Sample records for iacp mutant strain

  1. IACP (INTEGRATED AIR CANCER PROJECT) EMISSIONS: TRANSFORMATIONS AND FATE

    EPA Science Inventory

    As part of the Integrated Air Cancer Project (IACP), diluted emissions from wood stoves and automobiles were injected into a Teflon smog chamber and irradiated to simulate their photochemical transformation in the atmosphere. Changes in the chemical composition and physical prope...

  2. Revealing Differences in Metabolic Flux Distributions between a Mutant Strain and Its Parent Strain Gluconacetobacter xylinus CGMCC 2955

    PubMed Central

    Liu, Miao; Yang, Xiao-Ning; Zhu, Hui-Xia; Jia, Yuan-Yuan; Jia, Shi-Ru; Piergiovanni, Luciano

    2014-01-01

    A better understanding of metabolic fluxes is important for manipulating microbial metabolism toward desired end products, or away from undesirable by-products. A mutant strain, Gluconacetobacter xylinus AX2-16, was obtained by combined chemical mutation of the parent strain (G. xylinus CGMCC 2955) using DEC (diethyl sulfate) and LiCl. The highest bacterial cellulose production for this mutant was obtained at about 11.75 g/L, which was an increase of 62% compared with that by the parent strain. In contrast, gluconic acid (the main byproduct) concentration was only 5.71 g/L for mutant strain, which was 55.7% lower than that of parent strain. Metabolic flux analysis indicated that 40.1% of the carbon source was transformed to bacterial cellulose in mutant strain, compared with 24.2% for parent strain. Only 32.7% and 4.0% of the carbon source were converted into gluconic acid and acetic acid in mutant strain, compared with 58.5% and 9.5% of that in parent strain. In addition, a higher flux of tricarboxylic acid (TCA) cycle was obtained in mutant strain (57.0%) compared with parent strain (17.0%). It was also indicated from the flux analysis that more ATP was produced in mutant strain from pentose phosphate pathway (PPP) and TCA cycle. The enzymatic activity of succinate dehydrogenase (SDH), which is one of the key enzymes in TCA cycle, was 1.65-fold higher in mutant strain than that in parent strain at the end of culture. It was further validated by the measurement of ATPase that 3.53–6.41 fold higher enzymatic activity was obtained from mutant strain compared with parent strain. PMID:24901455

  3. A Junior High School Industrial Technology Curriculum Project: A Final Evaluation of the Industrial Arts Curriculum Project (IACP), 1965-1971.

    ERIC Educational Resources Information Center

    Buffer, James J.; And Others

    The objective of the Industrial Arts Curriculum Project (IACP) was to develop, refine, and institutionalize a new and relevant 2-year junior high industrial arts program. The study focused on "industrial technology," the knowledge of management, production, and personnel practices used by men to produce goods to satisfy their needs…

  4. Monitoring IACP samples and construction of a centralized data base

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, D.B.; Ray, D.B.; Simonson, J.

    1991-01-01

    The Integrated Air Cancer Project (IACP) is a multiyear US EPA research program established to develop and evaluate methods required to identify the principal airborne carcinogens, determine emission sources, and improve the estimate of comparative human cancer risk. The first major field study designed to examine a residential wood combustion airshed was conducted in Boise, Idaho during the 1986-1987 winter heating season. The second major field study conducted in Roanoke, Virgina during the 1988-1989 was to study residential oil heating and wood combustion. Motor vehicle emissions were considered a major combustion product contributor in both airsheds. This paper describes twomore » critical components of the project. The first component is the sample custody and tracking of the samples before analysis. The second component describes the data management of the sample field data (eg. sample site, time, date, flow rate) as well as the analytical data (eg. mutagenicity, particle concentrations) for the environmental samples.« less

  5. Benomyl-resistant mutant strain of Trichoderma sp. with increased mycoparasitic activity.

    PubMed

    Olejníková, P; Ondrusová, Z; Krystofová, S; Hudecová, D

    2010-01-01

    Application of UV radiation to the strain Trichoderma sp. T-bt (isolated from lignite) resulted in the T-brm mutant which was resistant to the systemic fungicide benomyl. The tub2 gene sequence in the T-brm mutant differed from the parent as well as the collection strain (replacing tyrosine with histidine in the TUB2 protein). Under in vitro conditions this mutant exhibited a higher mycoparasitic activity toward phytopathogenic fungi.

  6. Increased riboflavin production from activated bleaching earth by a mutant strain of Ashbya gossypii.

    PubMed

    Tajima, Satoshi; Itoh, Yoko; Sugimoto, Takashi; Kato, Tatsuya; Park, Enoch Y

    2009-10-01

    The production of riboflavin from vegetable oil was increased using a mutant strain of Ashbya gossypii. This mutant was generated by treating the wild-type strain with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Riboflavin production was 10-fold higher in the mutant compared to the wild-type strain. The specific intracellular catalase activity after 3 d of culture was 6-fold higher in the mutant than in the wild-type strain. For the mutant, riboflavin production in the presence of 40 mM hydrogen peroxide was 16% less than that in the absence of hydrogen peroxide, whereas it was 56% less for the wild-type strain. The isocitrate lyase (ICL) activity of the mutant was 0.26 mU/mg of protein during the active riboflavin production phase, which was 2.6-fold higher than the wild-type strain. These data indicate that the mutant utilizes the carbon flux from the TCA cycle to the glyoxylate cycle more efficiently than the wild-type strain, resulting in enhanced riboflavin production. This novel mutant has the potential to be of use for industrial-scale riboflavin production from waste-activated bleaching earth (ABE), thereby transforming a useless material into a valuable bioproduct.

  7. Mutant strain of C. acetobutylicum and process for making butanol

    DOEpatents

    Jain, Mahendra K.; Beacom, Daniel; Datta, Rathin

    1993-01-01

    A biologically pure asporogenic mutant of Clostridium acetobutylicum is produced by growing sporogenic C. acetobutylicum ATCC 4259 and treating the parent strain with ethane methane sulfonate. The mutant which as been designated C. acetobutylicum ATCC 55025 is useful in an improved ABE fermentation process, and produces high concentrations of butanol and total solvents.

  8. Applications of mutant yeast strains with low glycogen storage capability

    NASA Technical Reports Server (NTRS)

    Petersen, G. R.; Schubert, W. W.; Stokes, B. O.

    1981-01-01

    Several strains of Hansenula polymorpha were selected for possible low glycogen storage characteristics based on a selective I2 staining procedure. The levels of storage carbohydrates in the mutant strains were found to be 44-70% of the levels in the parent strain for cultures harvested in stationary phase. Similar differences generally were not found for cells harvested in exponential phase. Yeast strains deficient in glycogen storage capability are valuable in increasing the relative protein value of microbial biomass and also may provide significant cost savings in substrate utilization in fermentative processes.

  9. Inducamides A–C, Chlorinated Alkaloids from an RNA Polymerase Mutant Strain of Streptomyces sp.

    PubMed Central

    2015-01-01

    Inducamides A–C (1–3), three new chlorinated alkaloids featuring an amide skeleton generated by a tryptophan fragment and a 6-methylsalicylic acid unit, were isolated from a chemically induced mutant strain of Streptomyces sp. with the inducamides only being produced in the mutant strain. Their structures, including stereochemistry, were determined by spectroscopic analysis, Marfey’s method, and CD spectroscopy. PMID:25338006

  10. The Breeding of a Pigment Mutant Strain of Steroid Hydroxylation Aspergillus Flavus by Low Energy Ion Implantation

    NASA Astrophysics Data System (ADS)

    Ye, Hui; Ma, Jingming; Feng, Chun; Cheng, Ying; Zhu, Suwen; Cheng, Beijiu

    2009-02-01

    In the process of the fermentation of steroid C11α-hydroxylgenation strain Aspergillus flavus AF-ANo208, a red pigment is derived, which will affect the isolation and purification of the target product. Low energy ion beam implantation is a new tool for breeding excellent mutant strains. In this study, the ion beam implantation experiments were performed by infusing two different ions: argon ion (Ar+) and nitrogen ion (N+). The results showed that the optimal ion implantation was N+ with an optimum dose of 2.08 × 1015 ions/cm2, with which the mutant strain AF-ANm16 that produced no red pigment was obtained. The strain had high genetic stability and kept the strong capacity of C11α-hydroxylgenation, which could be utilized in industrial fermentation. The differences between the original strain and the mutant strain at a molecular level were analyzed by randomly amplified polymorphic DNA (RAPD). The results indicated that the frequency of variation was 7.00%, which would establish the basis of application investigation into the breeding of pigment mutant strains by low energy ion implantation.

  11. Induction of pure and sectored mutant clones in excision-proficient and deficient strains of yeast.

    PubMed

    Eckardt, F; Haynes, R H

    1977-06-01

    We have found that UV-induced mutation frequency in a forward non-selective assay system (scoring white adex ade2 double auxotroph mutants among the red pigmented ade2 clones) increases linearly with dose up to a maximum frequency of about 3 X 10(-3) mutants per survivor and then declines in both RAD wild-type and rad2 excision deficient strains of Saccharomyces cerevisiae. Mutation frequencies of the RAD and the rad2 strains plotted against survival are nearly identical over the entire survival range. On this basis we conclude that unexcised pyrimidine dimers are the predominant type of pre-mutational lesions in both strains. In the RAD wild-type strain pure mutant clones outnumber sectors in a 10:1 ratio at all doses used; in rad2 this ratio varies from 1:1 at low doses up to 10:1 at high doses. As others have concluded for wild-type strains we find also in the rad2 strain that pure clone formation cannot be accounted for quantitatively by lethal sectoring events alone. We conclude that heteroduplex repair is a crucial step in pure mutant clone formation and we examine the plausibility of certain macromolecular mechanisms according to which heteroduplex repair may be coupled with replication, repair and sister strand exchange in yeast mutagenesis.

  12. Genetic and physiological characterization of a Rhizobium etli mutant strain unable to synthesize poly-beta-hydroxybutyrate.

    PubMed Central

    Cevallos, M A; Encarnación, S; Leija, A; Mora, Y; Mora, J

    1996-01-01

    Rhizobium etli accumulates poly-beta-hydroxybutyrate (PHB) in symbiosis and in free life. PHB is a reserve material that serves as a carbon and/or electron sink when optimal growth conditions are not met. It has been suggested that in symbiosis PHB can prolong nitrogen fixation until the last stages of seed development, but experiments to test this proposition have not been done until now. To address these questions in a direct way, we constructed an R. etli PHB-negative mutant by the insertion of an Omega-Km interposon within the PHB synthase structural gene (phaC). The identification and sequence of the R. etli phaC gene are also reported here. Physiological studies showed that the PHB-negative mutant strain was unable to synthesize PHB and excreted more lactate, acetate, pyruvate, beta-hydroxybutyrate, fumarate, and malate than the wild-type strain. The NAD+/NADH ratio in the mutant strain was lower than that in the parent strain. The oxidative capacity of the PHB-negative mutant was reduced. Accordingly, the ability to grow in minimal medium supplemented with glucose or pyruvate was severely diminished in the mutant strain. We propose that in free life PHB synthesis sequesters reductive power, allowing the tricarboxylic acid cycle to proceed under conditions in which oxygen is a limiting factor. In symbiosis with Phaseolus vulgaris, the PHB-negative mutant induced nodules that prolonged the capacity to fix nitrogen. PMID:8626293

  13. Photosynthetic Electron Transport Chain of Chlamydomonas reinhardi VI. Electron Transport in Mutant Strains Lacking Either Cytochrome 553 or Plastocyanin 1

    PubMed Central

    Gorman, Donald S.; Levine, R. P.

    1966-01-01

    A mutant strain of Chlamydomonas reinhardi, ac-206, lacks cytochrome 553, at least in an active and detectable form. Chloroplast fragments of this mutant strain are inactive in the photoreduction of NADP when the source of electrons is water, but they are active when the electron source is 2,6-dichlorophenolindophenol and ascorbate. The addition of either cytochrome 553 or plastocyanin, obtained from the wild-type strain, has no effect upon the photosynthetic activities of the mutant strain. Cells of the mutant strain lack both the soluble and insoluble forms of cytochrome 553, but they possess the mitochondrial type cytochrome c. Thus, the loss of cytochrome 553 appears to be specific. Another mutant strain, ac-208, lacks plastocyanin, or possesses it in an inactive and undetectable form. Chloroplast fragments of ac-208 are inactive in the photoreduction of NADP with either water or 2,6-dichlorophenolindophenol and ascorbate as electron donors. However, these reactions are restored upon the addition of plastocyanin. The addition of cytochrome 553 has no effect. The measurement of light-induced absorbance changes with ac-208 reveal that, in the absence of plastocyanin, light fails to sensitize the oxidation of cytochrome 553, but it will sensitize its reduction. However, the addition of plastocyanin restores the light-induced cytochrome oxidation. A third mutant strain, ac-208 (sup.) carries a suppressor mutation that partially restores the wild phenotype. This mutant strain appears to possess a plastocyanin that is less stable than that of the wild-type strain. The observations with the mutant strains are discussed in terms of the sequence of electron transport System II → cytochrome 553 → plastocyanin → System I. PMID:16656453

  14. Strain improvement and metabolic flux analysis in the wild-type and a mutant Lactobacillus lactis strain for L(+)-lactic acid production.

    PubMed

    Bai, Dong-Mei; Zhao, Xue-Ming; Li, Xin-Gang; Xu, Shi-Min

    2004-12-20

    The effects of initial glucose concentration and calcium lactate concentration on the lactic acid production by the parent strain, Lactobacillus lactis BME5-18, were studied. The results of the experiments indicated that glucose and lactate repressed the cell growth and the lactic acid production by Lactobacillus lactis BME5-18. A L(+)-lactic acid overproducing strain, Lactobacillus lactis BME5-18M, was screened by mutagenizing the parent strain with ultraviolet (UV) light irradiation and selecting the high glucose and lactate calcium concentration repression resistant mutant. Starting with a concentration of 100g L(-1) glucose, the mutant produced 98.6 g L(-1) lactic acid after 60 h in flasks, 73.9% higher than that of the parent strain. The L(+)-lactic acid purity was 98.1% by weight based on the amount of total lactic acid. The culture of the parent strain could not be analyzed well by conventional metabolic flux analysis techniques, since some pyruvate were accumulated intracellularly. Therefore, a revised flux analysis method was proposed by introducing intracellular pyruvate pool. Further studies demonstrate that there is a high level of NADH oxidase activity (12.11 mmol mg(-1) min(-1)) in the parent strain. The molecular mechanisms of the strain improvement were proposed, i.e., the high level of NADH oxidase activity was eliminated and the uptake rate of glucose was increased from 82.1 C-mmol (g DW h)(-1) to 98.9 C-mmol (g DW h)(-1) by mutagenizing the parent strain with UV, and therefore the mutant strain converts mostly pyruvate to lactic acid with a higher productivity (1.76 g L(-1) h(-1)) than the parent strain (0.95 g L(-1) h(-1)).

  15. Altered Regulation of Escherichia coli Biotin Biosynthesis in BirA Superrepressor Mutant Strains

    PubMed Central

    Chakravartty, Vandana

    2012-01-01

    Transcription of the Escherichia coli biotin (bio) operon is directly regulated by the biotin protein ligase BirA, the enzyme that covalently attaches biotin to its cognate acceptor proteins. Binding of BirA to the bio operator requires dimerization of the protein, which is triggered by BirA-catalyzed synthesis of biotinoyl-adenylate (biotinoyl-5′-AMP), the obligatory intermediate of the ligation reaction. Although several aspects of this regulatory system are well understood, no BirA superrepressor mutant strains had been isolated. Such superrepressor BirA proteins would repress the biotin operon transcription in vivo at biotin concentrations well below those needed for repression by wild-type BirA. We isolated mutant strains having this phenotype by a combined selection-screening approach and resolved multiple mutations to give several birA superrepressor alleles, each having a single mutation, all of which showed repression dominant over that of the wild-type allele. All of these mutant strains repressed bio operon transcription in vivo at biotin concentrations that gave derepression of the wild-type strain and retained sufficient ligation activity for growth when overexpressed. All of the strains except that encoding G154D BirA showed derepression of bio operon transcription upon overproduction of a biotin-accepting protein. In BirA, G154D was a lethal mutation in single copy, and the purified protein was unable to transfer biotin from enzyme-bound biotinoyl-adenylate either to the natural acceptor protein or to a biotin-accepting peptide sequence. Consistent with the transcriptional repression data, each of the purified mutant proteins showed increased affinity for the biotin operator DNA in electrophoretic mobility shift assays. Surprisingly, although most of the mutations were located in the catalytic domain, all of those tested, except G154D BirA, had normal ligase activity. Most of the mutations that gave superrepressor phenotypes altered residues

  16. Comparative production of 6-aminopenicillanic acid by different E. coli strains and their acridine orange (AO) induced mutants.

    PubMed

    Arshad, Rubina; Farooq, Shafqat; Ali, Syed Shahid

    2007-11-01

    The present study was conducted to see the difference in production of 6-APA I) between wild strains of E. coli collected from local environment and their acridine orange (AO) induced mutants and ii) between mutants and E. coli strains (ATCC 11105 and ATCC 9637) of American Type Culture Collection (ATCC) used commercially for enzymatic production of 6-APA. The optimum conditions for bioconversion were standardized and 6-APA was obtained in crystalline form. Relative PGA activity of local and foreign E. coli strains varied significantly with the highest being 12.7 in mutant strain (BDCS-N-M36) and the lowest 4.3 mg 6-APA h(-1) mg(-1) wet cells in foreign strain (ATCC 11105). The enzyme activity exhibited by mutant strain (BDCS-N-M36) was also two folds higher compared to that in wild parent BDCS-N-W50 (6.3 mg 6-APA h(-1) mg(-1) wet cells). The overall production of 6-APA and conversion ratios ranged between 0.25-0.41 g of 6-APA per 0.5 g of penicillin G and 51-83%, respectively. Maximum conversion ratio (83%) was achieved by using crude cells of mutant strain (BDCS-N-M36) which is the highest value ever reported by crude cells on a shake-flask scale whereas reported 6-APA production by immobilized cells is 60-90% in batch and continuous systems. Results are being discussed with reference to importance of local bacterial strains and their significance for industrially important enzymes.

  17. Biotransformation of L-tyrosine to Dopamine by a Calcium Alginate Immobilized Mutant Strain of Aspergillus oryzae.

    PubMed

    Ali, Sikander; Nawaz, Wajeeha

    2016-08-01

    The present research work is concerned with the biotransformation of L-tyrosine to dopamine (DA) by calcium alginate entrapped conidiospores of a mutant strain of Aspergillus oryzae. Different strains of A. oryzae were isolated from soil. Out of 13 isolated strains, isolate-2 (I-2) was found to be a better DA producer. The wild-type I-2 was chemically improved by treating it with different concentrations of ethyl methyl sulfonate (EMS). Among seven mutant variants, EMS-6 exhibiting maximal DA activity of 43 μg/ml was selected. The strain was further exposed with L-cysteine HCl to make it resistant against diversion and environmental stress. The conidiospores of selected mutant variant A. oryzae EMS-6 strain were entrapped in calcium alginate beads. Different parameters for immobilization were investigated. The activity was further improved from 44 to 62 μg/ml under optimized conditions (1.5 % sodium alginate, 2 ml inoculum, and 2 mm bead size). The best resistant mutant variable exhibited over threefold increase in DA activity (62 μg/ml) than did wild-type I-2 (21 μg/ml) in the reaction mixture. From the results presented in the study, it was observed that high titers of DA activity in vitro could effectively be achieved by the EMS-induced mutagenesis of filamentous fungus culture used.

  18. Mechanical properties of elytra from Tribolium castaneum wild-type and body color mutant strains.

    PubMed

    Lomakin, Joseph; Arakane, Yasuyuki; Kramer, Karl J; Beeman, Richard W; Kanost, Michael R; Gehrke, Stevin H

    2010-12-01

    Cuticle tanning in insects involves simultaneous cuticular pigmentation and hardening or sclerotization. The dynamic mechanical properties of the highly modified and cuticle-rich forewings (elytra) from Tribolium castaneum (red flour beetle) wild-type and body color mutant strains were investigated to relate body coloration and elytral mechanical properties. There was no statistically significant variation in the storage modulus E' among the elytra from jet, cola, sooty and black mutants or between the mutants and the wild-type GA-1 strain: E' averaged 5.1 ± 0.6 GPa regardless of body color. E' is a power law function of oscillation frequency for all types. The power law exponent, n, averaged 0.032 ± 0.001 for elytra from all genotypes except black; this small value indicated that the elytra are cross-linked. Black elytra, however, displayed a significantly larger n of 0.047 ± 0.004 and an increased loss tangent (tan δ), suggesting that metabolic differences in the black mutant strain result in elytra that are less cross-linked and more pigmented than the other types. These results are consistent with the hypothesis that black elytra have a β-alanine-deficient and dopamine-abundant metabolism, leading to greater melanin (black pigment) production, probably at the expense of cross-linking of cuticular proteins mediated by N-β-alanyldopamine quinone. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. The Annona muricata leaf ethanol extract affects mobility and reproduction in mutant strain NB327 Caenorhabditis elegans.

    PubMed

    Bustos, A V Gualteros; Jiménez, M Gómez; Mora, R M Sánchez

    2017-07-01

    The C. elegans NB327 mutant strain is characterized for the knockdown of the dic-1 gene. The dic-1 gene is homologous to the dice-1 gene in humans, encoding the protein DICE-1 as a tumor suppressor. Absence or under-regulation of the dice-1 gene can be reflected in lung and prostate cancer [17], [18]. This study evaluated the effect of EEAML on the C. elegans NB327 mutant strain. Phenotypic aspects such as morphology, body length, locomotion, and reproductive behaviour were analyzed. It is important to emphasize that the strain presents a phenotype characteristic with respect to egg laying and hatching. Reported studies showed that Annona muricata extract and its active components evidence anti-cancer and anti-tumor effects, through experimentation in vivo and in vitro models. However, neurotoxicity has been reported as a side effect. The results showed that the mutant strain NB327 was exposed to EEAML (5 mg/ml) concentration, it showed a significant decrease in average locomotion, resulting in 13 undulations in 30 s. This contrasts with the control strain's 17.5 undulations in 30 s. Similarly, the number of progenies was reduced from 188 progenies (control strain) to 114 and 92 progenies at the dose of (1 mg/ml and 5 mg/m) EEAML. The results of this study suggest that EEAML has a possible neurotoxic effect in concentrations equal to or greater than 5 mg/ml. Also, it does not have positive effects on the mutant strain of Caenorhabditis elegans NB327 phenotype.

  20. Mutant strains of Spirulina (Arthrospira) platensis to increase the efficiency of micro-ecological life support systems

    NASA Astrophysics Data System (ADS)

    Brown, Igor

    The European Micro-Ecological Life Support System Alternative (MELiSSA) is an advanced idea for organizing a bioregenerative system for long term space flights and extraterrestrial settlements (Hendrickx, De Wever et al., 2005). Despite the hostility of both lunar and Martian environments to unprotected life, it seems possible to cultivate photosynthetic bacteria using closed bioreactors illuminated and heated by solar energy. Such reactors might be employed in critical processes, e.g. air revitalization, foodcaloric and protein source, as well as an immunomodulators production. The MELiSSA team suggested cyanobacterium Spirulina as most appropriate agent to revitalize air and produce a simple "fast" food. This is right suggestion because Spirulina was recently shown to be an oxygenic organism with the highest level of O2 production per unit mass (Ananyev et al., 2005). Chemical composition of Spirulina includes proteins (55Aiming to make Spirulina cultivation in life support systems like MELiSSA more efficient, we selected Spirulina mutant strains with increased fraction of methionine in the biomass of this cyanobacterium and compared the effect of parental wild strain of Spirulina and its mutants on the tendency of such experimental illnesses as radiationinduced lesions and hemolythic anemia. Results: It was found that mutant strains 198B and 27G contain higher quantities of total protein, essential amino acids, c-phycocyanin, allophycocyanin and chlorophyll a than parental wild strain of S. platensis. The strain 198B is also characterized with increased content of carotenoids. Revealed biochemical peculiarities of mutant strains suggest that these strains can serve as an additional source of essential amino acids as well as phycobiliproteins and carotenoids for the astronauts. Feeding animals suffering from radiation-induced lesions, c-phycocyanin, extracted from strain 27G, led to a correction in deficient dehydrogenase activity and energy-rich phosphate levels

  1. Proteomic Analysis of Anti-Cancerous Scopularide Production by a Marine Microascus brevicaulis Strain and Its UV Mutant.

    PubMed

    Kramer, Annemarie; Beck, Hans Christian; Kumar, Abhishek; Kristensen, Lars Peter; Imhoff, Johannes F; Labes, Antje

    2015-01-01

    The marine fungus Microascus brevicaulis strain LF580 is a non-model secondary metabolite producer with high yields of the two secondary metabolites scopularides A and B, which exhibit distinct activities against tumour cell lines. A mutant strain was obtained using UV mutagenesis, showing faster growth and differences in pellet formation besides higher production levels. Here, we show the first proteome study of a marine fungus. Comparative proteomics were applied to gain deeper understanding of the regulation of production and of the physiology of the wild type strain and its mutant. For this purpose, an optimised protein extraction protocol was established. In total, 4759 proteins were identified. The central metabolic pathway of strain LF580 was mapped using the KEGG pathway analysis and GO annotation. Employing iTRAQ labelling, 318 proteins were shown to be significantly regulated in the mutant strain: 189 were down- and 129 upregulated. Proteomics are a powerful tool for the understanding of regulatory aspects: The differences on proteome level could be attributed to limited nutrient availability in the wild type strain due to a strong pellet formation. This information can be applied for optimisation on strain and process level. The linkage between nutrient limitation and pellet formation in the non-model fungus M. brevicaulis is in consensus with the knowledge on model organisms like Aspergillus niger and Penicillium chrysogenum.

  2. Proteomic Analysis of Anti-Cancerous Scopularide Production by a Marine Microascus brevicaulis Strain and Its UV Mutant

    PubMed Central

    Kramer, Annemarie; Beck, Hans Christian; Kumar, Abhishek; Kristensen, Lars Peter; Imhoff, Johannes F.; Labes, Antje

    2015-01-01

    The marine fungus Microascus brevicaulis strain LF580 is a non-model secondary metabolite producer with high yields of the two secondary metabolites scopularides A and B, which exhibit distinct activities against tumour cell lines. A mutant strain was obtained using UV mutagenesis, showing faster growth and differences in pellet formation besides higher production levels. Here, we show the first proteome study of a marine fungus. Comparative proteomics were applied to gain deeper understanding of the regulation of production and of the physiology of the wild type strain and its mutant. For this purpose, an optimised protein extraction protocol was established. In total, 4759 proteins were identified. The central metabolic pathway of strain LF580 was mapped using the KEGG pathway analysis and GO annotation. Employing iTRAQ labelling, 318 proteins were shown to be significantly regulated in the mutant strain: 189 were down- and 129 upregulated. Proteomics are a powerful tool for the understanding of regulatory aspects: The differences on proteome level could be attributed to limited nutrient availability in the wild type strain due to a strong pellet formation. This information can be applied for optimisation on strain and process level. The linkage between nutrient limitation and pellet formation in the non-model fungus M. brevicaulis is in consensus with the knowledge on model organisms like Aspergillus niger and Penicillium chrysogenum. PMID:26460745

  3. Comparative analysis on inactivation kinetics of between piezotolerant and piezosensitive mutant strains of Saccharomyces cerevisiae under combinations of high hydrostatic pressure and temperature.

    PubMed

    Nomura, Kazuki; Kuwabara, Yuki; Kuwabara, Wataru; Takahashi, Hiroyuki; Nakajima, Kanako; Hayashi, Mayumi; Iguchi, Akinori; Shigematsu, Toru

    2017-12-01

    We previously obtained a pressure-tolerant (piezotolerant) and a pressure sensitive (piezosensitive) mutant strain, under ambient temperature, from Saccharomyces cerevisiae strain KA31a. The inactivation kinetics of these mutants were analyzed at 150 to 250MPa with 4 to 40°C. By a multiple regression analysis, the pressure and temperature dependency of the inactivation rate constants k values of both mutants, as well as the parent strain KA31a, were well approximated with high correlation coefficients (0.92 to 0.95). For both mutants, as well as strain KA31a, the lowest k value was shown at a low pressure levels with around ambient temperature. The k value approximately increased with increase in pressure level, and with increase and decrease in temperature. The piezosensitive mutant strain a924E1 showed piezosensitivity at all pressure and temperature levels, compared with the parent strain KA31a. In contrast, the piezotolerant mutant strain a2568D8 showed piezotolerance at 4 to 20°C, but did not show significant piezotolerance at 40°C. These results of the variable influence of temperature on pressure inactivation of these strains would be important for better understanding of piezosensitive and piezotolerant mechanisms, as well as the pressure inactivation mechanism of S. cerevisiae. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. [The isolation and characteristics of mutants of the Saccharopolyspora erythraea strain resistant to thiostrepton].

    PubMed

    Nastasiak, I N; Fedorenko, V A; Danilenko, V N

    1997-01-01

    The formation of thiostreptone resistant spontaneous and nitrosoguanidine-induced mutants in the erythromycin-producing organism Saccharopolyspora erythraea was investigated. The investigated collection of the mutants was heterogeneous by the level of the thiostreptone resistance (2.5 to 20 micrograms/ml). The thiostreptone resistance mutations had a pleiotropic effect: 17 per cent of the mutants was characterized by the growth thermosensitivity and 26 and 5.8 per cent of the mutants were characterized by loss of the ability to form melanine and aerial mycelium respectively. Such phenotypes were most frequent in the mutants resistant to low concentrations of thiostreptone (2 to 5 micrograms/ml). The absolute majority of the isolated thiostreptone resistant mutants was unstable and formed both the antibiotic resistant and the antibiotic sensitive clones. The greatest portion of the strains with high antibiotic activity (20 per cent) was detected among the S. erythraea spontaneous mutants on the medium with 2.5 micrograms/ ml of thiostreptone. It was shown that the instability of the high antibiotic activity in the mutants was associated with loss of the thiostreptone resistance property.

  5. LEE-encoded regulator (Ler) mutants elicit serotype-specific protection, but not cross protection, against attaching and effacing E. coli strains.

    PubMed

    Zhu, C; Feng, S; Yang, Z; Davis, K; Rios, H; Kaper, J B; Boedeker, E C

    2007-02-26

    We previously showed that single dose orogastric immunization with an attenuated regulatory Lee-encoded regulator (ler) mutant of the rabbit enteropathogenic Escherichia coli (REPEC) strain E22 (O103:H2) protected rabbits from fatal infection with the highly virulent parent strain. In the current study we assessed the degree of homologous (serotype-specific) and heterologous (cross-serotype) protection induced by immunization with REPEC ler mutant strains of differing serotypes, or with a prototype strain RDEC-1 (O15:H-) which expresses a full array of ler up-regulated proteins. We constructed an additional ler mutant using RDEC-1 thus, permitting immunization with a ler mutant of either serotype, O15 or O103, followed by challenge with a virulent REPEC strain of the same or different serotypes. Consistent with our previous data, the current study demonstrated that rabbits immunized with a RDEC-1 ler mutant were protected from challenge with virulent RDEC-H19A (RDEC-1 transduced with Shiga toxin-producing phage H19A) of the same serotype. Rabbits immunized with RDEC-1 or E22 derivative ler mutants demonstrated significant increase in serum antibody titers to the respective whole bacterial cells expressing O antigen but not to the LEE-encoded proteins. However, immunization with the ler mutants of either E22 or RDEC-1 failed to protect rabbits from infections with virulent organisms belonging to different serotypes. In contrast, rabbits immunized with the prototype RDEC-1 were cross protected against challenge with the heterologous E22 strain as shown by normal weight gain, and the absence of clinical signs of disease or characteristic attaching and effacing (A/E) lesions. Immunization with RDEC-1 induced significantly elevated serum IgG titers to LEE-encoded proteins. We thus, demonstrated homologous protection induced by the REPEC ler mutants and heterologous protection by RDEC-1. The observed correlation between elevated immune responses to the LEE

  6. Spontaneous Gac Mutants of Pseudomonas Biological Control Strains: Cheaters or Mutualists? ▿

    PubMed Central

    Driscoll, William W.; Pepper, John W.; Pierson, Leland S.; Pierson, Elizabeth A.

    2011-01-01

    Bacteria rely on a range of extracellular metabolites to suppress competitors, gain access to resources, and exploit plant or animal hosts. The GacS/GacA two-component regulatory system positively controls the expression of many of these beneficial external products in pseudomonad bacteria. Natural populations often contain variants with defective Gac systems that do not produce most external products. These mutants benefit from a decreased metabolic load but do not appear to displace the wild type in nature. How could natural selection maintain the wild type in the presence of a mutant with enhanced growth? One hypothesis is that Gac mutants are “cheaters” that do not contribute to the public good, favored within groups but selected against between groups, as groups containing more mutants lose access to ecologically important external products. An alternative hypothesis is that Gac mutants have a mutualistic interaction with the wild type, so that each variant benefits by the presence of the other. In the biocontrol bacterium Pseudomonas chlororaphis strain 30-84, Gac mutants do not produce phenazines, which suppress competitor growth and are critical for biofilm formation. Here, we test the predictions of these alternative hypotheses by quantifying interactions between the wild type and the phenazine- and biofilm-deficient Gac mutant within growing biofilms. We find evidence that the wild type and Gac mutants interact mutualistically in the biofilm context, whereas a phenazine-defective structural mutant does not. Our results suggest that the persistence of alternative Gac phenotypes may be due to the stabilizing role of local mutualistic interactions. PMID:21873476

  7. Induction and characterization of morphologic mutants in a natural Saccharomyces cerevisiae strain.

    PubMed

    Barberio, Claudia; Bianchi, Lucia; Pinzauti, Francesca; Lodi, Tiziana; Ferrero, Iliana; Polsinelli, Mario; Casalone, Enrico

    2007-02-01

    Saccharomyces cerevisiae is a good model with which to study the effects of morphologic differentiation on the ecological behaviour of fungi. In this work, 33 morphologic mutants of a natural strain of S. cerevisiae, obtained with UV mutagenesis, were selected for their streak shape and cell shape on rich medium. Two of them, showing both high sporulation proficiency and constitutive pseudohyphal growth, were analysed from a genetic and physiologic point of view. Each mutant carries a recessive monogenic mutation, and the two mutations reside in unlinked genes. Flocculation ability and responsiveness to different stimuli distinguished the two mutants. Growth at 37 degrees C affected the cell but not the colony morphology, suggesting that these two phenotypes are regulated differently. The effect of ethidium bromide, which affects mitochondrial DNA replication, suggested a possible "retrograde action" of mitochondria in pseudohyphal growth.

  8. Poly(3-hydroxybutyrate) hyperproduction by a global nitrogen regulator NtrB mutant strain of Paracoccus denitrificans PD1222

    PubMed Central

    Olaya-Abril, Alfonso; Luque-Almagro, Víctor M; Manso, Isabel; Gates, Andrew J; Moreno-Vivián, Conrado; Richardson, David J

    2017-01-01

    Abstract Paracoccus denitrificans PD1222 accumulates short-length polyhydroxyalkanoates, poly(3-hydroxybutyrate), under nitrogen-deficient conditions. Polyhydroxybutyrate metabolism requires the 3-ketoacyl-CoA thiolase PhaA, the acetoacetyl-CoA dehydrogenase/reductase PhaB and the synthase PhaC for polymerization. Additionally, P. denitrificans PD1222 grows aerobically with nitrate as sole nitrogen source. Nitrate assimilation is controlled negatively by ammonium through the two-component NtrBC system. NtrB is a sensor kinase that autophosphorylates a histidine residue under low-nitrogen concentrations and, in turn, transfers a phosphoryl group to an aspartate residue of the response regulator NtrC protein, which acts as a transcriptional activator of the P. denitrificans PD1222 nasABGHC genes. The P. denitrificans PD1222 NtrB mutant was unable to use nitrate efficiently as nitrogen source when compared to the wild-type strain, and it also overproduced poly(3-hydroxybutyrate). Acetyl-CoA concentration in the P. denitrificans PD1222 NtrB mutant strain was higher than in the wild-type strain. The expression of the phaC gene was also increased in the NtrB mutant when compared to the wild-type strain. These results suggest that accumulation of poly(3-hydroxybutyrate) in the NtrB mutant strain of PD1222 responds to the high levels of acetyl-CoA that accumulate in the cytoplasm as consequence of its inability to efficiently use nitrate as nitrogen source. PMID:29228177

  9. Electrical phenotypes of calcium transport mutant strains of a filamentous fungus, Neurospora crassa.

    PubMed

    Hamam, Ahmed; Lew, Roger R

    2012-05-01

    We characterized the electrical phenotypes of mutants with mutations in genes encoding calcium transporters-a mechanosensitive channel homolog (MscS), a Ca(2+)/H(+) exchange protein (cax), and Ca(2+)-ATPases (nca-1, nca-2, nca-3)-as well as those of double mutants (the nca-2 cax, nca-2 nca-3, and nca-3 cax mutants). The electrical characterization used dual impalements to obtain cable-corrected current-voltage measurements. Only two types of mutants (the MscS mutant; the nca-2 mutant and nca-2-containing double mutants) exhibited lower resting potentials. For the nca-2 mutant, on the basis of unchanged conductance and cyanide-induced depolarization of the potential, the cause is attenuated H(+)-ATPase activity. The growth of the nca-2 mutant-containing strains was inhibited by elevated extracellular Ca(2+) levels, indicative of lesions in Ca(2+) homeostasis. However, the net Ca(2+) effluxes of the nca-2 mutant, measured noninvasively with a self-referencing Ca(2+)-selective microelectrode, were similar to those of the wild type. All of the mutants exhibited osmosensitivity similar to that of the wild type (the turgor of the nca-2 mutant was also similar to that of the wild type), suggesting that Ca(2+) signaling does not play a role in osmoregulation. The hyphal tip morphology and tip-localized mitochondria of the nca-2 mutant were similar to those of the wild type, even when the external [Ca(2+)] was elevated. Thus, although Ca(2+) homeostasis is perturbed in the nca-2 mutant (B. J. Bowman et al., Eukaryot. Cell 10:654-661, 2011), the phenotype does not extend to tip growth or to osmoregulation but is revealed by lower H(+)-ATPase activity.

  10. Electrical Phenotypes of Calcium Transport Mutant Strains of a Filamentous Fungus, Neurospora crassa

    PubMed Central

    Hamam, Ahmed

    2012-01-01

    We characterized the electrical phenotypes of mutants with mutations in genes encoding calcium transporters—a mechanosensitive channel homolog (MscS), a Ca2+/H+ exchange protein (cax), and Ca2+-ATPases (nca-1, nca-2, nca-3)—as well as those of double mutants (the nca-2 cax, nca-2 nca-3, and nca-3 cax mutants). The electrical characterization used dual impalements to obtain cable-corrected current-voltage measurements. Only two types of mutants (the MscS mutant; the nca-2 mutant and nca-2-containing double mutants) exhibited lower resting potentials. For the nca-2 mutant, on the basis of unchanged conductance and cyanide-induced depolarization of the potential, the cause is attenuated H+-ATPase activity. The growth of the nca-2 mutant-containing strains was inhibited by elevated extracellular Ca2+ levels, indicative of lesions in Ca2+ homeostasis. However, the net Ca2+ effluxes of the nca-2 mutant, measured noninvasively with a self-referencing Ca2+-selective microelectrode, were similar to those of the wild type. All of the mutants exhibited osmosensitivity similar to that of the wild type (the turgor of the nca-2 mutant was also similar to that of the wild type), suggesting that Ca2+ signaling does not play a role in osmoregulation. The hyphal tip morphology and tip-localized mitochondria of the nca-2 mutant were similar to those of the wild type, even when the external [Ca2+] was elevated. Thus, although Ca2+ homeostasis is perturbed in the nca-2 mutant (B. J. Bowman et al., Eukaryot. Cell 10:654–661, 2011), the phenotype does not extend to tip growth or to osmoregulation but is revealed by lower H+-ATPase activity. PMID:22408225

  11. Characterization of a cold-adapted esterase and mutants from a psychotolerant Pseudomonas sp. strain.

    PubMed

    Dong, Juan; Gasmalla, Mohammed A A; Zhao, Wei; Sun, Jingtao; Liu, Wenyu; Wang, Mingming; Han, Liang; Yang, Ruijin

    2017-09-01

    A cold-adapted esterase-producing strain named T1-39 was isolated from Glacier No. 1, Tianshan, People's Republic of China and identified as Pseudomonas sp. from 16S rRNA sequence analysis. The esterase (EstT1-39) secreted by this strain preferentially hydrolyzed esters of glycerol with short- and medium-chain fatty acids. Mutants of T1-39 were generated by the atmospheric and room temperature plasma method and screened for enhanced esterase activity. Among all the mutants, strain TB11 had 4.45-fold higher esterase productivity than T1-39, with high genetic stability over 10 generations of continuous cultivation. Maximum activity of EstT1-39 and EstTB11 was observed at 30 ℃, pH 9.0 and 25 ℃, pH 8.5, respectively. EstTB11 was thermally more stable (50 ℃ for 1 H) and active over a broader pH range than EstT1-39. EstTB11 also retained 38% of its maximal activity at 0 ℃ and was found to be able to hydrolyze milk fats into short- and medium-chain fatty acids at 4 ℃. The characteristics of EstT1-39 made it a cold-adapted enzyme and the EstTB11 from the mutant, with its higher activity at lower temperatures, may be suitable for the production of aromas and flavors in the dairy industry. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  12. Gluco-oligosaccharides synthesized by glucosyltransferases from constitutive mutants of Leuconostoc mesenteroides strain Lm 28.

    PubMed

    Iliev, I; Vassileva, T; Ignatova, C; Ivanova, I; Haertlé, T; Monsan, P; Chobert, J-M

    2008-01-01

    To find different types of glucosyltransferases (GTFs) produced by Leuconostoc mesenteroides strain Lm 28 and its mutant forms, and to check the effectiveness of gluco-oligosaccharide synthesis using maltose as the acceptor. Constitutive mutants were obtained after chemical mutagenesis by ethyl methane sulfonate. Lm M281 produced more active GTFs than that obtained by the parental strain cultivated on sucrose. GTF from Lm M286 produced a resistant glucan, based on endo-dextranase and amyloglucosidase hydrolysis. The extracellular enzymes from Lm M286 catalyse acceptor reactions and transfer the glucose unit from sucrose to maltose to produce gluco-oligosaccharides (GOS). By increasing the sucrose/maltose ratio, it was possible to catalyse the synthesis of oligosaccharides of increasing degree of polymerization (DP). Different types of GTFs (dextransucrase, alternansucrase and levansucrase) were produced from new constitutive mutants of Leuc. mesenteroides. GTFs from Lm M286 can catalyse the acceptor reaction in the presence of maltose, leading to the synthesis of branched oligosaccharides. Conditions were optimized to synthesize GOS by using GTFs from Lm M286, with the aim of producing maximum quantities of branched-chain oligosaccharides with DP 3-5. This would allow the use of the latter as prebiotics.

  13. Mechanical properties of elytra from Tribolium castaneum wild-type and body color mutant strains

    USDA-ARS?s Scientific Manuscript database

    Cuticle tanning in insects involves simultaneous cuticular hardening and pigmentation. The dynamic mechanical properties of the highly modified and cuticle-rich forewings (elytra) from Tribolium castaneum (red flour beetle) body color mutant strains were investigated to determine the relationship b...

  14. Phenotypic characterization of 10 methanol oxidation mutant classes in Methylobacterium sp. strain AM1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nunn, D.N.; Lidstrom, M.E.

    Twenty-five methanol oxidation mutants of the facultative methylotroph Methylobacterium sp. strain AM1 have been characterized by complementation analysis and assigned to 10 complementation groups, Mox A1, A2, A3, and B through H. In this study we have characterized each of the mutants belonging to the 10 Mox complementation groups for the following criteria: (i) phenazine methosulfate-dichlorophenolindophenol dye-linked methanol dehydrogenase activity; (ii) methanol-dependent whole-cell oxygen consumption; (iii) the presence or absence of methanol dehydrogenase protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting; (iv) the absorption spectra of purified mutant methanol dehydrogenase proteins; and (v) the presence or absence ofmore » the soluble cytochrome c proteins of Methylobacterium sp. strain AM1, as determined by reduced-oxidized difference spectra and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. With this information, we have proposed functions for each of the genes deficient in the mutants of the 10 Mox complementation groups. These proposed gene functions include two linked genes that encode the methanol dehydrogenase structural protein and the soluble cytochrome c/sub L/, a gene encoding a secretion function essential for the synthesis and export of methanol dehydrogenase and cytochrome c/sub L/, three gene functions responsible for the proper association of the pyrrolo-quinoline quinone prosthetic group with the methanol dehydrogenase apoprotein, and four positive regulatory gene functions controlling the expression of the ability to oxidize methanol.« less

  15. Replication of transformation-defective mutants of the Prague strain of Rous sarcoma virus and isolation of a td mutant from duck-adapted PR-RSV-C.

    PubMed

    Geryk, J; Mazo, A; Svoboda, J; Hlozánek, I

    1980-01-01

    The replication of transformation-defective mutants of the Prague strain of Rous sarcoma virus subgroup C was studied using roller cultures. Under such conditions, 10(5)--10(6) infectous units of virus per 0.2 ml were produced, as revealed in both the reverse transcriptase and 16Q complementation tests. A new td daPR-RSV-C mutant was isolated from duck-adapted PR-RSV-C. This mutant replicated in roller cultures with equal efficiency as the original td PR-RSV-C. It was verified that td daPR-RSV-C does not transform chicken fibroblasts, is not oncogenic for 3-week-old chickens and has subgroup C host-range specificity. Both td mutants replicate in duck cells and reach the same titres.

  16. Deficiency of gustatory sensitivity to some deterrent compounds in "polyphagous" mutant strains of the silkworm, Bombyx mori.

    PubMed

    Asaoka, K

    2000-11-01

    Sawa-J, CSJ02 and N601 x C601 are selected mutant strains of Bombyx mori, which grow on various artificial diets or temporarily ingest various plant leaves. To examine the mechanisms mediating diet breadth of caterpillars, gustatory spike responses of the silkworms, called 'polyphagous" strains, were compared with normal strains, N137 x C146 and C02. There were notable differences in their feeding habits and in their sensitivity to salicin in deterrent cells in the maxillary medial styloconic sensilla and the epipharyngeal sensilla. By contrast, the deterrent cells of all strains responded similarly to strychnine nitrate in a dose-dependent manner. In additional comparisons of Sawa-J and N137 x C146, Sawa-J maxillary deterrent cells were significantly less sensitive to phloridzin, amygdalin and arbutin, but responded to some alkaloids and 20-hydroxyecdysone with similar or even higher firing rate. These results suggest that the deficiency of the sensitivity to some deterrent compounds on the deterrent cell of the polyphagous strains may be caused by mutant genes and affects the diet breadth of caterpillars.

  17. Construction of a quadruple auxotrophic mutant of an industrial polyploid saccharomyces cerevisiae strain by using RNA-guided Cas9 nuclease.

    PubMed

    Zhang, Guo-Chang; Kong, In Iok; Kim, Heejin; Liu, Jing-Jing; Cate, Jamie H D; Jin, Yong-Su

    2014-12-01

    Industrial polyploid yeast strains harbor numerous beneficial traits but suffer from a lack of available auxotrophic markers for genetic manipulation. Here we demonstrated a quick and efficient strategy to generate auxotrophic markers in industrial polyploid yeast strains with the RNA-guided Cas9 nuclease. We successfully constructed a quadruple auxotrophic mutant of a popular industrial polyploid yeast strain, Saccharomyces cerevisiae ATCC 4124, with ura3, trp1, leu2, and his3 auxotrophies through RNA-guided Cas9 nuclease. Even though multiple alleles of auxotrophic marker genes had to be disrupted simultaneously, we observed knockouts in up to 60% of the positive colonies after targeted gene disruption. In addition, growth-based spotting assays and fermentation experiments showed that the auxotrophic mutants inherited the beneficial traits of the parental strain, such as tolerance of major fermentation inhibitors and high temperature. Moreover, the auxotrophic mutants could be transformed with plasmids containing selection marker genes. These results indicate that precise gene disruptions based on the RNA-guided Cas9 nuclease now enable metabolic engineering of polyploid S. cerevisiae strains that have been widely used in the wine, beer, and fermentation industries. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  18. Phage-Encoded Colanic Acid-Degrading Enzyme Permits Lytic Phage Infection of a Capsule-Forming Resistant Mutant Escherichia coli Strain

    PubMed Central

    Kim, Min Soo; Kim, Young Deuk; Hong, Sung Sik; Park, Kwangseo; Ko, Kwan Soo

    2014-01-01

    In this study, we isolated a bacteriophage T7-resistant mutant strain of Escherichia coli (named S3) and then proceeded to characterize it. The mutant bacterial colonies appeared to be mucoid. Microarray analysis revealed that genes related to colanic acid production were upregulated in the mutant. Increases in colanic acid production by the mutant bacteria were observed when l-fucose was measured biochemically, and protective capsule formation was observed under an electron microscope. We found a point mutation in the lon gene promoter in S3, the mutant bacterium. Overproduction of colanic acid was observed in some phage-resistant mutant bacteria after infection with other bacteriophages, T4 and lambda. Colanic acid overproduction was also observed in clinical isolates of E. coli upon phage infection. The overproduction of colanic acid resulted in the inhibition of bacteriophage adsorption to the host. Biofilm formation initially decreased shortly after infection but eventually increased after 48 h of incubation due to the emergence of the mutant bacteria. Bacteriophage PBECO4 was shown to infect the colanic acid-overproducing mutant strains of E. coli. We confirmed that the gene product of open reading frame 547 (ORF547) of PBECO4 harbored colanic acid-degrading enzymatic (CAE) activity. Treatment of the T7-resistant bacteria with both T7 and PBECO4 or its purified enzyme (CAE) led to successful T7 infection. Biofilm formation decreased with the mixed infection, too. This procedure, using a phage cocktail different from those exploiting solely receptor differences, represents a novel strategy for overcoming phage resistance in mutant bacteria. PMID:25416767

  19. Isolation and complementation analysis of 10 methanol oxidation mutant classes and identification of the methanol dehydrogenase structural gene of Methylobacterium sp. strain AM1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nunn, D.N.; Lidstrom, M.E.

    A method has been developed for the direct selection of methanol oxidation mutants of the facultative methylotroph Methylobacterium sp. strain AM1 (formerly Pseudomonas sp. strain AM1). Using this direct selection technique, we have isolated mutants of Methylobacterium sp. strain AM1 that are no longer capable of growth on methanol but retain the ability to grow on methylamine. These methanol oxidation (Mox) mutants were complemented with a genomic clone bank of this organism constructed in the broad-host-range cosmid pVK100, and subcloning and Tn5 mutagenesis experiments have assigned the Mox mutants to 10 distinct complementation groups. Using an open reading frame beta-galactosidasemore » fusion vector and antibodies specific for Methylobacterium sp. strain AM1 methanol dehydrogenase, we have identified the methanol dehydrogenase structural gene and determined the direction of transcription. The results suggest that the synthesis and utilization of an active methanol dehydrogenase in this organism requires at least 10 different gene functions.« less

  20. Hyperproduction of sebaceous cis-6-hexadecenoic acid by esterase-reduced mutant of Rhodococcus sp. strain.

    PubMed

    Araki, Hiroyuki; Hagihara, Hiroshi; Takigawa, Hirofumi; Kotani, Nobuharu; Tsujino, Yukiharu; Koike, Kenzo; Kawai, Shuji; Ozaki, Katsuya; Ito, Susumu

    2007-10-01

    cis-6-Hexadecenoic acid is a major component of human sebaceous lipids that is involved in skin self-sterilization and atopic dermatitis amelioration. It can be prepared by hydrolysis of isopropyl cis-6-hexadecenoate produced by resting cells of Rhodococcus sp. strain KSM-MT66. To devise an economical industrial-scale process for the production of this rare fatty acid, we optimized the conditions for growing rhodococcal cells. Mg(2+) and Fe(2+) ions are essential for the efficient production of isopropyl cis-6-hexadecenoate. To further increase the production of isopropyl cis-6-hexadecenoate, we created a mutant strain (T64) with reduced esterase activity by random mutagenesis using UV irradiation of MT66. Under an optimized condition, the mutant T64 produced more than 60 g l(-1) isopropyl cis-6-hexadecenoate in a 4-d cultivation, corresponding to about 52 g l(-1)cis-6-hexadecenoate.

  1. A Mutant Strain of a Surfactant-Producing Bacterium with Increased Emulsification Activity

    NASA Astrophysics Data System (ADS)

    Liu, Qingmei; Yao, Jianming; Pan, Renrui; Yu, Zengliang

    2005-06-01

    As reported in this paper, a strain of oil-degrading bacterium Sp-5-3 was determined to belong to Enterobacteriaceae, which would be useful for microbial enhanced oil recovery (MEOR). The aim of our study was to generate a mutant using low energy N+ beam implantation. With 10 keV of energy and 5.2 × 1014 N+/cm2 of dose - the optimum condition, a mutant, S-34, was obtained, which had nearly a 5-fold higher surface and a 13-fold higher of emulsification activity than the wild type. The surface activity was measured by two methods, namely, a surface tension measuring instrument and a recording of the repulsive circle of the oil film; the emulsification activity was scaled through measuring the separating time of the oil-fermentation mixture. The metabolic acid was determined as methane by means of gas chromatography.

  2. An attenuated Shigella mutant lacking the RNA-binding protein Hfq provides cross-protection against Shigella strains of broad serotype.

    PubMed

    Mitobe, Jiro; Sinha, Ritam; Mitra, Soma; Nag, Dhrubajyoti; Saito, Noriko; Shimuta, Ken; Koizumi, Nobuo; Koley, Hemanta

    2017-07-01

    Few live attenuated vaccines protect against multiple serotypes of bacterial pathogen because host serotype-specific immune responses are limited to the serotype present in the vaccine strain. Here, immunization with a mutant of Shigella flexneri 2a protected guinea pigs against subsequent infection by S. dysenteriae type 1 and S. sonnei strains. This deletion mutant lacked the RNA-binding protein Hfq leading to increased expression of the type III secretion system via loss of regulation, resulting in attenuation of cell viability through repression of stress response sigma factors. Such increased antigen production and simultaneous attenuation were expected to elicit protective immunity against Shigella strains of heterologous serotypes. Thus, the vaccine potential of this mutant was tested in two guinea pig models of shigellosis. Animals vaccinated in the left eye showed fewer symptoms upon subsequent challenge via the right eye, and even survived subsequent intestinal challenge. In addition, oral vaccination effectively induced production of immunoglobulins without severe side effects, again protecting all animals against subsequent intestinal challenge with S. dysenteriae type 1 or S. sonnei strains. Antibodies against common virulence proteins and the O-antigen of S. flexneri 2a were detected by immunofluorescence microscopy. Reaction of antibodies with various strains, including enteroinvasive Escherichia coli, suggested that common virulence proteins induced protective immunity against a range of serotypes. Therefore, vaccination is expected to cover not only the most prevalent serotypes of S. sonnei and S. flexneri 2a, but also various Shigella strains, including S. dysenteriae type 1, which produces Shiga toxin.

  3. Prediction of dynamic behavior of mutant strains from limited wild-type data.

    PubMed

    Song, Hyun-Seob; Ramkrishna, Doraiswami

    2012-03-01

    Metabolic engineering is the field of introducing genetic changes in organisms so as to modify their function towards synthesizing new products of high impact to society. However, engineered cells frequently have impaired growth rates thus seriously limiting the rate at which such products are made. The problem is attributable to inadequate understanding of how a metabolic network functions in a dynamic sense. Predictions of mutant strain behavior in the past have been based on steady state theories such as flux balance analysis (FBA), minimization of metabolic adjustment (MOMA), and regulatory on/off minimization (ROOM). Such predictions are restricted to product yields and cannot address productivity, which is of focal interest to applications. We demonstrate that our framework ( [Song and Ramkrishna, 2010] and [Song and Ramkrishna, 2011]), based on a “cybernetic” view of metabolic systems, makes predictions of the dynamic behavior of mutant strains of Escherichia coli from a limited amount of data obtained from the wild-type. Dynamic frameworks must necessarily address the issue of metabolic regulation, which the cybernetic approach does by postulating that metabolism is an optimal dynamic response of the organism to the environment in driving reactions towards ensuring survival. The predictions made in this paper are without parallel in the literature and lay the foundation for rational metabolic engineering. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. [Beta-lactamase synthesis and excretion in a non-leaky wild strain and a leaky mutant of Escherichia coli K-12].

    PubMed

    Fognini-Lefebvre, N; Portalier, R

    1983-01-17

    After transformation of Escherichia coli strains with plasmid pBR 322 and growth in rich L medium, the total amount of beta-lactamase produced, strongly decreased when the temperature was raised from 30 to 42 degrees C, but increased after addition of ampicillin or tetracycline to the medium. beta-lactamase was synthesized and exported into the periplasmic space of wild-type strain, but was not significantly released into the extracellular medium, after growth at low temperature. We have identified an E. coli mutant which excreted up to 90% of total amount of beta-lactamase activity, any temperature. This mutant has been used as an indicator strain, for the development of an in situ test allowing the detection of beta-lactamase excretion.

  5. Large scale parallel pyrosequencing technology: PRRSV strain VR-2332 nsp2 deletion mutant stability in swine

    USDA-ARS?s Scientific Manuscript database

    Genomes from fifteen porcine reproductive and respiratory syndrome virus (PRRSV) isolates were derived simultaneously using 454 pyrosequencing technology. The viral isolates sequenced were from a recent swine study, in which engineered Type 2 prototype PRRSV strain VR-2332 mutants, with 87, 184, 200...

  6. Methods of producing protoporphyrin IX and bacterial mutants therefor

    DOEpatents

    Zhou, Jizhong; Qiu, Dongru; He, Zhili; Xie, Ming

    2016-03-01

    The presently disclosed inventive concepts are directed in certain embodiments to a method of producing protoporphyrin IX by (1) cultivating a strain of Shewanella bacteria in a culture medium under conditions suitable for growth thereof, and (2) recovering the protoporphyrin IX from the culture medium. The strain of Shewanella bacteria comprises at least one mutant hemH gene which is incapable of normal expression, thereby causing an accumulation of protoporphyrin IX. In certain embodiments of the method, the strain of Shewanella bacteria is a strain of S. loihica, and more specifically may be S. loihica PV-4. In certain embodiments, the mutant hemH gene of the strain of Shewanella bacteria may be a mutant of shew_2229 and/or of shew_1140. In other embodiments, the presently disclosed inventive concepts are directed to mutant strains of Shewanella bacteria having at least one mutant hemH gene which is incapable of normal expression, thereby causing an accumulation of protoporphyrin IX during cultivation of the bacteria. In certain embodiments the strain of Shewanella bacteria is a strain of S. loihica, and more specifically may be S. loihica PV-4. In certain embodiments, the mutant hemH gene of the strain of Shewanella bacteria may be a mutant of shew_2229 and/or shew_1140.

  7. [Construction and pathogenic identification of aes-31 gene mutant of avian pathogenic Escherichia coli strain E058].

    PubMed

    Huan, Haixia; Zhang, Ke; Chen, Xiang; Gao, Song; Liu, Xiufan

    2010-12-01

    To find the primary function of aes-31 fragment through construction of defined mutation of Avian Pathogenic Escherichia coli strain E058 and animal experiments. The fragment of aes-31 was generated by PCR and cloned into pGEM-T-easy vector. A resultant suicide vector containing the aes-31 fragment named pMEG375-aes-31 was constructed and transformed to a receptor strain SM10. Then recombinant strain SM10 was hybridized with E058 strain in solid state. Mutant derivatives of strain E058 were generated by homologous recombination and were named E058 (delta aes-31). The 50% lethal dose (LD50) of E058 and E058 (delta aes-31) in commercial day-old chickens experimentally inoculated via intratrachea were 10(4.3) CFU and 10(3.5) CFU, respectively. The same way was used to inoculate with 10(8) CFU to obtain the pathogenic ability of E058 and E058 (delta aes-31) in 35-days-old SPF chickens. In the chicken challenge model,the mutant was tested to determine the individual function for virulence and persistence in 2-week-old SPF chicks. The pathogenicity test for E058 strain and E058 (delta aes-31) strain showed that the mutant had a higher mortality (75%) to 35-day-old specific pathogen-free (SPF) chicks than that of E058 (62.5%). In the chicken challenge model,there was no obviously CFUs difference in blood and lung in chicks of E058 group and E058 (delta aes-31) group 6 hours after inoculation. After 24 hours there was obvious CFUs difference in heart, liver, spleen, lung and blood in chicks of E058 group and E058 (delta aes-31) group. After 48 hours, there was also obvious CFUs difference in heart, liver and spleen in chicks of E058 group and E058 (delta aes-31) group E058 (delta aes-31) had a trend of increasing virulence in chicks. Aes-31 might be associated with negative regulatory gene for E058 virulence and its actual function needed further study.

  8. A genome-scale Escherichia coli kinetic metabolic model k-ecoli457 satisfying flux data for multiple mutant strains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khodayari, Ali; Maranas, Costas D.

    Kinetic models of metabolism at a genome scale that faithfully recapitulate the effect of multiple genetic interventions would be transformative in our ability to reliably design novel overproducing microbial strains. Here, we introduce k-ecoli457, a genome-scale kinetic model of Escherichia coli metabolism that satisfies fluxomic data for wild-type and 25 mutant strains under different substrates and growth conditions. The k-ecoli457 model contains 457 model reactions, 337 metabolites and 295 substrate-level regulatory interactions. Parameterization is carried out using a genetic algorithm by simultaneously imposing all available fluxomic data (about 30 measured fluxes per mutant). Furthermore, the Pearson correlation coefficient between experimentalmore » data and predicted product yields for 320 engineered strains spanning 24 product metabolites is 0.84. This is substantially higher than that using flux balance analysis, minimization of metabolic adjustment or maximization of product yield exhibiting systematic errors with correlation coefficients of, respectively, 0.18, 0.37 and 0.47.« less

  9. A genome-scale Escherichia coli kinetic metabolic model k-ecoli457 satisfying flux data for multiple mutant strains

    DOE PAGES

    Khodayari, Ali; Maranas, Costas D.

    2016-12-20

    Kinetic models of metabolism at a genome scale that faithfully recapitulate the effect of multiple genetic interventions would be transformative in our ability to reliably design novel overproducing microbial strains. Here, we introduce k-ecoli457, a genome-scale kinetic model of Escherichia coli metabolism that satisfies fluxomic data for wild-type and 25 mutant strains under different substrates and growth conditions. The k-ecoli457 model contains 457 model reactions, 337 metabolites and 295 substrate-level regulatory interactions. Parameterization is carried out using a genetic algorithm by simultaneously imposing all available fluxomic data (about 30 measured fluxes per mutant). Furthermore, the Pearson correlation coefficient between experimentalmore » data and predicted product yields for 320 engineered strains spanning 24 product metabolites is 0.84. This is substantially higher than that using flux balance analysis, minimization of metabolic adjustment or maximization of product yield exhibiting systematic errors with correlation coefficients of, respectively, 0.18, 0.37 and 0.47.« less

  10. Immune mechanisms induced by an HSV-1 mutant strain: Discrepancy analysis of the immune system gene profile in comparison with a wild-type strain.

    PubMed

    Zhang, Xiaolong; Jiang, Quanlong; Xu, Xingli; Wang, Yongrong; Liu, Lei; Lian, Yaru; Li, Hao; Wang, Lichun; Zhang, Ying; Jiang, Guorun; Zeng, Jieyuan; Zhang, Han; Han, Jing-Dong Jackie; Li, Qihan

    2018-04-25

    Herpes simplex virus is a prevalent pathogen of humans of various age groups. The fact that no prophylactic or therapeutic vaccine is currently available suggests a significant need to further investigate the immune mechanisms induced by the virus and various vaccine candidates. We previously generated an HSV-1 mutant strain, M3, with partial deletions in ul7, ul41 and LAT that produced an attenuated phenotype in mice. In the present study, we performed a comparative analysis to characterize the immune responses induced by M3 versus wild-type HSV-1 in a mouse model. Infection with wild-type HSV-1 triggered an inflammatory-dominated response and adaptive immunity suppression and was accompanied by severe pathological damage. In contrast, infection with M3 induced a systematic immune response involving full activation of both innate and adaptive immunity and was accompanied by no obvious pathological changes. Furthermore, the immune response induced by M3 protected mice from lethal challenge with wild-type strains of HSV-1 and restrained virus proliferation and impaired latency. These data are useful for further HSV-1 vaccine development using a mutant strain construction strategy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Binding of purified and radioiodinated capsular polysaccharides from Cryptococcus neoformans serotype A strains to capsule-free mutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Small, J.M.; Mitchell, T.G.

    Strains 6, 15, 98, 110, and 145 of Cryptococcus neoformans serotype A vary in capsule size, animal virulence, and susceptibility to in vitro phagocytosis. The isolated capsular polysaccharides (CPSs) differ in monosaccharide composition ratios and molecular size, as determined by gel filtration. The purpose of this investigation was to characterize the binding of CPSs to capsule-free mutants of C. neoformans and to examine CPSs from these strains for differences in their ability to bind, to determine whether such differences might explain the variation in the pathobiology of these strains. CPSs were partially periodate oxidized, tyraminated, iodinated with /sup 125/I, andmore » used in binding studies with two capsule-free mutants of C. neoformans, strain 602 and Cap59. Binding was specific for yeast species and for polysaccharide and was saturable, which is consistent with a receptor-mediated mechanism of attachment. Binding occurred rapidly and was only slowly reversible. Binding was also independent of pH from pH 5.5 to 8, of cation concentrations, and of competition by sugars up to 1.0 M concentrations. Only a portion of CPS was capable of binding, and strains varied in the extent to which their CPS bound. CPS-15-IV (peak IV was the major polysaccharide peak on DEAE-cellulose chromatography of CPS from strain 15) had the highest proportion of binding (40%), followed by CPS from strains 98, 6, 145, 110, and 15-III (peak III was an earlier eluting fraction of CPS from strain 15). The CPSs differed similarly in their ability to competitively inhibit binding. Treatment of CPS, but not yeast cells, with proteinase XIV abolished binding without altering the CPS gross structure. Treatment of yeast cells with proteases, heat, or formaldehyde did not alter binding, and both strain 602 and Cap59 bound CPS similarly. Binding to encapsulated yeast cells was minimal.« less

  12. Binding of purified and radioiodinated capsular polysaccharides from Cryptococcus neoformans serotype A strains to capsule-free mutants.

    PubMed Central

    Small, J M; Mitchell, T G

    1986-01-01

    Strains 6, 15, 98, 110, and 145 of Cryptococcus neoformans serotype A vary in capsule size, animal virulence, and susceptibility to in vitro phagocytosis. The isolated capsular polysaccharides (CPSs) differ in monosaccharide composition ratios and molecular size, as determined by gel filtration. The purpose of this investigation was to characterize the binding of CPSs to capsule-free mutants of C. neoformans and to examine CPSs from these strains for differences in their ability to bind, to determine whether such differences might explain the variation in the pathobiology of these strains. CPSs were partially periodate oxidized, tyraminated, iodinated with 125I, and used in binding studies with two capsule-free mutants of C. neoformans, strain 602 and Cap59. Binding was specific for yeast species and for polysaccharide and was saturable, which is consistent with a receptor-mediated mechanism of attachment. Binding occurred rapidly and was only slowly reversible. Binding was also independent of pH from pH 5.5 to 8, of cation concentrations, and of competition by sugars up to 1.0 M concentrations. Only a portion of CPS was capable of binding, and strains varied in the extent to which their CPS bound. CPS-15-IV (peak IV was the major polysaccharide peak on DEAE-cellulose chromatography of CPS from strain 15) had the highest proportion of binding (40%), followed by CPS from strains 98, 6, 145, 110, and 15-III (peak III was an earlier eluting fraction of CPS from strain 15). The CPSs differed similarly in their ability to competitively inhibit binding. Treatment of CPS, but not yeast cells, with proteinase XIV abolished binding without altering the CPS gross structure. Treatment of yeast cells with proteases, heat, or formaldehyde did not alter binding, and both strain 602 and Cap59 bound CPS similarly. Binding to encapsulated yeast cells was minimal. PMID:3536747

  13. A lignocellulosic hydrolysate-tolerant Aurantiochytrium sp. mutant strain for docosahexaenoic acid production.

    PubMed

    Qi, Feng; Zhang, Mingliang; Chen, Youwei; Jiang, Xianzhang; Lin, Jinxin; Cao, Xiao; Huang, Jianzhong

    2017-03-01

    To utilize lignocellulosic hydrolysate for docosahexaenoic acid (DHA) production, a novel mutant Aurantiochytrium sp. FN21 with strong tolerance against inhibitory lignocellulosic hydrolysate was obtained through continuous domestication processes from the parent strain Aurantiochytrium sp. FJU-512. Aurantiochytrium sp. FN21 can accumulate 21.3% and 30.7% more DHA compared to its parent strain cultured in fermentation medium and a medium with 50% (v/v) sugarcane bagasse hydrolysate (SBH), respectively. After optimization with different nitrogen sources, the highest lipid (11.84g/L) and DHA (3.15g/L) production were achieved in SBH. The results demonstrated that Aurantiochytrium sp. FN21 has the commercial applications for DHA production using lignocellulosic hydrolysate. In order to elucidate the tolerance mechanism, transcriptomic profiling of the two strains was studied. The highly up-regulated genes and corresponding cellular pathways (TCA cycle, amino acid biosynthesis, fatty acid metabolism and degradation of aromatic compounds) are considered to be associated with the hydrolysate-tolerance of Aurantiochytrium sp. FN21. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Steroid catechol degradation: disecoandrostane intermediates accumulated by Pseudomonas transposon mutant strains.

    PubMed

    Leppik, R A

    1989-07-01

    Eleven transposon mutant strains affected in bile acid catabolism were each found to form yellow, muconic-like intermediates from bile acids. To characterize these unstable intermediates, media from the growth of one of these mutants with deoxycholic acid was treated with ammonia, then the crude product was methylated with diazomethane. Four compounds were subsequently isolated; spectral evidence suggested that they were methyl 12 alpha-hydroxy-3-oxo-23,24-dinorchola-1,4-dien-22-oate, methyl 4-aza-12 beta-hydroxy-9(10)-secoandrosta-1,3,5-triene-9,17-dione-3-carboxyl ate, 4-aza-9 alpha, 12 beta-dihydroxy-9(10)-secoandrosta-1,3,5-trien-17-one-3- methyl carboxylate and 4 alpha-[3'-propionic acid]-5-amino-7 beta-hydroxy-7 alpha beta-methyl- 3a alpha, 4,7,7a-tetrahydro-1-indanone-delta-lactam. It is proposed that the mutants are blocked in the utilization of such muconic-like compounds as the 3,12 beta-dihydroxy-5,9,17-trioxo-4(5),9(10)- disecoandrostal (10),2-dien-4-oic acid formed from deoxycholic acid. A further mutant was examined, which converted deoxycholic acid to 12 alpha-hydroxyandrosta-1,4-dien-3,17-dione, but accumulated yellow products from steroids which lacked a 12 alpha-hydroxy function, such as chenodeoxycholic acid. The products from the latter acid were treated as above; spectral evidence suggested that the two compounds isolated were methyl 4-aza-7-hydroxy-9(10)-secoandrosta-1,3,5- triene-9,17-dione-3-carboxylate and 4 alpha-[1'alpha-hydroxy-3'-propionic acid]-5-amino-7a beta-methyl-3a alpha,4,7,7a-tetrahydro-1-indanone-delta-lactam.

  15. Cellulase production in a new mutant strain of Penicillium decumbens ML-017 by solid state fermentation with rice bran.

    PubMed

    Liu, Yun-Tao; Luo, Ze-Yu; Long, Chuan-Nan; Wang, Hai-Dong; Long, Min-Nan; Hu, Zhong

    2011-10-01

    To produce cellulolytic enzyme efficiently, Penicillium decumbens strain L-06 was used to prepare mutants with ethyl methane sulfonate (EMS) and UV-irradiation. A mutant strain ML-017 is shown to have a higher cellulase activity than others. Box-Behnken's design (BBD) and response surface methodology (RSM) were adopted to optimize the conditions of cellulase (filter paper activity, FPA) production in strain ML-017 by solid-state fermentation (SSF) with rice bran as the substrate. And the result shows that the initial pH, moisture content and culture temperature all have significant effect on the production of cellulase. The optimized condition shall be initial pH 5.7, moisture content 72% and culture temperature 30°C. The maximum cellulase (FPA) production was obtained under the optimized condition, which is 5.76 IU g(-1), increased by 44.12% to its original strain. It corresponded well with the calculated results (5.15 IU g(-1)) by model prediction. The result shows that both BBD and RSM are the cellulase optimization methods with good prospects. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. A quantitative survey of gravity receptor function in mutant mouse strains.

    PubMed

    Jones, Sherri M; Johnson, Kenneth R; Yu, Heping; Erway, Lawrence C; Alagramam, Kumar N; Pollak, Natasha; Jones, Timothy A

    2005-12-01

    The purpose of this research was to identify vestibular deficits in mice using linear vestibular evoked potentials (VsEPs). VsEP thresholds, peak latencies, and peak amplitudes from 24 strains with known genetic mutations and 6 inbred background strains were analyzed and descriptive statistics generated for each strain. Response parameters from mutant homozygotes were compared with heterozygote and/or background controls and all strain averages were contrasted to normative ranges. Homozygotes of the following recessive mutations had absent VsEPs at the ages tested: Espn(je), Atp2b2dfw-2J, Spnb4qv-lnd2J, Spnb4qv-3J, Myo7ash1, Tmie(sr), Myo6sv, jc, Pcdh15av-J, Pcdh15av-2J, Pcdh15av-3J, Cdh23v-2J, Sans(js), hr, Kcne1pkr and Pou3f4del. These results suggest profound gravity receptor deficits for these homozygotes, which is consistent with the structural deficits that have been documented for many of these strains. Homozygotes of Catna2cdf, Grid2ho4J, Wnt1sw, qk, and Mbpshi strains and heterozygotes of Grid2lc had measurable VsEPs but one or more response parameters differed from the respective control group (heterozygote or background strain) or were outside normal ranges. For example, qk and Mbpshi homozygotes showed significantly prolonged latencies consistent with the abnormal myelin that has been described for these strains. Prolonged latencies may suggest deficits in neural conduction; elevated thresholds suggest reduced sensitivity, and reduced amplitudes may be suggestive for reduced neural synchrony. One mutation, Otx1jv, had all VsEP response parameters within normal limits--an expected finding because the abnormality in Otxljv is presumably restricted to the lateral semicircular canal. Interestingly, some heterozygote groups also showed abnormalities in one or more VsEP response parameters, suggesting that vestibular dysfunction, although less severe, may be present in some heterozygous animals.

  17. Molecular identification of an ABC transporter complex for manganese: analysis of a cyanobacterial mutant strain impaired in the photosynthetic oxygen evolution process.

    PubMed Central

    Bartsevich, V V; Pakrasi, H B

    1995-01-01

    During photosynthesis, the photosystem II (PSII) pigment-protein complex catalyzes oxygen evolution, a reaction in which a four-manganese ensemble plays a crucial role. Using a newly developed selection scheme, we have isolated BP13, a random photosynthesis-deficient mutant strain of the cyanobacterium, Synechocystis 6803. This mutant grew slowly under photoautotrophic conditions, and had a low oxygen evolution activity. Biochemical analysis revealed that the lesion in this mutant strain had specifically affected the Mn ensemble in PSII. Interestingly, incubation of BP13 cells with micromolar levels of added Mn induced rapid recovery of oxygen evolution activity. The mutant could be complemented with a fragment of wild-type chromosomal DNA containing three closely linked genes, mntA, mntB and mntC. These gene products showed significant sequence similarities with polypeptide components of bacterial permeases that are members of the 'ABC (ATP binding cassette) superfamily' of transporter proteins. We determined that in the BP13 strain, a single nucleotide change had resulted in the replacement of an alanine by an aspartic acid residue in MntA, a soluble protein containing ATP binding motifs. These results suggest that the mntCAB gene cluster encodes polypeptide components of a Mn transporter, the first such protein complex identified in any organism. PMID:7743991

  18. Attenuation of the goose parvovirus strain B. Laboratory and field trials of the attenuated mutant for vaccination against Derzsy's disease.

    PubMed

    Kisary, J; Derzsy, D; Meszaros, J

    1978-07-01

    Serial transfer of the goose parvovirus strain B, causal agent of Derzsy's gosling disease, in cultured goose-embryo fibroblast (GEF) resulted in a mutant (designated as Bav) apathogenic for both goose embryos and susceptible goslings. Goose embryos inoculated with the 38th or higher passages of strain B survived the infection, although the virus replicated in their organs. Susceptible goslings survived challenge with the Bav strain without showing symptoms, and developed normally. Only 4.2% of gosling progeny of parents vaccinated twice with strain Bav died after challenge with the virulent strain B goose parvovirus compared with 95% of gosling progeny of unvaccinated parents. Progeny of vaccinated and unvaccinated geese were placed on a farm on which Derzsy's disease was present. During the first month of life mortality was 7.7% in the progeny of vaccinated geese compared with 59.8% in the progeny of the unvaccinated geese. At 8 weeks of age the mean weight of the vaccinated goslings was 20% greater than for the unvaccinated goslings. These results indicate that the attenuated apathogenic Bav mutant is suitable for the immunisation of layers to protect their progeny by passive immunisation against Derzsy's disease.

  19. Enhancing cellulase production by overexpression of xylanase regulator protein gene, xlnR, in Talaromyces cellulolyticus cellulase hyperproducing mutant strain.

    PubMed

    Okuda, Naoyuki; Fujii, Tatsuya; Inoue, Hiroyuki; Ishikawa, Kazuhiko; Hoshino, Tamotsu

    2016-10-01

    We obtained strains with the xylanase regulator gene, xlnR, overexpressed (HXlnR) and disrupted (DXlnR) derived from Talaromyces cellulolyticus strain C-1, which is a cellulase hyperproducing mutant. Filter paper degrading enzyme activity and cellobiohydrolase I gene expression was the highest in HXlnR, followed by C-1 and DXlnR. These results indicate that the enhancement of cellulase productivity was succeeded by xlnR overexpression.

  20. An Unusual Mutation Results in the Replacement of Diaminopimelate with Lanthionine in the Peptidoglycan of a Mutant Strain of Mycobacterium smegmatis†

    PubMed Central

    Consaul, Sandra A.; Wright, Lori F.; Mahapatra, Sebabrata; Crick, Dean C.; Pavelka, Martin S.

    2005-01-01

    Mycobacterial peptidoglycan contains l-alanyl-d-iso-glutaminyl-meso-diaminopimelyl-d-alanyl-d-alanine peptides, with the exception of the peptidoglycan of Mycobacterium leprae, in which glycine replaces the l-alanyl residue. The third-position amino acid of the peptides is where peptidoglycan cross-linking occurs, either between the meso-diaminopimelate (DAP) moiety of one peptide and the penultimate d-alanine of another peptide or between two DAP residues. We previously described a collection of spontaneous mutants of DAP-auxotrophic strains of Mycobacterium smegmatis that can grow in the absence of DAP. The mutants are grouped into seven classes, depending on how well they grow without DAP and whether they are sensitive to DAP, temperature, or detergent. Furthermore, the mutants are hypersusceptible to β-lactam antibiotics when grown in the absence of DAP, suggesting that these mutants assemble an abnormal peptidoglycan. In this study, we show that one of these mutants, M. smegmatis strain PM440, utilizes lanthionine, an unusual bacterial metabolite, in place of DAP. We also demonstrate that the abilities of PM440 to grow without DAP and use lanthionine for peptidoglycan biosynthesis result from an unusual mutation in the putative ribosome binding site of the cbs gene, encoding cystathionine β-synthase, an enzyme that is a part of the cysteine biosynthetic pathway. PMID:15716431

  1. Isolation and characterization of acid-sensitive mutants of Pediococcus acidilactici.

    PubMed

    Kurdi, Peter; Smitinont, Thitapha; Valyasevi, Ruud

    2009-02-01

    Acid-sensitive mutants of Pediococcus acidilactici BCC 9545, a starter culture of the Thai fermented pork sausage nham, were isolated as spontaneous neomycin resistant mutants. The mutants generally produced less acid and acidified the culture media less than the parent strain in a 72 h culturing period. Interestingly, the ATPase activities of the mutants did not differ considerably from that of the parent strain in acidic conditions. It was also found that the internal pH values of the mutant strains were somewhat lower in neutral environment, while at pH 5.0 their internal pHs were significantly lower compared to the parent's. Inhibiting the H(+)-ATPase activities in energized cells by N,N'-dicyclohexyl carbodiimide also revealed that protons were leaking from the mutants at neutral pH, which increased under acidic conditions. In contrast, the parent strain exhibited a smaller proton leak and only under acidic conditions. The membrane fatty acid analysis of the mutants indicated that under acidic conditions the mutants had a significantly smaller major unsaturated/saturated fatty acids ratio ((C(18:1)+C(18:3n6))/(C(16:0)+C(18:0))) compared to the parent strain's membrane. Taken together, these observations suggest there is a reasonable possibility that the membrane fatty acid profile differences in the mutants resulted in their acid-sensitivity.

  2. Autolytic defective mutant of Streptococcus faecalis.

    PubMed Central

    Cornett, J B; Redman, B E; Shockman, G D

    1978-01-01

    Properties of a variant of Streptococcus faecalis ATCC 9790 with defective cellular autolysis are described. The mutant strain was selected as a survivor from a mutagenized cell population simultaneously challenged with two antibiotics which inhibit cell wall biosynthesis, penicillin G and cycloserine. Compared to the parental strain, the mutant strain exhibited: (i) a thermosensitive pattern of cellular autolysis; (ii) an autolytic enzyme activity that had only a slightly increased thermolability when tested in solution in the absence of wall substrate; and (iii) an isolated autolysin that had hydrolytic activity on isolated S. faecalis wall substrate indistinguishable from that of the parental strain, but that was inactive when tested on walls of Micrococcus lysodeikticus as a substrate. These data indicate an alteration in the substrate specificity of the autolytic enzyme of the mutant which appears to result from the synthesis of an altered form of autolytic enzyme. PMID:415045

  3. UDP-N-Acetylmuramic Acid l-Alanine Ligase (MurC) Inhibition in a tolC Mutant Escherichia coli Strain Leads to Cell Death

    PubMed Central

    Humnabadkar, Vaishali; Prabhakar, K. R.; Narayan, Ashwini; Sharma, Sreevalli; Guptha, Supreeth; Manjrekar, Praveena; Chinnapattu, Murugan; Ramachandran, Vasanthi; Hameed, Shahul P.; Ravishankar, Sudha

    2014-01-01

    The Mur ligases play an essential role in the biosynthesis of bacterial peptidoglycan and hence are attractive antibacterial targets. A screen of the AstraZeneca compound library led to the identification of compound A, a pyrazolopyrimidine, as a potent inhibitor of Escherichia coli and Pseudomonas aeruginosa MurC. However, cellular activity against E. coli or P. aeruginosa was not observed. Compound A was active against efflux pump mutants of both strains. Experiments using an E. coli tolC mutant revealed accumulation of the MurC substrate and a decrease in the level of product upon treatment with compound A, indicating inhibition of MurC enzyme in these cells. Such a modulation was not observed in the E. coli wild-type cells. Further, overexpression of MurC in the E. coli tolC mutant led to an increase in the compound A MIC by ≥16-fold, establishing a correlation between MurC inhibition and cellular activity. In addition, estimation of the intracellular compound A level showed an accumulation of the compound over time in the tolC mutant strain. A significant compound A level was not detected in the wild-type E. coli strain even upon treatment with high concentrations of the compound. Therefore, the lack of MIC and absence of MurC inhibition in wild-type E. coli were possibly due to suboptimal compound concentration as a consequence of a high efflux level and/or poor permeativity of compound A. PMID:25114134

  4. Purification and characterization of an alginate lyase from marine Bacterium Vibrio sp. mutant strain 510-64.

    PubMed

    Hu, Xiaoke; Jiang, Xiaolu; Hwang, Huey-Min

    2006-08-01

    Marine Vibrio sp. 510 was chosen as a parent strain for screening high producers of alginate lyase using the complex mutagenesis of Ethyl Methanesulphonate and UV radiation treatments. The mutant strain Vibrio sp. 510-64 was selected and its alginate lyase activity was increased by 3.87-fold (reaching 46.12 EU/mg) over that of the parent strain. An extracellular alginate lyase was purified from Vibrio sp. 510-64 cultural supernatant by successive fractionation on DEAE Sepharose FF and two steps of Superdex 75. The purified enzyme yielded a single band on SDS-PAGE with the molecular weight of 34.6 kDa. Data of the N-terminal amino acid sequence indicated that this protein might be a novel alginate lyase. The substrate specificity results demonstrated that the alginate lyase had the specificity for poly G block.

  5. Systematic strain construction and process development: Xylitol production by Saccharomyces cerevisiae expressing Candida tenuis xylose reductase in wild-type or mutant form.

    PubMed

    Pratter, S M; Eixelsberger, T; Nidetzky, B

    2015-12-01

    A novel Saccharomyces cerevisiae whole-cell biocatalyst for xylitol production based on Candida tenuis xylose reductase (CtXR) is presented. Six recombinant strains expressing wild-type CtXR or an NADH-specific mutant were constructed and evaluated regarding effects of expression mode, promoter strength, biocatalyst concentration and medium composition. Intracellular XR activities ranged from 0.09 U mgProt(-1) to 1.05 U mgProt(-1) but did not correlate with the strains' xylitol productivities, indicating that other factors limited xylose conversion in the high-activity strains. The CtXR mutant decreased the biocatalyst's performance, suggesting use of the NADPH-preferring wild-type enzyme when (semi-)aerobic conditions are applied. In a bioreactor process, the best-performing strain converted 40 g L(-1) xylose with an initial productivity of 1.16 g L(-1)h(-1) and a xylitol yield of 100%. The obtained results underline the potential of CtXR wild-type for xylose reduction and point out parameters to improve "green" xylitol production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. UDP-N-acetylmuramic acid l-alanine ligase (MurC) inhibition in a tolC mutant Escherichia coli strain leads to cell death.

    PubMed

    Humnabadkar, Vaishali; Prabhakar, K R; Narayan, Ashwini; Sharma, Sreevalli; Guptha, Supreeth; Manjrekar, Praveena; Chinnapattu, Murugan; Ramachandran, Vasanthi; Hameed, Shahul P; Ravishankar, Sudha; Chatterji, Monalisa

    2014-10-01

    The Mur ligases play an essential role in the biosynthesis of bacterial peptidoglycan and hence are attractive antibacterial targets. A screen of the AstraZeneca compound library led to the identification of compound A, a pyrazolopyrimidine, as a potent inhibitor of Escherichia coli and Pseudomonas aeruginosa MurC. However, cellular activity against E. coli or P. aeruginosa was not observed. Compound A was active against efflux pump mutants of both strains. Experiments using an E. coli tolC mutant revealed accumulation of the MurC substrate and a decrease in the level of product upon treatment with compound A ,: indicating inhibition of MurC enzyme in these cells. Such a modulation was not observed in the E. coli wild-type cells. Further, overexpression of MurC in the E. coli tolC mutant led to an increase in the compound A MIC by ≥16-fold, establishing a correlation between MurC inhibition and cellular activity. In addition, estimation of the intracellular compound A level showed an accumulation of the compound over time in the tolC mutant strain. A significant compound A level was not detected in the wild-type E. coli strain even upon treatment with high concentrations of the compound. Therefore, the lack of MIC and absence of MurC inhibition in wild-type E. coli were possibly due to suboptimal compound concentration as a consequence of a high efflux level and/or poor permeativity of compound A. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. Characterization of Novel Plant Symbiosis Mutants Using a New Multiple Gene-Expression Reporter Sinorhizobium meliloti Strain

    PubMed Central

    Lang, Claus; Smith, Lucinda S.; Haney, Cara H.; Long, Sharon R.

    2018-01-01

    The formation of nitrogen fixing root nodules by Medicago truncatula and Sinorhizobium meliloti requires communication between both organisms and coordinated differentiation of plant and bacterial cells. After an initial signal exchange, the bacteria invade the tissue of the growing nodule via plant-derived tubular structures, called infection threads. The bacteria are released from the infection threads into invasion-competent plant cells, where they differentiate into nitrogen-fixing bacteroids. Both organisms undergo dramatic transcriptional, metabolic and morphological changes during nodule development. To identify plant processes that are essential for the formation of nitrogen fixing nodules after nodule development has been initiated, large scale mutageneses have been conducted to discover underlying plant symbiosis genes. Such screens yield numerous uncharacterized plant lines with nitrogen fixation deficient nodules. In this study, we report construction of a S. meliloti strain carrying four distinct reporter constructs to reveal stages of root nodule development. The strain contains a constitutively expressed lacZ reporter construct; a PexoY-mTFP fusion that is expressed in infection threads but not in differentiated bacteroids; a PbacA-mcherry construct that is expressed in infection threads and during bacteroid differentiation; and a PnifH-uidA construct that is expressed during nitrogen fixation. We used this strain together with fluorescence microscopy to study nodule development over time in wild type nodules and to characterize eight plant mutants from a fast neutron bombardment screen. Based on the signal intensity and the localization patterns of the reporter genes, we grouped mutants with similar phenotypes and placed them in a developmental context. PMID:29467773

  8. Characterization of Novel Plant Symbiosis Mutants Using a New Multiple Gene-Expression Reporter Sinorhizobium meliloti Strain.

    PubMed

    Lang, Claus; Smith, Lucinda S; Long, Sharon R

    2018-01-01

    The formation of nitrogen fixing root nodules by Medicago truncatula and Sinorhizobium meliloti requires communication between both organisms and coordinated differentiation of plant and bacterial cells. After an initial signal exchange, the bacteria invade the tissue of the growing nodule via plant-derived tubular structures, called infection threads. The bacteria are released from the infection threads into invasion-competent plant cells, where they differentiate into nitrogen-fixing bacteroids. Both organisms undergo dramatic transcriptional, metabolic and morphological changes during nodule development. To identify plant processes that are essential for the formation of nitrogen fixing nodules after nodule development has been initiated, large scale mutageneses have been conducted to discover underlying plant symbiosis genes. Such screens yield numerous uncharacterized plant lines with nitrogen fixation deficient nodules. In this study, we report construction of a S. meliloti strain carrying four distinct reporter constructs to reveal stages of root nodule development. The strain contains a constitutively expressed lacZ reporter construct; a P exoY -mTFP fusion that is expressed in infection threads but not in differentiated bacteroids; a P bacA -mcherry construct that is expressed in infection threads and during bacteroid differentiation; and a P nifH -uidA construct that is expressed during nitrogen fixation. We used this strain together with fluorescence microscopy to study nodule development over time in wild type nodules and to characterize eight plant mutants from a fast neutron bombardment screen. Based on the signal intensity and the localization patterns of the reporter genes, we grouped mutants with similar phenotypes and placed them in a developmental context.

  9. Regulators of pseudohyphal differentiation in Saccharomyces cerevisiae identified through multicopy suppressor analysis in ammonium permease mutant strains.

    PubMed Central

    Lorenz, M C; Heitman, J

    1998-01-01

    Nitrogen-starved diploid cells of the yeast Saccharomyces cerevisiae differentiate into a filamentous, pseudohyphal growth form. Recognition of nitrogen starvation is mediated, at least in part, by the ammonium permease Mep2p and the Galpha subunit Gpa2p. Genetic activation of the pheromone-responsive MAP kinase cascade, which is also required for filamentous growth, only weakly suppresses the filamentation defect of Deltamep2/Deltamep2 and Deltagpa2/Deltagpa2 strain. Surprisingly, deletion of Mep1p, an ammonium permease not previously thought to regulate differentiation, significantly enhances the potency of MAP kinase activation, such that the STE11-4 allele induces filamentation to near wild-type levels in Deltamep1/Deltamep1 Deltamep2/Deltamep2 and Deltamep1/Deltamep1 Deltagpa2/Deltagpa2 strains. To identify additional regulatory components, we isolated high-copy suppressors of the filamentation defect of the Deltamep1/Deltamep1 Deltamep2/Deltamep2 mutant. Multicopy expression of TEC1, PHD1, PHD2 (MSS10/MSN1/FUP4), MSN5, CDC6, MSS11, MGA1, SKN7, DOT6, HMS1, HMS2, or MEP2 each restored filamentation in a Deltamep1/Deltamep1 Deltamep2/Deltamep2 strain. Overexpression of SRK1 (SSD1), URE2, DAL80, MEP1, or MEP3 suppressed only the growth defect of the Deltamep1/Deltamep1 Deltamep2/Deltamep2 mutant strain. Characterization of these genes through deletion analysis and epistasis underscores the complexity of this developmental pathway and suggests that stress conditions other than nitrogen deprivation may also promote filamentous growth. PMID:9832522

  10. Industrial Robustness: Understanding the Mechanism of Tolerance for the Populus Hydrolysate-Tolerant Mutant Strain of Clostridium thermocellum

    PubMed Central

    Linville, Jessica L.; Rodriguez, Miguel; Land, Miriam; Syed, Mustafa H.; Engle, Nancy L.; Tschaplinski, Timothy J.; Mielenz, Jonathan R.; Cox, Chris D.

    2013-01-01

    Background An industrially robust microorganism that can efficiently degrade and convert lignocellulosic biomass into ethanol and next-generation fuels is required to economically produce future sustainable liquid transportation fuels. The anaerobic, thermophilic, cellulolytic bacterium Clostridium thermocellum is a candidate microorganism for such conversions but it, like many bacteria, is sensitive to potential toxic inhibitors developed in the liquid hydrolysate produced during biomass processing. Microbial processes leading to tolerance of these inhibitory compounds found in the pretreated biomass hydrolysate are likely complex and involve multiple genes. Methodology/Principal Findings In this study, we developed a 17.5% v/v Populus hydrolysate tolerant mutant strain of C. thermocellum by directed evolution. The genome of the wild type strain, six intermediate population samples and seven single colony isolates were sequenced to elucidate the mechanism of tolerance. Analysis of the 224 putative mutations revealed 73 high confidence mutations. A longitudinal analysis of the intermediate population samples, a pan-genomic analysis of the isolates, and a hotspot analysis revealed 24 core genes common to all seven isolates and 8 hotspots. Genetic mutations were matched with the observed phenotype through comparison of RNA expression levels during fermentation by the wild type strain and mutant isolate 6 in various concentrations of Populus hydrolysate (0%, 10%, and 17.5% v/v). Conclusion/Significance The findings suggest that there are multiple mutations responsible for the Populus hydrolysate tolerant phenotype resulting in several simultaneous mechanisms of action, including increases in cellular repair, and altered energy metabolism. To date, this study provides the most comprehensive elucidation of the mechanism of tolerance to a pretreated biomass hydrolysate by C. thermocellum. These findings make important contributions to the development of industrially

  11. Characterization of oxidative phosphorylation enzymes in Euglena gracilis and its white mutant strain W(gm)ZOflL.

    PubMed

    Krnáčová, Katarína; Rýdlová, Ivana; Vinarčíková, Michaela; Krajčovič, Juraj; Vesteg, Matej; Horváth, Anton

    2015-03-12

    The enzymes involved in Euglena oxidative phosphorylation (OXPHOS) were characterized in this study. We have demonstrated that Euglena gracilis strain Z and its stable bleached non-photosynthetic mutant strain WgmZOflL both possess fully functional OXPHOS apparatus as well as pathways requiring terminal alternative oxidase(s) and alternative mitochondrial NADH-dehydrogenase(s). Light (or dark) and plastid (non)functionality seem to have little effect on oxygen consumption, the activities of the enzymes involved in OXPHOS and the action of respiration inhibitors in Euglena. This study also demonstrates biochemical properties of complex III (cytochrome c reductase) in Euglena. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  12. Enhanced cellulase producing mutants developed from heterokaryotic Aspergillus strain.

    PubMed

    Kaur, Baljit; Oberoi, H S; Chadha, B S

    2014-03-01

    A heterokaryon 28, derived through protoplast fusion between Aspergillus nidulans and Aspergillus tubingensis (Dal8), was subjected cyclic mutagenesis followed by selection on increasing levels of 2-deoxy glucose (2-DG) as selection marker. The derived deregulated cellulase hyper producing mutant '64', when compared to fusant 28, produced 9.83, 7.8, 3.2, 4.2 and 19.74 folds higher endoglucanase, β-glucosidase, cellobiohydrolase, FPase and xylanase, respectively, under shake cultures. The sequence analysis of PCR amplified β-glucosidase gene from wild and mutant showed nucleotide deletion/substitution. The mutants showed highly catalytic efficient β-glucosidase as evident from low Km and high Vmax values. The expression profiling through zymogram analysis also indicated towards over-expression of cellulases. The up/down regulated expressed proteins observed through SDS-PAGE were identified by Peptide mass fingerprinting The cellulase produced by mutants in conjunction with cellulase free xylanase derived from Thermomyces lanuginosus was used for efficient utilization of alkali treated rice straw for obtaining xylo-oligosaccharides and ethanol. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Stress Tolerance in Doughs of Saccharomyces cerevisiae Trehalase Mutants Derived from Commercial Baker’s Yeast

    PubMed Central

    Shima, Jun; Hino, Akihiro; Yamada-Iyo, Chie; Suzuki, Yasuo; Nakajima, Ryouichi; Watanabe, Hajime; Mori, Katsumi; Takano, Hiroyuki

    1999-01-01

    Accumulation of trehalose is widely believed to be a critical determinant in improving the stress tolerance of the yeast Saccharomyces cerevisiae, which is commonly used in commercial bread dough. To retain the accumulation of trehalose in yeast cells, we constructed, for the first time, diploid homozygous neutral trehalase mutants (Δnth1), acid trehalase mutants (Δath1), and double mutants (Δnth1 ath1) by using commercial baker’s yeast strains as the parent strains and the gene disruption method. During fermentation in a liquid fermentation medium, degradation of intracellular trehalose was inhibited with all of the trehalase mutants. The gassing power of frozen doughs made with these mutants was greater than the gassing power of doughs made with the parent strains. The Δnth1 and Δath1 strains also exhibited higher levels of tolerance of dry conditions than the parent strains exhibited; however, the Δnth1 ath1 strain exhibited lower tolerance of dry conditions than the parent strain exhibited. The improved freeze tolerance exhibited by all of the trehalase mutants may make these strains useful in frozen dough. PMID:10388673

  14. Characterization of Escherichia coli d-Cycloserine Transport and Resistant Mutants

    PubMed Central

    Baisa, Gary; Stabo, Nicholas J.

    2013-01-01

    d-Cycloserine (DCS) is a broad-spectrum antibiotic that inhibits d-alanine ligase and alanine racemase activity. When Escherichia coli K-12 or CFT073 is grown in minimal glucose or glycerol medium, CycA transports DCS into the cell. E. coli K-12 cycA and CFT073 cycA mutant strains display increased DCS resistance when grown in minimal medium. However, the cycA mutants exhibit no change in DCS sensitivity compared to their parental strains when grown in LB (CFT073 and K-12) or human urine (CFT073 only). These data suggest that cycA does not participate in DCS sensitivity when strains are grown in a non-minimal medium. The small RNA GvcB acts as a negative regulator of E. coli K-12 cycA expression when grown in LB. Three E. coli K-12 gcvB mutant strains failed to demonstrate a change in DCS sensitivity when grown in LB. This further suggests a limited role for cycA in DCS sensitivity. To aid in the identification of E. coli genes involved in DCS sensitivity when grown on complex media, the Keio K-12 mutant collection was screened for DCS-resistant strains. dadA, pnp, ubiE, ubiF, ubiG, ubiH, and ubiX mutant strains showed elevated DCS resistance. The phenotypes associated with these mutants were used to further define three previously characterized E. coli DCS-resistant strains (χ316, χ444, and χ453) isolated by Curtiss and colleagues (R. Curtiss, III, L. J. Charamella, C. M. Berg, and P. E. Harris, J. Bacteriol. 90:1238–1250, 1965). A dadA mutation was identified in both χ444 and χ453. In addition, results are presented that indicate for the first time that DCS can antagonize d-amino acid dehydrogenase (DadA) activity. PMID:23316042

  15. [Construction and stress tolerance of trehalase mutant in Saccharomyces cerevisiae].

    PubMed

    Lv, Ye; Xiao, Dongguang; He, Dongqin; Guo, Xuewu

    2008-10-01

    Accumulation of trehalose is critical in improving the stress tolerance of Saccharomyces cerevisiae. Two enzymes are capable of hydrolyzing trehalose: a neutral trehalase (NTH1) and an acidic trehalase (ATH1). We constructed trehalase disruption mutants to provide a basis for future commercial application. To retain the accumulation of trehalose in yeast cell, we constructed diploid homozygous neutral trehalase mutants (Deltanth1), acid trehalase mutants (Deltaath1) and double mutants (Deltaath1Deltanth1) by using gene disruption. We tested mutants'trehalose content and their tolerance to freezing, heat, high-sugar and ethanol concentrations. These trehalase disruption mutants were further confirmed by PCR amplification and southern blot. All mutant strains accumulated higher levels of cellular trehalose and grew to a higher cell density than the isogenic parent strain. In addition, the levels of trehalose in these mutants correlated with increased tolerance to freezing, heat, high-sugar and ethanol concentration. The improved tolerance of trehalase mutants may make them useful in commercial applications, including baking and brewing protein.

  16. Optimisation of nutritional requirements for dopamine synthesis by calcium alginate-entrapped mutant strain of Aspergillus oryzae EMS-6.

    PubMed

    Ali, Sikander; Nawaz, Wajeeha

    2017-02-01

    The optimisation of nutritional requirements for dopamine (DA) synthesis by calcium alginate-entrapped mutant variant of Aspergillus oryzae EMS-6 using submerged fermentation technique was investigated. A total of 13 strains were isolated from soil. Isolate I-2 was selected as a better producer of DA and improved by exposing with ethyl methylsulphonate (EMS). EMS-6 was selected as it exhibited 43 μg/mL DA activity. The mutant variable was further treated with low levels of l-cysteine HCl to make it resistant against diversion and environmental stress. The conidiospores of mutant variant were entrapped in calcium alginate beads for stable product formation. EMS-6 gave maximum DA activity (124 μg/mL) when supplemented with 0.1% peptone and 0.2% sucrose, under optimised parameters viz. pH 3, temperature of 55 °C and incubation time of 70 min. The study involves the high profile of DA activity and is needed, as DA is capable to control numerous neurogenic disorders.

  17. Lack of chemically induced mutation in repair-deficient mutants of yeast.

    PubMed

    Prakash, L

    1974-12-01

    Two genes, rad6 and rad9, that confer radiation sensitivity in the yeast Saccharomyces cerevisiae also greatly reduce the frequency of chemically-induced reversions of a tester mutant cyc1-131, which is a chain initiation mutant in the structural gene determining iso-1-cytochrome c. Mutations induced by ethyl methanesulfonate (EMS), diethyl sulfate (DES), methyl methanesulfonate (MMS), dimethyl sulfate (DMS), nitroquinoline oxide (NQO), nitrosoguanidine (NTG), nitrogen mustard (HN2), beta-propiolactone, and tritiated uridine, as well as mutations induced by ultraviolet light (UV) and ionizing radiation were greatly diminished in strains homozygous for either the rad6 or rad9 gene. Nitrous acid and nitrosoimidazolidone (NIL), on the other hand, were highly mutagenic in these repair-deficient mutants, and at low doses, these mutagens acted with about the same efficiency as in the normal RAD strain. At high doses of either nitrous acid or NIL, however, reversion frequencies were significantly reduced in the two rad mutants compared to normal strains. Although both rad mutants are immutable to about the same extent, the rad9 strains tend to be less sensitive to the lethal effect of chemical mutagens than rad6 strains. It is concluded that yeast requires a functional repair system for mutation induction by chemical agents.

  18. Genetics of Ustilago violacea. I. Carotenoid mutants and carotenogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garber, E.D.; Baird, M.L.; Chapman, D.J.

    1975-12-01

    Wild-type strains of Ustilago violacea produce pink colonies on laboratory medium and yield white, orange, pumpkin, and yellow colonies after uv mutagenesis. The wild-type strains contain neurosporene and lycopene; one orange mutant, $gamma$-carotene; and one yellow mutant, $beta$-carotene. One white mutant had no detectable carotenoids. Diploid colonies heterozygous for wild type and orange, pumpkin, yellow, or white are phenotypically wild type. Diploid colonies heterozygous for yellow and orange are also phenotypically wild type. Diploid colonies heterozygous for white and orange; white and yellow; and white, yellow, and orange are phenotypically light orange, light yellow, and orange- yellow, respectively. The whitemore » mutants give a circular complementation map; the color mutants fit a linear complementation map. We propose a multienzyme of four identical dehydrogenases and one or two identical cyclases for carotenogenesis in this species. The white and color mutants represent structural mutations altering the conformation of the dehydrogenase or cyclase, respectively. Furthermore, cyclases may or may not aggregate in association with the dehydrogenase aggregate to form the multienzyme aggregate responsible for the color mutants. (auth)« less

  19. Mycothiol-Deficient Mycobacterium smegmatis Mutants Are Hypersensitive to Alkylating Agents, Free Radicals, and Antibiotics

    PubMed Central

    Rawat, Mamta; Newton, Gerald L.; Ko, Mary; Martinez, Gladys J.; Fahey, Robert C.; Av-Gay, Yossef

    2002-01-01

    Mycothiol (MSH; 1d-myo-inosityl 2-[N-acetyl-l-cysteinyl]amido-2-deoxy-α-d-glucopyranoside) is the major low-molecular-weight thiol produced by mycobacteria. Mutants of Mycobacterium smegmatis mc2155 deficient in MSH production were produced by chemical mutagenesis as well as by transposon mutagenesis. One chemical mutant (mutant I64) and two transposon mutants (mutants Tn1 and Tn2) stably deficient in MSH production were isolated by screening for reduced levels of MSH content. The MSH contents of transposon mutants Tn1 and Tn2 were found to be less than 0.1% that of the parent strain, and the MSH content of I64 was found to be 1 to 5% that of the parent strain. All three strains accumulated 1d-myo-inosityl 2-deoxy-α-d-glucopyranoside to levels 20- to 25-fold the level found in the parent strain. The cysteine:1d-myo-inosityl 2-amino-2-deoxy-α-d-glucopyranoside ligase (MshC) activities of the three mutant strains were ≤2% that of the parent strain. Phenotypic analysis revealed that these MSH-deficient mutants possess increased susceptibilities to free radicals and alkylating agents and to a wide range of antibiotics including erythromycin, azithromycin, vancomycin, penicillin G, rifamycin, and rifampin. Conversely, the mutants possess at least 200-fold higher levels of resistance to isoniazid than the wild type. We mapped the mutation in the chemical mutant by sequencing the mshC gene and showed that a single amino acid substitution (L205P) is responsible for reduced MSH production and its associated phenotype. Our results demonstrate that there is a direct correlation between MSH depletion and enhanced sensitivity to toxins and antibiotics. PMID:12384335

  20. Isolation and characterization of xylitol-assimilating mutants of recombinant Saccharomyces cerevisiae.

    PubMed

    Tani, Tatsunori; Taguchi, Hisataka; Fujimori, Kazuhiro E; Sahara, Takehiko; Ohgiya, Satoru; Kamagata, Yoichi; Akamatsu, Takashi

    2016-10-01

    To clarify the mechanisms of xylitol utilization, three xylitol-assimilating mutants were isolated from recombinant Saccharomyces cerevisiae strains showing highly efficient xylose-utilization. The nucleotide sequences of the mutant genomes were analyzed and compared with those of the wild-type strains and the mutation sites were identified. gal80 mutations were common to all the mutants, and recessive to the wild-type allele. Hence we constructed a gal80Δ mutant and confirmed that the gal80Δ mutant showed a xylitol-assimilation phenotype. When the constructed gal80Δ mutant was crossed with the three isolated mutants, all diploid hybrids showed xylitol assimilation, indicating that the mutations were all located in the GAL80. We analyzed the role of the galactose permease Gal2, controlled by the regulatory protein Gal80, in assimilating xylitol. A gal2Δ gal80Δ double mutant did not show xylitol assimilation, whereas expression of GAL2 under the control of the TDH3 promoter in the GAL80 strain did result in assimilation. These data indicate that Gal2 was needed for xylitol assimilation in the wild-type strain. When the gal80 mutant with an initial cell concentration of A660 = 20 was used for batch fermentation in a complex medium containing 20 g/L xylose or 20 g/L xylitol at pH 5.0 and 30°C under oxygen limitation, the gal80 mutant consumed 100% of the xylose within 12 h, but <30% of the xylitol within 100 h, indicating that xylose reductase is required for xylitol consumption in oxygen-limited conditions. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. Gravitropism of inflorescence stems in starch-deficient mutants of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Weise, S. E.; Kiss, J. Z.

    1999-01-01

    Previous studies have assayed the gravitropic response of roots and hypocotyls of wild type Arabidopsis thaliana, two reduced-starch strains, and a starchless strain. Because there have been few reports on inflorescence gravitropism, in this article, we use microscopic analyses and time-course studies of these mutants and their wild type to study gravitropism in these stems. Sedimentation of plastids was observed in endodermal cells of the wild type and reduced-starch mutants but not in the starchless mutant. In all of these strains, the short inflorescence stems (1.0-2.9 cm) were less responsive to the gravistimulus compared with the long stems (3.0-6.0 cm). In both long and short inflorescence stems, the wild type initially had the greatest response; the starchless mutant had the least response; and the reduced starch mutants exhibited an intermediate response. Furthermore, growth rates among all four strains were approximately equal. At about 6 h after reorientation, inflorescences of all strains returned to a position parallel to the gravity vector. Thus, in inflorescence stems, sedimentation of plastids may act as an accelerator but is not required to elicit a gravitropic response. Furthermore, the site of perception appears to be diffuse throughout the inflorescence stem. These results are consistent with both a plastid-based statolith model and the protoplast pressure hypothesis, and it is possible that multiple systems for gravity perception occur in plant cells.

  2. Interactions of Saprophytic Yeasts with a nor Mutant of Aspergillus flavus

    PubMed Central

    Hua, Sui-Sheng T.; Baker, James L.; Flores-Espiritu, Melanie

    1999-01-01

    The nor mutant of Aspergillus flavus has a defective norsolorinic acid reductase, and thus the aflatoxin biosynthetic pathway is blocked, resulting in the accumulation of norsolorinic acid, a bright red-orange pigment. We developed a visual agar plate assay to monitor yeast strains for their ability to inhibit aflatoxin production by visually scoring the accumulation of this pigment of the nor mutant. We identified yeast strains that reduced the red-orange pigment accumulation in the nor mutant. These yeasts also reduced aflatoxin accumulation by a toxigenic strain of A. flavus. These yeasts may be useful for reducing aflatoxin contamination of food commodities. PMID:10347069

  3. Isolation of peroxisome-deficient mutants of Saccharomyces cerevisiae.

    PubMed Central

    Erdmann, R; Veenhuis, M; Mertens, D; Kunau, W H

    1989-01-01

    Two mutants of Saccharomyces cerevisiae affected in peroxisomal assembly (pas mutants) have been isolated and characterized. Each strain contains a single mutation that results in (i) the inability to grow on oleic acid, (ii) accumulation of peroxisomal matrix enzymes in the cytosol, and (iii) absence of detectable peroxisomes at the ultrastructural level. These lesions (pas1-1 and pas2) are shown to be nonallelic and recessive. Crossing of pas1-1 and pas2 strains resulted in diploid cells that had regained the ability to grow on oleic acid as sole carbon source and to form peroxisomes. These pas mutants may provide useful tools for future studies on the molecular mechanisms involved in peroxisomal assembly. Images PMID:2568633

  4. Mutant E. coli strain with increased succinic acid production

    DOEpatents

    Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    1998-01-01

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which as been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.

  5. Mutant E. coli strain with increased succinic acid production

    DOEpatents

    Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    2001-09-25

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which has been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.

  6. Mutant E. coli strain with increased succinic acid production

    DOEpatents

    Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    2002-01-01

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which has been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.

  7. Agrobacterium tumefaciens mutants affected in attachment to plant cells.

    PubMed Central

    Douglas, C J; Halperin, W; Nester, E W

    1982-01-01

    An analysis of Agrobacterium tumefaciens mutants with Tn5 insertions in chromosomal DNA showed that the chromosome of A. tumefaciens codes for a specific ability of this bacterium to attach to plant cells. This ability is associated with tumorigenesis by A. tumefaciens, the ability of avirulent A. tumefaciens to inhibit tumorigenesis, and the ability to adsorb certain phages. A second class of chromosomal mutations affects tumorigenesis without altering the ability to attach to plant cells. The attachment of A. tumefaciens to plant cells was assayed by mixing radiolabeled bacteria with suspensions of tobacco tissue culture cells or freshly isolated Zinnia leaf mesophyll cells. Under the conditions of this assay, an avirulent Ti plasmid-cured strain attached to the same extent as the same strain containing pTiB6806. Six of eight avirulent mutants with Tn5 insertions in chromosomal DNA showed defective attachment, whereas two retained wild-type attachment ability. In contrast to the strains showing wild-type attachment, the attachment-defective mutants failed to inhibit tumorigenesis when inoculated onto Jerusalem artichoke slices before inoculation of a virulent strain and also showed a loss of sensitivity to two Agrobacterium phages. The loss of phage sensitivity appeared to be due to a loss of ability to adsorb the phages. Staining with Calcofluor indicated that the mutants retained the ability to synthesize cellulose fibrils, which have been implicated in the attachment process. Southern filter hybridizations demonstrated that each mutant contained a single Tn5 insertion, and genetic linkage between the Tn5 insertion in one mutant and the attachment phenotype has also been demonstrated. Images PMID:6292165

  8. Construction of upp deletion mutant strains of Lactobacillus casei and Lactococcus lactis based on counterselective system using temperature-sensitive plasmid.

    PubMed

    Song, Li; Cui, Hongyu; Tang, Lijie; Qiao, Xinyuan; Liu, Min; Jiang, Yanping; Cui, Wen; Li, Yijing

    2014-07-01

    Integration plasmids are often used in constructing chromosomal mutations, as it enables the alternation of genes at any location by integration or replacement. Food-grade integration vectors can integrate into the host genome without introducing any selectable markers or residual bases, and the recombination often happens in non-coding region. In this study we used the temperature-sensitive pWV01 replicon to construct 2 chloramphenicol-resistant integration plasmids (pGBHC32-upp) containing the uracil phosphoribosyl transferase (upp) gene as a counterselective marker for Lactobacillus casei (L. casei) ATCC393 and Lactococcus lactis (L. lactis) MG1363. We then ligated the designed homologous arms to the pGBHC32-upp plasmids to allow their integration to the bacterial chromosome, and selected upp deletion mutants of L. casei ATCC393 and L. lactis MG1363 in the presence of 5-fluorouracil (5-FU). Analysis of genetic stability, growth curve, carbon utilization and scanning electronic microscopy showed that, except for 5-FU resistance, there were no significant differences between the wild type and mutant lactic acid bacteria. The integration system and the upp deletion strains could be used in the insertion or deletion of genes at any location of the chromosome of both L. casei ATCC 393 and L. lactis MG1363, and the homologous recombination would not introduce any selectable markers or residual bases. These mutant strains can be further investigated for heterologous protein expression and construction of a live mucosal vaccine carrier. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Production of isopropyl cis-6-hexadecenoate by regiospecific desaturation of isopropyl palmitate by a double mutant of a Rhodococcus strain.

    PubMed

    Koike, K; Takaiwa, M; Ara, K; Inoue, S; Kimura, Y; Ito, S

    2000-02-01

    Resting cells of a double mutant noted as KSM-MT66, derived from Rhodococcus sp. strain KSM-B-3 by UV irradiation, were found to cis-desaturate isopropyl hexadecanoate, yielding isopropyl cis-6-hexadecenoate. Addition of sodium glutamate (1.0%), Mg SO4 (2 mM), and thiamine (2 mM) increased the productivity of the unsaturated product in phosphate buffer. Optimal temperature and pH for the reaction were around 26 degrees C and 7, respectively. Under the optimized conditions, more than 50 g/l of isopropyl cis-6-hexadecenoate was produced after a 3-day incubation by resting cells of the mutant. Thus, cis-6-hexadecenoic acid, the main component of human sebaceous lipids, can be manufactured economically by the rhodococcal bioconversion.

  10. Development of a pyrG Mutant of Aspergillus oryzae Strain S1 as a Host for the Production of Heterologous Proteins

    PubMed Central

    Ling, Selina Oh Siew; Storms, Reginald; Zheng, Yun; Rodzi, Mohd Rohaizad Mohd; Mahadi, Nor Muhammad; Illias, Rosli Md

    2013-01-01

    The ease with which auxotrophic strains and genes that complement them can be manipulated, as well as the stability of auxotrophic selection systems, are amongst the advantages of using auxotrophic markers to produce heterologous proteins. Most auxotrophic markers in Aspergillus oryzae originate from chemical or physical mutagenesis that may yield undesirable mutations along with the mutation of interest. An auxotrophic A. oryzae strain S1 was generated by deleting the orotidine-5′-monophosphate decarboxylase gene (pyrG) by targeted gene replacement. The uridine requirement of the resulting strain GR6 pyrGΔ0 was complemented by plasmids carrying a pyrG gene from either Aspergillus nidulans or A. oryzae. β-Galactosidase expression by strain GR6 pyrGΔ0 transformed with an A. niger plasmid encoding a heterologous β-galactosidase was at least 150 times more than that obtained with the untransformed strain. Targeted gene replacement is thus an efficient way of developing auxotrophic mutants in A. oryzae and the auxotrophic strain GR6 pyrGΔ0 facilitated the production of a heterologous protein in this fungus. PMID:24381522

  11. Mutant E. coli strain with increased succinic acid production

    DOEpatents

    Donnelly, M.; Millard, C.S.; Stols, L.

    1998-06-23

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which as been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria. 2 figs.

  12. Polysaccharide production by a reduced pigmentation mutant of Aureobasidium pullulans NYS-1.

    PubMed

    West, T P; Strohfus, B

    2001-08-01

    To isolate a reduced pigmentation mutant of Aureobasidium pullulans NYS-1 and characterize its cellular pigmentation plus its polysaccharide and biomass production relative to carbon source. Cellular pigmentation, polysaccharide levels and biomass production by the isolated mutant NYSRP-1 were analysed relative to carbon source. Cellular pigmentation of the mutant was lower than its parent strain using either carbon source. The mutant elaborated higher polysaccharide levels on sucrose than on corn syrup. The pullulan content of the polysaccharide synthesized and biomass production by the mutant rose as the carbon source concentration was increased. It is feasible to isolate a reduced pigmentation mutant from strain NYS-1 that exhibits elevated polysaccharide production using corn syrup as a carbon source. The mutant provides an advantage for commercial pullulan production because of its reduced pigmentation and enhanced polysaccharide synthesis.

  13. Genetic transformation assays for identification of strains of Moraxella urethralis.

    PubMed Central

    Juni, E

    1977-01-01

    Studies of 31 strains of Moraxella urethralis have shown that 20 of them are competent for genetic transformation. This finding has led to the development of transformation assays for identification of newly isolated strains of this organism. Crude deoxyribonucleic acid (DNA) samples from all strains of M. urethralis readily transform auxotrophic mutants of competent strains to prototrophy, whereas DNA samples from unrelated bacteria such as Acinetobacter, Moraxella, and Neisseria species uniformly fail to elicit positive transformation of mutant tester strains. One of the competent strains of M. urethralis investigated is a naturally occurring mutant defective in its ability to utilize citrate as a carbon and energy source. DNA samples from 29 of the 30 remaining strains of utilization; the one nonreacting strain is citrate negative and probably possesses the same genetic lesion as the citrate-negative mutant. Three organisms originally identified as strains of M. urethralis, because of their phenotypic properties, are probably incorrectly designated, since DNA samples from these strains failed to transform any of the tester mutant strains used in the present study. The transformation assay for M. urethralis is very simple and can be performed readily in a clinical laboratory. The entire procedure can be carried out in less than 24 h. Images PMID:845247

  14. Degradation of n-haloalkanes and alpha, omega-dihaloalkanes by wild-type and mutants of Acinetobacter sp. strain GJ70.

    PubMed Central

    Janssen, D B; Jager, D; Witholt, B

    1987-01-01

    A 1,6-dichlorohexane-degrading strain of Acinetobacter sp. was isolated from activated sludge. The organism could grow with and quantitatively release halide from 1,6-dichlorohexane, 1,9-dichlorononane, 1-chloropentane, 1-chlorobutane, 1-bromopentane, ethylbromide, and 1-iodopropane. Crude extracts contained an inducible novel dehalogenase that liberated halide from the above compounds and also from 1,3-dichloropropane, 1,2-dibromoethane, and 2-bromoethanol. The latter two compounds were toxic suicide substrates for the organism at concentrations of 10 and 5 microM, respectively. Mutants resistant to 1,2-dibromoethane (3 mM) lacked dehalogenase activity and did not utilize haloalkanes for growth. Mutants resistant to both 1,2-dibromoethane (3 mM) and 2-bromoethanol (30 mM) could no longer oxidize or utilize alcohols and were capable of hydrolytic dehalogenation of 1,2-dibromoethane to ethylene glycol. PMID:3579270

  15. Superior triacylglycerol (TAG) accumulation in starchless mutants of Scenedesmus obliquus: (I) mutant generation and characterization

    PubMed Central

    2014-01-01

    Background Microalgae are a promising platform for producing neutral lipids, to be used in the application for biofuels or commodities in the feed and food industry. A very promising candidate is the oleaginous green microalga Scenedesmus obliquus, because it accumulates up to 45% w/w triacylglycerol (TAG) under nitrogen starvation. Under these conditions, starch is accumulated as well. Starch can amount up to 38% w/w under nitrogen starvation, which is a substantial part of the total carbon captured. When aiming for optimized TAG production, blocking the formation of starch could potentially increase carbon allocation towards TAG. In an attempt to increase TAG content, productivity and yield, starchless mutants of this high potential strain were generated using UV mutagenesis. Previous studies in Chlamydomonas reinhardtii have shown that blocking the starch synthesis yields higher TAG contents, although these TAG contents do not surpass those of oleaginous microalgae yet. So far no starchless mutants in oleaginous green microalgae have been isolated that result in higher TAG productivities. Results Five starchless mutants have been isolated successfully from over 3,500 mutants. The effect of the mutation on biomass and total fatty acid (TFA) and TAG productivity under nitrogen-replete and nitrogen-depleted conditions was studied. All five starchless mutants showed a decreased or completely absent starch content. In parallel, an increased TAG accumulation rate was observed for the starchless mutants and no substantial decrease in biomass productivity was perceived. The most promising mutant showed an increase in TFA productivity of 41% at 4 days after nitrogen depletion, reached a TAG content of 49.4% (% of dry weight) and had no substantial change in biomass productivity compared to the wild type. Conclusions The improved S. obliquus TAG production strains are the first starchless mutants in an oleaginous green microalga that show enhanced TAG content under

  16. Pseudomonas aeruginosa mutants resistant to urea inhibition of growth on acetanilide.

    PubMed

    Gregoriou, M; Brown, P R; Tata, R

    1977-11-01

    Pseudomonas aeruginosa AI 3 was able to grow in medium containing acetanilide (N-phenylacetamide) as a carbon source when NH4+ was the nitrogen source but not when urea was the nitrogen source. AIU mutants isolated from strain AI 3 grew on either medium. Urease levels in bacteria grown in the presence of urea were 10-fold lower when NH4+ or acetanilide was also in the medium, but there were no apparent differences in urease or its synthesis between strain AI 3 and mutant AIU 1N. The first metabolic step in the acetanilide utlization is catalyzed by an amidase. Amidases in several AIU strains showed altered physiochemical properties. Urea inhibited amidase in a time-dependent reaction, but the rates of the inhibitory reaction with amidases from the AIU mutants were slower than with AI 3 amidase. The purified amidase from AIU 1N showed a marked difference in its pH/activity profile from that obtained with purified AI 3 amidase. These observations indicate that the ability of strain AIU 1N and the other mutants to grow on acetanilide/urea medium is associated with a mutation in the amidase structural gene; this was confirmed for strain AIU 1N by transduction.

  17. Pseudomonas aeruginosa mutants resistant to urea inhibition of growth on acetanilide.

    PubMed Central

    Gregoriou, M; Brown, P R; Tata, R

    1977-01-01

    Pseudomonas aeruginosa AI 3 was able to grow in medium containing acetanilide (N-phenylacetamide) as a carbon source when NH4+ was the nitrogen source but not when urea was the nitrogen source. AIU mutants isolated from strain AI 3 grew on either medium. Urease levels in bacteria grown in the presence of urea were 10-fold lower when NH4+ or acetanilide was also in the medium, but there were no apparent differences in urease or its synthesis between strain AI 3 and mutant AIU 1N. The first metabolic step in the acetanilide utlization is catalyzed by an amidase. Amidases in several AIU strains showed altered physiochemical properties. Urea inhibited amidase in a time-dependent reaction, but the rates of the inhibitory reaction with amidases from the AIU mutants were slower than with AI 3 amidase. The purified amidase from AIU 1N showed a marked difference in its pH/activity profile from that obtained with purified AI 3 amidase. These observations indicate that the ability of strain AIU 1N and the other mutants to grow on acetanilide/urea medium is associated with a mutation in the amidase structural gene; this was confirmed for strain AIU 1N by transduction. PMID:410788

  18. Highly improved acarbose production of Actinomyces through the combination of ARTP and penicillin susceptible mutant screening.

    PubMed

    Ren, Fei; Chen, Long; Tong, Qunyi

    2017-01-01

    Atmospheric and room temperature plasma (ARTP) was first employed to generate mutants of Actinomyces JN537 for improving acarbose production. To obtain higher acarbose producing strains, the method of screening the strains for susceptibility to penicillin was used after treatment with ARTP. The rationale for the strategy was that mutants showing penicillin susceptibility were likely to be high acarbose producers, as their ability to synthesize cell walls was weak which might enhance metabolic flux to the pathway of acarbose biosynthesis. Acarbose yield of the mutant strain M37 increased by 62.5 % than that of the original strain. The contents of monosaccharides and amino acids of the cell wall of M37 were lower than that of the original strain. The acarbose production ability in mutant strain remained relatively stable after 10 generations. This work provides a promising strategy for obtaining high acarbose-yield strains by combination of ARTP mutation method and efficient screening technique.

  19. [Construction and characterization of a gspL mutant of avian pathogenic Escherichia coli].

    PubMed

    Fan, Guobo; Han, Yue; Zhang, Yuxi; Han, Xiangan; Wang, Shaohui; Bai, Hao; Meng, Qingmei; Qi, Kezong; Ding, Chan; Yu, Shengqing

    2015-01-04

    To study the role of gspL gene in avian pathogenic Escherichia coli. The gspL mutant of Avian pathogenic Escherichia coli (APEC) was constructed by homologous recombination assay. The growth characteristics, the ability of adhesion and invasion to DF1 cells, the virulence genes transcription level and median lethal dose (LD50) were analyzed between the gspL mutant strain and the wild strain. Compared with the wild strain, the mutant strain had no significant difference in the growth status. However, its ability of adhesion and invasion was significantly lower. The transcription of genes pfs, fyuA, iss and vat increased obviously, the tsh decreased and the transcription level of luxS, ibeA, stx2f and ompA had no significant change. LD50 showed that the gspL mutant strain had 12-fold increase in virulence. The deletion of gspL gene could abate the ability of adhesion and invasion, regulate and control some virulence gene transcription level, enhance the virulence of APEC. The results show that the gspL gene play roles in pathogenicity of APEC.

  20. Repair of Ultraviolet Radiation Damage in Sensitive Mutants of Micrococcus radiodurans

    PubMed Central

    Moseley, B. E. B.

    1969-01-01

    Various aspects of the repair of ultraviolet (UV) radiation-induced damage were compared in wild-type Micrococcus radiodurans and two UV-sensitive mutants. Unlike the wild type, the mutants are more sensitive to radiation at 265 nm than at 280 nm. The delay in deoxyribonucleic acid (DNA) synthesis following exposure to UV is about seven times as long in the mutants as in the wild type. All three strains excise UV-induced pyrimidine dimers from their DNA, although the rate at which cytosine-thymine dimers are excised is slower in the mutants. The three strains also mend the single-strand breaks that appear in the irradiated DNA as a result of dimer excision, although the process is less efficient in the mutants. It is suggested that the increased sensitivity of the mutants to UV radiation may be caused by a partial defect in the second step of dimer excision. PMID:5773016

  1. Physiology and pathogenicity of cpdB deleted mutant of avian pathogenic Escherichia coli.

    PubMed

    Liu, Huifang; Chen, Liping; Si, Wei; Wang, Chunlai; Zhu, Fangna; Li, Guangxing; Liu, Siguo

    2017-04-01

    Avian colibacillosis is one of the most common infectious diseases caused partially or entirely by avian pathogenic Escherichia coli (APEC) in birds. In addition to spontaneous infection, APEC can also cause secondary infections that result in greater severity of illness and greater losses to the poultry industry. In order to assess the role of 2', 3'-cyclic phosphodiesterase (cpdB) in APEC on disease physiology and pathogenicity, an avian pathogenic Escherichia coli-34 (APEC-34) cpdB mutant was obtained using the Red system. The cpdB mutant grew at a slower rate than the natural strain APEC-34. Scanning electron microscopy (SEM) indicated that the bacteria of the cpdB mutant were significantly longer than the bacteria observed in the natural strain (P<0.01), and that the width of the cpdB mutant was significantly smaller than its natural counterpart (P<0.01). In order to evaluate the role of cpdB in APEC in the colonization of internal organs (lung, liver and spleen) in poultry, seven-day-old SPF chicks were infected with 10 9 CFU/chick of the cpdB mutant or the natural strain. No colonizations of cpdB mutants were observed in the internal organs 10days following the infection, though numerous natural strains were observed at 20days following infection. Additionally, the relative expression of division protein ftsZ, outer membrane protein A ompA, ferric uptake regulator fur and tryptophanase tnaA genes in the mutant strain were all significantly lower than in the natural strain (P<0.05 or P<0.01). These results suggested that cpdB is involved in the long-term colonization of APEC in the internal organs of the test subjects. The deletion of the cpdB gene also significantly affected the APEC growth and morphology. Copyright © 2016. Published by Elsevier Ltd.

  2. Regulation of Anabaena sp. strain PCC 7120 glutamine synthetase activity in a Synechocystis sp. strain PCC 6803 derivative strain bearing the Anabaena glnA gene and a mutated host glnA gene.

    PubMed Central

    Mérida, A; Flores, E; Florencio, F J

    1992-01-01

    The glnA gene from Synechocystis sp. strain PCC 6803 was cloned by hybridization with the glnA gene from Anabaena sp. strain PCC 7120, and a deletion-insertion mutation of the Synechocystis gene was generated in vitro. A strain derived from Synechocystis sp. strain PCC 6803 which contained integrated into the chromosome, in addition to its own glnA gene, the Anabaena glnA gene was constructed. From that strain, a Synechocystis sp. glnA mutant could be obtained by transformation with the inactivated Synechocystis glnA gene; this mutant grew by using Anabaena glutamine synthetase and was not a glutamine auxotroph. A Synechocystis sp. glnA mutant could not be obtained, however, from the wild-type Synechocystis sp. The Anabaena glutamine synthetase enzyme was subject to ammonium-promoted inactivation when expressed in the Synechocystis strain but not in the Anabaena strain itself. Images PMID:1345914

  3. Strain improvement of Aspergillus niger for enhanced lipase production.

    PubMed

    Sandana Mala, John Geraldine; Kamini, Numbi R.; Puvanakrishnan, Rengarajulu

    2001-08-01

    The enhancement of lipase production from Aspergillus niger was attempted by ultraviolet (UV) and nitrous acid mutagenesis, and the mutants were selected on media containing bile salts. Nitrous acid mutants exhibited increased efficiency for lipase production when compared with UV mutants in submerged fermentation. The hyperproducing UV and nitrous acid mutants were further subjected to a second step of mutagenesis to devise an economical and ecofriendly technique for lipase production by the effective use of hydrocarbons. One percent kerosene was found to be optimal for lipase production, and one of the mutant strains NAII exhibited 2.53 times more increased lipase activity than the parental strain did. This investigation indicates a possible role for the A. niger mutant strains in the biodegradation of oil-polluted environments for the development of ecofriendly technologies.

  4. Virulence of Burkholderia mallei Quorum-Sensing Mutants

    PubMed Central

    Majerczyk, Charlotte; Kinman, Loren; Han, Tony; Bunt, Richard

    2013-01-01

    Many Proteobacteria use acyl-homoserine lactone-mediated quorum-sensing (QS) to activate specific sets of genes as a function of cell density. QS often controls the virulence of pathogenic species, and in fact a previous study indicated that QS was important for Burkholderia mallei mouse lung infections. To gain in-depth information on the role of QS in B. mallei virulence, we constructed and characterized a mutant of B. mallei strain GB8 that was unable to make acyl-homoserine lactones. The QS mutant showed virulence equal to that of its wild-type parent in an aerosol mouse infection model, and growth in macrophages was indistinguishable from that of the parent strain. Furthermore, we assessed the role of QS in B. mallei ATCC 23344 by constructing and characterizing a mutant strain producing AiiA, a lactonase enzyme that degrades acyl-homoserine lactones. Although acyl-homoserine lactone levels in cultures of this strain are very low, it showed full virulence. Contrary to the previous report, we conclude that QS is not required for acute B. mallei infections of mice. QS may be involved in some stage of chronic infections in the natural host of horses, or the QS genes may be remnants of the QS network in B. pseudomallei from which this host-adapted pathogen evolved. PMID:23429539

  5. Drosophila melanogaster White Mutant w 1118 Undergo Retinal Degeneration.

    PubMed

    Ferreiro, María José; Pérez, Coralia; Marchesano, Mariana; Ruiz, Santiago; Caputi, Angel; Aguilera, Pedro; Barrio, Rosa; Cantera, Rafael

    2017-01-01

    Key scientific discoveries have resulted from genetic studies of Drosophila melanogaster , using a multitude of transgenic fly strains, the majority of which are constructed in a genetic background containing mutations in the white gene. Here we report that white mutant flies from w 1118 strain undergo retinal degeneration. We observed also that w 1118 mutants have progressive loss of climbing ability, shortened life span, as well as impaired resistance to various forms of stress. Retinal degeneration was abolished by transgenic expression of mini-white + in the white null background w 1118 . We conclude that beyond the classical eye-color phenotype, mutations in Drosophila white gene could impair several biological functions affecting parameters like mobility, life span and stress tolerance. Consequently, we suggest caution and attentiveness during the interpretation of old experiments employing white mutant flies and when planning new ones, especially within the research field of neurodegeneration and neuroprotection. We also encourage that the use of w 1118 strain as a wild-type control should be avoided.

  6. Mutant prevention concentrations of four carbapenems against gram-negative rods.

    PubMed

    Credito, Kim; Kosowska-Shick, Klaudia; Appelbaum, Peter C

    2010-06-01

    We tested the propensities of four carbapenems to select for resistant Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii mutants by determining the mutant prevention concentrations (MPCs) for 100 clinical strains with various ss-lactam phenotypes. Among the members of the Enterobacteriaceae family and A. baumannii strains, the MPC/MIC ratios were mostly 2 to 4. In contrast, for P. aeruginosa the MPC/MIC ratios were 4 to > or =16. The MPC/MIC ratios for beta-lactamase-positive K. pneumoniae and E. coli isolates were much higher (range, 4 to >16 microg/ml) than those for ss-lactamase-negative strains.

  7. Kinetic modeling of batch fermentation for Populus hydrolysate tolerant mutant and wild type strains of Clostridium thermocellum.

    PubMed

    Linville, Jessica L; Rodriguez, Miguel; Mielenz, Jonathan R; Cox, Chris D

    2013-11-01

    The extent of inhibition of two strains of Clostridium thermocellum by a Populus hydrolysate was investigated. A Monod-based model of wild type (WT) and Populus hydrolysate tolerant mutant (PM) strains of the cellulolytic bacterium C. thermocellum was developed to quantify growth kinetics in standard media and the extent of inhibition to a Populus hydrolysate. The PM was characterized by a higher growth rate (μmax=1.223 vs. 0.571 h(-1)) and less inhibition (KI,gen=0.991 vs. 0.757) in 10% v/v Populus hydrolysate compared to the WT. In 17.5% v/v Populus hydrolysate inhibition of PM increased slightly (KI,gen=0.888), whereas the WT was strongly inhibited and did not grow in a reproducible manner. Of the individual inhibitors tested, 4-hydroxybenzoic acid was the most inhibitory, followed by galacturonic acid. The PM did not have a greater ability to detoxify the hydrolysate than the WT. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Isolation and characterization of OmpC porin mutants with altered pore properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misra, R.; Benson, S.A.

    1988-02-01

    The LamB protien is normally required for the uptake of maltodextrins. Starting with a LamB/sup -/ OmpF/sup -/ strain, we have isolated mutants that will grow on maltodextrins. The mutation conferring the Dex/sup +/ phenotype in the majority of these mutants has been mapped to the ompC locus. These mutants, unlike LamB/sup -/ OmpF/sup -/ strains, grew on maltotriose and maltotetraose, but not on maltopentaose, and showed a significantly higher rate of (/sup 14/C) maltose uptake than the parent strain did. In addition, these mutants showed increased sensitivity to certain ..beta..-lactam antibiotics and sodium dodecyl sulfate, but did not exhibitmore » an increase in sensitivity to other antibiotics and detergents. The nucleotide sequence of these mutants has been determined. In all cases, residue 74 (arginine) of the mature OmpC protein was affected. The results suggest that this region of the OmpC protein is involved in the pore domain and that the alterations lead to an increased pore size.« less

  9. Enhancing the Production of D-Mannitol by an Artificial Mutant of Penicillium sp. T2-M10.

    PubMed

    Duan, Rongting; Li, Hongtao; Li, Hongyu; Tang, Linhuan; Zhou, Hao; Yang, Xueqiong; Yang, Yabin; Ding, Zhongtao

    2018-05-26

    D-Mannitol belongs to a linear polyol with six-carbon and has indispensable usage in medicine and industry. In order to obtain more efficient D-mannitol producer, this study has screened out a stable mutant Penicillium sp. T2-M10 that was isolated from the initial D-mannitol-produced strain Penicillium sp.T2-8 via UV irradiation as well as nitrosoguanidine (NTG) induction. The mutant had a considerable enhancement in yield of D-mannitol based on optimizing fermentation. The production condition was optimized as the PDB medium with 24 g/L glucose for 9 days. The results showed that the production of D-mannitol from the mutant strain T2-M10 increased 125% in contrast with the parental strain. Meanwhile, the fact that D-mannitol is the main product in the mutant simplified the process of purification. Our finding revealed the potential value of the mutant strain Penicillium sp. T2-M10 to be a D-mannitol-producing strain.

  10. The Shift of the Intestinal Microbiome in the Innate Immunity-Deficient Mutant rde-1 Strain of C. elegans upon Orsay Virus Infection.

    PubMed

    Guo, Yuanyuan; Xun, Zhe; Coffman, Stephanie R; Chen, Feng

    2017-01-01

    The status of intestinal microbiota is a determinant of host health. However, the alteration of the gut microbiota caused by the innate immune response to virus infection is unclear. Caenorhabditis elegans and its natural virus Orsay provide an excellent model of host-virus interactions. We evaluated the intestinal microbial community complexity of the wild-type N2 and the innate immunity-deficient mutant rde-1 ( ne219 ) strains of C. elegans upon Orsay virus infection. The gut microbiota diversity was decreased in rde-1 ( ne219 ) mutant animals, and a large number of genes were associated with the difference between infected and uninfected rde-1 ( ne219 ) mutant animals. Therefore, this study provides the first evaluation of the alterations caused by Orsay virus on intestinal microbiota in wildtype and innate immunity-deficient animals using C. elegans as the model species. Our findings indicate that virus infection may alters the microbiome in animals with defective immune response.

  11. The Shift of the Intestinal Microbiome in the Innate Immunity-Deficient Mutant rde-1 Strain of C. elegans upon Orsay Virus Infection

    PubMed Central

    Guo, Yuanyuan; Xun, Zhe; Coffman, Stephanie R.; Chen, Feng

    2017-01-01

    The status of intestinal microbiota is a determinant of host health. However, the alteration of the gut microbiota caused by the innate immune response to virus infection is unclear. Caenorhabditis elegans and its natural virus Orsay provide an excellent model of host–virus interactions. We evaluated the intestinal microbial community complexity of the wild-type N2 and the innate immunity-deficient mutant rde-1 (ne219) strains of C. elegans upon Orsay virus infection. The gut microbiota diversity was decreased in rde-1 (ne219) mutant animals, and a large number of genes were associated with the difference between infected and uninfected rde-1 (ne219) mutant animals. Therefore, this study provides the first evaluation of the alterations caused by Orsay virus on intestinal microbiota in wildtype and innate immunity-deficient animals using C. elegans as the model species. Our findings indicate that virus infection may alters the microbiome in animals with defective immune response. PMID:28611740

  12. Functional analysis of an feoB mutant in Clostridium perfringens strain 13.

    PubMed

    Awad, Milena M; Cheung, Jackie K; Tan, Joanne E; McEwan, Alastair G; Lyras, Dena; Rood, Julian I

    2016-10-01

    Bacterial pathogens have adopted numerous mechanisms for acquiring iron from host proteins during an infection, including the direct acquisition of ferric iron from heme-associated proteins or from iron-scavenging siderophores. Ferric iron then is transported into the cytosol, where it can be utilized by the bacterial pathogen. Under anaerobic conditions bacteria can also transport ferrous iron using the transmembrane complex FeoAB, but little is known about iron transport systems in anaerobic bacteria such as the pathogenic clostridia. In this study we sought to characterize the iron acquisition process in Clostridium perfringens. Bioinformatic analysis of the Clostridium perfringens strain 13 genome sequence revealed that it has seven potential iron acquisition systems: three siderophore-mediated systems, one ferric citrate uptake system, two heme-associated acquisition systems and one ferrous iron uptake system (FeoAB). The relative level of expression of these systems was determined using quantitative real-time RT-PCR assays that were specific for one gene from each system. Each of these genes was expressed, with the feoAB genes generating the most abundant iron-uptake related transcripts. To further examine the role of this system in the growth of C. perfringens, insertional inactivation was used to isolate a chromosomal feoB mutant. Growth of this mutant in the presence and absence of iron revealed that it had altered growth properties and a markedly reduced total iron and manganese content compared to the wild type; effects that were reversed upon complementation with the wild-type feoB gene. These studies suggest that under anaerobic conditions FeoB is the major protein required for the uptake of iron into the cell and that it may play an important role in the pathogenesis of C. perfringens infections. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. An attenuated quadruple gene mutant of Mycobacterium tuberculosis imparts protection against tuberculosis in guinea pigs

    PubMed Central

    Chauhan, Priyanka

    2018-01-01

    ABSTRACT Previously we had developed a triple gene mutant of Mycobacterium tuberculosis (MtbΔmms) harboring disruption in three genes, namely mptpA, mptpB and sapM. Though vaccination with MtbΔmms strain induced protection in the lungs of guinea pigs, the mutant strain failed to control the hematogenous spread of the challenge strain to the spleen. Additionally, inoculation with MtbΔmms resulted in some pathological damage to the spleens in the early phase of infection. In order to generate a strain that overcomes the pathology caused by MtbΔmms in spleen of guinea pigs and controls dissemination of the challenge strain, MtbΔmms was genetically modified by disrupting bioA gene to generate MtbΔmmsb strain. Further, in vivo attenuation of MtbΔmmsb was evaluated and its protective efficacy was assessed against virulent M. tuberculosis challenge in guinea pigs. MtbΔmmsb mutant strain was highly attenuated for growth and virulence in guinea pigs. Vaccination with MtbΔmmsb mutant generated significant protection in comparison to sham-immunized animals at 4 and 12 weeks post-infection in lungs and spleen of infected animals. However, the protection imparted by MtbΔmmsb was significantly less in comparison to BCG immunized animals. This study indicates the importance of attenuated multiple gene deletion mutants of M. tuberculosis for generating protection against tuberculosis. PMID:29242198

  14. Effect of acetic acid on ethanol production by Zymomonas mobilis mutant strains through continuous adaptation.

    PubMed

    Liu, Yu-Fan; Hsieh, Chia-Wen; Chang, Yao-Sheng; Wung, Being-Sun

    2017-08-01

    Acetic acid is a predominant by-product of lignocellulosic biofuel process, which inhibits microbial biocatalysts. Development of bacterial strains that are tolerant to acetic acid is challenging due to poor understanding of the underlying molecular mechanisms. In this study, we generated and characterized two acetic acid-tolerant strains of Zymomonas mobilis using N-methyl-N'-nitro-N-nitrosoguanidine (NTG)-acetate adaptive breeding. Two mutants, ZMA-142 and ZMA-167, were obtained, showing a significant growth rate at a concentration of 244 mM sodium acetate, while the growth of Z. mobilis ATCC 31823 were completely inhibited in presence of 195 mM sodium acetate. Our data showed that acetate-tolerance of ZMA-167 was attributed to a co-transcription of nhaA from ZMO0117, whereas the co-transcription was absent in ATCC 31823 and ZMA-142. Moreover, ZMA-142 and ZMA-167 exhibited a converstion rate (practical ethanol yield to theorical ethanol yield) of 90.16% and 86% at 195 mM acetate-pH 5 stress condition, respectively. We showed that acid adaptation of ZMA-142 and ZMA-167 to 146 mM acetate increased ZMA-142 and ZMA-167 resulted in an increase in ethanol yield by 32.21% and 21.16% under 195 mM acetate-pH 5 stress condition, respectively. The results indicate the acetate-adaptive seed culture of acetate-tolerant strains, ZMA-142 and ZMA-167, could enhance the ethanol production during fermentation.

  15. Mutants with Enhanced Nitrogenase Activity in Hydroponic Azospirillum brasilense-Wheat Associations

    PubMed Central

    Pereg Gerk, Lily; Gilchrist, Kate; Kennedy, Ivan R.

    2000-01-01

    The effect of a mutation affecting flocculation, differentiation into cyst-like forms, and root colonization on nitrogenase expression by Azospirillum brasilense is described. The gene flcA of strain Sp7 restored these phenotypes in spontaneous mutants of both strains Sp7 and Sp245. Employing both constitutive pLA-lacZ and nifH-lacZ reporter fusions expressed in situ, the colony morphology, colonization pattern, and potential for nitrogenase activity of spontaneous mutants and flcA Tn5-induced mutants were established. The results of this study show that the ability of Sp7 and Sp245 mutant strains to remain in a vegetative form improved their ability to express nitrogenase activity in association with wheat in a hydroponic system. Restoring the cyst formation and colonization pattern to the spontaneous mutant Sp7-S reduced nitrogenase activity rates in association with plants to that of the wild-type Sp7. Although Tn5-induced flcA mutants showed higher potentials for nitrogenase expression than Sp7, their potentials were lower than that of Sp7-S, indicating that other factors in this strain contribute to its exceptional nitrogenase activity rates on plants. The lack of lateral flagella is not one of these factors, as Sp7-PM23, a spontaneous mutant impaired in swarming and lateral-flagellum production but not in flocculation, showed wild-type nitrogenase activity and expression. The results also suggest factors of importance in evolving an effective symbiosis between Azospirillum and wheat, such as increasing the availability of microaerobic niches along the root, increased supply of carbon sources by the plant, and the retention of the bacterial cells in vegetative form for faster metabolism. PMID:10788397

  16. Low Dose Vaccination with Attenuated Francisella tularensis Strain SchuS4 Mutants Protects against Tularemia Independent of the Route of Vaccination

    PubMed Central

    Rockx-Brouwer, Dedeke; Chong, Audrey; Wehrly, Tara D.; Child, Robert; Crane, Deborah D.

    2012-01-01

    Tularemia, caused by the Gram-negative bacterium Francisella tularensis, is a severe, sometimes fatal disease. Interest in tularemia has increased over the last decade due to its history as a biological weapon. In particular, development of novel vaccines directed at protecting against pneumonic tularemia has been an important goal. Previous work has demonstrated that, when delivered at very high inoculums, administration of live, highly attenuated strains of virulent F. tularensis can protect against tularemia. However, lower vaccinating inoculums did not offer similar immunity. One concern of using live vaccines is that the host may develop mild tularemia in response to infection and use of high inoculums may contribute to this issue. Thus, generation of a live vaccine that can efficiently protect against tularemia when delivered in low numbers, e.g. <100 organisms, may address this concern. Herein we describe the ability of three defined, attenuated mutants of F. tularensis SchuS4, deleted for FTT0369c, FTT1676, or FTT0369c and FTT1676, respectively, to engender protective immunity against tularemia when delivered at concentrations of approximately 50 or fewer bacteria. Attenuated strains for use as vaccines were selected by their inability to efficiently replicate in macrophages in vitro and impaired replication and dissemination in vivo. Although all strains were defective for replication in vitro within macrophages, protective efficacy of each attenuated mutant was correlated with their ability to modestly replicate and disseminate in the host. Finally, we demonstrate the parenteral vaccination with these strains offered superior protection against pneumonic tularemia than intranasal vaccination. Together our data provides proof of principle that low dose attenuated vaccines may be a viable goal in development of novel vaccines directed against tularemia. PMID:22662210

  17. Mutants of Arabidopsis thaliana with altered phototropism

    NASA Technical Reports Server (NTRS)

    Khurana, J. P.; Poff, K. L.

    1989-01-01

    Thirty five strains of Arabidopsis thaliana (L.) Heynh. have been identified with altered phototropic responses to 450-nm light. Four of these mutants have been more thoroughly characterized. Strain JK224 shows normal gravitropism and "second positive" phototropism. However, while the amplitude for "first positive" phototropism is the same as that in the wild-type, the threshold and fluence for the maximum response in "first positive" phototropism are shifted to higher fluence by a factor of 20-30. This mutant may represent an alteration in the photoreceptor pigment for phototropism. Strain JK218 exhibits no curvature to light at any fluence from 1 micromole m-2 to 2700 micromoles m-2, but shows normal gravitropism. Strain JK345 shows no "first positive" phototropism, and reduced gravitropism and "second positive" phototropism. Strain JK229 shows no measurable "first positive" phototropism, but normal gravitropism and "second positive" phototropism. Based on these data, it is suggested that: 1. gravitropism and phototropism contain at least one common element; 2. "first positive" and "second positive" phototropism contain at least one common element; and 3. "first positive" phototropism can be substantially altered without any apparent alteration of "second positive" phototropism.

  18. Whole-Genome Sequencing of Sordaria macrospora Mutants Identifies Developmental Genes.

    PubMed

    Nowrousian, Minou; Teichert, Ines; Masloff, Sandra; Kück, Ulrich

    2012-02-01

    The study of mutants to elucidate gene functions has a long and successful history; however, to discover causative mutations in mutants that were generated by random mutagenesis often takes years of laboratory work and requires previously generated genetic and/or physical markers, or resources like DNA libraries for complementation. Here, we present an alternative method to identify defective genes in developmental mutants of the filamentous fungus Sordaria macrospora through Illumina/Solexa whole-genome sequencing. We sequenced pooled DNA from progeny of crosses of three mutants and the wild type and were able to pinpoint the causative mutations in the mutant strains through bioinformatics analysis. One mutant is a spore color mutant, and the mutated gene encodes a melanin biosynthesis enzyme. The causative mutation is a G to A change in the first base of an intron, leading to a splice defect. The second mutant carries an allelic mutation in the pro41 gene encoding a protein essential for sexual development. In the mutant, we detected a complex pattern of deletion/rearrangements at the pro41 locus. In the third mutant, a point mutation in the stop codon of a transcription factor-encoding gene leads to the production of immature fruiting bodies. For all mutants, transformation with a wild type-copy of the affected gene restored the wild-type phenotype. Our data demonstrate that whole-genome sequencing of mutant strains is a rapid method to identify developmental genes in an organism that can be genetically crossed and where a reference genome sequence is available, even without prior mapping information.

  19. Whole-Genome Sequencing of Sordaria macrospora Mutants Identifies Developmental Genes

    PubMed Central

    Nowrousian, Minou; Teichert, Ines; Masloff, Sandra; Kück, Ulrich

    2012-01-01

    The study of mutants to elucidate gene functions has a long and successful history; however, to discover causative mutations in mutants that were generated by random mutagenesis often takes years of laboratory work and requires previously generated genetic and/or physical markers, or resources like DNA libraries for complementation. Here, we present an alternative method to identify defective genes in developmental mutants of the filamentous fungus Sordaria macrospora through Illumina/Solexa whole-genome sequencing. We sequenced pooled DNA from progeny of crosses of three mutants and the wild type and were able to pinpoint the causative mutations in the mutant strains through bioinformatics analysis. One mutant is a spore color mutant, and the mutated gene encodes a melanin biosynthesis enzyme. The causative mutation is a G to A change in the first base of an intron, leading to a splice defect. The second mutant carries an allelic mutation in the pro41 gene encoding a protein essential for sexual development. In the mutant, we detected a complex pattern of deletion/rearrangements at the pro41 locus. In the third mutant, a point mutation in the stop codon of a transcription factor-encoding gene leads to the production of immature fruiting bodies. For all mutants, transformation with a wild type-copy of the affected gene restored the wild-type phenotype. Our data demonstrate that whole-genome sequencing of mutant strains is a rapid method to identify developmental genes in an organism that can be genetically crossed and where a reference genome sequence is available, even without prior mapping information. PMID:22384404

  20. A General Method for Selection of α-Acetolactate Decarboxylase-Deficient Lactococcus lactis Mutants To Improve Diacetyl Formation

    PubMed Central

    Curic, Mirjana; Stuer-Lauridsen, Birgitte; Renault, Pierre; Nilsson, Dan

    1999-01-01

    The enzyme acetolactate decarboxylase (Ald) plays a key role in the regulation of the α-acetolactate pool in both pyruvate catabolism and the biosynthesis of the branched-chain amino acids, isoleucine, leucine, and valine (ILV). This dual role of Ald, due to allosteric activation by leucine, was used as a strategy for the isolation of Ald-deficient mutants of Lactococcus lactis subsp. lactis biovar diacetylactis. Such mutants can be selected as leucine-resistant mutants in ILV- or IV-prototrophic strains. Most dairy lactococcus strains are auxotrophic for the three amino acids. Therefore, the plasmid pMC004 containing the ilv genes (encoding the enzymes involved in the biosynthesis of IV) of L. lactis NCDO2118 was constructed. Introduction of pMC004 into ILV-auxotrophic dairy strains resulted in an isoleucine-prototrophic phenotype. By plating the strains on a chemically defined medium supplemented with leucine but not valine and isoleucine, spontaneous leucine-resistant mutants were obtained. These mutants were screened by Western blotting with Ald-specific antibodies for the presence of Ald. Selected mutants lacking Ald were subsequently cured of pMC004. Except for a defect in the expression of Ald, the resulting strain, MC010, was identical to the wild-type strain, as shown by Southern blotting and DNA fingerprinting. The mutation resulting in the lack of Ald in MC010 occurred spontaneously, and the strain does not contain foreign DNA; thus, it can be regarded as food grade. Nevertheless, its application in dairy products depends on the regulation of genetically modified organisms. These results establish a strategy to select spontaneous Ald-deficient mutants from transformable L. lactis strains. PMID:10049884

  1. Isolation and analysis of lipase-overproducing mutants of Serratia marcescens.

    PubMed

    Kawai, E; Akatsuka, H; Sakurai, N; Idei, A; Matsumae, H; Shibatani, T; Komatsubara, S; Omori, K

    2001-01-01

    We have isolated a lipase-overproducing mutant, GE14, from Serratia marcescens 8000 after three rounds of N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis. The mutant GE14 produced 95 kU/ml of extracellular lipase in the lipase medium, which was about threefold higher than that of produced by the original strain 8000. Enzymatic characteristics including specific activity of purified lipases from culture supernatants of GE14 and 8000 were almost same. The lipase gene (lipA) of GE14 contained two base substitutions; one in the promoter region and another in the N-terminal region of the lipA gene without an amino acid substitution. Promoter analysis using lipA-lacZ fusion plasmids revealed that these substitutions were responsible for the increase in the lipA expression level, independently. In contrast, no base substitution was found in the genes encoding the lipase secretion device, the Lip system. In addition, the genes coding for metalloprotease and the cell surface layer protein which are both secreted through the Lip system and associated with extracellular lipase production, also contained no base substitution. The strain GE14 carrying a high-copy-number lipA plasmid produced a larger amount of the extracellular lipase than the recombinant strains of 8000 and other mutants also did, indicating that GE14 was not only a lipase-overproducing strain, but also an advantageous host strain for overproducing the lipase by a recombinant DNA technique. These results suggest that the lipase-overproducing mutant GE14 and its recombinant strains are promising candidates for the industrial production of the S. marcescens lipase.

  2. UV-induced Lactobacillus gasseri mutants resisting sodium chloride and sodium nitrite for meat fermentation.

    PubMed

    Arihara, K; Itoh, M

    2000-06-01

    Lactobacillus gasseri, one of the predominant lactobacilli in human intestinal tracts, is utilized for probiotics and dairy starter cultures. However, since L. gasseri is relatively sensitive to sodium chloride and sodium nitrite (essential compounds for meat products), it is difficult to utilize this species for conventional fermented meat products. In this study, efforts were directed to generate mutants of L. gasseri resisting sodium chloride and sodium nitrite. UV irradiation of the strain of L. gasseri JCM1131(T) generated several mutants resisting these compounds. A mutant strain 1131-M8 demonstrated satisfactory growth in meat containing 3.3% sodium chloride and 200 ppm sodium nitrite. Although proteins extracted from the cell surface of 1131-M8 were slightly different from those of the original strain, other biochemical characteristics of both strains were indistinguishable. These results suggest that the L. gasseri mutant obtained in this study could be utilized as a starter culture to develop probiotic meat products.

  3. Structurally altered capsular polysaccharides produced by mutant bacteria

    NASA Technical Reports Server (NTRS)

    Petersen, Gene R. (Inventor); Kern, Roger G. (Inventor); Richards, Gil F. (Inventor)

    1995-01-01

    Structurally altered capsular polysaccharides are produced by mutant bacteria. These polysaccharides are isolated by selecting a wild type bacterial strain and a phage producing degradative enzymes that have substrate specificity for the capsular polysaccharides produced by the wild type bacteria. Phage-resistant mutants producing capsular polysaccharides are selected and the structurally altered capsular polysaccharide is isolated therefrom.

  4. The pathogenicity of thymidine kinase-deficient mutants of herpes simplex virus in mice.

    PubMed

    Field, H J; Wildy, P

    1978-10-01

    The pathogenicity for mice of two mutants of herpes simplex virus (type 1 and type 2), which fail to induce thymidine kinase, were compared with their respective parent strains. The mutants were much less virulent than the parents following either intracerebral or peripheral inoculation. The replication of the virus at the site of inoculation and its progression into the nervous system were studied. Following a very large inoculum in the ear, the type 1 mutant was found to establish a latent infection in the cervical dorsal root ganglia. Mice inoculated intracerebrally with small doses of the mutant viruses were solidly immune to challenge with lethal doses of the parent strain.

  5. Immunization by intrabronchial administration to 1-week-old foals of an unmarked double gene disruption strain of Rhodococcus equi strain 103+.

    PubMed

    Pei, Yanlong; Nicholson, Vivian; Woods, Katharine; Prescott, John F

    2007-11-15

    Rhodococcus equi causes fatal granulomatous pneumonia in foals and immunocompromised animals and humans. However, there is no effective vaccine against this infection. In this study, the chromosomal genes isocitrate lyase (icl) and cholesterol oxidase (choE) were chosen as targets for mutation and assessment of the double mutant as an intrabronchial vaccine in 1-week-old foals. Using a modification of a suicide plasmid previously developed in this laboratory, we developed a choE-icl unmarked deletion mutant of R. equi strain 103+. Five 1-week-old foals were infected intrabronchially with the mutant and challenged intrabronchially with the parent, virulent, strain 2 weeks later. Three of the foals were protected against pneumonia caused by the virulent strain, but the other two foals developed pneumonia caused by the mutant strain during the post-challenge period. Since infection of 3-week-old foals by an icl mutant in an earlier study had shown complete attenuation of the strain, we conclude that a proportion of foals in the 1st week or so of life are predisposed to developing R. equi pneumonia because of an inability to mount an effective immune response. This has been suspected previously but this is the first time that this has been demonstrated experimentally.

  6. Drosophila melanogaster White Mutant w1118 Undergo Retinal Degeneration

    PubMed Central

    Ferreiro, María José; Pérez, Coralia; Marchesano, Mariana; Ruiz, Santiago; Caputi, Angel; Aguilera, Pedro; Barrio, Rosa; Cantera, Rafael

    2018-01-01

    Key scientific discoveries have resulted from genetic studies of Drosophila melanogaster, using a multitude of transgenic fly strains, the majority of which are constructed in a genetic background containing mutations in the white gene. Here we report that white mutant flies from w1118 strain undergo retinal degeneration. We observed also that w1118 mutants have progressive loss of climbing ability, shortened life span, as well as impaired resistance to various forms of stress. Retinal degeneration was abolished by transgenic expression of mini-white+ in the white null background w1118. We conclude that beyond the classical eye-color phenotype, mutations in Drosophila white gene could impair several biological functions affecting parameters like mobility, life span and stress tolerance. Consequently, we suggest caution and attentiveness during the interpretation of old experiments employing white mutant flies and when planning new ones, especially within the research field of neurodegeneration and neuroprotection. We also encourage that the use of w1118 strain as a wild-type control should be avoided. PMID:29354028

  7. Comparative study of the mutant prevention concentrations of moxifloxacin, levofloxacin, and gemifloxacin against pneumococci.

    PubMed

    Credito, Kim; Kosowska-Shick, Klaudia; McGhee, Pamela; Pankuch, Glenn A; Appelbaum, Peter C

    2010-02-01

    We tested the propensity of three quinolones to select for resistant Streptococcus pneumoniae mutants by determining the mutant prevention concentration (MPC) against 100 clinical strains, some of which harbored mutations in type II topoisomerases. Compared with levofloxacin and gemifloxacin, moxifloxacin had the lowest number of strains with MPCs above the susceptibility breakpoint (P<0.001), thus representing a lower selective pressure for proliferation of resistant mutants. Only moxifloxacin gave a 50% MPC (MPC50) value (1 microg/ml) within the susceptible range.

  8. Microbial strain improvement for enhanced polygalacturonase production by Aspergillus sojae.

    PubMed

    Heerd, Doreen; Tari, Canan; Fernández-Lahore, Marcelo

    2014-09-01

    Strain improvement is a powerful tool in commercial development of microbial fermentation processes. Strains of Aspergillus sojae which were previously identified as polygalacturonase producers were subjected to the cost-effective mutagenesis and selection method, the so-called random screening. Physical (ultraviolet irradiation at 254 nm) and chemical mutagens (N-methyl-N'-nitro-N-nitrosoguanidine) were used in the development and implementation of a classical mutation and selection strategy for the improved production of pectic acid-degrading enzymes. Three mutation cycles of both mutagenic treatments and also the combination of them were performed to generate mutants descending from A. sojae ATCC 20235 and mutants of A. sojae CBS 100928. Pectinolytic enzyme production of the mutants was compared to their wild types in submerged and solid-state fermentation. Comparing both strains, higher pectinase activity was obtained by A. sojae ATCC 20235 and mutants thereof. The highest polygalacturonase activity (1,087.2 ± 151.9 U/g) in solid-state culture was obtained by mutant M3, which was 1.7 times increased in comparison to the wild strain, A. sojae ATCC 20235. Additional, further mutation of mutant M3 for two more cycles of treatment by UV irradiation generated mutant DH56 with the highest polygalacturonase activity (98.8 ± 8.7 U/mL) in submerged culture. This corresponded to 2.4-fold enhanced polygalacturonase production in comparison to the wild strain. The results of this study indicated the development of a classical mutation and selection strategy as a promising tool to improve pectinolytic enzyme production by both fungal strains.

  9. The pathogenicity of thymidine kinase-deficient mutants of herpes simplex virus in mice.

    PubMed Central

    Field, H. J.; Wildy, P.

    1978-01-01

    The pathogenicity for mice of two mutants of herpes simplex virus (type 1 and type 2), which fail to induce thymidine kinase, were compared with their respective parent strains. The mutants were much less virulent than the parents following either intracerebral or peripheral inoculation. The replication of the virus at the site of inoculation and its progression into the nervous system were studied. Following a very large inoculum in the ear, the type 1 mutant was found to establish a latent infection in the cervical dorsal root ganglia. Mice inoculated intracerebrally with small doses of the mutant viruses were solidly immune to challenge with lethal doses of the parent strain. PMID:212476

  10. Survival, growth, and localization of epiphytic fitness mutants of pseudomonas syringae on leaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beattie, G.A.; Lindow, S.E.

    Among 82 epiphytic fitness mutants of a Pseudomonas syringae pv. syringae strain that were characterized in a previous study, 4 mutants were particularly intolerant of the stresses associated with dry leaf surfaces. These four mutants each exhibited distinctive behaviors when inoculated into and into plant leaves. For example, while non showed measurable growth on dry potato leaf surfaces, they grew to different population sizes in the intercellular space of bean leaves and on dry bean leaf surfaces, and one mutant appeared incapable of growth in both environments although it grew well on moist bean leaves. The presence of the parentalmore » strain did not influence the survival of the mutants immediately following exposure of leaves to dry, high-light incubation conditions, suggesting that the reduced survival of the mutants did not result from an inability to produce extracellular factors in planta. On moist bean leaves that were colonized by either a mutant or the wild type, the proportion of the total epiphytic population that was located in sizes protected from a surface sterilant was smaller for the mutants than for the wild type, indicating that the mutants were reduced in their ability to locate, multiply in, and/or survive in such protected sites. This reduced ability was only one of possible several factors contributing to the reduced epiphytic fitness of each mutant. Their reduced fitness was not specific to the host plant bean, since they also exhibited reduced fitness on the nonhost plant potato; the functions altered in these strains are thus of interest for their contribution to the general fitness of bacterial epiphytes. 52 refs., 6 figs., 1 tab.« less

  11. Mutant Prevention Concentrations of Four Carbapenems against Gram-Negative Rods▿ †

    PubMed Central

    Credito, Kim; Kosowska-Shick, Klaudia; Appelbaum, Peter C.

    2010-01-01

    We tested the propensities of four carbapenems to select for resistant Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii mutants by determining the mutant prevention concentrations (MPCs) for 100 clinical strains with various ß-lactam phenotypes. Among the members of the Enterobacteriaceae family and A. baumannii strains, the MPC/MIC ratios were mostly 2 to 4. In contrast, for P. aeruginosa the MPC/MIC ratios were 4 to ≥16. The MPC/MIC ratios for β-lactamase-positive K. pneumoniae and E. coli isolates were much higher (range, 4 to >16 μg/ml) than those for ß-lactamase-negative strains. PMID:20308376

  12. Enhanced mucosal delivery of antigen with cell wall mutants of lactic acid bacteria.

    PubMed

    Grangette, Corinne; Müller-Alouf, Heide; Hols, Pascal; Goudercourt, Denise; Delcour, Jean; Turneer, Mireille; Mercenier, Annick

    2004-05-01

    The potential of recombinant lactic acid bacteria (LAB) to deliver heterologous antigens to the immune system and to induce protective immunity has been best demonstrated by using the C subunit of tetanus toxin (TTFC) as a model antigen. Two types of LAB carriers have mainly been used, Lactobacillus plantarum and Lactococcus lactis, which differ substantially in their abilities to resist passage through the stomach and to persist in the mouse gastrointestinal tract. Here we analyzed the effect of a deficiency in alanine racemase, an enzyme that participates in cell wall synthesis, in each of these bacterial carriers. Recombinant wild-type and mutant strains of L. plantarum NCIMB8826 and L. lactis MG1363 producing TTFC intracellularly were constructed and used in mouse immunization experiments. Remarkably, we observed that the two cell wall mutant strains were far more immunogenic than their wild-type counterparts when the intragastric route was used. However, intestinal TTFC-specific immunoglobulin A was induced only after immunization with the recombinant L. plantarum mutant strain. Moreover, the alanine racemase mutant of either LAB strain allowed induction of a much stronger serum TTFC-specific immune response after immunization via the vagina, which is a quite different ecosystem than the gastrointestinal tract. The design and use of these mutants thus resulted in a major improvement in the mucosal delivery of antigens exhibiting vaccine properties.

  13. The effects of modeled microgravity on growth kinetics, antibiotic susceptibility, cold growth, and the virulence potential of a Yersinia pestis ymoA-deficient mutant and its isogenic parental strain.

    PubMed

    Lawal, Abidat; Kirtley, Michelle L; van Lier, Christina J; Erova, Tatiana E; Kozlova, Elena V; Sha, Jian; Chopra, Ashok K; Rosenzweig, Jason A

    2013-09-01

    Previously, we reported that there was no enhancement in the virulence potential (as measured by cell culture infections) of the bacterial pathogen Yersinia pestis (YP) following modeled microgravity/clinorotation growth. We have now further characterized the effects of clinorotation (CR) on YP growth kinetics, antibiotic sensitivity, cold growth, and YP's virulence potential in a murine model of infection. Surprisingly, none of the aforementioned phenotypes were altered. To better understand why CR did not enhance YP's virulence potential as it did for other bacterial pathogens, a YP ΔymoA isogenic mutant in the KIM/D27 background strain that is unable to produce the histone-like YmoA protein and influences DNA topography was used in both cell culture and murine models of infection. YmoA represses type three secretion system (T3SS) virulence gene expression in the yersiniae. Similar to our CR-grown parental YP strain data, the CR-grown ΔymoA mutant induced reduced HeLa cell cytotoxicity with concomitantly decreased Yersinia outer protein E (YopE) and low calcium response V (LcrV) antigen production and secretion. Important, however, were our findings that, although no significant differences were observed in survival of mice infected intraperitoneally with either normal gravity (NG)- or CR-grown parental YP, the ΔymoA mutant induced significantly more mortality in infected mice than did the parental strain following CR growth. Taken together, our data demonstrate that CR did enhance the virulence potential of the YP ΔymoA mutant in a murine infection model (relative to the CR-grown parental strain), despite inducing less HeLa cell rounding in our cell culture infection assay due to reduced T3SS activity. Therefore, CR, which induces a unique type of bacterial stress, might be enhancing YP's virulence potential in vivo through a T3SS-independent mechanism when the histone-like YmoA protein is absent.

  14. Thermosensitivity of a barosensitive Saccharomyces cerevisiae mutant obtained by UV mutagenesis

    NASA Astrophysics Data System (ADS)

    Shigematsu, Toru; Nomura, Kazuki; Nasuhara, Yusuke; Ikarashi, Kenta; Nagai, Gen; Hirayama, Masao; Hayashi, Mayumi; Ueno, Shigeaki; Fujii, Tomoyuki

    2010-12-01

    Using UV mutagenesis, a high pressure (HP)-sensitive (barosensitive) mutant of Saccharomyces cerevisiae was obtained. The mutant strain a924E1 showed a significant loss of viability at HP levels of 175 to 250 MPa at 20 °C compared with the parent strain. This strain also showed a significant loss of viability following heat treatment at 50-58 °C at 0.1 MPa. These results showed that the mutation caused a significant thermosensitivity as well as barosensitivity. The activation volume and activation energy values for the inactivation of strain a924E1 were equivalent to those of the parent strain. This suggested that the mechanism for the HP and thermal inactivation reaction of strain a924E1 was basically the same as that of the parent strain. Strain a924E1 showed no deficiency in growth and fermentation ability as well as auxotrophic property. Although the identification of the genetic sites of mutation introduced is underway, these phenotypes are favorable for the application of HP treatment and heat-assisted HP treatment on fermentation control.

  15. Reduction of FR900525 using an S-(2-aminoethyl) l-cysteine-resistant mutant.

    PubMed

    Shimizu, Shiho; Futase, Ayako; Yokoyama, Tatsuya; Ueda, Satoshi; Honda, Hiroyuki

    2017-06-01

    FK506 (tacrolimus), a macrolide compound with immunosuppressant activity, has been proven to have clinical importance and has been manufactured industrially since 1993 by using mutants with high FK506-production ability; these mutants have been developed from the wild strain Streptomyces tsukubaensis No. 9993. FR900525 is one of the by-products of FK506 production. However, there was no effective industrial method to separate FR900525 from FK506 due to the structural similarity between the two compounds. Therefore, reducing the level of FR900525 was a serious problem in the industrial strain A. In this study, we aimed to reduce the FR900525 production. We first determined that pipecolic acid level was a critical parameter for controlling FR900525 production in strain A. S-(2-Aminoethyl) l-cysteine (AEC)-resistant mutants has been reported to increase lysine productivity successfully in a variety of lysine-producing microorganisms. Therefore, next, we applied a selection of AEC-resistant mutants to enhance pipecolic acid biosynthesis. Finally, four AEC-resistant mutants were obtained from strain A using ultraviolet irradiation, and three of them showed less FR900525 productivity compared to the parental strain A. Our findings indicated that AEC resistance was effective phenotype marker for increasing pipecolic acid productivity and for reducing FR900525 production in S. tsukubaensis. Thus, our study provides an efficient method for reducing FR90025 level during FK506 biosynthesis. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Isolation and characterization of ultraviolet light-sensitive mutants of the blue-green alga Anacystis nidulans.

    NASA Technical Reports Server (NTRS)

    Asato, Y.

    1972-01-01

    Three independently isolated ultraviolet light sensitive (uvs) mutants of Anacystis nidulans were characterized. Strain uvs-1 showed the highest sensitivity to UV by its greatly reduced photoreactivation capacity following irradiation. Pretreatment with caffeine suppressed the dark-survival curve of strain uvs-1, thus indicating the presence of excision enzymes involved in dark repair. Under 'black' and 'white' illumination, strain uvs-1 shows photorecovery properties comparable with wild-type cultures. Results indicate that strains uvs-1, uvs-35, and uvs-88 are probably genetically distinct UV-sensitive mutants.

  17. Targeted Mutants of Cochliobolus carbonum Lacking the Two Major Extracellular Polygalacturonases

    PubMed Central

    Scott-Craig, John S.; Cheng, Yi-Qiang; Cervone, Felice; De Lorenzo, Giulia; Pitkin, John W.; Walton, Jonathan D.

    1998-01-01

    The filamentous fungus Cochliobolus carbonum produces endo-α1,4-polygalacturonase (endoPG), exo-α1,4-polygalacturonase (exoPG), and pectin methylesterase when grown in culture on pectin. Residual activity in a pgn1 mutant (lacking endoPG) was due to exoPG activity, and the responsible protein has now been purified. After chemical deglycosylation, the molecular mass of the purified protein decreased from greater than 60 to 45 kDa. The gene that encodes exoPG, PGX1, was isolated with PCR primers based on peptide sequences from the protein. The product of PGX1, Pgx1p, has a predicted molecular mass of 48 kDa, 12 potential N-glycosylation sites, and 61% amino acid identity to an exoPG from the saprophytic fungus Aspergillus tubingensis. Strains of C. carbonum mutated in PGX1 were constructed by targeted gene disruption and by gene replacement. Growth of pgx1 mutant strains on pectin was reduced by ca. 20%, and they were still pathogenic on maize. A double pgn1/pgx1 mutant strain was constructed by crossing. The double mutant grew as well as the pgx1 single mutant on pectin and was still pathogenic despite having less than 1% of total wild-type PG activity. Double mutants retained a small amount of PG activity with the same cation-exchange retention time as Pgn1p and also pectin methylesterase and a PG activity associated with the mycelium. Continued growth of the pgn1/pgx1 mutant on pectin could be due to one or more of these residual activities. PMID:9546185

  18. Selection of lys2 Mutants of the Yeast SACCHAROMYCES CEREVISIAE by the Utilization of α-AMINOADIPATE

    PubMed Central

    Chattoo, Bharat B.; Sherman, Fred; Azubalis, Dalia A.; Fjellstedt, Thorsten A.; Mehnert, David; Ogur, Maurice

    1979-01-01

    Normal strains of Saccharomyces cerevisiae do not use α-aminoadipate as a principal nitrogen source. However, α-aminoadipate is utilized as a nitrogen source by lys2 and lys5 strains having complete or partial deficiencies of α-aminoadipate reductase and, to a limited extent, by heterozygous lys2/+ strains. Lys2 mutants were conveniently selected on media containing α-aminoadipate as a nitrogen source, lysine, and other supplements to furnish other possible auxotrophic requirements. The lys2 mutations were obtained in a variety of laboratory strains containing other markers, including other lysine mutations. In addition to the predominant class of lys2 mutants, low frequencies of lys5 mutants and mutants not having any obvious lysine requirement were recovered on α-aminoadipate medium. The mutants not requiring lysine appeared to have mutations at the lys2 locus that caused partial deficiencies of α-aminoadipate reductase. Such partial deficiencies are believed to be sufficiently permissive to allow lysine biosynthesis, but sufficiently restrictive to allow for the utilization of α-aminoadipate. Although it is unknown why partial or complete deficiencies of α-aminoadipate reductase cause utilization of α-aminoadipate as a principal nitrogen source, the use of α-aminoadipate medium has considerable utility as a selective medium for lys2 and lys5 mutants. PMID:17248969

  19. Brucella abortus Cyclic β-1,2-Glucan Mutants Have Reduced Virulence in Mice and Are Defective in Intracellular Replication in HeLa Cells

    PubMed Central

    Briones, Gabriel; Iñón de Iannino, Nora; Roset, Mara; Vigliocco, Ana; Paulo, Patricia Silva; Ugalde, Rodolfo A.

    2001-01-01

    Null cyclic β-1,2-glucan synthetase mutants (cgs mutants) were obtained from Brucella abortus virulent strain 2308 and from B. abortus attenuated vaccinal strain S19. Both mutants show greater sensitivity to surfactants like deoxycholic acid, sodium dodecyl sulfate, and Zwittergent than the parental strains, suggesting cell surface alterations. Although not to the same extent, both mutants display reduced virulence in mice and defective intracellular multiplication in HeLa cells. The B. abortus S19 cgs mutant was completely cleared from the spleens of mice after 4 weeks, while the 2308 mutant showed a 1.5-log reduction of the number of brucellae isolated from the spleens after 12 weeks. These results suggest that cyclic β-1,2-glucan plays an important role in the residual virulence of the attenuated B. abortus S19 strain. Although the cgs mutant was cleared from the spleens earlier than the wild-type parental strain (B. abortus S19) and produced less inflammatory response, its ability to confer protection against the virulent strain B. abortus 2308 was fully retained. Equivalent levels of induction of spleen gamma interferon mRNA and anti-lipopolysaccharide (LPS) of immunoglobulin G2a (IgG2a) subtype antibodies were observed in mice injected with B. abortus S19 or the cgs mutant. However, the titer of anti-LPS antibodies of the IgG1 subtype induced by the cgs mutant was lower than that observed with the parental S19 strain, thus suggesting that the cgs mutant induces a relatively exclusive Th1 response. PMID:11401996

  20. Isolation and characterization of an Escherichia coli mutant lacking cytochrome d terminal oxidase.

    PubMed Central

    Green, G N; Gennis, R B

    1983-01-01

    A screening procedure was devised which permitted the isolation of a cytochrome d-deficient mutant by its failure to oxidize the artificial electron donor N,N,N',N'-tetramethyl-p-phenylenediamine. Cytochrome a1 and probably cytochrome b558 were also missing in the mutant. Growth and oxygen uptake rates were similar for both parent and mutant strains. However, the strain lacking cytochrome d had an increased sensitivity to cyanide, indicating that cytochrome d confers some resistance to this respiratory inhibitor. The gene responsible for these phenotypes has been named cyd and maps between tolA and sucB. PMID:6304009

  1. Saccharomyces cerevisiae mutants with enhanced induced mutation and altered mitotic gene conversion.

    PubMed

    Ivanov, E L; Kovaltzova, S V; Korolev, V G

    1989-08-01

    We have developed a method to isolate yeast (Saccharomyces cerevisiae) mutants with enhanced induced mutagenesis based on nitrous acid-induced reversion of the ade2-42 allele. Six mutants have been isolated and designated him (high induced mutagenesis), and 4 of them were studied in more detail. The him mutants displayed enhanced reversion of the ade2-42 allele, either spontaneous or induced by nitrous acid, UV light, and the base analog 6-N-hydroxylaminopurine, but not by gamma-irradiation. It is worth noting that the him mutants turned out not to be sensitive to the lethal effects of the mutagens used. The enhancement in mutation induced by nitrous acid, UV light, and 6-N-hydroxylaminopurine has been confirmed in a forward-mutation assay (induction of mutations in the ADE1, ADE2 genes). The latter agent revealed the most apparent differences between the him mutants and the wild-type strain and was, therefore, chosen for the genetic analysis of mutants, him mutations analyzed behaved as a single Mendelian trait; complementation tests indicated 3 complementation groups (HIM1, HIM2, and HIM3), each containing 1 mutant allele. Uracil-DNA glycosylase activity was determined in crude cell extracts, and no significant differences between the wild-type and him strains were detected. Spontaneous mitotic gene conversion at the ADE2 locus is altered in him1 strains, either increased or decreased, depending on the particular heteroallelic combination. Genetic evidence strongly suggests him mutations to be involved in a process of mismatch correction of molecular heteroduplexes.

  2. 2-deoxyglucose as a selective agent for derepressed mutants of Pichia stipitis

    Treesearch

    Hassan K. Sreenath; Thomas W. Jeffries

    1998-01-01

    The glucose analog 2-deoxyglucose (2-DOG) has been used to obtain mutants derepressed for pentose metabolism. Some researchers have used 2-DOG alone whereas others have used it in the presence of a glucoserepressible carbon source. We examined both methods and screened mutant strains for improved use of xylose in the presence of glucose. Pichia stipitis mutants...

  3. Prevention of GABA reduction during dough fermentation using a baker's yeast dal81 mutant.

    PubMed

    Ando, Akira; Nakamura, Toshihide

    2016-10-01

    γ-Aminobutyric acid (GABA) is consumed by yeasts during fermentation. To prevent GABA reduction in bread dough, a baker's yeast mutant AY77 deficient in GABA assimilation was characterized and utilized for wheat dough fermentation. An amber mutation in the DAL81 gene, which codes for a positive regulator of multiple nitrogen degradation pathways, was found in the AY77 strain. The qPCR analyses of genes involved in nitrogen utilization showed that transcriptional levels of the UGA1 and DUR3 genes encoding GABA transaminase and urea transporter, respectively, are severely decreased in the AY77 cells. The AY77 strain cultivated by fed-batch culture using cane molasses exhibited inferior gas production during dough fermentation compared to that of wild-type strain AY13. However, when fed with molasses containing 0.5% ammonium sulfate, the mutant strain exhibited gas production comparable to that of the AY13 strain. In contrast to the AY13 strain, which completely consumed GABA in dough within 5 h, the AY77 strain consumed no GABA under either culture condition. Dough fermentation with the dal81 mutant strain should be useful for suppression of GABA reduction in breads. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Analysis on the DNA Fingerprinting of Aspergillus Oryzae Mutant Induced by High Hydrostatic Pressure

    NASA Astrophysics Data System (ADS)

    Wang, Hua; Zhang, Jian; Yang, Fan; Wang, Kai; Shen, Si-Le; Liu, Bing-Bing; Zou, Bo; Zou, Guang-Tian

    2011-01-01

    The mutant strains of aspergillus oryzae (HP300a) are screened under 300 MPa for 20 min. Compared with the control strains, the screened mutant strains have unique properties such as genetic stability, rapid growth, lots of spores, and high protease activity. Random amplified polymorphic DNA (RAPD) and inter simple sequence repeats (ISSR) are used to analyze the DNA fingerprinting of HP300a and the control strains. There are 67.9% and 51.3% polymorphic bands obtained by these two markers, respectively, indicating significant genetic variations between HP300a and the control strains. In addition, comparison of HP300a and the control strains, the genetic distances of random sequence and simple sequence repeat of DNA are 0.51 and 0.34, respectively.

  5. Characterization of three Agrobacterium tumefaciens avirulent mutants with chromosomal mutations that affect induction of vir genes.

    PubMed

    Metts, J; West, J; Doares, S H; Matthysse, A G

    1991-02-01

    Three Agrobacterium tumefaciens mutants with chromosomal mutations that affect bacterial virulence were isolated by transposon mutagenesis. Two of the mutants were avirulent on all hosts tested. The third mutant, Ivr-211, was a host range mutant which was avirulent on Bryophyllum diagremontiana, Nicotiana tabacum, N. debneyi, N. glauca, and Daucus carota but was virulent on Zinnia elegans and Lycopersicon esculentum (tomato). That the mutant phenotype was due to the transposon insertion was determined by cloning the DNA containing the transposon insertion and using the cloned DNA to replace the wild-type DNA in the parent bacterial strain by marker exchange. The transposon insertions in the three mutants mapped at three widely separated locations on the bacterial chromosome. The effects of the mutations on various steps in tumor formation were examined. All three mutants showed no alteration in binding to carrot cells. However, none of the mutants showed any induction of vir genes by acetosyringone under conditions in which the parent strain showed vir gene induction. When the mutant bacteria were examined for changes in surface components, it was found that all three of the mutants showed a similar alteration in lipopolysaccharide (LPS). LPS from the mutants was larger in size and more heavily saccharide substituted than LPS from the parent strain. Two of the mutants showed no detectable alteration in outer membrane and periplasmic space proteins. The third mutant, Ivr-225, was missing a 79-kDa surface peptide. The reason(s) for the failure of vir gene induction in these mutants and its relationship, if any, to the observed alteration in LPS are unknown.

  6. Comparative Study of the Mutant Prevention Concentrations of Moxifloxacin, Levofloxacin, and Gemifloxacin against Pneumococci▿ †

    PubMed Central

    Credito, Kim; Kosowska-Shick, Klaudia; McGhee, Pamela; Pankuch, Glenn A.; Appelbaum, Peter C.

    2010-01-01

    We tested the propensity of three quinolones to select for resistant Streptococcus pneumoniae mutants by determining the mutant prevention concentration (MPC) against 100 clinical strains, some of which harbored mutations in type II topoisomerases. Compared with levofloxacin and gemifloxacin, moxifloxacin had the lowest number of strains with MPCs above the susceptibility breakpoint (P < 0.001), thus representing a lower selective pressure for proliferation of resistant mutants. Only moxifloxacin gave a 50% MPC (MPC50) value (1 μg/ml) within the susceptible range. PMID:20008781

  7. Rapid screening astaxanthin-hyperproducing Haematococcus pluvialis mutants through near-infrared spectroscopy.

    PubMed

    Liu, J H; Song, L; Huang, Q

    2016-02-01

    The unicellular freshwater green microalga Haematococcus pluvialis is the richest source of natural astaxanthin. Since accumulation of astaxanthin differs significantly among various algal strains at different stages, it is therefore critical to develop an effective high-throughput assay for rapid screening astaxanthin-hyperproducing strains. In the present study, near-infrared spectroscopy (NIRS) in combination with biochemical assay was employed for evaluation of the wide-type H. Pluvialis strains. The partial least squares (PLS) models of total biomass, astaxanthin content and astaxanthin expressed as a percentage of dry weight (DW) were developed with the R(2) values as 0·959, 0·982 and 0·952, the prediction correlation factor (r) values as 0·979, 0·988 and 0·966, and the residual predictive deviation (RPD) values as 4·88, 6·22 and 3·86, respectively. Furthermore, the PLS models were employed to evaluate H. pluvialis mutants, with the r values as 0·973, 0·983 and 0·976, and the RPD values as 3·45, 7·59 and 4·07, respectively. This work thus demonstrates that NIRS is an easy, fast and non-invasive approach that can be applied in high-throughput screening of astaxanthin-hyperproducing algal mutants. Haematococcus pluvialis has potential application for its ability to accumulate natural antioxidant astaxanthin. In this study, we initiated the application of near-infrared spectroscopy (NIRS) in the analysis of total biomass and astaxanthin content of different mutant strains, demonstrating that NIRS can be very useful in the screening of axataxanthin-hyperproducing mutant strains. © 2015 The Society for Applied Microbiology.

  8. A dinoflagellate mutant with higher frequency of multiple fission.

    PubMed

    Lam, C M; Chong, C; Wong, J T

    2001-01-01

    The dinoflagellate Crypthecodinium cohnii Biecheler propagates by both binary and multiple fission. By a newly developed mutagenesis protocol based on using ethyl methanesulfonate and a cell size screening method, a cell cycle mutant, mf2, was isolated with giant cells which predominantly divide by multiple fission. The average cell size of the mutant mf2 is larger than the control C. cohnii. Cell cycle synchronization experiments suggest that mutant mf2, when compared with the control strain, has a prolonged G1 phase with a corresponding delay of the G2 + M phase.

  9. Induction of stable benomyl-tolerant phenotypic mutants of Trichoderma pseudokoningii MTCC 3011, and their evaluation for antagonistic and biocontrol potential.

    PubMed

    Mukherjee, P K; Sherkhane, P D; Murthy, N B

    1999-07-01

    Trichoderma pseudokoningii MTCC 3011 is a very useful strain for biological control of the plant pathogen Sclerotium rolfsii under post-harvest conditions. In the present investigation, several benomyl-tolerant phenotypic mutants of this strain have been generated using a two step mutagenesis-chemical followed by gamma irradiation. The mutants differed from the wild type strain in antibiotic and disease control potential. Some of the mutants are superior to the wild type in biocontrol potential on S. rolfsii.

  10. Leptin gene promoter DNA methylation in WNIN obese mutant rats

    PubMed Central

    2014-01-01

    Background Obesity has become an epidemic in worldwide population. Leptin gene defect could be one of the causes for obesity. Two mutant obese rats WNIN/Ob and WNIN/GROb, isolated at National Centre for Laboratory Animal Sciences (NCLAS), Hyderabad, India, were found to be leptin resistant. The present study aims to understand the regulatory mechanisms underlying the resistance by promoter DNA methylation of leptin gene in these mutant obese rats. Methods Male obese mutant homozygous, carrier and heterozygous rats of WNIN/Ob and WNIN/GROb strain of 6 months old were studied to check the leptin gene expression (RT-PCR) and promoter DNA methylation (MassARRAY Compact system, SEQUENOM) of leptin gene by invivo and insilico approach. Results Homozygous WNIN/Ob and WNIN/GROb showed significantly higher leptin gene expression compared to carrier and lean counterparts. Leptin gene promoter DNA sequence region was analyzed ranging from transcription start site (TSS) to-550 bp length and found four CpGs in this sequence among them only three CpG loci (-309, -481, -502) were methylated in these WNIN mutant rat phenotypes. Conclusion The increased percentage of methylation in WNIN mutant lean and carrier phenotypes is positively correlated with transcription levels. Thus genetic variation may have effect on methylation percentages and subsequently on the regulation of leptin gene expression which may lead to obesity in these obese mutant rat strains. PMID:24495350

  11. Immunogenicity and protection induced by a Mycobacterium tuberculosis sigE mutant in a BALB/c mouse model of progressive pulmonary tuberculosis.

    PubMed

    Hernandez Pando, Rogelio; Aguilar, Leon Diana; Smith, Issar; Manganelli, Riccardo

    2010-07-01

    Tuberculosis is still one of the main challenges to human global health, leading to about two million deaths every year. One of the reasons for its success is the lack of efficacy of the widely used vaccine Mycobacterium bovis BCG. In this article, we analyze the potential use of an attenuated mutant of Mycobacterium tuberculosis H37Rv lacking the sigma factor sigma(E) as a live vaccine. We have demonstrated that BALB/c mice infected by the intratracheal route with this mutant strain showed significantly higher survival rates and less tissue damage than animals infected with the parental or complemented mutant strain. Although animals infected with the sigE mutant had low bacillary loads, their lungs showed significantly higher production of the protective factors gamma interferon (IFN-gamma), tumor necrosis factor alpha (TNF-alpha), inducible nitric oxide synthase (iNOS), and beta-defensins than those of animals infected with the parental or complemented mutant strain. Moreover, we demonstrate that the sigE mutant, when inoculated subcutaneously, was more attenuated than BCG in immunodeficient nude mice, thus representing a good candidate for a novel attenuated live vaccine strain. Finally, when we used the sigE mutant as a subcutaneous vaccine, it was able to induce a higher level of protection than did BCG with both H37Rv and a highly virulent strain of M. tuberculosis (Beijing code 9501000). Taken together, our findings suggest that the sigE mutant is a very promising strain for the development of a new vaccine against tuberculosis.

  12. Bending patterns of chlamydomonas flagella: III. A radial spoke head deficient mutant and a central pair deficient mutant.

    PubMed

    Brokaw, C J; Luck, D J

    1985-01-01

    Flash photomicrography at frequencies up to 300 Hz and computer-assisted image analysis have been used to obtain parameters describing the flagellar bending patterns of mutants of Chlamydomonas reinhardtii. All strains contained the uni1 mutation, to facilitate photography. The radial spoke head deficient mutant pf17, and the central pair deficient mutant, pf15, in combination with suppressor mutations that restore motility without restoring the ultrastructural or biochemical deficiencies, both generate forward mode bending patterns with increased shear amplitude and decreased asymmetry relative to the "wild-type" uni1 flagella described previously. In the reverse beating mode, the suppressed pf17 mutants generate reverse bending patterns with large shear amplitudes. Reverse beating of the suppressed pf15 mutants is rare. There is a reciprocal relationship between increased shear amplitude and decreased beat frequency, so that the velocity of sliding between flagellar microtubules is not increased by an increase in shear amplitude. The suppressor mutations alone cause decreased frequency and sliding velocity in both forward and reverse mode beating, with little change in shear amplitude or symmetry.

  13. Production of acetone butanol ethanol (ABE) by a hyper-producing mutant strain of Clostridium beijerinckii BA101 and recovery by pervaporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qureshi, N.; Blaschek, H.P.

    1999-07-01

    A silicone membrane was used to study butanol separation from model butanol solutions and fermentation broth. Depending upon the butanol feed concentration in the model solution and pervaporation conditions, butanol selectivities of 20.88--68.32 and flux values of 158.7--215.4 g m{sup {minus}2} h{sup {minus}1} were achieved. Higher flux values were obtained at higher butanol concentrations using air as sweep gas. In an integrated process of butanol fermentation--recovery, solvent productivities were improved to 200% of the control batch fermentation productivities. In a batch reactor the hyper-butanol-producing mutant strain C. beijerinckii BA101 utilized 57.3 g/L glucose and produced 24.2 g/L total solvents, whilemore » in the integrated process it produced 51.5 g/L (culture volume) total solvents. Concentrated glucose medium was also fermented. The C. beijerinckii BA101 mutant strain was not negatively affected by the pervaporative conditions. In the integrated experiment, acids were not produced. With the active fermentation broth, butanol selectivity was reduced by a factor of 2--3. However, the membrane flux was not affected by the active fermentation broth. The butanol permeate concentration ranged from 26.4 to 95.4 g/L, depending upon butanol concentration in the fermentation broth. Since the permeate of most membranes contains acetone, butanol, and ethanol, it is suggested that distillation be used for further purification.« less

  14. Bioconversion of glycerol to ethanol by a mutant Enterobacter aerogenes

    PubMed Central

    2012-01-01

    The main objective of this research is to develop, by adaptive evolution, mutant strains of Enterobacter aerogenes ATCC 13048 that are capable of withstanding high glycerol concentration as well as resisting ethanol-inhibition. The mutant will be used for high ethanol fermentation from glycerol feedstock. Ethanol production from pure (P-) and recovered (R-) glycerol using the stock was evaluated. A six-tube-subculture-generations method was used for developing the mutant. This involved subculturing the organism six consecutive times in tubes containing the same glycerol and ethanol concentrations at the same culture conditions. Then, the glycerol and/or ethanol concentration was increased and the six subculture generations were repeated. A strain capable of growing in 200 g/L glycerol and 30 g/L ethanol was obtained. The ability of this mutant, vis-à-vis the original strain, in utilizing glycerol in a high glycerol containing medium, with the concomitant ethanol yield, was assessed. Tryptic soy broth without dextrose (TSB) was used as the fermentation medium. Fermentation products were analyzed using HPLC. In a 20 g/L glycerol TSB, E. aerogenes ATCC 13048 converted 18.5 g/L P-glycerol and 17.8 g/L R-glycerol into 12 and 12.8 g/L ethanol, respectively. In a 50 g/L P-glycerol TSB, it utilized only 15.6 g/L glycerol; but the new strain used up 39 g/L, yielding 20 g/L ethanol after 120 h, an equivalence of 1.02 mol ethanol/mol-glycerol. This is the highest ethanol yield reported from glycerol bioconversion. The result of this P-glycerol fermentation can be duplicated using the R-glycerol from biodiesel production. PMID:22455837

  15. A Laboratory Exercise for Isolation and Characterizing Microbial Mutants with Metabolic Defects.

    ERIC Educational Resources Information Center

    Doe, Frank J.; Leslie, John F.

    1993-01-01

    Describes science experiments for undergraduate biology instruction on the concepts of mutation and characterization of the resulting mutant strains. The filamentous fungi "Fusarium moniliforme" is used to illustrate the induction of mutants (mutagenesis), identification of the mutated gene, construction of a biochemical pathway, and…

  16. High-Throughput Parallel Sequencing to Measure Fitness of Leptospira interrogans Transposon Insertion Mutants during Acute Infection

    PubMed Central

    Matsunaga, James; Haake, David A.

    2016-01-01

    Pathogenic species of Leptospira are the causative agents of leptospirosis, a zoonotic disease that causes mortality and morbidity worldwide. The understanding of the virulence mechanisms of Leptospira spp is still at an early stage due to the limited number of genetic tools available for this microorganism. The development of random transposon mutagenesis in pathogenic strains a decade ago has contributed to the identification of several virulence factors. In this study, we used the transposon sequencing (Tn-Seq) technique, which combines transposon mutagenesis with massive parallel sequencing, to study the in vivo fitness of a pool of Leptospira interrogans mutants. We infected hamsters with a pool of 42 mutants (input pool), which included control mutants with insertions in four genes previously analyzed by virulence testing (loa22, ligB, flaA1, and lic20111) and 23 mutants with disrupted signal transduction genes. We quantified the mutants in different tissues (blood, kidney and liver) at 4 days post-challenge by high-throughput sequencing and compared the frequencies of mutants recovered from tissues to their frequencies in the input pool. Control mutants that were less fit in the Tn-Seq experiment were attenuated for virulence when tested separately in the hamster model of lethal leptospirosis. Control mutants with unaltered fitness were as virulent as the wild-type strain. We identified two mutants with the transposon inserted in the same putative adenylate/guanylate cyclase gene (lic12327) that had reduced in vivo fitness in blood, kidney and liver. Both lic12327 mutants were attenuated for virulence when tested individually in hamsters. Growth of the control mutants and lic12327 mutants in culture medium were similar to that of the wild-type strain. These results demonstrate the feasibility of screening large pools of L. interrogans transposon mutants for those with altered fitness, and potentially attenuated virulence, by transposon sequencing. PMID

  17. Occurrence of toxicity among protease, amylase, and color mutants of a nontoxic soy sauce koji mold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalayanamitr, A.; Bhumiratana, A.; Flegel, T.W.

    A soy sauce koji mold, Aspergillus flavus var. columnaris Raper and Fennel (ATCC 44310), was treated with UV irradiation to obtain mutant strains possessing high protease activities, high amylase activities, and light-colored conidia. Selected mutant strains were tested for toxicity, and some were found acutely toxic to weanling rats, although all were negative for aflatoxin production.

  18. Rapid strain improvement through optimized evolution in the cytostat.

    PubMed

    Gilbert, Alan; Sangurdekar, Dipen P; Srienc, Friedrich

    2009-06-15

    Acetate is present in lignocellulosic hydrolysates at growth inhibiting concentrations. Industrial processes based on such feedstock require strains that are tolerant of this and other inhibitors present. We investigated the effect of acetate on Saccharomyces cerevisiae and show that elevated acetate concentrations result in a decreased specific growth rate, an accumulation of cells in the G1 phase of the cell cycle, and an increased cell size. With the cytostat cultivation technology under previously derived optimal operating conditions, several acetate resistant mutants were enriched and isolated in the shortest possible time. In each case, the isolation time was less than 5 days. The independently isolated mutant strains have increased specific growth rates under conditions of high acetate concentrations, high ethanol concentrations, and high temperature. In the presence of high acetate concentrations, the isolated mutants produce ethanol at higher rates and titers than the parental strain and a commercial ethanol producing strain that has been analyzed for comparison. Whole genome microarray analysis revealed gene amplifications in each mutant. In one case, the LPP1 gene, coding for lipid phosphate phosphatase, was amplified. Two mutants contained amplified ENA1, ENA2, and ENA5 genes, which code for P-type ATPase sodium pumps. LPP1 was overexpressed on a plasmid, and the growth data at elevated acetate concentrations suggest that LPP1 likely contributes to the phenotype of acetate tolerance. A diploid cross of the two mutants with the amplified ENA genes grew faster than either individual haploid parent strain when 20 g/L acetate was supplemented to the medium, which suggests that these genes contribute to acetate tolerance in a gene dosage dependent manner. 2009 Wiley Periodicals, Inc.

  19. Synthesis and biological properties of novel 2-aminopyrimidin-4(3H)-ones highly potent against HIV-1 mutant strains.

    PubMed

    Mai, Antonello; Artico, Marino; Rotili, Dante; Tarantino, Domenico; Clotet-Codina, Imma; Armand-Ugón, Mercedes; Ragno, Rino; Simeoni, Silvia; Sbardella, Gianluca; Nawrozkij, Maxim B; Samuele, Alberta; Maga, Giovanni; Esté, José A

    2007-11-01

    Following the disclosure of dihydro-alkoxy-, dihydro-alkylthio-, and dihydro-alkylamino-benzyl-oxopyrimidines (DABOs, S-DABOs, and NH-DABOs) as potent and selective anti-HIV-1 agents belonging to the non-nucleoside reverse transcriptase inhibitor (NNRTI) class, we report here the synthesis and biological evaluation of a novel series of DABOs bearing a N,N-disubstituted amino group or a cyclic amine at the pyrimidine-C2 position, a hydrogen atom or a small alkyl group at C5 and/or at the benzylic position, and the favorable 2,6-difluorobenzyl moiety at the C6 position (F2-N,N-DABOs). The new compounds were highly active up to the subnanomolar level against both wt HIV-1 and the Y181C mutant and at the submicromolar to nanomolar range against the K103N and Y188L mutant strains. Such derivatives were more potent than S-DABOs, NH-DABOs, and nevirapine and efavirenz were chosen as reference drugs. The higher inhibitor adaptability to the HIV-1 RT non-nucleoside binding site (NNBS) may account for the higher inhibitory effect exerted by the new molecules against the mutated RTs.

  20. [Biofilm Formation by the Nonflagellated flhB1 Mutant of Azospirillum brasilense Sp245].

    PubMed

    Shelud'ko, A V; Filip'echeva, Yu A; Shumiliva, E M; Khlebtsov, B N; Burov, A M; Petrova, L P; Katsy, E I

    2015-01-01

    Azospirillum brasilense Sp245 with mixed flagellation are able to form biofilms on various surfaces. A nonflagellated mutant of this strain with inactivated chromosomal copy of the flhB gene (flhB1) was shown to exhibit specific traits at the later stages of biofilm formation on a hydrophilic (glass) surface. Mature biofilms of the flhB1::Omegon-Km mutant Sp245.1063 were considerably thinner than those of the parent strain Sp245. The biofilms of the mutant were more susceptible to the forces of hydrodynamic shear. A. brasilense Sp245 cells in biofilms were not found to possess lateral flagella. Cells with polar flagella were, however, revealed by atomic force microscopy of mature native biofilms of strain Sp245. Preservation of a polar flagellum (probably nonmotile) on the cells of A. brasilense Sp245 may enhance the biofilm stability.

  1. Characterization of mutant histidine-containing proteins of the phosphoenolpyruvate:sugar phosphotransferase system of Escherichia coli and Salmonella typhimurium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waygood, E.B.; Reiche, B.; Hengstenberg, W.

    1987-06-01

    Histidine-containing phosphocarrier protein (HPr) is common to all of the phosphoenolpyruvate:sugar phosphotransferase systems (PTS) in Escherichia coli and Salmonella typhimurium, except the fructose-specific PTS. Strains which lack HPr activity (ptsH) have been characterized in the past, and it has proved difficult to delineate between tight and leaky mutants. In this study four different parameters of ptsH strains were measured: in vitro sugar phosphorylation activity of the mutant HPr; detection of /sup 32/P-labeled P-HPr; ability of monoclonal antibodies to bind mutant HPr; and sensitivity of ptsH strains to fosfomycin. Tight ptsH strains could be defined; they were fosfomycin resistant and producedmore » no HPr protein or completely inactive mutant HPr. All leaky ptsH strains were fosfomycin sensitive, Usually produced normal amounts of mutant HPr protein, and had low but measurable activity, and HPr was detectable as a phosphoprotein. This indicates that the regulatory functions of the PTS require a very low level of HPr activity (about 1%). The antibodies used to detect mutant HPr in crude extracts were two monoclonal immunoglobulin G antibodies Jel42 and Jel44. Both antibodies, which have different pIs, inhibited PTS sugar phosphorylation assays, but the antibody-JPr complex could still be phosphorylated by enzyme I. Preliminary evidence suggests that the antibodies bind to two different epitopes which are in part located in a ..beta..-sheet structure.« less

  2. C. elegans and mutants with chronic nicotine exposure as a novel model of cancer phenotype.

    PubMed

    Kanteti, Rajani; Dhanasingh, Immanuel; El-Hashani, Essam; Riehm, Jacob J; Stricker, Thomas; Nagy, Stanislav; Zaborin, Alexander; Zaborina, Olga; Biron, David; Alverdy, John C; Im, Hae Kyung; Siddiqui, Shahid; Padilla, Pamela A; Salgia, Ravi

    2016-01-01

    We previously investigated MET and its oncogenic mutants relevant to lung cancer in C. elegans. The inactive orthlogues of the receptor tyrosine kinase Eph and MET, namely vab-1 and RB2088 respectively, the temperature sensitive constitutively active form of KRAS, SD551 (let-60; GA89) and the inactive c-CBL equivalent mutants in sli-1 (PS2728, PS1258, and MT13032) when subjected to chronic exposure of nicotine resulted in a significant loss in egg-laying capacity and fertility. While the vab-1 mutant revealed increased circular motion in response to nicotine, the other mutant strains failed to show any effect. Overall locomotion speed increased with increasing nicotine concentration in all tested mutant strains except in the vab-1 mutants. Moreover, chronic nicotine exposure, in general, upregulated kinases and phosphatases. Taken together, these studies provide evidence in support of C. elegans as initial in vivo model to study nicotine and its effects on oncogenic mutations identified in humans.

  3. Isolation of Phaffia rhodozyma Mutants with Increased Astaxanthin Content

    PubMed Central

    An, Gil-Hwan; Schuman, Donald B.; Johnson, Eric A.

    1989-01-01

    Plating of the astaxanthin-producing yeast Phaffia rhodozyma onto yeast-malt agar containing 50 μM antimycin A gave rise to colonies of unusual morphology, characterized by a nonpigmented lower smooth surface that developed highly pigmented vertical papillae after 1 to 2 months. Isolation and purification of the pigmented papillae, followed by testing for pigment production in shake flasks, demonstrated that several antimycin isolates were increased two- to fivefold in astaxanthin content compared with the parental natural isolate (UCD-FST 67-385). One of the antimycin strains (ant-1) and a nitrosoguanidine derivative of ant-1 (ant-1-4) produced considerably more astaxanthin than the parent (ant-1 had 800 to 900 μg/g; ant-1-4 had 900 to 1,300 μg/g; and 67-385 had 300 to 450 μg/g). The mutant strains were compared physiologically with the parent. The antimycin mutants grew slower on ammonia, glutamate, or glutamine as nitrogen sources compared with the natural isolate and also had lower cell yields on several carbon sources. Although isolated on antimycin plates, they were found to be more susceptible to antimycin A, apparently owing to the spatial separation of the papillae from the agar. They were also more susceptible than the parent to the respiratory inhibitor thenoyltrifluoroacetone and were slightly more susceptible to cyanide, but did not differ from the natural isolate in susceptibility to azide. The antimycin-derived strains were also killed faster than the parent by hydrogen peroxide. The carotenoid compositions of the parent and the antimycin-derived strains were similar to those previously determined in the type strain (UCD-FST 67-210) except that two carotenoids not previously found in the type strain were present in increased quantities in the antimycin mutants and phoenicoxanthin was a minor component. The chemical properties of the unknown carotenoids suggested that the strains isolated on antimycin agar tended to oxygenate and desaturate

  4. Comparison of expression of key sporulation, solventogenic and acetogenic genes in C. beijerinckii NRRL B-598 and its mutant strain overexpressing spo0A.

    PubMed

    Kolek, J; Diallo, M; Vasylkivska, M; Branska, B; Sedlar, K; López-Contreras, A M; Patakova, P

    2017-11-01

    The production of acetone, butanol and ethanol by fermentation of renewable biomass has potential to become a valuable industrial process. Mechanisms of solvent production and sporulation involve some common regulators in some ABE-producing clostridia, although details of the links between the pathways are not clear. In this study, we compare a wild-type (WT) Clostridium beijerinckii NRRL B-598 with its mutant strain OESpo0A, in which the gene encoding Spo0A, an important regulator of both sporulation and solventogenesis, is overexpressed in terms of solvent and acid production. We also compare morphologies during growth on two different media: TYA broth, where the WT culture sporulates, and RCM, where the WT culture does not. In addition, RT-qPCR-based analysis of expression profiles of spo0A, spoIIE, sigG, spoVD, ald and buk1 genes involved in sporulation or solvent production in these strains, were compared. The OESpo0A mutant did not produce spores and butanol titre was lower compared to the WT, but increased amounts of butyric acid and ethanol were produced. The gene spo0A had high levels of expression in the WT under non-sporulating culture conditions while other selected genes for sporulation factors were downregulated significantly. Similar observations were obtained for OESpo0A where spo0A overexpression and downregulation of other sporulation genes were demonstrated. Higher expression of spo0A led to higher expression of buk1 and ald, which could confirm the role of spo0A in activation of the solventogenic pathway, although solvent production was not affected significantly in the WT and was weakened in the OESpo0A mutant.

  5. Surface Polysaccharide Mutants Reveal that Absence of O Antigen Reduces Biofilm Formation of Actinobacillus pleuropneumoniae

    PubMed Central

    Hathroubi, S.; Hancock, M. A.; Langford, P. R.; Tremblay, Y. D. N.; Labrie, J.

    2015-01-01

    Actinobacillus pleuropneumoniae is a Gram-negative bacterium belonging to the Pasteurellaceae family and the causative agent of porcine pleuropneumonia, a highly contagious lung disease causing important economic losses. Surface polysaccharides, including lipopolysaccharides (LPS) and capsular polysaccharides (CPS), are implicated in the adhesion and virulence of A. pleuropneumoniae, but their role in biofilm formation is still unclear. In this study, we investigated the requirement for these surface polysaccharides in biofilm formation by A. pleuropneumoniae serotype 1. Well-characterized mutants were used: an O-antigen LPS mutant, a truncated core LPS mutant with an intact O antigen, a capsule mutant, and a poly-N-acetylglucosamine (PGA) mutant. We compared the amount of biofilm produced by the parental strain and the isogenic mutants using static and dynamic systems. Compared to the findings for the biofilm of the parental or other strains, the biofilm of the O antigen and the PGA mutants was dramatically reduced, and it had less cell-associated PGA. Real-time PCR analyses revealed a significant reduction in the level of pgaA, cpxR, and cpxA mRNA in the biofilm cells of the O-antigen mutant compared to that in the biofilm cells of the parental strain. Specific binding between PGA and LPS was consistently detected by surface plasmon resonance, but the lack of O antigen did not abolish these interactions. In conclusion, the absence of the O antigen reduces the ability of A. pleuropneumoniae to form a biofilm, and this is associated with the reduced expression and production of PGA. PMID:26483403

  6. Isolation and preliminary characterization of temperature-sensitive mutants of influenza virus.

    PubMed

    Sugiura, A; Tobita, K; Kilbourne, E D

    1972-10-01

    Isolation of temperature-sensitive (ts) mutants was attempted from the WSN strain of influenza A virus which was grown and assayed in MDBK cells. After growth of wild-type virus in the presence of 5-fluorouracil, 15 ts mutants were selected for which the ratio of plaquing efficiency at 39.5 C to that at 33 C was 10(-3) or less. In pairwise crosses of ts mutants, recombination and complementation were either very efficient or undetectable. It is suggested, therefore, that the viral genome consists of physically discrete units and recombination occurs as an exchange of these units. All 15 mutants have been assigned with certainty into five recombination groups. Three mutants are suspected to be double mutants. Any two complementing mutants always recombined with each other, and noncomplementing mutants did not recombine. In physiological tests, mutants showed diverse patterns of functional defects at the nonpermissive temperature. However, it was not always possible to correlate these physiological defects with the results of genetic characterization.

  7. Use of the Hungate anaerobic technique in the isolation of phloroglucinol-negative mutants of Coprococcus species.

    PubMed Central

    Thompson, L A; Gates, D M; Ingledew, W M; Jones, G A

    1976-01-01

    The Hungate anaerobic technique was used with a standard procedure for bacterial mutagenesis employing N-methyl-N-nitro-N'-nitrosoguanidine to obtain mutants of an obligate anaerobe. Three mutant strains were derived from a Coprococcus sp., strain Pe15, a rumen anaerobe capable of growing on phloroglucinol. The mutants did not grow on phloroglucinol but did degrade the compound in anaerobic washed-cell suspensions, producing the same end products in approximately the same proportions as the wild type. It was concluded that the mutants were blocked in a unique step or steps necessary for carbon skeleton or energy synthesis from phloroglucinol and not in formation of an enzyme involved in the pathway of phloroglucinol degradation. PMID:782358

  8. Use of the Hungate anaerobic technique in the isolation of phloroglucinol-negative mutants of Coprococcus species.

    PubMed

    Thompson, L A; Gates, D M; Ingledew, W M; Jones, G A

    1976-01-01

    The Hungate anaerobic technique was used with a standard procedure for bacterial mutagenesis employing N-methyl-N-nitro-N'-nitrosoguanidine to obtain mutants of an obligate anaerobe. Three mutant strains were derived from a Coprococcus sp., strain Pe15, a rumen anaerobe capable of growing on phloroglucinol. The mutants did not grow on phloroglucinol but did degrade the compound in anaerobic washed-cell suspensions, producing the same end products in approximately the same proportions as the wild type. It was concluded that the mutants were blocked in a unique step or steps necessary for carbon skeleton or energy synthesis from phloroglucinol and not in formation of an enzyme involved in the pathway of phloroglucinol degradation.

  9. Relative importance of bacteriocin-like genes in antagonism of Xanthomonas perforans tomato race 3 to Xanthomonas euvesicatoria tomato race 1 strains.

    PubMed

    Hert, A P; Roberts, P D; Momol, M T; Minsavage, G V; Tudor-Nelson, S M; Jones, J B

    2005-07-01

    In a previous study, tomato race 3 (T3) strains of Xanthomonas perforans became predominant in fields containing both X. euvesicatoria and X. perforans races T1 and T3, respectively. This apparent ability to take over fields led to the discovery that there are three bacteriocin-like compounds associated with T3 strains. T3 strain 91-118 produces at least three different bacteriocin-like compounds (BCN-A, BCN-B, and BCN-C) antagonistic toward T1 strains. We determined the relative importance of the bacteriocin-like compounds by constructing the following mutant forms of a wild-type (WT) T3 strain to evaluate the antagonism to WT T1 strains: Mut-A (BCN-A-), Mut-B (BCN-B-), Mut-C (BCN-C-), Mut-AB, Mut-BC, and Mut-ABC. Although all mutant and WT T3 strains reduced the T1 populations in in planta growth room experiments, Mut-B and WT T3 were significantly more effective. Mutants expressing BCN-B and either BCN-A or BCN-C reduced T1 populations less than mutants expressing only BCN-A or BCN-C. The triple-knockout mutant Mut-ABC also had a significant competitive advantage over the T1 strain. In pairwise-inoculation field experiments where plants were coinoculated with an individual mutant or WT T3 strain and the T1 strain, the mutant strains and the WT T3 strain were reisolated from more than 70% of the lesions. WT T3 and Mut-B were the most frequently reisolated strains. In field experiments where plants were group inoculated with Mut-A, Mut-B, Mut-C, Mut-ABC, and WT T1 and T3 strains, Mut-B populations dominated all three seasons. In greenhouse and field experiments, the WT and mutant T3 strains had a selective advantage over T1 strains. Bacterial strains expressing both BCN-A and BCN-C appeared to have a competitive advantage over all other mutant and WT strains. Furthermore, BCN-B appeared to be a negative factor, with mutant T3 strains lacking BCN-B having a selective advantage in the field.

  10. The Justy mutant mouse strain produces a spontaneous murine model of salivary gland cancer with myoepithelial and basal cell differentiation

    PubMed Central

    Simons, Andrean L.; Lu, Ping; Gibson-Corley, Katherine N.; Robinson, Robert A.; Meyerholz, David K.; Colgan, John D.

    2013-01-01

    We previously identified a novel mutant mouse strain on the C3HeB/FeJ background named Justy. This strain bears a recessive mutation in the Gon4l gene that greatly reduces expression of the encoded protein, a nuclear factor implicated in transcriptional regulation. Here, we report that Justy mutant mice aged 6 months or older spontaneously developed carcinomas with myoepithelial and basaloid differentiation in salivary glands with an incidence of ~25%. Tumors developed proximate to submandibular glands and to a lesser extent in the sublingual and parotid glands. Histologically, tumors often had central cavitary lesions filled with necrotic debris that was lined by tumors cells and had spindle and epithelioid cell differentiation with lesser basaloid to clear cell features. Tumor tissue often had variable evidence of a high mitotic rate, pleomorphism and invasion into adjacent salivary glands. Neoplastic cells had diffuse immunoreactivity for pancytokeratin (AE1/AE3) and p63. While CK5/6 immunostaining was seen in the much of the tumor cells, it was often lacking in pleomorphic areas. Tumor cells lacked immunoreactivity for alpha-smooth muscle actin, S100, c-Kit and glial fibrillary acid protein. Additionally, tumors had immunoreactivity for phosphorylated and total epidermal growth factor receptor (EGFR), suggesting that EGFR signaling may participate in growth regulation of these tumors. These findings indicate that the salivary gland carcinomas occur spontaneously in Justy mice and that these tumors may offer a valuable model for study of EGFR regulation. Combined, our data suggest that Justy mice warrant further investigation for use as a mouse model for human salivary gland neoplasia. PMID:23608756

  11. Legionella pneumophila mutants that are defective for iron acquisition and assimilation and intracellular infection.

    PubMed Central

    Pope, C D; O'Connell, W; Cianciotto, N P

    1996-01-01

    Legionella pneumophila, a parasite of macrophages and protozoa, requires iron for optimal extracellular and intracellular growth. However, its mechanisms of iron acquisition remain uncharacterized. Using mini-Tn10 mutagenesis, we isolated 17 unique L. pneumophila strains which appeared to be defective for iron acquisition and assimilation. Eleven of these mutants were both sensitive to the iron chelator ethylenediamine di(o-hydroxyphenylacetic acid) and resistant to streptonigrin, an antibiotic whose lethal effect requires high levels of intracellular iron. Six mutants were also defective for the infection of macrophage-like U937 cells. Although none were altered in entry, mutants generally exhibited prolonged lag phases and in some cases replicated at slower rates. Overall, the reduced recoveries of mutants, relative to that of the wild type, ranged from 3- to 1,000-fold. Strain NU216, the mutant displaying the most severe lag phase and the slowest rate of replication, was studied further. Importantly, within U937 cells, NU216 was approximately 100-fold more sensitive than the wild type was to treatment with the Fe3+ chelator deferoxamine, indicating that it is defective for intracellular iron acquisition and assimilation. Furthermore, this strain was unable to mediate any cytopathic effect and was impaired for infectivity of an amoebal host. Taken together, the isolation of these mutants offers genetic proof that iron acquisition and assimilation are critical for intracellular infection by L. pneumophila. PMID:8550218

  12. Isolation and Characterization of Escherichia coli tolC Mutants Defective in Secreting Enzymatically Active Alpha-Hemolysin

    PubMed Central

    Vakharia, Hema; German, Greg J.; Misra, Rajeev

    2001-01-01

    This study describes the isolation and characterization of a unique class of TolC mutants that, under steady-state growth conditions, secreted normal levels of largely inactive alpha-hemolysin. Unlike the reduced activity in the culture supernatants, the cell-associated hemolytic activity in these mutants was identical to that in the parental strain, thus reflecting a normal intracellular toxin activation event. Treatment of the secreted toxin with guanidine hydrochloride significantly restored cytolytic activity, suggesting that the diminished activity may have been due to the aggregation or misfolding of the toxin molecules. Consistent with this notion, sedimentation and filtration analyses showed that alpha-hemolysin secreted from the mutant strain has a mass greater than that secreted from the parental strain. Experiments designed to monitor the time course of alpha-hemolysin release showed delayed appearance of toxin in the culture supernatant of the mutant strain, thus indicating a possible defect in alpha-hemolysin translocation or release. Eight different TolC substitutions displaying this toxin secretion defect were scattered throughout the protein, of which six localized in the periplasmically exposed α-helical domain, while the remaining two mapped within the outer membrane-embedded β-barrel domain of TolC. A plausible model for the secretion of inactive alpha-hemolysin in these TolC mutants is discussed in the context of the recently determined three-dimensional structure of TolC. PMID:11698380

  13. Pseudomonas aeruginosa gshA Mutant Is Defective in Biofilm Formation, Swarming, and Pyocyanin Production

    PubMed Central

    Van Laar, Tricia A.; Esani, Saika; Birges, Tyler J.; Hazen, Bethany; Thomas, Jason M.

    2018-01-01

    ABSTRACT Pseudomonas aeruginosa is a ubiquitous Gram-negative bacterium that can cause severe opportunistic infections. The principal redox buffer employed by this organism is glutathione (GSH). To assess the role of GSH in the virulence of P. aeruginosa, a number of analyses were performed using a mutant strain deficient in gshA, which does not produce GSH. The mutant strain exhibited a growth delay in minimal medium compared to the wild-type strain. Furthermore, the gshA mutant was defective in biofilm and persister cell formation and in swimming and swarming motility and produced reduced levels of pyocyanin, a key virulence factor. Finally, the gshA mutant strain demonstrated increased sensitivity to methyl viologen (a redox cycling agent) as well as the thiol-reactive antibiotics fosfomycin and rifampin. Taken together, these data suggest a key role for GSH in the virulence of P. aeruginosa. IMPORTANCE Pseudomonas aeruginosa is a ubiquitous bacterium that can cause severe opportunistic infections, including many hospital-acquired infections. It is also a major cause of infections in patients with cystic fibrosis. P. aeruginosa is intrinsically resistant to a number of drugs and is capable of forming biofilms that are difficult to eradicate with antibiotics. The number of drug-resistant strains is also increasing, making treatment of P. aeruginosa infections very difficult. Thus, there is an urgent need to understand how P. aeruginosa causes disease in order to find novel ways to treat infections. We show that the principal redox buffer, glutathione (GSH), is involved in intrinsic resistance to the fosfomycin and rifampin antibiotics. We further demonstrate that GSH plays a role in P. aeruginosa disease and infection, since a mutant lacking GSH has less biofilm formation, is less able to swarm, and produces less pyocyanin, a pigment associated with infection. PMID:29669887

  14. Escherichia coli mutants impaired in maltodextrin transport.

    PubMed

    Wandersman, C; Schwartz, M; Ferenci, T

    1979-10-01

    Wild-type Escherichia coli K-12 was found to grow equally well on maltose and on maltodextrins containing up to seven glucose residues. Three classes of mutants unable to grow on maltodextrins, but still able to grow on maltose, were investigated in detail. The first class, already known, was composed of phage lambda-resistant mutants, which lack the outer membrane protein coded by gene lamB. These mutants grow on maltose and maltotriose but not at all on maltotetraose and longer maltodextrins which cannot cross the outer membrane. A second class of mutants were affected in malE, the structural gene of the periplasmic maltose binding protein. The maltose binding proteins isolated from the new mutants were altered in their substrate binding properties, but not in a way that could account for the mutant phenotypes. Rather, the results of growth experiments and transport studies suggest that these malE mutants are impaired in their ability to transport maltodextrins across the outer membrane. This implies that the maltose binding protein (in wild-type strains) cooperates with the lambda receptor in permeation through the outer membrane. The last class of mutants described in this paper were affected in malG, or perhaps in an as yet undetected gene close to malG. They were defective in the transfer of maltodextrins from the periplasmic space to the cytoplasm but only slightly affected in the transport of maltose.

  15. Production and characterization of streptomycin dependent mutants of Pasteurella multocida from bovine haemorrhagic septicaemia.

    PubMed Central

    de Alwis, M C; Carter, G R; Chengappa, M M

    1980-01-01

    A large number of streptomycin dependent mutants were produced from bovine haemorrhagic septicaemia strains of Pasteurella multocida. The mutants required a minimum concentration of 25-50 microgram/mL streptomycin for growth and tolerated a concentration of 200 mg/mL. These mutants were avirulent to mice, when inoculated alone, but some mutants killed mice when inoculated with streptomycin. Biochemically all mutants were uniform and similar to the wild type. Most mutants were stable, but a few produced streptomycin independent revertants. The rate of reversion varied with each mutant. Most revertants were highly virulent for mice, some totally avirulant and a few relatively avirulent. PMID:6778598

  16. Accumulation of 10 Fluoroquinolones by Wild-Type or Efflux Mutant Streptococcus pneumoniae

    PubMed Central

    Piddock, Laura J. V.; Johnson, M. M.

    2002-01-01

    A method for measuring fluoroquinolone accumulation by Streptococcus pneumoniae was rigorously examined. The accumulation of ciprofloxacin, clinafloxacin, gatifloxacin, grepafloxacin, levofloxacin, moxifloxacin, norfloxacin, ofloxacin, sitafloxacin, and trovafloxacin in the presence and absence of either carbonyl cyanide m-chlorophenyl-hydrazone (CCCP) or reserpine was determined for two wild-type fluoroquinolone-susceptible capsulated S. pneumoniae strains (M3 and M4) and the noncapsulated strain R6. Two efflux mutants, R6N (which overexpresses PmrA) and a mutant of M4, M22 (no expression of PmrA), were also examined. Essentially, the fluoroquinolones fell into two groups. (i) One group consisting of ciprofloxacin, grepafloxacin, and norfloxacin accumulated to 72 to 92 ng/mg (dry weight) of cells in all strains. (ii) The remainder of the agents accumulated to 3 to 30 ng/mg (dry weight) of cells. With a decrease in hydrophobicity, there was a decrease in the concentration accumulated. With an increase in the molecular weight of the free form of each agent, there was also a decrease in the concentration accumulated. The strains differed in their responses to reserpine and CCCP. For the three fluoroquinolone-susceptible strains, only reserpine had a significant effect upon accumulation of moxifloxacin and clinafloxacin by M3 and showed no effect for the other agents and strains. For M3 and M4, CCCP enhanced the concentration of ciprofloxacin and norfloxacin accumulated, whereas for R6, the effect was only statistically significant for ofloxacin. Efflux mutant M22 accumulated less ciprofloxacin, gatifloxacin, and ofloxacin than M4 did. M22 accumulated more norfloxacin than M4 did. Reserpine and CCCP had variable effects as for the other strains. Differences in the accumulation of fluoroquinolones by R6 and R6N were highly dependent upon growth phase, and only for norfloxacin was there a significant difference between two strains. PMID:11850266

  17. Identification of Yeast V-ATPase Mutants by Western Blots Analysis of Whole Cell Lysates

    NASA Astrophysics Data System (ADS)

    Parra-Belky, Karlett

    2002-11-01

    A biochemistry laboratory was designed for an undergraduate course to help students better understand the link between molecular engineering and biochemistry. Students identified unknown yeast strains with high specificity using SDS-PAGE and Western blot analysis of whole cell lysates. This problem-solving exercise is a common application of biochemistry in biotechnology research. Three different strains were used: a wild-type and two mutants for the proton pump vacuolar ATPase (V-ATPase). V-ATPases are multisubunit enzymes and the mutants used were deletion mutants; each lacked one structural gene of the complex. After three, three-hour labs, mutant strains were easily identified by the students and distinguished from wild-type cells analyzing the pattern of SDS-PAGE distribution of proteins. Identifying different subunits of one multimeric protein allowed for discussion of the structure and function of this metabolic enzyme, which captured the interest of the students. The experiment can be adapted to other multimeric protein complexes and shows improvement of the described methodology over previous reports, perhaps because the problem and its solution are representative of the type of techniques currently used in research labs.

  18. Generation of a glucose de-repressed mutant of Trichoderma reesei using disparity mutagenesis.

    PubMed

    Iwakuma, Hidekazu; Koyama, Yoshiyuki; Miyachi, Ayako; Nasukawa, Masashi; Matsumoto, Hitoshi; Yano, Shuntaro; Ogihara, Jun; Kasumi, Takafumi

    2016-01-01

    We obtained a novel glucose de-repressed mutant of Trichoderma reesei using disparity mutagenesis. A plasmid containing DNA polymerase δ lacking proofreading activity, and AMAI, an autonomously replicating sequence was introduced into T. reesei ATCC66589. The rate of mutation evaluated with 5-fluoroorotic acid resistance was approximately 30-fold higher than that obtained by UV irradiation. The transformants harboring incompetent DNA polymerase δ were then selected on 2-deoxyglucose agar plates with hygromycin B. The pNP-lactoside hydrolyzing activities of mutants were 2 to 5-fold higher than the parent in liquid medium containing glucose. Notably, the amino acid sequence of cre1, a key gene involved in glucose repression, was identical in the mutant and parent strains, and further, the cre1 expression levels was not abolished in the mutant. Taken together, these results demonstrate that the strains of T. reesei generated by disparity mutagenesis are glucose de-repressed variants that contain mutations in yet-unidentified factors other than cre1.

  19. Functional characterization of mutant strains of the cyanobacterium Synechocystis sp. PCC 6803 lacking short domains within the large, lumen-exposed loop of the chlorophyll protein CP47 in photosystem II.

    PubMed

    Gleiter, H M; Haag, E; Shen, J R; Eaton-Rye, J J; Inoue, Y; Vermaas, W F; Renger, G

    1994-10-11

    Several autotrophic mutant strains of Synechocystis sp. PCC 6803 carrying short deletions or a single-site mutation within the large, lumen-exposed loop (loop E) of the chlorophyll a-binding photosystem II core protein, CP47, are analyzed for their functional properties by measuring the flash-induced pattern of thermoluminescence, oxygen yield, and fluorescence quantum yield. A physiological and biochemical characterization of these mutant strains has been given in two previous reports [Eaton-Rye, J.J., & Vermaas, W.F.J. (1991) Plant Mol. Biol. 17, 1165-1177; Haag, E., Eaton-Rye, J.J., Renger, G., & Vermaas, S. F.J. (1993) Biochemistry 32, 4444-4454]. The results of the present study show that deletion of charged and conserved amino acids in a region roughly located between residues 370 and 390 decreases the binding affinity of the extrinsic PS II-O protein to photosystem II. Marked differences with PSII-O deletion mutants are observed with respect to Ca2+ requirement and the flash-induced pattern of oxygen evolution. Under conditions where a sufficient light activation is provided, the psbB mutants assayed in this study reveal normal S-state parameters and lifetimes. The results bear two basic implications: (i) the manganese involved in water oxidation can still be bound in a functionally normal or only slightly distorted manner, and (ii) the binding of the extrinsic PS II-O protein to photosystem II is impaired in mutants carrying a deletion in the domain between residues 370 and 390, but the presence of the PS II-O protein is still of functional relevance for the PS II complex, e.g., for maintenance of a high-affinity binding site for Ca2+ and/or involvement during the process of photoactivation.

  20. Glucose Starvation Alters Heat Shock Response, Leading to Death of Wild Type Cells and Survival of MAP Kinase Signaling Mutant

    PubMed Central

    Higgins, LeeAnn; Markowski, Todd; Brambl, Robert

    2016-01-01

    A moderate heat shock induces Neurospora crassa to synthesize large quantities of heat shock proteins that are protective against higher, otherwise lethal temperatures. However, wild type cells do not survive when carbohydrate deprivation is added to heat shock. In contrast, a mutant strain defective in a stress-activated protein kinase does survive the combined stresses. In order to understand the basis for this difference in survival, we have determined the relative levels of detected proteins in the mutant and wild type strain during dual stress, and we have identified gene transcripts in both strains whose quantities change in response to heat shock or dual stress. These data and supportive experimental evidence point to reasons for survival of the mutant strain. By using alternative respiratory mechanisms, these cells experience less of the oxidative stress that proves damaging to wild type cells. Of central importance, mutant cells recycle limited resources during dual stress by undergoing autophagy, a process that we find utilized by both wild type and mutant cells during heat shock. Evidence points to inappropriate activation of TORC1, the central metabolic regulator, in wild type cells during dual stress, based upon behavior of an additional signaling mutant and inhibitor studies. PMID:27870869

  1. CHO-cell mutant with a defect in cytokinesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, L.H.; Lindl, P.A.

    1976-01-01

    In a selection procedure designed to enrich for temperature-sensitive mutant cells blocked in mitosis a CHO-cell mutant was isolated which has a defect in cytokinesis as the basis of its temperature-sensitive phenotype. Cultures of the mutant had an abnormally high percentage (ie, 34 percent) of polyploid cells at the permissive temperature of 34/sup 0/C and showed further increased frequencies of polyploidy as well as many multinucleated cells at 38.5/sup 0/ and 39.5/sup 0/. When the mutant cells were synchronized in metaphase by Colcemid arrest and then placed into fresh medium at nonpermissive temperature, they did not divide although the completionmore » of mitosis appeared cytologically normal. Ultrastructural examination by electron microscopy of such synchronized cells at telophase revealed no specific defects in cellular components other than failure of development of a normal midbody. The sensitivity of the mutant to cytochalasin B and to Colcemid was the same as for wild-type cells. This mutation behaved as recessive in tetraploid cell hybrids constructed by fusing the mutant with a CHO strain which was wild-type with respect to temperature sensitivity.« less

  2. Assessment of the Toxicity of CuO Nanoparticles by Using Saccharomyces cerevisiae Mutants with Multiple Genes Deleted

    PubMed Central

    Bao, Shaopan; Lu, Qicong; Dai, Heping; Zhang, Chao

    2015-01-01

    To develop applicable and susceptible models to evaluate the toxicity of nanoparticles, the antimicrobial effects of CuO nanoparticles (CuO-NPs) on various Saccharomyces cerevisiae (S. cerevisiae) strains (wild type, single-gene-deleted mutants, and multiple-gene-deleted mutants) were determined and compared. Further experiments were also conducted to analyze the mechanisms associated with toxicity using copper salt, bulk CuO (bCuO), carbon-shelled copper nanoparticles (C/Cu-NPs), and carbon nanoparticles (C-NPs) for comparisons. The results indicated that the growth inhibition rates of CuO-NPs for the wild-type and the single-gene-deleted strains were comparable, while for the multiple-gene deletion mutant, significantly higher toxicity was observed (P < 0.05). When the toxicity of the CuO-NPs to yeast cells was compared with the toxicities of copper salt and bCuO, we concluded that the toxicity of CuO-NPs should be attributed to soluble copper rather than to the nanoparticles. The striking difference in adverse effects of C-NPs and C/Cu-NPs with equivalent surface areas also proved this. A toxicity assay revealed that the multiple-gene-deleted mutant was significantly more sensitive to CuO-NPs than the wild type. Specifically, compared with the wild-type strain, copper was readily taken up by mutant strains when cell permeability genes were knocked out, and the mutants with deletions of genes regulated under oxidative stress (OS) were likely producing more reactive oxygen species (ROS). Hence, as mechanism-based gene inactivation could increase the susceptibility of yeast, the multiple-gene-deleted mutants should be improved model organisms to investigate the toxicity of nanoparticles. PMID:26386067

  3. Clavulanic acid production by the MMS 150 mutant obtained from wild type Streptomyces clavuligerus ATCC 27064

    PubMed Central

    da Silva Vasconcelos, Eliton; de Lima, Vanderlei Aparecido; Goto, Leandro Seiji; Cruz-Hernández, Isara Lourdes; Hokka, Carlos Osamu

    2013-01-01

    Clavulanic acid (CA) is a powerful inhibitor of the beta-lactamases, enzymes produced by bacteria resistants to penicillin and cefalosporin. This molecule is produced industrially by strains of Streptomyces clavuligerus in complex media which carbon and nitrogen resources are supplied by inexpensive compounds still providing high productivity. The genetic production improvement using physical and chemical mutagenic agents is an important strategy in programs of industrial production development of bioactive metabolites. However, parental strains are susceptible to loss of their original productivity due genetic instability phenomenona. In this work, some S. clavuligerus mutant strains obtained by treatment with UV light and with MMS are compared with the wild type (Streptomyces clavuligerus ATCC 27064). The results indicated that the random mutations originated some strains with different phenotypes, most divergent demonstrated by the mutants strains named AC116, MMS 150 and MMS 54, that exhibited lack of pigmentation in their mature spores. Also, the strain MMS 150 presented a larger production of CA when cultivated in semi-synthetics media. Using other media, the wild type strain obtained a larger CA production. Besides, using the modifed complex media the MMS 150 strain showed changes in its lipolitic activity and a larger production of CA. The studies also allowed finding the best conditions for a lipase activity exhibited by wild type S. clavuligerus and the MMS150 mutant. PMID:24688492

  4. Insoluble Glucans from Planktonic and Biofilm Cultures of Mutants of Leuconostoc mesenteroides NRRL B-1355

    USDA-ARS?s Scientific Manuscript database

    Leuconostoc mesenteroides strain NRRL B-1355 produces the soluble exopolysaccharides alternan and dextran in planktonic cultures. Mutants of this strain are available that are deficient in the production of alternan, dextran, or both. Our recent work demonstrated that biofilms from all strains con...

  5. MIP-MAP: High-Throughput Mapping of Caenorhabditis elegans Temperature-Sensitive Mutants via Molecular Inversion Probes

    PubMed Central

    Mok, Calvin A.; Au, Vinci; Thompson, Owen A.; Edgley, Mark L.; Gevirtzman, Louis; Yochem, John; Lowry, Joshua; Memar, Nadin; Wallenfang, Matthew R.; Rasoloson, Dominique; Bowerman, Bruce; Schnabel, Ralf; Seydoux, Geraldine; Moerman, Donald G.; Waterston, Robert H.

    2017-01-01

    Mutants remain a powerful means for dissecting gene function in model organisms such as Caenorhabditis elegans. Massively parallel sequencing has simplified the detection of variants after mutagenesis but determining precisely which change is responsible for phenotypic perturbation remains a key step. Genetic mapping paradigms in C. elegans rely on bulk segregant populations produced by crosses with the problematic Hawaiian wild isolate and an excess of redundant information from whole-genome sequencing (WGS). To increase the repertoire of available mutants and to simplify identification of the causal change, we performed WGS on 173 temperature-sensitive (TS) lethal mutants and devised a novel mapping method. The mapping method uses molecular inversion probes (MIP-MAP) in a targeted sequencing approach to genetic mapping, and replaces the Hawaiian strain with a Million Mutation Project strain with high genomic and phenotypic similarity to the laboratory wild-type strain N2. We validated MIP-MAP on a subset of the TS mutants using a competitive selection approach to produce TS candidate mapping intervals with a mean size < 3 Mb. MIP-MAP successfully uses a non-Hawaiian mapping strain and multiplexed libraries are sequenced at a fraction of the cost of WGS mapping approaches. Our mapping results suggest that the collection of TS mutants contains a diverse library of TS alleles for genes essential to development and reproduction. MIP-MAP is a robust method to genetically map mutations in both viable and essential genes and should be adaptable to other organisms. It may also simplify tracking of individual genotypes within population mixtures. PMID:28827289

  6. Direct selection of Clostridium acetobutylicum fermentation mutants by a proton suicide method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cueto, P.H.; Mendez, B.S.

    Clostridium acetobutylicum ATCC 10132 mutants altered in acetic acid synthesis or in the shift to solventogenesis were directly selected by a proton suicide method after mutagenic treatment, by using bromide and bromate as selective agents. The mutants were characterized according to their solvent and acid production. On the selection plates they differed in colony phenotype from the parent strain.

  7. Cariogenicity of a lactate dehydrogenase-deficient mutant of Streptococcus mutans serotype c in gnotobiotic rats.

    PubMed

    Fitzgerald, R J; Adams, B O; Sandham, H J; Abhyankar, S

    1989-03-01

    A lactate dehydrogenase-deficient (Ldh-) mutant of a human isolate of Streptococcus mutans serotype c was tested in a gnotobiotic rat caries model. Compared with the wild-type Ldh-positive (Ldh+) strains, it was significantly (alpha less than or equal to 0.005) less cariogenic in experiments with two different sublines of Sprague-Dawley rats. The Ldh- mutant strain 044 colonized the oral cavity of the test animals to the same extent as its parent strain 041, although its initial implantation was slightly but not significantly (P greater than or equal to 0.2) less. Multiple oral or fecal samples plated on 2,3,5-triphenyltetrazolium indicator medium revealed no evidence of back mutation from Ldh- to Ldh+ in vivo. Both Ldh+ strain 041 and Ldh- strain 044 demonstrated bacteriocinlike activity in vitro against a number of human strains of mutans streptococci representing serotype a (S. cricetus) and serotypes c and e (S. mutans). Serotypes b (S. rattus) and f (S. mutans) and strains of S. mitior, S. sanguis, and S. salivarius were not inhibited. Thus, Ldh mutant strain 044 possesses a number of desirable traits that suggest it should be investigated further as a possible effector strain for replacement therapy of dental caries. These traits include its stability and low cariogenicity in the sensitive gnotobiotic rat caries model, its bacteriocinlike activity against certain other cariogenic S. mutans (but not against more inocuous indigenous oral streptococci), and the fact that it is a member of the most prevalent human serotype of cariogenic streptococci.

  8. Characterization of the Burkholderia mallei tonB Mutant and Its Potential as a Backbone Strain for Vaccine Development

    PubMed Central

    Mott, Tiffany M.; Vijayakumar, Sudhamathi; Sbrana, Elena; Endsley, Janice J.; Torres, Alfredo G.

    2015-01-01

    Background In this study, a Burkholderia mallei tonB mutant (TMM001) deficient in iron acquisition was constructed, characterized, and evaluated for its protective properties in acute inhalational infection models of murine glanders and melioidosis. Methodology/Principal Findings Compared to the wild-type, TMM001 exhibits slower growth kinetics, siderophore hyper-secretion and the inability to utilize heme-containing proteins as iron sources. A series of animal challenge studies showed an inverse correlation between the percentage of survival in BALB/c mice and iron-dependent TMM001 growth. Upon evaluation of TMM001 as a potential protective strain against infection, we found 100% survival following B. mallei CSM001 challenge of mice previously receiving 1.5 x 104 CFU of TMM001. At 21 days post-immunization, TMM001-treated animals showed significantly higher levels of B. mallei-specific IgG1, IgG2a and IgM when compared to PBS-treated controls. At 48 h post-challenge, PBS-treated controls exhibited higher levels of serum inflammatory cytokines and more severe pathological damage to target organs compared to animals receiving TMM001. In a cross-protection study of acute inhalational melioidosis with B. pseudomallei, TMM001-treated mice were significantly protected. While wild type was cleared in all B. mallei challenge studies, mice failed to clear TMM001. Conclusions/Significance Although further work is needed to prevent chronic infection by TMM001 while maintaining immunogenicity, our attenuated strain demonstrates great potential as a backbone strain for future vaccine development against both glanders and melioidosis. PMID:26114445

  9. Characterization of the Burkholderia mallei tonB Mutant and Its Potential as a Backbone Strain for Vaccine Development.

    PubMed

    Mott, Tiffany M; Vijayakumar, Sudhamathi; Sbrana, Elena; Endsley, Janice J; Torres, Alfredo G

    2015-01-01

    In this study, a Burkholderia mallei tonB mutant (TMM001) deficient in iron acquisition was constructed, characterized, and evaluated for its protective properties in acute inhalational infection models of murine glanders and melioidosis. Compared to the wild-type, TMM001 exhibits slower growth kinetics, siderophore hyper-secretion and the inability to utilize heme-containing proteins as iron sources. A series of animal challenge studies showed an inverse correlation between the percentage of survival in BALB/c mice and iron-dependent TMM001 growth. Upon evaluation of TMM001 as a potential protective strain against infection, we found 100% survival following B. mallei CSM001 challenge of mice previously receiving 1.5 x 10(4) CFU of TMM001. At 21 days post-immunization, TMM001-treated animals showed significantly higher levels of B. mallei-specific IgG1, IgG2a and IgM when compared to PBS-treated controls. At 48 h post-challenge, PBS-treated controls exhibited higher levels of serum inflammatory cytokines and more severe pathological damage to target organs compared to animals receiving TMM001. In a cross-protection study of acute inhalational melioidosis with B. pseudomallei, TMM001-treated mice were significantly protected. While wild type was cleared in all B. mallei challenge studies, mice failed to clear TMM001. Although further work is needed to prevent chronic infection by TMM001 while maintaining immunogenicity, our attenuated strain demonstrates great potential as a backbone strain for future vaccine development against both glanders and melioidosis.

  10. Gravitropism in roots of intermediate-starch mutants of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Kiss, J. Z.; Wright, J. B.; Caspar, T.

    1996-01-01

    Gravitropism was studied in roots of wild type (WT) Arabidopsis thaliana (L.) Heynh. (strain Wassilewskija) and three starch-deficient mutants that were generated by T-DNA insertional mutagenesis. One of these mutants was starchless while the other two were intermediate mutants, which had 51% and 60%, respectively, of the WT amount of starch as determined by light and electron microscopy. The four parameters used to assay gravitropism were: orientation during vertical growth, time course of curvature, induction, and intermittent stimulation experiments. WT roots were much more responsive to gravity than were roots of the starchless mutant, and the intermediate starch mutants exhibited an intermediate graviresponse. Our data suggest that lowered starch content in the mutants primarily affects gravitropism rather than differential growth because both phototropic curvature and growth rates were approximately equal among all four genotypes. Since responses of intermediate-starch mutants were closer to the WT response than to the starchless mutant, it appears that 51-60% of the WT level of starch is near the threshold amount needed for full gravitropic sensitivity. While other interpretations are possible, the data are consistent with the starch statolith hypothesis for gravity perception in that the degree of graviresponsiveness is proportional to the total mass of plastids per cell.

  11. Construction of "Toxin Complex" in a Mutant Serotype C Strain of Clostridium botulinum Harboring a Defective Neurotoxin Gene.

    PubMed

    Suzuki, Tomonori; Nagano, Thomas; Niwa, Koichi; Uchino, Masataka; Tomizawa, Motohiro; Sagane, Yoshimasa; Watanabe, Toshihiro

    2017-01-01

    A non-toxigenic mutant of the toxigenic serotype C Clostridium botulinum strain Stockholm (C-St), C-N71, does not produce the botulinum neurotoxin (BoNT). However, the original strain C-St produces botulinum toxin complex, in which BoNT is associated with non-toxic non-hemagglutinin (NTNHA) and three hemagglutinin proteins (HA-70, HA-33, and HA-17). Therefore, in this study, we aimed to elucidate the effects of bont gene knockout on the formation of the "toxin complex." Nucleotide sequence analysis revealed that a premature stop codon was introduced in the bont gene, whereas other genes were not affected by this mutation. Moreover, we successfully purified the "toxin complex" produced by C-N71. The "toxin complex" was identified as a mixture of NTNHA/HA-70/HA-17/HA-33 complexes with intact NTNHA or C-terminally truncated NTNHA, without BoNT. These results indicated that knockout of the bont gene does not affect the formation of the "toxin complex." Since the botulinum toxin complex has been shown to play an important role in oral toxin transport in the human and animal body, a non-neurotoxic "toxin complex" of C-N71 may be valuable for the development of an oral drug delivery system.

  12. Immunogenicity and protective efficacy of the Mycobacterium tuberculosis fadD26 mutant

    PubMed Central

    Infante, E; Aguilar, L D; Gicquel, B; Pando, R Hernandez

    2005-01-01

    The Mycobacterium tuberculosis fadD26 mutant has impaired synthesis of phthiocerol dimycocerosates (DIM) and is attenuated in BALB/c mice. Survival analysis following direct intratracheal infection confirmed the attenuation: 60% survival at 4 months post-infection versus 100% mortality at 9 weeks post-infection with the wild-type strain. The fadD26 mutant induced less pneumonia and larger DTH reactions. It induced lower but progressive production of interferon (IFN)-γ, interleukin (IL)-4 and tumour necrosis factor (TNF)-α. Used as a subcutaneous vaccine 60 days before intratracheal challenge with a hypervirulent strain of M. tuberculosis (Beijing code 9501000), the mutant induced a higher level of protection than did Bacille Calmette–Guérin (BCG). Seventy per cent of the mice vaccinated with the fadD26 mutant survived at 16 weeks after challenge compared to 30% of those vaccinated with BCG. Similarly, there was less tissue damage (pneumonia) and lower colony-forming units (CFU) in the mice vaccinated with the fadD26 mutant compared to the findings in mice vaccinated with BCG. These data suggest that DIM synthesis is important for the pathogenicity of M. tuberculosis, and that inactivation of DIM synthesis can increase the immunogenicity of live vaccines, and increase their ability to protect against tuberculosis. PMID:15958066

  13. Characterization of Mutants Deficient in the l,d-Carboxypeptidase (DacB) and WalRK (VicRK) Regulon, Involved in Peptidoglycan Maturation of Streptococcus pneumoniae Serotype 2 Strain D39▿†

    PubMed Central

    Barendt, Skye M.; Sham, Lok-To; Winkler, Malcolm E.

    2011-01-01

    Peptidoglycan (PG) hydrolases play critical roles in the remodeling of bacterial cell walls during division. PG hydrolases have been studied extensively in several bacillus species, such as Escherichia coli and Bacillus subtilis, but remain relatively uncharacterized in ovococcus species, such as Streptococcus pneumoniae (pneumococcus). In this work, we identified genes that encode proteins with putative PG hydrolytic domains in the genome of S. pneumoniae strain D39. Knockout mutations in these genes were constructed, and the resulting mutants were characterized in comparison with the parent strain for growth, cell morphology, PG peptide incorporation, and in some cases, PG peptide composition. In addition, we characterized deletion mutations in nonessential genes of unknown function in the WalRKSpn two-component system regulon, which also contains the essential pcsB cell division gene. Several mutants did not show overt phenotypes, which is perhaps indicative of redundancy. In contrast, two new mutants showed distinct defects in PG biosynthesis. One mutation was in a gene designated dacB (spd_0549), which we showed encodes an l,d-carboxypeptidase involved in PG maturation. Notably, dacB mutants, similar to dacA (d,d-carboxypeptidase) mutants, exhibited defects in cell shape and septation, consistent with the idea that the availability of PG peptide precursors is important for proper PG biosynthesis. Epistasis analysis indicated that DacA functions before DacB in d-Ala removal, and immunofluorescence microscopy showed that DacA and DacB are located over the entire surface of pneumococcal cells. The other mutation was in WalRKSpn regulon gene spd_0703, which encodes a putative membrane protein that may function as a type of conserved streptococcal shape, elongation, division, and sporulation (SEDS) protein. PMID:21378199

  14. Uptake of exogenous coenzyme Q and transport to mitochondria is required for bc1 complex stability in yeast coq mutants.

    PubMed

    Santos-Ocaña, Carlos; Do, Thai Q; Padilla, Sergio; Navas, Placido; Clarke, Catherine F

    2002-03-29

    Coenzyme Q (Q) is an essential component of the mitochondrial respiratory chain in eukaryotic cells but also is present in other cellular membranes where it acts as an antioxidant. Because Q synthesis machinery in Saccharomyces cerevisiae is located in the mitochondria, the intracellular distribution of Q indicates the existence of intracellular Q transport. In this study, the uptake of exogenous Q(6) by yeast and its transport from the plasma membrane to mitochondria was assessed in both wild-type and in Q-less coq7 mutants derived from four distinct laboratory yeast strains. Q(6) supplementation of medium containing ethanol, a non-fermentable carbon source, rescued growth in only two of the four coq7 mutant strains. Following culture in medium containing dextrose, the added Q(6) was detected in the plasma membrane of each of four coq7 mutants tested. This detection of Q(6) in the plasma membrane was corroborated by measuring ascorbate stabilization activity, as catalyzed by NADH-ascorbate free radical reductase, a transmembrane redox activity that provides a functional assay of plasma membrane Q(6). These assays indicate that each of the four coq7 mutant strains assimilate exogenous Q(6) into the plasma membrane. The two coq7 mutant strains rescued by Q(6) supplementation for growth on ethanol contained mitochondrial Q(6) levels similar to wild type. However, the content of Q(6) in mitochondria from the non-rescued strains was only 35 and 8%, respectively, of that present in the corresponding wild-type parental strains. In yeast strains rescued by exogenous Q(6), succinate-cytochrome c reductase activity was partially restored, whereas non-rescued strains contained very low levels of activity. There was a strong correlation between mitochondrial Q(6) content, succinate-cytochrome c reductase activity, and steady state levels of the cytochrome c(1) polypeptide. These studies show that transport of extracellular Q(6) to the mitochondria operates in yeast but is

  15. Salmonella DNA Adenine Methylase Mutants Confer Cross-Protective Immunity

    PubMed Central

    Heithoff, Douglas M.; Enioutina, Elena Y.; Daynes, Raymond A.; Sinsheimer, Robert L.; Low, David A.; Mahan, Michael J.

    2001-01-01

    Salmonella isolates that lack or overproduce DNA adenine methylase (Dam) elicited a cross-protective immune response to different Salmonella serovars. The protection afforded by the Salmonella enterica serovar Typhimurium Dam vaccine was greater than that elicited in mice that survived a virulent infection. S. enterica serovar Typhimurium Dam mutant strains exhibited enhanced sensitivity to mediators of innate immunity such as antimicrobial peptides, bile salts, and hydrogen peroxide. Also, S. enterica serovar Typhimurium Dam− vaccines were not immunosuppressive; unlike wild-type vaccines, they failed to induce increased nitric oxide levels and permitted a subsequent robust humoral response to diptheria toxoid antigen in infected mice. Dam mutant strains exhibited a low-grade persistence which, coupled with the nonimmunosuppression and the ectopic protein expression caused by altered levels of Dam, may provide an expanded source of potential antigens in vaccinated hosts. PMID:11598044

  16. Strain of Escherichia coli with a temperature-sensitive mutation affecting ribosomal ribonucleic acid accumulation.

    PubMed Central

    Frey, T; Newlin, L L; Atherly, A G

    1975-01-01

    A mutant of Escherichia coli has been isolated that has a temperature-sensitive mutation that results in specific loss of ribosomal ribonucleic acid (RNA) synthesis and some reduction in messenger RNA synthesis. When the strain was grown in glucose medium at a restrictive temperature, RNA accumulation ceased, but both messenger RNA and protein synthesis continued for an extended time. Because carbon metabolism was slowed drastically when strain AA-157 was placed at the restrictive temperature, this phenotype can be compared with carbon depletion conditions present during diauxic lag. However, the phenotype of mutant AA-157 differs from shift-down conditions in that guanosine-3',5'-tetraphosphate levels are unaffected; therefore, a different site is affected. This mutant strain (AA-157) thus shows many characteristics similar to an aldolase mutant previously reported (Böck and Neidhardt, 1966). However, the mutation occurred in a different position on the E. coli genetic map, and furthermore, aldolase was not temperature sensitive in strain AA-157. In this paper we present a study of macromolecular biosynthesis in this mutant. PMID:1090609

  17. The Anti-Methicillin-Resistant Staphylococcus aureus Quinolone WCK 771 Has Potent Activity against Sequentially Selected Mutants, Has a Narrow Mutant Selection Window against Quinolone-Resistant Staphylococcus aureus, and Preferentially Targets DNA Gyrase▿ †

    PubMed Central

    Bhagwat, Sachin S.; Mundkur, Lakshmi A.; Gupte, Shrikant V.; Patel, Mahesh V.; Khorakiwala, Habil F.

    2006-01-01

    WCK 771 is a broad-spectrum fluoroquinolone with enhanced activity against quinolone-resistant staphylococci. To understand the impact of the target-level interactions of WCK 771 on its antistaphylococcal pharmacodynamic properties, we determined the MICs for genetically defined mutants and studied the mutant prevention concentrations (MPCs), the frequency of mutation, and the cidality against the wild type and double mutants. There was a twofold increase in the MICs of WCK 771 for single gyrA mutants, indicating that DNA gyrase is its primary target. All first- and second-step mutants selected by WCK 771 revealed gyrA and grlA mutations, respectively. The MICs of WCK 771 and clinafloxacin were found to be superior to those of other quinolones against strains with double and triple mutations. WCK 771 was also cidal for high-density double mutants at low concentrations. WCK 771 and clinafloxacin showed narrow mutant selection windows compared to those of the other quinolones. Against a panel of 50 high-level quinolone-resistant clinical isolates of staphylococci (ciprofloxacin MIC ≥ 16 μg/ml), the WCK 771 MPCs were ≤2 μg/ml for 68% of the strains and ≤4 μg/ml for 28% of the strains. Our results demonstrate that gyrA is the primary target of WCK 771 and that it has pharmacodynamic properties remarkably different from those of quinolones with dual targets (garenoxacin and moxifloxacin) and topoisomerase IV-specific quinolones (trovafloxacin). WCK 771 displayed an activity profile comparable to that of clinafloxacin, a dual-acting quinolone with a high affinity to DNA gyrase. Overall, the findings signify the key role of DNA gyrase in determining the optimal antistaphylococcal features of quinolones. PMID:16940059

  18. Cercosporin-deficient mutants by plasmid tagging in the asexual fungus Cercospora nicotianae.

    PubMed

    Chung, K-R; Ehrenshaft, M; Wetzel, D K; Daub, M E

    2003-11-01

    We have successfully adapted plasmid insertion and restriction enzyme-mediated integration (REMI) to produce cercosporin toxin-deficient mutants in the asexual phytopathogenic fungus Cercospora nicotianae. The use of pre-linearized plasmid or restriction enzymes in the transformation procedure significantly decreased the transformation frequency, but promoted a complicated and undefined mode of plasmid integration that leads to mutations in the C. nicotianae genome. Vector DNA generally integrated in multiple copies, and no increase in single-copy insertion was observed when enzymes were added to the transformation mixture. Out of 1873 transformants tested, 39 putative cercosporin toxin biosynthesis ( ctb) mutants were recovered that showed altered levels of cercosporin production. Seven ctb mutants were recovered using pre-linearized plasmids without the addition of enzymes, and these were considered to be non-REMI mutants. The correlation between a specific insertion and a mutant phenotype was confirmed using rescued plasmids as gene disruption vectors in the wild-type strain. Six out of fifteen rescued plasmids tested yielded cercosporin-deficient transformants when re-introduced into the wild-type strain, suggesting a link between the insertion site and the cercosporin-deficient phenotype. Sequence analysis of a fragment flanking the insert site recovered from one insertion mutant showed it to be disrupted in sequences with high homology to the acyl transferase domain of polyketide synthases from other fungi. Disruption of this polyketide synthase gene ( CTB1) using a rescued plasmid resulted in mutants that were defective in cercosporin production. Thus, we provide the first molecular evidence that cercosporin is synthesized via a polyketide pathway as previously hypothesized.

  19. Ultraviolet light-induced mutants of Streptococcus lactis subspecies diacetylactis with enhanced acid- or flavor-producing abilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuila, R.K.; Ranganathan, B.

    1978-04-01

    A strain of Streptococcus lactis subspecies diacetylactis S/sub 1/ isolated from fresh milk was exposed to 7200 ergs/mm/sup 2/ of ultraviolet radiation. Over 8100 colonies surviving from 7.4 x 10/sup 6/ cells exposed to radiation were screened on citrate agar for detection and isolation of mutants with increased flavor and/or acid production. Of the survivors, 960 were type-I mutants that exhibited clear zone on citrate agar after 18 h (presumed to be high diacetyl producers), and 288 were type-II mutants which did not exhibit clear zones on citrate agar for up to 72 h (high acid producers). Type-II mutants producedmore » an average .93 percent titratable acidity which was 34 percent more than the .69 percent of the parent. Reduction in titratable acidity (56 percent less) was considerable in type-I mutants, compared with the parent culture. Diacetyl + acetoin production by type-I mutants was 137.9 ppM which has 4.5 times more than that of the parental strain. Acetaldehyde production in the mutants varied from 1.5 to 34.5 ppM (parent culture 3.0 ppM). The mutants with increased acid and high acetoin plus diacetyl production were stable after 50 subcultures in milk.« less

  20. Production of Trichoderma strains with pesticide-polyresistance by mutagenesis and protoplast fusion.

    PubMed

    Hatvani, Lóránt; Manczinger, László; Kredics, László; Szekeres, András; Antal, Zsuzsanna; Vágvölgyi, Csaba

    2006-01-01

    The sensitivity of two cold-tolerant Trichoderma strains belonging to the species T. harzianum and T. atroviride was determined to a series of pesticides widely used in agriculture. From the 16 pesticides tested, seven fungicides: copper sulfate, carbendazim, mancozeb, tebuconazole, imazalil, captan and thiram inhibited colony growth of the test strains significantly with minimal inhibitory concentrations of 300, 0.4, 50, 100, 100, 100 and 50 microg/ml, respectively. Mutants resistant to carbendazim and tebuconazole were produced from both wild type strains by means of UV-mutagenesis. The cross-resistance capabilities and in vitro antagonistic properties of the mutants were determined. Carbendazim-resistant mutants showed total cross-resistance to benomyl and thiabendazole at a concentration of 20 microg/ml. Intraspecific protoplast fusion was carried out between carbendazim- and tebuconazole-resistant mutants of both parental strains, and putative haploid recombinants with stable resistance to both pesticides were produced in the case of T. atroviride. These pesticide-polyresistant progenies are potential candidates for application in an integrated pest management system.

  1. Elevated Cell Wall Serine in Pleiotropic Staphylococcal Mutants

    PubMed Central

    Korman, Ruth Z.

    1966-01-01

    Korman, Ruth Z. (Cornell University, Ithaca, N.Y.). Elevated cell wall serine in pleiotropic staphylococcal mutants. J. Bacteriol. 92:762–768. 1966.—Physically purified cell walls were prepared from two staphylococcal strains and from pleiotropic variants derived from them. The quantitative amino acid and amino sugar content of these walls is reported. The pleiotypes, which are identified culturally by their failure to elaborate coagulase, their resistance to bacteriophage, and their sensitivity to mannitol, have altered molar ratios of amino acids and amino sugars in their cell walls. In comparison with lysine content, the serine content of the mutant wall is elevated and the glycine content is reduced. The glucosamine content is reduced also. It is postulated that the pleiotropic mutants possess an altered cell wall biosynthetic pathway. Images PMID:5922547

  2. Restoration of gravitropic sensitivity in starch-deficient mutants of Arabidopsis by hypergravity

    NASA Technical Reports Server (NTRS)

    Fitzelle, K. J.; Kiss, J. Z.

    2001-01-01

    Despite the extensive study of plant gravitropism, there have been few experiments which have utilized hypergravity as a tool to investigate gravisensitivity in flowering plants. Previous studies have shown that starch-deficient mutants of Arabidopsis are less sensitive to gravity compared to the wild-type (WT). In this report, the question addressed was whether hypergravity could restore the sensitivity of starch-deficient mutants of Arabidopsis. The strains examined include a WT, a starchless mutant and a reduced-starch mutant. Vertical orientation studies with dark-grown seedlings indicate that increased centrifugal acceleration improves orientation relative to the acceleration vector for all strains, even the WT. For starchless roots, growth of seedlings under constant 5 g acceleration was required to restore orientation to the level of the WT at 1 g. In contrast, approximately 10 g was required to restore the orientation of the starchless mutant hypocotyls to a WT level at 1 g. Examination of plastid position in root cap columella cells of the starchless mutant revealed that the restoration of gravitropic sensitivity was correlated with the sedimentation of plastids toward the distal cell wall. Even in WT plants, hypergravity caused greater sedimentation of plastids and improved gravitropic capability. Collectively, these experiments support the hypothesis of a statolith-based system of gravity perception in plants. As far as is known, this is the first report to use hypergravity to study the mechanisms of gravitropism in Arabidopsis.

  3. [Mutant prevention concentrations of antibacterial agents to ocular pathogenic bacteria].

    PubMed

    Liang, Qing-Feng; Wang, Zhi-Qun; Li, Ran; Luo, Shi-Yun; Deng, Shi-Jing; Sun, Xu-Guang

    2009-01-01

    To establish a method to measure mutant prevention concentration (MPC) in vitro, and to measure MPC of antibacterial agents for ocular bacteria caused keratitis. It was an experimental study. Forty strains of ocular bacteria were separated from cornea in Beijing Institute of Ophthalmology, which included 8 strains of Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Pseudomonas aeruginosa and Klebsiella pneumoniae respectively. The minimal inhibitory concentration (MIC) of the levofloxacin (LVF), ofloxacin (OFL), ciprofloxacin (CIP), norfloxacin (NFL), tobramycin (TOB) and chloromycetin (CHL) were determined by agar dilution method from National Committee of Clinical Laboratory Standard (NCCLS). The MPC were measured by accumulate-bacterial methods with bacterial population inoculated more than 1.2 x 10(10) colony forming units per milliliter with Mueller-Hinton broth and tryptic soy agar plate. With the software of SPSS 11.0, the datum such as the range of MIC, MPC, MIC90 and MPC90 were calculated, and the selection index (MPC90/ MI90) and mutant selection window (MSW) were obtained. The MI90 of LVF and TOB (4 mg/L) to Staphylococcus aureus strains were the lowest. CIP showed the lowest MIC90 (0.25 mg/L) to Pseudomonas aeruginosa among six kinds of antibacterial agents. The MIC90 of LVF to Staphylococcus epidermidis (256 mg/L), Streptococcus pneumoniae (1 mg/L) and Klebsiella pneumoniae (0.25 mg/L) were lower than other antibacterial agents. The MPC90, MSW and the MPC90/MIC90 of levofloxacin showed lower values compared with other antibacterial medicines. From all the datum, the MIC90 of CHL was the highest and the activity was the weakest. Although the activity of LVF was higher to every kind of bacteria, CIP had the highest activity antibacterial to Pseudomonas aeruginosa. The capacity of CHL and TOB was weaker than Quinolones for restricting resistant mutants on ocular bacteria. LVF had the strongest capacity for restricting resistant

  4. MIP-MAP: High-Throughput Mapping of Caenorhabditis elegans Temperature-Sensitive Mutants via Molecular Inversion Probes.

    PubMed

    Mok, Calvin A; Au, Vinci; Thompson, Owen A; Edgley, Mark L; Gevirtzman, Louis; Yochem, John; Lowry, Joshua; Memar, Nadin; Wallenfang, Matthew R; Rasoloson, Dominique; Bowerman, Bruce; Schnabel, Ralf; Seydoux, Geraldine; Moerman, Donald G; Waterston, Robert H

    2017-10-01

    Mutants remain a powerful means for dissecting gene function in model organisms such as Caenorhabditis elegans Massively parallel sequencing has simplified the detection of variants after mutagenesis but determining precisely which change is responsible for phenotypic perturbation remains a key step. Genetic mapping paradigms in C . elegans rely on bulk segregant populations produced by crosses with the problematic Hawaiian wild isolate and an excess of redundant information from whole-genome sequencing (WGS). To increase the repertoire of available mutants and to simplify identification of the causal change, we performed WGS on 173 temperature-sensitive (TS) lethal mutants and devised a novel mapping method. The mapping method uses molecular inversion probes (MIP-MAP) in a targeted sequencing approach to genetic mapping, and replaces the Hawaiian strain with a Million Mutation Project strain with high genomic and phenotypic similarity to the laboratory wild-type strain N2 We validated MIP-MAP on a subset of the TS mutants using a competitive selection approach to produce TS candidate mapping intervals with a mean size < 3 Mb. MIP-MAP successfully uses a non-Hawaiian mapping strain and multiplexed libraries are sequenced at a fraction of the cost of WGS mapping approaches. Our mapping results suggest that the collection of TS mutants contains a diverse library of TS alleles for genes essential to development and reproduction. MIP-MAP is a robust method to genetically map mutations in both viable and essential genes and should be adaptable to other organisms. It may also simplify tracking of individual genotypes within population mixtures. Copyright © 2017 by the Genetics Society of America.

  5. TTSS2-deficient hha mutant of Salmonella Typhimurium exhibits significant systemic attenuation in immunocompromised hosts

    PubMed Central

    Vishwakarma, Vikalp; Pati, Niladri Bhusan; Ray, Shilpa; Das, Susmita; Suar, Mrutyunjay

    2014-01-01

    Non-typhoidal Salmonella (NTS) infections are emerging as leading problem worldwide and the variations in host immune status append to the concern of NTS. Salmonella enterica serovar Typhimurium is one of the causative agents of NTS infections and has been extensively studied. The inactivation of Salmonella pathogenicity island 2 (SPI2) encoded type-III secretion system 2 (TTSS2) has been reported rendering the strain incapable for systemic dissemination to host sites and has also been proposed as live-attenuated vaccine. However, infections from TTSS2-deficient Salmonella have also been reported. In this study, mutant strain MT15 was developed by inactivation of the hemolysin expression modulating protein (hha) in TTSS2-deficient S. Typhimurium background. The MT15 strain showed significant level of attenuation in immune-deprived murine colitis model when tested in iNos−/−, IL10−/−, and CD40L−/− mice groups in C57BL/6 background. Further, the mutation in hha does not implicate any defect in bacterial colonization to the host gut. The long-term infection of developed mutant strain conferred protective immune responses to suitably immunized streptomycin pre-treated C57BL/6 mice. The immunization enhanced the CD4+ and CD8+ cell types involved in bacterial clearance. The serum IgG and luminal secretory IgA (sIgA) was also found to be elevated after the due course of infection. Additionally, the immunized C57BL/6 mice were protected from the subsequent lethal infection of Salmonella Typhimurium. Collectively, these findings implicate the involvement of hemolysin expression modulating protein (Hha) in establishment of bacterial infection. In light of the observed attenuation of the developed mutant strain, this study proposes the possible significance of SPI2-deficient hha mutant as an alternative live-attenuated vaccine strain for use against lethal Salmonella infections. PMID:24401482

  6. Safety, Protective Immunity, and DIVA Capability of a Rough Mutant Salmonella Pullorum Vaccine Candidate in Broilers.

    PubMed

    Guo, Rongxian; Jiao, Yang; Li, Zhuoyang; Zhu, Shanshan; Fei, Xiao; Geng, Shizhong; Pan, Zhiming; Chen, Xiang; Li, Qiuchun; Jiao, Xinan

    2017-01-01

    Salmonella enterica subsp. enterica serovar Gallinarum biovar Pullorum ( Salmonella Pullorum) is highly adapted to chickens causing an acute systemic disease that results in high mortality. Vaccination represents one approach for promoting animal health, food safety and reducing environmental persistence in Salmonella control. An important consideration is that Salmonella vaccination in poultry should not interfere with the salmonellosis monitoring program. This is the basis of the DIVA (Differentiation of Infected and Vaccinated Animals) program. In order to achieve this goal, waaL mutant was developed on a spiC mutant that was developed previously. The safety, efficacy, and DIVA features of this vaccine candidate ( Salmonella Pullorum Δ spiC Δ waaL ) were evaluated in broilers. Our results show that the truncated LPS in the vaccine strain has a differentiating use as both a bacteriological marker (rough phenotype) and also as a serological marker facilitating the differentiation between infected and vaccinated chickens. The rough mutant showed adequate safety being avirulent in the host chicks and showed increased sensitivity to environmental stresses. Single intramuscular immunization of day-old broiler chicks with the mutant confers ideal protection against lethal wild type challenge by significantly stimulating both humoral and cellular immune responses as well as reducing the colonization of the challenge strain. Significantly lower mean pathology scores were observed in the vaccination group compared to the control group. Additionally, the mutant strain generated cross-protection against challenge with the wild type Salmonella Gallinarum thereby improving survival and with the wild type Salmonella Enteritidis thereby reducing colonization. These results suggest that the double-mutant strain may be a safe, effective, and cross-protective vaccine against Salmonella infection in chicks while conforming to the requirements of the DIVA program.

  7. A Yersinia pestis tat mutant is attenuated in bubonic and small-aerosol pneumonic challenge models of infection but not as attenuated by intranasal challenge.

    PubMed

    Bozue, Joel; Cote, Christopher K; Chance, Taylor; Kugelman, Jeffrey; Kern, Steven J; Kijek, Todd K; Jenkins, Amy; Mou, Sherry; Moody, Krishna; Fritz, David; Robinson, Camenzind G; Bell, Todd; Worsham, Patricia

    2014-01-01

    Bacterial proteins destined for the Tat pathway are folded before crossing the inner membrane and are typically identified by an N-terminal signal peptide containing a twin arginine motif. Translocation by the Tat pathway is dependent on the products of genes which encode proteins possessing the binding site of the signal peptide and mediating the actual translocation event. In the fully virulent CO92 strain of Yersinia pestis, the tatA gene was deleted. The mutant was assayed for loss of virulence through various in vitro and in vivo assays. Deletion of the tatA gene resulted in several consequences for the mutant as compared to wild-type. Cell morphology of the mutant bacteria was altered and demonstrated a more elongated form. In addition, while cultures of the mutant strain were able to produce a biofilm, we observed a loss of adhesion of the mutant biofilm structure compared to the biofilm produced by the wild-type strain. Immuno-electron microscopy revealed a partial disruption of the F1 antigen on the surface of the mutant. The virulence of the ΔtatA mutant was assessed in various murine models of plague. The mutant was severely attenuated in the bubonic model with full virulence restored by complementation with the native gene. After small-particle aerosol challenge in a pneumonic model of infection, the mutant was also shown to be attenuated. In contrast, when mice were challenged intranasally with the mutant, very little difference in the LD50 was observed between wild-type and mutant strains. However, an increased time-to-death and delay in bacterial dissemination was observed in mice infected with the ΔtatA mutant as compared to the parent strain. Collectively, these findings demonstrate an essential role for the Tat pathway in the virulence of Y. pestis in bubonic and small-aerosol pneumonic infection but less important role for intranasal challenge.

  8. A Yersinia pestis tat Mutant Is Attenuated in Bubonic and Small-Aerosol Pneumonic Challenge Models of Infection but Not As Attenuated by Intranasal Challenge

    PubMed Central

    Bozue, Joel; Cote, Christopher K.; Chance, Taylor; Kugelman, Jeffrey; Kern, Steven J.; Kijek, Todd K.; Jenkins, Amy; Mou, Sherry; Moody, Krishna; Fritz, David; Robinson, Camenzind G.; Bell, Todd; Worsham, Patricia

    2014-01-01

    Bacterial proteins destined for the Tat pathway are folded before crossing the inner membrane and are typically identified by an N-terminal signal peptide containing a twin arginine motif. Translocation by the Tat pathway is dependent on the products of genes which encode proteins possessing the binding site of the signal peptide and mediating the actual translocation event. In the fully virulent CO92 strain of Yersinia pestis, the tatA gene was deleted. The mutant was assayed for loss of virulence through various in vitro and in vivo assays. Deletion of the tatA gene resulted in several consequences for the mutant as compared to wild-type. Cell morphology of the mutant bacteria was altered and demonstrated a more elongated form. In addition, while cultures of the mutant strain were able to produce a biofilm, we observed a loss of adhesion of the mutant biofilm structure compared to the biofilm produced by the wild-type strain. Immuno-electron microscopy revealed a partial disruption of the F1 antigen on the surface of the mutant. The virulence of the ΔtatA mutant was assessed in various murine models of plague. The mutant was severely attenuated in the bubonic model with full virulence restored by complementation with the native gene. After small-particle aerosol challenge in a pneumonic model of infection, the mutant was also shown to be attenuated. In contrast, when mice were challenged intranasally with the mutant, very little difference in the LD50 was observed between wild-type and mutant strains. However, an increased time-to-death and delay in bacterial dissemination was observed in mice infected with the ΔtatA mutant as compared to the parent strain. Collectively, these findings demonstrate an essential role for the Tat pathway in the virulence of Y. pestis in bubonic and small-aerosol pneumonic infection but less important role for intranasal challenge. PMID:25101850

  9. RNAi assisted genome evolution unveils yeast mutants with improved xylose utilization.

    PubMed

    HamediRad, Mohammad; Lian, Jiazhang; Li, Hejun; Zhao, Huimin

    2018-06-01

    Xylose is a major component of lignocellulosic biomass, one of the most abundant feedstocks for biofuel production. Therefore, efficient and rapid conversion of xylose to ethanol is crucial in the viability of lignocellulosic biofuel plants. In this study, RNAi Assisted Genome Evolution (RAGE) was used to improve the xylose utilization rate in SR8, one of the most efficient publicly available xylose utilizing Saccharomyces cerevisiae strains. To identify gene targets for further improvement, we created a genome-scale library consisting of both genetic over-expression and down-regulation mutations in SR8. Followed by screening in media containing xylose as the sole carbon source, yeast mutants with 29% faster xylose utilization, and 45% higher ethanol productivity were obtained relative to the parent strain. Two known and two new effector genes were identified in these mutant strains. Notably, down-regulation of CDC11, an essential gene, resulted in faster xylose utilization, and this gene target cannot be identified in genetic knock-out screens. © 2018 Wiley Periodicals, Inc.

  10. Isolation of Streptomyces globisporus and Blakeslea trispora mutants with increased carotenoid content.

    PubMed

    Matselyukh, B P; Matselyukh, D Ya; Golembiovska, S L; Polishchuk, L V; Lavrinchuk, V Ya

    2013-01-01

    Hyperpigmented mutants of Streptomyces globisporus 1912-Hp7 and Blakeslea trispora 18(+), 184(-) were isolated by action of hydrogen peroxide and nitrosoguanidine, correspondingly, from initial strains S. globisporus 1912-4Lcp and B. trispora 72(-), 198(+). The carotenoids of dry biomass of obtained strains, rubbed thoroughly with glass powder by a pestle in porcelain mortar were extracted by acetone and purified by TLC. Identification of the individual carotenoids was performed by means of HPLC and LC/MS spectrometry. It was shown that strain S. globisporus 1912-4Crt produced beta-carotene/lycopene (6.91/3.24 mg/L), mutants 1912-4Lcp and 1912-7Hp synthesized only lycopene (26.05 and 50.9 mg/L, respectively), and strains B. trispora 18(+) and 184(-)-beta-carotene (6.2% in dry biomass or more 2.5 g/L) without illumination in shake flasks. It is the first example of high constitutive production of the carotenoids by the representative of genus Streptomyces without photoinduction or increased synthesis of sigma factor The improved strains of B. trispora 18(+) and 184(-) can be used for biotechnological production of beta-carotene in industrial conditions.

  11. Degradation of trichloroethylene by Pseudomonas cepacia G4 and the constitutive mutant strain G4 5223 PR1 in aquifer microcosms

    USGS Publications Warehouse

    Krumme, M.L.; Timmis, K.N.; Dwyer, D.F.

    1993-01-01

    Pseudomonas cepacia G4 degrades trichloroethylene (TCE) via a degradation pathway for aromatic compounds which is induced by substrates such as phenol and tryptophan. P. cepacia G4 5223 PR1 (PR1) is a Tn5 insertion mutant which constitutively expresses the toluene ortho-monooxygenase responsible for TCE degradation. In groundwater microcosms, phenol-induced strain G4 and noninduced strain PR1 degraded TCE (20 and 50 microM) to nondetectable levels (< 0.1 microM) within 24 h at densities of 10(8) cells per ml; at lower densities, degradation of TCE was not observed after 48 h. In aquifer sediment microcosms, TCE was reduced from 60 to < 0.1 microM within 24 h at 5 x 10(8) PR1 organisms per g (wet weight) of sediment and from 60 to 26 microM over a period of 10 weeks at 5 x 10(7) PR1 organisms per g. Viable G4 and PR1 cells decreased from approximately 10(7) to 10(4) per g over the 10-week period.

  12. A mutant phosphofructokinase produces a futile cycle during gluconeogenesis in Escherichia coli.

    PubMed

    Torres, J C; Guixé, V; Babul, J

    1997-11-01

    Strains of Escherichia coli bearing different forms of phosphofructokinase were used to assess the occurrence of futile cycling in cell resuspensions supplied with glycerol as gluconeogenic carbon source. A model was used to simulate results of different kinds of experiments for different levels of futile cycle. The main predictions of the model were experimentally confirmed in a strain with a mutant phosphofructokinase-2 (phosphofructokinase-2*) which is not inhibited by MgATP. The intracellular fructose 1, 6-bisphosphate concentration reaches significantly higher levels in the mutant-bearing strain than in strains with either phosphofructokinase-1 or -2. Also, this strain showed a higher rate and level of in vivo radioactive labelling of fructose 1, 6-bisphosphate, from a trace of [U-14C]glucose supplied during gluconeogenesis, indicating higher kinase activity in these conditions. Cell resuspensions of the mutant-bearing strain produced higher levels of radioactively labelled CO2 when supplied with [U-14C]glycerol as the only carbon source. Simultaneously, fewer glycerol carbons were incorporated into HClO4-insoluble macromolecules. Finally, radioactive CO2 output was measured in resuspensions supplied with glycerol as the major carbon source with traces of either [1-14C]glucose or [6-14C]glucose. It was found that, whereas in the strains with either of the wild-type phosphofructokinase isoenzymes, radioactive CO2 output from [1-14C]glucose was higher than with [6-14C]glucose, the reverse is found for the strain with phosphofructokinase-2*. This result also agrees with the corresponding prediction of the model. Using the radioactivity flux rates predicted by the model, an explanation linking the futile cycle to the differential labelling of CO2 is advanced. Finally, on the basis of these results it is proposed that strains bearing phosphofructokinase-2* sustain higher rates of futile cycling during gluconeogenesis than strains bearing either of the wild

  13. Vaccination with Brucella abortus rough mutant RB51 protects BALB/c mice against virulent strains of Brucella abortus, Brucella melitensis, and Brucella ovis.

    PubMed Central

    Jiménez de Bagüés, M P; Elzer, P H; Jones, S M; Blasco, J M; Enright, F M; Schurig, G G; Winter, A J

    1994-01-01

    Vaccination of BALB/c mice with live Brucella abortus RB51, a stable rough mutant, produced protection against challenge with virulent strains of Brucella abortus, Brucella melitensis, and Brucella ovis. Passive-transfer experiments indicated that vaccinated mice were protected against B. abortus 2308 through cell-mediated immunity, against B. ovis PA through humoral immunity, and against B. melitensis 16M through both forms of immunity. Live bacteria were required for the induction of protective cell-mediated immunity; vaccination with whole killed cells of strain RB51 failed to protect mice against B. abortus 2308 despite development of good delayed-type hypersensitivity reactions. Protective antibodies against the heterologous species were generated in vaccinated mice primarily through anamnestic responses following challenge infections. Growth of the antigenically unrelated bacterium Listeria monocytogenes in the spleens of vaccinated mice indicated that nonspecific killing by residual activated macrophages contributed minimally to protection. These results encourage the continued investigation of strain RB51 as an alternative vaccine against heterologous Brucella species. However, its usefulness against B. ovis would be limited if, as suggested here, epitopes critical for protective cell-mediated immunity are not shared between B. abortus and B. ovis. Images PMID:7927779

  14. Genetic transformation of Neurospora tetrasperma, demonstration of repeat-induced point mutation (RIP) in self-crosses and a screen for recessive RIP-defective mutants.

    PubMed Central

    Bhat, Ashwin; Tamuli, Ranjan; Kasbekar, Durgadas P

    2004-01-01

    The pseudohomothallic fungus Neurospora tetrasperma is naturally resistant to the antibiotic hygromycin. We discovered that mutation of its erg-3 (sterol C-14 reductase) gene confers a hygromycin-sensitive phenotype that can be used to select transformants on hygromycin medium by complementation with the N. crassa erg-3+ and bacterial hph genes. Cotransformation of hph with PCR-amplified DNA of other genes enabled us to construct strains duplicated for the amplified DNA. Using transformation we constructed self-fertile strains that were homoallelic for an ectopic erg-3+ transgene and a mutant erg-3 allele at the endogenous locus. Self-crosses of these strains yielded erg-3 mutant ascospores that produced colonies with the characteristic morphology on Vogel's sorbose agar described previously for erg-3 mutants of N. crassa. The mutants were generated by repeat-induced point mutation (RIP), a genome defense process that causes numerous G:C to A:T mutations in duplicated DNA sequences. Homozygosity for novel recessive RIP-deficient mutations was signaled by self-crosses of erg-3-duplication strains that fail to produce erg-3 mutant progeny. Using this assay we isolated a UV-induced mutant with a putative partial RIP defect. RIP-induced mutants were isolated in rid-1 and sad-1, which are essential genes, respectively, for RIP and another genome defense mechanism called meiotic silencing by unpaired DNA. PMID:15280231

  15. Nitrogen fixation in transposon mutants from Bradyrhizobium japonicum USDA 110 impaired in nitrate reductase.

    PubMed

    Camacho, María; Burgos, Araceli; Chamber-Pérez, Manuel A

    2003-04-01

    Tn5 transposon mutagenesis was carried out in Bradyrhizobium japonicum strain USDA 110 to produce defective mutants. From over one thousand clones expressing low levels of nitrate reductase activity as free-living bacteria, approximately five percent had significantly different ratios of nodulation, N2 fixation or nitrate reductase activity compared to the wild strain when determined in bacteroids from soybean nodules. Tn5 insertions were checked previously and mutants were arranged into four different groups. Only one of these groups, designated AN, was less effective at N2 fixation than the wild strain, suggesting a mutation in a domain shared by nitrogenase and NR. The remaining groups of insertions successfully nodulated and were as effective at N2 fixation as the wild strain, but showed diminished ability to reduce nitrate both in nodules and in the isolated bacteroids when assayed in vitro with NADH or methyl viologen as electron donors. PCR amplification demonstrated that Tn5 insertions took place in different genes on each mutant group and the type of mutant (CC) expressing almost no nitrate reductase activity under all treatments seemed to possess transposable elements in two genes. Induction of nitrate reductase activity by nitrate was observed only in those clones expressing a low constitutive activity (AN and AE). Nitrate reductase activity in bacteroids along nodule growth decreased in all groups including the ineffective AN group, whose nodulation was highly inhibited by nitrate at 5 mmol/L N. Host-cultivar interaction seemed to influence the regulation of nitrate reductase activity in bacteroids. Total or partial repression of nitrate reductase activity in bacteroids unaffected by N2 fixation (CC, AJ and AE groups) improved nodule resistance to nitrate and N yields of shoots over those of the wild strain. These observations may suggest that some of the energy supplied to bacteroids was wasted by its constitutive NRA.

  16. Assembly of D-alanyl-lipoteichoic acid in Lactobacillus casei: mutants deficient in the D-alanyl ester content of this amphiphile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ntamere, A.S.; Taron, D.J.; Neuhaus, F.C.

    D-Alanyl-lipoteichoic acid (D-alanyl-LTA) from Lactobacillus casei ATCC 7469 contains a poly(glycerophosphate) moiety that is acylated with D-alanyl ester residues. The physiological function of these residues is not well understood. Five mutant strains of this organism that are deficient in the esters of this amphiphile were isolated and characterized. When compared with the parent, strains AN-1 and AN-4 incorporated less than 10% of D-(/sup 14/C)alanine into LTA, whereas AN-2, AN-3, and AN-5 incorporated 50%. The synthesis of D-(/sup 14/C)alanyl-lipophilic LTA was virtually absent in the first group and was approximately 30% in the second group. The mutant strains synthesized and selectedmore » the glycolipid anchor for LTA assembly. In addition, all of the strains synthesized the poly(glycerophosphate) moiety of LTA to the same extent as did the parent or to a greater extent. It was concluded that the membranes from the mutant strains AN-1 and AN-4 are defective for D-alanylation of LTA even though acceptor LTA is present. Mutant strains AN-2 and AN-3 appear to be partially deficient in the amount of the D-alanine-activating enzyme. Aberrant morphology and defective cell separation appear to result from this deficiency in D-alanyl ester content.« less

  17. Isolation and characterization of gallium resistant Pseudomonas aeruginosa mutants.

    PubMed

    García-Contreras, Rodolfo; Lira-Silva, Elizabeth; Jasso-Chávez, Ricardo; Hernández-González, Ismael L; Maeda, Toshinari; Hashimoto, Takahiro; Boogerd, Fred C; Sheng, Lili; Wood, Thomas K; Moreno-Sánchez, Rafael

    2013-12-01

    Pseudomonas aeruginosa PA14 cells resistant to the novel antimicrobial gallium nitrate (Ga) were developed using transposon mutagenesis and by selecting spontaneous mutants. The mutants showing the highest growth in the presence of Ga were selected for further characterization. These mutants showed 4- to 12-fold higher Ga minimal inhibitory growth concentrations and a greater than 8-fold increase in the minimum biofilm eliminating Ga concentration. Both types of mutants produced Ga resistant biofilms whereas the formation of wild-type biofilms was strongly inhibited by Ga. The gene interrupted in the transposon mutant was hitA, which encodes a periplasmic iron binding protein that delivers Fe³⁺ to the HitB iron permease; complementation of the mutant with the hitA gene restored the Ga sensitivity. This hitA mutant showed a 14-fold decrease in Ga internalization versus the wild-type strain, indicating that the HitAB system is also involved in the Ga uptake. Ga uptake in the spontaneous mutant was also lower, although no mutations were found in the hitAB genes. Instead, this mutant harbored 64 non-silent mutations in several genes including those of the phenazine pyocyanin biosynthesis. The spontaneous mutant produced 2-fold higher pyocyanin basal levels than the wild-type; the addition of this phenazine to wild-type cultures protected them from the Ga bacteriostatic effect. The present data indicate that mutations affecting Ga transport and probably pyocyanin biosynthesis enable cells to develop resistance to Ga. Copyright © 2013 Elsevier GmbH. All rights reserved.

  18. Attenuation of a select agent-excluded Burkholderia pseudomallei capsule mutant in hamsters.

    PubMed

    Gutierrez, Maria G; Warawa, Jonathan M

    2016-05-01

    Burkholderia pseudomallei is a Tier 1 select agent and potential bioweapon. Given it is potential to cause a lethal respiratory disease, research with fully virulent B. pseudomallei is conducted in Biosafety Level 3 (BSL-3) laboratory spaces. The logistical, financial, and administrative burden of Tier 1 select agent BSL-3 research has created an interest in mitigating such burdens through the use of either attenuated B. pseudomallei strains at BSL-2, or research with surrogate species, such as Burkholderia thailandensis. Previously, attenuated B. pseudomallei auxotroph mutants (asd and purM) have been approved for exclusion from select agent requirements, allowing for in vitro studies to be conducted at BSL-2. Acapsular B. pseudomallei mutants are known to be strongly attenuated in a variety of animal models, and yet acapsular B. pseudomallei mutants do not require nutritional supplementation, and can be studied within cultured macrophages, performing phenotypically similarly to parent strains. We demonstrate that the loss of a 30.8 kb region of the wcb capsule operon allows for a dramatic >4.46 log attenuation in a hamster intraperitoneal infection model, and report that this strain, JW270, has met criteria for exclusion from select agent requirements. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Involvement of Two Plasmids in the Degradation of Carbaryl by Arthrobacter sp. Strain RC100

    PubMed Central

    Hayatsu, Masahito; Hirano, Motoko; Nagata, Tadahiro

    1999-01-01

    A bacterium capable of utilizing carbaryl (1-naphthyl N-methylcarbamate) as the sole carbon source was isolated from carbaryl-treated soil. This bacterium was characterized taxonomically as Arthrobacter and was designated strain RC100. RC100 hydrolyzes the N-methylcarbamate linkage to 1-naphthol, which was further metabolized via salicylate and gentisate. Strain RC100 harbored three plasmids (designated pRC1, pRC2, and pRC3). Mutants unable to degrade carbaryl arose at a high frequency after treating the culture with mitomycin C. All carbaryl-hydrolysis-deficient mutants (Cah−) lacked pRC1, and all 1-naphthol-utilization-deficient mutants (Nat−) lacked pRC2. The plasmid-free strain RC107 grew on gentisate as a carbon source. These two plasmids could be transferred to Cah− mutants or Nat− mutants by conjugation, resulting in the restoration of the Cah and Nah phenotypes. PMID:10049857

  20. Mutants of the pentose-fermenting yeast Pachysolen tannophilus tolerant to hardwood spent sulfite liquor and acetic acid.

    PubMed

    Harner, Nicole K; Bajwa, Paramjit K; Habash, Marc B; Trevors, Jack T; Austin, Glen D; Lee, Hung

    2014-01-01

    A strain development program was initiated to improve the tolerance of the pentose-fermenting yeast Pachysolen tannophilus to inhibitors in lignocellulosic hydrolysates. Several rounds of UV mutagenesis followed by screening were used to select for mutants of P. tannophilus NRRL Y2460 with improved tolerance to hardwood spent sulfite liquor (HW SSL) and acetic acid in separate selection lines. The wild type (WT) strain grew in 50 % (v/v) HW SSL while third round HW SSL mutants (designated UHW301, UHW302 and UHW303) grew in 60 % (v/v) HW SSL, with two of these isolates (UHW302 and UHW303) being viable and growing, respectively, in 70 % (v/v) HW SSL. In defined liquid media containing acetic acid, the WT strain grew in 0.70 % (w/v) acetic acid, while third round acetic acid mutants (designated UAA301, UAA302 and UAA303) grew in 0.80 % (w/v) acetic acid, with one isolate (UAA302) growing in 0.90 % (w/v) acetic acid. Cross-tolerance of HW SSL-tolerant mutants to acetic acid and vice versa was observed with UHW303 able to grow in 0.90 % (w/v) acetic acid and UAA302 growing in 60 % (v/v) HW SSL. The UV-induced mutants retained the ability to ferment glucose and xylose to ethanol in defined media. These mutants of P. tannophilus are of considerable interest for bioconversion of the sugars in lignocellulosic hydrolysates to ethanol.

  1. vph6 mutants of Saccharomyces cerevisiae require calcineurin for growth and are defective in vacuolar H(+)-ATPase assembly.

    PubMed

    Hemenway, C S; Dolinski, K; Cardenas, M E; Hiller, M A; Jones, E W; Heitman, J

    1995-11-01

    We have characterized a Saccharomyces cerevisiae mutant strain that is hypersensitive to cyclosporin A (CsA) and FK506, immunosuppressants that inhibit calcineurin, a serine-threonine-specific phosphatase (PP2B). A single nuclear mutation, designated cev1 for calcineurin essential for viability, is responsible for the CsA-FK506-sensitive phenotype. The peptidyl-prolyl cis-trans isomerases cyclophilin A and FKBP12, respectively, mediate CsA and FK506 toxicity in the cev1 mutant strain. We demonstrate that cev1 is an allele of the VPH6 gene and that vph6 mutant strains fail to assemble the vacuolar H(+)-ATPase (V-ATPase). The VPH6 gene was mapped on chromosome VIII and is predicted to encode a 181-amino acid (21 kD) protein with no identity to other known proteins. We find that calcineurin is essential for viability in many mutant strains with defects in V-ATPase function or vacuolar acidification. In addition, we find that calcineurin modulates extracellular acidification in response to glucose, which we propose occurs via calcineurin regulation of the plasma membrane H(+)-ATPase PMA1. Taken together, our findings suggest calcineurin plays a general role in the regulation of cation transport and homeostasis.

  2. Production and Characterization of Trametes versicolor Mutants Unable To Bleach Hardwood Kraft Pulp

    PubMed Central

    Addleman, K.; Dumonceaux, T.; Paice, M. G.; Bourbonnais, R.; Archibald, F. S.

    1995-01-01

    Protoplasts of the monokaryotic strain 52J of Trametes versicolor were treated with UV light and screened for the inability to produce a colored precipitate on guaiacol-containing agar plates. Mutants unable to oxidize guaiacol had absent or very low secretion of laccase and manganese peroxidase (MnP) proteins. All isolates unable to secrete MnP were also unable to bleach or delignify kraft pulp. One mutant strain, M49, which grew normally but did not oxidize guaiacol, was tested further with a number of other substrates whose degradation has been associated with delignification by white rot fungi. Compared with the parent, 52J, mutant M49, secreting no MnP and low laccase, could not brighten or delignify kraft pulp, produced less ethylene from 2-keto methiolbutyric acid, released much less (sup14)CO(inf2) from [(sup14)C]DHP (a synthetic lignin-like polymerizate), and produced much less methanol from pulp. This mutant also displayed decreased abilities to oxidize the dyes poly B-411, poly R-478, and phenol red compared with the wild-type strain and was also unable to decolorize kraft bleachery effluent or mineralize its organochlorine. Addition of purified MnP in conjunction with H(inf2)O(inf2), MnSO(inf4), and an Mn(III) chelator to M49 cultures partially restored methanol production, pulp delignification, and biobleaching in some cases. PMID:16535150

  3. The use of mutant mycobacteria as new vaccines to prevent tuberculosis.

    PubMed

    Hernàndez Pando, R; Aguilar, L D; Infante, E; Cataldi, A; Bigi, F; Martin, C; Gicquel, B

    2006-01-01

    Given the variable protective efficacy generated by Mycobacterium bovis BCG (Bacillus Calmette-Guérin), there is a concerted effort worldwide to develop better vaccines that could be used to reduce the burden of tuberculosis. Rational attenuated mutants of Mycobacterium tuberculosis are vaccine candidates that offer some potential in this area. In this paper, we will discuss the molecular methods used to generate mutant mycobacteria, as well as the results obtained with some of these strains, in terms of attenuation, immunogenicity and level of protection, when compared with the conventional BCG vaccine in diverse animal models. Tuberculosis vaccine candidates based on safe and live mycobacterial mutants could be promising candidates.

  4. Production of astaxanthin from cellulosic biomass sugars by mutants of the yeast Phaffia rhodozyma

    USDA-ARS?s Scientific Manuscript database

    Astaxanthin is a carotenoid of high value to the aquaculture, nutraceutical, and pharmaceutical industries. Three mutant strains of the astaxanthin-producing yeast Phaffia rhodozyma, which were derived from the parent strain ATCC 24202 (UCD 67-210) and designated JTM166, JTM185, and SSM19, were test...

  5. Analysis of in vivo correction of defined mismatches in the DNA mismatch repair mutants msh2, msh3 and msh6 of Saccharomyces cerevisiae.

    PubMed

    Lühr, B; Scheller, J; Meyer, P; Kramer, W

    1998-02-01

    We have analysed the correction of defined mismatches in wild-type and msh2, msh3, msh6 and msh3 msh6 mutants of Saccharomyces cerevisiae in two different yeast strain backgrounds by transformation with plasmid heteroduplex DNA constructs. Ten different base/base mismatches, two single-nucleotide loops and a 38-nucleotide loop were tested. Repair of all types of mismatches was severely impaired in msh2 and msh3 msh6 mutants. In msh6 mutants, repair efficiency of most base/base mismatches was reduced to a similar extent as in msh3 msh6 double mutants. G/T and A/C mismatches, however, displayed residual repair in msh6 mutants in one strain background, implying a role for Msh3p in recognition of base/base mismatches. Furthermore, the efficiency of repair of base/base mismatches was considerably reduced in msh3 mutants in one strain background, indicating a requirement for MSH3 for fully efficient mismatch correction. Also the efficiency of repair of the 38-nucleotide loop was reduced in msh3 mutants, and to a lesser extent in msh6 mutants. The single-nucleotide loop with an unpaired A was less efficiently repaired in msh3 mutants and that with an unpaired T was less efficiently corrected in msh6 mutants, indicating non-redundant functions for the two proteins in the recognition of single-nucleotide loops.

  6. The temperature-sensitive mutants of Toxoplasma gondii and ocular toxoplasmosis.

    PubMed

    Lu, Fangli; Huang, Shiguang; Kasper, Lloyd H

    2009-01-22

    The risk of blindness caused by ocular toxoplasmosis supports efforts to improve our understanding for control of this disease. In this study, the involvement of CD8(+), CD4(+), B cell, and IL-10 gene in the immune response of primary ocular infection with the temperature-sensitive mutant (ts-4) of the RH Toxoplasma gondii strain, and in the protective immunity of ocular ts-4 vaccination and challenge with RH strain was investigated in murine models utilizing inbred C57BL/6 mice-deficient in CD4(+), CD8(+), B cells (microMT), or IL-10 gene. Compared to naive mice, all WT and mutant mice had different degree of ocular pathological changes after ts-4 ocular infection, in which both CD8 KO and IL-10 KO mice showed the most severe ocular lesions. Immunized by ts-4 intracameral (i.c.) inoculation, all mutant mice had partially decreased vaccine-induced resistance associated with increased ocular parasite burdens after RH strain challenge. A significant increase of the percentages of B cells and CD8(+) T cells in the draining lymph nodes were observed in WT and IL-10 KO mice after either infection or challenge. The levels of specific anti-toxoplasma IgG in both eye fluid and serum from all the mice were significantly increased after ts-4 i.c. immunization, except microMT mice. These results suggest that the avirulent ts-4 of T. gondii inoculated intracamerally can induce both ocular pathology and ocular protective immunity; CD4(+), CD8(+), B cell, and IL-10 gene are all necessary to the vaccine-induced resistance to ocular challenge by virulent RH strain, in which CD8(+) T cells are the most important component.

  7. Comparative evaluation of agroindustrial byproducts for the production of alkaline protease by wild and mutant strains of Bacillus subtilis in submerged and solid state fermentation.

    PubMed

    Mukhtar, Hamid; Haq, Ikramul

    2013-01-01

    The present study describes the screening of different agroindustrial byproducts for enhanced production of alkaline protease by a wild and EMS induced mutant strain of Bacillus subtilis IH-72(EMS8). During submerged fermentation, different agro-industrial byproducts were tested which include defatted seed meals of rape, guar, sunflower, gluten, cotton, soybean, and gram. In addition to these meals, rice bran, wheat bran, and wheat flour were also evaluated for protease production. Of all the byproducts tested, soybean meal at a concentration of 20 g/L gave maximum production of the enzyme, that is, 5.74  ±  0.26 U/mL from wild and 11.28  ±  0.45 U/mL from mutant strain, during submerged fermentation. Different mesh sizes (coarse, medium, and fine) of the soybean meal were also evaluated, and a finely ground soybean meal (fine mesh) was found to be the best. In addition to the defatted seed meals, their alkali extracts were also tested for the production of alkaline protease by Bacillus subtilis, but these were proved nonsignificant for enhanced production of the enzyme. The production of the enzyme was also studied in solid state fermentation, and different agro-industrial byproducts were also evaluated for enzyme production. Wheat bran partially replaced with guar meal was found as the best substrate for maximum enzyme production under solid state fermentation conditions.

  8. Comparative Evaluation of Agroindustrial Byproducts for the Production of Alkaline Protease by Wild and Mutant Strains of Bacillus subtilis in Submerged and Solid State Fermentation

    PubMed Central

    Haq, Ikramul

    2013-01-01

    The present study describes the screening of different agroindustrial byproducts for enhanced production of alkaline protease by a wild and EMS induced mutant strain of Bacillus subtilis IH-72EMS8. During submerged fermentation, different agro-industrial byproducts were tested which include defatted seed meals of rape, guar, sunflower, gluten, cotton, soybean, and gram. In addition to these meals, rice bran, wheat bran, and wheat flour were also evaluated for protease production. Of all the byproducts tested, soybean meal at a concentration of 20 g/L gave maximum production of the enzyme, that is, 5.74  ±  0.26 U/mL from wild and 11.28  ±  0.45 U/mL from mutant strain, during submerged fermentation. Different mesh sizes (coarse, medium, and fine) of the soybean meal were also evaluated, and a finely ground soybean meal (fine mesh) was found to be the best. In addition to the defatted seed meals, their alkali extracts were also tested for the production of alkaline protease by Bacillus subtilis, but these were proved nonsignificant for enhanced production of the enzyme. The production of the enzyme was also studied in solid state fermentation, and different agro-industrial byproducts were also evaluated for enzyme production. Wheat bran partially replaced with guar meal was found as the best substrate for maximum enzyme production under solid state fermentation conditions. PMID:24294129

  9. Lipopolysaccharide and Aldoheptose Biosynthesis in Transketolase Mutants of Salmonella typhimurium

    PubMed Central

    Eidels, L.; Osborn, M. J.

    1971-01-01

    Genetic and biochemical evidence that sedoheptulose-7-phosphate is an obligatory precursor of the L-glycero-D-mannoheptose residues of the lipopolysaccharide of Salmonella was obtained by isolation and characterization of transketolase-negative mutants of Salmonella typhimurium. These mutants, which are defective in synthesis of sedoheptulose-7-phosphate, were found to produce an incomplete heptose-deficient lipopolysaccharide, and were also sensitive to bile salts, a characteristic property of heptose-deficient mutants. Phenotypic repair of the defect in lipopolysaccharide synthesis was obtained by addition of exogenous sedoheptulose-7-phosphate to growing cultures of the mutant strains. Characterization of revertants isolated either as transketolase-positive or heptose-positive provided further evidence that the heptose deficiency resulted from mutation at the transketolase locus. On the basis of these findings a possible pathway for conversion of sedoheptulose-7-phosphate to L-glycero-D-mannoheptose is proposed. PMID:4942911

  10. [Biosorption ability of mutants of Rhodotorula mucilaginosa UCM Y-1776].

    PubMed

    Mamieieva, O H; Kasatkina, T P; Lavrinchuk, V Ia

    2007-01-01

    Twenty stable mutants with various coloration intensity have been allocated in carotene-synthesizing natural strain Rhodotorula mucilaginosa UCM Y-1776 (wild type) after nitrosoguanidine action. Two brightly orange mutants 4L and 11 and one non-pigmented mutant 2 were chosen for the further researches. The ultraviolet was inefficient as a mutagen. Resistance to high concentration of copper ions (up to 200 mg/g), high sorption ability (Qmax = 9.1 mmol/g) was characteristic of R. mucilaginosa UCM Y-1776. Concentration of copper ions 50 mg/l was toxic for mutants 4L, 11 and 2, which sorption ability was lower in comparison with carotene pigmented R. mucilaginosa UCM Y-1776. It was shown, for the first time that there was a direct dependence between the presence of carotenoid pigments, resistance to high concentration of copper ions and sorption ability for yeast R. mucilaginosa UCM Y-1776.

  11. A detailed study of gerJ mutants of Bacillus subtilis.

    PubMed

    Warburg, R J; Buchanan, C E; Parent, K; Halvorson, H O

    1986-08-01

    A total of nine gerJ mutants have now been isolated in Bacillus subtilis. All are defective in their spore germination properties, being blocked at an intermediate (phase grey) stage. The dormant spores are sensitive to heating at 90 degrees C and two of the mutants (generated by transposon insertion) produce spores sensitive at 80 degrees C. The spores of these two more extreme mutants had a visibly defective cortex when studied by electron microscopy, as did some of the other mutants. During sporulation, the acquisition of spore resistance properties and the appearance of the sporulation-specific penicillin-binding protein PBP5* were delayed. A strain probably carrying a lacZ fusion to the gerJ promoter demonstrated increased expression between t2 and t4. We propose that the gerJ locus is involved in the control of one or more sporulation-specific genes.

  12. Visible laser and UV-A radiation impact on a PNP degrading Moraxella strain and its rpoS mutant.

    PubMed

    Nandakumar, Kanavillil; Keeler, Werden; Schraft, Heidi; Leung, Kam T

    2006-07-05

    The role of stationary phase sigma factor gene (rpoS) in the stress response of Moraxella strain when exposed to radiation was determined by comparing the stress responses of the wild-type (WT) and its rpoS knockout (KO) mutant. The rpoS was turned on by starving the WT cultures for 24 h in minimal salt medium. Under non-starved condition, both WT and KO planktonic Moraxella cells showed an increase in mortality with the increase in duration of irradiation. In the planktonic non-starved Moraxella, for the power intensity tested, UV radiation caused a substantially higher mortality rate than did by the visible laser light (the mortality rate observed for 15-min laser radiation was 53.4 +/- 10.5 and 48.7 +/- 8.9 for WT and KO, respectively, and 97.6 +/- 0 and 98.5 +/- 0 for 25 s of UV irradiation in WT and KO, respectively). However, the mortality rate decreased significantly in the starved WT when exposed to these two radiations. In comparison, rpoS protected the WT against the visible laser light more effectively than it did for the UV radiation. The WT and KO strains of Moraxella formed distinctly different types of biofilms on stainless steel coupons. The KO strain formed a denser biofilm than did the WT. Visible laser light removed biofilms from the surfaces more effectively than did the UV. This was true when comparing the mortality of bacteria in the biofilms as well. The inability of UV radiation to penetrate biofilms due to greater rates of surface absorption is considered to be the major reason for the weaker removal of biofilms in comparison to that of the visible laser light. This result suggests that high power visible laser light might be an effective tool for the removal of biofilms. (c) 2006 Wiley Periodicals, Inc.

  13. Bradyrhizobium japonicum mutants with enhanced sensitivity to genistein resulting in altered nod gene regulation.

    PubMed

    Ip, H; D'Aoust, F; Begum, A A; Zhang, H; Smith, D L; Driscoll, B T; Charles, T C

    2001-12-01

    Bradyrhizobium japonicum mutants with altered nod gene induction characteristics were isolated by screening mutants for genistein-independent nod gene expression. Plasmid pZB32, carrying a nodY::lacZ transcriptional gene fusion, was introduced into B. japonicum cells that had been subjected to UV mutagenesis. Ten independent transformants producing a blue color on plates containing 5bromo-4chloro-3indolyl-beta-D-galactopyranoside but lacking genistein, indicative of constitutive expression of the nodY::lacZ reporter gene, were isolated. Beta-galactosidase activity assays revealed that while all of the 10 strains were sensitive to low concentrations of genistein, none exhibited truly constitutive nodY::lacZ expression in liquid culture. Soybean plants inoculated with three of the mutants were chlorotic and stunted, with shoot dry weights close to those of the uninoculated plants, indicating the absence of nitrogen fixation. Differences in the kinetics of nodY::lacZ expression and lipochitin oligosaccharide Nod signal production suggested that the strains carried different mutations. Some of these strains may be useful in mitigating the low root zone temperature-associated delay in soybean nodulation at the northern extent of soybean cultivation.

  14. Isolation and characterization of Candida albicans morphological mutants derepressed for the formation of filamentous hypha-type structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gil, C.; Pomes, R.; Nombela, C.

    1990-05-01

    Several Candida albicans morphological mutants were obtained by a procedure based on a combined treatment with nitrous acid plus UV irradiation and a double-enrichment step to increase the proportion of mutants growing as long filamentous structures. Altered cell morphogenesis in these mutants correlated with an altered colonial phenotype. Two of these mutants, C. albicans NEL102 and NEL103, were selected and characterized. Mutant blastoconidia initiated budding but eventually gave rise to filamentous hypha-type formations. These filaments were long and septate, and they branched very regularly at positions near septa. Calcofluor white (which is known to bind chitin-rich areas) stained septa, branchingmore » zones, and filament tips very intensely, as observed under the fluorescence microscope. Wild-type hybrids were obtained by fusing protoplasts of strain NEL102 with B14, another morphological mutant previously described as being permanently pseudomycelial, indicating that genetic determinants responsible for the two altered phenotypes are different. The mutants characterized in this work seemed to sequentially express the morphogenic characteristics of C. albicans, from blastoconidia to hyphae, in the absence of any inducer. Further characterization of these strains could be relevant to gain understanding of the genetic control of dimorphism in this species.« less

  15. Increasing the Triacylglycerol Content in Dunaliella tertiolecta through Isolation of Starch-Deficient Mutants.

    PubMed

    Sirikhachornkit, Anchalee; Vuttipongchaikij, Supachai; Suttangkakul, Anongpat; Yokthongwattana, Kittisak; Juntawong, Piyada; Pokethitiyook, Prayad; Kangvansaichol, Kunn; Meetam, Metha

    2016-05-28

    The production cost of biodiesel from microalgae is still not competitive, compared with that of petroleum fuels. The genetic improvement of microalgal strains to increase triacylglycerol (TAG) accumulation is one way to reduce production costs. One of the most promising approaches is the isolation of starch-deficient mutants, which have been reported to successfully increase TAG yields. To date, such a stable mutant is not available in an oleaginous marine microalga, despite several advantages of using marine species for biodiesel production. Algae in the genus Dunaliella are known to tolerate high salt concentration and other environmental stresses. In addition, the cultivation processes for large-scale outdoor commercialization have been well established for this genus. In this study, Dunaliella tertiolecta was used to screen for starch-deficient mutants, using an iodine vapor-staining method. Four out of 20,016 UV-mutagenized strains showed a substantial reduction of starch content. A significantly higher TAG content, up to 3-fold of the wild-type level, was observed in three of the mutants upon induction by nitrogen depletion. The carotenoid production and growth characteristics of these mutants, under both normal and oxidative stress conditions, were not compromised, suggesting that these processes are not necessarily affected by starch deficiency. The results from this work open up new possibilities for exploring Dunaliella for biodiesel production.

  16. Use of an otolith-deficient mutant in studies of fish behavior under microgravity

    NASA Astrophysics Data System (ADS)

    Ijiri, K.; Mizuno, R.; Eguchi, H.

    In Medaka (Oryzias latipes ), fish of a mutant strain (ha strain) had a malfunction in otolith-vestibular system. The phenotype is expressed when the fish have this recessive gene h a) in a homozygous fashion, and the gene is autosomal. Their( difference from the normal fish was first recognizable in their embryonic stages, with abnormally larger ear vesicles and absence of otoliths called Lapillus inside the vesicles. The time-course study was carried out for the subsequent development of their otoliths. X ray phot ographs of the fish revealed that some adult fish of ha- strain still lack a pair of Lapillus, which mainly serve in sensing the direction of gravity, while others have formed the otoliths partially or completely. Changing the light direction within each day, the ha mutant fish were reared from hatching to young fish. The fish treated showed less dependence on gravity even at the age of 50 days or more. Parabolic flight experiments were carried out to observe the fish behavior under microgravity for ha strain.

  17. Use of an otolith-deficient mutant in studies of fish behavior in microgravity

    NASA Astrophysics Data System (ADS)

    Ijiri, K.; Mizuno, R.; Eguchi, H.

    2003-10-01

    The mutant strain ( ha) of medaka ( Oryzias latipes) lack utricular otoliths as fry, and some never form otoliths for life. The cross (Fl generation) between the strain having good eyesight and another strain having ordinary eyesight augmented visual acuity of the Fl generation. Crossing the good eyesight strain and ha mutant produced fish having good eyesight and less sensitivity to gravity in the F2 population. Their tolerance to microgravity was tested by parabolic flight using an airplane. The fish exhibited less looping and no differences in degree of looping between light and dark conditions, suggesting that loss of eyesight (in darkness) is not a direct cause for looping behavior in microgravity. The ha embryos could not form utricular otoliths. They did form saccular otoliths, but with a delay. Fry of the mutant fish lacking the utricular otoliths are highly dependent on light upon hatching and exhibit a perfect dorsal-light response (DLR). As they grow, they eventually shift from being light-dependent to being gravity-dependent. Continuous treatment of the fry with altered light direction suppressed this shift to gravity dependence. Being less dependent on gravity, these fish can serve as models in studying the differences expected for the vestibular system of fish reared in microgravity. When these fish were exposed to microgravity (parabolic flights) of an airplane, they spent far less time looping than fish reared in an ordinary light regimen.

  18. Cysteine Inhibits Mercury Methylation by Geobacter sulfurreducens PCA Mutant Δ omcBESTZ

    DOE PAGES

    Lin, Hui; Lu, Xia; Liang, Liyuan; ...

    2015-04-21

    For cysteine enhances Hg uptake and methylation by Geobacter sulfurreducens PCA wild type (WT) strain in short-term assays. The prevalence of this enhancement in other strains remains poorly understood. We examined the influence of cysteine concentration on time-dependent Hg(II) reduction, sorption and methylation by PCA-WT and its c-type cytochrome-deficient mutant ( omcBESTZ) in phosphate buffered saline. Without cysteine, the mutant methylated twice as much Hg(II) as the PCA-WT, whereas addition of cysteine inhibited Hg methylation, regardless of the reaction time. PCA-WT, but, exhibited both time-dependent and cysteine concentration-dependent methylation. In 144 hour assay, nearly complete sorption of the Hg(II) bymore » PCA-WT occurred in the presence of 1 mM cysteine, resulting in our highest observed methylmercury production. Moreover, the chemical speciation modeling and experimental data suggest that uncharged Hg(II) species are more readily taken up, and that this uptake is kinetic limiting, thereby affecting Hg methylation by both mutant and WT.« less

  19. Isolation and characterization of acyclovir-resistant mutants of herpes simplex virus.

    PubMed

    Field, H J; Darby, G; Wildy, P

    1980-07-01

    Mutants of HSV which are resistant to acyclovir (acycloguanosine) have been isolated following serial passages of several herpes simplex virus (HSV) strains in the presence of the drug. The majority of the mutants isolated are defective in induction of thymidine kinase (TK) and this is consistent with the observation that independently isolated TK- viruses are naturally resistant to ACV. One mutant is described (SC16 R9C2) which is resistant in biochemically transformed cells which express HSV TK. This suggests that its resistance resides at a level other than TK. It is also resistant to phosphonoacetic acid, suggesting that the DNA polymerase locus may be involved. A further mutant is described [Cl (101) P2C5] which induces normal levels of TK, although the nature of resistance of this virus is not yet elucidated.

  20. Unusual Δ7,12,19 C35:3 Alkenone Produced by the Mutant Emiliania huxleyi strain CCMP2758 in Culture

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Huang, Y.; Zhang, Y.; Dillon, J. T.

    2015-12-01

    Alkenones with chain length ranging from C37 to C40 are highly specific biomarkers for certain haptophyte algae in ocean and lake sediments and have been widely used for paleoclimate studies. Short chain alkenones (e.g., C35 and C36) have been found in environmental and culture samples but the origin and structures of these compounds are not fully understood. The benchmark marine alkenone producer, Emiliania huxleyi CCMP2758 strain (the mutant of strain CCMP1742, NEPCC55a) was reported to make 35:2 alkenone when cultured at 15 °C (Prahl et al., 2006). Here we show, when this strain is cultured at lower temperatures (e.g., 4°C), CCMP2758 produces large amount of 35:3 alkenone with unusual double bond positions of Δ7,12,19. We determined the double bond positions of the C35:3 methyl ketonee based on GC-MS analysis of cyclobutylimine derivatives and dimethyl disulfide derivatives respectively, and provide the first temperature calibrations based on the unsaturation ratios of C35 alkenones. Previous studies have found 35:2 alkenone with three methylene interruption in the Black Sea sediment, but it is the first time that an alkenone with a mixed three and five methylene interruption is found. The discovery of short chain alkenones with unusual double bond positions may shed new light to alkenone biosynthesis.

  1. Dictyostelium myosin I double mutants exhibit conditional defects in pinocytosis.

    PubMed

    Novak, K D; Peterson, M D; Reedy, M C; Titus, M A

    1995-12-01

    The functional relationship between three Dictyostelium myosin Is, myoA, myoB, and myoC, has been examined through the creation of double mutants. Two double mutants, myoA-/B- and myoB-/C-, exhibit similar conditional defects in fluid-phase pinocytosis. Double mutants grown in suspension culture are significantly impaired in their ability to take in nutrients from the medium, whereas they are almost indistinguishable from wild-type and single mutant strains when grown on a surface. The double mutants are also found to internalize gp126, a 116-kD membrane protein, at a slower rate than either the wild-type or single mutant cells. Ultrastructural analysis reveals that both double mutants possess numerous small vesicles, in contrast to the wild-type or myosin I single mutants that exhibit several large, clear vacuoles. The alterations in fluid and membrane internalization in the suspension-grown double mutants, coupled with the altered vesicular profile, suggest that these cells may be compromised during the early stages of pinocytosis, a process that has been proposed to occur via actin-based cytoskeletal rearrangements. Scanning electron microscopy and rhodamine-phalloidin staining indicates that the myosin I double mutants appear to extend a larger number of actin-filled structures, such as filopodia and crowns, than wild-type cells. Rhodamine-phalloidin staining of the F-actin cytoskeleton of these suspension-grown cells also reveals that the double mutant cells are delayed in the rearrangement of cortical actin-rich structures upon adhesion to a substrate. We propose that myoA, myoB, and myoC play roles in controlling F-actin filled membrane projections that are required for pinosome internalization in suspension.

  2. Mutants of Yeast Defective in Sucrose Utilization

    PubMed Central

    Carlson, Marian; Osmond, Barbara C.; Botstein, David

    1981-01-01

    Utilization of sucrose as a source of carbon and energy in yeast (Saccharomyces) is controlled by the classical SUC genes, which confer the ability to produce the sucrose-degrading enzyme invertase (Mortimer and Hawthorne 1969). Mutants of S. cerevisiae strain S288C (SUC2+) unable to grow anaerobically on sucrose, but still able to use glucose, were isolated. Two major complementation groups were identified: twenty-four recessive mutations at the SUC2 locus (suc2-); and five recessive mutations defining a new locus, SNF1 (for sucrose nonfermenting), essential for sucrose utilization. Two minor complementation groups, each comprising a single member with a leaky sucrose-nonfermenting phenotype, were also identified. The suc2 mutations isolated include four suppressible amber mutations and five mutations apparently exhibiting intragenic complementation; complementation analysis and mitotic mapping studies indicated that all of the suc2 mutations are alleles of a single gene. These results suggest that SUC2 encodes a protein, probably a dimer or multimer. No invertase activity was detected in suc2 mutants.—The SNF1 locus is not tightly linked to SUC2. The snf1 mutations were found to be pleiotropic, preventing sucrose utilization by SUC2+ and SUC7+ strains, and also preventing utilization of galactose, maltose and several nonfermentable carbon sources. Although snf1 mutants thus display a petite phenotype, classic petite mutations do not interfere with utilization of sucrose, galactose or maltose. A common feature of all the carbon utilization systems affected by SNF1 is that all are regulated by glucose repression. The snf1 mutants were found to produce the constitutive nonglycosylated form of invertase, but failed to produce the glucose-repressible, glycosylated, secreted invertase. This failure cannot be attributed to a general defect in production of glycosylated and secreted proteins because synthesis of acid phosphatase, a glycosylated secreted protein not

  3. Morphological and genetic characterization of group I Clostridium botulinum type B strain 111 and the transcriptional regulator spoIIID gene knockout mutant in sporulation.

    PubMed

    Hosomi, Koji; Kuwana, Ritsuko; Takamatsu, Hiromu; Kohda, Tomoko; Kozaki, Shunji; Mukamoto, Masafumi

    2015-06-01

    Clostridium botulinum is a heat-resistant spore-forming bacterium that causes the serious paralytic illness botulism. Heat-resistant spores may cause food sanitation hazards and sporulation plays a central role in the survival of C. botulinum. We observed morphological changes and investigated the role of the transcriptional regulator SpoIIID in the sporulation of C. botulinum type B strain 111 in order to elucidate the molecular mechanism in C. botulinum. C. botulinum type B formed heat-resistant spores through successive morphological changes corresponding to those of Bacillus subtilis, a spore-forming model organism. An analysis of the spoIIID gene knockout mutant revealed that the transcriptional regulator SpoIIID contributed to heat-resistant spore formation by C. botulinum type B and activated the transcription of the sigK gene later during sporulation. Transcription of the spoIIID gene, which differed from that in B. subtilis and Clostridium difficile, was observed in the sigE gene knockout mutant of C. botulinum type B. An analysis of the sigF gene knockout mutant showed that the sporulation-specific sigma factor SigF was essential for transcription of the spoIIID gene in C. botulinum type B. These results suggest that the regulation of sporulation in C. botulinum is not similar to that in B. subtilis and other clostridia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Anti-H-Y responses of H-2b mutant mice.

    PubMed

    Simpson, E; Gordon, R D; Chandler, P R; Bailey, D

    1978-10-01

    Two strains of H-2b mutant mice, H-2ba and H-2bf, in which the mutational event took place at H-2K, make anti-H-Y cytotoxic T cell responses which are H-2-restricted, Db-associated and indistinguishable in target cell specificity from those of H-2b mice. Thus, alteration of the H-2K molecule affects neither the Ir gene controlling the response, nor the associative antigen. On the other hand, one H-2Db mutant strain, H-2bo, although it makes a good anti-H-Y cytotoxic response, shows target cell specificity restricted to its own Dbo antigen(s), and neither H-2b, H-2ba or H-2bf anti-H-Y cytotoxic cells kill H-2bo male target cells. Thus, the alteration of the H-2Db molecule does not affect the Ir gene of H-2b mice, but it does alter the H-2Db-associative antigen.

  5. Isolation, Oxygen Sensitivity, and Virulence of NADH Oxidase Mutants of the Anaerobic Spirochete Brachyspira (Serpulina) hyodysenteriae, Etiologic Agent of Swine Dysentery

    PubMed Central

    Stanton, Thad B.; Rosey, Everett L.; Kennedy, Michael J.; Jensen, Neil S.; Bosworth, Brad T.

    1999-01-01

    Brachyspira (Serpulina) hyodysenteriae, the etiologic agent of swine dysentery, uses the enzyme NADH oxidase to consume oxygen. To investigate possible roles for NADH oxidase in the growth and virulence of this anaerobic spirochete, mutant strains deficient in oxidase activity were isolated and characterized. The cloned NADH oxidase gene (nox; GenBank accession no. U19610) on plasmid pER218 was inactivated by replacing 321 bp of coding sequence with either a gene for chloramphenicol resistance (cat) or a gene for kanamycin resistance (kan). The resulting plasmids, respectively, pCmΔNOX and pKmΔNOX, were used to transform wild-type B. hyodysenteriae B204 cells and generate the antibiotic-resistant strains Nox-Cm and Nox-Km. PCR and Southern hybridization analyses indicated that the chromosomal wild-type nox genes in these strains had been replaced, through allelic exchange, by the inactivated nox gene containing cat or kan. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western immunoblot analysis revealed that both nox mutant cell lysates were missing the 48-kDa Nox protein. Soluble NADH oxidase activity levels in cell lysates of Nox-Cm and Nox-Km were reduced 92 to 96% compared to the activity level in parent strain B204. In an aerotolerance test, cells of both nox mutants were at least 100-fold more sensitive to oxygen exposure than were cells of the wild-type parent strain B204. In swine experimental infections, both nox mutants were less virulent than strain B204 in that fewer animals were colonized by the mutant cells and infected animals displayed mild, transient signs of disease, with no deaths. These results provide evidence that NADH oxidase serves to protect B. hyodysenteriae cells against oxygen toxicity and that the enzyme, in that role, contributes to the pathogenic ability of the spirochete. PMID:10543819

  6. Activation of the Saccharomyces cerevisiae filamentation/invasion pathway by osmotic stress in high-osmolarity glycogen pathway mutants

    NASA Technical Reports Server (NTRS)

    Davenport, K. D.; Williams, K. E.; Ullmann, B. D.; Gustin, M. C.; McIntire, L. V. (Principal Investigator)

    1999-01-01

    Mitogen-activated protein kinase (MAPK) cascades are frequently used signal transduction mechanisms in eukaryotes. Of the five MAPK cascades in Saccharomyces cerevisiae, the high-osmolarity glycerol response (HOG) pathway functions to sense and respond to hypertonic stress. We utilized a partial loss-of-function mutant in the HOG pathway, pbs2-3, in a high-copy suppressor screen to identify proteins that modulate growth on high-osmolarity media. Three high-copy suppressors of pbs2-3 osmosensitivity were identified: MSG5, CAK1, and TRX1. Msg5p is a dual-specificity phosphatase that was previously demonstrated to dephosphorylate MAPKs in yeast. Deletions of the putative MAPK targets of Msg5p revealed that kss1delta could suppress the osmosensitivity of pbs2-3. Kss1p is phosphorylated in response to hyperosmotic shock in a pbs2-3 strain, but not in a wild-type strain nor in a pbs2-3 strain overexpressing MSG5. Both TEC1 and FRE::lacZ expressions are activated in strains lacking a functional HOG pathway during osmotic stress in a filamentation/invasion-pathway-dependent manner. Additionally, the cellular projections formed by a pbs2-3 mutant on high osmolarity are absent in strains lacking KSS1 or STE7. These data suggest that the loss of filamentation/invasion pathway repression contributes to the HOG mutant phenotype.

  7. Activation of the Saccharomyces cerevisiae filamentation/invasion pathway by osmotic stress in high-osmolarity glycogen pathway mutants.

    PubMed Central

    Davenport, K D; Williams, K E; Ullmann, B D; Gustin, M C

    1999-01-01

    Mitogen-activated protein kinase (MAPK) cascades are frequently used signal transduction mechanisms in eukaryotes. Of the five MAPK cascades in Saccharomyces cerevisiae, the high-osmolarity glycerol response (HOG) pathway functions to sense and respond to hypertonic stress. We utilized a partial loss-of-function mutant in the HOG pathway, pbs2-3, in a high-copy suppressor screen to identify proteins that modulate growth on high-osmolarity media. Three high-copy suppressors of pbs2-3 osmosensitivity were identified: MSG5, CAK1, and TRX1. Msg5p is a dual-specificity phosphatase that was previously demonstrated to dephosphorylate MAPKs in yeast. Deletions of the putative MAPK targets of Msg5p revealed that kss1delta could suppress the osmosensitivity of pbs2-3. Kss1p is phosphorylated in response to hyperosmotic shock in a pbs2-3 strain, but not in a wild-type strain nor in a pbs2-3 strain overexpressing MSG5. Both TEC1 and FRE::lacZ expressions are activated in strains lacking a functional HOG pathway during osmotic stress in a filamentation/invasion-pathway-dependent manner. Additionally, the cellular projections formed by a pbs2-3 mutant on high osmolarity are absent in strains lacking KSS1 or STE7. These data suggest that the loss of filamentation/invasion pathway repression contributes to the HOG mutant phenotype. PMID:10545444

  8. Augmented Expression of Polysaccharide Intercellular Adhesin in a Defined Staphylococcus epidermidis Mutant with the Small-Colony-Variant Phenotype▿

    PubMed Central

    Al Laham, Nahed; Rohde, Holger; Sander, Gunnar; Fischer, Andreas; Hussain, Muzaffar; Heilmann, Christine; Mack, Dietrich; Proctor, Richard; Peters, Georg; Becker, Karsten; von Eiff, Christof

    2007-01-01

    While coagulase-negative staphylococci (CoNS), with their ability to form a thick, multilayered biofilm on foreign bodies, have been identified as the major cause of implant-associated infections, no data are available about biofilm formation by staphylococcal small-colony variants (SCVs). In the past years, a number of device-associated infections due to staphylococcal SCVs were described, among them, several pacemaker infections due to SCVs of CoNS auxotrophic to hemin. To test the characteristics of SCVs of CoNS, in particular, to study the ability of SCVs to form a biofilm on foreign bodies, we generated a stable mutant in electron transport by interrupting one of the hemin biosynthetic genes, hemB, in Staphylococcus epidermidis. In fact, this mutant displayed a stable SCV phenotype with tiny colonies showing strong adhesion to the agar surface. When the incubation time was extended to 48 h or a higher inoculum concentration was used, the mutant produced biofilm amounts on polystyrene similar to those produced by the parent strain. When grown under planktonic conditions, the mutant formed markedly larger cell clusters than the parental strain which were completely disintegrated by the specific β-1,6-hexosaminidase dispersin B but were resistant to trypsin treatment. In a dot blot assay, the mutant expressed larger amounts of polysaccharide intercellular adhesin (PIA) than the parent strain. In conclusion, interrupting a hemin biosynthetic gene in S. epidermidis resulted in an SCV phenotype. Markedly larger cell clusters and the ability of the hemB mutant to form a biofilm are related to the augmented expression of PIA. PMID:17449620

  9. New rifamycins produced by a recombinant strain of Nocardia mediterranei.

    PubMed

    Schupp, T; Traxler, P; Auden, J A

    1981-08-01

    A recombinant strain of Nocardia mediterranei was found to produce a number of new rifamycins which are structurally related to rifamycin S, rifamycin W and rifamycin G. This strain was derived from two Nocardia mediterranei mutants by intraspecific recombination.

  10. Smad3 mutant mice develop colon cancer with overexpression of COX-2

    PubMed Central

    Zhu, Yu-Ping; Liu, Zhuo; Fu, Zhi-Xuan; Li, De-Chuan

    2017-01-01

    Colon cancer is the second most common cause of cancer-associated mortality in human populations. The aim of the present study was to identify the role of cyclooxygenase-2 (COX-2) in Smad3 mutant mice, which are known to develop colon cancer. Homozygous Smad3 (−/−) mutant mice were generated from inbred and hybrid Smad3 mouse strains by intercrossing the appropriate heterozygotes. Immunohistochemistry with COX-2 antibody was performed throughout this experiment and the data was validated and cross-checked with reverse transcription-polymerase chain reaction (RT-PCR). Homozygous mutant Smad3 mice were generated and the overexpression pattern of COX-2 was identified by immunohistochemistry and validated with RT-PCR. The results of the present study demonstrated a link between the Smad3 mutant mice, colon cancer and COX-2. In addition, the overexpression pattern of COX-2 in Smad3 mutant mice that develop colon cancer was identified. PMID:28454287

  11. [Intragenic mitotic recombination induced by ultraviolet and gamma rays in radiosensitive mutants of Saccharomyces cerevisiae yeasts].

    PubMed

    Zakharov, I A; Kasinova, G V; Koval'tsova, S V

    1983-01-01

    The effect of UV- and gamma-irradiation on the survival and intragenic mitotic recombination (gene conversion) of 5 radiosensitive mutants was studied in comparison with the wild type. The level of spontaneous conversion was similar for RAD, rad2 and rad15, mutations xrs2 and xrs4 increasing and rad54 significantly decreasing it. The frequency of conversion induced by UV-light was greater in rad2, rad15 and xrs2 mutants and lower in xrs4, as compared to RAD. Gamma-irradiation caused induction of gene conversion with an equal frequency in RAD, rad2, rad15. Xrs2 and xrs4 mutations slightly decreased gamma-induced conversion. In rad54 mutant, UV-and gamma-induced conversion was practically absent. In the wild type yeast, a diploid strain is more resistant than a haploid, whereas in rad54 a diploid strain has the same or an increased sensitivity, as compared to a haploid strain (the "inverse ploidy effect"). This effect and also the block of induced mitotic recombination caused by rad54 indicate the presence in the yeast Saccharomyces cerevisiae of repair pathways of UV- and gamma-induced damages acting in diploid cells and realised by recombination. The data obtained as a result of many years' investigation of genetic effects in radiosensitive mutants of yeast are summarised and considered.

  12. Surface antigens contribute differently to the pathophysiological features in serotype K1 and K2 Klebsiella pneumoniae strains isolated from liver abscesses.

    PubMed

    Yeh, Kuo-Ming; Chiu, Sheng-Kung; Lin, Chii-Lan; Huang, Li-Yueh; Tsai, Yu-Kuo; Chang, Jen-Chang; Lin, Jung-Chung; Chang, Feng-Yee; Siu, Leung-Kei

    2016-01-01

    The virulence role of surface antigens in a single serotype of Klebsiella pneumoniae strain have been studied, but little is known about whether their contribution will vary with serotype. To investigate the role of K and O antigen in hyper-virulent strains, we constructed O and K antigen deficient mutants from serotype K1 STL43 and K2 TSGH strains from patients with liver abscess, and characterized their virulence in according to the abscess formation and resistance to neutrophil phagocytosis, serum, and bacterial clearance in liver. Both of K1 and K2-antigen mutants lost their wildtype resistance to neutrophil phagocytosis and hepatic clearance, and failed to cause abscess formation. K2-antigen mutant became serum susceptible while K1-antigen mutant maintained its resistance to serum killing. The amount of glucuronic acid, indicating the amount of capsular polysaccharide (CPS, K antigen), was inversed proportional to the rate of phagocytosis. O-antigen mutant of serotype K1 strains had significantly more amount of CPS, and more resistant to neutrophil phagocytosis than its wildtype counterpart. O-antigen mutants of serotype K1 and K2 strains lost their wildtype serum resistance, and kept resistant to neutrophil phagocytosis. While both mutants lacked the same O1 antigen, O-antigen mutant of serotype K1 became susceptible to liver clearance and cause mild abscess formation, but its serotype K2 counterpart maintained these wildtype virulence. We conclude that the contribution of surface antigens to virulence of K. pneumoniae strains varies with serotypes.

  13. A Genetic Selection For Neurospora crassa Mutants Altered in Their Light Regulation of Transcription

    PubMed Central

    Navarro-Sampedro, Laura; Yanofsky, Charles; Corrochano, Luis M.

    2008-01-01

    Transcription of the Neurospora crassa gene con-10 is induced during conidiation and following exposure of vegetative mycelia to light, but light activation is transient due to photoadaptation. We describe mutational analyses of photoadaptation using a N. crassa strain bearing a translational fusion of con-10, including its regulatory region, to a selectable bacterial gene conferring hygromycin resistance (hph). Growth of this strain was sensitive to hygromycin, upon continuous culture in the light. Five mutants were isolated that were resistant to hygromycin when cultured under constant light. Three mutant strains displayed elevated, sustained accumulation of con-10∷hph mRNA during continued light exposure, suggesting that they bear mutations that reduce or eliminate the presumed light-dependent repression mechanism that blocks con-10 transcription upon prolonged illumination. These mutations altered photoadaptation for only a specific group of genes (con-10 and con-6), suggesting that regulation of photoadaptation is relatively gene specific. The mutations increased light-dependent mRNA accumulation for genes al-1, al-2, and al-3, each required for carotenoid biosynthesis, resulting in a threefold increase in carotenoid accumulation following continuous light exposure. Identification of the altered gene or genes in these mutants may reveal novel proteins that participate in light regulation of gene transcription in fungi. PMID:18202366

  14. Molybdenum cofactor in chlorate-resistant and nitrate reductase-deficient insertion mutants of Escherichia coli.

    PubMed Central

    Miller, J B; Amy, N K

    1983-01-01

    We examined molybdenum cofactor activity in chlorate-resistant (chl) and nitrate reductase-deficient (nar) insertion mutants and wild-type strains of Escherichia coli K-12. The bacterial molybdenum cofactor was assayed by its ability to restore activity to the cofactor-deficient nitrate reductase found in the nit-1 strain of Neurospora crassa. In the wild-type E. coli strains, molybdenum cofactor was synthesized constitutively and found in both cytoplasmic and membrane fractions. Cofactor was found in two forms: the demolybdo form required additional molybdate in the assay mix for detection, whereas the molybdenum-containing form was active without additional molybdate. The chlA and chlE mutants had no detectable cofactor. The chlB and the narG, narI, narK, and narL (previously designated chlC) strains had cofactor levels similar to those of the wild-type strains, except the chlB strains had two to threefold more membrane-bound cofactor. Cofactor levels in the chlD and chlG strains were sensitive to molybdate. When grown in 1 microM molybdate, the chlD strains had only 15 to 20% of the wild-type levels of the demolybdo and molybdenum-containing forms of the cofactor. In contrast, the chlG strains had near wild-type levels of demolybdo cofactor when grown in 1 microM molybdate, but none of the molybdenum-containing form of the cofactor. Near wild-type levels of both forms of the cofactor were restored to the chlD and chlG strains by growth in 1 mM molybdate. PMID:6307982

  15. EMMA—mouse mutant resources for the international scientific community

    PubMed Central

    Wilkinson, Phil; Sengerova, Jitka; Matteoni, Raffaele; Chen, Chao-Kung; Soulat, Gaetan; Ureta-Vidal, Abel; Fessele, Sabine; Hagn, Michael; Massimi, Marzia; Pickford, Karen; Butler, Richard H.; Marschall, Susan; Mallon, Ann-Marie; Pickard, Amanda; Raspa, Marcello; Scavizzi, Ferdinando; Fray, Martin; Larrigaldie, Vanessa; Leyritz, Johan; Birney, Ewan; Tocchini-Valentini, Glauco P.; Brown, Steve; Herault, Yann; Montoliu, Lluis; de Angelis, Martin Hrabé; Smedley, Damian

    2010-01-01

    The laboratory mouse is the premier animal model for studying human disease and thousands of mutants have been identified or produced, most recently through gene-specific mutagenesis approaches. High throughput strategies by the International Knockout Mouse Consortium (IKMC) are producing mutants for all protein coding genes. Generating a knock-out line involves huge monetary and time costs so capture of both the data describing each mutant alongside archiving of the line for distribution to future researchers is critical. The European Mouse Mutant Archive (EMMA) is a leading international network infrastructure for archiving and worldwide provision of mouse mutant strains. It operates in collaboration with the other members of the Federation of International Mouse Resources (FIMRe), EMMA being the European component. Additionally EMMA is one of four repositories involved in the IKMC, and therefore the current figure of 1700 archived lines will rise markedly. The EMMA database gathers and curates extensive data on each line and presents it through a user-friendly website. A BioMart interface allows advanced searching including integrated querying with other resources e.g. Ensembl. Other resources are able to display EMMA data by accessing our Distributed Annotation System server. EMMA database access is publicly available at http://www.emmanet.org. PMID:19783817

  16. Alteration in levels of unsaturated fatty acids in mutants of Escherichia coli defective in DNA replication.

    PubMed

    Suzuki, E; Kondo, T; Makise, M; Mima, S; Sakamoto, K; Tsuchiya, T; Mizushima, T

    1998-07-01

    We previously reported that mutations in the dnaA gene which encodes the initiator of chromosomal DNA replication in Escherichia coli caused an alteration in the levels of unsaturated fatty acids of phospholipids in membranes. In this study, we examined fatty acid compositions in other mutants which are defective in DNA replication. As in the case of temperature-sensitive dnaA mutants, temperature-sensitive dnaC and dnaE mutants, which have defects in initiation and elongation, respectively, of DNA replication showed a lower level of unsaturation of fatty acids (ratio of unsaturated to saturated fatty acids) compared with the wild-type strain, especially at high temperatures. On the other hand, temperature-sensitive mutants defective in cellular processes other than DNA replication, such as RNA synthesis and cell division, did not show a lower level of unsaturation of fatty acids compared with the wild-type strain. These results suggest that the inhibition of DNA replication causes a lower level of unsaturation of fatty acids in Escherichia coli cells.

  17. Evolution of a recombinant (gucoamylase-producing) strain of Fusarium venenatum A3/5 in chemostat culture.

    PubMed

    Wiebe, M G; Robson, G D; Shuster, J; Trinci, A P

    2001-04-20

    Fusarium venenatum JeRS 325 is a transformant of strain A3/5 which produces Aspergillus niger glucoamylase (GAM) under the control of a Fusarium oxysporum trypsin-like protease promoter. The evolution of JeRS 325 was studied in glucose-limited chemostat cultures grown on NaNO3 or (NH4)2SO4 as the nitrogen source. Thirteen mutants which were more highly branched and four mutants which were more sparsely branched than the parental strain were isolated from the NaNO3 chemostat. The highly branched mutants detected in this chemostat did not displace the sparsely branched population. The mutants isolated from the NaNO3 chemostat complemented representative strains previously isolated from glucose-limited chemostat cultures of F. venenatum A3/5 grown on (NH4)2SO4, but showed little complementation between themselves. By contrast, a highly branched mutant isolated from the (NH4)2SO4 chemostat culture displaced the sparsely branched mycelial population. None of the mutants isolated from the NaNO3 or (NH4)2SO4 chemostats produced as much GAM as JeRS 325. Southern blot analysis showed that all except one mutant had lost copies of both the glucoamylase and the acetamidase (the selectable marker) genes. However, specific GAM production was not necessarily correlated with the extent of glaA gene loss observed. Further, 10 of the mutants had lost the ability to grow on acetamide as the sole nitrogen source, although they retained copies of the amdS gene. In competition studies, mutants which could not utilize acetamide displaced mutants which could. The presence of foreign DNA in JeRS 325 resulted in a reduced specific growth rate (compared to A3/5), but the presence of the foreign DNA did not prevent the evolution of the strain or the isolation of mutants which had improved growth rates. Copyright 2001 John Wiley & Sons, Inc.

  18. Creation, characterization and utilization of Cryptococcus neoformans mutants sensitive to micafungin.

    PubMed

    Toh-E, Akio; Ohkusu, Misako; Shimizu, Kiminori; Yamaguchi, Masashi; Ishiwada, Naruhiko; Watanabe, Akira; Kamei, Katsuhiko

    2017-12-01

    We constructed deletion mutants of Cryptococcus neoformans var neoformans (serotype D) genes encoding late ergosterol biosynthetic pathway enzymes and found that the mutations enhanced susceptibility to various drugs including micafungin, one of the echinocandins, to which wild-type Cryptococcus strains show no susceptibility. Furthermore, through isolation of a mutant resistant to micafungin from a micafungin-sensitive erg mutant and genetic analysis of it, we found that the responsible mutation occurred in the hotspot 2 of FKS1 encoding β-1, 3-glucan synthase, indicating that micafungin inhibited the growth of the erg mutant via inhibiting Fks1 activity. Addition of ergosterol to the culture of the erg mutants recovered the resistance to micafungin, suggesting that the presence of ergosterol in membrane inhibits the accession of micafungin to its target. We found that a loss of one of genes encoding subunits of v-ATPase, VPH1, made Cryptococcus cells sensitive to micafungin. Our observation that the erg2 vph1 double mutant was more sensitive to micafungin than either single mutant suggests that these two genes act differently in becoming resistant to micafungin. The erg mutants allowed us to study the physiological significance of β-1, 3-glucan synthesis in C. neoformans; the inhibition of β-1, 3-glucan synthesis induced cell death and changes in cellular morphology. By observing the erg mutant cells recovering from the growth inhibition imposed by micafungin, we recognized β-1, 3-glucan synthesis would suppress filamentous growth in C. neoformans.

  19. Pattern-formation mechanisms in motility mutants of Myxococcus xanthus

    PubMed Central

    Starruß, Jörn; Peruani, Fernando; Jakovljevic, Vladimir; Søgaard-Andersen, Lotte; Deutsch, Andreas; Bär, Markus

    2012-01-01

    Formation of spatial patterns of cells is a recurring theme in biology and often depends on regulated cell motility. Motility of the rod-shaped cells of the bacterium Myxococcus xanthus depends on two motility machineries, type IV pili (giving rise to S-motility) and the gliding motility apparatus (giving rise to A-motility). Cell motility is regulated by occasional reversals. Moving M. xanthus cells can organize into spreading colonies or spore-filled fruiting bodies, depending on their nutritional status. To ultimately understand these two pattern-formation processes and the contributions by the two motility machineries, as well as the cell reversal machinery, we analyse spatial self-organization in three M. xanthus strains: (i) a mutant that moves unidirectionally without reversing by the A-motility system only, (ii) a unidirectional mutant that is also equipped with the S-motility system, and (iii) the wild-type that, in addition to the two motility systems, occasionally reverses its direction of movement. The mutant moving by means of the A-engine illustrates that collective motion in the form of large moving clusters can arise in gliding bacteria owing to steric interactions of the rod-shaped cells, without the need of invoking any biochemical signal regulation. The two-engine strain mutant reveals that the same phenomenon emerges when both motility systems are present, and as long as cells exhibit unidirectional motion only. From the study of these two strains, we conclude that unidirectional cell motion induces the formation of large moving clusters at low and intermediate densities, while it results in vortex formation at very high densities. These findings are consistent with what is known from self-propelled rod models, which strongly suggests that the combined effect of self-propulsion and volume exclusion interactions is the pattern-formation mechanism leading to the observed phenomena. On the other hand, we learn that when cells occasionally reverse

  20. Generation of random mutants to improve light-use efficiency of Nannochloropsis gaditana cultures for biofuel production.

    PubMed

    Perin, Giorgio; Bellan, Alessandra; Segalla, Anna; Meneghesso, Andrea; Alboresi, Alessandro; Morosinotto, Tomas

    2015-01-01

    The productivity of an algal culture depends on how efficiently it converts sunlight into biomass and lipids. Wild-type algae in their natural environment evolved to compete for light energy and maximize individual cell growth; however, in a photobioreactor, global productivity should be maximized. Improving light use efficiency is one of the primary aims of algae biotechnological research, and genetic engineering can play a major role in attaining this goal. In this work, we generated a collection of Nannochloropsis gaditana mutant strains and screened them for alterations in the photosynthetic apparatus. The selected mutant strains exhibited diverse phenotypes, some of which are potentially beneficial under the specific artificial conditions of a photobioreactor. Particular attention was given to strains showing reduced cellular pigment contents, and further characterization revealed that some of the selected strains exhibited improved photosynthetic activity; in at least one case, this trait corresponded to improved biomass productivity in lab-scale cultures. This work demonstrates that genetic modification of N. gaditana has the potential to generate strains with improved biomass productivity when cultivated under the artificial conditions of a photobioreactor.

  1. Recombinant levels of Escherichia coli K-12 mutants deficient in various replication, recombination, or repair genes.

    PubMed Central

    Zieg, J; Maples, V F; Kushner, S R

    1978-01-01

    Escherichia coli strains containing mutations in lexA, rep, uvrA, uvrD, uvrE, lig, polA, dam, or xthA were constructed and tested for conjugation and transduction proficiencies and ability to form Lac+ recombinants in an assay system utilizing a nontandem duplication of two partially deleted lactose operons (lacMS286phi80dIIlacBK1). lexA and rep mutants were as deficient (20% of wild type) as recB and recC strains in their ability to produce Lac+ progeny. All the other strains exhibited increased frequencies of Lac+ recombinant formation, compared with wild type, ranging from 2- to 13-fold. Some strains showed markedly increased conjugation proficiency (dam uvrD) compared to wild type, while others appeared deficient (polA107). Some differences in transduction proficiency were also observed. Analysis of the Lac+ recombinants formed by the various mutants indicated that they were identical to the recombinants formed by a wild-type strain. The results indicate that genetic recombination in E. coli is a highly regulated process involving multiple gene products. PMID:350859

  2. Characterization of Cell Surface and EPS Remodeling of Azospirillum brasilense Chemotaxis-like 1 Signal Transduction Pathway mutants by Atomic Force Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Billings, Amanda N; Siuti, Piro; Bible, Amber

    2011-01-01

    To compete in complex microbial communities, bacteria must quickly sense environmental changes and adjust cellular functions for optimal growth. Chemotaxis-like signal transduction pathways are implicated in the modulation of multiple cellular responses, including motility, EPS production, and cell-to-cell interactions. Recently, the Che1 chemotaxis-like pathway from Azospirillum brasilense was shown to modulate flocculation. In A. brasilense, cell surface properties, including EPS production, are thought to play a direct role in promoting flocculation. Using atomic force microscopy (AFM), we have detected distinct changes in the surface morphology of flocculating A. brasilense Che1 mutant strains that are absent in the wild type strain.more » Whereas the wild type strain produces a smooth mucosal extracellular matrix, the flocculating Che1 mutant strains produce distinctive extracellular fibril structures. Further analyses using flocculation inhibition and lectin-binding assays suggest that the composition of EPS components in the extracellular matrix differs between the cheA1 and cheY1 mutants, despite an apparent similarity in the macroscopic floc structures. Collectively, these data indicate that mutations in the Che1 pathway that result in increased flocculation are correlated with distinctive changes in the extracellular matrix structure produced by the mutants, including likely changes in the EPS structure and/or composition.« less

  3. Attenuated mutant strain of Salmonella Typhimurium lacking the ZnuABC transporter contrasts tumor growth promoting anti-cancer immune response.

    PubMed

    Chirullo, Barbara; Ammendola, Serena; Leonardi, Leonardo; Falcini, Roberto; Petrucci, Paola; Pistoia, Claudia; Vendetti, Silvia; Battistoni, Andrea; Pasquali, Paolo

    2015-07-10

    Salmonella Typhimurium has been shown to be highly effective as antitumor agent. The aim of this study was to investigate the tumor targeting efficacy and the mechanism of action of a specific attenuated mutant strain of Salmonella Typhimurium (STM) devoid of the whole operon coding for the high-affinity zinc transporter ZnuABC, which is required for bacterial growth in environments poor in zinc and for conferring full virulence to different Gram-negative pathogens.We showed that STM is able to penetrate and replicate into tumor cells in in vitro and in vivo models. The subcutaneous administration of STM in mammary adenocarcinoma mouse model led to both reduction of tumor growth and increase in life expectancy of STM treated mice. Moreover, investigating the potential mechanism behind the favorable clinical outcomes, we provide evidence that STM stimulates a potent inflammatory response and a specific immune pattern, recruiting a large number of innate and adaptive immune cells capable to contrast the immunosuppressive environment generated by tumors.

  4. Expression in Bacillus subtilis of the Bacillus thuringiensis cryIIIA toxin gene is not dependent on a sporulation-specific sigma factor and is increased in a spo0A mutant.

    PubMed

    Agaisse, H; Lereclus, D

    1994-08-01

    Expression of the Bacillus thuringiensis cryIIIA gene encoding a Coleoptera-specific toxin is weak during vegetative growth and is activated at the onset of the stationary phase. cryIIIA'-'lacZ fusions and primer extension analysis show that the regulation of cryIIIA expression is similar in Bacillus subtilis and in B. thuringiensis. Activation of cryIIIA expression was not altered in B. subtilis mutant strains deficient for the sigma H and sigma E sporulation-specific sigma factors or for minor sigma factors such as sigma B, sigma D, or sigma L. This result and the nucleotide sequence of the -35 and -10 regions of the cryIIIA promoter suggest that cryIIIA expression might be directed by the E sigma A form of RNA polymerase. Expression of the cryIIIA'-'lacZ fusion is shut off after t2 (2 h after time zero) of sporulation in the B. subtilis wild-type strain grown on nutrient broth sporulation medium. However, no decrease in cryIIIA-directed beta-galactosidase activity occurred in sigma H, kinA, or spo0A mutant strains. Moreover, beta-galactosidase activity was higher and remained elevated after t2 in the spo0A mutant strain. beta-Galactosidase activity was weak in abrB and spo0A abrB mutant strains, suggesting that AbrB is responsible for the higher level of cryIIIA expression observed in a spo0A mutant. However, both in spo0A and spo0A abrB mutant strains, beta-galactosidase activity remained elevated after t2, suggesting that even in the absence of AbrB, cryIIIA expression is controlled through modulation of the phosphorylated form of Spo0A. When the cryIIIA gene is expressed in a B. subtilis spo0A mutant strain or in the 168 wild-type strain, large amounts of toxins are produced and accumulate to form a flat rectangular crystal characteristic of the coleopteran-specific B. thuringiensis strains.

  5. Phenotypic, fermentation characterization, and resistance mechanism analysis of bacteriophage-resistant mutants of Lactobacillus delbrueckii ssp. bulgaricus isolated from traditional Chinese dairy products.

    PubMed

    Deng, Kaibo; Fang, Wei; Zheng, Baodong; Miao, Song; Huo, Guicheng

    2018-03-01

    Bacteriophage infection is a large factor in dairy industrial production failure on the basis of pure inoculation fermentation, and developing good commercial starter cultures from wild dairy products and improving the environmental vigor of starter cultures by enhancing their phage resistance are still the most effective solutions. Here we used a spontaneous isolation method to obtain bacteriophage-resistant mutants of Lactobacillus delbrueckii ssp. bulgaricus strains that are used in traditional Chinese fermented dairy products. We analyzed their phenotypes, fermentation characteristics, and resistance mechanisms. The results showed that bacteriophage-insensitive mutants (BIM) BIM8 and BIM12 had high bacteriophage resistance while exhibiting fermentation and coagulation attributes that were as satisfying as those of their respective parent strains KLDS1.1016 and KLDS1.1028. According to the attachment receptor detection, mutants BIM8 and BIM12 exhibited reduced absorption to bacteriophage phiLdb compared with their respective bacteriophage-sensitive parent strains because of changes to the polysaccharides or teichoic acids connected to their peptidoglycan layer. Additionally, genes, including HSDR, HSDM, and HSDS, encoding 3 subunits of a type I restriction-modification system were identified in their respective parent strains. We also discovered that HSDR and HSDM were highly conserved but that HSDS was variable because it is responsible for the DNA specificity of the complex. The late lysis that occurred only in strain KLDS1.1016 and not in strain KLDS1.1028 suggests that the former and its mutant BIM8 also may have an activatable restriction-modification mechanism. We conclude that the L. bulgaricus BIM8 and BIM12 mutants have great potential in the dairy industry as starter cultures, and their phage-resistance mechanism was effective mainly due to the adsorption interference and restriction-modification system. Copyright © 2018 American Dairy Science

  6. Characterization of Staphylococcus aureus mutants expressing reduced susceptibility to common house-cleaners

    PubMed Central

    Davis, A.O.; O’Leary, J.O.; Muthaiyan, A.; Langevin, M.J.; Delgado, A.; Abalos, A.T.; Fajardo, A.R.; Marek, J.; Wilkinson, B.J.; Gustafson, J.E.

    2013-01-01

    Aims To characterize mutants of Staphylococcus aureus expressing reduced susceptibility to house cleaners (HC), assess the impact of the alternative sigma factor SigB on HC susceptibility, and determine the MIC of clinical methicillin-resistant S. aureus (MRSA) to a HC. Methods and Results Susceptibility to HC, HC components, H2O2, vancomycin and oxacillin and physiological parameters were determined for HC-reduced susceptibility (HCRS) mutants, parent strain COL and COLsigB::kan. HCRS mutants selected with three HC expressed reduced susceptibility to multiple HC, HC components, H2O2 and vancomycin. Two unique HCRS mutants also lost the methicillin resistance determinant. In addition, all HCRS mutants exhibited better growth at two temperatures, and one HCRS mutant expressed reduced carotenoid production. COLsigB::kan demonstrated increased susceptibility to all HC and many HC components. sigB operon mutations were not detected in one HCRS mutant background. Of 76 clinical MRSA, 20 exhibited reduced susceptibility to a HC. Conclusions HCRS mutants demonstrate altered susceptibility to multiple antimicrobials. While sigB is required for full HC resistance, one HCRS mechanism does not involve sigB operon mutations. Clinical MRSA expressing reduced susceptibility to a common HC were detected. Significance and Impact of the Study This study suggests that HCRS mutants are not protected against, nor selected by, practical HC concentrations. PMID:15659191

  7. Inland area contingency plan and maps for Pennsylvania (on CD-ROM). Data file

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-01

    EPA Region III has assembled on this CD a multitude of environmental data, in both visual and textual formats. While targeted for Facility Response Planning under the Oil Pollution Act of 1990, this information will prove helpful to anyone in the environmental arena. Specifically, the CD will aid contingency planning and emergency response personnel. Combining innovative GIS technology with EPA`s state-specific data allows you to display maps, find and identify map features, look at tabular information about map features, and print out maps. The CD was designed to be easy to use and incorporates example maps as well as helpmore » sections describing the use of the environmental data on the CD, and introduces you to the IACP Viewer and its capabilities. These help features will make it easy for you to conduct analysis, produce maps, and browse the IACP Plan. The IACP data are included in two formats: shapefiles, which can be viewed with the IACP Viewer or ESRI`s ArcView software (Version 2.1 or higher), and ARC/INFO export files, which can be imported into ARC/INFO or converted to other GIS data formats. Point Data Sources: Sensitive Areas, Surface Drinking Water Intakes, Groundwater Intakes, Groundwater Supply Facilities, NPL (National Priority List) Sites, FRP (Facility Response Plan) Facilities, NPDES (National Pollutant Discharge Elimination System) Facilities, Hospitals, RCRA (Resource Conservation and Recovery Act) Sites, TRI (Toxic Release Inventory) Sites, CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act) Sites Line Data Sources: TIGER Roads, TIGER Railroads, TIGER Hydrography, Pipelines Polygon Data Sources: State Boundaries, County Boundaries, Watershed Boundaries (8-digit HUC), TIGER Hydrography, Public Lands, Populated Places, IACP Boundaries, Coast Guard Boundaries, Forest Types, US Congressional Districts, One-half Mile Buffer of Surface Drinking Water Intakes.« less

  8. Inland area contingency plan and maps for Delaware, Maryland, West Virginia, District of Columbia (on CD-ROM). Data file

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-01

    EPA Region III has assembled on this CD a multitude of environmental data, in both visual and textual formats. While targeted for Facility Response Planning under the Oil Pollution Act of 1990, this information will prove helpful to anyone in the environmental arena. Specifically, the CD will aid contingency planning and emergency response personnel. Combining innovative GIS technology with EPA`s state-specific data allows you to display maps, find and identify map features, look at tabular information about map features, and print out maps. The CD was designed to be easy to use and incorporates example maps as well as helpmore » sections describing the use of the environmental data on the CD, and introduces you to the IACP Viewer and its capabilities. These help features will make it easy for you to conduct analysis, produce maps, and browse the IACP Plan. The IACP data are included in two formats: shapefiles, which can be viewed with the IACP Viewer or ESRI`s ArcView software (Version 2.1 or higher), and ARC/INFO export files, which can be imported into ARC/INFO or converted to other GIS data formats. Point Data Sources: Sensitive Areas, Surface Drinking Water Intakes, Groundwater Intakes, Groundwater Supply Facilities, NPL (National Priority List) Sites, FRP (Facility Response Plan) Facilities, NPDES (National Pollutant Discharge Elimination System) Facilities, Hospitals, RCRA (Resource Conservation and Recovery Act) Sites, TRI (Toxic Release Inventory) Sites, CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act) Sites Line Data Sources: TIGER Roads, TIGER Railroads, TIGER Hydrography, Pipelines Polygon Data Sources: State Boundaries, County Boundaries, Watershed Boundaries (8-digit HUC), TIGER Hydrography, Public Lands, Populated Places, IACP Boundaries, Coast Guard Boundaries, Forest Types, US Congressional Districts, One-half Mile Buffer of Surface Drinking Water Intakes.« less

  9. Inland area contingency plan and maps for Virginia (on CD-ROM). Data file

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-01

    EPA Region III has assembled on this CD a multitude of environmental data, in both visual and textual formats. While targeted for Facility Response Planning under the Oil Pollution Act of 1990, this information will prove helpful to anyone in the environmental arena. Specifically, the CD will aid contingency planning and emergency response personnel. Combining innovative GIS technology with EPA`s state-specific data allows you to display maps, find and identify map features, look at tabular information about map features, and print out maps. The CD was designed to be easy to use and incorporates example maps as well as helpmore » sections describing the use of the environmental data on the CD, and introduces you to the IACP Viewer and its capabilities. These help features will make it easy for you to conduct analysis, produce maps, and browse the IACP Plan. The IACP data are included in two formats: shapefiles, which can be viewed with the IACP Viewer or ESRI`s ArcView software (Version 2.1 or higher), and ARC/INFO export files, which can be imported into ARC/INFO or converted to other GIS data formats. Point Data Sources: Sensitive Areas, Surface Drinking Water Intakes, Groundwater Intakes, Groundwater Supply Facilities, NPL (National Priority List) Sites, FRP (Facility Response Plan) Facilities, NPDES (National Pollutant Discharge Elimination System) Facilities, Hospitals, RCRA (Resource Conservation and Recovery Act) Sites, TRI (Toxic Release Inventory) Sites, CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act) Sites Line Data Sources: TIGER Roads, TIGER Railroads, TIGER Hydrography, Pipelines Polygon Data Sources: State Boundaries, County Boundaries, Watershed Boundaries (8-digit HUC), TIGER Hydrography, Public Lands, Populated Places, IACP Boundaries, Coast Guard Boundaries, Forest Types, US Congressional Districts, One-half Mile Buffer of Surface Drinking Water Intakes.« less

  10. Genetic manipulation of membrane phospholipid composition in Escherichia coli: pgsA mutants defective in phosphatidylglycerol synthesis.

    PubMed Central

    Miyazaki, C; Kuroda, M; Ohta, A; Shibuya, I

    1985-01-01

    Unique mutants of Escherichia coli K-12, defective in phosphatidylglycerol synthesis, have been isolated from a temperature-sensitive strain incubated at its nonpermissive temperature. The parent strain had excess phosphatidylglycerol by harboring both the pss-1 allele [coding for a temperature-sensitive phosphatidylserine synthase (EC 2.7.8.8)] and the cls- allele (responsible for a defective cardiolipin synthase). The newly acquired mutations caused better growth at higher temperatures. One of the mutations (pgsA3) has been identified in the structural gene for phosphatidylglycerophosphate synthase [glycerophosphate phosphatidyltransferase (EC 2.7.8.5)]. Phospholipid compositions of these mutants were remarkable; phosphatidylethanolamine was the sole major lipid. In media with low osmotic pressures, these cells grew more slowly than the wild-type cells. They grew normally without recovering from the phospholipid abnormality in media appropriately supplemented with sucrose and MgCl2. Formation of cardiolipin and phosphoglycerol derivatives of membrane-derived oligosaccharides was reduced in a pgsA3 mutant. E. coli strains having the pgsA3, pss-1, and cls- mutations, either individually or in combination, constitute an empirical system in which the molar ratio of three major membrane phospholipids can be variously altered. Images PMID:2999767

  11. Identification of a mutant locus that bypasses the BsgA protease requirement for social development in Myxococcus xanthus.

    PubMed

    Cusick, John K; Hager, Elizabeth; Gill, Ronald E

    2015-01-01

    The BsgA protease is required for the earliest morphological changes observed in Myxococcus xanthus development. We hypothesize that the BsgA protease is required to cleave an inhibitor of the developmental program, and isolation of genetic bypass suppressors of a bsgA mutant was used to identify signaling components controlling development downstream of the BsgA protease. Strain M955 was created by transposon mutagenesis of a bsgA mutant followed by screening for strains that could develop despite the absence of the BsgA protease. Strain M955 was able to aggregate, form fruiting bodies, and partially restored the production of viable spores in comparison to the parental bsgA mutant. The bsgA Tn5Ω955 strain partially restored developmental expression to a subset of genes normally induced during development, and expressed one developmentally induced fusion at higher amounts during vegetative growth in comparison to wild-type cells. The transposon in strain M955 was localized to a Ribonuclease D homolog that appears to exist in an operon with a downstream aminopeptidase-encoding gene. The identification of a third distinct bypass suppressor of the BsgA protease suggests that the BsgA protease may regulate a potentially complex pathway during the initiation of the M. xanthus developmental program. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Mutants of Escherichia coli defective in membrane phospholipid synthesis: macromolecular synthesis in an sn-glycerol 3-phosphate acyltransferase Km mutant.

    PubMed

    Bell, R M

    1974-03-01

    sn-Glycerol 3-phosphate (G3P) auxotrophs of Escherichia coli have been selected from a strain which cannot aerobically catabolize G3P. The auxotrophy resulted from loss of the biosynthetic G3P dehydrogenase (EC 1.1.1.8) or from a defective membranous G3P acyltransferase. The apparent K(m) of the acyltransferase for G3P was 11- to 14-fold higher (from about 90 mum to 1,000 to 1,250 mum) in membrane preparations from the mutants than those of the parent. All extracts prepared from revertants of the G3P dehydrogenase mutants showed G3P dehydrogenase activity, but most contained less than 10% of the wild-type level. Membrane preparations from revertants of the acyltransferase mutants had apparent K(m)'s for G3P similar to that of the parent. Strains have been derived in which the G3P requirement can be satisfied with glycerol in the presence of glucose, presumably because the glycerol kinase was desensitized to inhibition by fructose 1,6-diphosphate. Investigations on the growth and macromolecular synthesis in a G3P acyltransferase K(m) mutant revealed that upon glycerol deprivation, net phospholipid synthesis stopped immediately; growth continued for about one doubling; net ribonucleic acid (RNA), deoxyribonucleic acid (DNA), and protein nearly doubled paralleling the growth curve; the rate of phospholipid synthesis assessed by labeling cells with (32)P-phosphate, (14)C-acetate, or (3)H-serine was reduced greater than 90%; the rates of RNA and DNA synthesis increased as the cells grew and then decreased as the cells stopped growing; the rate of protein synthesis showed no increase and declined more slowly than the rates of RNA and DNA synthesis when the cells stopped growing. The cells retained and gained in the capacity to synthesize phospholipids upon glycerol deprivation. These data indicate that net phospholipid synthesis is not required for continued macromolecular synthesis for about one doubling, and that the rates of these processes are not coupled during this

  13. Sharing mutants and experimental information prepublication using FgMutantDb (https://scabusa.org/FgMutantDb).

    PubMed

    Baldwin, Thomas T; Basenko, Evelina; Harb, Omar; Brown, Neil A; Urban, Martin; Hammond-Kosack, Kim E; Bregitzer, Phil P

    2018-06-01

    There is no comprehensive storage for generated mutants of Fusarium graminearum or data associated with these mutants. Instead, researchers relied on several independent and non-integrated databases. FgMutantDb was designed as a simple spreadsheet that is accessible globally on the web that will function as a centralized source of information on F. graminearum mutants. FgMutantDb aids in the maintenance and sharing of mutants within a research community. It will serve also as a platform for disseminating prepublication results as well as negative results that often go unreported. Additionally, the highly curated information on mutants in FgMutantDb will be shared with other databases (FungiDB, Ensembl, PhytoPath, and PHI-base) through updating reports. Here we describe the creation and potential usefulness of FgMutantDb to the F. graminearum research community, and provide a tutorial on its use. This type of database could be easily emulated for other fungal species. Published by Elsevier Inc.

  14. Slow Joining of Newly Replicated DNA Chains in DNA Polymerase I-Deficient Escherichia coli Mutants*

    PubMed Central

    Okazaki, Reiji; Arisawa, Mikio; Sugino, Akio

    1971-01-01

    In Escherichia coli mutants deficient in DNA polymerase I, newly replicated short DNA is joined at about 10% of the rate in the wild-type strains. It is postulated that DNA polymerase I normally functions in filling gaps between the nascent short segments synthesized by the replication complex. Possible implications of the finding are discussed in relation to other abnormal properties of these mutants. PMID:4943548

  15. [Construction of enterohemorrhagic Escherichia coli O157:H7 strains with espF gene deletion and complementation].

    PubMed

    Hua, Ying; Sun, Qi; Wang, Xiangyu; DU, Yanli; Shao, Na; Zhang, Qiwei; Zhao, Wei; Wan, Chengsong

    2015-11-01

    To construct enterohemorrhagic Escherichia coli (EHEC) O157:H7 strains with delection espF gene and its nucleotide fragment and with espF gene complementation. A pair of homologous arm primers was designed to amplify the gene fragment of kanamycin resistance, which was transformed into EHEC O157:H7 EDL933w strain via the PKD46 plasmid by electroporation. The replacement of the espF gene by kanamycin resistance gene through the PKD46-mediated red recombination system was confirmed by PCR and sequencing. The entire coding region of espF along with its nucleotide fragment was amplified by PCR and cloned into pBAD33 plasmid, which was transformed into a mutant strain to construct the strain with espF complementation. RT-PCR was used to verify the transcription of espF and its nucleotide fragment in the complemented mutant strain. We established EHEC O157:H7 EDL933w strains with espF gene deletion and with espF gene complementation. Both espF and its nucleotide fragment were transcribed in the complemented mutant strain. The two strains provide a basis for further study of the regulatory mechanism of espF.

  16. Properties of uvrE mutants of Escherichia coli K12. Part 2. Construction and properties of pol and rec derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattern, I.E.; Houtman, P.C.

    1974-01-01

    Viability and sensitivity to ultraviolet radiation and x-rays as well as frequency of spontaneous mutations was investigated for some double mutant strains of Escherichia coli and compared with parent strains. (GRA)

  17. Identification of Francisella novicida mutants that fail to induce prostaglandin E2 synthesis by infected macrophages

    PubMed Central

    Woolard, Matthew D.; Barrigan, Lydia M.; Fuller, James R.; Buntzman, Adam S.; Bryan, Joshua; Manoil, Colin; Kawula, Thomas H.; Frelinger, Jeffrey A.

    2013-01-01

    Francisella tularensis is the causative agent of tularemia. We have previously shown that infection with F. tularensis Live Vaccine Strain (LVS) induces macrophages to synthesize prostaglandin E2 (PGE2). Synthesis of PGE2 by F. tularensis infected macrophages results in decreased T cell proliferation in vitro and increased bacterial survival in vivo. Although we understand some of the biological consequences of F. tularensis induced PGE2 synthesis by macrophages, we do not understand the cellular pathways (neither host nor bacterial) that result in up-regulation of the PGE2 biosynthetic pathway in F. tularensis infected macrophages. We took a genetic approach to begin to understand the molecular mechanisms of bacterial induction of PGE2 synthesis from infected macrophages. To identify F. tularensis genes necessary for the induction of PGE2 in primary macrophages, we infected cells with individual mutants from the closely related strain F. tularensis subspecies novicida U112 (U112) two allele mutant library. Twenty genes were identified that when disrupted resulted in U112 mutant strains unable to induce the synthesis of PGE2 by infected macrophages. Fourteen of the genes identified are located within the Francisella pathogenicity island (FPI). Genes in the FPI are required for F. tularensis to escape from the phagosome and replicate in the cytosol, which might account for the failure of U112 with transposon insertions within the FPI to induce PGE2. This implies that U112 mutant strains that do not grow intracellularly would also not induce PGE2. We found that U112 clpB::Tn grows within macrophages yet fails to induce PGE2, while U112 pdpA::Tn does not grow yet does induce PGE2. We also found that U112 iglC::Tn neither grows nor induces PGE2. These findings indicate that there is dissociation between intracellular growth and the ability of F. tularensis to induce PGE2 synthesis. These mutants provide a critical entrée into the pathways used in the host for PGE2

  18. Identification and cloning of a regulatory gene for nitrogen assimilation in the cyanobacterium Synechococcus sp. strain PCC 7942.

    PubMed Central

    Vega-Palas, M A; Madueño, F; Herrero, A; Flores, E

    1990-01-01

    Twenty-seven mutants that were unable to assimilate nitrate were isolated from Synechococcus sp. strain PCC 7942. In addition to mutants that lacked nitrate reductase or nitrite reductase, seven pleiotropic mutants impaired in both reductases, glutamine synthetase, and methylammonium transport were also isolated. One of the pleiotropic mutants was complemented by transformation with a cosmid gene bank from wild-type strain PCC 7942. Three complementing cosmids were isolated, and a 3.1-kilobase-pair DNA fragment that was still able to complement the mutant was identified. The regulatory gene that was cloned (ntcA) appeared to be required for full expression of proteins subject to ammonium repression in Synechococcus sp. PMID:1967601

  19. Ultraviolet-Sensitive Mutator Strain of Escherichia coli K-12

    PubMed Central

    Siegel, Eli C.

    1973-01-01

    An ultraviolet (UV)-sensitive mutator gene, mutU, was identified in Escherichia coli K-12. The mutation mutU4 is very close to uvrD, between metE and ilv, on the E. coli chromosome. It was recessive as a mutator and as a UV-sensitive mutation. The frequency of reversion of trpA46 on an F episome was increased by mutU4 on the chromosome. The mutator gene did not increase mutation frequencies in virulent phages or in lytically grown phage λ. The mutU4 mutation predominantly induced transitional base changes. Mutator strains were normal for recombination and host-cell reactivation of UV-irradiated phage T1. They were normally resistant to methyl methanesulfonate and were slightly more sensitive to gamma irradiation than Mut+ strains. UV irradiation induced mutations in a mutU4 strain, and phage λ was UV-inducible. Double mutants containing mutU4 and recA, B, or C were extremely sensitive to UV irradiation; a mutU4 uvrA6 double mutant was only slightly more sensitive than a uvrA6 strain. The mutU4 uvrA6 and mutU4 recA, B, or C double mutants had mutation rates similar to that of a mutU4 strain. Two UV-sensitive mutators, mut-9 and mut-10, isolated by Liberfarb and Bryson in E. coli B/UV, were found to be co-transducible with ilv in the same general region as mutU4. PMID:4345920

  20. Molecular characterization, fitness and mycotoxin production of Fusarium graminearum laboratory strains resistant to benzimidazoles.

    PubMed

    Sevastos, A; Markoglou, A; Labrou, N E; Flouri, F; Malandrakis, A

    2016-03-01

    Six benzimidazole (BMZ)-resistant Fusarium graminearum strains were obtained after UV mutagenesis and selection on carbendazim (MBC)-amended medium. In vitro bioassays resulted in the identification of two resistant phenotypes that were highly HR (Rf: 40-170, based on EC50) and moderately MR (Rf: 10-20) resistant to carbendazim. Cross resistance studies with other fungicides showed that all mutant strains tested were also resistant to other BMZs, such as benomyl and thiabendazole, but retained their parental sensitivity to fungicides belonging to other chemical groups. A point mutation at codon 6 (His6Asn) was found in the β2-tubulin gene of MR isolates while another mutation at codon 200 (Phe200Tyr) was present in one MR and one HR isolates. Interestingly, low temperatures suppressed MBC-resistance in all isolates bearing the H6N mutation. The three-dimensional homology model of the wild-type and mutants of β-tubulins were constructed, and the possible carbendazim binding site was analyzed. Studies on fitness parameters showed that the mutation(s) for resistance to BMZs did not affect the mycelial growth rate whereas adverse effects were found in sporulation and conidial germination in most of the resistant mutants. Pathogenicity tests on corn cobs revealed that mutants were less or equally aggressive to the wild-type strain but expressed their BMZ-resistance after inoculation on maize cobs treated with MBC. Analysis of mycotoxin production by high performance liquid chromatography revealed that only two HR strains produced zearalenone (ZEA) at concentrations similar to that of the wild-type strain, while no ZEA levels were detected in the rest of the mutants. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Comprehensive identification of mutations responsible for heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA)-to-VISA conversion in laboratory-generated VISA strains derived from hVISA clinical strain Mu3.

    PubMed

    Matsuo, Miki; Cui, Longzhu; Kim, Jeeyoung; Hiramatsu, Keiichi

    2013-12-01

    Heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) spontaneously produces VISA cells within its cell population at a frequency of 10(-6) or greater. We established a total of 45 VISA mutant strains independently obtained from hVISA Mu3 and its related strains by one-step vancomycin selection. We then performed high-throughput whole-genome sequencing of the 45 strains and their parent strains to identify the genes involved in the hVISA-to-VISA phenotypic conversion. A comparative genome study showed that all the VISA strains tested carried a unique set of mutations. All of the 45 VISA strains carried 1 to 4 mutations possibly affecting the expression of a total of 48 genes. Among them, 32 VISA strains carried only one gene affected by a single mutation. As many as 20 genes in more than eight functional categories were affected in the 32 VISA strains, which explained the extremely high rates of the hVISA-to-VISA phenotypic conversion. Five genes, rpoB, rpoC, walK, pbp4, and pp2c, were previously reported as being involved in vancomycin resistance. Fifteen remaining genes were newly identified as associated with vancomycin resistance in this study. The gene most frequently affected (6 out of 32 strains) was cmk, which encodes cytidylate kinase, followed closely by rpoB (5 out of 32), encoding the β subunit of RNA polymerase. A mutation prevalence study also revealed a sizable number of cmk mutants among clinical VISA strains (7 out of 38 [18%]). Reduced cytidylate kinase activity in cmk mutant strains is proposed to contribute to the hVISA-to-VISA phenotype conversion by thickening the cell wall and reducing the cell growth rate.

  2. Comprehensive Identification of Mutations Responsible for Heterogeneous Vancomycin-Intermediate Staphylococcus aureus (hVISA)-to-VISA Conversion in Laboratory-Generated VISA Strains Derived from hVISA Clinical Strain Mu3

    PubMed Central

    Matsuo, Miki; Cui, Longzhu; Kim, Jeeyoung

    2013-01-01

    Heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) spontaneously produces VISA cells within its cell population at a frequency of 10−6 or greater. We established a total of 45 VISA mutant strains independently obtained from hVISA Mu3 and its related strains by one-step vancomycin selection. We then performed high-throughput whole-genome sequencing of the 45 strains and their parent strains to identify the genes involved in the hVISA-to-VISA phenotypic conversion. A comparative genome study showed that all the VISA strains tested carried a unique set of mutations. All of the 45 VISA strains carried 1 to 4 mutations possibly affecting the expression of a total of 48 genes. Among them, 32 VISA strains carried only one gene affected by a single mutation. As many as 20 genes in more than eight functional categories were affected in the 32 VISA strains, which explained the extremely high rates of the hVISA-to-VISA phenotypic conversion. Five genes, rpoB, rpoC, walK, pbp4, and pp2c, were previously reported as being involved in vancomycin resistance. Fifteen remaining genes were newly identified as associated with vancomycin resistance in this study. The gene most frequently affected (6 out of 32 strains) was cmk, which encodes cytidylate kinase, followed closely by rpoB (5 out of 32), encoding the β subunit of RNA polymerase. A mutation prevalence study also revealed a sizable number of cmk mutants among clinical VISA strains (7 out of 38 [18%]). Reduced cytidylate kinase activity in cmk mutant strains is proposed to contribute to the hVISA-to-VISA phenotype conversion by thickening the cell wall and reducing the cell growth rate. PMID:24018261

  3. [Mechanism of mutant induction in the ade2 gene of diploid Saccharomyces cerevisiae yeasts by ultraviolet rays].

    PubMed

    Gordenin, D A; Inge-Vechtomov, S G

    1981-01-01

    Ultraviolet light (UV) at 3000 ergs/mm-2 induces ade2 mutants with a frequency about 10(-4) in wild-type haploid strains of yeast and about 10(-5) in diploid wild-type strains. UV irradiation effectively induced mitotic segregation of ade2 in the heterozygous diploid (the frequency of segregation is 6%). Interallelic complementation and localization spectra are similar for mutations induced both in haploids and diploids. The occurrence of ade2 mutants in diploids correlated with mitotic segregation of the marker his8 which is situated in the same arm of XY chromosome as ade2 is, distal to the centromere. Our data about the frequency of ade2 mutants in diploids and haploids, the frequency of ade2 mitotic segregation, mitotic segregation of other markers and genetic characteristics of ade2 mutations confirm the suggestion that the major mechanism of diploid ade2 mutants appearance is mutation in one of the two ADE2 alleles and consequent mitotic homozygotisation of mutation as a result of mitotic crossingover between ade2 and the centromere.

  4. Genetic labelling and application of the isoproturon-mineralizing Sphingomonas sp. strain SRS2 in soil and rhizosphere.

    PubMed

    Kristensen, K E; Jacobsen, C S; Hansen, L H; Aamand, J; Morgan, J A W; Sternberg, C; Sørensen, S R

    2006-09-01

    To construct a luxAB-labelled Sphingomonas sp. strain SRS2 maintaining the ability to mineralize the herbicide isoproturon and usable for monitoring the survival and distribution of strain SRS2 on plant roots in laboratory systems. We inserted the mini-Tn5-luxAB marker into strain SRS2 using conjugational mating. In the transconjugant mutants luciferase was produced in varying levels. The mutants showed significant differences in their ability to degrade isoproturon. One luxAB-labelled mutant maintained the ability to mineralize isoproturon and was therefore selected for monitoring colonization of barley roots. We successfully constructed a genetically labelled isoproturon-mineralizing-strain SRS2 and demonstrated its ability to survive in soil and its colonization of rhizosphere. The construction of a luxAB-labelled strain SRS2 maintaining the degradative ability, provides a powerful tool for ecological studies serving as the basis for evaluating SRS2 as a bioremediation agent.

  5. Malic acid production by chemically induced Aspergillus niger MTCC 281 mutant from crude glycerol.

    PubMed

    Iyyappan, J; Bharathiraja, B; Baskar, G; Jayamuthunagai, J; Barathkumar, S; Anna Shiny, R

    2018-03-01

    In the present investigation, crude glycerol derived from transesterification process was utilized to produce the commercially-valuable malic acid. A combined resistant on methanol and malic acid strain of Aspergillus niger MTCC 281 mutant was generated in solid medium containing methanol (1-5%) and malic acid (40-80 g/L) by the adaptation process for 22 weeks. The ability of induced Aspergillus niger MTCC 281 mutant to utilize crude glycerol and pure glycerol to produce malic acid was studied. The yield of malic acid was increased with 4.45 folds compared with that of parent strain from crude glycerol. The highest concentration of malic acid from crude glycerol by using beneficial mutant was found to be 77.38 ± 0.51 g/L after 192 h at 25 °C. This present study specified that crude glycerol by-product from biodiesel production could be used for producing high amount of malic acid without any pretreatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Construction and symbiotic competence of a luxA-deletion mutant of Vibrio fischeri.

    PubMed

    Visick, K G; Ruby, E G

    1996-10-10

    Bioluminescence by the squid Euprymna scolopes requires colonization of its light organ by the symbiotic luminous bacterium Vibrio fischeri. Investigation of the genetic determinants underlying bacterial symbiotic competence in this system has necessitated the continuing establishment and application of molecular genetic techniques in V. fischeri. We developed a procedure for the introduction of plasmid DNA into V. fischeri by electroporation, and isolated a mutant strain that overcame the apparent restriction barrier between V. fischeri and Escherichia coli. Using the technique of electroporation in combination with that of gene replacement, we constructed a non-luminous strain of V. fischeri (delta luxA::erm). In addition, we used the transducing phage rp-1 for the first time to transfer a chromosomal antibiotic resistance marker to another strain of V. fischeri. The luxA mutant was able to colonize E. scolopes as quickly and to the same extent as wild type. This result suggested that, at least during the initial stages of colonization, luminescence per se is not an essential factor for the symbiotic infection.

  7. Mechanism of citrate metabolism by an oxaloacetate decarboxylase-deficient mutant of Lactococcus lactis IL1403.

    PubMed

    Pudlik, Agata M; Lolkema, Juke S

    2011-08-01

    Citrate metabolism in resting cells of Lactococcus lactis IL1403(pFL3) results in the formation of two end products from the intermediate pyruvate, acetoin and acetate (A. M. Pudlik and J. S. Lolkema, J. Bacteriol. 193:706-714, 2011). Pyruvate is formed from citrate following uptake by the transporter CitP through the subsequent actions of citrate lyase and oxaloacetate decarboxylase. The present study describes the metabolic response of L. lactis when oxaloacetate accumulates in the cytoplasm. The oxaloacetate decarboxylase-deficient mutant ILCitM(pFL3) showed nearly identical rates of citrate consumption, but the end product profile in the presence of glucose shifted from mainly acetoin to only acetate. In addition, in contrast to the parental strain, the mutant strain did not generate proton motive force. Citrate consumption by the mutant strain was coupled to the excretion of oxaloacetate, with a yield of 80 to 85%. Following citrate consumption, oxaloacetate was slowly taken up by the cells and converted to pyruvate by a cryptic decarboxylase and, subsequently, to acetate. The transport of oxaloacetate is catalyzed by CitP. The parental strain IL1403(pFL3) containing CitP consumed oxaloacetate, while the original strain, IL1403, not containing CitP, did not. Moreover, oxaloacetate consumption was enhanced in the presence of L-lactate, indicating exchange between oxaloacetate and L-lactate catalyzed by CitP. Hence, when oxaloacetate inadvertently accumulates in the cytoplasm, the physiological response of L. lactis is to excrete oxaloacetate in exchange with citrate by an electroneutral mechanism catalyzed by CitP. Subsequently, in a second step, oxaloacetate is taken up by CitP and metabolized to pyruvate and acetate.

  8. Pseudo-constitutivity of nitrate-responsive genes in nitrate reductase mutants

    PubMed Central

    Schinko, Thorsten; Gallmetzer, Andreas; Amillis, Sotiris; Strauss, Joseph

    2013-01-01

    In fungi, transcriptional activation of genes involved in NO3- assimilation requires the presence of an inducer (nitrate or nitrite) and low intracellular concentrations of the pathway products ammonium or glutamine. In Aspergillus nidulans, the two transcription factors NirA and AreA act synergistically to mediate nitrate/nitrite induction and nitrogen metabolite derepression, respectively. In all studied fungi and in plants, mutants lacking nitrate reductase (NR) activity express nitrate-metabolizing enzymes constitutively without the addition of inducer molecules. Based on their work in A. nidulans, Cove and Pateman proposed an “autoregulation control” model for the synthesis of nitrate metabolizing enzymes in which the functional nitrate reductase molecule would act as co-repressor in the absence and as co-inducer in the presence of nitrate. However, NR mutants could simply show “pseudo-constitutivity” due to induction by nitrate which accumulates over time in NR-deficient strains. Here we examined this possibility using strains which lack flavohemoglobins (fhbs), and are thus unable to generate nitrate internally, in combination with nitrate transporter mutations (nrtA, nrtB) and a GFP-labeled NirA protein. Using different combinations of genotypes we demonstrate that nitrate transporters are functional also in NR null mutants and show that the constitutive phenotype of NR mutants is not due to nitrate accumulation from intracellular sources but depends on the activity of nitrate transporters. However, these transporters are not required for nitrate signaling because addition of external nitrate (10 mM) leads to standard induction of nitrate assimilatory genes in the nitrate transporter double mutants. We finally show that NR does not regulate NirA localization and activity, and thus the autoregulation model, in which NR would act as a co-repressor of NirA in the absence of nitrate, is unlikely to be correct. Results from this study instead suggest

  9. Membrane cytochromes of Escherichia coli chl mutants.

    PubMed Central

    Hackett, N R; Bragg, P D

    1983-01-01

    The cytochromes present in the membranes of Escherichia coli cells having defects in the formate dehydrogenase-nitrate reductase system have been analyzed by spectroscopic, redox titration, and enzyme fractionation techniques. Four phenotypic classes differing in cytochrome composition were recognized. Class I is represented by strains with defects in the synthesis or insertion of molybdenum cofactor. Cytochromes of the formate dehydrogenase-nitrate reductase pathway are present. Class II strains map in the chlC-chlI region. The cytochrome associated with nitrate reductase (cytochrome bnr) is absent in these strains, whereas that associated with formate dehydrogenase (cytochrome bfdh) is the major cytochrome in the membranes. Class III strains lack both cytochromes bfdh and bnr but overproduce cytochrome d of the aerobic pathway even under anaerobic conditions in the presence of nitrate. Class III strains have defects in the regulation of cytochrome synthesis. An fdhA mutant produced cytochrome bnr but lacked cytochrome bfdh. These results support the view that chlI (narI) is the structural gene for cytochrome bnr and that chlC (narG) and chlI(narI) are in the same operon, and they provide evidence of the complexity of the regulation of cytochrome synthesis. PMID:6302081

  10. Isolation of a high malic and low acetic acid-producing sake yeast Saccharomyces cerevisiae strain screened from respiratory inhibitor 2,4-dinitrophenol (DNP)-resistant strains.

    PubMed

    Kosugi, Shingo; Kiyoshi, Keiji; Oba, Takahiro; Kusumoto, Kenichi; Kadokura, Toshimori; Nakazato, Atsumi; Nakayama, Shunichi

    2014-01-01

    We isolated 2,4-dinitrophenol (DNP)-resistant sake yeast strains by UV mutagenesis. Among the DNP-resistant mutants, we focused on strains exhibiting high malic acid and low acetic acid production. The improved organic acid composition is unlikely to be under the control of enzyme activities related to malic and acetic acid synthesis pathways. Instead, low mitochondrial activity was observed in DNP-resistant mutants, indicating that the excess pyruvic acid generated during glycolysis is not metabolized in the mitochondria but converted to malic acid in the cytosol. In addition, the NADH/NAD(+) ratio of the DNP-resistant strains was higher than that of the parental strain K901. These results suggest that the increased NADH/NAD(+) ratio together with the low mitochondrial activity alter the organic acid composition because malic acid synthesis requires NADH, while acetic acid uses NAD(+). Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Biofilm formation and binding specificities of CFA/I, CFA/II and CS2 adhesions of enterotoxigenic Escherichia coli and Cfae-R181A mutant.

    PubMed

    Liaqat, Iram; Sakellaris, Harry

    2012-07-01

    Enterotoxigenic Escherichia coli (ETEC) strains are leading causes of childhood diarrhea in developing countries. Adhesion is the first step in pathogenesis of ETEC infections and ETEC pili designated colonization factor antigens (CFAs) are believed to be important in the biofim formation, colonization and host cell adhesions. As a first step, we have determined the biofilm capability of ETEC expressing various types of pili (CFA/I, CfaE-R181A mutant/CfaE tip mutant, CFA/II and CS2). Further, enzyme-linked immunosorbent assay (ELISA) assay were developed to compare the binding specificity of CFA/I, CFA/II (CS1 - CS3) and CS2 of ETEC, using extracted pili and piliated bacteria. CFA/II strain (E24377a) as well as extracted pili exhibited significantly higher binding both in biofilm and ELISA assays compared to non piliated wild type E24377a, CFA/I and CS2 strains. This indicates that co-expression of two or more CS2 in same strain is more efficient in increasing adherence. Significant decrease in binding specificity of DH5αF'lacI (q)/∆cotD (CS2) strain and MC4100/pEU2124 (CfaE-R181A) mutant strain indicated the important contribution of tip proteins in adherence assays. However, CS2 tip mutant strain (DH5αF'lacI (q)/pEU5881) showed that this specific residue may not be important as adhesions in these strains. In summary, our data suggest that pili, their minor subunits are important for biofilm formation and adherence mechanisms. Overall, the functional reactivity of strains co expressing various antigens, particularly minor subunit antigen observed in this study suggest that fewer antibodies may be required to elicit immunity to ETEC expressing a wider array of related pili.

  12. Pathogenicty and immune prophylaxis of cag pathogenicity island gene knockout homogenic mutants

    PubMed Central

    Lin, Huan-Jian; Xue, Jing; Bai, Yang; Wang, Ji-De; Zhang, Ya-Li; Zhou, Dian-Yuan

    2004-01-01

    AIM: To clarify the role of cag pathogenicity island (cagPAI) of Helicobacter pylori (H pylori) in the pathogenicity and immune prophylaxis of H pylori infection. METHODS: Three pairs of H pylori including 3 strains of cagPAI positive wildtype bacteria and their cagPAI knockout homogenic mutants were utilized. H pylori binding to the gastric epithelial cells was analyzed by flow cytometry assays. Apoptosis of gastric epithelial cells induced by H pylori was determined by ELISA assay. Prophylaxis effect of the wildtype and mutant strains was compared by immunization with the sonicate of the bacteria into mice model. RESULTS: No difference was found in the apoptasis between cagPAI positive and knockout H pylori strains in respective of the ability in the binding to gastric epithelial cells as well as the induction of apoptosis. Both types of the bacteria were able to protect the mice from the infection of H pylori after immunization, with no difference between them regarding to the protection rate as well as the stimulation of the proliferation of splenocytes of the mice. CONCLUSION: The role of cagPAI in the pathogenicity and prophylaxis of H pylori infection remains to be cleared. PMID:15484302

  13. Enterocin A Mutants Identified by Saturation Mutagenesis Enhance Potency Towards Vancomycin-Resistant Enterococci

    PubMed Central

    McClintock, Maria K.; Kaznessis, Yiannis N.; Hackel, Benjamin J.

    2016-01-01

    Vancomycin-resistant Enterococci infections are a significant clinical problem. One proposed solution is to use probiotics, such as lactic acid bacteria, to produce antimicrobial peptides at the site of infection. Enterocin A, a class 2a bacteriocin, exhibits inhibitory activity against E. faecium and E. faecalis, which account for 86% of vancomycin-resistant Enterococci infections. In this study, we aimed to engineer enterocin A mutants with enhanced potency within a lactic acid bacterial production system. Peptide mutants resulting from saturation mutagenesis at sites A24 and T27 were efficiently screened in a 96-well plate assay for inhibition of pathogen growth. Several mutants exhibit increased potency relative to wild-type enterocin A in both liquid- and solid-medium growth assays. In particular, A24P and T27G exhibit enhanced inhibition of multiple strains of E. faecium and E. faecalis, including clinically isolated vancomycin-resistant strains. A24P and T27G enhance killing of E. faecium 8 by 13±3- and 18±4-fold, respectively. The engineered enterocin A/lactic acid bacteria systems offer significant potential to combat antibiotic-resistant infections. PMID:26191783

  14. Enterocin A mutants identified by saturation mutagenesis enhance potency towards vancomycin-resistant Enterococci.

    PubMed

    McClintock, Maria K; Kaznessis, Yiannis N; Hackel, Benjamin J

    2016-02-01

    Vancomycin-resistant Enterococci infections are a significant clinical problem. One proposed solution is to use probiotics, such as lactic acid bacteria, to produce antimicrobial peptides at the site of infection. Enterocin A, a class 2a bacteriocin, exhibits inhibitory activity against E. faecium and E. faecalis, which account for 86% of vancomycin-resistant Enterococci infections. In this study, we aimed to engineer enterocin A mutants with enhanced potency within a lactic acid bacterial production system. Peptide mutants resulting from saturation mutagenesis at sites A24 and T27 were efficiently screened in a 96-well plate assay for inhibition of pathogen growth. Several mutants exhibit increased potency relative to wild-type enterocin A in both liquid- and solid-medium growth assays. In particular, A24P and T27G exhibit enhanced inhibition of multiple strains of E. faecium and E. faecalis, including clinically isolated vancomycin-resistant strains. A24P and T27G enhance killing of E. faecium 8 by 13 ± 3- and 18 ± 4-fold, respectively. The engineered enterocin A/lactic acid bacteria systems offer significant potential to combat antibiotic-resistant infections. © 2015 Wiley Periodicals, Inc.

  15. Phenotype detection in morphological mutant mice using deformation features.

    PubMed

    Roy, Sharmili; Liang, Xi; Kitamoto, Asanobu; Tamura, Masaru; Shiroishi, Toshihiko; Brown, Michael S

    2013-01-01

    Large-scale global efforts are underway to knockout each of the approximately 25,000 mouse genes and interpret their roles in shaping the mammalian embryo. Given the tremendous amount of data generated by imaging mutated prenatal mice, high-throughput image analysis systems are inevitable to characterize mammalian development and diseases. Current state-of-the-art computational systems offer only differential volumetric analysis of pre-defined anatomical structures between various gene-knockout mice strains. For subtle anatomical phenotypes, embryo phenotyping still relies on the laborious histological techniques that are clearly unsuitable in such big data environment. This paper presents a system that automatically detects known phenotypes and assists in discovering novel phenotypes in muCT images of mutant mice. Deformation features obtained from non-linear registration of mutant embryo to a normal consensus average image are extracted and analyzed to compute phenotypic and candidate phenotypic areas. The presented system is evaluated using C57BL/10 embryo images. All cases of ventricular septum defect and polydactyly, well-known to be present in this strain, are successfully detected. The system predicts potential phenotypic areas in the liver that are under active histological evaluation for possible phenotype of this mouse line.

  16. Construction and characterization of outbreak Escherichia coli O157:H7 surrogate strains for use in field studies.

    PubMed

    Webb, Cathy C; Erickson, Marilyn C; Davey, Lindsey E; Payton, Alison S; Doyle, Michael P

    2014-11-01

    Escherichia coli O157:H7 has been the causative agent of many outbreaks associated with leafy green produce consumption. Elucidating the mechanism by which contamination occurs requires monitoring interactions between the pathogen and the plant under typical production conditions. Intentional introduction of virulent strains into fields is not an acceptable practice. As an alternative, attenuated strains of natural isolates have been used as surrogates of the virulent strains; however, the attachment properties and environmental stabilities of these attenuated isolates may differ from the unattenuated outbreak strains. In this study, the Shiga toxin (stx1, stx2, and/or stx2c) genes as well as the eae gene encoding intimin of two E. coli O157:H7 outbreak isolates, F4546 (1997 alfalfa sprout) and K4492 (2006 lettuce), were deleted. Individual gene deletions were confirmed by polymerase chain reaction (PCR) and DNA sequencing. The mutant strains did not produce Shiga toxin. The growth kinetics of these mutant strains under nutrient-rich and minimal conditions were identical to those of their wild-type strains. Attachment to the surface of lettuce leaves was comparable between wild-type/mutant pairs F4546/MD46 and K4492/MD47. Adherence to soil particles was also comparable between the virulent and surrogate pairs, although the F4546/MD46 pair exhibited statistically greater attachment than the K4492/MD47 pair (p≤0.05). Wild-type and mutant pairs F4546/MD46 and K4492/MD47 inoculated into wet or dry soils had statistically similar survival rates over the 7-day storage period at 20°C. A plasmid, pGFPuv, containing green fluorescent protein was transformed into each of the mutant strains, allowing for ease of identification and detection of surrogate strains on plant material or soil. These pGFPuv-containing surrogate strains will enable the investigation of pathogen interaction with plants and soil in the farm production environment where the virulent pathogen cannot

  17. Improvement of erythrose reductase activity, deletion of by-products and statistical media optimization for enhanced erythritol production from Yarrowia lipolytica mutant 49.

    PubMed

    Ghezelbash, Gholam Reza; Nahvi, Iraj; Emamzadeh, Rahman

    2014-08-01

    The purpose of the present investigation was to produce erythritol by Yarrowia lipolytica mutant without any by-products. Mutants of Y. lipolytica were generated by ultra-violet for enhancing erythrose reductase (ER) activity and erythritol production. The mutants showing the highest ER activity were screened by triphenyl tetrazolium chloride agar plate assay. Productivity of samples was analyzed by thin-layer chromatography and high-performance liquid chromatography equipped with the refractive index detector. One of the mutants named as mutant 49 gave maximum erythritol production without any other by-products (particularly glycerol). Erythritol production and specific ER activity in mutant 49 increased to 1.65 and 1.47 times, respectively, in comparison with wild-type strain. The ER gene of wild and mutant strains was sequenced and analyzed. A general comparison of wild and mutant gene sequences showed the replacement of Asp(270) with Glu(270) in ER protein. In order to enhance erythritol production, we used a three component-three level-one response Box-Behnken of response surface methodology model. The optimum medium composition for erythritol production was found to be (g/l) glucose 279.49, ammonium sulfate 9.28, and pH 5.41 with 39.76 erythritol production.

  18. Batch culture characterization and metabolic flux analysis of succinate-producing Escherichia coli strains.

    PubMed

    Sánchez, Ailen M; Bennett, George N; San, Ka-Yiu

    2006-05-01

    This study presents an in-depth analysis of the anaerobic metabolic fluxes of various mutant strains of Escherichia coli overexpressing the Lactococcus lactis pyruvate carboxylase (PYC) for the production of succinate. Previously, a metabolic network design that includes an active glyoxylate pathway implemented in vivo increased succinate yield from glucose in an E. coli mutant to 1.6 mol/mol under fully anaerobic conditions. The design consists of a dual succinate synthesis route, which diverts required quantities of NADH through the traditional fermentative pathway and maximizes the carbon converted to succinate by balancing the carbon flux through the fermentative pathway and the glyoxylate pathway (which has a lower NADH requirement). Mutant strains previously constructed during the development of high-yield succinate-producing strains were selected for further characterization to understand their metabolic response as a result of several genetic manipulations and to determine the significance of the fermentative and the glyoxylate pathways in the production of succinate. Measured fluxes obtained under batch cultivation conditions were used to estimate intracellular fluxes and identify critical branch point flux split ratios. The comparison of changes in branch point flux split ratios to the glyoxylate pathway and the fermentative pathway at the oxaloacetate (OAA) node as a result of different mutations revealed the sensitivity of succinate yield to these manipulations. The most favorable split ratio to obtain the highest succinate yield was the fractional partition of OAA to glyoxylate of 0.32 and 0.68 to the fermentative pathway obtained in strains SBS550MG (pHL413) and SBS990MG (pHL413). The succinate yields achieved in these two strains were 1.6 and 1.7 mol/mol, respectively. In addition, an active glyoxylate pathway in an ldhA, adhE, ack-pta mutant strain is shown to be responsible for the high succinate yields achieved anaerobically. Furthermore, in vitro

  19. Irradiation of Yarrowia lipolytica NRRL YB-567 creating novel strains with enhanced ammonia and oil production on protein and carbohydrate substrates.

    PubMed

    Lindquist, Mitch R; López-Núñez, Juan Carlos; Jones, Marjorie A; Cox, Elby J; Pinkelman, Rebecca J; Bang, Sookie S; Moser, Bryan R; Jackson, Michael A; Iten, Loren B; Kurtzman, Cletus P; Bischoff, Kenneth M; Liu, Siqing; Qureshi, Nasib; Tasaki, Kenneth; Rich, Joseph O; Cotta, Michael A; Saha, Badal C; Hughes, Stephen R

    2015-11-01

    Increased interest in sustainable production of renewable diesel and other valuable bioproducts is redoubling efforts to improve economic feasibility of microbial-based oil production. Yarrowia lipolytica is capable of employing a wide variety of substrates to produce oil and valuable co-products. We irradiated Y. lipolytica NRRL YB-567 with UV-C to enhance ammonia (for fertilizer) and lipid (for biodiesel) production on low-cost protein and carbohydrate substrates. The resulting strains were screened for ammonia and oil production using color intensity of indicators on plate assays. Seven mutant strains were selected (based on ammonia assay) and further evaluated for growth rate, ammonia and oil production, soluble protein content, and morphology when grown on liver infusion medium (without sugars), and for growth on various substrates. Strains were identified among these mutants that had a faster doubling time, produced higher maximum ammonia levels (enzyme assay) and more oil (Sudan Black assay), and had higher maximum soluble protein levels (Bradford assay) than wild type. When grown on plates with substrates of interest, all mutant strains showed similar results aerobically to wild-type strain. The mutant strain with the highest oil production and the fastest doubling time was evaluated on coffee waste medium. On this medium, the strain produced 0.12 g/L ammonia and 0.20 g/L 2-phenylethanol, a valuable fragrance/flavoring, in addition to acylglycerols (oil) containing predominantly C16 and C18 residues. These mutant strains will be investigated further for potential application in commercial biodiesel production.

  20. RESPIRATORY METABOLISM OF NORMAL AND DIVISIONLESS STRAINS OF CANDIDA ALBICANS

    PubMed Central

    Ward, John M.; Nickerson, Walter J.

    1958-01-01

    Respiration of a normal strain of Candida albicans was compared with that of a divisionless mutant which has a biochemical lesion such that metabolically generated hydrogen "spills over," during growth, for non-specific dye reduction. This waste is not at expense of growth, since both strains grow at essentially similar rates, nor at expense of respiration, since the mutant reduces oxygen more rapidly than the normal strain. Respiration in both strains is qualitatively similar, and seemingly unique among highly aerobic organisms in that it is not mediated by cytochrome oxidase. In resting cells of both strains, respiration is not only resistant to, but markedly stimulated by, high concentrations of cyanide, carbon monoxide, and azide. In contrast, growth of these yeasts is inhibited by low concentrations of cyanide and azide. Cytochrome oxidase could not be detected in cell-free preparations; reduced cytochrome c was not oxidized by such preparations. Cytochrome bands could not be observed in thick cell suspensions treated with reducing agents. However, incorporation of superoptimal levels of zinc and iron into the culture medium resulted in growth of cells possessing distinct cytochrome bands; respiration of these cells remained insensitive to cyanide, monoxide, and azide, and the bands were maintained in a reduced form on oxygenation. In the divisionless yeast, tetrazolium dyes compete with oxygen for reduction; this is not the case in the normal strain. The firmness with which hydrogen transfer is channeled in the latter for reduction of disulfide bonds (of importance in the division mechanism) and of oxygen, is contrasted with the lack of such control in the mutant. PMID:13514006

  1. Construction and functional analysis of Trichoderma harzianum mutants that modulate maize resistance to the pathogen Curvularia lunata.

    PubMed

    Fan, Lili; Fu, Kehe; Yu, Chuanjin; Ma, Jia; Li, Yaqian; Chen, Jie

    2014-01-01

    Agrobacterium tumefaciens-mediated transformation (ATMT) was used to generate an insertional mutant library of the mycelial fungus Trichoderma harzianum. From a total of 450 mutants, six mutants that showed significant influence on maize resistance to C. lunata were analyzed in detail. Maize coated with these mutants was more susceptible to C. lunata compared with those coated with a wild-type (WT) strain. Similar to other fungal ATMT libraries, all six mutants were single copy integrations, which occurred preferentially in noncoding regions (except two mutants) and were frequently accompanied by the loss of border sequences. Two mutants (T66 and T312) that were linked to resistance were characterized further. Maize seeds coated with T66 and T312 were more susceptible to C. lunata than those treated with WT. Moreover, the mutants affected the resistance of maize to C. lunata by enhancing jasmonate-responsive gene expression. T66 and T312 induced maize resistance to C. lunata infection through a jasmonic acid-dependent pathway.

  2. Generation of astaxanthin mutants in Xanthophyllomyces dendrorhous using a double recombination method based on hygromycin resistance.

    PubMed

    Niklitschek, Mauricio; Baeza, Marcelo; Fernández-Lobato, María; Cifuentes, Víctor

    2012-01-01

    Generally two selection markers are required to obtain homozygous mutations in a diploid background, one for each gene copy that is interrupted. In this chapter is described a method that allows the double gene deletions of the two copies of a gene from a diploid organism, a wild-type strain of the Xanthophyllomyces dendrorhous yeast, using hygromycin B resistance as the only selection marker. To accomplish this, in a first step, a heterozygous hygromycin B-resistant strain is obtained by a single process of transformation (carrying the inserted hph gene). Following, the heterozygous mutant is grown in media with increasing concentrations of the antibiotic. In this way, the strains that became homozygous (by mitotic recombination) for the antibiotic marker would able to growth at higher concentration of the antibiotic than the heterozygous. The method can be potentially applied for obtaining double mutants of other diploid organisms.

  3. Structural optimization of N1-aryl-benzimidazoles for the discovery of new non-nucleoside reverse transcriptase inhibitors active against wild-type and mutant HIV-1 strains.

    PubMed

    Monforte, Anna Maria; De Luca, Laura; Buemi, Maria Rosa; Agharbaoui, Fatima E; Pannecouque, Christophe; Ferro, Stefania

    2018-02-01

    Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are recommended components of preferred combination antiretroviral therapies used for the treatment of human immunodeficiency virus (HIV) infection. These regimens are extremely effective in suppressing virus replication. Recently, our research group identified some N 1 -aryl-2-arylthioacetamido-benzimidazoles as a novel class of NNRTIs. In this research work we report the design, the synthesis and the structure-activity relationship studies of new compounds (20-34) in which some structural modifications have been introduced in order to investigate their effects on reverse transcriptase (RT) inhibition and to better define the features needed to increase the antiviral activity. Most of the new compounds proved to be highly effective in inhibiting both RT enzyme at nanomolar concentrations and HIV-1 replication in MT4 cells with minimal cytotoxicity. Among them, the most promising N 1 -aryl-2-arylthioacetamido-benzimidazoles and N 1 -aryl-2-aryloxyacetamido-benzimidazoles were also tested toward a panel of single- and double-mutants strain responsible for resistance to NNRTIs, showing in vitro antiviral activity toward single mutants L100I, K103N, Y181C, Y188L and E138K. The best results were observed for derivatives 29 and 33 active also against the double mutants F227L and V106A. Computational approaches were applied in order to rationalize the potency of the new synthesized inhibitors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Saccharomyces Cerevisiae Cho2 Mutants Are Deficient in Phospholipid Methylation and Cross-Pathway Regulation of Inositol Synthesis

    PubMed Central

    Summers, E. F.; Letts, V. A.; McGraw, P.; Henry, S. A.

    1988-01-01

    Five allelic Saccharomyces cerevisiae mutants deficient in the methylation of phosphatidylethanolamine (PE) have been isolated, using two different screening techniques. Biochemical analysis suggested that these mutants define a locus, designated CHO2, that may encode a methyltransferase. Membranes of cho2 mutant cells grown in defined medium contain approximately 10% phosphatidylcholine (PC) and 40-50% PE as compared to wild-type levels of 40-45% PC and 15-20% PE. In spite of this greatly altered phospholipid composition, cho2 mutant cells are viable in defined medium and are not auxotrophic for choline or other phospholipid precursors such as monomethylethanolamine (MME). However, analysis of yeast strains carrying more than one mutation affecting phospholipid biosynthesis indicated that some level of methylated phospholipid is essential for viability. The cho2 locus was shown by tetrad analysis to be unlinked to other loci affecting phospholipid synthesis. Interestingly, cho2 mutants and other mutant strains that produce reduced levels of methylated phospholipids are unable to properly repress synthesis of the cytoplasmic enzyme inositol-1-phosphate synthase. This enzyme was previously shown to be regulated at the level of mRNA abundance in response to inositol and choline in the growth medium. We cloned the CHO2 gene on a 3.6-kb genomic DNA fragment and created a null allele of cho2 by disrupting the CHO2 gene in vivo. The cho2 disruptant, like all other cho2 mutants, is viable, exhibits altered regulation of inositol biosynthesis and is not auxotrophic for choline or MME. PMID:3066687

  5. Secondary Metabolism and Interspecific Competition Affect Accumulation of Spontaneous Mutants in the GacS-GacA Regulatory System in Pseudomonas protegens

    PubMed Central

    Yan, Qing; Lopes, Lucas D.; Shaffer, Brenda T.; Kidarsa, Teresa A.; Vining, Oliver; Philmus, Benjamin; Song, Chunxu; Stockwell, Virginia O.; Raaijmakers, Jos M.; McPhail, Kerry L.; Andreote, Fernando D.; Chang, Jeff H.

    2018-01-01

    ABSTRACT Secondary metabolites are synthesized by many microorganisms and provide a fitness benefit in the presence of competitors and predators. Secondary metabolism also can be costly, as it shunts energy and intermediates from primary metabolism. In Pseudomonas spp., secondary metabolism is controlled by the GacS-GacA global regulatory system. Intriguingly, spontaneous mutations in gacS or gacA (Gac− mutants) are commonly observed in laboratory cultures. Here we investigated the role of secondary metabolism in the accumulation of Gac− mutants in Pseudomonas protegens strain Pf-5. Our results showed that secondary metabolism, specifically biosynthesis of the antimicrobial compound pyoluteorin, contributes significantly to the accumulation of Gac− mutants. Pyoluteorin biosynthesis, which poses a metabolic burden on the producer cells, but not pyoluteorin itself, leads to the accumulation of the spontaneous mutants. Interspecific competition also influenced the accumulation of the Gac− mutants: a reduced proportion of Gac− mutants accumulated when P. protegens Pf-5 was cocultured with Bacillus subtilis than in pure cultures of strain Pf-5. Overall, our study associated a fitness trade-off with secondary metabolism, with metabolic costs versus competitive benefits of production influencing the evolution of P. protegens, assessed by the accumulation of Gac− mutants. PMID:29339425

  6. Breeding of D(-)-lactic acid high producing strain by low-energy ion implantation and preliminary analysis of related metabolism.

    PubMed

    Xu, Ting-Ting; Bai, Zhong-Zhong; Wang, Li-Juan; He, Bing-Fang

    2010-01-01

    The low-energy nitrogen ion beam implantation technique was used in the breeding of mutant D(-)-lactic-acid-producing strains. The wild strain Sporolactobacillus sp. DX12 was mutated by an N(+) ion beam with energy of 10keV and doses ranging from 0.4 x 10(15) to 6.60 x 10(15) ions/cm(2). Combined with an efficient screening method, an efficient mutant Y2-8 was selected after two times N(+) ion beam implantation. By using the mutant Y2-8, 121.6g/l of D-lactic acid was produced with the molar yields of 162.1% to the glucose. The yield of D-lactic acid by strain Y2-8 was 198.8% higher than the wild strain. Determination of anaerobic metabolism by Biolog MT2 was used to analyze the activities of the concerned enzymes in the lactic acid metabolic pathway. The results showed that the activities of the key enzymes responded on the substrates such as 6-phosphofructokinase, pyruvate kinase, and D-lactate dehydrogenase were considerably higher in the mutants than the wild strain. These might be affected by ion beam implantation.

  7. Mutants of Neurospora crassa that alter gene expression and conidia development.

    PubMed Central

    Madi, L; Ebbole, D J; White, B T; Yanofsky, C

    1994-01-01

    Several genes have been identified that are highly expressed during conidiation. Inactivation of these genes has no observable phenotypic effect. Transcripts of two such genes, con-6 and con-10, are normally absent from vegetative mycelia. To identify regulatory genes that affect con-6 and/or con-10 expression, strains were prepared in which the regulatory regions for these genes were fused to a gene conferring hygromycin resistance. Mutants were then selected that were resistant to the drug during mycelial growth. Mutations in several of the isolates had trans effects; they activated transcription of the corresponding intact gene and, in most isolates, one or more of the other con genes. Most interestingly, resistant mutants were obtained that were defective at different stages of conidiation. One mutant conidiated under conditions that do not permit conidiation in wild type. Images PMID:8016143

  8. Growth, ethanol production, and inulinase activity on various inulin substrates by mutant Kluyveromyces marxianus strains NRRL Y-50798 and NRRL Y-50799.

    PubMed

    Galindo-Leva, Luz Ángela; Hughes, Stephen R; López-Núñez, Juan Carlos; Jarodsky, Joshua M; Erickson, Adam; Lindquist, Mitchell R; Cox, Elby J; Bischoff, Kenneth M; Hoecker, Eric C; Liu, Siqing; Qureshi, Nasib; Jones, Marjorie A

    2016-07-01

    Economically important plants contain large amounts of inulin. Disposal of waste resulting from their processing presents environmental issues. Finding microorganisms capable of converting inulin waste to biofuel and valuable co-products at the processing site would have significant economic and environmental impact. We evaluated the ability of two mutant strains of Kluyveromyces marxianus (Km7 and Km8) to utilize inulin for ethanol production. In glucose medium, both strains consumed all glucose and produced 0.40 g ethanol/g glucose at 24 h. In inulin medium, Km7 exhibited maximum colony forming units (CFU)/mL and produced 0.35 g ethanol/g inulin at 24 h, while Km8 showed maximum CFU/mL and produced 0.02 g ethanol/g inulin at 96 h. At 24 h in inulin + glucose medium, Km7 produced 0.40 g ethanol/g (inulin + glucose) and Km8 produced 0.20 g ethanol/g (inulin + glucose) with maximum CFU/mL for Km8 at 72 h, 40 % of that for Km7 at 36 h. Extracellular inulinase activity at 6 h for both Km7 and Km8 was 3.7 International Units (IU)/mL.

  9. Selection of Streptococcus lactis Mutants Defective in Malolactic Fermentation

    PubMed Central

    Renault, Pierre P.; Heslot, Henri

    1987-01-01

    An enrichment medium and a new sensitive medium were developed to detect malolactic variants in different strains of lactic bacteria. Factors such as the concentration of glucose and l-malate, pH level, and the type of indicator dye used are discussed with regard to the kinetics of malic acid conversion to lactic acid. Use of these media allowed a rapid and easier screening of mutagenized streptococcal cells unable to ferment l-malate. A collection of malolactic-negative mutants of Streptococcus lactis induced by UV, nitrosoguanidine, or transposonal mutagenesis were characterized. The results showed that several mutants were apparently defective in the structural gene of malolactic enzyme, whereas others contained mutations which may either inactivate a putative permease or affect a regulatory sequence. PMID:16347282

  10. Bacillus subtilis Mutants with Knockouts of the Genes Encoding Ribonucleases RNase Y and RNase J1 Are Viable, with Major Defects in Cell Morphology, Sporulation, and Competence

    PubMed Central

    Figaro, Sabine; Durand, Sylvain; Gilet, Laetitia; Cayet, Nadège; Sachse, Martin

    2013-01-01

    The genes encoding the ribonucleases RNase J1 and RNase Y have long been considered essential for Bacillus subtilis cell viability, even before there was concrete knowledge of their function as two of the most important enzymes for RNA turnover in this organism. Here we show that this characterization is incorrect and that ΔrnjA and Δrny mutants are both viable. As expected, both strains grow relatively slowly, with doubling times in the hour range in rich medium. Knockout mutants have major defects in their sporulation and competence development programs. Both mutants are hypersensitive to a wide range of antibiotics and have dramatic alterations to their cell morphologies, suggestive of cell envelope defects. Indeed, RNase Y mutants are significantly smaller in diameter than wild-type strains and have a very disordered peptidoglycan layer. Strains lacking RNase J1 form long filaments in tight spirals, reminiscent of mutants of the actin-like proteins (Mre) involved in cell shape determination. Finally, we combined the rnjA and rny mutations with mutations in other components of the degradation machinery and show that many of these strains are also viable. The implications for the two known RNA degradation pathways of B. subtilis are discussed. PMID:23504012

  11. The virulence factor ychO has a pleiotropic action in an Avian Pathogenic Escherichia coli (APEC) strain.

    PubMed

    Pilatti, Livia; Boldrin de Paiva, Jacqueline; Rojas, Thaís Cabrera Galvão; Leite, Janaína Luisa; Conceição, Rogério Arcuri; Nakazato, Gerson; Dias da Silveira, Wanderley

    2016-03-10

    Avian pathogenic Escherichia coli strains cause extraintestinal diseases in birds, leading to substantial economic losses to the poultry industry worldwide. Bacteria that invade cells can overcome the host humoral immune response, resulting in a higher pathogenicity potential. Invasins are members of a large family of outer membrane proteins that allow pathogen invasion into host cells by interacting with specific receptors on the cell surface. An in silico analysis of the genome of a septicemic APEC strain (SEPT362) demonstrated the presence of a putative invasin homologous to the ychO gene from E. coli str. K-12 substr. MG1655. In vitro and in vivo assays comparing a mutant strain carrying a null mutation of this gene, a complemented strain, and its counterpart wild-type strain showed that ychO plays a role in the pathogenicity of APEC strain SEPT362. In vitro assays demonstrated that the mutant strain exhibited significant decreases in bacterial adhesiveness and invasiveness in chicken cells and biofilm formation. In vivo assay indicated a decrease in pathogenicity of the mutant strain. Moreover, transcriptome analysis demonstrated that the ychO deletion affected the expression of 426 genes. Among the altered genes, 93.66% were downregulated in the mutant, including membrane proteins and metabolism genes. The results led us to propose that gene ychO contributes to the pathogenicity of APEC strain SEPT362 influencing, in a pleiotropic manner, many biological characteristics, such as adhesion and invasion of in vitro cultured cells, biofilm formation and motility, which could be due to the possible membrane location of this protein. All of these results suggest that the absence of gene ychO would influence the virulence of the APEC strain herein studied.

  12. Combinatorial Strategies for Improving Multiple-Stress Resistance in Industrially Relevant Escherichia coli Strains

    PubMed Central

    Herrgård, Markus J.

    2014-01-01

    High-cell-density fermentation for industrial production of chemicals can impose numerous stresses on cells due to high substrate, product, and by-product concentrations; high osmolarity; reactive oxygen species; and elevated temperatures. There is a need to develop platform strains of industrial microorganisms that are more tolerant toward these typical processing conditions. In this study, the growth of six industrially relevant strains of Escherichia coli was characterized under eight stress conditions representative of fed-batch fermentation, and strains W and BL21(DE3) were selected as platforms for transposon (Tn) mutagenesis due to favorable resistance characteristics. Selection experiments, followed by either targeted or genome-wide next-generation-sequencing-based Tn insertion site determination, were performed to identify mutants with improved growth properties under a subset of three stress conditions and two combinations of individual stresses. A subset of the identified loss-of-function mutants were selected for a combinatorial approach, where strains with combinations of two and three gene deletions were systematically constructed and tested for single and multistress resistance. These approaches allowed identification of (i) strain-background-specific stress resistance phenotypes, (ii) novel gene deletion mutants in E. coli that confer single and multistress resistance in a strain-background-dependent manner, and (iii) synergistic effects of multiple gene deletions that confer improved resistance over single deletions. The results of this study underscore the suboptimality and strain-specific variability of the genetic network regulating growth under stressful conditions and suggest that further exploration of the combinatorial gene deletion space in multiple strain backgrounds is needed for optimizing strains for microbial bioprocessing applications. PMID:25085490

  13. Natural non-homologous recombination led to the emergence of a duplicated V3-NS5A region in HCV-1b strains associated with hepatocellular carcinoma.

    PubMed

    Le Guillou-Guillemette, Hélène; Pivert, Adeline; Bouthry, Elise; Henquell, Cécile; Petsaris, Odile; Ducancelle, Alexandra; Veillon, Pascal; Vallet, Sophie; Alain, Sophie; Thibault, Vincent; Abravanel, Florence; Rosenberg, Arielle A; André-Garnier, Elisabeth; Bour, Jean-Baptiste; Baazia, Yazid; Trimoulet, Pascale; André, Patrice; Gaudy-Graffin, Catherine; Bettinger, Dominique; Larrat, Sylvie; Signori-Schmuck, Anne; Saoudin, Hénia; Pozzetto, Bruno; Lagathu, Gisèle; Minjolle-Cha, Sophie; Stoll-Keller, Françoise; Pawlotsky, Jean-Michel; Izopet, Jacques; Payan, Christopher; Lunel-Fabiani, Françoise; Lemaire, Christophe

    2017-01-01

    The emergence of new strains in RNA viruses is mainly due to mutations or intra and inter-genotype homologous recombination. Non-homologous recombinations may be deleterious and are rarely detected. In previous studies, we identified HCV-1b strains bearing two tandemly repeated V3 regions in the NS5A gene without ORF disruption. This polymorphism may be associated with an unfavorable course of liver disease and possibly involved in liver carcinogenesis. Here we aimed at characterizing the origin of these mutant strains and identifying the evolutionary mechanism on which the V3 duplication relies. Direct sequencing of the entire NS5A and E1 genes was performed on 27 mutant strains. Quasispecies analyses in consecutive samples were also performed by cloning and sequencing the NS5A gene for all mutant and wild strains. We analyzed the mutant and wild-type sequence polymorphisms using Bayesian methods to infer the evolutionary history of and the molecular mechanism leading to the duplication-like event. Quasispecies were entirely composed of exclusively mutant or wild-type strains respectively. Mutant quasispecies were found to have been present since contamination and had persisted for at least 10 years. This V3 duplication-like event appears to have resulted from non-homologous recombination between HCV-1b wild-type strains around 100 years ago. The association between increased liver disease severity and these HCV-1b mutants may explain their persistence in chronically infected patients. These results emphasize the possible consequences of non-homologous recombination in the emergence and severity of new viral diseases.

  14. Determination of the Mutant Prevention Concentration and the Mutant Selection Window of Topical Antimicrobial Agents against Propionibacterium acnes.

    PubMed

    Nakase, Keisuke; Nakaminami, Hidemasa; Toda, Yuta; Noguchi, Norihisa

    2017-01-01

    Determination of the mutant prevention concentration (MPC) and the mutant selection window (MSW) of antimicrobial agents used to treat pathogenic bacteria is important in order to apply effective antimicrobial therapies. Here, we determined the MPCs of the major topical antimicrobial agents against Propionibacterium acnes and Staphylococcus aureus which cause skin infections and compared their MSWs. Among the MPCs of nadifloxacin and clindamycin, the clindamycin MPC was determined to be the lowest against P. acnes. In contrast, the nadifloxacin MPC was the lowest against S. aureus. Calculations based on the minimum inhibitory concentrations and MPCs showed that clindamycin has the lowest MSW against both P. acnes and S. aureus. Nadifloxacin MSWs were 4-fold higher against P. acnes than against S. aureus. It is more likely for P. acnes to acquire resistance to fluoroquinolones than S. aureus. Therefore, topical application of clindamycin contributes very little to the emergence of resistant P. acnes and S. aureus strains. © 2016 S. Karger AG, Basel.

  15. A mutant of Mycobacterium smegmatis defective in the biosynthesis of mycolic acids accumulates meromycolates

    PubMed Central

    Liu, Jun; Nikaido, Hiroshi

    1999-01-01

    Mycolic acids are a major constituent of the mycobacterial cell wall, and they form an effective permeability barrier to protect mycobacteria from antimicrobial agents. Although the chemical structures of mycolic acids are well established, little is known on their biosynthesis. We have isolated a mycolate-deficient mutant strain of Mycobacterium smegmatis mc2-155 by chemical mutagenesis followed by screening for increased sensitivity to novobiocin. This mutant also was hypersensitive to other hydrophobic compounds such as crystal violet, rifampicin, and erythromycin. Entry of hydrophobic probes into mutant cells occurred much more rapidly than that into the wild-type cells. HPLC and TLC analysis of fatty acid composition after saponification showed that the mutant failed to synthesize full-length mycolic acids. Instead, it accumulated a series of long-chain fatty acids, which were not detected in the wild-type strain. Analysis by 1H NMR, electrospray and electron impact mass spectroscopy, and permanganate cleavage of double bonds showed that these compounds corresponded to the incomplete meromycolate chain of mycolic acids, except for the presence of a β-hydroxyl group. This direct identification of meromycolates as precursors of mycolic acids provides a strong support for the previously proposed pathway for mycolic acid biosynthesis involving the separate synthesis of meromycolate chain and the α-branch of mycolic acids, followed by the joining of these two branches. PMID:10097154

  16. Evaluation of hha and hha sepB mutant strains of Escherichia coli O157:H7 as bacterins for reducing E. coli O157:H7 shedding in cattle.

    PubMed

    Sharma, Vijay K; Dean-Nystrom, Evelyn A; Casey, Thomas A

    2011-07-12

    Escherichia coli O157:H7 colonizes cattle intestines by using the locus of enterocyte effacement (LEE)-encoded proteins. The induction of systemic immune response against LEE-encoded proteins, therefore, will prove effective in reducing E. coli O157:H7 colonization in cattle. The previous studies have demonstrated that a hha (encodes for a hemolysin expression modulating protein) deletion enhances expression of LEE-encoded proteins and a sepB (encodes an ATPase required for the secretion of LEE-encoded proteins) deletion results in intracellular accumulation of LEE proteins. In this study, we demonstrate the efficacy of the hha and hha sepB deletion mutants as bacterins for reducing fecal shedding of E. coli O157:H7 in experimentally inoculated weaned calves. The weaned calves were injected intramuscularly with the bacterins containing 10(9) heat-killed cells of the hha(+) wild-type or hha or hha sepB isogenic mutants, and boosted with the same doses 2- and 4-weeks later. The evaluation of the immune response two weeks after the last booster immunization revealed that the calves vaccinated with the hha mutant bacterin had higher antibody titers against LEE proteins compared to the titers for these antibodies in the calves vaccinated with the hha sepB mutant or hha(+) wild-type bacterins. Following oral inoculations with 10(10) CFU of the wild-type E. coli O157:H7, the greater numbers of calves in the group vaccinated with the hha or hha sepB mutant bacterins stopped shedding the inoculum strain within a few days after the inoculations compared to the group of calves vaccinated with the hha(+) wild-type bacterin or PBS sham vaccine. Thus, the use of bacterins prepared from the hha and hha sepB mutants for reducing colonization of E. coli O157:H7 in cattle could represent a potentially important pre-harvest strategy to enhance post-harvest safety of bovine food products, water and produce. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Lactose-induced cell death of beta-galactosidase mutants in Kluyveromyces lactis.

    PubMed

    Lodi, Tiziana; Donnini, Claudia

    2005-05-01

    The Kluyveromyces lactis lac4 mutants, lacking the beta-galactosidase gene, cannot assimilate lactose, but grow normally on many other carbon sources. However, when these carbon sources and lactose were simultaneously present in the growth media, the mutants were unable to grow. The effect of lactose was cytotoxic since the addition of lactose to an exponentially-growing culture resulted in 90% loss of viability of the lac4 cells. An osmotic stabilizing agent prevented cells killing, supporting the hypothesis that the lactose toxicity could be mainly due to intracellular osmotic pressure. Deletion of the lactose permease gene, LAC12, abolished the inhibitory effect of lactose and allowed the cell to assimilate other carbon substrates. The lac4 strains gave rise, with unusually high frequency, to spontaneous mutants tolerant to lactose (lar1 mutation: lactose resistant). These mutants were unable to take up lactose. Indeed, lar1 mutation turned out to be allelic to LAC12. The high mutability of the LAC12 locus may be an advantage for survival of K. lactis whose main habitat is lactose-containing niches.

  18. Anesthetic-resistant spontaneous mutant of Drosophila melanogaster: intensified response to /sup 60/Cobalt radiation damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamo, S.; Nakashima-Tanaka, E.; Megumi, T.

    1985-02-25

    Accumulating evidence suggests that the extent of acute damage by ionizing irradiation is closely related to the state of membrane orderliness. Decreased orderliness apparently protects organisms from ionizing irradiation. Because anesthetics decrease membrane orderliness, anesthesia is expected to affect damages caused by ionizing irradiation. The present study compared the effects of /sup 60/Co irradiation on Drosophila melanogaster between an anesthetic-resistant spontaneous mutant and an anesthetic-sensitive strain. An anesthetic-resistant mutant strain, Eth-29, of Drosophila melanogaster has previously been established. Eth-29 is resistant to diethyl-ether, chloroform and halothane. The anesthetic-resistant strain was found to be radiosensitive when evaluated by survival at themore » eighth day after irradiation or by dyskinesia (knock-down) at the second day. The results indicate that anesthetic resistance may be related to an increase in orderliness. The findings in reciprocal crosses between Eth-29 and the control strain indicate that the mechanism of survival is different from that of knock-down. Presumably, knock-down is the direct sequela of irradiation, and the present result suggests that membrane damage may be involved in inducing knock-down. 18 references, 3 figures.« less

  19. Zn2+ Uptake in Streptococcus pyogenes: Characterization of adcA and lmb Null Mutants.

    PubMed

    Tedde, Vittorio; Rosini, Roberto; Galeotti, Cesira L

    2016-01-01

    An effective regulation of metal ion homeostasis is essential for the growth of microorganisms in any environment and in pathogenic bacteria is strongly associated with their ability to invade and colonise their hosts. To gain a better insight into zinc acquisition in Group A Streptococcus (GAS) we characterized null deletion mutants of the adcA and lmb genes of Streptococcus pyogenes strain MGAS5005 encoding the orthologues of AdcA and AdcAII, the two surface lipoproteins with partly redundant roles in zinc homeostasis in Streptococcus pneumoniae. Null adcA and lmb mutants were analysed for their capability to grow in zinc-depleted conditions and were found to be more susceptible to zinc starvation, a phenotype that could be rescued by the addition of Zn2+ ions to the growth medium. Expression of AdcA, Lmb and HtpA, the polyhistidine triad protein encoded by the gene adjacent to lmb, during growth under conditions of limited zinc availability was examined by Western blot analysis in wild type and null mutant strains. In the wild type strain, AdcA was always present with little variation in expression levels between conditions of excess or limited zinc availability. In contrast, Lmb and HtpA were expressed at detectable levels only during growth in the presence of low zinc concentrations or in the null adcA mutant, when expression of lmb is required to compensate for the lack of adcA expression. In the latter case, Lmb and HtpA were overexpressed by several fold, thus indicating that also in GAS AdcA is a zinc-specific importer and, although it shares this function with Lmb, the two substrate-binding proteins do not show fully overlapping roles in zinc homeostasis.

  20. Adherence to abiotic surface induces SOS response in Escherichia coli K-12 strains under aerobic and anaerobic conditions.

    PubMed

    Costa, Suelen B; Campos, Ana Carolina C; Pereira, Ana Claudia M; de Mattos-Guaraldi, Ana Luiza; Júnior, Raphael Hirata; Rosa, Ana Cláudia P; Asad, Lídia M B O

    2014-09-01

    During the colonization of surfaces, Escherichia coli bacteria often encounter DNA-damaging agents and these agents can induce several defence mechanisms. Base excision repair (BER) is dedicated to the repair of oxidative DNA damage caused by reactive oxygen species (ROS) generated by chemical and physical agents or by metabolism. In this work, we have evaluated whether the interaction with an abiotic surface by mutants derived from E. coli K-12 deficient in some enzymes that are part of BER causes DNA damage and associated filamentation. Moreover, we studied the role of endonuclease V (nfi gene; 1506 mutant strain) in biofilm formation. Endonuclease V is an enzyme that is involved in DNA repair of nitrosative lesions. We verified that endonuclease V is involved in biofilm formation. Our results showed more filamentation in the xthA mutant (BW9091) and triple xthA nfo nth mutant (BW535) than in the wild-type strain (AB1157). By contrast, the mutant nfi did not present filamentation in biofilm, although its wild-type strain (1466) showed rare filaments in biofilm. The filamentation of bacterial cells attaching to a surface was a consequence of SOS induction measured by the SOS chromotest. However, biofilm formation depended on the ability of the bacteria to induce the SOS response since the mutant lexA Ind(-) did not induce the SOS response and did not form any biofilm. Oxygen tension was an important factor for the interaction of the BER mutants, since these mutants exhibited decreased quantitative adherence under anaerobic conditions. However, our results showed that the presence or absence of oxygen did not affect the viability of BW9091 and BW535 strains. The nfi mutant and its wild-type did not exhibit decreased biofilm formation under anaerobic conditions. Scanning electron microscopy was also performed on the E. coli K-12 strains that had adhered to the glass, and we observed the presence of a structure similar to an extracellular matrix that depended on the

  1. Metabolic Engineering of Light and Dark Biochemical Pathways in Wild-Type and Mutant Strains of Synechocystis PCC 6803 for Maximal, 24-Hour Production of Hydrogen Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ely, Roger L.; Chaplen, Frank W.R.

    2014-03-11

    analyses for enhanced H2 production profiles using selected culture conditions and inhibitors of specific pathways in WT cells and an NDH-1 mutant; 3. Create Synechocystis PCC 6803 mutant strains with modified hydrogenases exhibiting increased O2 tolerance and greater H2 production; and 4. Integrate enhanced hydrogenase mutants and culture and metabolic factor studies to maximize 24-hour H2 production.« less

  2. Pyridoxine and its relation to lipids. Studies with pyridoxineless mutants of Aspergillus nidulans.

    PubMed

    Mohana, K; Shanmugasundaram, E R

    1978-01-01

    The effect of pyridoxine deficiency on fat metabolism was studied using mutant strains of Aspergillus nidulans requiring pyridoxine for growth. Under pyridoxine deficiency the mutants exhibited increased levels of total lipid, sterols, phospholipids, and triacylglycerols. Total fatty acids were found to decrease with pyridoxine deficiency. An increase in saturated fatty acids and decrease in unsaturated fatty acids were seen with deficiency. Pyridoxine deficiency also increased lower carbon chain fatty acids. A possible involvement of pyridoxine in the elongation of fatty acid chain and in the desaturation of fatty acids in Aspergillus nidulans is suggested.

  3. Genetic Relatedness of WNIN and WNIN/Ob with Major Rat Strains in Biomedical Research.

    PubMed

    Battula, Kiran Kumar; Nappanveettil, Giridharan; Nakanishi, Satoshi; Kuramoto, Takashi; Friedman, Jeffry M; Kalashikam, Rajender Rao

    2015-06-01

    WNIN (Wistar/NIN) is an inbred rat strain maintained at National Institute of Nutrition (NIN) for more than 90 years, and WNIN/Ob is an obese mutant originated from it. To determine their genetic relatedness with major rat strains in biomedical research, they were genotyped at various marker loci. The recently identified markers for albino and hooded mutations which clustered all the known albino rats into a single lineage also included WNIN and WNIN/Ob rats. Genotyping using microsatellite DNA markers and phylogenetic analysis with 49 different rat strains suggested that WNIN shares a common ancestor with many Wistar originated strains. Fst estimates and Fischer's exact test suggest that WNIN rats differed significantly from all other strains tested. WNIN/Ob though shows hyper-leptinemia, like Zucker fatty rat, did not share the Zucker fatty rat mutation. The above analyses suggest WNIN as a highly differentiated rat strain and WNIN/Ob a novel obese mutant evolved from it.

  4. Furfural and hydroxymethylfurfural tolerance in Escherichia coli ΔacrR regulatory mutants.

    PubMed

    Luhe, Annette Lin; Lim, Chan Yuen; Gerken, Henri; Wu, Jinchuan; Zhao, Hua

    2015-01-01

    The presence of the highly toxic furfural and hydroxymethylfurfural (HMF) in the hydrolysate of lignocellulosic biomass prompted the investigation of the Escherichia coli ΔacrR regulatory mutant for higher tolerance to these compounds, to facilitate the production of biofuels and biochemicals, and further biocatalytic conversions. In comparison with the parental strain, the regulatory mutant with the upregulated efflux pump AcrAB-TolC produced moderately better growth and higher tolerance to concentrations of furfural and HMF between 1 and 2 g L(-1) . © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  5. Growth of Chlamydomonas reinhardtii in acetate-free medium when co-cultured with alginate-encapsulated, acetate-producing strains of Synechococcus sp. PCC 7002.

    PubMed

    Therien, Jesse B; Zadvornyy, Oleg A; Posewitz, Matthew C; Bryant, Donald A; Peters, John W

    2014-01-01

    The model alga Chlamydomonas reinhardtii requires acetate as a co-substrate for optimal production of lipids, and the addition of acetate to culture media has practical and economic implications for algal biofuel production. Here we demonstrate the growth of C. reinhardtii on acetate provided by mutant strains of the cyanobacterium Synechococcus sp. PCC 7002. Optimal growth conditions for co-cultivation of C. reinhardtii with wild-type and mutant strains of Synechococcus sp. 7002 were established. In co-culture, acetate produced by a glycogen synthase knockout mutant of Synechococcus sp. PCC 7002 was able to support the growth of a lipid-accumulating mutant strain of C. reinhardtii defective in starch production. Encapsulation of Synechococcus sp. PCC 7002 using an alginate matrix was successfully employed in co-cultures to limit growth and maintain the stability. The ability of immobilized strains of the cyanobacterium Synechococcus sp. PCC 7002 to produce acetate at a level adequate to support the growth of lipid-accumulating strains of C. reinhartdii offers a potentially practical, photosynthetic alternative to providing exogenous acetate into growth media.

  6. Mouse mutants from chemically mutagenized embryonic stem cells

    PubMed Central

    Munroe, Robert J.; Bergstrom, Rebecca A.; Zheng, Qing Yin; Libby, Brian; Smith, Richard; John, Simon W.M.; Schimenti, Kerry J.; Browning, Victoria L.; Schimenti, John C.

    2010-01-01

    The drive to characterize functions of human genes on a global scale has stimulated interest in large-scale generation of mouse mutants. Conventional germ-cell mutagenesis with N-ethyl-N-nitrosourea (ENU) is compromised by an inability to monitor mutation efficiency, strain1 and interlocus2 variation in mutation induction, and extensive husbandry requirements. To overcome these obstacles and develop new methods for generating mouse mutants, we devised protocols to generate germline chi-maeric mice from embryonic stem (ES) cells heavily mutagenized with ethylmethanesulphonate (EMS). Germline chimaeras were derived from cultures that underwent a mutation rate of up to 1 in 1,200 at the Hprt locus (encoding hypoxanthine guanine phosphoribosyl transferase). The spectrum of mutations induced by EMS and the frameshift mutagen ICR191 was consistent with that observed in other mammalian cells. Chimaeras derived from ES cells treated with EMS transmitted mutations affecting several processes, including limb development, hair growth, hearing and gametogenesis. This technology affords several advantages over traditional mutagenesis, including the ability to conduct shortened breeding schemes and to screen for mutant phenotypes directly in ES cells or their differentiated derivatives. PMID:10700192

  7. Transposon mutagenesis in Bifidobacterium breve: construction and characterization of a Tn5 transposon mutant library for Bifidobacterium breve UCC2003.

    PubMed

    Ruiz, Lorena; Motherway, Mary O'Connell; Lanigan, Noreen; van Sinderen, Douwe

    2013-01-01

    Bifidobacteria are claimed to contribute positively to human health through a range of beneficial or probiotic activities, including amelioration of gastrointestinal and metabolic disorders, and therefore this particular group of gastrointestinal commensals has enjoyed increasing industrial and scientific attention in recent years. However, the molecular mechanisms underlying these probiotic mechanisms are still largely unknown, mainly due to the fact that molecular tools for bifidobacteria are rather poorly developed, with many strains lacking genetic accessibility. In this work, we describe the generation of transposon insertion mutants in two bifidobacterial strains, B. breve UCC2003 and B. breve NCFB2258. We also report the creation of the first transposon mutant library in a bifidobacterial strain, employing B. breve UCC2003 and a Tn5-based transposome strategy. The library was found to be composed of clones containing single transposon insertions which appear to be randomly distributed along the genome. The usefulness of the library to perform phenotypic screenings was confirmed through identification and analysis of mutants defective in D-galactose, D-lactose or pullulan utilization abilities.

  8. CodY Promotes Sporulation and Enterotoxin Production by Clostridium perfringens Type A Strain SM101.

    PubMed

    Li, Jihong; Freedman, John C; Evans, Daniel R; McClane, Bruce A

    2017-03-01

    Clostridium perfringens type D strains cause enterotoxemia and enteritis in livestock via epsilon toxin production. In type D strain CN3718, CodY was previously shown to increase the level of epsilon toxin production and repress sporulation. C. perfringens type A strains producing C. perfringens enterotoxin (CPE) cause human food poisoning and antibiotic-associated diarrhea. Sporulation is critical for C. perfringens type A food poisoning since spores contribute to transmission and resistance in the harsh food environment and sporulation is essential for CPE production. Therefore, the current study asked whether CodY also regulates sporulation and CPE production in SM101, a derivative of C. perfringens type A food-poisoning strain NCTC8798. An isogenic codY -null mutant of SM101 showed decreased levels of spore formation, along with lower levels of CPE production. A complemented strain recovered wild-type levels of both sporulation and CPE production. When this result was coupled with the earlier results obtained with CN3718, it became apparent that CodY regulation of sporulation varies among different C. perfringens strains. Results from quantitative reverse transcriptase PCR analysis clearly demonstrated that, during sporulation, codY transcript levels remained high in SM101 but rapidly declined in CN3718. In addition, abrB gene expression patterns varied significantly between codY -null mutants of SM101 and CN3718. Compared to the levels in their wild-type parents, the level of abrB gene expression decreased in the CN3718 codY -null mutant strain but significantly increased in the SM101 codY -null mutant strain, demonstrating CodY-dependent regulation differences in abrB expression between these two strains. This difference appears to be important since overexpression of the abrB gene in SM101 reduced the levels of sporulation and enterotoxin production, supporting the involvement of AbrB repression in regulating C. perfringens sporulation. Copyright © 2017

  9. CodY Promotes Sporulation and Enterotoxin Production by Clostridium perfringens Type A Strain SM101

    PubMed Central

    Li, Jihong; Freedman, John C.; Evans, Daniel R.

    2017-01-01

    ABSTRACT Clostridium perfringens type D strains cause enterotoxemia and enteritis in livestock via epsilon toxin production. In type D strain CN3718, CodY was previously shown to increase the level of epsilon toxin production and repress sporulation. C. perfringens type A strains producing C. perfringens enterotoxin (CPE) cause human food poisoning and antibiotic-associated diarrhea. Sporulation is critical for C. perfringens type A food poisoning since spores contribute to transmission and resistance in the harsh food environment and sporulation is essential for CPE production. Therefore, the current study asked whether CodY also regulates sporulation and CPE production in SM101, a derivative of C. perfringens type A food-poisoning strain NCTC8798. An isogenic codY-null mutant of SM101 showed decreased levels of spore formation, along with lower levels of CPE production. A complemented strain recovered wild-type levels of both sporulation and CPE production. When this result was coupled with the earlier results obtained with CN3718, it became apparent that CodY regulation of sporulation varies among different C. perfringens strains. Results from quantitative reverse transcriptase PCR analysis clearly demonstrated that, during sporulation, codY transcript levels remained high in SM101 but rapidly declined in CN3718. In addition, abrB gene expression patterns varied significantly between codY-null mutants of SM101 and CN3718. Compared to the levels in their wild-type parents, the level of abrB gene expression decreased in the CN3718 codY-null mutant strain but significantly increased in the SM101 codY-null mutant strain, demonstrating CodY-dependent regulation differences in abrB expression between these two strains. This difference appears to be important since overexpression of the abrB gene in SM101 reduced the levels of sporulation and enterotoxin production, supporting the involvement of AbrB repression in regulating C. perfringens sporulation. PMID:28052992

  10. Yersinia enterocolitica YopH-Deficient Strain Activates Neutrophil Recruitment to Peyer's Patches and Promotes Clearance of the Virulent Strain.

    PubMed

    Dave, Mabel N; Silva, Juan E; Eliçabe, Ricardo J; Jeréz, María B; Filippa, Verónica P; Gorlino, Carolina V; Autenrieth, Stella; Autenrieth, Ingo B; Di Genaro, María S

    2016-11-01

    Yersinia enterocolitica evades the immune response by injecting Yersinia outer proteins (Yops) into the cytosol of host cells. YopH is a tyrosine phosphatase critical for Yersinia virulence. However, the mucosal immune mechanisms subverted by YopH during in vivo orogastric infection with Y. enterocolitica remain elusive. The results of this study revealed neutrophil recruitment to Peyer's patches (PP) after infection with a YopH-deficient mutant strain (Y. enterocolitica ΔyopH). While the Y. enterocolitica wild-type (WT) strain in PP induced the major neutrophil chemoattractant CXCL1 mRNA and protein levels, infection with the Y. enterocolitica ΔyopH mutant strain exhibited a higher expression of the CXCL1 receptor, CXCR2, in blood neutrophils, leading to efficient neutrophil recruitment to the PP. In contrast, migration of neutrophils into PP was impaired upon infection with Y. enterocolitica WT strain. In vitro infection of blood neutrophils revealed the involvement of YopH in CXCR2 expression. Depletion of neutrophils during Y. enterocolitica ΔyopH infection raised the bacterial load in PP. Moreover, the clearance of WT Y. enterocolitica was improved when an equal mixture of Y. enterocolitica WT and Y. enterocolitica ΔyopH strains was used in infecting the mice. This study indicates that Y. enterocolitica prevents early neutrophil recruitment in the intestine and that the effector protein YopH plays an important role in the immune evasion mechanism. The findings highlight the potential use of the Y. enterocolitica YopH-deficient strain as an oral vaccine carrier. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  11. Properties of uvrE mutants of Escherichia coli K12. Part 1. Effects of uv irradiation on DNA metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vansluis, C.A.; Mattern, I.E.; Paterson, M.C.

    1974-01-01

    Escherichia coli K12 uvrE is a mutator strain which is highly sensitive to ultraviolet radiation. In an attempt to determine the underlying molecular basis for the UV sensitivity, a mutant and an isogenic wild type strain were compared with regard to several metabolic responses to 254 nm radiation. The introduction of single strand breaks into intracellular DNA after irradiation is normal; however, the rate of excision of pyrimidine dimers as well as of DNA degradation and final rejoining of the strand breaks is lower in the mutant as compared to the repair proficient strain. These data suggest that the uvrEmore » gene product may be involved in a reaction between the incision and excision steps in the excision repair process. (Author) (GRA)« less

  12. Characterization of an Escherichia coli mutant (radB101) sensitive to. gamma. and uv radiation, and methyl methanesulfonate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sargentini, N.J.; Smith, K.C.

    1983-03-01

    After N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis of Escherichia coli K-12 (xthA14), an X-ray-sensitive mutant was isolated. This sensitivity is due to a mutation, radB101, which is located at 56.5 min on the E.coli K-12 linkage map. The radB101 mutation sensitized wild-type cells to ..gamma.. and uv radiation, and to methyl methanesulfonate. When known DNA repair-deficient mutants were ranked for their ..gamma..-radiation sensitivity relative to their uv-radiation sensitivity, their order was (starting with the most selectively ..gamma..-radiation-sensitive strain): recB21, radB101, wild type, polA1, recF143, lexA101, recA56, uvrD3, and uvrA6. The radB mutant was normal for ..gamma..- and uv-radiation mutagenesis, it showed only a slightmore » enhancement of ..gamma..- and uv-radiation-induced DNA degradation, and it was approx. 60% deficient in recombination ability. The radB gene is suggested to play a role in the recA gene-dependent (Type III) repair of DNA single-strand breaks after ..gamma.. irradiation and in postreplication repair after uv irradiation for the following reasons: the radB strain was normal for the host-cell reactivation of ..gamma..- and uv-irradiated bacteriophage lambda; the radB mutation did not sensitize a recA strain, but did sensitize a polA strain to ..gamma.. and uv radiation; the radB mutation sensitized a uvrB strain to uv radiation.« less

  13. Strain improvement of Lactobacillus lactis for D-lactic acid production.

    PubMed

    Joshi, D S; Singhvi, M S; Khire, J M; Gokhale, D V

    2010-04-01

    Three mutants, isolated by repeated UV mutagenesis of Lactobacillus lactis NCIM 2368, produced increased D: -lactic acid concentrations. These mutants were compared with the wild type using 100 g hydrolyzed cane sugar/l in the fermentation medium. One mutant, RM2-24, produced 81 g lactic acid/l which was over three times that of the wild type. The highest D: -lactic acid (110 g/l) in batch fermentation was obtained with 150 g cane sugar/l with a 73% lactic acid yield. The mutant utilizes cellobiose efficiently, converting it into D-lactic acid suggesting the presence of cellobiase. Thus, this strain could be used to obtain D-lactic acid from cellulosic materials that are pre-hydrolyzed with cellulase.

  14. Activity of Gemifloxacin against Quinolone-Resistant Streptococcus pneumoniae Strains In Vitro and in a Mouse Pneumonia Model

    PubMed Central

    Azoulay-Dupuis, E.; Bédos, J. P.; Mohler, J.; Moine, P.; Cherbuliez, C.; Peytavin, G.; Fantin, B.; Köhler, T.

    2005-01-01

    Gemifloxacin is a novel fluoronaphthyridone quinolone with enhanced in vitro activity against Streptococcus pneumoniae. We investigated the activities of gemifloxacin and trovafloxacin, their abilities to select for resistance in vitro and in vivo, and their efficacies in a mouse model of acute pneumonia. Immunocompetent Swiss mice were infected with 105 CFU of a virulent, encapsulated S. pneumoniae strain, P-4241, or its isogenic parC, gyrA, parC gyrA, and efflux mutant derivatives (serotype 3); and leukopenic mice were infected with 107 CFU of two poorly virulent clinical strains (serotype 11A) carrying either a parE mutation or a parC, gyrA, and parE triple mutation. The drugs were administered six times every 12 h, starting at either 3 or 18 h postinfection. In vitro, gemifloxacin was the most potent agent against strains with and without acquired resistance to fluoroquinolones. While control mice died within 6 days, gemifloxacin at doses of 25 and 50 mg/kg of body weight was highly effective (survival rates, 90 to 100%) against the wild-type strain and against mutants harboring a single mutation, corresponding to area under the time-versus-serum concentration curve at 24 h (AUC24)/MIC ratios of 56.5 to 113, and provided a 40% survival rate against a mutant with a double mutation (parC and gyrA). A total AUC24/MIC ratio of 28.5 was associated with poor efficacy and the emergence of resistant mutants. Trovafloxacin was as effective as gemifloxacin against mutants with single mutations but did not provide any protection against the mutant with double mutations, despite treatment with a high dose of 200 mg/kg. Gemifloxacin preferentially selected for parC mutants both in vitro and in vivo. PMID:15728901

  15. A quorum sensing-defective mutant of Pectobacterium carotovorum ssp. brasiliense 1692 is attenuated in virulence and unable to occlude xylem tissue of susceptible potato plant stems.

    PubMed

    Moleleki, Lucy Novungayo; Pretorius, Rudolph Gustav; Tanui, Collins Kipngetich; Mosina, Gabolwelwe; Theron, Jacques

    2017-01-01

    Pectobacterium carotovorum ssp. brasiliense 1692 (Pcb1692) is an important emerging pathogen of potatoes causing blackleg in the field and soft rot during post-harvest storage. Blackleg diseases involve the bacterial colonization of vascular tissue and the formation of aggregates, also known as biofilms. To understand the role of quorum sensing in vascular colonization by Pcb1692, we generated a Pcb1692ΔexpI mutant strain. Inactivation of expI led to the reduced production of plant cell wall-degrading enzymes (PCWDEs), the inability to produce acyl homoserine lactone (AHL) and reduced virulence in potato tubers and stems. Complementation of the mutant strain with the wild-type expI gene in trans successfully restored AHL and PCWDE production as well as virulence. Transmission electron microscopy and in vitro motility assays demonstrated hyperpiliation and loss of flagella and swimming motility in the mutant strain compared with the wild-type Pcb1692. Furthermore, we noted that, in the early stages of infection, Pcb1692 wild-type cells had intact flagella which were shed at the later stages of infection. Confocal laser microscopy of PcbΔexpI-inoculated plants showed that the mutant strain tended to aggregate in intercellular spaces, but was unable to transit to xylem tissue. On the contrary, the wild-type strain was often observed forming aggregates within xylem tissue of potato stems. Gene expression analyses confirmed that flagella are part of the quorum sensing regulon, whereas fimbriae and pili appear to be negatively regulated by quorum sensing. The relative expression levels of other important putative virulence genes, such as those encoding different groups of PCWDEs, were down-regulated in the mutant compared with the wild-type strain. © 2016 BSPP and John Wiley & Sons Ltd.

  16. PrkC-mediated phosphorylation of overexpressed YvcK protein regulates PBP1 protein localization in Bacillus subtilis mreB mutant cells.

    PubMed

    Foulquier, Elodie; Pompeo, Frédérique; Freton, Céline; Cordier, Baptiste; Grangeasse, Christophe; Galinier, Anne

    2014-08-22

    The YvcK protein has been shown to be necessary for growth under gluconeogenic conditions in Bacillus subtilis. Amazingly, its overproduction rescues growth and morphology defects of the actin-like protein MreB deletion mutant by restoration of PBP1 localization. In this work, we observed that YvcK was phosphorylated at Thr-304 by the protein kinase PrkC and that phosphorylated YvcK was dephosphorylated by the cognate phosphatase PrpC. We show that neither substitution of this threonine with a constitutively phosphorylated mimicking glutamic acid residue or a phosphorylation-dead mimicking alanine residue nor deletion of prkC or prpC altered the ability of B. subtilis to grow under gluconeogenic conditions. However, we observed that a prpC mutant and a yvcK mutant were more sensitive to bacitracin compared with the WT strain. In addition, the bacitracin sensitivity of strains in which YvcK Thr-304 was replaced with either an alanine or a glutamic acid residue was also affected. We also analyzed rescue of the mreB mutant strain by overproduction of YvcK in which the phosphorylation site was substituted. We show that YvcK T304A overproduction did not rescue the mreB mutant aberrant morphology due to PBP1 mislocalization. The same observation was made in an mreB prkC double mutant overproducing YvcK. Altogether, these data show that YvcK may have two distinct functions: 1) in carbon source utilization independent of its phosphorylation level and 2) in cell wall biosynthesis and morphogenesis through its phosphorylation state. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Rapid mutation of Spirulina platensis by a new mutagenesis system of atmospheric and room temperature plasmas (ARTP) and generation of a mutant library with diverse phenotypes.

    PubMed

    Fang, Mingyue; Jin, Lihua; Zhang, Chong; Tan, Yinyee; Jiang, Peixia; Ge, Nan; Heping Li; Xing, Xinhui

    2013-01-01

    In this paper, we aimed to improve the carbohydrate productivity of Spirulina platensis by generating mutants with increased carbohydrate content and growth rate. ARTP was used as a new mutagenesis tool to generate a mutant library of S. platensis with diverse phenotypes. Protocol for rapid mutation of S. platensis by 60 s treatment with helium driven ARTP and high throughput screening method of the mutants using the 96-well microplate and microplate reader was established. A mutant library of 62 mutants was then constructed and ideal mutants were selected out. The characteristics of the mutants after the mutagenesis inclined to be stable after around 9(th) subculture, where the total mutation frequency and positive mutation frequency in terms of specific growth rate reached 45% and 25%, respectively. The mutants in mutant library showed diverse phenotypes in terms of cell growth rate, carbohydrate content and flocculation intensity. The positive mutation frequency in terms of cellular carbohydrate content with the increase by more than 20% percent than the wild strain was 32.3%. Compared with the wild strain, the representative mutants 3-A10 and 3-B2 showed 40.3% and 78.0% increase in carbohydrate content, respectively, while the mutant 4-B3 showed 10.5% increase in specific growth rate. The carbohydrate contents of the representative mutants were stable during different subcultures, indicating high genetic stability. ARTP was demonstrated to be an effective and non-GMO mutagenesis tool to generate the mutant library for multicellular microalgae.

  18. Mechanism of Citrate Metabolism by an Oxaloacetate Decarboxylase-Deficient Mutant of Lactococcus lactis IL1403 ▿

    PubMed Central

    Pudlik, Agata M.; Lolkema, Juke S.

    2011-01-01

    Citrate metabolism in resting cells of Lactococcus lactis IL1403(pFL3) results in the formation of two end products from the intermediate pyruvate, acetoin and acetate (A. M. Pudlik and J. S. Lolkema, J. Bacteriol. 193:706–714, 2011). Pyruvate is formed from citrate following uptake by the transporter CitP through the subsequent actions of citrate lyase and oxaloacetate decarboxylase. The present study describes the metabolic response of L. lactis when oxaloacetate accumulates in the cytoplasm. The oxaloacetate decarboxylase-deficient mutant ILCitM(pFL3) showed nearly identical rates of citrate consumption, but the end product profile in the presence of glucose shifted from mainly acetoin to only acetate. In addition, in contrast to the parental strain, the mutant strain did not generate proton motive force. Citrate consumption by the mutant strain was coupled to the excretion of oxaloacetate, with a yield of 80 to 85%. Following citrate consumption, oxaloacetate was slowly taken up by the cells and converted to pyruvate by a cryptic decarboxylase and, subsequently, to acetate. The transport of oxaloacetate is catalyzed by CitP. The parental strain IL1403(pFL3) containing CitP consumed oxaloacetate, while the original strain, IL1403, not containing CitP, did not. Moreover, oxaloacetate consumption was enhanced in the presence of l-lactate, indicating exchange between oxaloacetate and l-lactate catalyzed by CitP. Hence, when oxaloacetate inadvertently accumulates in the cytoplasm, the physiological response of L. lactis is to excrete oxaloacetate in exchange with citrate by an electroneutral mechanism catalyzed by CitP. Subsequently, in a second step, oxaloacetate is taken up by CitP and metabolized to pyruvate and acetate. PMID:21665973

  19. Construction of a large-scale Burkholderia cenocepacia J2315 transposon mutant library

    NASA Astrophysics Data System (ADS)

    Wong, Yee-Chin; Pain, Arnab; Nathan, Sheila

    2014-09-01

    Burkholderia cenocepacia, a pathogenic member of the Burkholderia cepacia complex (Bcc), has emerged as a significant threat towards cystic fibrosis patients, where infection often leads to the fatal clinical manifestation known as cepacia syndrome. Many studies have investigated the pathogenicity of B. cenocepacia as well as its ability to become highly resistant towards many of the antibiotics currently in use. In addition, studies have also been undertaken to understand the pathogen's capacity to adapt and survive in a broad range of environments. Transposon based mutagenesis has been widely used in creating insertional knock-out mutants and coupled with recent advances in sequencing technology, robust tools to study gene function in a genome-wide manner have been developed based on the assembly of saturated transposon mutant libraries. In this study, we describe the construction of a large-scale library of B. cenocepacia transposon mutants. To create transposon mutants of B. cenocepacia strain J2315, electrocompetent bacteria were electrotransformed with the EZ-Tn5 transposome. Tetracyline resistant colonies were harvested off selective agar and pooled. Mutants were generated in multiple batches with each batch consisting of ˜20,000 to 40,000 mutants. Transposon insertion was validated by PCR amplification of the transposon region. In conclusion, a saturated B. cenocepacia J2315 transposon mutant library with an estimated total number of 500,000 mutants was successfully constructed. This mutant library can now be further exploited as a genetic tool to assess the function of every gene in the genome, facilitating the discovery of genes important for bacterial survival and adaptation, as well as virulence.

  20. The role of the phoPQ operon in the pathogenesis of the fully virulent CO92 strain of Yersinia pestis and the IP32953 strain of Yersinia pseudotuberculosis.

    PubMed

    Bozue, Joel; Mou, Sherry; Moody, Krishna L; Cote, Christopher K; Trevino, Sylvia; Fritz, David; Worsham, Patricia

    2011-06-01

    At the genomic level, Yersinia pestis and Yersinia pseudotuberculosis are nearly identical but cause very different diseases. Y. pestis is the etiologic agent of plague; whereas Y. pseudotuberculosis causes a gastrointestinal infection primarily after the consumption of contaminated food. In many gram-negative pathogenic bacteria, PhoP is part of a two-component global regulatory system in which PhoQ serves as the sensor kinase, and PhoP is the response regulator. PhoP is known to activate a number of genes in many bacteria related to virulence. To determine the role of the PhoPQ proteins in Yersinia infections, primarily using aerosol challenge models, the phoP gene was deleted from the chromosome of the CO92 strain of Y. pestis and the IP32953 strain of Y. pseudotuberculosis, leading to a polar mutation of the phoPQ operon. We demonstrated that loss of phoPQ from both strains leads to a defect in intracellular growth and/or survival within macrophages. These in vitro data would suggest that the phoPQ mutants would be attenuated in vivo. However, the LD(50) for the Y. pestis mutant did not differ from the calculated LD(50) for the wild-type CO92 strain for either the bubonic or pneumonic murine models of infection. In contrast, mice challenged by aerosol with the Y. pseudotuberculosis mutant had a LD(50) value 40× higher than the wild-type strain. These results demonstrate that phoPQ are necessary for full virulence by aerosol infection with the IP32953 strain of Y. pseudotuberculosis. However, the PhoPQ proteins do not play a significant role in infection with a fully virulent strain of Y. pestis. Published by Elsevier India Pvt Ltd.

  1. Optimization of L(+)-Lactic Acid Production from Xylose with Rhizopus Oryzae Mutant RLC41-6 Breeding by Low-Energy Ion Implantation

    NASA Astrophysics Data System (ADS)

    Yang, Yingge; Fan, Yonghong; Li, Wen; Wang, Dongmei; Wu, Yuejin; Zheng, Zhiming; Yu, Zengliang

    2007-10-01

    In order to obtain an industrial strain with a higher L(+)-lactic acid yield, the strain Rhizopus oryzae PW352 was mutated by means of nitrogen ion beam implantation and the mutant strain Rhizopus oryzae RLC41-6 was obtained. An experimental finding was made in surprise that Rhizopus oryzae mutant RLC41-6 is not only an L(+)-lactic acid producer from corn starch but also an efficient producer of L(+)-lactic acid from xylose. Under optimal conditions, the production of L(+)-lactic acid from 100 g/L xylose reached 77.39 g/L after 144 h fed-batch fermentation. A high mutation rate and a wide mutation spectrum of low-energy ion implantation were observed in the experiment.

  2. The subcutaneous inoculation of pH 6 antigen mutants of Yersinia pestis does not affect virulence and immune response in mice.

    PubMed

    Anisimov, Andrey P; Bakhteeva, Irina V; Panfertsev, Evgeniy A; Svetoch, Tat'yana E; Kravchenko, Tat'yana B; Platonov, Mikhail E; Titareva, Galina M; Kombarova, Tat'yana I; Ivanov, Sergey A; Rakin, Alexander V; Amoako, Kingsley K; Dentovskaya, Svetlana V

    2009-01-01

    Two isogenic sets of Yersinia pestis strains were generated, composed of wild-type strains 231 and I-1996, their non-polar pH 6(-) mutants with deletions in the psaA gene that codes for its structural subunit or the whole operon, as well as strains with restored ability for temperature- and pH-dependent synthesis of adhesion pili or constitutive production of pH 6 antigen. The mutants were generated by site-directed mutagenesis of the psa operon and subsequent complementation in trans. It was shown that the loss of synthesis or constitutive production of pH 6 antigen did not influence Y. pestis virulence or the average survival time of subcutaneously inoculated BALB/c naïve mice or animals immunized with this antigen.

  3. Influence of the protein kinase C activator phorbol myristate acetate on the intracellular activity of antibiotics against hemin- and menadione-auxotrophic small-colony variant mutants of Staphylococcus aureus and their wild-type parental strain in human THP-1 cells.

    PubMed

    Garcia, Laetitia G; Lemaire, Sandrine; Kahl, Barbara C; Becker, Karsten; Proctor, Richard A; Tulkens, Paul M; Van Bambeke, Françoise

    2012-12-01

    In a previous study (L. G. Garcia et al., Antimicrob. Agents Chemother. 56:3700-3711, 2012), we evaluated the intracellular fate of menD and hemB mutants (corresponding to menadione- and hemin-dependent small-colony variants, respectively) of the parental COL methicillin-resistant Staphylococcus aureus strain and the pharmacodynamic profile of the intracellular activity of a series of antibiotics in human THP-1 monocytes. We have now examined the phagocytosis and intracellular persistence of the same strains in THP-1 cells activated by phorbol 12-myristate 13-acetate (PMA) and measured the intracellular activity of gentamicin, moxifloxacin, and oritavancin in these cells. Postphagocytosis intracellular counts and intracellular survival were lower in PMA-activated cells, probably due to their higher killing capacities. Gentamicin and moxifloxacin showed a 5- to 7-fold higher potency (lower static concentrations) against the parental strain, its hemB mutant, and the genetically complemented strain in PMA-activated cells and against the menD strain in both activated and nonactivated cells. This effect was inhibited when cells were incubated with N-acetylcysteine (a scavenger of oxidant species). In parallel, we observed that the MICs of these drugs were markedly reduced if bacteria had been preexposed to H(2)O(2). In contrast, the intracellular potency of oritavancin was not different in activated and nonactivated cells and was not decreased by the addition of N-acetylcysteine, regardless of the phenotype of the strains. The oritavancin MIC was also unaffected by preincubation of the bacteria with H(2)O(2). Thus, activation of THP-1 cells by PMA may increase the intracellular potency of certain antibiotics (probably due to synergy with reactive oxygen species), but this effect cannot be generalized to all antibiotics.

  4. Phenotypic characterization of adenovirus type 12 temperature-sensitive mutants in productive infection and transformation.

    PubMed

    Hama, S; Kimura, G

    1980-01-01

    Eleven temperature-sensitive mutants of adenovirus type 12, capable of forming plaques in human cells at 33 C but not at 39.5 C, were isolated from a stock of a wild-type strain after treatment with either nitrous acid or hydroxylamine. Complementation tests in doubly infected human cells permitted a tentative assignment of eight of these mutants to six complementation groups. Temperature-shift experiments revealed that one mutant is affected early and most of the other mutants are affected late. Only the early mutant, H12ts505, was temperature sensitive in viral DNA replication. Infectious virions of all the mutants except H12ts505 and two of the late mutants produced at 33 C, appeared to be more heat labile than those of the wild type. Only H12ts505 was temperature sensitive for the establishment of transformation of rat 3Y1 cells. One of the late mutants (H12ts504) had an increased transforming ability at the permissive temperature. Results of temperature-shift transformation experiments suggest that a viral function affected in H12ts505 is required for "initiation" of transformation. Some of the growth properties of H12ts505-transformed cells were also temperature dependent, suggesting that a functional expression of a gene mutation in H12ts505 is required to maintain at least some aspects of the transformed state.

  5. Isolation and characterization of a pigmentless-conidium mutant of Aspergillus fumigatus with altered conidial surface and reduced virulence.

    PubMed Central

    Jahn, B; Koch, A; Schmidt, A; Wanner, G; Gehringer, H; Bhakdi, S; Brakhage, A A

    1997-01-01

    Aspergillus fumigatus is an important pathogen of immunocompromised hosts, causing pneumonia and invasive disseminated disease with high mortality. The factors contributing to the predominance of A. fumigatus as an opportunistic pathogen are largely unknown. Since the survival of conidia in the host is a prerequisite for establishing disease, we have been attempting to identify factors which are associated with conidia and, simultaneously, important for infection. Therefore, an A. fumigatus mutant strain (white [W]) lacking conidial pigmentation was isolated. Scanning electron microscopy revealed that conidia of the W mutant also differed in their surface morphology from those of the wild type (WT). Mutant (W) and WT conidia were compared with respect to their capacities to stimulate an oxidative response in human phagocytes, their intracellular survival in human monocytes, and virulence in a murine animal model. Luminol-dependent chemiluminescence was 10-fold higher when human neutrophils or monocytes were challenged with W conidia compared with WT conidia. Furthermore, mutant conidia were more susceptible to killing by oxidants in vitro and were more efficiently damaged by human monocytes in vitro than WT conidia. In a murine animal model, the W mutant strain showed reduced virulence compared with the WT. A reversion analysis of the W mutant demonstrated that all phenotypes associated with the W mutant, i.e., altered conidial surface, amount of reactive oxygen species release, susceptibility to hydrogen peroxide, and reduced virulence in an murine animal model, coreverted in revertants which had regained the ability to produce green spores. This finding strongly suggests that the A. fumigatus mutant described here carries a single mutation which caused all of the observed phenotypes. Our results suggest that the conidium pigment or a structural feature related to it contributes to fungal resistance against host defense mechanisms in A. fumigatus infections. PMID

  6. Pseudomonas fluorescens F113 mutant with enhanced competitive colonization ability and improved biocontrol activity against fungal root pathogens.

    PubMed

    Barahona, Emma; Navazo, Ana; Martínez-Granero, Francisco; Zea-Bonilla, Teresa; Pérez-Jiménez, Rosa María; Martín, Marta; Rivilla, Rafael

    2011-08-01

    Motility is one of the most important traits for efficient rhizosphere colonization by Pseudomonas fluorescens F113rif (F113). In this bacterium, motility is a polygenic trait that is repressed by at least three independent pathways, including the Gac posttranscriptional system, the Wsp chemotaxis-like pathway, and the SadB pathway. Here we show that the kinB gene, which encodes a signal transduction protein that together with AlgB has been implicated in alginate production, participates in swimming motility repression through the Gac pathway, acting downstream of the GacAS two-component system. Gac mutants are impaired in secondary metabolite production and are unsuitable as biocontrol agents. However, the kinB mutant and a triple mutant affected in kinB, sadB, and wspR (KSW) possess a wild-type phenotype for secondary metabolism. The KSW strain is hypermotile and more competitive for rhizosphere colonization than the wild-type strain. We have compared the biocontrol activity of KSW with those of the wild-type strain and a phenotypic variant (F113v35 [V35]) which is hypermotile and hypercompetitive but is affected in secondary metabolism since it harbors a gacS mutation. Biocontrol experiments in the Fusarium oxysporum f. sp. radicis-lycopersici/Lycopersicum esculentum (tomato) and Phytophthora cactorum/Fragaria vesca (strawberry) pathosystems have shown that the three strains possess biocontrol activity. Biocontrol activity was consistently lower for V35, indicating that the production of secondary metabolites was the most important trait for biocontrol. Strain KSW showed improved biocontrol compared with the wild-type strain, indicating that an increase in competitive colonization ability resulted in improved biocontrol and that the rational design of biocontrol agents by mutation is feasible.

  7. A Yersinia pestis lpxM-mutant live vaccine induces enhanced immunity against bubonic plague in mice and guinea pigs.

    PubMed

    Feodorova, V A; Pan'kina, L N; Savostina, E P; Sayapina, L V; Motin, V L; Dentovskaya, S V; Shaikhutdinova, R Z; Ivanov, S A; Lindner, B; Kondakova, A N; Bystrova, O V; Kocharova, N A; Senchenkova, S N; Holst, O; Pier, G B; Knirel, Y A; Anisimov, A P

    2007-11-01

    The lpxM mutant of the live vaccine Yersinia pestis EV NIIEG strain synthesising a less toxic penta-acylated lipopolysaccharide was found to be avirulent in mice and guinea pigs, notably showing no measurable virulence in Balb/c mice which do retain some susceptibility to the parental strain itself. Twenty-one days after a single injection of the lpxM-mutant, 85-100% protection was achieved in outbred mice and guinea pigs, whereas a 43% protection rate was achieved in Balb/c mice given single low doses (10(3) to 2.5 x 10(4) CFU) of this vaccine. A subcutaneous challenge with 2000 median lethal doses (equal to 20,000 CFU) of fully virulent Y. pestis 231 strain, is a 6-10-fold higher dose than that which the EV NIIEG itself can protect against.

  8. Reduced Heme Levels Underlie the Exponential Growth Defect of the Shewanella oneidensis hfq Mutant

    PubMed Central

    Mezoian, Taylor; Hunt, Taylor M.; Keane, Meaghan L.; Leonard, Jessica N.; Scola, Shelby E.; Beer, Emma N.; Perdue, Sarah; Pellock, Brett J.

    2014-01-01

    The RNA chaperone Hfq fulfills important roles in small regulatory RNA (sRNA) function in many bacteria. Loss of Hfq in the dissimilatory metal reducing bacterium Shewanella oneidensis strain MR-1 results in slow exponential phase growth and a reduced terminal cell density at stationary phase. We have found that the exponential phase growth defect of the hfq mutant in LB is the result of reduced heme levels. Both heme levels and exponential phase growth of the hfq mutant can be completely restored by supplementing LB medium with 5-aminolevulinic acid (5-ALA), the first committed intermediate synthesized during heme synthesis. Increasing expression of gtrA, which encodes the enzyme that catalyzes the first step in heme biosynthesis, also restores heme levels and exponential phase growth of the hfq mutant. Taken together, our data indicate that reduced heme levels are responsible for the exponential growth defect of the S. oneidensis hfq mutant in LB medium and suggest that the S. oneidensis hfq mutant is deficient in heme production at the 5-ALA synthesis step. PMID:25356668

  9. Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Steven D; Guss, Adam M; Karpinets, Tatiana V

    2011-01-01

    Clostridium thermocellum is a thermophilic, obligately anaerobic, Gram-positive bacterium that is a candidate microorganism for converting cellulosic biomass into ethanol through consolidated bioprocessing. Ethanol intolerance is an important metric in terms of process economics, and tolerance has often been described as a complex and likely multigenic trait for which complex gene interactions come into play. Here, we resequence the genome of an ethanol-tolerant mutant, show that the tolerant phenotype is primarily due to a mutated bifunctional acetaldehyde-CoA/alcohol dehydrogenase gene (adhE), hypothesize based on structural analysis that cofactor specificity may be affected, and confirm this hypothesis using enzyme assays. Biochemical assaysmore » confirm a complete loss of NADH-dependent activity with concomitant acquisition of NADPH-dependent activity, which likely affects electron flow in the mutant. The simplicity of the genetic basis for the ethanol-tolerant phenotype observed here informs rational engineering of mutant microbial strains for cellulosic ethanol production.« less

  10. Reduced gravitropism in hypocotyls of starch-deficient mutants of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Kiss, J. Z.; Guisinger, M. M.; Miller, A. J.; Stackhouse, K. S.

    1997-01-01

    Gravitropism was examined in dark- and light-grown hypocotyls of wild-type (WT), two reduced starch mutants (ACG 20 and ACG 27), and a starchless mutant (ACG 21) of Arabidopsis. In addition, the starch content of these four strains was studied with light and electron microscopy. Based on time course of curvature and orientation studies, the graviresponse in hypocotyls is proportional to the amount of starch in a genotype. Furthermore, starch mutations seem to primarily affect gravitropism rather than differential growth since both phototropic curvature and growth rates among the four genotypes are approximately equal. Our results suggest that gravity perception may require a greater plastid mass in hypocotyls compared to roots. The kinetics of gravitropic curvature also was compared following reorientation at 45 degrees, 90 degrees, and 135 degrees. As has been reported for other plant species, the optimal angle of reorientation is 135 degrees for WT Arabidopsis and the two reduced starch mutants, but the magnitude of curvature of the starchless mutant appears to be independent of the initial angle of displacement. Taken together, the results of the present study and our previous experiments with roots of the same four genotypes [Kiss et al. (1996) Physiol. Plant. 97: 237] support a plastid-based hypothesis for gravity perception in plants.

  11. Recombination Between Guanidine-resistant and Dextran Sulfate-resistant Mutants of Type 1 Poliovirus

    PubMed Central

    Sergiescu, Dina; Aubert-Combiescu, Andrei; Crainic, Radu

    1969-01-01

    Mixed infection of monkey kidney cells with two mutants of the LSc2ab strain of poliovirus, one resistant to guanidine and the other resistant to both dextran sulfate and 2-(α-hydroxybenzyl)-benzimidazole (HBB), yielded progeny in which the number of guardexr particles exceeded by a factor of 7 to 10 the expected number of similar particles occurring through spontaneous mutation; recombination would explain the fairly high excess of doubly mutant particles that was obtained. Scoring of HBB resistance in 50 guardexr clones suggested that, during recombination, resistance to dextran sulfate is not associated with HBB resistance. Images PMID:4305674

  12. Development and characterisation of highly antibiotic resistant Bartonella bacilliformis mutants

    PubMed Central

    Gomes, Cláudia; Martínez-Puchol, Sandra; Ruiz-Roldán, Lidia; Pons, Maria J.; del Valle Mendoza, Juana; Ruiz, Joaquim

    2016-01-01

    The objective was to develop and characterise in vitro Bartonella bacilliformis antibiotic resistant mutants. Three B. bacilliformis strains were plated 35 or 40 times with azithromycin, chloramphenicol, ciprofloxacin or rifampicin discs. Resistance-stability was assessed performing 5 serial passages without antibiotic pressure. MICs were determined with/without Phe-Arg-β-Napthylamide and artesunate. Target alterations were screened in the 23S rRNA, rplD, rplV, gyrA, gyrB, parC, parE and rpoB genes. Chloramphenicol and ciprofloxacin resistance were the most difficult and easiest (>37.3 and 10.6 passages) to be selected, respectively. All mutants but one selected with chloramphenicol achieved high resistance levels. All rifampicin, one azithromycin and one ciprofloxacin mutants did not totally revert when cultured without antibiotic pressure. Azithromycin resistance was related to L4 substitutions Gln-66 → Lys or Gly-70 → Arg; L4 deletion Δ62–65 (Lys-Met-Tyr-Lys) or L22 insertion 83::Val-Ser-Glu-Ala-His-Val-Gly-Lys-Ser; in two chloramphenicol-resistant mutants the 23S rRNA mutation G2372A was detected. GyrA Ala-91 → Val and Asp-95 → Gly and GyrB Glu474 → Lys were detected in ciprofloxacin-resistant mutants. RpoB substitutions Gln-527 → Arg, His-540 → Tyr and Ser-545 → Phe plus Ser-588 → Tyr were detected in rifampicin-resistant mutants. In 5 mutants the effect of efflux pumps on resistance was observed. Antibiotic resistance was mainly related to target mutations and overexpression of efflux pumps, which might underlie microbiological failures during treatments. PMID:27667026

  13. Quinolone-resistant gyrase mutants demonstrate decreased susceptibility to triclosan.

    PubMed

    Webber, Mark A; Buckner, Michelle M C; Redgrave, Liam S; Ifill, Gyles; Mitchenall, Lesley A; Webb, Carly; Iddles, Robyn; Maxwell, Anthony; Piddock, Laura J V

    2017-10-01

    Cross-resistance between antibiotics and biocides is a potentially important driver of MDR. A relationship between susceptibility of Salmonella to quinolones and triclosan has been observed. This study aimed to: (i) investigate the mechanism underpinning this; (ii) determine whether the phenotype is conserved in Escherichia coli; and (iii) evaluate the potential for triclosan to select for quinolone resistance. WT E. coli, Salmonella enterica serovar Typhimurium and gyrA mutants were used. These were characterized by determining antimicrobial susceptibility, DNA gyrase activity and sensitivity to inhibition. Expression of stress response pathways (SOS, RpoS, RpoN and RpoH) was measured, as was the fitness of mutants. The potential for triclosan to select for quinolone resistance was determined. All gyrase mutants showed increased triclosan MICs and altered supercoiling activity. There was no evidence for direct interaction between triclosan and gyrase. Identical substitutions in GyrA had different impacts on supercoiling in the two species. For both, there was a correlation between altered supercoiling and expression of stress responses. This was more marked in E. coli, where an Asp87Gly GyrA mutant demonstrated greatly increased fitness in the presence of triclosan. Exposure of parental strains to low concentrations of triclosan did not select for quinolone resistance. Our data suggest gyrA mutants are less susceptible to triclosan due to up-regulation of stress responses. The impact of gyrA mutation differs between E. coli and Salmonella. The impacts of gyrA mutation beyond quinolone resistance have implications for the fitness and selection of gyrA mutants in the presence of non-quinolone antimicrobials. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Deletion of the znuA virulence factor attenuates Actinobacillus pleuropneumoniae and confers protection against homologous or heterologous strain challenge.

    PubMed

    Yuan, Fangyan; Liao, Yonghong; You, Wujin; Liu, Zewen; Tan, Yongqiang; Zheng, Chengkun; BinWang; Zhou, Danna; Tian, Yongxiang; Bei, Weicheng

    2014-12-05

    The znuA gene is known to be important for growth and survival in Escherichia coli, Haemophilus spp., Neisseria gonorrhoeae, and Pasteurella multocida under low Zn(2+) conditions. This gene is also present in Actinobacillus pleuropneumoniae serotype 1; therefore, the aim of this study was to investigate the existence of a similar role for the znuA gene in the growth and virulence of this organism. A precisely defined ΔznuA deletion mutant of A. pleuropneumoniae was constructed based on the sequence of the wild-type SLW01 using transconjugation and counterselection. This mutation was found to be lethal in low-Zn(2+) medium. Furthermore, the ΔznuA mutant strain exhibited attenuated virulence (≥22-fold) as well as reduced mortality and morbidity in a murine (Balb/C) model of infection. The majority of the bacteria were cleared from the lungs within 2 weeks. The ΔznuA mutant strain caused no adverse effects in pigs at doses of up to 1.0×10(9) CFU/mL. The ΔznuA mutant strain induced a significant immune response and conferred 80% and 100% protection on immunised pigs against challenge with A. pleuropneumoniae strains belonging to homologous or heterologous serovars, respectively, compared to the blank controls. The data obtained in this study indicate the potential of the mutant ΔznuA strain for development as a live vaccine capable of inducing reliable cross-serovar protection following intratracheal immunisation. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. The mutation studies of mutagen-sensitive and DNA repair mutants of Chinese hamster fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, R.A.; Chang, C.C.; Trosko, J.E.

    1981-01-01

    We have previously reported the isolation and partial characterization of DNA repair and/or mutagen-sensitive mutant Chinese hamster cell strains. Here we present the results of a detailed study of the ultraviolet light (UV)-induced mutability of one of these strains, UVs-7, and provide preliminary mutability data on two additional lines, UVr-23 and UVs-40. UVs-7 in extremely deficient in unscheduled DNA synthesis (UDS) but only slightly more sensitive to UV than the parental line. When examined for the UV-inducibility of mutants resistant to ouabain, 6-thioguanine, or diphtheria toxin, UVs-7 was found to be hypermutable at all three loci as compared to themore » parental line. The degree of hypermutability was not the same for any two loci. UVs-40, a highly UV-sensitive strain, was also found to be hypermutable at the ouabain-resistant (ouar) locus. UVr-23, which is UV-resistant and more proficient at UDS than the parental line, appeared to exhibit a tendency toward hypomutability at both the ouabain(ouar) and 6-thioguanine--resistant (6TGr) loci. Further characterization of all these lines should aid in delineating mammalian mechanisms of DNA repair and mutagenesis.« less

  16. Comparative analysis of the integument transcriptomes of the black dilute mutant and the wild-type silkworm Bombyx mori

    PubMed Central

    Wu, Songyuan; Tong, Xiaoling; Peng, Chenxing; Xiong, Gao; Lu, Kunpeng; hu, Hai; Tan, Duan; Li, Chunlin; Han, Minjin; Lu, Cheng; Dai, Fangyin

    2016-01-01

    The insect cuticle is a critical protective shell that is composed predominantly of chitin and various cuticular proteins and pigments. Indeed, insects often change their surface pigment patterns in response to selective pressures, such as threats from predators, sexual selection and environmental changes. However, the molecular mechanisms underlying the construction of the epidermis and its pigmentation patterns are not fully understood. Among Lepidoptera, the silkworm is a favorable model for color pattern research. The black dilute (bd) mutant of silkworm is the result of a spontaneous mutation; the larval body color is notably melanized. We performed integument transcriptome sequencing of the wild-type strain Dazao and the mutant strains +/bd and bd/bd. In these experiments, during an early stage of the fourth molt, a stage at which approximately 51% of genes were expressed genome wide (RPKM ≥1) in each strain. A total of 254 novel transcripts were characterized using Cuffcompare and BLAST analyses. Comparison of the transcriptome data revealed 28 differentially expressed genes (DEGs) that may contribute to bd larval melanism, including 15 cuticular protein genes that were remarkably highly expressed in the bd/bd mutant. We suggest that these significantly up-regulated cuticular proteins may promote melanism in silkworm larvae. PMID:27193628

  17. Mutagenizing brewing yeast strain for improving fermentation property of beer.

    PubMed

    Liu, Zengran; Zhang, Guangyi; Sun, Yunping

    2008-07-01

    A brewing yeast mutant with perfect sugar fermentation capacity was isolated by mutagenizing the Saccharomyces pastorianus transformant, which carries an integrated glucoamylase gene and has one copy of non-functional alpha-acetolactate synthase gene. The mutant was able to utilize maltotriose efficiently, and the maltotriose fermentability in YNB-2% maltotriose medium increased from 32.4% to 72.0% after 5 d in shaking culture. The wort fermentation test confirmed that the sugar fermentation property of the mutant was greatly improved, while its brewing performances were analogous to that of the wild-type strain and the characteristic trait of shortened beer maturation period was retained. Therefore, we believe that the brewing yeast mutant would benefit the beer industry and would be useful for low caloric beer production.

  18. Derivation of Mutants of Erwinia carotovora subsp. betavasculorum Deficient in Export of Pectolytic Enzymes with Potential for Biological Control of Potato Soft Rot

    PubMed Central

    Costa, José M.; Loper, Joyce E.

    1994-01-01

    Erwinia carotovora subsp. betavasculorum Ecb168 produces an antibiotic(s) that suppresses growth of the related bacterium Erwinia carotovora subsp. carotovora in culture and in wounds of potato tubers. Strain Ecb168 also produces and secretes pectolytic enzymes and causes a vascular necrosis and root rot of sugar beet. Genes (out) involved in secretion of pectolytic enzymes by Ecb168 were localized to two HindIII fragments (8.5 and 10.5 kb) of Ecb168 genomic DNA by hybridization to the cloned out region of E. carotovora subsp. carotovora and by complementation of Out- mutants of E. carotovora subsp. carotovora. Out- mutants of Ecb168, which did not secrete pectate lyase into the culture medium, were obtained when deletions internal to either HindIII fragment were introduced into the genome of Ecb168 through marker exchange mutagenesis. Out- mutants of Ecb168 were complemented to the Out+ phenotype by introduction of the corresponding cloned HindIII fragment. Out- mutants of Ecb168 were less virulent than the Out+ parental strain on potato tubers. Strain Ecb168 and Out- derivatives inhibited the growth of E. carotovora subsp. carotovora in culture, indicating that the uncharacterized antibiotic(s) responsible for antagonism was exported through an out-independent mechanism. Strain Ecb168 and Out- derivatives reduced the establishment of large populations of E. carotovora subsp. carotovora in wounds of potato tubers and suppressed tuber soft rot caused by E. carotovora subsp. carotovora. PMID:16349316

  19. Rapid Mutation of Spirulina platensis by a New Mutagenesis System of Atmospheric and Room Temperature Plasmas (ARTP) and Generation of a Mutant Library with Diverse Phenotypes

    PubMed Central

    Zhang, Chong; Tan, Yinyee; Jiang, Peixia; Ge, Nan; Heping Li; Xing, Xinhui

    2013-01-01

    In this paper, we aimed to improve the carbohydrate productivity of Spirulina platensis by generating mutants with increased carbohydrate content and growth rate. ARTP was used as a new mutagenesis tool to generate a mutant library of S. platensis with diverse phenotypes. Protocol for rapid mutation of S. platensis by 60 s treatment with helium driven ARTP and high throughput screening method of the mutants using the 96-well microplate and microplate reader was established. A mutant library of 62 mutants was then constructed and ideal mutants were selected out. The characteristics of the mutants after the mutagenesis inclined to be stable after around 9th subculture, where the total mutation frequency and positive mutation frequency in terms of specific growth rate reached 45% and 25%, respectively. The mutants in mutant library showed diverse phenotypes in terms of cell growth rate, carbohydrate content and flocculation intensity. The positive mutation frequency in terms of cellular carbohydrate content with the increase by more than 20% percent than the wild strain was 32.3%. Compared with the wild strain, the representative mutants 3-A10 and 3-B2 showed 40.3% and 78.0% increase in carbohydrate content, respectively, while the mutant 4-B3 showed 10.5% increase in specific growth rate. The carbohydrate contents of the representative mutants were stable during different subcultures, indicating high genetic stability. ARTP was demonstrated to be an effective and non-GMO mutagenesis tool to generate the mutant library for multicellular microalgae. PMID:24319517

  20. Transcriptome sequencing and metabolic pathways of astaxanthin accumulated in Haematococcus pluvialis mutant under 15% CO2.

    PubMed

    Cheng, Jun; Li, Ke; Zhu, Yanxia; Yang, Weijuan; Zhou, Junhu; Cen, Kefa

    2017-03-01

    Transcriptome sequencing and annotation was performed on Haematococcus pluvialis mutant red cells induced with high light under 15% CO 2 to demonstrate why astaxanthin yield of the mutant was 1.7 times higher than that of a wild strain. It was found that 56% of 1947 differentially expressed genes were upregulated in mutant cells. Most significant differences were found in unigenes related to photosynthesis, carotenoid biosynthesis and fatty acid biosynthesis pathways. The pyruvate kinase increased by 3.5-fold in mutant cells. Thus, more pyruvate, which was beneficial to carotenoids and fatty acid biosynthesis, was generated. Phytoene synthase, zeta-carotene desaturase, lycopene beta-cyclase involved in β-carotene biosynthesis in mutant cells were upregulated by 10.4-, 4.4-, and 5.8-fold, respectively. Beta-carotene 3-hydroxylase catalyzing conversion of β-carotene into astaxanthin was upregulated by 18.4-fold. The fatty acid biosynthesis was promoted because of the upregulation of acetyl-CoA synthetase and acetyl-CoA carboxylase, thus increasing astaxanthin esterification and accumulation in mutant cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Toxicity of CuO nanoparticles to yeast Saccharomyces cerevisiae BY4741 wild-type and its nine isogenic single-gene deletion mutants.

    PubMed

    Kasemets, Kaja; Suppi, Sandra; Künnis-Beres, Kai; Kahru, Anne

    2013-03-18

    A suite of eight tentatively oxidative stress response-deficient Saccharomyces cerevisiae BY4741 single-gene mutants (sod1Δ, sod2Δ, yap1Δ, cta1Δ, ctt1Δ, gsh1Δ, glr1Δ, and ccs1Δ) and one copper-vulnerable mutant (cup2Δ) was used to elucidate weather the toxicity of CuO nanoparticles to S. cerevisiae is mediated by oxidative stress (OS). Specifically, sensitivity profiles of mutants' phenotypes and wild-type (wt) upon exposure to nano-CuO were compared. As controls, CuSO4 (solubility), bulk-CuO (size), H2O2, and menadione (OS) were used. Growth inhibition of wt and mutant strains was studied in rich YPD medium and cell viability in deionized water (DI). Dissolved Cu-ions were quantified by recombinant metal-sensing bacteria and chemical analysis. To wt strain nano-CuO was 32-fold more toxic than bulk-CuO: 24-h IC50 4.8 and 155 mg/L in DI and 643 and >20000 mg/L in YPD, respectively. In toxicant-free YPD medium, all mutants had practically similar growth patterns as wt. However, the mutant strains sod1Δ, sod2Δ, ccs1Δ, and yap1Δ showed up to 12-fold elevated sensitivity toward OS standard chemicals menadione and H2O2 but not to nano-CuO, indicating that CuO nanoparticles exerted toxicity to yeast cells via different mechanisms. The most vulnerable strain to all studied Cu compounds was the copper stress response-deficient strain cup2Δ (∼16-fold difference with wt), indicating that the toxic effect of CuO (nano)particles proceeds via dissolved Cu-ions. The dissolved copper solely explained the toxicity of nano-CuO in DI but not in YPD. Assumingly, in YPD nano-CuO acquired a coating of peptides/proteins and sorbed onto the yeast's outer surface, resulting in their increased solubility in the close vicinity of yeast cells and increased uptake of Cu-ions that was not registered by the assays used for the analysis of dissolved Cu-ions in the test medium. Lastly, as yeast retained its viability in DI even by 24th hour of incubation, the profiling of the acute

  2. Improved penicillin amidase production using a genetically engineered mutant of escherichia coli ATCC 11105

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robas, N.; Zouheiry, H.; Branlant, G.

    Penicillin G amidase (PGA) is a key enzyme for the industrial production of penicillin G derivatives used in therapeutics. Escherichia coli ATCC 11105 is the more commonly used strain for PGA production. To improve enzyme yield, the authors constructed various recombinant E. coli HB 101 and ATCC 11105 strains. For each strain, PGA production was determined for various concentrations of glucose and phenylacetic acid (PAA) in the medium. The E. coli strain, G271, was identified as the best performer (800 U NIPAB/L). This strain was obtained as follows: an E. coli ATCC 11105 mutant (E. coli G133) was first selectedmore » based on a low negative effect of glucose on PGA production. This mutant was then transformed with a pBR322 derivative containing the PGA gene. Various experiments were made to try to understand the reason for the high productivity of E. coli G271. The host strain, E. coli G133, was found to be mutated in one (or more) gene(s) whose product(s) act(s) in trans on the PGA gene expression. Its growth is not inhibited by high glucose concentration in the medium. Interestingly, whereas glucose still exerts some negative effect on the PGA production by E. coli G133, PGA production by its transformant (E. coli G271) is stimulated by glucose. The reason for this stimulation is discussed. Transformation of E. coli G133 with a pBR322 derivative containing the HindIII fragment of the PGA gene, showed that the performance of E. coli G271 depends both upon the host strain properties and the plasmid structure. Study of the production by the less efficient E. coli HB101 derivatives brought some light on the mechanism of regulation of the PGA gene.« less

  3. Novel mutations in β-tubulin gene in Trichoderma harzianum mutants resistant to methyl benzimidazol-2-yl carbamate.

    PubMed

    Li, M; Zhang, H Y; Liang, B

    2013-01-01

    Twelve-low resistant (LR) mutants of Trichoderma harzianum with the capability of grow fast at 0.8 μg/mL methyl benzimidazol-2-yl carbamate (MBC) were obtained using UV mutagenesis. MR and HR mutants which could grow fast at 10 and 100 μg/mL MBC, respectively, were isolated by step-up selection protocols in which UV-treated mutants were induced and mycelial sector screening was made in plates with growth medium. Subsequently, β-tubulin genes of 14 mutants were cloned to describe-the molecular lesion likely to be responsible-for MBC resistance. Comparison of the β-tubulin sequences of the mutant and sensitive strains of T. harzianum revealed 2 new MBC-binding sites differed from those in other plant pathogens. A single mutation at-amino acid 168, having Phe (TTC) instead of Ser (TCC)', was demonstrated for the HR mutant; a double mutation in amino acid 13 resulting in the substitution of Gly (GGC) by Val (GTG) was observed in β-tubulin gene of MR mutant. On the other hand, no substitutions were identified in the β-tubulin gene and its 5'-flanking regions in 12 LR mutants of T. harzianum.

  4. Method for construction of bacterial strains with increased succinic acid production

    DOEpatents

    Donnelly, Mark I.; Sanville-Millard, Cynthia; Chatterjee, Ranjini

    2000-01-01

    A fermentation process for producing succinic acid is provided comprising selecting a bacterial strain that does not produce succinic acid in high yield, disrupting the normal regulation of sugar metabolism of said bacterial strain, and combining the mutant bacterial strain and selected sugar in anaerobic conditions to facilitate production of succinic acid. Also provided is a method for changing low yield succinic acid producing bacteria to high yield succinic acid producing bacteria comprising selecting a bacterial strain having a phosphotransferase system and altering the phosphotransferase system so as to allow the bacterial strain to simultaneously metabolize different sugars.

  5. Physiological and fermentation properties of Bacillus coagulans and a mutant lacking fermentative lactate dehydrogenase activity.

    PubMed

    Su, Yue; Rhee, Mun Su; Ingram, Lonnie O; Shanmugam, K T

    2011-03-01

    Bacillus coagulans, a sporogenic lactic acid bacterium, grows optimally at 50-55 °C and produces lactic acid as the primary fermentation product from both hexoses and pentoses. The amount of fungal cellulases required for simultaneous saccharification and fermentation (SSF) at 55 °C was previously reported to be three to four times lower than for SSF at the optimum growth temperature for Saccharomyces cerevisiae of 35 °C. An ethanologenic B. coagulans is expected to lower the cellulase loading and production cost of cellulosic ethanol due to SSF at 55 °C. As a first step towards developing B. coagulans as an ethanologenic microbial biocatalyst, activity of the primary fermentation enzyme L-lactate dehydrogenase was removed by mutation (strain Suy27). Strain Suy27 produced ethanol as the main fermentation product from glucose during growth at pH 7.0 (0.33 g ethanol per g glucose fermented). Pyruvate dehydrogenase (PDH) and alcohol dehydrogenase (ADH) acting in series contributed to about 55% of the ethanol produced by this mutant while pyruvate formate lyase and ADH were responsible for the remainder. Due to the absence of PDH activity in B. coagulans during fermentative growth at pH 5.0, the l-ldh mutant failed to grow anaerobically at pH 5.0. Strain Suy27-13, a derivative of the l-ldh mutant strain Suy27, that produced PDH activity during anaerobic growth at pH 5.0 grew at this pH and also produced ethanol as the fermentation product (0.39 g per g glucose). These results show that construction of an ethanologenic B. coagulans requires optimal expression of PDH activity in addition to the removal of the LDH activity to support growth and ethanol production.

  6. Hyper Accumulation of Arsenic in Mutants of Ochrobactrum tritici Silenced for Arsenite Efflux Pumps

    PubMed Central

    Piedade, Ana Paula; Morais, Paula V.

    2015-01-01

    Ochrobactrum tritici SCII24T is a highly As-resistant bacterium, with two previously described arsenic resistance operons, ars1 and ars2. Among a large number of genes, these operons contain the arsB and Acr3 genes that encode the arsenite efflux pumps responsible for arsenic resistance. Exploring the genome of O. tritici SCII24T, an additional putative operon (ars3) was identified and revealed the presence of the Acr3_2 gene that encodes for an arsenite efflux protein but which came to prove to not be required for full As resistance. The genes encoding for arsenite efflux pumps, identified in this strain, were inactivated to develop microbial accumulators of arsenic as new tools for bioremediation. Six different mutants were produced, studied and three were more useful as biotools. O. tritici wild type and the Acr3-mutants showed the highest resistance to As(III), being able to grow up to 50 mM of arsenite. On the other hand, arsB-mutants were not able to grow at concentrations higher than 1 mM As(III), and were the most As(III) sensitive mutants. In the presence of 1 mM As(III), the strain with arsB and Acr3_1 mutated showed the highest intracellular arsenic concentration (up to 17 ng(As)/mg protein), while in assays with 5 mM As(III), the single arsB-mutant was able to accumulate the highest concentration of arsenic (up to 10 ng(As)/mg protein). Therefore, arsB is the main gene responsible for arsenite resistance in O. tritici. However, both genes arsB and Acr3_1 play a crucial role in the resistance mechanism, depending on the arsenite concentration in the medium. In conclusion, at moderate arsenite concentrations, the double arsB- and Acr3_1-mutant exhibited a great ability to accumulate arsenite and can be seen as a promising bioremediation tool for environmental arsenic detoxification. PMID:26132104

  7. Ability of an alkali-tolerant mutant strain of the microalga Chlorella sp. AT1 to capture carbon dioxide for increasing carbon dioxide utilization efficiency.

    PubMed

    Kuo, Chiu-Mei; Lin, Tsung-Hsien; Yang, Yi-Chun; Zhang, Wen-Xin; Lai, Jinn-Tsyy; Wu, Hsi-Tien; Chang, Jo-Shu; Lin, Chih-Sheng

    2017-11-01

    An alkali-tolerant Chlorella sp. AT1 mutant strain was screened by NTG mutagenesis. The strain grew well in pH 6-11 media, and the optimal pH for growth was 10. The CO 2 utilization efficiencies of Chlorella sp. AT1 cultured with intermittent 10% CO 2 aeration for 10, 20 and 30min at 3-h intervals were approximately 80, 42 and 30%, respectively. In alkaline medium (pH=11) with intermittent 10% CO 2 aeration for 30min at 3-, 6- and 12-h intervals, the medium pH gradually changed to 10, and the biomass productivities of Chlorella sp. AT1 were 0.987, 0.848 and 0.710gL -1 d -1 , respectively. When Chlorella sp. AT1 was aerated with 10% CO 2 intermittently for 30min at 3-h intervals in semi-continuous cultivation for 21days, the biomass concentration and biomass productivity were 4.35gL -1 and 0.726gL -1 d -1 , respectively. Our results show that CO 2 utilization efficiency can be markedly increased by intermittent CO 2 aeration and alkaline media as a CO 2 -capturing strategy for alkali-tolerant microalga cultivation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Sharing mutants and experimental information prepublication using FgMutantDB

    USDA-ARS?s Scientific Manuscript database

    There has been no central location for storing generated mutants of Fusarium graminearum or for data associated with these mutants. Instead researchers relied on several independent, non-integrated databases. FgMutantDB was designed as a simple spreadsheet that is accessible globally on the web th...

  9. Survival of a bacterioferritin deletion mutant of Brucella melitensis 16M in human monocyte-derived macrophages.

    PubMed Central

    Denoel, P A; Crawford, R M; Zygmunt, M S; Tibor, A; Weynants, V E; Godfroid, F; Hoover, D L; Letesson, J J

    1997-01-01

    A bacterioferritin (BFR) deletion mutant of Brucella melitensis 16M was generated by gene replacement. The deletion was complemented with a broad-host-range vector carrying the wild-type bfr gene, pBBR-bfr. The survival and growth of the mutant, B. melitensis PAD 2-78, were similar to those of its parental strain in human monocyte-derived macrophages (MDM). These results suggest that BFR is not essential for the intracellular survival of B. melitensis in human MDM. PMID:9317046

  10. Pseudomonas fluorescens F113 Mutant with Enhanced Competitive Colonization Ability and Improved Biocontrol Activity against Fungal Root Pathogens ▿

    PubMed Central

    Barahona, Emma; Navazo, Ana; Martínez-Granero, Francisco; Zea-Bonilla, Teresa; Pérez-Jiménez, Rosa María; Martín, Marta; Rivilla, Rafael

    2011-01-01

    Motility is one of the most important traits for efficient rhizosphere colonization by Pseudomonas fluorescens F113rif (F113). In this bacterium, motility is a polygenic trait that is repressed by at least three independent pathways, including the Gac posttranscriptional system, the Wsp chemotaxis-like pathway, and the SadB pathway. Here we show that the kinB gene, which encodes a signal transduction protein that together with AlgB has been implicated in alginate production, participates in swimming motility repression through the Gac pathway, acting downstream of the GacAS two-component system. Gac mutants are impaired in secondary metabolite production and are unsuitable as biocontrol agents. However, the kinB mutant and a triple mutant affected in kinB, sadB, and wspR (KSW) possess a wild-type phenotype for secondary metabolism. The KSW strain is hypermotile and more competitive for rhizosphere colonization than the wild-type strain. We have compared the biocontrol activity of KSW with those of the wild-type strain and a phenotypic variant (F113v35 [V35]) which is hypermotile and hypercompetitive but is affected in secondary metabolism since it harbors a gacS mutation. Biocontrol experiments in the Fusarium oxysporum f. sp. radicis-lycopersici/Lycopersicum esculentum (tomato) and Phytophthora cactorum/Fragaria vesca (strawberry) pathosystems have shown that the three strains possess biocontrol activity. Biocontrol activity was consistently lower for V35, indicating that the production of secondary metabolites was the most important trait for biocontrol. Strain KSW showed improved biocontrol compared with the wild-type strain, indicating that an increase in competitive colonization ability resulted in improved biocontrol and that the rational design of biocontrol agents by mutation is feasible. PMID:21685161

  11. Systematic exploration of essential yeast gene function with temperature-sensitive mutants

    PubMed Central

    Li, Zhijian; Vizeacoumar, Franco J; Bahr, Sondra; Li, Jingjing; Warringer, Jonas; Vizeacoumar, Frederick S; Min, Renqiang; VanderSluis, Benjamin; Bellay, Jeremy; DeVit, Michael; Fleming, James A; Stephens, Andrew; Haase, Julian; Lin, Zhen-Yuan; Baryshnikova, Anastasia; Lu, Hong; Yan, Zhun; Jin, Ke; Barker, Sarah; Datti, Alessandro; Giaever, Guri; Nislow, Corey; Bulawa, Chris; Myers, Chad L; Costanzo, Michael; Gingras, Anne-Claude; Zhang, Zhaolei; Blomberg, Anders; Bloom, Kerry; Andrews, Brenda; Boone, Charles

    2012-01-01

    Conditional temperature-sensitive (ts) mutations are valuable reagents for studying essential genes in the yeast Saccharomyces cerevisiae. We constructed 787 ts strains, covering 497 (~45%) of the 1,101 essential yeast genes, with ~30% of the genes represented by multiple alleles. All of the alleles are integrated into their native genomic locus in the S288C common reference strain and are linked to a kanMX selectable marker, allowing further genetic manipulation by synthetic genetic array (SGA)–based, high-throughput methods. We show two such manipulations: barcoding of 440 strains, which enables chemical-genetic suppression analysis, and the construction of arrays of strains carrying different fluorescent markers of subcellular structure, which enables quantitative analysis of phenotypes using high-content screening. Quantitative analysis of a GFP-tubulin marker identified roles for cohesin and condensin genes in spindle disassembly. This mutant collection should facilitate a wide range of systematic studies aimed at understanding the functions of essential genes. PMID:21441928

  12. Acetobacter xylinum Mutant with High Cellulose Productivity and an Ordered Structure.

    PubMed

    Watanabe, K; Tabuchi, M; Ishikawa, A; Takemura, H; Tsuchida, T; Morinaga, Y; Yoshinaga, F

    1998-01-01

    Acetobacter xylinum subsp. sucrofermentans BPR2001, a cellulose-producing bacterium, that was newly isolated from a natural source, produced large amounts of the water-soluble polysaccharide, acetan. UDP-glucose is known to be the direct precursor in the synthetic pathways of both cellulose and acetan. We attempted to breed mutant strains and succeeded in obtaining one, BPR3001A, which produced 65% more bacterial cellulose and accumulated 83% less acetan than the parent strain, BPR2001. The cellulose formed was found to be structurally ordered, with higher degrees of polymerization and crystallinity and larger crystallite size than those produced by BPR2001 and other conventional strains. Furthermore, a processed dry sheet of this cellulose exhibited a higher Young's modulus than that of the wild strain. The ordered structure of the cellulose obtained was probably due to the decreased amount of acetan which may reflect the ribbon assembly of cellulose fibrils without prevention of hydrogen bonding between microfibrils.

  13. Effect of tcdR Mutation on Sporulation in the Epidemic Clostridium difficile Strain R20291.

    PubMed

    Girinathan, Brintha P; Monot, Marc; Boyle, Daniel; McAllister, Kathleen N; Sorg, Joseph A; Dupuy, Bruno; Govind, Revathi

    2017-01-01

    Clostridium difficile is an important nosocomial pathogen and the leading cause of hospital-acquired diarrhea. Antibiotic use is the primary risk factor for the development of C. difficile -associated disease because it disrupts normally protective gut flora and enables C. difficile to colonize the colon. C. difficile damages host tissue by secreting toxins and disseminates by forming spores. The toxin-encoding genes, tcdA and tcdB , are part of a pathogenicity locus, which also includes the tcdR gene that codes for TcdR, an alternate sigma factor that initiates transcription of tcdA and tcdB genes. We created a tcdR mutant in epidemic-type C. difficile strain R20291 in an attempt to identify the global role of tcdR . A site-directed mutation in tcdR affected both toxin production and sporulation in C. difficile R20291. Spores of the tcdR mutant were more heat sensitive than the wild type (WT). Nearly 3-fold more taurocholate was needed to germinate spores from the tcdR mutant than to germinate the spores prepared from the WT strain. Transmission electron microscopic analysis of the spores also revealed a weakly assembled exosporium on the tcdR mutant spores. Accordingly, comparative transcriptome analysis showed many differentially expressed sporulation genes in the tcdR mutant compared to the WT strain. These data suggest that regulatory networks of toxin production and sporulation in C. difficile strain R20291 a re linked with each other. IMPORTANCE C. difficile infects thousands of hospitalized patients every year, causing significant morbidity and mortality. C. difficile spores play a pivotal role in the transmission of the pathogen in the hospital environment. During infection, the spores germinate, and the vegetative bacterial cells produce toxins that damage host tissue. Thus, sporulation and toxin production are two important traits of C. difficile . In this study, we showed that a mutation in tcdR , the toxin gene regulator, affects both toxin

  14. ACTION OF MUTAGENIC AGENTS ON AUXOTROPHIC STRAINS OF STREPTOMYCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarai, M.

    1962-01-01

    The mutagenic effect on Streptomyces auxotrophs of uv and x irradiation and of some chemical agerts was studied. From the observed reverse mutations it was concluded that uv and probably x irradiation have an optimal mutagenic dose. With nine auxotrophic strains it was shown that under the same conditions different gene loci reacted differently to the same mutagenic agent. With uy radiation, mutations occurred most frequently at doses falling within the range of 3500 to 4000 erg/mm/sup 2/. With such doses, the average mutation frequency for singly deficient mutants was 0.8 x 10/sup -6/, for doubly deficient mutants 8.4 xmore » 10/sup -8/. An analysis of the number of mutations as compared to the number of survivors in two biochemical mutants (N-4 and N-11) showed that with N- 4 the highest number of mutations was obtained at doses of 3500 to 4500 erg/mm/ sup 2/, namely, 12 to 15 per 10 surviving conidia, and with strain N-11, the highest frequency was obtained in the same dose range, namely, three to four mutations per 10/sup 6/ surviving conidia. The optimal dose of irradiation corresponds to 90 to 97% lethality. It was shown that, unlike the results with uv irradiation, with x rays no such definite relation existed between optimal dose and frequency of mutations. The highest mutation frequency occurred at doses of 20,000 to 25,000 r, which corresponded to 85 to 91% lethality. Of the chemical substances examined, a definite mutagenic action was exerted by acridine orange, streptomycin, hydroxylamine, phenyl, isocyannte, and 8-quinolinol. The maximum mutagenic frequency for survivors was 41.4 x 10/sup -6/ after uv irradiation (biochemical mutant arg 3-; frequency of sportaneous back mutation, 0.041 x 10/sup -6/). With x irradiation the maximum mutagenic frequency was 3.42 x 10/sup -6/ (biochemical mutant meth 1-; frequency of spontaneous back mutation, 0.28 X 10/sup -6/). With chemical agents the maximum mutation frequencies for the initial conidia number were as

  15. Enhancement of butanol tolerance and butanol yield in Clostridium acetobutylicum mutant NT642 obtained by nitrogen ion beam implantation.

    PubMed

    Liu, Xiao-Bo; Gu, Qiu-Ya; Yu, Xiao-Bin; Luo, Wei

    2012-12-01

    As a promising alternative biofuel, biobutanol can be produced through acetone/butanol/ethanol (ABE) fermentation. Currently, ABE fermentation is still a small-scale industry due to its low production and high input cost. Moreover, butanol toxicity to the Clostridium fermentation host limits the accumulation of butanol in the fermentation broth. The wild-type Clostridium acetobutylicum D64 can only produce about 13 g butanol/L and tolerates less than 2% (v/v) butanol. To improve the tolerance of C. acetobutylicum D64 for enhancing the production of butanol, nitrogen ion beam implantation was employed and finally five mutants with enhanced butanol tolerance were obtained. Among these, the most butanol tolerant mutant C. acetobutylicum NT642 can tolerate above 3% (v/v) butanol while the wide-type strain can only withstand 2% (v/v). In batch fermentation, the production of butanol and ABE yield of C. acetobutylicum NT642 was 15.4 g/L and 22.3 g/L, respectively, which were both higher than those of its parental strain and the other mutants using corn or cassava as substrate. Enhancing butanol tolerance is a great precondition for obtaining a hyper-yield producer. Nitrogen ion beam implantation could be a promising biotechnology to improve butanol tolerance and production of the host strain C. acetobutylicum.

  16. Vaccination of guinea pigs using mce operon mutants of Mycobacterium tuberculosis

    PubMed Central

    Obregón-Henao, Andrés; Shanley, Crystal; Bianco, María Verónica; Cataldi, Angel A; Basaraba, Randall J; Orme, Ian M; Bigi, Fabiana

    2011-01-01

    The limited efficacy of the BCG vaccine for tuberculosis, coupled with emerging information suggesting that it is poorly protective against newly emerging strains of Mycobacterium tuberculosis such as the W-Beijing isolates, makes it paramount to search for more potent alternatives. One such class of candidates is attenuated mutants derived from M. tuberculosis itself. We demonstrate here, in an initial short term assay, that mutants derived from disruption of the mce genes of the bacillus were highly protective in guinea pigs exposed by low dose aerosol infection with the virulent W-Beijing isolate SA161. This protection was demonstrated by a significant reduction in the numbers of bacilli harvested from the lungs, and dramatic improvements in lung histopathology. PMID:21515327

  17. A new strain of Claviceps purpurea accumulating tetracyclic clavine alkaloids.

    PubMed

    Schumann, B; Erge, D; Maier, W; Gröger, D

    1982-05-01

    A new strain of Claviceps was isolated from a blokked mutant of Claviceps purpurea. This strain accumulates substantial amounts of clavine alkaloids (2 g/l). The alkaloid fraction is composed of chanoclavine-I ( approximately 10%) and a mixture of agroclavine/elymoclavine (90%). Most suitable for alkaloid production in submerged culture is an ammoncitrate/sucrose medium. The genealogy of the new strain, designated Pepty 695/ch-I is the following one: Pepty 695/S (ergotoxine producer) --> Pepty 695/ch (secoergoline producer) --> Pepty 695/ch-I (tetracyclic clavine producer).

  18. [Selection of acetate-tolerant mutants from Escherichia coli DH5alpha and the metabolic properties of mutant DA19].

    PubMed

    Zhu, Caiqing; Ye, Qin

    2003-08-01

    Esherichia coli DH5alpha is one of the widely used host strains in genetic engineering. However, foreign gene expression level in this strain is seriously inhibited due to its great sensitivity to the accumulated metabolite, acetate. This study aimed at improving the tolerance of this strain against acetate. Cells of E. coli DH5alpha were irradiated with 60Co, and subsequently continuous culture of the irradiated cells was conducted with gradual increase in the dilution rate and the selective pressure, acetate concentration in the medium. The mutants were picked up on MA plates which contained 5g/L sodium acetate. 5 strains with great improvement in acetate tolerance were obtained, among which DA19 was the best. In cultivation of DA19 in complex media YPS and YPS2G, the cell density, maximum specific growth rate and acetate produced were respectively 1.17 and 1.05, 1.08 and 1.27, and 0.06 and 0.59 times of those of DH5alpha. In a chemically defined medium, the cell density of DA19 was 3.4-fold of that of DH5alpha. The cell density of DA19 in a medium containing 10g/L sodium acetate was comparable to that of DH5alpha in the same medium without the addition of acetate.

  19. Improved Xylose Metabolism by a CYC8 Mutant of Saccharomyces cerevisiae.

    PubMed

    Nijland, Jeroen G; Shin, Hyun Yong; Boender, Leonie G M; de Waal, Paul P; Klaassen, Paul; Driessen, Arnold J M

    2017-06-01

    Engineering Saccharomyces cerevisiae for the utilization of pentose sugars is an important goal for the production of second-generation bioethanol and biochemicals. However, S. cerevisiae lacks specific pentose transporters, and in the presence of glucose, pentoses enter the cell inefficiently via endogenous hexose transporters (HXTs). By means of in vivo engineering, we have developed a quadruple hexokinase deletion mutant of S. cerevisiae that evolved into a strain that efficiently utilizes d-xylose in the presence of high d-glucose concentrations. A genome sequence analysis revealed a mutation (Y353C) in the general corepressor CYC8 , or SSN6 , which was found to be responsible for the phenotype when introduced individually in the nonevolved strain. A transcriptome analysis revealed altered expression of 95 genes in total, including genes involved in (i) hexose transport, (ii) maltose metabolism, (iii) cell wall function (mannoprotein family), and (iv) unknown functions (seripauperin multigene family). Of the 18 known HXTs, genes for 9 were upregulated, especially the low or nonexpressed HXT10 , HXT13 , HXT15 , and HXT16 Mutant cells showed increased uptake rates of d-xylose in the presence of d-glucose, as well as elevated maximum rates of metabolism ( V max ) for both d-glucose and d-xylose transport. The data suggest that the increased expression of multiple hexose transporters renders d-xylose metabolism less sensitive to d-glucose inhibition due to an elevated transport rate of d-xylose into the cell. IMPORTANCE The yeast Saccharomyces cerevisiae is used for second-generation bioethanol formation. However, growth on xylose is limited by pentose transport through the endogenous hexose transporters (HXTs), as uptake is outcompeted by the preferred substrate, glucose. Mutant strains were obtained with improved growth characteristics on xylose in the presence of glucose, and the mutations mapped to the regulator Cyc8. The inactivation of Cyc8 caused increased

  20. Synergic effects of tactolimus and azole antifungal agents against azole-resistant Candida albican strains.

    PubMed

    Maesaki, S; Marichal, P; Hossain, M A; Sanglard, D; Vanden Bossche, H; Kohno, S

    1998-12-01

    We investigated the effects of combining tacrolimus and azole antifungal agents in azole-resistant strains of Candida albicans by comparing the accumulation of [3H]itraconazole. The CDR1-expressing resistant strain C26 accumulated less itraconazole than the CaMDR-expressing resistant strain C40 or the azole-sensitive strain B2630. A CDR1-expressing Saccharomyces cerevisiae mutant, DSY415, showed a marked reduction in the accumulation of both fluconazole and itraconazole. A CaMDR-expressing S. cerevisiae mutant, DSY416, also showed lower accumulation of fluconazole, but not of itraconazole. The addition of sodium azide, an electron-transport chain inhibitor, increased the intracellular accumulation of itraconazole only in the C26 strain, and not in the C40 or B2630 strains. Addition of tacrolimus, an inhibitor of multidrug resistance proteins, resulted in the highest increase in itraconazole accumulation in the C26 strain. The combination of itraconazole and tacrolimus was synergic in azole-resistant C. albicans strains. In the C26 strain, the MIC of itraconazole decreased from >8 to 0.5 mg/L when combined with tacrolimus. Our results showed that two multidrug resistance phenotypes (encoded by the CDR1 and CaMDR genes) in C. albicans have different substrate specificity for azole antifungal agents and that a combination of tacrolimus and azole antifungal agents is effective against azole-resistant strains of C. albicans.

  1. Isolation of Escherichia coli mutants with an adenosine triphosphatase insensitive to aurovertin.

    PubMed Central

    Satre, M; Klein, G; Vignais, P V

    1978-01-01

    Energy-transducing adenosine triphosphatase (ATPase) from Escherichia coli is inhibited by aurovertin. Aurovertin-resistant mutants were generated by nitrosoguanidine mutagenesis of E. coli AN180, whose growth on a nonfermentable carbon source was blocked by aurovertin. The ATPase activity of cell extracts from 15 different mutants (designated MA1, MA2, MA3, etc.) was found to be at least 20 times less sensitive to aurovertin than that from the parent strain. The aurovertin-resistant mutants did not show cross-resistance towards a number of ATPase inhibitors including azide, dicyclohexylcarbodiimide, quercetin, 7-chloro-4-nitrobenzofurazan, and N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline. Aurovertin inhibited the energization brought about by addition of ATP to E. coli AN180 membrane vesicles; it was without effect on MA1 and MA2 membrane vesicles energized by ATP. The mutation in MA1, like other mutations of the ATPase complex, maps in the unc region of the bacterial chromosome. PMID:148459

  2. [The Spectrum of Mutations in Genes Associated with Resistance to Rifampicin, Isoniazid, and Fluoroquinolones in the Clinical Strains of M. tuberculosis Reflects the Transmissibility of Mutant Clones].

    PubMed

    Ergeshov, A; Andreevskaya, S N; Larionova, E E; Smirnova, T G; Chernousova, L N

    2017-01-01

    To study the transmissibility of drug resistant mutant clones, M. tuberculosis samples were isolated from the patients of the clinical department and the polyclinic of the Central TB Research Institute (n = 1455) for 2011-2014. A number of clones were phenotypically resistant to rifampicin (n = 829), isoniazid (n = 968), and fluoroquinolones (n = 220). We have detected 21 resistance-associated variants in eight codons of rpoB, six variants in three codons of katG, three variants in two positions of inhA, four variants in four positions of ahpC, and nine variants in five codons of gyrA, which were represented in the analyzed samples with varied frequencies. Most common mutations were rpoB 531 Ser→Leu (77.93%), katG 315 (Ser→Thr) (94.11%), and gyrA 94 (Asp→Gly) (45.45%). We found that the mutations at position 15 of inhA (C→T) (frequency of 25.72%) are commonly associated with katG 315 (Ser→Thr). This association of two DNA variants may arise due to the double selection by coexposure of M. tuberculosis to isoniazid and ethionamide. The high transmissibility of mutated strains was observed, which may be explained by the minimal influence of the resistance determinants on strain viability. The high transmissibility of resistant variants may also explain the large populational prevalence of drug-resistant TB strains.

  3. Proteolytic activities in yeast after UV irradiation. II. Variation in proteinase levels in mutants blocked in DNA-repair pathways.

    PubMed

    Schwencke, J; Moustacchi, E

    1982-01-01

    When the levels of three common yeast proteinases in exponentially growing cells of mutants blocked in different repair pathways are compared to that of isogenic wild-type cells, it can be seen that the level of proteinase B is enhanced in the mutants whereas the levels of leucin aminopeptidase (Leu.AP) and lysine aminopeptidase (Lys.AP) are similar in all strains. As in its corresponding wild type, the level of proteinase B activity is further enhanced after UV-irradiation in a mutant blocked in excision-repair (rad1-3). In contrast, following the same treatment the level of proteinase B remains almost constant in a mutant blocked in a general error-prone repair system (rad6-1) and in a mutant defective in a more specific mutagenic repair pathway (pso2-1). Cycloheximide, an inhibitor of protein synthesis, blocks the post-UV enhancement in proteinase B activity observed in rad1-3 indicating that, as in the wild-type cells, an inducible process is involved. The levels of Lys.AP and Leu.AP are, respectively, either unaffected or only moderately increased following UV-treatment of the repair defective mutants, as in wild-type strains. It is obvious that the induction of protease B activity following UV-treatment in Saccharomyces cannot be equated to the induction of the recA protein in Escherichia coli. However the correlation found between the block in mutagenic repair and the lack of UV-induction of protease B activity leads to questions on the possible role of certain protease activities in mutagenic repair in eucaryotic cells.

  4. Secondary Metabolism and Interspecific Competition Affect Accumulation of Spontaneous Mutants in the GacS-GacA Regulatory System in Pseudomonas protegens.

    PubMed

    Yan, Qing; Lopes, Lucas D; Shaffer, Brenda T; Kidarsa, Teresa A; Vining, Oliver; Philmus, Benjamin; Song, Chunxu; Stockwell, Virginia O; Raaijmakers, Jos M; McPhail, Kerry L; Andreote, Fernando D; Chang, Jeff H; Loper, Joyce E

    2018-01-16

    Secondary metabolites are synthesized by many microorganisms and provide a fitness benefit in the presence of competitors and predators. Secondary metabolism also can be costly, as it shunts energy and intermediates from primary metabolism. In Pseudomonas spp., secondary metabolism is controlled by the GacS-GacA global regulatory system. Intriguingly, spontaneous mutations in gacS or gacA (Gac - mutants) are commonly observed in laboratory cultures. Here we investigated the role of secondary metabolism in the accumulation of Gac - mutants in Pseudomonas protegens strain Pf-5. Our results showed that secondary metabolism, specifically biosynthesis of the antimicrobial compound pyoluteorin, contributes significantly to the accumulation of Gac - mutants. Pyoluteorin biosynthesis, which poses a metabolic burden on the producer cells, but not pyoluteorin itself, leads to the accumulation of the spontaneous mutants. Interspecific competition also influenced the accumulation of the Gac - mutants: a reduced proportion of Gac - mutants accumulated when P. protegens Pf-5 was cocultured with Bacillus subtilis than in pure cultures of strain Pf-5. Overall, our study associated a fitness trade-off with secondary metabolism, with metabolic costs versus competitive benefits of production influencing the evolution of P. protegens , assessed by the accumulation of Gac - mutants. IMPORTANCE Many microorganisms produce antibiotics, which contribute to ecologic fitness in natural environments where microbes constantly compete for resources with other organisms. However, biosynthesis of antibiotics is costly due to the metabolic burdens of the antibiotic-producing microorganism. Our results provide an example of the fitness trade-off associated with antibiotic production. Under noncompetitive conditions, antibiotic biosynthesis led to accumulation of spontaneous mutants lacking a master regulator of antibiotic production. However, relatively few of these spontaneous mutants

  5. Study the Expression of ompf Gene in Esherichia coli Mutants.

    PubMed

    Jaktaji, R Pourahmad; Heidari, F

    2013-09-01

    The outer membrane porin proteins are the major factors in controlling the permeability of cell membrane. OmpF is an example of porin proteins in Esherichia coli. In normal growth condition a large amount of this protein is synthesised, but under stress condition, such as the presence of antibiotics in environment its expression is decreased inhibiting the entrance of antibiotics into cell. The expression of ompF is inhibited by antisense RNA transcribed from micF. In normal condition the expression of micF is low, but in the presence of antibiotics its expression is increased and causes multiple resistances to irrelevant antibiotics. The aims of this research were to study first, the intactness of micF and then quantify the expression of ompF in ciprofloxacin and tetracycline resistant mutants of E. coli. For this purpose the 5' end of micF was amplified and then sequenced. None of these mutants except one and its clone has a mutation in this gene. Then the relative expression of ompF in these mutants was quantified by real time PCR. There was no significant difference between ompF transcription of mutants and wild type strain. Based on this study and previous study it is concluded that low to intermediate levels of resistance to ciprofloxacin and tetracycline does not decrease ompF transcription.

  6. Study the Expression of ompf Gene in Esherichia coli Mutants

    PubMed Central

    Jaktaji, R. Pourahmad; Heidari, F.

    2013-01-01

    The outer membrane porin proteins are the major factors in controlling the permeability of cell membrane. OmpF is an example of porin proteins in Esherichia coli. In normal growth condition a large amount of this protein is synthesised, but under stress condition, such as the presence of antibiotics in environment its expression is decreased inhibiting the entrance of antibiotics into cell. The expression of ompF is inhibited by antisense RNA transcribed from micF. In normal condition the expression of micF is low, but in the presence of antibiotics its expression is increased and causes multiple resistances to irrelevant antibiotics. The aims of this research were to study first, the intactness of micF and then quantify the expression of ompF in ciprofloxacin and tetracycline resistant mutants of E. coli. For this purpose the 5’ end of micF was amplified and then sequenced. None of these mutants except one and its clone has a mutation in this gene. Then the relative expression of ompF in these mutants was quantified by real time PCR. There was no significant difference between ompF transcription of mutants and wild type strain. Based on this study and previous study it is concluded that low to intermediate levels of resistance to ciprofloxacin and tetracycline does not decrease ompF transcription. PMID:24403654

  7. Isolation, characterization, and complementation of a motility mutant of Spiroplasma citri.

    PubMed Central

    Jacob, C; Nouzières, F; Duret, S; Bové, J M; Renaudin, J

    1997-01-01

    The helical mollicute Spiroplasma citri, when growing on low-agar medium, forms fuzzy colonies with occasional surrounding satellite colonies due to the ability of the spiroplasmal cells to move through the agar matrix. In liquid medium, these helical organisms flex, twist, and rotate rapidly. By using Tn4001 insertion mutagenesis, a motility mutant was isolated on the basis of its nondiffuse, sharp-edged colonies. Dark-field microscopy observations revealed that the organism flexed at a low frequency and had lost the ability to rotate about the helix axis. In this mutant, the transposon was shown to be inserted into an open reading frame encoding a putative polypeptide of 409 amino acids for which no significant homology with known proteins was found. The corresponding gene, named scm1, was recovered from the wild-type strain and introduced into the motility mutant by using the S. citri oriC plasmid pBOT1 as the vector. The appearance of fuzzy colonies and the observation that spiroplasma cells displayed rotatory and flexional movements showed the motile phenotype to be restored in the spiroplasmal transformants. The functional complementation of the motility mutant proves the scm1 gene product to be involved in the motility mechanism of S. citri. PMID:9244268

  8. Comprehensive MALDI-TOF biotyping of the non-redundant Harvard Pseudomonas aeruginosa PA14 transposon insertion mutant library.

    PubMed

    Oumeraci, Tonio; Jensen, Vanessa; Talbot, Steven R; Hofmann, Winfried; Kostrzewa, Markus; Schlegelberger, Brigitte; von Neuhoff, Nils; Häussler, Susanne

    2015-01-01

    Pseudomonas aeruginosa is a gram-negative bacterium that is ubiquitously present in the aerobic biosphere. As an antibiotic-resistant facultative pathogen, it is a major cause of hospital-acquired infections. Its rapid and accurate identification is crucial in clinical and therapeutic environments. In a large-scale MALDI-TOF mass spectrometry-based screen of the Harvard transposon insertion mutant library of P. aeruginosa strain PA14, intact-cell proteome profile spectra of 5547 PA14 transposon mutants exhibiting a plethora of different phenotypes were acquired and analyzed. Of all P. aeruginosa PA14 mutant profiles 99.7% were correctly identified as P. aeruginosa with the Biotyper software on the species level. On the strain level, 99.99% of the profiles were mapped to five different individual P. aeruginosa Biotyper database entries. A principal component analysis-based approach was used to determine the most important discriminatory mass features between these Biotyper groups. Although technical replicas were consistently categorized to specific Biotyper groups in 94.2% of the mutant profiles, biological replicas were not, indicating that the distinct proteotypes are affected by growth conditions. The PA14 mutant profile collection presented here constitutes the largest coherent P. aeruginosa MALDI-TOF spectral dataset publicly available today. Transposon insertions in thousands of different P. aeruginosa genes did not affect species identification from MALDI-TOF mass spectra, clearly demonstrating the robustness of the approach. However, the assignment of the individual spectra to sub-groups proved to be non-consistent in biological replicas, indicating that the differentiation between biotyper groups in this nosocomial pathogen is unassured.

  9. SEA domain autoproteolysis accelerated by conformational strain: mechanistic aspects.

    PubMed

    Johansson, Denny G A; Macao, Bertil; Sandberg, Anders; Härd, Torleif

    2008-04-04

    A subclass of SEA (sea urchin sperm protein, enterokinase, and agrin) domain proteins undergoes autoproteolysis between glycine and serine in a conserved G(-1)S+1VVV motif to generate stable heterodimers. Autoproteolysis has been suggested to involve only the intramolecular catalytic action of the conserved serine hydroxyl in combination with conformational strain of the glycine-serine peptide bond. We conducted a number of experiments and simulations on the SEA domain from the MUC1 mucin to test this mechanism. Alanine-scanning mutagenesis of polar residues in the vicinity of the cleavage site demonstrates that only the nucleophile at position +1 is required for efficient proteolysis. Molecular modeling shows that an uncleaved trans peptide is incompatible with the native heterodimeric structure, resulting in disruption of secondary structure elements and distortion of the scissile peptide bond. Insertion of glycine residues (to obtain G(n)G(-1)S+1VVV motifs) appears to relieve strain, and autoproteolysis is 100 times slower in a 1G (n=1) mutant and not measurable in 2G and 4G mutants. Removal of the catalytic serine hydroxyl hampers cleavage considerably, but measurable autoproteolysis of this S1098A mutant still proceeds in the presence of strain alone. The uncleaved SEA precursor populates interconverting partially folded conformations, and autoproteolysis coincides with adoption of proper beta-sheet secondary structure and completed folding. Molecular dynamics simulations of the precursor show that the serine hydroxyl and the preceding glycine carbonyl carbon can be in van der Waals contact at the same time as the scissile peptide bond becomes strained. These observations are all consistent with autoproteolysis accelerated by N-->O acyl shift and conformational strain imposed upon protein folding in a reaction for which the free-energy barrier is decreased by substrate destabilization rather than by transition-state stabilization. The energetics of this

  10. Further enhanced production of heterologous proteins by double-gene disruption (ΔAosedD ΔAovps10) in a hyper-producing mutant of Aspergillus oryzae.

    PubMed

    Zhu, Lin; Maruyama, Jun-ichi; Kitamoto, Katsuhiko

    2013-07-01

    The filamentous fungus Aspergillus oryzae is used as one of the most favored hosts for heterologous protein production due to its ability to secrete large amounts of proteins into the culture medium. We previously generated a hyper-producing mutant strain of A. oryzae, AUT1, which produced 3.2- and 2.6-fold higher levels of bovine chymosin (CHY) and human lysozyme (HLY), respectively, compared with the wild-type strain. However, further enhancement of heterologous protein production by multiple gene disruption is difficult because of the low gene-targeting efficiency in strain AUT1. Here, we disrupted the ligD gene, which is involved in nonhomologous recombination, and the pyrG gene to create uridine/uracil auxotrophy in strain AUT1, to generate a hyper-producing mutant applicable to pyrG marker recycling with highly efficient gene targeting. We generated single and double disruptants of the tripeptidyl peptidase gene AosedD and vacuolar sorting receptor gene Aovps10 in the hyper-producing mutant background, and found that all disruptants showed significant increases in heterologous protein production. Particularly, double disruption of the Aovps10 and AosedD genes increased the production levels of CHY and HLY by 1.6- and 2.1-fold, respectively, compared with the parental strain. Thus, we successfully generated a fungal host for further enhancing the heterologous protein production ability by combining mutational and molecular breeding techniques.

  11. Computation, prediction, and experimental tests of fitness for bacteriophage T7 mutants with permuted genomes

    NASA Astrophysics Data System (ADS)

    Endy, Drew; You, Lingchong; Yin, John; Molineux, Ian J.

    2000-05-01

    We created a simulation based on experimental data from bacteriophage T7 that computes the developmental cycle of the wild-type phage and also of mutants that have an altered genome order. We used the simulation to compute the fitness of more than 105 mutants. We tested these computations by constructing and experimentally characterizing T7 mutants in which we repositioned gene 1, coding for T7 RNA polymerase. Computed protein synthesis rates for ectopic gene 1 strains were in moderate agreement with observed rates. Computed phage-doubling rates were close to observations for two of four strains, but significantly overestimated those of the other two. Computations indicate that the genome organization of wild-type T7 is nearly optimal for growth: only 2.8% of random genome permutations were computed to grow faster, the highest 31% faster, than wild type. Specific discrepancies between computations and observations suggest that a better understanding of the translation efficiency of individual mRNAs and the functions of qualitatively "nonessential" genes will be needed to improve the T7 simulation. In silico representations of biological systems can serve to assess and advance our understanding of the underlying biology. Iteration between computation, prediction, and observation should increase the rate at which biological hypotheses are formulated and tested.

  12. Genetic analysis of fructan-hyperproducing strains of Streptococcus mutans.

    PubMed Central

    Kiska, D L; Macrina, F L

    1994-01-01

    Fructan polymer, synthesized from sucrose by the extracellular fructosyltransferase of Streptococcus mutans, is thought to contribute to the progression of dental caries. It may serve as an extracellular storage polysaccharide facilitating survival and acid production. It may also have a role in adherence or accumulation of bacterial cells on the tooth surface. A number of clinical isolates of S. mutans which produce large, mucoid colonies on sucrose-containing agar as a result of increased production of fructan have been discovered. By using eight independent isolates, we sought to determine if such fructan-hyperproducing strains represented a genetically homogeneous group of organisms. Restriction fragment patterns of total cellular DNA were examined by using pulsed-field and conventional gel electrophoresis. Four genetic types which appeared to correlate with the serotype of the organism and the geographic site of isolation were evident. Southern blot analysis of several genetic loci for extracellular enzymes revealed some minor differences between the strains, but the basic genomic organizations of these loci were similar. To evaluate whether the excess fructan produced by these strains enhanced the virulence of these organisms in the oral cavity, it was of interest to create mutants deficient in fructosidase (FruA), the extracellular enzyme which degrades this polymer. The fruA gene was inactivated by allelic exchange in two fructan-hyperproducing strains as well as in S. mutans GS5, a strain which does not hyperproduce fructan. All of the fruA mutant strains were devoid of fructan hydrolase activity when levan was used as a substrate. However, the fructan-hyperproducing strains retained the ability to hydrolyze inulin, suggesting the presence of a second fructosidase with specificity for inulin in these strains. Images PMID:7911782

  13. An Escherichia coli Nissle 1917 Missense Mutant Colonizes the Streptomycin-Treated Mouse Intestine Better than the Wild Type but Is Not a Better Probiotic

    PubMed Central

    Adediran, Jimmy; Leatham-Jensen, Mary P.; Mokszycki, Matthew E.; Frimodt-Møller, Jakob; Krogfelt, Karen A.; Kazmierczak, Krystyna; Kenney, Linda J.; Conway, Tyrrell

    2014-01-01

    Previously we reported that the streptomycin-treated mouse intestine selected for two different Escherichia coli MG1655 mutants with improved colonizing ability: nonmotile E. coli MG1655 flhDC deletion mutants that grew 15% faster in vitro in mouse cecal mucus and motile E. coli MG1655 envZ missense mutants that grew slower in vitro in mouse cecal mucus yet were able to cocolonize with the faster-growing flhDC mutants. The E. coli MG1655 envZ gene encodes a histidine kinase that is a member of the envZ-ompR two-component signal transduction system, which regulates outer membrane protein profiles. In the present investigation, the envZP41L gene was transferred from the intestinally selected E. coli MG1655 mutant to E. coli Nissle 1917, a human probiotic strain used to treat gastrointestinal infections. Both the E. coli MG1655 and E. coli Nissle 1917 strains containing envZP41L produced more phosphorylated OmpR than their parents. The E. coli Nissle 1917 strain containing envZP41L also became more resistant to bile salts and colicin V and grew 50% slower in vitro in mucus and 15% to 30% slower on several sugars present in mucus, yet it was a 10-fold better colonizer than E. coli Nissle 1917. However, E. coli Nissle 1917 envZP41L was not better at preventing colonization by enterohemorrhagic E. coli EDL933. The data can be explained according to our “restaurant” hypothesis for commensal E. coli strains, i.e., that they colonize the intestine as sessile members of mixed biofilms, obtaining the sugars they need for growth locally, but compete for sugars with invading E. coli pathogens planktonically. PMID:24478082

  14. Proteomics analysis of a long-term survival strain of Escherichia coli K-12 exhibiting a growth advantage in stationary-phase (GASP) phenotype.

    PubMed

    Gagliardi, Assunta; Lamboglia, Egidio; Bianchi, Laura; Landi, Claudia; Armini, Alessandro; Ciolfi, Silvia; Bini, Luca; Marri, Laura

    2016-03-01

    The aim of this work was the functional and proteomic analysis of a mutant, W3110 Bgl(+) /10, isolated from a batch culture of an Escherichia coli K-12 strain maintained at room temperature without addition of nutrients for 10 years. When the mutant was evaluated in competition experiments in co-culture with the wild-type, it exhibited the growth advantage in stationary phase (GASP) phenotype. Proteomes of the GASP mutant and its parental strain were compared by using a 2DE coupled with MS approach. Several differentially expressed proteins were detected and many of them were successful identified by mass spectrometry. Identified expression-changing proteins were grouped into three functional categories: metabolism, protein synthesis, chaperone and stress responsive proteins. Among them, the prevalence was ascribable to the "metabolism" group (72%) for the GASP mutant, and to "chaperones and stress responsive proteins" group for the parental strain (48%). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Viability and virulence of pneumolysin, pneumococcal surface protein A, and pneumolysin/pneumococcal surface protein A mutants in the ear.

    PubMed

    Schachern, Patricia A; Tsuprun, Vladimir; Goetz, Sarah; Cureoglu, Sebahattin; Juhn, Steven K; Briles, David E; Paparella, Michael M; Ferrieri, Patricia

    2013-09-01

    Understanding how pneumococcal proteins affect the pathology of the middle ear and inner ear is important for the development of new approaches to prevent otitis media and its complications. To determine the viability and virulence of Streptococcus pneumoniae mutants deficient in pneumolysin (Ply-) and pneumococcal surface protein A (PspA-) in the chinchilla middle ear. Bullae of chinchillas were inoculated bilaterally with wild-type (Wt), Ply-, PspA-, and Ply-/PspA- strains. Bacterial colony-forming units (CFUs) in middle ear effusions were counted at 48 hours. The CFUs of the PspA- group were also counted at 6 to 36 hours after inoculation. Temporal bone histopathological results were compared. Twenty-seven chinchillas in an academic research laboratory. Chinchilla middle ears were inoculated with S pneumoniae to produce sufficient volumes of effusions and noticeable histopathological changes in the ears. The CFU counts in the middle ear effusions and histopathological changes were compared to determine the effect of pneumococcal protein mutations on chinchilla ears. At 48 hours, CFUs in middle ears were increased for the Wt and Ply-/PspA- strains, but Ply- remained near inoculum level. No bacteria were detected in the PspA- group. The CFUs of PspA- decreased over time to a low level at 30 to 36 hours. In vitro, PspA- in Todd-Hewitt broth showed an increase in bacterial growth of 2 logs at 43 hours, indicating PspA- susceptibility to host defenses in vivo. The PspA- and Ply- groups had fewer pathologic findings than the Wt or Ply-/PspA- groups. Histopathological analysis showed significant differences in the number of bacteria in the scala tympani in the Wt group compared with the Ply-, PspA-, and Ply-/PspA- groups. The PspA- strain was the least virulent. The PspA- mutant was much less viable and less virulent in the ear than the Wt, Ply-, and Ply-/PspA- strains. There was no significant attenuation in the viability and virulence of the Ply-/PspA- mutant

  16. Characterization of a Lignified Secondary Phloem Fibre‐deficient Mutant of Jute (Corchorus capsularis)

    PubMed Central

    SENGUPTA, GARGI; PALIT, P.

    2004-01-01

    • Background and Aims High lignin content of lignocellulose jute fibre does not favour its utilization in making finer fabrics and other value‐added products. To aid the development of low‐lignin jute fibre, this study aimed to identify a phloem fibre mutant with reduced lignin. • Methods An x‐ray‐induced mutant line (CMU) of jute (Corchorus capsularis) was morphologically evaluated and the accession (CMU 013) with the most undulated phenotype was compared with its normal parent (JRC 212) for its growth, secondary fibre development and lignification of the fibre cell wall. • Key Results The normal and mutant plants showed similar leaf photosynthetic rates. The mutant grew more slowly, had shorter internodes and yielded much less fibre after retting. The fibre of the mutant contained 50 % less lignin but comparatively more cellulose than that of the normal type. Differentiation of primary and secondary vascular tissues throughout the CMU 013 stem was regular but it did not have secondary phloem fibre bundles as in JRC 212. Instead, a few thin‐walled, less lignified fibre cells formed uni‐ or biseriate radial rows within the phloem wedges of the middle stem. The lower and earliest developed part of the mutant stem had no lignified fibre cells. This developmental deficiency in lignification of fibre cells was correlated to a similar deficiency in phenylalanine ammonia lyase activity, but not peroxidase activity, in the bark tissue along the stem axis. In spite of severe reduction in lignin synthesis in the phloem cells this mutant functioned normally and bred true. • Conclusions In view of the observations made, the mutant is designated as deficient lignified phloem fibre (dlpf). This mutant may be utilized to engineer low‐lignin jute fibre strains and may also serve as a model to study the positional information that coordinates secondary wall thickening of fibre cells. PMID:14707004

  17. Molecular characterization of three 3-ketosteroid-Δ(1)-dehydrogenase isoenzymes of Rhodococcus ruber strain Chol-4.

    PubMed

    Fernández de las Heras, Laura; van der Geize, Robert; Drzyzga, Oliver; Perera, Julián; María Navarro Llorens, Juana

    2012-11-01

    Rhodococcus ruber strain Chol-4 isolated from a sewage sludge sample is able to grow on minimal medium supplemented with steroids, showing a broad catabolic capacity. This paper reports the characterization of three different 3-ketosteroid-Δ(1)-dehydrogenases (KstDs) in the genome of R. ruber strain Chol-4. The genome of this strain does not contain any homologues of a 3-keto-5α-steroid-Δ(4)-dehydrogenase (Kst4d or TesI) that appears in the genomes of Rhodococcus erythropolis SQ1 or Comamonas testosteroni. Growth experiments with kstD2 mutants, either a kstD2 single mutant, kstD2 double mutants in combination with kstD1 or kstD3, or the triple kstD1,2,3 mutant, proved that KstD2 is involved in the transformation of 4-androstene-3,17-dione (AD) to 1,4-androstadiene-3,17-dione (ADD) and in the conversion of 9α-hydroxy-4-androstene-3,17-dione (9OHAD) to 9α-hydroxy-1,4-androstadiene-3,17-dione (9OHADD). kstD2,3 and kstD1,2,3 R. ruber mutants (both lacking KstD2 and KstD3) did not grow in minimal medium with cholesterol as the only carbon source, thus demonstrating the involvement of KstD2 and KstD3 in cholesterol degradation. In contrast, mutation of kstD1 does not alter the bacterial growth on the steroids tested in this study and therefore, the role of this protein still remains unclear. The absence of a functional KstD2 in R. ruber mutants provoked in all cases an accumulation of 9OHAD, as a branch product probably formed by the action of a 3-ketosteroid-9α-hydroxylase (KshAB) on the AD molecule. Therefore, KstD2 is a key enzyme in the AD catabolism pathway of R. ruber strain Chol-4 while KstD3 is involved in cholesterol catabolism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Modelling Hepatitis B Virus Antiviral Therapy and Drug Resistant Mutant Strains

    NASA Astrophysics Data System (ADS)

    Bernal, Julie; Dix, Trevor; Allison, Lloyd; Bartholomeusz, Angeline; Yuen, Lilly

    Despite the existence of vaccines, the Hepatitis B virus (HBV) is still a serious global health concern. HBV targets liver cells. It has an unusual replication process involving an RNA pre-genome that the reverse transcriptase domain of the viral polymerase protein translates into viral DNA. The reverse transcription process is error prone and together with the high replication rates of the virus, allows the virus to exist as a heterogeneous population of mutants, known as a quasispecies, that can adapt and become resistant to antiviral therapy. This study presents an individual-based model of HBV inside an artificial liver, and associated blood serum, undergoing antiviral therapy. This model aims to provide insights into the evolution of the HBV quasispecies and the individual contribution of HBV mutations in the outcome of therapy.

  19. Prophage Rs551 and Its Repressor Gene orf14 Reduce Virulence and Increase Competitive Fitness of Its Ralstonia solanacearum Carrier Strain UW551.

    PubMed

    Ahmad, Abdelmonim Ali; Stulberg, Michael J; Huang, Qi

    2017-01-01

    We previously characterized a filamentous lysogenic bacteriophage, ϕRs551, isolated directly from the race 3 biovar 2 phylotype IIB sequevar 1 strain UW551 of Ralstonia solanacearum grown under normal culture conditions. The genome of ϕRs551 was identified with 100% identity in the deposited genomes of 11 race 3 biovar 2 phylotype IIB sequevar 1 strains of R. solanacearum , indicating evolutionary and biological importance, and ORF14 of ϕRs551 was annotated as a putative type-2 repressor. In this study, we determined the effect of the prophage and its ORF14 on the virulence and competitive fitness of its carrier strain UW551 by deleting the orf14 gene only (the UW551 orf14 mutant), and nine of the prophage's 14 genes including orf14 and six out of seven structural genes (the UW551 prophage mutant), respectively, from the genome of UW551. The two mutants were increased in extracellular polysaccharide production, twitching motility, expression of targeted virulence and virulence regulatory genes ( pilT, egl, pehC, hrPB, and phcA ), and virulence, suggesting that the virulence of UW551 was negatively regulated by ϕRs551, at least partially through ORF14. Interestingly, we found that the wt ϕRs551-carrying strain UW551 of R. solanacearum significantly outcompeted the wt strain RUN302 which lacks the prophage in tomato plants co-inoculated with the two strains. When each of the two mutant strains was co-inoculated with RUN302, however, the mutants were significantly out-competed by RUN302 for the same colonization site. Our results suggest that ecologically, ϕRs551 may play an important role by regulating the virulence of and offering a competitive fitness advantage to its carrier bacterial strain for persistence of the bacterium in the environment, which in turn prolongs the symbiotic relationship between the phage ϕRs551 and the R. solanacearum strain UW551. Our study is the first toward a better understanding of the co-existence between a lysogenic phage and

  20. Mutants of Saccharomyces cerevisiae and Bacillus citri Changed the Protein Content of the Nigerian Oryza sativa variety “Igbimo” during Fermentation

    PubMed Central

    Boboye, Bolatito E; Adeleke, Mutiat A; Olawale, Anthony O

    2012-01-01

    Effect of mutation on protein production by Saccharomyces cerevisiae and Bacillus citri, the best protein producing yeast and bacterium isolated during a previous natural fermentation of a Nigerian rice (“Igbimo”). The two microorganisms were grown to logarithmic phase and mutagenized separately using ethylmethyl sulphonate (EMS). The wild-types and variants were inoculated individually into sterile “Igbimo” rice. Fermentation was allowed to take place at 27°C for 7 days after which protein released into the rice was quantified using the Biuret reagent method. The data obtained showed that the mutants are different from each other. Some mutants did form the protein at lower concentrations, others at the same and higher concentrations than the mother strains. The parental strains of S. cerevisiae and B. citri synthesized 0.89 mg/mL and 0.36 mg/mL protein respectively. Four groups of the mutants are recognized: classes I, II, III and IV which are the Poor, Average, Good and Super Protein Producers with 0-0.20, 0.21-0.50, 0.51-1.0 and 1.0 mg/mL protein respectively The yeast mutants produced higher amounts of protein than those of the bacterium. PMID:23166568

  1. Circularized Chromosome with a Large Palindromic Structure in Streptomyces griseus Mutants

    PubMed Central

    Uchida, Tetsuya; Ishihara, Naoto; Zenitani, Hiroyuki; Hiratsu, Keiichiro; Kinashi, Haruyasu

    2004-01-01

    Streptomyces linear chromosomes display various types of rearrangements after telomere deletion, including circularization, arm replacement, and amplification. We analyzed the new chromosomal deletion mutants Streptomyces griseus 301-22-L and 301-22-M. In these mutants, chromosomal arm replacement resulted in long terminal inverted repeats (TIRs) at both ends; different sizes were deleted again and recombined inside the TIRs, resulting in a circular chromosome with an extremely large palindrome. Short palindromic sequences were found in parent strain 2247, and these sequences might have played a role in the formation of this unique structure. Dynamic structural changes of Streptomyces linear chromosomes shown by this and previous studies revealed extraordinary strategies of members of this genus to keep a functional chromosome, even if it is linear or circular. PMID:15150216

  2. Inhibition of cell division in hupA hupB mutant bacteria lacking HU protein.

    PubMed Central

    Dri, A M; Rouviere-Yaniv, J; Moreau, P L

    1991-01-01

    Escherichia coli hupA hypB double mutants that lack HU protein have severe cellular defects in cell division, DNA folding, and DNA partitioning. Here we show that the sfiA11 mutation, which alters the SfiA cell division inhibitor, reduces filamentation and production of anucleate cells in AB1157 hupA hupB strains. However, lexA3(Ind-) and sfiB(ftsZ)114 mutations, which normally counteract the effect of the SfiA inhibitor, could not restore a normal morphology to hupA hupB mutant bacteria. The LexA repressor, which controls the expression of the sfiA gene, was present in hupA hupB mutant bacteria in concentrations half of those of the parent bacteria, but this decrease was independent of the specific cleavage of the LexA repressor by activated RecA protein. One possibility to account for the filamentous morphology of hupA hupB mutant bacteria is that the lack of HU protein alters the expression of specific genes, such as lexA and fts cell division genes. Images PMID:2019558

  3. Analysis of the mechanism of activation of cAMP-dependent protein kinase through the study of mutants of the yeast regulatory subunit.

    PubMed

    Zaremberg, V; Moreno, S

    1996-04-01

    Spontaneous mutations in the gene which encodes the regulatory subunit of cAMP-dependent protein kinase (PKA) of Saccharomyces cerevisiae (BCY1) have been isolated previously [Cannon, J. F., Gibbs, J. B. & Tatchell, K. (1986) Genetics 113, 247-264] by selection of ras2::LEU2 revertants that grew on non-fermentable carbon sources. The revertants were placed into groups of increasing severity based on the number of PKA-dependent traits affected [Cannon, J. F., Gitan, R. & Tatchell, K. (1990) J. Biol. Chem. 265, 11897-11904]. In this work the ras2 mutation has been crossed out in each bcy1 allele and the phenotypes of these mutants have been assessed. The order of severity of the mutants in both genetic backgrounds is maintained but the severity of each mutant in the normal background is higher than in the ras2::LEU2 background. Total catalytic-subunit and regulatory-subunit activities were measured in crude extracts of the bcy1 ras2::LEU2 mutants. With one exception (bcy1-6) the calculated regulatory subunit/catalytic subunit ratios of the bcy1 mutants relative to that of wild-type cells were greater than one. The dependence of PKA activity on cAMP was measured in permeabilized cells. The strains show an activity ratio in the absence and presence of cAMP in the range 0.5-1 for Kemptide phosphorylation. Overexpression of the high-affinity cAMP phosphodiesterase gene (PDE2) in the bcy1 ras2::LEU2 strains did not alter their PKA-dependent phenotypes. However, transformants were not observed from the parental ras2::LEU2 strain and the bcy1-6 ras2::LEU2 strain. The results are discussed with respect to a hypothesis for the molecular mechanism of the differential reversal of ras2 phenotypes by the bcy1 alleles. Mutations in the regulatory subunit are predicted to affect the structure of the holoenzyme such that the catalytic subunit is capable of maintaining an active catalytic state, without the need to dissociate from the regulatory subunit.

  4. Parallel analysis of tagged deletion mutants efficiently identifies genes involved in endoplasmic reticulum biogenesis.

    PubMed

    Wright, Robin; Parrish, Mark L; Cadera, Emily; Larson, Lynnelle; Matson, Clinton K; Garrett-Engele, Philip; Armour, Chris; Lum, Pek Yee; Shoemaker, Daniel D

    2003-07-30

    Increased levels of HMG-CoA reductase induce cell type- and isozyme-specific proliferation of the endoplasmic reticulum. In yeast, the ER proliferations induced by Hmg1p consist of nuclear-associated stacks of smooth ER membranes known as karmellae. To identify genes required for karmellae assembly, we compared the composition of populations of homozygous diploid S. cerevisiae deletion mutants following 20 generations of growth with and without karmellae. Using an initial population of 1,557 deletion mutants, 120 potential mutants were identified as a result of three independent experiments. Each experiment produced a largely non-overlapping set of potential mutants, suggesting that differences in specific growth conditions could be used to maximize the comprehensiveness of similar parallel analysis screens. Only two genes, UBC7 and YAL011W, were identified in all three experiments. Subsequent analysis of individual mutant strains confirmed that each experiment was identifying valid mutations, based on the mutant's sensitivity to elevated HMG-CoA reductase and inability to assemble normal karmellae. The largest class of HMG-CoA reductase-sensitive mutations was a subset of genes that are involved in chromatin structure and transcriptional regulation, suggesting that karmellae assembly requires changes in transcription or that the presence of karmellae may interfere with normal transcriptional regulation. Copyright 2003 John Wiley & Sons, Ltd.

  5. Hierarchical mutational events compensate for glutamate auxotrophy of a Bacillus subtilis gltC mutant.

    PubMed

    Dormeyer, Miriam; Lübke, Anastasia L; Müller, Peter; Lentes, Sabine; Reuß, Daniel R; Thürmer, Andrea; Stülke, Jörg; Daniel, Rolf; Brantl, Sabine; Commichau, Fabian M

    2017-06-01

    Glutamate is the major donor of nitrogen for anabolic reactions. The Gram-positive soil bacterium Bacillus subtilis either utilizes exogenously provided glutamate or synthesizes it using the gltAB-encoded glutamate synthase (GOGAT). In the absence of glutamate, the transcription factor GltC activates expression of the GOGAT genes for glutamate production. Consequently, a gltC mutant strain is auxotrophic for glutamate. Using a genetic selection and screening system, we could isolate and differentiate between gltC suppressor mutants in one step. All mutants had acquired the ability to synthesize glutamate, independent of GltC. We identified (i) gain-of-function mutations in the gltR gene, encoding the transcription factor GltR, (ii) mutations in the promoter of the gltAB operon and (iii) massive amplification of the genomic locus containing the gltAB operon. The mutants belonging to the first two classes constitutively expressed the gltAB genes and produced sufficient glutamate for growth. By contrast, mutants that belong to the third class appeared most frequently and solved glutamate limitation by increasing the copy number of the poorly expressed gltAB genes. Thus, glutamate auxotrophy of a B. subtilis gltC mutant can be relieved in multiple ways. Moreover, recombination-dependent amplification of the gltAB genes is the predominant mutational event indicating a hierarchy of mutations. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Nonselective enrichment for yeast adenine mutants by flow cytometry

    NASA Technical Reports Server (NTRS)

    Bruschi, C. V.; Chuba, P. J.

    1988-01-01

    The expression of certain adenine biosynthetic mutations in the yeast Saccharomyces cerevisiae results in a red colony color. This phenomenon has historically provided an ideal genetic marker for the study of mutation, recombination, and aneuploidy in lower eukaryotes by classical genetic analysis. In this paper, it is reported that cells carrying ade1 and/or ade2 mutations exhibit primary fluorescence. Based on this observation, the nonselective enrichment of yeast cultures for viable adenine mutants by using the fluorescence-activated cell sorter has been achieved. The advantages of this approach over conventional genetic analysis of mutation, recombination, and mitotic chromosomal stability include speed and accuracy in acquiring data for large numbers of clones. By using appropriate strains, the cell sorter has been used for the isolation of both forward mutations and chromosomal loss events in S. cerevisiae. The resolving power of this system and its noninvasiveness can easily be extended to more complex organisms, including mammalian cells, in which analogous metabolic mutants are available.

  7. Tomato seed and root exudate sugars: composition, utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization.

    PubMed

    Lugtenberg, B J; Kravchenko, L V; Simons, M

    1999-10-01

    The role of tomato seed and root exudate sugars as nutrients for Pseudomonas biocontrol bacteria was studied. To this end, the major exudate sugars of tomato seeds, seedlings and roots were identified and quantified using high-performance liquid chromatographic (HPLC) analysis. Glucose, fructose and maltose were present in all studied growth stages of the plant, but the ratios of these sugars were strongly dependent on the developmental stage. In order to study the putative role of exudate sugar utilization in rhizosphere colonization, two approaches were adopted. First, after co-inoculation on germinated tomato seeds, the root-colonizing ability of the efficient root-colonizing P. fluorescens strain WCS365 in a gnotobiotic quartz sand-plant nutrient solution system was compared with that of other Pseudomonas biocontrol strains. No correlation was observed between the colonizing ability of a strain and its ability to use the major exudate sugars as the only carbon and energy source. Secondly, a Tn5lacZ mutant of P. fluorescens strain WCS365, strain PCL1083, was isolated, which is impaired in its ability to grow on simple sugars, including those found in exudate. The mutation appeared to reside in zwf, which encodes glucose-6-phosphate dehydrogenase. The mutant grows as well as the parental strain on other media, including tomato root exudate. After inoculation of germinated sterile tomato seeds, the mutant cells reached the same population levels at the root tip as the wild-type strain, both alone and in competition, indicating that the ability to use exudate sugars does not play a major role in tomato root colonization, despite the fact that sugars have often been reported to represent the major exudate carbon source. This conclusion is supported by the observation that the growth of mutant PCL1083 in vitro is inhibited by glucose, a major exudate sugar, at a concentration of 0.001%, which indicates that the glucose concentration in the tomato rhizosphere is very

  8. Identification of Mutant Genes and Introgressed Tiger Salamander DNA in the Laboratory Axolotl, Ambystoma mexicanum.

    PubMed

    Woodcock, M Ryan; Vaughn-Wolfe, Jennifer; Elias, Alexandra; Kump, D Kevin; Kendall, Katharina Denise; Timoshevskaya, Nataliya; Timoshevskiy, Vladimir; Perry, Dustin W; Smith, Jeramiah J; Spiewak, Jessica E; Parichy, David M; Voss, S Randal

    2017-01-31

    The molecular genetic toolkit of the Mexican axolotl, a classic model organism, has matured to the point where it is now possible to identify genes for mutant phenotypes. We used a positional cloning-candidate gene approach to identify molecular bases for two historic axolotl pigment phenotypes: white and albino. White (d/d) mutants have defects in pigment cell morphogenesis and differentiation, whereas albino (a/a) mutants lack melanin. We identified in white mutants a transcriptional defect in endothelin 3 (edn3), encoding a peptide factor that promotes pigment cell migration and differentiation in other vertebrates. Transgenic restoration of Edn3 expression rescued the homozygous white mutant phenotype. We mapped the albino locus to tyrosinase (tyr) and identified polymorphisms shared between the albino allele (tyr a ) and tyr alleles in a Minnesota population of tiger salamanders from which the albino trait was introgressed. tyr a has a 142 bp deletion and similar engineered alleles recapitulated the albino phenotype. Finally, we show that historical introgression of tyr a significantly altered genomic composition of the laboratory axolotl, yielding a distinct, hybrid strain of ambystomatid salamander. Our results demonstrate the feasibility of identifying genes for traits in the laboratory Mexican axolotl.

  9. α-Tocopherol Is Essential for Acquired Chill-Light Tolerance in the Cyanobacterium Synechocystis sp. Strain PCC 6803▿ †

    PubMed Central

    Yang, Yang; Yin, Chuntao; Li, Weizhi; Xu, Xudong

    2008-01-01

    Unlike Escherichia coli, the cyanobacterium Synechocystis sp. strain PCC 6803 is insensitive to chill (5°C) in the dark but rapidly losses viability when exposed to chill in the light (100 μmol photons m−2 s−1). Preconditioning at a low temperature (15°C) greatly enhances the chill-light tolerance of Synechocystis sp. strain PCC 6803. This phenomenon is called acquired chill-light tolerance (ACLT). Preconditioned wild-type cells maintained a substantially higher level of α-tocopherol after exposure to chill-light stress. Mutants unable to synthesize α-tocopherol, such as slr1736, slr1737, slr0089, and slr0090 mutants, almost completely lost ACLT. When exposed to chill without light, these mutants showed no or a slight difference from the wild type. When complemented, the slr0089 mutant regained its ACLT. Copper-regulated expression of slr0090 from PpetE controlled the level of α-tocopherol and ACLT. We conclude that α-tocopherol is essential for ACLT of Synechocystis sp. strain PCC 6803. The role of α-tocopherol in ACLT may be based largely on a nonantioxidant activity that is not possessed by other tocopherols or pathway intermediates. PMID:18165303

  10. A Lactobacillus mutant capable of accumulating long-chain polyphosphates that enhance intestinal barrier function.

    PubMed

    Saiki, Asako; Ishida, Yasuaki; Segawa, Shuichi; Hirota, Ryuichi; Nakamura, Takeshi; Kuroda, Akio

    2016-05-01

    Inorganic polyphosphate (polyP) was previously identified as a probiotic-derived substance that enhances intestinal barrier function. PolyP-accumulating bacteria are expected to have beneficial effects on the human gastrointestinal tract. In this study, we selected Lactobacillus paracasei JCM 1163 as a strain with the potential to accumulate polyP, because among the probiotic bacteria stored in our laboratory, it had the largest amount of polyP. The chain length of polyP accumulated in L. paracasei JCM 1163 was approximately 700 phosphate (Pi) residues. L. paracasei JCM 1163 accumulated polyP when Pi was added to Pi-starved cells. We further improved the ability of L. paracasei JCM 1163 to accumulate polyP by nitrosoguanidine mutagenesis. The mutant accumulated polyP at a level of 1500 nmol/mg protein-approximately 190 times that of the wild-type strain. PolyP extracted from the L. paracasei JCM 1163 significantly suppressed the oxidant-induced intestinal permeability in mouse small intestine. In conclusion, we have succeeded in breeding the polyP-accumulating Lactobacillus mutant that is expected to enhance intestinal barrier function.

  11. Effect of tcdR Mutation on Sporulation in the Epidemic Clostridium difficile Strain R20291

    PubMed Central

    Girinathan, Brintha P.; Monot, Marc; Boyle, Daniel; McAllister, Kathleen N.; Dupuy, Bruno

    2017-01-01

    ABSTRACT Clostridium difficile is an important nosocomial pathogen and the leading cause of hospital-acquired diarrhea. Antibiotic use is the primary risk factor for the development of C. difficile-associated disease because it disrupts normally protective gut flora and enables C. difficile to colonize the colon. C. difficile damages host tissue by secreting toxins and disseminates by forming spores. The toxin-encoding genes, tcdA and tcdB, are part of a pathogenicity locus, which also includes the tcdR gene that codes for TcdR, an alternate sigma factor that initiates transcription of tcdA and tcdB genes. We created a tcdR mutant in epidemic-type C. difficile strain R20291 in an attempt to identify the global role of tcdR. A site-directed mutation in tcdR affected both toxin production and sporulation in C. difficile R20291. Spores of the tcdR mutant were more heat sensitive than the wild type (WT). Nearly 3-fold more taurocholate was needed to germinate spores from the tcdR mutant than to germinate the spores prepared from the WT strain. Transmission electron microscopic analysis of the spores also revealed a weakly assembled exosporium on the tcdR mutant spores. Accordingly, comparative transcriptome analysis showed many differentially expressed sporulation genes in the tcdR mutant compared to the WT strain. These data suggest that regulatory networks of toxin production and sporulation in C. difficile strain R20291 are linked with each other. IMPORTANCE C. difficile infects thousands of hospitalized patients every year, causing significant morbidity and mortality. C. difficile spores play a pivotal role in the transmission of the pathogen in the hospital environment. During infection, the spores germinate, and the vegetative bacterial cells produce toxins that damage host tissue. Thus, sporulation and toxin production are two important traits of C. difficile. In this study, we showed that a mutation in tcdR, the toxin gene regulator, affects both toxin

  12. A suitable Xylella fastidiosa CVC strain for post-genome studies.

    PubMed

    Teixeira, Diva do Carmo; Rocha, Sanvai Regina Prado; de Santos, Mateus Almeida; Mariano, Anelise Galdino; Li, Wen Bin; Monteiro, Patricia Brant

    2004-12-01

    The genome sequence of the pathogen Xylella fastidiosa Citrus Variegated Chlorosis (CVC) strain 9a5c has revealed many genes related to pathogenicity mechanisms and virulence determinants. However, strain 9a5c is resistant to genetic transformation, impairing mutant production for the analysis of pathogenicity mechanisms and virulence determinants of this fastidious phytopathogen. By screening different strains, we found out that cloned strains J1a12, B111, and S11400, all isolated from citrus trees affected by CVC, are amenable to transformation, and J1a12 has been used as a model strain in a functional genomics program supported by FAPESP (São Paulo State Research Foundation). However, we have found that strain J1a12, unlike strains 9a5c and B111, was incapable of inducing CVC symptoms when inoculated in citrus plants. We have now determined that strain B111 is an appropriate candidate for post-genome studies of the CVC strain of X. fastidiosa.

  13. Mutants of Yarrowia lipolytica NCIM 3589 grown on waste cooking oil as a biofactory for biodiesel production.

    PubMed

    Katre, Gouri; Ajmera, Namasvi; Zinjarde, Smita; RaviKumar, Ameeta

    2017-10-24

    higher heating values than the wild type strain. The chemical mutagenesis strategy adopted in this study resulted in the successful isolation of three stable high SCO yielding mutants. The mutants, namely, YlB6, YlC7 and YlE1 exhibited a 1.22, 1.33 and 1.49-fold increase in lipid contents when grown on 100 g L -1 waste cooking oil than the parental yeast strain. The fatty acid methyl ester (FAME) profiles of all the three mutants was determined to be suitable for biodiesel suggesting their potential applicability while simultaneously addressing the management of waste cooking oil.

  14. RESISTANCE AND CROSS-RESISTANCE OF ESCHERICHIA COLI S MUTANTS TO THE RADIOMIMETIC AGENT PROFLAVINE

    PubMed Central

    Woody-Karrer, Pearl; Greenberg, Joseph

    1964-01-01

    Woody-Karrer, Pearl (Palo Alto Medical Research Foundation, Palo Alto, Calif.), and Joseph Greenberg. Resistance and cross-resistance of Escherichia coli S mutants to the radiomimetic agent proflavine. J. Bacteriol. 87:536–542. 1964.—All 50 of the first-step mutants of Escherichia coli S selected for resistance to proflavine were resistant to ultraviolet light and each of five different radiomimetic chemicals. The mutants were classified into eight types on the basis of their relative resistance to six different radiomimetic drugs and on the basis of the shape of their ultraviolet survival curves. Three of these types are identical to types previously isolated with other radiomimetic drugs; five of the types are new. A high proportion of the clones surviving proflavine treatment were phenotypically but not genetically resistant, and no strains were isolated which were resistant to proflavine but were not resistant to radiation. PMID:14129667

  15. Multi-level evaluation of Escherichia coli polyphosphate related mutants using global transcriptomic, proteomic and phenomic analyses.

    PubMed

    Varas, Macarena; Valdivieso, Camilo; Mauriaca, Cecilia; Ortíz-Severín, Javiera; Paradela, Alberto; Poblete-Castro, Ignacio; Cabrera, Ricardo; Chávez, Francisco P

    2017-04-01

    Polyphosphate (polyP) is a linear biopolymer found in all living cells. In bacteria, mutants lacking polyphosphate kinase 1 (PPK1), the enzyme responsible for synthesis of most polyP, have many structural and functional defects. However, little is known about the causes of these pleiotropic alterations. The link between ppk1 deletion and those numerous phenotypes observed can be the result of complex molecular interactions that can be elucidated via a systems biology approach. By integrating different omics levels (transcriptome, proteome and phenome), we described the functioning of various metabolic pathways among Escherichia coli polyphosphate mutant strains (Δppk1, Δppx, and ΔpolyP). Bioinformatic analyses reveal the complex metabolic and regulatory bases of the phenotypes unique to polyP mutants. Our results suggest that during polyP deficiency (Δppk1 mutant), metabolic pathways needed for energy supply are up-regulated, including fermentation, aerobic and anaerobic respiration. Transcriptomic and q-proteomic contrasting changes between Δppk1 and Δppx mutant strains were observed in those central metabolic pathways and confirmed by using Phenotypic microarrays. In addition, our results suggest a regulatory connection between polyP, second messenger metabolism, alternative Sigma/Anti-Sigma factors and type-II toxin-antitoxin (TA) systems. We suggest a broader role for polyP via regulation of ATP-dependent proteolysis of type II toxin-antitoxin system and alternative Sigma/Anti-Sigma factors, that could explain the multiple structural and functional deficiencies described due to alteration of polyP metabolism. Understanding the interplay of polyP in bacterial metabolism using a systems biology approach can help to improve design of novel antimicrobials toward pathogens. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Screen for leukotoxin mutants in Aggregatibacter actinomycetemcomitans: genes of the phosphotransferase system are required for leukotoxin biosynthesis.

    PubMed

    Isaza, Maria P; Duncan, Matthew S; Kaplan, Jeffrey B; Kachlany, Scott C

    2008-08-01

    Aggregatibacter (formerly Actinobacillus) actinomycetemcomitans is a pathogen that causes localized aggressive periodontitis and extraoral infections including infective endocarditis. Recently, we reported that A. actinomycetemcomitans is beta-hemolytic on certain growth media due to the production of leukotoxin (LtxA). Based on this observation and our ability to generate random transposon insertions in A. actinomycetemcomitans, we developed and carried out a rapid screen for LtxA mutants. Using PCR, we mapped several of the mutations to genes that are known or predicted to be required for LtxA production, including ltxA, ltxB, ltxD, and tdeA. In addition, we identified an insertion in a gene previously not recognized to be involved in LtxA biosynthesis, ptsH. ptsH encodes the protein HPr, a phosphocarrier protein that is part of the sugar phosphotransferase system. HPr results in the phosphorylation of other proteins and ultimately in the activation of adenylate cyclase and cyclic AMP (cAMP) production. The ptsH mutant showed only partial hemolysis on blood agar and did not produce LtxA. The phenotype was complemented by supplying wild-type ptsH in trans, and real-time PCR analysis showed that the ptsH mutant produced approximately 10-fold less ltxA mRNA than the wild-type strain. The levels of cAMP in the ptsH mutant were significantly lower than in the wild-type strain, and LtxA production could be restored by adding exogenous cAMP to the culture.

  17. Microfluidic high-throughput selection of microalgal strains with superior photosynthetic productivity using competitive phototaxis

    PubMed Central

    Kim, Jaoon Young Hwan; Kwak, Ho Seok; Sung, Young Joon; Choi, Hong Il; Hong, Min Eui; Lim, Hyun Seok; Lee, Jae-Hyeok; Lee, Sang Yup; Sim, Sang Jun

    2016-01-01

    Microalgae possess great potential as a source of sustainable energy, but the intrinsic inefficiency of photosynthesis is a major challenge to realize this potential. Photosynthetic organisms evolved phototaxis to find optimal light condition for photosynthesis. Here we report a microfluidic screening using competitive phototaxis of the model alga, Chlamydomonas reinhardtii, for rapid isolation of strains with improved photosynthetic efficiencies. We demonstrated strong relationship between phototaxis and photosynthetic efficiency by quantitative analysis of phototactic response at the single-cell level using a microfluidic system. Based on this positive relationship, we enriched the strains with improved photosynthetic efficiency by isolating cells showing fast phototactic responses from a mixture of 10,000 mutants, thereby greatly improving selection efficiency over 8 fold. Among 147 strains isolated after screening, 94.6% showed improved photoautotrophic growth over the parental strain. Two mutants showed much improved performances with up to 1.9- and 8.1-fold increases in photoautotrophic cell growth and lipid production, respectively, a substantial improvement over previous approaches. We identified candidate genes that might be responsible for fast phototactic response and improved photosynthesis, which can be useful target for further strain engineering. Our approach provides a powerful screening tool for rapid improvement of microalgal strains to enhance photosynthetic productivity. PMID:26852806

  18. Viability, biofilm formation, and MazEF expression in drug-sensitive and drug-resistant Mycobacterium tuberculosis strains circulating in Xinjiang, China.

    PubMed

    Zhao, Ji-Li; Liu, Wei; Xie, Wan-Ying; Cao, Xu-Dong; Yuan, Li

    2018-01-01

    Tuberculosis (TB) caused by Mycobacterium tuberculosis (MTB) is one of the most common chronic infectious amphixenotic diseases worldwide. Prevention and control of TB are greatly difficult, due to the increase in drug-resistant TB, particularly multidrug-resistant TB. We speculated that there were some differences between drug-sensitive and drug-resistant MTB strains and that mazEF 3,6,9 toxin-antitoxin systems (TASs) were involved in MTB viability. This study aimed to investigate differences in viability, biofilm formation, and MazEF expression between drug-sensitive and drug-resistant MTB strains circulating in Xinjiang, China, and whether mazEF 3,6,9 TASs contribute to MTB viability under stress conditions. Growth profiles and biofilm-formation abilities of drug-sensitive, drug-resistant MTB strains and the control strain H37Rv were monitored. Using molecular biology experiments, the mRNA expression of the mazF 3, 6, and 9 toxin genes, the mazE 3, 6, and 9 antitoxin genes, and expression of the MazF9 protein were detected in the different MTB strains, H37RvΔ mazEF 3,6,9 mutants from the H37Rv parent strain were generated, and mutant viability was tested. Ex vivo culture analyses demonstrated that drug-resistant MTB strains exhibit higher survival rates than drug-sensitive strains and the control strain H37Rv. However, there was no statistical difference in biofilm-formation ability in the drug-sensitive, drug-resistant, and H37Rv strains. mazE 3,6 mRNA-expression levels were relatively reduced in the drug-sensitive and drug-resistant strains compared to H37Rv. Conversely, mazE 3,9 expression was increased in drug-sensitive strains compared to drug-resistant strains. Furthermore, compared with the H37Rv strain, mazF 3,6 expression was increased in drug-resistant strains, mazF 9 expression was increased in drug-sensitive strains, and mazF 9 exhibited reduced expression in drug-resistant strains compared with drug-sensitive strains. Protein expression of mazF9

  19. Chromosome and mitotic spindle dynamics in fission yeast kinesin-8 mutants

    NASA Astrophysics Data System (ADS)

    Crapo, Ammon M.; Gergley, Zachary R.; McIntosh, J. Richard; Betterton, M. D.

    2014-03-01

    Fission yeast proteins Klp5p and Klp6p are plus-end directed motors of the kinesin-8 family which promote microtubule (MT) depolymerization and also affect chromosome segregation, but the mechanism of these activities is not well understood. Using live-cell time-lapse fluorescence microscopy of fission yeast wild-type (WT) and klp5/6 mutant strains, we quantify and compare the dynamics of kinetochore motion and mitotic spindle length in 3D. In WT cells, the spindle, once formed, remains a consistent size and chromosomes are correctly organized and segregated. In kinesin-8 mutants, spindles undergo large length fluctuations of several microns. Kinetochore motions are also highly fluctuating, with kinetochores frequently moving away from the spindle rather than toward it. We observe transient pushing of chromosomes away from the spindle by as much as 10 microns in distance.

  20. Isolation of Escherichia coli mutants defective in enzymes of membrane lipid synthesis.

    PubMed Central

    Raetz, C R

    1975-01-01

    A new method has been developed which permits the rapid screening of E. coli colonies for mutants with defective enzymes of phospholipid metabolism. In this procedure, a disc of filter paper is pressed down on an agar plate containing several hundred colonies of mutagen-treated cells, after which the paper is lifted off. In the process the colonies are transferred to the paper, giving rise to a replica print of the master plate. The few cells from each colony left on the master keep growing in the original pattern. The pattern of colonies is also retained on the filter paper, even after the cells are rendered permeable with lysozyme and EDTA. Colonies treated in this manner remain absorbed to the paper, where they can convert sn-(U-14-C)glycero-3-P to phosphatidyl(U-14-C)glycerophosphate, dependent on added CDP-diglyceride. Unrelated reactions of sn-(U-14-C)glycero-3-P that may obscure the synthesis of phosphatidyl-glycerophosphate are inhibited by the addition of reagents poisoning energy generation. The radioactive phospholipid that forms around each colony on the paper is precipitated in situ with trichloroacetic acid, and unreacted sn-(U-14-C)glycero-3-P is washed away. After autoradiography, the colonies on the filter paper are stained with Coomassie blue. When the autoradiogram is superimposed on the strained paper, mutants are identified as blue colonies lacking a black halo. With this method, 20,000 colonies were screened in several days. Four mutants were identified with low levels of CDP-diglyceride:snglycero-3-P phosphatidyl transferase (EC 2.7.8.5, GLYCEROL-PHOSPHATE PHOSPHATIDYLTRANSFERASE, PHOSPHATIDYLGLYCEROPHOSPHATE SYNTHETASE) IN EXTRACTS. With a similar assay, 10,000 additional colonies were screened for mutants with altered CDP-diglyceride:L-serine O-phosphatidyltransferase (EC 2.7.8.8, phosphatidylserine synthetase), and four strains were found in which the enzyme is thermolabile. The screening technique described here is termed replica printing

  1. Alteration in the contents of unsaturated fatty acids in dnaA mutants of Escherichia coli.

    PubMed

    Suzuki, E; Kondo, T; Makise, M; Mima, S; Sakamoto, K; Tsuchiya, T; Mizushima, T

    1998-04-01

    DnaA protein, the initiator of chromosomal DNA replication in Escherichia coli, has a high affinity for acidic phospholipids containing unsaturated fatty acids. We have examined here the fatty acid composition of phospholipids in dnaA mutants. A temperature-sensitive dnaA46 mutant showed a lower level of unsaturation of fatty acids (ratio of unsaturated to saturated fatty acids) at 42 degrees C (non-permissive temperature) and at 37 degrees C (semi-permissive temperature), but not at 28 degrees C (permissive temperature), compared with the wild-type strain. Plasmid complementation analysis revealed that the dnaA46 mutation is responsible for the phenotype. Other temperature-sensitive dnaA mutants showed similar results. On the other hand, a cold-sensitive dnaAcos mutant, in which over-initiation of DNA replication occurs at low temperature (28 degrees C), showed a higher level of unsaturation of fatty acids at 28 degrees C. Based on these observations, we discuss the role of phospholipids in the regulation of the activity of DnaA protein.

  2. Open fermentative production of fuel ethanol from food waste by an acid-tolerant mutant strain of Zymomonas mobilis.

    PubMed

    Ma, Kedong; Ruan, Zhiyong; Shui, Zongxia; Wang, Yanwei; Hu, Guoquan; He, Mingxiong

    2016-03-01

    The aim of present study was to develop a process for open ethanol fermentation from food waste using an acid-tolerant mutant of Zymomonas mobilis (ZMA7-2). The mutant showed strong tolerance to acid condition of food waste hydrolysate and high ethanol production performance. By optimizing fermentation parameters, ethanol fermentation with initial glucose concentration of 200 g/L, pH value around 4.0, inoculum size of 10% and without nutrient addition was considered as best conditions. Moreover, the potential of bench scales fermentation and cell reusability was also examined. The fermentation in bench scales (44 h) was faster than flask scale (48 h), and the maximum ethanol concentration and ethanol yield (99.78 g/L, 0.50 g/g) higher than that of flask scale (98.31 g/L, 0.49 g/g). In addition, the stable cell growth and ethanol production profile in five cycles successive fermentation was observed, indicating the mutant was suitable for industrial ethanol production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Structural analysis and characterization of dextran produced by wild and mutant strains of Leuconostoc mesenteroides.

    PubMed

    Siddiqui, Nadir Naveed; Aman, Afsheen; Silipo, Alba; Qader, Shah Ali Ul; Molinaro, Antonio

    2014-01-01

    An exopolysaccharide known as dextran was produced by Leuconostoc mesenteroides KIBGE-IB22 (wild) and L. mesenteroides KIBGE-IB22M20 (mutant). The structure was characterized using FTIR, (1)H NMR, (13)C NMR and 2D NMR spectroscopic techniques, whereas surface morphology was analyzed using SEM. A clear difference in the spectral chemical shift patterns was observed in both samples. All the spectral data indicated that the exopolysaccharide produced by KIBGE-IB22 is a mixture of two biopolymers. One was dextran in α-(1 → 6) configuration with a small proportion of α-(1 → 3) branching and the other was levan containing β-(2 → 6) fructan fructofuranosyl linkages. However, remarkably the mutant only produced dextran without any concomitant production of levan. Study suggested that the property of KIBGE-IB22M20, regarding improved production of high molecular weight dextran in a shorter period of fermentation time without any contamination of other exopolysaccharide, could be employed to make the downstream process more feasible and cost effective on large scale. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. A defective mutant of Salmonella enterica Serovar Gallinarum in cobalamin biosynthesis is avirulent in chickens

    PubMed Central

    de Paiva, Jacqueline Boldrin; Penha Filho, Rafael Antonio Casarin; Arguello, Yuli Melisa Sierra; Berchieri Junior, Ângelo; Lemos, Manuel Victor Franco; Barrow, Paul A.

    2009-01-01

    Salmonella enterica serovar Gallinarum (SG) is a fowl typhoid agent in chickens and is a severe disease with worldwide economic impact as its mortality may reach up to 80%. It is one of a small group of serovars that typically produces typhoid-like infections in a narrow range of host species and which therefore represents a good model for human typhoid. The survival mechanisms are not considered to be virulent mechanisms but are essential for the life of the bacterium. Mutants of Salmonella Gallinarum containing defective genes, related to cobalamin biosynthesis and which Salmonella spp. has to be produced to survive when it is in an anaerobic environment, were produced in this study. Salmonella Gallinarum is an intracellular parasite. Therefore, this study could provide information about whether vitamin B12 biosynthesis might be essential to its survival in the host. The results showed that the singular deletion in cbiA or cobS genes did not interfere in the life of Salmonella Gallinarum in the host, perhaps because single deletion is not enough to impede vitamin B12 biosynthesis. It was noticed that diluted SG mutants with single deletion produced higher mortality than the wild strain of SG. When double mutation was carried out, the Salmonella Gallinarum mutant was unable to provoke mortality in susceptible chickens. This work showed that B12 biosynthesis is a very important step in the metabolism of Salmonella Gallinarum during the infection of the chickens. Further research on bacterium physiology should be carried out to elucidate the events described in this research and to assess the mutant as a vaccine strain. PMID:24031393

  5. Improvement of strain Penicillium sp. EZ-ZH190 for tannase production by induced mutation.

    PubMed

    Zakipour-Molkabadi, E; Hamidi-Esfahani, Z; Sahari, M A; Azizi, M H

    2013-11-01

    In the search for an efficient producer of tannase, Penicillium sp. EZ-ZH190 was subjected to mutagenesis using heat treatment and strain EZ-ZH290 was isolated. The maximum tannase in this mutant strain was 4.32 U/mL with an incubation period of 84 h as compared to wild strain EZ-ZH190 where the incubation period was 96 h with a maximum enzyme activity of 4.33 U/mL. Also, the Penicillium sp. EZ-ZH290 tannase had a maximum activity at 40 °C and pH 5.5. Then, the spores of strain EZ-ZH290 were subjected to γ irradiation mutagenesis and strain EZ-ZH390 was isolated. Strain EZ-ZH390 exhibited higher tannase activity (7.66 U/mL) than the parent strain EZ-ZH290. It was also found that Penicillium sp. EZ-ZH390 tannase had an optimum activity at 35 °C and a broad pH profile with an optimum at pH 5.5. The tannase pH stability of Penicillium sp. EZ-ZH390 and its maximum production of tannase followed the same trend for five generations confirming the occurrence of stable mutant. This paper is shown that γ irradiation can mutate the Penicillium sp. leading to increase the tannase production.

  6. Exploring the Mechanism of Zanamivir Resistance in a Neuraminidase Mutant: A Molecular Dynamics Study

    PubMed Central

    Han, Nanyu; Liu, Xuewei; Mu, Yuguang

    2012-01-01

    It is critical to understand the molecular basis of the drug resistance of influenza viruses to efficiently treat this infectious disease. Recently, H1N1 strains of influenza A carrying a mutation of Q136K in neuraminidase were found. The new strain showed a strong Zanamivir neutralization effect. In this study, normal molecular dynamics simulations and metadynamics simulations were employed to explore the mechanism of Zanamivir resistance. The wild-type neuraminidase contained a 310 helix before the 150 loop, and there was interaction between the 150 and 430 loops. However, the helix and the interaction between the two loops were disturbed in the mutant protein due to interaction between K136 and nearby residues. Hydrogen-bond network analysis showed weakened interaction between the Zanamivir drug and E276/D151 on account of the electrostatic interaction between K136 and D151. Metadynamics simulations showed that the free energy landscape was different in the mutant than in the wild-type neuraminidase. Conformation with the global minimum of free energy for the mutant protein was different from the wild-type conformation. While the drug fit completely into the active site of the wild-type neuraminidase, it did not match the active site of the mutant variant. This study indicates that the altered hydrogen-bond network and the deformation of the 150 loop are the key factors in development of Zanamivir resistance. Furthermore, the Q136K mutation has a variable effect on conformation of different N1 variants, with conformation of the 1918 N1 variant being more profoundly affected than that of the other N1 variants studied in this paper. This observation warrants further experimental investigation. PMID:22970161

  7. Exploring the mechanism of zanamivir resistance in a neuraminidase mutant: a molecular dynamics study.

    PubMed

    Han, Nanyu; Liu, Xuewei; Mu, Yuguang

    2012-01-01

    It is critical to understand the molecular basis of the drug resistance of influenza viruses to efficiently treat this infectious disease. Recently, H1N1 strains of influenza A carrying a mutation of Q136K in neuraminidase were found. The new strain showed a strong Zanamivir neutralization effect. In this study, normal molecular dynamics simulations and metadynamics simulations were employed to explore the mechanism of Zanamivir resistance. The wild-type neuraminidase contained a 3(10) helix before the 150 loop, and there was interaction between the 150 and 430 loops. However, the helix and the interaction between the two loops were disturbed in the mutant protein due to interaction between K136 and nearby residues. Hydrogen-bond network analysis showed weakened interaction between the Zanamivir drug and E276/D151 on account of the electrostatic interaction between K136 and D151. Metadynamics simulations showed that the free energy landscape was different in the mutant than in the wild-type neuraminidase. Conformation with the global minimum of free energy for the mutant protein was different from the wild-type conformation. While the drug fit completely into the active site of the wild-type neuraminidase, it did not match the active site of the mutant variant. This study indicates that the altered hydrogen-bond network and the deformation of the 150 loop are the key factors in development of Zanamivir resistance. Furthermore, the Q136K mutation has a variable effect on conformation of different N1 variants, with conformation of the 1918 N1 variant being more profoundly affected than that of the other N1 variants studied in this paper. This observation warrants further experimental investigation.

  8. Comparative proteomic profiles of Aspergillus fumigatus and Aspergillus lentulus strains by surface-enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF-MS)

    PubMed Central

    2011-01-01

    Background Surface-enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF-MS) was applied to analyze the protein profiles in both somatic and metabolic extracts of Aspergillus species. The study was carried out on some Aspergillus species within the Fumigati section (Aspergillus fumigatus wild-types and natural abnormally pigmented mutants, and Aspergillus lentulus). The aim was to validate whether mass spectrometry protein profiles can be used as specific signatures to discriminate different Aspergillus species or even mutants within the same species. Results The growth conditions and the SELDI-TOF parameters were determined to generate characteristic protein profiles of somatic and metabolic extracts of Aspergillus fumigatus strains using five different ProteinChips®, eight growth conditions combining two temperatures, two media and two oxygenation conditions. Nine strains were investigated: three wild-types and four natural abnormally pigmented mutant strains of A. fumigatus and two strains of A. lentulus. A total of 242 fungal extracts were prepared. The spectra obtained are protein signatures linked to the physiological states of fungal strains depending on culture conditions. The best resolutions were obtained using the chromatographic surfaces CM10, NP20 and H50 with fractions of fungi grown on modified Sabouraud medium at 37°C in static condition. Under these conditions, the SELDI-TOF analysis allowed A. fumigatus and A. lentulus strains to be grouped into distinct clusters. Conclusions SELDI-TOF analysis distinguishes A. fumigatus from A. lentulus strains and moreover, permits separate clusters of natural abnormally pigmented A. fumigatus strains to be obtained. In addition, this methodology allowed us to point out fungal components specifically produced by a wild-type strain or natural mutants. It offers attractive potential for further studies of the Aspergillus biology or pathogenesis. PMID:21798007

  9. Comparative proteomic profiles of Aspergillus fumigatus and Aspergillus lentulus strains by surface-enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF-MS).

    PubMed

    Pinel, Claudine; Arlotto, Marie; Issartel, Jean-Paul; Berger, François; Pelloux, Hervé; Grillot, Renée; Symoens, Françoise

    2011-07-28

    Surface-enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF-MS) was applied to analyze the protein profiles in both somatic and metabolic extracts of Aspergillus species. The study was carried out on some Aspergillus species within the Fumigati section (Aspergillus fumigatus wild-types and natural abnormally pigmented mutants, and Aspergillus lentulus). The aim was to validate whether mass spectrometry protein profiles can be used as specific signatures to discriminate different Aspergillus species or even mutants within the same species. The growth conditions and the SELDI-TOF parameters were determined to generate characteristic protein profiles of somatic and metabolic extracts of Aspergillus fumigatus strains using five different ProteinChips®, eight growth conditions combining two temperatures, two media and two oxygenation conditions. Nine strains were investigated: three wild-types and four natural abnormally pigmented mutant strains of A. fumigatus and two strains of A. lentulus. A total of 242 fungal extracts were prepared. The spectra obtained are protein signatures linked to the physiological states of fungal strains depending on culture conditions. The best resolutions were obtained using the chromatographic surfaces CM10, NP20 and H50 with fractions of fungi grown on modified Sabouraud medium at 37 °C in static condition. Under these conditions, the SELDI-TOF analysis allowed A. fumigatus and A. lentulus strains to be grouped into distinct clusters. SELDI-TOF analysis distinguishes A. fumigatus from A. lentulus strains and moreover, permits separate clusters of natural abnormally pigmented A. fumigatus strains to be obtained. In addition, this methodology allowed us to point out fungal components specifically produced by a wild-type strain or natural mutants. It offers attractive potential for further studies of the Aspergillus biology or pathogenesis. © 2011 Pinel et al; licensee BioMed Central Ltd.

  10. Generation of a Uracil Auxotroph Strain of the Probiotic Yeast Saccharomyces boulardii as a Host for the Recombinant Protein Production

    PubMed Central

    Hamedi, Hassan; Misaghi, Ali; Modarressi, Mohammad Hossein; Salehi, Taghi Zahraei; Khorasanizadeh, Dorsa; Khalaj, Vahid

    2013-01-01

    Background Saccharomyces boulardii (S. boulardii) is the best known probiotic yeast. The genetic engineering of this probiotic strain requires the availability of appropriate mutants to accept various gene constructs carrying different selection markers. As the auxotrophy selection markers are under focus, we have generated a ura3 auxotroph mutant of S. boulardii for use in further genetic manipulations. Methods Classical UV mutagenesis was used for the generation of auxotroph mutants. The mutants were selected in the presence of 5-FOA (5-Fluoroorotic acid), uracil and uridine. Uracil auxotrophy phenotype was confirmed by the ability of mutants to grow in the presence of uracil and the lack of growth in the absence of this compound. To test whether the uracil auxotrophy phenotype is due to the inactivation of URA3, the mutants were transformed with a plasmid carrying the gene. An in vitro assay was used for the analysis of acid and bile resistance capacity of these mutants. Results Three mutants were found to be ura3 auxotroph as they were able to grow only in the presence of uracil. When the URA3 gene was added, these mutants were able to grow normally in the absence of uracil. Further in vitro analysis showed that the acid and bile resistance capacity of one of these mutants is intact and similar to the wild type. Conclusion A uracil auxotroph mutant of the probiotic yeast, S. boulardii, was generated and characterized. This auxotroph strain may have potential applications in the production and delivery of the recombinant pharmacuetics into the intestinal lumen. PMID:23626874

  11. Optimization of L-lactic Acid Production of Rhizopus Oryzae Mutant RLC41-6 by Ion Beam Implantation at Low-Energy

    NASA Astrophysics Data System (ADS)

    Zhou, Xiuhong; Ge, Chunmei; Yao, Jianming; Pan, Renrui; Yu, Zengliang

    2005-10-01

    In order to obtain an industrial strain with a higher L(+)-lactic acid yield, the strain Rhizopus oryzae RF3608 was mutated by means of nitrogen ion beam implantation and the mutant strain RLC41-6 was isolated. Under optimal conditions the yield of L(+)-lactic acid produced in a shake-flask reached 133 g/L-137 g/L after 36 h cultivation, indicating that the conversion rate based on glucose was as high as 88%-91% and the productivity was 3.75 g/L.h. It was almost a 115% increase in lactic acid production compared with the original strain RF3608.

  12. Preliminary report on the biological effects of space flight on the producing strain of a new immunosuppressant, Kanglemycin C.

    PubMed

    Zhou, Jianqin; Sun, Chenghang; Wang, Nanjin; Gao, Rongmei; Bai, Shuoke; Zheng, Huanrong; You, Xuefu; Li, Rongfeng

    2006-08-01

    Kanglemycin C (K-C) is a new immunosuppressant isolated from the culture broth of Nocardia mediterranei var. kanglensis 1747-64. To improve the productivity of K-C and to study the biological effects of space flight on its producing strain, spores from five K-C producing strains (U-10, U-15, U-7, M-13, gamma-33) mutated from the wild strain N. mediterranei var. kanglensis 1747-64 were carried into space by an unmanned spaceship, "Shenzhou III" (Divine Vessel III) on March 25, 2002. Comparatively, the strain U-7 was the highest K-C producing strain among the above five starting strains when cultivated in 500-ml Erlenmeyer flasks. After a 6 day and 18 h flight, the treated spores went through serial screening processes to screen for high-yield K-C mutant strains, using thin layer chromatography and high performance liquid chromatography (HPLC). The K-C yield produced by one mutant strain, designated as F-16, derived from the starting strain U-7 was increased by up to 200% when compared to that produced by the starting strain U-7 in 500-ml Erlenmeyer flasks after careful postflight HPLC analysis. Another mutant strain, designated as F-210, derived from the starting strain M-13 showed reduced productivity of K-C as well as exhibited changes in some morphological and physiological characteristics. For example, the broth color of the strain F-210 changed from yellow to purple after 96 h of culture, but that of the ground control strain M-13 remained yellow. Similarly, the mycelium morphological change from filamentous to coccoid of F-210 occurred later than that of ground control M-13. Examination of the survivability of postflight spores indicated that exposure to radiation, during the 162 h of space flight, plays a critical role in the survival rates of spores such that spores exposed to strong radiation exhibited lower survival rates than spores exposed to weak radiation.

  13. Prophage Rs551 and Its Repressor Gene orf14 Reduce Virulence and Increase Competitive Fitness of Its Ralstonia solanacearum Carrier Strain UW551

    PubMed Central

    Ahmad, Abdelmonim Ali; Stulberg, Michael J.; Huang, Qi

    2017-01-01

    We previously characterized a filamentous lysogenic bacteriophage, ϕRs551, isolated directly from the race 3 biovar 2 phylotype IIB sequevar 1 strain UW551 of Ralstonia solanacearum grown under normal culture conditions. The genome of ϕRs551 was identified with 100% identity in the deposited genomes of 11 race 3 biovar 2 phylotype IIB sequevar 1 strains of R. solanacearum, indicating evolutionary and biological importance, and ORF14 of ϕRs551 was annotated as a putative type-2 repressor. In this study, we determined the effect of the prophage and its ORF14 on the virulence and competitive fitness of its carrier strain UW551 by deleting the orf14 gene only (the UW551 orf14 mutant), and nine of the prophage’s 14 genes including orf14 and six out of seven structural genes (the UW551 prophage mutant), respectively, from the genome of UW551. The two mutants were increased in extracellular polysaccharide production, twitching motility, expression of targeted virulence and virulence regulatory genes (pilT, egl, pehC, hrPB, and phcA), and virulence, suggesting that the virulence of UW551 was negatively regulated by ϕRs551, at least partially through ORF14. Interestingly, we found that the wt ϕRs551-carrying strain UW551 of R. solanacearum significantly outcompeted the wt strain RUN302 which lacks the prophage in tomato plants co-inoculated with the two strains. When each of the two mutant strains was co-inoculated with RUN302, however, the mutants were significantly out-competed by RUN302 for the same colonization site. Our results suggest that ecologically, ϕRs551 may play an important role by regulating the virulence of and offering a competitive fitness advantage to its carrier bacterial strain for persistence of the bacterium in the environment, which in turn prolongs the symbiotic relationship between the phage ϕRs551 and the R. solanacearum strain UW551. Our study is the first toward a better understanding of the co-existence between a lysogenic phage and

  14. Isolation of baker's yeast mutants with proline accumulation that showed enhanced tolerance to baking-associated stresses.

    PubMed

    Tsolmonbaatar, Ariunzaya; Hashida, Keisuke; Sugimoto, Yukiko; Watanabe, Daisuke; Furukawa, Shuhei; Takagi, Hiroshi

    2016-12-05

    During bread-making processes, yeast cells are exposed to baking-associated stresses such as freeze-thaw, air-drying, and high-sucrose concentrations. Previously, we reported that self-cloning diploid baker's yeast strains that accumulate proline retained higher-level fermentation abilities in both frozen and sweet doughs than the wild-type strain. Although self-cloning yeasts do not have to be treated as genetically modified yeasts, the conventional methods for breeding baker's yeasts are more acceptable to consumers than the use of self-cloning yeasts. In this study, we isolated mutants resistant to the proline analogue azetidine-2-carboxylate (AZC) derived from diploid baker's yeast of Saccharomyces cerevisiae. Some of the mutants accumulated a greater amount of intracellular proline, and among them, 5 mutants showed higher cell viability than that observed in the parent wild-type strain under freezing or high-sucrose stress conditions. Two of them carried novel mutations in the PRO1 gene encoding the Pro247Ser or Glu415Lys variant of γ-glutamyl kinase (GK), which is a key enzyme in proline biosynthesis in S. cerevisiae. Interestingly, we found that these mutations resulted in AZC resistance of yeast cells and desensitization to proline feedback inhibition of GK, leading to intracellular proline accumulation. Moreover, baker's yeast cells expressing the PRO1 P247S and PRO1 E415K gene were more tolerant to freezing stress than cells expressing the wild-type PRO1 gene. The approach described here could be a practical method for the breeding of proline-accumulating baker's yeasts with higher tolerance to baking-associated stresses. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Characterization of a chromosomally encoded 2,4-dichlorophenoxyacetic acid/alpha-ketoglutarate dioxygenase from Burkholderia sp. strain RASC.

    PubMed Central

    Suwa, Y; Wright, A D; Fukimori, F; Nummy, K A; Hausinger, R P; Holben, W E; Forney, L J

    1996-01-01

    The findings of previous studies indicate that the genes required for metabolism of the pesticide 2,4-dichlorophenoxyacetic acid (2,4-D) are typically encoded on broad-host-range plasmids. However, characterization of plasmid-cured strains of Burkholderia sp. strain RASC, as well as mutants obtained by transposon mutagenesis, suggested that the 2,4-D catabolic genes were located on the chromosome of this strain. Mutants of Burkholderia strain RASC unable to degrade 2,4-D (2,4-D- strains) were obtained by insertional inactivation with Tn5. One such mutant (d1) was shown to have Tn5 inserted in tfdARASC, which encodes 2,4-D/alpha-ketoglutarate dioxygenase. This is the first reported example of a chromosomally encoded tfdA. The tfdARASC gene was cloned from a library of wild-type Burkholderia strain RASC DNA and shown to express 2,4-D/alpha-ketoglutarate dioxygenase activity in Escherichia coli. The DNA sequence of the gene was determined and shown to be similar, although not identical, to those of isofunctional genes from other bacteria. Moreover, the gene product (TfdARASC) was purified and shown to be similar in molecular weight, amino-terminal sequence, and reaction mechanism to the canonical TfdA of Alcaligenes eutrophus JMP134. The data presented here indicate that tfdA genes can be found on the chromosome of some bacterial species and suggest that these catabolic genes are rather mobile and may be transferred by means other than conjugation. PMID:8779585

  16. Highly efficient gene targeting in Aspergillus oryzae industrial strains under ligD mutation introduced by genome editing: Strain-specific differences in the effects of deleting EcdR, the negative regulator of sclerotia formation.

    PubMed

    Nakamura, Hidetoshi; Katayama, Takuya; Okabe, Tomoya; Iwashita, Kazuhiro; Fujii, Wataru; Kitamoto, Katsuhiko; Maruyama, Jun-Ichi

    2017-07-11

    Numerous strains of Aspergillus oryzae are industrially used for Japanese traditional fermentation and for the production of enzymes and heterologous proteins. In A. oryzae, deletion of the ku70 or ligD genes involved in non-homologous end joining (NHEJ) has allowed high gene targeting efficiency. However, this strategy has been mainly applied under the genetic background of the A. oryzae wild strain RIB40, and it would be laborious to delete the NHEJ genes in many A. oryzae industrial strains, probably due to their low gene targeting efficiency. In the present study, we generated ligD mutants from the A. oryzae industrial strains by employing the CRISPR/Cas9 system, which we previously developed as a genome editing method. Uridine/uracil auxotrophic strains were generated by deletion of the pyrG gene, which was subsequently used as a selective marker. We examined the gene targeting efficiency with the ecdR gene, of which deletion was reported to induce sclerotia formation under the genetic background of the strain RIB40. As expected, the deletion efficiencies were high, around 60~80%, in the ligD mutants of industrial strains. Intriguingly, the effects of the ecdR deletion on sclerotia formation varied depending on the strains, and we found sclerotia-like structures under the background of the industrial strains, which have never been reported to form sclerotia. The present study demonstrates that introducing ligD mutation by genome editing is an effective method allowing high gene targeting efficiency in A. oryzae industrial strains.

  17. Impact of microvascular obstruction on the assessment of coronary flow reserve, index of microcirculatory resistance, and fractional flow reserve after ST-segment elevation myocardial infarction.

    PubMed

    Cuculi, Florim; De Maria, Giovanni Luigi; Meier, Pascal; Dall'Armellina, Erica; de Caterina, Alberto R; Channon, Keith M; Prendergast, Bernard D; Choudhury, Robin P; Choudhury, Robin C; Forfar, John C; Kharbanda, Rajesh K; Banning, Adrian P

    2014-11-04

    Invasive assessment of coronary physiology (IACP) offers important prognostic insights in ST-segment elevation myocardial infarction (STEMI) but the dynamics of coronary recovery are poorly understood. This study sought to examine the evolution of coronary flow reserve (CFR), index of microcirculatory resistance (IMR), ratio of distal coronary pressure (Pd) to mean aortic pressure (Pa), and fractional flow reserve (FFR) in patients undergoing primary percutaneous coronary intervention (PPCI). 82 patients with STEMI underwent IACP at PPCI. Repeat IACP was performed in 61 patients (74%) at day 1 and in 46 patients (56%) at 6 months. Contrast-enhanced cardiac magnetic resonance imaging (CMR) was performed in 45 patients (55%) at day 1 and in 41 patients (50%) at 6 months. Changes in IACP were compared between patients with and without microvascular obstruction (MVO) on CMR. MVO was present in 21 of 45 patients (47%). Patients with MVO had lower CFR at PPCI and day 1 (p < 0.05) and a trend toward higher IMR values (p = 0.07). At 6 months, CFR and IMR were not significantly different between the groups. Baseline flow and Pd/Pa remained stable over time but FFR reduced significantly between PPCI and 6 months (p = 0.008); this reduction was mainly observed in patients with MVO (p = 0.006) but not in those without MVO (p = 0.21). In PPCI-treated patients with STEMI, coronary microcirculation begins to recover within 24 h and recovery progresses further by 6 months. FFR significantly reduces from baseline to 6 months. The presence of MVO indicates a highly dysfunctional microcirculation. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  18. RESISTANCE AND CROSS-RESISTANCE OF ESCHERICHIA COLI S MUTANTS TO THE RADIOMIMETIC AGENT PROFLAVINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woody-Karrer, P.; Greenberg, J.

    1964-03-01

    All 50 of the first-step mutants of Escherichia coli S selected for resistance to proflavine were resistant to uv light and each of five different radiomimetic chemicals. The mutants were classified into eight types on the basis of their relative resistance to six different radiomimetic drugs and on the basis of the shape of their uv survival curves. Three of these types are identical to types previously isolated with other radiomimetic drugs; five of the types are new. A high proportion of the clones surviving proflavine treatment were phenotypically but not genetically resistant, and no strains were isolated which weremore » resistant to proflavine but were not resistant to radiation. (auth)« less

  19. Butanol production by a Clostridium beijerinckii mutant with high ferulic acid tolerance.

    PubMed

    Liu, Jun; Guo, Ting; Wang, Dong; Xu, Jiahui; Ying, Hanjie

    2016-09-01

    A mutant strain of Clostridium beijerinckii, with high tolerance to ferulic acid, was generated using atmospheric pressure glow discharge and high-throughput screening of C. beijerinckii NCIMB 8052. The mutant strain M11 produced 7.24 g/L of butanol when grown in P2 medium containing 30 g/L of glucose and 0.5 g/L of ferulic acid, which is comparable to the production from non-ferulic acid cultures (8.11 g/L of butanol). When 0.8 g/L of ferulic acid was introduced into the P2 medium, C. beijerinckii M11 grew well and produced 4.91 g/L of butanol. Both cell growth and butanol production of C. beijerinckii M11 were seriously inhibited when 0.9 g/L of ferulic acid was added into the P2 medium. Furthermore, C. beijerinckii M11 could produce 6.13 g/L of butanol using non-detoxified hemicellulosic hydrolysate from diluted sulfuric acid-treated corn fiber (SAHHC) as the carbon source. These results demonstrate that C. beijerinckii M11 has a high ferulic acid tolerance and is able to use non-detoxified SAHHC for butanol production. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  20. Prion propagation in cells expressing PrP glycosylation mutants.

    PubMed

    Salamat, Muhammad K; Dron, Michel; Chapuis, Jérôme; Langevin, Christelle; Laude, Hubert

    2011-04-01

    Infection by prions involves conversion of a host-encoded cell surface protein (PrP(C)) to a disease-related isoform (PrP(Sc)). PrP(C) carries two glycosylation sites variably occupied by complex N-glycans, which have been suggested by previous studies to influence the susceptibility to these diseases and to determine characteristics of prion strains. We used the Rov cell system, which is susceptible to sheep prions, to generate a series of PrP(C) glycosylation mutants with mutations at one or both attachment sites. We examined their subcellular trafficking and ability to convert into PrP(Sc) and to sustain stable prion propagation in the absence of wild-type PrP. The susceptibility to infection of mutants monoglycosylated at either site differed dramatically depending on the amino acid substitution. Aglycosylated double mutants showed overaccumulation in the Golgi compartment and failed to be infected. Introduction of an ectopic glycosylation site near the N terminus fully restored cell surface expression of PrP but not convertibility into PrP(Sc), while PrP(C) with three glycosylation sites conferred cell permissiveness to infection similarly to the wild type. In contrast, predominantly aglycosylated molecules with nonmutated N-glycosylation sequons, produced in cells expressing glycosylphosphatidylinositol-anchorless PrP(C), were able to form infectious PrP(Sc). Together our findings suggest that glycosylation is important for efficient trafficking of anchored PrP to the cell surface and sustained prion propagation. However, properly trafficked glycosylation mutants were not necessarily prone to conversion, thus making it difficult in such studies to discern whether the amino acid changes or glycan chain removal most influences the permissiveness to prion infection.

  1. Vaccination of rainbow trout against infectious hematopoietic necrosis (IHN) by using attenuated mutants selected by neutralizing monoclonal antibodies

    USGS Publications Warehouse

    Roberti, K.A.; Rohovec, J.S.; Winton, J.R.

    1998-01-01

    A neutralizing monoclonal antibody against infectious hematopoietic necrosis virus (IHNV) was used to select neutralization-resistant mutants from isolates of virus obtained from adult steelhead Oncorhynchus mykiss returning to the Round Butte Hatchery (RB mutants) on the Deschutes River in Oregon, USA, and from rainbow trout (nonanadromous O. mykiss) at a commercial hatchery in the Hagerman Valley of Idaho, USA (193-110 mutants). Two of the mutants, RB-1 and 193-110-4, were significantly (P 0.05) in protection among fish exposed to the RB-1 vaccine strain at a dose of 1 x 105 TCID50/mL for periods of either 1, 12, or 24 h, held for 14 d, and then challenged with the wild-type RB isolate, although the 1-h exposure seemed to be somewhat less effective. Fish were vaccinated with the RB-1 strain at 1 x 103-1 x 105 TCID50/mL for 24 h then challenged after 1, 7, 14, or 21 d with the wild-type RB isolate. No significant (P > 0.1) protection was observed at 1 d postvaccination, but the relative percent survival increased progressively at each subsequent challenge period, becoming statistically significant by day 7 (P < 0.001) and beyond. These results suggested that resistance to challenge with wild-type virus resulted from development of IHNV-specific immunity and not from viral interference or interferon induction, and they reinforce the potential of an attenuated vaccine to control this important disease.

  2. Unexpected effects of gene deletion on mercury interactions with the methylation-deficient mutant hgcAB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Hui; Hurt, Jr., Richard Ashley; Johs, Alexander

    2014-01-01

    The hgcA and hgcB gene pair is essential for mercury (Hg) methylation by certain anaerobic bacteria,1 but little is known about how deletion of hgcAB affects cell surface interactions and intracellular uptake of Hg. Here, we compare hgcAB mutants with the wild-type (WT) strains of both Geobacter sulfurreducens PCA and Desulfovibrio desulfuricans ND132 and observe differences in Hg redox transformations, adsorption, and uptake in laboratory incubation studies. In both strains, deletion of hgcAB increased the reduction of Hg(II) but decreased the oxidation of Hg(0) under anaerobic conditions. The measured cellular thiol content in hgcAB mutants was lower than the WT,more » accounting for decreased adsorption and uptake of Hg. Despite the lack of methylation activity, Hg uptake by the hgcAB continued, albeit at a slower rate than the WT. These findings demonstrate that deletion of the hgcAB gene not only eliminates Hg methylation but also alters cell physiology, resulting in changes to Hg redox reactions, sorption, and uptake by cells.« less

  3. Analysis of a mutant exhibiting conditional sorting to dense core secretory granules in Tetrahymena thermophila.

    PubMed

    Bowman, G R; Turkewitz, A P

    2001-12-01

    The formation of dense core granules (DCGs) requires both the sorting of granule contents from other secretory proteins and a postsorting maturation process. The Tetrahymena thermophila strain SB281 fails to synthesize DCGs, and previous analysis suggested that the defect lay at or near the sorting step. Because this strain represents one of the very few mutants in this pathway, we have undertaken a more complete study of the phenotype. Genetic epistasis analysis places the defect upstream of those in two other characterized Tetrahymena mutants. Using immunofluorescent detection of granule content proteins, as well as GFP tagging, we describe a novel cytoplasmic compartment to which granule contents can be sorted in growing SB281 cells. Cell fusion experiments indicate that this compartment is not a biosynthetic intermediate in DCG synthesis. Sorting in SB281 is strongly conditional with respect to growth. When cells are starved, the storage compartment is degraded and de novo synthesized granule proteins are rapidly secreted. The mutation in SB281 therefore appears to affect DCG synthesis at the level of both sorting and maturation.

  4. Analysis of a mutant exhibiting conditional sorting to dense core secretory granules in Tetrahymena thermophila.

    PubMed Central

    Bowman, G R; Turkewitz, A P

    2001-01-01

    The formation of dense core granules (DCGs) requires both the sorting of granule contents from other secretory proteins and a postsorting maturation process. The Tetrahymena thermophila strain SB281 fails to synthesize DCGs, and previous analysis suggested that the defect lay at or near the sorting step. Because this strain represents one of the very few mutants in this pathway, we have undertaken a more complete study of the phenotype. Genetic epistasis analysis places the defect upstream of those in two other characterized Tetrahymena mutants. Using immunofluorescent detection of granule content proteins, as well as GFP tagging, we describe a novel cytoplasmic compartment to which granule contents can be sorted in growing SB281 cells. Cell fusion experiments indicate that this compartment is not a biosynthetic intermediate in DCG synthesis. Sorting in SB281 is strongly conditional with respect to growth. When cells are starved, the storage compartment is degraded and de novo synthesized granule proteins are rapidly secreted. The mutation in SB281 therefore appears to affect DCG synthesis at the level of both sorting and maturation. PMID:11779800

  5. Enhancement of Echinocandin B Production by a UV- and Microwave-Induced Mutant of Aspergillus nidulans with Precursor- and Biotin-Supplying Strategy.

    PubMed

    Hu, Zhong-Ce; Peng, Li-Yuan; Zheng, Yu-Guo

    2016-08-01

    Echinocandin B belongs to lipopeptide antifungal antibiotic bearing five types of direct precursor amino acids including proline, ornithine, tyrosine, threonine, and leucine. The objective of this study is to screen over-producing mutant in order to improve echinocandin B production; a stable mutant Aspergillus nidulans ZJB12073, which can use fructose as optimal carbon source instead of expensive mannitol, was selected from thousand isolates after several cycles of UV and microwave irradiation in turn. The results showed that mutant strain ZJB12073 exhibited 1.9-fold improvement in echinocandin B production to 1656.3 ± 40.3 mg/L when compared with the parent strain. Furthermore, the effects of precursor amino acids and some chemicals on echinocandin B biosynthesis in A. nidulans were investigated, respectively. Tyrosine, leucine, and biotin were selected as key factors to optimize the medium employing uniform design method. The results showed that the optimized fermentation medium provided another 63.1 % increase to 2701.6 ± 31.7 mg/L in final echinocandin B concentration compared to that of unoptimized medium.

  6. Role of the lpxM lipid A biosynthesis pathway gene in pathogenicity of avian pathogenic Escherichia coli strain E058 in a chicken infection model.

    PubMed

    Xu, Huiqing; Ling, Jielu; Gao, Qingqing; He, Hongbo; Mu, Xiaohui; Yan, Zhen; Gao, Song; Liu, Xiufan

    2013-10-25

    Lipopolysaccharide (LPS) is a major surface component of avian pathogenic Escherichia coli (APEC), and is a possible virulence factor in avian infections caused by this organism. The contribution of the lpxM gene, which encodes a myristoyl transferase that catalyzes the final step in lipid A biosynthesis, to the pathogenicity of APEC has not previously been assessed. In this study, an isogenic lpxM mutant, E058ΔlpxM, was constructed in APEC O2 strain E058 and then characterized. Structural analysis of lipid A from the parental strain and derived mutant showed that E058ΔlpxM lacked one myristoyl (C14:0) on its lipid A molecules. No differences were observed between the mutant and wild-type in a series of tests including growth rate in different broths and ability to survive in specific-pathogen-free chicken serum. However, the mutant showed significantly reduced invasion and intracellular survival in the avian macrophage HD11 cell line (P<0.05). Nitric oxide production reduction (P<0.05) and cytokine gene expression downregulation (P<0.05 or P<0.01) also showed in HD11 treated with E058ΔlpxM-derived LPS compared with that in cells treated with E058-derived LPS at different times. Compared to the parental strain E058, E058ΔlpxM had a significant reduction in bacterial load in heart (P<0.01), liver (P<0.01), spleen (P<0.01), lung (P<0.05), and kidney (P<0.05) tissues. The histopathological lesions in visceral organs of birds challenged with the wild-type strain were more severe than in birds infected with the mutant. However, the E058ΔlpxM mutant showed a similar sensitivity pattern to the parental strain following exposure to several hydrophobic reagents. These results indicate that the lpxM gene is important for the pathogenicity and biological activity of APEC strain E058. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Strain and culture medium optimization for production enhancement of prodiginines from marine-derived Streptomyces sp. GQQ-10

    NASA Astrophysics Data System (ADS)

    Li, Xueping; Zhang, Guojian; Zhu, Tianjiao; Li, Dehai; Gu, Qianqun

    2012-09-01

    A mutant (GQQ-M6) of a Sponge-Derived streptomyces sp. GQQ-10 obtained by UV-induced mutation was used for producing prodiginines (PGs). Single factor experiments and orthogonal array design (OAD) methods were employed for medium optimization. In the single factor method, the effects of soluble starch, glucose, soybean flour, yeast extract and sodium acetate on PGs production were investigated individually. In the subsequent OAD experiments, the concentrations of these 5 key nutritional components combined with salinity were further adjusted. The mutant strain GQQ-M6 gave a 2.2-fold higher PGs production than that of the parent strain; OAD experiments offered a PGs yield of 61mg L-1, which was 10 times higher than that of the initial GQQ-10 strain under the original cultivation mode.

  8. From crude glycerol to carotenoids by using a Rhodotorula glutinis mutant.

    PubMed

    Cutzu, Raffaela; Coi, Annalisa; Rosso, Fulvia; Bardi, Laura; Ciani, Maurizio; Budroni, Marilena; Zara, Giacomo; Zara, Severino; Mannazzu, Ilaria

    2013-06-01

    In this work eighteen red yeasts were screened for carotenoids production on glycerol containing medium. Strain C2.5t1 of Rhodotorula glutinis, that showed the highest productivity, was UV mutagenized. Mutant 400A15, that exhibited a 280 % increase in β-carotene production in respect to the parental strain, was selected. A central composite design was applied to 400A15 to optimize carotenoids and biomass productions. Regression analyses of the quadratic polynomial equations obtained (R(2) = 0.87 and 0.94, for carotenoids and biomass, respectively) suggest that the models are reliable and significant (P < 0.0001) in the prediction of carotenoids and biomass productions on the basis of the concentrations of crude glycerol, yeast extract and peptone. Accordingly, total carotenoids production achieved (14.07 ± 1.45 mg l(-1)) under optimized growth conditions was not statistically different from the maximal predicted (14.64 ± 1.57 mg l(-1)) (P < 0.05), and it was about 100 % higher than that obtained under un-optimized conditions. Therefore mutant 400A15 may represent a biocatalyst of choice for the bioconversion of crude glycerol into value-added metabolites, and a tool for the valorization of this by-product of the biodiesel industry.

  9. Phenotypic and genotypic characteristics associated with biofilm formation in clinical isolates of atypical enteropathogenic Escherichia coli (aEPEC) strains.

    PubMed

    Nascimento, Heloisa H; Silva, Lucas E P; Souza, Renata T; Silva, Neusa P; Scaletsky, Isabel C A

    2014-07-10

    Biofilm formation by enteropathogenic Escherichia coli (EPEC) have been recently described in the prototype typical EPEC E2348/69 strain and in an atypical EPEC O55:H7 strain. In this study, we sought to evaluate biofilm formation in a collection of 126 atypical EPEC strains isolated from 92 diarrheic and 34 nondiarrheic children, belonging to different serotypes. The association of biofilm formation and adhesin-related genes were also investigated. Biofilm formation occurred in 37 (29%) strains of different serotypes, when the assays were performed at 26°C and 37°C for 24 h. Among these, four strains (A79, A87, A88, and A111) formed a stronger biofilm than did the others. The frequency of biofilm producers was higher among isolates from patients compared with isolates from controls (34.8% vs 14.7%; P = 0.029). An association was found between biofilm formation and expression of type 1 fimbriae and curli (P < 0.05). Unlike the previously described aEPEC O55:H7, one aEPEC O119:HND strain (A111) formed a strong biofilm and pellicle at the air-liquid interface, but did not express curli. Transposon mutagenesis was used to identify biofilm-deficient mutants. Transposon insertion sequences of six mutants revealed similarity with type 1 fimbriae (fimC, fimD, and fimH), diguanylate cyclase, ATP synthase F1, beta subunit (atpD), and the uncharacterized YjiC protein. All these mutants were deficient in biofilm formation ability. This study showed that the ability to adhere to abiotic surfaces and form biofilm is present in an array of aEPEC strains. Moreover, it seems that the ability to form biofilms is associated with the presence of type 1 fimbriae and diguanylate cyclase. Characterization of additional biofilm formation mutants may reveal other mechanisms involved in biofilm formation and bring new insights into aEPEC adhesion and pathogenesis.

  10. Metabolic pathway profiling of mitochondrial respiratory chain mutants in C. elegans

    PubMed Central

    MJ, Falk; Z, Zhang; Rosenjack; Nissim; E, Daikhin; Nissim; MM, Sedensky; M, Yudkoff; PG, Morgan

    2008-01-01

    C. elegans affords a model of primary mitochondrial dysfunction that provides insight into cellular adaptations which accompany mutations in nuclear gene that encode mitochondrial proteins. To this end, we characterized genome-wide expression profiles of C. elegans strains with mutations in nuclear-encoded subunits of respiratory chain complexes. Our goal was to detect concordant changes among clusters of genes that comprise defined metabolic pathways. Results indicate that respiratory chain mutants significantly upregulate a variety of basic cellular metabolic pathways involved in carbohydrate, amino acid, and fatty acid metabolism, as well as cellular defense pathways such as the metabolism of P450 and glutathione. To further confirm and extend expression analysis findings, quantitation of whole worm free amino acid levels was performed in C. elegans mitochondrial mutants for subunits of complexes I, II, and III. Significant differences were seen for 13 of 16 amino acid levels in complex I mutants compared with controls, as well as overarching similarities among profiles of complex I, II, and III mutants compared with controls. The specific pattern of amino acid alterations observed provides novel evidence to suggest that an increase in glutamate-linked transamination reactions caused by the failure of NAD+ dependent oxidation of ketoacids occurs in primary mitochondrial respiratory chain mutants. Recognition of consistent alterations among patterns of nuclear gene expression for multiple biochemical pathways and in quantitative amino acid profiles in a translational genetic model of mitochondrial dysfunction allows insight into the complex pathogenesis underlying primary mitochondrial disease. Such knowledge may enable the development of a metabolomic profiling diagnostic tool applicable to human mitochondrial disease. PMID:18178500

  11. Mutations in Genes Involved in the Flagellar Export Apparatus of the Solvent-Tolerant Pseudomonas putida DOT-T1E Strain Impair Motility and Lead to Hypersensitivity to Toluene Shocks

    PubMed Central

    Segura, Ana; Duque, Estrella; Hurtado, Ana; Ramos, Juan L.

    2001-01-01

    Pseudomonas putida DOT-T1E is a solvent-tolerant strain able to grow in the presence of 1% (vol/vol) toluene in the culture medium. Random mutagenesis with mini-Tn5-′phoA-Km allowed us to isolate a mutant strain (DOT-T1E-42) that formed blue colonies on Luria-Bertani medium supplemented with 5-bromo-4-chloro-3-indolylphosphate and that, in contrast to the wild-type strain, was unable to tolerate toluene shocks (0.3%, vol/vol). The mutant strain exhibited patterns of tolerance or sensitivity to a number of antibiotics, detergents, and chelating agents similar to those of the wild-type strain. The mutation in this strain therefore seemed to specifically affect toluene tolerance. Cloning and sequencing of the mutation revealed that the mini-Tn5-′phoA-Km was inserted within the fliP gene, which is part of the fliLMNOPQRflhBA cluster, a set of genes that encode flagellar structure components. FliP is involved in the export of flagellar proteins, and in fact, the P. putida fliP mutant was nonmotile. The finding that, after replacing the mutant allele with the wild-type one, the strain recovered the wild-type pattern of toluene tolerance and motility unequivocally assigned FliP a function in solvent resistance. An flhB knockout mutant, another gene component of the flagellar export apparatus, was also nonmotile and hypersensitive to toluene. In contrast, a nonpolar mutation at the fliL gene, which encodes a cytoplasmic membrane protein associated with the flagellar basal body, yielded a nonmotile yet toluene-resistant strain. The results are discussed regarding a possible role of the flagellar export apparatus in the transport of one or more proteins necessary for toluene tolerance in P. putida DOT-T1E to the periplasm. PMID:11418551

  12. Genetic Characterization of the Carotenoid Biosynthetic Pathway in Methylobacterium extorquens AM1 and Isolation of a Colorless Mutant

    PubMed Central

    Van Dien, Stephen J.; Marx, Christopher J.; O'Brien, Brooke N.; Lidstrom, Mary E.

    2003-01-01

    Genomic searches were used to reconstruct the putative carotenoid biosynthesis pathway in the pink-pigmented facultative methylotroph Methylobacterium extorquens AM1. Four genes for putative phytoene desaturases were identified. A colorless mutant was obtained by transposon mutagenesis, and the insertion was shown to be in one of the putative phytoene desaturase genes. Mutations in the other three did not affect color. The tetracycline marker was removed from the original transposon mutant, resulting in a pigment-free strain with wild-type growth properties useful as a tool for future experiments. PMID:14660416

  13. Genetic characterization of the carotenoid biosynthetic pathway in Methylobacterium extorquens AM1 and isolation of a colorless mutant.

    PubMed

    Van Dien, Stephen J; Marx, Christopher J; O'Brien, Brooke N; Lidstrom, Mary E

    2003-12-01

    Genomic searches were used to reconstruct the putative carotenoid biosynthesis pathway in the pink-pigmented facultative methylotroph Methylobacterium extorquens AM1. Four genes for putative phytoene desaturases were identified. A colorless mutant was obtained by transposon mutagenesis, and the insertion was shown to be in one of the putative phytoene desaturase genes. Mutations in the other three did not affect color. The tetracycline marker was removed from the original transposon mutant, resulting in a pigment-free strain with wild-type growth properties useful as a tool for future experiments.

  14. Phenotypic characterization of ten methanol oxidation (Mox) mutant classes in methylobacterium AM1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nunn, D.N.; Lidstrom, M.E.

    Twenty-five methanol oxidation mutants of the facultative methylotroph Methylobacterium strain AM1 have been characterized by complementation analysis and assigned to ten complementation groups, Mox A1,A2,A3 and B-H. We have characterized each of the mutants belonging to the ten Mox complementation groups by PMS-DCPIP dye linked methanol dehydrogenase activity, by methanol-dependent whole cell oxygen consumption, by the presence or absence of methanol dehydrogenase protein by SDS-polyacrylamide gels and Western blotting, by the absorption spectra of purified mutant methanol dehydrogenase proteins and by the presence or absence of the soluble cytochrome c proteins of Methylobacterium AM1. We propose functions for each ofmore » the genes deficient in the mutants of the ten Mox complementation groups. These functions include two linked genes that encode the methanol dehydrogenase structural protein and the soluble cytochrome c/sub L/, a gene encoding a secretion function essential for the synthesis and export of methanol dehydrogenase and cytochrome c/sub L/, three gene functions responsible for the proper association of the PQQ prosthetic group with the methanol dehydrogenase apoprotein and four positive regulatory gene functions controlling the expression of the ability to oxidize methanol. 24 refs., 5 figs., 2 tabs.« less

  15. Brucella Rough Mutant Induce Macrophage Death via Activating IRE1α Pathway of Endoplasmic Reticulum Stress by Enhanced T4SS Secretion

    PubMed Central

    Li, Peng; Tian, Mingxing; Bao, Yanqing; Hu, Hai; Liu, Jiameng; Yin, Yi; Ding, Chan; Wang, Shaohui; Yu, Shengqing

    2017-01-01

    Brucella is a Gram-negative facultative intracellular pathogen that causes the worldwide zoonosis, known as brucellosis. Brucella virulence relies mostly on its ability to invade and replicate within phagocytic cells. The type IV secretion system (T4SS) and lipopolysaccharide are two major Brucella virulence factors. Brucella rough mutants reportedly induce the death of infected macrophages, which is T4SS dependent. However, the underlying molecular mechanism remains unclear. In this study, the T4SS secretion capacities of Brucella rough mutant and its smooth wild-type strain were comparatively investigated, by constructing the firefly luciferase fused T4SS effector, BPE123 and VceC. In addition, quantitative real-time PCR and western blotting were used to analyze the T4SS expression. The results showed that T4SS expression and secretion were enhanced significantly in the Brucella rough mutant. We also found that the activity of the T4SS virB operon promoter was notably increased in the Brucella rough mutant, which depends on quorum sensing-related regulators of VjbR upregulation. Cell infection and cell death assays revealed that deletion of vjbR in the Brucella rough mutant absolutely abolished cytotoxicity within macrophages by downregulating T4SS expression. This suggests that up-regulation of T4SS promoted by VjbR in rough mutant ΔrfbE contribute to macrophage death. In addition, we found that the Brucella rough mutant induce macrophage death via activating IRE1α pathway of endoplasmic reticulum stress. Taken together, our study provide evidence that in comparison to the Brucella smooth wild-type strain, VjbR upregulation in the Brucella rough mutant increases transcription of the virB operon, resulting in overexpression of the T4SS gene, accompanied by the over-secretion of effecter proteins, thereby causing the death of infected macrophages via activating IRE1α pathway of endoplasmic reticulum stress, suggesting novel insights into the molecular

  16. Brucella Rough Mutant Induce Macrophage Death via Activating IRE1α Pathway of Endoplasmic Reticulum Stress by Enhanced T4SS Secretion.

    PubMed

    Li, Peng; Tian, Mingxing; Bao, Yanqing; Hu, Hai; Liu, Jiameng; Yin, Yi; Ding, Chan; Wang, Shaohui; Yu, Shengqing

    2017-01-01

    Brucella is a Gram-negative facultative intracellular pathogen that causes the worldwide zoonosis, known as brucellosis. Brucella virulence relies mostly on its ability to invade and replicate within phagocytic cells. The type IV secretion system (T4SS) and lipopolysaccharide are two major Brucella virulence factors. Brucella rough mutants reportedly induce the death of infected macrophages, which is T4SS dependent. However, the underlying molecular mechanism remains unclear. In this study, the T4SS secretion capacities of Brucella rough mutant and its smooth wild-type strain were comparatively investigated, by constructing the firefly luciferase fused T4SS effector, BPE123 and VceC. In addition, quantitative real-time PCR and western blotting were used to analyze the T4SS expression. The results showed that T4SS expression and secretion were enhanced significantly in the Brucella rough mutant. We also found that the activity of the T4SS virB operon promoter was notably increased in the Brucella rough mutant, which depends on quorum sensing-related regulators of VjbR upregulation. Cell infection and cell death assays revealed that deletion of vjbR in the Brucella rough mutant absolutely abolished cytotoxicity within macrophages by downregulating T4SS expression. This suggests that up-regulation of T4SS promoted by VjbR in rough mutant Δ rfbE contribute to macrophage death. In addition, we found that the Brucella rough mutant induce macrophage death via activating IRE1α pathway of endoplasmic reticulum stress. Taken together, our study provide evidence that in comparison to the Brucella smooth wild-type strain, VjbR upregulation in the Brucella rough mutant increases transcription of the virB operon, resulting in overexpression of the T4SS gene, accompanied by the over-secretion of effecter proteins, thereby causing the death of infected macrophages via activating IRE1α pathway of endoplasmic reticulum stress, suggesting novel insights into the molecular

  17. Eye pigments in wild-type and eye-color mutant strains of the African malaria vector Anopheles gambiae.

    PubMed

    Beard, C B; Benedict, M Q; Primus, J P; Finnerty, V; Collins, F H

    1995-01-01

    Chromatographic analysis of pigments extracted from wild-type eyes of the mosquito Anopheles gambiae reveals the presence of the ommatin precursor 3-hydroxykynurenine, its transamination derivative xanthurenic acid, and a dark, red-brown pigment spot that probably is composed of two or more low mobility xanthommatins. No colored or fluorescent pteridines are evident. Mosquitoes homozygous for an autosomal recessive mutation at the red-eye (r) locus have a brick-red eye color in larvae, pupae, and young adults, in contrast to the almost black color of the wild eye. Mosquitoes homozygous for this mutant allele have levels of ommochrome precursors that are indistinguishable from the wild-type, but the low-mobility xanthommatin spot is ochre-brown in color rather than red-brown as in the wild-type. Mosquitoes with two different mutant alleles at the X-linked pink-eye locus (p, which confers a pink eye color, and pw, which confers a white eye phenotype in homozygotes or hemizygous males) have normal levels of ommochrome precursors but no detectable xanthommatins. Mosquitoes homozygous for both the r and p mutant alleles have apricot-colored eyes and show no detectable xanthommatins. Both the pink-eye and red-eye mutations appear to involve defects in the transport into or assembly of pigments in the membrane-bound pigment granules rather then defects in ommochrome synthesis.

  18. Restoring de novo Coenzyme Q biosynthesis in Caenorhabditis elegans coq-3 mutants yields profound rescue compared to exogenous Coenzyme Q supplementation

    PubMed Central

    Gomez, Fernando; Saiki, Ryoichi; Chin, Randall; Srinivasan, Chandra; Clarke, Catherine F.

    2012-01-01

    Coenzyme Q (ubiquinone or Q) is an essential lipid component of the mitochondrial electron transport chain. In Caenorhabditis elegans Q biosynthesis involves at least nine steps, including the hydroxylation of the hydroquinone ring by CLK-1 and two O-methylation steps mediated by COQ-3. We characterize two C. elegans coq-3 deletion mutants, and show that while each has defects in Q synthesis, their phenotypes are distinct. First generation homozygous coq-3(ok506) mutants are fertile when fed the standard lab diet of Q-replete OP50 E. coli, but their second generation homozygous progeny do not reproduce. In contrast, the coq-3(qm188) deletion mutant remains sterile when fed Q-replete OP50. Quantitative PCR analyses suggest that the longer qm188 deletion may alter expression of the flanking nuo-3 and gdi-1 genes, located 5′ and 3′, respectively of coq-3 within an operon. We surmise that variable expression of nuo-3, a subunit of complex I, or of gdi-1, a guanine nucleotide dissociation inhibitor, may act in combination with defects in Q biosynthesis to produce a more severe phenotype. The phenotypes of both coq-3 mutants are more drastic as compared to the C. elegans clk-1 mutants. When fed OP50, clk-1 mutants reproduce for many generations, but show reduced fertility, slow behaviors, and enhanced life span. The coq-3 and clk-1 mutants all show arrested development and are sterile when fed the Q-deficient E. coli strain GD1 (harboring a mutation in the ubiG gene). However, unlike clk-1 mutant worms, neither coq-3 mutant strain responded to dietary supplementation with purified exogenous Q10. Here we show that the Q9 content can be determined in lipid extracts from just 200 individual worms, enabling the determination of Q content in the coq-3 mutants unable to reproduce. An extra-chromosomal array expressing wild-type C. elegans coq-3 rescued fertility of both coq-3 mutants and partially restored steady-state levels of COQ-3 polypeptide and Q9 content, indicating

  19. Restoring de novo coenzyme Q biosynthesis in Caenorhabditis elegans coq-3 mutants yields profound rescue compared to exogenous coenzyme Q supplementation.

    PubMed

    Gomez, Fernando; Saiki, Ryoichi; Chin, Randall; Srinivasan, Chandra; Clarke, Catherine F

    2012-09-10

    Coenzyme Q (ubiquinone or Q) is an essential lipid component of the mitochondrial electron transport chain. In Caenorhabditis elegans Q biosynthesis involves at least nine steps, including the hydroxylation of the hydroquinone ring by CLK-1 and two O-methylation steps mediated by COQ-3. We characterize two C. elegans coq-3 deletion mutants, and show that while each has defects in Q synthesis, their phenotypes are distinct. First generation homozygous coq-3(ok506) mutants are fertile when fed the standard lab diet of Q-replete OP50 Escherichia coli, but their second generation homozygous progeny does not reproduce. In contrast, the coq-3(qm188) deletion mutant remains sterile when fed Q-replete OP50. Quantitative PCR analyses suggest that the longer qm188 deletion may alter expression of the flanking nuo-3 and gdi-1 genes, located 5' and 3', respectively of coq-3 within an operon. We surmise that variable expression of nuo-3, a subunit of complex I, or of gdi-1, a guanine nucleotide dissociation inhibitor, may act in combination with defects in Q biosynthesis to produce a more severe phenotype. The phenotypes of both coq-3 mutants are more drastic as compared to the C. elegans clk-1 mutants. When fed OP50, clk-1 mutants reproduce for many generations, but show reduced fertility, slow behaviors, and enhanced life span. The coq-3 and clk-1 mutants all show arrested development and are sterile when fed the Q-deficient E. coli strain GD1 (harboring a mutation in the ubiG gene). However, unlike clk-1 mutant worms, neither coq-3 mutant strain responded to dietary supplementation with purified exogenous Q(10). Here we show that the Q(9) content can be determined in lipid extracts from just 200 individual worms, enabling the determination of Q content in the coq-3 mutants unable to reproduce. An extra-chromosomal array expressing wild-type C. elegans coq-3 rescued fertility of both coq-3 mutants and partially restored steady-state levels of COQ-3 polypeptide and Q(9

  20. Construction of a psb C deletion strain in Synechocystis 6803.

    PubMed

    Goldfarb, N; Knoepfle, N; Putnam-Evans, C

    1997-01-01

    Synechocystis 6803 is a cyanobacterium that carries out-oxygenic photosynthesis. We are interested in the introduction of mutations in the large extrinsic loop region of the CP43 protein of Photosystem II (PSII). CP43 appears to be required for the stable assembly of the PSII complex and also appears to play a role in photosynthetic oxygen evolution. Deletion of short segments of the large extrinsic loop results in mutants incapable of evolving oxygen. Alterations in psbC, the gene encoding CP43, are introduced into Synechocystis 6803 by transformation and homologous recombination. Specifically, plasmid constructs bearing the site-directed mutations are introduced into a deletion strain where the portion of the gene encoding the area of mutation has been deleted and replaced by a gene conferring antibiotic resistance. We have constructed a deletion strain of Synechocystis appropriate for the introduction of mutations in the large extrinsic loop of CP43 and have used it successfully to produce site-directed mutants.

  1. Screen for Leukotoxin Mutants in Aggregatibacter actinomycetemcomitans: Genes of the Phosphotransferase System Are Required for Leukotoxin Biosynthesis▿

    PubMed Central

    Isaza, Maria P.; Duncan, Matthew S.; Kaplan, Jeffrey B.; Kachlany, Scott C.

    2008-01-01

    Aggregatibacter (formerly Actinobacillus) actinomycetemcomitans is a pathogen that causes localized aggressive periodontitis and extraoral infections including infective endocarditis. Recently, we reported that A. actinomycetemcomitans is beta-hemolytic on certain growth media due to the production of leukotoxin (LtxA). Based on this observation and our ability to generate random transposon insertions in A. actinomycetemcomitans, we developed and carried out a rapid screen for LtxA mutants. Using PCR, we mapped several of the mutations to genes that are known or predicted to be required for LtxA production, including ltxA, ltxB, ltxD, and tdeA. In addition, we identified an insertion in a gene previously not recognized to be involved in LtxA biosynthesis, ptsH. ptsH encodes the protein HPr, a phosphocarrier protein that is part of the sugar phosphotransferase system. HPr results in the phosphorylation of other proteins and ultimately in the activation of adenylate cyclase and cyclic AMP (cAMP) production. The ptsH mutant showed only partial hemolysis on blood agar and did not produce LtxA. The phenotype was complemented by supplying wild-type ptsH in trans, and real-time PCR analysis showed that the ptsH mutant produced approximately 10-fold less ltxA mRNA than the wild-type strain. The levels of cAMP in the ptsH mutant were significantly lower than in the wild-type strain, and LtxA production could be restored by adding exogenous cAMP to the culture. PMID:18541661

  2. Characterization of a Mutant Deficient for Ammonium and Nitric Oxide Signalling in the Model System Chlamydomonas reinhardtii

    PubMed Central

    Sanz-Luque, Emanuel; Ocaña-Calahorro, Francisco; Galván, Aurora; Fernández, Emilio; de Montaigu, Amaury

    2016-01-01

    The ubiquitous signalling molecule Nitric Oxide (NO) is characterized not only by the variety of organisms in which it has been described, but also by the wealth of biological processes that it regulates. In contrast to the expanding repertoire of functions assigned to NO, however, the mechanisms of NO action usually remain unresolved, and genes that work within NO signalling cascades are seldom identified. A recent addition to the list of known NO functions is the regulation of the nitrogen assimilation pathway in the unicellular alga Chlamydomonas reinhardtii, a well-established model organism for genetic and molecular studies that offers new possibilities in the search for mediators of NO signalling. By further exploiting a collection of Chlamydomonas insertional mutant strains originally isolated for their insensitivity to the ammonium (NH4+) nitrogen source, we found a mutant which, in addition to its ammonium insensitive (AI) phenotype, was not capable of correctly sensing the NO signal. Similarly to what had previously been described in the AI strain cyg56, the expression of nitrogen assimilation genes in the mutant did not properly respond to treatments with various NO donors. Complementation experiments showed that NON1 (NO Nitrate 1), a gene that encodes a protein containing no known functional domain, was the gene underlying the mutant phenotype. Beyond the identification of NON1, our findings broadly demonstrate the potential for Chlamydomonas reinhardtii to be used as a model system in the search for novel components of gene networks that mediate physiological responses to NO. PMID:27149516

  3. Differential composition of culture supernatants from wild-type Brucella abortus and its isogenic virB mutants.

    PubMed

    Delpino, M Victoria; Comerci, Diego J; Wagner, Mary Ann; Eschenbrenner, Michel; Mujer, Cesar V; Ugalde, Rodolfo A; Fossati, Carlos A; Baldi, Pablo C; Delvecchio, Vito G

    2009-07-01

    The virB genes coding type IV secretion system are necessary for the intracellular survival and replication of Brucella spp. In this study, extracellular proteins from B. abortus 2308 (wild type, WT) and its isogenic virB10 polar mutant were compared. Culture supernatants harvested in the early stationary phase were concentrated and subjected to 2D electrophoresis. Spots present in the WT strain but absent in the virB10 mutant (differential spots) were considered extracellular proteins released in a virB-related manner, and were identified by MALDI-TOF analysis and matching with Brucella genomes. Among the 11 differential proteins identified, DnaK chaperone (Hsp70), choloylglycine hydrolase (CGH) and a peptidyl-prolyl cis-trans isomerase (PPIase) were chosen for further investigation because of their homology with extracellular and/or virulence factors from other bacteria. The three proteins were obtained in recombinant form and specific monoclonal antibodies (mAbs) were prepared. By Western blot with these mAbs, the three proteins were detected in supernatants from the WT but not in those from the virB10 polar mutant or from strains carrying non-polar mutations in virB10 or virB11 genes. These results suggest that the expression of virB genes affects the extracellular release of DnaK, PPIase and CGH, and possibly other proteins from B. abortus.

  4. Interrelations between Glycine Betaine Catabolism and Methionine Biosynthesis in Sinorhizobium meliloti Strain 102F34

    PubMed Central

    Barra, Lise; Fontenelle, Catherine; Ermel, Gwennola; Trautwetter, Annie; Walker, Graham C.; Blanco, Carlos

    2006-01-01

    Methionine is produced by methylation of homocysteine. Sinorhizobium meliloti 102F34 possesses only one methionine synthase, which catalyzes the transfer of a methyl group from methyl tetrahydrofolate to homocysteine. This vitamin B12-dependent enzyme is encoded by the metH gene. Glycine betaine can also serve as an alternative methyl donor for homocysteine. This reaction is catalyzed by betaine-homocysteine methyl transferase (BHMT), an enzyme that has been characterized in humans and rats. An S. meliloti gene whose product is related to the human BHMT enzyme has been identified and named bmt. This enzyme is closely related to mammalian BHMTs but has no homology with previously described bacterial betaine methyl transferases. Glycine betaine inhibits the growth of an S. meliloti bmt mutant in low- and high-osmotic strength media, an effect that correlates with a decrease in the catabolism of glycine betaine. This inhibition was not observed with other betaines, like homobetaine, dimethylsulfoniopropionate, and trigonelline. The addition of methionine to the growth medium allowed a bmt mutant to recover growth despite the presence of glycine betaine. Methionine also stimulated glycine betaine catabolism in a bmt strain, suggesting the existence of another catabolic pathway. Inactivation of metH or bmt did not affect the nodulation efficiency of the mutants in the 102F34 strain background. Nevertheless, a metH strain was severely defective in competing with the wild-type strain in a coinoculation experiment. PMID:17015658

  5. Azospirillum brasilense and Azospirillum lipoferum Hydrolyze Conjugates of GA20 and Metabolize the Resultant Aglycones to GA1 in Seedlings of Rice Dwarf Mutants1

    PubMed Central

    Cassán, Fabricio; Bottini, Rubén; Schneider, Gernot; Piccoli, Patricia

    2001-01-01

    Azospirillum species are plant growth-promotive bacteria whose beneficial effects have been postulated to be partially due to production of phytohormones, including gibberellins (GAs). In this work, Azospirillum brasilense strain Cd and Azospirillum lipoferum strain USA 5b promoted sheath elongation growth of two single gene GA-deficient dwarf rice (Oryza sativa) mutants, dy and dx, when the inoculated seedlings were supplied with [17,17-2H2]GA20-glucosyl ester or [17,17- 2H2]GA20-glucosyl ether. Results of capillary gas chromatography-mass spectrometry analysis show that this growth was due primarily to release of the aglycone [17,17-2H2]GA20 and its subsequent 3β-hydroxylation to [17,17-2H2]GA1 by the microorganism for the dy mutant, and by both the rice plant and microorganism for the dx mutant. PMID:11299384

  6. Phosphorylation of mononucleotides and formation of cytidine 5'-diphosphate-choline and sugar nucleotides by respiration-deficient mutants of yeasts.

    PubMed Central

    Kimura, A; Hirose, K; Kariya, Y; Nagai, S

    1976-01-01

    Respiration-deficient mutants (Rho-, petite) of Saccharomyces carlsbergensis were obtained by treatment with trypaflavin (euflavine). Dried cells of these mutants phosphorylated mononucleotides to their triphosphates and further formed not only cytidine 5'-diphosphate-choline, but also sugar nucleotides, such as uridine 5'-diphosphate-glucose, guanosine 5'-diphosphate-mannose, etc. The activities were the same or slightly greater than those of the wild strain. These results showed that energy (adenosine 5'-triphosphate) necessary for phosphorylation of mononucleotides was sufficiently supplied by the glycolysis system. PMID:1245470

  7. Generation and analysis of a barcode-tagged insertion mutant library in the fission yeast Schizosaccharomyces pombe

    PubMed Central

    2012-01-01

    Background Barcodes are unique DNA sequence tags that can be used to specifically label individual mutants. The barcode-tagged open reading frame (ORF) haploid deletion mutant collections in the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe allow for high-throughput mutant phenotyping because the relative growth of mutants in a population can be determined by monitoring the proportions of their associated barcodes. While these mutant collections have greatly facilitated genome-wide studies, mutations in essential genes are not present, and the roles of these genes are not as easily studied. To further support genome-scale research in S. pombe, we generated a barcode-tagged fission yeast insertion mutant library that has the potential of generating viable mutations in both essential and non-essential genes and can be easily analyzed using standard molecular biological techniques. Results An insertion vector containing a selectable ura4+ marker and a random barcode was used to generate a collection of 10,000 fission yeast insertion mutants stored individually in 384-well plates and as six pools of mixed mutants. Individual barcodes are flanked by Sfi I recognition sites and can be oligomerized in a unique orientation to facilitate barcode sequencing. Independent genetic screens on a subset of mutants suggest that this library contains a diverse collection of single insertion mutations. We present several approaches to determine insertion sites. Conclusions This collection of S. pombe barcode-tagged insertion mutants is well-suited for genome-wide studies. Because insertion mutations may eliminate, reduce or alter the function of essential and non-essential genes, this library will contain strains with a wide range of phenotypes that can be assayed by their associated barcodes. The design of the barcodes in this library allows for barcode sequencing using next generation or standard benchtop cloning approaches. PMID:22554201

  8. Generation and analysis of a barcode-tagged insertion mutant library in the fission yeast Schizosaccharomyces pombe.

    PubMed

    Chen, Bo-Ruei; Hale, Devin C; Ciolek, Peter J; Runge, Kurt W

    2012-05-03

    Barcodes are unique DNA sequence tags that can be used to specifically label individual mutants. The barcode-tagged open reading frame (ORF) haploid deletion mutant collections in the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe allow for high-throughput mutant phenotyping because the relative growth of mutants in a population can be determined by monitoring the proportions of their associated barcodes. While these mutant collections have greatly facilitated genome-wide studies, mutations in essential genes are not present, and the roles of these genes are not as easily studied. To further support genome-scale research in S. pombe, we generated a barcode-tagged fission yeast insertion mutant library that has the potential of generating viable mutations in both essential and non-essential genes and can be easily analyzed using standard molecular biological techniques. An insertion vector containing a selectable ura4+ marker and a random barcode was used to generate a collection of 10,000 fission yeast insertion mutants stored individually in 384-well plates and as six pools of mixed mutants. Individual barcodes are flanked by Sfi I recognition sites and can be oligomerized in a unique orientation to facilitate barcode sequencing. Independent genetic screens on a subset of mutants suggest that this library contains a diverse collection of single insertion mutations. We present several approaches to determine insertion sites. This collection of S. pombe barcode-tagged insertion mutants is well-suited for genome-wide studies. Because insertion mutations may eliminate, reduce or alter the function of essential and non-essential genes, this library will contain strains with a wide range of phenotypes that can be assayed by their associated barcodes. The design of the barcodes in this library allows for barcode sequencing using next generation or standard benchtop cloning approaches.

  9. Regioselective alkane hydroxylation with a mutant CYP153A6 enzyme

    DOEpatents

    Koch, Daniel J.; Arnold, Frances H.

    2013-01-29

    Cytochrome P450 CYP153A6 from Myobacterium sp. strain HXN1500 was engineered using in-vivo directed evolution to hydroxylate small-chain alkanes regioselectively. Mutant CYP153A6-BMO1 selectively hydroxylates butane and pentane at the terminal carbon to form 1-butanol and 1-pentanol, respectively, at rates greater than wild-type CYP153A6 enzymes. This biocatalyst is highly active for small-chain alkane substrates and the regioselectivity is retained in whole-cell biotransformations.

  10. Evidence for a Role of rpoE in Stressed and Unstressed Cells of Marine Vibrio angustum Strain S14

    PubMed Central

    Hild, Erika; Takayama, Kathy; Olsson, Rose-Marie; Kjelleberg, Staffan

    2000-01-01

    We report the cloning, sequencing, and characterization of the rpoE homolog in Vibrio angustum S14. The rpoE gene encodes a protein with a predicted molecular mass of 19.4 kDa and has been demonstrated to be present as a single-copy gene by Southern blot analysis. The deduced amino acid sequence of RpoE is most similar to that of the RpoE homolog of Sphingomonas aromaticivorans, ς24, displaying sequence similarity and identity of 63 and 43%, respectively. Northern blot analysis demonstrated the induction of rpoE 6, 12, and 40 min after a temperature shift to 40°C. An rpoE mutant was constructed by gene disruption. There was no difference in viability during logarithmic growth, stationary phase, or carbon starvation between the wild type and the rpoE mutant strain. In contrast, survival of the mutant was impaired following heat shock during exponential growth, as well as after oxidative stress at 24 h of carbon starvation. The mutant exhibited microcolony formation during optimal growth temperatures (22 to 30°C), and cell area measurements revealed an increase in cell volume of the mutant during growth at 30°C, compared to the wild-type strain. Moreover, outer membrane and periplasmic space protein analysis demonstrated many alterations in the protein profiles for the mutant during growth and carbon starvation, as well as following oxidative stress, in comparison with the wild-type strain. It is thereby concluded that RpoE has an extracytoplasmic function and mediates a range of specific responses in stressed as well as unstressed cells of V. angustum S14. PMID:11092857

  11. Isolation and properties of a Bacillus subtilis mutant unable to produce fructose-bisphosphatase.

    PubMed Central

    Fujita, Y; Freese, E

    1981-01-01

    A Bacillus subtilis mutation (gene symbol fdpA1), producing a deficiency of D-fructose-1,6-bisphosphate 1-phosphohydrolase (EC 3.1.3.11, fructose-bisphosphatase), was isolated and genetically purified. An fdpA1-containing mutant did not produce cross-reacting material. It grew on any carbon source that allowed growth of the standard strain except myo-inositol and D-gluconate. Because the mutant could grow on D-fructose, glycerol, or L-malate as the sole carbon source, B. subtilis can produce fructose-6-phosphate and the derived cell wall precursors from these carbon sources in the absence of fructose-bisphosphatase. In other words, during gluconeogenesis B. subtilis must be able to bypass this reaction. Fructose-bisphosphatase is also not needed for the sporulation of B., subtilis. The fdpA1 mutation has the pleiotropic consequence that mutants carrying it cannot produce inositol dehydrogenase (EC 1.1.1.18) and gluconate kinase (EC 2.7.1.12) under conditions that normally induce these enzymes. Images PMID:6257649

  12. Immuogenicity and safety of a natural rough mutant of Brucella suis as a vaccine for swine

    USDA-ARS?s Scientific Manuscript database

    The objective of the current study was to evaluate the safety, immunogenicity and clearance of the natural rough mutant of Brucella suis strain 353-1 (353-1) as a vaccine in domestic swine. In three studies encompassing 155 animals, pigs were inoculated with 353-1 by conjunctival (5 x 10**7 CFU), p...

  13. Analysis of Lactobacillus sakei Mutants Selected after Adaptation to the Gastrointestinal Tracts of Axenic Mice▿ †

    PubMed Central

    Chiaramonte, Fabrizio; Anglade, Patricia; Baraige, Fabienne; Gratadoux, Jean-Jacques; Langella, Philippe; Champomier-Vergès, Marie-Christine; Zagorec, Monique

    2010-01-01

    We recently showed that Lactobacillus sakei, a natural meat-borne lactic acid bacterium, can colonize the gastrointestinal tracts (GIT) of axenic mice but that this colonization in the intestinal environment selects L. sakei mutants showing modified colony morphology (small and rough) and cell shape, most probably resulting from the accumulation of various mutations that confer a selective advantage for persistence in the GIT. In the present study, we analyzed such clones, issued from three different L. sakei strains, in order to determine which functions were modified in the mutants. In the elongated filamentous cells of the rough clones, transmission electron microscopy (TEM) analysis showed a septation defect and dotted and slanted black bands, suggesting the presence of a helical structure around the cells. Comparison of the cytoplasmic and cell wall/membrane proteomes of the meat isolate L. sakei 23K and of one of its rough derivatives revealed a modified expression for 38 spots. The expression of six oxidoreductases, several stress proteins, and four ABC transporters was strongly reduced in the GIT-adapted strain, while the actin-like MreB protein responsible for cell shaping was upregulated. In addition, the expression of several enzymes involved in carbohydrate metabolism was modified, which may correlate with the observation of modified growth of mutants on various carbon sources. These results suggest that the modifications leading to a better adaptation to the GIT are pleiotropic and are characterized in a rough mutant by a different stress status, a cell wall modification, and modified use of energy sources, leading to an improved fitness for the colonization of the GIT. PMID:20208026

  14. RNA sequencing of an nsdC mutant reveals global regulation of secondary metabolic gene clusters in Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    The zinc finger transcription factor nsdC is required for both sexual development and aflatoxin production in the saprophytic fungus Aspergillus flavus. While previous work with an nsdC knockout mutant was conducted in Aspergillus nidulans and A. flavus strain 3357, here we demonstrate perturbations...

  15. Persistence of Escherichia coli O157:H7 and Its Mutants in Soils

    PubMed Central

    Ma, Jincai; Ibekwe, A. Mark; Yi, Xuan; Wang, Haizhen; Yamazaki, Akihiro; Crowley, David E.; Yang, Ching-Hong

    2011-01-01

    The persistence of Shiga toxin-producing E. coli O157:H7 in the environment poses a serious threat to public health. However, the role of Shiga toxins and other virulence factors in the survival of E. coli O157:H7 is poorly defined. The aim of this study was to determine if the virulence factors, stx 1, stx 2, stx 1–2, and eae in E. coli O157:H7 EDL933 play any significant role in the growth of this pathogen in rich media and in soils. Isogenic deletion mutants that were missing one of four virulence factors, stx 1, stx 2, stx 1–2, and eae in E. coli O157:H7 EDL933 were constructed, and their growth in rich media and survival in soils with distinct texture and chemistry were characterized. The survival data were successfully analyzed using Double Weibull model, and the modeling parameters of the mutant strains were not significantly different from those of the wild type. The calculated Td (time needed to reach the detection limit, 100 CFU/g soil) for loamy sand, sandy loam, and silty clay was 32, 80, and 110 days, respectively. It was also found that Td was positively correlated with soil structure (e.g. clay content), and soil chemistry (e.g. total nitrogen, total carbon, and water extractable organic carbon). The results of this study showed that the possession of Shiga toxins and intimin in E. coli O157:H7 might not play any important role in its survival in soils. The double deletion mutant of E. coli O157:H7 (stx 1 − stx 2 −) may be a good substitute to use for the investigation of transport, fate, and survival of E. coli O157:H7 in the environment where the use of pathogenic strains are prohibited by law since the mutants showed the same characteristics in both culture media and environmental samples. PMID:21826238

  16. Attenuated Signature-Tagged Mutagenesis Mutants of Brucella melitensis Identified during the Acute Phase of Infection in Mice

    PubMed Central

    Lestrate, P.; Dricot, A.; Delrue, R.-M.; Lambert, C.; Martinelli, V.; De Bolle, X.; Letesson, J.-J.; Tibor, A.

    2003-01-01

    For this study, we screened 1,152 signature-tagged mutagenesis mutants of Brucella melitensis 16M in a mouse model of infection and found 36 of them to be attenuated in vivo. Molecular characterization of transposon insertion sites showed that for four mutants, the affected genes were only present in Rhizobiaceae. Another mutant contained a disruption in a gene homologous to mosA, which is involved in rhizopine biosynthesis in some strains of Rhizobium, suggesting that this sugar may be involved in Brucella pathogenicity. A mutant was disrupted in a gene homologous to fliF, a gene potentially coding for the MS ring, a basal component of the flagellar system. Surprisingly, a mutant was affected in the rpoA gene, coding for the essential α-subunit of the RNA polymerase. This disruption leaves a partially functional protein, impaired for the activation of virB transcription, as demonstrated by the absence of induction of the virB promoter in the Tn5::rpoA background. The results presented here highlight the fact that the ability of Brucella to induce pathogenesis shares similarities with the molecular mechanisms used by both Rhizobium and Agrobacterium to colonize their hosts. PMID:14638795

  17. Improving Xylose Utilization of Saccharomyces cerevisiae by Expressing the MIG1 Mutant from the Self-Flocculating Yeast SPSC01.

    PubMed

    Xu, Jian-Ren; Zhao, Xin-Qing; Liu, Chen-Guang; Bai, Feng-Wu

    2018-01-01

    The major carbohydrate components of lignocellulosic biomass are cellulose and hemicelluloses. Saccharomyces cerevisiae cannot efficiently utilize xylose derived upon the hydrolysis of hemicelluloses. Although engineering the yeast with xylose metabolic pathway has been intensively studied, challenges are still ahead for developing robust strains for lignocellulosic bioethanol production. The main objective of this study was to reveal the role of the MIG1 mutant isolated from the self-flocculating S. cerevisiae SPSC01 in xylose utilization, glucose repression and ethanol fermentation by S. cerevisiae. The MIG1 mutant was amplified from S. cerevisiae SPSC01 by PCR and MIG1- overexpression-cassette was transformed into S. cerevisiae S288c and xylose-metabolizing strain YB-2625-T through homologous recombination. Yeast growth was measured by colony assay on plates with or without xylose supplementation. Then xylose utilization and ethanol production were further evaluated through flask fermentation when mixed sugars of glucose and xylose at 3:1 and 2:1, respectively, were supplied. Fermentation products were detected by HPLC, and activities of xylose reductase (XR), xylitol dehydrogenase (XDH) and xylulokinase (XK) were also measured. The transcription of genes regulated by the expression of the MIG1 mutant was analyzed by RTqPCR. Evolutionary relationship of various MIG1s was developed by gene sequencing and sequence alignment. No difference was observed for S288c growing with xylose when it was engineered with the overexpression or deletion of its native MIG1, but its growth was enhanced when overexpressing the MIG1 mutant from SPSC01. The submerged culture of YB-2625-T MIG1-SPSC engineered with xylose-metabolic pathway and the MIG1 mutant indicated that xylitol accumulation was decreased, and consequently, more biomass was accumulated. Furthermore, improved activities of the key enzymes such as XR, XDH and XK were detected in YB-2625-T MIG1-SPSC. Evolutionary

  18. Insights into the metabolic mechanism of rapamycin overproduction in the shikimate-resistant Streptomyces hygroscopicus strain UV-II using comparative metabolomics.

    PubMed

    Geng, Huiyan; Liu, Huanhuan; Liu, Jiao; Wang, Cheng; Wen, Jianping

    2017-06-01

    Rapamycin is a polyketide with a 31-membered macrolide ring that possesses powerful immunosuppressant activity. In this study, we firstly obtained a mutant, shikimate-resistant Streptomyces hygroscopicus strain UV-II, which displayed about 3.20-fold higher rapamycin production (305.9 mg/L) than the wild-type S. hygroscopicus ATCC29253 (95.5 mg/L). Under optimal conditions, with the addition of 2 g/L shikimic acid, the strain's rapamycin production was further increased by approximately 34.9%, to 412.6 mg/L. To gain deeper insights into the effects of shikimic acid resistance and supplementation, the fermentation properties, metabolite concentrations, and transcriptional levels of relevant genes were analyzed and evaluated for differences between this improved mutant and its parental strain. The results showed that most of the metabolic modules involved in rapamycin biosynthesis were upregulated in the mutant strain. Analysis of metabolic pathways and gene expression levels further revealed that shikimic acid metabolism plays a crucial role in the synthesis of rapamycin, and identified the rapK gene as a potential target for genetic manipulation to obtain rapamycin-producing strains with improved product yield. Consequently, the rapK gene was overexpressed in the UV-II strain, which to our delight further improved rapamycin production to 457.3 mg/L. These findings thus provide a theoretical basis for further improvements in the production of not only rapamycin, but also of other, analogous macrolide compounds.

  19. [Physiological and biochemical characteristics and capacity for polyhydroxyalkanoates synthesis in a glucose-utilizing strain of hydrogen-oxidizing bacteria, Ralstonia eutropha B8562].

    PubMed

    Volova, T G; Kozhevnikov, I V; Dolgopolova, Iu B; Trusova, M Iu; Kalacheva, G S; Aref'eva, Iu V

    2005-01-01

    The physiological, biochemical, genetic, and cultural characteristics of the glucose-utilizing mutant strain Ralstonia eutropha B8562 were investigated in comparison with the parent strain R. eutropha B5786. The morphological, cultural, and biochemical characteristics of strain R. eutropha B8562 were similar to those of strain R. eutropha B5786. Genetic analysis revealed differences between the 16S rRNA gene sequences of these strains. The growth characteristics of the mutant using glucose as the sole carbon and energy source were comparable with those of the parent strain grown on fructose. Strain B8562 was characterized by high yields of polyhydroxyalkanoate (PHA) from different carbon sources (CO2, fructose, and glucose). In batch culture with glucose under nitrogen limitation, PHA accumulation reached 90% of dry weight. In PHA, beta-hydroxybutyrate was predominant (over 99 mol %); beta-hydroxyvalerate (0.25-0.72 mol %) and beta-hydroxyhexanoate (0.008-1.5 mol %) were present as minor components. The strain has prospects as a PHA producer on glucose-containing media.

  20. A pyruvate formate lyase-deficient Chlamydomonas reinhardtii strain provides evidence for a link between fermentation and hydrogen production in green algae.

    PubMed

    Philipps, Gabriele; Krawietz, Danuta; Hemschemeier, Anja; Happe, Thomas

    2011-04-01

    The green alga Chlamydomonas reinhardtii has a complex anaerobic metabolism characterized by a plastidic hydrogenase (HYD1) coupled to photosynthesis and a bacterial-type fermentation system in which pyruvate formate lyase (PFL1) is the central fermentative enzyme. To identify mutant strains with altered hydrogen metabolism, a C. reinhardtii nuclear transformant library was screened. Mutant strain 48F5 showed lower light-dependent hydrogen (H₂) evolution rates and reduced in vitro hydrogenase activity, and fermentative H₂ production in the dark was enhanced. The transformant has a single integration of the paromomycin resistance cassette within the PFL1 gene, and is unable to synthesize PFL1 protein. 48F5 secretes no formate, but produces more ethanol, D-lactate and CO₂ than the wild type. Moreover, HYD1 transcript and HYD1 protein levels were lower in the pfl1 mutant strain. Complementation of strain 48F5 with an intact copy of the PFL1 gene restored formate excretion and hydrogenase activity to the wild type level. This analysis shows that the PFL1 pathway has a significant impact on hydrogen metabolism in C. reinhardtii. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  1. Listeria monocytogenes mutants with altered growth phenotypes at refrigeration temperature and high salt concentrations.

    PubMed

    Burall, Laurel S; Laksanalamai, Pongpan; Datta, Atin R

    2012-02-01

    Listeria monocytogenes can survive and grow in refrigerated temperatures and high-salt environments. In an effort to better understand the associated mechanisms, a library of ∼ 5,200 transposon mutants of LS411, a food isolate from the Jalisco cheese outbreak, were screened for their ability to grow in brain heart infusion (BHI) broth at 5°C or in the presence of 7% NaCl and two mutants with altered growth profiles were identified. The LS522 mutant has a transposon insertion between secA2 and iap and showed a significant reduction in growth in BHI broth at 5°C and in the presence of 7% NaCl. Reverse transcriptase quantitative PCR (RT-qPCR) revealed a substantial reduction in the expression of iap. Additionally, a hypothetical gene (met), containing a putative S-adenosylmethionine-dependent methyltransferase domain, downstream of iap had downregulated expression. In-frame deletion mutants of iap and met were created in LS411. The LS560 (LS411 Δiap) mutant showed reduced growth at 5°C and in the presence of 7% salt, confirming its role in cold and salt growth attenuation. Surprisingly, the LS655 (LS411 Δmet) mutant showed slightly increased growth during refrigeration, though no alteration was seen in salt growth relative to the wild-type strain. The LS527 mutant, containing an insertion 36 bp upstream of the gbu operon, showed reduced expression of the gbu transcript by RT-qPCR and also showed growth reduction at 5°C and in the presence of 7% salt. This attenuation was severely exacerbated when the mutant was grown under the combined stresses. Analysis of the gbu operon deletion mutant showed decreased growth in 7% salt and refrigeration, supporting the previously characterized role for this gene in cold and salt adaptation. These studies indicate the potential for an intricate relationship between environmental stress regulation and virulence in L. monocytogenes.

  2. Listeria monocytogenes Mutants with Altered Growth Phenotypes at Refrigeration Temperature and High Salt Concentrations

    PubMed Central

    Burall, Laurel S.; Laksanalamai, Pongpan

    2012-01-01

    Listeria monocytogenes can survive and grow in refrigerated temperatures and high-salt environments. In an effort to better understand the associated mechanisms, a library of ∼ 5,200 transposon mutants of LS411, a food isolate from the Jalisco cheese outbreak, were screened for their ability to grow in brain heart infusion (BHI) broth at 5°C or in the presence of 7% NaCl and two mutants with altered growth profiles were identified. The LS522 mutant has a transposon insertion between secA2 and iap and showed a significant reduction in growth in BHI broth at 5°C and in the presence of 7% NaCl. Reverse transcriptase quantitative PCR (RT-qPCR) revealed a substantial reduction in the expression of iap. Additionally, a hypothetical gene (met), containing a putative S-adenosylmethionine-dependent methyltransferase domain, downstream of iap had downregulated expression. In-frame deletion mutants of iap and met were created in LS411. The LS560 (LS411 Δiap) mutant showed reduced growth at 5°C and in the presence of 7% salt, confirming its role in cold and salt growth attenuation. Surprisingly, the LS655 (LS411 Δmet) mutant showed slightly increased growth during refrigeration, though no alteration was seen in salt growth relative to the wild-type strain. The LS527 mutant, containing an insertion 36 bp upstream of the gbu operon, showed reduced expression of the gbu transcript by RT-qPCR and also showed growth reduction at 5°C and in the presence of 7% salt. This attenuation was severely exacerbated when the mutant was grown under the combined stresses. Analysis of the gbu operon deletion mutant showed decreased growth in 7% salt and refrigeration, supporting the previously characterized role for this gene in cold and salt adaptation. These studies indicate the potential for an intricate relationship between environmental stress regulation and virulence in L. monocytogenes. PMID:22179239

  3. Atypical patterns of neural infection produced in mice by drug-resistant strains of herpes simplex virus.

    PubMed

    Field, H J; Anderson, J R; Wildy, P

    1982-03-01

    Mice inoculated intracerebrally (i.c.) with a mutant strain of HSV were found to develop cataracts 1 to 2 months after inoculation. Cataract formation was subsequently shown to follow an acute retinitis which commenced within 1 week of inoculation. The mutant had been selected for high resistance to the nucleoside analogue acyclovir and has been shown previously to be defective in the induction of thymidine kinase and also to express an altered DNA polymerase. The LD50 for mice inoculated i.c. was greater than 10(5) p.f.u. compared with approx 7 p.f.u. for the parental strain. Studies of virus replication following i.c. inoculation with a sublethal dose of the mutant revealed that only small amounts of infectious virus were produced in the brain, but during a period from 6 to 12 days after inoculation vigorous replication occurred in retinal tissue, producing very high titres of virus.

  4. Isolation of a Mutant of Salmonella typhimurium Dependent on D-Arabinose-5-phosphate for Growth and Synthesis of 3-Deoxy-D-mannoctulosonate (Ketodeoxyoctonate)

    PubMed Central

    Rick, P. D.; Osborn, M. J.

    1972-01-01

    A new type of auxotrophic mutant of Salmonella typhimurium has been isolated that is defective in the synthesis of the 3-deoxy-D-mannooctulosonate (ketodeoxyoctonate) region of the lipopolysaccharide and requires D-arabinose-5-phosphate for growth. Genetic and biochemical evidence indicated that the mutant defect was due to an altered ketodeoxyoctonate-8-phosphate synthetase with an apparent Km for D-arabinose-5-phosphate 35-fold higher than that of the parental enzyme. As a result of this enzymatic lesion, the mutant strain was dependent on exogenous D-arabinose-5-phosphate both for growth and for synthesis of a complete lipopolysaccharide. PMID:4566459

  5. LMOf2365_0442 Encoding for a Fructose Specific PTS Permease IIA May Be Required for Virulence in L. monocytogenes Strain F2365

    PubMed Central

    Liu, Yanhong; Yoo, Brian B.; Hwang, Cheng-An; Suo, Yujuan; Sheen, Shiowshuh; Khosravi, Parvaneh; Huang, Lihan

    2017-01-01

    Listeria monocytogenes is a foodborne pathogen that causes listeriosis, which is a major public health concern due to the high fatality rate. LMOf2365_0442, 0443, and 0444 encode for fructose-specific EIIABC components of phosphotransferase transport system (PTS) permease that is responsible for sugar transport. In previous studies, in-frame deletion mutants of a putative fructose-specific PTS permease (LMOf2365_0442, 0443, and 0444) were constructed and analyzed. However, the virulence potential of these deletion mutants has not been studied. In this study, two in vitro methods were used to analyze the virulence potential of these L. monocytogenes deletion mutants. First, invasion assays were used to measure the invasion efficiencies to host cells using the human HT-29 cell line. Second, plaque forming assays were used to measure cell-to-cell spread in host cells. Our results showed that the deletion mutant ΔLMOf2365_0442 had reduced invasion and cell-to-cell spread efficiencies in human cell line compared to the parental strain LMOf2365, indicating that LMOf2365_0442 encoding for a fructose specific PTS permease IIA may be required for virulence in L. monocytogenes strain F2365. In addition, the gene expression levels of 15 virulence and stress-related genes were analyzed in the stationary phase cells of the deletion mutants using RT-PCR assays. Virulence-related gene expression levels were elevated in the deletion mutants ΔLMOf2365_0442-0444 compared to the wild type parental strain LMOf2365, indicating the down-regulation of virulence genes by this PTS permease in L. monocytogenes. Finally, stress-related gene clpC expression levels were also increased in all of the deletion mutants, suggesting the involvement of this PTS permease in stress response. Furthermore, these deletion mutants displayed the same pressure tolerance and the same capacity for biofilm formation compared to the wild-type parental strain LMOf2365. In summary, our findings suggest that the

  6. Characterization of cell surface and extracellular matrix remodeling of Azospirillum brasilense chemotaxis-like 1 signal transduction pathway mutants by atomic force microscopy.

    PubMed

    Edwards, Amanda Nicole; Siuti, Piro; Bible, Amber N; Alexandre, Gladys; Retterer, Scott T; Doktycz, Mitchel J; Morrell-Falvey, Jennifer L

    2011-01-01

    To compete in complex microbial communities, bacteria must sense environmental changes and adjust cellular functions for optimal growth. Chemotaxis-like signal transduction pathways are implicated in the regulation of multiple behaviors in response to changes in the environment, including motility patterns, exopolysaccharide production, and cell-to-cell interactions. In Azospirillum brasilense, cell surface properties, including exopolysaccharide production, are thought to play a direct role in promoting flocculation. Recently, the Che1 chemotaxis-like pathway from A. brasilense was shown to modulate flocculation, suggesting an associated modulation of cell surface properties. Using atomic force microscopy, distinct changes in the surface morphology of flocculating A. brasilense Che1 mutant strains were detected. Whereas the wild-type strain produces a smooth mucosal extracellular matrix after 24 h, the flocculating Che1 mutant strains produce distinctive extracellular fibril structures. Further analyses using flocculation inhibition, lectin-binding assays, and comparison of lipopolysaccharides profiles suggest that the extracellular matrix differs between the cheA1 and the cheY1 mutants, despite an apparent similarity in the macroscopic floc structures. Collectively, these data indicate that disruption of the Che1 pathway is correlated with distinctive changes in the extracellular matrix, which likely result from changes in surface polysaccharides structure and/or composition. FEMS Microbiology Letters © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. No claim to original US government works.

  7. Alcohol-tolerant mutants of cyanobacterium Synechococcus elongatus PCC 7942 obtained by single-cell mutant screening system.

    PubMed

    Arai, Sayuri; Hayashihara, Kayoko; Kanamoto, Yuki; Shimizu, Kazunori; Hirokawa, Yasutaka; Hanai, Taizo; Murakami, Akio; Honda, Hiroyuki

    2017-08-01

    Enhancement of alcohol tolerance in microorganisms is an important strategy for improving bioalcohol productivity. Although cyanobacteria can be used as a promising biocatalyst to produce various alcohols directly from CO 2 , low productivity, and low tolerance against alcohols are the main issues to be resolved. Nevertheless, to date, a mutant with increasing alcohol tolerance has rarely been reported. In this study, we attempted to select isopropanol (IPA)-tolerant mutants of Synechococcus elongatus PCC 7942 using UV-C-induced random mutagenesis, followed by enrichment of the tolerant candidates in medium containing 10 g/L IPA and screening of the cells with a high growth rate in the single cell culture system in liquid medium containing 10 g/L IPA. We successfully acquired the most tolerant strain, SY1043, which maintains the ability to grow in medium containing 30 g/L IPA. The photosynthetic oxygen-evolving activities of SY1043 were almost same in cells after 72 h incubation under light with or without 10 g/L IPA, while the activity of the wild-type was remarkably decreased after the incubation with IPA. SY1043 also showed higher tolerance to ethanol, 1-butanol, isobutanol, and 1-pentanol than the wild type. These results suggest that SY1043 would be a promising candidate to improve alcohol production using cyanobacteria. Biotechnol. Bioeng. 2017;114: 1771-1778. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Phenotypic Characterization of pncA Mutants of Mycobacterium tuberculosis

    PubMed Central

    Morlock, Glenn P.; Crawford, Jack T.; Butler, W. Ray; Brim, Suzanne E.; Sikes, David; Mazurek, Gerald H.; Woodley, Charles L.; Cooksey, Robert C.

    2000-01-01

    We examined the correlation of mutations in the pyrazinamidase (PZase) gene (pncA) with the pyrazinamide (PZA) resistance phenotype with 60 Mycobacterium tuberculosis isolates. PZase activity was determined by the method of Wayne (L. G. Wayne, Am. Rev. Respir. Dis. 109:147–151, 1974), and the entire pncA nucleotide sequence, including the 74 bp upstream of the start codon, was determined. PZA susceptibility testing was performed by the method of proportions on modified Middlebrook and Cohn 7H10 medium. The PZA MICs were ≥100 μg/ml for 37 isolates, 34 of which had alterations in the pncA gene. These mutations included missense substitutions for 24 isolates, nonsense substitutions for 3 isolates, frameshifts by deletion for 4 isolates, a three-codon insertion for 1 isolate, and putative regulatory mutations for 2 isolates. Among 21 isolates for which PZA MICs were <100 μg/ml, 3 had the same mutation (Thr47→Ala) and 18 had the wild-type sequence. For the three Thr47→Ala mutants PZA MICs were 12.5 μg/ml by the method of proportions on 7H10 agar; two of these were resistant to 100 μg of PZA per ml and the third was resistant to 800 μg of PZA per ml by the BACTEC method. In all, 30 different pncA mutations were found among the 37 pncA mutants. No PZase activity was detected in 35 of 37 strains that were resistant to ≥100 μg of PZA per ml or in 34 of 37 pncA mutants. Reduced PZase activity was found in the three mutants with the Thr47→Ala mutation. This study demonstrates that mutations in the pncA gene may serve as a reliable indicator of resistance to ≥100 μg of PZA per ml. PMID:10952570

  9. Disoxaril mutants of Coxsackievirus B1: phenotypic characteristics and analysis of the target VP1 gene.

    PubMed

    Nikolova, Ivanka; Galabov, Angel S; Petkova, Rumena; Chakarov, Stoyan; Atanasov, Boris

    2011-01-01

    Disoxaril inhibits enterovirus replication by binding to the hydrophobic pocket within the VP1 coat protein, thus stabilizing the virion and blocking its uncoating. Disoxaril-resistant (RES) mutants of the Coxsackievirus B1 (CVB1/RES) were derived from the wild disoxaril-sensitive (SOF) strain (CVB1/SOF) using a selection approach. A disoxaril-dependent (DEP) mutant (CVB1/DEP) was obtained following nine consecutive passages of the disoxaril-resistant mutant in the presence of disoxaril. Phenotypic characteristics of the disoxaril mutants were investigated. A timing-of-addition study of the CVB1/DEP replication demonstrated that in the absence of disoxaril the virus particle assembly stopped. VP1 RNA sequences of disoxaril mutants were compared with the existing Gen Bank CVB1 reference structure. The amino acid sequence of a large VP1 196-258 peptide (disoxaril-binding region) of CVB1/RES was significantly different from that of the CVB1/SOF. Crucially important changes in CVB1/RES were two point mutations, M213H and F237L, both in the ligand-binding pocket. The sequence analysis of the CVB1/DEP showed some reversion to CVB1/SOF. The amino acid sequences of the three VP1 proteins are presented.

  10. Generation of lycopene-overproducing strains of the fungus Mucor circinelloides reveals important aspects of lycopene formation and accumulation.

    PubMed

    Zhang, Yingtong; Chen, Haiqin; Navarro, Eusebio; López-García, Sergio; Chen, Yong Q; Zhang, Hao; Chen, Wei; Garre, Victoriano

    2017-03-01

    To generate lycopene-overproducing strains of the fungus Mucor circinelloides with interest for industrial production and to gain insight into the catalytic mechanism of lycopene cyclase and regulatory process during lycopene overaccumulation. Three lycopene-overproducing mutants were generated by classic mutagenesis techniques from a β-carotene-overproducing strain. They carried distinct mutations in the carRP gene encoding lycopene cyclase that produced loss of enzymatic activity to different extents. In one mutant (MU616), the lycopene cyclase was completely destroyed, and a 43.8% (1.1 mg/g dry mass) increase in lycopene production was observed in comparison to that by the previously existing lycopene overproducer. In addition, feedback regulation of the end product was suggested in lycopene-overproducing strains. A lycopene-overaccumulating strain of the fungus M. circinelloides was generated that could be an alternative for the industrial production of lycopene. Vital catalytic residues for lycopene cyclase activity and the potential mechanism of lycopene formation and accumulation were identified.

  11. Role of PknB kinase in antibiotic resistance and virulence in community-acquired methicillin-resistant Staphylococcus aureus strain USA300.

    PubMed

    Tamber, Sandeep; Schwartzman, Joseph; Cheung, Ambrose L

    2010-08-01

    The regulation of cellular processes by eukaryote-like serine/threonine kinases is widespread in bacteria. In the last 2 years, several studies have examined the role of serine/threonine kinases in Staphylococcus aureus on cell wall metabolism, autolysis, and virulence, mostly in S. aureus laboratory isolates in the 8325-4 lineage. In this study, we showed that the pknB gene (also called stk1) of methicillin-resistant S. aureus (MRSA) strain COL and the community-acquired MRSA (CA-MRSA) strain USA300 is involved in cell wall metabolism, with the pknB mutant exhibiting enhanced sensitivity to beta-lactam antibiotics but not to other classes of antibiotics, including aminoglycosides, ciprofloxacin, bactrim, and other types of cell wall-active agents (e.g., vancomycin and bacitracin). Additionally, the pknB mutant of USA300 was found to be more resistant to Triton X-100-induced autolysis and also to lysis by lysostaphin. We also showed that pknB is a positive regulator of sigB activity, resulting in compromise in its response to heat and oxidative stresses. In association with reduced sigB activity, the expression levels of RNAII and RNAIII of agr and the downstream effector hla are upregulated while spa expression is downmodulated in the pknB mutant compared to the level in the parent. Consistent with an enhanced agr response in vitro, virulence studies of the pknB mutant of USA300 in a murine cutaneous model of infection showed that the mutant was more virulent than the parental strain. Collectively, our results have linked the pknB gene in CA-MRSA to antibiotic resistance, sigB activity, and virulence and have highlighted important differences in pknB phenotypes (virulence and sigB activity) between laboratory isolates and the prototypic CA-MRSA strain USA300.

  12. Acyl-chain remodeling of dioctanoyl-phosphatidylcholine in Saccharomyces cerevisiae mutant defective in de novo and salvage phosphatidylcholine synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kishino, Hideyuki; Eguchi, Hiroki; Takagi, Keiko

    2014-03-07

    Highlights: • Dioctanoyl-PC (diC8PC) supported growth of a yeast mutant defective in PC synthesis. • diC8PC was converted to PC species containing longer acyl residues in the mutant. • Both acyl residues of diC8PC were replaced by longer fatty acids in vitro. • This system will contribute to the elucidation of the acyl chain remodeling of PC. - Abstract: A yeast strain, in which endogenous phosphatidylcholine (PC) synthesis is controllable, was constructed by the replacement of the promoter of PCT1, encoding CTP:phosphocholine cytidylyltransferase, with GAL1 promoter in a double deletion mutant of PEM1 and PEM2, encoding phosphatidylethanolamine methyltransferase and phospholipidmore » methyltransferase, respectively. This mutant did not grow in the glucose-containing medium, but the addition of dioctanoyl-phosphatidylcholine (diC8PC) supported its growth. Analyses of the metabolism of {sup 13}C-labeled diC8PC ((methyl-{sup 13}C){sub 3}-diC8PC) in this strain using electrospray ionization tandem mass spectrometry revealed that it was converted to PC species containing acyl residues of 16 or 18 carbons at both sn-1 and sn-2 positions. In addition, both acyl residues of (methyl-{sup 13}C){sub 3}-diC8PC were replaced with 16:1 acyl chains in the in vitro reaction using the yeast cell extract in the presence of palmitoleoyl-CoA. These results indicate that PC containing short acyl residues was remodeled to those with acyl chains of physiological length in yeast.« less

  13. Attenuated and Replication-Competent Vaccinia Virus Strains M65 and M101 with Distinct Biology and Immunogenicity as Potential Vaccine Candidates against Pathogens

    PubMed Central

    Sánchez-Sampedro, Lucas; Gómez, Carmen Elena; Mejías-Pérez, Ernesto; Pérez-Jiménez, Eva; Oliveros, Juan Carlos

    2013-01-01

    Replication-competent poxvirus vectors with an attenuation phenotype and with a high immunogenic capacity of the foreign expressed antigen are being pursued as novel vaccine vectors against different pathogens. In this investigation, we have examined the replication and immunogenic characteristics of two vaccinia virus (VACV) mutants, M65 and M101. These mutants were generated after 65 and 101 serial passages of persistently infected Friend erythroleukemia (FEL) cells. In cultured cells of different origins, the mutants are replication competent and have growth kinetics similar to or slightly reduced in comparison with those of the parental Western Reserve (WR) virus strain. In normal and immune-suppressed infected mice, the mutants showed different levels of attenuation and pathogenicity in comparison with WR and modified vaccinia Ankara (MVA) strains. Wide genome analysis after deep sequencing revealed selected genomic deletions and mutations in a number of viral open reading frames (ORFs). Mice immunized in a DNA prime/mutant boost regimen with viral vectors expressing the LACK (Leishmania homologue for receptors of activated C kinase) antigen of Leishmania infantum showed protection or a delay in the onset of cutaneous leishmaniasis. Protection was similar to that triggered by MVA-LACK. In immunized mice, both polyfunctional CD4+ and CD8+ T cells with an effector memory phenotype were activated by the two mutants, but the DNA-LACK/M65-LACK protocol preferentially induced CD4+ whereas DNA-LACK/M101-LACK preferentially induced CD8+ T cell responses. Altogether, our findings showed the adaptive changes of the WR genome during long-term virus-host cell interaction and how the replication competency of M65 and M101 mutants confers distinct biological properties and immunogenicity in mice compared to those of the MVA strain. These mutants could have applicability for understanding VACV biology and as potential vaccine vectors against pathogens and tumors. PMID

  14. Polymorphic Variation in Susceptibility and Metabolism of Triclosan-Resistant Mutants of Escherichia coli and Klebsiella pneumoniae Clinical Strains Obtained after Exposure to Biocides and Antibiotics

    PubMed Central

    Curiao, Tânia; Marchi, Emmanuela; Viti, Carlo; Oggioni, Marco R.; Baquero, Fernando; Martinez, José Luis

    2015-01-01

    Exposure to biocides may result in cross-resistance to other antimicrobials. Changes in biocide and antibiotic susceptibilities, metabolism, and fitness costs were studied here in biocide-selected Escherichia coli and Klebsiella pneumoniae mutants. E. coli and K. pneumoniae mutants with various degrees of triclosan susceptibility were obtained after exposure to triclosan (TRI), benzalkonium chloride (BKC), chlorhexidine (CHX) or sodium hypochlorite (SHC), and ampicillin or ciprofloxacin. Alterations in antimicrobial susceptibility and metabolism in mutants were tested using Phenotype MicroArrays. The expression of AcrAB pump and global regulators (SoxR, MarA, and RamA) was measured by quantitative reverse transcription-PCR (qRT-PCR), and the central part of the fabI gene was sequenced. The fitness costs of resistance were assessed by a comparison of relative growth rates. Triclosan-resistant (TRIr) and triclosan-hypersusceptible (TRIhs) mutants of E. coli and K. pneumoniae were obtained after selection with biocides and/or antibiotics. E. coli TRIr mutants, including those with mutations in the fabI gene or in the expression of acrB, acrF, and marA, exhibited changes in susceptibility to TRI, CHX, and antibiotics. TRIr mutants for which the TRI MIC was high presented improved metabolism of carboxylic acids, amino acids, and carbohydrates. In TRIr mutants, resistance to one antimicrobial provoked hypersusceptibility to another one(s). TRIr mutants had fitness costs, particularly marA-overexpressing (E. coli) or ramA-overexpressing (K. pneumoniae) mutants. TRI, BKC, and CIP exposure frequently yielded TRIr mutants exhibiting alterations in AraC-like global regulators (MarA, SoxR, and RamA), AcrAB-TolC, and/or FabI, and influencing antimicrobial susceptibility, fitness, and metabolism. These various phenotypes suggest a trade-off of different selective processes shaping the evolution toward antibiotic/biocide resistance and influencing other adaptive traits. PMID

  15. Construction, characterization and evaluation of the protective efficacy of the Streptococcus suis double mutant strain ΔSsPep/ΔSsPspC as a live vaccine candidate in mice.

    PubMed

    Hu, Jin; You, Wujin; Wang, Bin; Hu, Xueying; Tan, Chen; Liu, Jinlin; Chen, Huanchun; Bei, Weicheng

    2015-01-01

    Streptococcus suis serotype 2 (S. suis 2) causes sepsis and meningitis in piglets and humans, and results in one of the most serious bacterial diseases affecting the production of commercial pigs around the world. Due to the failure of the current inactivated vaccine to protect against the disease, development of a new attenuated live vaccine against S. suis 2 by deleting essential virulence factors is urgently needed. We have previously reported the construction and characterization of an SsPep single gene deletion mutant strain ΔSsPep based on S. suis 2. Our previous results have shown that SsPep plays a critical role in the pathogenesis of S. suis 2. In this study, a precisely defined double-deletion mutant ΔSsPep/ΔSsPspC of S. suis 2 without antibiotic-resistance markers was constructed based on ΔSsPep, and the levels of virulence of the wild-type (WT) and ΔSsPep/ΔSsPspC were compared in a mouse experimental infection model. We demonstrated that the double mutant ΔSsPep/ΔSsPspC was less virulent than the WT, and could induce a noticeable antibody response. Analysis of IgG subclasses (IgG1 and IgG2a) indicated that both Th1 and Th2 responses were induced by ΔSsPep/ΔSsPspC, although the IgG2a (Th1) response predominated over the IgG1 (Th2) response. Moreover, ΔSsPep/ΔSsPspC could confer 90% protective efficacy against challenge with a lethal dose of fully virulent S. suis 2. Taken together, these data demonstrate that ΔSsPep/ΔSsPspC can be used as an effective live vaccine and provide a novel strategy against infection of S. suis 2. Copyright © 2014 Elsevier GmbH. All rights reserved.

  16. Identification and characterization of a drug sensitive strain enables puromycin-based translational assays in Saccharomyces cerevisiae

    PubMed Central

    Cary, Gregory A.; Yoon, Sung Hwan; Torres, Cecilia Garmendia; Wang, Kathie; Hays, Michelle; Ludlow, Catherine; Goodlett, David R.; Dudley, Aimée M.

    2014-01-01

    Puromycin is an aminonucleoside antibiotic with structural similarity to aminoacyl tRNA. This structure allows the drug to bind the ribosomal A-site and incorporate into nascent polypeptides causing chain termination, ribosomal subunit dissociation, and widespread translational arrest at high concentrations. In contrast, at sufficiently low concentrations, puromycin incorporates primarily at the C-terminus of proteins. While a number of techniques utilize puromycin incorporation as a tool for probing translational activity in vivo, these methods cannot be applied in yeasts that are insensitive to puromycin. Here, we describe a mutant strain of the yeast Saccharomyces cerevisiae that is sensitive to puromycin and characterize the cellular response to the drug. Puromycin inhibits the growth of yeast cells mutant for erg6Δ, pdr1Δ, and pdr3Δ (EPP) on both solid and liquid media. Puromycin also induces the aggregation of the cytoplasmic processing body component Edc3 in the mutant strain. We establish that puromycin is rapidly incorporated into yeast proteins and test the effects of puromycin on translation in vivo. This work establishes the EPP strain as a valuable tool for implementing puromycin-based assays in yeast, which will enable new avenues of inquiry into protein production and maturation. PMID:24610064

  17. Plastid sedimentation kinetics in roots of wild-type and starch-deficient mutants of Arabidopsis

    NASA Technical Reports Server (NTRS)

    MacCleery, S. A.; Kiss, J. Z.

    1999-01-01

    Sedimentation and movement of plastids in columella cells of the root cap were measured in seedlings of wild-type, a reduced starch mutant, and a starchless mutant of Arabidopsis. To assay for sedimentation, we used both linear measurements and the change of angle from the cell center as indices in vertical and reoriented plants with the aid of computer-assisted image analysis. Seedlings were fixed at short periods after reorientation, and plastid sedimentation correlated with starch content in the three strains of Arabidopsis. Amyloplasts of wild-type seedlings showed the greatest sedimentation, whereas plastids of the starchless mutant showed no significant sedimentation in the vertically grown and reoriented seedlings. Because previous research has shown that a full complement of starch is needed for full gravitropic sensitivity, this study correlates increased sensitivity with plastid sedimentation. However, although plastid sedimentation contributed to gravisensitivity, it was not required, because the gravitropic starchless mutant had plastids that did not sediment. This is the first study, to our knowledge, to measure plastid sedimentation in Arabidopsis roots after reorientation of seedlings. Taken together, the results of this study are consistent with the classic plastid-based and protoplast-based models of graviperception and suggest that multiple systems of perception exist in plant cells.

  18. In vitro capability of faropenem to select for resistant mutants of Streptococcus pneumoniae and Haemophilus influenzae.

    PubMed

    Kosowska-Shick, Klaudia; Clark, Catherine; Credito, Kim; Dewasse, Bonifacio; Beachel, Linda; Ednie, Lois; Appelbaum, Peter C

    2008-02-01

    When tested against nine strains of pneumococci and six of Haemophilus influenzae of various resistotypes, faropenem failed to select for resistant mutants after 50 days of consecutive subculture in subinhibitory concentrations. Faropenem also yielded low rates of spontaneous mutations against all organisms of both species. By comparison, resistant clones were obtained with macrolides, ketolides, and quinolones.

  19. Prion Propagation in Cells Expressing PrP Glycosylation Mutants

    PubMed Central

    Salamat, Muhammad K.; Dron, Michel; Chapuis, Jérôme; Langevin, Christelle; Laude, Hubert

    2011-01-01

    Infection by prions involves conversion of a host-encoded cell surface protein (PrPC) to a disease-related isoform (PrPSc). PrPC carries two glycosylation sites variably occupied by complex N-glycans, which have been suggested by previous studies to influence the susceptibility to these diseases and to determine characteristics of prion strains. We used the Rov cell system, which is susceptible to sheep prions, to generate a series of PrPC glycosylation mutants with mutations at one or both attachment sites. We examined their subcellular trafficking and ability to convert into PrPSc and to sustain stable prion propagation in the absence of wild-type PrP. The susceptibility to infection of mutants monoglycosylated at either site differed dramatically depending on the amino acid substitution. Aglycosylated double mutants showed overaccumulation in the Golgi compartment and failed to be infected. Introduction of an ectopic glycosylation site near the N terminus fully restored cell surface expression of PrP but not convertibility into PrPSc, while PrPC with three glycosylation sites conferred cell permissiveness to infection similarly to the wild type. In contrast, predominantly aglycosylated molecules with nonmutated N-glycosylation sequons, produced in cells expressing glycosylphosphatidylinositol-anchorless PrPC, were able to form infectious PrPSc. Together our findings suggest that glycosylation is important for efficient trafficking of anchored PrP to the cell surface and sustained prion propagation. However, properly trafficked glycosylation mutants were not necessarily prone to conversion, thus making it difficult in such studies to discern whether the amino acid changes or glycan chain removal most influences the permissiveness to prion infection. PMID:21248032

  20. Uniparental mitochondrial DNA inheritance is not affected in Ustilago maydis Δatg11 mutants blocked in mitophagy.

    PubMed

    Wagner-Vogel, Gaby; Lämmer, Frauke; Kämper, Jörg; Basse, Christoph W

    2015-02-06

    Maternal or uniparental inheritance (UPI) of mitochondria is generally observed in sexual eukaryotes, however, the underlying mechanisms are diverse and largely unknown. Recently, based on the use of mutants blocked in autophagy, it has been demonstrated that autophagy is required for strict maternal inheritance in the nematode Caenorhabditis elegans. Uniparental mitochondrial DNA (mtDNA) inheritance has been well documented for numerous fungal species, and in particular, has been shown to be genetically governed by the mating-type loci in the isogamous species Cryptococcus neoformans, Phycomyces blakesleeanus and Ustilago maydis. Previously, we have shown that the a2 mating-type locus gene lga2 is decisive for UPI during sexual development of U. maydis. In axenic culture, conditional overexpression of lga2 triggers efficient loss of mtDNA as well as mitophagy. To assess a functional relationship, we have investigated UPI in U. maydis Δatg11 mutants, which are blocked in mitophagy. This study has revealed that Δatg11 mutants are not affected in pathogenic development and this has allowed us to analyse UPI under comparable developmental conditions between mating-compatible wild-type and mutant strain combinations. Explicitly, we have examined two independent strain combinations that gave rise to different efficiencies of UPI. We demonstrate that in both cases UPI is atg11-independent, providing evidence that mitophagy is not critical for UPI in U. maydis, even under conditions of strict UPI. Until now, analysis of a role of mitophagy in UPI has not been reported for microbial species. Our study suggests that selective autophagy does not contribute to UPI in U. maydis, but is rather a consequence of selective mtDNA elimination in response to mitochondrial damage.