P.; Berta, Zachory K.; Kromer, Markus; Taubenberger, Stefan; Hillebrandt, Wolfgang; Roepke, Friedrich K.; Ciaraldi-Schoolmann, Franco; Seitenzahl, Ivo R.; Pignata, Giuliano; Stritzinger, Maximilian D.; Filippenko, Alexei V.; Li Weidong; Silverman, Jeffrey M.; Folatelli, Gaston; Hsiao, Eric Y.; Morrell, Nidia I.; Simcoe, Robert A.; and others

    2012-07-01

    We present the first maximum-light ultraviolet (UV) through near-infrared (NIR) Type Ia supernova (SN Ia) spectrum. This spectrum of SN 2011iv was obtained nearly simultaneously by the Hubble Space Telescope at UV/optical wavelengths and the Magellan Baade telescope at NIR wavelengths. These data provide the opportunity to examine the entire maximum-light SN Ia spectral energy distribution. Since the UV region of an SN Ia spectrum is extremely sensitive to the composition of the outer layers of the explosion, which are transparent at longer wavelengths, this unprecedented spectrum can provide strong constraints on the composition of the SN ejecta, and similarly the SN explosion and progenitor system. SN 2011iv is spectroscopically normal, but has a relatively fast decline ({Delta}m{sub 15}(B) = 1.69 {+-} 0.05 mag). We compare SN 2011iv to other SNe Ia with UV spectra near maximum light and examine trends between UV spectral properties, light-curve shape, and ejecta velocity. We tentatively find that SNe with similar light-curve shapes but different ejecta velocities have similar UV spectra, while those with similar ejecta velocities but different light-curve shapes have very different UV spectra. Through a comparison with explosion models, we find that both a solar-metallicity W7 and a zero-metallicity delayed-detonation model provide a reasonable fit to the spectrum of SN 2011iv from the UV to the NIR.

  8. CIRCUMSTELLAR ABSORPTION IN DOUBLE DETONATION TYPE Ia SUPERNOVAE

    SciTech Connect

    Shen, Ken J.; Guillochon, James; Foley, Ryan J.

    2013-06-20

    Upon formation, degenerate He core white dwarfs are surrounded by a radiative H-rich layer primarily supported by ideal gas pressure. In this Letter, we examine the effect of this H-rich layer on mass transfer in He+C/O double white dwarf binaries that will eventually merge and possibly yield a Type Ia supernova (SN Ia) in the double detonation scenario. Because its thermal profile and equation of state differ from the underlying He core, the H-rich layer is transferred stably onto the C/O white dwarf prior to the He core's tidal disruption. We find that this material is ejected from the binary system and sweeps up the surrounding interstellar medium hundreds to thousands of years before the SN Ia. The close match between the resulting circumstellar medium profiles and values inferred from recent observations of circumstellar absorption in SNe Ia gives further credence to the resurgent double detonation scenario.

  9. The cosmic gamma-ray background from Type Ia supernovae

    NASA Technical Reports Server (NTRS)

    The, Lih-Sin; Leising, Mark D.; Clayton, Donald D.

    1993-01-01

    We present an improved calculation of the cumulative gamma-ray spectrum of Type Ia supernovae during the history of the universe. We follow Clayton & Ward (1975) in using a few Friedmann models and two simple histories of the average galaxian nucleosynthesis rate, but we improve their calculation by modeling the gamma-ray scattering in detailed numerical models of SN Ia's. The results confirm that near 1 MeV the SN Ia background may dominate, and that it is potentially observable, with high scientific importance. A very accurate measurement of the cosmic background spectrum between 0.1 and 1.0 MeV may reveal the turn-on time and the evolution of the rate of Type Ia supernova nucleosynthesis in the universe.

  10. Do Single-Degenerate Type Ia Supernovae Generally Lead to Normal Type Ia Supernovae?

    NASA Astrophysics Data System (ADS)

    Fisher, Robert

    2016-01-01

    Recent observational and theoretical progress has favored merging and helium-accreting sub-Chandrasekhar mass white dwarfs (WDs) in the double-degenerate and the double-detonation channels, respectively, as the dominant progenitors of normal Type Ia supernovae (SNe Ia). Thus the fate of rapidly-accreting Chandrasekhar mass WDs in the single-degenerate channel remains more mysterious then ever. In this talk, I will clarify the nature of ignition in Chandrasekhar-mass single-degenerate SNe Ia and demonstrate that the overwhelming majority of ignition events within Chandrasekhar-mass WDs in the single-degenerate channel are generally expected to be buoyancy-driven, and consequently lack a vigorous deflagration phase. I will show, using both analytic criteria and multidimensional numerical simulations, that the single-degenerate channel is inherently stochastic and leads to a variety of outcomes from failed SN 2002cx-like events through overluminous SN 1991T-like events. I will also demonstrate how the rates predicted from both the population of supersoft X-ray sources (SSSs) and binary population synthesis models of the single-degenerate channel can be brought into agreement with single-degenerate SNe Ia. I will further demonstrate that the single-degenerate channel contribution to the normal and failed 2002cx-like rates is not likely to exceed 1% of the total SNe Ia rate. I will conclude with a range of observational tests which will either support or strongly constrain the single-degenerate scenario.

  11. Cosmological Inference from Host-Selected Type Ia Supernova Samples

    NASA Astrophysics Data System (ADS)

    Uddin, Syed A.; Mould, Jeremy; Lidman, Chris; Ruhlmann-Kleider, Vanina; Hardin, Delphine

    2017-01-01

    We compare two Type Ia supernova samples that are drawn from a spectroscopically confirmed Type Ia supernova sample: a host-selected sample in which SNe Ia are restricted to those that have a spectroscopic redshift from the host; and a broader, more traditional sample in which the redshift could come from either the SN or the host. The host-selected sample is representative of SN samples that will use the redshift of the host to infer the SN redshift, long after the SN has faded from view. We find that SNe Ia that are selected on the availability of a redshift from the host differ from SNe Ia that are from the broader sample. The former tend to be redder, have narrower light curves, live in more massive hosts, and tend to be at lower redshifts. We find that constraints on the equation of state of dark energy, w, and the matter density, ΩM, remain consistent between these two types of samples. Our results are important for ongoing and future supernova surveys, which unlike previous supernova surveys, will have limited real-time follow-up to spectroscopically classify the SNe they discover. Most of the redshifts in these surveys will come from the hosts.

  12. NIR Spectra of Type Ia Supernovae: High-Cadence Observations

    NASA Astrophysics Data System (ADS)

    Marion, Howie H.; Hsiao, E.; Vinko, J.; Parrent, J. T.; Silverman, J. M.; Kirshner, R. P.; Phillips, M.; Wheeler, J. C.; Burns, C. R.; Morrell, N.; Contreras, C.; Challis, P.; Supernova Project, Carnegie, II; CfA Supernova Group

    2014-01-01

    New observing resources and coordinated scheduling make it possible to obtain sequences of NIR spectra from individual supernovae on a regular basis. In the past three years the Carnegie Supernova Project II and the CfA Supernova Group have obtained 350 NIR spectra of 78 supernovae. Here we describe eight series of NIR spectra from Type Ia supernovae for which there are ten or more observations with 4 or more of the spectra obtained before Mg II becomes undetectable at about six days post-maximum. NIR spectra are particularly useful for tracing the burning history of the outer layers in SN Ia and the presence of Mg II defines the limit of the carbon burning region. Recent analysis suggests that all significant absorption features in spectra of SN Ia are blends of two or more lines. Data sets with higher spectral cadence are more successful at breaking line-identification degeneracies and consequently provide more accurate information about line profiles and velocity measurements. Three of the eight spectral series in this sample include more than 20 observations and in two cases, there are 12 spectra between -12d and +6d with respect to B-max. The eight SN Ia vary from -18.0 to -19.5 in absolute magnitude and we explore the differences between the supernovae in the timing and strength of spectral features. We make qualitative comparisons of these results to theoretical models for the chemical distribution of materials in SN Ia.

  13. SINGLE-DEGENERATE TYPE Ia SUPERNOVAE WITHOUT HYDROGEN CONTAMINATION

    SciTech Connect

    Justham, Stephen

    2011-04-01

    The lack of hydrogen in spectra of type Ia supernovae (SNe Ia) is often seen as troublesome for single-degenerate (SD) progenitor models. We argue that, since continued accretion of angular momentum can prevent explosion of the white dwarf, it may be natural for the donor stars in SD progenitors of SNe Ia to exhaust their envelopes and shrink rapidly before the explosion. This outcome seems most likely for SD SN Ia progenitors where mass transfer begins from a giant donor star and might extend to other SD systems. Not only is the amount of hydrogen left in such a system below the current detection limit, but the donor star is typically orders of magnitude smaller than its Roche lobe by the point when an SD SN Ia occurs, in which case attempts to observe collisions between SN shocks and giant donor stars seem unlikely to succeed. We consider the constraints on this model from the circumstellar structures seen in spectra of SN 2006X and suggest a novel explanation for the origin of this material.

  14. The First Year of the Palomar Transient Factory Type Ia Supernova Program

    NASA Astrophysics Data System (ADS)

    Nugent, Peter E.; Howell, D. A.; Sullivan, M.

    2011-01-01

    The Palomar Transient Factory (PTF) is an astronomical wide-field survey designed to search for optical transient and variable sources. PTF began on-sky operations in early 2009. It is fully-automated, including a wide-field survey camera, an automated real-time data reduction pipeline and transient classifier, a dedicated photometric follow up telescope, and a full archive of all detected sources. One of the PTF Key Projects is focused on Type Ia Supernovae (SNe Ia). The core science goals of this program are the creation of a new SN Ia optical and near-IR Hubble diagram with z < 0.1, a measurement of both volumetric and host-galaxy dependent SN Ia rates, and a determination of the dependence of SN Ia properties on their host properties and local environments. The result of these efforts should lead to improvements in both our understanding of the physics of these events and their utility as cosmological probes. During the first year of operation, PTF has discovered and spectroscopically classified over 500 SNe Ia. Here we present some early results from this survey, including UV studies of SNe Ia carried out on the Hubble Space Telescope, the host properties of the PTF SNe Ia, and an analysis of some of the youngest SN Ia spectra taken to date.

  15. The Type Ia Supernova Rate and Delay-Time Distribution

    NASA Astrophysics Data System (ADS)

    Graur, Or

    2013-11-01

    The nature of the progenitor stellar systems of thermonuclear, or Type Ia, supernovae (SNe Ia) remains unknown. Unlike core-collapse (CC) SNe, which have been successfully linked, at least partially, to various types of massive stars, the progenitors of SNe Ia are to date undetected in pre-explosion images and the nature of these progenitors can only be probed using indirect methods. In this thesis, I present three SN surveys aimed at measuring the rates at which SNe Ia explode at different times throughout the Universe's history and in different types of galaxies. I use these rates to re-construct the SN Ia delay-time distribution (DTD), a function that connects between the star-formation history (SFH) of a specific stellar environment and its SN Ia rate, and I use it to constrain different progenitor models. In Chapter 1, I provide a brief introduction of the field. This is followed, in Chapter 2, by a description of the Subaru Deep Field (SDF) SN Survey. Over a period of three years between 2005-2008, the SDF was observed on four independent epochs with Suprime-Cam on the Subaru 8.2-m telescope, with two nights of exposure per epoch, in the R, i', and z' bands. In this survey, I discover 150 SNe out to redshift z ~ 2, including 27 SNe Ia in the range 1.0 < z < 1.5 and 10 in the range 1.5 < z < 2.0. The SN Ia rate measurements from this sample are consistent with those derived from the Hubble Space Telescope (HST) GOODS sample, but the overall uncertainty of the 1.5 < z < 2.0 measurement is a factor of 2 smaller, of 35-50%. Based on this sample, we find that the SN Ia rate evolution levels off at 1.0 < z < 2.0, but shows no sign of declining. Combining our SN Ia rate measurements and those from the literature, and comparing to a wide range of possible SFHs, the best-fitting DTD is a power law of the form Psi(t) ~ t^beta, with index beta = -1.1 ± 0.1 (statistical) ± 0.17 (systematic). By combining the contribution from CC SNe, based on the wide range of SFHs

  16. Type Ia supernovae as standard candles

    NASA Technical Reports Server (NTRS)

    Branch, David; Miller, Douglas L.

    1993-01-01

    The distribution of absolute blue magnitudes among Type Ia supernovae (SNs Ia) is studied. Supernovae were used with well determined apparent magnitudes at maximum light and parent galaxies with relative distances determined by the Tully-Fisher or Dn - sigma techniques. The mean absolute blue magnitude is given and the observational dispersion is only sigma(MB) 0.36, comparable to the expected combined errors in distance, apparent magnitude, and extinction. The mean (B-V) color at maximum light is 0.03 +/- 0.04, with a dispersion sigma(B-V) = 0.20. The Cepheid-based distance to IC 4182, the parent galaxy of the normal and unextinguished Type Ia SN 1937C, leads to a Hubble constant of H(0) + 51 +/- 12 km/s Mpc. The existence of a few SNs Ia that appear to have been reddened and dimmed by dust in their parent galaxies does not seriously compromise the use of SNs Ia as distance indicators.

  17. Type Ia supernovae as standard candles

    NASA Technical Reports Server (NTRS)

    Branch, David; Miller, Douglas L.

    1993-01-01

    The distribution of absolute blue magnitudes among Type Ia supernovae (SNs Ia) is studied. Supernovae were used with well determined apparent magnitudes at maximum light and parent galaxies with relative distances determined by the Tully-Fisher or Dn - sigma techniques. The mean absolute blue magnitude is given and the observational dispersion is only sigma(MB) 0.36, comparable to the expected combined errors in distance, apparent magnitude, and extinction. The mean (B-V) color at maximum light is 0.03 +/- 0.04, with a dispersion sigma(B-V) = 0.20. The Cepheid-based distance to IC 4182, the parent galaxy of the normal and unextinguished Type Ia SN 1937C, leads to a Hubble constant of H(0) + 51 +/- 12 km/s Mpc. The existence of a few SNs Ia that appear to have been reddened and dimmed by dust in their parent galaxies does not seriously compromise the use of SNs Ia as distance indicators.

  18. Type Ia supernovae: Pulsating delayed detonation models, IR light curves, and the formation of molecules

    NASA Technical Reports Server (NTRS)

    Hoflich, Peter; Khokhlov, A.; Wheeler, C.

    1995-01-01

    We computed optical and infrared light curves of the pulsating class of delayed detonation models for Type Ia supernovae (SNe Ia). It is demonstrated that observations of the IR light curves can be used to identify subluminous SNe Ia by testing whether secondary maxima occur in the IR. Our pulsating delayed detonation models are in agreement with current observations both for subluminous and normal bright SN Ia, namely SN1991bg, SN1992bo, and SN1992bc. Observations of molecular bands provide a test to distinguish whether strongly subluminous supernovae are a consequence of the pulsating mechanism occurring in a high-mass white dwarf (WD) or, alternatively, are formed by the helium detonation in a low-mass WD as was suggested by Woosley. In the latter case, no carbon is left after the explosion of low-mass WDs whereas a log of C/O-rich material is present in pulsating delayed detonation models.

  19. Type Ia supernovae: Pulsating delayed detonation models, IR light curves, and the formation of molecules

    NASA Technical Reports Server (NTRS)

    Hoflich, Peter; Khokhlov, A.; Wheeler, C.

    1995-01-01

    We computed optical and infrared light curves of the pulsating class of delayed detonation models for Type Ia supernovae (SNe Ia). It is demonstrated that observations of the IR light curves can be used to identify subluminous SNe Ia by testing whether secondary maxima occur in the IR. Our pulsating delayed detonation models are in agreement with current observations both for subluminous and normal bright SN Ia, namely SN1991bg, SN1992bo, and SN1992bc. Observations of molecular bands provide a test to distinguish whether strongly subluminous supernovae are a consequence of the pulsating mechanism occurring in a high-mass white dwarf (WD) or, alternatively, are formed by the helium detonation in a low-mass WD as was suggested by Woosley. In the latter case, no carbon is left after the explosion of low-mass WDs whereas a log of C/O-rich material is present in pulsating delayed detonation models.

  20. Critical ingredients of Type Ia supernova radiative-transfer modelling

    NASA Astrophysics Data System (ADS)

    Dessart, Luc; Hillier, D. John; Blondin, Stéphane; Khokhlov, Alexei

    2014-07-01

    We explore the physics of Type Ia supernova (SN Ia) light curves and spectra using the 1D non-local thermodynamic equilibrium (non-LTE) time-dependent radiative-transfer code CMFGEN. Rather than adjusting ejecta properties to match observations, we select as input one `standard' 1D Chandrasekhar-mass delayed-detonation hydrodynamical model, and then explore the sensitivity of radiation and gas properties of the ejecta on radiative-transfer modelling assumptions. The correct computation of SN Ia radiation is not exclusively a solution to an `opacity problem', characterized by the treatment of a large number of lines. We demonstrate that the key is to identify and treat important atomic processes consistently. This is not limited to treating line blanketing in non-LTE. We show that including forbidden-line transitions of metals, and in particular Co, is increasingly important for the temperature and ionization of the gas beyond maximum light. Non-thermal ionization and excitation are also critical since they affect the colour evolution and the ΔM15 decline rate of our model. While impacting little the bolometric luminosity, a more complete treatment of decay routes leads to enhanced line blanketing, e.g. associated with 48Ti in the U and B bands. Overall, we find that SN Ia radiation properties are influenced in a complicated way by the atomic data we employ, so that obtaining converged results is a real challenge. Nonetheless, with our fully fledged CMFGEN model, we obtain good agreement with the golden standard Type Ia SN 2005cf in the optical and near-IR, from 5 to 60 d after explosion, suggesting that assuming spherical symmetry is not detrimental to SN Ia radiative-transfer modelling at these times. Multi-D effects no doubt matter, but they are perhaps less important than accurately treating the non-LTE processes that are crucial to obtain reliable temperature and ionization structures.

  1. The core-degenerate scenario for the progenitors of Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Wang, B.; Zhou, W.-H.; Zuo, Z.-Y.; Li, Y.-B.; Luo, X.; Zhang, J.-J.; Liu, D.-D.; Wu, C.-Y.

    2017-02-01

    The origin of the progenitors of Type Ia supernovae (SNe Ia) is still uncertain. The core-degenerate (CD) scenario has been proposed as an alternative way for the production of SNe Ia. In this scenario, SNe Ia are formed at the final stage of common-envelope evolution from a merger of a carbon-oxygen white dwarf (CO WD) with the CO core of an asymptotic giant branch companion. However, the birthrates of SNe Ia from this scenario are still not well determined. In this work, we performed a detailed investigation on the CD scenario based on a binary population synthesis approach. The SN Ia delay times from this scenario are basically in the range of 90-2500 Myr, mainly contributing to the observed SNe Ia with short and intermediate delay times, although this scenario can also produce some old SNe Ia. Meanwhile, our work indicates that the Galactic birthrates of SNe Ia from this scenario are not more than 20 per cent of total SNe Ia due to more careful treatment of mass transfer. Although the SN Ia birthrates in this work are lower than those in Ilkov & Soker, the CD scenario cannot be ruled out as a viable mechanism for the formation of SNe Ia. Especially, SNe Ia with circumstellar material from this scenario contribute to 0.7-10 per cent of total SNe Ia, which means that the CD scenario can reproduce the observed birthrates of SNe Ia like PTF 11kx. We also found that SNe Ia happen systemically earlier for a high value of metallicity and their birthrates increase with metallicity.

  2. Host Galaxies of Type Ia Supernovae from the Nearby Supernova Factory

    NASA Astrophysics Data System (ADS)

    Childress, M.; Aldering, G.; Antilogus, P.; Aragon, C.; Bailey, S.; Baltay, C.; Bongard, S.; Buton, C.; Canto, A.; Cellier-Holzem, F.; Chotard, N.; Copin, Y.; Fakhouri, H. K.; Gangler, E.; Guy, J.; Hsiao, E. Y.; Kerschhaggl, M.; Kim, A. G.; Kowalski, M.; Loken, S.; Nugent, P.; Paech, K.; Pain, R.; Pecontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Rigault, M.; Runge, K.; Scalzo, R.; Smadja, G.; Tao, C.; Thomas, R. C.; Weaver, B. A.; Wu, C.

    2013-06-01

    We present photometric and spectroscopic observations of galaxies hosting Type Ia supernovae (SNe Ia) observed by the Nearby Supernova Factory. Combining Galaxy Evolution Explorer (GALEX) UV data with optical and near-infrared photometry, we employ stellar population synthesis techniques to measure SN Ia host galaxy stellar masses, star formation rates (SFRs), and reddening due to dust. We reinforce the key role of GALEX UV data in deriving accurate estimates of galaxy SFRs and dust extinction. Optical spectra of SN Ia host galaxies are fitted simultaneously for their stellar continua and emission lines fluxes, from which we derive high-precision redshifts, gas-phase metallicities, and Hα-based SFRs. With these data we show that SN Ia host galaxies present tight agreement with the fiducial galaxy mass-metallicity relation from Sloan Digital Sky Survey (SDSS) for stellar masses log(M */M ⊙) > 8.5 where the relation is well defined. The star formation activity of SN Ia host galaxies is consistent with a sample of comparable SDSS field galaxies, though this comparison is limited by systematic uncertainties in SFR measurements. Our analysis indicates that SN Ia host galaxies are, on average, typical representatives of normal field galaxies.

  3. HOST GALAXIES OF TYPE Ia SUPERNOVAE FROM THE NEARBY SUPERNOVA FACTORY

    SciTech Connect

    Childress, M.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K.; Hsiao, E. Y.; Kim, A. G.; Loken, S.; Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Guy, J.; Baltay, C.; Buton, C.; Kerschhaggl, M.; Kowalski, M.; Chotard, N.; Copin, Y.; Gangler, E. [Universite de Lyon, F-69622, Lyon; Universite de Lyon 1, Villeurbanne; CNRS and others

    2013-06-20

    We present photometric and spectroscopic observations of galaxies hosting Type Ia supernovae (SNe Ia) observed by the Nearby Supernova Factory. Combining Galaxy Evolution Explorer (GALEX) UV data with optical and near-infrared photometry, we employ stellar population synthesis techniques to measure SN Ia host galaxy stellar masses, star formation rates (SFRs), and reddening due to dust. We reinforce the key role of GALEX UV data in deriving accurate estimates of galaxy SFRs and dust extinction. Optical spectra of SN Ia host galaxies are fitted simultaneously for their stellar continua and emission lines fluxes, from which we derive high-precision redshifts, gas-phase metallicities, and H{alpha}-based SFRs. With these data we show that SN Ia host galaxies present tight agreement with the fiducial galaxy mass-metallicity relation from Sloan Digital Sky Survey (SDSS) for stellar masses log(M{sub *}/M{sub Sun }) > 8.5 where the relation is well defined. The star formation activity of SN Ia host galaxies is consistent with a sample of comparable SDSS field galaxies, though this comparison is limited by systematic uncertainties in SFR measurements. Our analysis indicates that SN Ia host galaxies are, on average, typical representatives of normal field galaxies.

  4. THE DISCOVERY OF THE MOST DISTANT KNOWN TYPE Ia SUPERNOVA AT REDSHIFT 1.914

    SciTech Connect

    Jones, David O.; Rodney, Steven A.; Riess, Adam G.; Mobasher, Bahram; Dahlen, Tomas; Casertano, Stefano; Koekemoer, Anton; McCully, Curtis; Keeton, Charles R.; Patel, Brandon; Frederiksen, Teddy F.; Hjorth, Jens; Strolger, Louis-Gregory; Wiklind, Tommy G.; Challis, Peter; Hayden, Brian; Garnavich, Peter; Weiner, Benjamin J.; Filippenko, Alexei V.; and others

    2013-05-10

    We present the discovery of a Type Ia supernova (SN) at redshift z = 1.914 from the CANDELS multi-cycle treasury program on the Hubble Space Telescope (HST). This SN was discovered in the infrared using the Wide-Field Camera 3, and it is the highest-redshift Type Ia SN yet observed. We classify this object as a SN Ia by comparing its light curve and spectrum with those of a large sample of Type Ia and core-collapse SNe. Its apparent magnitude is consistent with that expected from the {Lambda}CDM concordance cosmology. We discuss the use of spectral evidence for classification of z > 1.5 SNe Ia using HST grism simulations, finding that spectral data alone can frequently rule out SNe II, but distinguishing between SNe Ia and SNe Ib/c can require prohibitively long exposures. In such cases, a quantitative analysis of the light curve may be necessary for classification. Our photometric and spectroscopic classification methods can aid the determination of SN rates and cosmological parameters from the full high-redshift CANDELS SN sample.

  5. Using the local gas-phase oxygen abundances to explore a metallicity dependence in SNe Ia luminosities

    NASA Astrophysics Data System (ADS)

    Moreno-Raya, M. E.; López-Sánchez, Á. R.; Mollá, M.; Galbany, L.; Vílchez, J. M.; Carnero, A.

    2016-10-01

    We present an analysis of the gas-phase oxygen abundances of a sample of 28 galaxies in the local Universe (z < 0.02) hosting Type Ia supernovae (SNe Ia). The data were obtained with the 4.2 m William Herschel Telescope. We derive local oxygen abundances for the regions where the SNe Ia exploded by calculating oxygen gradients through each galaxy (when possible) or assuming the oxygen abundance of the closest H II region. The sample selection only considered galaxies for which distances not based on the SN Ia method are available. Then, we use a principal component analysis to study the dependence of the absolute magnitudes on the colour of the SN Ia, the oxygen abundances of the region where they exploded and the stretch of the SN light curve. We demonstrate that our previous result suggesting a metallicity dependence on the SN Ia luminosity for non-reddened SNe Ia can be extended to our whole sample. These results reinforce the need of including a metallicity proxy, such as the oxygen abundance of the host galaxy, to minimize the systematic effect induced by the metallicity dependence of the SN Ia luminosity in future studies of SNe Ia at cosmological distances.

  6. THE LARGE-SCALE ENVIRONMENTS OF TYPE Ia SUPERNOVAE: EVIDENCE FOR A METALLICITY BIAS IN THE RATE OR LUMINOSITY OF PROMPT Ia EVENTS

    SciTech Connect

    Cooper, Michael C.; Newman, Jeffrey A.; Yan Renbin E-mail: janewman@pitt.ed

    2009-10-10

    Using data drawn from the Sloan Digital Sky Survey and the SDSS-II Supernova Survey, we study the local environments of confirmed type Ia supernovae (SNe Ia) in the nearby universe. At 0.05 < z < 0.15, we find that SN Ia events in blue, star-forming galaxies occur preferentially in regions of lower galaxy density relative to galaxies of like stellar mass and star-formation rate, while SNe Ia in nearby red galaxies show no significant environment dependence within the measurement uncertainties. Even though our samples of SNe in red hosts are relatively small in number, tests on simulated galaxy samples suggest that the observed distribution of environments for red SN Ia hosts is in poor agreement with a cluster type Ia rate strongly elevated relative to the field rate. Finally, after considering the impact of galaxy morphology, stellar age, stellar metallicity, and other relevant galaxy properties, we conclude that the observed correlation between the SN Ia rate and environment in the star-forming galaxy population is likely driven by a gas-phase metallicity effect, such that prompt type Ia supernovae occur more often or are more luminous in metal-poor systems.

  7. Light Curves of Type IA Supernovae

    NASA Astrophysics Data System (ADS)

    Ford, C. H.; Herbst, W.; Balonek, T. J.; Benson, P. J.; Chromey, F. R.; Ratcliff, S. J.

    1992-05-01

    VRI light curves of five Type Ia supernovae (1991B, 1991N, 1991T, 1991bg, and 1992G) have been obtained with CCDs attached to small telescopes at northeastern sites. The data have been carefully transformed to the standard system using images obtained with the 0.9m telescope at KPNO. The first three supernovae have faded sufficiently that we can carefully correct for the galactic background and, in particular, its effect on the determination of fade rates at late times. SN 1991bg clearly demonstrates that there can be gross differences among Type Ia's in the shape (and maximum brightness) of their light curves (Filippenko et al., preprint). We investigate whether a single "template" can be devised which fits the R and I light curve shapes of the other four supernovae in our sample, and the degree to which each fits the V template of Leibundgut (1988, Ph.D. thesis, U. of Basel). The distinctive secondary maximum seen in I (about 18 days after primary maximum; Balonek et al., preprint) should be useful for distinguishing peculiar Type Ia's like SN 1991bg, and for establishing the time of maximum brightness for supernovae that were discovered up to three weeks afterwards. We thank the W. M. Keck Foundation for their support of the Keck Northeast Astronomy Consortium. This project is an outgrowth of that support.

  8. THE RELATION BETWEEN EJECTA VELOCITY, INTRINSIC COLOR, AND HOST-GALAXY MASS FOR HIGH-REDSHIFT TYPE Ia SUPERNOVAE

    SciTech Connect

    Foley, Ryan J.

    2012-04-01

    Recently, using a large low-redshift sample of Type Ia supernovae (SNe Ia), we discovered a relation between SN Ia ejecta velocity and intrinsic color that improves the distance precision of SNe Ia and reduces potential systematic biases related to dust reddening. No SN Ia cosmological results have yet made a correction for the 'velocity-color' relation. To test the existence of such a relation and constrain its properties at high redshift, we examine a sample of 75 SNe Ia discovered and observed by the Sloan Digital Sky Survey-II Supernova Survey and Supernova Legacy Survey. From each spectrum, we measure ejecta velocities at maximum brightness for the Ca H and K and Si II {lambda}6355 features, v{sup 0}{sub CaHandK} and v{sup 0}{sub SiII}, respectively. Using SN light curve parameters, we determine the intrinsic B{sub max} - V{sub max} for each SN. Similar to what was found at low redshift, we find that SNe Ia with higher ejecta velocity tend to be intrinsically redder than SNe Ia with lower ejecta velocity. The distributions of ejecta velocities for SNe Ia at low and high redshift are similar, indicating that current cosmological results should have little bias related to the velocity-color relation. Additionally, we find a slight (2.4{sigma} significant) trend between SN Ia ejecta velocity and host-galaxy mass such that SNe Ia in high-mass host galaxies tend to have lower ejecta velocities as probed by v{sup 0}{sub CaHandK}. These results emphasize the importance of spectroscopy for SN Ia cosmology.

  9. Constraining Type Ia Supernova Physics with Near-Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sand, David; Valenti, Stefano; Howell, Andy; Graham, Melissa; Parrent, Jerod

    2014-08-01

    Despite their success as standardizable candles, relatively little is known about the exact progenitor(s) and explosion physics of type Ia supernovae -- a potential source of systematic uncertainty for future dark energy surveys, and a hole in our knowledge about stellar end-states. One promising route forward is the combination of dense optical time series and near-infrared (NIR) spectroscopic data sets. Recent work has suggested that the NIR can discern unburned carbon from the progenitor white dwarf more cleanly than in the optical, and its unique access to relatively unblended magnesium lines also probes the inner edge of carbon burning. Both measures provide a direct constraint for SN Ia explosion models, but only a handful of appropriate NIR spectroscopic time series exist. We propose to continue our campaign to roughly double the sample of SN Ia with such data (leveraging our access to a worldwide network of 1m imaging telescopes and twin robotic optical spectrographs) in order to begin to tackle our understanding of NIR spectral diagnostics and how they vary from supernova to supernova. During our 2014A time thus far, we have been intensely following the nearest SN Ia in a generation -- SN 2014J -- and have already submitted our initial results.

  10. Breaking the colour-reddening degeneracy in Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Sasdelli, Michele; Ishida, E. E. O.; Hillebrandt, W.; Ashall, C.; Mazzali, P. A.; Prentice, S. J.

    2016-07-01

    A new method to study the intrinsic colour and luminosity of Type Ia supernovae (SNe Ia) is presented. A metric space built using principal component analysis on a spectral series for SNe Ia between -12.5 and +17.5 d from the B maximum is used as a set of predictors. This metric space is built to be insensitive to reddening. Hence, it does not predict the part of the colour excess due to dust extinction. At the same time, the rich variability of SN Ia spectra is a good predictor of a large fraction of the intrinsic colour variability. Such a metric space is a good predictor of the epoch when the maximum in the B - V colour curve is reached. Multivariate partial least-squares regression predicts the intrinsic B-band light curve and the intrinsic B - V colour curve up to a month after the maximum. This allows us to study the relation between the light curves of SNe Ia and their spectra. The total-to-selective extinction ratio RV in the host galaxy of SNe Ia is found, on average, to be consistent with typical Milky Way values. This analysis shows the importance of collecting spectra to study SNe Ia, even with a large sample publicly available. Future automated surveys, such as the Large Synoptic Survey Telescope, will provide a large number of light curves. The analysis shows that observing accompanying spectra for a significant number of SNe will be important even for normal SNe Ia.

  11. The Effect of Host Galaxies on Type Ia Supernovae in the SDSS-II Supernova Survey

    SciTech Connect

    Lampeitl, Hubert; Smith, Mathew; Nichol, Robert C.; Bassett, Bruce; Cinabro, David; Dilday, Benjamin; Foley, Ryan J.; Frieman, Joshua A.; Garnavich, Peter M.; Goobar, Ariel; Im, Myungshin; /Seoul Natl. U. /Rutgers U., Piscataway

    2010-05-01

    We present an analysis of the host galaxy dependencies of Type Ia Supernovae (SNe Ia) from the full three year sample of the SDSS-II Supernova Survey. We re-discover, to high significance, the strong correlation between host galaxy type and the width of the observed SN light curve, i.e., fainter, quickly declining SNe Ia favor passive host galaxies, while brighter, slowly declining Ia's favor star-forming galaxies. We also find evidence (at between 2 to 3{sigma}) that SNe Ia are {approx_equal} 0.1 magnitudes brighter in passive host galaxies, than in star-forming hosts, after the SN Ia light curves have been standardized using the light curve shape and color variations: This difference in brightness is present in both the SALT2 and MCLS2k2 light curve fitting methodologies. We see evidence for differences in the SN Ia color relationship between passive and star-forming host galaxies, e.g., for the MLCS2k2 technique, we see that SNe Ia in passive hosts favor a dust law of R{sub V} {approx_equal} 1, while SNe Ia in star-forming hosts require R{sub V} {approx} 2. The significance of these trends depends on the range of SN colors considered. We demonstrate that these effects can be parameterized using the stellar mass of the host galaxy (with a confidence of > 4{sigma}) and including this extra parameter provides a better statistical fit to our data. Our results suggest that future cosmological analyses of SN Ia samples should include host galaxy information.

  12. Pseudohypoparathyroidism Ia and hypercalcitoninemia.

    PubMed

    Vlaeminck-Guillem, V; D'herbomez, M; Pigny, P; Fayard, A; Bauters, C; Decoulx, M; Wémeau, J L

    2001-07-01

    Pseudohypoparathyroidism Ia (PHP Ia) is characterized by resistance to PTH and many other stimuli because of deficiency of stimulatory G protein alpha-subunit. To determine the incidence, natural history, and mechanism of C cell dysfunction in PHP, calcitonin assays were performed in six patients with PHP Ia and four with pseudopseudohypoparathyroidism from three unrelated families. Controls included healthy subjects and patients with PHP Ib or hypoparathyroidism. The mean basal level of calcitonin was higher in PHP Ia patients than in controls (95.3 +/- 112.7 vs. 3.7 +/- 2.4 pg/mL; P = 0.005; n < 10). In PHP Ia patients, calcitonin levels rose over the normal range (30 pg/mL) after pentagastrin infusion in five patients and remained normal in one. Familial medullary thyroid carcinoma was clinically, biologically, and ultrasonographically ruled out over a mean follow-up exceeding 3 yr. Genomic screening for RET protooncogene mutations failed to reveal any anomaly. The calcitonin infusion test, which induced a significant increase in plasma cAMP in controls 30 and 60 min after infusion, failed to produce this response in PHP Ia patients, suggesting that the action of calcitonin was specifically impaired. PHP Ia may therefore be an independent etiology of hypercalcitoninemia and hyperresponsiveness to pentagastrin infusion.

  13. Optimizing the WFIRST Type Ia Supernova Survey

    NASA Astrophysics Data System (ADS)

    Foley, Ryan

    Observations of Type Ia supernovae (SN Ia) led to the discovery that the Universe's expansion is currently accelerating. WFIRST-AFTA is well positioned to provide a generation-defining measurement of the nature of dark energy through its multiple probes, with the WFIRST SN survey projected to have twice the impact as its other probes. Our experienced team includes some of the original discoverers of the accelerating universe, two of the selected ROSES WFIRST preparatory science teams, and the key scientific expertise for the most current and precise SN cosmology results. Our expertise in SN cosmology, SN physics, space-based imaging and spectroscopy, and calibration provide the best foundation upon which a WFIRST SN SIT can be formed. As dark energy is central to NASA's Physics of the Cosmos program, we directly address major objectives of NASA's science program. Moreover, WFIRST is NASA's top priority in the next decade, and preparations now are critical for its eventual success. We present a comprehensive plan to investigate multiple strategies for both optimization and risk mitigation. We have built a simulation framework based on publicly available tools for these evaluations at no cost to this program. Our team has produced the first realistic, full end-to-end simulation of the DRM SN survey, finding that it is suboptimal. After a cursory search of the available parameter space, we were able to find alternative strategies that are significantly better than the DRM strategy. Of course the most optimal strategy will depend on (1) our ability to properly calibrate our data, (2) the data analysis tools available, and (3) our understanding of astrophysical systematic uncertainties. We plan to use much of the next five years to develop strategies to properly calibrate our data, generate software to analyze data from the pixel level to cosmology, and further understand all systematic uncertainties. With the results of these investigations combined with an expanded

  14. Multiepoch Spectropolarimetry of SN 2011fe

    NASA Astrophysics Data System (ADS)

    Milne, Peter A.; Williams, G. Grant; Porter, Amber; Smith, Paul S.; Smith, Nathan; Leising, Mark D.; Jannuzi, Buell T.; Green, E. M.

    2017-01-01

    We present multiple spectropolarimetric observations of the nearby Type Ia supernova (SN) 2011fe in M101, obtained before, during, and after the time of maximum apparent visual brightness. The excellent time coverage of our spectropolarimetry has allowed better monitoring of the evolution of polarization features than is typical, which has allowed us new insight into the nature of normal SNe Ia. SN 2011fe exhibits time-dependent polarization in both the continuum and strong absorption lines. At early epochs, red wavelengths exhibit a degree of continuum polarization of up to 0.4%, likely indicative of a mild asymmetry in the electron-scattering photosphere. This behavior is more common in subluminous SNe Ia than in normal events, such as SN 2011fe. The degree of polarization across a collection of absorption lines varies dramatically from epoch to epoch. During the earliest epoch, a λ4600–5000 Å complex of absorption lines shows enhanced polarization at a different position angle than the continuum. We explore the origin of these features, presenting a few possible interpretations, without arriving at a single favored ion. During two epochs near maximum, the dominant polarization feature is associated with the Si ii λ6355 Å absorption line. This is common for SNe Ia, but for SN 2011fe the polarization of this feature increases after maximum light, whereas for other SNe Ia, that polarization feature was strongest before maximum light.

  15. CfAIR2: Near-infrared Light Curves of 94 Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Friedman, Andrew S.; Wood-Vasey, W. M.; Marion, G. H.; Challis, Peter; Mandel, Kaisey S.; Bloom, Joshua S.; Modjaz, Maryam; Narayan, Gautham; Hicken, Malcolm; Foley, Ryan J.; Klein, Christopher R.; Starr, Dan L.; Morgan, Adam; Rest, Armin; Blake, Cullen H.; Miller, Adam A.; Falco, Emilio E.; Wyatt, William F.; Mink, Jessica; Skrutskie, Michael F.; Kirshner, Robert P.

    2015-09-01

    CfAIR2 is a large, homogeneously reduced set of near-infrared (NIR) light curves (LCs) for Type Ia supernovae (SNe Ia) obtained with the 1.3 m Peters Automated InfraRed Imaging TELescope. This data set includes 4637 measurements of 94 SNe Ia and 4 additional SNe Iax observed from 2005 to 2011 at the Fred Lawrence Whipple Observatory on Mount Hopkins, Arizona. CfAIR2 includes {{JHK}}s photometric measurements for 88 normal and 6 spectroscopically peculiar SN Ia in the nearby universe, with a median redshift of z ˜ 0.021 for the normal SN Ia. CfAIR2 data span the range from -13 days to +127 days from B-band maximum. More than half of the LCs begin before the time of maximum, and the coverage typically contains ˜13-18 epochs of observation, depending on the filter. We present extensive tests that verify the fidelity of the CfAIR2 data pipeline, including comparison to the excellent data of the Carnegie Supernova Project. CfAIR2 contributes to a firm local anchor for SN cosmology studies in the NIR. Because SN Ia are more nearly standard candles in the NIR and are less vulnerable to the vexing problems of extinction by dust, CfAIR2 will help the SN cosmology community develop more precise and accurate extragalactic distance probes to improve our knowledge of cosmological parameters, including dark energy and its potential time variation.

  16. EARLY-TYPE HOST GALAXIES OF TYPE Ia SUPERNOVAE. I. EVIDENCE FOR DOWNSIZING

    SciTech Connect

    Kang, Yijung; Kim, Young-Lo; Lim, Dongwook; Chung, Chul; Lee, Young-Wook

    2016-03-15

    Type Ia supernova (SN Ia) cosmology provides the most direct evidence for the presence of dark energy. This result is based on the assumption that the lookback time evolution of SN Ia luminosity, after light curve corrections, would be negligible. Recent studies show, however, that the Hubble residual (HR) of SN Ia is correlated with the mass and morphology of host galaxies, implying the possible dependence of SN Ia luminosity on host galaxy properties. In order to investigate this more directly, we have initiated a spectroscopic survey for early-type host galaxies, for which population age and metallicity can be more reliably determined from the absorption lines. In this first paper of the series, we present here the results from high signal-to-noise ratio (≳100 per pixel) spectra for 27 nearby host galaxies in the southern hemisphere. For the first time in host galaxy studies, we find a significant (∼3.9σ) correlation between host galaxy mass (velocity dispersion) and population age, which is consistent with the “downsizing” trend among non-host early-type galaxies. This result is rather insensitive to the choice of population synthesis models. Since we find no correlation with metallicity, our result suggests that stellar population age is mainly responsible for the relation between host mass and HR. If confirmed, this would imply that the luminosity evolution plays a major role in the systematic uncertainties of SN Ia cosmology.

  17. TYPE Ia SUPERNOVA PROGENITORS AND CHEMICAL ENRICHMENT IN HYDRODYNAMICAL SIMULATIONS. I. THE SINGLE-DEGENERATE SCENARIO

    SciTech Connect

    Jiménez, Noelia; Tissera, Patricia B.; Matteucci, Francesca

    2015-09-10

    The nature of the Type Ia supernova (SN Ia) progenitors remains uncertain. This is a major issue for galaxy evolution models since both chemical and energetic feedback plays a major role in the gas dynamics, star formation, and therefore the overall stellar evolution. The progenitor models for the SNe Ia available in the literature propose different distributions for regulating the explosion times of these events. These functions are known as the delay time distributions (DTDs). This work is the first one in a series of papers aiming at studying five different DTDs for SNe Ia. Here we implement and analyze the single-degenerate (SD) scenario in galaxies dominated by a rapid quenching of the star formation, displaying the majority of the stars concentrated in the bulge component. We find a good fit to both the present observed SN Ia rates in spheroidal-dominated galaxies and the [O/Fe] ratios shown by the bulge of the Milky Way. Additionally, the SD scenario is found to reproduce a correlation between the specific SN Ia rate and the specific star formation rate (sSFR), which closely resembles the observational trend, at variance with previous works. Our results suggest that SN Ia observations in galaxies with very low and very high sSFRs can help to impose more stringent constraints on the DTDs and therefore on SN Ia progenitors.

  18. PTF 11kx: a type Ia supernova with a symbiotic nova progenitor.

    PubMed

    Dilday, B; Howell, D A; Cenko, S B; Silverman, J M; Nugent, P E; Sullivan, M; Ben-Ami, S; Bildsten, L; Bolte, M; Endl, M; Filippenko, A V; Gnat, O; Horesh, A; Hsiao, E; Kasliwal, M M; Kirkman, D; Maguire, K; Marcy, G W; Moore, K; Pan, Y; Parrent, J T; Podsiadlowski, P; Quimby, R M; Sternberg, A; Suzuki, N; Tytler, D R; Xu, D; Bloom, J S; Gal-Yam, A; Hook, I M; Kulkarni, S R; Law, N M; Ofek, E O; Polishook, D; Poznanski, D

    2012-08-24

    There is a consensus that type Ia supernovae (SNe Ia) arise from the thermonuclear explosion of white dwarf stars that accrete matter from a binary companion. However, direct observation of SN Ia progenitors is lacking, and the precise nature of the binary companion remains uncertain. A temporal series of high-resolution optical spectra of the SN Ia PTF 11kx reveals a complex circumstellar environment that provides an unprecedentedly detailed view of the progenitor system. Multiple shells of circumstellar material are detected, and the SN ejecta are seen to interact with circumstellar material starting 59 days after the explosion. These features are best described by a symbiotic nova progenitor, similar to RS Ophiuchi.

  19. Unified One-Dimensional Simulations of Gamma-Ray Line Emission from Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Milne, P. A.; Hungerford, A. L.; Fryer, C. L.; Evans, T. M.; Urbatsch, T. J.; Boggs, S. E.; Isern, J.; Bravo, E.; Hirschmann, A.; Kumagai, S.; Pinto, P. A.; The, L.-S.

    2004-10-01

    The light curves of Type Ia supernovae (SNe Ia) are powered by gamma rays emitted by the decay of radioactive elements such as 56Ni and its decay products. These gamma rays are downscattered, absorbed, and eventually reprocessed into the optical emission that makes up the bulk of all SN observations. Detection of the gamma rays that escape the expanding star provide the only direct means to study this power source for SN Ia light curves. Unfortunately, disagreements between calculations for the gamma-ray lines have made it difficult to interpret any gamma-ray observations. Here we present a detailed comparison of the major gamma-ray line transport codes for a series of one-dimensional SN Ia models. Discrepancies in past results were due to errors in the codes, and the corrected versions of the seven different codes yield very similar results. This convergence of the simulation results allows us to infer more reliable information from the current set of gamma-ray observations of SNe Ia. The observations of SN 1986G, SN 1991T, and SN 1998bu are consistent with explosion models based on their classification: subluminous, superluminous, and normally luminous, respectively.

  20. Asymmetric Circumstellar Matter in Type Ia Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Borkowski, Kazimierz J.; Reynolds, S. P.; Blondin, J. M.

    2013-01-01

    The progenitors of Type Ia supernovae (SNe) are not well understood, but are likely to be of diverse origin, including single- and double-degenerate binary systems. Among single-degenerate progenitors, substantial amounts of circumstellar material (CSM) are expelled prior to the SN explosions by asymptotic giant branch (AGB) companions to the accreting white dwarfs. A subsequent collision of SN ejecta with the dense AGB wind has been detected among several distant SNe such as SN 2002ic, SN 2008J, and more recently PTF11kx. Dense CSM ejected by an AGB companion is present in the remnant of Kepler's SN of 1604, a Type Ia event. Observations of distant SNe hint at strongly asymmetric CSM distributions. A recent study of the CSM in Kepler's SNR by Burkey et al. indicates a large (factor of 10) density contrast between the dense, disk-like equatorial outflow and the more tenuous AGB wind above the orbital plane. A significant fraction of mature Type Ia SNRs in the Large Magellanic Cloud (LMC) shows the presence of dense Fe-rich ejecta in their interiors that cannot be explained by standard models of Type Ia explosions in a uniform ambient interstellar medium. We explore the hypothesis that these remnants originated in Type Ia explosions with strongly asymmetric CSM distributions such as found in Kepler's SNR. We present results of 2-D hydrodynamical simulations of the interaction of SN ejecta with asymmetric, disk-like AGB winds throughout the whole adiabatic stage of SNR evolution. Dense, asymmetric, and highly-ionized Fe-rich ejecta are indeed present in the simulated remnants, while the blast wave assumes a spherical shape shortly after passage through the ambient CSM. We also present simulated X-ray images and spectra and compare them with X-ray observations of selected remnants in the LMC. These remnants include DEM L238 and L249, recently observed by Suzaku, whose X-ray emission is strongly dominated by dense Fe-rich ejecta in their interiors. We contrast these

  1. CfA3: 185 TYPE Ia SUPERNOVA LIGHT CURVES FROM THE CfA

    SciTech Connect

    Hicken, Malcolm; Challis, Peter; Kirshner, Robert P.; Bakos, Gaspar; Berlind, Perry; Brown, Warren R.; Caldwell, Nelson; Calkins, Mike; Cho, Richard; Contreras, Maria; Jha, Saurabh; Matheson, Tom; Modjaz, Maryam; Rest, Armin; Michael Wood-Vasey, W.; Barton, Elizabeth J.; Bragg, Ann; Briceno, Cesar; Ciupik, Larry; Dendy, Kristi-Concannon E-mail: kirshner@cfa.harvard.edu

    2009-07-20

    We present multiband photometry of 185 type-Ia supernovae (SNe Ia), with over 11,500 observations. These were acquired between 2001 and 2008 at the F. L. Whipple Observatory of the Harvard-Smithsonian Center for Astrophysics (CfA). This sample contains the largest number of homogeneously observed and reduced nearby SNe Ia (z {approx}< 0.08) published to date. It more than doubles the nearby sample, bringing SN Ia cosmology to the point where systematic uncertainties dominate. Our natural system photometry has a precision of {approx}<0.02 mag in BVRIr'i' and {approx}<0.04 mag in U for points brighter than 17.5 mag. We also estimate a systematic uncertainty of 0.03 mag in our SN Ia standard system BVRIr'i' photometry and 0.07 mag for U. Comparisons of our standard system photometry with published SN Ia light curves and comparison stars, where available for the same SN, reveal agreement at the level of a few hundredths mag in most cases. We find that 1991bg-like SNe Ia are sufficiently distinct from other SNe Ia in their color and light-curve-shape/luminosity relation that they should be treated separately in light-curve/distance fitter training samples. The CfA3 sample will contribute to the development of better light-curve/distance fitters, particularly in the few dozen cases where near-infrared photometry has been obtained and, together, can help disentangle host-galaxy reddening from intrinsic supernova color, reducing the systematic uncertainty in SN Ia distances due to dust.

  2. Improved Distances to Type Ia Supernovae withMulticolor Light Curve Shapes: MLCS2k2

    SciTech Connect

    Jha, Saurabh; Riess, Adam G.; Kirshner, Robert P.; /Harvard-Smithsonian Ctr. Astrophys.

    2007-01-05

    We present an updated version of the Multicolor Light Curve Shape method to measure distances to type Ia supernovae (SN Ia), incorporating new procedures for K-correction and extinction corrections. We also develop a simple model to disentangle intrinsic color variations and reddening by dust, and expand the method to incorporate U-band light curves and to more easily accommodate prior constraints on any of the model parameters. We apply this method to 133 nearby SN Ia, including 95 objects in the Hubble flow (cz {ge} 2500 km s{sup -1}), which give an intrinsic dispersion of less than 7% in distance. The Hubble flow sample, which is of critical importance to all cosmological uses of SN Ia, is the largest ever presented with homogeneous distances. We find the Hubble flow supernovae with H{sub 0}d{sub SN} {ge} 7400 km s{sup -1} yield an expansion rate that is 6.5 {+-} 1.8% lower than the rate determined from supernovae within that distance, and this can have a large effect on measurements of the dark energy equation of state with SN Ia. Peculiar velocities of SN Ia host galaxies in the rest frame of the Local Group are consistent with the dipole measured in the Cosmic Microwave Background. Direct fits of SN Ia that are significantly reddened by dust in their host galaxies suggest their mean extinction law may be described by R{sub V} {approx_equal} 2.7, but optical colors alone provide weak constraints on R{sub V}.

  3. Type Ia Supernovae as Distance Indicators: From the Ultraviolet to the Infrared

    NASA Astrophysics Data System (ADS)

    Jha, S.; Kirshner, R. P.; Challis, P. M.; Garnavich, P. M.

    2000-12-01

    Type Ia supernovae (SN Ia) have proven to be excellent distance indicators, with an overall homogeneity which yields a good standard candle. A quantifiable heterogeneity, in the form of the SN light curve shape, sharpens our cosmological tool, turning a good standard candle into an excellent calibrated candle. The combination of high luminosity and high precision provides many applications of these distance indicators, from precise verification of the Hubble Law and measurement of the Hubble constant to the measurement of the expansion history and geometry of the Universe, with the tantalizing possibility that the Universe is accelerating at the current epoch. Almost all of these results rely on photometric observations of SN Ia in the rest-frame optical B, V, R and I passbands. Through a study at the CfA over the last few years, we have expanded this domain, observing a large sample of nearby SN Ia with attention to the near ultraviolet (U-band) and the near infrared (J, H, K) in an effort to refine our understanding of these stellar explosions as well as refine their use as distance indicators. The rest-frame U-band data is particularly relevant to comparisons with SN Ia at high redshift, where rest-frame B and V shift into the observer-frame infrared. The rest-frame infrared data is excellent for untangling the effects of intrinsic variations of SN Ia luminosity from apparent variations due to extinction along the line of sight. We present results from our study, with applications to SN Ia near and far. This work has been supported in part by an NSF Graduate Research Fellowship.

  4. A SINGLE DEGENERATE PROGENITOR MODEL FOR TYPE Ia SUPERNOVAE HIGHLY EXCEEDING THE CHANDRASEKHAR MASS LIMIT

    SciTech Connect

    Hachisu, Izumi; Kato, Mariko; Saio, Hideyuki; Nomoto, Ken'ichi E-mail: mariko@educ.cc.keio.ac.jp E-mail: nomoto@astron.s.u-tokyo.ac.jp

    2012-01-01

    Recent observations of Type Ia supernovae (SNe Ia) suggest that some of the progenitor white dwarfs (WDs) had masses up to 2.4-2.8 M{sub Sun }, highly exceeding the Chandrasekhar mass limit. We present a new single degenerate model for SN Ia progenitors, in which the WD mass possibly reaches 2.3-2.7 M{sub Sun }. Three binary evolution processes are incorporated: optically thick winds from mass-accreting WDs, mass stripping from the binary companion star by the WD winds, and WDs being supported by differential rotation. The WD mass can increase by accretion up to 2.3 (2.7) M{sub Sun} from the initial value of 1.1 (1.2) M{sub Sun }, consistent with high-luminosity SNe Ia, such as SN 2003fg, SN 2006gz, SN 2007if, and SN 2009dc. There are three characteristic mass ranges of exploding WDs. In the extreme massive case, differentially rotating WDs explode as an SN Ia soon after the WD mass exceeds 2.4 M{sub Sun} because of a secular instability at T/|W| {approx} 0.14. For the mid-mass range of M{sub WD} = 1.5-2.4 M{sub Sun }, it takes some time (spinning-down time) until carbon is ignited to induce an SN Ia explosion after the WD mass has reached maximum, because it needs a loss or redistribution of angular momentum. For the lower mass case of rigidly rotating WDs, M{sub WD} = 1.38-1.5 M{sub Sun }, the spinning-down time depends on the timescale of angular momentum loss from the WD. The difference in the spinning-down time may produce the 'prompt' and 'tardy' components. We also suggest that the very bright super-Chandrasekhar mass SNe Ia are born in a low-metallicity environment.

  5. An optical and near-infrared study of the Type Ia/IIn Supernova PS15si

    NASA Astrophysics Data System (ADS)

    Kilpatrick, Charles D.; Andrews, Jennifer E.; Smith, Nathan; Milne, Peter; Rieke, George H.; Zheng, WeiKang; Filippenko, Alexei V.

    2016-11-01

    We present optical/near-infrared spectroscopy and photometry of the supernova (SN) PS15si. This object was originally identified as a Type IIn SN, but here we argue that it should be reclassified as a Type Ia SN with narrow hydrogen lines originating from interaction with circumstellar matter (CSM; i.e. SN Ia/IIn or SN Ia-CSM). Based on deep non-detections 27 d before discovery, we infer that this SN was discovered around or slightly before optical maximum, and we estimate the approximate time that it reached R-band maximum based on comparison with other SNe Ia/IIn. In terms of spectral morphology, we find that PS15si can be matched to a range of SN Ia spectral types, although SN 1991T-like SNe Ia provides the most self-consistent match. While this spectral classification agrees with analysis of most other SNe Ia/IIn, we find that the implied CSM-interaction luminosity is too low. We infer that the similarity between PS15si and the hot, overluminous, high-ionization spectrum of SN 1991T is a consequence of a spectrum that originates in ejecta layers that are heated by ultraviolet/X-ray radiation from CSM interaction. In addition, PS15si may have rebrightened over a short time-scale in the B and V bands around 85 d after discovery, perhaps indicating that the SN ejecta are interacting with a local enhancement in CSM produced by clumps or a shell at large radii.

  6. IS THERE A HIDDEN HOLE IN TYPE Ia SUPERNOVA REMNANTS?

    SciTech Connect

    Garcia-Senz, D.; Badenes, C.; Serichol, N. E-mail: carles@astro.tau.ac.il

    2012-01-20

    In this paper, we report on the bulk features of the hole carved by the companion star in the material ejected during a Type Ia supernova (SN Ia) explosion. In particular we are interested in the long-term evolution of the hole as well as in its fingerprint in the geometry of the supernova remnant (SNR) after several centuries of evolution, which is a hot topic in current SN Ia studies. We use an axisymmetric smoothed particle hydrodynamics code to characterize the geometric properties of the SNR resulting from the interaction of this ejected material with the ambient medium. Our aim is to use SNR observations to constrain the single degenerate scenario for SN Ia progenitors. Our simulations show that the hole will remain open during centuries, although its partial or total closure at later times due to hydrodynamic instabilities is not excluded. Close to the edge of the hole, the Rayleigh-Taylor instability grows faster, leading to plumes that approach the edge of the forward shock. We also discuss other geometrical properties of the simulations, like the evolution of the contact discontinuity.

  7. Type Ia Supernova Color Curves: Disentangling Intrinsic Variations from Dust

    NASA Astrophysics Data System (ADS)

    Bouzid, Samia; McCully, C.; Jha, S.

    2012-01-01

    Type Ia supernovae (SNe Ia) are important cosmological tools based on their use as "standard candles": as objects of similar intrinsic luminosity, their variations in apparent brightness are a reliable indication of relative distance. The more accurately we can measure and correct for variations in SN Ia brightness, the more precisely we can determine cosmological distances and place constraints on cosmological parameters including the Hubble constant and the nature of dark energy. Corrections for dust along the line of sight to the SN are usually based on its reddening effect; however, recent studies have shown that the relationship between extinction and reddening of SN light curves does not match canonical values for standard, Milky Way-like dust. It is likely that color variations intrinsic to the SNe themselves are confounding our ability to independently determine the dust extinction and reddening. Using ground-based photometry of several hundred SNe from the published literature, we present an analysis that attempts to disentangle the effects of dust and intrinsic color variations by looking at the time dependence of SNe Ia colors, controlling for light curve shape properties by empirically matching similar objects.

  8. The Progenitors of Type Ia Supernovae and the Related Objects

    NASA Astrophysics Data System (ADS)

    Wang, B.

    2011-01-01

    Type Ia supernovae (SNe Ia) are good cosmological distance indicators due to their high luminosities and remarkable uniformity, and thus are used for determining cosmological parameters. However, several key issues related to the nature of their progenitor systems are still not well understood. In this thesis, the progenitors of SNe Ia and the related objects are systematically investigated. Some main results are obtained as follows: (1) Recent observations implicate that about half of SNe Ia explode soon after starburst, with delay times less than 100 Myr, but previous models do not predict the young populations of SNe Ia. The WD + He model is proposed to solve this mystery. In this model, a carbon-oxygen WD (CO WD) accretes material from a He main sequence (MS) star or a He subgiant to increase its mass to the Chandrasekhar mass limit. It is found that this scenario can explain SNe Ia with short delay times (<100 Myr). (2) The progenitor model of SNe Ia with long delay times is systematically studied. It is found that SNe Ia from the WD + MS and WD + RG channels can contribute to the old populations (>1 Gyr) of SNe Ia, in which the WD + MS channel may be the main contributor. (3) It is found that the Galactic SN Ia birthrate from the double-degenerate (DD) model is close to those inferred from observations, while the birthrate from the single-degenerate (SD) model (including the contribution from the WD + MS, WD + RG and WD+He star channels) accounts for only about 1/2~2/3 of the observations. In these SD models, the WD + He star channel produces 14% of all SNe Ia, which constitutes the weak bimodality suggested by recent observations. (4) The companions in these SD models would survive after SN explosion. However, there has been no conclusive proof yet that any individual object is the surviving companion of a SN Ia. We show the distributions of many properties of the surviving companion stars of these SD models at the moment of SN explosion in the Galaxy. The

  9. On the environments of Type Ia supernovae within host galaxies

    NASA Astrophysics Data System (ADS)

    Anderson, J. P.; James, P. A.; Förster, F.; González-Gaitán, S.; Habergham, S. M.; Hamuy, M.; Lyman, J. D.

    2015-03-01

    We present constraints on Type Ia supernovae (SNe Ia) progenitors through an analysis of the environments found at the explosion sites of 102 events within star-forming host galaxies. Hα and Galaxy Evolution Explorer near-ultraviolet (UV) images are used to trace on-going and recent star formation (SF), while broad-band B, R, J, K imaging is also analysed. Using pixel statistics we find that SNe Ia show the lowest degree of association with Hα emission of all supernova (SN) types. It is also found that they do not trace near-UV emission. As the latter traces SF on time-scales less than 100 Myr, this rules out any extreme `prompt' delay times as the dominant progenitor channel of SNe Ia. SNe Ia best trace the B-band light distribution of their host galaxies. This implies that the population within star-forming galaxies is dominated by relatively young progenitors. Splitting SNe by their (B - V) colours at maximum light, `redder' events show a higher degree of association with H II regions and are found more centrally within hosts. We discuss possible explanations of this result in terms of line-of-sight extinction and progenitor effects. No evidence for correlations between SN stretch and environment properties is observed.

  10. The Hybrid CONe WD + He Star Scenario for the Progenitors of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Wang, B.; Meng, X.; Liu, D.-D.; Liu, Z.-W.; Han, Z.

    2014-10-01

    Hybrid CONe white dwarfs (WDs) have been suggested to be possible progenitors of type Ia supernovae (SNe Ia). In this Letter, we systematically studied the hybrid CONe WD + He star scenario for the progenitors of SNe Ia, in which a hybrid CONe WD increases its mass to the Chandrasekhar mass limit by accreting He-rich material from a non-degenerate He star. We obtained the SN Ia birthrates and delay times for this scenario using to a series of detailed binary population synthesis simulations. The SN Ia birthrates for this scenario are ~0.033-0.539 × 10-3 yr-1, which roughly accounts for 1%-18% of all SNe Ia. The estimated delay times are ~28 Myr-178 Myr, which makes these the youngest SNe Ia predicted by any progenitor model so far. We suggest that SNe Ia from this scenario may provide an alternative explanation for type Iax SNe. We also presented some properties of the donors at the point when the WDs reach the Chandrasekhar mass. These properties may be a good starting point for investigating the surviving companions of SNe Ia and for constraining the progenitor scenario studied in this work.

  11. THE HYBRID CONe WD + He STAR SCENARIO FOR THE PROGENITORS OF TYPE Ia SUPERNOVAE

    SciTech Connect

    Wang, B.; Meng, X.; Liu, D.-D.; Han, Z.; Liu, Z.-W.

    2014-10-20

    Hybrid CONe white dwarfs (WDs) have been suggested to be possible progenitors of type Ia supernovae (SNe Ia). In this Letter, we systematically studied the hybrid CONe WD + He star scenario for the progenitors of SNe Ia, in which a hybrid CONe WD increases its mass to the Chandrasekhar mass limit by accreting He-rich material from a non-degenerate He star. We obtained the SN Ia birthrates and delay times for this scenario using to a series of detailed binary population synthesis simulations. The SN Ia birthrates for this scenario are ∼0.033-0.539 × 10{sup –3} yr{sup –1}, which roughly accounts for 1%-18% of all SNe Ia. The estimated delay times are ∼28 Myr-178 Myr, which makes these the youngest SNe Ia predicted by any progenitor model so far. We suggest that SNe Ia from this scenario may provide an alternative explanation for type Iax SNe. We also presented some properties of the donors at the point when the WDs reach the Chandrasekhar mass. These properties may be a good starting point for investigating the surviving companions of SNe Ia and for constraining the progenitor scenario studied in this work.

  12. Quark-Novae Ia in the Hubble diagram: implications for dark energy

    NASA Astrophysics Data System (ADS)

    Ouyed, Rachid; Koning, Nico; Leahy, Denis; Staff, Jan E.; Cassidy, Daniel T.

    2014-05-01

    The accelerated expansion of the Universe was proposed through the use of Type-Ia supernovae (SNe) as standard candles. The standardization depends on an empirical correlation between the stretch/color and peak luminosity of the light curves. The use of Type-Ia SNe as standard candles rests on the assumption that their properties (and this correlation) do not vary with redshift. We consider the possibility that the majority of Type-Ia SNe are in fact caused by a Quark-Nova detonation in a tight neutron-star-CO-white-dwarf binary system, which forms a Quark-Nova Ia (QN-Ia). The spin-down energy injected by the Quark-Nova remnant (the quark star) contributes to the post-peak light curve and neatly explains the observed correlation between peak luminosity and light curve shape. We demonstrate that the parameters describing QN-Ia are NOT constant in redshift. Simulated QN-Ia light curves provide a test of the stretch/color correlation by comparing the true distance modulus with that determined using SN light curve fitters. We determine a correction between the true and fitted distance moduli, which when applied to Type-Ia SNe in the Hubble diagram recovers the ΩM = 1 cosmology. We conclude that Type-Ia SNe observations do not necessitate the need for an accelerating expansion of the Universe (if the observed SNe Ia are dominated by QNe Ia) and by association the need for dark energy.

  13. SN 1991T - Gamma-Ray Observatory's first supernova?

    NASA Technical Reports Server (NTRS)

    Burrows, Adam; Shankar, Anurag; Van Riper, Kenneth A.

    1991-01-01

    Consideration is given to the explosion of the Type Ia supernova SN 1991T in the nearby galaxy NGC 4527 detected in gamma-ray lines by the recently launched GRO. The dominant gamma-line and continuum features of the new 'delayed detonation' model FDEFA1 are calculated and compared to those for standard deflagration models W7 and cdtg7. It is shown that there are many useful hard photon discriminants of the Type Ia explosion mechanism that can, in principle, be detected by the OSSE and COMPTEL instruments on the GRO. Either SN 1991T, if bright enough, or one of the several Type Ia supernovae expected to be within the GRO's range during its active life, may make it possible to settle the detonation/deflagration debate, verify the generic thermonuclear white dwarf model of Type Ia explosions, and calibrate the Type Ia B(max)/847 keV line flux ratio.

  14. SN 1991T - Gamma-Ray Observatory's first supernova

    SciTech Connect

    Burrows, A.; Shankar, A.; Van riper, K.A. Los Alamos National Laboratory, NM )

    1991-09-01

    Consideration is given to the explosion of the Type Ia supernova SN 1991T in the nearby galaxy NGC 4527 detected in gamma-ray lines by the recently launched GRO. The dominant gamma-line and continuum features of the new 'delayed detonation' model FDEFA1 are calculated and compared to those for standard deflagration models W7 and cdtg7. It is shown that there are many useful hard photon discriminants of the Type Ia explosion mechanism that can, in principle, be detected by the OSSE and COMPTEL instruments on the GRO. Either SN 1991T, if bright enough, or one of the several Type Ia supernovae expected to be within the GRO's range during its active life, may make it possible to settle the detonation/deflagration debate, verify the generic thermonuclear white dwarf model of Type Ia explosions, and calibrate the Type Ia B(max)/847 keV line flux ratio. 53 refs.

  15. TYPE Ia SUPERNOVAE STRONGLY INTERACTING WITH THEIR CIRCUMSTELLAR MEDIUM

    SciTech Connect

    Silverman, Jeffrey M.; Nugent, Peter E.; Gal-Yam, Avishay; Arcavi, Iair; Ben-Ami, Sagi; Sullivan, Mark; Howell, D. Andrew; Graham, Melissa L.; Filippenko, Alexei V.; Bloom, Joshua S.; Cenko, S. Bradley; Clubb, Kelsey I.; Cao, Yi; Horesh, Assaf; Kulkarni, Shrinivas R.; Chornock, Ryan; Foley, Ryan J.; Coil, Alison L.; Griffith, Christopher V.; Kasliwal, Mansi M.; and others

    2013-07-01

    Owing to their utility for measurements of cosmic acceleration, Type Ia supernovae (SNe Ia) are perhaps the best-studied class of SNe, yet the progenitor systems of these explosions largely remain a mystery. A rare subclass of SNe Ia shows evidence of strong interaction with their circumstellar medium (CSM), and in particular, a hydrogen-rich CSM; we refer to them as SNe Ia-CSM. In the first systematic search for such systems, we have identified 16 SNe Ia-CSM, and here we present new spectra of 13 of them. Six SNe Ia-CSM have been well studied previously, three were previously known but are analyzed in depth for the first time here, and seven are new discoveries from the Palomar Transient Factory. The spectra of all SNe Ia-CSM are dominated by H{alpha} emission (with widths of {approx}2000 km s{sup -1}) and exhibit large H{alpha}/H{beta} intensity ratios (perhaps due to collisional excitation of hydrogen via the SN ejecta overtaking slower-moving CSM shells); moreover, they have an almost complete lack of He I emission. They also show possible evidence of dust formation through a decrease in the red wing of H{alpha} 75-100 days past maximum brightness, and nearly all SNe Ia-CSM exhibit strong Na I D absorption from the host galaxy. The absolute magnitudes (uncorrected for host-galaxy extinction) of SNe Ia-CSM are found to be -21.3 mag {<=} M{sub R} {<=} -19 mag, and they also seem to show ultraviolet emission at early times and strong infrared emission at late times (but no detected radio or X-ray emission). Finally, the host galaxies of SNe Ia-CSM are all late-type spirals similar to the Milky Way, or dwarf irregulars like the Large Magellanic Cloud, which implies that these objects come from a relatively young stellar population. This work represents the most detailed analysis of the SN Ia-CSM class to date.

  16. Type Ia Supernova Light-Curve Inference: Hierarchical Bayesian Analysis in the Near-Infrared

    NASA Astrophysics Data System (ADS)

    Mandel, Kaisey S.; Wood-Vasey, W. Michael; Friedman, Andrew S.; Kirshner, Robert P.

    2009-10-01

    We present a comprehensive statistical analysis of the properties of Type Ia supernova (SN Ia) light curves in the near-infrared using recent data from Peters Automated InfraRed Imaging TELescope and the literature. We construct a hierarchical Bayesian framework, incorporating several uncertainties including photometric error, peculiar velocities, dust extinction, and intrinsic variations, for principled and coherent statistical inference. SN Ia light-curve inferences are drawn from the global posterior probability of parameters describing both individual supernovae and the population conditioned on the entire SN Ia NIR data set. The logical structure of the hierarchical model is represented by a directed acyclic graph. Fully Bayesian analysis of the model and data is enabled by an efficient Markov Chain Monte Carlo algorithm exploiting the conditional probabilistic structure using Gibbs sampling. We apply this framework to the JHKs SN Ia light-curve data. A new light-curve model captures the observed J-band light-curve shape variations. The marginal intrinsic variances in peak absolute magnitudes are σ(MJ ) = 0.17 ± 0.03, σ(MH ) = 0.11 ± 0.03, and σ(MKs ) = 0.19 ± 0.04. We describe the first quantitative evidence for correlations between the NIR absolute magnitudes and J-band light-curve shapes, and demonstrate their utility for distance estimation. The average residual in the Hubble diagram for the training set SNe at cz > 2000kms-1 is 0.10 mag. The new application of bootstrap cross-validation to SN Ia light-curve inference tests the sensitivity of the statistical model fit to the finite sample and estimates the prediction error at 0.15 mag. These results demonstrate that SN Ia NIR light curves are as effective as corrected optical light curves, and, because they are less vulnerable to dust absorption, they have great potential as precise and accurate cosmological distance indicators.

  17. The Host Galaxies of Type Ia Supernovae Discovered by the Palomar Transient Factory

    NASA Technical Reports Server (NTRS)

    Pan, Y.-C.; Sullivan, M.; McGuire, K.; Hook, I. M.; Nugent, P. E.; Howell, D. A.; Arcavi, I.; Botyanszki, J.; Cenko, Stephen Bradley; DeRose, J.

    2013-01-01

    We present spectroscopic observations of the host galaxies of 82 low-redshift type Ia supernovae (SNe Ia) discovered by the Palomar Transient Factory (PTF). We determine star-formation rates, gas-phase stellar metallicities, and stellar masses and ages of these objects. As expected, strong correlations between the SN Ia light-curve width (stretch) and the host age mass metallicity are found: fainter, faster-declining events tend to be hosted by older massive metal-rich galaxies. There is some evidence that redder SNe Ia explode in higher metallicity galaxies, but we found no relation between the SN colour and host galaxy extinction based on the Balmer decrement, suggesting that the colour variation of these SNe does not primarily arise from this source. SNe Ia in higher-mass metallicity galaxies also appear brighter after stretch colour corrections than their counterparts in lower mass hosts, and the stronger correlation is with gas-phase metallicity suggesting this may be the more important variable. We also compared the host stellar mass distribution to that in galaxy targeted SN surveys and the high-redshift untargeted Supernova Legacy Survey (SNLS). SNLS has many more low mass galaxies, while the targeted searches have fewer. This can be explained by an evolution in the galaxy stellar mass function, coupled with a SN delay-time distribution proportional to t1. Finally, we found no significant difference in the mass--metallicity relation of our SN Ia hosts compared to field galaxies, suggesting any metallicity effect on the SN Ia rate is small.

  18. Locating Type Ia Supernovae in HST Archival Data via an Artifical Neural Network

    NASA Astrophysics Data System (ADS)

    Shahady, Kristin; Strolger, Louis-Gregory

    2015-01-01

    The rate of type Ia supernovae (SNe Ia) in the early universe puts important constraints on the nature of SN Ia progenitors, and had implications on dark energy. The precise limits on these rates are challenged by etendue and resolution factors which make real time investigations largely impractical, and the limited "per event" information which make archival studies seemingly inconceivable. There is, however, a wealth of information on high-redshift (z > 1) events from the GOODS, CANDELS, and other HST SN surveys, largely based on brightness constraints in relation to their host galaxy characteristics, that put high-z SNe Ia in a somewhat unique (and identifiable) parameter space. We describe our program to map these observed characteristics of SNe Ia and their host galaxies at z > 1 with artificial neural networks, and in turn use these trained networks to probabilistically locate undiscovered SNe Ia in MAST using the developing Hubble Source Catalog. We expect that the orders of magnitude increase in survey area will lead to a more statistically definitive sample, determining the exact trend in the cosmic SN Ia rate history in this crucial epoch.

  19. On the Dependence of Type Ia SNe Luminosities on the Metallicity of Their Host Galaxies

    NASA Astrophysics Data System (ADS)

    Moreno-Raya, Manuel E.; Mollá, Mercedes; López-Sánchez, Ángel R.; Galbany, Lluís; Vílchez, José Manuel; Carnero Rosell, Aurelio; Domínguez, Inmaculada

    2016-02-01

    The metallicity of the progenitor system producing a type Ia supernova (SN Ia) could play a role in its maximum luminosity, as suggested by theoretical predictions. We present an observational study to investigate if such a relationship exists. Using the 4.2 m William Herschel Telescope (WHT) we have obtained intermediate-resolution spectroscopy data of a sample of 28 local galaxies hosting SNe Ia, for which distances have been derived using methods independent of those based on SN Ia parameters. From the emission lines observed in their optical spectra, we derived the gas-phase oxygen abundance in the region where each SN Ia exploded. Our data show a trend, with an 80% of chance not being due to random fluctuation, between SNe Ia absolute magnitudes and the oxygen abundances of the host galaxies, in the sense that luminosities tend to be higher for galaxies with lower metallicities. This result seems likely to be in agreement with both the theoretically expected behavior and with other observational results. This dependence MB-Z might induce systematic errors when it is not considered when deriving SNe Ia luminosities and then using them to derive cosmological distances.

  20. High-velocity features in Type Ia supernova spectra

    NASA Astrophysics Data System (ADS)

    Childress, Michael J.; Filippenko, Alexei V.; Ganeshalingam, Mohan; Schmidt, Brian P.

    2014-01-01

    We use a sample of 58 low-redshift (z ≤ 0.03) Type Ia supernovae (SNe Ia) having well-sampled light curves and spectra near maximum light to examine the behaviour of high-velocity features (HVFs) in SN Ia spectra. We take advantage of the fact that Si II λ6355 is free of HVFs at maximum light in all SNe Ia, while HVFs are still strong in the Ca II near-infrared feature in many SNe, allowing us to quantify the strength of HVFs by comparing the structure of these two lines. We find that the average HVF strength increases with decreasing light-curve decline rate, and rapidly declining SNe Ia (Δm15(B) ≥ 1.4 mag) show no HVFs in their maximum-light spectra. Comparison of HVF strength to the light-curve colour of the SNe Ia in our sample shows no evidence of correlation. We find a correlation of HVF strength with the velocity of Si II λ6355 at maximum light (vSi), such that SNe Ia with lower vSi have stronger HVFs, while those SNe Ia firmly in the `high-velocity' (i.e. vSi ≥ 12 000 km s-1) subclass exhibit no HVFs in their maximum-light spectra. While vSi and Δm15(B) show no correlation in the full sample of SNe Ia, we find a significant correlation between these quantities in the subset of SNe Ia having weak HVFs. In general, we find that slowly declining (low Δm15(B)) SNe Ia, which are more luminous and more energetic than average SNe Ia, tend to produce either high photospheric ejecta velocities (i.e. high vSi) or strong HVFs at maximum light, but not both. Finally, we examine the evolution of HVF strength for a sample of SNe Ia having extensive pre-maximum spectroscopic coverage and find significant diversity of the pre-maximum HVF behaviour.

  1. Constraining Cosmic Evolution of Type Ia Supernovae

    SciTech Connect

    Foley, Ryan J.; Filippenko, Alexei V.; Aguilera, C.; Becker, A.C.; Blondin, S.; Challis, P.; Clocchiatti, A.; Covarrubias, R.; Davis, T.M.; Garnavich, P.M.; Jha, S.; Kirshner, R.P.; Krisciunas, K.; Leibundgut, B.; Li, W.; Matheson, T.; Miceli, A.; Miknaitis, G.; Pignata, G.; Rest, A.; Riess, A.G.; /UC, Berkeley, Astron. Dept. /Cerro-Tololo InterAmerican Obs. /Washington U., Seattle, Astron. Dept. /Harvard-Smithsonian Ctr. Astrophys. /Chile U., Catolica /Bohr Inst. /Notre Dame U. /KIPAC, Menlo Park /Texas A-M /European Southern Observ. /NOAO, Tucson /Fermilab /Chile U., Santiago /Harvard U., Phys. Dept. /Baltimore, Space Telescope Sci. /Johns Hopkins U. /Res. Sch. Astron. Astrophys., Weston Creek /Stockholm U. /Hawaii U. /Illinois U., Urbana, Astron. Dept.

    2008-02-13

    We present the first large-scale effort of creating composite spectra of high-redshift type Ia supernovae (SNe Ia) and comparing them to low-redshift counterparts. Through the ESSENCE project, we have obtained 107 spectra of 88 high-redshift SNe Ia with excellent light-curve information. In addition, we have obtained 397 spectra of low-redshift SNe through a multiple-decade effort at Lick and Keck Observatories, and we have used 45 ultraviolet spectra obtained by HST/IUE. The low-redshift spectra act as a control sample when comparing to the ESSENCE spectra. In all instances, the ESSENCE and Lick composite spectra appear very similar. The addition of galaxy light to the Lick composite spectra allows a nearly perfect match of the overall spectral-energy distribution with the ESSENCE composite spectra, indicating that the high-redshift SNe are more contaminated with host-galaxy light than their low-redshift counterparts. This is caused by observing objects at all redshifts with similar slit widths, which corresponds to different projected distances. After correcting for the galaxy-light contamination, subtle differences in the spectra remain. We have estimated the systematic errors when using current spectral templates for K-corrections to be {approx}0.02 mag. The variance in the composite spectra give an estimate of the intrinsic variance in low-redshift maximum-light SN spectra of {approx}3% in the optical and growing toward the ultraviolet. The difference between the maximum-light low and high-redshift spectra constrain SN evolution between our samples to be < 10% in the rest-frame optical.

  2. THE VERY YOUNG TYPE Ia SUPERNOVA 2013dy: DISCOVERY, AND STRONG CARBON ABSORPTION IN EARLY-TIME SPECTRA

    SciTech Connect

    Zheng, WeiKang; Filippenko, Alexei V.; Nugent, Peter E.; Graham, Melissa; Kelly, Patrick L.; Fox, Ori D.; Shivvers, Isaac; Clubb, Kelsey I.; Li, Weidong; Silverman, Jeffrey M.; Howie Marion, G.; Kasen, Daniel; Wang, Xiaofeng; Valenti, Stefano; Howell, D. Andrew; Ciabattari, Fabrizio; Cenko, S. Bradley; Balam, Dave; Hsiao, Eric; Sand, David; and others

    2013-11-20

    The Type Ia supernova (SN Ia) 2013dy in NGC 7250 (d ≈ 13.7 Mpc) was discovered by the Lick Observatory Supernova Search. Combined with a prediscovery detection by the Italian Supernova Search Project, we are able to constrain the first-light time of SN 2013dy to be only 0.10 ± 0.05 days (2.4 ± 1.2 hr) before the first detection. This makes SN 2013dy the earliest known detection of an SN Ia. We infer an upper limit on the radius of the progenitor star of R {sub 0} ≲ 0.25 R {sub ☉}, consistent with that of a white dwarf. The light curve exhibits a broken power law with exponents of 0.88 and then 1.80. A spectrum taken 1.63 days after first light reveals a C II absorption line comparable in strength to Si II. This is the strongest C II feature ever detected in a normal SN Ia, suggesting that the progenitor star had significant unburned material. The C II line in SN 2013dy weakens rapidly and is undetected in a spectrum 7 days later, indicating that C II is detectable for only a very short time in some SNe Ia. SN 2013dy reached a B-band maximum of M{sub B} = –18.72 ± 0.03 mag ∼17.7 days after first light.

  3. The Very Young Type Ia Supernova 2013dy: Discovery, and Strong Carbon Absorption in Early-time Spectra

    NASA Astrophysics Data System (ADS)

    Zheng, WeiKang; Silverman, Jeffrey M.; Filippenko, Alexei V.; Kasen, Daniel; Nugent, Peter E.; Graham, Melissa; Wang, Xiaofeng; Valenti, Stefano; Ciabattari, Fabrizio; Kelly, Patrick L.; Fox, Ori D.; Shivvers, Isaac; Clubb, Kelsey I.; Cenko, S. Bradley; Balam, Dave; Howell, D. Andrew; Hsiao, Eric; Li, Weidong; Marion, G. Howie; Sand, David; Vinko, Jozsef; Wheeler, J. Craig; Zhang, JuJia

    2013-11-01

    The Type Ia supernova (SN Ia) 2013dy in NGC 7250 (d ≈ 13.7 Mpc) was discovered by the Lick Observatory Supernova Search. Combined with a prediscovery detection by the Italian Supernova Search Project, we are able to constrain the first-light time of SN 2013dy to be only 0.10 ± 0.05 days (2.4 ± 1.2 hr) before the first detection. This makes SN 2013dy the earliest known detection of an SN Ia. We infer an upper limit on the radius of the progenitor star of R 0 <~ 0.25 R ⊙, consistent with that of a white dwarf. The light curve exhibits a broken power law with exponents of 0.88 and then 1.80. A spectrum taken 1.63 days after first light reveals a C II absorption line comparable in strength to Si II. This is the strongest C II feature ever detected in a normal SN Ia, suggesting that the progenitor star had significant unburned material. The C II line in SN 2013dy weakens rapidly and is undetected in a spectrum 7 days later, indicating that C II is detectable for only a very short time in some SNe Ia. SN 2013dy reached a B-band maximum of MB = -18.72 ± 0.03 mag ~17.7 days after first light.

  4. Measuring weak lensing correlations of Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Scovacricchi, D.; Nichol, R. C.; Macaulay, E.; Bacon, D.

    2017-03-01

    We study the feasibility of detecting weak lensing spatial correlations between supernova (SN) Type Ia magnitudes with present (Dark Energy Survey, DES) and future (Large Synoptic Survey Telescope, LSST) surveys. We investigate the angular auto-correlation function of SN magnitudes (once the background cosmology has been subtracted) and cross-correlation with galaxy catalogues. We examine both analytical and numerical predictions, the latter using simulated galaxy catalogues from the MICE Grand Challenge Simulation. We predict that we will be unable to detect the SN auto-correlation in DES, while it should be detectable with the LSST SN deep fields (15 000 SNe on 70 deg2) at ≃6σ level of confidence (assuming 0.15 mag of intrinsic dispersion). The SN-galaxy cross-correlation function will deliver much higher signal to noise, being detectable in both surveys with an integrated signal to noise of ∼100 (up to 30 arcmin separations). We predict joint constraints on the matter density parameter (Ωm) and the clustering amplitude (σ8) by fitting the auto-correlation function of our mock LSST deep fields. When assuming a Gaussian prior for Ωm, we can achieve a 25 per cent measurement of σ8 from just these LSST supernovae (assuming 0.15 mag of intrinsic dispersion). These constraints will improve significantly if the intrinsic dispersion of SNe Ia can be reduced.

  5. Type Ia Supernova Rate Measurements to Redshift 2.5 from Candles: Searching for Prompt Explosions in the Early Universe

    NASA Technical Reports Server (NTRS)

    Rodney, Steven A.; Riess, Adam G.; Strogler, Louis-Gregory; Dahlen, Tomas; Graur, Or; Casertano, Stefano; Dickinson, Mark E.; Ferguson, Henry C.; Garnavich, Peter; Cenko, Stephen Bradley

    2014-01-01

    The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) was a multi-cycle treasury program on the Hubble Space Telescope(HST) that surveyed a total area of approx. 0.25 deg(sup 2) with approx.900 HST orbits spread across five fields over three years. Within these survey images we discovered 65 supernovae (SNe) of all types, out to z approx. 2.5. We classify approx. 24 of these as Type Ia SNe (SNe Ia) based on host galaxy redshifts and SN photometry (supplemented by grism spectroscopy of six SNe). Here we present a measurement of the volumetric SN Ia rate as a function of redshift, reaching for the first time beyond z = 2 and putting new constraints on SN Ia progenitor models. Our highest redshift bin includes detections of SNe that exploded when the universe was only approx. 3 Gyr old and near the peak of the cosmic star formation history. This gives the CANDELS high redshift sample unique leverage for evaluating the fraction of SNe Ia that explode promptly after formation (500 Myr). Combining the CANDELS rates with all available SN Ia rate measurements in the literature we find that this prompt SN Ia fraction isfP0.530.09stat0.100.10sys0.26, consistent with a delay time distribution that follows a simplet1power law for all timest40 Myr. However, mild tension is apparent between ground-based low-z surveys and space-based high-z surveys. In both CANDELS and the sister HST program CLASH (Cluster Lensing And Supernova Survey with Hubble), we find a low rate of SNe Ia at z > 1. This could be a hint that prompt progenitors are in fact relatively rare, accounting for only 20 of all SN Ia explosions though further analysis and larger samples will be needed to examine that suggestion.

  6. Late-time spectra and type Ia supernova models: New clues from the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Ruiz-Lapuente, P.; Kirshner, R. P.; Phillips, M. M.; Challis, P. M.; Schmidt, B. P.; Filippenko, A. V.; Wheeler, J. C.

    1995-01-01

    Calculated late-time spectra of two classical hydrodynamical models for Type Ia supernovae (deflagration model W7 of Nomoto, Thielemann, & Yokoi, and delayed detonation model DD4 of Woosley & Weaver) are compared with observations of SN 1992A and other spectroscopically normal SNe Ia. An important new piece of information is provided by observations done with the Hubble Space Telescope (HST) which cover the ultraviolet range at the nebular phase of a SN Ia: SN 1992A in NGC 1380. For the first time a picture of SN Ia emission from the ultraviolet through the optical is obtained at these phases. Predictions of the classical model (W7 and DD4) are compared with the observed spectrum of SN 1992A and with the optical spectra of SN 1989M in NGC 4579 and SN 1990N in NGC 4639 at similar epochs. The absolute B and V magnitudes of the models are also estimated at these late phases. Taken at face value the nebular spectra of these 'classical' models are more consistent with the long extragalactic distance scale, pointing to distances to NGC 4579 around 21 +/- 3 Mpc and a slightly larger distance, 22 +/- 3 Mpc, to NGC 4639, on the back side of the Virgo Cluster. However, the calculated Fe(+3) luminosity as predicted from the models exceeds the observed limit from the HST data of SN 1992A. Other differences in the ratios of the line intensities between calculated and observed spectra, show some disagreement with the observed spectra at the nebular phases. They may not be the best choice for spectroscopically normal SNe Ia, and their use as an independent calibration of the extragalactic distance scale should be viewed with caution.

  7. Late-time spectra and type Ia supernova models: New clues from the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Ruiz-Lapuente, P.; Kirshner, R. P.; Phillips, M. M.; Challis, P. M.; Schmidt, B. P.; Filippenko, A. V.; Wheeler, J. C.

    1995-01-01

    Calculated late-time spectra of two classical hydrodynamical models for Type Ia supernovae (deflagration model W7 of Nomoto, Thielemann, & Yokoi, and delayed detonation model DD4 of Woosley & Weaver) are compared with observations of SN 1992A and other spectroscopically normal SNe Ia. An important new piece of information is provided by observations done with the Hubble Space Telescope (HST) which cover the ultraviolet range at the nebular phase of a SN Ia: SN 1992A in NGC 1380. For the first time a picture of SN Ia emission from the ultraviolet through the optical is obtained at these phases. Predictions of the classical model (W7 and DD4) are compared with the observed spectrum of SN 1992A and with the optical spectra of SN 1989M in NGC 4579 and SN 1990N in NGC 4639 at similar epochs. The absolute B and V magnitudes of the models are also estimated at these late phases. Taken at face value the nebular spectra of these 'classical' models are more consistent with the long extragalactic distance scale, pointing to distances to NGC 4579 around 21 +/- 3 Mpc and a slightly larger distance, 22 +/- 3 Mpc, to NGC 4639, on the back side of the Virgo Cluster. However, the calculated Fe(+3) luminosity as predicted from the models exceeds the observed limit from the HST data of SN 1992A. Other differences in the ratios of the line intensities between calculated and observed spectra, show some disagreement with the observed spectra at the nebular phases. They may not be the best choice for spectroscopically normal SNe Ia, and their use as an independent calibration of the extragalactic distance scale should be viewed with caution.

  8. The Type Ia supernova 1989B in NGC 3627 (M66)

    NASA Technical Reports Server (NTRS)

    Wells, Lisa A.; Phillips, M. M.; Suntzeff, Nicholas B.; Heathcote, S. R.; Hamuy, Mario; Navarrete, M.; Fernandez, M.; Weller, W. G.; Schommer, R. A.; Kirshner, Robert P.

    1994-01-01

    We report extensive optical photometry and spectroscopy of the Type Ia supernova 1989B. Maximum light in B occurred approximately seven days after discovery on JD 2447565.3 +/- 1.0 (1989 February 7.8 +/- 1.0) at a magnitude of 12.34 +/- 0.05. The UBV light curves of this supernova were very similar to those of other well observed Type Ia events such as SN 1981B and SN 1980N. From a comparison of the UBVRIJHK photometry, we derive an extinction for SN 1989B of E(B-V) = 0.37 +/- 0.03 mags relative to the unobscured Type Ia SN 1980N. The properties of the dust responsible for the reddening of SN 1989B appear to have been similar to those of normal dust in the Milky Way. In particular, we find no evidence for an unusually low value of the ratio of the total to selective absorption. We derive a distance modulus of delta mu(sub 0) = -1.62 +/- 0.03 mag relative to the Type Ia SN 1980N. We present optical spectra which provide essentially continuous coverage of the spectral evolution of SN 1989B over the first month following B maximum. These data show the transition from the maximum-light spectrum, in which lines of elements such as Ca, Si, S, Mg, and O are most prominent, to the Fe-dominated spectrum observed a few weeks after maximum. This transition occurred quite smoothly over a two-week period following B maximum. Comparison of the spectra of SN 1989B with data for two other well observed Type Ia supernovae -- 1981B and 1986G -- reveals subtle differences in the relative strengths of the S II and Si II absorption lines at maximum light. However, these differences disappeared within a week or so after maximum with the onset of the Fe-dominated phase.

  9. IMPROVED DARK ENERGY CONSTRAINTS FROM {approx}100 NEW CfA SUPERNOVA TYPE Ia LIGHT CURVES

    SciTech Connect

    Hicken, Malcolm; Challis, Peter; Kirshner, Robert P.; Wood-Vasey, W. Michael; Blondin, Stephane; Jha, Saurabh; Kelly, Patrick L.; Rest, Armin E-mail: kirshner@cfa.harvard.edu

    2009-08-01

    We combine the CfA3 supernovae Type Ia (SN Ia) sample with samples from the literature to calculate improved constraints on the dark energy equation of state parameter, w. The CfA3 sample is added to the Union set of Kowalski et al. to form the Constitution set and, combined with a BAO prior, produces 1 + w = 0.013{sup +0.066} {sub -0.068} (0.11 syst), consistent with the cosmological constant. The CfA3 addition makes the cosmologically useful sample of nearby SN Ia between 2.6 and 2.9 times larger than before, reducing the statistical uncertainty to the point where systematics play the largest role. We use four light-curve fitters to test for systematic differences: SALT, SALT2, MLCS2k2 (R{sub V} = 3.1), and MLCS2k2 (R{sub V} = 1.7). SALT produces high-redshift Hubble residuals with systematic trends versus color and larger scatter than MLCS2k2. MLCS2k2 overestimates the intrinsic luminosity of SN Ia with 0.7 < {delta} < 1.2. MLCS2k2 with R{sub V} = 3.1 overestimates host-galaxy extinction while R{sub V} {approx} 1.7 does not. Our investigation is consistent with no Hubble bubble. We also find that, after light-curve correction, SN Ia in Scd/Sd/Irr hosts are intrinsically fainter than those in E/S0 hosts by 2{sigma}, suggesting that they may come from different populations. We also find that SN Ia in Scd/Sd/Irr hosts have low scatter (0.1 mag) and reddening. Current systematic errors can be reduced by improving SN Ia photometric accuracy, by including the CfA3 sample to retrain light-curve fitters, by combining optical SN Ia photometry with near-infrared photometry to understand host-galaxy extinction, and by determining if different environments give rise to different intrinsic SN Ia luminosity after correction for light-curve shape and color.

  10. Improved Dark Energy Constraints From ~ 100 New CfA Supernova Type Ia Light Curves

    SciTech Connect

    Hicken, Malcolm; Wood-Vasey, W.Michael; Blondin, Stephane; Challis, Peter; Jha, Saurabh; Kelly, Patrick L.; Rest, Armin; Kirshner, Robert P.; /Harvard-Smithsonian Ctr. Astrophys.

    2012-04-06

    We combine the CfA3 supernovae Type Ia (SN Ia) sample with samples from the literature to calculate improved constraints on the dark energy equation of state parameter, w. The CfA3 sample is added to the Union set of Kowalski et al. to form the Constitution set and, combined with a BAO prior, produces 1 + w = 0.013{sub -0.068}{sup +0.066} (0.11 syst), consistent with the cosmological constant. The CfA3 addition makes the cosmologically useful sample of nearby SN Ia between 2.6 and 2.9 times larger than before, reducing the statistical uncertainty to the point where systematics play the largest role. We use four light-curve fitters to test for systematic differences: SALT, SALT2, MLCS2k2 (R{sub V} = 3.1), and MLCS2k2 (R{sub V} = 1.7). SALT produces high-redshift Hubble residuals with systematic trends versus color and larger scatter than MLCS2k2. MLCS2k2 overestimates the intrinsic luminosity of SN Ia with 0.7 < {Delta} < 1.2. MLCS2k2 with R{sub V} = 3.1 overestimates host-galaxy extinction while R{sub V} {approx} 1.7 does not. Our investigation is consistent with no Hubble bubble. We also find that, after light-curve correction, SN Ia in Scd/Sd/Irr hosts are intrinsically fainter than those in E/S0 hosts by 2{sigma}, suggesting that they may come from different populations. We also find that SN Ia in Scd/Sd/Irr hosts have low scatter (0.1 mag) and reddening. Current systematic errors can be reduced by improving SN Ia photometric accuracy, by including the CfA3 sample to retrain light-curve fitters, by combining optical SN Ia photometry with near-infrared photometry to understand host-galaxy extinction, and by determining if different environments give rise to different intrinsic SN Ia luminosity after correction for light-curve shape and color.

  11. Dynamics of the Remnant of Kepler's Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Borkowski, Kazimierz

    2013-09-01

    The remnant of Kepler's Type Ia SN shows an interaction of SN ejecta with a highly asymmetric ambient circumstellar medium (CSM). This material was ejected by a single-degenerate progenitor prior to the explosion, and its complex spatial distribution contains invaluable information about the progenitor itself. We propose a third-epoch observation of Kepler's SNR that will provide us with much improved expansion rates, allowing for measurements of shock speeds along the whole periphery of the remnant. These measurements will be compared with 3-D hydrodynamic simulations, thus unraveling the true shape of the CSM in a Type Ia progenitor. They will also advance our knowledge of poorly-understood particle acceleration and magnetic field amplification processes in fast SNR shocks.

  12. SHOCK BREAKOUT FROM TYPE Ia SUPERNOVA

    SciTech Connect

    Piro, Anthony L.; Chang, Philip; Weinberg, Nevin N. E-mail: pchang@astro.berkeley.ed

    2010-01-01

    The mode of explosive burning in Type Ia supernovae (SNe Ia) remains an outstanding problem. It is generally thought to begin as a subsonic deflagration, but this may transition into a supersonic detonation (the delayed detonation transition, DDT). We argue that this transition leads to a breakout shock, which would provide the first unambiguous evidence that DDTs occur. Its main features are a hard X-ray flash (approx20 keV) lasting approx10{sup -2} s with a total radiated energy of approx10{sup 40} erg, followed by a cooling tail. This creates a distinct feature in the visual light curve, which is separate from the nickel decay. This cooling tail has a maximum absolute visual magnitude of M{sub V} approx -9 to -10 at approx1 day, which depends most sensitively on the white dwarf radius at the time of the DDT. As the thermal diffusion wave moves in, the composition of these surface layers may be imprinted as spectral features, which would help to discern between SN Ia progenitor models. Since this feature should accompany every SNe Ia, future deep surveys (e.g., m = 24) will see it out to a distance of approx80 Mpc, giving a maximum rate of approx60 yr{sup -1}. Archival data sets can also be used to study the early rise dictated by the shock heating (at approx20 days before maximum B-band light). A similar and slightly brighter event may also accompany core bounce during the accretion-induced collapse to a neutron star, but with a lower occurrence rate.

  13. THE BIRTH RATE OF SNe Ia FROM HYBRID CONe WHITE DWARFS

    SciTech Connect

    Meng, Xiangcun; Podsiadlowski, Philipp

    2014-07-10

    Considering the uncertainties of the C-burning rate (CBR) and the treatment of convective boundaries, Chen et al. found that there is a regime where it is possible to form hybrid CONe white dwarfs (WDs), i.e., ONe WDs with carbon-rich cores. As these hybrid WDs can be as massive as 1.30 M {sub ☉}, not much mass needs to be accreted for these objects to reach the Chandrasekhar limit and to explode as Type Ia supernovae (SNe Ia). We have investigated their contribution to the overall SN Ia birth rate and found that such SNe Ia tend to be relatively young with typical time delays between 0.1 and 1 Gyr, where some may be as young as 30 Myr. SNe Ia from hybrid CONe WDs may contribute several percent to all SNe Ia, depending on the common-envelope ejection efficiency and the CBR. We suggest that these SNe Ia may produce part of the 2002cx-like SN Ia class.

  14. The Birth Rate of SNe Ia from Hybrid CONe White Dwarfs

    NASA Astrophysics Data System (ADS)

    Meng, Xiangcun; Podsiadlowski, Philipp

    2014-07-01

    Considering the uncertainties of the C-burning rate (CBR) and the treatment of convective boundaries, Chen et al. found that there is a regime where it is possible to form hybrid CONe white dwarfs (WDs), i.e., ONe WDs with carbon-rich cores. As these hybrid WDs can be as massive as 1.30 M ⊙, not much mass needs to be accreted for these objects to reach the Chandrasekhar limit and to explode as Type Ia supernovae (SNe Ia). We have investigated their contribution to the overall SN Ia birth rate and found that such SNe Ia tend to be relatively young with typical time delays between 0.1 and 1 Gyr, where some may be as young as 30 Myr. SNe Ia from hybrid CONe WDs may contribute several percent to all SNe Ia, depending on the common-envelope ejection efficiency and the CBR. We suggest that these SNe Ia may produce part of the 2002cx-like SN Ia class.

  15. Delayed detonation models for normal and subluminous type Ia sueprnovae: Absolute brightness, light curves, and molecule formation

    NASA Technical Reports Server (NTRS)

    Hoflich, P.; Khokhlov, A. M.; Wheeler, J. C.

    1995-01-01

    We compute optical and infrared light curves of the pulsating class of delayed detonation models for Type Ia supernovae (SN Ia's) using an elaborate treatment of the Local Thermodynamic Equilbrium (LTE) radiation transport, equation of state and ionization balance, expansion opacity including the cooling by CO, Co(+), and SiO, and a Monte Carlo gamma-ray deposition scheme. The models have an amount of Ni-56 in the range from approximately or equal to 0.1 solar mass up to 0.7 solar mass depending on the density at which the transition from a deflagration to a detonation occurs. Models with a large nickel production give light curves comparable to those of typical Type Ia supernovae. Subluminous supernovae can be explained by models with a low nickel production. Multiband light curves are presented in comparison with the normally bright event SN 1992bc and the subluminous events Sn 1991bg and SN 1992bo to establish the principle that the delayed detonation paradigm in Chandrasekhar mass models may give a common explosion mechanism accounting for both normal and subluminous SN Ia's. Secondary IR-maxima are formed in the models of normal SN Ia's as a photospheric effect if the photospheric radius continues to increase well after maximum light. Secondary maxima appear later and stronger in models with moderate expansion velocities and with radioactive material closer to the surface. Model light curves for subluminous SN Ia's tend to show only one 'late' IR-maximum. In some delayed detonation models shell-like envelopes form, which consist of unburned carbon and oxygen. The formation of molecules in these envelopes is addressed. If the model retains a C/O-envelope and is subluminous, strong vibration bands of CO may appear, typically several weeks past maximum light. CO should be very weak or absent in normal Sn Ia's.

  16. Delayed detonation models for normal and subluminous type Ia sueprnovae: Absolute brightness, light curves, and molecule formation

    NASA Technical Reports Server (NTRS)

    Hoflich, P.; Khokhlov, A. M.; Wheeler, J. C.

    1995-01-01

    We compute optical and infrared light curves of the pulsating class of delayed detonation models for Type Ia supernovae (SN Ia's) using an elaborate treatment of the Local Thermodynamic Equilbrium (LTE) radiation transport, equation of state and ionization balance, expansion opacity including the cooling by CO, Co(+), and SiO, and a Monte Carlo gamma-ray deposition scheme. The models have an amount of Ni-56 in the range from approximately or equal to 0.1 solar mass up to 0.7 solar mass depending on the density at which the transition from a deflagration to a detonation occurs. Models with a large nickel production give light curves comparable to those of typical Type Ia supernovae. Subluminous supernovae can be explained by models with a low nickel production. Multiband light curves are presented in comparison with the normally bright event SN 1992bc and the subluminous events Sn 1991bg and SN 1992bo to establish the principle that the delayed detonation paradigm in Chandrasekhar mass models may give a common explosion mechanism accounting for both normal and subluminous SN Ia's. Secondary IR-maxima are formed in the models of normal SN Ia's as a photospheric effect if the photospheric radius continues to increase well after maximum light. Secondary maxima appear later and stronger in models with moderate expansion velocities and with radioactive material closer to the surface. Model light curves for subluminous SN Ia's tend to show only one 'late' IR-maximum. In some delayed detonation models shell-like envelopes form, which consist of unburned carbon and oxygen. The formation of molecules in these envelopes is addressed. If the model retains a C/O-envelope and is subluminous, strong vibration bands of CO may appear, typically several weeks past maximum light. CO should be very weak or absent in normal Sn Ia's.

  17. Nature versus Nurture: How Parent Galaxy Environments Affect the Rates and Properties of their Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Graham, Melissa Lynn

    2010-08-01

    Supernovae of Type Ia, SNe Ia, are currently the most powerful tool of modern cosmology, but their progenitor scenario is not yet well constrained. Recent studies of SN Ia rates in radio-loud early-type galaxies, and members of rich clusters, suggest a possible influence on SN Ia explosions outside of the established correlation with the age of the parent galaxy's stellar population (via the current specific star formation rate, sSFR). These rates were used to show that the characteristics of SN Ia progenitor systems may be inconsistent with theoretical expectations of the most popular scenarios. The astrophysical question of this thesis is: do parent galaxy and environment influence the rates and properties of Type Ia supernovae, and, if so, how? Towards this end, we combine the database of Type Ia supernovae from the Canada-France-Hawaii Telescope's Supernova Legacy Survey with publicly available catalogs including: galaxy photometric and spectroscopic redshifts, radio and infrared sources, and members of galaxy groups and clusters. This is the most comprehensive set of multi-wavelength host properties and environment parameters for intermediate redshift Type Ia supernovae yet compiled. We present the SNLS SN Ia rate per unit mass in a variety of parent galaxy and environment samples. We also statistically assess the probability of discrepancies between our rates, those of previous works at low redshift, rates in the general population of galaxies, and predictions of established empirical SN Ia rate models. In general, we do not find statistically significant evidence for SN Ia rate enhancements over the general population in galaxies which are radio-loud, infrared-bright, or associated with galaxy groups and clusters. In cases where we do find a suggestive rate enhancement, it is always with less than 2-sigma confidence. These rates agree with established empirical rate models, which in turn are consistent with theoretical expectations of the most plausible

  18. Type Ia supernovae: explosions and progenitors

    NASA Astrophysics Data System (ADS)

    Kerzendorf, Wolfgang Eitel

    2011-08-01

    Supernovae are the brightest explosions in the universe. Supernovae in our Galaxy, rare and happening only every few centuries, have probably been observed since the beginnings of mankind. At first they were interpreted as religious omens but in the last half millennium they have increasingly been used to study the cosmos and our place in it. Tycho Brahe deduced from his observations of the famous supernova in 1572, that the stars, in contrast to the widely believe Aristotelian doctrine, were not immutable. More than 400 years after Tycho made his paradigm changing discovery using SN 1572, and some 60 years after supernovae had been identified as distant dying stars, two teams changed the view of the world again using supernovae. The found that the Universe was accelerating in its expansion, a conclusion that could most easily be explained if more than 70% of the Universe was some previously un-identified form of matter now often referred to as `Dark Energy'. Beyond their prominent role as tools to gauge our place in the Universe, supernovae themselves have been studied well over the past 75 years. We now know that there are two main physical causes of these cataclysmic events. One of these channels is the collapse of the core of a massive star. The observationally motivated classes Type II, Type Ib and Type Ic have been attributed to these events. This thesis, however is dedicated to the second group of supernovae, the thermonuclear explosions of degenerate carbon and oxygen rich material and lacking hydrogen - called Type Ia supernovae (SNe Ia). White dwarf stars are formed at the end of a typical star's life when nuclear burning ceases in the core, the outer envelope is ejected, with the degenerate core typically cooling for eternity. Theory predicts that such stars will self ignite when close to 1.38 Msun (called the Chandrasekhar Mass). Most stars however leave white dwarfs with 0.6 Msun, and no star leaves a remnant as heavy as 1.38 M! sun, which suggests

  19. Reddened, Redshifted, or Intrinsically Red? Understanding Near-ultraviolet Colors of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Brown, Peter J.; Landez, Nancy J.; Milne, Peter A.; Stritzinger, Maximilian D.

    2017-02-01

    The intrinsic colors of Type Ia supernovae (SNe Ia) are important to understanding their use as cosmological standard candles. Understanding the effects of reddening and redshift on the observed colors are complicated and dependent on the intrinsic spectrum, the filter curves, and the wavelength dependence of reddening. We present ultraviolet and optical data of a growing sample of SNe Ia observed with the Ultraviolet/Optical Telescope on the Swift spacecraft and use this sample to re-examine the near-UV (NUV) colors of SNe Ia. We find that a small amount of reddening (E(B ‑ V) = 0.2 mag) could account for the difference between groups designated as NUV-blue and NUV-red, and a moderate amount of reddening (E(B ‑ V) = 0.5 mag) could account for the whole NUV-optical differences. The reddening scenario, however, is inconsistent with the mid-UV colors and color evolution. The effect of redshift alone only accounts for part of the variation. Using a spectral template of SN2011fe, we can forward model the effects of redshift and reddening and directly compare those with the observed colors. We find that some SNe are consistent with reddened versions of SN2011fe, but most SNe Ia are much redder in the uvw1 ‑ v color than SN2011fe reddened to the same b ‑ v color. The absolute magnitudes show that two out of five NUV-blue SNe Ia are blue because their near-UV luminosity is high, and the other three are optically fainter. We also show that SN 2011fe is not a “normal” SN Ia in the UV, but has colors placing it at the blue extreme of our sample.

  20. THE SUBLUMINOUS AND PECULIAR TYPE Ia SUPERNOVA PTF 09dav

    SciTech Connect

    Sullivan, M.; Ofek, E. O.; Blake, S.; Podsiadlowski, P.; Kasliwal, M. M.; Cooke, J.; Quimby, R.; Kulkarni, S. R.; Nugent, P. E.; Thomas, R. C.; Poznanski, D.; Howell, D. A.; Arcavi, I.; Gal-Yam, A.; Hook, I. M.; Mazzali, P.; Bildsten, L.; Bloom, J. S.; Cenko, S. B.; Law, N.

    2011-05-10

    PTF 09dav is a peculiar subluminous Type Ia supernova (SN) discovered by the Palomar Transient Factory (PTF). Spectroscopically, it appears superficially similar to the class of subluminous SN1991bg-like SNe, but it has several unusual features which make it stand out from this population. Its peak luminosity is fainter than any previously discovered SN1991bg-like SN Ia (M{sub B} {approx} -15.5), but without the unusually red optical colors expected if the faint luminosity were due to extinction. The photospheric optical spectra have very unusual strong lines of Sc II and Mg I, with possible Sr II, together with stronger than average Ti II and low velocities of {approx}6000 km s{sup -1}. The host galaxy of PTF09dav is ambiguous. The SN lies either on the extreme outskirts ({approx}41 kpc) of a spiral galaxy or in an very faint (M{sub R} {>=} -12.8) dwarf galaxy, unlike other 1991bg-like SNe which are invariably associated with massive, old stellar populations. PTF 09dav is also an outlier on the light-curve-width-luminosity and color-luminosity relations derived for other subluminous SNe Ia. The inferred {sup 56}Ni mass is small (0.019 {+-} 0.003 M{sub sun}), as is the estimated ejecta mass of 0.36 M{sub sun}. Taken together, these properties make PTF 09dav a remarkable event. We discuss various physical models that could explain PTF 09dav. Helium shell detonation or deflagration on the surface of a CO white dwarf can explain some of the features of PTF 09dav, including the presence of Sc and the low photospheric velocities, but the observed Si and Mg are not predicted to be very abundant in these models. We conclude that no single model is currently capable of explaining all of the observed signatures of PTF 09dav.

  1. SN X-ray Progenitor?

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Identifying stars that explode, right before they explode, is a tricky proposition since the end of starlife comes swiftly: in thermonuclear deflagrations, in nuclear exhaustion, or maybe in a rapid swirling merger of two dead stellar cores. On the right in the image above is an image of the galaxy NGC 1404 taken by the UV/optical Telescope (UVOT) on the Swift observatory. The circle surrounds SN 2007on, a supernova of Type Ia produced by the explosion of a white dwarf star in a binary system. These types of supernovae are important since they are believed to be 'standard candles', events which have the same intrinsic brightness which can serve as an important yardstick to measure cosmic distances. On the left is an image of the same galaxy taken by the Chandra X-ray observatory four years before the supernova. Conspicuous in the SN source circle is a bright source in the Chandra image, believed to be emission from a compact object+normal star companion: a similar system to the supposed precursor of SN 2007on. If true this would be the first time a Type Ia supernova precursor has ever been seen. But astronomers are still debating whether the Chandra source really is the precursor or not; it seems there's a slight but significant difference in the location of the Chandra source and the supernova. Stay tuned for more developments.

  2. SN X-ray Progenitor?

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Identifying stars that explode, right before they explode, is a tricky proposition since the end of starlife comes swiftly: in thermonuclear deflagrations, in nuclear exhaustion, or maybe in a rapid swirling merger of two dead stellar cores. On the right in the image above is an image of the galaxy NGC 1404 taken by the UV/optical Telescope (UVOT) on the Swift observatory. The circle surrounds SN 2007on, a supernova of Type Ia produced by the explosion of a white dwarf star in a binary system. These types of supernovae are important since they are believed to be 'standard candles', events which have the same intrinsic brightness which can serve as an important yardstick to measure cosmic distances. On the left is an image of the same galaxy taken by the Chandra X-ray observatory four years before the supernova. Conspicuous in the SN source circle is a bright source in the Chandra image, believed to be emission from a compact object+normal star companion: a similar system to the supposed precursor of SN 2007on. If true this would be the first time a Type Ia supernova precursor has ever been seen. But astronomers are still debating whether the Chandra source really is the precursor or not; it seems there's a slight but significant difference in the location of the Chandra source and the supernova. Stay tuned for more developments.

  3. Observational Evidence for High Neutronization in Supernova Remnants: Implications for Type Ia Supernova Progenitors

    NASA Astrophysics Data System (ADS)

    Martínez-Rodríguez, Héctor; Badenes, Carles; Yamaguchi, Hiroya; Bravo, Eduardo; Timmes, F. X.; Miles, Broxton J.; Townsley, Dean M.; Piro, Anthony L.; Mori, Hideyuki; Andrews, Brett; Park, Sangwook

    2017-07-01

    The physical process whereby a carbon-oxygen white dwarf explodes as a Type Ia supernova (SN Ia) remains highly uncertain. The degree of neutronization in SN Ia ejecta holds clues to this process because it depends on the mass and the metallicity of the stellar progenitor, and on the thermodynamic history prior to the explosion. We report on a new method to determine ejecta neutronization using Ca and S lines in the X-ray spectra of Type Ia supernova remnants (SNRs). Applying this method to Suzaku data of Tycho, Kepler, 3C 397, and G337.2-0.7 in the Milky Way, and N103B in the Large Magellanic Cloud, we find that the neutronization of the ejecta in N103B is comparable to that of Tycho and Kepler, which suggests that progenitor metallicity is not the only source of neutronization in SNe Ia. We then use a grid of SN Ia explosion models to infer the metallicities of the stellar progenitors of our SNRs. The implied metallicities of 3C 397, G337.2-0.7, and N103B are major outliers compared to the local stellar metallicity distribution functions, indicating that progenitor metallicity can be ruled out as the origin of neutronization for these SNRs. Although the relationship between ejecta neutronization and equivalent progenitor metallicity is subject to uncertainties stemming from the 12C + 16O reaction rate, which affects the Ca/S mass ratio, our main results are not sensitive to these details.

  4. Cosmological Parameter Uncertainties from SALT-II Type Ia Supernova Light Curve Models

    SciTech Connect

    Mosher, J.; Guy, J.; Kessler, R.; Astier, P.; Marriner, J.; Betoule, M.; Sako, M.; El-Hage, P.; Biswas, R.; Pain, R.; Kuhlmann, S.; Regnault, N.; Frieman, J. A.; Schneider, D. P.

    2014-08-29

    We use simulated type Ia supernova (SN Ia) samples, including both photometry and spectra, to perform the first direct validation of cosmology analysis using the SALT-II light curve model. This validation includes residuals from the light curve training process, systematic biases in SN Ia distance measurements, and a bias on the dark energy equation of state parameter w. Using the SN-analysis package SNANA, we simulate and analyze realistic samples corresponding to the data samples used in the SNLS3 analysis: ~120 low-redshift (z < 0.1) SNe Ia, ~255 Sloan Digital Sky Survey SNe Ia (z < 0.4), and ~290 SNLS SNe Ia (z ≤ 1). To probe systematic uncertainties in detail, we vary the input spectral model, the model of intrinsic scatter, and the smoothing (i.e., regularization) parameters used during the SALT-II model training. Using realistic intrinsic scatter models results in a slight bias in the ultraviolet portion of the trained SALT-II model, and w biases (w (input) – w (recovered)) ranging from –0.005 ± 0.012 to –0.024 ± 0.010. These biases are indistinguishable from each other within the uncertainty, the average bias on w is –0.014 ± 0.007.

  5. Cosmological parameter uncertainties from SALT-II type Ia supernova light curve models

    SciTech Connect

    Mosher, J.; Sako, M.; Guy, J.; Astier, P.; Betoule, M.; El-Hage, P.; Pain, R.; Regnault, N.; Marriner, J.; Biswas, R.; Kuhlmann, S.; Schneider, D. P.

    2014-09-20

    We use simulated type Ia supernova (SN Ia) samples, including both photometry and spectra, to perform the first direct validation of cosmology analysis using the SALT-II light curve model. This validation includes residuals from the light curve training process, systematic biases in SN Ia distance measurements, and a bias on the dark energy equation of state parameter w. Using the SN-analysis package SNANA, we simulate and analyze realistic samples corresponding to the data samples used in the SNLS3 analysis: ∼120 low-redshift (z < 0.1) SNe Ia, ∼255 Sloan Digital Sky Survey SNe Ia (z < 0.4), and ∼290 SNLS SNe Ia (z ≤ 1). To probe systematic uncertainties in detail, we vary the input spectral model, the model of intrinsic scatter, and the smoothing (i.e., regularization) parameters used during the SALT-II model training. Using realistic intrinsic scatter models results in a slight bias in the ultraviolet portion of the trained SALT-II model, and w biases (w {sub input} – w {sub recovered}) ranging from –0.005 ± 0.012 to –0.024 ± 0.010. These biases are indistinguishable from each other within the uncertainty; the average bias on w is –0.014 ± 0.007.

  6. Discovery and Follow-up Observations of the Young Type Ia Supernova 2016coj

    NASA Astrophysics Data System (ADS)

    Zheng, WeiKang; Filippenko, Alexei V.; Mauerhan, Jon; Graham, Melissa L.; Yuk, Heechan; Hosseinzadeh, Griffin; Silverman, Jeffrey M.; Rui, Liming; Arbour, Ron; Foley, Ryan J.; Abolfathi, Bela; Abramson, Louis E.; Arcavi, Iair; Barth, Aaron J.; Bennert, Vardha N.; Brandel, Andrew P.; Cooper, Michael C.; Cosens, Maren; Fillingham, Sean P.; Fulton, Benjamin J.; Halevi, Goni; Howell, D. Andrew; Hsyu, Tiffany; Kelly, Patrick L.; Kumar, Sahana; Li, Linyi; Li, Wenxiong; Malkan, Matthew A.; Manzano-King, Christina; McCully, Curtis; Nugent, Peter E.; Pan, Yen-Chen; Pei, Liuyi; Scott, Bryan; Sexton, Remington Oliver; Shivvers, Isaac; Stahl, Benjamin; Treu, Tommaso; Valenti, Stefano; Vogler, H. Alexander; Walsh, Jonelle L.; Wang, Xiaofeng

    2017-05-01

    The Type Ia supernova (SN Ia) 2016coj in NGC 4125 (redshift z = 0.00452 ± 0.00006) was discovered by the Lick Observatory Supernova Search 4.9 days after the fitted first-light time (FFLT; 11.1 days before B-band maximum). Our first detection (prediscovery) is merely 0.6 ± 0.5 days after the FFLT, making SN 2016coj one of the earliest known detections of an SN Ia. A spectrum was taken only 3.7 hr after discovery (5.0 days after the FFLT) and classified as a normal SN Ia. We performed high-quality photometry, low- and high-resolution spectroscopy, and spectropolarimetry, finding that SN 2016coj is a spectroscopically normal SN Ia, but the velocity of Si ii λ6355 around peak brightness (˜12,600 {km} {{{s}}}-1) is a bit higher than that of typical normal SNe. The Si ii λ6355 velocity evolution can be well fit by a broken-power-law function for up to a month after the FFLT. SN 2016coj has a normal peak luminosity ({M}B≈ -18.9+/- 0.2 mag), and it reaches a B-band maximum ˜16.0 days after the FFLT. We estimate there to be low host-galaxy extinction based on the absence of Na i D absorption lines in our low- and high-resolution spectra. The spectropolarimetric data exhibit weak polarization in the continuum, but the Si ii line polarization is quite strong (˜0.9% ± 0.1%) at peak brightness.

  7. Comparative analysis of SN 2012dn optical spectra: days -14 to +114

    NASA Astrophysics Data System (ADS)

    Parrent, J. T.; Howell, D. A.; Fesen, R. A.; Parker, S.; Bianco, F. B.; Dilday, B.; Sand, D.; Valenti, S.; Vinkó, J.; Berlind, P.; Challis, P.; Milisavljevic, D.; Sanders, N.; Marion, G. H.; Wheeler, J. C.; Brown, P.; Calkins, M. L.; Friesen, B.; Kirshner, R.; Pritchard, T.; Quimby, R.; Roming, P.

    2016-04-01

    SN 2012dn is a super-Chandrasekhar mass candidate in a purportedly normal spiral (SAcd) galaxy, and poses a challenge for theories of type Ia supernova diversity. Here we utilize the fast and highly parametrized spectrum synthesis tool, SYNAPPS, to estimate relative expansion velocities of species inferred from optical spectra obtained with six facilities. As with previous studies of normal SN Ia, we find that both unburned carbon and intermediate-mass elements are spatially coincident within the ejecta near and below 14 000 km s-1. Although the upper limit on SN 2012dn's peak luminosity is comparable to some of the most luminous normal SN Ia, we find a progenitor mass exceeding ˜1.6 M⊙ is not strongly favoured by leading merger models since these models do not accurately predict spectroscopic observations of SN 2012dn and more normal events. In addition, a comparison of light curves and host-galaxy masses for a sample of literature and Palomar Transient Factory SN Ia reveals a diverse distribution of SN Ia subtypes where carbon-rich material remains unburned in some instances. Such events include SN 1991T, 1997br, and 1999aa where trace signatures of C III at optical wavelengths are presumably detected.

  8. The Type Ia Supernova Color-Magnitude Relation and Host Galaxy Dust: A Simple Hierarchical Bayesian Model

    NASA Astrophysics Data System (ADS)

    Mandel, Kaisey; Scolnic, Daniel; Shariff, Hikmatali; Foley, Ryan; Kirshner, Robert

    2017-01-01

    Inferring peak optical absolute magnitudes of Type Ia supernovae (SN Ia) from distance-independent measures such as their light curve shapes and colors underpins the evidence for cosmic acceleration. SN Ia with broader, slower declining optical light curves are more luminous (“broader-brighter”) and those with redder colors are dimmer. But the “redder-dimmer” color-luminosity relation widely used in cosmological SN Ia analyses confounds its two separate physical origins. An intrinsic correlation arises from the physics of exploding white dwarfs, while interstellar dust in the host galaxy also makes SN Ia appear dimmer and redder. Conventional SN Ia cosmology analyses currently use a simplistic linear regression of magnitude versus color and light curve shape, which does not model intrinsic SN Ia variations and host galaxy dust as physically distinct effects, resulting in low color-magnitude slopes. We construct a probabilistic generative model for the dusty distribution of extinguished absolute magnitudes and apparent colors as the convolution of an intrinsic SN Ia color-magnitude distribution and a host galaxy dust reddening-extinction distribution. If the intrinsic color-magnitude (MB vs. B-V) slope βint differs from the host galaxy dust law RB, this convolution results in a specific curve of mean extinguished absolute magnitude vs. apparent color. The derivative of this curve smoothly transitions from βint in the blue tail to RB in the red tail of the apparent color distribution. The conventional linear fit approximates this effective curve near the average apparent color, resulting in an apparent slope βapp between βint and RB. We incorporate these effects into a hierarchical Bayesian statistical model for SN Ia light curve measurements, and analyze a dataset of SALT2 optical light curve fits of 277 nearby SN Ia at z < 0.10. The conventional linear fit obtains βapp ≈ 3. Our model finds a βint = 2.2 ± 0.3 and a distinct dust law of RB = 3.7 ± 0

  9. Spectroscopic Confirmation of a Pre-Maximum Type Ia Supernova from SkyMapper

    NASA Astrophysics Data System (ADS)

    Scalzo, R.; Yuan, F.; Childress, M.; Tucker, B.; Schmidt, B.

    2013-12-01

    We report the discovery of SMTJ03253351-5344190, a Type Ia SN, as part of the SkyMapper supernova search (see Scalzo et al., ATEL #5480). The SN was discovered at RA = 03:25:33.51, DEC = -53:44:19.0 at magnitude r = 19.0, g = 19.1 in SkyMapper images taken 2013 Dec 01.63 UT. A spectrum was obtained with the Wide Field Spectrograph (WiFeS; Dopita et al. 2007, ApSS, 310, 255) on 2013 Dec 06 UT. Classification with SNID (Blondin & Tonry 2007, ApJ, 666, 1024) gives good matches to Type Ia supernovae before maximum light, including SN 2006kf at -3 days and SN 2005df at -6 days.

  10. NEBULAR SPECTRA AND EXPLOSION ASYMMETRY OF TYPE Ia SUPERNOVAE

    SciTech Connect

    Maeda, K.; Nomoto, K.; Taubenberger, S.; Mazzali, P.A.; Sollerman, J.; Leloudas, G.; Motohara, K.

    2010-01-10

    The spectral signatures of asymmetry in Type Ia Supernova (SN Ia) explosions are investigated, using a sample of late-time nebular spectra. First, a kinematical model is constructed for SN Ia 2003hv, which can account for the main features in its optical, Near-Infrared (NIR), and Mid-Infrared (Mid-IR) late-time spectra. It is found that an asymmetric off-center model can explain the observed characteristics of SN 2003hv. This model includes a relatively high-density, Fe-rich region which displays a large velocity off-set, and a relatively low density, extended {sup 56}Ni-rich region which is more spherically distributed. The high-density region consists of the inner stable Fe-Ni region and outer {sup 56}Ni-rich region. Such a distribution may be the result of a delayed-detonation explosion, in which the first deflagration produces the global asymmetry in the innermost ejecta, while the subsequent detonation can lead to the bulk spherical symmetry. This configuration, if viewed from the direction of the off-set, can consistently explain the blueshift in some of the emission lines and virtually no observed shift in other lines in SN 2003hv. For this model, we then explore the effects of different viewing angles and the implications for SNe Ia in general. The model predicts that a variation of the central wavelength, depending on the viewing angle, should be seen in some lines (e.g., [Ni II] lambda7378), while the strongest lines (e.g., [Fe III] blend at approx4700 A) will not show this effect. By examining optical nebular spectra of 12 SNe Ia, we have found that such a variation indeed exists. We suggest that the global asymmetry in the innermost ejecta, as likely imprint of the deflagration flame propagation, is a generic feature of SNe Ia. It is also shown that various forbidden lines in the NIR and Mid-IR regimes provide strong diagnostics to further constrain the explosion geometry and thus the explosion mechanism.

  11. SN 2008ha: AN EXTREMELY LOW LUMINOSITY AND EXCEPTIONALLY LOW ENERGY SUPERNOVA

    SciTech Connect

    Foley, Ryan J.; Kirshner, Robert P.; Challis, Peter J.; Friedman, Andrew S.; Chornock, Ryan; Filippenko, Alexei V.; Ganeshalingam, Mohan; Li, Weidong; Cenko, S. Bradley; Modjaz, Maryam; Silverman, Jeffrey M.; Wood-Vasey, W. Michael

    2009-08-15

    We present ultraviolet, optical, and near-infrared photometry as well as optical spectra of the peculiar supernova (SN) 2008ha. SN 2008ha had a very low peak luminosity, reaching only M{sub V} = -14.2 mag, and low line velocities of only {approx}2000 km s{sup -1} near maximum brightness, indicating a very small kinetic energy per unit mass of ejecta. Spectroscopically, SN 2008ha is a member of the SN 2002cx-like class of SNe, a peculiar subclass of SNe Ia; however, SN 2008ha is the most extreme member, being significantly fainter and having lower line velocities than the typical member, which is already {approx}2 mag fainter and has line velocities {approx}5000 km s{sup -1} smaller (near maximum brightness) than a normal SN Ia. SN 2008ha had a remarkably short rise time of only {approx}10 days, significantly shorter than either SN 2002cx-like objects ({approx}15 days) or normal SNe Ia ({approx}19.5 days). The bolometric light curve of SN 2008ha indicates that SN 2008ha peaked at L {sub peak} = (9.5 {+-} 1.4) x 10{sup 40} erg s{sup -1}, making SN 2008ha perhaps the least luminous SN ever observed. From its peak luminosity and rise time, we infer that SN 2008ha generated (3.0 {+-} 0.9) x 10{sup -3} M {sub sun} of {sup 56}Ni, had a kinetic energy of {approx}2 x 10{sup 48} erg, and ejected 0.15 M {sub sun} of material. The host galaxy of SN 2008ha has a luminosity, star formation rate, and metallicity similar to those of the Large magellanic Cloud. We classify three new (and one potential) members of the SN 2002cx-like class, expanding the sample to 14 (and one potential) members. The host-galaxy morphology distribution of the class is consistent with that of SNe Ia, Ib, Ic, and II. Several models for generating low-luminosity SNe can explain the observations of SN 2008ha; however, if a single model is to describe all SN 2002cx-like objects, deflagration of carbon-oxygen white dwarfs, with SN 2008ha being a partial deflagration and not unbinding the progenitor star, is

  12. Swift X-Ray Upper Limits on Type Ia Supernova Environments

    NASA Technical Reports Server (NTRS)

    Russell, B. R.; Immler, S.

    2012-01-01

    We have considered 53 Type Ia supernovae (SNe Ia) observed by the Swift X-Ray Telescope. None of the SNe Ia are individually detected at any time or in stacked images. Using these data and assuming that the SNe Ia are a homogeneous class of objects, we have calculated upper limits to the X-ray luminosity (0.2-10 keV) and mass-loss rate of L(sub 0.2-10) < 1.7 X 10(exp 38) erg/s and M(dot) < l.l X 10(exp -6) solar M/ yr x (V(sub w))/(10 km/s), respectively. The results exclude massive or evolved stars as the companion objects in SN Ia progenitor systems, but allow the possibility of main sequence or small stars, along with double degenerate systems consisting of two white dwarfs, consistent with results obtained at other wavelengths (e.g., UV, radio) in other studies.

  13. Near-infrared spectroscopy of Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Hsiao, Eric; Phillips, Mark; Burns, Christopher R.; Contreras, Carlos; Gall, Christa; Hoeflich, Peter; Kirshner, Robert P.; Marion, Howie H.; Morrell, Nidia; Sand, David J.; Stritzinger, Maximillian; Carnegie Supernova Project

    2016-01-01

    Improving the cosmological experiments with Type Ia supernovae (SNe Ia) is now not simply a question of observing more supernovae, since any survey, no matter how large, will ultimately be limited by the systematic errors. It has been clearly demonstrated in a number of studies that SNe Ia are better distance indicators in the near-infrared compared to the optical. As exciting as these new results are, SNe Ia in the NIR are expected to be even better than these studies indicate. A key ingredient for improving SN Ia in the NIR as distance indicators is to obtain NIR spectroscopy to determine precise k-corrections, which account for the effect of cosmological expansion upon the measured magnitudes. Better knowledge of the NIR spectroscopic behaviors, akin to that in the optical, is necessary to reach the distance precision required to identify viable models for dark energy. Carnegie Supernova Project II has built a definitive data set, much improved from previous samples, both in size and quality. With this previously unavailable window, we are also beginning to gain new insight on the physics of these events.

  14. ON THE DEPENDENCE OF TYPE Ia SNe LUMINOSITIES ON THE METALLICITY OF THEIR HOST GALAXIES

    SciTech Connect

    Moreno-Raya, Manuel E.; Mollá, Mercedes; López-Sánchez, Ángel R.; Galbany, Lluís; Vílchez, José Manuel; Rosell, Aurelio Carnero; Domínguez, Inmaculada

    2016-02-10

    The metallicity of the progenitor system producing a type Ia supernova (SN Ia) could play a role in its maximum luminosity, as suggested by theoretical predictions. We present an observational study to investigate if such a relationship exists. Using the 4.2 m William Herschel Telescope (WHT) we have obtained intermediate-resolution spectroscopy data of a sample of 28 local galaxies hosting SNe Ia, for which distances have been derived using methods independent of those based on SN Ia parameters. From the emission lines observed in their optical spectra, we derived the gas-phase oxygen abundance in the region where each SN Ia exploded. Our data show a trend, with an 80% of chance not being due to random fluctuation, between SNe Ia absolute magnitudes and the oxygen abundances of the host galaxies, in the sense that luminosities tend to be higher for galaxies with lower metallicities. This result seems likely to be in agreement with both the theoretically expected behavior and with other observational results. This dependence M{sub B}–Z might induce systematic errors when it is not considered when deriving SNe Ia luminosities and then using them to derive cosmological distances.

  15. Photometric classification of type Ia supernovae in the SuperNova Legacy Survey with supervised learning

    NASA Astrophysics Data System (ADS)

    Möller, A.; Ruhlmann-Kleider, V.; Leloup, C.; Neveu, J.; Palanque-Delabrouille, N.; Rich, J.; Carlberg, R.; Lidman, C.; Pritchet, C.

    2016-12-01

    In the era of large astronomical surveys, photometric classification of supernovae (SNe) has become an important research field due to limited spectroscopic resources for candidate follow-up and classification. In this work, we present a method to photometrically classify type Ia supernovae based on machine learning with redshifts that are derived from the SN light-curves. This method is implemented on real data from the SNLS deferred pipeline, a purely photometric pipeline that identifies SNe Ia at high-redshifts (0.2 < z < 1.1). Our method consists of two stages: feature extraction (obtaining the SN redshift from photometry and estimating light-curve shape parameters) and machine learning classification. We study the performance of different algorithms such as Random Forest and Boosted Decision Trees. We evaluate the performance using SN simulations and real data from the first 3 years of the Supernova Legacy Survey (SNLS), which contains large spectroscopically and photometrically classified type Ia samples. Using the Area Under the Curve (AUC) metric, where perfect classification is given by 1, we find that our best-performing classifier (Extreme Gradient Boosting Decision Tree) has an AUC of 0.98.We show that it is possible to obtain a large photometrically selected type Ia SN sample with an estimated contamination of less than 5%. When applied to data from the first three years of SNLS, we obtain 529 events. We investigate the differences between classifying simulated SNe, and real SN survey data. In particular, we find that applying a thorough set of selection cuts to the SN sample is essential for good classification. This work demonstrates for the first time the feasibility of machine learning classification in a high-z SN survey with application to real SN data.

  16. Properties and Alignment of Interstellar Dust Grains toward Type Ia Supernovae with Anomalous Polarization Curves

    NASA Astrophysics Data System (ADS)

    Hoang, Thiem

    2017-02-01

    Recent photometric and polarimetric observations of Type Ia supernovae (SNe Ia) show unusually low total-to-selective extinction ratios (R V < 2) and wavelengths of maximum polarization (λ max < 0.4 μm) for several SNe Ia, which indicates peculiar properties of interstellar (IS) dust in the SN-hosted galaxies and/or the presence of circumstellar (CS) dust. In this paper, we use an inversion technique to infer the best-fit grain size distribution and the alignment function of interstellar grains along the lines of sight toward four SNe Ia with anomalous extinction and polarization data (SN 1986G, SN 2006X, SN 2008fp, and SN 2014J). We find that to reproduce low values of R V , a significant enhancement in the mass of small grains of radius a < 0.1 μm is required. For SN 2014J, a simultaneous fit to its observed extinction and polarization is unsuccessful if all the data are attributed to IS dust (model 1), but a good fit is obtained when accounting for the contribution of CS dust (model 2). For SN 2008fp, our best-fit results for model 1 show that in order to reproduce an extreme value of λ max ˜ 0.15 μm, small silicate grains must be aligned as efficiently as big grains. For this case, we suggest that strong radiation from the SN can induce efficient alignment of small grains in a nearby intervening molecular cloud via the radiative torque (RAT) mechanism. The resulting time dependence polarization from this RAT alignment model can be tested by observing at ultraviolet wavelengths.

  17. Measurements of the Rate of Type Ia Supernovae at Redshift z < ~0.3 from the SDSS-II Supernova Survey

    SciTech Connect

    Dilday, Benjamin; Smith, Mathew; Bassett, Bruce; Becker, Andrew; Bender, Ralf; Castander, Francisco; Cinabro, David; Filippenko, Alexei V.; Frieman, Joshua A.; Galbany, Lluis; Garnavich, Peter M.; /Notre Dame U. /Stockholm U., OKC /Stockholm U.

    2010-01-01

    We present a measurement of the volumetric Type Ia supernova (SN Ia) rate based on data from the Sloan Digital Sky Survey II (SDSS-II) Supernova Survey. The adopted sample of supernovae (SNe) includes 516 SNe Ia at redshift z {approx}< 0.3, of which 270 (52%) are spectroscopically identified as SNe Ia. The remaining 246 SNe Ia were identified through their light curves; 113 of these objects have spectroscopic redshifts from spectra of their host galaxy, and 133 have photometric redshifts estimated from the SN light curves. Based on consideration of 87 spectroscopically confirmed non-Ia SNe discovered by the SDSS-II SN Survey, we estimate that 2.04{sub -0.95}{sup +1.61}% of the photometric SNe Ia may be misidentified. The sample of SNe Ia used in this measurement represents an order of magnitude increase in the statistics for SN Ia rate measurements in the redshift range covered by the SDSS-II Supernova Survey. If we assume a SN Ia rate that is constant at low redshift (z < 0.15), then the SN observations can be used to infer a value of the SN rate of r{sub V} = (2.69{sub -0.30-0.01}{sup +0.34+0.21}) x 10{sup -5} SNe yr{sup -1} Mpc{sup -3} (H{sub 0}/(70 km s{sup -1} Mpc{sup -1})){sup 3} at a mean redshift of {approx} 0.12, based on 79 SNe Ia of which 72 are spectroscopically confirmed. However, the large sample of SNe Ia included in this study allows us to place constraints on the redshift dependence of the SN Ia rate based on the SDSS-II Supernova Survey data alone. Fitting a power-law model of the SN rate evolution, r{sub V} (z) = A{sub p} x ((1+z)/(1+z{sub 0})){sup {nu}}, over the redshift range 0.0 < z < 0.3 with z{sub 0} = 0.21, results in A{sub p} = (3.43{sub -0.15}{sup +0.15}) x 10{sup -5} SNe yr{sup -1} Mpc{sup -3} (H{sub 0}/(70 km s{sup -1} Mpc{sup -1})){sup 3} and {nu} = 2.04{sub -0.89}{sup +0.90}.

  18. SweetSpot Data Release 1: 70 Type Ia Supernovae in the Near Infrared in the Nearby Hubble Flow

    NASA Astrophysics Data System (ADS)

    Wood-Vasey, W. Michael; Weyant, Anja; Allen, Lori; Trevino Barton, Nathan; Garnavich, Peter M.; Farhin Jahan, Nabila; Jha, Saurabh; Kroboth, Jessica Rose; Ponder, Kara Ann; Joyce, Richard R.; Matheson, Thomas; Rest, Armin

    2015-01-01

    SweetSpot is an NOAO Survey program from 2012B-2015A that is observing 150 Type Ia supernovae (SNeIa) in the Hubble flow to obtain reliable NIR luminosities free from peculiar-velocity confusion and the uncertainties of dust.Our full SweetSpot program will (1) extend the NIR Hubble diagram past currently available samples; (2) quantitatively demonstrate the degree to which SNeIa are robust standard candles in the NIR; (3) provide key insights about the color evolution and intrinsic properties of SNeIa and their host galaxies; and (4) establish a well-calibrated low-redshift anchor for future NIR supernova surveys from JWST, Euclid, and WFIRST/NEW. By the end of the survey we will have measured the relative distance to a redshift of z~0.05 to 1%. Nearby Type Ia supernova (SN Ia) observations such as these will test the standard nature of SNeIa in the restframe NIR, allow insight into the nature of dust, and provide a critical anchor for future cosmological SN Ia surveys at higher redshift.We here present our Data Release 1 which includes 70 supernovae observed from 2011B-2013B. Along with an updated NIR Hubble diagram combining these SNeIa with those from the literature, we explore the relationships between SNIa NIR luminosity and properties of the host galaxy.

  19. Lensed Type Ia supernovae as probes of cluster mass models

    NASA Astrophysics Data System (ADS)

    Nordin, J.; Rubin, D.; Richard, J.; Rykoff, E.; Aldering, G.; Amanullah, R.; Atek, H.; Barbary, K.; Deustua, S.; Fakhouri, H. K.; Fruchter, A. S.; Goobar, A.; Hook, I.; Hsiao, E. Y.; Huang, X.; Kneib, J.-P.; Lidman, C.; Meyers, J.; Perlmutter, S.; Saunders, C.; Spadafora, A. L.; Suzuki, N.; Supernova Cosmology Project

    2014-05-01

    Using three magnified Type Ia supernovae (SNe Ia) detected behind CLASH (Cluster Lensing and Supernovae with Hubble) clusters, we perform a first pilot study to see whether standardizable candles can be used to calibrate cluster mass maps created from strong lensing observations. Such calibrations will be crucial when next-generation Hubble Space Telescope cluster surveys (e.g. Frontier) provide magnification maps that will, in turn, form the basis for the exploration of the high-redshift Universe. We classify SNe using combined photometric and spectroscopic observations, finding two of the three to be clearly of Type Ia and the third probable. The SNe exhibit significant amplification, up to a factor of 1.7 at ˜5σ significance (SN-L2). We conducted this as a blind study to avoid fine-tuning of parameters, finding a mean amplification difference between SNe and the cluster lensing models of 0.09 ± 0.09stat ± 0.05sys mag. This impressive agreement suggests no tension between cluster mass models and high-redshift-standardized SNe Ia. However, the measured statistical dispersion of σμ = 0.21 mag appeared large compared to the dispersion expected based on statistical uncertainties (0.14). Further work with the SN and cluster lensing models, post-unblinding, reduced the measured dispersion to σμ = 0.12. An explicit choice should thus be made as to whether SNe are used unblinded to improve the model, or blinded to test the model. As the lensed SN samples grow larger, this technique will allow improved constraints on assumptions regarding e.g. the structure of the dark matter halo.

  20. Cosmology with Photometrically Classified Type Ia Supernovae from the SDSS-II Supernova Survey

    NASA Astrophysics Data System (ADS)

    Campbell, Heather; D'Andrea, Chris B.; Nichol, Robert C.; Sako, Masao; Smith, Mathew; Lampeitl, Hubert; Olmstead, Matthew D.; Bassett, Bruce; Biswas, Rahul; Brown, Peter; Cinabro, David; Dawson, Kyle S.; Dilday, Ben; Foley, Ryan J.; Frieman, Joshua A.; Garnavich, Peter; Hlozek, Renee; Jha, Saurabh W.; Kuhlmann, Steve; Kunz, Martin; Marriner, John; Miquel, Ramon; Richmond, Michael; Riess, Adam; Schneider, Donald P.; Sollerman, Jesper; Taylor, Matt; Zhao, Gong-Bo

    2013-02-01

    We present the cosmological analysis of 752 photometrically classified Type Ia Supernovae (SNe Ia) obtained from the full Sloan Digital Sky Survey II (SDSS-II) Supernova (SN) Survey, supplemented with host-galaxy spectroscopy from the SDSS-III Baryon Oscillation Spectroscopic Survey. Our photometric-classification method is based on the SN classification technique of Sako et al., aided by host-galaxy redshifts (0.05 < z < 0.55). SuperNova ANAlysis simulations of our methodology estimate that we have an SN Ia classification efficiency of 70.8%, with only 3.9% contamination from core-collapse (non-Ia) SNe. We demonstrate that this level of contamination has no effect on our cosmological constraints. We quantify and correct for our selection effects (e.g., Malmquist bias) using simulations. When fitting to a flat ΛCDM cosmological model, we find that our photometric sample alone gives Ω m = 0.24+0.07 -0.05 (statistical errors only). If we relax the constraint on flatness, then our sample provides competitive joint statistical constraints on Ω m and ΩΛ, comparable to those derived from the spectroscopically confirmed Three-year Supernova Legacy Survey (SNLS3). Using only our data, the statistics-only result favors an accelerating universe at 99.96% confidence. Assuming a constant wCDM cosmological model, and combining with H 0, cosmic microwave background, and luminous red galaxy data, we obtain w = -0.96+0.10 -0.10, Ω m = 0.29+0.02 -0.02, and Ω k = 0.00+0.03 -0.02 (statistical errors only), which is competitive with similar spectroscopically confirmed SNe Ia analyses. Overall this comparison is reassuring, considering the lower redshift leverage of the SDSS-II SN sample (z < 0.55) and the lack of spectroscopic confirmation used herein. These results demonstrate the potential of photometrically classified SN Ia samples in improving cosmological constraints.

  1. Verifying the Cosmological Utility of Type Ia Supernovae: Implications of a Dispersion in the Ultraviolet Spectra

    SciTech Connect

    Nugent, Peter E; Ellis, R.S.; Sullivan, M.; Nugent, P.E.; Howell, D.A.; Gal-Yam, A.; Astier, P.; Balam, D.; Balland, C.; Basa, S.; Carlberg, R.; Conley, A.; Fouchez, D.; Guy, J.; Hardin, D.; Hook, I.; Pain, R.; Perrett, K.; Pritchet, C.J.; Regnault, N.

    2008-02-28

    We analyze the mean rest-frame ultraviolet (UV) spectrum of Type Ia Supernovae (SNe) and its dispersion using high signal-to-noise ratio Keck-I/LRIS-B spectroscopy for a sample of 36 events at intermediate redshift (z=0.5) discovered by the Canada-France-Hawaii Telescope Supernova Legacy Survey (SNLS). We introduce a new method for removing host galaxy contamination in our spectra, exploiting the comprehensive photometric coverage of the SNLS SNe and their host galaxies, thereby providing the first quantitative view of the UV spectral properties of a large sample of distant SNe Ia. Although the mean SN Ia spectrum has not evolved significantly over the past 40percent of cosmic history, precise evolutionary constraints are limited by the absence of a comparable sample of high-quality local spectra. The mean UV spectrum of our z~;;=0.5 SNe Ia and its dispersion is tabulated for use in future applications. Within the high-redshift sample, we discover significant UV spectral variations and exclude dust extinction as the primary cause by examining trends with the optical SN color. Although progenitor metallicity may drive some of these trends, the variations we see are much larger than predicted in recent models and do not follow expected patterns. An interesting new result is a variation seen in the wavelength of selected UV features with phase. We also demonstrate systematic differences in the SN Ia spectral features with SN light curve width in both the UV and the optical. We show that these intrinsic variations could represent a statistical limitation in the future use of high-redshift SNe Ia for precision cosmology. We conclude that further detailed studies are needed, both locally and at moderate redshift where the rest-frame UV can be studied precisely, in order that future missions can confidently be planned to fully exploit SNe Ia as cosmological probes.

  2. PROSPECT OF STUDYING HARD X- AND GAMMA-RAYS FROM TYPE Ia SUPERNOVAE

    SciTech Connect

    Maeda, K.; Nomoto, K.; Terada, Y.; Kasen, D.; Roepke, F. K.; Seitenzahl, I. R.; Bamba, A.; Diehl, R.; Kromer, M.; Hillebrandt, W.; Yamaguchi, H.; Tamagawa, T.

    2012-11-20

    We perform multi-dimensional, time-dependent radiation transfer simulations for hard X-ray and {gamma}-ray emissions, following radioactive decays of {sup 56}Ni and {sup 56}Co, for two-dimensional delayed-detonation models of Type Ia supernovae (SNe Ia). The synthetic spectra and light curves are compared with the sensitivities of current and future observatories for an exposure time of 10{sup 6} s. The non-detection of the {gamma}-ray signal from SN 2011fe at 6.4 Mpc by SPI on board INTEGRAL places an upper limit on the mass of {sup 56}Ni of {approx}< 1.0 M {sub Sun }, independently from observations in any other wavelengths. Signals from the newly formed radioactive species have not yet been convincingly measured from any SN Ia, but future X-ray and {gamma}-ray missions are expected to deepen the observable horizon to provide high energy emission data for a significant SN Ia sample. We predict that the hard X-ray detectors on board NuStar (launched in 2012) or ASTRO-H (scheduled for launch in 2014) will reach to SNe Ia at {approx}15 Mpc, i.e., one SN every few years. Furthermore, according to the present results, the soft {gamma}-ray detector on board ASTRO-H will be able to detect the 158 keV line emission up to {approx}25 Mpc, i.e., a few SNe Ia per year. Proposed next-generation {gamma}-ray missions, e.g., GRIPS, could reach to SNe Ia at {approx}20-35 Mpc by MeV observations. Those would provide new diagnostics and strong constraints on explosion models, detecting rather directly the main energy source of supernova light.

  3. NO STRIPPED HYDROGEN IN THE NEBULAR SPECTRA OF NEARBY TYPE Ia SUPERNOVA 2011fe

    SciTech Connect

    Shappee, Benjamin J.; Stanek, K. Z.; Pogge, R. W.; Garnavich, P. M. E-mail: kstanek@astronomy.ohio-state.edu E-mail: pgarnavi@nd.edu

    2013-01-01

    A generic prediction of the single-degenerate model for Type Ia supernovae (SNe Ia) is that a significant amount of material will be stripped from the donor star ({approx}0.5 M{sub Sun} for a giant donor and {approx}0.15 M{sub Sun} for a main-sequence donor) by the supernova ejecta. This material, excited by gamma-rays from radioactive decay, would then produce relatively narrow ({approx}<1000 km s{sup -1}) emission features observable once the supernova enters the nebular phase. Such emission has never been detected, which already provides strong constraints on Type Ia progenitor models. In this Letter, we report the deepest limit yet on the presence of H{alpha} emission originating from the stripped hydrogen in the nebular spectrum of an SN Ia obtained using a high signal-to-noise spectrum of the nearby normal SN Ia 2011fe 274 days after B-band maximum light with the Large Binocular Telescope's Multi-Object Double Spectrograph. We put a conservative upper limit on the H{alpha} flux of 3.14 Multiplication-Sign 10{sup -17} erg s{sup -1} cm{sup -2}, which corresponds to a luminosity of 1.57 Multiplication-Sign 10{sup 35} erg s{sup -1}. By scaling models from the literature, our flux limit translates into an upper limit of {approx}<0.001 M{sub Sun} of stripped material. This is an order of magnitude stronger than previous limits. SN 2011fe was a typical SN Ia, special only in its proximity, and we argue that lack of hydrogen emission in its nebular spectrum adds yet another strong constraint on the single-degenerate class of models for SNe Ia.

  4. High-velocity Line Forming Regions in the Type Ia Supernova 2009ig

    NASA Astrophysics Data System (ADS)

    Marion, G. H.; Vinko, Jozsef; Wheeler, J. Craig; Foley, Ryan J.; Hsiao, Eric Y.; Brown, Peter J.; Challis, Peter; Filippenko, Alexei V.; Garnavich, Peter; Kirshner, Robert P.; Landsman, Wayne B.; Parrent, Jerod T.; Pritchard, Tyler A.; Roming, Peter W. A.; Silverman, Jeffrey M.; Wang, Xiaofeng

    2013-11-01

    We report measurements and analysis of high-velocity (HVF) (>20,000 km s-1) and photospheric absorption features in a series of spectra of the Type Ia supernova (SN) 2009ig obtained between -14 days and +13 days with respect to the time of maximum B-band luminosity (B-max). We identify lines of Si II, Si III, S II, Ca II, and Fe II that produce both HVF and photospheric-velocity (PVF) absorption features. SN 2009ig is unusual for the large number of lines with detectable HVF in the spectra, but the light-curve parameters correspond to a slightly overluminous but unexceptional SN Ia (MB = -19.46 mag and Δm 15(B) = 0.90 mag). Similarly, the Si II λ6355 velocity at the time of B-max is greater than "normal" for an SN Ia, but it is not extreme (v Si = 13,400 km s-1). The -14 days and -13 days spectra clearly resolve HVF from Si II λ6355 as separate absorptions from a detached line forming region. At these very early phases, detached HVF are prevalent in all lines. From -12 days to -6 days, HVF and PVF are detected simultaneously, and the two line forming regions maintain a constant separation of about 8000 km s-1. After -6 days all absorption features are PVF. The observations of SN 2009ig provide a complete picture of the transition from HVF to PVF. Most SNe Ia show evidence for HVF from multiple lines in spectra obtained before -10 days, and we compare the spectra of SN 2009ig to observations of other SNe. We show that each of the unusual line profiles for Si II λ6355 found in early-time spectra of SNe Ia correlate to a specific phase in a common development sequence from HVF to PVF.

  5. TYPE Ia SINGLE DEGENERATE SURVIVORS MUST BE OVERLUMINOUS

    SciTech Connect

    Shappee, Benjamin J.; Kochanek, C. S.; Stanek, K. Z. E-mail: ckochanek@astronomy.ohio-state.edu

    2013-03-10

    In the single-degenerate (SD) channel of a Type Ia supernovae (SNe Ia) explosion, a main-sequence (MS) donor star survives the explosion but it is stripped of mass and shock heated. An essentially unavoidable consequence of mass loss during the explosion is that the companion must have an overextended envelope after the explosion. While this has been noted previously, it has not been strongly emphasized as an inevitable consequence. We calculate the future evolution of the companion by injecting 2-6 Multiplication-Sign 10{sup 47} erg into the stellar evolution model of a 1 M{sub Sun} donor star based on the post-explosion progenitors seen in simulations. We find that, due to the Kelvin-Helmholtz collapse of the envelope, the companion must become significantly more luminous (10-10{sup 3} L{sub Sun }) for a long period of time (10{sup 3}-10{sup 4} yr). The lack of such a luminous ''leftover'' star in the LMC supernova remnant SNR 0609-67.5 provides another piece of evidence against the SD scenario. We also show that none of the stars proposed as the survivors of the Tycho supernova, including Tycho G, could plausibly be the donor star. Additionally, luminous donors closer than {approx}10 Mpc should be observable with the Hubble Space Telescope starting {approx}2 yr post-peak. Such systems include SN 1937C, SN 1972E, SN 1986G, and SN 2011fe. Thus, the SD channel is already ruled out for at least two nearby SNe Ia and can easily be tested for a number of additional ones. We also discuss similar implications for the companions of core-collapse SNe.

  6. Type Ia Single Degenerate Survivors must be Overluminous

    NASA Astrophysics Data System (ADS)

    Shappee, Benjamin J.; Kochanek, C. S.; Stanek, K. Z.

    2013-03-01

    In the single-degenerate (SD) channel of a Type Ia supernovae (SNe Ia) explosion, a main-sequence (MS) donor star survives the explosion but it is stripped of mass and shock heated. An essentially unavoidable consequence of mass loss during the explosion is that the companion must have an overextended envelope after the explosion. While this has been noted previously, it has not been strongly emphasized as an inevitable consequence. We calculate the future evolution of the companion by injecting 2-6 × 1047 erg into the stellar evolution model of a 1 M ⊙ donor star based on the post-explosion progenitors seen in simulations. We find that, due to the Kelvin-Helmholtz collapse of the envelope, the companion must become significantly more luminous (10-103 L ⊙) for a long period of time (103-104 yr). The lack of such a luminous "leftover" star in the LMC supernova remnant SNR 0609-67.5 provides another piece of evidence against the SD scenario. We also show that none of the stars proposed as the survivors of the Tycho supernova, including Tycho G, could plausibly be the donor star. Additionally, luminous donors closer than ~10 Mpc should be observable with the Hubble Space Telescope starting ~2 yr post-peak. Such systems include SN 1937C, SN 1972E, SN 1986G, and SN 2011fe. Thus, the SD channel is already ruled out for at least two nearby SNe Ia and can easily be tested for a number of additional ones. We also discuss similar implications for the companions of core-collapse SNe.

  7. Type Ia supernova host galaxies as seen with IFU spectroscopy

    NASA Astrophysics Data System (ADS)

    Stanishev, V.; Rodrigues, M.; Mourão, A.; Flores, H.

    2012-09-01

    Context. Type Ia supernovae (SNe Ia) have been widely used in cosmology as distance indicators. However, to fully exploit their potential in cosmology, a better control over systematic uncertainties is required. Some of the uncertainties are related to the unknown nature of the SN Ia progenitors. Aims: We aim to test the use of integral field unit (IFU) spectroscopy for correlating the properties of nearby SNe Ia with the properties of their host galaxies at the location of the SNe. The results are to be compared with those obtained from an analysis of the total host spectrum. The goal is to explore this path of constraining the nature of the SN Ia progenitors and further improve the use of SNe Ia in cosmology. Methods: We used the wide-field IFU spectrograph PMAS/PPAK at the 3.5 m telescope of Calar Alto Observatory to observe six nearby spiral galaxies that hosted SNe Ia. Spatially resolved 2D maps of the properties of the ionized gas and the stellar populations were derived. Results: Five of the observed galaxies have an ongoing star formation rate of 1-5 M⊙ yr-1 and mean stellar population ages ~5 Gyr. The sixth galaxy shows no star formation and has an about 12 Gyr old stellar population. All galaxies have stellar masses larger than 2 × 1010 M⊙ and metallicities above solar. Four galaxies show negative radial metallicity gradients of the ionized gas up to -0.058 dex kpc-1 and one has nearly uniform metallicity with a possible shallow positive slope. The stellar components show shallower negative metallicity gradients up to -0.03 dex kpc-1. We find no clear correlation between the properties of the galaxy and those of the supernovae, which may be because of the small ranges spanned by the galaxy parameters. However, we note that the Hubble residuals are on average positive while negative Hubble residuals are expected for SNe Ia in massive hosts such as the galaxies in our sample. Conclusions: The IFU spectroscopy on 4-m telescopes is a viable technique for

  8. Berkeley Supernova Ia Program - IV. Carbon detection in early-time optical spectra of Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Silverman, Jeffrey M.; Filippenko, Alexei V.

    2012-09-01

    While O is often seen in spectra of Type Ia supernovae (SNe Ia) as both unburned fuel and a product of C burning, C is only occasionally seen at the earliest times and represents the most direct way of investigating primordial white dwarf material and its relation to SN Ia explosion scenarios and mechanisms. In this paper, we search for C absorption features in 188 optical spectra of 144 low-redshift (z < 0.1) SNe Ia with ages ≲3.6 d after maximum brightness. These data were obtained as part of the Berkeley Supernova Ia Program (BSNIP) and represent the largest set of SNe Ia in which C has ever been searched. We find that ˜11 per cent of the SNe studied show definite C absorption features, while ˜25 per cent show some evidence for C II in their spectra. Also, if one obtains a spectrum at ≲ -5 d, then there is a better than 30 per cent chance of detecting a distinct absorption feature from C II. SNe Ia that show C are found to resemble those without C in many respects, but objects with C tend to have bluer optical colours than those without C. The typical expansion velocity of the C II λ6580 feature is measured to be 12 000-13 000 km s-1, and the ratio of the C II λ6580 to Si II λ6355 velocities is remarkably constant with time and among different objects with a median value of ˜1.05. While the pseudo-equivalent widths (pEWs) of the C II λλ6580 and 7234 features are found mostly to decrease with time, we see evidence of a significant increase in pEW between ˜12 and 11 d before maximum brightness, which is actually predicted by some theoretical models. The range of pEWs measured from the BSNIP data implies a range of C masses in SN Ia ejecta of about (2-30) × 10-3 M⊙.

  9. Sweetspot: Near-infrared observations of 13 type Ia supernovae from a new NOAO survey probing the nearby smooth Hubble flow

    SciTech Connect

    Weyant, Anja; Wood-Vasey, W. Michael; Allen, Lori; Joyce, Richard; Matheson, Thomas; Garnavich, Peter M.; Jha, Saurabh W.

    2014-04-01

    We present 13 Type Ia supernovae (SNe Ia) observed in the rest-frame near-infrared (NIR) from 0.02 < z < 0.09 with the WIYN High-resolution Infrared Camera on the WIYN 3.5 m telescope. With only one to three points per light curve and a prior on the time of maximum from the spectrum used to type the object, we measure an H-band dispersion of spectroscopically normal SNe Ia of 0.164 mag. These observations continue to demonstrate the improved standard brightness of SNe Ia in an H band, even with limited data. Our sample includes two SNe Ia at z ∼ 0.09, which represent the most distant rest-frame NIR H-band observations published to date. This modest sample of 13 NIR SNe Ia represent the pilot sample for {sup S}weetSpot{sup —}a 3 yr NOAO Survey program that will observe 144 SNe Ia in the smooth Hubble flow. By the end of the survey we will have measured the relative distance to a redshift of z ∼ 0.05%-1%. Nearby Type Ia supernova (SN Ia) observations such as these will test the standard nature of SNe Ia in the rest-frame NIR, allow insight into the nature of dust, and provide a critical anchor for future cosmological SN Ia surveys at higher redshift.

  10. Improving Type Ia Supernova Standard Candle Cosmology Measurements Using Observations of Early-Type Host Galaxies

    NASA Astrophysics Data System (ADS)

    Meyers, Joshua Evan

    Type Ia supernovae (SNe Ia) are the current standard-bearers for dark energy but face several hurdles for their continued success in future large surveys. For example, spectroscopic classification of the myriad SNe soon to be discovered will not be possible, and systematics from uncertainties in dust corrections and the evolution of SN demographics and/or empirical calibrations used to standardize SNe Ia must be studied. Through the identification of low-dust host galaxies and through increased understanding of both the SN - progenitor connections and empirical calibrations, host galaxy information may offer opportunities to improve the cosmological utility of SNe Ia. The first half of this thesis analyzes the sample of SNe Ia discovered by the Hubble Space Telescope (HST) Cluster Supernova Survey augmented with HST-observed SNe Ia in the Great Observatories Origins Deep Survey (GOODS) fields. Correlations between properties of SNe and their host galaxies are examined at high redshift. Using galaxy color and quantitative morphology to determine the red sequence in 25 clusters, a model is developed to distinguish passively evolving early-type galaxies from star-forming galaxies in both clusters and the field. With this approach, 6 early-type cluster member hosts and 11 SN Ia early-type field hosts are identified. For the first time at z > 0.9, the correlation between host galaxy type and the rise and fall time of SN Ia light curves is confirmed. The relatively simple spectral energy distributions of early-type galaxies also enables stellar mass measurements for these hosts. In combination with literature host mass measurements, these measurements are used to show, at z > 0.9, a hint of the correlation between host mass and Hubble residuals reported at lower redshift. By simultaneously fitting cluster galaxy formation histories and dust content to the scatter of the cluster red sequences, it is shown that dust reddening of early-type cluster SN hosts is likely less

  11. Non-LTE models for synthetic spectra of type Ia supernovae / hot stars with extremely extended atmospheres. II. Improved lower boundary conditions for the numerical solution of the radiative transfer

    NASA Astrophysics Data System (ADS)

    Sauer, D. N.; Hoffmann, T. L.; Pauldrach, A. W. A.

    2006-11-01

    Context: .Realistic atmospheric models that link the properties and the physical conditions of supernova ejecta to observable spectra are required for the quantitative interpretation of observational data of type Ia supernovae (SN Ia) and the assessment of the physical merits of theoretical supernova explosion models. The numerical treatment of the radiation transport - yielding the synthetic spectra - in models of SN Ia ejecta in early phases is usually carried out in analogy to atmospheric models of "normal" hot stars. Applying this analogy indiscriminately leads to inconsistencies in SN Ia models because a diffusive lower boundary, while justified for hot stars, is invalid for hydrogen and helium-deficient supernova ejecta. In type Ia supernovae the radiation field does not thermalize even at large depths, and large optical depths are not reached at all wavelengths. Aims: .We aim to derive an improved description of the lower boundary that allows a more consistent solution of the radiation transfer in SN Ia and therefore yields more realistic synthetic spectra. Methods: .We analyze the conditions that lead to a breakdown of the conventional diffusion approximation as the lower boundary in SN Ia. For the radiative transfer, we use a full non-LTE code originally developed for radiatively driven winds of hot stars, with adaptations for the physical conditions in SN Ia. In addition to a well-tested treatment of the underlying microphysical processes, this code allows a direct comparison of the results for SN Ia and hot stars. Results: .We develop a semi-analytical description that allows us to overcome some of the limiting assumptions in the conventional treatment of the lower boundary in SN Ia radiative transfer models. We achieve good agreement in a comparison between the synthetic spectrum of our test model and an observed spectrum.

  12. Type Ia supernovae from merging white dwarfs. II. Post-merger detonations

    SciTech Connect

    Raskin, Cody; Kasen, Daniel; Moll, Rainer; Woosley, Stan; Schwab, Josiah

    2014-06-10

    Merging carbon-oxygen (CO) white dwarfs are a promising progenitor system for Type Ia supernovae (SNe Ia), but the underlying physics and timing of the detonation are still debated. If an explosion occurs after the secondary star is fully disrupted, the exploding primary will expand into a dense CO medium that may still have a disk-like structure. This interaction will decelerate and distort the ejecta. Here we carry out multidimensional simulations of 'tamped' SN Ia models, using both particle and grid-based codes to study the merger and explosion dynamics and a radiative transfer code to calculate synthetic spectra and light curves. We find that post-merger explosions exhibit an hourglass-shaped asymmetry, leading to strong variations in the light curves with viewing angle. The two most important factors affecting the outcome are the scale height of the disk, which depends sensitively on the binary mass ratio, and the total {sup 56}Ni yield, which is governed by the central density of the remnant core. The synthetic broadband light curves rise and decline very slowly, and the spectra generally look peculiar, with weak features from intermediate mass elements but relatively strong carbon absorption. We also consider the effects of the viscous evolution of the remnant and show that a longer time delay between merger and explosion probably leads to larger {sup 56}Ni yields and more symmetrical remnants. We discuss the relevance of this class of aspherical 'tamped' SN Ia for explaining the class of 'super-Chandrasekhar' SN Ia.

  13. COMPARING THE LIGHT CURVES OF SIMULATED TYPE Ia SUPERNOVAE WITH OBSERVATIONS USING DATA-DRIVEN MODELS

    SciTech Connect

    Diemer, Benedikt; Kessler, Richard; Graziani, Carlo; Jordan, George C. IV; Lamb, Donald Q.; Long, Min; Van Rossum, Daniel R.

    2013-08-20

    We propose a robust, quantitative method to compare the synthetic light curves of a Type Ia supernova (SN Ia) explosion model with a large set of observed SNe Ia, and derive a figure of merit for the explosion model's agreement with observations. The synthetic light curves are fit with the data-driven model SALT2 which returns values for stretch, color, and magnitude at peak brightness, as well as a goodness-of-fit parameter. Each fit is performed multiple times with different choices of filter bands and epoch range in order to quantify the systematic uncertainty on the fitted parameters. We use a parametric population model for the distribution of observed SN Ia parameters from large surveys, and extend it to represent red, dim, and bright outliers found in a low-redshift SN Ia data set. We discuss the potential uncertainties of this population model and find it to be reliable given the current uncertainties on cosmological parameters. Using our population model, we assign each set of fitted parameters a likelihood of being observed in nature, and a figure of merit based on this likelihood. We define a second figure of merit based on the quality of the light curve fit, and combine the two measures into an overall figure of merit for each explosion model. We compute figures of merit for a variety of one-, two-, and three-dimensional explosion models and show that our evaluation method allows meaningful inferences across a wide range of light curve quality and fitted parameters.

  14. Type Ia Supernovae from Merging White Dwarfs. II. Post-merger Detonations

    NASA Astrophysics Data System (ADS)

    Raskin, Cody; Kasen, Daniel; Moll, Rainer; Schwab, Josiah; Woosley, Stan

    2014-06-01

    Merging carbon-oxygen (CO) white dwarfs are a promising progenitor system for Type Ia supernovae (SNe Ia), but the underlying physics and timing of the detonation are still debated. If an explosion occurs after the secondary star is fully disrupted, the exploding primary will expand into a dense CO medium that may still have a disk-like structure. This interaction will decelerate and distort the ejecta. Here we carry out multidimensional simulations of "tamped" SN Ia models, using both particle and grid-based codes to study the merger and explosion dynamics and a radiative transfer code to calculate synthetic spectra and light curves. We find that post-merger explosions exhibit an hourglass-shaped asymmetry, leading to strong variations in the light curves with viewing angle. The two most important factors affecting the outcome are the scale height of the disk, which depends sensitively on the binary mass ratio, and the total 56Ni yield, which is governed by the central density of the remnant core. The synthetic broadband light curves rise and decline very slowly, and the spectra generally look peculiar, with weak features from intermediate mass elements but relatively strong carbon absorption. We also consider the effects of the viscous evolution of the remnant and show that a longer time delay between merger and explosion probably leads to larger 56Ni yields and more symmetrical remnants. We discuss the relevance of this class of aspherical "tamped" SN Ia for explaining the class of "super-Chandrasekhar" SN Ia.

  15. IMPROVING COSMOLOGICAL DISTANCE MEASUREMENTS USING TWIN TYPE IA SUPERNOVAE

    SciTech Connect

    Fakhouri, H. K.; Boone, K.; Aldering, G.; Aragon, C.; Bailey, S.; Fagrelius, P.; Antilogus, P.; Bongard, S.; Fleury, M.; Baltay, C.; Barbary, K.; Baugh, D.; Chen, J.; Buton, C.; Chotard, N.; Copin, Y.; Feindt, U.; Fouchez, D. [Centre de Physique des Particules de Marseille, Aix-Marseille Université, CNRS Gangler, E. [Clermont Université, Université Blaise Pascal, CNRS Collaboration: Nearby Supernova Factory; and others

    2015-12-10

    We introduce a method for identifying “twin” Type Ia supernovae (SNe Ia) and using them to improve distance measurements. This novel approach to SN Ia standardization is made possible by spectrophotometric time series observations from the Nearby Supernova Factory (SNfactory). We begin with a well-measured set of SNe, find pairs whose spectra match well across the entire optical window, and then test whether this leads to a smaller dispersion in their absolute brightnesses. This analysis is completed in a blinded fashion, ensuring that decisions made in implementing the method do not inadvertently bias the result. We find that pairs of SNe with more closely matched spectra indeed have reduced brightness dispersion. We are able to standardize this initial set of SNfactory SNe to 0.083 ± 0.012 mag, implying a dispersion of 0.072 ± 0.010 mag in the absence of peculiar velocities. We estimate that with larger numbers of comparison SNe, e.g., using the final SNfactory spectrophotometric data set as a reference, this method will be capable of standardizing high-redshift SNe to within 0.06–0.07 mag. These results imply that at least 3/4 of the variance in Hubble residuals in current SN cosmology analyses is due to previously unaccounted-for astrophysical differences among the SNe.

  16. Constraining Type Ia Supernova Physics with Near-Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sand, David; Valenti, Stefano; Howell, Andy; Graham, Melissa; Parrent, Jerod

    2014-02-01

    Despite their success as standardizable candles, relatively little is known about the exact progenitor(s) and explosion physics of type Ia supernovae -- a potential source of systematic uncertainty for future dark energy surveys, and a hole in our knowledge about stellar end-states. One promising route forward is the combination of dense optical time series and near-infrared (NIR) spectroscopic data sets. Recent work has suggested that the NIR can discern unburned carbon from the progenitor white dwarf more cleanly than in the optical, and its unique access to relatively unblended magnesium lines also probes the inner edge of carbon burning. Both measures provide a direct constraint for SN Ia explosion models, but only a handful of appropriate NIR spectroscopic time series exist. We propose to continue our campaign to roughly double the sample of SN Ia with such data (leveraging our access to a worldwide network of 1m imaging telescopes and twin robotic optical spectrographs) in order to begin to tackle our understanding of NIR spectral diagnostics and how they vary from supernova to supernova. Note that we were allocated time with Gemini South Flamingos-2 in 2013B, but have not triggered any ToO time yet, partially due to the persistent alignment issues with the On-Instrument Wave Front Sensor.

  17. Type Ia Supernova Rates Near and Far

    NASA Astrophysics Data System (ADS)

    Panagia, Nino; Della Valle, Massimo; Mannucci, Filippo

    2007-08-01

    Recently, three important observational results were established: (a) The evolution of the SNIa rate with redshift is now measured up to z~1.6 and the results at the highest redshifts, derived by the GOODS collaboration show that the SN rate rises up to z~0.8, when the Universe was 6.5 Gyr old, and decreases afterward. (b) The rate of supernova explosions of the different types as a function of the galaxy (B-K) and the galaxy mass have been determined. It is found that the rates of all SN types, including Ia, Ib/c and II, show a marked increase with the star formation activity. (c) An analysis of SNIa events in early-type galaxies has provided conclusive evidence that the rate of SNIa in radio-loud galaxies is much higher than the rate measured in radio-quiet galaxies. This result suggests that repeated episodes of interaction and/or mergers of early-type galaxies with dwarf companions are responsible for supplying an adequate number of SNIa progenitors to the stellar population of elliptical galaxies. On this basis we have discussed the distribution of the delay time (DTD) between the formation of a SNIa progenitor star and its explosion as a SNIa. Our analysis finds: i) models with long delay times, say 3-4 Gyr, cannot reproduce the dependence of the SNIa rate on the colors and on the radio-luminosity of the parent galaxies; ii) the dependence of the SNIa rate on the parent galaxy colors requires models with a wide DTD, spanning the interval 100 Myr to 10 Gyr; iii) the dependence on the parent galaxy radio-luminosity requires substantial production of SNIa at epochs earlier than 100 Myr after the birth of a given stellar generation; iv) the comparison between observed SN rates and a grid of theoretical ``single-population'' DTDs shows that only a few of them are marginally consistent with all observations; v) the present data are best matched by a bimodal DTD, in which about 50% of type Ia SNe (``prompt'' SNIa) explode soon after their stellar birth, in a time of

  18. THE CARNEGIE SUPERNOVA PROJECT: SECOND PHOTOMETRY DATA RELEASE OF LOW-REDSHIFT TYPE Ia SUPERNOVAE

    SciTech Connect

    Stritzinger, Maximilian D.; Phillips, M. M.; Campillay, Abdo; Morrell, Nidia; Krzeminski, Wojtek; Roth, Miguel; Boldt, Luis N.; Burns, Chris; Freedman, Wendy L.; Madore, Barry F.; Persson, Sven E.; Contreras, Carlos; Gonzalez, Sergio; Salgado, Francisco; DePoy, D. L.; Marshall, J. L.; Rheault, Jean-Philippe; Suntzeff, Nicholas B.; Hamuy, Mario E-mail: max@dark-cosmology.dk

    2011-11-15

    The Carnegie Supernova Project (CSP) was a five-year observational survey conducted at Las Campanas Observatory that obtained, among other things, high-quality light curves of {approx}100 low-redshift Type Ia supernovae (SNe Ia). Presented here is the second data release of nearby SN Ia photometry consisting of 50 objects, with a subset of 45 having near-infrared follow-up observations. Thirty-three objects have optical pre-maximum coverage with a subset of 15 beginning at least five days before maximum light. In the near-infrared, 27 objects have coverage beginning before the epoch of B-band maximum, with a subset of 13 beginning at least five days before maximum. In addition, we present results of a photometric calibration program to measure the CSP optical (uBgVri) bandpasses with an accuracy of {approx}1%. Finally, we report the discovery of a second SN Ia, SN 2006ot, similar in its characteristics to the peculiar SN 2006bt.

  19. ASASSN-17be: Discovery of A Type Ia Supernova in 2MASX J02031063-6141105

    NASA Astrophysics Data System (ADS)

    Drout, M. R.; Holoien, T. W.-S.; Shappee, B. J.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Brimacombe, J.

    2017-01-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new Type Ia supernova in the galaxy 2MASX J02031063-6141105.

  20. Observing SN 1987A with IUE

    NASA Technical Reports Server (NTRS)

    Kirshner, Robert P.

    1988-01-01

    Spectra from IUE were used to study SN 1987A in order to examine its progenitor and stellar evolution before the explosion. The B3 Ia blue supergiant is identified as progenitor. The narrow UV lines from the circumstellar shell are discussed. When the supernova turns transparent in the ultraviolet, the ultraviolet spectra can provide important chemical information about the interior of the massive star.

  1. In Context: Host Environments of Thermonuclear and Core-Collapse SN

    NASA Astrophysics Data System (ADS)

    Kelly, Patrick

    2013-01-01

    My thesis has used the uniform photometry and spectroscopy of the Sloan Digital Sky Survey to analyze the environments of nearby (z < 0.08) supernova (SN) explosions. I describe my discovery that SNe Ia found in physically larger, more massive hosts are ~10% brighter after light curve correction than SN Ia in smaller, less massive galaxies. This host-galaxy luminosity dependence is now perhaps the most important systematic affecting cosmological constraints from Type Ia SN, and I discuss follow-up efforts that are seeking to identify a physical explanation for the trend and improve the use of SN Ia as standard candles. Analysis of explosion environments is also a useful tool to understand how the properties of massive stars affect their pre-SN mass loss and influence the characteristics of the explosion. I present strong trends in the optical colors, surface brightnesses, and gas-phase metallicities of the galaxy environments of the most populous spectroscopic types of core-collapse explosions. I find that the progenitors of broad-lined SN Ic, the SN linked to coincident gamma-ray bursts, and SN IIb, whose progenitors retain only a thin hydrogen envelope, explode in exceptionally blue, low-metallicity environments.

  2. TIME VARIATION OF AV AND RV FOR TYPE Ia SUPERNOVAE BEHIND INTERSTELLAR DUST

    NASA Astrophysics Data System (ADS)

    Huang, Xiaosheng; Biederman, M.; Herger, B.; Aldering, G. S.

    2014-01-01

    TIME VARIATION OF AV AND RV FOR TYPE Ia SUPERNOVAE BEHIND NON-UNIFORM INTERSTELLAR DUST ABSTRACT We investigate the time variation of the visual extinction, AV, and the total-to-selective extinction ratio, RV, resulting from interstellar dust in front of an expanding photospheric disk of a type Ia supernova (SN Ia). We simulate interstellar dust clouds according to a power law power spectrum and produce extinction maps that either follow a pseudo-Gaussian distribution or a lognormal distribution. The RV maps are produced through a correlation between AV and RV. With maps of AV and RV generated in each case (pseudo-Gaussian and lognormal), we then compute the effective AV and RV for a SN as its photospheric disk expands behind the dust screen. We find for a small percentage of SNe the AV and RV values can vary by a large factor from day to day in the first 40 days after explosion.

  3. Study of the influence of Type Ia supernovae environment on the Hubble diagram

    NASA Astrophysics Data System (ADS)

    Henne, Vincent

    2016-06-01

    The observational cosmology with distant Type Ia supernovae as standard candles claims that the Universe is in accelerated expansion, caused by a large fraction of dark energy. In this report we investigated SNe Ia environment, studying the impact of the nature of their host galaxies and their distance to the host galactic center on the Hubble diagram fitting. The supernovae used in the analysis were extracted from Joint-Light-curves-Analysis compilation of high-redshift and nearby supernovae. The analysis are based on the empirical fact that SN Ia luminosities depend on their light curve shapes and colors. No conclusive correlation between SN Ia light curve parameters and galocentric distance were identified. Concerning the host morphology, we showed that the stretch parameter of Type Ia supernovae is correlated with the host galaxy type. The supernovae with lower stretch mainly exploded in elliptical and lenticular galaxies. The studies show that into old star population and low dust environment, supernovae are fainter. We did not find any significant correlation between Type Ia supernovae color and host morphology. We confirm that supernova properties depend on their environment and propose to incorporate a host galaxy term into the Hubble diagram fit in the future cosmological analysis.

  4. Grouping Normal Type Ia Supernovae by UV to Optical Color Differences

    NASA Astrophysics Data System (ADS)

    Milne, Peter A.; Brown, Peter J.; Roming, Peter W. A.; Bufano, Filomena; Gehrels, Neil

    2013-12-01

    Observations of many Type Ia supernovae (SNe Ia) for multiple epochs per object with the Swift Ultraviolet Optical Telescope instrument have revealed that there exists order to the differences in the UV-optical colors of optically normal supernovae (SNe). We examine UV-optical color curves for 23 SNe Ia, dividing the SNe into four groups, and find that roughly one-third of "NUV-blue" SNe Ia have bluer UV-optical colors than the larger "NUV-red" group. Two minor groups are recognized, "MUV-blue" and "irregular" SNe Ia. While we conclude that the latter group is a subset of the NUV-red group, containing the SNe with the broadest optical peaks, we conclude that the "MUV-blue" group is a distinct group. Separating into the groups and accounting for the time evolution of the UV-optical colors lowers the scatter in two NUV-optical colors (e.g., u - v and uvw1 - v) to the level of the scatter in b - v. This finding is promising for extending the cosmological utilization of SNe Ia into the NUV. We generate spectrophotometry of 33 SNe Ia and determine the correct grouping for each. We argue that there is a fundamental spectral difference in the 2900-3500 Å wavelength range, a region suggested to be dominated by absorption from iron-peak elements. The NUV-blue SNe Ia feature less absorption than the NUV-red SNe Ia. We show that all NUV-blue SNe Ia in this sample also show evidence of unburned carbon in optical spectra, whereas only one NUV-red SN Ia features that absorption line. Every NUV-blue event also exhibits a low gradient of the Si II λ6355 absorption feature. Many NUV-red events also exhibit a low gradient, perhaps suggestive that NUV-blue events are a subset of the larger low-velocity gradient group.

  5. Grouping normal type Ia supernovae by UV to optical color differences

    SciTech Connect

    Milne, Peter A.; Brown, Peter J.; Roming, Peter W. A.; Bufano, Filomena; Gehrels, Neil

    2013-12-10

    Observations of many Type Ia supernovae (SNe Ia) for multiple epochs per object with the Swift Ultraviolet Optical Telescope instrument have revealed that there exists order to the differences in the UV-optical colors of optically normal supernovae (SNe). We examine UV-optical color curves for 23 SNe Ia, dividing the SNe into four groups, and find that roughly one-third of 'NUV-blue' SNe Ia have bluer UV-optical colors than the larger 'NUV-red' group. Two minor groups are recognized, 'MUV-blue' and 'irregular' SNe Ia. While we conclude that the latter group is a subset of the NUV-red group, containing the SNe with the broadest optical peaks, we conclude that the 'MUV-blue' group is a distinct group. Separating into the groups and accounting for the time evolution of the UV-optical colors lowers the scatter in two NUV-optical colors (e.g., u – v and uvw1 – v) to the level of the scatter in b – v. This finding is promising for extending the cosmological utilization of SNe Ia into the NUV. We generate spectrophotometry of 33 SNe Ia and determine the correct grouping for each. We argue that there is a fundamental spectral difference in the 2900-3500 Å wavelength range, a region suggested to be dominated by absorption from iron-peak elements. The NUV-blue SNe Ia feature less absorption than the NUV-red SNe Ia. We show that all NUV-blue SNe Ia in this sample also show evidence of unburned carbon in optical spectra, whereas only one NUV-red SN Ia features that absorption line. Every NUV-blue event also exhibits a low gradient of the Si II λ6355 absorption feature. Many NUV-red events also exhibit a low gradient, perhaps suggestive that NUV-blue events are a subset of the larger low-velocity gradient group.

  6. SweetSpot Data Release 1: 70 Type Ia Supernovae in the Near Infrared in the Nearby Hubble Flow

    NASA Astrophysics Data System (ADS)

    Wood-Vasey, W. Michael; Weyant, Anja; Allen, Lori; Garnavich, Peter M.; Jahan, Nabila; Jha, Saurabh; Ponder, Kara A; Joyce, Richard R.; Matheson, Thomas; Rest, Armin

    2014-06-01

    SweetSpot is an NOAO Survey program from 2012B-2015A that is observing 150 Type Ia supernovae (SNe Ia) in the Hubble flow to obtain reliable NIR luminosities free from peculiar-velocity confusion and the uncertainties of dust.Our full SweetSpot program will (1) extend the NIR Hubble diagram past currently available samples; (2) quantitatively demonstrate the degree to which SNeIa are robust standard candles in the NIR; (3) provide key insights about the color evolution and intrinsic properties of SNeIa and their host galaxies; and (4) establish a well-calibrated low-redshift anchor for future NIR supernova surveys from JWST, Euclid, and WFIRST/NEW. By the end of the survey we will have measured the relative distance to a redshift of 0.05 to 1%. Nearby Type Ia supernova (SN Ia) observations such as these will test the standard nature of SNe Ia in the restframe NIR, allow insight into the nature of dust, and provide a critical anchor for future cosmological SN Ia surveys at higher redshift.We here present a first look at our Data Release 1 which includes 70 supernovae observed from 2012B-2013B.

  7. CfA4: LIGHT CURVES FOR 94 TYPE Ia SUPERNOVAE

    SciTech Connect

    Hicken, Malcolm; Challis, Peter; Kirshner, Robert P.; Bakos, Gaspar; Berlind, Perry; Brown, Warren R.; Caldwell, Nelson; Calkins, Mike; Falco, Emilio; Fernandez, Jose; Friedman, Andrew S.; Groner, Ted; Hartman, Joel; Rest, Armin; Cramer, Claire E.; Wood-Vasey, W. Michael; Currie, Thayne; De Kleer, Kathy; Esquerdo, Gil; Everett, Mark; and others

    2012-06-01

    We present multi-band optical photometry of 94 spectroscopically confirmed Type Ia supernovae (SNe Ia) in the redshift range 0.0055-0.073, obtained between 2006 and 2011. There are a total of 5522 light-curve points. We show that our natural-system SN photometry has a precision of {approx}< 0.03 mag in BVr'i', {approx}< 0.06 mag in u', and {approx}< 0.07 mag in U for points brighter than 17.5 mag and estimate that it has a systematic uncertainty of 0.014, 0.010, 0.012, 0.014, 0.046, and 0.073 mag in BVr'i'u'U, respectively. Comparisons of our standard-system photometry with published SN Ia light curves and comparison stars reveal mean agreement across samples in the range of {approx}0.00-0.03 mag. We discuss the recent measurements of our telescope-plus-detector throughput by direct monochromatic illumination by Cramer et al. This technique measures the whole optical path through the telescope, auxiliary optics, filters, and detector under the same conditions used to make SN measurements. Extremely well characterized natural-system passbands (both in wavelength and over time) are crucial for the next generation of SN Ia photometry to reach the 0.01 mag accuracy level. The current sample of low-z SNe Ia is now sufficiently large to remove most of the statistical sampling error from the dark-energy error budget. But pursuing the dark-energy systematic errors by determining highly accurate detector passbands, combining optical and near-infrared (NIR) photometry and spectra, using the nearby sample to illuminate the population properties of SNe Ia, and measuring the local departures from the Hubble flow will benefit from larger, carefully measured nearby samples.

  8. Optical and Infrared Photometry of the Type Ia Supernovae 1991T, 1991bg, 1999ek, 2001bt, 2001cn, 2001cz, and 2002bo

    NASA Astrophysics Data System (ADS)

    Krisciunas, Kevin; Suntzeff, Nicholas B.; Phillips, Mark M.; Candia, Pablo; Prieto, José Luis; Antezana, Roberto; Chassagne, Robin; Chen, Hsiao-Wen; Dickinson, Mark; Eisenhardt, Peter R.; Espinoza, Juan; Garnavich, Peter M.; González, David; Harrison, Thomas E.; Hamuy, Mario; Ivanov, Vladimir D.; Krzemiński, Wojtek; Kulesa, Craig; McCarthy, Patrick; Moro-Martín, Amaya; Muena, César; Noriega-Crespo, Alberto; Persson, S. E.; Pinto, Philip A.; Roth, Miguel; Rubenstein, Eric P.; Stanford, S. Adam; Stringfellow, Guy S.; Zapata, Abner; Porter, Alain; Wischnjewsky, Marina

    2004-12-01

    We present optical and/or infrared photometry of the Type Ia supernovae SN 1991T, SN 1991bg, SN 1999ek, SN 2001bt, SN 2001cn, SN 2001cz, and SN 2002bo. All but one of these supernovae have decline rate parameters, Δm15(B), close to the median value of 1.1 for the whole class of Type Ia supernovae. The addition of these supernovae to the relationship between the near-infrared absolute magnitudes and Δm15(B) strengthens the previous relationships we have found in that the maximum light absolute magnitudes are essentially independent of the decline rate parameter. (SN 1991bg, the prototype of the subclass of fast-declining Type Ia supernovae, is a special case.) The dispersion in the Hubble diagram in JHK is only ~0.15 mag. The near-infrared properties of Type Ia supernovae continue to be excellent measures of the luminosity distances to the supernova host galaxies because of the need for only small corrections from the epoch of observation to maximum light, low dispersion in absolute magnitudes at maximum light, and the minimal reddening effects in the near-infrared.

  9. Could there be a hole in type Ia supernovae?

    SciTech Connect

    Kasen, Daniel; Nugent, Peter; Thomas, R.C.; Wang, Lifan

    2004-04-23

    In the favored progenitor scenario, Type Ia supernovae (SNe Ia) arise from a white dwarf accreting material from a non-degenerate companion star. Soon after the white dwarf explodes, the ejected supernova material engulfs the companion star; two-dimensional hydrodynamical simulations by Marietta et al. (2001) show that, in the interaction, the companion star carves out a conical hole of opening angle 30-40 degrees in the supernova ejecta. In this paper we use multi-dimensional Monte Carlo radiative transfer calculations to explore the observable consequences of an ejecta-hole asymmetry. We calculate the variation of the spectrum, luminosity, and polarization with viewing angle for the aspherical supernova near maximum light. We find that the supernova looks normal from almost all viewing angles except when one looks almost directly down the hole. In the latter case, one sees into the deeper, hotter layers of ejecta. The supernova is relatively brighter and has a peculiar spectrum characterized by more highly ionized species, weaker absorption features, and lower absorption velocities. The spectrum viewed down the hole is comparable to the class of SN 1991T-like supernovae. We consider how the ejecta-hole asymmetry may explain the current spectropolarimetric observations of SNe Ia, and suggest a few observational signatures of the geometry. Finally, we discuss the variety currently seen in observed SNe Ia and how an ejecta-hole asymmetry may fit in as one of several possible sources of diversity.

  10. Light Echoes as Probes of Supernova Type Ia Environments

    NASA Astrophysics Data System (ADS)

    Crotts, Arlin

    2009-07-01

    Environmental factors of Type Ia supernovae are key in understanding their nature, lightcurve evolution, and utility as cosmological standard candles. The progenitor ages {and many other properties} are bimodal, differing by roughly an order of magnitude. Is this reflected as well in the differences in their immediate surroundings in terms of gas and dust? The most powerful and direct way to address this issue is by imaging the reflected light from the dust itself via a light echo. In order for this approach to work, however, one must start imaging the vicinity of the supernova frequently and soon after the explosion is seen. We propose to maintain the imaging sequences crucial for understanding the three-dimensional dust distribution of two recent and key Type Ia supernovae, in a timely manner that will prevent otherwise significant holes in our knowledge. These observations are likely to be important in determining if the interstellar versus the circumstellar environments are more important in determining the appearance of Type Ia explosions, and thereby offer a clue as to the poorly-understood mass-loss history of SN Ia progenitors.JUSTIFICATION FOR VISIT TIME CONSTRAINTS:We have requested "Before" conditions

  11. Near-infrared absolute magnitudes of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Avelino, Arturo; Friedman, Andrew S.; Mandel, Kaisey; Kirshner, Robert; Challis, Peter

    2017-01-01

    Type Ia Supernovae light curves (SN Ia) in the near infrared (NIR) exhibit low dispersion in their peak luminosities and are less vulnerable to extinction by interstellar dust in their host galaxies. The increasing number of high quality NIR SNe Ia light curves, including the recent CfAIR2 sample obtained with PAIRITEL, provides updated evidence for their utility as standard candles for cosmology. Using NIR YJHKs light curves of ~150 nearby SNe Ia from the CfAIR2 and CSP samples, and from the literature, we determine the mean value and dispersion of the absolute magnitude in the range between -10 to 50 rest-frame days after the maximum luminosity in B band. We present the mean light-curve templates and Hubble diagram for YJHKs bands. This work contributes to a firm local anchor for supernova cosmology studies in the NIR which will help to reduce the systematic uncertainties due to host galaxy dust present in optical-only studies. This research is supported by NSF grants AST-156854, AST-1211196, Fundacion Mexico en Harvard, and CONACyT.

  12. Can the helium-enriched main-sequence donor scenario hide enough hydrogen to explain Type Ia supernovae?

    NASA Astrophysics Data System (ADS)

    Liu, Zheng-Wei; Stancliffe, Richard J.

    2017-09-01

    Hydrodynamical simulations predict that a large amount of hydrogen (≳0.1 M⊙) is removed from a hydrogen-rich companion star by the SN explosion in the single-degenerate scenario of Type Ia supernovae (SNe Ia). However, non-detection of hydrogen-rich material in the late-time spectra of SNe Ia suggests that the hydrogen mass stripped from the progenitor system is ≲0.001-0.058 M⊙. In this Letter, we include thermohaline mixing into self-consistent binary evolution calculations for the helium-enriched main-sequence (HEMS) donor channel of SNe Ia for the first time. We find that the swept-up hydrogen masses expected in this channel are around 0.10-0.17 M⊙, which is higher than the observational limits, although the companion star is strongly helium-enriched when the SN explodes. This presents a serious challenge to the HEMS donor channel.

  13. Common continuum polarization properties: a possible link between proto-planetary nebulae and Type Ia Supernova progenitors

    NASA Astrophysics Data System (ADS)

    Cikota, Aleksandar; Patat, Ferdinando; Cikota, Stefan; Spyromilio, Jason; Rau, Gioia

    2017-10-01

    The lines of sight to highly reddened SNe Ia show peculiar continuum polarization curves, growing towards blue wavelengths and peaking at λ _{max} ≲ 0.4 μ m, like no other sightline to any normal Galactic star. We examined continuum polarization measurements of a sample of asymptotic giant branch (AGB) and post-AGB stars from the literature, finding that some proto-planetary nebulae (PPNe) have polarization curves similar to those observed along SN Ia sightlines. These polarization curves are produced by scattering on circumstellar dust. We discuss the similarity and the possibility that at least some SNe Ia might explode during the post-AGB phase of their binary companion. Furthermore, we speculate that the peculiar SN Ia polarization curves might provide observational support to the core-degenerate progenitor model.

  14. Detectability of Cosmic Dark Flow in the Type Ia Supernova Redshift‒Distance Relation

    NASA Astrophysics Data System (ADS)

    Mathews, G. J.; Rose, B. M.; Garnavich, P. M.; Yamazaki, D. G.; Kajino, T.

    2016-08-01

    We reanalyze the detectability of large-scale dark flow (or local bulk flow) with respect to the CMB background based upon the redshift-distance relation for SN Ia. We made two independent analyses: one based upon identifying the three Cartesian velocity components; and the other based upon the cosine dependence of the deviation from Hubble flow on the sky. We apply these analyses to the Union2.1 SN Ia data and to the SDSS-II supernova survey. For both methods, results for low redshift, z\\lt 0.05, are consistent with previous searches. We find a local bulk flow of v bf ˜ 300 km s-1 in the direction of (l, b) ˜ (270, 35)°. However, the search for a dark flow at z\\gt 0.05 is inconclusive. Based upon simulated data sets, we deduce that the difficulty in detecting a dark flow at high redshifts arises mostly from the observational error in the distance modulus. Thus, even if it exists, a dark flow is not detectable at large redshift with current SN Ia data sets. We estimate that a detection would require both significant sky coverage of SN Ia out to z = 0.3 and a reduction in the effective distance modulus error from 0.2 mag to ≲0.02 mag. We estimate that a greatly expanded data sample of ˜104 SN Ia might detect a dark flow as small as 300 km s-1 out to z = 0.3 even with a distance modulus error of 0.2 mag. This may be achievable in a next generation large survey like LSST.

  15. AN INTENSIVE HUBBLE SPACE TELESCOPE SURVEY FOR z>1 TYPE Ia SUPERNOVAE BY TARGETING GALAXY CLUSTERS

    SciTech Connect

    Dawson, K. S.; Aldering, G.; Barbary, K.; Faccioli, L.; Fakhouri, H. K.; Goldhaber, G.; Amanullah, R.; Barrientos, L. F.; Brodwin, M.; Connolly, N.; Dey, A.; Doi, M.; Donahue, M.; Eisenhardt, P.; Ellingson, E.; Fadeyev, V.; Fruchter, A. S.; Gilbank, D. G.; Gladders, M. D.; Gonzalez, A. H.

    2009-11-15

    We present a new survey strategy to discover and study high-redshift Type Ia supernovae (SNe Ia) using the Hubble Space Telescope (HST). By targeting massive galaxy clusters at 0.9 < z < 1.5, we obtain a twofold improvement in the efficiency of finding SNe compared to an HST field survey and a factor of 3 improvement in the total yield of SN detections in relatively dust-free red-sequence galaxies. In total, sixteen SNe were discovered at z>0.95, nine of which were in galaxy clusters. This strategy provides an SN sample that can be used to decouple the effects of host-galaxy extinction and intrinsic color in high-redshift SNe, thereby reducing one of the largest systematic uncertainties in SN cosmology.

  16. Analytic photometric redshift estimator for Type Ia supernovae from the Large Synoptic Survey Telescope

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Gjergo, E.; Kuhlmann, S.

    2015-08-01

    Accurate and precise photometric redshifts (photo-zs) of Type Ia supernovae (SNe Ia) can enable the use of SNe Ia, measured only with photometry, to probe cosmology. This dramatically increases the science return of supernova surveys planned for the Large Synoptic Survey Telescope (LSST). In this paper we describe a significantly improved version of the simple analytic photo-z estimator proposed by Wang and further developed by Wang, Narayan & Wood-Vasey. We apply it to 55 422 simulated SNe Ia generated using the SNANA package with the LSST filters. We find that the estimated errors on the photo-zs, σ _{z_phot}/(1+z_phot), can be used as filters to produce a set of photo-zs that have high precision, accuracy, and purity. Using SN Ia colours as well as SN Ia peak magnitude in the i band, we obtain a set of photo-zs with 2 per cent accuracy (with σ(zphot - zspec)/(1 + zspec) = 0.02), a bias in zphot (the mean of zphot - zspec) of -9 × 10-5, and an outlier fraction (with |(zphot - zspec)/(1 + zspec)| > 0.1) of 0.23 per cent, with the requirement that σ _{z_phot}/(1+z_phot)<0.01. Using the SN Ia colours only, we obtain a set of photo-zs with similar quality by requiring that σ _{z_phot}/(1+z_phot)<0.007; this leads to a set of photo-zs with 2 per cent accuracy, a bias in zphot of 5.9 × 10-4, and an outlier fraction of 0.32 per cent.

  17. Visible and Near-infrared Light Curves of SN 2009nr

    NASA Astrophysics Data System (ADS)

    Heath, Jonathan; Bryngelson, Ginger

    2014-03-01

    This study explores the behavior of SN 2009nr, an apparently normal type Ia supernova (SN Ia). A plot of this object's brightness over time is known as a light curve. Because of the uniformity of their light curves, SNe Ia are valuable markers for determining the expansion of the universe and other cosmological parameters. Understanding the properties of these supernovae is vital in order to build our confidence in their use as standard candles. A small, but increasing number of SN Ia late-time observations have been made in the near-infrared (NIR). Most exhibit a flattening of the NIR power even as the visible light declines at a steady rate. It is still unclear as to why they exhibit this behavior and how typical this is. In order to characterize the late behavior of SNe Ia, images of SN 2009nr were analyzed using the Image Reduction and Analysis Facility (IRAF). NIR (J, H, K) images were taken with the 4m Mayall Telescope at Kitt Peak National-Observatory using the FLAMINGOS IR Imaging Spectrometer while visible (B, V, R, I) images used the Mosaic 1 imager. The supernova's apparent magnitude for each night of observation (by filter) was found by using reference stars. We present preliminary light curves of SN 2009nr and a comparison to another SN observed at similar epochs.

  18. The Type Ia Supernova Color-Magnitude Relation and Host Galaxy Dust: A Simple Hierarchical Bayesian Model

    NASA Astrophysics Data System (ADS)

    Mandel, Kaisey S.; Scolnic, Daniel M.; Shariff, Hikmatali; Foley, Ryan J.; Kirshner, Robert P.

    2017-06-01

    Conventional Type Ia supernova (SN Ia) cosmology analyses currently use a simplistic linear regression of magnitude versus color and light curve shape, which does not model intrinsic SN Ia variations and host galaxy dust as physically distinct effects, resulting in low color-magnitude slopes. We construct a probabilistic generative model for the dusty distribution of extinguished absolute magnitudes and apparent colors as the convolution of an intrinsic SN Ia color-magnitude distribution and a host galaxy dust reddening-extinction distribution. If the intrinsic color-magnitude (M B versus B - V) slope {β }{int} differs from the host galaxy dust law R B , this convolution results in a specific curve of mean extinguished absolute magnitude versus apparent color. The derivative of this curve smoothly transitions from {β }{int} in the blue tail to R B in the red tail of the apparent color distribution. The conventional linear fit approximates this effective curve near the average apparent color, resulting in an apparent slope {β }{app} between {β }{int} and R B . We incorporate these effects into a hierarchical Bayesian statistical model for SN Ia light curve measurements, and analyze a data set of SALT2 optical light curve fits of 248 nearby SNe Ia at z< 0.10. The conventional linear fit gives {β }{app}≈ 3. Our model finds {β }{int}=2.3+/- 0.3 and a distinct dust law of {R}B=3.8+/- 0.3, consistent with the average for Milky Way dust, while correcting a systematic distance bias of ˜0.10 mag in the tails of the apparent color distribution. Finally, we extend our model to examine the SN Ia luminosity-host mass dependence in terms of intrinsic and dust components.

  19. Spectroscopic identification of SNe 2004ds and SN 2004dt

    NASA Astrophysics Data System (ADS)

    Gal-Yam, Avishay

    2004-08-01

    A. Gal-Yam, D. Fox and S. Kulkarni, California Institute of Technology, report on red spectra (range 550-780 nm) obtained by Kulkarni and Fox on Aug. 13.5 UT at the 10-m Keck I telescope (+ LRIS). The spectrum of of SN 2004ds (IAUC #8386), shows a broad, well-developed P-Cyg H_alpha line and suggests that this is a type II supernova. The spectrum of SN 2004dt (IAUC #8386), shows the distinctive Si II 6100 absorption trough around 6100 Angstrom, indicating this is a young SN Ia.

  20. Neutrino mass constraint from CMB, BAO and SN

    SciTech Connect

    Ichikawa, Kazuhide

    2007-11-20

    We show that the cosmic microwave background (CMB) data of WMAP can give subelectronvolt limit on the neutrino mass. We investigate how much we can make it more stringent by using 'standard ruler' measurements such as baryon acoustic oscillation (BAO) and type Ia supernovae (SN)

  1. Type Ia supernova rate at a redshift of ~;0.1

    SciTech Connect

    Blanc, G.; Afonso, C.; Alard, C.; Albert, J.N.; Aldering, G.; Amadon, A.; Andersen, J.; Ansari, R.; Aubourg, E.; Balland, C.; Bareyre,P.; Beaulieu, J.P.; Charlot, X.; Conley, A.; Coutures, C.; Dahlen, T.; Derue, F.; Fan, X.; Ferlet, R.; Folatelli, G.; Fouque, P.; Garavini, G.; Glicenstein, J.F.; Goldman, B.; Goobar, A.; Gould, A.; Graff, D.; Gros,M.; Haissinski, J.; Hamadache, C.; Hardin, D.; Hook, I.M.; deKat, J.; Kent, S.; Kim, A.; Lasserre, T.; LeGuillou, L.; Lesquoy, E.; Loup, C.; Magneville, C.; Marquette, J.B.; Maurice, E.; Maury, A.; Milsztajn, A.; Moniez, M.; Mouchet, M.; Newberg, H.; Nobili, S.; Palanque-Delabrouille,N.; Perdereau, O.; Prevot, L.; Rahal, Y.R.; Regnault, N.; Rich, J.; Ruiz-Lapuente, P.; Spiro, M.; Tisserand, P.; Vidal-Madjar, A.; Vigroux,L.; Walton, N.A.; Zylberajch, S.

    2004-05-11

    We present the type Ia rate measurement based on two EROS supernova search campaigns (in 1999 and 2000). Sixteen supernovae identified as type Ia were discovered. The measurement of the detection efficiency, using a Monte Carlo simulation, provides the type Ia supernova explosion rate at a redshift {approx} 0.13. The result is 0.125{sub -0.034-0.028}{sup +0.044+0.028} h{sub 70}{sup 2} SNu where 1 SNu = 1 SN/10{sup 10} L{sub {circle_dot}}{sup B}/century. This value is compatible with the previous EROS measurement (Hardin et al. 2000), done with a much smaller sample, at a similar redshift. Comparison with other values at different redshifts suggests an evolution of the type Ia supernova rate.

  2. IA channels: diverse regulatory mechanisms.

    PubMed

    Carrasquillo, Yarimar; Nerbonne, Jeanne M

    2014-04-01

    In many peripheral and central neurons, A-type K(+) currents, IA, have been identified and shown to be key determinants in shaping action potential waveforms and repetitive firing properties, as well as in the regulation of synaptic transmission and synaptic plasticity. The functional properties and physiological roles of native neuronal IA, however, have been shown to be quite diverse in different types of neurons. Accumulating evidence suggests that this functional diversity is generated by multiple mechanisms, including the expression and subcellular distributions of IA channels encoded by different voltage-gated K(+) (Kv) channel pore-forming (α) subunits, interactions of Kv α subunits with cytosolic and/or transmembrane accessory subunits and regulatory proteins and post-translational modifications of channel subunits. Several recent reports further suggest that local protein translation in the dendrites of neurons and interactions between IA channels with other types of voltage-gated ion channels further expands the functional diversity of native neuronal IA channels. Here, we review the diverse molecular mechanisms that have been shown or proposed to underlie the functional diversity of native neuronal IA channels.

  3. Tests of the Accelerating Universe with Near-Infrared Observations of a High-Redshift Type IA Supernova

    NASA Astrophysics Data System (ADS)

    Riess, Adam G.; Filippenko, Alexei V.; Liu, Michael C.; Challis, Peter; Clocchiatti, Alejandro; Diercks, Alan; Garnavich, Peter M.; Hogan, Craig J.; Jha, Saurabh; Kirshner, Robert P.; Leibundgut, B.; Phillips, M. M.; Reiss, David; Schmidt, Brian P.; Schommer, Robert A.; Smith, R. Chris; Spyromilio, J.; Stubbs, Christopher; Suntzeff, Nicholas B.; Tonry, John; Woudt, Patrick; Brunner, Robert J.; Dey, Arjun; Gal, Roy; Graham, James; Larkin, James; Odewahn, Steve C.; Oppenheimer, Ben

    2000-06-01

    We have measured the rest-frame B-, V-, and I-band light curves of a high-redshift type Ia supernova (SN Ia), SN 1999Q (z=0.46), using the Hubble Space Telescope (HST) and ground-based near-infrared detectors. A goal of this study is the measurement of the color excess, EB-I, a sensitive indicator of interstellar or intergalactic dust, which could affect recent cosmological measurements from high-redshift SNe Ia. Our observations disfavor a 30% opacity of SN Ia visual light by dust as an alternative to an accelerating universe. This statement applies to both Galactic-type dust (rejected at the 3.4 σ confidence level) and grayer dust (grain size >0.1 μm, rejected at the 2.3-2.6 σ confidence level) as proposed by Aguirre. The rest-frame I-band light curve shows the secondary maximum 1 month after the B maximum typical of nearby SNe Ia of normal luminosity, providing no indication of evolution as a function of redshift out to z~0.5. An expanded set of similar observations could improve the constraints on any contribution of extragalactic dust to the dimming of high-redshift SNe Ia.

  4. EVOLUTION OF POST-IMPACT REMNANT HELIUM STARS IN TYPE Ia SUPERNOVA REMNANTS WITHIN THE SINGLE-DEGENERATE SCENARIO

    SciTech Connect

    Pan, Kuo-Chuan; Ricker, Paul M.; Taam, Ronald E. E-mail: pmricker@illinois.edu

    2013-08-10

    The progenitor systems of Type Ia supernovae (SNe Ia) are still under debate. Based on recent hydrodynamics simulations, non-degenerate companions in the single-degenerate scenario (SDS) should survive the supernova (SN) impact. One way to distinguish between the SDS and the double-degenerate scenario is to search for the post-impact remnant stars (PIRSs) in SN Ia remnants. Using a technique that combines multi-dimensional hydrodynamics simulations with one-dimensional stellar evolution simulations, we have examined the post-impact evolution of helium-rich binary companions in the SDS. It is found that these helium-rich PIRSs (He PIRSs) dramatically expand and evolve to a luminous phase (L {approx} 10{sup 4} L{sub Sun }) about 10 yr after an SN explosion. Subsequently, they contract and evolve to become hot blue-subdwarf-like (sdO-like) stars by releasing gravitational energy, persisting as sdO-like stars for several million years before evolving to the helium red-giant phase. We therefore predict that a luminous OB-like star should be detectable within {approx}30 yr after the SN explosion. Thereafter, it will shrink and become an sdO-like star in the central regions of SN Ia remnants within star-forming regions for SN Ia progenitors evolved via the helium-star channel in the SDS. These He PIRSs are predicted to be rapidly rotating (v{sub rot} {approx}> 50 km s{sup -1}) and to have high spatial velocities (v{sub linear} {approx}> 500 km s{sup -1}). Furthermore, if SN remnants have diffused away and are not recognizable at a later stage, He PIRSs could be an additional source of single sdO stars and/or hypervelocity stars.

  5. Comparative pharmacokinetics and bioavailability of escin Ia and isoescin Ia after administration of escin and of pure escin Ia and isoescin Ia in rat.

    PubMed

    Wu, Xiu-Jun; Zhang, Meng-Liang; Cui, Xiang-Yong; Gao, Feng; He, Qun; Li, Xiao-Jiao; Zhang, Ji-Wen; Fawcett, J Paul; Gu, Jing-Kai

    2012-01-06

    Escin Ia and isoescin Ia have been traditionally used clinically as the chief active ingredients of escin, a major triterpene saponin isolated from horse chestnut (Aesculus hippocastanum) seeds for the treatment of chronic venous insufficiency, hemorrhoids, inflammation and edema. To establish a sensitive LC-MS/MS method and investigate the pharmacokinetic properties of escin Ia and isoescin Ia in rats and the pharmacokinetics difference of sodium escinate with pure escin Ia and isoescin Ia. The absolute bioavailability of escin Ia and isoescin Ia and the bidirectional interconversion of them in vivo were also scarcely reported. Wister rats were administrated an intravenous (i.v.) dose (1.7 mg/kg) of sodium escinate (corresponding to 0.5mg/kg of escin Ia and 0.5mg/kg of isoescin Ia, respectively) and an i.v. dose (0.5mg/kg) or oral dose (4mg/kg) of pure escin Ia or isoescin Ia, respectively. At different time points, the concentrations of escin Ia and isoescin Ia in rat plasma were determined by LC-MS/MS method. Main pharmacokinetic parameters including t(1/2), MRT, CL, V(d), AUC and F were estimated by non-compartmental analysis using the TopFit 2.0 software package (Thomae GmbH, Germany) and statistical analysis was performed using the Student's t-test with P<0.05 as the level of significance. After administration of sodium escinate, the t(1/2) and MRT values for both escin Ia and isoescin Ia were larger than corresponding values for the compounds given alone. Absorption of escin Ia and isoescin Ia was very low with F values both <0.25%. Escin Ia and isoescin Ia were found to form the other isomer in vivo with the conversion of escin Ia to isoescin Ia being much extensive than from isoescin Ia to escin Ia. Comparison of the pharmacokinetics of escin Ia and isoescin Ia given alone and together in rat suggest that administration of herbal preparations of escin for clinical use may provide longer duration of action than administration of single isomers. The

  6. Exploring the spectral diversity of low-redshift Type Ia supernovae using the Palomar Transient Factory

    NASA Astrophysics Data System (ADS)

    Maguire, K.; Sullivan, M.; Pan, Y.-C.; Gal-Yam, A.; Hook, I. M.; Howell, D. A.; Nugent, P. E.; Mazzali, P.; Chotard, N.; Clubb, K. I.; Filippenko, A. V.; Kasliwal, M. M.; Kandrashoff, M. T.; Poznanski, D.; Saunders, C. M.; Silverman, J. M.; Walker, E.; Xu, D.

    2014-11-01

    We present an investigation of the optical spectra of 264 low-redshift (z < 0.2) Type Ia supernovae (SNe Ia) discovered by the Palomar Transient Factory, an untargeted transient survey. We focus on velocity and pseudo-equivalent width measurements of the Si II 4130, 5972, and 6355 Å lines, as well those of the Ca II near-infrared (NIR) triplet, up to +5 days relative to the SN B-band maximum light. We find that a high-velocity component of the Ca II NIR triplet is needed to explain the spectrum in ˜95 per cent of SNe Ia observed before -5 days, decreasing to ˜80 per cent at maximum. The average velocity of the Ca II high-velocity component is ˜8500 km s-1 higher than the photospheric component. We confirm previous results that SNe Ia around maximum light with a larger contribution from the high-velocity component relative to the photospheric component in their Ca II NIR feature have, on average, broader light curves and lower Ca II NIR photospheric velocities. We find that these relations are driven by both a stronger high-velocity component and a weaker contribution from the photospheric Ca II NIR component in broader light curve SNe Ia. We identify the presence of C II in very-early-time SN Ia spectra (before -10 days), finding that >40 per cent of SNe Ia observed at these phases show signs of unburnt material in their spectra, and that C II features are more likely to be found in SNe Ia having narrower light curves.

  7. Thermonuclear ignition and runaway in type Ia supernovae

    SciTech Connect

    Wheeler, J.C. )

    1990-12-01

    Recent theoretical models of type Ia SN explosions are examined analytically. Qualitatively, the process described involves mass transfer to a C/O white dwarf in a binary system, bringing it near the Chandrasekhar limit and initiating runaway carbon burning. Particular attention is given to (1) carbon ignition and the convective Urca process, which acts to delay runaway, (2) detonation and deflagration models of SN dynamics, and (3) the application of observational data (light curves and spectra) to place limits on dynamical models. It is shown that most deflagration-type models do not give good agreement with spectroscopic observations, while those that do fail to explain density profiles deduced from other observations. Further research on damped-detonation models is recommended. 32 refs.

  8. Thermonuclear ignition and runaway in type IA supernovae

    NASA Astrophysics Data System (ADS)

    Wheeler, J. Craig

    1990-12-01

    Recent theoretical models of type Ia SN explosions are examined analytically. Qualitatively, the process described involves mass transfer to a C/O white dwarf in a binary system, bringing it near the Chandrasekhar limit and initiating runaway carbon burning. Particular attention is given to (1) carbon ignition and the convective Urca process, which acts to delay runaway, (2) detonation and deflagration models of SN dynamics, and (3) the application of observational data (light curves and spectra) to place limits on dynamical models. It is shown that most deflagration-type models do not give good agreement with spectroscopic observations, while those that do fail to explain density profiles deduced from other observations. Further research on damped-detonation models is recommended.

  9. Supernovae In The Subaru Deep Field: The Rate And Delay-time Distribution Of Type Ia Supernovae Out To Redshift 2

    NASA Astrophysics Data System (ADS)

    Graur, Or; SDF SN Team

    2012-01-01

    The Type Ia supernova (SN Ia) rate, when compared to the cosmic star formation history (SFH), can be used to derive the delay-time distribution (DTD; the hypothetical SN Ia rate versus time following a brief burst of star formation) of SNe Ia, which can distinguish among progenitor models. We present the results of a supernova (SN) survey in the Subaru Deep Field (SDF). Over a period of 3 years, we have observed the SDF on four independent epochs with Suprime-Cam on the Subaru 8.2-m telescope, with two nights of exposure per epoch, in the R, i'and z‧ bands. We have discovered 150 SNe out to redshift z≈ 2. Our final sample includes 28 SNe Ia in the range 1.0 < z < 1.5 and 10 in the range 1.5 < z < 2.0. As our survey is largely insensitive to core-collapse SNe (CC SNe) at z > 1, most of the events found in this range are likely SNe Ia. Based on this sample, we find that the SN Ia rate evolution levels off at 1.0 < z < 2.0, but shows no sign of declining. Combining our SN Ia rate measurements and those from the literature, and comparing to a wide range of possible SFHs, the best-fitting DTD (with a reduced χ2= 0.7) is a power law of the form &Psi(t) ∝tβ, with index β=-1.1 ± 0.1 (statistical) ±0.17 (systematic). By combining the contribution from CC SNe, based on the wide range of SFHs, with that from SNe Ia, calculated with the best-fitting DTD, we predict that the mean present-day cosmic iron abundance is in the range ZFe= (0.09-0.37) ZFe, ⊙.

  10. The fraction of type Ia supernovae exploding inside planetary nebulae (SNIPs)

    NASA Astrophysics Data System (ADS)

    Tsebrenko, Danny; Soker, Noam

    2015-03-01

    Using three independent directions, we estimate that the fraction of type Ia supernovae (SNe Ia) exploding inside planetary nebulae (PNe), termed SNIPs, is at least ˜20 per cent. Our three directions are: (i) Taking the variable sodium absorption lines in some SNe Ia to originate in massive circum-stellar matter (CSM), as has been claimed recently, we use the results of Sternberg et al. to imply that ≳ 20 per cent of SNe Ia occur inside a PN (or a PN descendant), hence classify them as SNIPs. (ii) We next use results that show that whenever there are hydrogen lines in SNe Ia, the hydrogen mass in the CSM is large, ≳ 1 M⊙, hence the explosion is a SNIP. We make the simplest assumption that the probability for explosion is constant in time for up to about 105 yr after the merger of the core with the white dwarf (WD) in the core-degenerate scenario. The result is that at least a few tens of per cent of SNe Ia may have an SNIP origin. (iii) We examine the X-ray morphologies of 13 well-resolved close-by type Ia SN remnants (SNRs) and derive a crude upper limit, according to which 10-30 per cent of all SNRs Ia possess opposite ear-like features, which we take as evidence of SNIP origin. Our results, together with several other recent results, lead us to conclude that the two scenarios contributing most to SNe Ia are the core-degenerate and the double-degenerate scenarios. Together these two account for >95 per cent of all SNe Ia.

  11. Survey for the Binary Progenitor in SN1006 and Update on SN1572

    NASA Astrophysics Data System (ADS)

    Ruiz-Lapuente, Pilar; Hernández, Jonay González; Tabernero, Hugo; Montes, David; Canal, Ramon; Mendez, Javier; Bedin, Luigi

    2013-01-01

    We have completed a survey down to R = 15 mag of the stars within a circle of 4 arcmin radius around the nominal center of the remnant of SN 1006, one of the three historical Type Ia supernovae (the other two being SN 1572 and SN 1604), in search of a possible surviving binary companion of the white dwarf whose explosion gave rise to the supernova. The stellar parameters (effective temperature, surface gravity, and metallicity), as well as the radial velocities of all the stars, have been measured from spectra obtained with the UVES spectrograph at the VLT, and from the former and the available photometry, distances have been determined. Chemical abundances of the Fe-peak elements Cr, Mn, Co, and Ni have also been measured to check for possible contamination of the stellar surface by the supernova ejecta. The limiting magnitude of the survey would allow us to find stellar companions of the red-giant type, subgiant stars, and main-sequence stars down to F5-6. Unlike in SN 1572, where a subgiant of type G0-1 has been proposed as the companion of SN 1572, for SN 1006 we can discard the possibility that SN 1006 had a red giant or subgiant companion.

  12. Hydrogen and helium in the spectra of Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Lundqvist, Peter; Mattila, Seppo; Sollerman, Jesper; Kozma, Cecilia; Baron, E.; Cox, Nick L. J.; Fransson, Claes; Leibundgut, Bruno; Spyromilio, Jason

    2013-10-01

    We present predictions for hydrogen and helium emission line luminosities from circumstellar matter around Type Ia supernovae (SNe Ia) using time dependent photoionization modelling. Early high-resolution ESO/Very Large Telescope (VLT) optical echelle spectra of the SN Ia 2000cx were taken before and up to ˜70 d after maximum to probe the existence of such narrow emission lines from the supernova. We detect no such lines, and from our modelling place an upper limit on the mass-loss rate for the putative wind from the progenitor system, dot{M}≲ 1.3× 10^{-5} M_{⊙} yr^{-1}, assuming a speed of 10 km s-1 and solar abundances for the wind. If the wind would be helium-enriched and/or faster, the upper limit on dot{M} could be significantly higher. In the helium-enriched case, we show that the best line to constrain the mass-loss would be He I λ10 830. In addition to confirming the details of interstellar Na I and Ca II absorption towards SN 2000cx as discussed by Patat et al., we also find evidence for 6613.56 Å diffuse interstellar band absorption in the Milky Way. We also discuss measurements of the X-ray emission from the interaction between the supernova ejecta and the wind and we re-evaluate observations of SN 1992A obtained ˜16 d after maximum by Schlegel & Petre. We find an upper limit of dot{M}˜ 1.3× 10^{-5} M_{⊙} yr^{-1} which is significantly higher than that estimated by Schlegel & Petre. These results, together with the previous observational work on the normal SNe Ia 1994D and 2001el, disfavour a symbiotic star in the upper mass-loss rate regime (so-called Mira-type systems) from being the likely progenitor scenario for these SNe. Our model calculations are general, and can also be used for the subclass of SNe Ia that do show circumstellar interaction, e.g. the recent PTF 11kx. To constrain hydrogen in late-time spectra, we present ESO/VLT and ESO/New Technology Telescope optical and infrared observations of SNe Ia 1998bu and 2000cx in the

  13. CEPHEID CALIBRATIONS OF MODERN TYPE Ia SUPERNOVAE: IMPLICATIONS FOR THE HUBBLE CONSTANT

    SciTech Connect

    Riess, Adam G.; Macri, Lucas; Li Weidong; Filippenko, Alexei V.; Chornock, Ryan; Ganeshalingham, Mohan; Lampeitl, Hubert; Casertano, Stefano; Ferguson, Henry C.; Mutchler, Max; Jha, Saurabh W.; Greenhill, Lincoln; Hicken, Malcolm

    2009-07-15

    This is the first of two papers reporting measurements from a program to determine the Hubble constant to {approx}5% precision from a refurbished distance ladder. We present new observations of 110 Cepheid variables in the host galaxies of two recent Type Ia supernovae (SNe Ia), NGC 1309 and NGC 3021, using the Advanced Camera for Surveys on the Hubble Space Telescope (HST). We also present new observations of the hosts previously observed with HST whose SNe Ia provide the most precise luminosity calibrations: SN 1994ae in NGC 3370, SN 1998aq in NGC 3982, SN 1990N in NGC 4639, and SN 1981B in NGC 4536, as well as the maser host, NGC 4258. Increasing the interval between observations enabled the discovery of new, longer-period Cepheids, including 57 with P>60 days, which extend these period-luminosity (P-L) relations. We present 93 measurements of the metallicity parameter, 12 + log[O/H], measured from H II regions in the vicinity of the Cepheids and show these are consistent with solar metallicity. We find the slope of the seven dereddened P-L relations to be consistent with that of the Large Magellanic Cloud Cepheids and with parallax measurements of Galactic Cepheids, and we address the implications for the Hubble constant. We also present multi-band light curves of SN 2002fk (in NGC 1309) and SN 1995al (in NGC 3021) which may be used to calibrate their luminosities. In the second paper, we present observations of the Cepheids in the H band obtained with the Near-Infrared Camera and Multi-Object Spectrometer on HST, further mitigating systematic errors along the distance ladder resulting from dust and chemical variations. The quality and homogeneity of these SN and Cepheid data provide the basis for a more precise determination of the Hubble constant.

  14. THE FAST DECLINING TYPE Ia SUPERNOVA 2003gs, AND EVIDENCE FOR A SIGNIFICANT DISPERSION IN NEAR-INFRARED ABSOLUTE MAGNITUDES OF FAST DECLINERS AT MAXIMUM LIGHT

    SciTech Connect

    Krisciunas, Kevin; Marion, G. H.; Suntzeff, Nicholas B. E-mail: suntzeff@physics.tamu.edu

    2009-12-15

    We obtained optical photometry of SN 2003gs on 49 nights, from 2 to 494 days after T(B {sub max}). We also obtained near-IR photometry on 21 nights. SN 2003gs was the first fast declining Type Ia SN that has been well observed since SN 1999by. While it was subluminous in optical bands compared to more slowly declining Type Ia SNe, it was not subluminous at maximum light in the near-IR bands. There appears to be a bimodal distribution in the near-IR absolute magnitudes of Type Ia SNe at maximum light. Those that peak in the near-IR after T(B {sub max}) are subluminous in the all bands. Those that peak in the near-IR prior to T(B {sub max}), such as SN 2003gs, have effectively the same near-IR absolute magnitudes at maximum light regardless of the decline rate {delta}m {sub 15}(B). Near-IR spectral evidence suggests that opacities in the outer layers of SN 2003gs are reduced much earlier than for normal Type Ia SNe. That may allow {gamma} rays that power the luminosity to escape more rapidly and accelerate the decline rate. This conclusion is consistent with the photometric behavior of SN 2003gs in the IR, which indicates a faster than normal decline from approximately normal peak brightness.

  15. The Critical Mass Ratio of Violent Merger-Induced Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Sato, Yushi; Nakasato, Naohito; Tanikawa, Ataru; Nomoto, Ken'ichi; Maeda, Keiichi; Hachisu, Izumi

    Mergers of carbon-oxygen (CO) white dwarfs (WDs) are considered as one of the potential progenitors of type Ia supernovae (SNe Ia). Recent studies indicate that the less massive (secondary) WD violently accretes onto the more massive (primary) one, carbon detonation occurs. The detonation wave propagates through the primary, and an SN Ia explosion finally occurs. Such an explosion model is called the violent merger scenario. Based on the smoothed hydrodynamics (SPH) simulations of merging CO WDs, we derived the critical mass ratio (qcr) leading to the violent merger-induced SN Ia. As a result, we found that qcr ˜ 0.8 when the primary's mass is 1 solar mass (M ⊙ ), in other words, the secondary WD of the binary system has to be larger than 0.8 M ⊙ . Since such a massive CO WD is considered to be rare, the violent merger scenario might not be the dominant progenitors of normal SNe Ia. Using the results of this study and our previous one, we categolize the outcomes of CO WDs mergers into four scenarios. Recently, an observation found a super-Chandrasekhar mass double degenerate system in the center of Henize 2-428, a bipolar planetary nebula. We use our results to investigate the merger outcome of the system.

  16. Supernova SN 2012dn: a spectroscopic clone of SN 2006gz

    NASA Astrophysics Data System (ADS)

    Chakradhari, N. K.; Sahu, D. K.; Srivastav, S.; Anupama, G. C.

    2014-09-01

    We present optical and UV analysis of the luminous Type Ia supernova SN 2012dn covering the period from ˜-11 to +109 d with respect to the B-band maximum, which occurred on JD 245 6132.89 ± 0.19, with an apparent magnitude of mB^max = 14.38 ± 0.02. The absolute magnitudes at maximum in B and V bands are MB^max = -19.52 ± 0.15 and MV^max = -19.42 ± 0.15, respectively. SN 2012dn is marginally luminous compared to normal Type Ia supernovae. The peak bolometric luminosity of log L_bol^max = 43.27 ± 0.06 erg s-1 suggests that 0.82 ± 0.12 M⊙ of 56Ni was synthesized in the explosion. The decline rate Δm15(B)true = 0.92 ± 0.04 mag is lower than that of normal Type Ia supernovae, and similar to the luminous SN 1991T. However, the photometric and spectroscopic behaviour of SN 2012dn is different from that of SN 1991T. Early-phase light curves in R and I bands are very broad. The I-band peak has a plateau-like appearance similar to the super-Chandra SN 2009dc. Pre-maximum spectra show clear evidence of C II 6580 Å line, indicating the presence of unburned materials. The velocity evolution of C II line is peculiar. Except for the very early phase (˜-13 d), the C II line velocity is lower than the velocity estimated using the Si II line. During the pre-maximum and close to the maximum phase, to reproduce observed shape of the spectra, the synthetic spectrum code SYN++ needs significantly higher blackbody temperature than those required for normal Type Ia events. The photospheric velocity evolution and other spectral properties are similar to those of the carbon-rich SN 2006gz.

  17. Measuring Type Ia Supernova Populations of Stretch and Color and Predicting Distance Biases

    NASA Astrophysics Data System (ADS)

    Scolnic, D.; Kessler, R.

    2016-05-01

    Simulations of Type Ia supernovae (SNe Ia) surveys are a critical tool for correcting biases in the analysis of SNe Ia to infer cosmological parameters. Large-scale Monte Carlo simulations include a thorough treatment of observation history, measurement noise, intrinsic scatter models, and selection effects. In this Letter, we improve simulations with a robust technique to evaluate the underlying populations of SN Ia color and stretch that correlate with luminosity. In typical analyses, the standardized SN Ia brightness is determined from linear “Tripp” relations between the light curve color and luminosity and between stretch and luminosity. However, this solution produces Hubble residual biases because intrinsic scatter and measurement noise result in measured color and stretch values that do not follow the Tripp relation. We find a 10σ bias (up to 0.3 mag) in Hubble residuals versus color and 5σ bias (up to 0.2 mag) in Hubble residuals versus stretch in a joint sample of 920 spectroscopically confirmed SN Ia from PS1, SNLS, SDSS, and several low-z surveys. After we determine the underlying color and stretch distributions, we use simulations to predict and correct the biases in the data. We show that removing these biases has a small impact on the low-z sample, but reduces the intrinsic scatter σ int from 0.101 to 0.083 in the combined PS1, SNLS, and SDSS sample. Past estimates of the underlying populations were too broad, leading to a small bias in the equation of state of dark energy w of Δw = 0.005.

  18. Constraining the double-degenerate scenario for Type Ia supernovae from merger ejected matter

    NASA Astrophysics Data System (ADS)

    Levanon, Naveh; Soker, Noam; García-Berro, Enrique

    2015-03-01

    We follow the mass expelled during the WD-WD merger process in a particular case of the double-degenerate (DD) scenario for Type Ia supernovae (SNe Ia), and find that the interaction of the SN ejecta with the resulting wind affects the early (first day) light-curve in a way that may be in conflict with some SN Ia observations, if the detonation occurs shortly after the merger, i.e. (103 s ≲ texp ≲ 1 d). The main source of the expelled mass is a disc-wind, or jets that are launched by the accretion disc around the more massive white dwarf (WD) during the viscous phase of the merger. This disc-originated matter will be shocked and heated by the SN ejecta from an explosion, leading to additional radiation in the early light-curve. This enhanced early radiation could then be interpreted as an explosion originating from a progenitor having an inferred radius of one solar radius or more, in conflict with observations of SN 2011fe.

  19. Early Blue Excess from the Type Ia Supernova 2017cbv and Implications for Its Progenitor

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Griffin; Sand, David J.; Valenti, Stefano; Brown, Peter; Howell, D. Andrew; McCully, Curtis; Kasen, Daniel; Arcavi, Iair; Azalee Bostroem, K.; Tartaglia, Leonardo; Hsiao, Eric Y.; Davis, Scott; Shahbandeh, Melissa; Stritzinger, Maximilian D.

    2017-08-01

    We present very early, high-cadence photometric observations of the nearby Type Ia SN 2017cbv. The light curve is unique in that it has a blue bump during the first five days of observations in the U, B, and g bands, which is clearly resolved given our photometric cadence of 5.7 hr during that time span. We model the light curve as the combination of early shocking of the supernova ejecta against a nondegenerate companion star plus a standard SN Ia component. Our best-fit model suggests the presence of a subgiant star 56 R ⊙ from the exploding white dwarf, although this number is highly model-dependent. While this model matches the optical light curve well, it overpredicts the observed flux in the ultraviolet bands. This may indicate that the shock is not a blackbody, perhaps because of line blanketing in the UV. Alternatively, it could point to another physical explanation for the optical blue bump, such as interaction with circumstellar material or an unusual nickel distribution. Early optical spectra of SN 2017cbv show strong carbon (C ii λ6580) absorption up through day -13 with respect to maximum light, suggesting that the progenitor system contains a significant amount of unburned material. These early results on SN 2017cbv illustrate the power of early discovery and intense follow-up of nearby supernovae to resolve standing questions about the progenitor systems and explosion mechanisms of SNe Ia.

  20. VizieR Online Data Catalog: YJK for Type Ia supernovae (Dhawan+, 2015)

    NASA Astrophysics Data System (ADS)

    Dhawan, S.; Leibundgut, B.; Spyromilio, J.; Maguire, K.

    2015-09-01

    We investigate a large sample of nearby objects with well-sampled optical and NIR data (Table 1). The main data source of NIR SN Ia photometry is the Carnegie SN Project (CSP; Contreras et al., 2010, Cat. J/AJ/139/519; Burns et al. 2011AJ....141...19B, 2014ApJ...789...32B; Stritzinger et al., 2011, Cat. J/AJ/142/156; Phillips, 2012PASA...29..434P). The low-redshift CSP provides a sample of SNe Ia with optical and NIR light curves in a homogeneous and well-defined photometric system ( in Vega magnitude system) and thus forms an ideal basis for the evaluation of light-curve properties. CSP relies primarily on SN discoveries from the Lick Observatory SN Search (Leaman et al., 2011, Cat. J/MNRAS/412/1419). The CSP has published light curves on a total of 82 SNe Ia of which 70 have photometry in YJHK bands. (6 data files).

  1. Type Ia supernova rate measurements to redshift 2.5 from CANDELS: Searching for prompt explosions in the early universe

    SciTech Connect

    Rodney, Steven A.; Riess, Adam G.; Graur, Or; Jones, David O.; Strolger, Louis-Gregory; Dahlen, Tomas; Casertano, Stefano; Ferguson, Henry C.; Koekemoer, Anton M.; Dickinson, Mark E.; Garnavich, Peter; Hayden, Brian; Jha, Saurabh W.; McCully, Curtis; Patel, Brandon; Kirshner, Robert P.; Mobasher, Bahram; Weiner, Benjamin J.; Cenko, S. Bradley; Clubb, Kelsey I.; and others

    2014-07-01

    The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) was a multi-cycle treasury program on the Hubble Space Telescope (HST) that surveyed a total area of ∼0.25 deg{sup 2} with ∼900 HST orbits spread across five fields over three years. Within these survey images we discovered 65 supernovae (SNe) of all types, out to z ∼ 2.5. We classify ∼24 of these as Type Ia SNe (SNe Ia) based on host galaxy redshifts and SN photometry (supplemented by grism spectroscopy of six SNe). Here we present a measurement of the volumetric SN Ia rate as a function of redshift, reaching for the first time beyond z = 2 and putting new constraints on SN Ia progenitor models. Our highest redshift bin includes detections of SNe that exploded when the universe was only ∼3 Gyr old and near the peak of the cosmic star formation history. This gives the CANDELS high redshift sample unique leverage for evaluating the fraction of SNe Ia that explode promptly after formation (<500 Myr). Combining the CANDELS rates with all available SN Ia rate measurements in the literature we find that this prompt SN Ia fraction is f{sub P} = 0.53{sub stat0.10}{sup ±0.09}{sub sys0.26}{sup ±0.10}, consistent with a delay time distribution that follows a simple t {sup –1} power law for all times t > 40 Myr. However, mild tension is apparent between ground-based low-z surveys and space-based high-z surveys. In both CANDELS and the sister HST program CLASH (Cluster Lensing And Supernova Survey with Hubble), we find a low rate of SNe Ia at z > 1. This could be a hint that prompt progenitors are in fact relatively rare, accounting for only 20% of all SN Ia explosions—though further analysis and larger samples will be needed to examine that suggestion.

  2. Progenitors of Supernovae Type Ia

    NASA Astrophysics Data System (ADS)

    Toonen, S.; Nelemans, G.; Bours, M.; Portegies Zwart, S.; Claeys, J.; Mennekens, N.; Ruiter, A.

    2013-01-01

    Despite the significance of Type Ia supernovae (SNeIa) in many fields in astrophysics, SNeIa lack a theoretical explanation. The standard scenarios involve thermonuclear explosions of carbon/oxygen white dwarfs approaching the Chandrasekhar mass; either by accretion from a companion or by a merger of two white dwarfs. We investigate the contribution from both channels to the SNIa rate with the binary population synthesis (BPS) code SeBa in order to constrain binary processes such as the mass retention efficiency of WD accretion and common envelope evolution. We determine the theoretical rates and delay time distribution of SNIa progenitors and in particular study how assumptions affect the predicted rates.

  3. Dust around Type Ia supernovae

    SciTech Connect

    Wang, Lifan

    2005-10-20

    An explanation is given of the low value of R lambda triple bond A lambda/E(B - V), the ratio of absolute to selective extinction deduced from Type Ia supernova observations. The idea involves scattering by dust clouds located in the circumstellar environment, or at the highest velocity shells of the supernova ejecta. The scattered light tends to reduce the effective R lambda in the optical, but has an opposite effect in the ultraviolet. The presence of circumstellar dust can be tested by ultraviolet to near infrared observations and by multi-epoch spectropolarimetry of SNe Ia.

  4. The surviving companions in type Ia supernova remnants

    NASA Astrophysics Data System (ADS)

    Chen, Li-Qing; Meng, Xiang-Cun; Han, Zhan-Wen

    2017-08-01

    The single-degenerate (SD) model is one of the most popular progenitor models of type Ia supernovae (SNe Ia), in which the companion star can survive after an SN Ia explosion and show peculiar properties. Therefore, searching for the surviving companion in type Ia supernova remnants (SNRs) is a potential method to verify the SD model. In the SN 1604 remnant (Kepler’s SNR), although Chandra X-ray observation suggests that the progenitor is most likely a WD+AGB system, a the surviving companion has not been found. One possible reason is rapid rotation of the white dwarf (WD), causing explosion of the WD to be delayed for a spin-down timescale, and then the companion evolved into a WD before the supernova explosion, so the companion is too dim to be detected. We aim to verify this possible explanation by carrying out binary evolution calculations. In this paper, we use Eggleton’s stellar evolution code to calculate the evolution of binaries consisting of a WD+red giant (RG). We assume that the rapidly rotating WD can continuously increase its mass when its mass exceeds the Chandrasekhar mass limit ({M}{{Ch}}=1.378 {M}⊙ ) until the mass-transfer rate decreases to be lower than a critical value. Eventually, we obtain the final masses of a WD in the range 1.378 M ⊙ to 2.707 M ⊙. We also show that if the spin-down time is less than 106 yr, the companion star will be very bright and easily observed; but if the spin-down time is as long as ˜ 107 yr, the luminosities of the surviving companion would be lower than the detection limit. Our simulation provides guidance in hunting for the surviving companion stars in SNRs, and the fact that no surviving companion has been found in Kepler’s SNR may not be definite evidence disfavoring the SD origin of Kepler’s SN.

  5. Signatures of a companion star in type Ia supernovae

    SciTech Connect

    Maeda, Keiichi; Kutsuna, Masamichi; Shigeyama, Toshikazu

    2014-10-10

    Although type Ia supernovae (SNe Ia) have been used as precise cosmological distance indicators, their progenitor systems remain unresolved. One of the key questions is whether there is a nondegenerate companion star at the time of a thermonuclear explosion of a white dwarf. In this paper, we investigate whether an interaction between the SN ejecta and the companion star may result in observable footprints around the maximum brightness and thereafter, by performing multidimensional radiation transfer simulations based on hydrodynamic simulations of the interaction. We find that such systems result in variations in various observational characteristics due to different viewing directions, and the predicted behaviors (redder and fainter for the companion direction) are the opposite of what were suggested by the previous study. The variations are generally modest and within observed scatters. However, the model predicts trends between some observables different from those observationally derived, so a large sample of SNe Ia with small calibration errors may be used to constrain the existence of such a companion star. The variations in different colors in optical band passes can be mimicked by external extinctions, so such an effect could be a source of scatter in the peak luminosity and derived distance. After the peak, hydrogen-rich materials expelled from the companion will manifest themselves in hydrogen lines, but Hα is extremely difficult to identify. Alternatively, we find that P{sub β} in postmaximum near-infrared spectra can potentially provide a powerful diagnostic.

  6. Twin Supernova Studies with SNe Ia from SNfactory

    NASA Astrophysics Data System (ADS)

    Fakhouri, Hannah; Aldering, G.; Aragon, C.; Hsiao, E.; Loken, S.; Nugent, P.; Perlmutter, S.; Runge, K.; Thomas, R. C.; Antilogous, P.; Bongard, S.; Canto, A.; Pain, R.; Wu, C.; Chotard, N.; Copin, Y.; Gangler, E.; Pereira, R.; Smadja, G.; Pecontal, E.; Baltay, C.; Rabinowitz, D.; Scalzo, R.; Buton, C.; Kerschhaggl, M.; Kowalski, M.; Paech, K.; Tao, C.

    2011-01-01

    We present a study of twin supernovae with spectrophotometric timeseries of nearby Type Ia supernova from the Nearby Supernova Factory (Aldering, et al. 2002). One advantage of "twins” is they offer the best opportunity for having objects with the same intrinsic luminosities and colors, ostensibly leaving only extrinsic factors such as dust to explain any observed differences in brightness and color. Using well-sampled timeseries data for over 100 nearby Hubble-flow SNe Ia, we study the impact of dust on the brightness differences of SN Ia twins in order to improve the standardization of these standardizable candles that have been and will continue to be a primary tool in the determination of cosmological parameters. Specifically we are able to solve for the relative extinction and RV needed to bring the twins into near-perfect agreement. We will present a study of the resulting distribution of RV. In searching for twin supernovae we have found groups of SNe, again differing only by a dust law that accounts for the brightness differences. These groups allow us to look for similarities in subsets of SNe and explore spectrophotometric differences from group to group.

  7. SN2012ca: a stripped envelope core-collapse SN interacting with dense circumstellar medium

    NASA Astrophysics Data System (ADS)

    Inserra, C.; Smartt, S. J.; Scalzo, R.; Fraser, M.; Pastorello, A.; Childress, M.; Pignata, G.; Jerkstrand, A.; Kotak, R.; Benetti, S.; Della Valle, M.; Gal-Yam, A.; Mazzali, P.; Smith, K.; Sullivan, M.; Valenti, S.; Yaron, O.; Young, D.; Reichart, D.

    2014-01-01

    We report optical and near-infrared observations of SN2012ca with the Public ESO Spectroscopy Survey of Transient Objects (PESSTO), spread over one year since discovery. The supernova (SN) bears many similarities to SN1997cy and to other events classified as Type IIn but which have been suggested to have a thermonuclear origin with narrow hydrogen lines produced when the ejecta impact a hydrogen-rich circumstellar medium (CSM). Our analysis, especially in the nebular phase, reveals the presence of oxygen, magnesium and carbon features. This suggests a core-collapse explanation for SN2012ca, in contrast to the thermonuclear interpretation proposed for some members of this group. We suggest that the data can be explained with a hydrogen- and helium-deficient SN ejecta (Type I) interacting with a hydrogen-rich CSM, but that the explosion was more likely a Type Ic core-collapse explosion than a Type Ia thermonuclear one. This suggests that two channels (both thermonuclear and stripped envelope core-collapse) may be responsible for these SN 1997cy-like events.

  8. SPECTROSCOPIC PROPERTIES OF STAR-FORMING HOST GALAXIES AND TYPE Ia SUPERNOVA HUBBLE RESIDUALS IN A NEARLY UNBIASED SAMPLE

    SciTech Connect

    D'Andrea, Chris B.; Gupta, Ravi R.; Sako, Masao; Morris, Matt; Nichol, Robert C.; Campbell, Heather; Lampeitl, Hubert; Brown, Peter J.; Olmstead, Matthew D.; Frieman, Joshua A.; Kessler, Richard; Garnavich, Peter; Jha, Saurabh W.; Marriner, John; Schneider, Donald P.; Smith, Mathew

    2011-12-20

    We examine the correlation between supernova (SN) host-galaxy properties and their residuals in the Hubble diagram. We use SNe discovered during the Sloan Digital Sky Survey-II Supernova Survey, and focus on objects at a redshift of z < 0.15, where the selection effects of the survey are known to yield a complete Type Ia supernova (SN Ia) sample. To minimize the bias in our analysis with respect to measured host-galaxy properties, spectra were obtained for nearly all hosts, spanning a range in magnitude of -23 < M{sub r} < -17. In contrast to previous works that use photometric estimates of host mass as a proxy for global metallicity, we analyze host-galaxy spectra to obtain gas-phase metallicities and star formation rates (SFRs) from host galaxies with active star formation. From a final sample of {approx}40 emission-line galaxies, we find that light-curve-corrected SNe Ia are {approx}0.1 mag brighter in high-metallicity hosts than in low-metallicity hosts. We also find a significant (>3{sigma}) correlation between the Hubble Residuals of SNe Ia and the specific SFR of the host galaxy. We comment on the importance of SN/host-galaxy correlations as a source of systematic bias in future deep SN surveys.

  9. THE DISTANCE TO NGC 1316 (FORNAX A) FROM OBSERVATIONS OF FOUR TYPE Ia SUPERNOVAE

    SciTech Connect

    Stritzinger, Maximilian; Phillips, Mark M.; Boldt, Luis; Campillay, Abdo; Krzeminski, Wojtek; Morrell, Nidia; Salgado, Francisco; Roth, Miguel; Burns, Christopher R.; Persson, Sven E.; Freedman, Wendy L.; Madore, Barry F.; Folatelli, Gaston; Hamuy, Mario; Krisciunas, Kevin; Suntzeff, Nicholas B.; Kattner, ShiAnne; Contreras, Carlos E-mail: max@dark-cosmology.d

    2010-12-15

    The giant elliptical galaxy NGC 1316 (Fornax A) is a well-studied member of the Fornax Cluster and a prolific producer of Type Ia supernovae (SNe Ia), having hosted four observed events since 1980. Here, we present detailed optical- and near-infrared light curves of the spectroscopically normal SN 2006dd. These data are used, along with previously published photometry of the normal SN 1980N and SN 1981D, and the fast-declining, low-luminosity SN 2006mr, to compute independent estimates of the host reddening for each SN, and the distance to NGC 1316. From the three normal SNe, we find a distance of 17.8 {+-} 0.3 (random) {+-} 0.3 (systematic) Mpc for H{sub o} = 72. Distance moduli derived from the 'EBV' and Tripp methods give the values that are mutually consistent with 4%-8%. Moreover, the weighted means of the distance moduli for these three SNe for three methods agree to within 3%. This consistency is encouraging and supports the premise that Type Ia SNe are reliable distance indicators at the 5% precision level or better. On the other hand, the two methods used to estimate the distance of the fast-declining SN 2006mr both yield a distance to NGC 1316 which is 25%-30% larger. This disparity casts doubt on the suitability of fast-declining events for estimating extragalactic distances. Modest-to-negligible host galaxy reddening values are derived for all four SNe. Nevertheless, two of them (SN 2006dd and SN 2006mr) show strong Na I D interstellar lines in the host galaxy system. The strength of this absorption is completely inconsistent with the small reddening values derived from the SN light curves if the gas in NGC 1316 is typical of that found in the interstellar medium of the Milky Way. In addition, the equivalent width of the Na lines in SN 2006dd appears to have weakened significantly some 100-150 days after explosion.

  10. Incorporating Astrophysical Systematics into a Generalized Likelihood for Cosmology with Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Ponder, Kara A.; Wood-Vasey, W. Michael; Zentner, Andrew R.

    2016-07-01

    Traditional cosmological inference using Type Ia supernovae (SNe Ia) have used stretch- and color-corrected fits of SN Ia light curves and assumed a resulting fiducial mean and symmetric intrinsic dispersion for the resulting relative luminosity. As systematics become the main contributors to the error budget, it has become imperative to expand supernova cosmology analyses to include a more general likelihood to model systematics to remove biases with losses in precision. To illustrate an example likelihood analysis, we use a simple model of two populations with a relative luminosity shift, independent intrinsic dispersions, and linear redshift evolution of the relative fraction of each population. Treating observationally viable two-population mock data using a one-population model results in an inferred dark energy equation of state parameter w that is biased by roughly 2 times its statistical error for a sample of N\\quad ≳ \\quad 2500 SNe Ia. Modeling the two-population data with a two-population model removes this bias at a cost of an approximately ˜ 20 % increase in the statistical constraint on w. These significant biases can be realized even if the support for two underlying SNe Ia populations, in the form of model selection criteria, is inconclusive. With the current observationally estimated difference in the two proposed populations, a sample of N\\quad ≳ \\quad 10,000 SNe Ia is necessary to yield conclusive evidence of two populations.

  11. Optimization of Type Ia Supernovae Selection, Photometric Typing, and Cosmology Constraints

    NASA Astrophysics Data System (ADS)

    Gjergo, Eda; Duggan, Jefferson; Cunningham, John; Kuhlmann, Steve; Biswas, Rahul; Kovacs, Eve

    2012-03-01

    We present results of an optimization study of selection criteria and photometric identification of Type Ia supernovae. The optimization study is the first to include detailed constraints on cosmology, including a time-dependent component of accelerated expansion. The study is performed on a simulated sample of Type Ia and core collapse supernovae from the Dark Energy Survey. In the next decade the number of detected Type Ia supernovae will increase dramatically (Bernstein et al. 2011, Abel et al. 2009), surpassing the resources available for spectroscopic confirmation of each supernova. This has produced an increased interest in the photometric identification of Type Ia supernovae. In order to improve the constraints on the accelerated expansion of the universe, discovered with Type Ia supernovae in the 1990's (Ries et al. 1998, Perlmutter et al. 1999), photometric typing of SN must be very robust. In this study we compare the template-based PSNID algorithm (Sako et al. 2010), with two Type Ia models MLCS2k2 (Riess et al. 2009) and SALT2 (Guy et al. 2007). We allow the pre-selection cuts, based on signal-to-noise ratios, to vary for each model. The optimal model plus pre-selection cuts is determined from the best cosmology constraint.

  12. Near-infrared light curves of Type Ia supernovae: studying properties of the second maximum

    NASA Astrophysics Data System (ADS)

    Dhawan, S.; Leibundgut, B.; Spyromilio, J.; Maguire, K.

    2015-04-01

    Type Ia supernovae (SNe Ia) have been proposed to be much better distance indicators at near-infrared (NIR) compared to optical wavelengths - the effect of dust extinction is expected to be lower and it has been shown that SNe Ia behave more like `standard candles' at NIR wavelengths. To better understand the physical processes behind this increased uniformity, we have studied the Y, J and H-filter light curves of 91 SNe Ia from the literature. We show that the phases and luminosities of the first maximum in the NIR light curves are extremely uniform for our sample. The phase of the second maximum, the late-phase NIR luminosity and the optical light-curve shape are found to be strongly correlated, in particular more luminous SNe Ia reach the second maximum in the NIR filters at a later phase compared to fainter objects. We also find a strong correlation between the phase of the second maximum and the epoch at which the SN enters the Lira law phase in its optical colour curve (epochs ˜ 15 to 30 d after B-band maximum). The decline rate after the second maximum is very uniform in all NIR filters. We suggest that these observational parameters are linked to the nickel and iron mass in the explosion, providing evidence that the amount of nickel synthesized in the explosion is the dominating factor shaping the optical and NIR appearance of SNe Ia.

  13. Photometric properties of intermediate-redshift Type Ia supernovae observed by the Sloan Digital Sky Survey-II Supernova Survey

    SciTech Connect

    Takanashi, N.; Doi, M.; Yasuda, N.; Kuncarayakti, H.; Konishi, K.; Schneider, D. P.; Cinabro, D.; Marriner, J.

    2016-12-06

    We have analyzed multi-band light curves of 328 intermediate redshift (0.05 <= z < 0.24) type Ia supernovae (SNe Ia) observed by the Sloan Digital Sky Survey-II Supernova Survey (SDSS-II SN Survey). The multi-band light curves were parameterized by using the Multi-band Stretch Method, which can simply parameterize light curve shapes and peak brightness without dust extinction models. We found that most of the SNe Ia which appeared in red host galaxies (u - r > 2.5) don't have a broad light curve width and the SNe Ia which appeared in blue host galaxies (u - r < 2.0) have a variety of light curve widths. The Kolmogorov-Smirnov test shows that the colour distribution of SNe Ia appeared in red / blue host galaxies is different (significance level of 99.9%). We also investigate the extinction law of host galaxy dust. As a result, we find the value of Rv derived from SNe Ia with medium light curve width is consistent with the standard Galactic value. On the other hand, the value of Rv derived from SNe Ia that appeared in red host galaxies becomes significantly smaller. Furthermore, these results indicate that there may be two types of SNe Ia with different intrinsic colours, and they are obscured by host galaxy dust with two different properties.

  14. Photometric properties of intermediate-redshift Type Ia supernovae observed by the Sloan Digital Sky Survey-II Supernova Survey

    DOE PAGES

    Takanashi, N.; Doi, M.; Yasuda, N.; ...

    2016-12-06

    We have analyzed multi-band light curves of 328 intermediate redshift (0.05 <= z < 0.24) type Ia supernovae (SNe Ia) observed by the Sloan Digital Sky Survey-II Supernova Survey (SDSS-II SN Survey). The multi-band light curves were parameterized by using the Multi-band Stretch Method, which can simply parameterize light curve shapes and peak brightness without dust extinction models. We found that most of the SNe Ia which appeared in red host galaxies (u - r > 2.5) don't have a broad light curve width and the SNe Ia which appeared in blue host galaxies (u - r < 2.0) havemore » a variety of light curve widths. The Kolmogorov-Smirnov test shows that the colour distribution of SNe Ia appeared in red / blue host galaxies is different (significance level of 99.9%). We also investigate the extinction law of host galaxy dust. As a result, we find the value of Rv derived from SNe Ia with medium light curve width is consistent with the standard Galactic value. On the other hand, the value of Rv derived from SNe Ia that appeared in red host galaxies becomes significantly smaller. Furthermore, these results indicate that there may be two types of SNe Ia with different intrinsic colours, and they are obscured by host galaxy dust with two different properties.« less

  15. A Measurement of the Rate of Type Ia Supernovae in Galaxy Clusters from the SDSS-II Supernova Survey

    SciTech Connect

    Dilday, Benjamin; Bassett, Bruce; Becker, Andrew; Bender, Ralf; Castander, Francisco; Cinabro, David; Frieman, Joshua A.; Galbany, Lluis; Garnavich, Peter; Goobar, Ariel; Hopp, Ulrich; /Munich, Tech. U. /Munich U. Observ. /Tokyo U.

    2010-03-01

    We present measurements of the Type Ia supernova (SN) rate in galaxy clusters based on data from the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. The cluster SN Ia rate is determined from 9 SN events in a set of 71 C4 clusters at z {le} 0.17 and 27 SN events in 492 maxBCG clusters at 0.1 {le} z {le} 0.3. We find values for the cluster SN Ia rate of (0.37{sub -0.12-0.01}{sup +0.17+0.01}) SNur h{sup 2} and (0.55{sub -0.11-0.01}{sup +0.13+0.02}) SNur h{sup 2} (SNux = 10{sup -12}L{sub x{circle_dot}}{sup -1} yr{sup -1}) in C4 and maxBCG clusters, respectively, where the quoted errors are statistical and systematic, respectively. The SN rate for early-type galaxies is found to be (0.31{sub -0.12-0.01}{sup +0.18+0.01}) SNur h{sup 2} and (0.49{sub -0.11-0.01}{sup +0.15+0.02}) SNur h{sup 2} in C4 and maxBCG clusters, respectively. The SN rate for the brightest cluster galaxies (BCG) is found to be (2.04{sub -1.11-0.04}{sup +1.99+0.07}) SNur h{sup 2} and (0.36{sub -0.30-0.01}{sup +0.84+0.01}) SNur h{sup 2} in C4 and maxBCG clusters, respectively. The ratio of the SN Ia rate in cluster early-type galaxies to that of the SN Ia rate in field early-type galaxies is 1.94{sub -0.91-0.015}{sup +1.31+0.043} and 3.02{sub -1.03-0.048}{sup +1.31+0.062}, for C4 and maxBCG clusters, respectively. The SN rate in galaxy clusters as a function of redshift, which probes the late time SN Ia delay distribution, shows only weak dependence on redshift. Combining our current measurements with previous measurements, we fit the cluster SN Ia rate data to a linear function of redshift, and find r{sub L} = [(0.49{sub -0.14}{sup +0.15}) + (0.91{sub -0.81}{sup +0.85}) x z] SNuB h{sup 2}. A comparison of the radial distribution of SNe in cluster to field early-type galaxies shows possible evidence for an enhancement of the SN rate in the cores of cluster early-type galaxies. With an observation of at most 3 hostless, intra-cluster SNe Ia, we estimate the fraction of cluster SNe that are

  16. A MEASUREMENT OF THE RATE OF TYPE Ia SUPERNOVAE IN GALAXY CLUSTERS FROM THE SDSS-II SUPERNOVA SURVEY

    SciTech Connect

    Dilday, Benjamin; Jha, Saurabh W.; Bassett, Bruce; Becker, Andrew; Bender, Ralf; Hopp, Ulrich; Castander, Francisco; Cinabro, David; Frieman, Joshua A.; Galbany, LluIs; Miquel, Ramon; Garnavich, Peter; Goobar, Ariel; Ihara, Yutaka; Kessler, Richard; Lampeitl, Hubert; Nichol, Robert C.; Marriner, John; Molla, Mercedes

    2010-06-01

    We present measurements of the Type Ia supernova (SN) rate in galaxy clusters based on data from the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. The cluster SN Ia rate is determined from 9 SN events in a set of 71 C4 clusters at z {<=} 0.17 and 27 SN events in 492 maxBCG clusters at 0.1 {<=} z {<=} 0.3. We find values for the cluster SN Ia rate of (0.37{sup +0.17+0.01} {sub -0.12-0.01}) SNur h {sup 2} and (0.55{sup +0.13+0.02} {sub -0.11-0.01}) SNur h {sup 2} (SNux = 10{sup -12} L {sup -1} {sub xsun} yr{sup -1}) in C4 and maxBCG clusters, respectively, where the quoted errors are statistical and systematic, respectively. The SN rate for early-type galaxies is found to be (0.31{sup +0.18+0.01} {sub -0.12-0.01}) SNur h {sup 2} and (0.49{sup +0.15+0.02} {sub -0.11-0.01}) SNur h {sup 2} in C4 and maxBCG clusters, respectively. The SN rate for the brightest cluster galaxies (BCG) is found to be (2.04{sup +1.99+0.07} {sub -1.11-0.04}) SNur h {sup 2} and (0.36{sup +0.84+0.01} {sub -0.30-0.01}) SNur h {sup 2} in C4 and maxBCG clusters, respectively. The ratio of the SN Ia rate in cluster early-type galaxies to that of the SN Ia rate in field early-type galaxies is 1.94{sup +1.31+0.043} {sub -0.91-0.015} and 3.02{sup +1.31+0.062} {sub -1.03-0.048}, for C4 and maxBCG clusters, respectively. The SN rate in galaxy clusters as a function of redshift, which probes the late time SN Ia delay distribution, shows only weak dependence on redshift. Combining our current measurements with previous measurements, we fit the cluster SN Ia rate data to a linear function of redshift, and find r{sub L} = [(0.49{sup +0.15} {sub -0.14})+(0.91{sup +0.85} {sub -0.81}) x z] SNuB h {sup 2}. A comparison of the radial distribution of SNe in cluster to field early-type galaxies shows possible evidence for an enhancement of the SN rate in the cores of cluster early-type galaxies. With an observation of at most three hostless, intra-cluster SNe Ia, we estimate the fraction of cluster SNe

  17. Modified LaRC(TM)-IA Polyimides

    NASA Technical Reports Server (NTRS)

    St. Clair, Terry L.; Chang, Alice C.; Hou, Tan H.; Working, Dennis C.

    1994-01-01

    Modified versions of thermoplastic polyimide LaRC(TM)-IA incorporate various amounts of additional, rigid moieties into backbones of LaRC(TM)-IA molecules. Modified versions more resistant to solvents and exhibit higher glass-transition temperatures, yet retain melt-flow processability of unmodified LaRC(TM)-IA.

  18. A CATALOG OF NEAR-INFRARED SPECTRA FROM TYPE Ia SUPERNOVAE

    SciTech Connect

    Marion, G. H.; Wheeler, J. C.; Robinson, E. L.; Hoeflich, P.; Gerardy, C. L.; Vacca, W. D.

    2009-09-15

    We present 41 near-infrared (NIR, 0.7-2.5 {mu}m) spectra from normal Type Ia supernovae (SNe Ia) obtained at epochs ranging from 14 days before to 75 days with respect to the maximum light date in the V band. All data were obtained at the Infrared Telescope Facility using the SpeX instrument. We identify many spectral features, measure the Doppler velocities, and discuss the chemical distribution of explosion products in SNe Ia. We describe procedures for smoothing data, fitting continua, and measuring absorption features to ensure consistency for measurement and analysis. This sample provides the first opportunity to examine and compare a large number of SNe Ia in this wavelength region. NIR data are a rich source of information about explosion products whose signatures are blended or obscured in other spectral regions and NIR observations probe a greater radial depth than optical wavelengths. We analyze similarities and differences in the spectra and we show that the progressive development of spectral features for normal SNe Ia in the NIR is consistent with time. We confirm the presence of O I, Mg II, Ca II, Si II, Fe II, and Co II in these SNe. Possible identifications are made for S I, Si III, Mn II, and Fe III. There is no evidence in these data for H I, He I, C I, or C II. As the explosion products expand and cool, progressively deeper layers are revealed. Thus, a time sequence of spectra examines the chemical structure and provides direct evidence of the physical properties of SNe Ia from the outer layers to deep inside the SN. Measured Doppler velocities indicate that burning products in SNe Ia are distributed in distinct layers with no large-scale mixing. Carbon is not detected in these data, in agreement with previous results with NIR data establishing very low limits on carbon abundance in SNe Ia. Carbon burning products, O and Mg, are plentiful in the outer layers suggesting that the entire progenitor is burned in the explosion. The data provide a

  19. Correlations Between Hubble Residuals and Local Stellar Populations of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Rose, Benjamin; Garnavich, Peter M.

    2017-01-01

    There appears to be correlations between SN Ia Hubble diagram residuals and host galaxy mass, metallicity, and star formation history. An uncorrected bias may produce a systematic offset in cosmological measurements. Rigault et al. (2013) found that the local environment can correlate with Hubble residuals and possibly impact precision Hubble Constant measurements. Global properties are the luminosity average of local environments, therefore the properties of local environments may hold stronger correlations than their global counterparts. We analyze host galaxies from the SDSS-II survey using both ground-based and Hubble Space Telescope imaging. We generate local stellar environmental properties by selecting a best fit Flexible Stellar Population Synthesis model that matches the SDSS Scene Modeling data. The derived properties, such as metallicity, stellar age, and star formation history, are then compared to the SN Ia's Hubble residual in the search for correlations.

  20. TIME-VARYING POTASSIUM IN HIGH-RESOLUTION SPECTRA OF THE TYPE IA SUPERNOVA 2014J

    SciTech Connect

    Graham, M. L.; Weiss, L. M.; Shen, K. J.; Kelly, P. L.; Zheng, W.; Filippenko, A. V.; Marcy, G. W.; Valenti, S.; Howell, D. A.; Fulton, B. J.; Burt, J.; Rivera, E. J.

    2015-03-10

    We present a time series of the highest resolution spectra yet published for the nearby Type Ia supernova (SN Ia) 2014J in M82. They were obtained at 11 epochs over 33 days around peak brightness with the Levy Spectrograph (resolution R ≈ 110,000) on the 2.4 m Automated Planet Finder telescope at Lick Observatory. We identify multiple Na i D and K i absorption features as well as absorption by Ca ii H and K and several of the more common diffuse interstellar bands (DIBs). We see no evolution in any component of Na i D, Ca ii, or in the DIBs, but do establish the dissipation/weakening of the two most blueshifted components of K i. We present several potential physical explanations, finding the most plausible to be photoionization of circumstellar material, and discuss the implications of our results with respect to the progenitor scenario of SN 2014J.

  1. RADIOACTIVELY POWERED RISING LIGHT CURVES OF TYPE Ia SUPERNOVAE

    SciTech Connect

    Piro, Anthony L.

    2012-11-10

    The rising luminosity of the recent, nearby supernova 2011fe shows a quadratic dependence with time during the first Almost-Equal-To 0.5-4 days. In addition, studies of the composite light curves formed from stacking together many Type Ia supernovae (SNe Ia) have found similar power-law indices for the rise, but may also show some dispersion that may indicate diversity. I explore what range of power-law rises are possible due to the presence of radioactive material near the surface of the exploding white dwarf (WD). I summarize what constraints such a model places on the structure of the progenitor and the distribution and velocity of ejecta. My main conclusion is that for the inferred explosion time for SN 2011fe, its rise requires an increasing mass fraction X {sub 56} Almost-Equal-To (4-6) Multiplication-Sign 10{sup -2} of {sup 56}Ni distributed between a depth of Almost-Equal-To 10{sup -2} and 0.3 M {sub Sun} below the WD's surface. Radioactive elements this shallow are not found in simulations of a single C/O detonation. Scenarios that may produce this material include helium-shell burning during a double-detonation ignition, a gravitationally confined detonation, and a subset of deflagration to detonation transition models. In general, the power-law rise can differ from quadratic depending on the details of the velocity, density, and radioactive deposition gradients in a given event. Therefore, comparisons of this work with observed bolometric rises of SNe Ia would place strong constraints on the properties of the shallow outer layers, providing important clues for identifying the elusive progenitors of SNe Ia.

  2. No radio emission from SN 2006X after 2 years

    NASA Astrophysics Data System (ADS)

    Chandra, Poonam; Chevalier, Roger; Patat, Ferdinando

    2008-02-01

    We observed Type Ia supernova SN 2006X (IAUC 8667) with the VLA for 2 hours in 8.46 GHz band at 2008 Feb 19.47 UT mean time. We did not detect any radio emission, indicating it to be a normal Type Ia supernova. The map rms is 18 uJy and the flux density at the supernova position is 4 +/-18 uJy. We thank VLA staff for making this observation possible. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  3. SweetSpot: A 3-year NOAO Survey to Observe 150 Type Ia Supernovae in the Near Infrared in the Nearby Hubble Flow

    NASA Astrophysics Data System (ADS)

    Wood-Vasey, W. M.; Weyant, A.; Allen, L.; Garnavich, P. M.; Jahan, N.; Jha, S.; Joyce, R. R.; Matheson, T.; Rest, A.

    2014-01-01

    SweetSpot is an NOAO Survey program from 2012B-2015A that will observe 150 Type Ia supernovae (SNe Ia) in the Hubble flow to obtain reliable near-infrared (NIR) luminosities free from peculiar-velocity confusion and the uncertainties of dust. A key part of the program is a focus on accurate calibration incorporating recently demonstrated techniques for characterization of telescope systems and the Earth's atmosphere. Our full SweetSpot program will (1) extend the NIR Hubble diagram past currently available samples; (2) quantitatively demonstrate the degree to which SNe Ia are robust standard candles in the NIR; (3) provide key insights about the color evolution and intrinsic properties of SNe Ia and their host galaxies; and (4) establish a well-calibrated low-redshift anchor for future NIR supernova surveys from JWST, Euclid, and WFIRST/NEW. By the end of the survey we will have measured the relative distance to a redshift of 0.05 to 1%. Nearby Type Ia supernova (SN Ia) observations such as these will test the standard nature of SNe Ia in the rest-frame NIR, allow insight into the nature of dust, and provide a critical anchor for future cosmological SN Ia surveys at higher redshift. We will present the results from our pilot survey in 2011B and discuss our first year of full observations from 2012B-2013A.

  4. COSMOLOGY WITH PHOTOMETRICALLY CLASSIFIED TYPE Ia SUPERNOVAE FROM THE SDSS-II SUPERNOVA SURVEY

    SciTech Connect

    Campbell, Heather; D'Andrea, Chris B; Nichol, Robert C.; Smith, Mathew; Lampeitl, Hubert; Sako, Masao; Olmstead, Matthew D.; Brown, Peter; Dawson, Kyle S.; Bassett, Bruce; Biswas, Rahul; Kuhlmann, Steve; Cinabro, David; Dilday, Ben; Foley, Ryan J.; Frieman, Joshua A.; Garnavich, Peter; Hlozek, Renee; Jha, Saurabh W.; Kunz, Martin; and others

    2013-02-15

    We present the cosmological analysis of 752 photometrically classified Type Ia Supernovae (SNe Ia) obtained from the full Sloan Digital Sky Survey II (SDSS-II) Supernova (SN) Survey, supplemented with host-galaxy spectroscopy from the SDSS-III Baryon Oscillation Spectroscopic Survey. Our photometric-classification method is based on the SN classification technique of Sako et al., aided by host-galaxy redshifts (0.05 < z < 0.55). SuperNova ANAlysis simulations of our methodology estimate that we have an SN Ia classification efficiency of 70.8%, with only 3.9% contamination from core-collapse (non-Ia) SNe. We demonstrate that this level of contamination has no effect on our cosmological constraints. We quantify and correct for our selection effects (e.g., Malmquist bias) using simulations. When fitting to a flat {Lambda}CDM cosmological model, we find that our photometric sample alone gives {Omega} {sub m} = 0.24{sup +0.07} {sub -0.05} (statistical errors only). If we relax the constraint on flatness, then our sample provides competitive joint statistical constraints on {Omega} {sub m} and {Omega}{sub {Lambda}}, comparable to those derived from the spectroscopically confirmed Three-year Supernova Legacy Survey (SNLS3). Using only our data, the statistics-only result favors an accelerating universe at 99.96% confidence. Assuming a constant wCDM cosmological model, and combining with H {sub 0}, cosmic microwave background, and luminous red galaxy data, we obtain w = -0.96{sup +0.10} {sub -0.10}, {Omega} {sub m} = 0.29{sup +0.02} {sub -0.02}, and {Omega} {sub k} = 0.00{sup +0.03} {sub -0.02} (statistical errors only), which is competitive with similar spectroscopically confirmed SNe Ia analyses. Overall this comparison is reassuring, considering the lower redshift leverage of the SDSS-II SN sample (z < 0.55) and the lack of spectroscopic confirmation used herein. These results demonstrate the potential of photometrically classified SN Ia samples in improving

  5. Host Galaxy Spectra and Consequences for SN Typing from the SDSS SN Survey

    SciTech Connect

    Olmstead, Matthew D.; Brown, Peter J.; Sako, Masao; Bassett, Bruce; Bizyaev, Dmitry; Brinkmann, J.; Brownstein, Joel R.; Brewington, Howard; Campbell, Heather; D’Andrea, Chris B.; Dawson, Kyle S.; Ebelke, Garrett L.; Frieman, Joshua A.; Galbany, Lluís; Garnavich, Peter; Gupta, Ravi R.; Hlozek, Renee; Jha, Saurabh W.; Kunz, Martin; Lampeitl, Hubert; Malanushenko, Elena; Malanushenko, Viktor; Marriner, John; Miquel, Ramon; Montero-Dorta, Antonio D.; Nichol, Robert C.; Oravetz, Daniel J.; Pan, Kaike; Schneider, Donald P.; Simmons, Audrey E.; Smith, Mathew; Snedden, Stephanie A.

    2014-03-06

    We present the spectroscopy from 5254 galaxies that hosted supernovae (SNe) or other transient events in the Sloan Digital Sky Survey II (SDSS-II). Obtained during SDSS-I, SDSS-II, and the Baryon Oscillation Spectroscopic Survey (BOSS), this sample represents the largest systematic, unbiased, magnitude limited spectroscopic survey of supernova (SN) host galaxies. Using the host galaxy redshifts, we test the impact of photometric SN classification based on SDSS imaging data with and without using spectroscopic redshifts of the host galaxies. Following our suggested scheme, there are a total of 1166 photometrically classified SNe Ia when using a flat redshift prior and 1126 SNe Ia when the host spectroscopic redshift is assumed. For 1024 (87.8%) candidates classified as likely SNe Ia without redshift information, we find that the classification is unchanged when adding the host galaxy redshift. Using photometry from SDSS imaging data and the host galaxy spectra, we also report host galaxy properties for use in future nalysis of SN astrophysics. Finally, we investigate the differences in the interpretation of the light curve properties with and without knowledge of the redshift. When using the SALT2 light curve fitter, we find a 21% increase in the number of fits that converge when using the spectroscopic redshift. Without host galaxy redshifts, we find that SALT2 light curve fits are systematically biased towards lower photometric redshift estimates and redder colors in the limit of low signal-to-noise data. The general improvements in performance of the light curve fitter and the increased diversity of the host galaxy sample highlights the importance of host galaxy spectroscopy for current photometric SN surveys such as the Dark Energy Survey and future surveys such as the Large Synoptic Survey Telescope.

  6. Verifying the Cosmological Utility of Type Ia Supernovae:Implications of a Dispersion in the Ultraviolet Spectra

    SciTech Connect

    Ellis, R.S.; Sullivan, M.; Nugent, P.E.; Howell, D.A.; Gal-Yam,A.; Astier, P.; Balam, D.; Balland, C.; Basa, S.; Carlberg, R.G.; Conley,A.; Fouchez, D.; Guy, J.; Hardin, D.; Hook, I.; Pain, R.; Perrett, K.; Pritchet, C.J.; Regnault, N.

    2007-11-02

    We analyze the mean rest-frame ultraviolet (UV) spectrum ofType Ia Supernovae(SNe) and its dispersion using high signal-to-noiseKeck-I/LRIS-B spectroscopyfor a sample of 36 events at intermediateredshift (z=0.5) discoveredby the Canada-France-Hawaii TelescopeSupernova Legacy Survey (SNLS). Weintroduce a new method for removinghost galaxy contamination in our spectra,exploiting the comprehensivephotometric coverage of the SNLS SNe and theirhost galaxies, therebyproviding the first quantitative view of the UV spectralproperties of alarge sample of distant SNe Ia. Although the mean SN Ia spectrumhas notevolved significantly over the past 40 percent of cosmic history,preciseevolutionary constraints are limited by the absence of acomparable sample ofhigh quality local spectra. The mean UV spectrum ofour z 0.5 SNe Ia and itsdispersion is tabulated for use in futureapplications. Within the high-redshiftsample, we discover significant UVspectral variations and exclude dust extinctionas the primary cause byexamining trends with the optical SN color. Although progenitormetallicity may drive some of these trends, the variations we see aremuchlarger than predicted in recent models and do not follow expectedpatterns.An interesting new result is a variation seen in the wavelengthof selected UVfeatures with phase. We also demonstrate systematicdifferences in the SN Iaspectral features with SN lightcurve width inboth the UV and the optical. Weshow that these intrinsic variations couldrepresent a statistical limitation in thefuture use of high-redshift SNeIa for precision cosmology. We conclude thatfurther detailed studies areneeded, both locally and at moderate redshift wherethe rest-frame UV canbe studied precisely, in order that future missions canconfidently beplanned to fully exploit SNe Ia as cosmological probes.

  7. Lightcurves of Type Ia Supernovae from Near the Time of Explosion

    SciTech Connect

    Garg, A; Stubbs, C W; Challis, P; Wood-Vasey, M; Blondin, S; Huber, M E; Cook, K; Nikolaev, S; Rest, A; Smith, R C; Olsen, K; Suntzeff, N B; Aguilera, C; Prieto, J L; Becker, A; Miceli, A; Miknaitis, G; Clocchiatti, A; Minniti, D; Morelli, L; Welch, D

    2006-08-30

    We present a set of 11 type Ia supernova (SN Ia) lightcurves with dense, pre-maximum sampling. These supernovae (SNe), in galaxies behind the Large Magellanic Cloud (LMC), were discovered by the SuperMACHO survey. The SNe span a redshift range of z = 0.11-0.35. Our lightcurves contain some of the earliest pre-maximum observations of SNe Ia to date. We also give a functional model that describes the SN Ia lightcurve shape (in our V R-band). Our function uses the ''expanding fireball'' model of Goldhaber et al. (1998) to describe the rising lightcurve immediately after explosion but constrains it to smoothly join the remainder of the lightcurve. We fit this model to a composite observed V R-band lightcurve of three SNe between redshifts of 0.135 to 0.165. These SNe have not been K-corrected or adjusted to account for reddening. In this redshift range, the observed V R-band most closely matches the rest frame V-band. Using the best fit to our functional description of the lightcurve, we find the time between explosion and observed V R-band maximum to be 19.2 {+-} 1.3-1.6 {+-} 0.07(red.) rest-frame days for a SN Ia with a V R-band {Delta}m{sub -10} of 0.52. For the redshifts sampled, the observed V R-band time-of-maximum brightness should be the same as the rest-frame V -band maximum to within 1.1 rest-frame days.

  8. WHITE DWARF/M DWARF BINARIES AS SINGLE DEGENERATE PROGENITORS OF TYPE Ia SUPERNOVAE

    SciTech Connect

    Wheeler, J. Craig

    2012-10-20

    Limits on the companions of white dwarfs in the single-degenerate scenario for the origin of Type Ia supernovae (SNe Ia) have gotten increasingly tight, yet igniting a nearly Chandrasekhar mass C/O white dwarf from a condition of near hydrostatic equilibrium provides compelling agreement with observed spectral evolution. The only type of non-degenerate stars that survive the tight limits, M{sub V} {approx}> 8.4 on the SN Ia in SNR 0509-67.5 and M{sub V} {approx}> 9.5 in the remnant of SN 1572, are M dwarfs. While M dwarfs are observed in cataclysmic variables, they have special properties that have not been considered in most work on the progenitors of SNe Ia: they have small but finite magnetic fields and they flare frequently. These properties are explored in the context of SN Ia progenitors. White dwarf/M dwarf pairs may be sufficiently plentiful to provide, in principle, an adequate rate of explosions even with slow orbital evolution due to magnetic braking or gravitational radiation. Even modest magnetic fields on the white dwarf and M dwarf will yield adequate torques to lock the two stars together, resulting in a slowly rotating white dwarf, with the magnetic poles pointing at one another in the orbital plane. The mass loss will be channeled by a 'magnetic bottle' connecting the two stars, landing on a concentrated polar area on the white dwarf. This enhances the effective rate of accretion compared to spherical accretion. Luminosity from accretion and hydrogen burning on the surface of the white dwarf may induce self-excited mass transfer. The combined effects of self-excited mass loss, polar accretion, and magnetic inhibition of mixing of accretion layers give possible means to beat the 'nova limit' and grow the white dwarf to the Chandrasekhar mass even at rather moderate mass accretion rates.

  9. Imaging and Demography of the Host Galaxies of High-Redshift Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Williams, Benjamin F.; Hogan, Craig J.; Barris, Brian; Candia, Pablo; Challis, Peter; Clocchiatti, Alejandro; Coil, Alison L.; Filippenko, Alexei V.; Garnavich, Peter; Kirshner, Robert P.; Holland, Stephen T.; Jha, Saurabh; Krisciunas, Kevin; Leibundgut, Bruno; Li, Weidong; Matheson, Thomas; Maza, Jose; Phillips, Mark M.; Riess, Adam G.; Schmidt, Brian P.; Schommer, Robert A.; Smith, R. Chris; Sollerman, Jesper; Spyromilio, Jason; Stubbs, Christopher; Suntzeff, Nicholas B.; Tonry, John L.

    2003-12-01

    We present the results of a study of the host galaxies of high-redshift Type Ia supernovae (SNe Ia). We provide a catalog of 18 hosts of SNe Ia observed with the Hubble Space Telescope (HST) by the High-z Supernova Search Team, including images, scale lengths, measurements of integrated (Hubble-equivalent) BVRIZ photometry in bands where the galaxies are brighter than m~25 mag, and galactocentric distances of the supernovae. We compare the residuals of SN Ia distance measurements from cosmological fits with measurable properties of the supernova host galaxies that might be expected to correlate with variable properties of the progenitor population, such as host-galaxy color and position of the supernova. We find mostly null results; the current data are generally consistent with no correlations of the distance residuals with host-galaxy properties in the redshift range 0.42SN hosts shows a formally significant (3 σ) correlation between apparent V-R host color and distance residuals, the correlation is not consistent with the null results from other host colors probed by our largest samples. There is also evidence for the same correlations between SN Ia properties and host type at low redshift and high redshift. These similarities support the current practice of extrapolating properties of the nearby population to high redshifts, pending more robust detections of any correlations between distance residuals from cosmological fits and host properties. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS5-26555.

  10. Predicting polarization signatures for double-detonation and delayed-detonation models of Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Bulla, M.; Sim, S. A.; Kromer, M.; Seitenzahl, I. R.; Fink, M.; Ciaraldi-Schoolmann, F.; Röpke, F. K.; Hillebrandt, W.; Pakmor, R.; Ruiter, A. J.; Taubenberger, S.

    2016-10-01

    Calculations of synthetic spectropolarimetry are one means to test multidimensional explosion models for Type Ia supernovae. In a recent paper, we demonstrated that the violent merger of a 1.1 and 0.9 M⊙ white dwarf binary system is too asymmetric to explain the low polarization levels commonly observed in normal Type Ia supernovae. Here, we present polarization simulations for two alternative scenarios: the sub-Chandrasekhar mass double-detonation and the Chandrasekhar mass delayed-detonation model. Specifically, we study a 2D double-detonation model and a 3D delayed-detonation model, and calculate polarization spectra for multiple observer orientations in both cases. We find modest polarization levels (<1 per cent) for both explosion models. Polarization in the continuum peaks at ˜0.1-0.3 per cent and decreases after maximum light, in excellent agreement with spectropolarimetric data of normal Type Ia supernovae. Higher degrees of polarization are found across individual spectral lines. In particular, the synthetic Si II λ6355 profiles are polarized at levels that match remarkably well the values observed in normal Type Ia supernovae, while the low degrees of polarization predicted across the O I λ7774 region are consistent with the non-detection of this feature in current data. We conclude that our models can reproduce many of the characteristics of both flux and polarization spectra for well-studied Type Ia supernovae, such as SN 2001el and SN 2012fr. However, the two models considered here cannot account for the unusually high level of polarization observed in extreme cases such as SN 2004dt.

  11. TYPE Ia SUPERNOVA LIGHT CURVE INFERENCE: HIERARCHICAL MODELS IN THE OPTICAL AND NEAR-INFRARED

    SciTech Connect

    Mandel, Kaisey S.; Narayan, Gautham; Kirshner, Robert P.

    2011-04-20

    We have constructed a comprehensive statistical model for Type Ia supernova (SN Ia) light curves spanning optical through near-infrared (NIR) data. A hierarchical framework coherently models multiple random and uncertain effects, including intrinsic supernova (SN) light curve covariances, dust extinction and reddening, and distances. An improved BAYESN Markov Chain Monte Carlo code computes probabilistic inferences for the hierarchical model by sampling the global probability density of parameters describing individual SNe and the population. We have applied this hierarchical model to optical and NIR data of 127 SNe Ia from PAIRITEL, CfA3, Carnegie Supernova Project, and the literature. We find an apparent population correlation between the host galaxy extinction A{sub V} and the ratio of total-to-selective dust absorption R{sub V} . For SNe with low dust extinction, A{sub V} {approx}< 0.4, we find R{sub V} {approx} 2.5-2.9, while at high extinctions, A{sub V} {approx}> 1, low values of R{sub V} < 2 are favored. The NIR luminosities are excellent standard candles and are less sensitive to dust extinction. They exhibit low correlation with optical peak luminosities, and thus provide independent information on distances. The combination of NIR and optical data constrains the dust extinction and improves the predictive precision of individual SN Ia distances by about 60%. Using cross-validation, we estimate an rms distance modulus prediction error of 0.11 mag for SNe with optical and NIR data versus 0.15 mag for SNe with optical data alone. Continued study of SNe Ia in the NIR is important for improving their utility as precise and accurate cosmological distance indicators.

  12. Type IA supernovae in the ultraviolet, optical, and near-infrared

    NASA Astrophysics Data System (ADS)

    Smitka, Michael Thomas

    We present an ultraviolet (UV) spectroscopic atlas containing 91 spectra of 22 unique Type Ia supernovae (SNe Ia). The spectra were observed using the Ultraviolet/Optical Telescope (UVOT) onboard the Swift space telescope. We present a new technique of decontaminating UVOT grism spectra, which we apply to 40 of the spectra in our sample. We present the first UV spectroscopic series of a peculiar 1999aa-like SN Ia, iPTF14bdn, and compare to normal SNe in our sample. We find this SN to be very blue at early times due to a bright feature between 2800 - 3200A. We attribute this to a lower UV opacity caused by higher temperatures above the SN photosphere, likely due to a greater quantity of 56Ni in this region. We also identify the spectroscopic feature differences between 2700 - 3300A responsible for the near-UV (NUV) photometric diversity. Comparison of these features to model data suggest that NUV-bluer SNe result from lower metal abundances in the outer ejecta layers. We combine our UV spectral atlas with UV, optical and NIR photometry, and spectra to generate a UV-O-IR spectral series atlas for 8 SNe Ia near peak brightness. The UV-O-IR SEDs represent time evolution within -10 to +30 days of peak brightness, decline rates between 0.9 < Deltam 15(B) < 1.8, and UV subclassification (when known). Using these data, we calculate integrated bolometric luminosities and synthesized 56 Ni masses. We demonstrate that our UV-O-IR SEDs provide an improved method of calculating K-corrections for B-band optical photometry, and present an analysis of SNe Ia UV K-corrections. We present a method of calculating bolometric corrections which take the SNe decline rates into account for SNe near peak brightness.

  13. The peculiar Type Ia supernova iPTF14atg: Chandrasekhar-mass explosion or violent merger?

    NASA Astrophysics Data System (ADS)

    Kromer, M.; Fremling, C.; Pakmor, R.; Taubenberger, S.; Amanullah, R.; Cenko, S. B.; Fransson, C.; Goobar, A.; Leloudas, G.; Taddia, F.; Röpke, F. K.; Seitenzahl, I. R.; Sim, S. A.; Sollerman, J.

    2016-07-01

    iPTF14atg, a subluminous peculiar Type Ia supernova (SN Ia) similar to SN 2002es, is the first SN Ia for which a strong UV flash was observed in the early-time light curves. This has been interpreted as evidence for a single-degenerate (SD) progenitor system, where such a signal is expected from interactions between the SN ejecta and the non-degenerate companion star. Here, we compare synthetic observables of multidimensional state-of-the-art explosion models for different progenitor scenarios to the light curves and spectra of iPTF14atg. From our models, we have difficulties explaining the spectral evolution of iPTF14atg within the SD progenitor channel. In contrast, we find that a violent merger of two carbon-oxygen white dwarfs with 0.9 and 0.76 M⊙, respectively, provides an excellent match to the spectral evolution of iPTF14atg from 10 d before to several weeks after maximum light. Our merger model does not naturally explain the initial UV flash of iPTF14atg. We discuss several possibilities like interactions of the SN ejecta with the circumstellar medium and surface radioactivity from an He-ignited merger that may be able to account for the early UV emission in violent merger models.

  14. HIGH-VELOCITY LINE FORMING REGIONS IN THE TYPE Ia SUPERNOVA 2009ig

    SciTech Connect

    Marion, G. H.; Foley, Ryan J.; Challis, Peter; Kirshner, Robert P.; Vinko, Jozsef; Wheeler, J. Craig; Silverman, Jeffrey M.; Hsiao, Eric Y.; Brown, Peter J.; Filippenko, Alexei V.; Garnavich, Peter; Landsman, Wayne B.; Parrent, Jerod T.; Pritchard, Tyler A.; Roming, Peter W. A.; Wang, Xiaofeng

    2013-11-01

    We report measurements and analysis of high-velocity (HVF) (>20,000 km s{sup –1}) and photospheric absorption features in a series of spectra of the Type Ia supernova (SN) 2009ig obtained between –14 days and +13 days with respect to the time of maximum B-band luminosity (B-max). We identify lines of Si II, Si III, S II, Ca II, and Fe II that produce both HVF and photospheric-velocity (PVF) absorption features. SN 2009ig is unusual for the large number of lines with detectable HVF in the spectra, but the light-curve parameters correspond to a slightly overluminous but unexceptional SN Ia (M{sub B} = –19.46 mag and Δm{sub 15}(B) = 0.90 mag). Similarly, the Si II λ6355 velocity at the time of B-max is greater than 'normal' for an SN Ia, but it is not extreme (v{sub Si} = 13,400 km s{sup –1}). The –14 days and –13 days spectra clearly resolve HVF from Si II λ6355 as separate absorptions from a detached line forming region. At these very early phases, detached HVF are prevalent in all lines. From –12 days to –6 days, HVF and PVF are detected simultaneously, and the two line forming regions maintain a constant separation of about 8000 km s{sup –1}. After –6 days all absorption features are PVF. The observations of SN 2009ig provide a complete picture of the transition from HVF to PVF. Most SNe Ia show evidence for HVF from multiple lines in spectra obtained before –10 days, and we compare the spectra of SN 2009ig to observations of other SNe. We show that each of the unusual line profiles for Si II λ6355 found in early-time spectra of SNe Ia correlate to a specific phase in a common development sequence from HVF to PVF.

  15. THE EARLIEST NEAR-INFRARED TIME-SERIES SPECTROSCOPY OF A TYPE Ia SUPERNOVA

    SciTech Connect

    Hsiao, E. Y.; Phillips, M. M.; Morrell, N.; Contreras, C.; Roth, M.; Marion, G. H.; Kirshner, R. P.; Burns, C. R.; Freedman, W. L.; Persson, S. E.; Winge, C.; Gerardy, C. L.; Hoeflich, P.; Im, M.; Jeon, Y.; Pignata, G.; Stanishev, V.; and others

    2013-04-01

    We present ten medium-resolution, high signal-to-noise ratio near-infrared (NIR) spectra of SN 2011fe from SpeX on the NASA Infrared Telescope Facility (IRTF) and Gemini Near-Infrared Spectrograph (GNIRS) on Gemini North, obtained as part of the Carnegie Supernova Project. This data set constitutes the earliest time-series NIR spectroscopy of a Type Ia supernova (SN Ia), with the first spectrum obtained at 2.58 days past the explosion and covering -14.6 to +17.3 days relative to B-band maximum. C I {lambda}1.0693 {mu}m is detected in SN 2011fe with increasing strength up to maximum light. The delay in the onset of the NIR C I line demonstrates its potential to be an effective tracer of unprocessed material. For the first time in a SN Ia, the early rapid decline of the Mg II {lambda}1.0927 {mu}m velocity was observed, and the subsequent velocity is remarkably constant. The Mg II velocity during this constant phase locates the inner edge of carbon burning and probes the conditions under which the transition from deflagration to detonation occurs. We show that the Mg II velocity does not correlate with the optical light-curve decline rate {Delta}m{sub 15}(B). The prominent break at {approx}1.5 {mu}m is the main source of concern for NIR k-correction calculations. We demonstrate here that the feature has a uniform time evolution among SNe Ia, with the flux ratio across the break strongly correlated with {Delta}m{sub 15}(B). The predictability of the strength and the onset of this feature suggests that the associated k-correction uncertainties can be minimized with improved spectral templates.

  16. The Earliest Near-infrared Time-series Spectroscopy of a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Hsiao, E. Y.; Marion, G. H.; Phillips, M. M.; Burns, C. R.; Winge, C.; Morrell, N.; Contreras, C.; Freedman, W. L.; Kromer, M.; Gall, E. E. E.; Gerardy, C. L.; Höflich, P.; Im, M.; Jeon, Y.; Kirshner, R. P.; Nugent, P. E.; Persson, S. E.; Pignata, G.; Roth, M.; Stanishev, V.; Stritzinger, M.; Suntzeff, N. B.

    2013-04-01

    We present ten medium-resolution, high signal-to-noise ratio near-infrared (NIR) spectra of SN 2011fe from SpeX on the NASA Infrared Telescope Facility (IRTF) and Gemini Near-Infrared Spectrograph (GNIRS) on Gemini North, obtained as part of the Carnegie Supernova Project. This data set constitutes the earliest time-series NIR spectroscopy of a Type Ia supernova (SN Ia), with the first spectrum obtained at 2.58 days past the explosion and covering -14.6 to +17.3 days relative to B-band maximum. C I λ1.0693 μm is detected in SN 2011fe with increasing strength up to maximum light. The delay in the onset of the NIR C I line demonstrates its potential to be an effective tracer of unprocessed material. For the first time in a SN Ia, the early rapid decline of the Mg II λ1.0927 μm velocity was observed, and the subsequent velocity is remarkably constant. The Mg II velocity during this constant phase locates the inner edge of carbon burning and probes the conditions under which the transition from deflagration to detonation occurs. We show that the Mg II velocity does not correlate with the optical light-curve decline rate Δm 15(B). The prominent break at ~1.5 μm is the main source of concern for NIR k-correction calculations. We demonstrate here that the feature has a uniform time evolution among SNe Ia, with the flux ratio across the break strongly correlated with Δm 15(B). The predictability of the strength and the onset of this feature suggests that the associated k-correction uncertainties can be minimized with improved spectral templates.

  17. THE PROGENITORS OF TYPE Ia SUPERNOVAE. I. ARE THEY SUPERSOFT SOURCES?

    SciTech Connect

    Di Stefano, R.

    2010-03-20

    In a canonical model, the progenitors of Type Ia supernovae (SNe Ia) are accreting, nuclear-burning white dwarfs (NBWDs), which explode when the white dwarf reaches the Chandrasekhar mass, M{sub C} . Such massive NBWDs are hot (kT {approx} 100 eV), luminous (L {approx} 10{sup 38} erg s{sup -1}), and are potentially observable as luminous supersoft X-ray sources (SSSs). During the past several years, surveys for soft X-ray sources in external galaxies have been conducted. This paper shows that the results falsify the hypothesis that a large fraction of progenitors are NBWDs which are presently observable as SSSs. The data also place limits on sub-M{sub C} models. While SN Ia progenitors may pass through one or more phases of SSS activity, these phases are far shorter than the time needed to accrete most of the matter that brings them close to M{sub C} .

  18. PRECISION MEASUREMENT OF THE MOST DISTANT SPECTROSCOPICALLY CONFIRMED SUPERNOVA Ia WITH THE HUBBLE SPACE TELESCOPE

    SciTech Connect

    Rubin, D.; Rykoff, E.; Aldering, G.; Barbary, K.; Fakhouri, H. K.; Goldhaber, G.; Hsiao, E. Y.; Knop, R. A.; Amanullah, R.; Goobar, A.; Burns, M. S.; Conley, A.; Connolly, N.; Deustua, S.; Fruchter, A. S.; Fadeyev, V.; Gibbons, R. A.; Huang, X.; Kowalski, M.; Lidman, C.; Collaboration: Supernova Cosmology Project; and others

    2013-01-20

    We report the discovery of a redshift 1.71 supernova in the GOODS-North field. The Hubble Space Telescope (HST) ACS spectrum has almost negligible contamination from the host or neighboring galaxies. Although the rest-frame-sampled range is too blue to include any Si II line, a principal component analysis allows us to confirm it as a Type Ia supernova with 92% confidence. A recent serendipitous archival HST WFC3 grism spectrum contributed a key element of the confirmation by giving a host-galaxy redshift of 1.713 {+-} 0.007. In addition to being the most distant SN Ia with spectroscopic confirmation, this is the most distant Ia with a precision color measurement. We present the ACS WFC and NICMOS 2 photometry and ACS and WFC3 spectroscopy. Our derived supernova distance is in agreement with the prediction of {Lambda}CDM.

  19. The Progenitors of Type Ia Supernovae. I. Are they Supersoft Sources?

    NASA Astrophysics Data System (ADS)

    Di Stefano, R.

    2010-03-01

    In a canonical model, the progenitors of Type Ia supernovae (SNe Ia) are accreting, nuclear-burning white dwarfs (NBWDs), which explode when the white dwarf reaches the Chandrasekhar mass, MC . Such massive NBWDs are hot (kT ~ 100 eV), luminous (L ~ 1038 erg s-1), and are potentially observable as luminous supersoft X-ray sources (SSSs). During the past several years, surveys for soft X-ray sources in external galaxies have been conducted. This paper shows that the results falsify the hypothesis that a large fraction of progenitors are NBWDs which are presently observable as SSSs. The data also place limits on sub-MC models. While SN Ia progenitors may pass through one or more phases of SSS activity, these phases are far shorter than the time needed to accrete most of the matter that brings them close to MC .

  20. The influence of host galaxy morphology on the properties of Type Ia supernovae from the JLA compilation

    NASA Astrophysics Data System (ADS)

    Henne, V.; Pruzhinskaya, M. V.; Rosnet, P.; Léget, P.-F.; Ishida, E. E. O.; Ciulli, A.; Gris, P.; Says, L.-P.; Gangler, E.

    2017-02-01

    The observational cosmology with distant Type Ia supernovae (SNe) as standard candles claims that the Universe is in accelerated expansion, caused by a large fraction of dark energy. In this paper we investigate the SN Ia environment, studying the impact of the nature of their host galaxies on the Hubble diagram fitting. The supernovae (192 SNe) used in the analysis were extracted from Joint-Light-curves-Analysis (JLA) compilation of high-redshift and nearby supernovae which is the best one to date. The analysis is based on the empirical fact that SN Ia luminosities depend on their light curve shapes and colors. We confirm that the stretch parameter of Type Ia supernovae is correlated with the host galaxy type. The supernovae with lower stretch are hosted mainly in elliptical and lenticular galaxies. No significant correlation between SN Ia colour and host morphology was found.   We also examine how the luminosities of SNe Ia change depending on host galaxy morphology after stretch and colour corrections. Our results show that in old stellar populations and low dust environments, the supernovae are slightly fainter. SNe Ia in elliptical and lenticular galaxies have a higher α (slope in luminosity-stretch) and β (slope in luminosity-colour) parameter than in spirals. However, the observed shift is at the 1-σ uncertainty level and, therefore, can not be considered as significant.   We confirm that the supernova properties depend on their environment and that the incorporation of a host galaxy term into the Hubble diagram fit is expected to be crucial for future cosmological analyses.

  1. Progressive Red Shifts in the Late-Time Spectra of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Black, Christine; Fesen, Robert; Parrent, Jerod

    2017-01-01

    We examine the evolution of late-time, optical nebular features of Type Ia supernovae (SNe Ia) using a sample consisting of 160 spectra of 27 normal SNe Ia taken from the literature as well as unpublished spectra of SN 2008Q and ASASSN-14lp. Particular attention is given to nebular features between 4000-6000 Ang in terms of temporal changes in width and central wavelength. Analysis of the prominent late-time 4700 Ang feature shows a progressive central wavelength shift from ˜4600 Ang to longer wavelengths out to at least day +300 for our entire sample. We find no evidence for the feature’s red-ward shift slowing or halting at an [Fe III] blend centroid ˜4700 Ang as has been proposed. Two weaker adjacent features at around 4850 and 5000 Ang exhibit similar red shifts to that of the 4700 Ang feature. We conclude that the ubiquitous red shift of these common late-time SN Ia spectral features is not mainly due to a decrease in line velocities of forbidden Fe emissions, but the result of decreasing line velocities and opacity of permitted Fe absorption lines.

  2. SUPER-CHANDRASEKHAR-MASS LIGHT CURVE MODELS FOR THE HIGHLY LUMINOUS TYPE Ia SUPERNOVA 2009dc

    SciTech Connect

    Kamiya, Yasuomi; Tanaka, Masaomi; Nomoto, Ken'ichi; Blinnikov, Sergei I.; Sorokina, Elena I.; Suzuki, Tomoharu

    2012-09-10

    Several highly luminous Type Ia supernovae (SNe Ia) have been discovered. Their high luminosities are difficult to explain with the thermonuclear explosions of Chandrasekhar-mass white dwarfs (WDs). In the present study, we estimate the progenitor mass of SN 2009dc, one of the extremely luminous SNe Ia, using the hydrodynamical models as follows. Explosion models of super-Chandrasekhar-mass (super-Ch-mass) WDs are constructed, and multi-color light curves (LCs) are calculated. The comparison between our calculations and the observations of SN 2009dc suggests that the exploding WD has a super-Ch mass of 2.2-2.4 M{sub Sun }, producing 1.2-1.4 M{sub Sun} of {sup 56}Ni, if the extinction by its host galaxy is negligible. If the extinction is significant, the exploding WD is as massive as {approx}2.8 M{sub Sun }, and {approx}1.8 M{sub Sun} of {sup 56}Ni is necessary to account for the observations. Whether the host-galaxy extinction is significant or not, the progenitor WD must have a thick carbon-oxygen layer in the outermost zone (20%-30% of the WD mass), which explains the observed low expansion velocity of the ejecta and the presence of carbon. Our estimate of the mass of the progenitor WD, especially for the extinction-corrected case, is challenging to the current scenarios of SNe Ia. Implications for the progenitor scenarios are also discussed.

  3. Whimper of a Bang: Documenting the Final Days of the Nearby Type Ia Supernova 2011fe

    NASA Astrophysics Data System (ADS)

    Shappee, B. J.; Stanek, K. Z.; Kochanek, C. S.; Garnavich, P. M.

    2017-05-01

    Using the Hubble Space Telescope (HST) and the Large Binocular Telescope, we followed the evolution of the Type Ia supernova (SN Ia) 2011fe for an unprecedented 1840 days past B-band maximum light and over a factor of 7 million in flux. At 1840 days, the 4000-17000 Å quasi-bolometric luminosity is just (420+/- 20) {L}⊙ . By measuring the late-time quasi-bolometric light curve, we present the first confident detection of 57Co decay in a SN Ia light curve and estimate a mass ratio of {log}{(}57{Co}{/}56{Co})=-{1.59}-0.07+0.06. We do not have a clean detection of {}55{Fe}, but find a limit of {}55{Fe}{/}57{Co}< 0.22 with 99% confidence. These abundance ratios provide unique constraints on the progenitor system because the central density of the exploding white dwarf(s) dictates these nucleosynthetic yields. The observed ratios strongly prefer the lower central densities of double-degenerate models ({}55{Fe}{/}57{Co}=0.27) over the higher central densities of near-Chandrasekhar-mass single-degenerate models ({}55{Fe}{/}57{Co}=0.68). However, additional theoretical studies predicting isotopic yields from a broader range of progenitor systems are motivated by these unique observations. We will continue to observe SN 2011fe for another ˜600 days with HST and possibly beyond.

  4. Ultraviolet observations of Super-Chandrasekhar mass type Ia supernova candidates with swift UVOT

    SciTech Connect

    Brown, Peter J.; Smitka, Michael T.; Krisciunas, Kevin; Wang, Lifan; Kuin, Paul; De Pasquale, Massimiliano; Scalzo, Richard; Holland, Stephen; Milne, Peter

    2014-05-20

    Among Type Ia supernovae (SNe Ia), a class of overluminous objects exist whose ejecta mass is inferred to be larger than the canonical Chandrasekhar mass. We present and discuss the UV/optical photometric light curves, colors, absolute magnitudes, and spectra of three candidate Super-Chandrasekhar mass SNe—2009dc, 2011aa, and 2012dn—observed with the Swift Ultraviolet/Optical Telescope. The light curves are at the broad end for SNe Ia, with the light curves of SN 2011aa being among the broadest ever observed. We find all three to have very blue colors which may provide a means of excluding these overluminous SNe from cosmological analysis, though there is some overlap with the bluest of 'normal' SNe Ia. All three are overluminous in their UV absolute magnitudes compared to normal and broad SNe Ia, but SNe 2011aa and 2012dn are not optically overluminous compared to normal SNe Ia. The integrated luminosity curves of SNe 2011aa and 2012dn in the UVOT range (1600-6000 Å) are only half as bright as SN 2009dc, implying a smaller {sup 56}Ni yield. While it is not enough to strongly affect the bolometric flux, the early time mid-UV flux makes a significant contribution at early times. The strong spectral features in the mid-UV spectra of SNe 2009dc and 2012dn suggest a higher temperature and lower opacity to be the cause of the UV excess rather than a hot, smooth blackbody from shock interaction. Further work is needed to determine the ejecta and {sup 56}Ni masses of SNe 2011aa and 2012dn and to fully explain their high UV luminosities.

  5. A reddening-free method to estimate the 56Ni mass of Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Dhawan, S.; Leibundgut, B.; Spyromilio, J.; Blondin, S.

    2016-04-01

    The increase in the number of Type Ia supernovae (SNe Ia) has demonstrated that the population shows greater diversity than has been assumed in the past. The reasons (e.g. parent population, explosion mechanism) for this diversity remain largely unknown. We investigated a sample of SNe Ia near-infrared light curves and correlated the phase of the second maximum with the bolometric peak luminosity. The peak bolometric luminosity is related to the time of the second maximum (relative to the B light curve maximum) as follows: Lmax(1043 erg s-1) = (0.039 ± 0.004) × t2(J)(days) + (0.013 ± 0.106). 56Ni masses can be derived from the peak luminosity based on Arnett's rule, which states that the luminosity at maximum is equal to the instantaneous energy generated by the nickel decay. We checked this assumption against recent radiative-transfer calculations of Chandrasekhar-mass delayed detonation models and find this assumption is valid to within 10% in recent radiative-transfer calculations of Chandrasekhar-mass delayed detonation models. The Lmax vs. t2 relation is applied to a sample of 40 additional SNe Ia with significant reddening (E(B - V) > 0.1 mag), and a reddening-free bolometric luminosity function of SNe Ia is established. The method is tested with the 56Ni mass measurement from the direct observation of γ-rays in the heavily absorbed SN 2014J and found to be fully consistent. Super-Chandrasekhar-mass explosions, in particular SN 2007if, do not follow the relations between peak luminosity and second IR maximum. This may point to an additional energy source contributing at maximum light. The luminosity function of SNe Ia is constructed and is shown to be asymmetric with a tail of low-luminosity objects and a rather sharp high-luminosity cutoff, although it might be influenced by selection effects.

  6. The magnification of SN 1997ff, the farthest known supernova

    SciTech Connect

    Benitez, Narciso; Riess, Adam; Nugent, Peter; Dickinson, Mark; Chornock, Ryan; Filippenko, Alexei V.

    2002-09-03

    With a redshift of z {approx} 1.7, SN 1997ff is the most distant type Ia supernova discovered so far. This SN is close to several bright, z = 0.6-0.9 galaxies, and we consider the effects of lensing by those objects on the magnitude of SN 1997ff. We estimate their velocity dispersions using the Tully-Fisher and Faber-Jackson relations corrected for evolution effects, and calculate, applying the multiple-plane lensing formalism, that SN 1997ff is magnified by 0.34{+-}0.12 mag. Due to the spatial configuration of the foreground galaxies, the shear from individual lenses partially cancels out,and the total distortion induced on the host galaxy is considerably smaller than that produced by a single lens having the same magnification. After correction for lensing, the revised distance to SN 1997ff is m-M = 45.49 {+-} 0.34 mag, which improves the agreement with the {Omega}{sub M} = 0.35, {Omega}{Lambda} = 0.65 cosmology expected from lower-redshift SNe Ia, and is inconsistent at the {approx} 3 sigma confidence level with a uniform gray dust model or a simple evolution model.

  7. Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae -- Final Technical Report

    SciTech Connect

    Filippenko, Alexei Vladimir

    2014-05-09

    Type Ia supernovae (SNe Ia; exploding white-dwarf stars) were the key to the Nobel-worthy 1998 discovery and subsequent verification that the expansion of the Universe is accelerating, driven by the effects of dark energy. Understanding the nature of this mysterious, yet dominant, component of the Universe is at the forefront of research in cosmology and fundamental physics. SNe Ia will continue to play a leading role in this enterprise, providing precise cosmological distances that improve constraints on the nature of dark energy. However, for this effort to succeed, we need to more thoroughly understand relatively nearby SNe Ia, because our conclusions come only from comparisons between them and distant (high-redshift) SNe Ia. Thus, detailed studies of relatively nearby SNe Ia are the focus of this research program. Many interesting results were obtained during the course of this project; these were published in 32 refereed research papers that acknowledged the grant. A major accomplishment was the publication of supernova (SN) rates derived from about a decade of operation of the Lick Observatory Supernova Search (LOSS) with the 0.76-meter Katzman Automatic Imaging Telescope (KAIT). We have determined the most accurate rates for SNe of different types in large, nearby galaxies in the present-day Universe, and these can be compared with SN rates far away (and hence long ago in the past) to set constraints on the types of stars that explode. Another major accomplishment was the publication of the light curves (brightness vs. time) of 165 SNe Ia, along with optical spectroscopy of many of these SNe as well as other SNe Ia, providing an extensive, homogeneous database for detailed studies. We have conducted intensive investigations of a number of individual SNe Ia, including quite unusual examples that allow us to probe the entire range of SN explosions and provide unique insights into these objects and the stars before they explode. My team's studies have also led

  8. ANALYSIS OF THE EARLY-TIME OPTICAL SPECTRA OF SN 2011fe IN M101

    SciTech Connect

    Parrent, J. T.; Fesen, R. A.; Howell, D. A.; Dilday, B.; Friesen, B.; Baron, E.; Thomas, R. C.; Nugent, P.; Milisavljevic, D.; Bianco, F. B.; Bildsten, L.; Arcavi, I.; Ben-Ami, S.; Gal-Yam, A.; Bersier, D.; Bloom, J.; Cenko, S. B.; Filippenko, A. V.; Cao, Y.; Kasliwal, M. M.; and others

    2012-06-20

    The nearby Type Ia supernova (SN Ia) SN 2011fe in M101 (cz = 241 km s{sup -1}) provides a unique opportunity to study the early evolution of a 'normal' SN Ia, its compositional structure, and its elusive progenitor system. We present 18 high signal-to-noise spectra of SN 2011fe during its first month beginning 1.2 days post-explosion and with an average cadence of 1.8 days. This gives a clear picture of how various line-forming species are distributed within the outer layers of the ejecta, including that of unburned material (C+O). We follow the evolution of C II absorption features until they diminish near maximum light, showing overlapping regions of burned and unburned material between ejection velocities of 10,000 and 16,000 km s{sup -1}. This supports the notion that incomplete burning, in addition to progenitor scenarios, is a relevant source of spectroscopic diversity among SNe Ia. The observed evolution of the highly Doppler-shifted O I {lambda}7774 absorption features detected within 5 days post-explosion indicates the presence of O I with expansion velocities from 11,500 to 21,000 km s{sup -1}. The fact that some O I is present above C II suggests that SN 2011fe may have had an appreciable amount of unburned oxygen within the outer layers of the ejecta.

  9. Supernova Acceleration Probe: Studying Dark Energy with Type Ia Supernovae

    SciTech Connect

    Albert, J.; Aldering, G.; Allam, S.; Althouse, W.; Amanullah, R.; Annis, J.; Astier, P.; Aumeunier, M.; Bailey, S.; Baltay, C.; Barrelet, E.; Basa, S.; Bebek, C.; Bergstom, L.; Bernstein, G.; Bester, M.; Besuner, B.; Bigelow, B.; Blandford, R.; Bohlin, R.; Bonissent, A.; /Caltech /LBL, Berkeley /Fermilab /SLAC /Stockholm U. /Paris, IN2P3 /Marseille, CPPM /Marseille, Lab. Astrophys. /Yale U. /Pennsylvania U. /UC, Berkeley /Michigan U. /Baltimore, Space Telescope Sci. /Indiana U. /Caltech, JPL /Australian Natl. U., Canberra /American Astron. Society /Chicago U. /Cambridge U. /Saclay /Lyon, IPN

    2005-08-08

    The Supernova Acceleration Probe (SNAP) will use Type Ia supernovae (SNe Ia) as distance indicators to measure the effect of dark energy on the expansion history of the Universe. (SNAP's weak-lensing program is described in a separate White Paper.) The experiment exploits supernova distance measurements up to their fundamental systematic limit; strict requirements on the monitoring of each supernova's properties leads to the need for a space-based mission. Results from pre-SNAP experiments, which characterize fundamental SN Ia properties, will be used to optimize the SNAP observing strategy to yield data, which minimize both systematic and statistical uncertainties. With early R&D funding, we have achieved technological readiness and the collaboration is poised to begin construction. Pre-JDEM AO R&D support will further reduce technical and cost risk. Specific details on the SNAP mission can be found in Aldering et al. (2004, 2005). The primary goal of the SNAP supernova program is to provide a dataset which gives tight constraints on parameters which characterize the dark-energy, e.g. w{sub 0} and w{sub a} where w(a) = w{sub 0} + w{sub a}(1-a). SNAP data can also be used to directly test and discriminate among specific dark energy models. We will do so by building the Hubble diagram of high-redshift supernovae, the same methodology used in the original discovery of the acceleration of the expansion of the Universe that established the existence of dark energy (Perlmutter et al. 1998; Garnavich et al. 1998; Riess et al. 1998; Perlmutter et al. 1999). The SNAP SN Ia program focuses on minimizing the systematic floor of the supernova method through the use of characterized supernovae that can be sorted into subsets based on subtle signatures of heterogeneity. Subsets may be defined based on host-galaxy morphology, spectral-feature strength and velocity, early-time behavior, inter alia. Independent cosmological analysis of each subset of ''like'' supernovae can be

  10. Neutrinos from type Ia supernovae: The gravitationally confined detonation scenario

    NASA Astrophysics Data System (ADS)

    Wright, Warren P.; Kneller, James P.; Ohlmann, Sebastian T.; Röpke, Friedrich K.; Scholberg, Kate; Seitenzahl, Ivo R.

    2017-02-01

    Despite their use as cosmological distance indicators and their importance in the chemical evolution of galaxies, the unequivocal identification of the progenitor systems and explosion mechanism of normal type Ia supernovae (SNe Ia) remains elusive. The leading hypothesis is that such a supernova is a thermonuclear explosion of a carbon-oxygen white dwarf, but the exact explosion mechanism is still a matter of debate. Observation of a galactic SN Ia would be of immense value in answering the many open questions related to these events. One potentially useful source of information about the explosion mechanism and progenitor is the neutrino signal because the neutrinos from the different mechanisms possess distinct spectra as a function of time and energy. In this paper, we compute the expected neutrino signal from a gravitationally confined detonation (GCD) explosion scenario for a SN Ia and show how the flux at Earth contains features in time and energy unique to this scenario. We then calculate the expected event rates in the Super-K, Hyper-K, JUNO, DUNE, and IceCube detectors and find both Hyper-K and IceCube will see a few events for a GCD supernova at 1 kpc or closer, while Super-K, JUNO, and DUNE will see events if the supernova is closer than ˜0.3 kpc . The distance and detector criteria needed to resolve the time and spectral features arising from the explosion mechanism, neutrino production, and neutrino oscillation processes are also discussed. The neutrino signal from the GCD is then compared with the signal from a deflagration-to-detonation transition (DDT) explosion model computed previously. We find the overall event rate is the most discriminating feature between the two scenarios followed by the event rate time structure. Using the event rate in the Hyper-K detector alone, the DDT can be distinguished from the GCD at 2 σ if the distance to the supernova is less than 2.3 kpc for a normal mass ordering and 3.6 kpc for an inverted ordering.

  11. SN 2014J and the Harvard Observing Project

    NASA Astrophysics Data System (ADS)

    McIntosh, Melissa; Bieryla, Allyson; Newton, Elisabeth R.; Lewis, John A.; Vanderburg, Andrew; Alexander, Kate Denham; Blanchard, Peter

    2014-06-01

    A chance discovery on January 21, 2014 by Steve Fossey et al. of University College London during an undergraduate telescope training session revealed the closest type Ia supernova in the past 42 years. The bright SN 2014J was observed by undergraduates and graduate students alike in the Harvard Observing Project (see poster by A. Bieryla) with the Clay Telescope at Harvard University. Observations were obtained in multiple filters starting January 24, 2014, prior to the supernova reaching its peak brightness, and monitoring will continue as the supernova fades in brightness. We will present multiple band light curve photometry and color RGB images of SN 2014J and its host galaxy M82.

  12. THE SUPERNOVA DELAY TIME DISTRIBUTION IN GALAXY CLUSTERS AND IMPLICATIONS FOR TYPE-Ia PROGENITORS AND METAL ENRICHMENT

    SciTech Connect

    Maoz, Dan; Sharon, Keren; Avishay Gal-Yam

    2010-10-20

    Knowledge of the supernova (SN) delay time distribution (DTD)-the SN rate versus time that would follow a hypothetical brief burst of star formation-can shed light on SN progenitors and physics, as well as on the timescales of chemical enrichment in different environments. We compile recent measurements of the Type-Ia SN (SN Ia) rate in galaxy clusters at redshifts from z = 0 out to z = 1.45, just 2 Gyr after cluster star formation at z {approx} 3. We review the plausible range for the observed total iron-to-stellar mass ratio in clusters, based on the latest data and analyses, and use it to constrain the time-integrated number of SN Ia events in clusters. With these data, we recover the DTD of SNe Ia in cluster environments. The DTD is sharply peaked at the shortest time-delay interval we probe, 0Gyr < t < 2.2 Gyr, with a low tail out to delays of {approx}10 Gyr, and is remarkably consistent with several recent DTD reconstructions based on different methods, applied to different environments. We test DTD models from the literature, requiring that they simultaneously reproduce the observed cluster SN rates and the observed iron-to-stellar mass ratios. A parameterized power-law DTD of the form t {sup -1.2{+-}0.3} from t = 400 Myr to a Hubble time can satisfy both constraints. Shallower power laws such as t {sup -1/2} cannot, assuming a single DTD, and a single star formation burst (either brief or extended) at high z. This implies that 50%-85% of SNe Ia explode within 1 Gyr of star formation. DTDs from double-degenerate (DD) models, which generically have {approx}t {sup -1} shapes over a wide range of timescales, match the data, but only if their predictions are scaled up by factors of 5-10. Single-degenerate (SD) DTDs always give poor fits to the data, due to a lack of delayed SNe and overall low numbers of SNe. The observations can also be reproduced with a combination of two SN Ia populations-a prompt SD population of SNe Ia that explodes within a few Gyr of star

  13. Using Line Profiles to Test the Fraternity of Type Ia Supernovae at High and Low Redshifts

    NASA Astrophysics Data System (ADS)

    Blondin, Stéphane; Dessart, Luc; Leibundgut, Bruno; Branch, David; Höflich, Peter; Tonry, John L.; Matheson, Thomas; Foley, Ryan J.; Chornock, Ryan; Filippenko, Alexei V.; Sollerman, Jesper; Spyromilio, Jason; Kirshner, Robert P.; Wood-Vasey, W. Michael; Clocchiatti, Alejandro; Aguilera, Claudio; Barris, Brian; Becker, Andrew C.; Challis, Peter; Covarrubias, Ricardo; Davis, Tamara M.; Garnavich, Peter; Hicken, Malcolm; Jha, Saurabh; Krisciunas, Kevin; Li, Weidong; Miceli, Anthony; Miknaitis, Gajus; Pignata, Giuliano; Prieto, Jose Luis; Rest, Armin; Riess, Adam G.; Salvo, Maria Elena; Schmidt, Brian P.; Smith, R. Chris; Stubbs, Christopher W.; Suntzeff, Nicholas B.

    2006-03-01

    Using archival data of low-redshift (z<0.01 Center for Astrophysics and SUSPECT databases) Type Ia supernovae (SNe Ia) and recent observations of high-redshift (0.16Ia, we study the ``uniformity'' of the spectroscopic properties of nearby and distant SNe Ia. We find no difference in the measurements we describe here. In this paper we base our analysis solely on line-profile morphology, focusing on measurements of the velocity location of maximum absorption (vabs) and peak emission (vpeak). Our measurement technique makes it easier to compare low and high signal-to-noise ratio observations. We also quantify the associated sources of error, assessing the effect of line blending with assistance from the parameterized code SYNOW. We find that the evolution of vabs and vpeak for our sample lines (Ca II λ3945, Si II λ6355, and S II λλ5454, 5640) is similar for both the low- and high-redshift samples. We find that vabs for the weak S II λλ5454, 5640 lines and vpeak for S II λ5454 can be used to identify fast-declining [Δm15(B)>1.7] SNe Ia, which are also subluminous. In addition, we give the first direct evidence in two high-z SN Ia spectra of a double-absorption feature in Ca II λ3945, an event also observed, although infrequently, in low-redshift SN Ia spectra (6 out of 22 SNe Ia in our local sample). Moreover, echoing the recent studies of Dessart & Hillier in the context of Type II supernovae (SNe II), we see similar P Cygni line profiles in our large sample of SN Ia spectra. First, the magnitude of the velocity location at maximum profile absorption may underestimate that at the continuum photosphere, as observed, for example, in the optically thinner line S II λ5640. Second, we report for the first time the unambiguous and systematic intrinsic blueshift of peak emission of optical P Cygni line profiles in SN Ia spectra, by as much as 8000 km s-1. All the high-z SNe Ia analyzed in this paper were discovered and followed up by the ESSENCE

  14. Berkeley Supernova Ia Program - III. Spectra near maximum brightness improve the accuracy of derived distances to Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Silverman, Jeffrey M.; Ganeshalingam, Mohan; Li, Weidong; Filippenko, Alexei V.

    2012-09-01

    In this third paper in a series we compare spectral feature measurements to photometric properties of 108 low-redshift (z < 0.1, ≈ 0.023) Type Ia supernovae (SNe Ia) for which we have optical spectra within 5 d of maximum brightness. The spectral data were obtained from 1989 to the end of 2008 as part of the Berkeley Supernova Ia Program (BSNIP) and are presented in BSNIP I by Silverman et al., and the photometric data come mainly from the Lick Observatory Supernova Search and are published by Ganeshalingam et al. The spectral measurements are presented and discussed in BSNIP II by Silverman, Kong & Filippenko, and the light-curve fits and photometric parameters can be found in Ganeshalingam et al. (in preparation). A variety of previously proposed correlations between spectral and photometric parameters are investigated using the large and self-consistent BSNIP data set. We find the pseudo-equivalent width (pEW) of the Si II λ4000 line to be a good indicator of light-curve width, and the pEWs of the Mg II and Fe II complexes are relatively good proxies for SN colour. We also employ a combination of light-curve parameters (specifically the Spectral Adaptive Light-curve Template 2 stretch and colour parameters x1 and c, respectively) and spectral measurements to calculate distance moduli. The residuals from these models are then compared to the standard model which uses only light-curve stretch and colour. Our investigations show that a distance model that uses x1, c and the velocity of the Si II λ6355 feature does not lead to a decrease in the Hubble residuals. We also find that distance models with flux ratios alone or in conjunction with light-curve information rarely perform better than the standard (x1, c) model. However, when adopting a distance model which combines the ratio of fluxes near ˜3750 and 4550 Å with both x1 and c, the Hubble residuals are decreased by ˜10 per cent, which is found to be significant at about the 2σ level. The weighted

  15. DAO Spectroscopic classification of SN 2017gav = ASASSN-17kt

    NASA Astrophysics Data System (ADS)

    Balam, D. D.; Thanjavur, Karun; Hsiao, E. Y.

    2017-08-01

    D. D. Balam, Dominion Astrophysical Observatory, National Research Council of Canada, K. Thanjavur (University of Victoria) and E. Hsiao, Florida State University report that a spectrogram (range 390-710 nm, resolution 0.3 nm) of SN 2017gav obtained on Aug. 16.25 UT with the 1.82-m Plaskett Telescope of the National Research Council of Canada, shows it to be a normal type Ia supernova near maximum light.

  16. Strong near-infrared carbon in the Type Ia supernova iPTF13ebh

    SciTech Connect

    Hsiao, E. Y.; Burns, C. R.; Contreras, C.; Höflich, P.; Sand, D.; Marion, G. H.; Phillips, M. M.; Stritzinger, M.; González-Gaitán, S.; Mason, R. E.; Folatelli, G.; Parent, E.; Gall, C.; Amanullah, R.; Anupama, G. C.; Arcavi, I.; Banerjee, D. P. K.; Beletsky, Y.; Blanc, G. A.; Bloom, J. S.; Brown, P. J.; Campillay, A.; Cao, Y.; De Cia, A.; Diamond, T.; Freedman, W. L.; Gonzalez, C.; Goobar, A.; Holmbo, S.; Howell, D. A.; Johansson, J.; Kasliwal, M. M.; Kirshner, R. P.; Krisciunas, K.; Kulkarni, S. R.; Maguire, K.; Milne, P. A.; Morrell, N.; Nugent, P. E.; Ofek, E. O.; Osip, D.; Palunas, P.; Perley, D. A.; Persson, S. E.; Piro, A. L.; Rabus, M.; Roth, M.; Schiefelbein, J. M.; Srivastav, S.; Sullivan, M.; Suntzeff, N. B.; Surace, J.; Woźniak, P. R.; Yaron, O.

    2015-05-22

    We present near-infrared (NIR) time-series spectroscopy, as well as complementary ultraviolet (UV), optical, and NIR data, of the Type Ia supernova (SN Ia) iPTF13ebh, which was discovered within two days from the estimated time of explosion. The first NIR spectrum was taken merely 2.3 days after explosion and may be the earliest NIR spectrum yet obtained of a SN Ia. The most striking features in the spectrum are several NIR C I lines, and the C Iλ1.0693 μm line is the strongest ever observed in a SN Ia. Interestingly, no strong optical C II counterparts were found, even though the optical spectroscopic time series began early and is densely cadenced. Except at the very early epochs, within a few days from the time of explosion, we show that the strong NIR C I compared to the weaker optical C II appears to be general in SNe Ia. iPTF13ebh is a fast decliner with Δm15(B) = 1.79 ± 0.01, and its absolute magnitude obeys the linear part of the width-luminosity relation. It is therefore categorized as a “transitional” event, on the fast-declining end of normal SNe Ia as opposed to subluminous/91bg-like objects. iPTF13ebh shows NIR spectroscopic properties that are distinct from both the normal and subluminous/91bg-like classes, bridging the observed characteristics of the two classes. These NIR observations suggest that composition and density of the inner core are similar to that of 91bg-like events, and that it has a deep-reaching carbon burning layer that is not observed in more slowly declining SNe Ia. Furthermore, there is also a substantial difference between the explosion times inferred from the early-time light curve and the velocity evolution of the Si II λ0.6355 μm line, implying a long dark phase of ~4 days.

  17. Strong near-infrared carbon in the Type Ia supernova iPTF13ebh

    NASA Astrophysics Data System (ADS)

    Hsiao, E. Y.; Burns, C. R.; Contreras, C.; Höflich, P.; Sand, D.; Marion, G. H.; Phillips, M. M.; Stritzinger, M.; González-Gaitán, S.; Mason, R. E.; Folatelli, G.; Parent, E.; Gall, C.; Amanullah, R.; Anupama, G. C.; Arcavi, I.; Banerjee, D. P. K.; Beletsky, Y.; Blanc, G. A.; Bloom, J. S.; Brown, P. J.; Campillay, A.; Cao, Y.; De Cia, A.; Diamond, T.; Freedman, W. L.; Gonzalez, C.; Goobar, A.; Holmbo, S.; Howell, D. A.; Johansson, J.; Kasliwal, M. M.; Kirshner, R. P.; Krisciunas, K.; Kulkarni, S. R.; Maguire, K.; Milne, P. A.; Morrell, N.; Nugent, P. E.; Ofek, E. O.; Osip, D.; Palunas, P.; Perley, D. A.; Persson, S. E.; Piro, A. L.; Rabus, M.; Roth, M.; Schiefelbein, J. M.; Srivastav, S.; Sullivan, M.; Suntzeff, N. B.; Surace, J.; Woźniak, P. R.; Yaron, O.

    2015-06-01

    We present near-infrared (NIR) time-series spectroscopy, as well as complementary ultraviolet (UV), optical, and NIR data, of the Type Ia supernova (SN Ia) iPTF13ebh, which was discovered within two days from the estimated time of explosion. The first NIR spectrum was taken merely 2.3 days after explosion and may be the earliest NIR spectrum yet obtained of a SN Ia. The most striking features in the spectrum are several NIR C i lines, and the C iλ1.0693 μm line is the strongest ever observed in a SN Ia. Interestingly, no strong optical C ii counterparts were found, even though the optical spectroscopic time series began early and is densely cadenced. Except at the very early epochs, within a few days from the time of explosion, we show that the strong NIR C i compared to the weaker optical C ii appears to be general in SNe Ia. iPTF13ebh is a fast decliner with Δm15(B) = 1.79 ± 0.01, and its absolute magnitude obeys the linear part of the width-luminosity relation. It is therefore categorized as a "transitional" event, on the fast-declining end of normal SNe Ia as opposed to subluminous/91bg-like objects. iPTF13ebh shows NIR spectroscopic properties that are distinct from both the normal and subluminous/91bg-like classes, bridging the observed characteristics of the two classes. These NIR observations suggest that composition and density of the inner core are similar to that of 91bg-like events, and that it has a deep-reaching carbon burning layer that is not observed in more slowly declining SNe Ia. There is also a substantial difference between the explosion times inferred from the early-time light curve and the velocity evolution of the Si iiλ0.6355 μm line, implying a long dark phase of ~4 days. This paper includes data gathered with the 6.5-m Magellan Telescopes located at Las Campanas Observatory, Chile.Optical and NIR spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc

  18. Strong near-infrared carbon in the Type Ia supernova iPTF13ebh

    DOE PAGES

    Hsiao, E. Y.; Burns, C. R.; Contreras, C.; ...

    2015-05-22

    We present near-infrared (NIR) time-series spectroscopy, as well as complementary ultraviolet (UV), optical, and NIR data, of the Type Ia supernova (SN Ia) iPTF13ebh, which was discovered within two days from the estimated time of explosion. The first NIR spectrum was taken merely 2.3 days after explosion and may be the earliest NIR spectrum yet obtained of a SN Ia. The most striking features in the spectrum are several NIR C I lines, and the C Iλ1.0693 μm line is the strongest ever observed in a SN Ia. Interestingly, no strong optical C II counterparts were found, even though themore » optical spectroscopic time series began early and is densely cadenced. Except at the very early epochs, within a few days from the time of explosion, we show that the strong NIR C I compared to the weaker optical C II appears to be general in SNe Ia. iPTF13ebh is a fast decliner with Δm15(B) = 1.79 ± 0.01, and its absolute magnitude obeys the linear part of the width-luminosity relation. It is therefore categorized as a “transitional” event, on the fast-declining end of normal SNe Ia as opposed to subluminous/91bg-like objects. iPTF13ebh shows NIR spectroscopic properties that are distinct from both the normal and subluminous/91bg-like classes, bridging the observed characteristics of the two classes. These NIR observations suggest that composition and density of the inner core are similar to that of 91bg-like events, and that it has a deep-reaching carbon burning layer that is not observed in more slowly declining SNe Ia. Furthermore, there is also a substantial difference between the explosion times inferred from the early-time light curve and the velocity evolution of the Si II λ0.6355 μm line, implying a long dark phase of ~4 days.« less

  19. SWIFT X-RAY UPPER LIMITS ON TYPE Ia SUPERNOVA ENVIRONMENTS

    SciTech Connect

    Russell, B. R.; Immler, S.

    2012-04-01

    We have considered 53 Type Ia supernovae (SNe Ia) observed by the Swift X-Ray Telescope. None of the SNe Ia are individually detected at any time or in stacked images. Using these data and assuming that the SNe Ia are a homogeneous class of objects, we have calculated upper limits to the X-ray luminosity (0.2-10 keV) and mass-loss rate of L{sub 0.2-10} < 1.7 Multiplication-Sign 10{sup 38} erg s{sup -1} and M-dot < 1.1 Multiplication-Sign 10{sup -6} M{sub sun} yr{sup -1} Multiplication-Sign (v{sub w})/(10 km s{sup -1}), respectively. The results exclude massive or evolved stars as the companion objects in SN Ia progenitor systems, but allow the possibility of main sequence or small stars, along with double degenerate systems consisting of two white dwarfs, consistent with results obtained at other wavelengths (e.g., UV, radio) in other studies.

  20. Wind-driven evolution of white dwarf binaries to type Ia supernovae

    SciTech Connect

    Ablimit, Iminhaji; Xu, Xiao-jie; Li, X.-D.

    2014-01-01

    In the single-degenerate scenario for the progenitors of Type Ia supernovae (SNe Ia), a white dwarf rapidly accretes hydrogen- or helium-rich material from its companion star and appears as a supersoft X-ray source. This picture has been challenged by the properties of the supersoft X-ray sources with very low mass companions and the observations of several nearby SNe Ia. It has been pointed out that the X-ray radiation or the wind from the accreting white dwarf can excite winds or strip mass from the companion star, thus significantly influencing the mass transfer processes. In this paper, we perform detailed calculations of the wind-driven evolution of white dwarf binaries. We present the parameter space for the possible SN Ia progenitors and for the surviving companions after the SNe. The results show that the ex-companion stars of SNe Ia have characteristics more compatible with the observations, compared with those in the traditional single-degenerate scenario.

  1. The Oxygen Features in Type Ia Supernovae and Implications for the Nature of Thermonuclear Explosions

    NASA Astrophysics Data System (ADS)

    Zhao, Xulin; Maeda, Keiichi; Wang, Xiaofeng; Wang, Lifan; Sai, Hanna; Zhang, Jujia; Zhang, Tianmeng; Huang, Fang; Rui, Liming

    2016-08-01

    The absorption feature O i λ7773 is an important spectral indicator for type Ia supernovae (SNe Ia) that can be used to trace the unburned material in outer layers of the exploding white dwarf (WD). In this work, we use a large sample of SNe Ia to examine this absorption at early phases (i.e., -13 day ≲ t ≲ -7 day) and make comparisons with the absorption features of Si ii λ6355 and the Ca ii near-infrared triplet. We show that for a subgroup of spectroscopically normal SNe with normal photospheric velocities (i.e., v si ≲ 12,500 km s-1 at optical maximum), the line strength of the high velocity feature (HVF) of O i is inversely correlated with that of Si ii (or Ca ii), and this feature also shows a negative correlation with the luminosity of SNe Ia. This finding, together with other features we find for the O i HVF, reveal that for this subgroup of SNe Ia, explosive oxygen burning occurs in the outermost layer of the SN. Differences in the oxygen burning could lead to the observed diversity, which is in remarkable agreement with the popular delayed-detonation model of Chandrasekhar mass WDs.

  2. Tycho Brahe's 1572 supernova as a standard typeIa as revealed by its light-echo spectrum

    NASA Astrophysics Data System (ADS)

    Krause, Oliver; Tanaka, Masaomi; Usuda, Tomonori; Hattori, Takashi; Goto, Miwa; Birkmann, Stephan; Nomoto, Ken'ichi

    2008-12-01

    TypeIa supernovae are thermonuclear explosions of white dwarf stars in close binary systems. They play an important role as cosmological distance indicators and have led to the discovery of the accelerated expansion of the Universe. Among the most important unsolved questions about supernovae are how the explosion actually proceeds and whether accretion occurs from a companion or by the merging of two white dwarfs. Tycho Brahe's supernova of 1572 (SN1572) is thought to be one of the best candidates for a typeIa supernova in the Milky Way. The proximity of the SN1572 remnant has allowed detailed studies, such as the possible identification of the binary companion, and provides a unique opportunity to test theories of the explosion mechanism and the nature of the progenitor. The determination of the hitherto unknown spectroscopic type of this supernova is crucial in relating these results to the diverse population of typeIa supernovae. Here we report an optical spectrum of Tycho's supernova near maximum brightness, obtained from a scattered-light echo more than four centuries after the direct light from the explosion swept past the Earth. We find that SN1572 belongs to the majority class of normal typeIa supernovae.

  3. Tycho Brahe's 1572 supernova as a standard type Ia as revealed by its light-echo spectrum.

    PubMed

    Krause, Oliver; Tanaka, Masaomi; Usuda, Tomonori; Hattori, Takashi; Goto, Miwa; Birkmann, Stephan; Nomoto, Ken'ichi

    2008-12-04

    Type Ia supernovae are thermonuclear explosions of white dwarf stars in close binary systems. They play an important role as cosmological distance indicators and have led to the discovery of the accelerated expansion of the Universe. Among the most important unsolved questions about supernovae are how the explosion actually proceeds and whether accretion occurs from a companion or by the merging of two white dwarfs. Tycho Brahe's supernova of 1572 (SN 1572) is thought to be one of the best candidates for a type Ia supernova in the Milky Way. The proximity of the SN 1572 remnant has allowed detailed studies, such as the possible identification of the binary companion, and provides a unique opportunity to test theories of the explosion mechanism and the nature of the progenitor. The determination of the hitherto unknown spectroscopic type of this supernova is crucial in relating these results to the diverse population of type Ia supernovae. Here we report an optical spectrum of Tycho's supernova near maximum brightness, obtained from a scattered-light echo more than four centuries after the direct light from the explosion swept past the Earth. We find that SN 1572 belongs to the majority class of normal type Ia supernovae.

  4. Against the Wind: Radio Light Curves of Type Ia Supernovae Interacting with Low-density Circumstellar Shells

    NASA Astrophysics Data System (ADS)

    Harris, Chelsea E.; Nugent, Peter E.; Kasen, Daniel N.

    2016-06-01

    For decades a wide variety of observations spanning the radio through optical and on to the X-ray have attempted to uncover signs of type Ia supernovae (SNe Ia) interacting with a circumstellar medium (CSM). The goal of these studies is to constrain the nature of the hypothesized SN Ia mass-donor companion. A continuous CSM is typically assumed when interpreting observations of interaction. However, while such models have been successfully applied to core-collapse SNe, the assumption of continuity may not be accurate for SNe Ia, because shells of CSM could be formed by pre-supernova eruptions (novae). In this work, we model the interaction of SNe with a spherical, low-density, finite-extent CSM and create a suite of synthetic radio synchrotron light curves. We find that CSM shells produce sharply peaked light curves. We also identify a fiducial set of models that obey a common evolution and can be used to generate radio light curves for an interaction with an arbitrary shell. The relations obeyed by the fiducial models can be used to deduce CSM properties from radio observations; we demonstrate this by applying them to the nondetections of SN 2011fe and SN 2014J. Finally, we explore a multiple shell CSM configuration and describe its more complicated dynamics and the resultant radio light curves.

  5. Against the Wind: Radio Light Curves of Type IA Supernovae Interacting with Low-Density Circumstellar Shells

    SciTech Connect

    Harris, Chelsea E.; Nugent, Peter E.; Kasen, Daniel N.

    2016-05-26

    For decades a wide variety of observations spanning the radio through optical and on to the X-ray have attempted to uncover signs of type Ia supernovae (SNe Ia) interacting with a circumstellar medium (CSM). The goal of these studies is to constrain the nature of the hypothesized SN Ia mass-donor companion. A continuous CSM is typically assumed when interpreting observations of interaction. However, while such models have been successfully applied to core-collapse SNe, the assumption of continuity may not be accurate for SNe Ia, because shells of CSM could be formed by pre-supernova eruptions (novae). In this work, we model the interaction of SNe with a spherical, low-density, finite-extent CSM and create a suite of synthetic radio synchrotron light curves. We find that CSM shells produce sharply peaked light curves. We also identify a fiducial set of models that obey a common evolution and can be used to generate radio light curves for an interaction with an arbitrary shell. The relations obeyed by the fiducial models can be used to deduce CSM properties from radio observations; we demonstrate this by applying them to the nondetections of SN 2011fe and SN 2014J. Finally, we explore a multiple shell CSM configuration and describe its more complicated dynamics and the resultant radio light curves.

  6. Early UV emission from disc-originated matter (DOM) in Type Ia supernovae in the double-degenerate scenario

    NASA Astrophysics Data System (ADS)

    Levanon, Naveh; Soker, Noam

    2017-09-01

    We show that the blue and UV excess emission in the first few days of some Type Ia supernovae (SNe Ia) can be accounted in the double-degenerate (DD) scenario by the collision of the SN ejecta with circumstellar matter that was blown by the accretion disc formed during the merger process of the two white dwarfs (WDs). We assume that in cases of excess early light, the disc blows the circumstellar matter, that we term disc-originated matter (DOM), hours to days before explosion. To perform our analysis, we first provide a model-based definition for early excess light, replacing the definition of excess light relative to a power-law fit to the rising luminosity. We then examine the light curves of the SNe Ia iPTF14atg and SN 2012cg, and find that the collision of the ejecta with a DOM in the frame of the DD scenario can account for their early excess emission. Thus, early excess light does not necessarily imply the presence of a stellar companion in the frame of the single-degenerate scenario. Our findings further increase the variety of phenomena that the DD scenario can account for, and emphasize the need to consider all different SN Ia scenarios when interpreting observations.

  7. Against the Wind: Radio Light Curves of Type IA Supernovae Interacting with Low-Density Circumstellar Shells

    DOE PAGES

    Harris, Chelsea E.; Nugent, Peter E.; Kasen, Daniel N.

    2016-05-26

    For decades a wide variety of observations spanning the radio through optical and on to the X-ray have attempted to uncover signs of type Ia supernovae (SNe Ia) interacting with a circumstellar medium (CSM). The goal of these studies is to constrain the nature of the hypothesized SN Ia mass-donor companion. A continuous CSM is typically assumed when interpreting observations of interaction. However, while such models have been successfully applied to core-collapse SNe, the assumption of continuity may not be accurate for SNe Ia, because shells of CSM could be formed by pre-supernova eruptions (novae). In this work, we modelmore » the interaction of SNe with a spherical, low-density, finite-extent CSM and create a suite of synthetic radio synchrotron light curves. We find that CSM shells produce sharply peaked light curves. We also identify a fiducial set of models that obey a common evolution and can be used to generate radio light curves for an interaction with an arbitrary shell. The relations obeyed by the fiducial models can be used to deduce CSM properties from radio observations; we demonstrate this by applying them to the nondetections of SN 2011fe and SN 2014J. Finally, we explore a multiple shell CSM configuration and describe its more complicated dynamics and the resultant radio light curves.« less

  8. THE DWARF STARBURST HOST GALAXY OF A TYPE Ia SUPERNOVA AT z = 1.55 FROM CANDELS

    SciTech Connect

    Frederiksen, Teddy F.; Hjorth, Jens; Maund, Justyn R.; Rodney, Steven A.; Riess, Adam G.; Dahlen, Tomas; Mobasher, Bahram

    2012-12-01

    We present VLT/X-shooter observations of a high-redshift, Type Ia supernova (SN Ia) host galaxy, discovered with HST/WFC3 as part of the CANDELS Supernova project. The galaxy exhibits strong emission lines of Ly{alpha}, [O II], H{beta}, [O III], and H{alpha} at z = 1.54992{sup +0.00008} {sub -0.00004}. From the emission-line fluxes and spectral energy distribution fitting of broadband photometry we rule out activity from an active galactic nucleus and characterize the host galaxy as a young, low-mass, metal-poor, starburst galaxy with low intrinsic extinction and high Ly{alpha} escape fraction. The host galaxy stands out in terms of the star formation, stellar mass, and metallicity compared to its lower redshift counterparts, mainly because of its high specific star formation rate. If valid for a larger sample of high-redshift SN Ia host galaxies, such changes in the host galaxy properties with redshift are of interest because of the potential impact on the use of SN Ia as standard candles in cosmology.

  9. IAS Stacking Library in IDL

    NASA Astrophysics Data System (ADS)

    Bavouzet, Nicolas; Beelen, Alexandre; Bethermin, Matthieu; Dole, Herve; Ponthieu, Nicolas

    2013-02-01

    This IDL library is designed to be used on astronomical images. Its main aim is to stack data to allow a statistical detection of faint signal, using a prior. For instance, you can stack 160um data using the positions of galaxies detected at 24um or 3.6um, or use WMAP sources to stack Planck data. It can estimate error bars using bootstrap, and it can perform photometry (aperture photometry, or PSF fitting, or other that you can plug). The IAS Stacking Library works with gnomonic projections (RA---TAN), and also with HEALPIX projection.

  10. Constraining the role of novae as progenitors of type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Soraisam, Monika D.; Gilfanov, Marat

    2015-11-01

    Context. With the progenitors of type Ia supernovae (SNe Ia) still eluding direct detections, various types of accreting white dwarfs (WDs) have been proposed as prospective candidates. One of the possibilities are WDs undergoing unstable nuclear burning on their surfaces. Although observations and theoretical modeling of classical novae generally suggest that more material is ejected during the explosion than is accreted, there is growing evidence that in certain accretion regimes of novae, appreciable mass accumulation by the WD in the course of unstable nuclear burning may be possible. Aims: We propose that statistics of novae in nearby galaxies may be a powerful tool to determine the role these systems play in producing SNe Ia. Methods: We used multicycle nova evolutionary models to compute the number and temporal distribution of novae that would be produced by a typical SN Ia progenitor before it reached the Chandrasekhar mass limit (Mch) and exploded, assuming that it experienced unstable nuclear burning during its entire accretion history. We then used the observed nova rate in M 31 to constrain the maximal contribution of the nova channel to the SN Ia rate in this galaxy. Results: The M 31 nova rate measured by the POINT-AGAPE survey is ≈ 65 yr-1. Assuming that all these novae will reach Mch, we estimate the maximal SN Ia rate novae may produce, which is ≲0.1-0.5 × 10-3 yr-1. This constrains the overall contribution of the nova channel to the SN Ia rate at ≲ 2-7%. However, if all POINT-AGAPE novae do eventually reach Mch, a significant population of fast novae (t2 ≲ 10 days) originating from the most massive WDs is expected, with a rate of ~200-300 yr-1, which is significantly higher than currently observed. We point out that statistics of such fast novae can provide powerful diagnostics of the contribution of the nova channel to the final stage of mass accumulation by the single-degenerate (SD) SN Ia progenitors. To explore the prospects of their

  11. The violent white dwarf merger scenario for the progenitors of Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Liu, D.-D.; Wang, B.; Podsiadlowski, Ph.; Han, Z.

    2016-10-01

    Recent observations suggest that some Type Ia supernovae (SNe Ia) originate from the merging of two carbon-oxygen white dwarfs (CO WDs). Meanwhile, recent hydrodynamical simulations have indicated that the accretion-induced collapse may be avoided under certain conditions when double WDs merge violently. However, the properties of SNe Ia from this violent merger scenario are highly dependent on a particular mass-accretion stage, the so-called WD + He subgiant channel, during which the primary WD is able to increase its mass by accreting He-rich material from an He subgiant before the systems evolves into a double WD system. In this paper, we aim to study this particular evolutionary stage systematically and give the properties of violent WD mergers. By employing the Eggleton stellar evolution code, we followed a large number of binary calculations and obtained the regions in parameter space for producing violent mergers based on the WD + He subgiant channel. According to these simulations, we found that the primary WDs can increase their mass by ˜ 0.10-0.45 M⊙ during the mass-accretion stage. We then conducted a series of binary population synthesis calculations and found that the Galactic SN Ia birthrate from this channel is about 0.01-0.4 × 10-3 yr-1. This suggests that the violent WD mergers from this channel may only contribute to ˜0.3-10 per cent of all SNe Ia in our Galaxy. The delay times of violent WD mergers from this channel are ≥ 1.7 Gyr, contributing to the SNe Ia in old populations. We also found that the WD + He subgiant channel is the dominant way for producing violent WD mergers that may be able to eventually explode as SNe Ia.

  12. [O I] λλ6300, 6364 in the Nebular Spectrum of a Subluminous Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Taubenberger, S.; Kromer, M.; Pakmor, R.; Pignata, G.; Maeda, K.; Hachinger, S.; Leibundgut, B.; Hillebrandt, W.

    2013-10-01

    In this Letter, a late-phase spectrum of SN 2010lp, a subluminous Type Ia supernova (SN Ia), is presented and analyzed. As in 1991bg-like SNe Ia at comparable epochs, the spectrum is characterized by relatively broad [Fe II] and [Ca II] emission lines. However, instead of narrow [Fe III] and [Co III] lines that dominate the emission from the innermost regions of 1991bg-like supernovae (SNe), SN 2010lp shows [O I] λλ6300, 6364 emission, usually associated with core-collapse SNe and never previously observed in a subluminous thermonuclear explosion. The [O I] feature has a complex profile with two strong, narrow emission peaks. This suggests that oxygen is distributed in a non-spherical region close to the center of the ejecta, severely challenging most thermonuclear explosion models discussed in the literature. We conclude that, given these constraints, violent mergers are presently the most promising scenario to explain SN 2010lp. Based on observations at ESO Paranal under program ID 088.D-0184.

  13. Constraints on the Progenitor System of the Type Ia Supernova 2014J from Pre-Explosion Hubble Space Telescope Imaging

    NASA Technical Reports Server (NTRS)

    Kelly, Patrick L.; Fox, Ori D.; Filippenko, Alexei V.; Cenko, S. Bradley; Prato, Lisa; Schaefer, Gail; Shen, Ken J.; Zheng, WeiKang; Graham, Melissa L.; Tucker, Brad E.

    2014-01-01

    We constrain the properties of the progenitor system of the highly reddened Type Ia supernova (SN Ia) 2014J in Messier 82 (M82; d (is) approx. 3.5 Mpc). We determine the supernova (SN) location using Keck-II K-band adaptive optics images, and we find no evidence for flux from a progenitor system in pre-explosion near-ultraviolet through near-infrared Hubble Space Telescope (HST) images. Our upper limits exclude systems having a bright red giant companion, including symbiotic novae with luminosities comparable to that of RS Ophiuchi. While the flux constraints are also inconsistent with predictions for comparatively cool He-donor systems (T (is) approximately 35,000 K), we cannot preclude a system similar to V445 Puppis. The progenitor constraints are robust across a wide range of RV and AV values, but significantly greater values than those inferred from the SN light curve and spectrum would yield proportionally brighter luminosity limits. The comparatively faint flux expected from a binary progenitor system consisting of white dwarf stars would not have been detected in the pre-explosion HST imaging. Infrared HST exposures yield more stringent constraints on the luminosities of very cool (T (is) less than 3000 K) companion stars than was possible in the case of SN Ia 2011fe.

  14. Illuminating a Dark Lens : A Type Ia Supernova Magnified by the Frontier Fields Galaxy Cluster Abell 2744

    NASA Astrophysics Data System (ADS)

    Rodney, Steven A.; Patel, Brandon; Scolnic, Daniel; Foley, Ryan J.; Molino, Alberto; Brammer, Gabriel; Jauzac, Mathilde; Bradač, Maruša; Broadhurst, Tom; Coe, Dan; Diego, Jose M.; Graur, Or; Hjorth, Jens; Hoag, Austin; Jha, Saurabh W.; Johnson, Traci L.; Kelly, Patrick; Lam, Daniel; McCully, Curtis; Medezinski, Elinor; Meneghetti, Massimo; Merten, Julian; Richard, Johan; Riess, Adam; Sharon, Keren; Strolger, Louis-Gregory; Treu, Tommaso; Wang, Xin; Williams, Liliya L. R.; Zitrin, Adi

    2015-09-01

    SN HFF14Tom is a Type Ia SN discovered at z=1.3457+/- 0.0001 behind the galaxy cluster Abell 2744 (z = 0.308). In a cosmology-independent analysis, we find that HFF14Tom is 0.77 ± 0.15 mag brighter than unlensed Type Ia SNe at similar redshift, implying a lensing magnification of {μ }{obs}=2.03+/- 0.29. This observed magnification provides a rare opportunity for a direct empirical test of galaxy cluster lens models. Here we test 17 lens models, 13 of which were generated before the SN magnification was known, qualifying as pure “blind tests.” The models are collectively fairly accurate: 8 of the models deliver median magnifications that are consistent with the measured μ to within 1σ. However, there is a subtle systematic bias: the significant disagreements all involve models overpredicting the magnification. We evaluate possible causes for this mild bias, and find no single physical or methodological explanation to account for it. We do find that model accuracy can be improved to some extent with stringent quality cuts on multiply imaged systems, such as requiring that a large fraction have spectroscopic redshifts. In addition to testing model accuracies as we have done here, Type Ia SN magnifications could also be used as inputs for future lens models of Abell 2744 and other clusters, providing valuable constraints in regions where traditional strong- and weak-lensing information is unavailable.

  15. Supernova 2014J at M82 - II. Direct analysis of a middle-class Type Ia supernova

    NASA Astrophysics Data System (ADS)

    Vallely, Patrick; Moreno-Raya, M. E.; Baron, E.; Ruiz-Lapuente, Pilar; Domínguez, I.; Galbany, Lluís; González Hernández, J. I.; Méndez, J.; Hamuy, M.; López-Sánchez, A. R.; Catalán, S.; Cooke, E.; Fariña, C.; Génova-Santos, R.; Karjalainen, R.; Lietzen, H.; McCormac, J.; Riddick, F.; Rubiño-Martín, J. A.; Skillen, I.; Tudor, V.; Vaduvescu, O.

    2016-08-01

    We analyse a time series of optical spectra of SN 2014J from almost two weeks prior to maximum to nearly four months after maximum. We perform our analysis using the SYNOW code, which is well suited to track the distribution of the ions with velocity in the ejecta. We show that almost all of the spectral features during the entire epoch can be identified with permitted transitions of the common ions found in normal supernovae (SNe) Ia in agreement with previous studies. We show that 2014J is a relatively normal SN Ia. At early times the spectral features are dominated by Si II, S II, Mg II, and Ca II. These ions persist to maximum light with the appearance of Na I and Mg I. At later times iron-group elements also appear, as expected in the stratified abundance model of the formation of normal Type Ia SNe. We do not find significant spectroscopic evidence for oxygen, until 100 d after maximum light. The +100 d identification of oxygen is tentative, and would imply significant mixing of unburned or only slight processed elements down to a velocity of 6000 kms-1. Our results are in relatively good agreement with other analyses in the infrared. We briefly compare SN 2011fe to SN 2014J and conclude that the differences could be due to different central densities at ignition or differences in the C/O ratio of the progenitors.

  16. Constraints on the progenitor system of the type Ia supernova 2014J from pre-explosion Hubble space telescope imaging

    SciTech Connect

    Kelly, Patrick L.; Fox, Ori D.; Filippenko, Alexei V.; Shen, Ken J.; Zheng, WeiKang; Graham, Melissa L.; Tucker, Brad E.; Cenko, S. Bradley; Schaefer, Gail

    2014-07-20

    We constrain the properties of the progenitor system of the highly reddened Type Ia supernova (SN Ia) 2014J in Messier 82 (M82; d ≈ 3.5 Mpc). We determine the supernova (SN) location using Keck-II K-band adaptive optics images, and we find no evidence for flux from a progenitor system in pre-explosion near-ultraviolet through near-infrared Hubble Space Telescope (HST) images. Our upper limits exclude systems having a bright red giant companion, including symbiotic novae with luminosities comparable to that of RS Ophiuchi. While the flux constraints are also inconsistent with predictions for comparatively cool He-donor systems (T ≲ 35,000 K), we cannot preclude a system similar to V445 Puppis. The progenitor constraints are robust across a wide range of R{sub V} and A{sub V} values, but significantly greater values than those inferred from the SN light curve and spectrum would yield proportionally brighter luminosity limits. The comparatively faint flux expected from a binary progenitor system consisting of white dwarf stars would not have been detected in the pre-explosion HST imaging. Infrared HST exposures yield more stringent constraints on the luminosities of very cool (T < 3000 K) companion stars than was possible in the case of SN Ia 2011fe.

  17. The Hubble Space Telescope Cluster Supernova Survey. III. Correlated Properties of Type Ia Supernovae and Their Hosts at 0.9 < Z < 1.46

    NASA Astrophysics Data System (ADS)

    Meyers, J.; Aldering, G.; Barbary, K.; Barrientos, L. F.; Brodwin, M.; Dawson, K. S.; Deustua, S.; Doi, M.; Eisenhardt, P.; Faccioli, L.; Fakhouri, H. K.; Fruchter, A. S.; Gilbank, D. G.; Gladders, M. D.; Goldhaber, G.; Gonzalez, A. H.; Hattori, T.; Hsiao, E.; Ihara, Y.; Kashikawa, N.; Koester, B.; Konishi, K.; Lidman, C.; Lubin, L.; Morokuma, T.; Oda, T.; Perlmutter, S.; Postman, M.; Ripoche, P.; Rosati, P.; Rubin, D.; Rykoff, E.; Spadafora, A.; Stanford, S. A.; Suzuki, N.; Takanashi, N.; Tokita, K.; Yasuda, N.; Supernova Cosmology Project, The

    2012-05-01

    Using the sample of Type Ia supernovae (SNe Ia) discovered by the Hubble Space Telescope (HST) Cluster Supernova Survey and augmented with HST-observed SNe Ia in the Great Observatories Origins Deep Survey (GOODS) fields, we search for correlations between the properties of SNe and their host galaxies at high redshift. We use galaxy color and quantitative morphology to determine the red sequence in 25 clusters and develop a model to distinguish passively evolving early-type galaxies from star-forming galaxies in both clusters and the field. With this approach, we identify 6 SN Ia hosts that are early-type cluster members and 11 SN Ia hosts that are early-type field galaxies. We confirm for the first time at z > 0.9 that SNe Ia hosted by early-type galaxies brighten and fade more quickly than SNe Ia hosted by late-type galaxies. We also show that the two samples of hosts produce SNe Ia with similar color distributions. The relatively simple spectral energy distributions expected for passive galaxies enable us to measure stellar masses of early-type SN hosts. In combination with stellar mass estimates of late-type GOODS SN hosts from Thomson & Chary, we investigate the correlation of host mass with Hubble residual observed at lower redshifts. Although the sample is small and the uncertainties are large, a hint of this relation is found at z > 0.9. By simultaneously fitting the average cluster galaxy formation history and dust content to the red-sequence scatters, we show that the reddening of early-type cluster SN hosts is likely E(B - V) <~ 0.06. The similarity of the field and cluster early-type host samples suggests that field early-type galaxies that lie on the red sequence may also be minimally affected by dust. Hence, the early-type-hosted SNe Ia studied here occupy a more favorable environment to use as well-characterized high-redshift standard candles than other SNe Ia. Based on observations made with the NASA/ESA Hubble Space Telescope and obtained from the

  18. THE HUBBLE SPACE TELESCOPE CLUSTER SUPERNOVA SURVEY. III. CORRELATED PROPERTIES OF TYPE Ia SUPERNOVAE AND THEIR HOSTS AT 0.9 < z < 1.46

    SciTech Connect

    Meyers, J.; Barbary, K.; Fakhouri, H. K.; Goldhaber, G.; Aldering, G.; Faccioli, L.; Hsiao, E.; Barrientos, L. F.; Brodwin, M.; Dawson, K. S.; Deustua, S.; Fruchter, A. S.; Doi, M.; Ihara, Y.; Eisenhardt, P.; Gilbank, D. G.; Gladders, M. D.; Gonzalez, A. H.; Hattori, T.; Kashikawa, N.; Collaboration: Supernova Cosmology Project; and others

    2012-05-01

    Using the sample of Type Ia supernovae (SNe Ia) discovered by the Hubble Space Telescope (HST) Cluster Supernova Survey and augmented with HST-observed SNe Ia in the Great Observatories Origins Deep Survey (GOODS) fields, we search for correlations between the properties of SNe and their host galaxies at high redshift. We use galaxy color and quantitative morphology to determine the red sequence in 25 clusters and develop a model to distinguish passively evolving early-type galaxies from star-forming galaxies in both clusters and the field. With this approach, we identify 6 SN Ia hosts that are early-type cluster members and 11 SN Ia hosts that are early-type field galaxies. We confirm for the first time at z > 0.9 that SNe Ia hosted by early-type galaxies brighten and fade more quickly than SNe Ia hosted by late-type galaxies. We also show that the two samples of hosts produce SNe Ia with similar color distributions. The relatively simple spectral energy distributions expected for passive galaxies enable us to measure stellar masses of early-type SN hosts. In combination with stellar mass estimates of late-type GOODS SN hosts from Thomson and Chary, we investigate the correlation of host mass with Hubble residual observed at lower redshifts. Although the sample is small and the uncertainties are large, a hint of this relation is found at z > 0.9. By simultaneously fitting the average cluster galaxy formation history and dust content to the red-sequence scatters, we show that the reddening of early-type cluster SN hosts is likely E(B - V) {approx}< 0.06. The similarity of the field and cluster early-type host samples suggests that field early-type galaxies that lie on the red sequence may also be minimally affected by dust. Hence, the early-type-hosted SNe Ia studied here occupy a more favorable environment to use as well-characterized high-redshift standard candles than other SNe Ia.

  19. Mid-Infrared Signatures from Type Ia Supernovae Strongly Interacting with a Circumstellar Medium

    NASA Astrophysics Data System (ADS)

    Fox, Ori

    2016-08-01

    Type Ia supernovae (SNe Ia) are well-known for their use as precise cosmological distance indicators due to a standardizable peak luminosity resulting from a thermonuclear explosion. A growing subset of SNe Ia, however, show evidence for interaction with a dense circumstellar medium during the first year post-explosion, and sometimes longer (SNe Ia-CSM). The origin of this dense CSM is unknown and suggests either a) the less typical single-degenerate progenitor scenario must be considered or b) the exploding star was not a thermonuclear explosion of a white dwarf at all (i.e., core-collapse). Mid-infrared (IR) observations, in particular, are critical for tracing the density profile of dust (and hence gas) in the surrounding CSM. Yet no Spitzer light curve exists for this subclass