Sample records for iasi infrared atmospheric

  1. High Vertically Resolved Atmospheric and Surface/Cloud Parameters Retrieved with Infrared Atmospheric Sounding Interferometer (IASI)

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Smith, WIlliam L.; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Stephen A.

    2008-01-01

    The Joint Airborne IASI Validation Experiment (JAIVEx) was conducted during April 2007 mainly for validation of the IASI on the MetOp satellite. IASI possesses an ultra-spectral resolution of 0.25/cm and a spectral coverage from 645 to 2760/cm. Ultra-spectral resolution infrared spectral radiance obtained from near nadir observations provide atmospheric, surface, and cloud property information. An advanced retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. This physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the cloud-free and/or clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multi-variable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. It is shown that relatively accurate temperature and moisture retrievals are achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to cloud top level are obtained. For both optically thin and thick cloud situations, the cloud top height can be retrieved with relatively high accuracy (i.e., error < 1 km). Preliminary retrievals of atmospheric soundings, surface properties, and cloud optical/microphysical properties with the IASI observations are obtained and presented. These retrievals will be further inter-compared with those obtained from airborne FTS system, such as the NPOESS Airborne Sounder Testbed - Interferometer (NAST-I), dedicated dropsondes, radiosondes, and ground based Raman Lidar. The

  2. Satellite remote sensing of volcanic plume from Infrared Atmospheric Sounding Interferometer (IASI): results for recent eruptions.

    NASA Astrophysics Data System (ADS)

    Carboni, Elisa; Smith, Andrew; Grainger, Roy; Dudhia, Anu; Thomas, Gareth; Peters, Daniel; Walker, Joanne; Siddans, Richard

    2013-04-01

    The IASI high resolution infrared spectra is exploited to study volcanic emission of ash and sulphur dioxide (SO2). IASI is a Fourier transform spectrometer that covers the spectral range 645 to 2760 cm-1 (3.62-15.5 μm). The IASI field of view consists of four circles of 12 km inside a square of 50 x 50 km, and nominally it can achieve global coverage in 12 hours. The thermal infrared spectra of volcanic plumes shows a rapid variation with wavelength due to absorption lines from atmospheric and volcanic gases as well as broad scale features principally due to particulate absorption. IASI spectra also contain information about the atmospheric profile (temperature, gases, aerosol and cloud) and radiative properties of the surface. In particular the ash signature depends on the composition and size distribution of ash particles as well on their altitude. The sulphur dioxide signature depends on SO2 amount and vertical profile. The results from a new algorithm for the retrieval of sulphur dioxide (SO2) from the Infrared Atmospheric Sounding Interferometer (IASI) data will be presented. The SO2 retrieval follows the method of Carboni et al. (2012) and retrieves SO2 amount and altitude together with a pixel by pixel comprehensive error budget analysis. IASI brightness temperature spectra are analysed, to retrieve ash properties, using an optimal estimation retrieval scheme and a forward model based on RTTOV. The RTTOV output for a clean atmosphere (containing gas but not cloud or aerosol/ash) will be combined with an ash layer using the same scheme as for the Oxford-RAL Retrieval of Aerosol and Cloud (ORAC) algorithm. We exploit the IASI measurements in the atmospheric window spectral range together with the SO2 absorption bands (at 7.3 and 8.7 μm) to study the evolution of ash and SO2 volcanic plume for recent volcanic eruptions case studies. Particular importance is given to investigation of mismatching between the forward model and IASI measurements which can be due

  3. Retrieval of volcanic ash properties from the Infrared Atmospheric Sounding Interferometer (IASI)

    NASA Astrophysics Data System (ADS)

    Ventress, Lucy; Carboni, Elisa; Smith, Andrew; Grainger, Don; Dudhia, Anu; Hayer, Catherine

    2014-05-01

    The Infrared Atmospheric Sounding Interferometer (IASI), on board both the MetOp-A and MetOp-B platforms, is a Fourier transform spectrometer covering the mid-infrared (IR) from 645-2760cm-1 (3.62-15.5 μm) with a spectral resolution of 0.5cm-1 (apodised) and a pixel diameter at nadir of 12km. These characteristics allow global coverage to be achieved twice daily for each instrument and make IASI a very useful tool for the observation of larger aerosol particles (such as desert dust and volcanic ash) and the tracking of volcanic plumes. In recent years, following the eruption of Eyjafjallajökull, interest in the the ability to detect and characterise volcanic ash plumes has peaked due to the hazards to aviation. The thermal infrared spectra shows a rapid variation with wavelength due to absorption lines from atmospheric and volcanic gases as well as broad scale features principally due to particulate absorption. The ash signature depends upon both the composition and size distribution of ash particles as well as the altitude of the volcanic plume. To retrieve ash properties, IASI brightness temperature spectra are analysed using an optimal estimation retrieval scheme and a forward model based on RTTOV. Initially, IASI pixels are flagged for the presence of volcanic ash using a linear retrieval detection method based on departures from a background state. Given a positive ash signal, the RTTOV output for a clean atmosphere (containing atmospheric gases but no cloud or aerosol/ash) is combined with an ash/cloud layer using the same scheme as for the Oxford-RAL Retrieval of Aerosol and Cloud (ORAC) algorithm. The retrieved parameters are ash optical depth (at a reference wavelength of 550nm), ash effective radius, layer altitude and surface temperature. The potential for distinguishing between different ash types is explored and a sensitivity study of the retrieval algorithm is presented. Results are shown from studies of the evolution and composition of ash plumes

  4. IASI-NG: a new generation of infrared sounders for meteorology and atmospheric composition

    NASA Astrophysics Data System (ADS)

    Deschamps, A.; Bermudo, F.; Rousseau, S.; Bernard, F.; Pequignot, E.

    2016-12-01

    IASI-NG is the main payload of the future Metop-SG satellite of the Eumetsat EPS-SG program. This infrared atmospheric sounder generates radiance spectra at high resolution between 645cm-1 and 2760cm-1 and takes benefits from the IASI heritage. As for the first generation, the development of IASI-NG is under CNES responsibility. The first goal of the IASI-NG mission is to support Numerical Weather Prediction (NWP) by improving the estimation of humidity and temperature profiles, especially in the troposphere. To reach this goal, the spectral resolution will be two times better than for IASI first generation, and the radiometric noise will be divided by a factor of two. These performances will enable to support pollution monitoring, climate and atmospheric composition studies as well. CH4 and CO2 columns (but also O3, SO2, CO, NH3, HNO3 concentrations) are some of the products which will be derived from the IASI-NG measurements, in addition to NWP products (such as temperature and water vapor profiles, surface temperature and cloud information). This presentation describes in a first part the main characteristics of the instrument, which allow it to reach this level of performances. The interferometer, developed by Airbus Defense and Space, is based on the Mertz concept and allows to assess the self apodization by a field effect compensation (IASI-NG will be the first mission to implement Mertz Interferometer). In a second part, we present the main performances of the IASI-NG system, in terms of radiometric noise, spectral resolution and geolocation. We describe also the main algorithms which will be used in the ground segment to calibrate the data and correct the instrumental effects. Lastly, we give some information about the status of the project which is currently is the C/D phase and the major milestones in the IASI-NG agenda.

  5. Satellite Remote Sensing of the Reactive Lower Atmosphere Using Medium Resolution Infrared Measurements: Highlights from Iasi Mission

    NASA Astrophysics Data System (ADS)

    Coheur, P. F.

    2013-06-01

    Human activities have significantly altered the equilibrium of the Earth atmosphere. If the steady increase in the concentration of greenhouse gases has attracted most of the attention, it is important as well to monitor the evolution of our "reactive atmosphere", as shorter-lived atmospheric species impact human health and ecosystems directly (e.g. local air quality) or indirectly (e.g. chemistry-climate interactions), through poorly known and quantified processes. Optical instruments on board satellites, and especially those operating in the infrared with sufficient spectral resolution, provide unique opportunity for measuring reactive trace gases in the troposphere and the stratosphere on various scales. The presentation focuses on the measurements of the Infrared Atmospheric Sounding Interferometer IASI onboard Metop satellites. IASI makes global measurements of the Earth atmosphere in a nadir view, i.e. looking downward at the terrestrial radiation, with a horizontal resolution of a few hundreds km^2. It provides more than 10^6 radiance spectra daily, which cover the infrared range between 645 and 2760 cm^{-1} at medium spectral resolution (0.5 cm^{-1} apodized) and low noise. This, coupled to the exceptional sampling performances of IASI, made breakthroughs in the fields of atmospheric spectroscopy and chemistry. In this talk, we will shortly describe IASI instrument and its spectral measurements, as well as the radiative transfer model and retrieval scheme set up for near-real-time processing. We will review the principal accomplishments of IASI in probing the reactive atmosphere by measuring simultaneously the concentrations of about 25 trace species with short (e.g. NH_3, SO_2) to medium (e.g. O_3, CO) residence time, and from the local emission hotspot to the planetary scale. We will put emphasis on the challenging measurements of the polluted planetary boundary layer and will also show a series of focused results on pollution outflow, transport and in

  6. High Vertically Resolved Atmospheric State Revealed with IASI Single FOV Retrievals under All-weather Conditions

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Smith, William L.; Taylor, Jonathan P.; Schluessel, L. Peter; Strow, Larrybee; Mango, Stephen A.

    2008-01-01

    The Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp satellite was launched on October 19, 2006. The Joint Airborne IASI Validation Experiment (JAIVEx) was conducted during April 2007 mainly for validation of the IASI on the MetOp satellite. IASI possesses an ultra-spectral resolution of 0.25 cm(exp -1) and a spectral coverage from 645 to 2760 cm(exp -1). Ultra-spectral resolution infrared spectral radiance obtained from near nadir observations provide atmospheric, surface, and cloud property information. An advanced retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. Preliminary retrievals of atmospheric soundings, surface properties, and cloud optical/microphysical properties with the IASI observations are obtained and presented. These retrievals are further inter-compared with those obtained from airborne FTS system, such as the NPOESS Airborne Sounder Testbed - Interferometer (NAST-I), dedicated dropsondes, radiosondes, and ground based Raman Lidar. The capabilities of satellite ultra-spectral sounder such as the IASI are investigated to benefit future NPOESS operation.

  7. A simulated observation database to assess the impact of the IASI-NG hyperspectral infrared sounder

    NASA Astrophysics Data System (ADS)

    Andrey-Andrés, Javier; Fourrié, Nadia; Guidard, Vincent; Armante, Raymond; Brunel, Pascal; Crevoisier, Cyril; Tournier, Bernard

    2018-02-01

    The highly accurate measurements of the hyperspectral Infrared Atmospheric Sounding Interferometer (IASI) are used in numerical weather prediction (NWP), atmospheric chemistry and climate monitoring. As the second generation of the European Polar System (EPS-SG) is being developed, a new generation of IASI instruments has been designed to fly on board the MetOp-SG constellation: IASI New Generation (IASI-NG). In order to prepare the arrival of this new instrument, and to evaluate its impact on NWP and atmospheric chemistry applications, a set of IASI and IASI-NG simulated data was built and made available to the public to set a common framework for future impact studies. This paper describes the information available in this database and the procedure followed to run the IASI and IASI-NG simulations. These simulated data were evaluated by comparing IASI-NG to IASI observations. The result is also presented here. Additionally, preliminary impact studies of the benefit of IASI-NG compared to IASI on the retrieval of temperature and humidity in a NWP framework are also shown in the present work. With a channel dataset located in the same wave numbers for both instruments, we showed an improvement of the temperature retrievals throughout the atmosphere, with a maximum in the troposphere with IASI-NG and a lower benefit for the tropospheric humidity.

  8. Retrievals with the Infrared Atmospheric Sounding Interferometer

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Smith, William L.; Taylor, Jonathan P.; Schlussel, Peter; Strow, L. Larrabee; Calbet, Xavier; Mango, Stephen A.

    2007-01-01

    The Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp satellite was launched on October 19, 2006. The Joint Airborne IASI Validation Experiment (JAIVEx) was conducted during April 2007 mainly for validation of the IASI on the MetOp satellite. IASI possesses an ultra-spectral resolution of 0.25/cm and a spectral coverage from 645 to 2760/cm. Ultraspectral resolution infrared spectral radiance obtained from near nadir observations provide atmospheric, surface, and cloud property information. An advanced retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. Preliminary retrievals of atmospheric soundings, surface properties, and cloud optical/microphysical properties with the IASI observations during the JAIVEx are obtained and presented. These retrievals are further inter-compared with those obtained from airborne FTS system, such as the NPOESS Airborne Sounder Testbed Interferometer (NAST-I), dedicated dropsondes, radiosondes, and ground based Raman Lidar. The capabilities of satellite ultra-spectral sounder such as the IASI are investigated.

  9. Hyperspectral IASI L1C Data Compression.

    PubMed

    García-Sobrino, Joaquín; Serra-Sagristà, Joan; Bartrina-Rapesta, Joan

    2017-06-16

    The Infrared Atmospheric Sounding Interferometer (IASI), implemented on the MetOp satellite series, represents a significant step forward in atmospheric forecast and weather understanding. The instrument provides infrared soundings of unprecedented accuracy and spectral resolution to derive humidity and atmospheric temperature profiles, as well as some of the chemical components playing a key role in climate monitoring. IASI collects rich spectral information, which results in large amounts of data (about 16 Gigabytes per day). Efficient compression techniques are requested for both transmission and storage of such huge data. This study reviews the performance of several state of the art coding standards and techniques for IASI L1C data compression. Discussion embraces lossless, near-lossless and lossy compression. Several spectral transforms, essential to achieve improved coding performance due to the high spectral redundancy inherent to IASI products, are also discussed. Illustrative results are reported for a set of 96 IASI L1C orbits acquired over a full year (4 orbits per month for each IASI-A and IASI-B from July 2013 to June 2014) . Further, this survey provides organized data and facts to assist future research and the atmospheric scientific community.

  10. The IASI detection chain

    NASA Astrophysics Data System (ADS)

    Nicol, Patrick; Fleury, Joel; Le Naour, Claire; Bernard, Frédéric

    2017-11-01

    IASI (Infrared Atmospheric Sounding Interferometer) is an infrared atmospheric sounder. It will provide meteorologist and scientific community with atmospheric spectra. The instrument is composed of a Fourier transform spectrometer and an associated infrared imager. The presentation will describe the spectrometer detection chain architecture, composed by three different detectors cooled in a passive cryo-cooler (so called CBS : Cold Box Subsystem) and associated analog electronics up to digital conversion. It will mainly focus on design choices with regards to environment constraints, implemented technologies, and associated performances. CNES is leading the IASI program in collaboration with EUMETSAT. The instrument Prime is ALCATEL SPACE responsible, notably, of the detection chain architecture. SAGEM SA provides the detector package (so called CAU : Cold Acquisition Unit).

  11. The IASI detection chain

    NASA Astrophysics Data System (ADS)

    Nicol, Patrick; Fleury, Joel; Bernard, Frédéric

    2004-06-01

    IASI (Infrared Atmospheric Sounding Interferometer) is an infrared atmospheric sounder. It will provide meteorologist and scientific community with atmospheric spectra. The instrument is composed of a Fourier transform spectrometer and an associated infrared imager. The presentation will describe the spectrometer detection chain architecture, composed by three different detectors cooled in a passive cryo-cooler (so called CBS : Cold Box Subsystem) and associated analog electronics up to digital conversion. It will mainly focus on design choices with regards to environment constraints, implemented technologies, and associated performances . CNES is leading the IASI program in collaboration with EUMETSAT. The instrument Prime is ALCATEL SPACE responsible, notably, of the detection chain architecture. SAGEM SA provides the detector package (so called CAU: Cold Acquisition Unit).

  12. Potential for the use of reconstructed IASI radiances in the detection of atmospheric trace gases

    NASA Astrophysics Data System (ADS)

    Atkinson, N. C.; Hilton, F. I.; Illingworth, S. M.; Eyre, J. R.; Hultberg, T.

    2010-07-01

    Principal component (PC) analysis has received considerable attention as a technique for the extraction of meteorological signals from hyperspectral infra-red sounders such as the Infrared Atmospheric Sounding Interferometer (IASI) and the Atmospheric Infrared Sounder (AIRS). In addition to achieving substantial bit-volume reductions for dissemination purposes, the technique can also be used to generate reconstructed radiances in which random instrument noise has been reduced. Studies on PC analysis of hyperspectral infrared sounder data have been undertaken in the context of numerical weather prediction, instrument monitoring and geophysical variable retrieval, as well as data compression. This study examines the potential of PC analysis for chemistry applications. A major concern in the use of PC analysis for chemistry is that the spectral features associated with trace gases may not be well represented in the reconstructed spectra, either due to deficiencies in the training set or due to the limited number of PC scores used in the radiance reconstruction. In this paper we show examples of reconstructed IASI radiances for several trace gases: ammonia, sulphur dioxide, methane and carbon monoxide. It is shown that care must be taken in the selection of spectra for the initial training set: an iterative technique, in which outlier spectra are added to a base training set, gives the best results. For the four trace gases examined, key features of the chemical signatures are retained in the reconstructed radiances, whilst achieving a substantial reduction in instrument noise. A new regional re-transmission service for IASI is scheduled to start in 2010, as part of the EUMETSAT Advanced Retransmission Service (EARS). For this EARS-IASI service it is intended to include PC scores as part of the data stream. The paper describes the generation of the reference eigenvectors for this new service.

  13. Utilization of all Spectral Channels of IASI for the Retrieval of the Atmospheric State

    NASA Astrophysics Data System (ADS)

    Del Bianco, S.; Cortesi, U.; Carli, B.

    2010-12-01

    The retrieval of atmospheric state parameters from broadband measurements acquired by high spectral resolution sensors, such as the Infrared Atmospheric Sounding Interferometer (IASI) onboard the Meteorological Operational (MetOp) platform, generally requires to deal with a prohibitively large number of spectral elements available from a single observation (8461 samples in the case of IASI, covering the 645-2760 cm-1 range with a resolution of 0.5 cm-1 and a spectral sampling of 0.25 cm-1). Most inversion algorithms developed for both operational and scientific analysis of IASI spectra perform a reduction of the data - typically based on channel selection, super-channel clustering or Principal Component Analysis (PCA) techniques - in order to handle the high dimensionality of the problem. Accordingly, simultaneous processing of all IASI channels received relatively low attention. Here we prove the feasibility of a retrieval approach exploiting all spectral channels of IASI, to extract information on water vapor, temperature and ozone profiles. This multi-target retrieval removes the systematic errors due to interfering parameters and makes the channel selection no longer necessary. The challenging computation is made possible by the use of a coarse spectral grid for the forward model calculation and by the abatement of the associated modeling errors through the use of a variance-covariance matrix of the residuals that takes into account all the forward model errors.

  14. Global height-resolved methane retrievals from the Infrared Atmospheric Sounding Interferometer (IASI) on MetOp

    NASA Astrophysics Data System (ADS)

    Siddans, Richard; Knappett, Diane; Kerridge, Brian; Waterfall, Alison; Hurley, Jane; Latter, Barry; Boesch, Hartmut; Parker, Robert

    2017-11-01

    This paper describes the global height-resolved methane (CH4) retrieval scheme for the Infrared Atmospheric Sounding Interferometer (IASI) on MetOp, developed at the Rutherford Appleton Laboratory (RAL). The scheme precisely fits measured spectra in the 7.9 micron region to allow information to be retrieved on two independent layers centred in the upper and lower troposphere. It also uses nitrous oxide (N2O) spectral features in the same spectral interval to directly retrieve effective cloud parameters to mitigate errors in retrieved methane due to residual cloud and other geophysical variables. The scheme has been applied to analyse IASI measurements between 2007 and 2015. Results are compared to model fields from the MACC greenhouse gas inversion and independent measurements from satellite (GOSAT), airborne (HIPPO) and ground (TCCON) sensors. The estimated error on methane mixing ratio in the lower- and upper-tropospheric layers ranges from 20 to 100 and from 30 to 40 ppbv, respectively, and error on the derived column-average ranges from 20 to 40 ppbv. Vertical sensitivity extends through the lower troposphere, though it decreases near to the surface. Systematic differences with the other datasets are typically < 10 ppbv regionally and < 5 ppbv globally. In the Southern Hemisphere, a bias of around 20 ppbv is found with respect to MACC, which is not explained by vertical sensitivity or found in comparison of IASI to TCCON. Comparisons to HIPPO and MACC support the assertion that two layers can be independently retrieved and provide confirmation that the estimated random errors on the column- and layer-averaged amounts are realistic. The data have been made publically available via the Centre for Environmental Data Analysis (CEDA) data archive (Siddans, 2016).

  15. Potential for the use of reconstructed IASI radiances in the detection of atmospheric trace gases

    NASA Astrophysics Data System (ADS)

    Atkinson, N. C.; Hilton, F. I.; Illingworth, S. M.; Eyre, J. R.; Hultberg, T.

    2010-02-01

    Principal component (PC) analysis has received considerable attention as a technique for the extraction of meteorological signals from hyperspectral infra-red sounders such as the Infrared Atmospheric Sounding Interferometer (IASI) and the Atmospheric Infrared Sounder (AIRS). In addition to achieving substantial bit-volume reductions for dissemination purposes, the technique can also be used to generate reconstructed radiances in which random instrument noise has been suppressed. To date, most studies have been in the context of Numerical Weather Prediction (NWP). This study examines the potential of PC analysis for chemistry applications. A major concern in the use of PC analysis for chemistry has been that the spectral features associated with trace gases may not be well represented in the reconstructed spectra, either due to deficiencies in the training set or due to the limited number of PC scores used in the radiance reconstruction. In this paper we show examples of reconstructed IASI radiances for several trace gases: ammonia, sulphur dioxide, methane and carbon monoxide. It is shown that care must be taken in the selection of spectra for the initial training set: an iterative technique, in which outlier spectra are added to a base training set, gives the best results. For the four trace gases examined, the chemical signatures are retained in the reconstructed radiances, whilst achieving a substantial reduction in instrument noise. A new regional re-transmission service for IASI is scheduled to start in 2010, as part of the EUMETSAT Advanced Retransmission Service (EARS). For this EARS-IASI service it is intended to include PC scores as part of the data stream. The paper describes the generation of the reference eigenvectors for this new service.

  16. Assimilation of IASI and AIRS Data: Information Content and Quality Control

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The Infrared Atmospheric Sounding Interferometer (IASI) and Atmospheric Infrared Sounder (AIRS) instruments have two orders of magnitude more channels that the current operational infrared sounder (High Resolution Infra-Red Sounder (HIRS)). This data volume presents a technological challenge for using the data in a data assimilation system. Data reduction will be a necessary for assimilation. It is important to understand the information content of the radiance measurements for data reduction purposes. In this talk, I will discuss issues relating to information content and quality control for assimilation of the AIRS and IASI data.

  17. Simultaneous Retrieval of Temperature, Water Vapor and Ozone Atmospheric Profiles from IASI: Compression, De-noising, First Guess Retrieval and Inversion Algorithms

    NASA Technical Reports Server (NTRS)

    Aires, F.; Rossow, W. B.; Scott, N. A.; Chedin, A.; Hansen, James E. (Technical Monitor)

    2001-01-01

    A fast temperature water vapor and ozone atmospheric profile retrieval algorithm is developed for the high spectral resolution Infrared Atmospheric Sounding Interferometer (IASI) space-borne instrument. Compression and de-noising of IASI observations are performed using Principal Component Analysis. This preprocessing methodology also allows, for a fast pattern recognition in a climatological data set to obtain a first guess. Then, a neural network using first guess information is developed to retrieve simultaneously temperature, water vapor and ozone atmospheric profiles. The performance of the resulting fast and accurate inverse model is evaluated with a large diversified data set of radiosondes atmospheres including rare events.

  18. How Well Can Infrared Sounders Observe the Atmosphere and Surface Through Clouds?

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, L. Larrabee; Yang, Ping

    2010-01-01

    Infrared sounders, such as the Atmospheric Infrared Sounder (AIRS), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared sounder (CrIS), have a cloud-impenetrable disadvantage in observing the atmosphere and surface under opaque cloudy conditions. However, recent studies indicate that hyperspectral, infrared sounders have the ability to detect cloud effective-optical and microphysical properties and to penetrate optically thin clouds in observing the atmosphere and surface to a certain degree. We have developed a retrieval scheme dealing with atmospheric conditions with cloud presence. This scheme can be used to analyze the retrieval accuracy of atmospheric and surface parameters under clear and cloudy conditions. In this paper, we present the surface emissivity results derived from IASI global measurements under both clear and cloudy conditions. The accuracy of surface emissivity derived under cloudy conditions is statistically estimated in comparison with those derived under clear sky conditions. The retrieval error caused by the clouds is shown as a function of cloud optical depth, which helps us to understand how well infrared sounders can observe the atmosphere and surface through clouds.

  19. Retrieval of Saharan desert dust optical depth from thermal infrared measurements by IASI

    NASA Astrophysics Data System (ADS)

    Vandenbussche, S.; Kochenova, S.; Vandaele, A.-C.; Kumps, N.; De Mazière, M.

    2012-04-01

    Aerosols are a major actor in the climate system. They are responsible for climate forcing by both direct (by emission, absorption and scattering) and indirect effects (for example, by altering cloud microphysics). A better knowledge of aerosol optical properties, of the atmospheric aerosol load and of aerosol sources and sinks may therefore significantly improve the modeling of climate changes. Aerosol optical depth and other properties are retrieved on an operational basis from daytime measurements in the visible and near infrared spectral range by a number of instruments, like the satellite instruments MODIS, CALIOP, POLDER, MISR and ground-based sunphotometers. Aerosol retrievals from day and night measurements at thermal infrared (TIR) wavelengths (for example, from SEVIRI, AIRS and IASI satellite instruments) are less common, but they receive growing interest in more recent years. Among those TIR measuring instruments, IASI on METOP has one major advantage for aerosol retrievals: its large continuous spectral coverage, allowing to better capture the broadband signature of aerosols. Furthermore, IASI has a high spectral resolution (0.5cm-1 after apodization) which allows retrieving a large number of trace gases at the same time, it will nominally be in orbit for 15 years and offers a quasi global Earth coverage twice a day. Here we will show recently obtained results of desert aerosol properties (concentration, altitude, optical depth) retrieved from IASI TIR measurements, using the ASIMUT software (BIRA-IASB, Belgium) linked to (V)LIDORT (R. Spurr, RTsolutions Inc, US) and to SPHER (M. Mishchenko, NASA GISS, USA). In particular, we will address the case of Saharan desert dust storms, which are a major source of desert dust particles in the atmosphere. Those storms frequently transport sand to Europe, Western Asia or even South America. We will show some test-case comparisons between our retrievals and measurements from other instruments like those listed

  20. The NPOESS Crosstrack Infrared Sounder (CrIS) and Advanced Technology Microwave Sounder (ATMS) as a Companion to the New Generation AIRS/AMSU and IASI/AMSU Sounder Suites

    NASA Astrophysics Data System (ADS)

    Bingham, G. E.; Pougatchev, N. S.; Zavyalov, V.; Esplin, M.; Blackwell, W. J.; Barnet, C.

    2009-12-01

    The NPOESS Preparatory Project is serving the operations and research community as the bridge mission between the Earth Observing System and the National Polar-orbiting Operational Environmental Satellite System. The Cross-track Infrared Sounder (CrIS), combined with the Advanced Technology Microwave Sounder (ATMS) are the core instruments to provide the key performance temperature and humidity profiles (along with some other atmospheric constituent information). Both the high spectral resolution CrIS and the upgraded microwave sounder (ATMS) will be working in parallel with already orbiting Advanced Atmospheric Infrared Sounder (AIRS/AMSU) on EOS AQUA platform and Infrared Atmospheric Sounding Interferometer (IASI/AMSU) on METOP-A satellite. This presentation will review the CrIS/ATMS capabilities in the context of continuity with the excellent performance records established by AIRS and IASI. The CrIS sensor is in the process of its final calibration and characterization testing and the results and Sensor Data Record process are being validated against this excellent dataset. The comparison between CrIS, AIRS, and IASI will include spectral, spatial, radiometric performance and sounding capability comparisons.

  1. Atmospheric, Cloud, and Surface Parameters Retrieved from Satellite Ultra-spectral Infrared Sounder Measurements

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Smith, William L.; Yang, Ping; Schluessel, Peter; Strow, Larrabee

    2007-01-01

    An advanced retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. This physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multivariable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. This retrieval algorithm is applied to the MetOp satellite Infrared Atmospheric Sounding Interferometer (IASI) launched on October 19, 2006. IASI possesses an ultra-spectral resolution of 0.25 cm(exp -1) and a spectral coverage from 645 to 2760 cm(exp -1). Preliminary retrievals of atmospheric soundings, surface properties, and cloud optical/microphysical properties with the IASI measurements are obtained and presented.

  2. Determination of enhancement ratios of HCOOH relative to CO in biomass burning plumes by the Infrared Atmospheric Sounding Interferometer (IASI)

    NASA Astrophysics Data System (ADS)

    Pommier, Matthieu; Clerbaux, Cathy; Coheur, Pierre-Francois

    2017-09-01

    Formic acid (HCOOH) concentrations are often underestimated by models, and its chemistry is highly uncertain. HCOOH is, however, among the most abundant atmospheric volatile organic compounds, and it is potentially responsible for rain acidity in remote areas. HCOOH data from the Infrared Atmospheric Sounding Interferometer (IASI) are analyzed from 2008 to 2014 to estimate enhancement ratios from biomass burning emissions over seven regions. Fire-affected HCOOH and CO total columns are defined by combining total columns from IASI, geographic location of the fires from Moderate Resolution Imaging Spectroradiometer (MODIS), and the surface wind speed field from the European Centre for Medium-Range Weather Forecasts (ECMWF). Robust correlations are found between these fire-affected HCOOH and CO total columns over the selected biomass burning regions, allowing the calculation of enhancement ratios equal to 7.30 × 10-3 ± 0.08 × 10-3 mol mol-1 over Amazonia (AMA), 11.10 × 10-3 ± 1.37 × 10-3 mol mol-1 over Australia (AUS), 6.80 × 10-3 ± 0.44 × 10-3 mol mol-1 over India (IND), 5.80 × 10-3 ± 0.15 × 10-3 mol mol-1 over Southeast Asia (SEA), 4.00 × 10-3 ± 0.19 × 10-3 mol mol-1 over northern Africa (NAF), 5.00 × 10-3 ± 0.13 × 10-3 mol mol-1 over southern Africa (SAF), and 4.40 × 10-3 ± 0.09 × 10-3 mol mol-1 over Siberia (SIB), in a fair agreement with previous studies. In comparison with referenced emission ratios, it is also shown that the selected agricultural burning plumes captured by IASI over India and Southeast Asia correspond to recent plumes where the chemistry or the sink does not occur. An additional classification of the enhancement ratios by type of fuel burned is also provided, showing a diverse origin of the plumes sampled by IASI, especially over Amazonia and Siberia. The variability in the enhancement ratios by biome over the different regions show that the levels of HCOOH and CO do not only depend on the fuel types.

  3. First simultaneous space measurements of atmospheric pollutants in the boundary layer from IASI: a case study in the North China Plain

    NASA Astrophysics Data System (ADS)

    Boynard, Anne; Clerbaux, Cathy; Clarisse, Lieven; Safieddine, Sarah; Pommier, Matthieu; Van Damme, Martin; Bauduin, Sophie; Oudot, Charlotte; Hadji-Lazaro, Juliette; Hurtmans, Daniel; Coheur, Pierre-François

    2014-05-01

    An extremely severe and persistent smog episode occurred in January 2013 over China. The levels of air pollution have been dangerously high, reaching 40 times recommended safety levels and have affected health of millions of people. China faced one of the worst periods of air quality in recent history and drew worldwide attention. This pollution episode was caused by the combination of anthropogenic emissions and stable meteorological conditions (absence of wind and temperature inversion) that trapped pollutants in the boundary layer. To characterize this episode, we used the IASI (Infrared Atmospheric Sounding Interferometer) instrument onboard the MetOp-A platform. IASI observations show high concentrations of key trace gases such as carbon monoxide (CO), sulfur dioxide (SO2) and ammonia (NH3) along with ammonium sulfate aerosol. We show that IASI is able to detect boundary layer pollution in case of large negative thermal contrast combined with high levels of pollution. Our findings demonstrate the ability of thermal infrared instrument such as IASI to monitor boundary layer pollutants, which can support air quality evaluation and management.

  4. A Regularized Neural Net Approach for Retrieval of Atmospheric and Surface Temperatures with the IASI Instrument

    NASA Technical Reports Server (NTRS)

    Aires, F.; Chedin, A.; Scott, N. A.; Rossow, W. B.; Hansen, James E. (Technical Monitor)

    2001-01-01

    Abstract In this paper, a fast atmospheric and surface temperature retrieval algorithm is developed for the high resolution Infrared Atmospheric Sounding Interferometer (IASI) space-borne instrument. This algorithm is constructed on the basis of a neural network technique that has been regularized by introduction of a priori information. The performance of the resulting fast and accurate inverse radiative transfer model is presented for a large divE:rsified dataset of radiosonde atmospheres including rare events. Two configurations are considered: a tropical-airmass specialized scheme and an all-air-masses scheme.

  5. Initial Retrieval Validation from the Joint Airborne IASI Validation Experiment (JAIVEx)

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Liu, Xu; Smith, WIlliam L.; Larar, Allen M.; Taylor, Jonathan P.; Revercomb, Henry E.; Mango, Stephen A.; Schluessel, Peter; Calbet, Xavier

    2007-01-01

    The Joint Airborne IASI Validation Experiment (JAIVEx) was conducted during April 2007 mainly for validation of the Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp satellite, but also included a strong component focusing on validation of the Atmospheric InfraRed Sounder (AIRS) aboard the AQUA satellite. The cross validation of IASI and AIRS is important for the joint use of their data in the global Numerical Weather Prediction process. Initial inter-comparisons of geophysical products have been conducted from different aspects, such as using different measurements from airborne ultraspectral Fourier transform spectrometers (specifically, the NPOESS Airborne Sounder Testbed Interferometer (NAST-I) and the Scanning-High resolution Interferometer Sounder (S-HIS) aboard the NASA WB-57 aircraft), UK Facility for Airborne Atmospheric Measurements (FAAM) BAe146-301 aircraft insitu instruments, dedicated dropsondes, radiosondes, and ground based Raman Lidar. An overview of the JAIVEx retrieval validation plan and some initial results of this field campaign are presented.

  6. Understanding Climate Trends Using IR Brightness Temperature Spectra from AIRS, IASI and CrIS

    NASA Astrophysics Data System (ADS)

    Deslover, D. H.; Nikolla, E.; Knuteson, R. O.; Revercomb, H. E.; Tobin, D. C.

    2016-12-01

    NASA's Atmospheric Infrared Sounder (AIRS) provides a data record that extends from its 2002 launch to the present. The Infrared Atmospheric Sounding Interferometer (IASI) onboard Metop- (A launched in 2006, B in 2012), as well as the Joint Polar Satellite System (JPSS) Cross-track Infrared Sounder (CrIS) launched in 2011, complement this data record. Future infrared sounders with similar capabilities will augment these measurements into the near future. We have created a global data set from these infrared measurements, using the nadir-most observations for each of the aforementioned instruments. We can filter the data based upon spatial, diurnal and seasonal properties to discern trends for a given spectral channel and, therefore, a specific atmospheric layer. Subtle differences between spectral sampling among the three instruments can lead significant differences in the resultant probability distribution functions for similar spectral channels. We take advantage of the higher (0.25 cm-1) IASI spectral resolution to subsample the IASI spectra onto AIRS and CrIS spectral grids to better compare AIRS/IASI and CrIS/IASI trends in the brightness temperature anomalies. To better understand the dependance of trace gases on the measured brightness temperature spectral time-series, a companion study has utilized coincident vertical profiles of stratospheric carbon dioxide, water vapor and ozone concentration are used to infer a correlation with the CrIS brightness temperatures. The goal was to investigate the role of ozone heating and carbon dioxide cooling on the observed brightness temperature spectra. Results from that study will be presented alongside the climate trend analysis.

  7. IASI Satellite Observation and Forecast of Pollutants

    NASA Astrophysics Data System (ADS)

    Clerbaux, C.; Boynard, A.; George, M.; Hadji-Lazaro, J.; Safieddine, S.; Viatte, C.; Clarisse, L.; Pierre-Francois, C.; Hurtmans, D.; van Damme, M.; Wespes, C.; Whitburn, S.

    2017-12-01

    The IASI family of instruments has been sounding the atmosphere since 2006 onboard the Metop satellite series. Using the radiance data recorded in the thermal infrared spectral range, concentrations for atmospheric pollutants such as carbon monoxide (CO), ozone (O3), sulfur dioxide (SO2) and ammonia (NH3) can be derived. IASI CO and O3 fields are assimilated in regional and global models in order to predict air quality over Europe. Enhanced levels of pollutants are detected in near-real time, and can be followed at city, country and continent levels. This talk will present the findings for an extended time period (2008-2017), and will review the IASI capability to observe exceptional events both at the local and regional scales, as well as seasonal variations due other dynamic patterns (monsoon, ENSO, …). Progresses and current limitations to derive long term trends will also be discussed.

  8. IASI instrument onboard Metop-A: lessons learned after almost two years in orbit

    NASA Astrophysics Data System (ADS)

    Buffet, Laurence; Pequignot, Eric; Blumstein, Denis; Fjørtoft, Roger; Lonjou, Vincent; Millet, Bruno; Larigauderie, Carole

    2017-11-01

    The Infrared Atmospheric Sounding Interferometer (IASI) is a key element of the MetOp payload, dedicated to operational meteorology. IASI measurements allow to retrieve temperature and humidity profiles at a 1 km vertical resolution with an accuracy of respectively 1 K and 10%. The aim of this paper is to give a status of the instrument and to present some lessons learned after almost two years in orbit. As the first European infrared sounder, the IASI instrument has demonstrated its operational capability and its adequacy to user needs, with highly meaningful contributions to meteorology, climate and atmospheric chemistry studies. The in-flight performance of IASI is fully satisfactory. The sensitivity to radiative environment seems to be higher than expected: several SEU related anomalies were recorded, without any consequence on the instrument's health. The first decontamination since the commissioning phase was successfully performed in March 2008. The instrument globally shows a stable behaviour.

  9. Infrared detector development for the IASI instrument

    NASA Astrophysics Data System (ADS)

    Royer, Michel; Fleury, Joel; Lorans, Dominique; Pelier, Alain

    1997-10-01

    IASI is an infrared atmospheric sounding interferometer devoted to the operational meteorology and to atmospheric studies and is to be installed on board the ESA/EUMETSAT Polar Platform METOP to be launched in 2002. The required operating lifetime is 5 years. SAGEM/SAT has been developing the cold acquisition unit since 1991. The B-phase study was dedicated to the manufacture of the critical components, among which the IR detectors, optics, cold links and packaging. They concern the 3 types of detectors (InSb, HgCdTe-photovoltaic, HgCdTe- photoconductive) and the assembly technologies. The quantum detectors operate in the IR spectrum, so they are cooled at 100 K. The large spectrum (3.4 to 15.5 micrometer) is divided into 3 spectral bands. After manufacturing of these components, a program of test has been conducted and is reported for the evaluation of the technologies. It shows how the detector focal planes can sustain the space environmental conditions of an operational mission. It comprises two main files of test, mechanical evaluation and electrical evaluation. The detector environment has also been considered with aging and radiation tests, performed successfully. The B- phase is now achieved and all these development and testing activities are here reported.

  10. PCA determination of the radiometric noise of high spectral resolution infrared observations from spectral residuals: Application to IASI

    NASA Astrophysics Data System (ADS)

    Serio, C.; Masiello, G.; Camy-Peyret, C.; Jacquette, E.; Vandermarcq, O.; Bermudo, F.; Coppens, D.; Tobin, D.

    2018-02-01

    The problem of characterizing and estimating the instrumental or radiometric noise of satellite high spectral resolution infrared spectrometers directly from Earth observations is addressed in this paper. An approach has been developed, which relies on the Principal Component Analysis (PCA) with a suitable criterion to select the optimal number of PC scores. Different selection criteria have been set up and analysed, which is based on the estimation theory of Least Squares and/or Maximum Likelihood Principle. The approach is independent of any forward model and/or radiative transfer calculations. The PCA is used to define an orthogonal basis, which, in turn, is used to derive an optimal linear reconstruction of the observations. The residual vector that is the observation vector minus the calculated or reconstructed one is then used to estimate the instrumental noise. It will be shown that the use of the spectral residuals to assess the radiometric instrumental noise leads to efficient estimators, which are largely independent of possible departures of the true noise from that assumed a priori to model the observational covariance matrix. Application to the Infrared Atmospheric Sounder Interferometer (IASI) has been considered. A series of case studies has been set up, which make use of IASI observations. As a major result, the analysis confirms the high stability and radiometric performance of IASI. The approach also proved to be efficient in characterizing noise features due to mechanical micro-vibrations of the beam splitter of the IASI instrument.

  11. Cross-validation of IASI/MetOp derived tropospheric δD with TES and ground-based FTIR observations

    NASA Astrophysics Data System (ADS)

    Lacour, J.-L.; Clarisse, L.; Worden, J.; Schneider, M.; Barthlott, S.; Hase, F.; Risi, C.; Clerbaux, C.; Hurtmans, D.; Coheur, P.-F.

    2014-11-01

    The Infrared Atmospheric Sounding Interferometer (IASI) flying on-board MetOpA and MetOpB is able to capture fine isotopic variations of the HDO to H2O ratio (δD) in the troposphere. Such observations at the high spatio temporal resolution of the sounder are of great interest to improve our understanding of the mechanisms controlling humidity in the troposphere. In this study we aim to empirically assess the validity of our error estimation previously evaluated theoretically. To achieve this, we compare IASI δD retrieved profiles with other available profiles of δD, from the TES infrared sounder onboard AURA and from three ground-based FTIR stations produced within the MUSICA project: the NDACC (Network for the Detection of Atmospheric Composition Change) sites Kiruna and Izana, and the TCCON site Karlsruhe, which in addition to near-infrared TCCON spectra also records mid-infrared spectra. We describe the achievable level of agreement between the different retrievals and show that these theoretical errors are in good agreement with empirical differences. The comparisons are made at different locations from tropical to Arctic latitudes, above sea and above land. Generally IASI and TES are similarly sensitive to δD in the free troposphere which allows to compare their measurements directly. At tropical latitudes where IASI's sensitivity is lower than that of TES, we show that the agreement improves when taking into account the sensitivity of IASI in the TES retrieval. For the comparison IASI-FTIR only direct comparisons are performed because of similar sensitivities. We identify a quasi negligible bias in the free troposphere (-3‰) between IASI retrieved δD with the TES one, which are bias corrected, but an important with the ground-based FTIR reaching -47‰. We also suggest that model-satellite observations comparisons could be optimized with IASI thanks to its high spatial and temporal sampling.

  12. Assimilation of atmospheric methane products into the MACC-II system: from SCIAMACHY to TANSO and IASI

    NASA Astrophysics Data System (ADS)

    Massart, S.; Agusti-Panareda, A.; Aben, I.; Butz, A.; Chevallier, F.; Crevosier, C.; Engelen, R.; Frankenberg, C.; Hasekamp, O.

    2014-06-01

    The Monitoring Atmospheric Composition and Climate Interim Implementation (MACC-II) delayed-mode (DM) system has been producing an atmospheric methane (CH4) analysis 6 months behind real time since June 2009. This analysis used to rely on the assimilation of the CH4 product from the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) instrument onboard Envisat. Recently the Laboratoire de Météorologie Dynamique (LMD) CH4 products from the Infrared Atmospheric Sounding Interferometer (IASI) and the SRON Netherlands Institute for Space Research CH4 products from the Thermal And Near-infrared Sensor for carbon Observation (TANSO) were added to the DM system. With the loss of Envisat in April 2012, the DM system now has to rely on the assimilation of methane data from TANSO and IASI. This paper documents the impact of this change in the observing system on the methane tropospheric analysis. It is based on four experiments: one free run and three analyses from respectively the assimilation of SCIAMACHY, TANSO and a combination of TANSO and IASI CH4 products in the MACC-II system. The period between December 2010 and April 2012 is studied. The SCIAMACHY experiment globally underestimates the tropospheric methane by 35 part per billion (ppb) compared to the HIAPER Pole-to-Pole Observations (HIPPO) data and by 28 ppb compared the Total Carbon Column Observing Network (TCCON) data, while the free run presents an underestimation of 5 ppb and 1 ppb against the same HIPPO and TCCON data, respectively. The assimilated TANSO product changed in October 2011 from version v.1 to version v.2.0. The analysis of version v.1 globally underestimates the tropospheric methane by 18 ppb compared to the HIPPO data and by 15 ppb compared to the TCCON data. In contrast, the analysis of version v.2.0 globally overestimates the column by 3 ppb. When the high density IASI data are added in the tropical region between 30° N and 30° S, their impact is mainly

  13. On the capability of IASI measurements to inform about CO surface emissions

    NASA Astrophysics Data System (ADS)

    Fortems-Cheiney, A.; Chevallier, F.; Pison, I.; Bousquet, P.; Carouge, C.; Clerbaux, C.; Coheur, P.-F.; George, M.; Hurtmans, D.; Szopa, S.

    2009-03-01

    Between July and November 2008, simultaneous observations were conducted by several orbiting instruments that monitor carbon monoxide in the atmosphere, among them the Infrared Atmospheric Sounding Instrument (IASI) and Measurements Of Pollution In The Troposphere (MOPITT). In this paper, the concentration retrievals at about 700 hPa from these two instruments are successively used in a variational Bayesian system to infer the global distribution of CO emissions. Our posterior estimate of CO emissions using IASI retrievals gives a total of 793 Tg for the considered period, which is 40% higher than the global budget calculated with the MOPITT data (566 Tg). Over six continental regions (Eurasian Boreal, South Asia, South East Asia, North American Boreal, Northern Africa and South American Temperate) and thanks to a better observation density, the theoretical uncertainty reduction obtained with the IASI retrievals is better or similar than with MOPITT. For the other continental regions, IASI constrains the emissions less than MOPITT because of lesser sensitivity in the lower troposphere. These first results indicate that IASI may play a major role in the quantification of the emissions of CO.

  14. Cloud and Thermodynamic Parameters Retrieved from Satellite Ultraspectral Infrared Measurements

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Smith, William L.; Larar, Allen M.; Liu, Xu; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Stephen A.

    2008-01-01

    Atmospheric-thermodynamic parameters and surface properties are basic meteorological parameters for weather forecasting. A physical geophysical parameter retrieval scheme dealing with cloudy and cloud-free radiance observed with satellite ultraspectral infrared sounders has been developed and applied to the Infrared Atmospheric Sounding Interferometer (IASI) and the Atmospheric InfraRed Sounder (AIRS). The retrieved parameters presented herein are from radiance data gathered during the Joint Airborne IASI Validation Experiment (JAIVEx). JAIVEx provided intensive aircraft observations obtained from airborne Fourier Transform Spectrometer (FTS) systems, in-situ measurements, and dedicated dropsonde and radiosonde measurements for the validation of the IASI products. Here, IASI atmospheric profile retrievals are compared with those obtained from dedicated dropsondes, radiosondes, and the airborne FTS system. The IASI examples presented here demonstrate the ability to retrieve fine-scale horizontal features with high vertical resolution from satellite ultraspectral sounder radiance spectra.

  15. The importance of using dynamical a-priori profiles for infrared O3 retrievals : the case of IASI.

    NASA Astrophysics Data System (ADS)

    Peiro, H.; Emili, E.; Le Flochmoen, E.; Barret, B.; Cariolle, D.

    2016-12-01

    Tropospheric ozone (O3) is a trace gas involved in the global greenhouse effect. To quantify its contribution to global warming, an accurate determination of O3 profiles is necessary. The instrument IASI (Infrared Atmospheric Sounding Interferometer), on board satellite MetOP-A, is the more sensitive sensor to tropospheric O3 with a high spatio-temporal coverage. Satellite retrievals are often based on the inversion of the measured radiance data with a variational approach. This requires an a priori profile and the correspondent error covariance matrix (COV) as ancillary input. Previous studies have shown some biases ( 20%) in IASI retrievals for tropospheric column in the Southern Hemisphere (SH). A possible source of errors is caused by the a priori profile. This study aims to i) build a dynamical a priori profile O3 with a Chemistry Transport Model (CTM), ii) integrate and to demonstrate the interest of this a priori profile in IASI retrievals.Global O3 profiles are retrieved from IASI radiances with the SOFRID (Software for a fast Retrieval of IASI Data) algorithm. It is based on the RTTOV (Radiative Transfer for TOVS) code and a 1D-Var retrieval scheme. Until now, a constant a priori profile was based on a combination of MOZAIC, WOUDC-SHADOZ and Aura/MLS data named here CLIM PR. The global CTM MOCAGE (Modèle de Chimie Atmosphérique à Grande Echelle) has been used with a linear O3 chemistry scheme to assimilate Microwave Limb Sounder (MLS) data. The model resolution of 2°x2°, with 60 sigma-hybrid vertical levels covering the stratosphere has been used. MLS level 2 products have been assimilated with a 4D-VAR variational algorithm to constrain stratospheric O3 and obtain high quality a priori profiles O3 above the tropopause. From this reanalysis, we built these profiles at a 6h frequency on a coarser resolution grid 10°x20° named MOCAGE+MLS PR.Statistical comparisons between retrievals and ozonesondes have shown better correlations and smaller biases for

  16. Measuring Skin Temperatures with the IASI Hyperspectral Mission

    NASA Astrophysics Data System (ADS)

    Safieddine, S.; George, M.; Clarisse, L.; Clerbaux, C.

    2017-12-01

    Although the role of satellites in observing the variability of the Earth system has increased in recent decades, remote-sensing observations are still underexploited to accurately assess climate change fingerprints, in particular temperature variations. The IASI - Flux and Temperature (IASI-FT) project aims at providing new benchmarks for temperature observations using the calibrated radiances measured twice a day at any location by the IASI thermal infrared instrument on the suite of MetOp satellites (2006-2025). The main challenge is to achieve the accuracy and stability needed for climate studies, particularly that required for climate trends. Time series for land and sea skin surface temperatures are derived and compared with in situ measurements and atmospheric reanalysis. The observed trends are analyzed at seasonal and regional scales in order to disentangle natural (weather/dynamical) variability and human-induced climate forcings.

  17. Cross-validation of IASI/MetOp derived tropospheric δD with TES and ground-based FTIR observations

    NASA Astrophysics Data System (ADS)

    Lacour, J.-L.; Clarisse, L.; Worden, J.; Schneider, M.; Barthlott, S.; Hase, F.; Risi, C.; Clerbaux, C.; Hurtmans, D.; Coheur, P.-F.

    2015-03-01

    The Infrared Atmospheric Sounding Interferometer (IASI) flying onboard MetOpA and MetOpB is able to capture fine isotopic variations of the HDO to H2O ratio (δD) in the troposphere. Such observations at the high spatio-temporal resolution of the sounder are of great interest to improve our understanding of the mechanisms controlling humidity in the troposphere. In this study we aim to empirically assess the validity of our error estimation previously evaluated theoretically. To achieve this, we compare IASI δD retrieved profiles with other available profiles of δD, from the TES infrared sounder onboard AURA and from three ground-based FTIR stations produced within the MUSICA project: the NDACC (Network for the Detection of Atmospheric Composition Change) sites Kiruna and Izaña, and the TCCON site Karlsruhe, which in addition to near-infrared TCCON spectra also records mid-infrared spectra. We describe the achievable level of agreement between the different retrievals and show that these theoretical errors are in good agreement with empirical differences. The comparisons are made at different locations from tropical to Arctic latitudes, above sea and above land. Generally IASI and TES are similarly sensitive to δD in the free troposphere which allows one to compare their measurements directly. At tropical latitudes where IASI's sensitivity is lower than that of TES, we show that the agreement improves when taking into account the sensitivity of IASI in the TES retrieval. For the comparison IASI-FTIR only direct comparisons are performed because the sensitivity profiles of the two observing systems do not allow to take into account their differences of sensitivity. We identify a quasi negligible bias in the free troposphere (-3‰) between IASI retrieved δD with the TES, which are bias corrected, but important with the ground-based FTIR reaching -47‰. We also suggest that model-satellite observation comparisons could be optimized with IASI thanks to its high

  18. Potential of multispectral synergism for observing ozone pollution by combining IASI-NG and UVNS measurements from the EPS-SG satellite

    NASA Astrophysics Data System (ADS)

    Costantino, Lorenzo; Cuesta, Juan; Emili, Emanuele; Coman, Adriana; Foret, Gilles; Dufour, Gaëlle; Eremenko, Maxim; Chailleux, Yohann; Beekmann, Matthias; Flaud, Jean-Marie

    2017-04-01

    Present and future satellite observations offer great potential for monitoring air quality on a daily and global basis. However, measurements from currently orbiting satellites do not allow a single sensor to accurately probe surface concentrations of gaseous pollutants such as tropospheric ozone. Combining information from IASI (Infrared Atmospheric Sounding Interferometer) and GOME-2 (Global Ozone Monitoring Experiment-2) respectively in the TIR and UV spectra, a recent multispectral method (referred to as IASI+GOME-2) has shown enhanced sensitivity for probing ozone in the lowermost troposphere (LMT, below 3 km altitude) with maximum sensitivity down to 2.20 km a.s.l. over land, while sensitivity for IASI or GOME-2 alone only peaks at 3 to 4 km at the lowest.In this work we develop a pseudo-observation simulator and evaluate the potential of future EPS-SG (EUMETSAT Polar System - Second Generation) satellite observations, from new-generation sensors IASI-NG (Infrared Atmospheric Sounding Interferometer - New Generation) and UVNS (Ultraviolet Visible Near-infrared Shortwave-infrared), to observe near-surface O3 through the IASI-NG+UVNS multispectral method. The pseudo-real state of the atmosphere is provided by the MOCAGE (MOdèle de Chimie Atmosphérique à Grande Échelle) chemical transport model. We perform full and accurate forward and inverse radiative transfer calculations for a period of 4 days (8-11 July 2010) over Europe.In the LMT, there is a remarkable agreement in the geographical distribution of O3 partial columns between IASI-NG+UVNS pseudo-observations and the corresponding MOCAGE pseudo-reality. With respect to synthetic IASI+GOME-2 products, IASI-NG+UVNS shows a higher correlation between pseudo-observations and pseudo-reality, which is enhanced by about 12 %. The bias on high ozone retrieval is reduced and the average accuracy increases by 22 %. The sensitivity to LMT ozone is also enhanced. On average, the degree of freedom for signal is

  19. Regarding retrievals of methane in the atmosphere from IASI/Metop spectra and their comparison with ground-based FTIR measurements data

    NASA Astrophysics Data System (ADS)

    Khamatnurova, M. Yu.; Gribanov, K. G.; Zakharov, V. I.; Rokotyan, N. V.; Imasu, R.

    2017-11-01

    The algorithm for atmospheric methane distribution retrieval in atmosphere from IASI spectra has been developed. The feasibility of Levenberg-Marquardt method for atmospheric methane total column amount retrieval from the spectra measured by IASI/METOP modified for the case of lack of a priori covariance matrices for methane vertical profiles is studied in this paper. Method and algorithm were implemented into software package together with iterative estimation of a posteriori covariance matrices and averaging kernels for each individual retrieval. This allows retrieval quality selection using the properties of both types of matrices. Methane (XCH4) retrieval by Levenberg-Marquardt method from IASI/METOP spectra is presented in this work. NCEP/NCAR reanalysis data provided by ESRL (NOAA, Boulder, USA) were taken as initial guess. Surface temperature, air temperature and humidity vertical profiles are retrieved before methane vertical profile retrieval. The data retrieved from ground-based measurements at the Ural Atmospheric Station and data of L2/IASI standard product were used for the verification of the method and results of methane retrieval from IASI/METOP spectra.

  20. The MUSICA MetOp/IASI H2O and δD products: characterisation and long-term comparison to NDACC/FTIR data

    NASA Astrophysics Data System (ADS)

    Wiegele, A.; Schneider, M.; Hase, F.; Barthlott, S.; García, O. E.; Sepúlveda, E.; González, Y.; Blumenstock, T.; Raffalski, U.; Gisi, M.; Kohlhepp, R.

    2014-08-01

    Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) ground- and space-based remote sensing as well as in situ data sets of tropospheric water vapour isotopologues are provided. The space-based remote-sensing data set is produced from spectra measured by the IASI (Infrared Atmospheric Sounding Interferometer) sensor and is potentially available on a global scale. Here, we present the MUSICA IASI data for three different geophysical locations (subtropics, midlatitudes, and Arctic), and we provide a comprehensive characterisation of the complex nature of such space-based isotopologue remote-sensing products. The quality assessment study is complemented by a comparison to MUSICA's ground-based FTIR (Fourier Transform InfraRed) remote-sensing data retrieved from the spectra recorded at three different locations within the framework of NDACC (Network for the Detection of Atmospheric Composition Change). We confirm that IASI is able to measure tropospheric H2O profiles with a vertical resolution of about 4 km and a random error of about 10%. In addition IASI can observe middle tropospheric δD that adds complementary value to IASI's middle tropospheric H2O observations. Our study presents theoretical and empirical proof that IASI has the capability for a global observation of middle tropospheric water vapour isotopologues on a daily timescale and at a quality that is sufficiently high for water cycle research purposes.

  1. Assessing the impacts of assimilating IASI and MOPITT CO retrievals using CESM-CAM-chem and DART

    NASA Astrophysics Data System (ADS)

    Barré, Jérôme; Gaubert, Benjamin; Arellano, Avelino F. J.; Worden, Helen M.; Edwards, David P.; Deeter, Merritt N.; Anderson, Jeffrey L.; Raeder, Kevin; Collins, Nancy; Tilmes, Simone; Francis, Gene; Clerbaux, Cathy; Emmons, Louisa K.; Pfister, Gabriele G.; Coheur, Pierre-François; Hurtmans, Daniel

    2015-10-01

    We show the results and evaluation with independent measurements from assimilating both MOPITT (Measurements Of Pollution In The Troposphere) and IASI (Infrared Atmospheric Sounding Interferometer) retrieved profiles into the Community Earth System Model (CESM). We used the Data Assimilation Research Testbed ensemble Kalman filter technique, with the full atmospheric chemistry CESM component Community Atmospheric Model with Chemistry. We first discuss the methodology and evaluation of the current data assimilation system with coupled meteorology and chemistry data assimilation. The different capabilities of MOPITT and IASI retrievals are highlighted, with particular attention to instrument vertical sensitivity and coverage and how these impact the analyses. MOPITT and IASI CO retrievals mostly constrain the CO fields close to the main anthropogenic, biogenic, and biomass burning CO sources. In the case of IASI CO assimilation, we also observe constraints on CO far from the sources. During the simulation time period (June and July 2008), CO assimilation of both instruments strongly improves the atmospheric CO state as compared to independent observations, with the higher spatial coverage of IASI providing better results on the global scale. However, the enhanced sensitivity of multispectral MOPITT observations to near surface CO over the main source regions provides synergistic effects at regional scales.

  2. IASI Radiance Data Assimilation in Local Ensemble Transform Kalman Filter

    NASA Astrophysics Data System (ADS)

    Cho, K.; Hyoung-Wook, C.; Jo, Y.

    2016-12-01

    Korea institute of Atmospheric Prediction Systems (KIAPS) is developing NWP model with data assimilation systems. Local Ensemble Transform Kalman Filter (LETKF) system, one of the data assimilation systems, has been developed for KIAPS Integrated Model (KIM) based on cubed-sphere grid and has successfully assimilated real data. LETKF data assimilation system has been extended to 4D- LETKF which considers time-evolving error covariance within assimilation window and IASI radiance data assimilation using KPOP (KIAPS package for observation processing) with RTTOV (Radiative Transfer for TOVS). The LETKF system is implementing semi operational prediction including conventional (sonde, aircraft) observation and AMSU-A (Advanced Microwave Sounding Unit-A) radiance data from April. Recently, the semi operational prediction system updated radiance observations including GPS-RO, AMV, IASI (Infrared Atmospheric Sounding Interferometer) data at July. A set of simulation of KIM with ne30np4 and 50 vertical levels (of top 0.3hPa) were carried out for short range forecast (10days) within semi operation prediction LETKF system with ensemble forecast 50 members. In order to only IASI impact, our experiments used only conventional and IAIS radiance data to same semi operational prediction set. We carried out sensitivity test for IAIS thinning method (3D and 4D). IASI observation number was increased by temporal (4D) thinning and the improvement of IASI radiance data impact on the forecast skill of model will expect.

  3. IR detectors for the Infrared Atmospheric Sounding Interferometer (IASI) instrument payload for the METOP-1 ESA polar platform

    NASA Astrophysics Data System (ADS)

    Royer, Michel; Lorans, Dominique; Bischoff, Isabelle; Giotta, Dominique; Wolny, Michel

    1994-12-01

    IASI is an Infrared Atmospheric Sounding Interferometer devoted to the operational meteorology and to atmospheric studies and is to be installed on board the second ESA Polar Platform called METOP-1, planned to be launched in the year 2000. The main purpose of this high performance instrument is to record temperature and humidity profiles. The required lifetime is 4 years. This paper presents the characteristics of the LW IR detection arrays for the IASI spectrometer which consist of HgCdTe de- tectors. SAT has to develop the Engineering Model, Qualification Model and Fight Models of detectors, each having 4 pixels and AR-coated microlenses in a dedicated space housing equipped with a flexible line and a connector. An array is composed of HgCdTe photoconductive detectors. For this long wavelength the array is sensitive from 8.26 micrometers to 15.5 micrometers . The detectors, with sensitive areas of 900 x 900 micrometers 2, are 100 K operating with passive cooling. High quality HgCdTe material is a key feature for the manufacturing of high performance photoconductive detectors. Therefore epitaxial HgCdTe layers are used in this project. These epilayers are grown at CEA/LETI on lattice matched CdZnTe substrates, by Te-rich liquid phase epitaxy, based on a slider technique. The Cd content in the layer is carefully adjusted to meet the required cut off wavelength on the devices. After growth of the epilayers, the samples are annealed under Hg pressure in order to convert them into N type mate- rials. The electrical transport properties of the liquid phase epitaxied wafers are, at 100 K, mobility (mu) over 150,000 cm2/V.s and electrical concentration N of 1.5 1015 cm-3, the residual doping level being 1014 cm-3 at low temperature. On these materials the feasibility study of long wavelength HgCdTe photoconductors has been achieved with the following results: the responsivity is 330 V/W. The bias voltage is Vp=300 mV for a 4 mW limitation of power for each element. The

  4. The MUSICA MetOp/IASI H2O and δD products: characterisation and long-term comparison to NDACC/FTIR data

    NASA Astrophysics Data System (ADS)

    Wiegele, A.; Schneider, M.; Hase, F.; Barthlott, S.; García, O. E.; Sepúlveda, E.; González, Y.; Blumenstock, T.; Raffalski, U.; Gisi, M.; Kohlhepp, R.

    2014-04-01

    Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) ground- and space-based remote sensing as well as in-situ datasets of tropospheric water vapour isotopologues are provided. The space-based remote-sensing dataset is produced from spectra measured by the IASI (Infrared Atmospheric Sounding Interferometer) sensor and is potentially available on a global scale. Here, we present the MUSICA IASI data for three different geophysical locations (subtropics, mid-latitudes, and arctic) and we provide a comprehensive characterisation of the complex nature of such space-based isotopologue remote sensing products. The quality assessment study is complemented by a comparison to MUSICA's ground-based FTIR (Fourier-Transform InfraRed) remote sensing data retrieved from the spectra recorded at three different locations within the framework of NDACC (Network for the Detection of Atmospheric Composition Change). We confirm that IASI is able to measure tropospheric H2O profiles with a vertical resolution of about 4 km and a random error of about 10%. In addition IASI can observe middle tropospheric δD that adds complementary value to IASI's middle tropospheric H2O observations. Our study is both, a theoretical and an empirical proof that IASI has the capability for a global observation of middle tropospheric water vapour isotopologues on a daily timescale and at a quality that is sufficiently high for water cycle research purposes.

  5. Development Challenges of Utilizing a Corner Cube Mechanism Design with Successful IASI Flight Heritage for the Infrared Sounder (IRS) on MTG: Recurrent Mechanical Design not Correlated to Recurrent Development

    NASA Astrophysics Data System (ADS)

    Spanoudakis, Peter; Schwab, Philippe; Kiener, Lionel; Saudan, Herve; Perruchoud, Gerald

    2015-09-01

    The Corner Cube Mechanism (CCM) design for the Infra-Red Sounder (IRS) on MTG is based on the successful mechanism currently in orbit on the Infrared Atmospheric Sounding Interferometers (IASI) on the Metop satellites. The overall CCM performance is described with attention given to the specific design developments for the MTG project. A description is presented of the modifications introduced and challenges encountered to adapt the IASI space heritage design (which is only 15 years old) to meet the MTG specifications. A detailed account is provided regarding the tests performed on the adapted components for the new programme. The major issues encountered and solutions proposed are illustrated concerning the voice- coil actuator development, optical switch design, fatigue life of the flexure components and the adaptation of the launch locking device. Nevertheless, an Engineering Qualification Model was rapidly manufactured and now undergoing a qualification test campaign.

  6. Near Real Time website for IASI observations of atmospheric anomalies

    NASA Astrophysics Data System (ADS)

    Hayer, Catherine; Grainger, Don; Marsh, Kevin; Carboni, Elisa; Ventress, Lucy; Smith, Andrew

    2014-05-01

    Rapid analysis of satellite observations of the state of the atmosphere and the contaminant levels within it can be used for pollution monitoring, forest fire detection and volcanic activity monitoring. There are numerous operational satellite instruments for which this is possible. The IASI instruments, currently flying on board the MetOp-A and MetOp-B satellite platforms, are used to produce Near Real Time (NRT) data using analysis algorithms developed by Oxford University. The data is then displayed on a website within 3 hours of measurement. This allows for the semi-continuous monitoring of the state of the atmosphere over most of the globe, both in daylight and at night. Global coverage is achieved 4 times per day, which is a significant advantage over most of the alternatives, either geostationary, giving limited spatial coverage, or UV instruments which are only able to observe during the daylight side of the orbit. The website includes flags for atmospheric contaminants detectable by IASI, including dust, biomass burning-derived species and volcanic ash and SO2. In the near future, the website will be developed to also include a quantitative estimate of the mass loading of SO2 contained within any volcanic cloud. Emissions of volcanic products, such as ash and SO2, are useful indicators of a change in the activity level of a volcano. Since many volcanoes are only monitored by remote sensing methods, such as satellite instruments, this can be the only such indicator available. These emissions are also dangerous to passing aircraft, causing damage to external surfaces of the plane and to the engines, sometimes leading to failure. Evacuation of regions surrounding volcanoes, and cessation or diversion of air traffic around actively erupting volcanoes is costly and highly disruptive but is sometimes required. Up to date information is of critical importance as to when to make these sensitive decisions. An archive of data will be available to allow for easy

  7. Using the full IASI spectrum for the physical retrieval of temperature, H2O, HDO, O3, minor and trace gases

    NASA Astrophysics Data System (ADS)

    Serio, C.; Blasi, M. G.; Liuzzi, G.; Masiello, G.; Venafra, S.

    2017-02-01

    IASI (Infrared Atmospheric Sounder Interferometer) is flying on the European MetOp series of weather satellites. Besides acquiring temperature and humidity data, IASI also observes the infrared emission of the main minor and trace atmospheric components with high precision. The retrieval of these gases would be highly beneficial to the efforts of scientists monitoring Earths climate. IASI retrieval capability and algorithms have been mostly driven by Numerical Weather Prediction centers, whose limited resources for data transmission and computing is hampering the full exploitation of IASI information content. The quest for real or nearly real time processing has affected the precision of the estimation of minor and trace gases, which are normally retrieved on a very coarse spatial grid. The paper presents the very first retrieval of the complete suite of IASI target parameters by exploiting all its 8461 channels. The analysis has been exemplified for sea surface and the target parameters will include sea surface temperature, temperature profile, water vapour and HDO profiles, ozone profile, total column amount of CO, CO2, CH4, N2O, SO2, HNO3, NH3, OCS and CF4. Concerning CO2, CH4 and N2O, it will be shown that their colum amount can be obtained for each single IASI IFOV (Instantaneous Field of View) with a precision better than 1-2%, which opens the possibility to analyze, e.g., the formation of regional patterns of greenhouse gases. To assess the quality of the retrieval, a case study has been set up which considers two years of IASI soundings over the Hawaii, Manua Loa validation station.

  8. Retrieval with Infrared Atmospheric Sounding Interferometer and Validation during JAIVEx

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Smith, William L.; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Stephen A.

    2008-01-01

    A state-of-the-art IR-only retrieval algorithm has been developed with an all-season-global EOF Physical Regression and followed by 1-D Var. Physical Iterative Retrieval for IASI, AIRS, and NAST-I. The benefits of this retrieval are to produce atmospheric structure with a single FOV horizontal resolution (approx. 15 km for IASI and AIRS), accurate profiles above the cloud (at least) or down to the surface, surface parameters, and/or cloud microphysical parameters. Initial case study and validation indicates that surface, cloud, and atmospheric structure (include TBL) are well captured by IASI and AIRS measurements. Coincident dropsondes during the IASI and AIRS overpasses are used to validate atmospheric conditions, and accurate retrievals are obtained with an expected vertical resolution. JAIVEx has provided the data needed to validate the retrieval algorithm and its products which allows us to assess the instrument ability and/or performance. Retrievals with global coverage are under investigation for detailed retrieval assessment. It is greatly desired that these products be used for testing the impact on Atmospheric Data Assimilation and/or Numerical Weather Prediction.

  9. Inter-comparison between AIRS and IASI through Retrieved Parameters

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Smith, William L.; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Steve

    2008-01-01

    A State-of-the-art retrieval algorithm dealing with all-weather conditions has been applied to satellite/aircraft instruments retrieving cloud/surface and atmospheric conditions. High quality retrievals have been achieved from IASI data. Surface, cloud, and atmospheric structure and variation are well captured by IASI measurements and/or retrievals. The same retrieval algorithm is also applied to AIRS for retrieval inter-comparison. Both AIRS and IASI have a similar FOV size but AIRS has a higher horizontal resolution. AIRS data can be interpolated to IASI horizontal resolution for inter-comparison at the same geophysical locations, however a temporal variation between AIRS and IASI observations need to be considered. JAIVEx has employed aircraft to obtain the atmospheric variation filling the temporal gap between two satellites. First results show that both AIRS and IASI have a very similar vertical resolving power, atmospheric conditions are well captured by both instruments, and radiances are well calibrated. AIRS data shown in retrievals (e.g., surface emissivity and moisture) have a relatively higher noise level. Since the this type of retrieval is very sensitive to its radiance quality, retrieval products inter-comparison is an effective way to identify/compare their radiance quality, in terms of a combination of spectral resolution and noise level, and to assess instrument performance. Additional validation analyses are needed to provide more-definitive conclusions.

  10. Impact of a priori information on IASI ozone retrievals and trends

    NASA Astrophysics Data System (ADS)

    Barret, B.; Peiro, H.; Emili, E.; Le Flocgmoën, E.

    2017-12-01

    The IASI sensor documents atmospheric water vapor, temperature and composition since 2007. The Software for a Fast Retrieval of IASI Data (SOFRID) has been developped to retrieve O3 and CO profiles from IASI in near-real time on a global scale. Information content analyses have shown that IASI enables the quantification of O3 independently in the troposphere, the UTLS and the stratosphere. Validation studies have demonstrated that the daily to seasonal variability of tropospheric and UTLS O3 was well captured by IASI especially in the tropics. IASI-SOFRID retrievals have also been used to document the tropospheric composition during the Asian monsoon and participated to determine the O3 evolution during the 2008-2016 period in the framework of the TOAR project. Nevertheless, IASI-SOFRID O3 is biased high in the UTLS and in the tropical troposphere and the 8 years O3 trends from the different IASI products are significantly different from the O3 trends from UV-Vis satellite sensors (e.g. OMI)..SOFRID is based on the Optimal Estimation Method that requires a priori information to complete the information provided by the measured thermal infrared radiances. In SOFRID-O3 v1.5 used in TOAR the a priori consists of a single O3 profile and associated covariance matrix based on global O3 radiosoundings. Such a global a priori is characterized by a very large variabilty and does not represent our best kowledge of the O3 profile at a given time and location. Furthermore it is biased towards the northern hemisphere middle latitudes. We have therefore implemented the possibility to use dynamical a priori data in SOFRID and performed experiments using O3 climatological data and MLS O3 analyses. We will present O3 distributions and comparisons with O3 radiosoundings from the different SOFRID-O3 retrievals. We will in particular assess the impact of the use of different a priori data upon the O3 biases and trends during the IASI period.

  11. Evaluation of a dimension-reduction-based statistical technique for Temperature, Water Vapour and Ozone retrievals from IASI radiances

    NASA Astrophysics Data System (ADS)

    Amato, Umberto; Antoniadis, Anestis; De Feis, Italia; Masiello, Guido; Matricardi, Marco; Serio, Carmine

    2009-03-01

    Remote sensing of atmosphere is changing rapidly thanks to the development of high spectral resolution infrared space-borne sensors. The aim is to provide more and more accurate information on the lower atmosphere, as requested by the World Meteorological Organization (WMO), to improve reliability and time span of weather forecasts plus Earth's monitoring. In this paper we show the results we have obtained on a set of Infrared Atmospheric Sounding Interferometer (IASI) observations using a new statistical strategy based on dimension reduction. Retrievals have been compared to time-space colocated ECMWF analysis for temperature, water vapor and ozone.

  12. IASI carbon monoxide validation over the Arctic during POLARCAT spring and summer campaigns

    NASA Astrophysics Data System (ADS)

    Pommier, M.; Law, K. S.; Clerbaux, C.; Turquety, S.; Hurtmans, D.; Hadji-Lazaro, J.; Coheur, P.-F.; Schlager, H.; Ancellet, G.; Paris, J.-D.; Nédélec, P.; Diskin, G. S.; Podolske, J. R.; Holloway, J. S.; Bernath, P.

    2010-06-01

    In this paper, we provide a detailed comparison between carbon monoxide (CO) data measured by the Infrared Atmospheric Sounding Interferometer (IASI)/METOP and aircraft measurements over the Arctic. The CO measurements were obtained during North American campaigns (NASA ARCTAS and NOAA ARCPAC) and European campaigns (POLARCAT-France, POLARCAT-GRACE and YAK-AEROSIB) as part of the International Polar Year (IPY) in spring and summer 2008. During the campaigns different air masses were sampled including clean air, polluted plumes originating from anthropogenic sources in Europe, Asia and North America, and forest fire plumes originating from Siberia and Canada. CO-rich plumes following different transport pathways were captured well by the IASI instrument, illustrated for example by a transport event over the North Pole from Asia on 9 July 2008. The comparison between the IASI CO profiles and aircraft data was achieved by first completing the latter for higher altitudes using a latitudinally dependent climatology of ACE-FTS satellite CO profiles (2004-2009) and by subsequently smoothing the resulting full profiles by the IASI averaging kernels. Proceeding this way, the IASI profiles were shown to be in good agreement with smoothed in situ profiles (with a difference of about 10 ppbv) in spring. In summer, the IASI profiles were higher than the smoothed in situ profiles below 8 km, for all polluted cases. Correlations between IASI and combination ACE-FTS/aircraft derived total columns varied from 0.15 to 0.74 in spring and 0.26 to 0.84 in summer, with better results over the sea in spring (0.73) and over the land in summer (0.69).

  13. Radiometric consistency assessment of hyperspectral infrared sounders

    NASA Astrophysics Data System (ADS)

    Wang, L.; Han, Y.; Jin, X.; Chen, Y.; Tremblay, D. A.

    2015-07-01

    The radiometric and spectral consistency among the Atmospheric Infrared Sounder (AIRS), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared Sounder (CrIS) is fundamental for the creation of long-term infrared (IR) hyperspectral radiance benchmark datasets for both inter-calibration and climate-related studies. In this study, the CrIS radiance measurements on Suomi National Polar-orbiting Partnership (SNPP) satellite are directly compared with IASI on MetOp-A and -B at the finest spectral scale and with AIRS on Aqua in 25 selected spectral regions through one year of simultaneous nadir overpass (SNO) observations to evaluate radiometric consistency of these four hyperspectral IR sounders. The spectra from different sounders are paired together through strict spatial and temporal collocation. The uniform scenes are selected by examining the collocated Visible Infrared Imaging Radiometer Suite (VIIRS) pixels. Their brightness temperature (BT) differences are then calculated by converting the spectra onto common spectral grids. The results indicate that CrIS agrees well with IASI on MetOp-A and IASI on MetOp-B at the longwave IR (LWIR) and middle-wave IR (MWIR) bands with 0.1-0.2 K differences. There are no apparent scene-dependent patterns for BT differences between CrIS and IASI for individual spectral channels. CrIS and AIRS are compared at the 25 spectral regions for both Polar and Tropical SNOs. The combined global SNO datasets indicate that, the CrIS-AIRS BT differences are less than or around 0.1 K among 21 of 25 comparison spectral regions and they range from 0.15 to 0.21 K in the remaining 4 spectral regions. CrIS-AIRS BT differences in some comparison spectral regions show weak scene-dependent features.

  14. Radiometric consistency assessment of hyperspectral infrared sounders

    NASA Astrophysics Data System (ADS)

    Wang, L.; Han, Y.; Jin, X.; Chen, Y.; Tremblay, D. A.

    2015-11-01

    The radiometric and spectral consistency among the Atmospheric Infrared Sounder (AIRS), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared Sounder (CrIS) is fundamental for the creation of long-term infrared (IR) hyperspectral radiance benchmark data sets for both intercalibration and climate-related studies. In this study, the CrIS radiance measurements on Suomi National Polar-orbiting Partnership (SNPP) satellite are directly compared with IASI on MetOp-A and MetOp-B at the finest spectral scale and with AIRS on Aqua in 25 selected spectral regions through simultaneous nadir overpass (SNO) observations in 2013, to evaluate radiometric consistency of these four hyperspectral IR sounders. The spectra from different sounders are paired together through strict spatial and temporal collocation. The uniform scenes are selected by examining the collocated Visible Infrared Imaging Radiometer Suite (VIIRS) pixels. Their brightness temperature (BT) differences are then calculated by converting the spectra onto common spectral grids. The results indicate that CrIS agrees well with IASI on MetOp-A and IASI on MetOp-B at the long-wave IR (LWIR) and middle-wave IR (MWIR) bands with 0.1-0.2 K differences. There are no apparent scene-dependent patterns for BT differences between CrIS and IASI for individual spectral channels. CrIS and AIRS are compared at the 25 spectral regions for both polar and tropical SNOs. The combined global SNO data sets indicate that the CrIS-AIRS BT differences are less than or around 0.1 K among 21 of 25 spectral regions and they range from 0.15 to 0.21 K in the remaining four spectral regions. CrIS-AIRS BT differences in some comparison spectral regions show weak scene-dependent features.

  15. MUSICA MetOp/IASI {H2O,δD} pair retrieval simulations for validating tropospheric moisture pathways in atmospheric models

    NASA Astrophysics Data System (ADS)

    Schneider, Matthias; Borger, Christian; Wiegele, Andreas; Hase, Frank; García, Omaira E.; Sepúlveda, Eliezer; Werner, Martin

    2017-02-01

    The project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) has shown that the sensor IASI aboard the satellite MetOp can measure the free tropospheric {H2O,δD} pair distribution twice per day on a quasi-global scale. Such data are very promising for investigating tropospheric moisture pathways, however, the complex data characteristics compromise their usage in the context of model evaluation studies. Here we present a tool that allows for simulating MUSICA MetOp/IASI {H2O,δD} pair remote sensing data for a given model atmosphere, thereby creating model data that have the remote sensing data characteristics assimilated. This model data can then be compared to the MUSICA data. The retrieval simulation method is based on the physical principles of radiative transfer and we show that the uncertainty of the simulations is within the uncertainty of the MUSICA MetOp/IASI products, i.e. the retrieval simulations are reliable enough. We demonstrate the working principle of the simulator by applying it to ECHAM5-wiso model data. The few case studies clearly reveal the large potential of the MUSICA MetOp/IASI {H2O,δD} data pairs for evaluating modelled moisture pathways. The tool is made freely available in form of MATLAB and Python routines and can be easily connected to any atmospheric water vapour isotopologue model.

  16. NOAA/NESDIS Operational Sounding Processing Systems using the hyperspectral and microwaves sounders data from CrIS/ATMS, IASI/AMSU, and ATOVS

    NASA Astrophysics Data System (ADS)

    Sharma, A. K.

    2016-12-01

    The current operational polar sounding systems running at the National Oceanic and Atmospheric Administration (NOAA) National Environmental Satellite Data and Information Service (NESDIS) for processing the sounders data from the Cross-track Infrared (CrIS) onboard the Suomi National Polar-orbiting Partnership (SNPP) under the Joint Polar Satellite System (JPSS) program; the Infrared Atmospheric Sounding Interferometer (IASI) onboard Metop-1 and Metop-2 satellites under the program managed by the European Organization for the Exploitation of Meteorological (EUMETSAT); and the Advanced TIROS (Television and Infrared Observation Satellite) Operational Vertical Sounding (ATOVS) onboard NOAA-19 in the NOAA series of Polar Orbiting Environmental Satellites (POES), Metop-1 and Metop-2. In a series of advanced operational sounders CrIS and IASI provide more accurate, detailed temperature and humidity profiles; trace gases such as ozone, nitrous oxide, carbon dioxide, and methane; outgoing longwave radiation; and the cloud cleared radiances (CCR) on a global scale and these products are available to the operational user community. This presentation will highlight the tools developed for the NOAA Unique Combined Atmospheric Processing System (NUCAPS), which will discuss the Environmental Satellites Processing Center (ESPC) system architecture involving sounding data processing and distribution for CrIS, IASI, and ATOVS sounding products. Discussion will also include the improvements made for data quality measurements, granule processing and distribution, and user timeliness requirements envisioned from the next generation of JPSS and GOES-R satellites. There have been significant changes in the operational system due to system upgrades, algorithm updates, and value added data products and services. Innovative tools to better monitor performance and quality assurance of the operational sounder and imager products from the CrIS/ATMS, IASI and ATOVS have been developed and

  17. Infrared detectors for Earth observation

    NASA Astrophysics Data System (ADS)

    Barnes, K.; Davis, R. P.; Knowles, P.; Shorrocks, N.

    2016-05-01

    IASI (Infrared Atmospheric Sounding Interferometer), developed by CNES and launched since 2006 on the Metop satellites, is established as a major source of data for atmospheric science and weather prediction. The next generation - IASI NG - is a French national contribution to the Eumetsat Polar System Second Generation on board of the Metop second generation satellites and is under development by Airbus Defence and Space for CNES. The mission aim is to achieve twice the performance of the original IASI instrument in terms of sensitivity and spectral resolution. In turn, this places very demanding requirements on the infrared detectors for the new instrument. Selex ES in Southampton has been selected for the development of the infrared detector set for the IASI-NG instruments. The wide spectral range, 3.6 to 15.5 microns, is covered in four bands, each served by a dedicated detector design, with a common 4 x 4 array format of 1.3 mm square macropixels. Three of the bands up to 8.7 microns employ photovoltaic MCT (mercury cadmium telluride) technology and the very long wave band employs photoconductive MCT, in common with the approach taken between Airbus and Selex ES for the SEVIRI instrument on Second Generation Meteosat. For the photovoltaic detectors, the MCT crystal growth of heterojunction photodiodes is by the MOVPE technique (metal organic vapour phase epitaxy). Novel approaches have been taken to hardening the photovoltaic macropixels against localised crystal defects, and integrating transimpedance amplifiers for each macropixel into a full-custom silicon read out chip, which incorporates radiation hard design.

  18. CubeSat infrared atmospheric sounder (CIRAS) NASA InVEST technology demonstration

    NASA Astrophysics Data System (ADS)

    Pagano, Thomas S.

    2017-02-01

    Infrared sounders measure the upwelling radiation of the Earth in the Midwave Infrared (MWIR) and Longwave Infrared (LWIR) region of the spectrum with global daily coverage from space. The observed radiances are assimilated into weather forecast models and used to retrieve lower tropospheric temperature and water vapor for climate studies. There are several operational sounders today including the Atmospheric Infrared Sounder (AIRS) on Aqua, the Crosstrack Infrared Sounder (CrIS) on Suomi NPP and JPSS, and the Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp spacecraft. The CubeSat Infrared Atmospheric Sounder (CIRAS) is a NASA In-flight Validation of Earth Science Technologies (InVEST) program to demonstrate three new instrument technologies in an imaging sounder configuration. The first is a 2D array of High Operating Temperature Barrier Infrared Detector (HOT-BIRD) material, selected for its high uniformity, low cost, low noise and higher operating temperatures than traditional materials. The detectors are hybridized to a commercial ROIC and commercial camera electronics. The second technology is a MWIR Grating Spectrometer (MGS) designed to provide imaging spectroscopy for atmospheric sounding in a CubeSat volume. The MGS employs an immersion grating or grism, has no moving parts, and is based on heritage spectrometers including the OCO- 2. The third technology is a Black Silicon infrared blackbody calibration target. The Black Silicon offers very low reflectance over a broad spectral range on a flat surface and is more robust than carbon nanotubes. JPL will also develop the mechanical, electronic and thermal subsystems for the CIRAS payload. The spacecraft will be a commercially available CubeSat. The integrated system will be a complete 6U CubeSat capable of measuring temperature and water vapor profiles with good lower tropospheric sensitivity. The low cost of CIRAS enables multiple units to be flown to improve temporal coverage or measure 3D

  19. A global assessment of NASA AIRS v6 and EUMETSAT IASI v6 precipitable water vapor using ground-based GPS SuomiNet stations

    NASA Astrophysics Data System (ADS)

    Roman, Jacola; Knuteson, Robert; August, Thomas; Hultberg, Tim; Ackerman, Steve; Revercomb, Hank

    2016-08-01

    Satellite remote sensing of precipitable water vapor (PWV) is essential for monitoring moisture in real time for weather applications, as well as tracking the long-term changes in PWV for climate change trend detection. This study assesses the accuracies of the current satellite observing system, specifically the National Aeronautics and Space Administration (NASA) Atmospheric Infrared Sounder (AIRS) v6 PWV product and the European Organization for the Exploitation of Meteorological Satellite Studies (EUMETSAT) Infrared Atmospheric Sounding Interferometer (IASI) v6 PWV product, using ground-based SuomiNet Global Positioning System (GPS) network as truth. Elevation-corrected collocated matchups to each SuomiNet GPS station in North America and around the world were created, and results were broken down by station, ARM region, climate zone, and latitude zone. The greatest difference, exceeding 5%, between IASI and AIRS retrievals occurred in the tropics. Generally, IASI and AIRS fall within a 5% error in the PWV range of 20-40 mm (a mean bias less than 2 mm), with a wet bias for extremely low PWV values (less than 5 mm) and a dry bias for extremely high PWV values (greater than 50 mm). The operational IR satellite products are able to capture the mean PWV but degrade in the extreme dry and wet regimes.

  20. 2007-2017: 10 years of IASI CO retrievals

    NASA Astrophysics Data System (ADS)

    George, M.; Clerbaux, C.; Hadji-Lazaro, J.; Pierre-Francois, C.; Hurtmans, D.; Edwards, D. P.; Worden, H. M.; Deeter, M. N.; Mao, D.; August, T.; Crapeau, M.

    2017-12-01

    Carbon monoxide (CO) is an important trace gas for understanding air quality and atmospheric composition. It is a good tracer of pollution plumes and atmospheric dynamics. IASI CO concentrations are retrieved from the radiance data using the Fast Operational Retrievals on Layers for IASI (FORLI) algorithm, based on the Optimal Estimation theory. The operational production is performed at EUMETSAT and the products are distributed in NRT via EUMETCast under the AC SAF auspices. We present here an analysis of 10 years of global distributions of CO. Improvements of the last FORLI-CO version (v20151001) will be shown. Updates in the auxiliary parameters (temperature, cloud information) have an impact on the retrieved product. Comparison with MOPITT CO data (v7T, record starting in 2000) was performed, both for partial and total columns. Harmonizing IASI and MOPITT CO products is challenging: a method using corrective factors (developed in the framework of the QA4ECV project) will be presented.

  1. Multi-year assimilation of IASI and MLS ozone retrievals: variability of tropospheric ozone over the tropics in response to ENSO

    NASA Astrophysics Data System (ADS)

    Peiro, Hélène; Emili, Emanuele; Cariolle, Daniel; Barret, Brice; Le Flochmoën, Eric

    2018-05-01

    The Infrared Atmospheric Sounder Instrument (IASI) allows global coverage with very high spatial resolution and its measurements are promising for long-term ozone monitoring. In this study, Microwave Limb Sounder (MLS) O3 profiles and IASI O3 partial columns (1013.25-345 hPa) are assimilated in a chemistry transport model to produce 6-hourly analyses of tropospheric ozone for 6 years (2008-2013). We have compared and evaluated the IASI-MLS analysis and the MLS analysis to assess the added value of IASI measurements. The global chemical transport model MOCAGE (MOdèle de Chimie Atmosphérique à Grande Echelle) has been used with a linear ozone chemistry scheme and meteorological forcing fields from ERA-Interim (ECMWF global reanalysis) with a horizontal resolution of 2° × 2° and 60 vertical levels. The MLS and IASI O3 retrievals have been assimilated with a 4-D variational algorithm to constrain stratospheric and tropospheric ozone respectively. The ozone analyses are validated against ozone soundings and tropospheric column ozone (TCO) from the OMI-MLS residual method. In addition, an Ozone ENSO Index (OEI) is computed from the analysis to validate the TCO variability during the ENSO events. We show that the assimilation of IASI reproduces the variability of tropospheric ozone well during the period under study. The variability deduced from the IASI-MLS analysis and the OMI-MLS measurements are similar for the period of study. The IASI-MLS analysis can reproduce the extreme oscillation of tropospheric ozone caused by ENSO events over the tropical Pacific Ocean, although a correction is required to reduce a constant bias present in the IASI-MLS analysis.

  2. Distributions of δD observations from IASI/MetOp across the globe and intercomparison with other instruments/measurements

    NASA Astrophysics Data System (ADS)

    Lacour, Jean-Lionel; Clarisse, Lieven; Hurtmans, Daniel; Clerbaux, Cathy; Worden, John; Schneider, Matthias; Risi, Camille; Coheur, Pierre-François

    2014-05-01

    The Infrared Atmospheric Sounding Interferometer (IASI) onboard MetOp, through its observations of the water isotopologues, has great potential to support research on hydrological processes responsible for the moistening/drying of the atmosphere. The instrumental characteristics of the spectrometer (low radiometric noise and good spectral resolution) combined with its high sampling (global coverage twice a day) make it particularly suitable for providing numerous observations of the isotopologues ratio (δD) of water vapour in the troposphere. Retrieving isotopologues ratios at the required accuracy is, however, a challenging task. To get meaningful results, the retrieval needs to be well constrained. This can be achieved, with the optimal estimation method, by using an a priori probability density function containing correlation information between HDO and H2O. In this presentation, first, we will show that the measurements are mainly sensitive to δD in the troposphere between 3 and 6 km. We will illustrate the capabilities of IASI to provide δD observations at high spatio-temporal resolution with some distributions across the globe and we will discuss their added values to constrain hydrological processes. Second, we will document how IASI observations compare to other remote sounding observations of δD in the troposphere. Comparisons of IASI observations with the TES sounder and with three ground-based NDACC FTIR (Izaña, Kalsruhe and Kiruna, data generated within the project MUSICA) will be presented. The differences between the instruments as well as the methodology to compare them will be exposed. We will show that the different instruments agree within their own uncertainties and vertical sensitivities, asserting the use of IASI δD observations for scientific purposes.

  3. Version 2 of the IASI NH3 neural network retrieval algorithm: near-real-time and reanalysed datasets

    NASA Astrophysics Data System (ADS)

    Van Damme, Martin; Whitburn, Simon; Clarisse, Lieven; Clerbaux, Cathy; Hurtmans, Daniel; Coheur, Pierre-François

    2017-12-01

    Recently, Whitburn et al.(2016) presented a neural-network-based algorithm for retrieving atmospheric ammonia (NH3) columns from Infrared Atmospheric Sounding Interferometer (IASI) satellite observations. In the past year, several improvements have been introduced, and the resulting new baseline version, Artificial Neural Network for IASI (ANNI)-NH3-v2.1, is documented here. One of the main changes to the algorithm is that separate neural networks were trained for land and sea observations, resulting in a better training performance for both groups. By reducing and transforming the input parameter space, performance is now also better for observations associated with favourable sounding conditions (i.e. enhanced thermal contrasts). Other changes relate to the introduction of a bias correction over land and sea and the treatment of the satellite zenith angle. In addition to these algorithmic changes, new recommendations for post-filtering the data and for averaging data in time or space are formulated. We also introduce a second dataset (ANNI-NH3-v2.1R-I) which relies on ERA-Interim ECMWF meteorological input data, along with surface temperature retrieved from a dedicated network, rather than the operationally provided Eumetsat IASI Level 2 (L2) data used for the standard near-real-time version. The need for such a dataset emerged after a series of sharp discontinuities were identified in the NH3 time series, which could be traced back to incremental changes in the IASI L2 algorithms for temperature and clouds. The reanalysed dataset is coherent in time and can therefore be used to study trends. Furthermore, both datasets agree reasonably well in the mean on recent data, after the date when the IASI meteorological L2 version 6 became operational (30 September 2014).

  4. IASI carbon monoxide validation over the Arctic during POLARCAT spring and summer campaigns

    NASA Astrophysics Data System (ADS)

    Pommier, M.; Law, K. S.; Clerbaux, C.; Turquety, S.; Hurtmans, D.; Hadji-Lazaro, J.; Coheur, P.-F.; Schlager, H.; Ancellet, G.; Paris, J.-D.; Nédélec, P.; Diskin, G. S.; Podolske, J. R.; Holloway, J. S.; Bernath, P.

    2010-11-01

    In this paper, we provide a detailed comparison between carbon monoxide (CO) data measured by the Infrared Atmospheric Sounding Interferometer (IASI)/MetOp and aircraft observations over the Arctic. The CO measurements were obtained during North American (NASA ARCTAS and NOAA ARCPAC) and European campaigns (POLARCAT-France, POLARCAT-GRACE and YAK-AEROSIB) as part of the International Polar Year (IPY) POLARCAT activity in spring and summer 2008. During the campaigns different air masses were sampled including clean air, polluted plumes originating from anthropogenic sources in Europe, Asia and North America, and forest fire plumes originating from Siberia and Canada. The paper illustrates that CO-rich plumes following different transport pathways were well captured by the IASI instrument, in particular due to the high spatial coverage of IASI. The comparison between IASI CO total columns, 0-5 km partial columns and profiles with collocated aircraft data was achieved by taking into account the different sensitivity and geometry of the sounding instruments. A detailed analysis is provided and the agreement is discussed in terms of information content and surface properties at the location of the observations. For profiles, the data were found to be in good agreement in spring with differences lower than 17%, whereas in summer the difference can reach 20% for IASI profiles below 8 km for polluted cases. For total columns the correlation coefficients ranged from 0.15 to 0.74 (from 0.47 to 0.77 for partial columns) in spring and from 0.26 to 0.84 (from 0.66 to 0.88 for partial columns) in summer. A better agreement is seen over the sea in spring (0.73 for total column and 0.78 for partial column) and over the land in summer (0.69 for total columns and 0.81 for partial columns). The IASI vertical sensitivity was better over land than over sea, and better over land than over sea ice and snow allowing a higher potential to detect CO vertical distribution during summer.

  5. The IASI cold box subsystem (CBS) a passive cryocooler for cryogenic detectors and optics

    NASA Astrophysics Data System (ADS)

    Bailly, B.; Courteau, P.; Maciaszek, T.

    2017-11-01

    In space, cooling down Infra Red detectors and optics to cryogenic temperature raises always the same issue : what is the best way to manage simultaneously thermal cooling, stability, mechanical discoupling and accurate focal plane components location, in a lightweight and compact solution? The passive cryocooler developed by Alcatel SPace Industries under CNES contract in the frame of the IASI instrument (Infrared Atmospheric Sounding Interferometer), offers an efficient solution for 90K to 100K temperature levels. We intend you to present the architecture and performance validation plan of the CBS.

  6. Characterization of the 3D distribution of ozone and coarse aerosols in the Troposphere using IASI thermal infrared satellite observations

    NASA Astrophysics Data System (ADS)

    Cuesta, J.; Eremenko, M.; Dufour, G.; Hoepfner, M.; Orphal, J.

    2012-04-01

    Both tropospheric ozone and aerosols significantly affect air quality in megacities during pollution events. Moreover, living conditions may be seriously aggravated when such agglomerations are affected by wildfires (e.g. Russian fires over Moscow in 2010), which produce smoke and pollutant precursors, or even during dense desert dust outbreaks (e.g. recurrently over Beijing or Cairo). Moreover, since aerosols diffuse and absorb solar radiation, they have a direct impact on the photochemical production of tropospheric ozone. These interactions during extreme events of high aerosol loads are nowadays poorly known, even though they may significantly affect the tropospheric photochemical equilibrium. In order to address these issues, we have developed a new retrieval technique to jointly characterize the 3D distribution of both tropospheric ozone and coarse aerosols, using spaceborne observations of the infrared spectrometer IASI onboard MetOp-A satellite. Our methodology is based on the inversion of Earth radiance spectra in the atmospheric window from 8 to 12 μm measured by IASI and a «Tikhonov-Philipps»-type regularisation with constraints varying in altitude (as in [Eremenko et al., 2008, GRL; Dufour et al., 2010 ACP]) to simultaneously retrieve ozone profiles, aerosol optical depths at 10 μm and aerosol layer effective heights. Such joint retrieval prevents biases in the ozone profile retrieval during high aerosol load conditions. Aerosol retrievals using thermal infrared radiances mainly account for desert dust and the coarse fraction of biomass burning aerosols. We use radiances from 15 micro-windows within the 8-12 μm atmospheric window, which were carefully chosen (following [Worden et al., 2006 JGR]) for extracting the maximum information on aerosols and ozone and minimizing contamination by other species. We use the radiative transfer code KOPRA, including line-by-line calculations of gas absorption and single scattering for aerosols [Hoepfner et al

  7. Fast retrievals of tropospheric carbonyl sulfide with IASI

    NASA Astrophysics Data System (ADS)

    Vincent, R. Anthony; Dudhia, Anu

    2017-02-01

    Iterative retrievals of trace gases, such as carbonyl sulfide (OCS), from satellites can be exceedingly slow. The algorithm may even fail to keep pace with data acquisition such that analysis is limited to local events of special interest and short time spans. With this in mind, a linear retrieval scheme was developed to estimate total column amounts of OCS at a rate roughly 104 times faster than a typical iterative retrieval. This scheme incorporates two concepts not utilized in previously published linear estimates. First, all physical parameters affecting the signal are included in the state vector and accounted for jointly, rather than treated as effective noise. Second, the initialization point is determined from an ensemble of atmospheres based on comparing the model spectra to the observations, thus improving the linearity of the problem. All of the 2014 data from the Infrared Atmospheric Sounding Interferometer (IASI), instruments A and B, were analysed and showed spatial features of OCS total columns, including depletions over tropical rainforests, seasonal enhancements over the oceans, and distinct OCS features over land. Error due to assuming linearity was found to be on the order of 11 % globally for OCS. However, systematic errors from effects such as varying surface emissivity and extinction due to aerosols have yet to be robustly characterized. Comparisons to surface volume mixing ratio in situ samples taken by NOAA show seasonal correlations greater than 0.7 for five out of seven sites across the globe. Furthermore, this linear scheme was applied to OCS, but may also be used as a rapid estimator of any detectable trace gas using IASI or similar nadir-viewing instruments.

  8. Current Sounding Capability From Satellite Meteorological Observation With Ultraspectral Infrared Instruments

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Liu, Xu; Larar, Allen M.

    2008-01-01

    Ultraspectral resolution infrared spectral radiance obtained from near nadir observations provide atmospheric, surface, and cloud property information. The intent of the measurement of tropospheric thermodynamic state and trace abundances is the initialization of climate models and the monitoring of air quality. The NPOESS Airborne Sounder Testbed-Interferometer (NAST-I), designed to support the development of future satellite temperature and moisture sounders, aboard high altitude aircraft has been collecting data throughout many field campaigns. An advanced retrieval algorithm developed with NAST-I is now applied to satellite data collected with the Atmospheric InfraRed Sounder (AIRS) on the Aqua satellite launched on 4 May 2002 and the Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp satellite launched on October 19, 2006. These instruments possess an ultra-spectral resolution, for example, both IASI and NAST-I have 0.25 cm-1 and a spectral coverage from 645 to 2760 cm-1. The retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. The physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multi-variable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. It is shown that relatively accurate temperature and moisture retrievals can be achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to

  9. A Novel Method making direct use of AIRS and IASI Calibrated Radiances for Measuring Trends in Surface Temperatures

    NASA Astrophysics Data System (ADS)

    Aumann, H. H.; Ruzmaikin, A.

    2014-12-01

    Making unbiased measurements of trends in the surface temperatures, particularly on a gobal scale, is challenging: While the non-frozen oceans temperature measurements are plentiful and accurate, land and polar areas are much less accurately or fairly sampled. Surface temperature deduced from infrared radiometers on polar orbiting satellites (e.g. the Atmospheric Infrared Sounder (AIRS) at 1:30PM, the Interferometer Atmosphere Sounding Interferometer (IASI) at 9:30 AM and the MODerate resolution Imaging Spectro-radiometer (MODIS) at 1:30PM), can produce what appear to be well sampled data, but dealing with clouds either by cloud filtering (MODIS, IASI) or cloud-clearing (AIRS) can create sampling bias. We use a novel method: Random Nadir Sampling (RNS) combined with Probability Density Function (PDF) analysis. We analyze the trend in the PDF of st1231, the water vapor absorption corrected brightness temperatures measured in the 1231 cm-1 atmospheric window channel. The advantage of this method is that trends can be directly traced to the known, less than 3 mK/yr trend for AIRS, in st1231. For this study we created PDFs from 22,000 daily RNS from the AIRS and IASI data. We characterized the PDFs by its daily 90%tile value, st1231p90, and analysed the statistical properties of the this time series between 2002 and 2014. The method was validated using the daily NOAA SST (RTGSST) from the non-frozen oceans: The mean, seasonal variability and anomaly trend of st1231p90 agree with the corrsponding values from the RTGSST and the anomaly correlation is larger than 0.9. Preliminary results (August 2014) confirm the global hiatus in the increase of the globally averaged surface temperatures between 2002 and 2014, with a change of less than 10 mK/yr. This uncertainty is dominated by the large interannual variability related to El Niño events. Further insite is gained by analyzing land/ocean, day/night, artic and antarctic trends. We observe a massive warming trend in the

  10. Error Consistency Analysis Scheme for Infrared Ultraspectral Sounding Retrieval Error Budget Estimation

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, Larry, L.

    2013-01-01

    Great effort has been devoted towards validating geophysical parameters retrieved from ultraspectral infrared radiances obtained from satellite remote sensors. An error consistency analysis scheme (ECAS), utilizing fast radiative transfer model (RTM) forward and inverse calculations, has been developed to estimate the error budget in terms of mean difference and standard deviation of error in both spectral radiance and retrieval domains. The retrieval error is assessed through ECAS without relying on other independent measurements such as radiosonde data. ECAS establishes a link between the accuracies of radiances and retrieved geophysical parameters. ECAS can be applied to measurements from any ultraspectral instrument and any retrieval scheme with its associated RTM. In this manuscript, ECAS is described and demonstrated with measurements from the MetOp-A satellite Infrared Atmospheric Sounding Interferometer (IASI). This scheme can be used together with other validation methodologies to give a more definitive characterization of the error and/or uncertainty of geophysical parameters retrieved from ultraspectral radiances observed from current and future satellite remote sensors such as IASI, the Atmospheric Infrared Sounder (AIRS), and the Cross-track Infrared Sounder (CrIS).

  11. Atmospheric ammonia and particulate inorganic nitrogen over the United States

    EPA Science Inventory

    We use in situ observations from the Interagency Monitoring of PROtected Visual Environments (IMPROVE) network, the Midwest Ammonia Monitoring Project, 11 surface site campaigns as well as Infrared Atmospheric Sounding Interferometer (IASI) satellite measurements with the GEOS-Ch...

  12. O3 variability/trends in the troposphere from IASI observations in 2008-2017

    NASA Astrophysics Data System (ADS)

    Wespes, C.; Hurtmans, D.; Clerbaux, C.; Pierre-Francois, C.

    2017-12-01

    In this study, we describe the recent changes in the tropospheric ozone (O3) columns (TOCs) measured by the Infrared Atmospheric Sounding Interferometer (IASI) onboard the Metop satellites during the first ten years of the IASI operation (2008-2017). The instrument provides a unique dataset of vertically-resolved O3 profiles with a twice daily global coverage and a fairly good vertical resolution allowing us to monitor the year-to-year variability in the troposphere. The retrievals are performed using the FORLI software, a fast radiative transfer model based on the optimal estimation method, set up for near real time and large scale processing of IASI data. We differentiate trend characteristics from the seasonal and non-seasonal O3 variations captured by IASI in the troposphere by applying appropriate annual and seasonal multivariate regression models, which include important geophysical drivers of O3 variation (e.g. quasi biennial oscillations - QBO, El Niño/Southern Oscillation - ENSO, North Atlantic Oscillation-NAO) and a linear trend term, on time series of spatially gridded averaged O3. The performances of the regression models (annual vs seasonal) are first investigated. Given the large contribution of the interannual variability, we will then describe the effects of the main contributing O3 proxies (e.g. positive - or negatives - ENSO indexes measured during moderate to intense El Niño - or La Niña - episodes in the tropics) in addition to the adjusted O3 trend patterns. A special focus will be given over the Northern Hemisphere which is characterized by decreasing O3 precursor emissions (mainly over Europe and the US). FORLI O3-CO correlations patterns will also be discussed to evaluate the continental influence on the tropospheric O3 trends.

  13. Retrievals of methane from IASI radiance spectra and comparisons with ground-based FTIR measurements

    NASA Astrophysics Data System (ADS)

    Kerzenmacher, T.; Kumps, N.; de Mazière, M.; Kruglanski, M.; Senten, C.; Vanhaelewyn, G.; Vandaele, A. C.; Vigouroux, C.

    2009-04-01

    The Infrared Atmospheric Sounding Interferometer (IASI), launched on 19 October 2006, is a Fourier transform spectrometer onboard METOP-1, observing the radiance of the Earth's surface and atmosphere in nadir mode. The spectral range covers the 645 to 2760 cm-1 region with a resolution of 0.35 to 0.5 cm-1. A line-by-line spectral simulation and inversion code, ASIMUT, has been developed for the retrieval of chemical species from infrared spectra. The code includes an analytical calculation of the Jacobians for use in the inversion part of the algorithm based on the Optimal Estimation Method. In 2007 we conducted a measurement campaign at St Denis, Île de la Réunion where we performed ground-based solar absorption observations with a infrared Fourier transform spectrometer. ASIMUT has been used to retrieve methane from the ground-based and collocated satellite measurements. For the latter we selected pixels that are situated over the sea. In this presentation we will show the retrieval strategies, the resulting methane column time series above St Denis and the comparisons of the satellite data with the ground-based data sets. Vertical profile information in these data sets will also be discussed.

  14. Global CO emission estimates inferred from assimilation of MOPITT and IASI CO data, together with observations of O3, NO2, HNO3, and HCHO.

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Jones, D. B. A.; Keller, M.; Jiang, Z.; Bourassa, A. E.; Degenstein, D. A.; Clerbaux, C.; Pierre-Francois, C.

    2017-12-01

    Atmospheric carbon monoxide (CO) emissions estimated from inverse modeling analyses exhibit large uncertainties, due, in part, to discrepancies in the tropospheric chemistry in atmospheric models. We attempt to reduce the uncertainties in CO emission estimates by constraining the modeled abundance of ozone (O3), nitrogen dioxide (NO2), nitric acid (HNO3), and formaldehyde (HCHO), which are constituents that play a key role in tropospheric chemistry. Using the GEOS-Chem four-dimensional variational (4D-Var) data assimilation system, we estimate CO emissions by assimilating observations of CO from the Measurement of Pollution In the Troposphere (MOPITT) and the Infrared Atmospheric Sounding Interferometer (IASI), together with observations of O3 from the Optical Spectrograph and InfraRed Imager System (OSIRIS) and IASI, NO2 and HCHO from the Ozone Monitoring Instrument (OMI), and HNO3 from the Microwave Limb Sounder (MLS). Our experiments evaluate the inferred CO emission estimates from major anthropogenic, biomass burning and biogenic sources. Moreover, we also infer surface emissions of nitrogen oxides (NOx = NO + NO2) and isoprene. Our results reveal that this multiple species chemical data assimilation produces a chemical consistent state that effectively adjusts the CO-O3-OH coupling in the model. The O3-induced changes in OH are particularly large in the tropics. Overall, our analysis results in a better constrained tropospheric chemical state.

  15. Potential of the multispectral synergism for observing ozone pollution combining measurements of IASI-NG and UVNS onboard EPS-SG

    NASA Astrophysics Data System (ADS)

    Costantino, Lorenzo; Cuesta, Juan; Emili, Emanuele; Foret, Gilles; Dufour, Gaëlle; Eremenko, Maxim; Chailleux, Yohann; Beekmann, Matthias; Flaud, Jean-Marie

    2016-04-01

    Current and future satellite observations offer a great potential for monitoring air quality on daily and global basis. However, measurements from currently in orbit sensors offer a limited capacity to probe surface concentrations of gaseous pollutants such as tropospheric ozone. Using single-band approaches based on IASI spaceborne thermal infrared measurements, only ozone down to the lower troposphere (3-4 km of altitude at lowest) may be observed (Eremenko et al., 2008). A recent multispectral method combining IASI and GOME-2 (both onboard MetOp satellites) spectra, respectively from the IR and UV, has shown enhanced sensitivity for probing ozone at the lowermost troposphere, but with maximum sensitivity around 2 km at lowest (Cuesta et al., 2013). Future spatial missions will be launched in the upcoming years, such as EPS-SG, carrying new generation sensors like IASI-NG and UVNS that will enhance the capacity to observe ozone pollution, and particularly when combining them through a multispectral synergism. This work presents an analysis of the potential of the multispectral synergism of IASI-NG and UVNS future spaceborne measurements for observing ozone pollution, performed in the framework of SURVEYOZON project (funded by the French Space Agency, CNES). For this, we develop a simulator of synthetic multispectral retrievals or pseudo-observations (referred as OSSE, Observing System Simulation Experiment) derived from IASI-NG+UVNS that will be compared to those from IASI+GOME2. In the first step of the OSSE, we create a pseudo-reality with simulations from the chemical-transport model MOCAGE (provided by CERFACS laboratory), where real O3 data from IASI and surface network stations have been assimilated for a realistic representation of ozone variability at the surface and the free troposphere. We focus on the high pollution event occurred in Europe on 10 July 2010. We use the coupled algorithms KOPRA+VLIDORT to simulate the spectra emitted, scattered and

  16. Adjusted Levenberg-Marquardt method application to methene retrieval from IASI/METOP spectra

    NASA Astrophysics Data System (ADS)

    Khamatnurova, Marina; Gribanov, Konstantin

    2016-04-01

    Levenberg-Marquardt method [1] with iteratively adjusted parameter and simultaneous evaluation of averaging kernels together with technique of parameters selection are developed and applied to the retrieval of methane vertical profiles in the atmosphere from IASI/METOP spectra. Retrieved methane vertical profiles are then used for calculation of total atmospheric column amount. NCEP/NCAR reanalysis data provided by ESRL (NOAA, Boulder,USA) [2] are taken as initial guess for retrieval algorithm. Surface temperature, temperature and humidity vertical profiles are retrieved before methane vertical profile retrieval for each selected spectrum. Modified software package FIRE-ARMS [3] were used for numerical experiments. To adjust parameters and validate the method we used ECMWF MACC reanalysis data [4]. Methane columnar values retrieved from cloudless IASI spectra demonstrate good agreement with MACC columnar values. Comparison is performed for IASI spectra measured in May of 2012 over Western Siberia. Application of the method for current IASI/METOP measurements are discussed. 1.Ma C., Jiang L. Some Research on Levenberg-Marquardt Method for the Nonlinear Equations // Applied Mathematics and Computation. 2007. V.184. P. 1032-1040 2.http://www.esrl.noaa.gov/psdhttp://www.esrl.noaa.gov/psd 3.Gribanov K.G., Zakharov V.I., Tashkun S.A., Tyuterev Vl.G.. A New Software Tool for Radiative Transfer Calculations and its application to IMG/ADEOS data // JQSRT.2001.V.68.№ 4. P. 435-451. 4.http://www.ecmwf.int/http://www.ecmwf.int

  17. Acetylene (C2H2) and hydrogen cyanide (HCN) from IASI satellite observations: global distributions, validation, and comparison with model

    NASA Astrophysics Data System (ADS)

    Duflot, V.; Wespes, C.; Clarisse, L.; Hurtmans, D.; Ngadi, Y.; Jones, N.; Paton-Walsh, C.; Hadji-Lazaro, J.; Vigouroux, C.; De Mazière, M.; Metzger, J.-M.; Mahieu, E.; Servais, C.; Hase, F.; Schneider, M.; Clerbaux, C.; Coheur, P.-F.

    2015-09-01

    We present global distributions of C2H2 and hydrogen cyanide (HCN) total columns derived from the Infrared Atmospheric Sounding Interferometer (IASI) for the years 2008-2010. These distributions are obtained with a fast method allowing to retrieve C2H2 abundance globally with a 5 % precision and HCN abundance in the tropical (subtropical) belt with a 10 % (25 %) precision. IASI data are compared for validation purposes with ground-based Fourier transform infrared (FTIR) spectrometer measurements at four selected stations. We show that there is an overall agreement between the ground-based and space measurements with correlation coefficients for daily mean measurements ranging from 0.28 to 0.81, depending on the site. Global C2H2 and subtropical HCN abundances retrieved from IASI spectra show the expected seasonality linked to variations in the anthropogenic emissions and seasonal biomass burning activity, as well as exceptional events, and are in good agreement with previous spaceborne studies. Total columns simulated by the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4) are compared to the ground-based FTIR measurements at the four selected stations. The model is able to capture the seasonality in the two species in most of the cases, with correlation coefficients for daily mean measurements ranging from 0.50 to 0.86, depending on the site. IASI measurements are also compared to the distributions from MOZART-4. Seasonal cycles observed from satellite data are reasonably well reproduced by the model with correlation coefficients ranging from -0.31 to 0.93 for C2H2 daily means, and from 0.09 to 0.86 for HCN daily means, depending on the considered region. However, the anthropogenic (biomass burning) emissions used in the model seem to be overestimated (underestimated), and a negative global mean bias of 1 % (16 %) of the model relative to the satellite observations was found for C2H2 (HCN).

  18. The Impact of the Assimilation of Hyperspectral Infrared Retrieved Profiles on Advanced Weather and Research Model Simulations of a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Brendt. Emily; Zavodsky, Bradley; Jedlovec, Gary; Elmer, Nicholas

    2014-01-01

    Tropopause folds are identified by warm, dry, high-potential vorticity, ozone-rich air and are one explanation for damaging non-convective wind events. Could improved model representation of stratospheric air and associated tropopause folding improve non-convective wind forecasts and high wind warnings? The goal of this study is to assess the impact of assimilating Hyperspectral Infrared (IR) profiles on forecasting stratospheric air, tropopause folds, and associated non-convective winds: (1) AIRS: Atmospheric Infrared Sounder (2) IASI: Infrared Atmospheric Sounding Interferometer (3) CrIMSS: Cross-track Infrared and Microwave Sounding Suite

  19. Assessment of Infrared Sounder Radiometric Noise from Analysis of Spectral Residuals

    NASA Astrophysics Data System (ADS)

    Dufour, E.; Klonecki, A.; Standfuss, C.; Tournier, B.; Serio, C.; Masiello, G.; Tjemkes, S.; Stuhlmann, R.

    2016-08-01

    For the preparation and performance monitoring of the future generation of hyperspectral InfraRed sounders dedicated to the precise vertical profiling of the atmospheric state, such as the Meteosat Third Generation hyperspectral InfraRed Sounder, a reliable assessment of the instrument radiometric error covariance matrix is needed.Ideally, an inflight estimation of the radiometrric noise is recommended as certain sources of noise can be driven by the spectral signature of the observed Earth/ atmosphere radiance. Also, unknown correlated noise sources, generally related to incomplete knowledge of the instrument state, can be present, so a caracterisation of the noise spectral correlation is also neeed.A methodology, relying on the analysis of post-retreival spectral residuals, is designed and implemented to derive in-flight the covariance matrix on the basis of Earth scenes measurements. This methodology is successfully demonstrated using IASI observations as MTG-IRS proxy data and made it possible to highlight anticipated correlation structures explained by apodization and micro-vibration effects (ghost). This analysis is corroborated by a parallel estimation based on an IASI black body measurement dataset and the results of an independent micro-vibration model.

  20. Lessons Learned from AIRS: Improved Determination of Surface and Atmospheric Temperatures Using Only Shortwave AIRS Channels

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2011-01-01

    This slide presentation reviews the use of shortwave channels available to the Atmospheric Infrared Sounder (AIRS) to improve the determination of surface and atmospheric temperatures. The AIRS instrument is compared with the Infrared Atmospheric Sounding Interferometer (IASI) on-board the MetOp-A satellite. The objectives of the AIRS/AMSU were to (1) provide real time observations to improve numerical weather prediction via data assimilation, (2) Provide observations to measure and explain interannual variability and trends and (3) Use of AIRS product error estimates allows for QC optimized for each application. Successive versions in the AIRS retrieval methodology have shown significant improvement.

  1. Decrease in tropospheric O3 levels in the Northern Hemisphere observed by IASI

    NASA Astrophysics Data System (ADS)

    Wespes, Catherine; Hurtmans, Daniel; Clerbaux, Cathy; Boynard, Anne; Coheur, Pierre-François

    2018-05-01

    In this study, we describe the recent changes in the tropospheric ozone (O3) columns measured by the Infrared Atmospheric Sounding Interferometer (IASI), onboard the Metop satellite, during the first 9 years of operation (January 2008 to May 2017). Using appropriate multivariate regression methods, we differentiate significant linear trends from other sources of O3 variations captured by IASI. The geographical patterns of the adjusted O3 trends are provided and discussed on the global scale. Given the large contribution of the natural variability in comparison with that of the trend (25-85 % vs. 15-50 %, respectively) to the total O3 variations, we estimate that additional years of IASI measurements are generally required to detect the estimated O3 trends with high precision. Globally, additional 6 months to 6 years of measurements, depending on the regions and the seasons, are needed to detect a trend of |5| DU decade-1. An exception is interestingly found during summer at mid- and high latitudes of the Northern Hemisphere (NH; ˜ 40 to ˜ 75° N), where the large absolute fitted trend values (˜ |0.5| DU yr-1 on average) combined with the small model residuals (˜ 10 %) allow for detection of a band-like pattern of significant negative trends. Despite no consensus in terms of tropospheric O3 trends having been reached from the available independent datasets (UV or IR satellites, O3 sondes, aircrafts, ground-based measurements, etc.) for the reasons that are discussed in the text, this finding is consistent with the reported decrease in O3 precursor emissions in recent years, especially in Europe and USA. The influence of continental pollution on that latitudinal band is further investigated and supported by the analysis of the O3-CO relationship (in terms of correlation coefficient, regression slope and covariance) that we found to be the strongest at northern midlatitudes in summer.

  2. Comparison Between IASI/Metop-A and OMI/Aura Ozone Column Amounts with EUBREWNET Ground-Based Measurements

    NASA Astrophysics Data System (ADS)

    Lopez-Baeza, Ernesto

    2016-07-01

    This work addresses the comparison of {bf IASI (Infrared Atmospheric Sounding Interferometer)} on board Metop-A and {bf OMI (Ozone Monitoring Instrument)} on board Aura to several ground-based Brewer spectrophotometers belonging to the {bf European Brewer Network (EUBREWNET)} for the period September 2010 to December 2015. The focus of this study is to examine how well the satellite retrieval products capture the total ozone column amounts (TOC) at different latitudes and evaluate the different levels of Brewer spectrophotometer data. On this comparison Level 1, 1.5 and 2 Brewer data will be used to evaluate satellite data, where: 1) Level 1 Brewer data are the TOC calculated with the standard Brewer algorithm from the direct sun measurements; 2) Level 1.5 Brewer data are Level 1.0 observations filtered and corrected from instrumental issues: and 3) Level 2.0 Brewer data are 1.5 observations, but validated with a posteriori calibration. The IASI retrievals examined are operational IASI Level 2 products, version 5 from September 2010 to October 2014, and version 6 from October 2014 to December 2015, from {it EUMETSAT Data Centre}, while OMI retrievals are OMI-DOAS TOC products extracted from the {it NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)}. The differences and their implications for the retrieved products will be discussed and, in order to evaluate the quality and sensitivity of each product, special attention will be put on analyzing the instrumental errors from these different measurement techniques. Furthermore, those parameters that could affect the comparison of the different datasets such as the different viewing geometry, the satellite data vertical sensitivity, cloudiness conditions, spectral region used for retrievals, and so on, will be analyzed in detail.

  3. Interferometric analysis computer code for the infrared atmospheric sounding interferometer (IASI) fourier transform spectrometer (FTS)

    NASA Astrophysics Data System (ADS)

    Labate, Demetrio; Pieri, Silvano; Pili, Paolo

    1994-09-01

    The Interferometric Analysis Computer Code is a program developed to evaluate the performances of Fourier Transform Spectrometers. It has been carried out in the frame of the IASI program. It is a stand-alone code which can use as input the optical system data set up by an optical design software. The interference phenomenon is evaluated using the optical data of both interferometer arms by means of real ray-tracing. The mathematical model used to obtain the output signal is based on the concept that, for a monochromatic source, this signal is quite similar to an ideal sine. This allows to calculate three functions describing the difference between the ideal interferogram and the simulated one. These represent the average level of the output irradiance, the modulation and the phase of the oscillating terms as a function of the Optical Path Difference. These functions are quite smooth and then easily representable by fitting. Therefore in order to have a good representation of them it is sufficient a number of points much smaller than those necessary to represent correctly an interferogram. Then a great advantage in terms of computation time is obtained, especially when many signals have to be added to simulate the effect of a detector covering a quite large field of view. Furthermore, the possibility to input in the optical data files different kinds of manufacturing or assembly errors allows to estimate the sensitivity of the optical components respect to these aspects. This makes possible the calculation of an exhaustive tolerance budget.

  4. A new Infrared Atmospheric Sounding Interferometer channel selection and assessment of its impact on Met Office NWP forecasts

    NASA Astrophysics Data System (ADS)

    Noh, Young-Chan; Sohn, Byung-Ju; Kim, Yoonjae; Joo, Sangwon; Bell, William; Saunders, Roger

    2017-11-01

    A new set of Infrared Atmospheric Sounding Interferometer (IASI) channels was re-selected from 314 EUMETSAT channels. In selecting channels, we calculated the impact of the individually added channel on the improvement in the analysis outputs from a one-dimensional variational analysis (1D-Var) for the Unified Model (UM) data assimilation system at the Met Office, using the channel score index (CSI) as a figure of merit. Then, 200 channels were selected in order by counting each individual channel's CSI contribution. Compared with the operationally used 183 channels for the UM at the Met Office, the new set shares 149 channels, while the other 51 channels are new. Also examined is the selection from the entropy reduction method with the same 1D-Var approach. Results suggest that channel selection can be made in a more objective fashion using the proposed CSI method. This is because the most important channels can be selected across the whole IASI observation spectrum. In the experimental trial runs using the UM global assimilation system, the new channels had an overall neutral impact in terms of improvement in forecasts, as compared with results from the operational channels. However, upper-tropospheric moist biases shown in the control run with operational channels were significantly reduced in the experimental trial with the newly selected channels. The reduction of moist biases was mainly due to the additional water vapor channels, which are sensitive to the upper-tropospheric water vapor.

  5. Top-Down CO Emissions Based On IASI Observations and Hemispheric Constraints on OH Levels

    NASA Astrophysics Data System (ADS)

    Müller, J.-F.; Stavrakou, T.; Bauwens, M.; George, M.; Hurtmans, D.; Coheur, P.-F.; Clerbaux, C.; Sweeney, C.

    2018-02-01

    Assessments of carbon monoxide emissions through inverse modeling are dependent on the modeled abundance of the hydroxyl radical (OH) which controls both the primary sink of CO and its photochemical source through hydrocarbon oxidation. However, most chemistry transport models (CTMs) fall short of reproducing constraints on hemispherically averaged OH levels derived from methylchloroform (MCF) observations. Here we construct five different OH fields compatible with MCF-based analyses, and we prescribe those fields in a global CTM to infer CO fluxes based on Infrared Atmospheric Sounding Interferometer (IASI) CO columns. Each OH field leads to a different set of optimized emissions. Comparisons with independent data (surface, ground-based remotely sensed, aircraft) indicate that the inversion adopting the lowest average OH level in the Northern Hemisphere (7.8 × 105 molec cm-3, ˜18% lower than the best estimate based on MCF measurements) provides the best overall agreement with all tested observation data sets.

  6. Assimilation of IASI partial tropospheric columns with an Ensemble Kalman Filter over Europe

    NASA Astrophysics Data System (ADS)

    Coman, A.; Foret, G.; Beekmann, M.; Eremenko, M.; Dufour, G.; Gaubert, B.; Ung, A.; Schmechtig, C.; Flaud, J.-M.; Bergametti, G.

    2011-09-01

    Partial lower tropospheric ozone columns provided by the IASI (Infrared Atmospheric Sounding Interferometer) instrument have been assimilated into a chemistry-transport model at continental scale (CHIMERE) using an Ensemble Kalman Filter (EnKF). Analyses are made for the month of July 2007 over the European domain. Launched in 2006, aboard the MetOp-A satellite, IASI shows high sensitivity for ozone in the free troposphere and low sensitivity at the ground; therefore it is important to evaluate if assimilation of these observations can improve free tropospheric ozone, and possibly surface ozone. The analyses are validated against independent ozone observations from sondes, MOZAIC1 aircraft and ground based stations (AIRBASE - the European Air quality dataBase) and compared with respect to the free run of CHIMERE. These comparisons show a decrease in error of 6 parts-per-billion (ppb) in the free troposphere over the Frankfurt area, and also a reduction of the root mean square error (respectively bias) at the surface of 19% (33%) for more than 90% of existing ground stations. This provides evidence of the potential of data assimilation of tropospheric IASI columns to better describe the tropospheric ozone distribution, including surface ozone, despite the lower sensitivity. The changes in concentration resulting from the observational constraints were quantified and several geophysical explanations for the findings of this study were drawn. The corrections were most pronounced over Italy and the Mediterranean region, on the average we noted an average reduction of 8-9 ppb in the free troposphere with respect to the free run, and still a reduction of 5.5 ppb at ground, likely due to a longer residence time of air masses in this part associated to the general circulation pattern (i.e. dominant western circulation) and to persistent anticyclonic conditions over the Mediterranean basin. This is an important geophysical result, since the ozone burden is large over this

  7. Assimilation of IASI partial tropospheric columns with an Ensemble Kalman Filter over Europe

    NASA Astrophysics Data System (ADS)

    Coman, A.; Foret, G.; Beekmann, M.; Eremenko, M.; Dufour, G.; Gaubert, B.; Ung, A.; Schmechtig, C.; Flaud, J.-M.; Bergametti, G.

    2012-03-01

    Partial lower tropospheric ozone columns provided by the IASI (Infrared Atmospheric Sounding Interferometer) instrument have been assimilated into a chemistry-transport model at continental scale (CHIMERE) using an Ensemble Square Root Kalman Filter (EnSRF). Analyses are made for the month of July 2007 over the European domain. Launched in 2006, aboard the MetOp-A satellite, IASI shows high sensitivity for ozone in the free troposphere and low sensitivity at the ground; therefore it is important to evaluate if assimilation of these observations can improve free tropospheric ozone, and possibly surface ozone. The analyses are validated against independent ozone observations from sondes, MOZAIC1 aircraft and ground based stations (AIRBASE - the European Air quality dataBase) and compared with respect to the free run of CHIMERE. These comparisons show a decrease in error of 6 parts-per-billion (ppb) in the free troposphere over the Frankfurt area, and also a reduction of the root mean square error (respectively bias) at the surface of 19% (33%) for more than 90% of existing ground stations. This provides evidence of the potential of data assimilation of tropospheric IASI columns to better describe the tropospheric ozone distribution, including surface ozone, despite the lower sensitivity. The changes in concentration resulting from the observational constraints were quantified and several geophysical explanations for the findings of this study were drawn. The corrections were most pronounced over Italy and the Mediterranean region, we noted an average reduction of 8-9 ppb in the free troposphere with respect to the free run, and still a reduction of 5.5 ppb at ground, likely due to a longer residence time of air masses in this part associated to the general circulation pattern (i.e. dominant western circulation) and to persistent anticyclonic conditions over the Mediterranean basin. This is an important geophysical result, since the ozone burden is large over this

  8. Mid-infrared laser filaments in the atmosphere

    PubMed Central

    Mitrofanov, A. V.; Voronin, A. A.; Sidorov-Biryukov, D. A.; Pugžlys, A.; Stepanov, E. A.; Andriukaitis, G.; Flöry, T.; Ališauskas, S.; Fedotov, A. B.; Baltuška, A.; Zheltikov, A. M.

    2015-01-01

    Filamentation of ultrashort laser pulses in the atmosphere offers unique opportunities for long-range transmission of high-power laser radiation and standoff detection. With the critical power of self-focusing scaling as the laser wavelength squared, the quest for longer-wavelength drivers, which would radically increase the peak power and, hence, the laser energy in a single filament, has been ongoing over two decades, during which time the available laser sources limited filamentation experiments in the atmosphere to the near-infrared and visible ranges. Here, we demonstrate filamentation of ultrashort mid-infrared pulses in the atmosphere for the first time. We show that, with the spectrum of a femtosecond laser driver centered at 3.9 μm, right at the edge of the atmospheric transmission window, radiation energies above 20 mJ and peak powers in excess of 200 GW can be transmitted through the atmosphere in a single filament. Our studies reveal unique properties of mid-infrared filaments, where the generation of powerful mid-infrared supercontinuum is accompanied by unusual scenarios of optical harmonic generation, giving rise to remarkably broad radiation spectra, stretching from the visible to the mid-infrared. PMID:25687621

  9. Large Scale Gaussian Processes for Atmospheric Parameter Retrieval and Cloud Screening

    NASA Astrophysics Data System (ADS)

    Camps-Valls, G.; Gomez-Chova, L.; Mateo, G.; Laparra, V.; Perez-Suay, A.; Munoz-Mari, J.

    2017-12-01

    Current Earth-observation (EO) applications for image classification have to deal with an unprecedented big amount of heterogeneous and complex data sources. Spatio-temporally explicit classification methods are a requirement in a variety of Earth system data processing applications. Upcoming missions such as the super-spectral Copernicus Sentinels EnMAP and FLEX will soon provide unprecedented data streams. Very high resolution (VHR) sensors like Worldview-3 also pose big challenges to data processing. The challenge is not only attached to optical sensors but also to infrared sounders and radar images which increased in spectral, spatial and temporal resolution. Besides, we should not forget the availability of the extremely large remote sensing data archives already collected by several past missions, such ENVISAT, Cosmo-SkyMED, Landsat, SPOT, or Seviri/MSG. These large-scale data problems require enhanced processing techniques that should be accurate, robust and fast. Standard parameter retrieval and classification algorithms cannot cope with this new scenario efficiently. In this work, we review the field of large scale kernel methods for both atmospheric parameter retrieval and cloud detection using infrared sounding IASI data and optical Seviri/MSG imagery. We propose novel Gaussian Processes (GPs) to train problems with millions of instances and high number of input features. Algorithms can cope with non-linearities efficiently, accommodate multi-output problems, and provide confidence intervals for the predictions. Several strategies to speed up algorithms are devised: random Fourier features and variational approaches for cloud classification using IASI data and Seviri/MSG, and engineered randomized kernel functions and emulation in temperature, moisture and ozone atmospheric profile retrieval from IASI as a proxy to the upcoming MTG-IRS sensor. Excellent compromise between accuracy and scalability are obtained in all applications.

  10. Carbon monoxide transport in the Arctic: A joint study using IASI satellite and aircraft data in spring and summer 2008. (Invited)

    NASA Astrophysics Data System (ADS)

    Pommier, M.; Law, K.; Clerbaux, C.; Turquety, S.; Hadji-Lazaro, J.; Hurtmans, D.; Coheur, P.; Schlager, H.; Ancellet, G.; Paris, J.; Nédélec, P.; Diskin, G. S.; Podolske, J. R.; Bernath, P.

    2009-12-01

    Carbon monoxide (CO) is a reactive toxic gas, mainly produced by the combustion of fossil fuels and vegetation burning. It also plays an important role in the budget of tropospheric ozone and can be used a tracer for transport of sources of different origin. The impact of the transport of such pollutants on climate change in the Arctic still remains to be quantified with global models often failing to reproduce seasonal cycles especially in summertime. One possible explanation is the underestimation of modelled ozone production in forest fires plumes. This study focuses on the analysis of the POLARCAT/IPY spring and summer campaigns which took place, in Kiruna, Sweden in April 2008 and in Kangerlussuaq, Greenland in July 2008. During the campaigns different air masses were sampled including clean air, polluted plumes originating from anthropogenic sources in Europe and North America, and forest fire plumes from Siberia and Canada. These different transport pathways were well observed by the IASI (Infrared Atmospheric Sounding Interferometer) interferometer, onboard the METOP-A satellite. Measurements of CO collected by the ATR-42 aircraft as part of POLARCAT-France have been used to validate the satellite measurements. Furthermore, a more general validation procedure was developed to compare IASI with ATR-42, DLR-Falcon, NASA DC-8 and NOAA P3-B CO data. YAK summer flights in Siberia are also available for these comparisons. Both in-situ and satellite data are also compared to simulations from the LMDz-INCA global chemistry model. We will discuss how the good global coverage of IASI and regional flights allow can be used improve estimates of CO emissions and to evaluate the impact of forest fires on CO and O3 (ozone) distributions.

  11. CO Seasonal Variability and Trend over Paris Megacity Using Ground-Based QualAir FTS and Satellite IASI-MetOp Measurements

    NASA Astrophysics Data System (ADS)

    Te, Yao; Jeseck, Pascal; Hadji-Lazaro, Juliette

    2012-11-01

    In a growing world with more than 7 billion inhabitants and big emerging countries such as China, Brazil and India, emissions of anthropogenic pollutants are increasing continuously. Monitoring and control of atmospheric pollutants in megacities have become a major challenge for scientists and public health authorities in environmental research area. The QualAir platform at University Pierre et Marie Curie (UPMC), is an innovating experimental research platform dedicated to survey urban atmospheric pollution and air quality. A Bruker Optics IFS 125HR Fourier transform spectrometer belonged to the Laboratoire de Physique Moléculaire pour l'Atmosphère et l'Astrophysique (LPMAA), was adapted for ground-based atmospheric measurements. As one of the major instruments of the QualAir platform, this ground-based Fourier transform spectrometer (QualAir FTS) analyses the composition of the urban atmosphere of Paris, which is the third largest European megacity. The continuous monitoring of atmospheric pollutants is essential to improve the understanding of urban air pollution processes. Associated with a sun-tracker, the QualAir remote sensing FTS operates in solar infrared absorption and enables to monitor many trace gases, and to follow up their variability in the Ile-de-France region. Concentrations of atmospheric pollutants are retrieved by the radiative transfer model PROFFIT. These ground-based remote sensing measurements are compared to ground in-situ measurements and to satellite data from IASI-MetOp (Infrared Atmospheric Sounding Interferometer). The remote sensing total column of the carbon monoxide (CO) obtained from January 2009 to June 2012, has a seasonal variability with a maximum in April and a minimum in October. While, after 2008, the mean CO level is quite stable (no significant decrease as before 2008).

  12. Comparison of a Resonant Mirror Biosensor (IAsys) and a Quartz Crystal Microbalance (QCM) for the Study on Interaction between Paeoniae Radix 801 and Endothelin-1.

    PubMed

    Huang, Jiadong; Lin, Qing; Yu, Jinghua; Ge, Shenguang; Li, Jing; Yu, Min; Zhao, Zixia; Wang, Xinsheng; Zhang, Xiuming; He, Xiaorui; Yuan, Liang; Yin, Huijun; Osa, Tetsuo; Chen, Keji; Chen, Qiang

    2008-12-15

    A resonant mirror biosensor, IAsys, and a quartz crystal microbalance (QCM) are known independently as surface sensitive analytical devices capable of label-free and in situ bioassays. In this study, an IAsys and a QCM are employed for a new study on the action mechanism of Paeoniae Radix 801 (P. radix 801) by detecting the specific interaction between P. radix 801 and endothelin-1 (ET-1). In the experiments, ET-1 was immobilized on the surfaces of the IAsys cuvette and the QCM substrate by surface modification techniques, and then P. radix 801 solution was contacted to the cuvette and the substrate, separately. Then, the binding and interaction process between P. radix 801 and ET-1 was monitored by IAsys and QCM, respectively. The experimental results showed that P. radix 801 binds ET-1 specifically. The IAsys and QCM response curves to the ET-1 immobilization and P. radix 801 binding are similar in reaction process, but different in binding profiles, reflecting different resonation principles. Although both IAsys and QCM could detect the interaction of P. radix 801 and ET-1 with high reproducibility and reliability through optimization of the ET-1 coating, the reproducibility and reliability obtained by IAsys are better than those obtained by QCM, since the QCM frequency is more sensitive to temperature fluctuations, atmospheric changes and mechanical disturbances. However, IAsys and QCM are generally potent and reliable tools to study the interaction of P. radix 801 and ET-1, and can conclusively be applied to the action mechanism of P. radix 801.

  13. Assimilation for Skin SST in the NASA GEOS Atmospheric Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Akella, Santha; Todling, Ricardo; Suarez, Max

    2017-01-01

    The present article describes the sea surface temperature (SST) developments implemented in the Goddard Earth Observing System, Version 5 (GEOS) Atmospheric Data Assimilation System (ADAS). These are enhancements that contribute to the development of an atmosphere-ocean coupled data assimilation system using GEOS. In the current quasi-operational GEOS-ADAS, the SST is a boundary condition prescribed based on the OSTIA product, therefore SST and skin SST (Ts) are identical. This work modifies the GEOS-ADAS Ts by modelling and assimilating near sea surface sensitive satellite infrared (IR) observations. The atmosphere-ocean interface layer of the GEOS atmospheric general circulation model (AGCM) is updated to include near-surface diurnal warming and cool-skin effects. The GEOS analysis system is also updated to directly assimilate SST-relevant Advanced Very High Resolution Radiometer (AVHRR) radiance observations. Data assimilation experiments designed to evaluate the Ts modification in GEOS-ADAS show improvements in the assimilation of radiance observations that extend beyond the thermal infrared bands of AVHRR. In particular, many channels of hyperspectral sensors, such as those of the Atmospheric Infrared Sounder (AIRS), and Infrared Atmospheric Sounding Interferometer (IASI) are also better assimilated. We also obtained improved fit to withheld insitu buoy measurement of near-surface SST. Evaluation of forecast skill scores show neutral to marginal benefit from the modified Ts.

  14. Atmospheric and spectroscopic research in the far infrared

    NASA Technical Reports Server (NTRS)

    Park, Kwangjai; Radostitz, James V.

    1992-01-01

    The University of Oregon (UO) has been a major participant in the development of far infrared spectroscopic research of the stratosphere for the purpose of understanding the ozone layer processes. The UO has had a 15-year collaboration with the Italian group of B. Carli, and have participated in the 1978/79 Sub-millimeter Infrared Balloon Experiment (SIBEX), in the Balloon Intercomparison Campaign, (BIC), in the Infrared Balloon Experiment (IBEX), and in the recently concluded Far Infrared Experiment for UARS Correlative Measurements (FIREX). Both IBEX and FIREX programs were conducted in collaboration with NASA Langley, and were designed as validation flights in support of the Upper Atmosphere Research Satellite (UARS) Program. The technique of atmospheric far infrared spectroscopy offers two important advantages. First, many chemically important species can be measured simultaneously and co-spatially in the atmosphere. Second, far infrared atmospheric spectra can be obtained in thermal emission without reference to the sun's position, enabling full diurnal and global coverage. Recent improvements in instrumentation, field measurements, and molecular concentration retrieval techniques are now making the far infrared a mature measurement technology. This work to date has largely focused on balloon-based studies, but the future efforts will focus also on satellite-based experiments. A program of research in the following general areas was proposed: Laboratory Pressure broadening coefficient studies; specialized detector system assembly and testing; and consultation and assistance with instrument and field support. The proposal was approved and a three-year research grant titled 'Atmospheric and Spectroscopic Research in the Far Infrared' was awarded. A summary of technical accomplishments attained during the grant period are presented.

  15. Validation of Tropospheric Water Vapor as Measured by the 183-GHz Radiometer HAMSTRAD with IASI and Sondes over the Pyrenees Mountains, France

    NASA Astrophysics Data System (ADS)

    Ricaud, P.; Drasin, O.; Gabard, B.; Derrien, S.; Attie, J.-L.; Rose, T.; Czekala, H.

    The HAMSTRAD 183-GHz radiometer has been developed to measure vertical profiles of water vapor above the Dome C (Concordia Station), Antarctica (75°06'S, 123°21'E, 3233 m asml), an extremely cold and dry environment, over decades. Prior to its installation at Dome C in January 2009, the instrument was deployed at the Pic du Midi (PdM) station (42°56'N, 0°08'E, 2877 m asml, France) in the Pyrenees Mountains over the period February-June 2008. Vertical profiles of absolute humidity and Integrated Water Content (IWV) as measured by HAMSTRAD were compared with measurements from radio-sondes launched in three different sites: Lannemezan (43°07'N, 0°23'E, 610 m asml, France) [ 30 km North-East from PdM], Bordeaux-Mérignac Airport (44°49'N, 0°42'W, 50 m asml, France) [ 220 km North-West from PdM], and Zaragoza (41°39'N, 0°53'W, 263 m asml, Spain) [ 170 km South-West from PdM]. The validation process also used the vertical profiles of tropospheric H2O as measured by the nadir-viewing Infrared Atmospheric Sounding Interferometer (IASI) instrument aboard the MetOp-A space platform. The temporal evolution of the HAMSTRAD H2O measurements above the PdM station is very consistent with IASI, sondes, and in situ measurements, tracking the same atmosphere from a dry period in February to a wet period in June. HAMSTRAD showed unrealistic values in periods of well established snow tempest. Whilst the sensitivity of the HAMSTRAD measurements tends to be lost 6 km above the altitude of the instrument, namely above 8877 m asml, the HAMSTRAD measurements seem reasonable at the uppermost retrieval level (namely 10 km, 12877 m asml). In May 2008, the wet periods are systematically showing a good agreement between sondes and HAMSTRAD IWV fields and H2O below 6777 m asml, but a dry bias of-2IASI by more than 4 kg m IWV whilst, outside ofthese periods, the 3 data sets behave consistently.

  16. New Mobile Atmospheric Lidar Systems for Spaceborne Instrument Validation

    NASA Astrophysics Data System (ADS)

    Chazette, P.; Raut, J.-C.; Sanak, J.; Berthier, S.; Dulac, F.; Kim, S. W.; Royer, P.

    2009-04-01

    We present an overview of our different approaches using lidar systems as a tool to validate and develop the new generation of spaceborne missions. We have developed several mini-lidars in order to study the vertical structure, the clouds and the particulate composition of the atmosphere from mobile platforms. Here we focus on three mobile instrumental platforms including a backscatter lidar instrument developed for validation of the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) onboard CALIPSO and of the Interféromètre Atmosphérique de Sondage Infrarouge (IASI) onboard METOP. The first system is operated onboard an ultra-light aircraft (ULA) (Chazette et al., Environ. Sci. Technol., 2007). The second one is operated onboard a stratospheric balloon to study the interest of the measurement synergy with the Infrared Atmospheric Sounding Interferometer (IASI). The third one is part of a truck/car mobile station to be positioned close to the satellite ground-track (e.g. CALIPSO) or inside the area delimitated by the instrumental swath (e.g. IASI). CALIPSO was inserted in the A-Train constellation behind Aqua on 28 April, 2006 (http://www-calipso.larc.nasa.gov/about/atrain.php). One of the main objectives of the scientific mission is the study of atmospheric aerosols. Before the CALIOP lidar profiles could be used in an operational way, it has been necessary to validate both the raw and geophysical data of the instrument. For this purpose, we carried out an experiment in south-eastern France in summer 2007 to validate the aerosol product of CALIOP by operating both the ground-based and the airborne mobile lidars in coincidence with CALIOP. The synergy between the new generation of spaceborne passive and active instruments is promising to assess the concentration of main pollutants as aerosol, O3 and CO, and greenhouse gases as CO2 and CH4 within the planetary boundary layer (PBL) and to increase the accuracy on the vertical profile of temperature. IASI is

  17. Analysis of AIRS and IASI System Performance Under Clear and Cloudy Conditions

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Strow, L. Larrabee

    2010-01-01

    The radiometric and spectral system performance of space-borne infrared radiometers is generally specified and analyzed under strictly cloud-free, spatially uniform and warm conditions, with the assumption that the observed performance applies to the full dynamic range under clear and cloudy conditions and that random noise cancels for the evaluation of the radiometric accuracy. Such clear conditions are found in only one percent of the data. Ninety nine percent of the data include clouds, which produce spatially highly non-uniform scenes with 11 micrometers window brightness temperatures as low as 200K. We use AIRS and IASI radiance spectra to compare system performance under clear and a wide range of cloudy conditions. Although the two instruments are in polar orbits, with the ascending nodes separated by four hours, daily averages already reveal surprisingly similar measurements. The AIRS and IASI radiometric performance based on the mean of large numbers of observation is comparable and agrees within 200 mK over a wide range of temperatures. There are also some unexpected differences at the 200 -500 mK level, which are of significance for climate applications. The results were verified with data from July 2007 through January 2010, but many can already be gleaned from the analysis of a single day of data.

  18. Spectral Resolution and Coverage Impact on Advanced Sounder Information Content

    NASA Technical Reports Server (NTRS)

    Larar, Allen M.; Liu, Xu; Zhou, Daniel K.; Smith, William L.

    2010-01-01

    Advanced satellite sensors are tasked with improving global measurements of the Earth s atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring capability, and environmental change detection. Achieving such measurement improvements requires instrument system advancements. This presentation focuses on the impact of spectral resolution and coverage changes on remote sensing system information content, with a specific emphasis on thermodynamic state and trace species variables obtainable from advanced atmospheric sounders such as the Infrared Atmospheric Sounding Interferometer (IASI) and Cross-track Infrared Sounder (CrIS) systems on the MetOp and NPP/NPOESS series of satellites. Key words: remote sensing, advanced sounders, information content, IASI, CrIS

  19. Assimilation for skin SST in the NASA GEOS atmospheric data assimilation system.

    PubMed

    Akella, Santha; Todling, Ricardo; Suarez, Max

    2017-01-01

    The present article describes the sea surface temperature (SST) developments implemented in the Goddard Earth Observing System, Version 5 (GEOS-5) Atmospheric Data Assimilation System (ADAS). These are enhancements that contribute to the development of an atmosphere-ocean coupled data assimilation system using GEOS. In the current quasi-operational GEOS-ADAS, the SST is a boundary condition prescribed based on the OSTIA product, therefore SST and skin SST (Ts) are identical. This work modifies the GEOS-ADAS Ts by modeling and assimilating near sea surface sensitive satellite infrared (IR) observations. The atmosphere-ocean interface layer of the GEOS atmospheric general circulation model (AGCM) is updated to include near surface diurnal warming and cool-skin effects. The GEOS analysis system is also updated to directly assimilate SST-relevant Advanced Very High Resolution Radiometer (AVHRR) radiance observations. Data assimilation experiments designed to evaluate the Ts modification in GEOS-ADAS show improvements in the assimilation of radiance observations that extends beyond the thermal IR bands of AVHRR. In particular, many channels of hyperspectral sensors, such as those of the Atmospheric Infrared Sounder (AIRS), and Infrared Atmospheric Sounding Interferometer (IASI) are also better assimilated. We also obtained improved fit to withheld, in-situ buoy measurement of near-surface SST. Evaluation of forecast skill scores show marginal to neutral benefit from the modified Ts.

  20. Assimilation for skin SST in the NASA GEOS atmospheric data assimilation system

    PubMed Central

    Akella, Santha; Todling, Ricardo; Suarez, Max

    2018-01-01

    The present article describes the sea surface temperature (SST) developments implemented in the Goddard Earth Observing System, Version 5 (GEOS-5) Atmospheric Data Assimilation System (ADAS). These are enhancements that contribute to the development of an atmosphere-ocean coupled data assimilation system using GEOS. In the current quasi-operational GEOS-ADAS, the SST is a boundary condition prescribed based on the OSTIA product, therefore SST and skin SST (Ts) are identical. This work modifies the GEOS-ADAS Ts by modeling and assimilating near sea surface sensitive satellite infrared (IR) observations. The atmosphere-ocean interface layer of the GEOS atmospheric general circulation model (AGCM) is updated to include near surface diurnal warming and cool-skin effects. The GEOS analysis system is also updated to directly assimilate SST-relevant Advanced Very High Resolution Radiometer (AVHRR) radiance observations. Data assimilation experiments designed to evaluate the Ts modification in GEOS-ADAS show improvements in the assimilation of radiance observations that extends beyond the thermal IR bands of AVHRR. In particular, many channels of hyperspectral sensors, such as those of the Atmospheric Infrared Sounder (AIRS), and Infrared Atmospheric Sounding Interferometer (IASI) are also better assimilated. We also obtained improved fit to withheld, in-situ buoy measurement of near-surface SST. Evaluation of forecast skill scores show marginal to neutral benefit from the modified Ts. PMID:29628531

  1. The GEISA Spectroscopic Database as a Tool for Hyperspectral Earth' Tropospheric Remote Sensing Applications

    NASA Astrophysics Data System (ADS)

    Jacquinet-Husson, Nicole; Crépeau, Laurent; Capelle, Virginie; Scott, Noëlle; Armante, Raymond; Chédin, Alain

    2010-05-01

    Remote sensing of the terrestrial atmosphere has advanced significantly in recent years, and this has placed greater demands on the compilations in terms of accuracy, additional species, and spectral coverage. The successful performances of the new generation of hyperspectral Earth' atmospheric sounders like AIRS (Atmospheric Infrared Sounder -http://www-airs.jpl.nasa.gov/), in the USA, and IASI (Infrared Atmospheric Sounding Interferometer -http://earth-sciences.cnes.fr/IASI/) in Europe, which have a better vertical resolution and accuracy, compared to the previous satellite infrared vertical sounders, depend ultimately on the accuracy to which the spectroscopic parameters of the optically active gases are known, since they constitute an essential input to the forward radiative transfer models that are used to interpret their observations. In this context, the GEISA (1) (Gestion et Etude des Informations Spectroscopiques Atmosphériques: Management and Study of Atmospheric Spectroscopic Information) computer-accessible database, initiated in 1976, is continuously developed and maintained at LMD (Laboratoire de Météorologie Dynamique, France). The updated 2009 edition of GEISA (GEISA-09)is a system comprising three independent sub-databases devoted respectively to: line transition parameters, infrared and ultraviolet/visible absorption cross-sections, microphysical and optical properties of atmospheric aerosols. In this edition, the contents of which will be summarized, 50 molecules are involved in the line transition parameters sub-database, including 111 isotopes, for a total of 3,807,997 entries, in the spectral range from 10-6 to 35,877.031 cm-1. Currently, GEISA is involved in activities related to the assessment of the capabilities of IASI through the GEISA/IASI database derived from GEISA (2). Since the Metop (http://www.eumetsat.int) launch (October 19th 2006), GEISA/IASI is the reference spectroscopic database for the validation of the level-1 IASI data

  2. Decreasing Lower Tropospheric Ozone over the North China Plain Observed by IASI: Looking for Explanations

    NASA Astrophysics Data System (ADS)

    Dufour, G.; Eremenko, M.; Lachâtre, M.; Hauglustaine, D.; Fortems-Cheiney, A.; Cuesta, J.; Zhang, Y.; Cai, Z.; Liu, Y.; Xu, X.; Lin, W.; Cooper, O. R.

    2017-12-01

    China, and especially the North China Plain (NCP), is a highly polluted region. Emission reductions have been applied since about 10 years, starting with SO2 emissions in 2006 and with NOx emissions in 2010. Recent satellite observations series show a decrease of NO2 tropospheric columns since 2013 and attributed to the NOx emissions reduction. The question of the impact of such reduction on ozone is then arising. In this study, we use the capabilities of the IASI satellite instrument to retrieve 2 semi-independent columns of ozone in the lower (surface-6km asl) and the upper (6-12km) troposphere - the lower tropospheric (LT) column having a sensitivity maximum at 3-4 km - and we evaluate the variability and trend of LT ozone over the NCP for 2008-2016. Deseasonalized monthly timeseries show two distinct periods: a first period (2008-2012) with no significant trend (slope of the linear fit < -0.1 %/yr) and a second period (2013-2016) with a highly significant negative trend of -1.2 %/yr, leading to an overall trend of -0.77 %/yr for 2008-2016. A first temptation is to attribute this decrease to the NOx emissions changes. However, negative trends have not been reported from background surface measurements in this Chinese region. Furthermore recent work made within the framework of the TOAR initiative reveals discrepancies in the sign of the trends of tropospheric column ozone derived from infrared and ultraviolet satellite instruments. As yet there is no conclusive explanation for the discrepancy. We then investigate the IASI retrieval stability and robustness in terms of vertical sensitivity, interferences with large aerosol loading, and comparing with surface and ozonesonde measurements and the IASI instrument aboard the Metop-B satellite. One issue arises concerning the temporal sampling of IASI that may induce significant change in the trend derived from surface stations. We also explore the possible variables, other than emissions, which could explain the

  3. Detecting volcanic SO2 emissions with the Infrared Atmospheric Sounding Interferometer

    NASA Astrophysics Data System (ADS)

    Taylor, Isabelle; Carboni, Elisa; Mather, Tamsin; Grainger, Don

    2017-04-01

    Sulphur dioxide (SO2) emissions are one of the many hazards associated with volcanic activity. Close to the volcano they have negative impacts on human and animal health and affect the environment. Further afield they present a hazard to aviation (as well as being a proxy for volcanic ash) and can cause global changes to climate. These are all good reasons for monitoring gas emissions at volcanoes and this monitoring can also provide insight into volcanic, magmatic and geothermal processes. Advances in satellite technology mean that it is now possible to monitor these emissions from space. The Infrared Atmospheric Sounding Interferometer (IASI) on board the European Space Agency's MetOp satellites is commonly used, alongside other satellite products, for detecting SO2 emissions across the globe. A fast linear retrieval developed in Oxford separates the signal of the target species (SO2) from the spectral background by representing background variability (determined from pixels containing no SO2) in a background covariance matrix. SO2 contaminated pixels can be distinguished from this quickly, facilitating the use of this algorithm for near real time monitoring and for scanning of large datasets for signals to explore further with a full retrieval. In this study, the retrieval has been applied across the globe to identify volcanic emissions. Elevated signals are identified at numerous volcanoes including both explosive and passive emissions, which match reports of activity from other sources. Elevated signals are also evident from anthropogenic activity. These results imply that this tool could be successfully used to identify and monitor activity across the globe.

  4. Infrared radiation models for atmospheric methane

    NASA Technical Reports Server (NTRS)

    Cess, R. D.; Kratz, D. P.; Caldwell, J.; Kim, S. J.

    1986-01-01

    Mutually consistent line-by-line, narrow-band and broad-band infrared radiation models are presented for methane, a potentially important anthropogenic trace gas within the atmosphere. Comparisons of the modeled band absorptances with existing laboratory data produce the best agreement when, within the band models, spurious band intensities are used which are consistent with the respective laboratory data sets, but which are not consistent with current knowledge concerning the intensity of the infrared fundamental band of methane. This emphasizes the need for improved laboratory band absorptance measurements. Since, when applied to atmospheric radiation calculations, the line-by-line model does not require the use of scaling approximations, the mutual consistency of the band models provides a means of appraising the accuracy of scaling procedures. It is shown that Curtis-Godson narrow-band and Chan-Tien broad-band scaling provide accurate means of accounting for atmospheric temperature and pressure variations.

  5. Infrared experiments for spaceborne planetary atmospheres research. Full report

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The role of infrared sensing in atmospheric science is discussed and existing infrared measurement techniques are reviewed. Proposed techniques for measuring planetary atmospheres are criticized and recommended instrument developments for spaceborne investigations are summarized for the following phenomena: global and local radiative budget; radiative flux profiles; winds; temperature; pressure; transient and marginal atmospheres; planetary rotation and global atmospheric activity; abundances of stable constituents; vertical, lateral, and temporal distribution of abundances; composition of clouds and aerosols; radiative properties of clouds and aerosols; cloud microstructure; cloud macrostructure; and non-LTE phenomena.

  6. Infrared Spectral Radiance Intercomparisons With Satellite and Aircraft Sensors

    NASA Technical Reports Server (NTRS)

    Larar, Allen M.; Zhou, Daniel K.; Liu, Xu; Smith, William L.

    2014-01-01

    Measurement system validation is critical for advanced satellite sounders to reach their full potential of improving observations of the Earth's atmosphere, clouds, and surface for enabling enhancements in weather prediction, climate monitoring capability, and environmental change detection. Experimental field campaigns, focusing on satellite under-flights with well-calibrated FTS sensors aboard high-altitude aircraft, are an essential part of the validation task. Airborne FTS systems can enable an independent, SI-traceable measurement system validation by directly measuring the same level-1 parameters spatially and temporally coincident with the satellite sensor of interest. Continuation of aircraft under-flights for multiple satellites during multiple field campaigns enables long-term monitoring of system performance and inter-satellite cross-validation. The NASA / NPOESS Airborne Sounder Testbed - Interferometer (NAST-I) has been a significant contributor in this area by providing coincident high spectral/spatial resolution observations of infrared spectral radiances along with independently-retrieved geophysical products for comparison with like products from satellite sensors being validated. This presentation gives an overview of benefits achieved using airborne sensors such as NAST-I utilizing examples from recent field campaigns. The methodology implemented is not only beneficial to new sensors such as the Cross-track Infrared Sounder (CrIS) flying aboard the Suomi NPP and future JPSS satellites but also of significant benefit to sensors of longer flight heritage such as the Atmospheric InfraRed Sounder (AIRS) and the Infrared Atmospheric Sounding Interferometer (IASI) on the AQUA and METOP-A platforms, respectively, to ensure data quality continuity important for climate and other applications. Infrared spectral radiance inter-comparisons are discussed with a particular focus on usage of NAST-I data for enabling inter-platform cross-validation.

  7. Evaluation of data thinning strategies for climate applications using the first four years of AIRS hyperspectral data

    NASA Astrophysics Data System (ADS)

    Aumann, Hartmut H.; Fishbein, Evan; Gohlke, Jan

    2007-09-01

    The application of infrared hyper-spectral sounder data to climate research requires the global analysis of multi-decadal time series of various atmosphere, surface or cloud related parameters. The data used in this analysis has to meet stringent global and scene independent absolute accuracy and stability requirements, it also has to be spatially and radiometrically unbiased, manageable in size and self-contained. Self-contained means that the data set contains not only a globally unbiased sample of the state of the Earth Climate system as seen in the infrared, it has to contain enough data to contrast clear with average (cloudy) data and to allow an independent assessment of the radiometric and spectral accuracy and stability of the data. We illustrate this with data from the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounder Interferometer (IASI) data. AIRS and IASI were designed with fairly similar functional requirements. AIRS was launched on the EOS Aqua spacecraft in May 2002 into a 705 km polar sun-synchronous orbit with accurately maintained 1:30 PM ascending node. Essentially un-interrupted data are available since September 2002. Since October 2006 IASI is in a 9:30 AM polar orbit at 815 km altitude on the MetOp2 satellite, with data available since May 2007.

  8. Retrieving Land Surface Temperature from Hyperspectral Thermal Infrared Data Using a Multi-Channel Method

    PubMed Central

    Zhong, Xinke; Huo, Xing; Ren, Chao; Labed, Jelila; Li, Zhao-Liang

    2016-01-01

    Land Surface Temperature (LST) is a key parameter in climate systems. The methods for retrieving LST from hyperspectral thermal infrared data either require accurate atmospheric profile data or require thousands of continuous channels. We aim to retrieve LST for natural land surfaces from hyperspectral thermal infrared data using an adapted multi-channel method taking Land Surface Emissivity (LSE) properly into consideration. In the adapted method, LST can be retrieved by a linear function of 36 brightness temperatures at Top of Atmosphere (TOA) using channels where LSE has high values. We evaluated the adapted method using simulation data at nadir and satellite data near nadir. The Root Mean Square Error (RMSE) of the LST retrieved from the simulation data is 0.90 K. Compared with an LST product from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on Meteosat, the error in the LST retrieved from the Infared Atmospheric Sounding Interferometer (IASI) is approximately 1.6 K. The adapted method can be used for the near-real-time production of an LST product and to provide the physical method to simultaneously retrieve atmospheric profiles, LST, and LSE with a first-guess LST value. The limitations of the adapted method are that it requires the minimum LSE in the spectral interval of 800–950 cm−1 larger than 0.95 and it has not been extended for off-nadir measurements. PMID:27187408

  9. Three-Dimensional Distribution of a Major Desert Dust Outbreak over East Asia in March 2008 Derived from IASI Satellite Observations

    NASA Technical Reports Server (NTRS)

    Cuesta, Juan; Eremenko, Maxim; Flamant, Cyrille; Dufour, Gaelle; Laurent, Benoît; Bergametti, Gilles; Hopfner, Michael; Orphal, Johannes; Zhou, Daniel

    2015-01-01

    We describe the daily evolution of the three-dimensional (3D) structure of a major dust outbreak initiated by an extratropical cyclone over East Asia in early March 2008, using new aerosol retrievals derived from satellite observations of IASI (Infrared Atmospheric Sounding Interferometer). A novel auto-adaptive Tikhonov-Phillips-type approach called AEROIASI is used to retrieve vertical profiles of dust extinction coefficient at 10 microns for most cloud-free IASI pixels, both over land and ocean. The dust vertical distribution derived from AEROIASI is shown to agree remarkably well with along-track transects of Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) spaceborne lidar vertical profiles (mean biases less than 110 meters, correlation of 0.95, and precision of 260 meters for mean altitudes of the dust layers). AEROIASI allows the daily characterization of the 3D transport pathways across East Asia of two dust plumes originating from the Gobi and North Chinese deserts. From AEROIASI retrievals, we provide evidence that (i) both dust plumes are transported over the Beijing region and the Yellow Sea as elevated layers above a shallow boundary layer, (ii) as they progress eastward, the dust layers are lifted up by the ascending motions near the core of the extratropical cyclone, and (iii) when being transported over the warm waters of the Japan Sea, turbulent mixing in the deep marine boundary layer leads to high dust concentrations down to the surface. AEROIASI observations and model simulations also show that the progression of the dust plumes across East Asia is tightly related to the advancing cold front of the extratropical cyclone.

  10. Full Spatial Resolution Infrared Sounding Application in the Preconvection Environment

    NASA Astrophysics Data System (ADS)

    Liu, C.; Liu, G.; Lin, T.

    2013-12-01

    Advanced infrared (IR) sounders such as the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI) provide atmospheric temperature and moisture profiles with high vertical resolution and high accuracy in preconvection environments. The derived atmospheric stability indices such as convective available potential energy (CAPE) and lifted index (LI) from advanced IR soundings can provide critical information 1 ; 6 h before the development of severe convective storms. Three convective storms are selected for the evaluation of applying AIRS full spatial resolution soundings and the derived products on providing warning information in the preconvection environments. In the first case, the AIRS full spatial resolution soundings revealed local extremely high atmospheric instability 3 h ahead of the convection on the leading edge of a frontal system, while the second case demonstrates that the extremely high atmospheric instability is associated with the local development of severe thunderstorm in the following hours. The third case is a local severe storm that occurred on 7-8 August 2010 in Zhou Qu, China, which caused more than 1400 deaths and left another 300 or more people missing. The AIRS full spatial resolution LI product shows the atmospheric instability 3.5 h before the storm genesis. The CAPE and LI from AIRS full spatial resolution and operational AIRS/AMSU soundings along with Geostationary Operational Environmental Satellite (GOES) Sounder derived product image (DPI) products were analyzed and compared. Case studies show that full spatial resolution AIRS retrievals provide more useful warning information in the preconvection environments for determining favorable locations for convective initiation (CI) than do the coarser spatial resolution operational soundings and lower spectral resolution GOES Sounder retrievals. The retrieved soundings are also tested in a regional data assimilation WRF 3D-var system to evaluate the

  11. The 2003 edition of geisa: a spectroscopic database system for the second generation vertical sounders radiance simulation

    NASA Astrophysics Data System (ADS)

    Jacquinet-Husson, N.; Lmd Team

    The GEISA (Gestion et Etude des Informations Spectroscopiques Atmosphériques: Management and Study of Atmospheric Spectroscopic Information) computer accessible database system, in its former 1997 and 2001 versions, has been updated in 2003 (GEISA-03). It is developed by the ARA (Atmospheric Radiation Analysis) group at LMD (Laboratoire de Météorologie Dynamique, France) since 1974. This early effort implemented the so-called `` line-by-line and layer-by-layer '' approach for forward radiative transfer modelling action. The GEISA 2003 system comprises three databases with their associated management softwares: a database of spectroscopic parameters required to describe adequately the individual spectral lines belonging to 42 molecules (96 isotopic species) and located in a spectral range from the microwave to the limit of the visible. The featured molecules are of interest in studies of the terrestrial as well as the other planetary atmospheres, especially those of the Giant Planets. a database of absorption cross-sections of molecules such as chlorofluorocarbons which exhibit unresolvable spectra. a database of refractive indices of basic atmospheric aerosol components. Illustrations will be given of GEISA-03, data archiving method, contents, management softwares and Web access facilities at: http://ara.lmd.polytechnique.fr The performance of instruments like AIRS (Atmospheric Infrared Sounder; http://www-airs.jpl.nasa.gov) in the USA, and IASI (Infrared Atmospheric Sounding Interferometer; http://smsc.cnes.fr/IASI/index.htm) in Europe, which have a better vertical resolution and accuracy, compared to the presently existing satellite infrared vertical sounders, is directly related to the quality of the spectroscopic parameters of the optically active gases, since these are essential input in the forward models used to simulate recorded radiance spectra. For these upcoming atmospheric sounders, the so-called GEISA/IASI sub-database system has been elaborated

  12. Airborne laser systems for atmospheric sounding in the near infrared

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark A.; Jia, Huamin; Zammit-Mangion, David

    2012-06-01

    This paper presents new techniques for atmospheric sounding using Near Infrared (NIR) laser sources, direct detection electro-optics and passive infrared imaging systems. These techniques allow a direct determination of atmospheric extinction and, through the adoption of suitable inversion algorithms, the indirect measurement of some important natural and man-made atmospheric constituents, including Carbon Dioxide (CO2). The proposed techniques are suitable for remote sensing missions performed by using aircraft, satellites, Unmanned Aerial Vehicles (UAV), parachute/gliding vehicles, Roving Surface Vehicles (RSV), or Permanent Surface Installations (PSI). The various techniques proposed offer relative advantages in different scenarios. All are based on measurements of the laser energy/power incident on target surfaces of known geometric and reflective characteristics, by means of infrared detectors and/or infrared cameras calibrated for radiance. Experimental results are presented relative to ground and flight trials performed with laser systems operating in the near infrared (NIR) at λ = 1064 nm and λ = 1550 nm. This includes ground tests performed with 10 Hz and 20 KHz PRF NIR laser systems in a variety of atmospheric conditions, and flight trials performed with a 10 Hz airborne NIR laser system installed on a TORNADO aircraft, flying up to altitudes of 22,000 ft above ground level. Future activities are planned to validate the atmospheric retrieval algorithms developed for CO2 column density measurements, with emphasis on aircraft related emissions at airports and other high air-traffic density environments.

  13. Effect of tropospheric aerosols upon atmospheric infrared cooling rates

    NASA Technical Reports Server (NTRS)

    Harshvardhan, MR.; Cess, R. D.

    1978-01-01

    The effect of tropospheric aerosols on atmospheric infrared cooling rates is investigated by the use of recent models of infrared gaseous absorption. A radiative model of the atmosphere that incorporates dust as an absorber and scatterer of infrared radiation is constructed by employing the exponential kernel approximation to the radiative transfer equation. Scattering effects are represented in terms of a single scattering albedo and an asymmetry factor. The model is applied to estimate the effect of an aerosol layer made of spherical quartz particles on the infrared cooling rate. Calculations performed for a reference wavelength of 0.55 microns show an increased greenhouse effect, where the net upward flux at the surface is reduced by 10% owing to the strongly enhanced downward emission. There is a substantial increase in the cooling rate near the surface, but the mean cooling rate throughout the lower troposphere was only 10%.

  14. Estimating Top-of-Atmosphere Thermal Infrared Radiance Using MERRA-2 Atmospheric Data

    NASA Astrophysics Data System (ADS)

    Kleynhans, Tania

    Space borne thermal infrared sensors have been extensively used for environmental research as well as cross-calibration of other thermal sensing systems. Thermal infrared data from satellites such as Landsat and Terra/MODIS have limited temporal resolution (with a repeat cycle of 1 to 2 days for Terra/MODIS, and 16 days for Landsat). Thermal instruments with finer temporal resolution on geostationary satellites have limited utility for cross-calibration due to their large view angles. Reanalysis atmospheric data is available on a global spatial grid at three hour intervals making it a potential alternative to existing satellite image data. This research explores using the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) reanalysis data product to predict top-of-atmosphere (TOA) thermal infrared radiance globally at time scales finer than available satellite data. The MERRA-2 data product provides global atmospheric data every three hours from 1980 to the present. Due to the high temporal resolution of the MERRA-2 data product, opportunities for novel research and applications are presented. While MERRA-2 has been used in renewable energy and hydrological studies, this work seeks to leverage the model to predict TOA thermal radiance. Two approaches have been followed, namely physics-based approach and a supervised learning approach, using Terra/MODIS band 31 thermal infrared data as reference. The first physics-based model uses forward modeling to predict TOA thermal radiance. The second model infers the presence of clouds from the MERRA-2 atmospheric data, before applying an atmospheric radiative transfer model. The last physics-based model parameterized the previous model to minimize computation time. The second approach applied four different supervised learning algorithms to the atmospheric data. The algorithms included a linear least squares regression model, a non-linear support vector regression (SVR) model, a multi

  15. Titan's Atmospheric Composition from Observations by the Cassini Infrared Spectrometer

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; LeClair, A.; Flasar, F. M.; Kunde, V. G.; Conrath, B. J.; Coustenis, A.; Jennings, D. J.; Nixon, C. A.; Brasunas, J.; Achterberg, R. K.

    2006-01-01

    The Composite Infrared Spectrometer (CIRS) aboard the Cassini spacecraft has been making observations during the fly-bys of Titan since the Saturn-Orbit-Insertion in July 2004. The observations provide infrared them1 emission spectra of Titan s atmosphere in three spectral channels covering the 10/cm to 1400/cm spectral region, with variable spectral resolutions of 0.53/cm and 2.8/cm. The uniquely observed spectra exhibit rotational and vibrational-rotational spectral lines of the molecular constituents of Titan s atmosphere that may be analyzed to retrieve information about the composition, thermal structure, and physical and dynamical processes in the remotely sensed atmosphere. We present an analysis of Titan's infrared spectra observed during July 2004 (TO), December 2004 (Tb) and February 2005 (T3), for retrieval of the stratospheric thermal structure, distribution of the hydrocarbons, nitriles, and oxygen bearing constituents, such as C2H2, C2H4, C2H6, C3H8, HCN, HC3N, CO, and CO2 . Preliminary results on the distribution and opacity of haze in Titan s atmosphere are discussed.

  16. Retrieving Atmospheric Temperature and Moisture Profiles from NPP CRIS/ATMS Sensors Using Crimss EDR Algorithm

    NASA Technical Reports Server (NTRS)

    Liu, X.; Kizer, S.; Barnet, C.; Dvakarla, M.; Zhou, D. K.; Larar, A. M.

    2012-01-01

    The Joint Polar Satellite System (JPSS) is a U.S. National Oceanic and Atmospheric Administration (NOAA) mission in collaboration with the U.S. National Aeronautical Space Administration (NASA) and international partners. The NPP Cross-track Infrared Microwave Sounding Suite (CrIMSS) consists of the infrared (IR) Crosstrack Infrared Sounder (CrIS) and the microwave (MW) Advanced Technology Microwave Sounder (ATMS). The CrIS instrument is hyperspectral interferometer, which measures high spectral and spatial resolution upwelling infrared radiances. The ATMS is a 22-channel radiometer similar to Advanced Microwave Sounding Units (AMSU) A and B. It measures top of atmosphere MW upwelling radiation and provides capability of sounding below clouds. The CrIMSS Environmental Data Record (EDR) algorithm provides three EDRs, namely the atmospheric vertical temperature, moisture and pressure profiles (AVTP, AVMP and AVPP, respectively), with the lower tropospheric AVTP and the AVMP being JPSS Key Performance Parameters (KPPs). The operational CrIMSS EDR an algorithm was originally designed to run on large IBM computers with dedicated data management subsystem (DMS). We have ported the operational code to simple Linux systems by replacing DMS with appropriate interfaces. We also changed the interface of the operational code so that we can read data from both the CrIMSS science code and the operational code and be able to compare lookup tables, parameter files, and output results. The detail of the CrIMSS EDR algorithm is described in reference [1]. We will present results of testing the CrIMSS EDR operational algorithm using proxy data generated from the Infrared Atmospheric Sounding Interferometer (IASI) satellite data and from the NPP CrIS/ATMS data.

  17. Infrared Aerosol Radiative Forcing at the Surface and the Top of the Atmosphere

    NASA Technical Reports Server (NTRS)

    Markowicz, Krzysztof M.; Flatau, Piotr J.; Vogelmann, Andrew M.; Quinn, Patricia K.; Welton, Ellsworth J.

    2003-01-01

    We study the clear-sky aerosol radiative forcing at infrared wavelengths using data from the Aerosol Characterization Experiment (ACE-Asia) cruise of the NOAA R/V Ronald H. Brown. Limited number of data points is analyzed mostly from ship and collocated satellite values. An optical model is derived from chemical measurements, lidar profiles, and visible extinction measurements which is used to and estimate the infrared aerosol optical thickness and the single scattering albedo. The IR model results are compared to detailed Fourier Transform Interferometer based infrared aerosol forcing estimates, pyrgeometer based infrared downward fluxes, and against the direct solar forcing observations. This combined approach attests for the self-consistency of the optical model and allows to derive quantities such as the infrared forcing at the top of the atmosphere or the infrared optical thickness. The mean infrared aerosol optical thickness at 10 microns is 0.08 and the single scattering albedo is 0.55. The modeled infrared aerosol forcing reaches 10 W/sq m during the cruise, which is a significant contribution to the total direct aerosol forcing. The surface infrared aerosol radiative forcing is between 10 to 25% of the shortwave aerosol forcing. The infrared aerosol forcing at the top of the atmosphere can go up to 19% of the solar aerosol forcing. We show good agreement between satellite (CERES instrument) retrievals and model results at the top of the atmosphere. Over the Sea of Japan, the average infrared radiative forcing is 4.6 W/sq m in the window region at the surface and it is 1.5 W/sq m at top of the atmosphere. The top of the atmosphere IR forcing efficiency is a strong function of aerosol temperature while the surface IR forcing efficiency varies between 37 and 55 W/sq m (per infrared optical depth unit). and changes between 10 to 18 W/sq m (per infrared optical depth unit).

  18. Utilizing the Precessing Orbit of TRMM to Produce Hourly Corrections of Geostationary Infrared Imager Data with the VIRS Sensor

    NASA Technical Reports Server (NTRS)

    Scarino, Benjamin; Doelling, David R.; Haney, Conor; Bedka, Kristopher; Minnis, Patrick; Gopalan, Arun; Bhatt, Rajendra

    2017-01-01

    Accurate characterization of the Earth's radiant energy is critical for many climate monitoring and weather forecasting applications. For example, groups at the NASA Langley Research Center rely on stable visible- and infrared-channel calibrations in order to understand the temporal/spatial distribution of hazardous storms, as determined from an automated overshooting convective top detection algorithm. Therefore, in order to facilitate reliable, climate-quality retrievals, it is important that consistent calibration coefficients across satellite platforms are made available to the remote sensing community, and that calibration anomalies are recognized and mitigated. One such anomaly is the infrared imager brightness temperature (BT) drift that occurs for some Geostationary Earth Orbit satellite (GEOsat) instruments near local midnight. Currently the Global Space-Based Inter-Calibration System (GSICS) community uses the hyperspectral Infrared Atmospheric Sounding Interferometer (IASI) sensor as a common reference to uniformly calibrate GEOsat IR imagers. However, the combination of IASI, which has a 21:30 local equator crossing time (LECT), and hyperspectral Atmospheric Infrared Sounder (AIRS; 01:30 LECT) observations are unable to completely resolve the GEOsat midnight BT bias. The precessing orbit of the Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS), however, allows sampling of all local hours every 46 days. Thus, VIRS has the capability to quantify the BT midnight effect observed in concurrent GEOsat imagers. First, the VIRS IR measurements are evaluated for long-term temporal stability between 2002 and 2012 by inter-calibrating with Aqua-MODIS. Second, the VIRS IR measurements are assessed for diurnal stability by inter-calibrating with Meteosat-9 (Met-9), a spin-stabilized GEOsat imager that does not manifest any diurnal dependency. In this case, the Met-9 IR imager is first adjusted with the official GSICS calibration

  19. Hurricane Alex as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Click on the image for August 3, 2004 movie, slicing down the atmosphere with the AIRS infrared sensor

    These images of hurricane Alex were captured on August 3, 2004 at 1:30pm EDT. Located in the Atlantic Ocean located about 80 miles south-southeast of Charleston, South Carolina, Alex is now a category 2 hurricane with maximum sustained winds were near 100 mph (161 kph). Alex's center was about 65 miles (104 kilometers) northeast of Cape Hatteras and moving away from the U.S. coast.

    The major contribution to radiation (infrared light) that AIRS infrared channels sense comes from different levels in the atmosphere, depending upon the channel wavelength. To create the movies, a set of AIRS infrared channels were selected which probe the atmosphere at progressively deeper levels. If there were no clouds, the color in each frame would be nearly uniform until the Earth's surface is encountered. The tropospheric air temperature warms at a rate of 6 K (about 11 F) for each kilometer of descent toward the surface. Thus the colors would gradually change from cold to warm as the movie progresses.

    Clouds block the infrared radiation. Thus wherever there are clouds we can penetrate no deeper in infrared. The color remains fixed as the movie progresses, for that area of the image is 'stuck' to the cloud top temperature. The coldest temperatures around 220 K (about -65 F) come from altitudes of about 10 miles.

    We therefore see in a 'surface channel' at the end of the movie, signals from clouds as cold as 220 K and from Earth's surface at 310 K (about 100 F). The very coldest clouds are seen in deep convection thunderstorms over land. Images [figure removed for brevity, see original site] August 2, 2004, 1:30am ET Frame from August 2 movie, slicing down the atmosphere with the AIRS infrared sensor. Alex a tropical storm, sustained winds at 60 mph. The storm is 115 miles southeast of Charleston, South

  20. Hurricane Katrina as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1: click on image for larger AIRS microwave image

    At 1:30 a.m. local time this morning, the remnants of (now Tropical Depression) Katrina were centered on the Mississippi-Tennessee border. This microwave image from the Atmospheric Infrared Sounder instrument on NASA's Aqua spacecrat shows that the area of most intense precipitation was concentrated to the north of the center of activity.

    The infrared image shows how the storms look through an AIRS Infrared window channel. Window channels measure the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures are associated with high, cold cloud tops that make up the top of the hurricane. The infrared signal does not penetrate through clouds, so the purple color indicates the cool cloud tops of the storm. In cloud-free areas, the infrared signal is retrieved at the Earth's surface, revealing warmer temperatures. Cooler areas are pushing to purple and warmer areas are pushing to red.

    The microwave image (figure 1) reveals where the heaviest precipitation in the hurricane is taking place. The blue areas within the storm show the location of this heavy precipitation. Blue areas outside of the storm where there are moderate or no clouds are where the cold (in the microwave sense) sea surface shines through.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard

  1. Atmospheric and Spectroscopic Research in the Far Infrared

    NASA Technical Reports Server (NTRS)

    Park, Kwangjai

    2001-01-01

    The University of Oregon (UO) was a participant in a number of far infrared spectroscopic projects over the past three decades. These include Sub-millimeter Infrared Balloon Experiment (SIBEX), the Balloon Intercomparison Campaign (BIC), and the Infrared Balloon Experiment (IBEX). In addition to these field studies, the UO program contained a detector research component and a laboratory spectroscopy element. Through a productive collaboration with Dr. Carli's group in Italy, with Prof. Ade's group in England and with Dr. Chance of Harvard-Smithsonian, we have made substantial contributions to the development of far infrared spectroscopy as a mature measurement technology for the atmospheric science. This report summarizes the activities during the latest grant period, covering the span from February 22, 1998 to February 21, 2002.

  2. Demonstrating new technologies to improve atmospheric sounding science using the CubeSat Infrared Atmospheric Sounder (CIRAS).

    NASA Astrophysics Data System (ADS)

    Pagano, T. S.

    2017-12-01

    Hyperspectral infrared sounding of the atmosphere has become a vital element in the observational system for weather forecast prediction at National Weather Prediction (NWP) centers worldwide. The NASA Atmospheric Infrared Sounder (AIRS) instrument was the pathfinder for the hyperspectral infrared observations and was designed to provide accurate atmospheric temperature and water vapor profile information in support of weather prediction, climate processes and weather related applications. AIRS was launched in 2002 and continues to operate well. JPL NASA is offering an alternate hyperspectral IR sounder architecture for the future involving CubeSats under the Earth Science Technology Office (ESTO) In-flight Validation of Earth Science Technologies (InVEST) program. The latest technology in large format focal plane assemblies, wide field optics and active cryocoolers enables a reduction in size, mass and cost of the legacy sounders and offer new orbit configurations. The CubeSat Infrared Atmospheric Sounder (CIRAS) employs an MWIR spectrometer operating from 4.08-5.13 µm with 625 channels and spectral resolution of 1.2-2.0 cm-1 to achieve lower tropospheric temperature and water vapor profiles. The CIRAS is packaged in a 6U CubeSat and uses less than 14 W. CIRAS is under development at NASA JPL and scheduled for launch in 2019. This presentation will discuss the CIRAS measurement approach, development status and the plan to demonstrate, in-orbit, higher spatial resolution IR sounding to support new science involving regional weather prediction, applications and weather process studies.

  3. Atmospheric infrared sounder

    NASA Technical Reports Server (NTRS)

    Rosenkranz, Philip, W.; Staelin, David, H.

    1995-01-01

    This report summarizes the activities of two Atmospheric Infrared Sounder (AIRS) team members during the first half of 1995. Changes to the microwave first-guess algorithm have separated processing of Advanced Microwave Sounding Unit A (AMSU-A) from AMSU-B data so that the different spatial resolutions of the two instruments may eventually be considered. Two-layer cloud simulation data was processed with this algorithm. The retrieved water vapor column densities and liquid water are compared. The information content of AIRS data was applied to AMSU temperature profile retrievals in clear and cloudy atmospheres. The significance of this study for AIRS/AMSU processing lies in the improvement attributable to spatial averaging and in the good results obtained with a very simple algorithm when all of the channels are used. Uncertainty about the availability of either a Microwave Humidity Sensor (MHS) or AMSU-B for EOS has motivated consideration of possible low-cost alternative designs for a microwave humidity sensor. One possible configuration would have two local oscillators (compared to three for MHS) at 118.75 and 183.31 GHz. Retrieval performances of the two instruments were compared in a memorandum titled 'Comparative Analysis of Alternative MHS Configurations', which is attached.

  4. Tropical Storm Bonnie as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image of tropical storm Bonnie was captured on August 11 at 1:30am CDT. Located in the Gulf of Mexico, the center of the storm is positioned about 280 miles south-southwest of the mouth of the Mississippi River. Bonnie is a small tropical storm with wind speeds sustained at 45 mph and extending 30 miles from the storm center. It is moving northward at 5 mph.

    About the Movies The major contribution to radiation (infrared light) that AIRS infrared channels sense comes from different levels in the atmosphere, depending upon the channel wavelength. To create the movies, a set of AIRS infrared channels were selected which probe the atmosphere at progressively deeper levels. If there were no clouds, the color in each frame would be nearly uniform until the Earth's surface is encountered. The tropospheric air temperature warms at a rate of 6 K (about 11 F) for each kilometer of descent toward the surface. Thus the colors would gradually change from cold to warm as the movie progresses.

    Clouds block the infrared radiation. Thus wherever there are clouds we can penetrate no deeper in infrared. The color remains fixed as the movie progresses, for that area of the image is 'stuck' to the cloud top temperature. The coldest temperatures around 220 K (about -65 F) come from altitudes of about 10 miles.

    We therefore see in a 'surface channel' at the end of the movie, signals from clouds as cold as 220 K and from Earth's surface at 310 K (about 100 F). The very coldest clouds are seen in deep convection thunderstorms over land. Images [figure removed for brevity, see original site] August 11, 2004 Infrared image. [figure removed for brevity, see original site] August 10, 2004 Daylight snapshot from AIRS visible/near-infrared sensor.

    [figure removed for brevity, see original site] August 11, 2004 At this time, Bonnie is a small tropical storm with wind speeds sustained at 50 mph (85 km/h), and it moving northward at 6 mph. August 10, 2004 Infrared

  5. Application of GPS radio occultation to the assessment of temperature profile retrievals from microwave and infrared sounders

    NASA Astrophysics Data System (ADS)

    Feltz, M.; Knuteson, R.; Ackerman, S.; Revercomb, H.

    2014-05-01

    Comparisons of satellite temperature profile products from GPS radio occultation (RO) and hyperspectral infrared (IR)/microwave (MW) sounders are made using a previously developed matchup technique. The profile matchup technique matches GPS RO and IR/MW sounder profiles temporally, within 1 h, and spatially, taking into account the unique RO profile geometry and theoretical spatial resolution by calculating a ray-path averaged sounder profile. The comparisons use the GPS RO dry temperature product. Sounder minus GPS RO differences are computed and used to calculate bias and RMS profile statistics, which are created for global and 30° latitude zones for selected time periods. These statistics are created from various combinations of temperature profile data from the Constellation Observing System for Meteorology, Ionosphere & Climate (COSMIC) network, Global Navigation Satellite System Receiver for Atmospheric Sounding (GRAS) instrument, and the Atmospheric Infrared Sounder (AIRS)/Advanced Microwave Sounding Unit (AMSU), Infrared Atmospheric Sounding Interferometer (IASI)/AMSU, and Crosstrack Infrared Sounder (CrIS)/Advanced Technology Microwave Sounder (ATMS) sounding systems. By overlaying combinations of these matchup statistics for similar time and space domains, comparisons of different sounders' products, sounder product versions, and GPS RO products can be made. The COSMIC GPS RO network has the spatial coverage, time continuity, and stability to provide a common reference for comparison of the sounder profile products. The results of this study demonstrate that GPS RO has potential to act as a common temperature reference and can help facilitate inter-comparison of sounding retrieval methods and also highlight differences among sensor product versions.

  6. Application of GPS radio occultation to the assessment of temperature profile retrievals from microwave and infrared sounders

    NASA Astrophysics Data System (ADS)

    Feltz, M.; Knuteson, R.; Ackerman, S.; Revercomb, H.

    2014-11-01

    Comparisons of satellite temperature profile products from GPS radio occultation (RO) and hyperspectral infrared (IR)/microwave (MW) sounders are made using a previously developed matchup technique. The profile matchup technique matches GPS RO and IR/MW sounder profiles temporally, within 1 h, and spatially, taking into account the unique RO profile geometry and theoretical spatial resolution by calculating a ray-path averaged sounder profile. The comparisons use the GPS RO dry temperature product. Sounder minus GPS RO differences are computed and used to calculate bias and rms profile statistics, which are created for global and 30° latitude zones for selected time periods. These statistics are created from various combinations of temperature profile data from the Constellation Observing System for Meteorology, Ionosphere & Climate (COSMIC) network, Global Navigation Satellite System Receiver for Atmospheric Sounding (GRAS) instrument, and the Atmospheric Infrared Sounder (AIRS)/Advanced Microwave Sounding Unit (AMSU), Infrared Atmospheric Sounding Interferometer (IASI)/AMSU, and Crosstrack Infrared Sounder (CrIS)/Advanced Technology Microwave Sounder (ATMS) sounding systems. By overlaying combinations of these matchup statistics for similar time and space domains, comparisons of different sounders' products, sounder product versions, and GPS RO products can be made. The COSMIC GPS RO network has the spatial coverage, time continuity, and stability to provide a common reference for comparison of the sounder profile products. The results of this study demonstrate that GPS RO has potential to act as a common temperature reference and can help facilitate inter-comparison of sounding retrieval methods and also highlight differences among sensor product versions.

  7. Near-infrared Characterization of the Atmospheres of Alien Worlds

    NASA Astrophysics Data System (ADS)

    Croll, Bryce

    In this thesis I present near-infrared detections of the thermal emission of a number of hot Jupiters and likely transit depth differences from different wavelength observations of a super-Earth. I have pioneered "Staring Mode" using the Wide-field Infrared Camera on the Canada-France-Hawaii Telescope to achieve the most accurate photometry to-date in the near- infrared from the ground. I also discuss avenues that should allow one to achieve even more accurate photometry in the future. Using WIRCam on CFHT my collaborators and I have detected the thermal emission of the following hot Jupiters: TrES-2b and TrES-3b in Ks-band, WASP-12b in the J, H & Ks-bands, and WASP-3b in the Ks-band on two occasions. Near- infrared detections of the thermal emission of hot Jupiters are important, because the majority of these planets' blackbodies peak in this wavelength range; near-infrared detections allow us to obtain the most model-independent constraints on these planets' atmospheric characteristics, their temperature-pressure profiles with depth and an estimate of their bolometric luminosities. With these detections we are able to answer such questions as: how efficiently these planets redistribute heat to their nightsides, if they're being inflated by tidal heating, whether there's any evidence that one of these planets is precessing, and whether another experiences extreme weather and violent storms? My collaborators and I have also observed several transits of the super-Earth GJ 1214b. We find a deeper transit depth in one of our near-infrared bands than the other. This is likely indicative of a spectral absorption feature. For the differences in the transit depth to be as large as we observed, the atmosphere of GJ 1214b must have a large scale height, low mean molecular weight and thus have a hydrogen/helium dominated atmosphere. Given that other researchers have not found similar transit depth differences, we also discuss the most likely atmospheric makeup for this

  8. Jupiter's atmospheric composition from the Cassini thermal infrared spectroscopy experiment

    NASA Technical Reports Server (NTRS)

    Kunde, V. G.; Flasar, F. M.; Jennings, D. E.; Bezard, B.; Strobel, D. F.; Conrath, B. J.; Nixon, C. A.; Bjoraker, G. L.; Romani, P. N.; Achterberg, R. K.; hide

    2004-01-01

    The Composite Infrared Spectrometer observed Jupiter in the thermal infrared during the swing-by of the Cassini spacecraft. Results include the detection of two new stratospheric species, the methyl radical and diacetylene, gaseous species present in the north and south auroral infrared hot spots; determination of the variations with latitude of acetylene and ethane, the latter a tracer of atmospheric motion; observations of unexpected spatial distributions of carbon dioxide and hydrogen cyanide, both considered to be products of comet Shoemaker-Levy 9 impacts; characterization of the morphology of the auroral infrared hot spot acetylene emission; and a new evaluation of the energetics of the northern auroral infrared hot spot.

  9. Application of infrared techniques to the study of atmospheric ozone

    NASA Astrophysics Data System (ADS)

    Secroun, C.; Barbe, A.; Marche, P.; Jouve, P.

    The present investigation is concerned with the utilization of the infrared wavelength region for the study of the ozone in the atmosphere, taking into account three atmospheric windows including the wavelength ranges near 10, 5, and 3 micrometers. More than 3200 spectral lines could be assigned to different bands of the ozone spectrum. Laboratory studies formed one part of the investigation. Spectral frequencies, absorption line intensities, and linewidths were determined for ozone. Some of the obtained results were employed in connection with data provided by the radiometric probe LIMS on board the Nimbus-7 satellite. The second part of the investigation involved a study of the atmosphere. The same spectrometer as in the laboratory study was utilized, and the sun was employed as radiation source. The obtained results were compared with data provided by a Dobson spectrophotometer. Attention is also given to vertical concentration profiles. It is concluded that infrared absorption spectroscopy represents a suitable technique for studies of atmospheric ozone.

  10. Estimating Amazonian methane emissions through 4D-Var inverse modelling with satellite observations from GOSAT and IASI

    NASA Astrophysics Data System (ADS)

    Wilson, C. J.; Chipperfield, M.; Gloor, M.; McNorton, J.; Miller, J. B.; Gatti, L. V.; Siddans, R.; Bloom, A. A.; Basso, L. S.; Boesch, H.; Parker, R.; Monks, S. A.

    2015-12-01

    Methane (CH4) is emitted from a range of anthropogenic and natural sources, and since the industrial revolution its mean atmospheric concentration has climbed dramatically. CH4 produces a relatively high radiative forcing effect upon the Earth's climate, and its atmospheric lifetime of approximately 10 years makes it an appealing target for the mitigation of climate change. However, the spatial and temporal variation of CH4 emissions are not well understood, though in recent years a number of top-down and bottom-up studies have attempted to construct improved emission budgets. However, some top-down studies suffer from poor observational coverage near the Amazon basin, particularly in the planetary boundary layer. Since emissions from this region, coming mainly from wetland and burning sources, are thought to be relatively high, additional observations in this region would greatly help to constrain the geographical distribution of the global CH4 emission budget. To this end, regular flask measurements of CH4 and other trace gases have been taken during flights over four Amazonian sites since 2010, as part of the AMAZONICA project. The GOSAT has been used to retrieve global column-average CH4 concentrations since mid-2009, whilst IASI, on-board Metop-A, has also been measuring atmospheric CH4 concentrations since its launch in 2006. We present an assessment of Amazonian methane emissions for 2010 and 2011 using the TOMCAT Chemical Transport Model and the new variational inverse model, INVICAT. These models are used to attribute methane variations at each Amazon site to a source type and region, to assess the ability of our current CH4 flux estimates to reproduce these observations and to produce improved posterior emission estimates through assimilation of atmospheric observations. This study represents the first use of the INVICAT scheme to constrain emissions of any atmospheric trace gas. Whilst there is generally good agreement between the model and the

  11. The Expected Impacts of NPOESS Microwave and Infrared Sounder Radiances on Operational Numerical Weather Prediction and Data Assimilation Systems

    NASA Astrophysics Data System (ADS)

    Swadley, S. D.; Baker, N.; Derber, J.; Collard, A.; Hilton, F.; Ruston, B.; Bell, W.; Candy, B.; Kleespies, T. J.

    2009-12-01

    The NPOESS atmospheric sounding functionality will be accomplished using two separate sensor suites, the combined infrared (IR) and microwave (MW) sensor suite (CrIMSS), and the Microwave Imager/Sounder (MIS) instrument. CrIMSS consists of the Cross Track Infrared Sounder (CrIS) and the cross track Advanced Technology Microwave Sounder (ATMS), and is scheduled to fly on the NPOESS Preparatory Project (NPP), and NPOESS operational flight units C1 and C3. The MIS is a conical scanning polarimetric imager and sounder patterned after the heritage WindSat, and DMSP Special Sensor Microwave Imagers and Sounders (SSMI and SSMIS), and is scheduled for flight units C2, C3 and C4. ATMS combines the current operational Advanced Microwave Sounding Unit (AMSU) and the Microwave Humidity Sounder (MHS), but with an additional channel in the 51.76 GHz oxygen absorption region and 3 additional channels in the 165.5 and 183 GHz water vapor absorption band. CrIS is a Fourier Transform Spectrometer and will provide 159 shortwave IR channels, 433 mid-range IR channels, and 713 longwave IR channels. The heritage sensors for CrIS are the NASA Advanced Infrared Sounder (AIRS) and the MetOp-A Infrared Atmospheric Sounding Interferometer (IASI). Both AIRS and IASI are high quality, high spectral resolution sounders which represent a significant improvement in the effective vertical resolution over previous IR sounders. This presentation will give an overview of preparations underway for day-1 monitoring of NPP/NPOESS radiances, and subsequent operational radiance assimilation. These preparations capitalize on experience gained during the pre-launch preparations, sensor calibration/validation and operational assimilation for the heritage sensors. One important step is to use pre-flight sensor channel specifications, noise estimates and knowledge of the antenna patterns, to generate and test proxy NPP/NPOESS sensor observations in existing assimilation systems. Other critical factors for

  12. Utilizing the precessing orbit of TRMM to produce hourly corrections of geostationary infrared imager data with the VIRS sensor

    NASA Astrophysics Data System (ADS)

    Scarino, Benjamin; Doelling, David R.; Haney, Conor; Bedka, Kristopher; Minnis, Patrick; Gopalan, Arun; Bhatt, Rajendra

    2017-08-01

    Accurate characterization of the Earth's radiant energy is critical for many climate monitoring and weather forecasting applications. For example, groups at the NASA Langley Research Center rely on stable visible- and infraredchannel calibrations in order to understand the temporal/spatial distribution of hazardous storms, as determined from an automated overshooting convective top detection algorithm. Therefore, in order to facilitate reliable, climate-quality retrievals, it is important that consistent calibration coefficients across satellite platforms are made available to the remote sensing community, and that calibration anomalies are recognized and mitigated. One such anomaly is the infrared imager brightness temperature (BT) drift that occurs for some Geostationary Earth Orbit satellite (GEOsat) instruments near local midnight. Currently the Global Space-Based Inter-Calibration System (GSICS) community uses the hyperspectral Infrared Atmospheric Sounding Interferometer (IASI) sensor as a common reference to uniformly calibrate GEOsat IR imagers. However, the combination of IASI, which has a 21:30 local equator crossing time (LECT), and hyperspectral Atmospheric Infrared Sounder (AIRS; 01:30 LECT) observations are unable to completely resolve the GEOsat midnight BT bias. The precessing orbit of the Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS), however, allows sampling of all local hours every 46 days. Thus, VIRS has the capability to quantify the BT midnight effect observed in concurrent GEOsat imagers. First, the VIRS IR measurements are evaluated for long-term temporal stability between 2002 and 2012 by inter-calibrating with Aqua-MODIS. Second, the VIRS IR measurements are assessed for diurnal stability by inter-calibrating with Meteosat-9 (Met-9), a spin-stabilized GEOsat imager that does not manifest any diurnal dependency. In this case, the Met-9 IR imager is first adjusted with the official GSICS calibration

  13. Combining the AIRS, CrIS and IASI Radiance Records for Climate Level Retrievals

    NASA Astrophysics Data System (ADS)

    Strow, L. L.

    2016-12-01

    The AIRS record is now 14+ years long, and with the addition of CrIS should provide a 30+ year long hyperspectral radiance record that can be supplemented with another two times in the diurnal cycle with IASI starting in 2007. The stability of these sensors can be established by comparisons to CO2 variability and to tropical sea surface temperature trends. At present the observed stabilities are much better than climate requirements of 0.01/year. SNO observations indicate radiometric agreement among these sensors of 0.1 - 0.3K before any empirical adjustments. A 1-year set of SNO overlaps have statistical uncertainties of less than 0.01K between these three sensors. Moreover, we show that IASI can be used as a transfer standard between AIRS and CrIS (or between CrIS-1 and CrIS-2) should there be a gap in overlap of sensors in the PM orbit. We have done these SNO comparisons by converting AIRS and IASI spectral to the CrIS instrument lineshape (ILS). Achieving climate quality retrievals, trends, and anomalies of temperature and humidity is non-trivial and requires error characterization (not validation) that to date has not been done with single-footprint hyperspectral sensor retrievals. We suggest that the infrared hyperspectral community utilize a common ILS radiance product as a first-step in achieving climate-quality retrievals in order to remove uncertainties in differential instrument sensitivies and in different forward radiative transfer models. We propose a very different approach for Level 3 (climate) products where anomalies and trends (one of the main products of interest to the climate community) are derived directly from Level 3 radiance products, giving far superior error traceability and retrieval regularization in the vertical. Tempertature and humidity trends and anomalies for 14-years of AIRS will be presented and compared to those provided by ERA-Interim, AIRS Level3 data, and microwave sensors. A significant advantage of this approach, which

  14. Optical properties of mineral dust aerosol in the thermal infrared

    NASA Astrophysics Data System (ADS)

    Köhler, Claas H.

    2017-02-01

    The optical properties of mineral dust and biomass burning aerosol in the thermal infrared (TIR) are examined by means of Fourier Transform Infrared Spectrometer (FTIR) measurements and radiative transfer (RT) simulations. The measurements were conducted within the scope of the Saharan Mineral Dust Experiment 2 (SAMUM-2) at Praia (Cape Verde) in January and February 2008. The aerosol radiative effect in the TIR atmospheric window region 800-1200 cm-1 (8-12 µm) is discussed in two case studies. The first case study employs a combination of IASI measurements and RT simulations to investigate a lofted optically thin biomass burning layer with emphasis on its potential influence on sea surface temperature (SST) retrieval. The second case study uses ground based measurements to establish the importance of particle shape and refractive index for benchmark RT simulations of dust optical properties in the TIR domain. Our research confirms earlier studies suggesting that spheroidal model particles lead to a significantly improved agreement between RT simulations and measurements compared to spheres. However, room for improvement remains, as the uncertainty originating from the refractive index data for many aerosol constituents prohibits more conclusive results.

  15. Small particle cirrus observed by the Atmospheric Infrared Sounder

    NASA Astrophysics Data System (ADS)

    Kahn, B. H.; Eldering, A.; Fishbein, E. F.

    2003-04-01

    The high-resolution spectra of the Atmospheric Infrared Sounder (AIRS) have provided an opportunity to globally observe small particle-dominated cirrus clouds. The shape of the radiance spectra in the atmospheric windows is uniquely influenced by small ice crystals with an effective radius (reff) of a few 10s of microns and smaller. In some rare instances, minima in the AIRS brightness temperature (BT) spectra between 800 to 850 cm-1 are seen, consistent with the existence of ice particles with an reff smaller than 3 microns. Much more frequent occurences of small ice particle clouds with reff larger than 3 microns are observed through the large 998 to 811 cm-1 BT differences without minima. The small particle events are occasionally found in orographic cirrus clouds, in and around cumulonimbus towers, and in cirrus bands far removed from convection and orography. Several cases spanning the variety of small particle-dominated cirrus events will be presented. AIRS, located on the EOS-Aqua platform, is a high-resolution grating spectrometer that scans at angles 49.5 degrees on either side of nadir view, at both visible and infrared wavelengths. The surface footprint is 13.5 km at the nadir view, and coverage in the infrared is in three bandpasses (649-1136, 1265-1629, and 2169-2674 cm-1). Comparisons of observed spectra are made with simulated spectra generated by a plane-parallel scattering radiative transfer model using ice particle shapes and sizes calculated by the T-matrix method. These comparisons yield information on small particle cirrus cloud reff and optical depth. Aumann, H.H., and R.J. Pagano, Atmospheric Infrared Sounder on the Earth Observing System. Opt. Eng. 33, 776-784, 1994. Mishchenko, M.I., and L.D. Travis, Capabilities and limitations of a current Fortran implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers. J. Quant. Spectrosc. Radiat. Transfer, 60, 309-324, 1998. Moncet, J.L., and S.A. Clough

  16. Chemical characteristics of size-resolved atmospheric aerosols in Iasi, north-eastern Romania: nitrogen-containing inorganic compounds control aerosol chemistry in the area

    NASA Astrophysics Data System (ADS)

    Giorgiana Galon-Negru, Alina; Iulian Olariu, Romeo; Arsene, Cecilia

    2018-04-01

    This study assesses the effects of particle size and season on the content of the major inorganic and organic aerosol ionic components in the Iasi urban area, north-eastern Romania. Continuous measurements were carried out over 2016 using a cascade Dekati low-pressure impactor (DLPI) performing aerosol size classification in 13 specific fractions over the 0.0276-9.94 µm size range. Fine-particulate Cl-, NO3-, NH4+, and K+ exhibited clear minima during the warm season and clear maxima over the cold season, mainly due to trends in emission sources, changes in the mixing layer depth and specific meteorological conditions. Fine-particulate SO42- did not show much variation with respect to seasons. Particulate NH4+ and NO3- ions were identified as critical parameters controlling aerosol chemistry in the area, and their measured concentrations in fine-mode (PM2.5) aerosols were found to be in reasonable good agreement with modelled values for winter but not for summer. The likely reason is that NH4NO3 aerosols are lost due to volatility over the warm season. We found that NH4+ in PM2.5 is primarily associated with SO42- and NO3- but not with Cl-. Actually, indirect ISORROPIA-II estimations showed that the atmosphere in the Iasi area might be ammonia rich during both the cold and warm seasons, enabling enough NH3 to be present to neutralize H2SO4, HNO3, and HCl acidic components and to generate fine-particulate ammonium salts, in the form of (NH4)2SO4, NH4NO3, and NH4Cl. ISORROPIA-II runs allowed us to estimate that over the warm season ˜ 35 % of the total analysed samples had very strongly acidic pH (0-3), a fraction that rose to ˜ 43 % over the cold season. Moreover, while in the cold season the acidity is mainly accounted for by inorganic acids, in the warm ones there is an important contribution by other compounds, possibly organic. Indeed, changes in aerosol acidity would most likely impact the gas-particle partitioning of semi-volatile organic acids. Overall, we

  17. Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST) Instrument Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flynn, Connor J.

    The Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST) measures the absolute infrared (IR) spectral radiance (watts per square meter per steradian per wavenumber) of the sky directly above the instrument. More information about the instrument can be found through the manufacturer’s website. The spectral measurement range of the instrument is 3300 to 520 wavenumbers (cm -1) or 3-19.2 microns for the normal-range instruments and 3300 to 400 cm -1 or 3-25 microns, for the extended-range polar instruments. Spectral resolution is 1.0 cm -1. Instrument field-of-view is 1.3 degrees. Calibrated sky radiance spectra are produced on cycle of about 141more » seconds with a group of 6 radiance spectra zenith having dwell times of about 14 seconds each interspersed with 55 seconds of calibration and mirror motion. The ASSIST data is comparable to the Atmospheric Emitted Radiance Interferometer (AERI) data and can be used for 1) evaluating line-by-line radiative transport codes, 2) detecting/quantifying cloud effects on ground-based measurements of infrared spectral radiance (and hence is valuable for cloud property retrievals), and 3) calculating vertical atmospheric profiles of temperature and water vapor and the detection of trace gases.« less

  18. The GEISA 2009 Spectroscopic Database System and its CNES/CNRS Ether Products and Services Center Interactive Distribution

    NASA Astrophysics Data System (ADS)

    Jacquinet-Husson, Nicole; Crépeau, Laurent; Capelle, Virginie; Scott, Noëlle; Armante, Raymond; Chédin, Alain; Boonne, Cathy; Poulet-Crovisier, Nathalie

    2010-05-01

    The GEISA (1) (Gestion et Etude des Informations Spectroscopiques Atmosphériques: Management and Study of Atmospheric Spectroscopic Information) computer-accessible database, initiated in 1976, is developed and maintained at LMD (Laboratoire de Météorologie Dynamique, France) a system comprising three independent sub-databases devoted respectively to : line transition parameters, infrared and ultraviolet/visible absorption cross-sections, microphysical and optical properties of atmospheric aerosols. The updated 2009 edition (GEISA-09) archives, in its line transition parameters sub-section, 50 molecules, corresponding to 111 isotopes, for a total of 3,807,997 entries, in the spectral range from 10-6 to 35,877.031 cm-1. Detailed description of the whole database contents will be documented. GEISA and GEISA/IASI are implemented on the CNES/CNRS Ether Products and Services Centre WEB site (http://ether.ipsl.jussieu.fr), where all archived spectroscopic data can be handled through general and user friendly associated management software facilities. These facilities will be described and widely illustrated, as well. Interactive demonstrations will be given if technical possibilities are feasible at the time of the Poster Display Session. More than 350 researchers are registered for on line use of GEISA on Ether. Currently, GEISA is involved in activities (2) related to the remote sensing of the terrestrial atmosphere thanks to the sounding performances of new generation of hyperspectral Earth' atmospheric sounders, like AIRS (Atmospheric Infrared Sounder -http://www-airs.jpl.nasa.gov/), in the USA, and IASI (Infrared Atmospheric Sounding Interferometer -http://earth-sciences.cnes.fr/IASI/) in Europe, using the 4A radiative transfer model (3) (4A/LMD http://ara.lmd.polytechnique.fr; 4A/OP co-developed by LMD and NOVELTIS -http://www.noveltis.fr/) with the support of CNES (2006). Refs: (1) Jacquinet-Husson N., N.A. Scott, A. Chédin,L. Crépeau, R. Armante, V. Capelle

  19. Infrared thermal imaging of atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Watt, David; Mchugh, John

    1990-01-01

    A technique for analyzing infrared atmospheric images to obtain cross-wind measurement is presented. The technique is based on Taylor's frozen turbulence hypothesis and uses cross-correlation of successive images to obtain a measure of the cross-wind velocity in a localized focal region. The technique is appealing because it can possibly be combined with other IR forward look capabilities and may provide information about turbulence intensity. The current research effort, its theoretical basis, and its applicability to windshear detection are described.

  20. Atmosphere and climate studies of Mars using the Mars Observer pressure modulator infrared radiometer

    NASA Technical Reports Server (NTRS)

    Mccleese, D. J.; Haskins, R. D.; Schofield, J. T.; Zurek, R. W.; Leovy, C. B.; Paige, D. A.; Taylor, F. W.

    1992-01-01

    Studies of the climate and atmosphere of Mars are limited at present by a lack of meteorological data having systematic global coverage with good horizontal and vertical resolution. The Mars Observer spacecraft in a low, nearly circular, polar orbit will provide an excellent platform for acquiring the data needed to advance significantly our understanding of the Martian atmosphere and its remarkable variability. The Mars Observer pressure modulator infrared radiometer (PMIRR) is a nine-channel limb and nadir scanning atmospheric sounder which will observe the atmosphere of Mars globally from 0 to 80 km for a full Martian year. PMIRR employs narrow-band radiometric channels and two pressure modulation cells to measure atmospheric and surface emission in the thermal infrared. PMIRR infrared and visible measurements will be combined to determine the radiative balance of the polar regions, where a sizeable fraction of the global atmospheric mass annually condenses onto and sublimes from the surface. Derived meteorological fields, including diabatic heating and cooling and the vertical variation of horizontal winds, are computed from the globally mapped fields retrieved from PMIRR data.

  1. Derived Land Surface Emissivity From Suomi NPP CrIS

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu

    2012-01-01

    Presented here is the land surface IR spectral emissivity retrieved from the Cross-track Infrared Sounder (CrIS) measurements. The CrIS is aboard the Suomi National Polar-orbiting Partnership (NPP) satellite launched on October 28, 2011. We describe the retrieval algorithm, demonstrate the surface emissivity retrieved with CrIS measurements, and inter-comparison with the Infrared Atmospheric Sounding Interferometer (IASI) emissivity. We also demonstrate that surface emissivity from satellite measurements can be used in assistance of monitoring global surface climate change, as a long-term measurement of IASI and CrIS will be provided by the series of EUMETSAT MetOp and US Joint Polar Satellite System (JPSS) satellites. Monthly mean surface properties are produced using last 5-year IASI measurements. A temporal variation indicates seasonal diversity and El Nino/La Nina effects not only shown on the water but also on the land. Surface spectral emissivity and skin temperature from current and future operational satellites can be utilized as a means of long-term monitoring of the Earth's environment. CrIS spectral emissivity are retrieved and compared with IASI. The difference is small and could be within expected retrieval error; however it is under investigation.

  2. High resolution infrared spectroscopy: Some new approaches and applications to planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.

    1978-01-01

    The principles of spectral line formation and of techniques for retrieval of atmospheric temperature and constituent profiles are discussed. Applications to the atmospheres of Earth, Mars, Venus, and Jupiter are illustrated by results obtained with Fourier transform and infrared heterodyne spectrometers at resolving powers (lambda/delta hyperon lambda of approximately 10,000 and approximately 10 to the seventh power), respectively, showing the high complementarity of spectroscopy at these two widely different resolving powers. The principles of heterodyne spectroscopy are presented and its applications to atmospheric probing and to laboratory spectroscopy are discussed. Direct absorption spectroscopy with tuneable semiconductor lasers is discussed in terms of precision frequency-and line strength-measurements, showing substantial advances in laboratory infrared spectroscopy.

  3. The Atmospheric Infrared Sounder- An Overview

    NASA Technical Reports Server (NTRS)

    Larnbrigtsen, Bjorn; Fetzer, Eric; Lee, Sung-Yung; Irion, Fredrick; Hearty, Thomas; Gaiser, Steve; Pagano, Thomas; Aumann, Hartmut; Chahine, Moustafa

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) was launched in May 2002. Along with two companion microwave sensors, it forms the AIRS Sounding Suite. This system is the most advanced atmospheric sounding system to date, with measurement accuracies far surpassing those available on current weather satellites. The data products are calibrated radiances from all three sensors and a number of derived geophysical parameters, including vertical temperature and humidity profiles, surface temperature, cloud fraction, cIoud top pressure, and profiles of ozone. These products are generated under cloudy as well as clear conditions. An ongoing calibration validation effort has confirmed that the system is very accurate and stable, and many of the geophysical parameters have been validated. AIRS is in some cases more accurate than any other source and can therefore be difficult to validate, but this offers interesting new research opportunities. The applications for the AIRS products range from numerical weather prediction to atmospheric research - where the AIRS water vapor products near the surface and in the mid to upper troposphere will make it possible to characterize and model phenomena that are key for short-term atmospheric processes, such as weather patterns, to long-term processes, such as interannual cycles (e.g., El Nino) and climate change.

  4. The GEISA Spectroscopic Database System in its latest Edition

    NASA Astrophysics Data System (ADS)

    Jacquinet-Husson, N.; Crépeau, L.; Capelle, V.; Scott, N. A.; Armante, R.; Chédin, A.

    2009-04-01

    GEISA (Gestion et Etude des Informations Spectroscopiques Atmosphériques: Management and Study of Spectroscopic Information)[1] is a computer-accessible spectroscopic database system, designed to facilitate accurate forward planetary radiative transfer calculations using a line-by-line and layer-by-layer approach. It was initiated in 1976. Currently, GEISA is involved in activities related to the assessment of the capabilities of IASI (Infrared Atmospheric Sounding Interferometer on board the METOP European satellite -http://earth-sciences.cnes.fr/IASI/)) through the GEISA/IASI database[2] derived from GEISA. Since the Metop (http://www.eumetsat.int) launch (October 19th 2006), GEISA/IASI is the reference spectroscopic database for the validation of the level-1 IASI data, using the 4A radiative transfer model[3] (4A/LMD http://ara.lmd.polytechnique.fr; 4A/OP co-developed by LMD and Noveltis with the support of CNES). Also, GEISA is involved in planetary research, i.e.: modelling of Titan's atmosphere, in the comparison with observations performed by Voyager: http://voyager.jpl.nasa.gov/, or by ground-based telescopes, and by the instruments on board the Cassini-Huygens mission: http://www.esa.int/SPECIALS/Cassini-Huygens/index.html. The updated 2008 edition of GEISA (GEISA-08), a system comprising three independent sub-databases devoted, respectively, to line transition parameters, infrared and ultraviolet/visible absorption cross-sections, microphysical and optical properties of atmospheric aerosols, will be described. Spectroscopic parameters quality requirement will be discussed in the context of comparisons between observed or simulated Earth's and other planetary atmosphere spectra. GEISA is implemented on the CNES/CNRS Ether Products and Services Centre WEB site (http://ether.ipsl.jussieu.fr), where all archived spectroscopic data can be handled through general and user friendly associated management software facilities. More than 350 researchers are

  5. 20-micron transparency and atmospheric water vapor at the Wyoming Infrared Observatory

    NASA Technical Reports Server (NTRS)

    Grasdalen, G. L.; Gehrz, R. D.; Hackwell, J. A.; Freedman, R.

    1985-01-01

    The atmospheric transparency at 19.5 and 23 microns from the Wyoming Infrared Observatory over the past six years has been examined. It is found that the transparency is largely controlled by the season. Four months: June, July, August, and September have very poor 20-micron transparency. During the rest of the year the transparency is usually quite good at 19.5 microns and moderately good at 23 microns. Using rawinsonde data and theoretical calculations for the expected infrared transparency, the measures of 20-micron transparency were calibrated in terms of atmospheric water-vapor content. The water vapor over the Wyoming Infrared Observatory is found to compare favorably with that above other proposed or developed sites: Mauna Kea, Mount Graham, and Wheeler Peak.

  6. An efficient routine for infrared radiative transfer in a cloudy atmosphere

    NASA Technical Reports Server (NTRS)

    Chou, M. D.; Kouvaris, L.

    1981-01-01

    A FORTRAN program that calculates the atmospheric cooling rate and infrared fluxes for partly cloudy atmospheres is documented. The IR fluxes in the water bands and the 9.6 and 15 micron bands are calculated at 15 levels ranging from 1.39 mb to the surface. The program is generalized to accept any arbitrary atmospheric temperature and humidity profiles and clouds as input and return the cooling rate and fluxes as output. Sample calculations for various atmospheric profiles and cloud situations are demonstrated.

  7. The infrared imaging radiometer for PICASSO-CENA

    NASA Astrophysics Data System (ADS)

    Corlay, Gilles; Arnolfo, Marie-Christine; Bret-Dibat, Thierry; Lifferman, Anne; Pelon, Jacques

    2017-11-01

    Microbolometers are infrared detectors of an emerging technology mainly developed in US and few other countries for few years. The main targets of these developments are low performing and low cost military and civilian applications like survey cameras. Applications in space are now arising thanks to the design simplification and the associated cost reduction allowed by this new technology. Among the four instruments of the payload of PICASSO-CENA, the Imaging Infrared Radiometer (IIR) is based on the microbolometer technology. An infrared camera in development for the IASI instrument is the core of the IIR. The aim of the paper is to recall the PICASSO-CENA mission goal, to describe the IIR instrument architecture and highlight its main features and performances and to give the its development status.

  8. Arctic Methane: the View from Space

    NASA Astrophysics Data System (ADS)

    Leifer, I.; Yurganov, L.; Xiong, X.

    2014-12-01

    Global increase of methane that started in 2007-2008 after a decade of stability requires investigation and explanation. Recent Arctic warming has stimulated speculation about dissociation of Arctic Ocean methane hydrates providing a potentially important new climatic positive feedback. Satellite thermal infrared (TIR) data do not require sunlight, providing key advantages for Arctic data collection compared to shortwave infrared spectroscopy. The US Atmospheric IR Sounder (AIRS) has been delivering CH4 tropospheric data since 2002; NOAA CH4 retrievals from the European Infrared Atmospheric Sounding Interferometer (IASI) radiation data are available since 2008 and analyzed here since 2009. Accuracy of TIR satellite retrievals, especially for the lower troposphere, diminishes for a cold, underlying surface. In this analysis the dependence is parameterized using the Thermal Contrast (a difference between surface temperature and air temperature at the altitude of 4 km, defined THC). A correction function was applied to CH4 data based on a data-derived relationship between THC and retrieved CH4 for areas with positive THC (in other words, without temperature inversions). The seasonal cycles of the adjusted low tropospheric data are in agreement with the surface in situ measurements. Instantaneous IASI retrievals exhibit less variability than AIRS v6 data. Maximum positive deviation of methane concentration measured by IASI for the study period was found for Baffin Bay in November-December, 2013 (Figure). It was concluded that the methane anomaly could indicate both coastal and off-shore emissions. Off-shore data were spatially consistent with a hydrate dissociation mechanisms, active for water depths below the hydrate stability zone top at ~300 m. These are hypothesized to dissociate during seasonal temperature maximum in the bottom layer of the ocean, which occurs in fall. IASI data may be considered as a reliable source of information about Arctic CH4 for conditions

  9. Quantitative infrared absorption cross sections of isoprene for atmospheric measurements

    DOE PAGES

    Brauer, C. S.; Blake, T. A.; Guenther, A. B.; ...

    2014-11-19

    Isoprene (C 5H 8, 2-methyl-1,3-butadiene) is a volatile organic compound (VOC) and is one of the primary contributors to annual global VOC emissions. Isoprene is produced primarily by vegetation as well as anthropogenic sources, and its OH- and O 3-initiated oxidations are a major source of atmospheric oxygenated organics. Few quantitative infrared studies have been reported for isoprene, limiting the ability to quantify isoprene emissions via remote or in situ infrared detection. We thus report absorption cross sections and integrated band intensities for isoprene in the 600–6500 cm -1 region. The pressure-broadened (1 atmosphere N 2) spectra were recorded atmore » 278, 298, and 323 K in a 19.94 cm path-length cell at 0.112 cm -1 resolution, using a Bruker IFS 66v/S Fourier transform infrared (FTIR) spectrometer. Composite spectra are derived from a minimum of seven isoprene sample pressures, each at one of three temperatures, and the number densities are normalized to 296 K and 1 atm.« less

  10. Quantitative infrared absorption cross sections of isoprene for atmospheric measurements

    NASA Astrophysics Data System (ADS)

    Brauer, C. S.; Blake, T. A.; Guenther, A. B.; Sharpe, S. W.; Sams, R. L.; Johnson, T. J.

    2014-11-01

    Isoprene (C5H8, 2-methyl-1,3-butadiene) is a volatile organic compound (VOC) and is one of the primary contributors to annual global VOC emissions. Isoprene is produced primarily by vegetation as well as anthropogenic sources, and its OH- and O3-initiated oxidations are a major source of atmospheric oxygenated organics. Few quantitative infrared studies have been reported for isoprene, limiting the ability to quantify isoprene emissions via remote or in situ infrared detection. We thus report absorption cross sections and integrated band intensities for isoprene in the 600-6500 cm-1 region. The pressure-broadened (1 atmosphere N2) spectra were recorded at 278, 298, and 323 K in a 19.94 cm path-length cell at 0.112 cm-1 resolution, using a Bruker IFS 66v/S Fourier transform infrared (FTIR) spectrometer. Composite spectra are derived from a minimum of seven isoprene sample pressures, each at one of three temperatures, and the number densities are normalized to 296 K and 1 atm.

  11. Quantitative infrared absorption cross-sections of isoprene for atmospheric measurements

    DOE PAGES

    Brauer, C. S.; Blake, T. A.; Guenther, A. B.; ...

    2014-04-25

    Isoprene (C 5H 8, 2-methyl-1,3-butadiene) is a volatile organic compound (VOC) that is one of the primary contributors to annual global VOC emissions. Produced by vegetation as well as anthropogenic sources, the OH- and O 3-initiated oxidations of isoprene are a major source of atmospheric oxygenated organics. Few quantitative infrared studies have been reported for isoprene, however, limiting the ability to quantify isoprene emissions via stand-off infrared or in situ detection. We thus report absorption coefficients and integrated band intensities for isoprene in the 600–6500 cm −1 region. The pressure-broadened (1 atmosphere N 2) spectra were recorded at 278, 298more » and 323 K in a 19.94 cm path length cell at 0.112 cm −1 resolution, using a Bruker 66v FTIR. Composite spectra are derived from a minimum of seven isoprene sample pressures at each temperature and the number densities are normalized to 296 K and 1 atmosphere.« less

  12. Atmospheric Remote Sensing via Infrared-Submillimeter Double Resonance

    NASA Astrophysics Data System (ADS)

    Srikantaiah, Sree; Holt, Jennifer; Neese, Christopher F.; Phillips, Dane; Everitt, Henry O.; De Lucia, Frank C.

    2016-06-01

    Specificity and sensitivity in atmospheric pressure remote sensing have always been big challenges. This is especially true for approaches that involve the submillimeter/terahertz (smm/THz) spectral region because atmospheric pressure broadening precludes taking advantage of the small Doppler broadening in the region. The Infrared-submillimeter (IR-smm) double resonance spectroscopic technique allows us to obtain a more specific two-dimensional signature as well as a means of modulating the molecular signal to enhance its separation from background and system variation. Applying this technique at atmospheric pressure presents a unique bandwidth requirement on the IR pump laser, and the smm/THz receiver. We will discuss the pump system comprising of a CO2 TEA laser, plasma switch and a free induction decay hot cell designed to produce fast IR pulses on the time scale of atmospheric pressure relaxation and a high bandwidth fast pulse smm/THz receiver. System diagnostics will also be discussed. Results as a function of pressure and pump pulse width will be presented.

  13. Estimating top-of-atmosphere thermal infrared radiance using MERRA-2 atmospheric data

    NASA Astrophysics Data System (ADS)

    Kleynhans, Tania; Montanaro, Matthew; Gerace, Aaron; Kanan, Christopher

    2017-05-01

    Thermal infrared satellite images have been widely used in environmental studies. However, satellites have limited temporal resolution, e.g., 16 day Landsat or 1 to 2 day Terra MODIS. This paper investigates the use of the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) reanalysis data product, produced by NASA's Global Modeling and Assimilation Office (GMAO) to predict global topof-atmosphere (TOA) thermal infrared radiance. The high temporal resolution of the MERRA-2 data product presents opportunities for novel research and applications. Various methods were applied to estimate TOA radiance from MERRA-2 variables namely (1) a parameterized physics based method, (2) Linear regression models and (3) non-linear Support Vector Regression. Model prediction accuracy was evaluated using temporally and spatially coincident Moderate Resolution Imaging Spectroradiometer (MODIS) thermal infrared data as reference data. This research found that Support Vector Regression with a radial basis function kernel produced the lowest error rates. Sources of errors are discussed and defined. Further research is currently being conducted to train deep learning models to predict TOA thermal radiance

  14. Design and development of the CubeSat Infrared Atmospheric Sounder (CIRAS)

    NASA Astrophysics Data System (ADS)

    Pagano, Thomas S.; Abesamis, Carlo; Andrade, Andres; Aumann, Hartmut; Gunapala, Sarath; Heneghan, Cate; Jarnot, Robert; Johnson, Dean; Lamborn, Andy; Maruyama, Yuki; Rafol, Sir; Raouf, Nasrat; Rider, David; Ting, Dave; Wilson, Dan; Yee, Karl; Cole, Jerold; Good, Bill; Kampe, Tom; Soto, Juancarlos; Adams, Arn; Buckley, Matt; Nicol, Fred; Vengel, Tony

    2017-09-01

    The CubeSat Infrared Atmospheric Sounder (CIRAS) is a NASA Earth Science Technology Office (ESTO) sponsored mission to demonstrate key technologies used in very high spectral resolution infrared remote sensing of Earth's atmosphere from space. CIRAS was awarded under the ESTO In-flight Validation of Earth Science Technologies (InVEST) program in 2015 and is currently under development at NASA JPL with key subsystems being developed by industry. CIRAS incorporates key new instrument technologies including a 2D array of High Operating Temperature Barrier Infrared Detector (HOT-BIRD) material, selected for its high uniformity, low cost, low noise and higher operating temperatures than traditional materials. The second key technology is an MWIR Grating Spectrometer (MGS) designed to provide imaging spectroscopy for atmospheric sounding in a CubeSat volume. The MGS is under development by Ball Aerospace with the grating and slit developed by JPL. The third key technology is a blackbody fabricated with JPL's black silicon to have very high emissivity in a flat plate construction. JPL will also develop the mechanical, electronic and thermal subsystems for CIRAS, while the spacecraft will be a 6U CubeSat developed by Blue Canyon Technologies. This paper provides an overview of the design and acquisition approach, and provides a status of the current development.

  15. A satellite-based multichannel infrared radiometer to sound the atmosphere

    NASA Technical Reports Server (NTRS)

    Esplin, Roy W.; Batty, J. Clair; Jensen, Mark; McLain, Dave; Jensen, Scott; Stauder, John; Stump, Charles W.; Roettker, William A.; Vanek, Michael D.

    1995-01-01

    This paper describes a 12-channel infrared radiometer with the acronym SABER (Sounding of the Atmosphere using Broadband Emission radiometry) that has been selected by NASA to fly on the TIMED (Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics) mission.

  16. Infrared line parameters at low temperatures relevant to planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Varanasi, Prasad

    1990-01-01

    Employing the techniques that were described in several publications for measuring infrared lineshifts, linewidths and line intensities with a tunable diode laser, these parameters were measures for lines in the important infrared bands of several molecules of interest to the planetary astronomer at low temperatures that are relevant to planetary atmospheres using He, Ne, Ar, H2, N2, O2, and air as the perturbers. In addition to obtaining the many original data on the temperature dependence of the intensities and linewidths, it was also the first measurement of the same for the collision-induced lineshift of an infrared line and it showed that it was markedly different from that of the corresponding collision-broadened linewidth.

  17. Atmospheric Infrared Sounder (AIRS) thermal test program

    NASA Astrophysics Data System (ADS)

    Coda, Roger C.; Green, Kenneth E.; McKay, Thomas; Overoye, Kenneth; Wickman-Boisvert, Heather A.

    1999-12-01

    The Atmospheric Infrared Sounder (AIRS) has been developed for the NASA Earth Observing System (EOS) program with a scheduled launch on the first post meridian (PM-1) platform in December 2000. AIRS is designed to provide both new and more accurate data about the atmosphere, land and oceans for application to climate studies and weather predictions. Among the important parameters to be derived from AIRS observations are atmospheric temperature profiles with an average accuracy of 1 K in 1 kilometer (km) layers in the troposphere and surface temperatures with an average accuracy of 0.5 K. The AIRS measurement technique is based on passive infrared remote sensing using a precisely calibrated, high spectral resolution grating spectrometer providing high sensitivity operation over the 3.7 micrometer - 15.4 micrometer region. To meet the challenge of high performance over this broad wavelength range, the spectrometer is cooled to 155 K using a passive two-stage radiative cooler and the HgCdTe focal plane is cooled to 58 K using a state-of-the-art long life, low vibration Stirling/pulse tube cryocooler. Electronics waste heat is removed through a spacecraft provided heat rejection system based on heat pipe technology. All of these functions combine to make AIRS thermal management a key aspect of the overall instrument design. Additionally, the thermal operating constraints place challenging requirements on the test program in terms of proper simulation of the space environment and the logistic issues attendant with testing cryogenic instruments. The AIRS instrument has been fully integrated and thermal vacuum performance testing is underway. This paper provides an overview of the AIRS thermal system design, the test methodologies and the key results from the thermal vacuum tests, which have been completed at the time of this publication.

  18. Algorithmic vs. finite difference Jacobians for infrared atmospheric radiative transfer

    NASA Astrophysics Data System (ADS)

    Schreier, Franz; Gimeno García, Sebastián; Vasquez, Mayte; Xu, Jian

    2015-10-01

    Jacobians, i.e. partial derivatives of the radiance and transmission spectrum with respect to the atmospheric state parameters to be retrieved from remote sensing observations, are important for the iterative solution of the nonlinear inverse problem. Finite difference Jacobians are easy to implement, but computationally expensive and possibly of dubious quality; on the other hand, analytical Jacobians are accurate and efficient, but the implementation can be quite demanding. GARLIC, our "Generic Atmospheric Radiation Line-by-line Infrared Code", utilizes algorithmic differentiation (AD) techniques to implement derivatives w.r.t. atmospheric temperature and molecular concentrations. In this paper, we describe our approach for differentiation of the high resolution infrared and microwave spectra and provide an in-depth assessment of finite difference approximations using "exact" AD Jacobians as a reference. The results indicate that the "standard" two-point finite differences with 1 K and 1% perturbation for temperature and volume mixing ratio, respectively, can exhibit substantial errors, and central differences are significantly better. However, these deviations do not transfer into the truncated singular value decomposition solution of a least squares problem. Nevertheless, AD Jacobians are clearly recommended because of the superior speed and accuracy.

  19. Assessing the Parameterization of Nitric Oxide Emissions By Lightning in a Chemical Transport Model with Nitric Acid Columns from the IASI Satellite Instrument

    NASA Astrophysics Data System (ADS)

    Cooper, M.; Martin, R.; Wespes, C.; Coheur, P. F.; Clerbaux, C.; Murray, L. T.

    2014-12-01

    Nitrogen oxides (NOx ≡ NO + NO2) in the free troposphere largely control the production of ozone (O3), an important greenhouse gas and atmospheric oxidant. As HNO3 is the dominant sink of tropospheric NOx, improved understanding of its production and loss mechanisms can help to better constrain NOx emissions, and in turn improve understanding of ozone production and its effect on climate. However, this understanding is inhibited by the scarcity of direct measurements of free tropospheric HNO3, particularly in the tropics. We interpret tropical tropospheric nitric acid columns from the IASI satellite instrument with a global chemical transport model (GEOS-Chem). Overall GEOS-Chem generally agrees with IASI, however we find that the simulation underestimates IASI nitric acid over Southeast Asia by a factor of two. The bias is confirmed by comparing the GEOS-Chem simulation with additional satellite (HIRDLS, ACE-FTS) and aircraft (PEM-Tropics A and PEM-West B) observations of the middle and upper troposphere. We show that this bias can be explained by the parameterization of lightning NOx emissions, primarily from the misrepresentation of concentrated subgrid lightning NOx plumes. We tested a subgrid lightning plume parameterization and found that an additional 0.5 Tg N with an ozone production efficiency of 15 mol/mol would reduce the regional nitric acid bias from 92% to 6% without perturbing the rest of the tropics. Other sensitivity studies such as modified NOx yield per flash, increased altitude of lightning NOx emissions, or changes to convective mass flux or wet deposition of nitric acid required unrealistic changes to reduce the bias. This work demonstrates the importance of a comprehensive lightning parameterization to constraining NOx emissions.

  20. Distribution of CO2 in Saturn's Atmosphere from Cassini/cirs Infrared Observations

    NASA Astrophysics Data System (ADS)

    Abbas, M. M.; LeClair, A.; Woodard, E.; Young, M.; Stanbro, M.; Flasar, F. M.; Kunde, V. G.; Achterberg, R. K.; Bjoraker, G.; Brasunas, J.; Jennings, D. E.; the Cassini/CIRS Team

    2013-10-01

    This paper focuses on the CO2 distribution in Saturn's atmosphere based on analysis of infrared spectral observations of Saturn made by the Composite Infrared Spectrometer aboard the Cassini spacecraft. The Cassini spacecraft was launched in 1997 October, inserted in Saturn's orbit in 2004 July, and has been successfully making infrared observations of Saturn, its rings, Titan, and other icy satellites during well-planned orbital tours. The infrared observations, made with a dual Fourier transform spectrometer in both nadir- and limb-viewing modes, cover spectral regions of 10-1400 cm-1, with the option of variable apodized spectral resolutions from 0.53 to 15 cm-1. An analysis of the observed spectra with well-developed radiative transfer models and spectral inversion techniques has the potential to provide knowledge of Saturn's thermal structure and composition with global distributions of a series of gases. In this paper, we present an analysis of a large observational data set for retrieval of Saturn's CO2 distribution utilizing spectral features of CO2 in the Q-branch of the ν2 band, and discuss its possible relationship to the influx of interstellar dust grains. With limited spectral regions available for analysis, due to low densities of CO2 and interference from other gases, the retrieved CO2 profile is obtained as a function of a model photochemical profile, with the retrieved values at atmospheric pressures in the region of ~1-10 mbar levels. The retrieved CO2 profile is found to be in good agreement with the model profile based on Infrared Space Observatory measurements with mixing ratios of ~4.9 × 10-10 at atmospheric pressures of ~1 mbar.

  1. On-line infrared process signature measurements through combustion atmospheres

    NASA Astrophysics Data System (ADS)

    Zweibaum, F. M.; Kozlowski, A. T.; Surette, W. E., Jr.

    1980-01-01

    A number of on-line infrared process signature measurements have been made through combustion atmospheres, including those in jet engines, piston engines, and coal gasification reactors. The difficulties involved include operation in the presence of pressure as high as 1800 psi, temperatures as high as 3200 F, and explosive, corrosive and dust-laden atmospheres. Calibration problems have resulted from the use of purge gases to clear the viewing tubes, and the obscuration of the view ports by combustion products. A review of the solutions employed to counteract the problems is presented, and areas in which better solutions are required are suggested.

  2. Measurement approach and design of the CubeSat Infrared Atmospheric Sounder (CIRAS)

    NASA Astrophysics Data System (ADS)

    Pagano, Thomas S.; Rider, David; Rud, Mayer; Ting, David; Yee, Karl

    2016-09-01

    The CubeSat Infrared Atmospheric Sounder (CIRAS) will measure upwelling infrared radiation of the Earth in the MWIR region of the spectrum from space on a CubeSat. The observed radiances have information of potential value to weather forecasting agencies and can be used to retrieve lower tropospheric temperature and water vapor globally for weather and climate science investigations. Multiple units can be flown to improve temporal coverage or in formation to provide new data products including 3D atmospheric motion vector winds. CIRAS incorporates key new instrument technologies including a 2D array of High Operating Temperature Barrier Infrared Detector (HOT-BIRD) material, selected for its high uniformity, low cost, low noise and higher operating temperatures than traditional materials. The detectors are hybridized to a commercial ROIC and commercial camera electronics. The second key technology is an MWIR Grating Spectrometer (MGS) designed to provide imaging spectroscopy for atmospheric sounding in a CubeSat volume. The MGS has no moving parts and includes an immersion grating to reduce the volume and reduce distortion. The third key technology is an infrared blackbody fabricated with black silicon to have very high emissivity in a flat plate construction. JPL will also develop the mechanical, electronic and thermal subsystems for CIRAS, while the spacecraft will be a commercially available CubeSat. The integrated system will be a complete 6U CubeSat capable of measuring temperature and water vapor profiles with good lower tropospheric sensitivity. The CIRAS is the first step towards the development of an Earth Observation Nanosatellite Infrared (EON-IR) capable of operational readiness to mitigate a potential loss of CrIS on JPSS or complement the current observing system with different orbit crossing times.

  3. Estimating the marine signal in the near infrared for atmospheric correction of satellite ocean-color imagery over turbid waters

    NASA Astrophysics Data System (ADS)

    Bourdet, Alice; Frouin, Robert J.

    2014-11-01

    The classic atmospheric correction algorithm, routinely applied to second-generation ocean-color sensors such as SeaWiFS, MODIS, and MERIS, consists of (i) estimating the aerosol reflectance in the red and near infrared (NIR) where the ocean is considered black (i.e., totally absorbing), and (ii) extrapolating the estimated aerosol reflectance to shorter wavelengths. The marine reflectance is then retrieved by subtraction. Variants and improvements have been made over the years to deal with non-null reflectance in the red and near infrared, a general situation in estuaries and the coastal zone, but the solutions proposed so far still suffer some limitations, due to uncertainties in marine reflectance modeling in the near infrared or difficulty to extrapolate the aerosol signal to the blue when using observations in the shortwave infrared (SWIR), a spectral range far from the ocean-color wavelengths. To estimate the marine signal (i.e., the product of marine reflectance and atmospheric transmittance) in the near infrared, the proposed approach is to decompose the aerosol reflectance in the near infrared to shortwave infrared into principal components. Since aerosol scattering is smooth spectrally, a few components are generally sufficient to represent the perturbing signal, i.e., the aerosol reflectance in the near infrared can be determined from measurements in the shortwave infrared where the ocean is black. This gives access to the marine signal in the near infrared, which can then be used in the classic atmospheric correction algorithm. The methodology is evaluated theoretically from simulations of the top-of-atmosphere reflectance for a wide range of geophysical conditions and angular geometries and applied to actual MODIS imagery acquired over the Gulf of Mexico. The number of discarded pixels is reduced by over 80% using the PC modeling to determine the marine signal in the near infrared prior to applying the classic atmospheric correction algorithm.

  4. Impact of the Assimilation of Hyperspectral Infrared Profiles on Advanced Weather and Research Model Simulations of a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, Emily B.; Zavodsky, Bradley T; Jedlovec, Gary J.; Elmer, Nicholas J.

    2013-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), North American Regional Reanalysis (NARR) reanalysis, and Rapid Refresh analyses.

  5. Accomplishments of the MUSICA project to provide accurate, long-term, global and high-resolution observations of tropospheric {H2O,δD} pairs - a review

    NASA Astrophysics Data System (ADS)

    Schneider, Matthias; Wiegele, Andreas; Barthlott, Sabine; González, Yenny; Christner, Emanuel; Dyroff, Christoph; García, Omaira E.; Hase, Frank; Blumenstock, Thomas; Sepúlveda, Eliezer; Mengistu Tsidu, Gizaw; Takele Kenea, Samuel; Rodríguez, Sergio; Andrey, Javier

    2016-07-01

    In the lower/middle troposphere, {H2O,δD} pairs are good proxies for moisture pathways; however, their observation, in particular when using remote sensing techniques, is challenging. The project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) addresses this challenge by integrating the remote sensing with in situ measurement techniques. The aim is to retrieve calibrated tropospheric {H2O,δD} pairs from the middle infrared spectra measured from ground by FTIR (Fourier transform infrared) spectrometers of the NDACC (Network for the Detection of Atmospheric Composition Change) and the thermal nadir spectra measured by IASI (Infrared Atmospheric Sounding Interferometer) aboard the MetOp satellites. In this paper, we present the final MUSICA products, and discuss the characteristics and potential of the NDACC/FTIR and MetOp/IASI {H2O,δD} data pairs. First, we briefly resume the particularities of an {H2O,δD} pair retrieval. Second, we show that the remote sensing data of the final product version are absolutely calibrated with respect to H2O and δD in situ profile references measured in the subtropics, between 0 and 7 km. Third, we reveal that the {H2O,δD} pair distributions obtained from the different remote sensors are consistent and allow distinct lower/middle tropospheric moisture pathways to be identified in agreement with multi-year in situ references. Fourth, we document the possibilities of the NDACC/FTIR instruments for climatological studies (due to long-term monitoring) and of the MetOp/IASI sensors for observing diurnal signals on a quasi-global scale and with high horizontal resolution. Fifth, we discuss the risk of misinterpreting {H2O,δD} pair distributions due to incomplete processing of the remote sensing products.

  6. Impact of the Assimilation of Hyperspectral Infrared Retrieved Profiles on Advanced Weather and Research Model Simulations of a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Zavodsky, B. T.; Folmer, M. J.; Jedlovec, G. J.

    2014-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), 32-km North American Regional Reanalysis (NARR) interpolated to a 12-km grid, and 13-km Rapid Refresh analyses.

  7. Impact of the Assimilation of Hyperspectral Infrared Retrieved Profiles on Advanced Weather and Research Model Simulations of a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Zavodsky, B. T.; Jedlovec, G. J.

    2014-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis, and Rapid Refresh analyses.

  8. Monitoring Surface Climate With its Emissivity Derived From Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu

    2012-01-01

    Satellite thermal infrared (IR) spectral emissivity data have been shown to be significant for atmospheric research and monitoring the Earth fs environment. Long-term and large-scale observations needed for global monitoring and research can be supplied by satellite-based remote sensing. Presented here is the global surface IR emissivity data retrieved from the last 5 years of Infrared Atmospheric Sounding Interferometer (IASI) measurements observed from the MetOp-A satellite. Monthly mean surface properties (i.e., skin temperature T(sub s) and emissivity spectra epsilon(sub v) with a spatial resolution of 0.5x0.5-degrees latitude-longitude are produced to monitor seasonal and inter-annual variations. We demonstrate that surface epsilon(sub v) and T(sub s) retrieved with IASI measurements can be used to assist in monitoring surface weather and surface climate change. Surface epsilon(sub v) together with T(sub s) from current and future operational satellites can be utilized as a means of long-term and large-scale monitoring of Earth 's surface weather environment and associated changes.

  9. Vehicle/Atmosphere Interaction Glows: Far Ultraviolet, Visible, and Infrared

    NASA Technical Reports Server (NTRS)

    Swenson, G.

    1999-01-01

    Spacecraft glow information has been gathered from a number of spacecraft including Atmospheric and Dynamic satellites, and Space Shuttles (numerous flights) with dedicated pallet flow observations on STS-39 (DOD) and STS-62 (NASA). In addition, a larger number of laboratory experiments with low energy oxygen beam studies have made important contributions to glow understanding. The following report provides information on three engineering models developed for spacecraft glow including the far ultraviolet to ultraviolet (1400-4000 A), and infrared (0.9-40 microns) spectral regions. The models include effects resulting from atmospheric density/altitude, spacecraft temperature, spacecraft material, and ram angle. Glow brightness would be predicted as a function of distance from surfaces for all wavelengths.

  10. Motion in Jupiter's Atmospheric Vortices (Near-infrared filters)

    NASA Image and Video Library

    1998-03-26

    Two frame "movie" of a pair of vortices in Jupiter's southern hemisphere. The two frames are separated by ten hours. The right oval is rotating counterclockwise, like other anticyclonic bright vortices in Jupiter's atmosphere. The left vortex is a cyclonic (clockwise) vortex. The differences between them (their brightness, their symmetry, and their behavior) are clues to how Jupiter's atmosphere works. The frames span about fifteen degrees in latitude and longitude and are centered at 141 degrees west longitude and 36 degrees south planetocentric latitude. Both vortices are about 3500 kilometers in diameter in the north-south direction. The images were taken in near infrared light at 756 nanometers and show clouds that are at a pressure level of about 1 bar in Jupiter's atmosphere. North is at the top. The smallest resolved features are tens of kilometers in size. These images were taken on May 7, 1997, at a range of 1.5 million kilometers by the Solid State Imaging system on NASA's Galileo spacecraft. An animation is available at http://photojournal.jpl.nasa.gov/catalog/PIA01230

  11. Science Highlights and Lessons Learned from the Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Fetzer, Eric J.; Suda, Jarrod; Licata, Steve

    2011-01-01

    The Atmospheric Infrared Sounder (AIRS) and companion instrument, the Advanced Microwave Sounding Unit (AMSU) on the NASA Earth Observing System Aqua spacecraft are facility instruments designed to support measurements of atmospheric temperature, water vapor and a wide range of atmospheric constituents in support of weather forecasting and scientific research in climate and atmospheric chemistry. This paper is an update to the science highlights from a paper by the authors released last year and also looks back at the lessons learned and future needs of the scientific community. These lessons not only include requirements on the measurements, but scientific shortfalls as well. Results from the NASA Science Community Workshop in IR and MW Sounders relating to AIRS and AMSU requirements and concerns are covered and reflect much of what has been learned and what is needed for future atmospheric sounding from Low Earth Orbit.

  12. The Impact of the Assimilation of Hyperspectral Infrared Retrieved Profiles on Advanced Weather and Research Model Simulations of a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Zavodsky, Bradley; Jedlovec, Gary; Elmer, Nicholas

    2013-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis, and Rapid Refresh analyses.

  13. Range estimation of passive infrared targets through the atmosphere

    NASA Astrophysics Data System (ADS)

    Cho, Hoonkyung; Chun, Joohwan; Seo, Doochun; Choi, Seokweon

    2013-04-01

    Target range estimation is traditionally based on radar and active sonar systems in modern combat systems. However, jamming signals tremendously degrade the performance of such active sensor devices. We introduce a simple target range estimation method and the fundamental limits of the proposed method based on the atmosphere propagation model. Since passive infrared (IR) sensors measure IR signals radiating from objects in different wavelengths, this method has robustness against electromagnetic jamming. The measured target radiance of each wavelength at the IR sensor depends on the emissive properties of target material and various attenuation factors (i.e., the distance between sensor and target and atmosphere environment parameters). MODTRAN is a tool that models atmospheric propagation of electromagnetic radiation. Based on the results from MODTRAN and atmosphere propagation-based modeling, the target range can be estimated. To analyze the proposed method's performance statistically, we use maximum likelihood estimation (MLE) and evaluate the Cramer-Rao lower bound (CRLB) via the probability density function of measured radiance. We also compare CRLB and the variance of MLE using Monte-Carlo simulation.

  14. Design of a Far-Infrared Spectrometer for Atmospheric Thermal Emission Measurements

    NASA Technical Reports Server (NTRS)

    Johnson, David G.

    2004-01-01

    Global measurements of far infrared emission from the upper troposphere are required to test models of cloud radiative forcing, water vapor continuum emission, and cooling rates. Spectra with adequate resolution can also be used for retrieving atmospheric temperature and humidity profiles, and yet there are few spectrally resolved measurements of outgoing longwave flux at wavelengths longer than 16 m. It has been difficult to make measurements in the far infrared due to the need for liquid-helium cooled detectors and large optics to achieve adequate sensitivity and bandwidth. We review design considerations for infrared Fourier transform spectrometers, including the dependence of system performance on basic system parameters, and discuss the prospects for achieving useful sensitivity from a satellite platform with a lightweight spectrometer using uncooled detectors.

  15. A sensitive infrared imaging up converter and spatial coherence of atmospheric propagation

    NASA Technical Reports Server (NTRS)

    Boyd, R. W.; Townes, C. H.

    1977-01-01

    An infrared imaging technique based on the nonlinear interaction known as upconversion was used to obtain images of several astronomical objects in the 10 micrometer spectral region, and to demonstrate quantitatively the sharper images allowed for wavelengths beyond the visible region. The deleterious effects of atmospheric inhomogeneities on telescope resolution were studied in the infrared region using the technique developed. The low quantum efficiency of the device employed severely limited its usefulness as an astronomical detector.

  16. Ground Based Observation of Isotopic Oxygen in the Martian Atmosphere Using Infrared Heterodyne Spectroscopy

    NASA Technical Reports Server (NTRS)

    Smith, R. L.; Kostiuk, T.; Livengood, T. A.; Fast, K. E.; Hewagama, T.; Delgado, J. D.; Sonnabend, G.

    2010-01-01

    Infrared heterodyne spectra of isotopic CO2 in the Martian atmosphere were obtained using the Goddard Heterodyne Instrument for Planetary Wind and Composition, HIPWAC, which was interfaced with the 3-meter telescope at the NASA Infrared Telescope Facility- Spectra were colle cted at a resolution of lambda/delta lambda=10(exp 7). Absorption fea tures of the CO2 isotopologues have been identified from which isotop ic ratios of oxygen have been determined. The isotopic ratios O-17/O -16 and O-18/O-16 in the Martian atmosphere can be related to Martian atmospheric evolution and can be compared to isotopic ratios of oxyg en in the Earth's atmosphere. Isotopic carbon and oxygen are importa nt constraints on any theory for the erosion of the Martian primordia l atmosphere and the interaction between the atmosphere and surface o r subsurface chemical reservoirs. This investigation explored the pr esent abundance of the stable isotopes of oxygen in Mars' atmospheric carbon dioxide by measuring rovibrational line absorption in isotop ic species of CO2 using groundbased infrared heterodyne spectroscopy in the vicinity of the 9.6 micron and 10.6 micron CO2 lasing bands. T he target transitions during this observation were O-18 C-12 O-16 as well as O-178 C-12 O-16 and O-16 C-113 O-16 at higher resolving power of lambda/delta lambda=10(exp 7) and with high signal-to-noise ratio (longer integration time) in order to fully characterize the absorpt ion line profiles. The fully-resolved lineshape of both the strong n ormal-isotope and the weak isotopic CO2 lines were measured simultane ously in a single spectrum.

  17. The Atmospheric Infrared Sounder Version 6 Cloud Products

    NASA Technical Reports Server (NTRS)

    Kahn, B. H.; Irion, F. W.; Dang, V. T.; Manning, E. M.; Nasiri, S. L.; Naud, C. M.; Blaisdell, J. M.; Schreier, M. M..; Yue, Q.; Bowman, K. W.; hide

    2014-01-01

    The version 6 cloud products of the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU) instrument suite are described. The cloud top temperature, pressure, and height and effective cloud fraction are now reported at the AIRS field-of-view (FOV) resolution. Significant improvements in cloud height assignment over version 5 are shown with FOV-scale comparisons to cloud vertical structure observed by the CloudSat 94 GHz radar and the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP). Cloud thermodynamic phase (ice, liquid, and unknown phase), ice cloud effective diameter D(sub e), and ice cloud optical thickness (t) are derived using an optimal estimation methodology for AIRS FOVs, and global distributions for 2007 are presented. The largest values of tau are found in the storm tracks and near convection in the tropics, while D(sub e) is largest on the equatorial side of the midlatitude storm tracks in both hemispheres, and lowest in tropical thin cirrus and the winter polar atmosphere. Over the Maritime Continent the diurnal variability of tau is significantly larger than for the total cloud fraction, ice cloud frequency, and D(sub e), and is anchored to the island archipelago morphology. Important differences are described between northern and southern hemispheric midlatitude cyclones using storm center composites. The infrared-based cloud retrievals of AIRS provide unique, decadal-scale and global observations of clouds over portions of the diurnal and annual cycles, and capture variability within the mesoscale and synoptic scales at all latitudes.

  18. On Combining Thermal-Infrared and Radio-Occultation Data of Saturn's Atmosphere

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.; Schinder, P. J.; Conrath, B. J.

    2008-01-01

    Radio-occultation and thermal-infrared measurements are complementary investigations for sounding planetary atmospheres. The vertical resolution afforded by radio occultations is typically approximately 1 km or better, whereas that from infrared sounding is often comparable to a scale height. On the other hand, an instrument like CIRS can easily generate global maps of temperature and composition, whereas occultation soundings are usually distributed more sparsely. The starting point for radio-occultation inversions is determining the residual Doppler-shifted frequency, that is the shift in frequency from what it would be in the absence of the atmosphere. Hence the positions and relative velocities of the spacecraft, target atmosphere, and DSN receiving station must be known to high accuracy. It is not surprising that the inversions can be susceptible to sources of systematic errors. Stratospheric temperature profiles on Titan retrieved from Cassini radio occultations were found to be very susceptible to errors in the reconstructed spacecraft velocities (approximately equal to 1 mm/s). Here the ability to adjust the spacecraft ephemeris so that the profiles matched those retrieved from CIRS limb sounding proved to be critical in mitigating this error. A similar procedure can be used for Saturn, although the sensitivity of its retrieved profiles to this type of error seems to be smaller. One issue that has appeared in inverting the Cassini occultations by Saturn is the uncertainty in its equatorial bulge, that is, the shape in its iso-density surfaces at low latitudes. Typically one approximates that surface as a geopotential surface by assuming a barotropic atmosphere. However, the recent controversy in the equatorial winds, i.e., whether they changed between the Voyager (1981) era and later (after 1996) epochs of Cassini and some Hubble observations, has made it difficult to know the exact shape of the surface, and it leads to uncertainties in the retrieved

  19. Dynamics of Venus Upper Atmosphere from Infrared Heterodyne Spectroscopy of CO2

    NASA Astrophysics Data System (ADS)

    Sornig, Manuela; Sonnabend, G.; Kroetz, P. J.; Stupar, D.; Schieder, R. T.; Sandor, B.; Clancy, T.

    2009-09-01

    Wind velocities in the upper atmosphere of Venus can be determined from Doppler-shifts of narrow non-LTE emission lines of CO2 at 10 µm with an precision of up to 10 m/s using infrared heterodyne spectroscopy. Such observations address a narrow altitude region in the upper atmosphere of Venus around 110 km. At the University of Cologne we developed a Tunable Infrared Heterodyne Spectrometer (THIS) capable of accomplishing such ground-based measurements of planetary atmospheres. Beside high spectral resolution (R>107) this method also guarantees high spatial resolution on the planet (FOV of 1.7 arcsec on an apparent diameter of Venus of 20 arcsec using the McMath-Pierce-Solar Telescope on Kitt Peak). Over the last two years we observed wind velocities with THIS at several characteristic orbital positions of Venus. In May and November 2007 Venus was at its maximum eastern and western elongation, respectively. This specific observing geometry with an illumination of about 50% of the apparent planetary disk allows us to detect dominantly the superrotation component in Venus upper atmosphere. So far results indicate surprisingly low wind velocities of a few tens of m/s with almost no wind at the equator and highest values at mid latitudes. Observations close to inferior conjunction have been accomplished in March and April 2009. This observing geometry gives wind velocities consisting of a combination of the superrotation and the SS-AS flow close to the terminator. Data analysis is still ongoing but first analysis indicate a higher wind velocity than found in the results from maximum elongation. We are going to present data and results from these runs as well as results from a first coordinated observation between our infrared group and JCMT sub-mm observations in March 2009.

  20. Sensitivity Analysis for Atmospheric Infrared Sounder (AIRS) CO2 Retrieval

    NASA Technical Reports Server (NTRS)

    Gat, Ilana

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS) is a thermal infrared sensor able to retrieve the daily atmospheric state globally for clear as well as partially cloudy field-of-views. The AIRS spectrometer has 2378 channels sensing from 15.4 micrometers to 3.7 micrometers, of which a small subset in the 15 micrometers region has been selected, to date, for CO2 retrieval. To improve upon the current retrieval method, we extended the retrieval calculations to include a prior estimate component and developed a channel ranking system to optimize the channels and number of channels used. The channel ranking system uses a mathematical formalism to rapidly process and assess the retrieval potential of large numbers of channels. Implementing this system, we identifed a larger optimized subset of AIRS channels that can decrease retrieval errors and minimize the overall sensitivity to other iridescent contributors, such as water vapor, ozone, and atmospheric temperature. This methodology selects channels globally by accounting for the latitudinal, longitudinal, and seasonal dependencies of the subset. The new methodology increases accuracy in AIRS CO2 as well as other retrievals and enables the extension of retrieved CO2 vertical profiles to altitudes ranging from the lower troposphere to upper stratosphere. The extended retrieval method for CO2 vertical profile estimation using a maximum-likelihood estimation method. We use model data to demonstrate the beneficial impact of the extended retrieval method using the new channel ranking system on CO2 retrieval.

  1. The Atmospheric Transmission Generation System for Satellite Infrared Sounders.

    DTIC Science & Technology

    1981-07-01

    OF REPORT & PERIOD COVERED .) The Atmospheric Transmission Generation System Final 7.. for Satellite Infrared Sounders. .PERF6~0,1 D* C . R TR 81-03 7...2E10.3) (I card) DEPTH - optical depth SWING - molecular rejection criterion Card Set C NMODL, ISMDL, INMDL, ZA FORMAT (313,FlO.3) (1 card) NMODL...the satellite imagery on the SPADS . The list of clear column station indices corresponding to the station locations in storage are read from logical

  2. A Module for Assimilating Hyperspectral Infrared Retrieved Profiles into the Gridpoint Statistical Interpolation System for Unique Forecasting Applications

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Zavodsky, Bradley; Srikishen, Jayanthi; Blankenship, Clay

    2015-01-01

    Hyperspectral infrared sounder radiance data are assimilated into operational modeling systems however the process is computationally expensive and only approximately 1% of available data are assimilated due to data thinning as well as the fact that radiances are restricted to cloud-free fields of view. In contrast, the number of hyperspectral infrared profiles assimilated is much higher since the retrieved profiles can be assimilated in some partly cloudy scenes due to profile coupling other data, such as microwave or neural networks, as first guesses to the retrieval process. As the operational data assimilation community attempts to assimilate cloud-affected radiances, it is possible that the use of retrieved profiles might offer an alternative methodology that is less complex and more computationally efficient to solve this problem. The NASA Short-term Prediction Research and Transition (SPoRT) Center has assimilated hyperspectral infrared retrieved profiles into Weather Research and Forecasting Model (WRF) simulations using the Gridpoint Statistical Interpolation (GSI) System. Early research at SPoRT demonstrated improved initial conditions when assimilating Atmospheric Infrared Sounder (AIRS) thermodynamic profiles into WRF (using WRF-Var and assigning more appropriate error weighting to the profiles) to improve regional analysis and heavy precipitation forecasts. Successful early work has led to more recent research utilizing WRF and GSI for applications including the assimilation of AIRS profiles to improve WRF forecasts of atmospheric rivers and assimilation of AIRS, Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI) profiles to improve model representation of tropopause folds and associated non-convective wind events. Although more hyperspectral infrared retrieved profiles can be assimilated into model forecasts, one disadvantage is the retrieved profiles have traditionally been assigned the

  3. Monthly Representations of Mid-Tropospheric Carbon Dioxide from the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Olsen, Edward T.; Chahine, Moustafa T.; Ruzmaikin, Alexander; Nguyen, Hai; Jiang, Xun

    2011-01-01

    The Atmospheric Infrared Sounder (AIRS) on NASA's Earth Observing System Aqua spacecraft was launched in May of 2002 and acquires hyperspectral infrared spectra used to generate a wide range of atmospheric products including temperature, water vapor, and trace gas species including carbon dioxide. Here we present monthly representations of global concentrations of mid-tropospheric carbon dioxide produced from 8 years of data obtained by AIRS between the years of 2003 and 2010. We define them as "representations" rather than "climatologies" to reflect that the files are produced over a relatively short time period and represent summaries of the Level 3 data. Finally, they have not yet been independently validated. The representations have a horizontal resolution of 2.0 deg x 2.5 deg (Latitude x Longitude) and faithfully reproduce the original 8 years of monthly L3 CO2 concentrations with a standard deviation of 1.48 ppm and less than 2% outliers. The representations are intended for use in studies of the global general circulation of CO2 and identification of anomalies in CO2 typically associated with atmospheric transport. The seasonal variability and trend found in the AIRS CO2 data are discussed.

  4. On Cirrus Cloud Fields Measured by the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Kahn, Brian H.; Eldering, Annmarie; Liou, Kuo Nan

    2006-01-01

    A viewgraph presentation showing trends in clouds measured by the Atmospheric Infrared Sounder (AIRS) is given. The topics include: 1) Trends in clouds measured by AIRS: Are they reasonable? 2) Single and multilayered cloud trends; 3) Retrievals of thin cirrus D(sub e) and tau: Single-layered cloud only; 4) Relationships between ECF, D(sub e), tau, and T(sub CLD); and 5) MODIS vs. AIRS retrievals.

  5. Hurricane Frances as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS) and SeaWinds

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image shows Hurricane Frances as captured by instruments onboard two different satellites: the AIRS infrared instrument onboard Aqua, and the SeaWinds scatterometer onboard QuikSCAT. Both are JPL-managed instruments. AIRS data are used to create global three-dimensional maps of temperature, humidity and clouds, while scatterometers measure surface wind speed and direction over the ocean.

    The red vectors in the image show Frances' surface winds as measured by SeaWinds on QuikSCAT. The background colors show the temperature of clouds and surface as viewed in the infrared by AIRS, with cooler areas pushing to purple and warmer areas are pushing to red. The color scale on the right gives the temperatures in degrees Kelvin. (The top of the scale, 320 degrees Kelvin, corresponds to 117 degrees Fahrenheit, and the bottom, 180 degrees K is -135 degrees F.) The powerful circulation of this storm is evident from the combined data as well as the development of a clearly-defined central 'eye'. The infrared signal does not penetrate through clouds, so the light blue areas reveal the cold clouds tops associated with strong thunderstorms embedded within the storm. In cloud-free areas the infrared signal comes from Earth's surface, revealing warmer temperatures.

    The power of the SeaWinds scatterometer data set lies in its ability to generate global maps of wind speed and direction, giving us a snapshot of how the atmosphere is circulating. Weather prediction centers, including the Tropical Prediction Center - a branch of NOAA that monitors the creation of ocean-born storms, use scatterometer data to help it 'see' where these storms are brewing so that warnings can be issued and the storms, with often erratic motions, can be tracked.

    While the SeaWinds instrument isn't designed to gather hurricane data, having difficulty seeing the surface in heavy rain, it's data can be used in combination with other data sets to give us an insight into these storms. In

  6. Non-LTE diagnositics of infrared radiation of Titan's atmosphere

    NASA Astrophysics Data System (ADS)

    Feofilov, Artem; Rezac, Ladislav; Kutepov, Alexander; Vinatier, Sandrine; Rey, Michael; Nikitin, Andrew; Tyuterev, Vladimir

    2016-06-01

    Yelle (1991) and Garcia-Comas et al, (2011) demonstrated the importance of accounting for the local thermodynamic equilibrium (LTE) breakdown in the middle and upper atmosphere of Titan for the interpretation of infrared radiances measured at these heights. In this work, we make further advance in this field by: • updating the non-LTE model of CH4 emissions in Titan's atmosphere and including a new extended database of CH4 spectroscopic parameters • studying the non-LTE CH4 vibrational level populations and the impact of non-LTE on limb infrared emissions of various CH4 ro-vibrational bands including those at 7.6 and 3.3 µm • implementing our non-LTE model into the LTE-based retrieval algorithm applied by Vinatier et al., (2015) for processing the Cassini/CIRS spectra. We demonstrate that accounting for non-LTE leads to an increase in temperatures retrieved from CIRS 7.6 µm limb emissions spectra (˜10 K at 600 km altitude) and estimate how this affects the trace gas density retrieval. Finally, we discuss the effects of including a large number of weak one-quantum and combinational bands on the calculated daytime limb 3.3 µm emissions and the impact they may have on the CH4 density retrievals from the Cassini VIMS 3.3 µm limb emission observations.

  7. Atmospheric transparency over Mount Shatdzhatmaz in the optical and near-infrared ranges

    NASA Astrophysics Data System (ADS)

    Voziakova, O. V.

    2012-04-01

    We present the results of a three-year-long monitoring of atmospheric extinction over Mount Shatdzhatmaz (2112 m) in Northern Caucasus in a photometric band with λ eff = 480 nm and the results of measurements of precipitable water vapor ( PWV), which characterizes the atmospheric transparency in the near infrared. The yearly mean fraction of photometric weather is estimated to be 50% of the clear night time. The yearly median extinction is 0ṃ21; themedian PWV on clear nights is 7.7 mm.

  8. Thermal Band Atmospheric Correction Using Atmospheric Profiles Derived from Global Positioning System Radio Occultation and the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Holekamp, Kara; Stewart, Randy; Vaughan, Ronald D.

    2006-01-01

    This Rapid Prototyping Capability study explores the potential to use atmospheric profiles derived from GPS (Global Positioning System) radio occultation measurements and by AIRS (Atmospheric Infrared Sounder) onboard the Aqua satellite to improve surface temperature retrieval from remotely sensed thermal imagery. This study demonstrates an example of a cross-cutting decision support technology whereby NASA data or models are shown to improve a wide number of observation systems or models. The ability to use one data source to improve others will be critical to the GEOSS (Global Earth Observation System of Systems) where a large number of potentially useful systems will require auxiliary datasets as input for decision support. Atmospheric correction of thermal imagery decouples TOA radiance and separates surface emission from atmospheric emission and absorption. Surface temperature can then be estimated from the surface emission with knowledge of its emissivity. Traditionally, radiosonde sounders or atmospheric models based on radiosonde sounders, such as the NOAA (National Oceanic & Atmospheric Administration) ARL (Air Resources Laboratory) READY (Real-time Environmental Application and Display sYstem), provide the atmospheric profiles required to perform atmospheric correction. Unfortunately, these types of data are too spatially sparse and too infrequently taken. The advent of high accuracy, global coverage, atmospheric data using GPS radio occultation and AIRS may provide a new avenue for filling data input gaps. In this study, AIRS and GPS radio occultation derived atmospheric profiles from the German Aerospace Center CHAMP (CHAllenging Minisatellite Payload), the Argentinean Commission on Space Activities SAC-C (Satellite de Aplicaciones Cientificas-C), and the pair of NASA GRACE (Gravity Recovery and Climate Experiment) satellites are used as input data in atmospheric radiative transport modeling based on the MODTRAN (MODerate resolution atmospheric

  9. [Atmospheric correction of visible-infrared band FY-3A/MERSI data based on 6S model].

    PubMed

    Wu, Yong-Li; Luan, Qing; Tian, Guo-Zhen

    2011-06-01

    Based on the observation data from the meteorological stations in Taiyuan City and its surrounding areas of Shanxi Province, the atmosphere parameters for 6S model were supplied, and the atmospheric correction of visible-infrared band (precision 250 meters) FY-3A/MERSI data was conducted. After atmospheric correction, the range of visible-infrared band FY-3A/MERSI data was widened, reflectivity increased, high peak was higher, and distribution histogram was smoother. In the meantime, the threshold value of NDVI data reflecting vegetation condition increased, and its high peak was higher, more close to the real data. Moreover, the color synthesis image of correction data showed more abundant information, its brightness increased, contrast enhanced, and the information reflected was more close to real.

  10. Measurements of trace constituents from atmospheric infrared emission and absorption spectra, a feasibility study

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Williams, W. J.; Murcray, D. G.

    1974-01-01

    The feasibility of detecting eight trace constituents (CH4, HCl, HF, HNO3, NH3, NO, NO2 and SO2) against the rest of the atmospheric background at various altitudes from infrared emission and absorption atmospheric spectra was studied. Line-by-line calculations and observational data were used to establish features that can be observed in the atmospheric spectrum due to each trace constituent. Model calculations were made for experimental conditions which approximately represent state of the art emission and absorption spectrometers.

  11. Near-infrared light absorption by brown carbon in the ambient atmosphere

    NASA Astrophysics Data System (ADS)

    Chung, C.; Hoffer, A.; Beres, N. D.; Moosmüller, H.; Liu, C.; Green, M.; Kim, S. W.; Engelbrecht, J. P.; Gelencser, A.

    2017-12-01

    Organic aerosols have been assumed to have little-to-no absorption in the red and near-infrared spectral regions of solar radiation, even though a class of organic aerosols were shown to absorb significantly in these spectral regions. Here, we show that ambient atmospheric data from commonly-used 7-wavelength aethalometers contain evidence of abundant near-infrared light absorption by organic aerosol. This evidence comes from the absorption Ångström exponent over 880 950 nm, which often exceeds values explainable by fresh or coated black carbon, or mineral dust. This evidence is not due to an artifact from the instrument random errors or biases, either. The best explanation for these large 880/950 nm absorption Ångström exponent values in the aethalometer data is near-infrared light absorption by tar balls. Tar balls are among common particles from forest fire.

  12. Evaluation of spectroscopic databases through radiative transfer simulations compared to observations. Application to the validation of GEISA 2015 with IASI and TCCON

    NASA Astrophysics Data System (ADS)

    Armante, Raymond; Scott, Noelle; Crevoisier, Cyril; Capelle, Virginie; Crepeau, Laurent; Jacquinet, Nicole; Chédin, Alain

    2016-09-01

    of particular interest for several currently exploited or planned Earth space missions: the thermal infrared domain and the short-wave infrared domain, for which observations from the space-borne IASI instrument and from the ground-based FTS instruments at the Parkfalls TCCON site are used respectively. Main results include: (i) the validation of the positions and intensities of line parameters, with overall significantly lower residuals for GEISA-2015 than for GEISA-2011 and (iii) the validation of the choice made on the parameters (such as pressure shift and air-broadened width) which has not been given by the provider but completed by ourselves. For example, comparisons between residuals obtained with GEISA-2015 and HITRAN-2012 have highlighted a specific issue with some HWHM values in the latter that can be clearly identified on the 'calculated-observed' residuals.

  13. Is the aerosol emission detectable in the thermal infrared?

    NASA Astrophysics Data System (ADS)

    Hollweg, H.-D.; Bakan, S.; Taylor, J. P.

    2006-08-01

    The impact of aerosols on the thermal infrared radiation can be assessed by combining observations and radiative transfer calculations. Both have uncertainties, which are discussed in this paper. Observational uncertainties are obtained for two FTIR instruments operated side by side on the ground during the LACE 1998 field campaign. Radiative transfer uncertainties are assessed using a line-by-line model taking into account the uncertainties of the HITRAN 2004 spectroscopic database, uncertainties in the determination of the atmospheric profiles of water vapor and ozone, and differences in the treatment of the water vapor continuum absorption by the CKD 2.4.1 and MT_CKD 1.0 algorithms. The software package OPAC was used to describe the optical properties of aerosols for climate modeling. The corresponding radiative signature is a guideline to the assessment of the uncertainty ranges of observations and models. We found that the detection of aerosols depends strongly on the measurement accuracy of atmospheric profiles of water vapor and ozone and is easier for drier conditions. Within the atmospheric window, only the forcing of downward radiation at the surface by desert aerosol emerges clearly from the uncertainties of modeling and FTIR measurement. Urban and polluted continental aerosols are only partially detectable depending on the wave number and on the atmospheric water vapor amount. Simulations for the space-borne interferometer IASI show that only upward radiation above transported mineral dust aloft emerges out of the uncertainties. The detection of aerosols with weak radiative impact by FTIR instruments like ARIES and OASIS is made difficult by noise as demonstrated by the signal to noise ratio for clean continental aerosols. Altogether, the uncertainties found suggest that it is difficult to detect the optical depths of nonmineral and unpolluted aerosols.

  14. IASI-derived NH3 enhancement ratios relative to CO for the tropical biomass burning regions

    NASA Astrophysics Data System (ADS)

    Whitburn, Simon; Van Damme, Martin; Clarisse, Lieven; Hurtmans, Daniel; Clerbaux, Cathy; Coheur, Pierre-François

    2017-10-01

    Vegetation fires are a major source of ammonia (NH3) in the atmosphere. Their emissions are mainly estimated using bottom-up approaches that rely on uncertain emission factors. In this study, we derive new biome-specific NH3 enhancement ratios relative to carbon monoxide (CO), ERNH3 / CO (directly related to the emission factors), from the measurements of the IASI sounder onboard the Metop-A satellite. This is achieved for large tropical regions and for an 8-year period (2008-2015). We find substantial differences in the ERNH3 / CO ratios between the biomes studied, with calculated values ranging from 7 × 10-3 to 23 × 10-3. For evergreen broadleaf forest these are typically 50-75 % higher than for woody savanna and savanna biomes. This variability is attributed to differences in fuel types and size and is in line with previous studies. The analysis of the spatial and temporal distribution of the ERNH3 / CO ratio also reveals a (sometimes large) within-biome variability. On a regional level, woody savanna shows, for example, a mean ERNH3 / CO ratio for the region of Africa south of the Equator that is 40-75 % lower than in the other five regions studied, probably reflecting regional differences in fuel type and burning conditions. The same variability is also observed on a yearly basis, with a peak in the ERNH3 / CO ratio observed for the year 2010 for all biomes. These results highlight the need for the development of dynamic emission factors that take into better account local variations in fuel type and fire conditions. We also compare the IASI-derived ERNH3 / CO ratio with values reported in the literature, usually calculated from ground-based or airborne measurements. We find general good agreement in the referenced ERNH3 / CO ratio except for cropland, for which the ERNH3 / CO ratio shows an underestimation of about 2-2.5 times.

  15. 1D-VAR Retrieval Using Superchannels

    NASA Technical Reports Server (NTRS)

    Liu, Xu; Zhou, Daniel; Larar, Allen; Smith, William L.; Schluessel, Peter; Mango, Stephen; SaintGermain, Karen

    2008-01-01

    Since modern ultra-spectral remote sensors have thousands of channels, it is difficult to include all of them in a 1D-var retrieval system. We will describe a physical inversion algorithm, which includes all available channels for the atmospheric temperature, moisture, cloud, and surface parameter retrievals. Both the forward model and the inversion algorithm compress the channel radiances into super channels. These super channels are obtained by projecting the radiance spectra onto a set of pre-calculated eigenvectors. The forward model provides both super channel properties and jacobian in EOF space directly. For ultra-spectral sensors such as Infrared Atmospheric Sounding Interferometer (IASI) and the NPOESS Airborne Sounder Testbed Interferometer (NAST), a compression ratio of more than 80 can be achieved, leading to a significant reduction in computations involved in an inversion process. Results will be shown applying the algorithm to real IASI and NAST data.

  16. Ultrafast High Accuracy PCRTM_SOLAR Model for Cloudy Atmosphere

    NASA Technical Reports Server (NTRS)

    Yang, Qiguang; Liu, Xu; Wu, Wan; Yang, Ping; Wang, Chenxi

    2015-01-01

    An ultrafast high accuracy PCRTM_SOLAR model is developed based on PCA compression and principal component-based radiative transfer model (PCRTM). A fast algorithm for simulation of multi-scattering properties of cloud and/or aerosols is integrated into the fast infrared PCRTM. We completed radiance simulation and training for instruments, such as IASI, AIRS, CrIS, NASTI and SHIS, under diverse conditions. The new model is 5 orders faster than 52-stream DISORT with very high accuracy for cloudy sky radiative transfer simulation. It is suitable for hyperspectral remote data assimilation and cloudy sky retrievals.

  17. Applications and Lessons Learned using Data from the Atmospheric Infrared Sounder

    NASA Astrophysics Data System (ADS)

    Ray, S. E.; Fetzer, E. J.; Olsen, E. T.; Lambrigtsen, B.; Pagano, T. S.; Teixeira, J.; Licata, S. J.; Hall, J. R.

    2016-12-01

    Applications and Lessons Learned using Data from the Atmospheric Infrared SounderSharon Ray, Jet Propulsion Laboratory, California Institute of Technology The Atmospheric Infrared Sounder (AIRS) on NASA's Aqua spacecraft has been returning daily global observations of Earth's atmospheric constituents and properties since 2002. With a 12-year data record and daily, global observations in near real-time, AIRS can play a role in applications that fall under many of the NASA Applied Sciences focus areas. AIRS' involvement in applications is two years in, so what have we learned and what are the pitfalls? AIRS has made gains in drought applications with products under consideration for inclusion in the U.S. Drought Monitor national map, as also with volcano rapid response with an internal alert system and automated products to help characterize plume extent. Efforts are underway with cold air aloft for aviation, influenza outbreak prediction, and vector borne disease. But challenges have occurred both in validation and in crossing the "valley of death" between products and decision makers. AIRS now has improved maps of standard products to be distributed in near real-time via NASA LANCE and by the Goddard DAAC as part of the Obama's administration Big Earth Data Initiative. In addition internal tools have been developed to support development and distribution of our application products. This talk will communicate the status of the AIRS applications effort along with lessons learned, and provide examples of new product imagery designed to best communicate AIRS data.

  18. Assessment of NOAA NUCAPS upper air temperature profiles using COSMIC GPS radio occultation and ARM radiosondes

    NASA Astrophysics Data System (ADS)

    Feltz, M. L.; Borg, L.; Knuteson, R. O.; Tobin, D.; Revercomb, H.; Gambacorta, A.

    2017-09-01

    The U.S. National Oceanic and Atmospheric Administration (NOAA) recently began operational processing to derive vertical temperature profiles from two new sensors, Cross-Track Infrared Sounder and Advanced Technology Microwave Sounder, which were developed for the next generation of U.S. weather satellites. The NOAA-Unique Combined Atmospheric Processing System (NUCAPS) has been developed by NOAA to routinely process data from future Joint Polar Satellite System operational satellites and the preparatory Suomi-NPP satellite. This paper assesses the NUCAPS vertical temperature profile product from the upper troposphere into the middle stratosphere using radiosonde and GPS radio occultation (RO) data. Radiosonde data from the Department of Energy Atmospheric Radiation Measurement (ARM) program are=] compared to both the NUCAPS and GPS RO temperature products to evaluate bias and RMS errors. At all three fixed ARM sites for time periods investigated the NUCAPS temperature in the 100-40 hPa range is found to have an average bias to the radiosondes of less than 0.45 K and an RMS error of less than 1 K when temperature averaging kernels are applied. At a 95% confidence level, the radiosondes and RO were found to agree within 0.4 K at the North Slope of Alaska site and within 0.83 K at Southern Great Plains and Tropical Western Pacific. The GPS RO-derived dry temperatures, obtained from the University Corporation for Atmospheric Research Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) mission, are used as a common reference for the intercomparison of NUCAPS temperature products to similar products produced by NASA from Atmospheric Infrared Sounder (AIRS) and by European Organisation for the Exploitation of Meteorological Satellites from MetOp-B Infrared Atmospheric Sounding Interferometer (IASI). For seasonal and zonal scales, the NUCAPS agreement with AIRS and IASI is less than 0.5 K after application of averaging kernels.

  19. CANOES II; Dynamics of Atmospheric Infrared Thermochemical Excitation. Volume 2

    DTIC Science & Technology

    1989-03-01

    similar modeling effort by Richards et al. 2 concluded that Frederick and Rusch underestimated N(2D) production rates and revised their value upwards...agreement with Richards et al.’s 2 model-derived value is acceptable. The major disagreement with the recent results of Jusinski et al. 9 indi- cates...J.P., "NO Infrared Radiation in the Upper Atmosphere," Planet. Space Sci. 30, 1043 (1982). 2. Richards , P.G., Torr, D.G., and Torr, M.R

  20. Select Methodology for Validating Advanced Satellite Measurement Systems

    NASA Technical Reports Server (NTRS)

    Larar, Allen M.; Zhou, Daniel K.; Liu, Xi; Smith, William L.

    2008-01-01

    Advanced satellite sensors are tasked with improving global measurements of the Earth's atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring capability, and environmental change detection. Measurement system validation is crucial to achieving this goal and maximizing research and operational utility of resultant data. Field campaigns including satellite under-flights with well calibrated FTS sensors aboard high-altitude aircraft are an essential part of the validation task. This presentation focuses on an overview of validation methodology developed for assessment of high spectral resolution infrared systems, and includes results of preliminary studies performed to investigate the performance of the Infrared Atmospheric Sounding Interferometer (IASI) instrument aboard the MetOp-A satellite.

  1. Ultraspectral Infrared Measurements from the Atmospheric Infrared Sounder (AIRS) on the EOS Aqua Spacecraft

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas

    2003-01-01

    Aqua measures the Earth's water cycle, energy fluxes, vegetation and temperatures. The Atmospheric Infrared Sounder (AIRS), Advanced Microwave Sounding Unit (AMSU) and Humidity Sounder for Brazil (HSB) were launched on the EOS Aqua spacecraft in May 2002. AIRS has had good radiometric and spectral sensitivity, stability, and accuracy and is suitable for climate studies. Temperature products compare well with radiosondes and models over the limited test range (|LAT| less than 40 degrees). Early trace gas products demonstrate the potential of AIRS. NASA is developing the next generation of hyperspectral IR imagers. JPL is ready to participate with US government agencies and US industry to transfer AIRS technology and science experience.

  2. Hurricane Ivan as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    ] September 8, Wednesday, 1:30 am. - microwave, 89GHz

    [figure removed for brevity, see original site] September 10, Friday, 1:30 pm. - infrared, 12micron Ivan closes in on Jamaica. With only 85 miles between the storm and the island, Ivan's winds at category 4 are sustained at 145 mph (230 km/hr). Hurricane-strength winds extend up to 60 miles from the center of Ivan, and tropical-storm force winds are up to 175 miles from the center. Ivan is now better organized and has a well-defined eye. After Ivan leaves Jamaica, it is expected to hit western Cuba, probably making landfall later Sunday as a CAT 4 hurricane.

    [figure removed for brevity, see original site] September 10, Friday, 1:30 pm. - microwave, 89GHz

    [figure removed for brevity, see original site] September 10, Friday, 1:30 pm. - visible/near-infrared

    [figure removed for brevity, see original site] September 13, Friday, 1:30 pm. - infrared, 12micron Ivan's winds at category 5 strength are sustained at 160 mph (260 km/hr) and extend out to 105 miles from the center. Tropical-storm force winds are up to 205 miles from the center. The infrared image shows that the eye has grown quite large - perhaps 40 km (25 miles) across - which is sometimes an indication of weakening but may not be in this case. The surface pressure at the time of this image was estimated by the National Hurricane Center at 915 mb and falling - consistent with a very intense and strengthening hurricane.

    [figure removed for brevity, see original site] September 13, Friday, 1:30 pm. - microwave, 89GHz The microwave image shows that Ivan has again developed two distinct convective centers, separated by about 250 km. That pattern developed on September 5 and persisted for 4 days. It disappeared while the storm was passing over Jamaica, but it has now re-formed.

    [figure removed for brevity, see original site] September 13, Friday, 1:30 pm. - visible/near-infrared

    The Atmospheric Infrared Sounder Experiment, with its

  3. Hurricane Frances as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS) - Total Water

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Born in the Atlantic, Hurricane Frances became a category 4 hurricane on August 31, 2004. Expectations are the hurricane will hit the Space Coast of Florida in Brevard County early Sunday morning.

    This movie is a time-series of maps that show AIRS observations of the total amount of water vapor present in the atmospheric column above each point of the Earth's surface. If all the water vapor in the column were forced to fall as rain, the depth of the resulting puddle on the surface at that point is equal to the value shown on the map. Fifty millimeters (mm) is about 2 inches. The large band of maximum water vapor in the neighborhood of the equator is the Intertropical Convergence Zone (ITCZ), a region of strong convection and powerful thunderstorms.

    This movie shows the total precipitable water vapor from August 23 through September 2, 2004. You can see Hurricane Frances as it moves through the Caribbean toward Florida, and the changes in intensity are visible. The eye has been marked with a red spot. The water vapor encompassed by the hurricane is also the result of the very strong convection which is an integral part of the formation and intensification of tropical storms. If you look at the last frame of the movie in the lower right corner, you can see the emergence of a new tropical storm. Ivan makes its debut in the Atlantic.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft

  4. A synthetic data set of high-spectral-resolution infrared spectra for the Arctic atmosphere

    NASA Astrophysics Data System (ADS)

    Cox, Christopher J.; Rowe, Penny M.; Neshyba, Steven P.; Walden, Von P.

    2016-05-01

    Cloud microphysical and macrophysical properties are critical for understanding the role of clouds in climate. These properties are commonly retrieved from ground-based and satellite-based infrared remote sensing instruments. However, retrieval uncertainties are difficult to quantify without a standard for comparison. This is particularly true over the polar regions, where surface-based data for a cloud climatology are sparse, yet clouds represent a major source of uncertainty in weather and climate models. We describe a synthetic high-spectral-resolution infrared data set that is designed to facilitate validation and development of cloud retrieval algorithms for surface- and satellite-based remote sensing instruments. Since the data set is calculated using pre-defined cloudy atmospheres, the properties of the cloud and atmospheric state are known a priori. The atmospheric state used for the simulations is drawn from radiosonde measurements made at the North Slope of Alaska (NSA) Atmospheric Radiation Measurement (ARM) site at Barrow, Alaska (71.325° N, 156.615° W), a location that is generally representative of the western Arctic. The cloud properties for each simulation are selected from statistical distributions derived from past field measurements. Upwelling (at 60 km) and downwelling (at the surface) infrared spectra are simulated for 260 cloudy cases from 50 to 3000 cm-1 (3.3 to 200 µm) at monochromatic (line-by-line) resolution at a spacing of ˜ 0.01 cm-1 using the Line-by-line Radiative Transfer Model (LBLRTM) and the discrete-ordinate-method radiative transfer code (DISORT). These spectra are freely available for interested researchers from the NSF Arctic Data Center data repository (doi:10.5065/D61J97TT).

  5. Low-temperature and low atmospheric pressure infrared reflectance spectroscopy of Mars soil analog materials

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Pieters, Carle M.

    1995-01-01

    Infrared reflectance spectra of carefully selected Mars soil analog materials have been measured under low atmospheric pressures and temperatures. Chemically altered montmorillonites containing ferrihydrite and hydrated ferric sulfate complexes are examined, as well as synthetic ferrihydrate and a palagonitic soil from Haleakala, Maui. Reflectance spectra of these analog materials exhibit subtle visible to near-infrared features, which are indicative of nanophase ferric oxides or oxyhydroxides and are similar to features observed in the spectra of the bright regions of Mars. Infrared reflectance spectra of these analogs include hydration features due to structural OH, bound H2O and adsorbed H2O. The spectal character of these hydration features is highly dependent on the sample environment and on the nature of the H2O/OH in the analogs. The behavior of the hydration features near 1.9 micrometers, 2.2 micrometers, 2.7 micrometers, 3 micrometers, and 6 micrometers are reported here in spetra measured under Marslike atmospheric environment. In spectra of these analogs measured under dry Earth atmospheric conditions the 1.9-micrometer band depth is 8-17%; this band is much stonger under moist conditions. Under Marslike atmospheric conditions the 1.9-micrometer feature is broad and barely discernible (1-3% band depth) in spectra of the ferrihydrite and palagonitic soil samples. In comparable spectra of the ferric sulfate-bearing montmorillonite the 1.9-micrometer feature is also broad, but stronger (6% band depth). In the low atmospheric pressure and temperature spectra of the ferrihydrite-bearing montmorillonite this feature is sharper than the other analogs and relatively stronger (6% band depth). Although the intensity of the 3- micrometer band is weaker in spectra of each of the analogs when measured under Marslike conditions, the 3-micromter band remains a dominant feature and is especially broad in spectra of the ferrihydrite and palagonitic soil. The structural

  6. Low-temperature and low atmospheric pressure infrared reflectance spectroscopy of Mars soil analog materials

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Pieters, Carle M.

    1995-01-01

    Infrared reflectance spectra of carefully selected Mars soil analog materials have been measured under low atmospheric pressures and temperatures. Chemically altered montmorillonites containing ferrihydrite and hydrated ferric sulfate complexes are examined, as well as synthetic ferrihydrite and a palagonitic soil from Haleakala, Maui. Reflectance spectra of these analog materials exhibit subtle visible to near-infrared features, which are indicative of nanophase ferric oxides or oxyhydroxides and are similar to features observed in the spectra of the bright regions of Mars. Infrared reflectance spectra of these analogs include hydration features due to structural OH, bound H2O, and adsorbed H2O. The spectral character of these hydration features is highly dependent on the sample environment and on the nature of the H2O/OH in the analogs. The behavior of the hydration features near 1.9 micron, 2.2 micron, 2.7 micron, 3 micron, and 6 microns are reported here in spectra measured under a Marslike atmospheric environment. In spectra of these analogs measured under dry Earth atmospheric conditions the 1.9-micron band depth is 8-17%; this band is much stronger under moist conditions. Under Marslike atmospheric conditions the 1.9-micron feature is broad and barely discernible (1-3% band depth) in spectra of the ferrihydrite and palagonitic soil samples. In comparable spectra of the ferric sulfate-bearing montmorillonite the 1.9-micron feature is also broad, but stronger (6% band depth). In the low atmospheric pressure and temperature spectra of the ferrihydrite-bearing montmorillonite this feature is sharper than the other analogs and relatively stronger (6% band depth). Although the intensity of the 3-micron band is weaker in spectra of each of the analogs when measured under Marslike conditions, the 3-micron band remains a dominant feature and is especially broad in spectra of the ferrihydrite and palagonitic soil. The structural OH features observed in these materials

  7. Motion in Jupiter's Atmospheric Vortices (Near-infrared filters)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Two frame 'movie' of a pair of vortices in Jupiter's southern hemisphere. The two frames are separated by ten hours. The right oval is rotating counterclockwise, like other anticyclonic bright vortices in Jupiter's atmosphere. The left vortex is a cyclonic (clockwise) vortex. The differences between them (their brightness, their symmetry, and their behavior) are clues to how Jupiter's atmosphere works. The frames span about fifteen degrees in latitude and longitude and are centered at 141 degrees west longitude and 36 degrees south planetocentric latitude. Both vortices are about 3500 kilometers in diameter in the north-south direction.

    The images were taken in near infrared light at 756 nanometers and show clouds that are at a pressure level of about 1 bar in Jupiter's atmosphere. North is at the top. The smallest resolved features are tens of kilometers in size. These images were taken on May 7, 1997, at a range of 1.5 million kilometers by the Solid State Imaging system on NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  8. Regional trace gas monitoring simplified - A linear retrieval scheme for carbon monoxide from hyperspectral soundings

    NASA Astrophysics Data System (ADS)

    Smith, N.; Huang, A.; Weisz, E.; Annegarn, H. J.

    2011-12-01

    The Fast Linear Inversion Trace gas System (FLITS) is designed to retrieve tropospheric total column trace gas densities [molec.cm-2] from space-borne hyperspectral infrared soundings. The objective to develop a new retrieval scheme was motivated by the need for near real-time air quality monitoring at high spatial resolution. We present a case study of FLITS carbon monoxide (CO) retrievals from daytime (descending orbit) Infrared Atmospheric Sounding Interferometer (IASI) measurements that have a 0.5 cm-1 spectral resolution and 12 km footprint at nadir. The standard Level 2 IASI CO retrieval product (COL2) is available in near real-time but is spatially averaged over 2 x 2 pixels, or 50 x 50 km, and thus more suitable for global analysis. The study region is Southern Africa (south of the equator) for the period 28-31 August 2008. An atmospheric background estimate is obtained from a chemical transport model, emissivity from regional measurements and surface temperature (ST) from space-borne retrievals. The CO background error is set to 10%. FLITS retrieves CO by assuming a simple linear relationship between the IASI measurements and background estimate of the atmosphere and surface parameters. This differs from the COL2 algorithm that treats CO retrieval as a moderately non-linear problem. When compared to COL2, the FLITS retrievals display similar trends in distribution and transport of CO over time with the advantage of an improved spatial resolution (single-pixel). The value of the averaging kernel (A) is consistently above 0.5 and indicates that FLITS retrievals have a stable dependence on the measurement. This stability is achieved through careful channel selection in the strongest CO absorption lines (2050-2225 cm-1) and joint retrieval with skin temperature (IASI sensitivity to CO is highly correlated with ST), thus no spatial averaging is necessary. We conclude that the simplicity and stability of FLITS make it useful first as a research tool, i.e. the

  9. Surface Emissivity Retrieved with Satellite Ultraspectral IR Measurements for Monitoring Global Change

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Schluessel, Peter

    2009-01-01

    Surface and atmospheric thermodynamic parameters retrieved with advanced ultraspectral remote sensors aboard Earth observing satellites are critical to general atmospheric and Earth science research, climate monitoring, and weather prediction. Ultraspectral resolution infrared radiance obtained from nadir observations provide atmospheric, surface, and cloud information. Presented here is the global surface IR emissivity retrieved from Infrared Atmospheric Sounding Interferometer (IASI) measurements under "clear-sky" conditions. Fast radiative transfer models, applied to the cloud-free (or clouded) atmosphere, are used for atmospheric profile and surface parameter (or cloud parameter) retrieval. The inversion scheme, dealing with cloudy as well as cloud-free radiances observed with ultraspectral infrared sounders, has been developed to simultaneously retrieve atmospheric thermodynamic and surface (or cloud microphysical) parameters. Rapidly produced surface emissivity is initially evaluated through quality control checks on the retrievals of other impacted atmospheric and surface parameters. Surface emissivity and surface skin temperature from the current and future operational satellites can and will reveal critical information on the Earth s ecosystem and land surface type properties, which can be utilized as part of long-term monitoring for the Earth s environment and global climate change.

  10. Evaluation of Shortwave Infrared Atmospheric Correction for Ocean Color Remote Sensing of Chesapeake Bay

    NASA Technical Reports Server (NTRS)

    Werdell, P. Jeremy; Franz, Bryan A.; Bailey, Sean W.

    2010-01-01

    The NASA Moderate Resolution Imaging Spectroradiometer onboard the Aqua platform (MODIS-Aqua) provides a viable data stream for operational water quality monitoring of Chesapeake Bay. Marine geophysical products from MODIS-Aqua depend on the efficacy of the atmospheric correction process, which can be problematic in coastal environments. The operational atmospheric correction algorithm for MODIS-Aqua requires an assumption of negligible near-infrared water-leaving radiance, nL(sub w)(NIR). This assumption progressively degrades with increasing turbidity and, as such, methods exist to account for non-negligible nL(sub w)(NIR) within the atmospheric correction process or to use alternate radiometric bands where the assumption is satisfied, such as those positioned within shortwave infrared (SWIR) region of the spectrum. We evaluated a decade-long time-series of nL(sub w)(lambda) from MODIS-Aqua in Chesapeake Bay derived using NIR and SWIR bands for atmospheric correction. Low signal-to-noise ratios (SNR) for the SWIR bands of MODIS-Aqua added noise errors to the derived radiances, which produced broad, flat frequency distributions of nL(sub w)(lambda) relative to those produced using the NIR bands. The SWIR approach produced an increased number of negative nL(sub w)(lambda) and decreased sample size relative to the NIR approach. Revised vicarious calibration and regional tuning of the scheme to switch between the NIR and SWIR approaches may improve retrievals in Chesapeake Bay, however, poor SNR values for the MODIS-Aqua SWIR bands remain the primary deficiency of the SWIR-based atmospheric correction approach.

  11. Infrared atmospheric sounding interferometer correlation interferometry for the retrieval of atmospheric gases: the case of H2O and CO2.

    PubMed

    Grieco, Giuseppe; Masiello, Guido; Serio, Carmine; Jones, Roderic L; Mead, Mohammed I

    2011-08-01

    Correlation interferometry is a particular application of Fourier transform spectroscopy with partially scanned interferograms. Basically, it is a technique to obtain the difference between the spectra of atmospheric radiance at two diverse spectral resolutions. Although the technique could be exploited to design an appropriate correlation interferometer, in this paper we are concerned with the analytical aspects of the method and its application to high-spectral-resolution infrared observations in order to separate the emission of a given atmospheric gas from a spectral signal dominated by surface emission, such as in the case of satellite spectrometers operated in the nadir looking mode. The tool will be used to address some basic questions concerning the vertical spatial resolution of H2O and to develop an algorithm to retrieve the columnar amount of CO2. An application to complete interferograms from the Infrared Atmospheric Sounding Interferometer will be presented and discussed. For H2O, we have concluded that the vertical spatial resolution in the lower troposphere mostly depends on broad features associated with the spectrum, whereas for CO2, we have derived a technique capable of retrieving a CO2 columnar amount with accuracy of ≈±7 parts per million by volume at the level of each single field of view.

  12. Operational atmospheric correction of AVHRR visible and infrared data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vermote, E.; El Saleous, N.; Roger, J.C.

    1995-12-31

    The satellite level radiance is affected by the presence of the atmosphere between the sensor and the target. The ozone and water vapor absorption bands affect the signal recorded by the AVHRR visible and near infrared channels respectively. The Rayleigh scattering mainly affects the visible channel and is more pronounced when dealing with small sun elevations and large view angles. The aerosol scattering affects both channels and is certainly the most challenging term for atmospheric correction because of the spatial and temporal variability of both the type and amount of particles in the atmosphere. This paper presents the equation ofmore » the satellite signal, the scheme to retrieve atmospheric properties and corrections applied to AVHRR observations. The operational process uses TOMS data and a digital elevation model to correct for ozone absorption and rayleigh scattering. The water vapor content is evaluated using the split-window technique that is validated over ocean using 1988 SSM/I data. The aerosol amount retrieval over Ocean is achieved in channels 1 and 2 and compared to sun photometer observations to check consistency of the radiative transfer model and the sensor calibration. Over land, the method developed uses reflectance at 3.75 microns to deduce target reflectance in channel 1 and retrieve aerosol optical thickness that can be extrapolated in channel 2. The method to invert the reflectance at 3.75 microns is based on MODTRAN simulations and is validated by comparison to measurements performed during FIFE 87. Finally, aerosol optical thickness retrieved over Brazil and Eastern US is compared to sun photometer measurements.« less

  13. Determination of atmospheric moisture structure and infrared cooling rates from high resolution MAMS radiance data

    NASA Technical Reports Server (NTRS)

    Menzel, W. Paul; Moeller, Christopher C.; Smith, William L.

    1991-01-01

    This program has applied Multispectral Atmospheric Mapping Sensor (MAMS) high resolution data to the problem of monitoring atmospheric quantities of moisture and radiative flux at small spatial scales. MAMS, with 100-m horizontal resolution in its four infrared channels, was developed to study small scale atmospheric moisture and surface thermal variability, especially as related to the development of clouds, precipitation, and severe storms. High-resolution Interferometer Sounder (HIS) data has been used to develop a high spectral resolution retrieval algorithm for producing vertical profiles of atmospheric temperature and moisture. The results of this program are summarized and a list of publications resulting from this contract is presented. Selected publications are attached as an appendix.

  14. Comparison results of MOPITT, AIRS and IASI data with ground-based spectroscopic measurements of CO and CH4 total contents

    NASA Astrophysics Data System (ADS)

    Rakitin, Vadim; Elansky, Nikolai; Shtabkin, Yury; Skorokhod, Andrey; Grechko, Eugeny; Pankratova, Natalia; Safronov, Alexandr

    2016-04-01

    A comparative analysis of satellite and ground-based spectroscopic measurements of CO and CH4 total content (CO TC) in the atmosphere in the background and polluted conditions (stations of OIAP RAS and NDACC) for the 2010-2015 time-period. The significant correlation between satellite and ground-based CO TC data for all satellite sensors in background conditions was obtained. Also the empirical private transient relationships between satellite CO MOPITT v6 Joint, AIRS v6, IASI MeTop-A products and the data of solar-tracking ground-based spectrometers are analyzed. Significant correlation between satellite and ground-based data of CO TC was obtained for all satellite sensors if measurements were carried out over unpolluted areas (2010-2014). It was shown that for polluted areas IASI MetOp-A and AIRSv6 data underestimate the actual value of CO TC by the factor of 1.5÷ 2.8. The average correlation between satellite and ground-based data increased significantly for the case if the measurement days, when the height of the planetary boundary layer (PBL) was less than 400-500 meters, were excluded from the comparison. This result was obtained for all of the selected sensors and observational sites. To improve the representativeness of the satellite CO TC data for polluted areas it could be recommended to exclude the days with low height of the PBL from the analysis of spatio-temporal variations and subsequent data assimilation (as example for the CO emissions estimating from powerful surface sources). Best correlation (R2≥0.5) in diurnal CH4 TC with ground-based data was found for AIRS v6. This work has supported by the Russian Scientific Foundation under grant №14-47-00049 and partially by the Russian Foundation for Basic Research (grant № 13-05-41395).

  15. Winds and Temperatures in Venus Upper Atmosphere from High-Resolution Infrared Heterodyne Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sornig, Manuela; Sonnabend, Guido; Krötz, Peter; Stupar, Dusan

    2010-05-01

    Narrow non-LTE emission lines of CO2 at 10μm are induced by solar radiation in Venus upper atmosphere. Measurements of fully resolved emission lines can be used to probe the emitting regions of the atmosphere for winds and tempertaures. Using infrared heterodyne spectroscopy kinetic temperatures with a precision of 5 K can be calculated from the width of emission lines and wind velocities can be determined from Doppler-shifts of emission lines with a precision up to 10 m/s. The non-LTE emission can only occur within a narrow pressure/altitude region around 110 km. At the I.Physikalisches Instiut of the University of Cologne we developed a Tunable Infrared Heterodyne Spectrometer (THIS) capable of accomplishing such ground-based measurements of planetary atmospheres. Beside high spectral resolution (R>107) infrared observations also provide high spatial resolution on the planet. Over the last two years we observed wind velocities and temperatures at several characteristic orbital positions of Venus using the McMath-Pierce-Solar Telescope on Kitt Peak, Arizona, USA. This telescope provides a field-of-view of 1.7 arcsec on an apparent diameter of Venus of approximately 20-60 arcsec. New observations close to inferior conjunction have been accomplished in March and in April 2009 An additional observing run took place in June 2009 at maximum western elongation. These observing geometries allow investigations of wind velocities of different combinations of the superrotational component and the subsolar-antisolar (SS-AS) flow component. Due to the observing geometry during the March and April runs we focused on SS-AS flow. Wind velocities around 140 m/s were found decreasing significantly at high latitudes. No significant superrotational component could be observed and the variability between these two runs was moderate. Data analysis for the run in June 2009 addressing mainly the superrotational component is still in progress. Retrieved temperatures from all three

  16. Epidemiology of acute drug poisoning in a tertiary center from Iasi County, Romania.

    PubMed

    Sorodoc, Victorita; Jaba, Irina M; Lionte, Catalina; Mungiu, Ostin C; Sorodoc, Laurentiu

    2011-12-01

    The aim of this retrospective epidemiological study was to investigate the demographical, etiological and clinical characteristics of acute drug poisonings in Iasi County, Romania. All patients were referred and admitted in the Toxicology Clinic of "Sf. Ioan" Emergency Clinic Hospital Iasi, Romania. Between 2003 and 2009, 811 cases of acute drug poisonings were recorded, counting for 28.43% from the total number of poisonings. The majority of these poisonings resulted in mild (51.94%) and medium (28.35%) clinical forms, while 19.71% were coma situations. In all, 63.51% of patients originated from urban areas, 39.94% were unemployed and the patients were predominantly women (66.46%). A high percentage (97.27%) were suicide attempts, using only one type of drug (65.88%) and the 21-30 years group (29.8%) records the highest incidence, for both women and men. The most frequently involved drugs were benzodiazepines 13.69%, anticonvulsive drugs 8.63%, barbiturates 8.51% and cardiovascular drugs 5.92%. Drugs combinations were recorded in 32.92% of cases and 1.2% were combinations between drugs and other substances. Mortality was the outcome in 0.3% of the total registered number of acute drug poisonings. This study underlines that in order to provide a proper management of these situations, a Regional Poison Information Center is absolutely necessary.

  17. The CubeSat Infrared Atmospheric Sounder (CIRAS): Demonstrating key technologies for a future constellation to improve temporal sampling

    NASA Astrophysics Data System (ADS)

    Pagano, T. S.

    2016-12-01

    Hyperspectral infrared sounding of the atmosphere has become a vital element in the observational system for weather forecast prediction at National Weather Prediction (NWP) centers worldwide. The NASA Atmospheric Infrared Sounder (AIRS) instrument was the pathfinder for the hyperspectral infrared observations and was designed to provide accurate atmospheric temperature and water vapor profile information in support of weather prediction. AIRS was launched in 2002 and continues to operate well. The Cross-track Infrared Sounder (CrIS) on the Suomi NPP satellite was launched in 2011 to continue the AIRS measurement record. CrIS also continues to operate well and additional sensors are planned for launch promising to continue the hyperspectral infrared measurements in support of NWP into the late 2030's. The high cost of IR sounders makes it costly to launch them into multiple orbits to improve temporal sampling, or into GEO, although EUMETSAT is planning a GEO IR Sounder to launch in the early 2020's. JPL NASA is offering an alternate hyperspectral IR sounder architecture for the future involving CubeSats. The latest technology in large format focal plane assemblies, wide field optics and active cryocoolers enables a reduction in size, mass and cost of the legacy sounders and offer new configurations. Lessons learned from AIRS and CrIS indicate that temperature and water vapor sounding in the lower troposphere can be achieved with only the MWIR portion of the spectrum. The CubeSat Infrared Atmospheric Sounder (CIRAS) employs only an MWIR spectrometer to achieve lower tropospheric temperature and water vapor profiles, but with comparable spatial, spectral and radiometric sensitivity in this band as AIRS and CrIS. CIRAS operates from 4.08-5.13 µm with 625 channels and spectral resolution of 1.2-2.0 cm-1. CIRAS employs an immersion grating spectrometer making the optics incredibly compact, and HOT-BIRD detectors enabling good uniformity and operability over the large

  18. Ion composition of coarse and fine particles in Iasi, north-eastern Romania: Implications for aerosols chemistry in the area

    NASA Astrophysics Data System (ADS)

    Arsene, Cecilia; Olariu, Romeo Iulian; Zarmpas, Pavlos; Kanakidou, Maria; Mihalopoulos, Nikolaos

    2011-02-01

    Atmospheric loadings of the aerosols coarse (particles of AED > 1.5 μm) and fine fractions (particles of AED < 1.5 μm) were determined in Iasi, north-eastern Romania from January 2007 to March 2008. Concentrations of water soluble ions (SO 42-, NO 3-, Cl -, C 2O 42-, NH 4+, K +, Na +, Ca 2+ and Mg 2+) were measured using ion chromatography (IC). In the coarse particles, calcium and carbonate are the main ionic constituents (˜65%), whereas in the fine particles SO 42-, NO 3-, Cl - and NH 4+ are the most abundant. Temperature and relative humidity (RH) associated with increased concentrations of specific ions might be the main factors controlling the aerosol chemistry at the investigated site. From August 2007 to March 2008 high RH (as high as 80% for about 82% of the investigated period) was prevailing in Iasi and the collected particles were expected to have deliquesced and form an internal mixture. We found that in fine particles ammonium nitrate (NH 4NO 3) is important especially under conditions of NH 4+/SO 42- ratio higher than 1.5 and high RH (RH above deliquescence of NH 4Cl, NH 4NO 3 and (NH 4) 2SO 4). At the investigated site large ammonium artifacts may occur due to inter-particle interaction especially under favorable meteorological conditions. A methodology for estimating the artifact free ambient ammonium concentration is proposed for filter pack sampling data of deliquesced particles. Nitrate and sulfate ions in coarse particles are probably formed via reactions of nitric and sulfuric acid with calcium carbonate and sodium chloride which during specific seasons are abundant at the investigated site. In the fine mode sulfate concentration maximized during summer (due to enhanced photochemistry) and winter (due to high concentration of SO 2 emitted from coal burning). Natural contributions, dust or sea-salt related, prevail mainly in the coarse particles. From May 2007 to August 2007, when air masses originated mainly from Black Sea, in the coarse

  19. Sensor System Performance Evaluation and Benefits from the NPOESS Airborne Sounder Testbed-Interferometer (NAST-I)

    NASA Technical Reports Server (NTRS)

    Larar, A.; Zhou, D.; Smith, W.

    2009-01-01

    Advanced satellite sensors are tasked with improving global-scale measurements of the Earth's atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring, and environmental change detection. Validation of the entire measurement system is crucial to achieving this goal and thus maximizing research and operational utility of resultant data. Field campaigns employing satellite under-flights with well-calibrated FTS sensors aboard high-altitude aircraft are an essential part of this validation task. The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Airborne Sounder Testbed-Interferometer (NAST-I) has been a fundamental contributor in this area by providing coincident high spectral/spatial resolution observations of infrared spectral radiances along with independently-retrieved geophysical products for comparison with like products from satellite sensors being validated. This paper focuses on some of the challenges associated with validating advanced atmospheric sounders and the benefits obtained from employing airborne interferometers such as the NAST-I. Select results from underflights of the Aqua Atmospheric InfraRed Sounder (AIRS) and the Infrared Atmospheric Sounding Interferometer (IASI) obtained during recent field campaigns will be presented.

  20. Cloud properties and bulk microphysical properties of semi-transparent cirrus from IR Sounders

    NASA Astrophysics Data System (ADS)

    Stubenrauch, Claudia; Feofilov, Artem; Armante, Raymond; Guignard, Anthony

    2013-04-01

    Satellite observations provide a continuous survey of the atmosphere over the whole globe. IR sounders have been observing our planet since 1979. The spectral resolution has improved from TIROS-N Operational Vertical Sounders (TOVS) to the Atmospheric InfraRed Sounder (AIRS), and to the InfraRed Atmospheric Sounding Interferometer (IASI); resolution within the CO2 absorption band makes these passive sounders most sensitive to semi-transparent cirrus (about 30% of all clouds), day and night. The LMD cloud property retrieval method developed for TOVS, has been adapted to the second generation of IR sounders like AIRS and, recently, IASI. It is based on a weighted χ2 method using different channels within the 15 micron CO2 absorption band. Once the cloud physical properties (cloud pressure and IR emissivity) are retrieved, cirrus bulk microphysical properties (De and IWP) are determined from spectral emissivity differences between 8 and 12 μm. The emissivities are determined using the retrieved cloud pressure and are then compared to those simulated by the radiative transfer model. For IASI, we use the latest version of the radiative transfer model 4A (http://4aop.noveltis.com), which has been coupled with the DISORT algorithm to take into account multiple scattering of ice crystals. The code incorporates single scattering properties of column-like or aggregate-like ice crystals provided by MetOffice (Baran et al. (2001); Baran and Francis (2004)). The synergy of AIRS and two active instruments of the A-Train (lidar and radar of the CALIPSO and CloudSat missions), which provide accurate information on vertical cloud structure, allowed the evaluation of cloud properties retrieved by the weighted χ2 method. We present first results for cloud properties obtained with IASI/ Metop-A and compare them with those of AIRS and other cloud climatologies having participated in the GEWEX cloud assessment. The combination of IASI observations at 9:30 AM and 9:30 PM complement

  1. Atmospheric water mapping with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), Mountain Pass, California

    NASA Technical Reports Server (NTRS)

    Conel, James E.; Green, Robert O.; Carrere, Veronique; Margolis, Jack S.; Alley, Ronald E.; Vane, Gregg; Bruegge, Carol J.; Gary, Bruce L.

    1988-01-01

    Observations are given of the spatial variation of atmospheric precipitable water using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over a desert area in eastern California, derived using a band ratio method and the 940 nm atmospheric water band and 870 nm continuum radiances. The ratios yield total path water from curves of growth supplied by the LOWTRAN 7 atmospheric model. An independent validation of the AVIRIS-derived column abundance at a point is supplied by a spectral hygrometer calibrated with respect to radiosonde observations. Water values conform to topography and fall off with surface elevation. The edge of the water vapor boundary layer defined by topography is thought to have been recovered. The ratio method yields column abundance estimates of good precision and high spatial resolution.

  2. RESULTS OF OBSERVATIONS ON ATMOSPHERIC OZONE BY THE INFRARED METHOD, DEDUCED FROM DATA OBTAINED IN AROSA (SWITZERLAND),

    DTIC Science & Technology

    Vertical distributions of the atmospheric ozone have been deduced from the infrared observations made in Arosa from Janaury 1957 to November 1958. The results are used to find certain correlations. (Author)

  3. Multiband infrared inversion for low-concentration methane monitoring in a confined dust-polluted atmosphere.

    PubMed

    Wang, Wenzheng; Wang, Yanming; Song, Wujun; Li, Xueqin

    2017-03-20

    A multiband infrared diagnostic (MBID) method for methane emission monitoring in limited underground environments was presented considering the strong optical background of gas/solid attenuation. Based on spatial distribution of aerosols and complex refractive index of dust particles, forward calculations were carried out with/without methane to obtain the spectral transmittance through the participating atmosphere in a mine roadway. Considering the concurrent attenuation and absorption behavior of dust and gases, four infrared wavebands were selected to retrieve the methane concentration combined with a stochastic particle swarm optimization (SPSO) algorithm. Inversion results prove that the presented MBID method is robust and effective in identifying methane at concentrations of 0.1% or even lower with inversed relative error within 10%. Further analyses illustrate that the four selected wavebands are indispensable, and the MBID method is still valid with transmission signal disturbance in a conventional dust-polluted atmosphere under mechanized mining condition. However, the effective detection distance should be limited within 50 m to ensure inversed relative error less than 5% at 1% methane concentration.

  4. Jupiter Scar in Infrared

    NASA Image and Video Library

    2011-01-26

    These infrared images obtained from NASA Infrared Telescope Facility in Mauna Kea, Hawaii, show before and aftereffects from particle debris in Jupiter atmosphere after an object hurtled into the atmosphere on July 19, 2009.

  5. Aspects regarding the hygienic-sanitary conditions at the level of certain dental medicine cabinets in Iasi County.

    PubMed

    Cernei, E R; Maxim, Dana Cristiana; Indrei, L L

    2013-01-01

    This baseline study aims to find out the evaluation of hygienic-sanitary conditions at the level of dental medicine cabinets through the verification of certain hygienic aspects. The study conducted consists in monitoring the hygienic/sanitary conditions at the level of 68 dental medicine cabinets (40 private cabinets and 28 school/university dental cabinets in Iasi county), using sheets for the assessment of the hygienic/sanitary conditions adapted from the control sheets of existing dental medicine cabinets at the level of DSP (Public Health Department) Iasi. The sheets for the assessment of the hygienic/sanitary conditions were evaluated by a specialized team and the results were i llustrated in the specific charts. At the level of all the dental cabinets the study revealed nonconformities regarding the means to carry out cleaning, disinfection operations, including the management of perilous waste, the control of medical personnel. An optimization of the hygienic-sanitary conditions at the level of dental medicine cabinets is still necessary, through participation to the activity of personnel training, who is directly involved in dental medical assistance.

  6. Upper tropospheric cloud systems determined from IR Sounders and their influence on the atmosphere

    NASA Astrophysics Data System (ADS)

    Stubenrauch, Claudia; Protopapadaki, Sofia; Feofilov, Artem; Velasco, Carola Barrientos

    2017-02-01

    Covering about 30% of the Earth, upper tropospheric clouds play a key role in the climate system by modulating the Earth's energy budget and heat transport. Infrared Sounders reliably identify cirrus down to an IR optical depth of 0.1. Recently LMD has built global cloud climate data records from AIRS and IASI observations, covering the periods from 2003-2015 and 2008-2015, respectively. Upper tropospheric clouds often form mesoscale systems. Their organization and properties are being studied by (1) distinguishing cloud regimes within 2° × 2° regions and (2) applying a spatial composite technique on adjacent cloud pressures, which estimates the horizontal extent of the mesoscale cloud systems. Convective core, cirrus anvil and thin cirrus of these systems are then distinguished by their emissivity. Compared to other studies of tropical mesoscale convective systems our data include also the thinner anvil parts, which make out about 30% of the area of tropical mesoscale convective systems. Once the horizontal and vertical structure of these upper tropospheric cloud systems is known, we can estimate their radiative effects in terms of top of atmosphere and surface radiative fluxes and by computing their heating rates.

  7. Studies of Arctic Middle Atmosphere Chemistry using Infrared Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lindenmaier, Rodica

    The objective of this Ph.D. project is to investigate Arctic middle atmosphere chemistry using solar infrared absorption spectroscopy. These measurements were made at the Polar Environment Atmospheric Research Laboratory (PEARL) at Eureka, Nunavut, which is operated by the Canadian Network for the Detection of Atmospheric Change (CANDAC). This research is part of the CANDAC/PEARL Arctic Middle Atmosphere Chemistry theme and aims to improve our understanding of the processes controlling the stratospheric ozone budget using measurements of the concentrations of stratospheric constituents. The instrument, a Bruker IFS 125HR Fourier transform infrared (FTIR) spectrometer, has been specifically designed for high-resolution measurements over a broad spectral range and has been used to measure reactive species, source gases, reservoirs, and dynamical tracers at PEARL since August 2006. The first part of this research focuses on the optimization of ozone retrievals, for which 22 microwindows were studied and compared. The spectral region from 1000 to 1005 cm-1 was found to be the most sensitive in both the stratosphere and troposphere, giving the highest number of independent pieces of information and the smallest total error for retrievals at Eureka. Similar studies were performed in coordination with the Network for the Detection of Atmospheric Composition Change for nine other species, with the goal of improving and harmonizing the retrieval parameters among all Infrared Working Group sites. Previous satellite validation exercises have identified the highly variable polar conditions of the spring period to be a challenge. In this work, comparisons between the 125HR and ACE-FTS (Atmospheric Chemistry Experiment-Fourier transform spectrometer) from 2007 to 2010 have been used to develop strict criteria that allow the ground and satellite-based instruments to be confidently compared. After applying these criteria, the differences between the two instruments were generally

  8. Infrared Absorption by Atmospheric Aerosols in Mexico City during MILAGRO.

    NASA Astrophysics Data System (ADS)

    Kelley, K. L.; Mangu, A.; Gaffney, J. S.; Marley, N. A.

    2007-12-01

    found as colloidal materials in surface and groundwaters (4). Examples of the IR spectra obtained and variance as a function of time at the two sites will be presented. The spectra are taken in Kubelka - Munk format, which also allows the infrared absorption strengths to be evaluated as function of wavelength. The wavelength dependence of the aerosol complex refractive index (m = n + ik) in the infrared spectral region is determined by application of the Kramers Kronig function. The importance of the aerosol absorption in the infrared spectral region to radiative forcing will be discussed. 1. N.A. Marley, J.S. Gaffney, and M.M. Cunningham,Environ. Sci. Technol. 27 2864-2869 (1993). 2. N.A. Marley, J.S. Gaffney, and M.M. Cunningham, Spectroscopy 7 44-53 (1992). 3. J.S. Gaffney and N.A. Marley, Atmospheric Environment, New Directions contribution, 32, 2873-2874 (1998). 4. N.A. Marley, J.S. Gaffney, and K.A. Orlandini, Chapter 7 in Humic/Fulvic Acids and Organic Colloidal Materials in the Environment, ACS Symposium Series 651, American Chemical Society, Washington, D.C., pp. 96-107, 1996. This work was performed as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City (MAX- Mex) under the support of the Atmospheric Science Program. This research was supported by the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG02-07ER64328.

  9. Analysis of SO II point source emissions using NASA atmospheric infrared sounder data

    NASA Astrophysics Data System (ADS)

    Shen, Sylvia S.; Miller, David P.; Lewis, Paul E.

    2007-04-01

    Determining the extent to which large power plant emission sources interacting with atmospheric constituents affect the environment could play a significant role in future U.S. energy production policy. The effects on the environment caused by the interaction between power plant emissions and atmospheric constituents has not been investigated in depth due to the lack of calibrated spectral data on a suitable temporal and spatial scale. The availability of NASA's space-based Atmospheric Infrared Sounder (AIRS) data makes it possible to explore, and begin the first steps toward establishing, a correlation between known emission sources and environmental indicators. An exploratory study was conducted in which a time series of 26 cloud-free AIRS data containing two coal-fired power plants in northern New Mexico were selected, acquired, and analyzed for SO II emissions. A generic forward modeling process was also developed to derive an estimate of the expected AIRS pixel radiance containing the SO II emissions from the two power plants based on published combustion analysis data for coal and available power plant documentation. Analysis of the AIRS NEΔR calculated in this study and subsequent comparison with the radiance values for SO II calculated from the forward model provided essential information regarding the suitability and risk in the use of a modified AIRS configuration for monitoring anthropogenic point source emissions. The results of this study along with its conclusions and recommendations in conjunction with additional research collaboration in several specific topics will provide guidance for the development of the next generation infrared spectrometer system that NASA is considering building for environmental monitoring.

  10. (Un)Natural Disasters: The Electoral Cycle Outweighs the Hydrologic Cycle in Drought Declaration in Northeast Brazil

    NASA Astrophysics Data System (ADS)

    Camps-Valls, G.; Gomez-Chova, L.; Mateo, G.; Laparra, V.; Perez-Suay, A.; Munoz-Mari, J.

    2016-12-01

    Current Earth-observation (EO) applications for image classification have to deal with an unprecedented big amount of heterogeneous and complex data sources. Spatio-temporally explicit classification methods are a requirement in a variety of Earth system data processing applications. Upcoming missions such as the super-spectral Copernicus Sentinels EnMAP and FLEX will soon provide unprecedented data streams. Very high resolution (VHR) sensors like Worldview-3 also pose big challenges to data processing. The challenge is not only attached to optical sensors but also to infrared sounders and radar images which increased in spectral, spatial and temporal resolution. Besides, we should not forget the availability of the extremely large remote sensing data archives already collected by several past missions, such ENVISAT, Cosmo-SkyMED, Landsat, SPOT, or Seviri/MSG. These large-scale data problems require enhanced processing techniques that should be accurate, robust and fast. Standard parameter retrieval and classification algorithms cannot cope with this new scenario efficiently. In this work, we review the field of large scale kernel methods for both atmospheric parameter retrieval and cloud detection using infrared sounding IASI data and optical Seviri/MSG imagery. We propose novel Gaussian Processes (GPs) to train problems with millions of instances and high number of input features. Algorithms can cope with non-linearities efficiently, accommodate multi-output problems, and provide confidence intervals for the predictions. Several strategies to speed up algorithms are devised: random Fourier features and variational approaches for cloud classification using IASI data and Seviri/MSG, and engineered randomized kernel functions and emulation in temperature, moisture and ozone atmospheric profile retrieval from IASI as a proxy to the upcoming MTG-IRS sensor. Excellent compromise between accuracy and scalability are obtained in all applications.

  11. GARLIC - A general purpose atmospheric radiative transfer line-by-line infrared-microwave code: Implementation and evaluation

    NASA Astrophysics Data System (ADS)

    Schreier, Franz; Gimeno García, Sebastián; Hedelt, Pascal; Hess, Michael; Mendrok, Jana; Vasquez, Mayte; Xu, Jian

    2014-04-01

    A suite of programs for high resolution infrared-microwave atmospheric radiative transfer modeling has been developed with emphasis on efficient and reliable numerical algorithms and a modular approach appropriate for simulation and/or retrieval in a variety of applications. The Generic Atmospheric Radiation Line-by-line Infrared Code - GARLIC - is suitable for arbitrary observation geometry, instrumental field-of-view, and line shape. The core of GARLIC's subroutines constitutes the basis of forward models used to implement inversion codes to retrieve atmospheric state parameters from limb and nadir sounding instruments. This paper briefly introduces the physical and mathematical basics of GARLIC and its descendants and continues with an in-depth presentation of various implementation aspects: An optimized Voigt function algorithm combined with a two-grid approach is used to accelerate the line-by-line modeling of molecular cross sections; various quadrature methods are implemented to evaluate the Schwarzschild and Beer integrals; and Jacobians, i.e. derivatives with respect to the unknowns of the atmospheric inverse problem, are implemented by means of automatic differentiation. For an assessment of GARLIC's performance, a comparison of the quadrature methods for solution of the path integral is provided. Verification and validation are demonstrated using intercomparisons with other line-by-line codes and comparisons of synthetic spectra with spectra observed on Earth and from Venus.

  12. Nitrogen Isotopic Ratio in Jupiter's Atmosphere from Observations by Composite Infrared Spectrometer (CIRS) on the Cassini Spacecraft

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; LeClair, A.; Owen, T.; Conrath, B. J.; Flasar, F. M.; Kunde, V. G.; Nixon, C. A..; Achterberg, R. K.; Bjoraker, G.; Jennings, D. J.

    2003-01-01

    The Composite Infrared Spectrometer (CIRS) on the Cassini spacecraft made infrared observations of Jupiter's atmosphere during the flyby in December 2000 to January 2001. The unique database in the 600-1400/cm region with 0.53 and 2.8/cm spectral resolutions obtained from the observations permits retrieval of global maps of the thermal structure and composition of Jupiter's atmosphere including the distributions of (14)NH3 and (15)NH3. Analysis of Jupiter's ammonia distributions from three isolated (15)NH3 spectral lines in eight latitudes is presented for evaluation of the nitrogen isotopic ratio. The nitrogen isotopic ratio (14)N/(15)N (or (15)N/(14)N) in Jupiter's atmosphere in this analysis is calculated to be: 448 +/- 62 ((2.23 +/- 0.31) x 10(exp -3)). This value of the ratio determined from CIRS data is found to be in very close agreement with the value previously obtained from the measurements by the Galileo Probe Mass Spectrometer. Some possible mechanisms to account for the variation of Jupiter's observed isotopic ratio relative to various astrophysical environments are discussed.

  13. [On-orbit radiometric calibration accuracy of FY-3A MERSI thermal infrared channel].

    PubMed

    Xu, Na; Hu, Xiu-qing; Chen, Lin; Zhang, Yong; Hu, Ju-yang; Sun, Ling

    2014-12-01

    Accurate satellite radiance measurements are significant for data assimilations and quantitative retrieval applications. In the present paper, radiometric calibration accuracy of FungYun-3A (FY-3A) Medium Resolution Spectral Imager (MERSI) thermal infrared (TIR) channel was evaluated based on simultaneous nadir observation (SNO) intercalibration method. Hyperspectral and high-quality measurements of METOP-A/IASI were used as reference. Assessment uncertainty from intercalibration method was also investigated by examining the relation between BT bias against four main collocation factors, i. e. observation time difference, view geometric difference related to zenith angles and azimuth angles, and scene spatial homogeneity. It was indicated that the BT bias is evenly distributed across the collocation variables with no significant linear relationship in MERSI IR channel. Among the four collocation factors, the scene spatial homogeneity may be the most important factor with the uncertainty less than 2% of BT bias. Statistical analysis of monitoring biases during one and a half years indicates that the brightness temperature measured by MERSI is much warmer than that of IASI. The annual mean bias (MERSI-IASI) in 2012 is (3.18±0.34) K. Monthly averaged BT biases show a little seasonal variation character, and fluctuation range is less than 0.8 K. To further verify the reliability, our evaluation result was also compared with the synchronous experiment results at Dunhuang and Qinghai Lake sites, which showed excellent agreement. Preliminary analysis indicates that there are two reasons leading to the warm bias. One is the overestimation of blackbody emissivity, and the other is probably the incorrect spectral respond function which has shifted to window spectral. Considering the variation character of BT biases, SRF error seems to be the dominant factor.

  14. C3 Hydrocarbon Abundance in Titan's Atmosphere with Cassini Infrared Spectra

    NASA Astrophysics Data System (ADS)

    Lombardo, Nicholas; Nixon, Conor; Achterberg, Richard; Jolly, Antoine; Sung, Keeyoon; Irwin, Patrick; Flasar, F. M.

    2018-01-01

    Titan, the largest moon of the Saturn system, has an astrobiologically important atmosphere. The anoxic nature and high N2 abundance make it a strong analog to the early Earth. The secondary species, CH4, is easily photodissociated, and reactions between its dissociated products give rise to highly complex hydrocarbons and nitriles. The Voyager flyby and 14 year Cassini campaign allowed for the intense study of several of these molecules, enabling scientists to increase our understanding of the chemical pathways present above Titan. In this work, we report abundance profiles of four major C3 gasses expected to occur in Titan’s atmosphere, derived from Cassini/Composite Infrared Spectrometer (CIRS) data, allowing us to fill the gaps in the photochemical zoo that is Titan’s atmosphere.Using the NEMESIS iterative radiative transfer module, we retrieved vertical abundance profiles for propane (C3H8) and propyne (CHCCH3) both initially detected by the Voyager IRIS instrument. Using newly available line data, we were also able to determine the first vertical abundance profiles for propene (C3H6), initially detected in 2013. We present profiles for several latitudes and times and compare to photochemical model predictions and previous observations. We also discuss our ongoing search for allene (CH2CCH2), an isomer of propyne, which has yet to be definitively detected. The abundances we determined will help to further our understanding of the chemical pathways that occur in Titan's atmosphere.

  15. Ultrahigh-brightness, spectrally-flat, short-wave infrared supercontinuum source for long-range atmospheric applications.

    PubMed

    Yin, Ke; Zhu, Rongzhen; Zhang, Bin; Jiang, Tian; Chen, Shengping; Hou, Jing

    2016-09-05

    Fiber based supercontinuum (SC) sources with output spectra covering the infrared atmospheric window are very useful in long-range atmospheric applications. It is proven that silica fibers can support the generation of broadband SC sources ranging from the visible to the short-wave infrared region. In this paper, we present the generation of an ultrahigh-brightness spectrally-flat 2-2.5 μm SC source in a cladding pumped thulium-doped fiber amplifier (TDFA) numerically and experimentally. The underlying physical mechanisms behind the SC generation process are investigated firstly with a numerical model which includes the fiber gain and loss, the dispersive and nonlinear effects. Simulation results show that abundant soliton pulses are generated in the TDFA, and they are shifted towards the long wavelength side very quickly with the nonlinearity of Raman soliton self-frequency shift (SSFS), and eventually the Raman SSFS process is halted due to the silica fiber's infrared loss. A spectrally-flat 2-2.5 μm SC source could be generated as the result of the spectral superposition of these abundant soliton pulses. These simulation results correspond qualitatively well to the following experimental results. Then, in the experiment, a cladding pumped large-mode-area TDFA is built for pursuing a high-power 2-2.5 μm SC source. By enhancing the pump strength, the output SC spectrum broadens to the long wavelength side gradually. At the highest pump power, the obtained SC source has a maximum average power of 203.4 W with a power conversion efficiency of 38.7%. It has a 3 dB spectral bandwidth of 545 nm ranging from 1990 to 2535 nm, indicating a power spectral density in excess of 370 mW/nm. Meanwhile, the output SC source has a good beam profile. This SC source, to the best of our knowledge, is the brightest spectrally-flat 2-2.5 μm light source ever reported. It will be highly desirable in a lot of long-range atmospheric applications, such as broad-spectrum LIDAR, free

  16. Atmospheric correction using near-infrared bands for satellite ocean color data processing in the turbid western Pacific region.

    PubMed

    Wang, Menghua; Shi, Wei; Jiang, Lide

    2012-01-16

    A regional near-infrared (NIR) ocean normalized water-leaving radiance (nL(w)(λ)) model is proposed for atmospheric correction for ocean color data processing in the western Pacific region, including the Bohai Sea, Yellow Sea, and East China Sea. Our motivation for this work is to derive ocean color products in the highly turbid western Pacific region using the Geostationary Ocean Color Imager (GOCI) onboard South Korean Communication, Ocean, and Meteorological Satellite (COMS). GOCI has eight spectral bands from 412 to 865 nm but does not have shortwave infrared (SWIR) bands that are needed for satellite ocean color remote sensing in the turbid ocean region. Based on a regional empirical relationship between the NIR nL(w)(λ) and diffuse attenuation coefficient at 490 nm (K(d)(490)), which is derived from the long-term measurements with the Moderate-resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite, an iterative scheme with the NIR-based atmospheric correction algorithm has been developed. Results from MODIS-Aqua measurements show that ocean color products in the region derived from the new proposed NIR-corrected atmospheric correction algorithm match well with those from the SWIR atmospheric correction algorithm. Thus, the proposed new atmospheric correction method provides an alternative for ocean color data processing for GOCI (and other ocean color satellite sensors without SWIR bands) in the turbid ocean regions of the Bohai Sea, Yellow Sea, and East China Sea, although the SWIR-based atmospheric correction approach is still much preferred. The proposed atmospheric correction methodology can also be applied to other turbid coastal regions.

  17. Sea-based Infrared Radiance Measurements of Ocean and Atmosphere from the ACAPEX/CalWater2 Campaign

    NASA Astrophysics Data System (ADS)

    Gero, P. J.; Knuteson, R.; Hackel, D.; Phillips, C.; Westphall, M.

    2015-12-01

    The ARM Cloud Aerosol Precipitation Experiment (ACAPEX) / CalWater2 was a joint DOE/NOAA field campaign in early 2015 to study atmospheric rivers in the Pacific Ocean and their impacts on the western United States. The campaign goals were to improve understanding and modeling of large-scale dynamics and cloud and precipitation processes associated with atmospheric rivers and aerosol-cloud interactions that influence precipitation variability and extremes in the western United States. Coordinated measurements were made from ground-, aircraft- and sea-based platforms. The second ARM mobile facility (AMF-2) was deployed on board the NOAA Ship Ronald H. Brown for this campaign, which included a new Marine Atmospheric Emitted Radiance Interferometer (M-AERI) to measure the atmospheric downwelling and reflected infrared radiance spectrum at the Earth's surface with high absolute accuracy. The M-AERI measures spectral infrared radiance between 520-3020 cm-1 (3.3-19 μm) at a resolution of 0.5 cm-1. The M-AERI can selectively view the atmospheric scene at zenith, and ocean/atmospheric scenes over a range of ±45° from the horizon. The AERI uses two high-emissivity blackbodies for radiometric calibration, which in conjunction with the instrument design and a suite of rigorous laboratory diagnostics, ensures the radiometric accuracy to be better than 1% (3σ) of the ambient radiance. The M-AERI radiance spectra can be used to retrieve profiles of temperature and water vapor in the troposphere, as well as measurements of trace gases, cloud properties, surface emissivity and ocean skin temperature. We present preliminary results on measurements of ocean skin temperature, ocean emissivity properties as a function of view angle and wind speed, as well as comparisons with radiosondes and satellite observations.

  18. Novel Infrared Phototransistors for Atmospheric CO2 Profiling at 2 microns Wavelength

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Abedin, M. Nurul; Sulima, Oleg V.; Singh, Upendra N.; Ismail, Syed

    2004-01-01

    Two-micron detectors are critical for atmospheric carbon dioxide profiling using the lidar technique. The characterization results of a novel infrared AlGaAsSb/ InGaAsSb phototransistor are reported. Emitter dark current variation with the collector-emitter voltage at different temperatures is acquired to examine the gain mechanism. Spectral response measurements resulted in responsivity as high as 2650 A/W at 2.05 microns wavelength. Bias voltage and temperature effects on the device responsivity are presented. The detectivity of this device is compared to InGaAs and HgCdTe devices.

  19. Novel Infrared Phototransistors for Atmospheric CO2 Profiling at 2 Micron Wavelength

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Abedin, M. Nurul; Sulima, Oleg V.; Singh, Upendra N.; Ismail, Syed

    2004-01-01

    Two-micron detectors are critical for atmospheric carbon dioxide profiling using the lidar technique. The characterization results of a novel infrared AlGaAsSb/ InGaAsSb phototransistor are reported. Emitter dark current variation with the collector-emitter voltage at different temperatures is acquired to examine the gain mechanism. Spectral response measurements resulted in responsivity as high as 2650 A/W at 2.05 m wavelength. Bias voltage and temperature effects on the device responsivity are presented. The detectivity of this device is compared to InGaAs and HgCdTe devices.

  20. Sensitivity of spectral climate signals to the emissions of atmospheric dust

    NASA Astrophysics Data System (ADS)

    Xu, X.; Wang, J.; Wang, Y.; Henze, D. K.; Zhang, L.

    2015-12-01

    Mineral dust particles profoundly influence the Earth climate due to their varied affects on the radiation and cloud physics. The knowledge of dust emissions from daily to seasonal scales is thus important for interpreting the past and predicting the future climate changes. Satellite measured radiances in the shortwave and thermal infrared are sensitive to the amount and properties of mineral dust present in the atmosphere. Therefore, the climate (i.e., monthly averages) of these reflectance spectra could contain valuable information on the change of dust emissions. In this work, we investigate the feasibility of using the climate of spectral radiances for recovering dust emissions. An observation simulation system (OSS) that incorporates the Unified Linearized Vector Radiative Transfer Model (UNL-VRTM) with forward and adjoint global chemistry transport models (GEOS-Chem and FIM-Chem) has been applied to generate synthetic hyperspectral climate data in the shortwave and thermal infrared (TIR) for summer 2008. Along with the calculation of radiances at the top of the atmosphere (TOA), the OSS also computes their Jacobians of these synthetic data to dust optical depth, plume height, and effective radius, as well as the adjoint gradients of spectral radiances to dust emissions. We found that the brightness temperature (BT) in the TIR spectra at TOA is sensitive to both of the dust plume height and particle size. For the same relative changes of these parameters, BT shows largest change with respect to particle size at the wavenumber of 890-1200 cm-1. This demonstrates the potential for retrieving three-dimensional dust information along with the particle size from hyperspectral TIR measurements. We also assess the information content of monthly versus instantaneous radiances for constraining dust emissionsthe from the calculated adjoint gradients. Our analysis may guide new applications of long-term spectral radiance measurements (such as those from GOME, AIRS, IASI

  1. Full Spectral Resolution Data Generation from the Cross-track Infrared Sounder on S-NPP at NOAA and its Use to Investigate Uncertainty in Methane Absorption Band Near 7.66 µm

    NASA Astrophysics Data System (ADS)

    Xiong, X.; Peischl, J.; Ryerson, T. B.; Sasakawa, M.; Han, Y.; Chen, Y.; Wang, L.; Tremblay, D.; Jin, X.; Zhou, L.; Liu, Q.; Weng, F.; Machida, T.

    2015-12-01

    The Cross-track Infrared Sounder (CrIS) on Suomi National Polar-orbiting Partnership Satellite (S-NPP) is a Fourier transform spectrometer for atmospheric sounding. CrIS on S-NPP started to provide measurements in 1305 channels in its normal mode since its launch on November 2011 to December 4, 2014, and after that it was switched to the full spectral resolution (FSR) mode, in which the spectral resolutions are 0.625 cm-1 in all the MWIR (1210-1750 cm-1), SWIR (2155-2550 cm-1) and the LWIR bands (650-1095 cm-1) with a total of 2211 channels. While the NOAA operational Sensor Data Record (SDR) processing (IDPS) continues to produce the normal resolution SDRs by truncating full spectrum RDR data, NOAA STAR started to process the FSR SDRs data since December 4, 2014 to present, and the data is being delivered through NOAA STAR website (ftp://ftp2.star.nesdis.noaa.gov/smcd/xxiong/). The current FSR processing algorithm was developed on basis of the CrIS Algorithm Development Library (ADL), and is the baseline of J-1 CrIS SDR algorithm. One major benefit to use the FSR data is to improve the retrieval of atmospheric trace gases, such as CH4, CO and CO2 . From our previous studies to retrieve CH4 using Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI), it was found the uncertainty in the CH4 absorption band is up to 1-2%. So, in this study we computed the radiance using the community radiative transfer model (CRTM) and line-by-line model, with the inputs of "truth" of atmospheric temperature and moisture profiles from ECMWF model (and/or RAOB sounding) and CH4 profiles from in-situ aircraft measurements, then convoluted with the response function of CrIS. The difference between the simultaed radiance and the collocated CrIS FSR data is used to exam the uncertainty in these strong absorption channels.Through the improved fitting to the transmittance in these channels, it is expected to improve the retrieval of CH4 using CrIS on S

  2. Optimal Estimation Retrieval of Mid-Tropospheric Carbon Dioxide and Methane Using the Atmospheric Infrared Sounder (AIRS) Radiances.

    NASA Astrophysics Data System (ADS)

    Imbiriba, B.

    2017-12-01

    Carbon dioxide and methane are the most important anthropogenic greenhouse contributions to climate change. Space-based remote sensing measurements of carbon dioxide and methane would help to understand the generation, absorption and transport mechanisms and characterization of such gases. Space-based hyperspectral thermal infrared remote sensing measurements using NASA's Atmospheric Infrared Sounder (AIRS) instrument can provide 14 years of observations of radiances at the top of the atmosphere.Here we present a Optimal Estimation based retrieval system for surface temperature, water vapor, carbon dioxide, methane, and other trace gases, based on selected AIRS channels that allow for CO2 sensitivity down to the lower part of the middle troposphere. We use the SARTA fast forward model developed at University of Maryland Baltimore County, and use the ERA product for prior state atmospheric profiles.We retrieve CO2 and CH4 column concentrations across 14 years of AIRS measurements, for clear only field-of-views, using the AIRS L1B Calibration Subset. We then compare these to the standard AIRS L2 CO2 retrievals, as well TES, and OCO2 data, and the GlobalView/CarbonTracker CO2/CH4 model data from NOAA. We evaluate the hemispheric seasonal cycles, growth rates, and possible interhemispheric transport. We also evaluate the use of atmospheric nitrous oxide concentration to correct for the errors in the temperature profile.

  3. Infrared band absorptance correlations and applications to nongray radiation. [mathematical models of absorption spectra for nongray atmospheres in order to study air pollution

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Manian, S. V. S.

    1976-01-01

    Various mathematical models for infrared radiation absorption spectra for atmospheric gases are reviewed, and continuous correlations for the total absorptance of a wide band are presented. Different band absorptance correlations were employed in two physically realistic problems (radiative transfer in gases with internal heat source, and heat transfer in laminar flow of absorbing-emitting gases between parallel plates) to study their influence on final radiative transfer results. This information will be applied to the study of atmospheric pollutants by infrared radiation measurement.

  4. Near-infrared long-persistent phosphor of Zn₃Ga ₂Ge ₂O₁₀: Cr³⁺ sintered in different atmosphere.

    PubMed

    Wu, Yiling; Li, Yang; Qin, Xixi; Chen, Ruchun; Wu, Dakun; Liu, Shijian; Qiu, Jianrong

    2015-01-01

    A variety of materials sintered in different atmosphere have been well investigated, but there are few reports on the long-persistent phosphorescent materials, especially the near-infrared long-persistent phosphorescent materials sintered in various atmosphere. Changing the surrounding atmosphere is an effective method to improve the afterglow properties of the materials. In this work, we fabricate a typical kind of near-infrared long-persistent phosphorescent materials of Zn3Ga2Ge2O10: 0.5% Cr(3+) in neutral, oxidizing, and reducing atmosphere. By analyzing the XRD patterns, afterglow spectra, decay and thermo-luminescence curves, we discuss the great effects on the structure, long persistent properties and trap properties of the phosphor. This work of obtaining the Zn3Ga2Ge2O10: 0.5% Cr(3+) is of great potential in the applications in night-vision surveillance and in vivo bio-imaging. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Ultraspectral sounding retrieval error budget and estimation

    NASA Astrophysics Data System (ADS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, Larrabee L.; Yang, Ping

    2011-11-01

    The ultraspectral infrared radiances obtained from satellite observations provide atmospheric, surface, and/or cloud information. The intent of the measurement of the thermodynamic state is the initialization of weather and climate models. Great effort has been given to retrieving and validating these atmospheric, surface, and/or cloud properties. Error Consistency Analysis Scheme (ECAS), through fast radiative transfer model (RTM) forward and inverse calculations, has been developed to estimate the error budget in terms of absolute and standard deviation of differences in both spectral radiance and retrieved geophysical parameter domains. The retrieval error is assessed through ECAS without assistance of other independent measurements such as radiosonde data. ECAS re-evaluates instrument random noise, and establishes the link between radiometric accuracy and retrieved geophysical parameter accuracy. ECAS can be applied to measurements of any ultraspectral instrument and any retrieval scheme with associated RTM. In this paper, ECAS is described and demonstration is made with the measurements of the METOP-A satellite Infrared Atmospheric Sounding Interferometer (IASI).

  6. Ultraspectral Sounding Retrieval Error Budget and Estimation

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, L. Larrabee; Yang, Ping

    2011-01-01

    The ultraspectral infrared radiances obtained from satellite observations provide atmospheric, surface, and/or cloud information. The intent of the measurement of the thermodynamic state is the initialization of weather and climate models. Great effort has been given to retrieving and validating these atmospheric, surface, and/or cloud properties. Error Consistency Analysis Scheme (ECAS), through fast radiative transfer model (RTM) forward and inverse calculations, has been developed to estimate the error budget in terms of absolute and standard deviation of differences in both spectral radiance and retrieved geophysical parameter domains. The retrieval error is assessed through ECAS without assistance of other independent measurements such as radiosonde data. ECAS re-evaluates instrument random noise, and establishes the link between radiometric accuracy and retrieved geophysical parameter accuracy. ECAS can be applied to measurements of any ultraspectral instrument and any retrieval scheme with associated RTM. In this paper, ECAS is described and demonstration is made with the measurements of the METOP-A satellite Infrared Atmospheric Sounding Interferometer (IASI)..

  7. A search for methane in the atmosphere of Mars using ground-based mid infrared heterodyne spectroscopy

    NASA Astrophysics Data System (ADS)

    Sonnabend, G.; Stupar, D.; Sornig, M.; Stangier, T.; Kostiuk, T.; Livengood, T. A.

    2013-09-01

    We report our search for methane in the atmosphere of Mars using high-spectral resolution heterodyne spectroscopy in the 7.8 μm wavelength region. Resolving power and frequency precision of >106 of the technique enable identification and full resolution of a targeted spectral line in the terrestrial-Mars spectrum observed from the ground. Observations were carried out on two occasions, in April 2010 and May 2012 at the McMath-Pierce Solar Telescope and the NASA Infrared Telescope Facility, respectively. A single line in the ν4 band of methane at 1282.62448 cm-1 was targeted in both cases. No absorption due to methane was detected and only upper limits of ∼100 ppb for the martian atmospheric methane concentration were retrieved. Lack of observing time (due to weather) and telluric opacity greater than anticipated led to reduced signal-to-noise ratios (SNR). Based on current measurements and calculations, under proper viewing conditions, we estimate an achievable detection limit of ∼10 ppb using the infrared heterodyne technique - adequate for confirming reported detections of methane based on other techniques.

  8. Intercomparison of in-situ and remote sensing δD signals in tropospheric water vapour

    NASA Astrophysics Data System (ADS)

    Schneider, Matthias; González, Yenny; Dyroff, Christoph; Christner, Emanuel; García, Omaira; Wiegele, Andreas; Andrey, Javier; Barthlott, Sabine; Blumenstock, Thomas; Guirado, Carmen; Hase, Frank; Ramos, Ramon; Rodríguez, Sergio; Sepúveda, Eliezer

    2014-05-01

    The main mission of the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) is the generation of a quasi-global tropospheric water vapour isototopologue dataset of a good and well-documented quality. We present a first empirical validation of MUSICA's remote sensing δD products (ground-based FTIR within NDACC, Network for the Detection of Atmospheric Composition Change, and space-based with IASI, Infrared Atmospheric Sounding Interferometer, flown on METOP). As reference we use in-situ measurements made on the island of Tenerife at two different altitudes (2370 and 3550 m a.s.l., using two Picarro L2120-i water isotopologue analyzers) and aboard an aircraft (between 200 and 6800 m a.s.l., using the homemade ISOWAT instrument).

  9. Two High-Resolution, Quantitative, Infrared Spectral Libraries for Atmospheric Chemistry

    NASA Astrophysics Data System (ADS)

    Johnson, T. J.; Sharpe, S. W.; Sams, R. L.; Chu, P. M.

    2001-12-01

    The Pacific Northwest National Laboratory (PNNL) and the National Institute of Standards and Technology (NIST) are independently creating quantitative, 0.10 cm-1 resolution, infrared spectral libraries of vapor phase compounds. Both libraries contain many species of use to the gas-phase spectroscopist, including for atmospheric chemistry. The NIST library will consist of approximately 100 vapor phase spectra primarily associated with volatile hazardous air pollutants (HAPs) and suspected greenhouse gases, whereas the PNNL library will consist of approximately 400 vapor phase spectra associated with DOE's remediation mission. Data are being recorded from 600 to 6500 cm-1 to cover not only the classical fingerprint region, but much of the near-infrared as well. The wavelength axis is calibrated against published standards. To prepare the samples, the two laboratories use significantly different sample preparation and handling techniques: NIST uses gravimetric dilution and a continuous flowing sample while PNNL uses partial pressure dilution and a static sample. The data are validated against one another and agreement on the ordinate axis is generally found to be within the statistical uncertainties (2σ ) of the Beer's law fit and less than 3 % of the total integrated band areas for the 4 chemicals used in this comparison. The nature of the two databases and the rigorous nature used to acquire the data will be briefly discussed.

  10. Visible and infrared spin scanning radiometer /VISSR/ atmospheric sounder /VAS/ ground data system

    NASA Astrophysics Data System (ADS)

    Dalton, J. T.; Jamros, R. K.; Helfer, D. P.; Howell, D. R.

    1981-01-01

    The interactive system developed at NASA/Goddard Space Flight Center to receive data from the infrared radiometer on GOES-4 in near real time and to perform interactive display and analysis of the 12-channel infrared imagery is described. The system is minicomputer based and uses a menu approach in guiding the analyst through spacecraft instrument programming, area and band selection, image acquisition, enhancement, analysis, and presentation of results. The system is linked by dual port disks to Goddard's Atmospheric and Oceanographic Information Processing System for comparing the sounding results with parameters derived from conventional data and from time lapse analysis of visible and IR imagery from other geostationary satellites. It is pointed out that the system hardware and software are being expanded to add capabilities for the integration and assimilation of VAS data with data from other sources, the comparison of severe storm observations from space with special ground network data, and the development of diagnostic models.

  11. Large Scale Variability of Mid-Tropospheric Carbon Dioxide as Observed by the Atmospheric Infrared Sounder (AIRS) on the NASA EOS Aqua Platform

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Olsen, Edward T.

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral infrared instrument on the EOS Aqua Spacecraft, launched on May 4, 2002. AIRS has 2378 infrared channels ranging from 3.7 microns to 15.4 microns and a 13.5 km footprint. AIRS, in conjunction with the Advanced Microwave Sounding Unit (AMSU), produces temperature profiles with 1K/km accuracy, water vapor profiles (20%/2km), infrared cloud height and fraction, and trace gas amounts for CO2, CO, SO2, O3 and CH4 in the mid to upper troposphere. AIRS wide swath(cedilla) +/-49.5 deg , enables daily global daily coverage for over 95% of the Earth's surface. AIRS data are used for weather forecasting, validating climate model distribution and processes, and observing long-range transport of greenhouse gases. In this study, we examine the large scale and regional horizontal variability in the AIRS Mid-tropospheric Carbon Dioxide product as a function of season and associate the observed variability with known atmospheric transport processes, and sources and sinks of CO2.

  12. A new software tool for computing Earth's atmospheric transmission of near- and far-infrared radiation

    NASA Technical Reports Server (NTRS)

    Lord, Steven D.

    1992-01-01

    This report describes a new software tool, ATRAN, which computes the transmittance of Earth's atmosphere at near- and far-infrared wavelengths. We compare the capabilities of this program with others currently available and demonstrate its utility for observational data calibration and reduction. The program employs current water-vapor and ozone models to produce fast and accurate transmittance spectra for wavelengths ranging from 0.8 microns to 10 mm.

  13. Infrared heterodyne spectroscopy of atmospheric ozone

    NASA Technical Reports Server (NTRS)

    Frerking, M. A.; Muehlner, D. J.

    1977-01-01

    The absorption spectrum of atmospheric ozone is measured within a 1/cm region at 1100/cm, using an IR heterodyne detector (spectrometer with CO2 local oscillator) developed for astronomical work. Absorption spectra obtained by passing radiation from the tunable diode laser through an absorption cell, heterodyne spectra of atmospheric ozone, and a predicted atmospheric spectrum are compared. Water vapor absorbing in the region of interest (1100/cm) is also considered. Preliminary results encourage the use of diode laser local oscillators in tunable heterodyne detector systems for spectroscopy of atmospheric ozone and remote high-resolution spectroscopy of atmospheric constituents and pollutants.

  14. Global and Regional Seasonal Variability of Mid-Tropospheric CO2 as Measured by the Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Olsen, Edward T.; Nguyen, Hai

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral infrared instrument on the Earth Observing System (EOS) Aqua Spacecraft, launched on May 4, 2002 into a near polar sun-synchronous orbit. AIRS has 2378 infrared channels ranging from 3.7 ?m to 15.4 ?m and a 13.5 km footprint at nadir. AIRS, in conjunction with the Advanced Microwave Sounding Unit (AMSU), produces temperature profiles with 1K/km accuracy on a global scale, as well as water vapor profiles and trace gas amounts for CO2, CO, SO2, O3 and CH4. AIRS CO2 climatologies have been shown to be useful for identifying anomalies associated with geophysical events such as El Nino-Southern Oscillation or Madden-Julian oscillation. In this study, monthly representations of mid-tropospheric CO2 are constructed from 10 years of AIRS Version 5 monthly Level 3 data. We compare the AIRS mid-tropospheric CO2 representations to ground-based measurements from the Scripps and National Oceanic and Atmospheric Administration Climate Modeling and Diagnostics Laboratory (NOAA CMDL) ground networks to better understand the phase lag of the CO2 seasonal cycle between the surface and middle troposphere. Results show only a small phase lag in the tropics that grows to approximately two months in the northern latitudes.

  15. Improved Products for Assimilation and Model Validation from the Atmospheric Infrared Sounder (AIRS) on Aqua

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.

    2008-01-01

    The Atmospheric Infrared Sounder (AIRS) on the EOS Aqua Spacecraft was launched on May 4, 2002. AIRS acquires hyperspectral infrared radiances in the 3.7-15.4 micrometer spectral region with spectral resolution of better than 1200. Key channels from the AIRS Level 1B calibrated radiance product are currently assimilated into operational weather forecasts at NCEP and other international agencies. Additional Level 2 products for assimilation include the AIRS cloud cleared radiances and the geophysical retrieved temperature and water vapor profiles. The AIRS products are also used to validate climate model vertical and horizontal biases and transport of water vapor and key trace gases including Carbon Dioxide and Ozone. The wide variety of products available from the AIRS make it well suited to study processes affecting the interaction of these products.

  16. Lower Tropospheric Ozone Retrievals from Infrared Satellite Observations Using a Self-Adapting Regularization Method

    NASA Astrophysics Data System (ADS)

    Eremenko, M.; Sgheri, L.; Ridolfi, M.; Dufour, G.; Cuesta, J.

    2017-12-01

    Lower tropospheric ozone (O3) retrievals from nadir sounders is challenging due to the lack of vertical sensitivity of the measurements and towards the lowest layers. If improvements have been made during the last decade, it is still important to explore possibilities to improve the retrieval algorithms themselves. O3 retrieval from nadir satellite observations is an ill-conditioned problem, which requires regularization using constraint matrices. Up to now, most of the retrieval algorithms rely on a fixed constraint. The constraint is determined and fixed beforehand, on the basis of sensitivity tests. This does not allow ones to take advantage of the entire capabilities of the satellite measurements, which vary with the thermal conditions of the observed scenes. To overcome this limitation, we developed a self-adapting and altitude-dependent regularization scheme. A crucial step is the choice of the strength of the constraint. This choice is done during an iterative process and depends on the measurement errors and on the sensitivity of the measurements to the target parameters at the different altitudes. The challenge is to limit the use of a priori constraints to the minimal amount needed to perform the inversion. The algorithm has been tested on synthetic observations matching the future IASI-NG satellite instrument. IASI-NG measurements are simulated on the basis of O3 concentrations taken from an atmospheric model and retrieved using two retrieval schemes (the standard and self-adapting ones). Comparison of the results shows that the sensitivity of the observations to the O3 amount in the lowest layers (given by the degrees of freedom for the solution) is increased, which allows a better description of the ozone distribution, especially in the case of large ozone plumes. Biases are reduced and the spatial correlation is improved. Tentative of application to real observations from IASI, currently onboard the Metop satellite will also be presented.

  17. Demonstrating the Operational Value of Atmospheric Infrared Sounder (AIRS) Profiles in the Pre-Convective Environment

    NASA Technical Reports Server (NTRS)

    Kozlowski, Danielle; Zavodsky, Bradley; Stano, Geoffrey; Jedlovec, Gary

    2011-01-01

    The Short-term Prediction Research and Transition (SPoRT) is a project to transition those NASA observations and research capabilities to the weather forecasting community to improve the short-term regional forecasts. This poster reviews the work to demonstrate the value to these forecasts of profiles from the Atmospheric Infrared Sounder (AIRS) instrument on board the Aqua satellite with particular assistance in predicting thunderstorm forecasts by the profiles of the pre-convective environment.

  18. Infrared absorption of carbon dioxide at high densitites with application to the atmosphere of Venus. Ph.D. Thesis - Columbia Univ.

    NASA Technical Reports Server (NTRS)

    Moore, J. F.

    1971-01-01

    Several new infrared absorptions were found in carbon dioxide. All are normally forbidden, and were collision-induced in an absorbing cell whose combination of pressure and path length has a unique sensitivity for induced absorptions. The new absorptions in the 2.3 micron region are attributed to transitions from ground to the 3(1)1 Fermi pair at 4248 and 4391/cm. Other absorptions are attributed to simultaneous CO2-N2 transitions and to the 00(0)0-00(0)2 transition in CO2 polarizability derivatives and regular progressions in strength versus increasing quantum number. The spectra were used to predict the radiative transfer in a dry CO2 model of the lower Venus atmosphere. The results indicate that the radiation balance in the lower atmosphere is adequately explained by a dry massive atmosphere of CO2 with a layer of infrared-opaque clouds. The absorptions in the 2.3 micron region are significant in accounting for the opacity to sustain Venus' 768 K surface temperature.

  19. Infrared Cloud Imager Development for Atmospheric Optical Communication Characterization, and Measurements at the JPL Table Mountain Facility

    NASA Astrophysics Data System (ADS)

    Nugent, P. W.; Shaw, J. A.; Piazzolla, S.

    2013-02-01

    The continuous demand for high data return in deep space and near-Earth satellite missions has led NASA and international institutions to consider alternative technologies for high-data-rate communications. One solution is the establishment of wide-bandwidth Earth-space optical communication links, which require (among other things) a nearly obstruction-free atmospheric path. Considering the atmospheric channel, the most common and most apparent impairments on Earth-space optical communication paths arise from clouds. Therefore, the characterization of the statistical behavior of cloud coverage for optical communication ground station candidate sites is of vital importance. In this article, we describe the development and deployment of a ground-based, long-wavelength infrared cloud imaging system able to monitor and characterize the cloud coverage. This system is based on a commercially available camera with a 62-deg diagonal field of view. A novel internal-shutter-based calibration technique allows radiometric calibration of the camera, which operates without a thermoelectric cooler. This cloud imaging system provides continuous day-night cloud detection with constant sensitivity. The cloud imaging system also includes data-processing algorithms that calculate and remove atmospheric emission to isolate cloud signatures, and enable classification of clouds according to their optical attenuation. Measurements of long-wavelength infrared cloud radiance are used to retrieve the optical attenuation (cloud optical depth due to absorption and scattering) in the wavelength range of interest from visible to near-infrared, where the cloud attenuation is quite constant. This article addresses the specifics of the operation, calibration, and data processing of the imaging system that was deployed at the NASA/JPL Table Mountain Facility (TMF) in California. Data are reported from July 2008 to July 2010. These data describe seasonal variability in cloud cover at the TMF site

  20. Revisiting Short-Wave-Infrared (SWIR) Bands for Atmospheric Correction in Coastal Waters

    NASA Technical Reports Server (NTRS)

    Pahlevan, Nima; Roger, Jean-Claude; Ahmad, Ziauddin

    2017-01-01

    The shortwave infrared (SWIR) bands on the existing Earth Observing missions like MODIS have been designed to meet land and atmospheric science requirements. The future geostationary and polar-orbiting ocean color missions, however, require highly sensitive SWIR bands (greater than 1550nm) to allow for a precise removal of aerosol contributions. This will allow for reasonable retrievals of the remote sensing reflectance (R(sub rs)) using standard NASA atmospheric corrections over turbid coastal waters. Design, fabrication, and maintaining high-performance SWIR bands at very low signal levels bear significant costs on dedicated ocean color missions. This study aims at providing a full analysis of the utility of alternative SWIR bands within the 1600nm atmospheric window if the bands within the 2200nm window were to be excluded due to engineering/cost constraints. Following a series of sensitivity analyses for various spectral band configurations as a function of water vapor amount, we chose spectral bands centered at 1565 and 1675nm as suitable alternative bands within the 1600nm window for a future geostationary imager. The sensitivity of this band combination to different aerosol conditions, calibration uncertainties, and extreme water turbidity were studied and compared with that of all band combinations available on existing polar-orbiting missions. The combination of the alternative channels was shown to be as sensitive to test aerosol models as existing near-infrared (NIR) band combinations (e.g., 748 and 869nm) over clear open ocean waters. It was further demonstrated that while in extremely turbid waters the 1565/1675 band pair yields R(sub rs) retrievals as good as those derived from all other existing SWIR band pairs (greater than 1550nm), their total calibration uncertainties must be less than 1% to meet current science requirements for ocean color retrievals (i.e., delta R(sub rs) (443) less than 5%). We further show that the aerosol removal using the

  1. Revisiting short-wave-infrared (SWIR) bands for atmospheric correction in coastal waters.

    PubMed

    Pahlevan, Nima; Roger, Jean-Claude; Ahmad, Ziauddin

    2017-03-20

    The shortwave infrared (SWIR) bands on the existing Earth Observing missions like MODIS have been designed to meet land and atmospheric science requirements. The future geostationary and polar-orbiting ocean color missions, however, require highly sensitive SWIR bands (> 1550nm) to allow for a precise removal of aerosol contributions. This will allow for reasonable retrievals of the remote sensing reflectance (Rrs) using standard NASA atmospheric corrections over turbid coastal waters. Design, fabrication, and maintaining high-performance SWIR bands at very low signal levels bear significant costs on dedicated ocean color missions. This study aims at providing a full analysis of the utility of alternative SWIR bands within the 1600nm atmospheric window if the bands within the 2200nm window were to be excluded due to engineering/cost constraints. Following a series of sensitivity analyses for various spectral band configurations as a function of water vapor amount, we chose spectral bands centered at 1565 and 1675nm as suitable alternative bands within the 1600nm window for a future geostationary imager. The sensitivity of this band combination to different aerosol conditions, calibration uncertainties, and extreme water turbidity were studied and compared with that of all band combinations available on existing polar-orbiting missions. The combination of the alternative channels was shown to be as sensitive to test aerosol models as existing near-infrared (NIR) band combinations (e.g., 748 and 869nm) over clear open ocean waters. It was further demonstrated that while in extremely turbid waters the 1565/1675 band pair yields Rrs retrievals as good as those derived from all other existing SWIR band pairs (> 1550nm), their total calibration uncertainties must be < 1% to meet current science requirements for ocean color retrievals (i.e., Δ Rrs (443) < 5%). We further show that the aerosol removal using the NIR and SWIR bands

  2. A radiation model for calculating atmospheric corrections to remotely sensed infrared measurements, version 2

    NASA Technical Reports Server (NTRS)

    Boudreau, R. D.

    1973-01-01

    A numerical model is developed which calculates the atmospheric corrections to infrared radiometric measurements due to absorption and emission by water vapor, carbon dioxide, and ozone. The corrections due to aerosols are not accounted for. The transmissions functions for water vapor, carbon dioxide, and water are given. The model requires as input the vertical distribution of temperature and water vapor as determined by a standard radiosonde. The vertical distribution of carbon dioxide is assumed to be constant. The vertical distribution of ozone is an average of observed values. The model also requires as input the spectral response function of the radiometer and the nadir angle at which the measurements were made. A listing of the FORTRAN program is given with details for its use and examples of input and output listings. Calculations for four model atmospheres are presented.

  3. Untangling the Herman-infrared spectra of nitrogen atmospheric-pressure dielectric-barrier discharge

    NASA Astrophysics Data System (ADS)

    Čermák, Peter; Annušová, Adriana; Rakovský, Jozef; Martišovitš, Viktor; Veis, Pavel

    2018-05-01

    This study presents the first application of the N2 Herman-infrared (HIR) ro-vibrational model for the metrology of the atmospheric-pressure dielectric-barrier discharge. Our recent findings of suitable conditions for observation of the unperturbed HIR system (Annušová et al Contrib. Plasma Phys. 2017) gave us the opportunity to develop and test a numerical representation of this complex system composed of 75 branches. Commonly, the HIR covers a part of the near infrared spectra (690–850 nm) with its bands mixed with the N2 first positive system (1PS), which hinders applications of these systems for optical metrology of the discharge. In this work, we present a complex ro-vibrational model of the 1PS and HIR systems, which allowed us to untangle their spectra and retrieve the rotational temperature and vibrational populations of the systems for the first time. The latter was achieved by coupling the PGHOPHER simulation package with molecular constants obtained from high-resolution experiments. To test the model, the results and precision were compared to the retrievals based on the models of the NO γ and N2 second positive systems using the LIFBASE and SPECAIR programs, respectively.

  4. Disparities in the access to primary healthcare in rural areas from the county of Iasi - Romania.

    PubMed

    Duma, Olga-Odetta; Roşu, Solange Tamara; Manole, M; Petrariu, F D; Constantin, Brânduşa

    2014-01-01

    To identify the factors that may conduct to various forms of social exclusion of the population from the primary healthcare and to analyze health disparities as population-specific differences in the access to primary healthcare in rural compared to urban residence areas from Iasi, the second biggest county, situated in the North--East region of Romania. This research is a type of inquiry-based opinion survey of the access to primary healthcare in rural compared to urban areas of the county of Iasi. Data were collected by face-to-face interviews. There were taken into account the socioeconomic status (education level in the adult population, employment status, family income, household size) and two temporal variables (the interval of time spent to arrive at the primary healthcare office as a marker for the geographical access and the waiting time for a consultation). The study group consisted of two samples, from rural and urban area, each of 150 patients, all ages, randomly selected, who were waiting at the family doctor's practice. The study has identified disparities related to a poor economic status assessed through the employed status ("not working" 15% in urban and of 20% in rural).The income calculated per member of family and divided in terciles has recorded significant differences for "high" (36.7% urban and 14.7% rural) and "low", respectively (14.6% urban and 56.6% rural). High household size with more than five members represented 22.6% of the total subjects in rural and 15.3% in urban areas. The assessment of the education level in the adult population (> 18 years) revealed that in the rural areas more than a half (56%) of the sample is placed in the category primary and secondary incomplete, whereas the value for secondary complete and postsecondary was 37.3%. The proportion of respondents in the urban areas who have post-secondary education is five times higher than those in rural areas (15.4% vs. 2.7%). The reduced geographical access assessed as

  5. Empirical validation and proof of added value of MUSICA's tropospheric δD remote sensing products

    NASA Astrophysics Data System (ADS)

    Schneider, M.; González, Y.; Dyroff, C.; Christner, E.; Wiegele, A.; Barthlott, S.; García, O. E.; Sepúlveda, E.; Hase, F.; Andrey, J.; Blumenstock, T.; Guirado, C.; Ramos, R.; Rodríguez, S.

    2015-01-01

    The project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) integrates tropospheric water vapour isotopologue remote sensing and in situ observations. This paper presents a first empirical validation of MUSICA's H2O and δD remote sensing products, generated from ground-based FTIR (Fourier transform infrared), spectrometer and space-based IASI (infrared atmospheric sounding interferometer) observation. The study is made in the area of the Canary Islands in the subtropical northern Atlantic. As reference we use well calibrated in situ measurements made aboard an aircraft (between 200 and 6800 m a.s.l.) by the dedicated ISOWAT instrument and on the island of Tenerife at two different altitudes (at Izaña, 2370 m a.s.l., and at Teide, 3550 m a.s.l.) by two commercial Picarro L2120-i water isotopologue analysers. The comparison to the ISOWAT profile measurements shows that the remote sensors can well capture the variations in the water vapour isotopologues, and the scatter with respect to the in situ references suggests a δD random uncertainty for the FTIR product of much better than 45‰ in the lower troposphere and of about 15‰ for the middle troposphere. For the middle tropospheric IASI δD product the study suggests a respective uncertainty of about 15‰. In both remote sensing data sets we find a positive δD bias of 30-70‰. Complementing H2O observations with δD data allows moisture transport studies that are not possible with H2O observations alone. We are able to qualitatively demonstrate the added value of the MUSICA δD remote sensing data. We document that the δD-H2O curves obtained from the different in situ and remote sensing data sets (ISOWAT, Picarro at Izaña and Teide, FTIR, and IASI) consistently identify two different moisture transport pathways to the subtropical north eastern Atlantic free troposphere.

  6. Empirical validation and proof of added value of MUSICA's tropospheric δD remote sensing products

    NASA Astrophysics Data System (ADS)

    Schneider, M.; González, Y.; Dyroff, C.; Christner, E.; Wiegele, A.; Barthlott, S.; García, O. E.; Sepúlveda, E.; Hase, F.; Andrey, J.; Blumenstock, T.; Guirado, C.; Ramos, R.; Rodríguez, S.

    2014-07-01

    The project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) integrates tropospheric water vapour isototopologue remote sensing and in-situ observations. This paper presents a first empirical validation of MUSICA's H2O and δD remote sensing products (generated from ground-based FTIR, Fourier Transform InfraRed, spectrometer and space-based IASI, Infrared Atmospheric Sounding Interferometer, observation). As reference we use well calibrated in-situ measurements made aboard an aircraft (between 200 and 6800 m a.s.l.) by the dedicated ISOWAT instrument and on the island of Tenerife at two different altitudes (at Izaña, 2370 m a.s.l., and at Teide, 3550 m a.s.l.) by two commercial Picarro L2120-i water isotopologue analysers. The comparison to the ISOWAT profile measurements shows that the remote sensors can well capture the variations in the water vapour isotopologues and the scatter with respect to the in-situ references suggests a δD random uncertainty for the FTIR product of much better than 45‰ in the lower troposphere and of about 15‰ for the middle troposphere. For the middle tropospheric IASI δD product the study suggests a respective uncertainty of about 15‰. In addition, we find indications for a positive δD bias in the remote sensing products. The δD data are scientifically interesting only if they add information to the H2O observations. We are able to qualitatively demonstrate the added value of the MUSICA δD remote sensing data by comparing δD-vs.-H2O curves. First, we show that the added value of δD as seen in the Picarro data is similarly seen in FTIR data measured in coincidence. Second, we document that the δD-vs.-H2O curves obtained from the different in-situ and remote sensing data sets (ISOWAT, Picarro at Izaña and Teide, FTIR, and IASI) consistently identify two different moisture transport pathways to the subtropical north eastern Atlantic free troposphere.

  7. Py4CAtS - Python tools for line-by-line modelling of infrared atmospheric radiative transfer

    NASA Astrophysics Data System (ADS)

    Schreier, Franz; García, Sebastián Gimeno

    2013-05-01

    Py4CAtS — Python scripts for Computational ATmospheric Spectroscopy is a Python re-implementation of the Fortran infrared radiative transfer code GARLIC, where compute-intensive code sections utilize the Numeric/Scientific Python modules for highly optimized array-processing. The individual steps of an infrared or microwave radiative transfer computation are implemented in separate scripts to extract lines of relevant molecules in the spectral range of interest, to compute line-by-line cross sections for given pressure(s) and temperature(s), to combine cross sections to absorption coefficients and optical depths, and to integrate along the line-of-sight to transmission and radiance/intensity. The basic design of the package, numerical and computational aspects relevant for optimization, and a sketch of the typical workflow are presented.

  8. Sea surface velocities from visible and infrared multispectral atmospheric mapping sensor imagery

    NASA Technical Reports Server (NTRS)

    Pope, P. A.; Emery, W. J.; Radebaugh, M.

    1992-01-01

    High resolution (100 m), sequential Multispectral Atmospheric Mapping Sensor (MAMS) images were used in a study to calculate advective surface velocities using the Maximum Cross Correlation (MCC) technique. Radiance and brightness temperature gradient magnitude images were formed from visible (0.48 microns) and infrared (11.12 microns) image pairs, respectively, of Chandeleur Sound, which is a shallow body of water northeast of the Mississippi delta, at 145546 GMT and 170701 GMT on 30 Mar. 1989. The gradient magnitude images enhanced the surface water feature boundaries, and a lower cutoff on the gradient magnitudes calculated allowed the undesirable sunglare and backscatter gradients in the visible images, and the water vapor absorption gradients in the infrared images, to be reduced in strength. Requiring high (greater than 0.4) maximum cross correlation coefficients and spatial coherence of the vector field aided in the selection of an optimal template size of 10 x 10 pixels (first image) and search limit of 20 pixels (second image) to use in the MCC technique. Use of these optimum input parameters to the MCC algorithm, and high correlation and spatial coherence filtering of the resulting velocity field from the MCC calculation yielded a clustered velocity distribution over the visible and infrared gradient images. The velocity field calculated from the visible gradient image pair agreed well with a subjective analysis of the motion, but the velocity field from the infrared gradient image pair did not. This was attributed to the changing shapes of the gradient features, their nonuniqueness, and large displacements relative to the mean distance between them. These problems implied a lower repeat time for the imagery was needed in order to improve the velocity field derived from gradient imagery. Suggestions are given for optimizing the repeat time of sequential imagery when using the MCC method for motion studies. Applying the MCC method to the infrared

  9. The Skylab concentrated atmospheric radiation project

    NASA Technical Reports Server (NTRS)

    Kuhn, P. M.; Marlatt, W. E.; Whitehead, V. S. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Comparison of several existing infrared radiative transfer models under somewhat controlled conditions and with atmospheric observations of Skylab's S191 and S192 radiometers illustrated that the models tend to over-compute atmospheric attenuation in the window region of the atmospheric infrared spectra.

  10. Infrared differential absorption for atmospheric pollutant detection

    NASA Technical Reports Server (NTRS)

    Byer, R. L.

    1974-01-01

    Progress made in the generation of tunable infrared radiation and its application to remote pollutant detection by the differential absorption method are summarized. It is recognized that future remote pollutant measurements depended critically on the availability of high energy tunable transmitters. Futhermore, due to eye safety requirements, the transmitted frequency must lie in the 1.4 micron to 13 micron infrared spectral range.

  11. [Industrial sound spectrum entailing noise-induced occupational hearing loss in Iasi industry].

    PubMed

    Carp, Cristina Maria; Costinescu, V N

    2011-01-01

    In European Union every day millions of employees are exposed to noise at work and the risk this can entail. this study presents the sound spectrum in Iasi heavy industry: metal foundries industry, punching and embossing of metal sheets, cold and hot metal processing. it was used a type 2 Sound Level Meter (SLM) and the considered value was the average value over 10 test values in 10 consecutive days for each octave band in common audible frequency range. It is obviously that the large values of sound intensities in the most of frequency octave band exceed maximum admissible and legal values. The study reveals the necessity of hardware, medical and managerial measures in order to reduce the occupational noise and to prevent the hearing acuity damage of the workers.

  12. Infrared backscattering

    NASA Technical Reports Server (NTRS)

    Bohren, Craig F.; Nevitt, Timothy J.; Singham, Shermila Brito

    1989-01-01

    All particles in the atmosphere are not spherical. Moreover, the scattering properties of randomly oriented nonspherical particles are not equivalent to those of spherical particles no matter how the term equivalent is defined. This is especially true for scattering in the backward direction and at the infrared wavelengths at which some atmospheric particles have strong absorption bands. Thus calculations based on Mie theory of infrared backscattering by dry or insoluble atmospheric particles are suspect. To support this assertion, it was noted that peaks in laboratory-measured infrared backscattering spectra show appreciable shifts compared with those calculated using Mie theory. One example is ammonium sulfate. Some success was had in modeling backscattering spectra of ammonium sulfate particles using a simple statistical theory called the continuous distribution of ellipsoids (CDE) theory. In this theory, the scattering properties of an ensemble are calculated. Recently a modified version of this theory was applied to measured spectra of scattering by kaolin particles. The particles were platelike, so the probability distribution of ellipsoidal shapes was chosen to reflect this. As with ammonium sulfate, the wavelength of measured peak backscattering is shifted longward of that predicted by Mie theory.

  13. Aerosol in the Upper Troposphere Lower Stratosphere, decadal Simulations of Radiative Forcing using the Chemistry Circulation Model EMAC and MIPAS, GOMOS, IASI and other Satellite Data

    NASA Astrophysics Data System (ADS)

    Bruehl, C.; Schallock, J.; Lelieveld, J.; Bingen, C.; Robert, C. E.; Hoepfner, M.; Clarisse, L.

    2017-12-01

    The atmospheric chemistry - general circulation model EMAC with a modal interactive aerosol module is used to estimate radiative effects of UTLS aerosol for the ENVISAT period 2002 to 2012 in the framework of SPARC/SSIRC. Volcanic SO2 injections by about 230 explosive volcano eruptions are estimated mostly from MIPAS limb observations. For periods of data gaps, injected SO2 is estimated indirectly from extinctions observed by GOMOS. GOMOS extinctions in the UTLS and the seasonal component of radiative forcing can be only reproduced by the model if a comprehensive treatment of desert dust and organic and black carbon is included. Upward transport of particles and gases by the Asian Monsoon appears to contribute importantly. The time series of simulated stratospheric aerosol optical depth and radiative forcing agree with the corresponding quantities derived from different satellite data sets. Comparisons of total aerosol optical depth with IASI show that tropospheric and stratospheric aerosol in the model are consistently and realistically represented.

  14. Estimation of absolute water surface temperature based on atmospherically corrected thermal infrared multispectral scanner digital data

    NASA Technical Reports Server (NTRS)

    Anderson, James E.

    1986-01-01

    Airborne remote sensing systems, as well as those on board Earth orbiting satellites, sample electromagnetic energy in discrete wavelength regions and convert the total energy sampled into data suitable for processing by digital computers. In general, however, the total amount of energy reaching a sensor system located at some distance from the target is composed not only of target related energy, but, in addition, contains a contribution originating from the atmosphere itself. Thus, some method must be devised for removing or at least minimizing the effects of the atmosphere. The LOWTRAN-6 Program was designed to estimate atmospheric transmittance and radiance for a given atmospheric path at moderate spectral resolution over an operational wavelength region from 0.25 to 28.5 microns. In order to compute the Thermal Infrared Multispectral Scanner (TIMS) digital values which were recorded in the absence of the atmosphere, the parameters derived from LOWTRAN-6 are used in a correction equation. The TIMS data were collected at 1:00 a.m. local time on November 21, 1983, over a recirculating cooling pond for a power plant in southeastern Mississippi. The TIMS data were analyzed before and after atmospheric corrections were applied using a band ratioing model to compute the absolute surface temperature of various points on the power plant cooling pond. The summarized results clearly demonstrate the desirability of applying atmospheric corrections.

  15. The atmospheres of Saturn and Titan in the near-infrared: First results of Cassini/Vims

    USGS Publications Warehouse

    Baines, K.H.; Momary, T.W.; Buratti, B.J.; Matson, D.L.; Nelson, R.M.; Drossart, P.; Sicardy, B.; Formisano, V.; Bellucci, G.; Coradini, A.; Griffith, C.; Brown, R.H.; Bibring, J.-P.; Langevin, Y.; Capaccioni, F.; Cerroni, P.; Clark, R.N.; Combes, M.; Cruikshank, D.P.; Jaumann, R.; McCordt, T.B.; Mennella, V.; Nicholson, P.D.; Sotin, Christophe

    2006-01-01

    The wide spectral coverage and extensive spatial, temporal, and phase-angle mapping capabilities of the Visual Infrared Mapping Spectrometer (VIMS) onboard the Cassini-Huygens Orbiter are producing fundamental new insights into the nature of the atmospheres of Saturn and Titan. For both bodies, VIMS maps over time and solar phase angles provide information for a multitude of atmospheric constituents and aerosol layers, providing new insights into atmospheric structure and dynamical and chemical processes. For Saturn, salient early results include evidence for phosphine depletion in relatively dark and less cloudy belts at temperate and mid-latitudes compared to the relatively bright and cloudier Equatorial Region, consistent with traditional theories of belts being regions of relative downwelling. Additional Saturn results include (1) the mapping of enhanced trace gas absorptions at the south pole, and (2) the first high phase-angle, high-spatial-resolution imagery of CH4 fluorescence. An additional fundamental new result is the first nighttime near-infrared mapping of Saturn, clearly showing discrete meteorological features relatively deep in the atmosphere beneath the planet's sunlit haze and cloud layers, thus revealing a new dynamical regime at depth where vertical dynamics is relatively more important than zonal dynamics in determining cloud morphology. Zonal wind measurements at deeper levels than previously available are achieved by tracking these features over multiple days, thereby providing measurements of zonal wind shears within Saturn's troposphere when compared to cloudtop movements measured in reflected sunlight. For Titan, initial results include (1) the first detection and mapping of thermal emission spectra of CO, CO2, and CH3D on Titan's nightside limb, (2) the mapping of CH4 fluorescence over the dayside bright limb, extending to ??? 750 km altitude, (3) wind measurements of ???0.5 ms-1, favoring prograde, from the movement of a persistent

  16. Infrared and Passive Microwave Radiometric Sea Surface Temperatures and Their Relationships to Atmospheric Forcing

    NASA Technical Reports Server (NTRS)

    Castro, Sandra L.

    2004-01-01

    The current generation of infrared (IR) and passive microwave (MW) satellite sensors provides highly complementary information for monitoring sea surface temperature (SST). On the one hand, infrared sensors provide high resolution and high accuracy but are obscured by clouds. Microwave sensors on the other hand, provide coverage through non-precipitating clouds but have coarser resolution and generally poorer accuracy. Assuming that the satellite SST measurements do not have spatially variable biases, they can be blended combining the merits of both SST products. These factors have motivated recent work in blending the MW and IR data in an attempt to produce high-accuracy SST products with improved coverage in regions with persistent clouds. The primary sources of retrieval uncertainty are, however, different for the two sensors. The main uncertainty in the MW retrievals lies in the effects of wind-induced surface roughness and foam on emissivity, whereas the IR retrievals are more sensitive to the atmospheric water vapor and aerosol content. Average nighttime differences between the products for the month periods of January 1999 and June 2000 are shown. These maps show complex spatial and temporal differences as indicated by the strong spatially coherent features in the product differences and the changes between seasons. Clearly such differences need to be understood and accounted for if the products are to be combined. The overall goals of this project are threefold: (1) To understand the sources of uncertainty in the IR and MW SST retrievals and to characterize the errors affecting the two types of retrieval as a fiction of atmospheric forcing; (2) To demonstrate how representative the temperature difference between the two satellite products is of Delta T; (3) To apply bias adjustments and to device a comprehensive treatment of the behavior of the temperature difference across the oceanic skin layer to determine the best method for blending thermal infrared

  17. Infrared Radiative Forcing and Atmospheric Lifetimes of Trace Species Based on Observations from UARS

    NASA Technical Reports Server (NTRS)

    Minschwaner, K.; Carver, R. W.; Briegleb, B. P.

    1997-01-01

    Observations from instruments on the Upper Atmosphere Research Satellite (UARS) have been used to constrain calculations of infrared radiative forcing by CH4, CCl2F2 and N2O, and to determine lifetimes Of CCl2F2 and N2O- Radiative forcing is calculated as a change in net infrared flux at the tropopause that results from an increase in trace gas amount from pre-industrial (1750) to contemporary (1992) times. Latitudinal and seasonal variations are considered explicitly, using distributions of trace gases and temperature in the stratosphere from UARS measurements and seasonally averaged cloud statistics from the International Satellite Cloud Climatology Project. Top-of-atmosphere fluxes calculated for the contemporary period are in good agreement with satellite measurements from the Earth Radiation Budget Experiment. Globally averaged values of the radiative forcing are 0.536, 0.125, and 0.108 W m-2 for CH4, CCl2F2, and N2O, respectively. The largest forcing occurs near subtropical latitudes during summer, predominantly as a result of the combination of cloud-free skies and a high, cold tropopause. Clouds are found to play a significant role in regulating infrared forcing, reducing the magnitude of the forcing by 30-40% compared to the case of clear skies. The vertical profile of CCl2F2 is important in determining its radiative forcing; use of a height-independent mixing ratio in the stratosphere leads to an over prediction of the forcing by 10%. The impact of stratospheric profiles on radiative forcing by CH4 and N2O is less than 2%. UARS-based distributions of CCl2F2 and N2O are used also to determine global destruction rates and instantaneous lifetimes of these gases. Rates of photolytic destruction in the stratosphere are calculated using solar ultraviolet irradiances measured on UARS and a line-by-line model of absorption in the oxygen Schumann-Runge bands. Lifetimes are 114 +/- 22 and 118 +/- 25 years for CCl2F2 and N2O, respectively.

  18. A chemometrics approach applied to Fourier transform infrared spectroscopy (FTIR) for monitoring the spoilage of fresh salmon (Salmo salar) stored under modified atmospheres.

    PubMed

    Saraiva, C; Vasconcelos, H; de Almeida, José M M M

    2017-01-16

    The aim of this work was to investigate the potential of Fourier transform infrared spectroscopy (FTIR) to detect and predict the bacterial load of salmon fillets (Salmo salar) stored at 3, 8 and 30°C under three packaging conditions: air packaging (AP) and two modified atmospheres constituted by a mixture of 50%N 2 /40%CO 2 /10%O 2 with lemon juice (MAPL) and without lemon juice (MAP). Fresh salmon samples were periodically examined for total viable counts (TVC), specific spoilage organisms (SSO) counts, pH, FTIR and sensory assessment of freshness. Principal components analysis (PCA) allowed identification of the wavenumbers potentially correlated with the spoilage process. Linear discriminant analysis (LDA) of infrared spectral data was performed to support sensory data and to accurately identify samples freshness. The effect of the packaging atmospheres was assessed by microbial enumeration and LDA was used to determine sample packaging from the measured infrared spectra. It was verified that modified atmospheres can decrease significantly the bacterial load of fresh salmon. Lemon juice combined with MAP showed a more pronounced delay in the growth of Brochothrix thermosphacta, Photobacterium phosphoreum, psychrotrophs and H 2 S producers. Partial least squares regression (PLS-R) allowed estimates of TVC and psychrotrophs, lactic acid bacteria, molds and yeasts, Brochothrix thermosphacta, Enterobacteriaceae, Pseudomonas spp. and H 2 S producer counts from the infrared spectral data. For TVC, the root mean square error of prediction (RMSEP) value was 0.78logcfug -1 for an external set of samples. According to the results, FTIR can be used as a reliable, accurate and fast method for real time freshness evaluation of salmon fillets stored under different temperatures and packaging atmospheres. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Atmospheric effects on infrared measurements at ground level: Application to monitoring of transport infrastructures

    NASA Astrophysics Data System (ADS)

    Boucher, Vincent; Dumoulin, Jean

    2014-05-01

    Being able to perform easily non-invasive diagnostics for surveillance and monitoring of critical transport infrastructures is a major preoccupation of many technical offices. Among all the existing electromagnetic methods [1], long term thermal monitoring by uncooled infrared camera [2] is a promising technique due to its dissemination potential according to its low cost on the market. Nevertheless, Knowledge of environmental parameters during measurement in outdoor applications is required to carry out accurate measurement corrections induced by atmospheric effects at ground level. Particularly considering atmospheric effects and measurements in foggy conditions close as possible to those that can be encountered around transport infrastructures, both in visible and infrared spectra. In the present study, atmospheric effects are first addressed by using data base available in literature and modelling. Atmospheric attenuation by particles depends greatly of aerosols density, but when relative humidity increases, water vapor condenses onto the particulates suspended in the atmosphere. This condensed water increases the size of the aerosols and changes their composition and their effective refractive index. The resulting effect of the aerosols on the absorption and scattering of radiation will correspondingly be modified. In a first approach, we used aerosols size distributions derived from Shettle and Fenn [3] for urban area which could match some of experimental conditions encountered during trials on transport infrastructures opened to traffic. In order to calculate the influence of relative humidity on refractive index, the Hänel's model [4] could be used. The change in the particulate size is first related to relative humidity through dry particle radius, particle density and water activity. Once the wet aerosol particle size is found, the effective complex refractive index is the volume weighted average of the refractive indexes of the dry aerosol substance

  20. The Atmospheres of Titan and Saturn in the Infrared from Cassini: The Interplay Between Observation and Laboratory Studies

    NASA Technical Reports Server (NTRS)

    Jennings, D. E.; Nixon, C. A.; Flasar, F. M.; Kunde, V. G.; Coustenis, A.

    2011-01-01

    The Composite Infrared Spectrometer (CIRS) aboard the Cassini spacecraft has been recording spectra of Saturn and Titan since its arrival in the Saturn system in 2004. CIRS, a Fourier transform spectrometer, observes the thermal infrared spectrum of both atmospheres from 10 to 1500/cm with resolutions up to 0.5/cm (Flasar et al. 2004). From these data CIRS provides global coverage of the molecular composition of the stratosphere and troposphere, as well as maps of temperature and winds. From such studies CIRS helps reveal the chemistry and evolutionary history of Saturn and Titan and their relationships to other Solar System bodies. The Cassini mission is continuing until 2017, permitting CIRS to search for atmospheric changes during more than a Saturnian season. By combining with results from Voyager (1980, 1981) the baseline becomes more than one Saturnian year (Coustenis et al. 2011). CIRS spectroscopy of the atmospheres of Saturn and Titan has raised a variety of questions that require new laboratory studies. A complete understanding of the CIRS high-resolution atmospheric spectra cannot be fully achieved without new or improved line positions and intensities for some trace molecules (e.g., Nixon et al. 2009). Isotopic variants of some of the more abundant species often need improved line parameters in order to derive isotopic ratios (e.g., Coustenis et al. 2008 and Fletcher et a!. 2009). Isotopic ratios contain information about the history of an atmosphere if experimental fractionation rates are available (Jennings et al. 2009). Some aerosol and haze features continue to defy identification and will not be explained without better knowledge of how these materials are formed and until we obtain their laboratory spectra. The interaction between CIRS investigations and laboratory research has been productive and has already led to new discoveries.

  1. Validation of the Atmospheric Infrared Sounder (AIRS) over the Antarctic Plateau: Low Radiance, Low Humidity, and Thin Clouds

    NASA Technical Reports Server (NTRS)

    Tobin, David C.

    2005-01-01

    The main goal of the project has been to use specialized measurements collected at the Antarctic Plateau to provide validation of the Atmospheric InfraRed Sounder (AIRS) spectral radiances and some AIRS Level 2 products. As proposed, efforts conducted at the University of Wisconsin are focused on providing technical information, data, and software in support of the validation studies.

  2. Impact Site: Infrared Image

    NASA Image and Video Library

    2017-09-15

    This montage of images, made from data obtained by Cassini's visual and infrared mapping spectrometer, shows the location on Saturn where the NASA spacecraft entered Saturn's atmosphere on Sept. 15, 2017. This view shows Saturn in the thermal infrared, at a wavelength of 5 microns. Here, the instrument is sensing heat coming from Saturn's interior, in red. Clouds in the atmosphere are silhouetted against that inner glow. This location -- the site of Cassini's atmospheric entry -- was at this time on the night side of the planet, but would rotate into daylight by the time Cassini made its final dive into Saturn's upper atmosphere, ending its remarkable 13-year exploration of Saturn. Both an annotated version and an animation are available at https://photojournal.jpl.nasa.gov/catalog/PIA21896

  3. Quantum well infrared photodetector simultaneously working in the two atmospheric windows

    NASA Astrophysics Data System (ADS)

    Huo, Y. H.; Ma, W. Q.; Zhang, Y. H.; Chong, M.; Yang, T.; Chen, L. H.; Shi, Y. L.

    2009-07-01

    We have demonstrated a dual-band quantum well infrared photodetector (QWIP) exhibiting simultaneous photoresponse both in the mid and the long wavelength atmospheric windows of 3-5 μm and of 8-12 μm, but the device only has two ohmic contacts. The structure of the device was achieved by sequentially growing a mid wavelength part (MWQWIP) followed by a long wavelength part (LWQWIP) separated by an n+ layer. Comparing with the conventional dual-band QWIP device utilizing three ohmic contacts, our QWIP is promising to greatly facilitate the two-color focal plane array (FPA) fabrication by reducing the number of the indium bump per pixel from three to one just like a monochromatic FPA fabrication; another advantage may be that this QWIP FAP boasts two-color detection capability while only using a monochromatic readout integrated circuit.

  4. Conceptual design and structural analysis of the spectroscopy of the atmosphere using far infrared emission (SAFIRE) instrument

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; Averill, Robert D.

    1992-01-01

    The conceptual design and structural analysis for the Spectroscopy of the Atmosphere using Far Infrared Emission (SAFIRE) Instrument are provided. SAFIRE, which is an international effort, is proposed for the Earth Observing Systems (EOS) program for atmospheric ozone studies. A concept was developed which meets mission requirements and is the product of numerous parametric studies and design/analysis iterations. Stiffness, thermal stability, and weight constraints led to a graphite/epoxy composite design for the optical bench and supporting struts. The structural configuration was determined by considering various mounting arrangements of the optical, cryo, and electronic components. Quasi-static, thermal, modal, and dynamic response analyses were performed, and the results are presented for the selected configuration.

  5. Validation of Atmospheric InfraRed Sounder (AIRS) spectral radiances with the Scanning High-resolution Interferometer Sounder (S-HIS) aircraft instrument

    NASA Astrophysics Data System (ADS)

    Tobin, David C.; Revercomb, Henry E.; Moeller, Chris C.; Knuteson, Robert O.; Best, Fred A.; Smith, William L.; van Delst, Paul; LaPorte, Daniel D.; Ellington, Scott D.; Werner, Mark D.; Dedecker, Ralph G.; Garcia, Raymond K.; Ciganovich, Nick N.; Howell, Hugh B.; Dutcher, Steven B.; Taylor, Joe K.

    2004-11-01

    The ability to accurately validate high spectral resolution infrared radiance measurements from space using comparisons with aircraft spectrometer observations has been successfully demonstrated. The demonstration is based on an under-flight of the Atmospheric Infrared Sounder (AIRS) on the NASA Aqua spacecraft by the Scanning High resolution Interferometer Sounder (S-HIS) on the NASA ER-2 high altitude aircraft on 21 November 2002 and resulted in brightness temperature differences approaching 0.1K for most of the spectrum. This paper presents the details of this AIRS/S-HIS validation case and also presents comparisons of Aqua AIRS and Moderate Resolution Imaging Spectroradiometer (MODIS) radiance observations. Aircraft comparisons of this type provide a mechanism for periodically testing the absolute calibration of spacecraft instruments with instrumentation for which the calibration can be carefully maintained on the ground. This capability is especially valuable for assuring the long-term consistency and accuracy of climate observations. It is expected that aircraft flights of the S-HIS and its close cousin the National Polar Orbiting Environmental Satellite System (NPOESS) Atmospheric Sounder Testbed (NAST) will be used to check the long-term stability of the NASA EOS spacecrafts (Terra, Aqua and Aura) and the follow-on complement of operational instruments, including the Cross-track Infrared Sounder (CrIS).

  6. High resolution infrared spectroscopy from space: A preliminary report on the results of the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment on Spacelab 3

    NASA Technical Reports Server (NTRS)

    Farmer, Crofton B.; Raper, Odell F.

    1987-01-01

    The ATMOS (Atmospheric Trace Molecule Spectroscopy) experiment has the broad purpose of investigating the physical structure, chemistry, and dynamics of the upper atmosphere through the study of the distributions of the neutral minor and trace constituents and their seasonal and long-term variations. The technique used is high-resolution infrared absorption spectroscopy using the Sun as the radiation source, observing the changes in the transmission of the atmosphere as the line-of-sight from the Sun to the spacecraft penetrates the atmosphere close to the Earth's limb at sunrise and sunset. During these periods, interferograms are generated at the rate of one each second which yield, when transformed, high resolution spectra covering the 2.2 to 16 micron region of the infrared. Twenty such occultations were recorded during the Spacelab 3 flight, which have produced concentration profiles for a large number of minor and trace upper atmospheric species in both the Northern and Southern Hemispheres. Several of these species have not previously been observed in spectroscopic data. The data reduction and analysis procedures used following the flight are discussed; a number of examples of the spectra obtained are shown, and a bar graph of the species detected thus far in the analysis is given which shows the altitude ranges for which concentration profiles were retrieved.

  7. Generative technique for dynamic infrared image sequences

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Cao, Zhiguo; Zhang, Tianxu

    2001-09-01

    The generative technique of the dynamic infrared image was discussed in this paper. Because infrared sensor differs from CCD camera in imaging mechanism, it generates the infrared image by incepting the infrared radiation of scene (including target and background). The infrared imaging sensor is affected deeply by the atmospheric radiation, the environmental radiation and the attenuation of atmospheric radiation transfers. Therefore at first in this paper the imaging influence of all kinds of the radiations was analyzed and the calculation formula of radiation was provided, in addition, the passive scene and the active scene were analyzed separately. Then the methods of calculation in the passive scene were provided, and the functions of the scene model, the atmospheric transmission model and the material physical attribute databases were explained. Secondly based on the infrared imaging model, the design idea, the achievable way and the software frame for the simulation software of the infrared image sequence were introduced in SGI workstation. Under the guidance of the idea above, in the third segment of the paper an example of simulative infrared image sequences was presented, which used the sea and sky as background and used the warship as target and used the aircraft as eye point. At last the simulation synthetically was evaluated and the betterment scheme was presented.

  8. Characteristics of monsoon inversions over the Arabian Sea observed by satellite sounder and reanalysis data sets

    NASA Astrophysics Data System (ADS)

    Dwivedi, Sanjeev; Narayanan, M. S.; Venkat Ratnam, M.; Narayana Rao, D.

    2016-04-01

    Monsoon inversion (MI) over the Arabian Sea (AS) is one of the important characteristics associated with the monsoon activity over Indian region during summer monsoon season. In the present study, we have used 5 years (2009-2013) of temperature and water vapour measurement data obtained from satellite sounder instrument, an Infrared Atmospheric Sounding Interferometer (IASI) onboard MetOp satellite, in addition to ERA-Interim data, to study their characteristics. The lower atmospheric data over the AS have been examined first to identify the areas where MIs are predominant and occur with higher strength. Based on this information, a detailed study has been made to investigate their characteristics separately in the eastern AS (EAS) and western AS (WAS) to examine their contrasting features. The initiation and dissipation times of MIs, their percentage occurrence, strength, etc., has been examined using the huge database. The relation with monsoon activity (rainfall) over Indian region during normal and poor monsoon years is also studied. WAS ΔT values are ˜ 2 K less than those over the EAS, ΔT being the temperature difference between 950 and 850 hPa. A much larger contrast between the WAS and EAS in ΔT is noticed in ERA-Interim data set vis-à-vis those observed by satellites. The possibility of detecting MI from another parameter, refractivity N, obtained directly from another satellite constellation of GPS Radio Occultation (RO) (COSMIC), has also been examined. MI detected from IASI and Atmospheric Infrared Sounder (AIRS) onboard the NOAA satellite have been compared to see how far the two data sets can be combined to study the MI characteristics. We suggest MI could also be included as one of the semipermanent features of southwest monsoon along with the presently accepted six parameters.

  9. Atmospheric influences on infrared-laser signals used for occultation measurements between Low Earth Orbit satellites

    NASA Astrophysics Data System (ADS)

    Schweitzer, S.; Kirchengast, G.; Proschek, V.

    2011-10-01

    LEO-LEO infrared-laser occultation (LIO) is a new occultation technique between Low Earth Orbit (LEO) satellites, which applies signals in the short wave infrared spectral range (SWIR) within 2 μm to 2.5 μm. It is part of the LEO-LEO microwave and infrared-laser occultation (LMIO) method that enables to retrieve thermodynamic profiles (pressure, temperature, humidity) and altitude levels from microwave signals and profiles of greenhouse gases and further variables such as line-of-sight wind speed from simultaneously measured LIO signals. Due to the novelty of the LMIO method, detailed knowledge of atmospheric influences on LIO signals and of their suitability for accurate trace species retrieval did not yet exist. Here we discuss these influences, assessing effects from refraction, trace species absorption, aerosol extinction and Rayleigh scattering in detail, and addressing clouds, turbulence, wind, scattered solar radiation and terrestrial thermal radiation as well. We show that the influence of refractive defocusing, foreign species absorption, aerosols and turbulence is observable, but can be rendered small to negligible by use of the differential transmission principle with a close frequency spacing of LIO absorption and reference signals within 0.5%. The influences of Rayleigh scattering and terrestrial thermal radiation are found negligible. Cloud-scattered solar radiation can be observable under bright-day conditions, but this influence can be made negligible by a close time spacing (within 5 ms) of interleaved laser-pulse and background signals. Cloud extinction loss generally blocks SWIR signals, except very thin or sub-visible cirrus clouds, which can be addressed by retrieving a cloud layering profile and exploiting it in the trace species retrieval. Wind can have a small influence on the trace species absorption, which can be made negligible by using a simultaneously retrieved or a moderately accurate background wind speed profile. We conclude that

  10. Determining the infrared radiative effects of Saharan dust: a radiative transfer modelling study based on vertically resolved measurements at Lampedusa

    NASA Astrophysics Data System (ADS)

    Meloni, Daniela; di Sarra, Alcide; Brogniez, Gérard; Denjean, Cyrielle; De Silvestri, Lorenzo; Di Iorio, Tatiana; Formenti, Paola; Gómez-Amo, José L.; Gröbner, Julian; Kouremeti, Natalia; Liuzzi, Giuliano; Mallet, Marc; Pace, Giandomenico; Sferlazzo, Damiano M.

    2018-03-01

    Detailed measurements of radiation, atmospheric and aerosol properties were carried out in summer 2013 during the Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region (ADRIMED) campaign in the framework of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx) experiment. This study focusses on the characterization of infrared (IR) optical properties and direct radiative effects of mineral dust, based on three vertical profiles of atmospheric and aerosol properties and IR broadband and narrowband radiation from airborne measurements, made in conjunction with radiosonde and ground-based observations at Lampedusa, in the central Mediterranean. Satellite IR spectra from the Infrared Atmospheric Sounder Interferometer (IASI) are also included in the analysis. The atmospheric and aerosol properties are used as input to a radiative transfer model, and various IR radiation parameters (upward and downward irradiance, nadir and zenith brightness temperature at different altitudes) are calculated and compared with observations. The model calculations are made for different sets of dust particle size distribution (PSD) and refractive index (RI), derived from observations and from the literature. The main results of the analysis are that the IR dust radiative forcing is non-negligible and strongly depends on PSD and RI. When calculations are made using the in situ measured size distribution, it is possible to identify the refractive index that produces the best match with observed IR irradiances and brightness temperatures (BTs). The most appropriate refractive indices correspond to those determined from independent measurements of mineral dust aerosols from the source regions (Tunisia, Algeria, Morocco) of dust transported over Lampedusa, suggesting that differences in the source properties should be taken into account. With the in situ size distribution and the most appropriate refractive index the estimated dust IR radiative forcing

  11. Correcting infrared satellite estimates of sea surface temperature for atmospheric water vapor attenuation

    NASA Technical Reports Server (NTRS)

    Emery, William J.; Yu, Yunyue; Wick, Gary A.; Schluessel, Peter; Reynolds, Richard W.

    1994-01-01

    A new satellite sea surface temperature (SST) algorithm is developed that uses nearly coincident measurements from the microwave special sensor microwave imager (SSM/I) to correct for atmospheric moisture attenuation of the infrared signal from the advanced very high resolution radiometer (AVHRR). This new SST algorithm is applied to AVHRR imagery from the South Pacific and Norwegian seas, which are then compared with simultaneous in situ (ship based) measurements of both skin and bulk SST. In addition, an SST algorithm using a quadratic product of the difference between the two AVHRR thermal infrared channels is compared with the in situ measurements. While the quadratic formulation provides a considerable improvement over the older cross product (CPSST) and multichannel (MCSST) algorithms, the SSM/I corrected SST (called the water vapor or WVSST) shows overall smaller errors when compared to both the skin and bulk in situ SST observations. Applied to individual AVHRR images, the WVSST reveals an SST difference pattern (CPSST-WVSST) similar in shape to the water vapor structure while the CPSST-quadratic SST difference appears unrelated in pattern to the nearly coincident water vapor pattern. An application of the WVSST to week-long composites of global area coverage (GAC) AVHRR data demonstrates again the manner in which the WVSST corrects the AVHRR for atmospheric moisture attenuation. By comparison the quadratic SST method underestimates the SST corrections in the lower latitudes and overestimates the SST in th e higher latitudes. Correlations between the AVHRR thermal channel differences and the SSM/I water vapor demonstrate the inability of the channel difference to represent water vapor in the midlatitude and high latitudes during summer. Compared against drifting buoy data the WVSST and the quadratic SST both exhibit the same general behavior with the relatively small differences with the buoy temperatures.

  12. Characterizing the 3-D atmosphere with NUCAPS sounding products from multiple platforms

    NASA Astrophysics Data System (ADS)

    Barnet, C. D.; Smith, N.; Gambacorta, A.; Wheeler, A. A.; Sjoberg, W.; Goldberg, M.

    2017-12-01

    The JPSS Proving Ground and Risk Reduction (PGRR) Program launched the Sounding Initiative in 2014 to develop operational applications that use 3-D satellite soundings. These are near global daily swaths of vertical atmospheric profiles of temperature, moisture and trace gas species. When high vertical resolution satellite soundings first became available, their assimilation into user applications was slow: forecasters familiar with 2-D satellite imagery or 1-D radiosondes did not have the technical capability nor product knowledge to readily ingest satellite soundings. Similarly, the satellite sounding developer community lacked wherewithal to understand the many challenges forecasters face in their real time decision-making. It took the PGRR Sounding Initiative to bring these two communities together and develop novel applications that now depend on NUCAPS soundings. NUCAPS - the NOAA Unique Combined Atmospheric Processing System - is platform agnostic and generates satellite soundings from measurements made by infrared and microwave sounder pairs on the MetOp (IASI/AMSU) and Suomi NPP (CrIS/ATMS) polar-orbiting platforms. We highlight here three new applications developed under the PGRR Sounding Initiative. They are, (i) aviation: NUCAPS identifies cold air "blobs" that causes jet fuel to freeze, (ii) severe weather: NUCAPS identifies areas of convective initiation, and (iii) air quality: NUCAPS identifies stratospheric intrusions and tracks long-range transport of biomass burning plumes. The value of NUCAPS being platform agnostic will become apparent with the JPSS-1 launch. NUCAPS soundings from Suomi NPP and JPSS-1, being 50 min apart, could capture fast-changing weather events and together with NUCAPS soundings from the two MetOp platforms ( 4 hours earlier in the day than JPSS) could characterize diurnal cycles. In this paper, we will summarize key accomplishments and assess whether NUCAPS maintains enough continuity in its sounding products from multiple

  13. Infrared spectroscopy, vibrational predissociation dynamics and stability of the hydrogen trioxy (HOOO) radical and estimation of its abundance in the atmosphere

    NASA Astrophysics Data System (ADS)

    Derro, Erika L.

    The hydrogen trioxy (HOOO) radical has been implicated as an important intermediate in key processes in the atmosphere. In the present studies, HOOO is produced by the combination of O2 and photolytically generated OH radicals in the collisional region of a pulsed supersonic expansion. Rotationally cooled HOOO is probed in the effectively collision-free region of the expansion using infrared action spectroscopy, an infrared-pump, ultraviolet-probe technique, in which HOOO is vibrationally excited and the nascent OH products of vibrational predissociation are probed via laser-induced fluorescence. High resolution infrared spectra of HOOO and DOOO were observed in the fundamental and overtone OH/D stretching regions (nui and 2nu 1), which comprise a rotationally structured band attributed to the trans conformer, and an unstructured component assigned to the cis conformer. Infrared spectra of HOOO and DOOO combination bands composed of the OH stretch and a low frequency mode (nu1 + nun) were also observed. This allowed identification of vibrational frequencies for five of the six modes for trans-H/DOOO and four of the six modes for cis-HOOO and DOOO. Identification of low frequency modes provides critical information on the vibrational dynamics and thermochemical properties of the HOOO radical, and furthermore, provides a potential means for detecting HOOO in situ in the atmosphere. In addition, the nascent OH X2pi products following vibrational predissociation of HOOO have been investigated. The product state distributions reveal a distinct preference for population of pi(A ') Λ-doublets in OH that is indicative of a planar dissociation of trans-HOOO in which the symmetry of the bonding orbital is maintained. The highest observed OH quantum state allows determination of the stability of HOOO relative to the OH + O 2 asymptote using a conservation of energy approach. In conjunction with a similar investigation of DOOO, the binding energy is determined to be ≤ 5

  14. The Effects of Atmospheric Water Vapor Absorption on Infrared Laser Propagation in the 5 Micrometer Band.

    DTIC Science & Technology

    1983-05-01

    which allows for thermal linedr expansion of the structure. 32 1 I 2. Second Harmonic Generation The second harmonic generation was achieved by mounting a...filter unit and then to the reference channel lock-in amplifier. C. TESTS 1 . DC Amplifier and A/D Calibration The Ectron DC amplifiers and the Altair A/D...AD-A130 788 THE EFFECTS OF ATMOSPHERIC WATER VAPOR ABSORPTION ON 1 / INFRARED LASER PRUPA..(U) OHIO STATE UNIV COLUMBUS ELECTROSCIENCE LAB L G WALTER

  15. AIRS Retrieval Validation During the EAQUATE

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Smith, William L.; Cuomo, Vincenzo; Taylor, Jonathan P.; Barnet, Christopher D.; DiGirolamo, Paolo; Pappalardo, Gelsomina; Larar, Allen M.; Liu, Xu; Newman, Stuart M.

    2006-01-01

    Atmospheric and surface thermodynamic parameters retrieved with advanced hyperspectral remote sensors of Earth observing satellites are critical for weather prediction and scientific research. The retrieval algorithms and retrieved parameters from satellite sounders must be validated to demonstrate the capability and accuracy of both observation and data processing systems. The European AQUA Thermodynamic Experiment (EAQUATE) was conducted mainly for validation of the Atmospheric InfraRed Sounder (AIRS) on the AQUA satellite, but also for assessment of validation systems of both ground-based and aircraft-based instruments which will be used for other satellite systems such as the Infrared Atmospheric Sounding Interferometer (IASI) on the European MetOp satellite, the Cross-track Infrared Sounder (CrIS) from the NPOESS Preparatory Project and the following NPOESS series of satellites. Detailed inter-comparisons were conducted and presented using different retrieval methodologies: measurements from airborne ultraspectral Fourier transform spectrometers, aircraft in-situ instruments, dedicated dropsondes and radiosondes, and ground based Raman Lidar, as well as from the European Center for Medium range Weather Forecasting (ECMWF) modeled thermal structures. The results of this study not only illustrate the quality of the measurements and retrieval products but also demonstrate the capability of these validation systems which are put in place to validate current and future hyperspectral sounding instruments and their scientific products.

  16. Retrievals of atmospheric variables on the gas giants from ground-based mid-infrared imaging

    NASA Astrophysics Data System (ADS)

    Fletcher, L. N.; Orton, G. S.; Yanamandra-Fisher, P.; Fisher, B. M.; Parrish, P. D.; Irwin, P. G. J.

    2009-03-01

    Thermal-infrared imaging of Jupiter and Saturn using the NASA/IRTF and Subaru observatories are quantitatively analyzed to assess the capabilities for reproducing and extending the zonal mean atmospheric results of the Cassini/CIRS experiment. We describe the development of a robust, systematic and reproducible approach to the acquisition and reduction of planetary images in the mid-infrared (7-25 μm), and perform an adaptation and validation of the optimal estimation, correlated- k retrieval algorithm described by Irwin et al. [Irwin, P., Teanby, N., de Kok, R., Fletcher, L., Howett, C., Tsang, C., Wilson, C., Calcutt, S., Nixon, C., Parrish, P., 2008. J. Quant. Spectrosc. Radiat. Trans. 109 (6), 1136-1150] for channel-integrated radiances. Synthetic spectral analyses and a comparison to Cassini results are used to verify our abilities to retrieve temperatures, haze opacities and gaseous abundances from filtered imaging. We find that ground-based imaging with a sufficiently high spatial resolution is able to reproduce the three-dimensional temperature and para-H 2 fields measured by spacecraft visiting Jupiter and Saturn, allowing us to investigate vertical wind shear, pressure and, with measured cloud-top winds, Ertel potential vorticity on potential temperature surfaces. Furthermore, by scaling vertical profiles of NH 3, PH 3, haze opacity and hydrocarbons as free parameters during thermal retrievals, we can produce meridional results comparable with CIRS spectroscopic investigations. This paper demonstrates that mid-IR imaging instruments operating at ground-based observatories have access to several dynamical and chemical diagnostics of the atmospheric state of the gas giants, offering the prospect for quantitative studies over much longer baselines and often covering much wider areas than is possible from spaceborne platforms.

  17. Collaborative Study of Analysis of High Resolution Infrared Atmospheric Spectra Between NASA Langley Research Center and the University of Denver

    NASA Technical Reports Server (NTRS)

    Goldman, Aaron

    1999-01-01

    The Langley-D.U. collaboration on the analysis of high resolution infrared atmospheric spectra covered a number of important studies of trace gases identification and quantification from field spectra, and spectral line parameters analysis. The collaborative work included: Quantification and monitoring of trace gases from ground-based spectra available from various locations and seasons and from balloon flights. Studies toward identification and quantification of isotopic species, mostly oxygen and Sulfur isotopes. Search for new species on the available spectra. Update of spectroscopic line parameters, by combining laboratory and atmospheric spectra with theoretical spectroscopy methods. Study of trends of atmosphere trace constituents. Algorithms developments, retrievals intercomparisons and automatization of the analysis of NDSC spectra, for both column amounts and vertical profiles.

  18. Revised mineral dust emissions in the atmospheric chemistry-climate model EMAC (MESSy 2.52 DU_Astitha1 KKDU2017 patch)

    NASA Astrophysics Data System (ADS)

    Klingmüller, Klaus; Metzger, Swen; Abdelkader, Mohamed; Karydis, Vlassis A.; Stenchikov, Georgiy L.; Pozzer, Andrea; Lelieveld, Jos

    2018-03-01

    To improve the aeolian dust budget calculations with the global ECHAM/MESSy atmospheric chemistry-climate model (EMAC), which combines the Modular Earth Submodel System (MESSy) with the ECMWF/Hamburg (ECHAM) climate model developed at the Max Planck Institute for Meteorology in Hamburg based on a weather prediction model of the European Centre for Medium-Range Weather Forecasts (ECMWF), we have implemented new input data and updates of the emission scheme.The data set comprises land cover classification, vegetation, clay fraction and topography. It is based on up-to-date observations, which are crucial to account for the rapid changes of deserts and semi-arid regions in recent decades. The new Moderate Resolution Imaging Spectroradiometer (MODIS)-based land cover and vegetation data are time dependent, and the effect of long-term trends and variability of the relevant parameters is therefore considered by the emission scheme. All input data have a spatial resolution of at least 0.1° compared to 1° in the previous version, equipping the model for high-resolution simulations.We validate the updates by comparing the aerosol optical depth (AOD) at 550 nm wavelength from a 1-year simulation at T106 (about 1.1°) resolution with Aerosol Robotic Network (AERONET) and MODIS observations, the 10 µm dust AOD (DAOD) with Infrared Atmospheric Sounding Interferometer (IASI) retrievals, and dust concentration and deposition results with observations from the Aerosol Comparisons between Observations and Models (AeroCom) dust benchmark data set. The update significantly improves agreement with the observations and is therefore recommended to be used in future simulations.

  19. Principal Component-Based Radiative Transfer Model (PCRTM) for Hyperspectral Sensors. Part I; Theoretical Concept

    NASA Technical Reports Server (NTRS)

    Liu, Xu; Smith, William L.; Zhou, Daniel K.; Larar, Allen

    2005-01-01

    Modern infrared satellite sensors such as Atmospheric Infrared Sounder (AIRS), Cosmic Ray Isotope Spectrometer (CrIS), Thermal Emission Spectrometer (TES), Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) and Infrared Atmospheric Sounding Interferometer (IASI) are capable of providing high spatial and spectral resolution infrared spectra. To fully exploit the vast amount of spectral information from these instruments, super fast radiative transfer models are needed. This paper presents a novel radiative transfer model based on principal component analysis. Instead of predicting channel radiance or transmittance spectra directly, the Principal Component-based Radiative Transfer Model (PCRTM) predicts the Principal Component (PC) scores of these quantities. This prediction ability leads to significant savings in computational time. The parameterization of the PCRTM model is derived from properties of PC scores and instrument line shape functions. The PCRTM is very accurate and flexible. Due to its high speed and compressed spectral information format, it has great potential for super fast one-dimensional physical retrievals and for Numerical Weather Prediction (NWP) large volume radiance data assimilation applications. The model has been successfully developed for the National Polar-orbiting Operational Environmental Satellite System Airborne Sounder Testbed - Interferometer (NAST-I) and AIRS instruments. The PCRTM model performs monochromatic radiative transfer calculations and is able to include multiple scattering calculations to account for clouds and aerosols.

  20. Infrared Sky Imager (IRSI) Instrument Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, Victor R.

    2016-04-01

    The Infrared Sky Imager (IRSI) deployed at the Atmospheric Radiation Measurement (ARM) Climate Research Facility is a Solmirus Corp. All Sky Infrared Visible Analyzer. The IRSI is an automatic, continuously operating, digital imaging and software system designed to capture hemispheric sky images and provide time series retrievals of fractional sky cover during both the day and night. The instrument provides diurnal, radiometrically calibrated sky imagery in the mid-infrared atmospheric window and imagery in the visible wavelengths for cloud retrievals during daylight hours. The software automatically identifies cloudy and clear regions at user-defined intervals and calculates fractional sky cover, providing amore » real-time display of sky conditions.« less

  1. Pyroelectricity Assisted Infrared-Laser Desorption Ionization (PAI-LDI) for Atmospheric Pressure Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Li, Yanyan; Ma, Xiaoxiao; Wei, Zhenwei; Gong, Xiaoyun; Yang, Chengdui; Zhang, Sichun; Zhang, Xinrong

    2015-08-01

    A new atmospheric pressure ionization method termed pyroelectricity-assisted infrared laser desorption ionization (PAI-LDI) was developed in this study. The pyroelectric material served as both sample target plate and enhancing ionization substrate, and an IR laser with wavelength of 1064 nm was employed to realize direct desorption and ionization of the analytes. The mass spectra of various compounds obtained on pyroelectric material were compared with those of other substrates. For the five standard substances tested in this work, LiNbO3 substrate produced the highest ion yield and the signal intensity was about 10 times higher than that when copper was used as substrate. For 1-adamantylamine, as low as 20 pg (132.2 fmol) was successfully detected. The active ingredient in (Compound Paracetamol and 1-Adamantylamine Hydrochloride Capsules), 1-adamantylamine, can be sensitively detected at an amount as low as 150 pg, when the medicine stock solution was diluted with urine. Monosaccharide and oligosaccharides in Allium Cepa L. juice was also successfully identified with PAI-LDI. The method did not require matrix-assisted external high voltage or other extra facility-assisted set-ups for desorption/ionization. This study suggested exciting application prospect of pyroelectric materials in matrix- and electricity-free atmospheric pressure mass spectrometry research.

  2. Profiles of stratospheric chlorine nitrate (ClONO2) from atmospheric trace molecule spectroscopy/ATLAS 1 infrared solar occultation spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Gunson, M. R.; Abrams, M. C.; Zander, R.; Mahieu, E.; Goldman, A.; Ko, M. K. W.; Rodriguez, J. M.; Sze, N. D.

    1994-01-01

    Stratospheric volume mixing ratio profiles of chlorine nitrate (ClONO2) have been retrieved from 0.01/cm resolution infrared solar occultation spectra recorded at latitudes between 14 deg N and 54 deg S by the atmospheric trace molecule spectroscopy Fourier transform spectrometer during the Atmospheric Laboratory for Applications and Science (ATLAS) 1 shuttle mission (March 24 to April 2, 1992). The results were obtained from nonlinear least squares fittings of the ClONO2 nu(sub 4) band Q branch at 780.21/cm with improved spectroscopic parameters generated on the basis of recent laboratory work. The individual profiles, which have an accuracy of about +/- 20%, are compared with previous observations and model calculations.

  3. The Atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Hansen, J. E. (Editor)

    1975-01-01

    Topics considered at the conference included the dynamics, structure, chemistry, and evolution of the Venus atmosphere, as well as cloud physics and motion. Infrared, ultraviolet, and radio occultation methods of analysis are discussed, and atmospheric models are described.

  4. Physically-Retrieving Cloud and Thermodynamic Parameters from Ultraspectral IR Measurements

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Smith, William L., Sr.; Liu, Xu; Larar, Allen M.; Mango, Stephen A.; Huang, Hung-Lung

    2007-01-01

    A physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multi-variable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. It is shown that relatively accurate temperature and moisture retrievals can be achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to cloud top level are obtained. For both optically thin and thick cloud situations, the cloud top height can be retrieved with relatively high accuracy (i.e., error < 1 km). NPOESS Airborne Sounder Testbed Interferometer (NAST-I) retrievals from the Atlantic-THORPEX Regional Campaign are compared with coincident observations obtained from dropsondes and the nadir-pointing Cloud Physics Lidar (CPL). This work was motivated by the need to obtain solutions for atmospheric soundings from infrared radiances observed for every individual field of view, regardless of cloud cover, from future ultraspectral geostationary satellite sounding instruments, such as the Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) and the Hyperspectral Environmental Suite (HES). However, this retrieval approach can also be applied to the ultraspectral sounding instruments to fly on Polar satellites, such as the Infrared Atmospheric Sounding Interferometer (IASI) on the European MetOp satellite, the Cross-track Infrared Sounder (CrIS) on the NPOESS Preparatory Project and the following NPOESS series of satellites.

  5. A Network of Direct Broadcast Antenna Systems to Provide Real-Time Infrared and Microwave Sounder Data for Numerical Weather Prediction

    NASA Astrophysics Data System (ADS)

    Gumley, L.

    2013-12-01

    The Space Science and Engineering Center at the University of Wisconsin-Madison is creating a network of direct broadcast satellite data reception stations to acquire and process infrared and microwave sounder data in real-time from polar orbiting meteorological satellites and deliver the resulting products to NOAA with low latency for assimilation in NCEP numerical weather prediction models. The network will include 4 antenna sites that will be operated directly by SSEC, including Madison WI, Honolulu HI, Miami FL, and Mayaguez PR. The network will also include partner antenna sites not directly controlled by SSEC, including Corvallis OR, Monterey CA, Suitland MD, Fairbanks AK, and Guam. All of the antenna sites will have a combined X/L-band reception system capable of receiving data via direct broadcast from polar orbiting satellites including Suomi NPP and JPSS-1, Metop-A/B, POES,Terra, and Aqua. Each site will collect raw data from these satellites locally, process it to Level 1 (SDR) and Level 2 (EDR) products, and transmit the products back to SSEC for delivery to NOAA/NCEP. The primary purpose of the antenna systems is to provide real-time infrared and microwave sounder data from Metop and Suomi-NPP to NOAA to support data assimilation for NOAA/NCEP operational numerical weather prediction models. At present, NOAA/NCEP use of advanced infrared (CrIS, IASI, AIRS) and microwave (ATMS, AMSU) sounder data over North America in NWP data assimilation is limited because of the latency of the products in relation to the cutoff times for assimilation runs. This network will deliver infrared and microwave sounder data to NCEP with the lowest latency possible, via the reception and processing of data received via direct broadcast. CIMSS/SSEC is managing the procurement and installation of the antenna systems at the two new sites, and will operate the stations remotely. NOAA will establish the reception priorities (Metop and SNPP will be at the highest priority) and

  6. Jupiter Eruptions Captured in Infrared

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on the image for high resolution image of Nature Cover

    Detailed analysis of two continent-sized storms that erupted in Jupiter's atmosphere in March 2007 shows that Jupiter's internal heat plays a significant role in generating atmospheric disturbances. Understanding these outbreaks could be the key to unlock the mysteries buried in the deep Jovian atmosphere, say astronomers.

    This infrared image shows two bright plume eruptions obtained by the NASA Infrared Telescope Facility on April 5, 2007.

    Understanding these phenomena is important for Earth's meteorology where storms are present everywhere and jet streams dominate the atmospheric circulation. Jupiter is a natural laboratory where atmospheric scientists study the nature and interplay of the intense jets and severe atmospheric phenomena.

    According to the analysis, the bright plumes were storm systems triggered in Jupiter's deep water clouds that moved upward in the atmosphere vigorously and injected a fresh mixture of ammonia ice and water about 20 miles (30 kilometers) above the visible clouds. The storms moved in the peak of a jet stream in Jupiter's atmosphere at 375 miles per hour (600 kilometers per hour). Models of the disturbance indicate that the jet stream extends deep in the buried atmosphere of Jupiter, more than 60 miles (approximately100 kilometers) below the cloud tops where most sunlight is absorbed.

  7. The infrared spectrum of Jupiter

    NASA Technical Reports Server (NTRS)

    Ridgway, S. T.; Larson, H. P.; Fink, U.

    1976-01-01

    The principal characteristics of Jupiter's infrared spectrum are reviewed with emphasis on their significance for our understanding of the composition and temperature structure of the Jovian upper atmosphere. The spectral region from 1 to 40 microns divides naturally into three regimes: the reflecting region, thermal emission from below the cloud deck (5-micron hot spots), and thermal emission from above the clouds. Opaque parts of the Jovian atmosphere further subdivide these regions into windows, and each is discussed in the context of its past or potential contributions to our knowledge of the planet. Recent results are incorporated into a table of atmospheric composition and abundance which includes positively identified constituents as well as several which require verification. The limited available information about spatial variations of the infrared spectrum is presented

  8. Thermal effects of an ICL-based mid-infrared CH4 sensor within a wide atmospheric temperature range

    NASA Astrophysics Data System (ADS)

    Ye, Weilin; Zheng, Chuantao; Sanchez, Nancy P.; Girija, Aswathy V.; He, Qixin; Zheng, Huadan; Griffin, Robert J.; Tittel, Frank K.

    2018-03-01

    The thermal effects of an interband cascade laser (ICL) based mid-infrared methane (CH4) sensor that uses long-path absorption spectroscopy were studied. The sensor performance in the laboratory at a constant temperature of ∼25 °C was measured for 5 h and its Allan deviation was ∼2 ppbv with a 1 s averaging time. A LabVIEW-based simulation program was developed to study thermal effects on infrared absorption and a temperature compensation technique was developed to minimize these effects. An environmental test chamber was employed to investigate the thermal effects that occur in the sensor system with variation of the test chamber temperature between 10 and 30 °C. The thermal response of the sensor in a laboratory setting was observed using a 2.1 ppm CH4 standard gas sample. Indoor/outdoor CH4 measurements were conducted to evaluate the sensor performance within a wide atmospheric temperature range.

  9. Thermal effects of an ICL-based mid-infrared CH 4 sensor within a wide atmospheric temperature range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Weilin; Zheng, Chuantao; Sanchez, Nancy P.

    Here, thermal effects of an interband cascade laser (ICL) based mid-infrared methane (CH 4) sensor that uses long-path absorption spectroscopy were studied. The sensor performance in the laboratory at a constant temperature of ~ 25°C was measured for 5 hours and its Allan deviation was ~ 2 ppbv with a 1 s averaging time. A LabVIEW-based simulation program was developed to study thermal effects on infrared absorption and a temperature compensation technique was developed to control such effects. An environmental test chamber was employed to investigate thermal effects that occur in the sensor system with variation of the test chambermore » temperature between 10 and 30°C. The thermal response of the sensor in a laboratory setting was observed using a 2.1 ppm CH 4 standard gas sample. indoor/outdoor CH 4 measurements were conducted to evaluate the sensor performance within a wide atmospheric temperature range.« less

  10. Thermal effects of an ICL-based mid-infrared CH 4 sensor within a wide atmospheric temperature range

    DOE PAGES

    Ye, Weilin; Zheng, Chuantao; Sanchez, Nancy P.; ...

    2018-01-31

    Here, thermal effects of an interband cascade laser (ICL) based mid-infrared methane (CH 4) sensor that uses long-path absorption spectroscopy were studied. The sensor performance in the laboratory at a constant temperature of ~ 25°C was measured for 5 hours and its Allan deviation was ~ 2 ppbv with a 1 s averaging time. A LabVIEW-based simulation program was developed to study thermal effects on infrared absorption and a temperature compensation technique was developed to control such effects. An environmental test chamber was employed to investigate thermal effects that occur in the sensor system with variation of the test chambermore » temperature between 10 and 30°C. The thermal response of the sensor in a laboratory setting was observed using a 2.1 ppm CH 4 standard gas sample. indoor/outdoor CH 4 measurements were conducted to evaluate the sensor performance within a wide atmospheric temperature range.« less

  11. Mars: Atmosphere

    NASA Astrophysics Data System (ADS)

    Moroz, V.; Murdin, P.

    2001-07-01

    The atmosphere of MARS is much thinner than the terrestrial one. However, even the simplest visual telescopic observations show a set of atmospheric events such as seasonal exchange of material between polar caps, temporal appearance of clouds and changes of visibility of dark regions on the disk of the planet. In 1947 the prominent CO2 bands in the near-infrared part of the Martian spectrum were...

  12. Mid-Infrared OPO for High Resolution Measurements of Trace Gases in the Mars Atmosphere

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Numata,Kenji; Riris, haris; Abshire, James B.; Allan, Graham; Sun, Xiaoli; Krainak, Michael A.

    2008-01-01

    The Martian atmosphere is composed primarily (>95%) of CO2 and N2 gas, with CO, O2, CH4, and inert gases such as argon comprising most of the remainder. It is surprisingly dynamic with various processes driving changes in the distribution of CO2, dust, haze, clouds and water vapor on global scales in the meteorology of Mars atmosphere [I]. The trace gases and isotopic ratios in the atmosphere offer important but subtle clues as to the origins of the planet's atmosphere, hydrology, geology, and potential for biology. In the search for life on Mars, an important process is the ability of bacteria to metabolize inorganic substrates (H2, CO2 and rock) to derive energy and produce methane as a by-product of anaerobic metabolism. Trace gases have been measured in the Mars atmosphere from Earth, Mars orbit, and from the Mars surface. The concentration of water vapor and various carbon-based trace gases are observed in variable concentrations. Within the past decade multiple groups have reported detection of CH4, with concentrations in the 10's of ppb, using spectroscopic observations from Earth [2]. Passive spectrometers in the mid-infrared (MIR) are restricted to the sunlit side of the planet, generally in the mid latitudes, and have limited spectral and spatial resolution. To accurately map the global distribution and to locate areas of possibly higher concentrations of these gases such as plumes or vents requires an instrument with high sensitivity and fine spatial resolution that also has global coverage and can measure during both day and night. Our development goal is a new MIR lidar capable of measuring, on global scales, with sensitivity, resolution and precision needed to characterize the trace gases and isotopic ratios of the Martian atmosphere. An optical parametric oscillator operating in the MIR is well suited for this instrument. The sufficient wavelength tuning range of the OPO can extend the measurements to other organic molecules, CO2, atmospheric water

  13. Collaborative Study for Analysis of High Resolution Infrared Atmospheric Spectra Between NASA Langley Research Center and the University of Denver

    NASA Technical Reports Server (NTRS)

    Goldman, A.

    2002-01-01

    The Langley-D.U. collaboration on the analysis of high resolultion infrared atmospheric spectra covered a number of important studies of trace gases identification and quantification from field spectra, and spectral line parameters analysis. The collaborative work included: 1) Quantification and monitoring of trace gases from ground-based spectra available from various locations and seasons and from balloon flights; 2) Identification and preliminary quantification of several isotopic species, including oxygen and Sulfur isotopes; 3) Search for new species on the available spectra, including the use of selective coadding of ground-based spectra for high signal to noise; 4) Update of spectroscopic line parameters, by combining laboratory and atmospheric spectra with theoretical spectroscopy methods; 5) Study of trends and correlations of atmosphere trace constituents; and 6) Algorithms developments, retrievals intercomparisons and automatization of the analysis of NDSC spectra, for both column amounts and vertical profiles.

  14. Meridional Variations of C2H2 and C2H6 in Jupiter's Atmosphere from Cassini CIRS Infrared Spectra

    NASA Technical Reports Server (NTRS)

    Nixon, C. A.; Achterberg, R. K.; Conrath, B. J.; Irwin, P. G. J.; Fouchet, T.; Parrish, P. D.; Abbas, M.; LeClaire, A.; Romani, P. N.; Simon-Miller, A. A.

    2004-01-01

    The abundances of hydrocarbons such as acetylene (C2H2) and ethane (C2H6) in Jupiter's atmosphere are important physical quantities, constraining our models of the chemical and dynamical processes. However, our knowledge of these quantities and their vertical and latitudinal variations has remained sparse. The flyby of the Cassini spacecraft with Jupiter at the end of 2000 provided an excellent opportunity to observe the infrared spectrum with the Composite Infrared Spectrometer (CIRS) instrument, mapping the spatial variation of emissions from 10-1400 cm-1. CIRS spectra taken at the highest resolution (0.5 cm-1) in early December 2000 have been analysed to infer atmospheric temperatures in the stratosphere at 0.5-20 mbar via the v4 of CH4, and in the troposphere at 100-400 mbar, via the hydrogen collision-induced continuum absorption at 600-800 cm. Simultaneously, we have searched for meridional abundance variations in C2H2 and C2H6 via the v5 and vg bands respectively. Tropospheric absorption and stratospheric emission are highly anti-correlated at the CIM resolution, introducing a non-uniqueness into the retrievals, which means that vertical gradient and column abundance cannot be simultaneously found without additional constraints. If we assume the profile shapes from photochemical model calculations, we show that the column abundance of C2H2 must decrease sharply towards the poles, while C2H6 is constant or slightly increasing. The relevance of these results to current photochemical and dynamical knowledge of Jupiter's atmosphere is discussed.

  15. Low-Resolution Near-infrared Stellar Spectra Observed by the Cosmic Infrared Background Experiment (CIBER)

    NASA Astrophysics Data System (ADS)

    Kim, Min Gyu; Lee, Hyung Mok; Arai, Toshiaki; Bock, James; Cooray, Asantha; Jeong, Woong-Seob; Kim, Seong Jin; Korngut, Phillip; Lanz, Alicia; Lee, Dae Hee; Lee, Myung Gyoon; Matsumoto, Toshio; Matsuura, Shuji; Nam, Uk Won; Onishi, Yosuke; Shirahata, Mai; Smidt, Joseph; Tsumura, Kohji; Yamamura, Issei; Zemcov, Michael

    2017-02-01

    We present near-infrared (0.8-1.8 μm) spectra of 105 bright ({m}J < 10) stars observed with the low-resolution spectrometer on the rocket-borne Cosmic Infrared Background Experiment. As our observations are performed above the Earth's atmosphere, our spectra are free from telluric contamination, which makes them a unique resource for near-infrared spectral calibration. Two-Micron All-Sky Survey photometry information is used to identify cross-matched stars after reduction and extraction of the spectra. We identify the spectral types of the observed stars by comparing them with spectral templates from the Infrared Telescope Facility library. All the observed spectra are consistent with late F to M stellar spectral types, and we identify various infrared absorption lines.

  16. Improving Regional Forecast by Assimilating Atmospheric InfraRed Sounder (AIRS) Profiles into WRF Model

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Brad; Jedlovec, Gary J.

    2009-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and produce improved forecasts. One such source comes from the Atmospheric InfraRed Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced space-based atmospheric sounding systems. The purpose of this paper is to describe a procedure to optimally assimilate high resolution AIRS profile data into a regional configuration of the Advanced Research WRF (ARW) version 2.2 using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background type, and an optimal methodology for ingesting AIRS temperature and moisture profiles as separate overland and overwater retrievals with different error characteristics. The AIRS thermodynamic profiles are derived from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm and contain information about the quality of each temperature layer. The quality indicators were used to select the highest quality temperature and moisture data for each profile location and pressure level. The analyses were then used to conduct a month-long series of regional forecasts over the continental U.S. The long-term impacts of AIRS profiles on forecast were assessed against verifying NAM analyses and stage IV precipitation data.

  17. Status of the NPP and J1 NOAA Unique Combined Atmospheric Processing System (NUCAPS): recent algorithm enhancements geared toward validation and near real time users applications.

    NASA Astrophysics Data System (ADS)

    Gambacorta, A.; Nalli, N. R.; Tan, C.; Iturbide-Sanchez, F.; Wilson, M.; Zhang, K.; Xiong, X.; Barnet, C. D.; Sun, B.; Zhou, L.; Wheeler, A.; Reale, A.; Goldberg, M.

    2017-12-01

    The NOAA Unique Combined Atmospheric Processing System (NUCAPS) is the NOAA operational algorithm to retrieve thermodynamic and composition variables from hyper spectral thermal sounders such as CrIS, IASI and AIRS. The combined use of microwave sounders, such as ATMS, AMSU and MHS, enables full atmospheric sounding of the atmospheric column under all-sky conditions. NUCAPS retrieval products are accessible in near real time (about 1.5 hour delay) through the NOAA Comprehensive Large Array-data Stewardship System (CLASS). Since February 2015, NUCAPS retrievals have been also accessible via Direct Broadcast, with unprecedented low latency of less than 0.5 hours. NUCAPS builds on a long-term, multi-agency investment on algorithm research and development. The uniqueness of this algorithm consists in a number of features that are key in providing highly accurate and stable atmospheric retrievals, suitable for real time weather and air quality applications. Firstly, maximizing the use of the information content present in hyper spectral thermal measurements forms the foundation of the NUCAPS retrieval algorithm. Secondly, NUCAPS is a modular, name-list driven design. It can process multiple hyper spectral infrared sounders (on Aqua, NPP, MetOp and JPSS series) by mean of the same exact retrieval software executable and underlying spectroscopy. Finally, a cloud-clearing algorithm and a synergetic use of microwave radiance measurements enable full vertical sounding of the atmosphere, under all-sky regimes. As we transition toward improved hyper spectral missions, assessing retrieval skill and consistency across multiple platforms becomes a priority for real time users applications. Focus of this presentation is a general introduction on the recent improvements in the delivery of the NUCAPS full spectral resolution upgrade and an overview of the lessons learned from the 2017 Hazardous Weather Test bed Spring Experiment. Test cases will be shown on the use of NPP and Met

  18. A Useful Tool for Atmospheric Correction and Surface Temperature Estimation of Landsat Infrared Thermal Data

    NASA Astrophysics Data System (ADS)

    Rivalland, Vincent; Tardy, Benjamin; Huc, Mireille; Hagolle, Olivier; Marcq, Sébastien; Boulet, Gilles

    2016-04-01

    Land Surface temperature (LST) is a critical variable for studying the energy and water budgets at the Earth surface, and is a key component of many aspects of climate research and services. The Landsat program jointly carried out by NASA and USGS has been providing thermal infrared data for 40 years, but no associated LST product has been yet routinely proposed to community. To derive LST values, radiances measured at sensor-level need to be corrected for the atmospheric absorption, the atmospheric emission and the surface emissivity effect. Until now, existing LST products have been generated with multi channel methods such as the Temperature/Emissivity Separation (TES) adapted to ASTER data or the generalized split-window algorithm adapted to MODIS multispectral data. Those approaches are ill-adapted to the Landsat mono-window data specificity. The atmospheric correction methodology usually used for Landsat data requires detailed information about the state of the atmosphere. This information may be obtained from radio-sounding or model atmospheric reanalysis and is supplied to a radiative transfer model in order to estimate atmospheric parameters for a given coordinate. In this work, we present a new automatic tool dedicated to Landsat thermal data correction which improves the common atmospheric correction methodology by introducing the spatial dimension in the process. The python tool developed during this study, named LANDARTs for LANDsat Automatic Retrieval of surface Temperature, is fully automatic and provides atmospheric corrections for a whole Landsat tile. Vertical atmospheric conditions are downloaded from the ERA Interim dataset from ECMWF meteorological organization which provides them at 0.125 degrees resolution, at a global scale and with a 6-hour-time step. The atmospheric correction parameters are estimated on the atmospheric grid using the commercial software MODTRAN, then interpolated to 30m resolution. We detail the processing steps

  19. Evaluating the Impact of Atmospheric Infrared Sounder (AIRS) Data On Convective Forecasts

    NASA Technical Reports Server (NTRS)

    Kozlowski, Danielle; Zavodsky, Bradley

    2011-01-01

    The Short-term Prediction Research and Transition Center (SPoRT) is a collaborative partnership between NASA and operational forecasting partners, including a number of National Weather Service (NWS) offices. SPoRT provides real-time NASA products and capabilities to its partners to address specific operational forecast challenges. The mission of SPoRT is to transition observations and research capabilities into operations to help improve short-term weather forecasts on a regional scale. Two areas of focus are data assimilation and modeling, which can to help accomplish SPoRT's programmatic goals of transitioning NASA data to operational users. Forecasting convective weather is one challenge that faces operational forecasters. Current numerical weather prediction (NWP) models that operational forecasters use struggle to properly forecast location, timing, intensity and/or mode of convection. Given the proper atmospheric conditions, convection can lead to severe weather. SPoRT's partners in the National Oceanic and Atmospheric Administration (NOAA) have a mission to protect the life and property of American citizens. This mission has been tested as recently as this 2011 severe weather season, which has seen more than 300 fatalities and injuries and total damages exceeding $10 billion. In fact, during the three day period from 25-27 April, 1,265 storms reports (362 tornado reports) were collected making this three day period one of most active in American history. To address the forecast challenge of convective weather, SPoRT produces a real-time NWP model called the SPoRT Weather Research and Forecasting (SPoRT-WRF), which incorporates unique NASA data sets. One of the NASA assets used in this unique model configuration is retrieved profiles from the Atmospheric Infrared Sounder (AIRS).The goal of this project is to determine the impact that these AIRS profiles have on the SPoRT-WRF forecasts by comparing to a current operational model and a control SPoRT-WRF model

  20. Remote measurement of atmospheric pollutants

    NASA Technical Reports Server (NTRS)

    Allario, F.; Hoell, J.; Seals, R. K.

    1979-01-01

    The concentration and vertical distribution of atmospheric ammonia and ozone are remotely sensed, using dual-C02-laser multichannel infrared Heterodyne Spectrometer (1HS). Innovation makes atmospheric pollution measurements possible with nearly-quantum-noise-limited sensitivity and ultrafine spectral resolution.

  1. Space-based infrared sensors of space target imaging effect analysis

    NASA Astrophysics Data System (ADS)

    Dai, Huayu; Zhang, Yasheng; Zhou, Haijun; Zhao, Shuang

    2018-02-01

    Target identification problem is one of the core problem of ballistic missile defense system, infrared imaging simulation is an important means of target detection and recognition. This paper first established the space-based infrared sensors ballistic target imaging model of point source on the planet's atmosphere; then from two aspects of space-based sensors camera parameters and target characteristics simulated atmosphere ballistic target of infrared imaging effect, analyzed the camera line of sight jitter, camera system noise and different imaging effects of wave on the target.

  2. Testing forward model against OCO-2 and TANSO-FTS/GOSAT observed spectra in near infrared range

    NASA Astrophysics Data System (ADS)

    Zadvornykh, Ilya V.; Gribanov, Konstantin G.

    2015-11-01

    An existing software package FIRE-ARMS (Fine InfraRed Explorer for Atmospheric Remote MeasurementS) was modified by embedding vector radiative transfer model VLIDORT. Thus the program tool includes both thermal (TIR) and near infrared (NIR) regions. We performed forward simulation of near infrared spectra on the top of the atmosphere for outgoing radiation accounting multiple scattering in cloudless atmosphere. Simulated spectra are compared with spectra measured by TANSO-FTS/GOSAT and OCO-2 in the condition of cloudless atmosphere over Western Siberia. NCEP/NCAR reanalysis data were used to complete model atmosphere.

  3. Characterization of Artifacts Introduced by the Empirical Volcano-Scan Atmospheric Correction Commonly Applied to CRISM and OMEGA Near-Infrared Spectra

    NASA Technical Reports Server (NTRS)

    Wiseman, S.M.; Arvidson, R.E.; Wolff, M. J.; Smith, M. D.; Seelos, F. P.; Morgan, F.; Murchie, S. L.; Mustard, J. F.; Morris, R. V.; Humm, D.; hide

    2014-01-01

    The empirical volcano-scan atmospheric correction is widely applied to Martian near infrared CRISM and OMEGA spectra between 1000 and 2600 nanometers to remove prominent atmospheric gas absorptions with minimal computational investment. This correction method employs division by a scaled empirically-derived atmospheric transmission spectrum that is generated from observations of the Martian surface in which different path lengths through the atmosphere were measured and transmission calculated using the Beer-Lambert Law. Identifying and characterizing both artifacts and residual atmospheric features left by the volcano-scan correction is important for robust interpretation of CRISM and OMEGA volcano scan corrected spectra. In order to identify and determine the cause of spectral artifacts introduced by the volcano-scan correction, we simulated this correction using a multiple scattering radiative transfer algorithm (DISORT). Simulated transmission spectra that are similar to actual CRISM- and OMEGA-derived transmission spectra were generated from modeled Olympus Mons base and summit spectra. Results from the simulations were used to investigate the validity of assumptions inherent in the volcano-scan correction and to identify artifacts introduced by this method of atmospheric correction. We found that the most prominent artifact, a bowl-shaped feature centered near 2000 nanometers, is caused by the inaccurate assumption that absorption coefficients of CO2 in the Martian atmosphere are independent of column density. In addition, spectral albedo and slope are modified by atmospheric aerosols. Residual atmospheric contributions that are caused by variable amounts of dust aerosols, ice aerosols, and water vapor are characterized by the analysis of CRISM volcano-scan corrected spectra from the same location acquired at different times under variable atmospheric conditions.

  4. Characterization of artifacts introduced by the empirical volcano-scan atmospheric correction commonly applied to CRISM and OMEGA near-infrared spectra

    NASA Astrophysics Data System (ADS)

    Wiseman, S. M.; Arvidson, R. E.; Wolff, M. J.; Smith, M. D.; Seelos, F. P.; Morgan, F.; Murchie, S. L.; Mustard, J. F.; Morris, R. V.; Humm, D.; McGuire, P. C.

    2016-05-01

    The empirical 'volcano-scan' atmospheric correction is widely applied to martian near infrared CRISM and OMEGA spectra between ∼1000 and ∼2600 nm to remove prominent atmospheric gas absorptions with minimal computational investment. This correction method employs division by a scaled empirically-derived atmospheric transmission spectrum that is generated from observations of the martian surface in which different path lengths through the atmosphere were measured and transmission calculated using the Beer-Lambert Law. Identifying and characterizing both artifacts and residual atmospheric features left by the volcano-scan correction is important for robust interpretation of CRISM and OMEGA volcano-scan corrected spectra. In order to identify and determine the cause of spectral artifacts introduced by the volcano-scan correction, we simulated this correction using a multiple scattering radiative transfer algorithm (DISORT). Simulated transmission spectra that are similar to actual CRISM- and OMEGA-derived transmission spectra were generated from modeled Olympus Mons base and summit spectra. Results from the simulations were used to investigate the validity of assumptions inherent in the volcano-scan correction and to identify artifacts introduced by this method of atmospheric correction. We found that the most prominent artifact, a bowl-shaped feature centered near 2000 nm, is caused by the inaccurate assumption that absorption coefficients of CO2 in the martian atmosphere are independent of column density. In addition, spectral albedo and slope are modified by atmospheric aerosols. Residual atmospheric contributions that are caused by variable amounts of dust aerosols, ice aerosols, and water vapor are characterized by the analysis of CRISM volcano-scan corrected spectra from the same location acquired at different times under variable atmospheric conditions.

  5. Thermal Emission Spectrometer Results: Mars Atmospheric Thermal Structure and Aerosol Distribution

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Pearl, John C.; Conrath, Barney J.; Christensen, Philip R.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    Infrared spectra returned by the Thermal Emission Spectrometer (TES) are well suited for retrieval of the thermal structure and the distribution of aerosols in the Martian atmosphere. Combined nadir- and limb-viewing spectra allow global monitoring of the atmosphere up to 0.01 mbar (65 km). We report here on the atmospheric thermal structure and the distribution of aerosols as observed thus far during the mapping phase of the Mars Global Surveyor mission. Zonal and temporal mean cross sections are used to examine the seasonal evolution of atmospheric temperatures and zonal winds during a period extending from northern hemisphere mid-summer through vernal equinox (L(sub s) = 104-360 deg). Temperature maps at selected pressure levels provide a characterization of planetary-scale waves. Retrieved atmospheric infrared dust opacity maps show the formation and evolution of regional dust storms during southern hemisphere summer. Response of the atmospheric thermal structure to the changing dust loading is observed. Maps of water-ice clouds as viewed in the thermal infrared are presented along with seasonal trends of infrared water-ice opacity. Uses of these observations for diagnostic studies of the dynamics of the atmosphere are discussed.

  6. Detailed real-time infrared radiation simulation applied to the sea surface

    NASA Astrophysics Data System (ADS)

    Zhang, Xuemin; Wu, Limin; Long, Liang; Zhang, Lisha

    2018-01-01

    In this paper, the infrared radiation characteristics of sea background have been studied. First, MODTRAN4.0 was used to calculate the transmittance of mid-infrared and far-infrared, and the solar spectral irradiance, the atmospheric and sea surface radiation. Secondly, according to the JONSWAP sea spectrum model, the different sea conditions grid model based on gravity wave theory was generated. The spectral scattering of the sun and the atmospheric background radiation was studied. The total infrared radiation of the sea surface was calculated. Finally, the infrared radiation of a piece of sea surface was mapped to each pixel of the detector, and the infrared radiation is simulated. The conclusion is that solar radiance has a great influence on the infrared radiance. When the detector angle is close to the sun's height angle, there will be bright spots on the sea surface.

  7. JPSS Preparations at the Satellite Proving Ground for Marine, Precipitation, and Satellite Analysis

    NASA Astrophysics Data System (ADS)

    Folmer, M. J.; Berndt, E.; Clark, J.; Orrison, A.; Kibler, J.; Sienkiewicz, J. M.; Nelson, J. A., Jr.; Goldberg, M.

    2016-12-01

    The National Oceanic and Atmospheric Administration (NOAA) Satellite Proving Ground (PG) for Marine, Precipitation, and Satellite Analysis (MPS) has been demonstrating and evaluating Suomi National Polar-orbiting Partnership (S-NPP) products along with other polar-orbiting satellite platforms in preparation for the Joint Polar Satellite System - 1 (JPSS-1) launch in March 2017. The first S-NPP imagery was made available to the MPS PG during the evolution of Hurricane Sandy in October 2012 and has since been popular in operations. Since this event the MPS PG Satellite Liaison has been working with forecasters on ways to integrate single-channel and multispectral imagery from the Visible Infrared Imaging Radiometer Suite (VIIRS), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Advanced Very High Resolution Radiometer (AVHRR)into operations to complement numerical weather prediction and geostationary satellite savvy National Weather Service (NWS) National Centers. Additional unique products have been introduced to operations to address specific forecast challenges, including the Cooperative Institute for Research in the Atmosphere (CIRA) Layered Precipitable Water, the National Environmental Satellite, Data, and Information Service (NESDIS) Snowfall Rate product, NOAA Unique Combined Atmospheric Processing System (NUCAPS) Soundings, ozone products from the Atmospheric Infrared Sounder (AIRS), Cross-track Infrared Sounder/Advanced Technology Microwave Sounder (CrIS/ATMS), and Infrared Atmospheric Sounding Interferometer (IASI). In addition, new satellite domains have been created to provide forecasters at the NWS Ocean Prediction Center and Weather Prediction Center with better quality imagery at high latitudes. This has led to research projects that are addressing forecast challenges such as tropical to extratropical transition and explosive cyclogenesis. This presentation will provide examples of how the MPS PG has been introducing and integrating

  8. Analysis of Atmospheric Composition and Tropospheric Variability With Integrated Open- Path and Ground-Based Solar Infrared Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Steill, J. D.; Compton, R. N.; Hager, J. S.

    2006-12-01

    Ground-based solar infrared absorption spectroscopy coupled with open-path spectroscopy provides a means for analysis of the highly variable contribution of the boundary layer to problems of radiative transfer and atmospheric chemistry. This is of particular importance in geographic regions of significant local anthropogenic influence and large tropospheric fluctuations in general. A Bomem DA8 FT-IR integrated with a sun-tracking and open-path system (~0.5 km) is located at The University of Tennessee, in downtown Knoxville and near The Great Smoky Mountains National Park, an area known for problematic air quality. From atmospheric absorption spectra, boundary layer concentrations as well as total column abundances and vertical concentration profiles are derived. A record of more than 1000 solar-sourced atmospheric spectra covering a period greater than three years in duration is under analysis to characterize the limit of precision in total column abundance determinations for many gases such as O3, CO, CH4, N2O, HF and CO2. Initial efforts using atmospheric O2 as a calibration indicate the solar-sourced spectra may not meet the precision required for the highly accurate atmospheric CO2 quantification by such global efforts as the OCO and NDSC. However, the determined variability of CO2 and other gas concentrations is statistically significant and is indicative of local concentration fluxes pertinent to the regional atmospheric chemistry. This is therefore an important data record in the southeastern United States, a somewhat under- sampled geographic region. In addition to providing a means to improve the analysis of solar spectra, the open-path data is useful for elucidation of seasonal and diurnal trends in the trace gas concentrations. This provides an urban air quality monitor in addition to improving the description of the total atmospheric composition, as the open-path system is stable and permanent.

  9. Increased atmospheric carbon dioxide and climate feedback mechanisms

    NASA Technical Reports Server (NTRS)

    Cess, R. D.

    1982-01-01

    As a consequence of fossil fuel burning, the atmospheric concentration of carbon dioxide has increased from 314 ppm in 1958, when detailed measurements of this quantity began, to a present value of 335 ppm; and it is estimated that during the next century, the CO2 concentration will double relative to its assumed preindustrial value of 290 ppm. Since CO2 is an infrared-active gas, increases in its atmospheric concentration would lead to a larger infrared opacity for the atmospheric which, by normal logic, would result in a warmer Earth. A number of modeling endeavors suggest a 2 to 4 C increase in global mean surface temperature with doubling of the CO2 concentration. But such estimates of CO2-induced warming are highly uncertain because of a lack of knowledge of climate feedback mechanisms. Interactive influences upon the solar and infrared opacities of the Earth-atmosphere system can either amplify or damp a climate-forcing mechanism such as increasing CO2. Climate feedback mechanisms discussed include climate sensitivity, cloudiness-radiation feedback, climate change predictions, and interactive atmospheric chemistry.

  10. Infrared spectroscopy of interplanetary dust in the laboratory

    NASA Technical Reports Server (NTRS)

    Fraundorf, P.; Patel, R. I.; Freeman, J. J.

    1981-01-01

    A mount containing three crushed chondritic interplanetary dust particles (IDPs) collected in the earth's stratosphere and subjected to infrared spectroscopic measurements shows features near 1000 and 500/cm, suggesting crystalline pyroxene rather than crystalline olivine, amorphous olivine, or meteoritic clay minerals. Chondritic IDP structural diversity and atmospheric heating effects must be considered when comparing this spectrum with interplanetary and cometary dust astrophysical spectra. TEM and infrared observations of one member of the rare subset of IDPs resembling hydrated carbonaceous chondrite matrix material shows a close infrared spectrum resemblance between 4000 and 400/cm to the C2 meteorite Murchison. TEM observations suggest that this class of particles may be used as an atmospheric entry heating-process thermometer.

  11. Biases in Total Precipitable Water Vapor Climatologies from Atmospheric Infrared Sounder and Advanced Microwave Scanning Radiometer

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Lambrigtsen, Bjorn H.; Eldering, Annmarie; Aumann, Hartmut H.; Chahine, Moustafa T.

    2006-01-01

    We examine differences in total precipitable water vapor (PWV) from the Atmospheric Infrared Sounder (AIRS) and the Advanced Microwave Scanning Radiometer (AMSR-E) experiments sharing the Aqua spacecraft platform. Both systems provide estimates of PWV over water surfaces. We compare AIRS and AMSR-E PWV to constrain AIRS retrieval uncertainties as functions of AIRS retrieved infrared cloud fraction. PWV differences between the two instruments vary only weakly with infrared cloud fraction up to about 70%. Maps of AIRS-AMSR-E PWV differences vary with location and season. Observational biases, when both instruments observe identical scenes, are generally less than 5%. Exceptions are in cold air outbreaks where AIRS is biased moist by 10-20% or 10-60% (depending on retrieval processing) and at high latitudes in winter where AIRS is dry by 5-10%. Sampling biases, from different sampling characteristics of AIRS and AMSR-E, vary in sign and magnitude. AIRS sampling is dry by up to 30% in most high-latitude regions but moist by 5-15% in subtropical stratus cloud belts. Over the northwest Pacific, AIRS samples conditions more moist than AMSR-E by a much as 60%. We hypothesize that both wet and dry sampling biases are due to the effects of clouds on the AIRS retrieval methodology. The sign and magnitude of these biases depend upon the types of cloud present and on the relationship between clouds and PWV. These results for PWV imply that climatologies of height-resolved water vapor from AIRS must take into consideration local meteorological processes affecting AIRS sampling.

  12. A NEAR-INFRARED SPECTROSCOPIC SURVEY OF COOL WHITE DWARFS IN THE SLOAN DIGITAL SKY SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilic, Mukremin; Kowalski, Piotr M.; Von Hippel, Ted

    2009-07-15

    We present near-infrared photometric observations of 15 and spectroscopic observations of 38 cool white dwarfs (WDs). This is the largest near-infrared spectroscopic survey of cool WDs to date. Combining the Sloan Digital Sky Survey photometry and our near-infrared data, we perform a detailed model atmosphere analysis. The spectral energy distributions of our objects are explained fairly well by model atmospheres with temperatures ranging from 6300 K down to 4200 K. Two WDs show significant absorption in the infrared, and are best explained with mixed H/He atmosphere models. Based on the up-to-date model atmosphere calculations by Kowalski and Saumon, we findmore » that the majority of the stars in our sample have hydrogen-rich atmospheres. We do not find any pure helium atmosphere WDs below 5000 K, and we find a trend of increasing hydrogen to helium ratio with decreasing temperature. These findings present an important challenge to understanding the spectral evolution of WDs.« less

  13. A decade of infrared versus visible AOD analysis within the dust belt

    NASA Astrophysics Data System (ADS)

    Capelle, Virginie; Chédin, Alain; Pondrom, Marc; Crevoisier, Cyril; Armante, Raymond; Crépeau, Laurent; Scott, Noëlle

    2017-04-01

    Aerosols represent one of the dominant uncertainties in radiative forcing, partly because of their very high spatiotemporal variability, a still insufficient knowledge of their microphysical and optical properties, or of their vertical distribution. A better understanding and forecasting of their impact on climate therefore requires precise observations of dust emission and transport. Observations from space offer a good opportunity to follow, day by day and at high spatial resolution, dust evolution at global scale and over long time series. In this context, infrared observations, by allowing retrieving simultaneously dust optical depth (AOD) as well as the mean dust layer altitude, daytime and nighttime, over oceans and over continents, in particular over desert, appears highly complementary to observations in the visible. In this study, a decade of infrared observations (Metop-A/IASI and AIRS/AQUA) has been processed pixel by pixel, using a "Look-Up-Table" (LUT) physical approach. The retrieved infrared 10µm coarse-mode AOD is compared with the Spectral Deconvolution Algorithm (SDA) 500nm coarse mode AOD observed at 50 ground-based Aerosol RObotic NETwork (AERONET) sites located within the dust belt. Analyzing their brings into evidence an important geographical variability. Lowest values are found close to dust sources ( 0.45 for the Sahel or Arabian Peninsula, 0.6-0.7 for the Northern part of Africa or India), whereas the ratio increases for transported dust with values of 0.9-1 for the Caribbean and for the Mediterranean basin. This variability is interpreted as a marker of clays abundance, and might be linked to the dust particle illite to kaolinite ratio, a recognized tracer of dust sources and transport. More generally, it suggests that the difference between the radiative impact of dust aerosols in the visible and in the infrared depends on the type of particles observed. This highlights the importance of taking into account the specificity of the

  14. Infrared Measurements of Atmospheric Gases Above Mauna Loa, Hawaii, in February 1987

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Goldman, A.; Murcray, F. J.; Murcray, F. H.; Blatherwick, R. D.; Murcray, D. G.

    1988-01-01

    Infrared solar absorption spectra recorded at 0.02/ cm resolution from the National Oceanic and Atmospheric Administration (NOAA) Geophysical Monitoring for Climate Change (GMCC) program station at Mauna Loa, Hawaii (latitude 19.5 deg N, longitude 155.6 deg W, elevation 3.40 km), in February 1997 have been analyzed to determine simultaneous total vertical column amounts for 13 atmospheric gases. Average tropospheric concentrations of CO2, N2O, CH4, and CHCIF2 and the daytime diurnal variations or the total columns of NO and NO2 have also been inferred. The retrieved total columns (in molecules /sq cm) of the nondiurnally varying gases are 1.6 +/- 0.2 x 10(exp 15) for HCl, 5.9 +/- 1.2 x 10(exp 15) for HNO3, 2.0 +/- 0.2 x 10(exp 21) for H2O16, 4.4 +/- 0.7 x 10(exp 18) for H2O18, 2.7 +/- 0.1 x 10(exp 17) for HDO, 2.3 +/- 0.2 x 10(exp 19) for CH4, 5.0 +/- 0.5 x 10(exp 21) for CO2, 6.7 +/- 0.8 x 10(exp 18) for O3, 4.3 +/- 0.4 x 10(exp 18) for N2O, 1.0 +/- 0.2 x 10(exp 16) for C2H6, and 9.7 +/- 2.5 x 10(exp 14) for CHClF2. We compare the total column measurements of HCl and HNO3 with previously reported ground-based, aircraft, and satellite measurements. The results for HCl are or particular interest because of the expected temporal increase in the concentration of this gas in the stratosphere. However, systematic differences among stratospheric HCl total column measurements from 1978 to 1980 and the absence of observations of free tropospheric HCl above Mauna Loa make it impossible to obtain a reliable estimate of the trend in the total burden of HCl. The measured HNO3 total column is consistent with aircraft measurements from approx. 12 km altitude. The O3 total column deduced from the IR spectra agrees with correlative Mauna Loa Umkehr measurements within the estimated error limits. The column-averaged D/H ratio of water vapor is (68 +/- 9) x- 10(exp -6), which is 0.44 +/- 0.06 times the reference value of 155.76 x 10(exp -6) for standard mean ocean water (SMOW). This

  15. Verification of small-scale water vapor features in VAS imagery using high resolution MAMS imagery. [VISSR Atmospheric Sounder - Multispectral Atmospheric Mapping Sensor

    NASA Technical Reports Server (NTRS)

    Menzel, Paul W.; Jedlovec, Gary; Wilson, Gregory

    1986-01-01

    The Multispectral Atmospheric Mapping Sensor (MAMS), a modification of NASA's Airborne Thematic Mapper, is described, and radiances from the MAMS and the VISSR Atmospheric Sounder (VAS) are compared which were collected simultaneously on May 18, 1985. Thermal emission from the earth atmosphere system in eight visible and three infrared spectral bands (12.3, 11.2 and 6.5 microns) are measured by the MAMS at up to 50 m horizontal resolution, and the infrared bands are similar to three of the VAS infrared bands. Similar radiometric performance was found for the two systems, though the MAMS showed somewhat less attenuation from water vapor than VAS because its spectral bands are shifted to shorter wavelengths away from the absorption band center.

  16. [Measurements of the concentration of atmospheric CO2 based on OP/FTIR method and infrared reflecting scanning Fourier transform spectrometry].

    PubMed

    Wei, Ru-Yi; Zhou, Jin-Song; Zhang, Xue-Min; Yu, Tao; Gao, Xiao-Hui; Ren, Xiao-Qiang

    2014-11-01

    The present paper describes the observations and measurements of the infrared absorption spectra of CO2 on the Earth's surface with OP/FTIR method by employing a mid-infrared reflecting scanning Fourier transform spectrometry, which are the first results produced by the first prototype in China developed by the team of authors. This reflecting scanning Fourier transform spectrometry works in the spectral range 2 100-3 150 cm(-1) with a spectral resolution of 2 cm(-1). Method to measure the atmospheric molecules was described and mathematical proof and quantitative algorithms to retrieve molecular concentration were established. The related models were performed both by a direct method based on the Beer-Lambert Law and by a simulating-fitting method based on HITRAN database and the instrument functions. Concentrations of CO2 were retrieved by the two models. The results of observation and modeling analyses indicate that the concentrations have a distribution of 300-370 ppm, and show tendency that going with the variation of the environment they first decrease slowly and then increase rapidly during the observation period, and reached low points in the afternoon and during the sunset. The concentrations with measuring times retrieved by the direct method and by the simulating-fitting method agree with each other very well, with the correlation of all the data is up to 99.79%, and the relative error is no more than 2.00%. The precision for retrieving is relatively high. The results of this paper demonstrate that, in the field of detecting atmospheric compositions, OP/FTIR method performed by the Infrared reflecting scanning Fourier transform spectrometry is a feasible and effective technical approach, and either the direct method or the simulating-fitting method is capable of retrieving concentrations with high precision.

  17. Approaching on Colorimetric Change of Porous Calcareous Rocks Exposed in Urban Environmental Conditions from Iasi - Romania

    NASA Astrophysics Data System (ADS)

    Pelin, V.; Rusu, O.; Sandu, I.; Vasilache, V.; Gurlui, S.; Sandu, A. V.; Cazacu, M. M.; Sandu, I. G.

    2017-06-01

    According to the scientific literature, the pollution phenomenon is strongly related by the urban activity from the last decades, with direct effects on the state of conservation of the stone constructions also. This paper presents a preliminary study on the colorimetric evolution of the lithic surfaces exposed under strongly traffic influence from the urban microclimate conditions. The analysed lithic surfaces are similar with the building stone from the structure of an historical monument (from 19th century), such as the Stone Bridge in Iasi-Romania, located in the immediate vicinity of the roadside loop with the same name. The colour change monitoring for the above-mentioned geomaterials aims at anticipating the effects of postponing the decongestion of car traffic and implicitly initiating the assessment of the effects of pollution over this historic monument, which is in an advanced state of deterioration and degradation.

  18. Barrier infrared detector

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor); Khoshakhlagh, Arezou (Inventor); Soibel, Alexander (Inventor); Hill, Cory J. (Inventor); Gunapala, Sarath D. (Inventor)

    2012-01-01

    A superlattice-based infrared absorber and the matching electron-blocking and hole-blocking unipolar barriers, absorbers and barriers with graded band gaps, high-performance infrared detectors, and methods of manufacturing such devices are provided herein. The infrared absorber material is made from a superlattice (periodic structure) where each period consists of two or more layers of InAs, InSb, InSbAs, or InGaAs. The layer widths and alloy compositions are chosen to yield the desired energy band gap, absorption strength, and strain balance for the particular application. Furthermore, the periodicity of the superlattice can be "chirped" (varied) to create a material with a graded or varying energy band gap. The superlattice based barrier infrared detectors described and demonstrated herein have spectral ranges covering the entire 3-5 micron atmospheric transmission window, excellent dark current characteristics operating at least 150K, high yield, and have the potential for high-operability, high-uniformity focal plane arrays.

  19. Atmosphere self-cleaning under humidity conditions and influence of the snowflakes and artificial light interaction for water dissociation simulated by the means of COMSOL

    NASA Astrophysics Data System (ADS)

    Cocean, A.; Cocean, I.; Cazacu, M. M.; Bulai, G.; Iacomi, F.; Gurlui, S.

    2018-06-01

    The self-cleaning of the atmosphere under humidity conditions is observed due to the change in emission intensity when chemical traces are investigated with DARLIOES - the advanced LIDAR based on space- and time-resolved RAMAN and breakdown spectroscopy in conditions of consistent humidity of atmosphere. The determination was performed during the night, in the wintertime under conditions of high humidity and snowfall, in urban area of Iasi. The change in chemical composition of the atmosphere detected was assumed to different chemical reactions involving presence of the water. Water dissociation that was registered during spectral measurements is explained by a simulation of the interaction between artificial light and snowflakes - virtually designed in a spherical geometry - in a wet air environment, using COMSOL Multiphysics software. The aim of the study is to explain the decrease or elimination of some of the toxic trace chemical compounds in the process of self-cleaning in other conditions than the sun light interaction for further finding application for air cleaning under artificial conditions.

  20. Verification of mesoscale objective analyses of VAS and rawinsode data using the March 1982 AVE/VAS special network data. [Atmospheric Variability Experiment/Visible-infrared spin-scan radiometer Atmospheric Sounder

    NASA Technical Reports Server (NTRS)

    Doyle, James D.; Warner, Thomas T.

    1988-01-01

    Various combinations of VAS (Visible and Infrared Spin Scan Radiometer Atmospheric Sounder) data, conventional rawinsonde data, and gridded data from the National Weather Service's (NWS) global analysis, were used in successive-correction and variational objective-analysis procedures. Analyses are produced for 0000 GMT 7 March 1982, when the VAS sounding distribution was not greatly limited by the existence of cloud cover. The successive-correction (SC) Procedure was used with VAS data alone, rawinsonde data alone, and both VAS and rawinsonde data. Variational techniques were applied in three ways. Each of these techniques was discussed.

  1. Instrumental concept and preliminary performances of SIFTI: static infrared fourier transform interferometer

    NASA Astrophysics Data System (ADS)

    Hébert, Philippe-Jean; Cansot, E.; Pierangelo, C.; Buil, C.; Bernard, F.; Loesel, J.; Trémas, T.; Perrin, L.; Courau, E.; Casteras, C.; Maussang, I.; Simeoni, D.

    2017-11-01

    The SIFTI (Static Infrared Fourier Transform Interferometer) instrument aims at supporting an important part in a mission for atmospheric pollution sounding from space, by providing high spectral resolution and high Signal to Noise Ratio spectra of the atmosphere. They will allow to resolve tropospheric profiles of ozone (03) and carbon monoxide (C0), especially down to the planetary boundary layer (PBL), an altitude region of very high interest, though poorly monitored to date, for air quality and pollution monitoring. The retrieved profile of ozone, resp. C0, will contain 5 to 7, resp. 2.5 to 4, independent pieces of information. The French space agency CNES (Centre National d'Etudes Spatiales) has proposed and is studying an instrument concept for SIFTI based on a static interferometer, where the needed optical path are generated by a pair of crossed staircase fixed mirrors (replacing the moving reflector of dynamic Fourier transform interferometers like IASI or MIPAS). With the SIFTI design, a very high spectral resolution ( 0.1 cm-1 apodised) is achieved in a very compact optical setup, allowing a large throughput, hence a high SNR. The measurements are performed in the 9.5 μm band for 03 and in the 4.6 μm band for C0. The science return of the sounder can be further increased if an "intelligent pointing" process is implemented. This consists in combining the TIR sounder with a companion TIR imager, providing information on the cloud coverage in the next observed scene. 0nboard, real-time analysis of the IR image is used to command the sounder staring mirror to cloud free areas, which will maximize the probability for probing down to the surface. After the first part of the phase A, the architecture of SIFTI was studied as a trade-off between performance and resource budget. We review the main architecture and functional choices, and their advantages. The preliminary instrument concept is then presented in its main aspects and in terms of main subsystem

  2. Comparison of modelled and empirical atmospheric propagation data

    NASA Technical Reports Server (NTRS)

    Schott, J. R.; Biegel, J. D.

    1983-01-01

    The radiometric integrity of TM thermal infrared channel data was evaluated and monitored to develop improved radiometric preprocessing calibration techniques for removal of atmospheric effects. Modelled atmospheric transmittance and path radiance were compared with empirical values derived from aircraft underflight data. Aircraft thermal infrared imagery and calibration data were available on two dates as were corresponding atmospheric radiosonde data. The radiosonde data were used as input to the LOWTRAN 5A code which was modified to output atmospheric path radiance in addition to transmittance. The aircraft data were calibrated and used to generate analogous measurements. These data indicate that there is a tendancy for the LOWTRAN model to underestimate atmospheric path radiance and transmittance as compared to empirical data. A plot of transmittance versus altitude for both LOWTRAN and empirical data is presented.

  3. Hubble Captures Detailed Image of Uranus Atmosphere

    NASA Image and Video Library

    1998-08-02

    NASA Hubble Space Telescope peered deep into Uranus atmosphere to see clear and hazy layers created by a mixture of gases. Using infrared filters, Hubble captured detailed features of three layers of Uranus atmosphere.

  4. Intercomparison of three microwave/infrared high resolution line-by-line radiative transfer codes

    NASA Astrophysics Data System (ADS)

    Schreier, F.; Garcia, S. Gimeno; Milz, M.; Kottayil, A.; Höpfner, M.; von Clarmann, T.; Stiller, G.

    2013-05-01

    An intercomparison of three line-by-line (lbl) codes developed independently for atmospheric sounding - ARTS, GARLIC, and KOPRA - has been performed for a thermal infrared nadir sounding application assuming a HIRS-like (High resolution Infrared Radiation Sounder) setup. Radiances for the HIRS infrared channels and a set of 42 atmospheric profiles from the "Garand dataset" have been computed. Results of this intercomparison and a discussion of reasons of the observed differences are presented.

  5. Spectral Irradiance Calibration in the Infrared. Part 7; New Composite Spectra, Comparison with Model Atmospheres, and Far-Infrared Extrapolations

    NASA Technical Reports Server (NTRS)

    Cohen, Martin; Witteborn, Fred C.; Carbon, Duane F.; Davies, John K.; Wooden, Diane H.; Bregman, Jesse D.

    1996-01-01

    We present five new absolutely calibrated continuous stellar spectra constructed as far as possible from spectral fragments observed from the ground, the Kuiper Airborne Observatory (KAO), and the IRAS Low Resolution Spectrometer. These stars-alpha Boo, gamma Dra, alpha Cet, gamma Cru, and mu UMa-augment our six, published, absolutely calibrated spectra of K and early-M giants. All spectra have a common calibration pedigree. A revised composite for alpha Boo has been constructed from higher quality spectral fragments than our previously published one. The spectrum of gamma Dra was created in direct response to the needs of instruments aboard the Infrared Space Observatory (ISO); this star's location near the north ecliptic pole renders it highly visible throughout the mission. We compare all our low-resolution composite spectra with Kurucz model atmospheres and find good agreement in shape, with the obvious exception of the SiO fundamental, still lacking in current grids of model atmospheres. The CO fundamental seems slightly too deep in these models, but this could reflect our use of generic models with solar metal abundances rather than models specific to the metallicities of the individual stars. Angular diameters derived from these spectra and models are in excellent agreement with the best observed diameters. The ratio of our adopted Sirius and Vega models is vindicated by spectral observations. We compare IRAS fluxes predicted from our cool stellar spectra with those observed and conclude that, at 12 and 25 microns, flux densities measured by IRAS should be revised downwards by about 4.1% and 5.7%, respectively, for consistency with our absolute calibration. We have provided extrapolated continuum versions of these spectra to 300 microns, in direct support of ISO (PHT and LWS instruments). These spectra are consistent with IRAS flux densities at 60 and 100 microns.

  6. Episodes of Cross-Polar Transport in the Arctic Troposphere During July 2008 as Seen from Models, Satellite, and Aircraft Observations

    NASA Technical Reports Server (NTRS)

    Sodemann, H.; Pommier, M.; Arnold, S. R.; Monks, S. A.; Stebel, K.; Burkhart, J. F.; Hair, J. W.; Diskin, G. S.; Clerbaux, C.; Coheur, P.-F.; hide

    2011-01-01

    During the POLARCAT summer campaign in 2008, two episodes (2 5 July and 7 10 July 2008) occurred where low-pressure systems traveled from Siberia across the Arctic Ocean towards the North Pole. The two cyclones had extensive smoke plumes from Siberian forest fires and anthropogenic sources in East Asia embedded in their associated air masses, creating an excellent opportunity to use satellite and aircraft observations to validate the performance of atmospheric transport models in the Arctic, which is a challenging model domain due to numerical and other complications. Here we compare transport simulations of carbon monoxide (CO) from the Lagrangian transport model FLEXPART and the Eulerian chemical transport model TOMCAT with retrievals of total column CO from the IASI passive infrared sensor onboard the MetOp-A satellite. The main aspect of the comparison is how realistic horizontal and vertical structures are represented in the model simulations. Analysis of CALIPSO lidar curtains and in situ aircraft measurements provide further independent reference points to assess how reliable the model simulations are and what the main limitations are. The horizontal structure of mid-latitude pollution plumes agrees well between the IASI total column CO and the model simulations. However, finer-scale structures are too quickly diffused in the Eulerian model. Applying the IASI averaging kernels to the model data is essential for a meaningful comparison. Using aircraft data as a reference suggests that the satellite data are biased high, while TOMCAT is biased low. FLEXPART fits the aircraft data rather well, but due to added background concentrations the simulation is not independent from observations. The multi-data, multi-model approach allows separating the influences of meteorological fields, model realisation, and grid type on the plume structure. In addition to the very good agreement between simulated and observed total column CO fields, the results also highlight the

  7. High resolution spectroscopy in the microwave and far infrared

    NASA Technical Reports Server (NTRS)

    Pickett, Herbert M.

    1990-01-01

    High resolution rotational spectroscopy has long been central to remote sensing techniques in atmospheric sciences and astronomy. As such, laboratory measurements must supply the required data to make direct interpretation of data for instruments which sense atmospheres using rotational spectra. Spectral measurements in the microwave and far infrared regions are also very powerful tools when combined with infrared measurements for characterizing the rotational structure of vibrational spectra. In the past decade new techniques were developed which have pushed high resolution spectroscopy into the wavelength region between 25 micrometers and 2 mm. Techniques to be described include: (1) harmonic generation of microwave sources, (2) infrared laser difference frequency generation, (3) laser sideband generation, and (4) ultrahigh resolution interferometers.

  8. Potential of multispectral synergism for observing tropospheric ozone by combining IR and UV measurements from incoming LEO (EPS-SG) and GEO (MTG) satellite sensors

    NASA Astrophysics Data System (ADS)

    Costantino, Lorenzo; Cuesta, Juan; Emili, Emanuele; Coman, Adriana; Foret, Gilles; Dufour, Gaëlle; Eremenko, Maxim; Chailleux, Yohann; Beekmann, Matthias; Flaud, Jean-Marie

    2017-04-01

    Satellite observations offer a great potential for monitoring air quality on daily and global basis. However, measurements from currently in orbit sensors do not allow to probe surface concentrations of gaseous pollutants such as tropospheric ozone (Liu et al., 2010). Using single-band approaches based on spaceborne measurements of either thermal infrared radiance (TIR, Eremenko et al., 2008) or ultraviolet reflectance (UV, Liu et al., 2010) only ozone down to the lower troposphere (3 km) may be observed. A recent multispectral method (referred to as IASI+GOME-2) combining the information of IASI and GOME-2 (both onboard MetOp satellites) spectra, respectively from the TIR and UV, has shown enhanced sensitivity for probing ozone at the lowermost troposphere (LMT, below 3 km of altitude) with maximum sensitivity down to 2.20 km a.s.l. over land, while sensitivity for IASI or GOME-2 only peaks at 3 to 4 km at lowest (Cuesta et al., 2013). Future spatial missions will be launched in the upcoming years on both low and geostationary orbits, such as EPS-SG (EUMETSAT Polar System Second Generation) and MTG (Meteosat Third Generation), carrying respectively IASI-NG (for IR) and UVNS (for UV), and IRS (for IR) and UVN (Sentinel 4, for UV). This new-generation sensors will enhance the capacity to observe ozone pollution and particularly by synergism of multispectral measurements. In this work we develop a pseudo-observation simulator and evaluate the potential of future EPS-SG and MTG satellite observations, through IASI-NG+UVNS and IRS+UVN multispectral methods to observe near-surface O3. The pseudo-real state of atmosphere (nature run) is provided by MOCAGE (MOdèle de Chimie Atmosphérique à Grande Échelle) chemical transport model. Simulations are calibrated by careful comparisons with real data, to ensure the best coherence between pseudo-reality and reality, as well as between the pseudo-observation simulator and existing satellite products. We perform full and

  9. Isosbestics in Infrared Aerosol Spectra: Proposed Applications for Remote Sensing.

    DTIC Science & Technology

    1989-04-01

    droplet solutions and chemical reactions if the complex indices of refraction are known. The technique seems most applicable in the Rayleigh regime. Remote ... sensing , Isosbestics, Infrared, Infrared spectra, Atmosphere, Water, Aerosols, Rayleigh regime.

  10. Infrared emission associated with chemical reactions on Shuttle and SIRTF surfaces

    NASA Technical Reports Server (NTRS)

    Hollenbach, D. J.; Tielens, Alexander G. G. M.

    1984-01-01

    The infrared intensities which would be observed by the Shuttle Infrared Telescope Facility (SIRTF), and which are produced by surface chemistry following atmospheric impact on SIRTF and the shuttle are estimated. Three possible sources of reactants are analyzed: (1) direct atmospheric and scattered contaminant fluxes onto the shuttle's surface; (2) direct atmospheric and scattered contaminant fluxes onto the SIRTF sunshade; and (3) scattered fluxes onto the cold SIRTF mirror. The chemical reactions are primarily initiated by the dominent flux of reactive atomic oxygen on the surfaces. Using observations of the optical glow to constrain theoretical parameters, it is estimated for source (1) that the infrared glow on the SIRTF mirror will be comparable to the zodiacal background between 1 and 10 micron wavelengths. It is speculated that oxygen reacts with the atoms and the radicals bound in the organic molecules that reside on the shuttle and the Explorer surfaces. It is concluded that for source (2) that with suitable construction, a warm sunshade will produce insignificant infrared glow. It is noted that the atomic oxygen flux on the cold SIRTF mirror (3) is insufficient to produce significant infrared glow. Infrared absorption by the ice buildup on the mirror is also small.

  11. Challenges in atmospheric monitoring of areal emission sources - an Open-path Fourier transform infrared (OP-FTIR) spectroscopic experience report

    NASA Astrophysics Data System (ADS)

    Schuetze, C.; Sauer, U.; Dietrich, P.

    2015-12-01

    Reliable detection and assessment of near-surface CO2 emissions from natural or anthropogenic sources require the application of various monitoring tools at different spatial scales. Especially, optical remote sensing tools for atmospheric monitoring have the potential to measure integrally CO2 emissions over larger scales (> 10.000m2). Within the framework of the MONACO project ("Monitoring approach for geological CO2 storage sites using a hierarchical observation concept"), an integrative hierarchical monitoring concept was developed and validated at different field sites with the aim to establish a modular observation strategy including investigations in the shallow subsurface, at ground surface level and the lower atmospheric boundary layer. The main aims of the atmospheric monitoring using optical remote sensing were the observation of the gas dispersion in to the near-surface atmosphere, the determination of maximum concentration values and identification of the main challenges associated with the monitoring of extended emission sources with the proposed methodological set up under typical environmental conditions. The presentation will give an overview about several case studies using the integrative approach of Open-Path Fourier Transform Infrared spectroscopy (OP FTIR) in combination with in situ measurements. As a main result, the method was validated as possible approach for continuous monitoring of the atmospheric composition, in terms of integral determination of GHG concentrations and to identify target areas which are needed to be investigated more in detail. Especially the data interpretation should closely consider the micrometeorological conditions. Technical aspects concerning robust equipment, experimental set up and fast data processing algorithms have to be taken into account for the enhanced automation of atmospheric monitoring.

  12. Methane in Pluto's Atmosphere

    NASA Astrophysics Data System (ADS)

    Roe, Henry G.

    2006-09-01

    The abundance of methane in Pluto's atmosphere has not been remeasured since its initial detection in 1992 by Young et al. (1997). As Pluto recedes from the Sun its atmosphere should eventually collapse and freeze out on the surface, but recent occultation observations (Elliot et al. 2003) show an expansion of the atmosphere rather than contraction. New measurements of Pluto's atmospheric methane abundance are warranted. We obtained high resolution (R=25000) near-infrared spectra of Pluto in July 2006 with NIRSPEC at the W.M. Keck II telescope and will report our initial analysis and results.

  13. Atmospheric and surface properties of Mars obtained by infrared spectroscopy on Mariner 9

    NASA Technical Reports Server (NTRS)

    Conrath, B.; Curran, R. J.; Hanel, R.; Kunde, V. G.; Marguire, W.; Pearl, J.; Pirraglia, J. A.; Welker, J.; Burke, T.

    1972-01-01

    During the eleven month operational lifetime of Mariner 9, the infrared spectroscopy experiment obtained data over a large portion of Mars. Recently obtained spectra indicate that strong seasonal variations in the water vapor distribution over both polar regions occurred. The wettest atmospheric conditions observed so far contain 20 to 30 precipitable microns of water over the north polar cap during northern spring. A low resolution pressure map is presented which covers that portion of the planet between latitudes -60 deg and +25 deg. A more detailed study of the Coprates canyon indicates that at its lowest point the canyon floor must be at least 5 km below the rim. Applications of tidal theory to temperature fields derived from the spectra indicate diurnal surface pressure fluctuations of as much as 12 percent during the great dust storm of 1971-72. Qualitative arguments based on radiative transfer calculations for model dust clouds composed of spherical quartz particles suggest that particle radii during the storm were of the order of a few microns.

  14. Near infrared cavity enhanced absorption spectra of atmospherically relevant ether-1, 4-Dioxane.

    PubMed

    Chandran, Satheesh; Varma, Ravi

    2016-01-15

    1, 4-Dioxane (DX) is a commonly found ether in industrially polluted atmosphere. The near infrared absorption spectra of this compound has been recorded in the region 5900-8230 cm(-1) with a resolution of 0.08 cm(-1) using a novel Fourier transform incoherent broadband cavity-enhanced absorption spectrometer (FT-IBBCEAS). All recorded spectra were found to contain regions that are only weakly perturbed. The possible combinations of fundamental modes and their overtone bands corresponding to selected regions in the measured spectra are tabulated. Two interesting spectral regions were identified as 5900-6400 cm(-1) and 8100-8230 cm(-1). No significant spectral interference due to presence of water vapor was observed suggesting the suitability of these spectral signatures for spectroscopic in situ detection of DX. The technique employed here is much more sensitive than standard Fourier transform spectrometer measurements on account of long effective path length achieved. Hence significant enhancement of weaker absorption lines above the noise level was observed as demonstrated by comparison with an available measurement from database. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Pollution impacts on Arctic O3 and CO distributions during POLARCAT summer campaign.

    NASA Astrophysics Data System (ADS)

    Pommier, M.; Law, K. S.; Clerbaux, C.; Turquety, S.; Schlager, H.; Ancellet, G.; Paris, J.-D.; NASA Arctas Data Team

    2009-04-01

    The Arctic ozone budget is not well quantified and global models fail to reproduce seasonal cycles especially in summertime when anthropogenic and boreal forest fire emissions can contribute. One possible explanation is the underestimation of modelled ozone production in forest fires plumes. Long-range transport of anthropogenic pollution to the Arctic is also not well quantified. This study focuses on analysis of the POLARCAT summer campaign which took place in Kangerlussuaq, Greenland in July 2008. During the campaign different air masses were sampled including clean northerly air, polluted plumes originating from anthropogenic sources in North American and forest fire plumes from Siberia and Canada. Measurements of O3 and CO collected by the ATR-42 aircraft as part of POLARCAT-France and the German DLR-Falcon aircraft as part of POLARCAT-GRACE are compared to satellite observations from the IASI (Infrared Atmospheric Sounding Interferometer) interferometer. Specific IASI validation flights are also used to validate the measurements. Both in-situ and satellite data are compared to results from the LMDz-INCA global chemistry model. Data from other campaigns such as NASA-ARCTAS and YAK flights in Siberia are also available for these comparisons. Preliminary analyses of Lagrangian matches between aircraft measuring in the same air masses using the CiTTyCAT photochemical trajectory model are presented.

  16. Hyperspectral Observations of Land Surfaces Using Ground-based, Airborne, and Satellite Sensors

    NASA Astrophysics Data System (ADS)

    Knuteson, R. O.; Best, F. A.; Revercomb, H. E.; Tobin, D. C.

    2006-12-01

    The University of Wisconsin-Madison Space Science and Engineering Center (UW-SSEC) has helped pioneer the use of high spectral resolution infrared spectrometers for application to atmospheric and surface remote sensing. This paper is focused on observations of land surface infrared emission from high spectral resolution measurements collected over the past 15 years using airborne, ground-based, and satellite platforms. The earliest data was collected by the High-resolution Interferometer Sounder (HIS), an instrument designed in the 1980s for operation on the NASA ER-2 high altitude aircraft. The HIS was replaced in the late 1990s by the Scanning-HIS instrument which has flown on the NASA ER-2, WB-57, DC-8, and Scaled Composites Proteus aircraft and continues to support field campaigns, such as those for EOS Terra, Aqua, and Aura validation. Since 1995 the UW-SSEC has fielded a ground-based Atmospheric Emitted Radiance Interferometer (AERI) in a research vehicle (the AERIBAGO) which has allowed for direct field measurements of land surface emission from a height of about 16 ft above the ground. Several ground-based and aircraft campaigns were conducted to survey the region surrounding the ARM Southern Great Plains site in north central Oklahoma. The ground- based AERIBAGO has also participated in surface emissivity campaigns in the Western U.S.. Since 2002, the NASA Atmospheric InfraRed Sounder (AIRS) has provided similar measurements from the Aqua platform in an afternoon sun-synchronous polar orbit. Ground-based and airborne observations are being used to validate the land surface products derived from the AIRS observations. These cal/val activities are in preparation for similar measurements anticipated from the operational Cross-track InfraRed Sounder (CrIS) on the NPOESS Preparatory Platform (NPP), expected to be launched in 2008. Moreover, high spectral infrared observations will soon be made by the Infrared Atmospheric Sounder Interferometer (IASI) on the

  17. MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution Observations of the Atmosphere using Infrared Sounding and 3D Winds Measurements

    NASA Astrophysics Data System (ADS)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2017-12-01

    MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a ESPA-Class (50 kg) micro-satellite. Low fabrication and launch costs enable a LEO sun-synchronous sounding constellation that would provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's Atmospheric Infrared Sounder. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. In this third year of a NASA Instrument incubator program, the compact infrared spectrometer has been integrated into an airborne version of the instrument for high-altitude flights on a NASA ER2. The purpose of these airborne tests is to examine the potential for improved capabilities for tracking atmospheric motion-vector wind tracer features, and determining their height using hyper-spectral sounding and

  18. Tunable far infrared studies of molecular parameters in support of stratospheric measurements

    NASA Technical Reports Server (NTRS)

    Chance, Kelly V.; Evenson, K. M.; Park, K.; Radostitz, J. V.; Jennings, D. A.; Nolt, I. G.; Vanek, M. D.

    1991-01-01

    Lab studies were made in support of far infrared spectroscopy of the stratosphere using the Tunable Far InfraRed (TuFIR) method of ultrahigh resolution spectroscopy and, more recently, spectroscopic and retrieval calculations performed in support of satellite-based atmospheric measurement programs: the Global Ozone Monitoring Experiment (GOME), and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY).

  19. Stratospheric and mesospheric pressure-temperature profiles from rotational analysis of CO2 lines in atmospheric trace molecule spectroscopy/ATLAS 1 infrared solar occultation spectra

    NASA Technical Reports Server (NTRS)

    Stiller, G. P.; Gunson, M. R.; Lowes, L. L.; Abrams, M. C.; Raper, O. F.; Farmer, C. B.; Zander, R.; Rinsland, C. P.

    1995-01-01

    A simple, classical, and expedient method for the retrieval of atmospheric pressure-temperature profiles has been applied to the high-resolution infrared solar absorption spectra obtained with the atmospheric trace molecule spectroscopy (ATMOS) instrument. The basis for this method is a rotational analysis of retrieved apparent abundances from CO2 rovibrational absorption lines, employing existing constituent concentration retrieval software used in the analysis of data returned by ATMOS. Pressure-temperature profiles derived from spectra acquired during the ATLAS 1 space shuttle mission of March-April 1992 are quantitatively evaluated and compared with climatological and meteorological data as a means of assessing the validity of this approach.

  20. Infrared calibration for climate: a perspective on present and future high-spectral resolution instruments

    NASA Astrophysics Data System (ADS)

    Revercomb, Henry E.; Anderson, James G.; Best, Fred A.; Tobin, David C.; Knuteson, Robert O.; LaPorte, Daniel D.; Taylor, Joe K.

    2006-12-01

    The new era of high spectral resolution infrared instruments for atmospheric sounding offers great opportunities for climate change applications. A major issue with most of our existing IR observations from space is spectral sampling uncertainty and the lack of standardization in spectral sampling. The new ultra resolution observing capabilities from the AIRS grating spectrometer on the NASA Aqua platform and from new operational FTS instruments (IASI on Metop, CrIS for NPP/NPOESS, and the GIFTS for a GOES demonstration) will go a long way toward improving this situation. These new observations offer the following improvements: 1. Absolute accuracy, moving from issues of order 1 K to <0.2-0.4 K brightness temperature, 2. More complete spectral coverage, with Nyquist sampling for scale standardization, and 3. Capabilities for unifying IR calibration among different instruments and platforms. However, more needs to be done to meet the immediate needs for climate and to effectively leverage these new operational weather systems, including 1. Place special emphasis on making new instruments as accurate as they can be to realize the potential of technological investments already made, 2. Maintain a careful validation program for establishing the best possible direct radiance check of long-term accuracy--specifically, continuing to use aircraft-or balloon-borne instruments that are periodically checked directly with NIST, and 3. Commit to a simple, new IR mission that will provide an ongoing backbone for the climate observing system. The new mission would make use of Fourier Transform Spectrometer measurements to fill in spectral and diurnal sampling gaps of the operational systems and provide a benchmark with better than 0.1K 3-sigma accuracy based on standards that are verifiable in-flight.

  1. Space Infrared Telescope Facility (SIRTF) science instruments

    NASA Technical Reports Server (NTRS)

    Ramos, R.; Hing, S. M.; Leidich, C. A.; Fazio, G.; Houck, J. R.

    1989-01-01

    Concepts of scientific instruments designed to perform infrared astronomical tasks such as imaging, photometry, and spectroscopy are discussed as part of the Space Infrared Telescope Facility (SIRTF) project under definition study at NASA/Ames Research Center. The instruments are: the multiband imaging photometer, the infrared array camera, and the infrared spectograph. SIRTF, a cryogenically cooled infrared telescope in the 1-meter range and wavelengths as short as 2.5 microns carrying multiple instruments with high sensitivity and low background performance, provides the capability to carry out basic astronomical investigations such as deep search for very distant protogalaxies, quasi-stellar objects, and missing mass; infrared emission from galaxies; star formation and the interstellar medium; and the composition and structure of the atmospheres of the outer planets in the solar sytem.

  2. Infrared Detectors Overview in the Short Wave Infrared to Far Infrared for CLARREO Mission

    NASA Technical Reports Server (NTRS)

    Abedin, M. N.; Mlynczak, Martin G.; Refaat, Tamer F.

    2010-01-01

    There exists a considerable interest in the broadband detectors for CLARREO Mission, which can be used to detect CO2, O3, H2O, CH4, and other gases. Detection of these species is critical for understanding the Earth?s atmosphere, atmospheric chemistry, and systemic force driving climatic changes. Discussions are focused on current and the most recent detectors developed in SWIR-to-Far infrared range for CLARREO space-based instrument to measure the above-mentioned species. These detector components will make instruments designed for these critical detections more efficient while reducing complexity and associated electronics and weight. We will review the on-going detector technology efforts in the SWIR to Far-IR regions at different organizations in this study.

  3. Evaluation of upwelling infrared radiance from earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Gupta, S. K.; Tiwari, S. N.

    1975-01-01

    Basic equations for calculating the upwelling atmospheric radiation are presented which account for various sources of radiation coming out at the top of the atmosphere. The theoretical formulation of the transmittance models (line-by-line and quasi-random band model) and the computational procedures used for the evaluation of the transmittance and radiance are discussed in detail. By employing the Lorentz line-by-line and quasi-random computer programs, model calculations were made to determine the upwelling radiance and signal change in the wave number interval of CO fundamental band. These results are useful in determining the effects of different interfering molecules, water vapor profiles, ground temperatures, and ground emittances on the upwelling radiance and signal change. This information is of vital importance in establishing the feasibility of measuring the concentrations of pollutants in the atmosphere from a gas filter correlation instrument flown on an aircraft or mounted on a satellite.

  4. Infrared study of matrix-isolated ethyl cyanide: simulation of the photochemistry in the atmosphere of Titan.

    PubMed

    Toumi, A; Piétri, N; Couturier-Tamburelli, I

    2015-11-11

    Low-temperature Ar matrix isolation has been carried out to investigate the infrared spectrum of ethyl cyanide (CH3CH2CN), a molecule present in the atmosphere of Titan. The λ > 120 nm and λ > 230 nm photolysis reactions of ethyl cyanide in an Ar matrix were also performed in order to compare the behaviour of this compound when it is submitted to high and low energetic radiations. These different wavelengths have been used with the aim to reproduce the radiation reaching the various parts of the atmosphere. Several photoproducts have been identified during photolysis such as vinyl cyanide (CH2[double bond, length as m-dash]CHCN), cyanoacetylene (HC3N), and ethylene/hydrogen cyanide (C2H4/HCN), ethylene/hydrogen isocyanide (C2H4/HNC), acetylene/hydrogen cyanide (C2H2/HCN), acetylene/hydrogen isocyanide (C2H2/HNC), and acetylene:methylenimine (C2H2:HNCH2) complexes. Ethyl isocyanide (CH3CH2NC) and a ketenimine form (CH3CH[double bond, length as m-dash]C[double bond, length as m-dash]NH) have been identified as well. Photoproduct identification and spectral assignments were done using previous studies and density functional theory (DFT) calculations with the B3LYP/cc-pVTZ basis set.

  5. Shot-Noise-Limited Dual-Beam Detector for Atmospheric Trace-Gas Monitoring with Near-Infrared Diode Lasers

    NASA Astrophysics Data System (ADS)

    Durry, Georges; Pouchet, Ivan; Amarouche, Nadir; Danguy, Théodore; Megie, Gerard

    2000-10-01

    A dual-beam detector is used to measure atmospheric trace species by differential absorption spectroscopy with commercial near-infrared InGaAs laser diodes. It is implemented on the Spectrom tre Diodes Laser Accordables, a balloonborne tunable diode laser spectrometer devoted to the in situ monitoring of CH 4 and H 2 O. The dual-beam detector is made of simple analogical subtractor circuits combined with InGaAs photodiodes. The detection strategy consists in taking the balanced analogical difference between the reference and the sample signals detected at the input and the output of an open optical multipass cell to apply the full dynamic range of the measurements (16 digits) to the weak molecular absorption information. The obtained sensitivity approaches the shot-noise limit. With a 56-m optical cell, the detection limit obtained when the spectra is recorded within 8 ms is 10 4 (expressed in absorbance units). The design and performances of both a simple substractor and an upgraded feedback substractor circuit are discussed with regard to atmospheric in situ CH 4 absorption spectra measured in the 1.653- m region. Mixing ratios are obtained from the absorption spectra by application of a nonlinear least-squares fit to the full molecular line shape in conjunction with in situ P and T measurements.

  6. Validation of aerosol optical depth uncertainties within the ESA Climate Change Initiative

    NASA Astrophysics Data System (ADS)

    Stebel, Kerstin; Povey, Adam; Popp, Thomas; Capelle, Virginie; Clarisse, Lieven; Heckel, Andreas; Kinne, Stefan; Klueser, Lars; Kolmonen, Pekka; de Leeuw, Gerrit; North, Peter R. J.; Pinnock, Simon; Sogacheva, Larisa; Thomas, Gareth; Vandenbussche, Sophie

    2017-04-01

    Uncertainty is a vital component of any climate data record as it provides the context with which to understand the quality of the data and compare it to other measurements. Therefore, pixel-level uncertainties are provided for all aerosol products that have been developed in the framework of the Aerosol_cci project within ESA's Climate Change Initiative (CCI). Validation of these estimated uncertainties is necessary to demonstrate that they provide a useful representation of the distribution of error. We propose a technique for the statistical validation of AOD (aerosol optical depth) uncertainty by comparison to high-quality ground-based observations and present results for ATSR (Along Track Scanning Radiometer) and IASI (Infrared Atmospheric Sounding Interferometer) data records. AOD at 0.55 µm and its uncertainty was calculated with three AOD retrieval algorithms using data from the ATSR instruments (ATSR-2 (1995-2002) and AATSR (2002-2012)). Pixel-level uncertainties were calculated through error propagation (ADV/ASV, ORAC algorithms) or parameterization of the error's dependence on the geophysical retrieval conditions (SU algorithm). Level 2 data are given as super-pixels of 10 km x 10 km. As validation data, we use direct-sun observations of AOD from the AERONET (AErosol RObotic NETwork) and MAN (Maritime Aerosol Network) sun-photometer networks, which are substantially more accurate than satellite retrievals. Neglecting the uncertainty in AERONET observations and possible issues with their ability to represent a satellite pixel area, the error in the retrieval can be approximated by the difference between the satellite and AERONET retrievals (herein referred to as "error"). To evaluate how well the pixel-level uncertainty represents the observed distribution of error, we look at the distribution of the ratio D between the "error" and the ATSR uncertainty. If uncertainties are well represented, D should be normally distributed and 68.3% of values should

  7. MIPAS middle atmosphere water vapor distributions

    NASA Astrophysics Data System (ADS)

    Garcia-Comas, Maya; Lopez-Puertas, Manuel; Funke, Bernd; Bermejo-Pantale, Diego; Stiller, Gabriele; Grabowski, Udo; von Clarmann, Thomas

    Water vapor is a key constituent of the middle atmosphere. It is involved in the ozone chem-istry, it is the precursor of PSCs and PMCs, and it is an infrared cooler in the stratosphere. The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) onboard Envisat observes the H2O infrared emissions with high resolution up to the mesopause. We have derived water vapor abundance from MIPAS spectra using the IMK/IAA data processor, which includes the GRANADA non-LTE algorithm. That allows for accurate H2O retrievals in the atmospheric regions where its emissions are affected by non-LTE, i.e., above 50km and particularly in the polar summer. We describe the information gained from MIPAS spectra about the non-LTE processes affecting the H2O infrared emissions, discuss its uncertainties and present MIPAS pole-to-pole distributions of water vapor retrieved from the stratosphere to the upper meso-sphere. We pay special attention to its behavior in the polar summer mesosphere, where the presence of PMCs and particular dynamical events may perturb the H2O vertical distribution. We also compare our results with those from global circulation models and other independent measurements.

  8. Requirements for an Advanced Low Earth Orbit (LEO) Sounder (ALS) for Improved Regional Weather Prediction and Monitoring of Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Chahine, Moustafa T.; Susskind, Joel

    2008-01-01

    Hyperspectral infrared atmospheric sounders (e.g., the Atmospheric Infrared Sounder (AIRS) on Aqua and the Infrared Atmospheric Sounding Interferometer (IASI) on Met Op) provide highly accurate temperature and water vapor profiles in the lower to upper troposphere. These systems are vital operational components of our National Weather Prediction system and the AIRS has demonstrated over 6 hrs of forecast improvement on the 5 day operational forecast. Despite the success in the mid troposphere to lower stratosphere, a reduction in sensitivity and accuracy has been seen in these systems in the boundary layer over land. In this paper we demonstrate the potential improvement associated with higher spatial resolution (1 km vs currently 13.5 km) on the accuracy of boundary layer products with an added consequence of higher yield of cloud free scenes. This latter feature is related to the number of samples that can be assimilated and has also shown to have a significant impact on improving forecast accuracy. We also present a set of frequencies and resolutions that will improve vertical resolution of temperature and water vapor and trace gas species throughout the atmosphere. Development of an Advanced Low Earth Orbit (LEO) Sounder (ALS) with these improvements will improve weather forecast at the regional scale and of tropical storms and hurricanes. Improvements are also expected in the accuracy of the water vapor and cloud properties products, enhancing process studies and providing a better match to the resolution of future climate models. The improvements of technology required for the ALS are consistent with the current state of technology as demonstrated in NASA Instrument Incubator Program and NOAA's Hyperspectral Environmental Suite (HES) formulation phase development programs.

  9. Using High and Low Resolution Profiles of CO2 and CH4 Measured with AirCores to Evaluate Transport Models and Atmospheric Columns Retrieved from Space

    NASA Astrophysics Data System (ADS)

    Membrive, O.; Crevoisier, C. D.; Sweeney, C.; Hertzog, A.; Danis, F.; Picon, L.; Engel, A.; Boenisch, H.; Durry, G.; Amarouche, N.

    2015-12-01

    Over the past decades many methods have been developed to monitor the evolution of greenhouse gases (GHG): ground networks (NOAA, ICOS, TCCON), aircraft campaigns (HIPPO, CARIBIC, Contrail…), satellite observations (GOSAT, IASI, AIRS…). Nevertheless, precise and regular vertical profile measurements are currently still missing from the observing system. To address this need, an original and innovative atmospheric sampling system called AirCore has been developed at NOAA (Karion et al. 2010). This new system allows balloon measurements of GHG vertical profiles from the surface up to 30 km. New versions of this instrument have been developed at LMD: a high-resolution version "AirCore-HR" that differs from other AirCores by its high vertical resolution and two "light" versions (lower resolution) aiming to be flown under meteorological balloon. LMD AirCores were flown on multi-instrument gondolas along with other independent instruments measuring CO2 and CH4 in-situ during the Strato Science balloon campaigns operated by the French space agency CNES in collaboration with the Canadian Space Agency in Timmins (Ontario, Canada) in August 2014 and 2015. First, we will present comparisons of the vertical profiles retrieved with various AirCores (LMD and Frankfurt University) to illustrate repeatability and impact of the vertical resolution as well as comparisons with independent in-situ measurements from other instruments (laser diode based Pico-SDLA). Second, we will illustrate the usefulness of AirCore measurements in the upper troposphere and stratosphere for validating and interpreting vertical profiles from atmospheric transport models as well as observations of total and partial column of methane and carbon dioxide from several current and future spaceborne missions such as: ACE-FTS, IASI and GOSAT.

  10. Infrared Image of Low Clouds on Venus

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This false-color image is a near-infrared map of lower-level clouds on the night side of Venus, obtained by the Near Infrared Mapping Spectrometer aboard the Galileo spacecraft as it approached the planet's night side on February 10, 1990. Bright slivers of sunlit high clouds are visible above and below the dark, glowing hemisphere. The spacecraft is about 100,000 kilometers (60,000 miles) above the planet. An infrared wavelength of 2.3 microns (about three times the longest wavelength visible to the human eye) was used. The map shows the turbulent, cloudy middle atmosphere some 50-55 kilometers (30- 33 miles) above the surface, 10-16 kilometers or 6-10 miles below the visible cloudtops. The red color represents the radiant heat from the lower atmosphere (about 400 degrees Fahrenheit) shining through the sulfuric acid clouds, which appear as much as 10 times darker than the bright gaps between clouds. This cloud layer is at about -30 degrees Fahrenheit, at a pressure about 1/2 Earth's surface atmospheric pressure. Near the equator, the clouds appear fluffy and blocky; farther north, they are stretched out into East-West filaments by winds estimated at more than 150 mph, while the poles are capped by thick clouds at this altitude.

  11. Ultra-High Resolution Spectroscopic Remote Sensing: A Microscope on Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Kostiuk, Theodor

    2010-01-01

    Remote sensing of planetary atmospheres is not complete without studies of all levels of the atmosphere, including the dense cloudy- and haze filled troposphere, relatively clear and important stratosphere and the upper atmosphere, which are the first levels to experience the effects of solar radiation. High-resolution spectroscopy can provide valuable information on these regions of the atmosphere. Ultra-high spectral resolution studies can directly measure atmospheric winds, composition, temperature and non-thermal phenomena, which describe the physics and chemistry of the atmosphere. Spectroscopy in the middle to long infrared wavelengths can also probe levels where dust of haze limit measurements at shorter wavelength or can provide ambiguous results on atmospheric species abundances or winds. A spectroscopic technique in the middle infrared wavelengths analogous to a radio receiver. infrared heterodyne spectroscopy [1], will be describe and used to illustrate the detailed study of atmospheric phenomena not readily possible with other methods. The heterodyne spectral resolution with resolving power greater than 1,000.000 measures the true line shapes of emission and absorption lines in planetary atmospheres. The information on the region of line formation is contained in the line shapes. The absolute frequency of the lines can be measured to I part in 100 ,000,000 and can be used to accurately measure the Doppler frequency shift of the lines, directly measuring the line-of-sight velocity of the gas to --Im/s precision (winds). The technical and analytical methods developed and used to measure and analyze infrared heterodyne measurements will be described. Examples of studies on Titan, Venus, Mars, Earth, and Jupiter will be presented. 'These include atmospheric dynamics on slowly rotating bodies (Titan [2] and Venus [3] and temperature, composition and chemistry on Mars 141, Venus and Earth. The discovery and studies of unique atmospheric phenomena will also be

  12. Pluto's atmosphere in 2015 from high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Roe, Henry G.; Cook, Jason C.; Mace, Gregory N.; Holler, Bryan J.; Young, Leslie A.; McLane, Jacob N.; Jaffe, Daniel T.

    2015-11-01

    Pluto's thin N2/CH4 atmosphere is in vapor-pressure equilibrium with ices on its surface. The atmosphere evolves seasonally with the varying insolation pattern on Pluto's heterogenous surface, perhaps even largely freezing out to the surface during the coldest portion of Pluto's year. We use high-resolution (R≈25,000-50,000) near-infrared spectroscopy to resolve atmospheric methane absorption lines from Pluto's continuum spectra, as well as separate Pluto's atmospheric lines from the telluric spectrum. In addition to measuring the abundance and temperature of Pluto's atmospheric CH4, with broad wavelength coverage we are able to search for the inevitable products of N2/CH4 photochemistry. In 2015 we are undertaking an intensive campaign using NIRSPEC at Keck Observatory and IGRINS (Immersion Grating INfrared Spectrometer) at McDonald Observatory to coincide with the New Horizons Pluto encounter. We will report initial results from this 2015 campaign and compare the state of Pluto's atmosphere at the time of the New Horizons encounter with earlier years.

  13. Assimilation of Atmospheric InfraRed Sounder (AIRS) Profiles using WRF-Var

    NASA Technical Reports Server (NTRS)

    Zavodsky, Brad; Jedlovec, Gary J.; Lapenta, William

    2008-01-01

    The Weather Research and Forecasting (WRF) model contains a three-dimensional variational (3DVAR) assimilation system (WRF-Var), which allows a user to join data from multiple sources into one coherent analysis. WRF-Var combines observations with a background field traditionally generated using a previous model forecast through minimization of a cost function. In data sparse regions, remotely-sensed observations may be able to improve analyses and produce improved forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced space-based atmospheric sounding systems. The combined AIRS/AMSU system provides radiance measurements used as input to a sophisticated retrieval scheme which has been shown to produce temperature profiles with an accuracy of 1 K over 1 km layers and humidity profiles with accuracy of 15% in 2 km layers in both clear and partly cloudy conditions. The retrieval algorithm also provides estimates of the accuracy of the retrieved values at each pressure level, allowing the user to select profiles based on the required error tolerances of the application. The purpose of this paper is to describe a procedure to optimally assimilate high-resolution AIRS profile data into a regional configuration of the Advanced Research WRF (ARW) version 2.2 using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background field type using gen_be and an optimal methodology for ingesting AIRS temperature and moisture profiles as separate overland and overwater retrievals with different error characteristics in the WRF-Var. The AIRS thermodynamic profiles are obtained from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm and contain information about the quality of each temperature layer. The quality indicators are used to select the highest quality temperature and moisture

  14. The Transition of Atmospheric Infrared Sounder Total Ozone Products to Operations

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Zavodsky, B. T.; Jedlovec, G. J.

    2014-01-01

    The National Aeronautics and Space Administration Short-term Prediction Research and Transition Center (NASA SPoRT) has transitioned a total column ozone product from the Atmospheric Infrared Sounder (AIRS) retrievals to the Weather Prediction Center and Ocean Prediction Center. The total column ozone product is used to diagnose regions of warm, dry, ozone-rich, stratospheric air capable of descending to the surface to create high-impact non-convective winds. Over the past year, forecasters have analyzed the Red, Green, Blue (RGB) Air Mass imagery in conjunction with the AIRS total column ozone to aid high wind forecasts. One of the limitations of the total ozone product is that it is difficult for forecasters to determine whether elevated ozone concentrations are related to stratospheric air or climatologically high values of ozone in certain regions. During the summer of 2013, SPoRT created an AIRS ozone anomaly product which calculates the percent of normal ozone based on a global stratospheric ozone mean climatology. With the knowledge that ozone values 125 percent of normal and greater typically represent stratospheric air; the anomaly product can be used with the total column ozone product to confirm regions of stratospheric air. This paper describes the generation of these products along with forecaster feedback concerning the use of the AIRS ozone products in conjunction with the RGB Air Mass product to access the utility and transition of the products.

  15. Stratospheric Observatory for Infrared Astronomy

    NASA Astrophysics Data System (ADS)

    Hamidouche, M.; Young, E.; Marcum, P.; Krabbe, A.

    2010-12-01

    We present one of the new generations of observatories, the Stratospheric Observatory For Infrared Astronomy (SOFIA). This is an airborne observatory consisting of a 2.7-m telescope mounted on a modified Boeing B747-SP airplane. Flying at an up to 45,000 ft (14 km) altitude, SOFIA will observe above more than 99 percent of the Earth's atmospheric water vapor allowing observations in the normally obscured far-infrared. We outline the observatory capabilities and goals. The first-generation science instruments flying on board SOFIA and their main astronomical goals are also presented.

  16. First Light from the Far-Infrared Spectroscopy of the Troposphere (FIRST) Instrument

    NASA Technical Reports Server (NTRS)

    Mlynczak, Martin G.; Johnson, David G.; Latvakoski, Harri; Jucks, Kenneth; Watson, Mike; Bingham, Gail; Kratz, David P.; Traub, Wesley A.; Wellard, Stanley J.; Hyde, Charles R.; hide

    2005-01-01

    We present first light spectra from the new Far-Infrared Spectroscopy of the Troposphere (FIRST) instrument. FIRST is a Fourier Transform Spectrometer developed to measure accurately the far-infrared (15 to 100 micrometers; 650 to 100 wavenumbers) emission spectrum of the Earth and its atmosphere. The observations presented here were obtained during a high altitude balloon flight from Ft. Sumner, New Mexico on 7 June 2005. The flight data demonstrate the instrument's ability to observe the entire energetically significant infrared emission spectrum (50 to 2000 wavenumbers) at high spectral and spatial resolution on a single focal plane in an instrument with one broad spectral bandpass beamsplitter. Comparisons with radiative transfer calculations demonstrate that FIRST accurately observes the very fine spectral structure in the far-infrared. Comparisons of the atmospheric window radiances measured by FIRST and by instruments on the NASA Aqua satellite that overflew FIRST are in excellent agreement. FIRST opens a new window on the spectrum that can be used for studying atmospheric radiation and climate, cirrus clouds, and water vapor in the upper troposphere.

  17. Infrared/Terahertz Double Resonance for Chemical Remote Sensing: Signatures and Performance Predictions

    DTIC Science & Technology

    2011-01-01

    remote sensing , such as Fourier-transform infrared spectroscopy, has limited recognition specificity because of atmospheric pressure broadening. Active interrogation techniques promise much greater chemical recognition that can overcome the limits imposed by atmospheric pressure broadening. Here we introduce infrared - terahertz (IR/THz) double resonance spectroscopy as an active means of chemical remote sensing that retains recognition specificity through rare, molecule-unique coincidences between IR molecular absorption and a line-tunable CO2

  18. VIIRS thermal emissive bands on-orbit calibration coefficient performance using vicarious calibration results

    NASA Astrophysics Data System (ADS)

    Moyer, D.; Moeller, C.; De Luccia, F.

    2013-09-01

    The Visible Infrared Imager Radiometer Suite (VIIRS), a primary sensor on-board the Suomi-National Polar-orbiting Partnership (SNPP) spacecraft, was launched October 28, 2011. It has 22 bands: 7 thermal emissive bands (TEBs), 14 reflective solar bands (RSBs) and a Day Night Band (DNB). The TEBs cover the spectral wavelengths between 3.7 to 12 μm and have two 371 m and five 742 m spatial resolution bands. A VIIRS Key Performance Parameter (KPP) is the sea surface temperature (SST) which uses bands M12 (3.7 μm), M15 (10.8 μm) and M16's (12.0 μm) calibrated Science Data Records (SDRs). The TEB SDRs rely on pre-launch calibration coefficients used in a quadratic algorithm to convert the detector's response to calibrated radiance. This paper will evaluate the performance of these prelaunch calibration coefficients using vicarious calibration information from the Cross-track Infrared Sounder (CrIS) also onboard the SNPP spacecraft and the Infrared Atmospheric Sounding Interferometer (IASI) on-board the Meteorological Operational (MetOp) satellite. Changes to the pre-launch calibration coefficients' offset term c0 to improve the SDR's performance at cold scene temperatures will also be discussed.

  19. One-Year Observations of Jupiter by the Jovian Infrared Auroral Mapper on Juno

    NASA Astrophysics Data System (ADS)

    Adriani, A.; Mura, A.; Bolton, S. J.; Connerney, J. E. P.; Levin, S.; Becker, H. N.; Bagenal, F.; Hansen, C. J.; Orton, G.; Gladstone, R.; Kurth, W. S.; Mauk, B.; Valek, P. W.

    2017-12-01

    The Jovian InfraRed Auroral Mapper (JIRAM) [1] on board the Juno [2,3] spacecraft, is equipped with an infrared camera and a spectrometer working in the spectral range 2-5 μm. JIRAM was built to study the infrared aurora of Jupiter as well as to map the planet's atmosphere in the 5 µm spectral region. The spectroscopic observations are used for studying clouds and measuring the abundance of some chemical species that have importance in the atmosphere's chemistry, microphysics and dynamics like water, ammonia and phosphine. During 2017 the instrument will operate during all 7 of Juno's Jupiter flybys. JIRAM has performed several observations of the polar regions of the planet addressing the aurora and the atmosphere. Unprecedented views of the aurora and the polar atmospheric structures have been obtained. We present a survey of the most significant observations that the instrument has performed during the current year. [1] Adriani A. et al., JIRAM, the Jovian Infrared Auroral Mapper. Space Sci. Rew., DOI 10.1007/s11214-014-0094-y, 2014. [2] Bolton S.J. et al., Jupiter's interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft. Science DOI: 10.1126/science.aal2108, 2017. [3] Connerney J. E.P. et al., Jupiter's magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits. Science, DOI: 10.1126/science.aam5928, 2017.

  20. University of Virginia suborbital infrared sensing experiment

    NASA Astrophysics Data System (ADS)

    Holland, Stephen; Nunnally, Clayton; Armstrong, Sarah; Laufer, Gabriel

    2002-03-01

    An Orion sounding rocket launched from Wallops Flight Facility carried a University of Virginia payload to an altitude of 47 km and returned infrared measurements of the Earth's upper atmosphere and video images of the ocean. The payload launch was the result of a three-year undergraduate design project by a multi-disciplinary student group from the University of Virginia and James Madison University. As part of a new multi-year design course, undergraduate students designed, built, tested, and participated in the launch of a suborbital platform from which atmospheric remote sensors and other scientific experiments could operate. The first launch included a simplified atmospheric measurement system intended to demonstrate full system operation and remote sensing capabilities during suborbital flight. A thermoelectrically cooled HgCdTe infrared detector, with peak sensitivity at 10 micrometers , measured upwelling radiation and a small camera and VCR system, aligned with the infrared sensor, provided a ground reference. Additionally, a simple orientation sensor, consisting of three photodiodes, equipped with red, green, and blue light with dichroic filters, was tested. Temperature measurements of the upper atmosphere were successfully obtained during the flight. Video images were successfully recorded on-board the payload and proved a valuable tool in the data analysis process. The photodiode system, intended as a replacement for the camera and VCR system, functioned well, despite low signal amplification. This fully integrated and flight tested payload will serve as a platform for future atmospheric sensing experiments. It is currently being modified for a second suborbital flight that will incorporate a gas filter correlation radiometry (GFCR) instrument to measure the distribution of stratospheric methane and imaging capabilities to record the chlorophyll distribution in the Metompkin Bay as an indicator of pollution runoff.

  1. HUBBLE CAPTURES DETAILED IMAGE OF URANUS' ATMOSPHERE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Hubble Space Telescope has peered deep into Uranus' atmosphere to see clear and hazy layers created by a mixture of gases. Using infrared filters, Hubble captured detailed features of three layers of Uranus' atmosphere. Hubble's images are different from the ones taken by the Voyager 2 spacecraft, which flew by Uranus 10 years ago. Those images - not taken in infrared light - showed a greenish-blue disk with very little detail. The infrared image allows astronomers to probe the structure of Uranus' atmosphere, which consists of mostly hydrogen with traces of methane. The red around the planet's edge represents a very thin haze at a high altitude. The haze is so thin that it can only be seen by looking at the edges of the disk, and is similar to looking at the edge of a soap bubble. The yellow near the bottom of Uranus is another hazy layer. The deepest layer, the blue near the top of Uranus, shows a clearer atmosphere. Image processing has been used to brighten the rings around Uranus so that astronomers can study their structure. In reality, the rings are as dark as black lava or charcoal. This false color picture was assembled from several exposures taken July 3, 1995 by the Wide Field Planetary Camera-2. CREDIT: Erich Karkoschka (University of Arizona Lunar and Planetary Lab) and NASA

  2. First results from the infrared Juno spectral/imager JIRAM at Jupiter

    NASA Astrophysics Data System (ADS)

    Adriani, Alberto; Mura, Alessandro; Grassi, Davide; Altieri, Francesca; Dinelli, Bianca M.; Sindoni, Giuseppe; Bolton, Scott J.; Connerney, Jack E. P.; Atreya, Sushil K.; Bagenal, Fran; Gladstone, G. Randall; Hansen, Candice J.; Ingersoll, Andrew P.; Jansen, Michael A.; Kurth, William S.; Levin, Steven M.; Lunine, Jonathan I.; Mauk, Barry H.; J, McComas, David; Orton, Glenn S.

    2017-04-01

    JIRAM, the Jovian InfraRed Auroral Mapper on board Juno, is equipped with an infrared camera and a spectrometer working in the spectral range 2-5 μm. The primary scientific objectives of the instrument are the study of the infrared aurora, the concentrations of some atmospheric compounds like water, ammonia and phosphine in the Jupiter troposphere and, in particular, in the hot spots and below the cloud deck. Secondary JIRAM objectives are the study of Jupiter's clouds and, to some extent, the dynamics of the atmosphere. So far the instrument was able to get its observations during the first fly-by (PJ1) when JIRAM was operating. Results from data collected during PJ1 about auroras and atmosphere will be presented. We will also show data from the PJ4 pass if the fly-by, which will take place in February, will be successful. A complete coverage of the planet will be obtained after PJ4.

  3. Infrared lidars for atmospheric remote sensing

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.

    1991-01-01

    Lidars using pulsed TEA-CO2 transmitters and coherent receivers have been developed at JPL and used to measure atmospheric backscatter and extinction at wavelengths in the 9-11 micron region. The global winds measurement application of coherent Doppler lidar requires intensive study of the global climatology of aerosol and cloud backscatter and extinction. An airborne lidar was recently flown on the NASA DC-8 research aircraft for operation during two Pacific circumnavigation missions. The instrument characteristics, as well as representative measurement results, are discussed.

  4. Multiple infrared bands absorber based on multilayer gratings

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyi; Gao, Jinsong; Yang, Haigui; Wang, Xiaoyi; Guo, Chengli

    2018-03-01

    The present study offers an Ag/Si multilayer-grating microstructure based on an Si substrate. The microstructure exhibits designable narrowband absorption in multiple infrared wavebands, especially in mid- and long-wave infrared atmospheric windows. We investigate its resonance mode mechanism, and calculate the resonance wavelengths by the Fabry-Perot and metal-insulator-metal theories for comparison with the simulation results. Furthermore, we summarize the controlling rules of the absorption peak wavelength of the microstructure to provide a new method for generating a Si-based device with multiple working bands in infrared.

  5. Data Assimilation and Regional Forecasts Using Atmospheric InfraRed Sounder (AIRS) Profiles

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Bradley; Jedlovec, Gary

    2009-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses, which in turn should lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles with an accuracy comparable to that of radiosondes. The purpose of this paper is to describe a procedure to optimally assimilate AIRS thermodynamic profiles--obtained from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm-into a regional configuration of the Weather Research and Forecasting (WRF) model using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background field type, a methodology for ingesting AIRS profiles as separate over-land and over-water retrievals with different error characteristics, and utilization of level-by-level quality indicators to select only the highest quality data. The assessment of the impact of the AIRS profiles on WRF-Var analyses will focus on intelligent use of the quality indicators, optimized tuning of the WRF-Var, and comparison of analysis soundings to radiosondes. The analyses will be used to conduct a month-long series of regional forecasts over the continental U.S. The long-tern1 impact of AIRS profiles on forecast will be assessed against verifying radiosonde and stage IV precipitation data.

  6. Data Assimilation and Regional Forecasts using Atmospheric InfraRed Sounder (AIRS) Profiles

    NASA Technical Reports Server (NTRS)

    Zabodsky, Brad; Chou, Shih-Hung; Jedlovec, Gary J.

    2009-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses, which in turn should lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which, together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles with an accuracy comparable to that of radionsondes. The purpose of this poster is to describe a procedure to optimally assimilate AIRS thermodynamic profiles, obtained from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm, into a regional configuration of the Weather Research and Forecasting (WRF) model using WRF-Var. The poster focuses on development of background error covariances for the regional domain and background field type, a methodology for ingesting AIRS profiles as separate over-land and over-water retrievals with different error characteristics, and utilization of level-by-level quality indicators to select only the highest quality data. The assessment of the impact of the AIRS profiles on WRF-Var analyses will focus on intelligent use of the quality indicators, optimized tuning of the WRF-Var, and comparison of analysis soundings to radiosondes. The analyses are used to conduct a month-long series of regional forecasts over the continental U.S. The long-term impact of AIRS profiles on forecast will be assessed against NAM analyses and stage IV precipitation data.

  7. The Use of Red Green Blue Air Mass Imagery to Investigate the Role of Stratospheric Air in a Non-convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Zavodsky, B. T.; Jedlovec, G. J.; Molthan, A. L.

    2013-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis, and Rapid Refresh analyses.

  8. For geological investigations with airborne thermal infrared multispectral images: Transfer of calibration from laboratory spectrometer to TIMS as alternative for removing atmospheric effects

    NASA Technical Reports Server (NTRS)

    Edgett, Kenneth S.; Anderson, Donald L.

    1995-01-01

    This paper describes an empirical method to correct TIMS (Thermal Infrared Multispectral Scanner) data for atmospheric effects by transferring calibration from a laboratory thermal emission spectrometer to the TIMS multispectral image. The method does so by comparing the laboratory spectra of samples gathered in the field with TIMS 6-point spectra for pixels at the location of field sampling sites. The transference of calibration also makes it possible to use spectra from the laboratory as endmembers in unmixing studies of TIMS data.

  9. Measurements relevant to the performance of infrared opto-electronic devices in fog

    NASA Astrophysics Data System (ADS)

    Clay, M. R.; Lenham, A. P.

    1981-04-01

    The transmissivity of the atmosphere in the visible and infrared was measured in a number of fogs. The data is summarized in the form of tables and diagrams that indicate the gain in range that may be achievable in the various infrared windows. In some fogs there does not appear to be any significant advantage in using infrared devices.

  10. Intercomparison of three microwave/infrared high resolution line-by-line radiative transfer codes

    NASA Astrophysics Data System (ADS)

    Schreier, Franz; Milz, Mathias; Buehler, Stefan A.; von Clarmann, Thomas

    2018-05-01

    An intercomparison of three line-by-line (lbl) codes developed independently for atmospheric radiative transfer and remote sensing - ARTS, GARLIC, and KOPRA - has been performed for a thermal infrared nadir sounding application assuming a HIRS-like (High resolution Infrared Radiation Sounder) setup. Radiances for the 19 HIRS infrared channels and a set of 42 atmospheric profiles from the "Garand dataset" have been computed. The mutual differences of the equivalent brightness temperatures are presented and possible causes of disagreement are discussed. In particular, the impact of path integration schemes and atmospheric layer discretization is assessed. When the continuum absorption contribution is ignored because of the different implementations, residuals are generally in the sub-Kelvin range and smaller than 0.1 K for some window channels (and all atmospheric models and lbl codes). None of the three codes turned out to be perfect for all channels and atmospheres. Remaining discrepancies are attributed to different lbl optimization techniques. Lbl codes seem to have reached a maturity in the implementation of radiative transfer that the choice of the underlying physical models (line shape models, continua etc) becomes increasingly relevant.

  11. Using commercial software products for atmospheric remote sensing

    NASA Astrophysics Data System (ADS)

    Kristl, Joseph A.; Tibaudo, Cheryl; Tang, Kuilian; Schroeder, John W.

    2002-02-01

    The Ontar Corporation (www.Ontar.com) has developed several products for atmospheric remote sensing to calculate radiative transport, atmospheric transmission, and sensor performance in both the normal atmosphere and the atmosphere disturbed by battlefield conditions of smoke, dust, explosives and turbulence. These products include: PcModWin: Uses the USAF standard MODTRAN model to compute the atmospheric transmission and radiance at medium spectral resolution (2 cm-1) from the ultraviolet/visible into the infrared and microwave regions of the spectrum. It can be used for any geometry and atmospheric conditions such as aerosols, clouds and rain. PcLnWin: Uses the USAF standard FASCOD model to compute atmospheric transmission and emission at high (line-by-line) spectral resolution using the HITRAN 2000 database. It can be used over the same spectrum from the UV/visible into the infrared and microwave regions of the spectrum. HitranPC: Computes the absolute high (line-by-line) spectral resolution transmission spectrum of the atmosphere for different temperatures and pressures. HitranPC is a user-friendly program developed by the University of South Florida (USF) and uses the international standard molecular spectroscopic database, HITRAN. LidarPC: A computer program to calculate the Laser Radar/L&n Equation for hard targets and atmospheric backscatter using manual input atmospheric parameters or HitranPC and BETASPEC - transmission and backscatter calculations of the atmosphere. Also developed by the University of South Florida (USF). PcEosael: is a library of programs that mathematically describe aspects of electromagnetic propagation in battlefield environments. 25 modules are connected but can be exercised individually. Covers eight general categories of atmospheric effects, including gases, aerosols and laser propagation. Based on codes developed by the Army Research Lab. NVTherm: NVTherm models parallel scan, serial scan, and staring thermal imagers that operate

  12. Land-based infrared imagery for marine mammal detection

    NASA Astrophysics Data System (ADS)

    Graber, Joseph; Thomson, Jim; Polagye, Brian; Jessup, Andrew

    2011-09-01

    A land-based infrared (IR) camera is used to detect endangered Southern Resident killer whales in Puget Sound, Washington, USA. The observations are motivated by a proposed tidal energy pilot project, which will be required to monitor for environmental effects. Potential monitoring methods also include visual observation, passive acoustics, and active acoustics. The effectiveness of observations in the infrared spectrum is compared to observations in the visible spectrum to assess the viability of infrared imagery for cetacean detection and classification. Imagery was obtained at Lime Kiln Park, Washington from 7/6/10-7/9/10 using a FLIR Thermovision A40M infrared camera (7.5-14μm, 37°HFOV, 320x240 pixels) under ideal atmospheric conditions (clear skies, calm seas, and wind speed 0-4 m/s). Whales were detected during both day (9 detections) and night (75 detections) at distances ranging from 42 to 162 m. The temperature contrast between dorsal fins and the sea surface ranged from 0.5 to 4.6 °C. Differences in emissivity from sea surface to dorsal fin are shown to aid detection at high incidence angles (near grazing). A comparison to theory is presented, and observed deviations from theory are investigated. A guide for infrared camera selection based on site geometry and desired target size is presented, with specific considerations regarding marine mammal detection. Atmospheric conditions required to use visible and infrared cameras for marine mammal detection are established and compared with 2008 meteorological data for the proposed tidal energy site. Using conservative assumptions, infrared observations are predicted to provide a 74% increase in hours of possible detection, compared with visual observations.

  13. Middle infrared remote sensing for geology

    NASA Technical Reports Server (NTRS)

    Kahle, A. B.

    1982-01-01

    The middle infrared portion of the spectrum available for geologic remote sensing extends from approximately 3 to 25 micrometers. The source of energy is thermal radiation from surface materials and ambient terrestrial temperatures. The spectral range of usefulness is limited by both the amount of energy available and by transmission of energy through the atmosphere. The best atmospheric window lies between about 8 and 14 micrometers. Remote sensing of the Earth in the infrared is just on the threshold of becoming a valuable geologic tool. Topics which need study include: (1) the used and limitations of the 8 to 14 micrometer region for distinguishing between silicates and nonsilicates; (2) theoretical and experimental understanding of laboratory spectra of rocks and minerals and their relationship to remotely sensed emission spectra; and (3) the possible use of the 3 to 5 and 17 to 25 micrometer portions of the spectrum for remote sensing.

  14. Temporal and spatial variability of ammonia in urban and agricultural regions of northern Colorado, United States

    NASA Astrophysics Data System (ADS)

    Li, Yi; Thompson, Tammy M.; Van Damme, Martin; Chen, Xi; Benedict, Katherine B.; Shao, Yixing; Day, Derek; Boris, Alexandra; Sullivan, Amy P.; Ham, Jay; Whitburn, Simon; Clarisse, Lieven; Coheur, Pierre-François; Collett, Jeffrey L., Jr.

    2017-05-01

    Concentrated agricultural activities and animal feeding operations in the northeastern plains of Colorado represent an important source of atmospheric ammonia (NH3). The NH3 from these sources contributes to regional fine particle formation and to nitrogen deposition to sensitive ecosystems in Rocky Mountain National Park (RMNP), located ˜ 80 km to the west. In order to better understand temporal and spatial differences in NH3 concentrations in this source region, weekly concentrations of NH3 were measured at 14 locations during the summers of 2010 to 2015 using Radiello passive NH3 samplers. Weekly (biweekly in 2015) average NH3 concentrations ranged from 2.66 to 42.7 µg m-3, with the highest concentrations near large concentrated animal feeding operations (CAFOs). The annual summertime mean NH3 concentrations were stable in this region from 2010 to 2015, providing a baseline against which concentration changes associated with future changes in regional NH3 emissions can be assessed. Vertical profiles of NH3 were also measured on the 300 m Boulder Atmospheric Observatory (BAO) tower throughout 2012. The highest NH3 concentration along the vertical profile was always observed at the 10 m height (annual average concentration of 4.63 µg m-3), decreasing toward the surface (4.35 µg m-3) and toward higher altitudes (1.93 µg m-3). The NH3 spatial distributions measured using the passive samplers are compared with NH3 columns retrieved by the Infrared Atmospheric Sounding Interferometer (IASI) satellite and concentrations simulated by the Comprehensive Air Quality Model with Extensions (CAMx). The satellite comparison adds to a growing body of evidence that IASI column retrievals of NH3 provide very useful insight into regional variability in atmospheric NH3, in this case even in a region with strong local sources and sharp spatial gradients. The CAMx comparison indicates that the model does a reasonable job simulating NH3 concentrations near sources but tends to

  15. Color Infrared view of Houston, TX, USA

    NASA Image and Video Library

    1991-09-18

    This color infrared view of Houston (29.5N, 95.0W) was taken with a dual camera mount. Compare this scene with STS048-78-034 for an analysis of the unique properties of each film type. Comparative tests such as this aids in determining the kinds of information unique to each film system and evaluates and compares photography taken through hazy atmospheres. Infrared film is best at penetrating haze, vegetation detection and producing a sharp image.

  16. A high-resolution atlas of the infrared spectrum of the Sun and the Earth atmosphere from space: A compilation of ATMOS spectra of the region from 650 to 4800 cm (2.3 to 16 micron). Volume 1: The Sun

    NASA Technical Reports Server (NTRS)

    Farmer, Crofton B.; Norton, Robert H.

    1989-01-01

    During the period April 29 through May 2, 1985, the Atmospheric Trace Molecular Spectroscopy experiment was operated as part of the Spacelab-3 payload of the shuttle Challenger. The instrument, a modified Michelson Interferometer covering the frequency range from 600 to 5000/cm, at a spectral resolution of 0.01/cm, recorded infrared spectra of the Sun and of the Earth's atmosphere at times close to entry into and exit from occultation by the Earth's limb as seen from the shuttle orbit of 360 km. Spectra were obtained that are free from absorptions due to constituents of the atmosphere (i.e., solar pure spectra), as well as spectra of the atmosphere itself, covering line-of-sight tangent altitudes that span the range from the lower thermosphere to the bottom of the troposphere. This atlas, believed to be the first record of observations of the continuous high resolution infrared spectrum of the Sun and the Earth's atmosphere from space, provides a compilation of these spectra arranged in a hardcopy format suitable for quick-look reference purposes; the data are also available in digital form.

  17. Neural-Network Approach to Hyperspectral Data Analysis for Volcanic Ash Clouds Monitoring

    NASA Astrophysics Data System (ADS)

    Piscini, Alessandro; Ventress, Lucy; Carboni, Elisa; Grainger, Roy Gordon; Del Frate, Fabio

    2015-11-01

    In this study three artificial neural networks (ANN) were implemented in order to emulate a retrieval model and to estimate the ash Aerosol optical Depth (AOD), particle effective radius (reff) and cloud height from volcanic eruption using hyperspectral remotely sensed data. ANNs were trained using a selection of Infrared Atmospheric Sounding Interferometer (IASI) channels in Thermal Infrared (TIR) as inputs, and the corresponding ash parameters retrieved obtained using the Oxford retrievals as target outputs. The retrieval is demonstrated for the eruption of the Eyjafjallajo ̈kull volcano (Iceland) occurred in 2010. The results of validation provided root mean square error (RMSE) values between neural network outputs and targets lower than standard deviation (STD) of corresponding target outputs, therefore demonstrating the feasibility to estimate volcanic ash parameters using an ANN approach, and its importance in near real time monitoring activities, owing to its fast application. A high accuracy has been achieved for reff and cloud height estimation, while a decreasing in accuracy was obtained when applying the NN approach for AOD estimation, in particular for those values not well characterized during NN training phase.

  18. Electron Driven Processes in Atmospheric Behaviour

    NASA Astrophysics Data System (ADS)

    Campbell, L.; Brunger, M. J.; Teubner, P. J. O.

    2006-11-01

    Electron impact plays an important role in many atmospheric processes. Calculation of these is important for basic understanding, atmospheric modeling and remote sensing. Accurate atomic and molecular data, including electron impact cross sections, are required for such calculations. Five electron-driven processes are considered: auroral and dayglow emissions, the reduction of atmospheric electron density by vibrationally excited N2, NO production and infrared emission from NO. In most cases the predictions are compared with measurements. The dependence on experimental atomic and molecular data is also investigated.

  19. Atmospheric effects on radiation measurements

    NASA Technical Reports Server (NTRS)

    Jurica, G. M.

    1973-01-01

    Two essentially distinct regions of the electromagnetic spectrum are discussed: (1) the scattering region in which the radiation energy is provided by the incident solar flux; and (2) the infrared region in which emission by the earth's surface and atmospheric gases supply radiative energy. In each of these spectral regions the atmosphere performs its dual function with respect to a remote sensing measurement of surface properties. The atmosphere acts both as a filter and as a noise generator removing and obscuring sought after information. Nevertheless, with proper application of concepts such as have been considered, it will be possible to remove these unwanted atmospheric effects and to improve identification techniques being developed.

  20. A Fast Visible-Infrared Imaging Radiometer Suite Simulator for Cloudy Atmopheres

    NASA Technical Reports Server (NTRS)

    Liu, Chao; Yang, Ping; Nasiri, Shaima L.; Platnick, Steven; Meyer, Kerry G.; Wang, Chen Xi; Ding, Shouguo

    2015-01-01

    A fast instrument simulator is developed to simulate the observations made in cloudy atmospheres by the Visible Infrared Imaging Radiometer Suite (VIIRS). The correlated k-distribution (CKD) technique is used to compute the transmissivity of absorbing atmospheric gases. The bulk scattering properties of ice clouds used in this study are based on the ice model used for the MODIS Collection 6 ice cloud products. Two fast radiative transfer models based on pre-computed ice cloud look-up-tables are used for the VIIRS solar and infrared channels. The accuracy and efficiency of the fast simulator are quantify in comparison with a combination of the rigorous line-by-line (LBLRTM) and discrete ordinate radiative transfer (DISORT) models. Relative errors are less than 2 for simulated TOA reflectances for the solar channels and the brightness temperature differences for the infrared channels are less than 0.2 K. The simulator is over three orders of magnitude faster than the benchmark LBLRTM+DISORT model. Furthermore, the cloudy atmosphere reflectances and brightness temperatures from the fast VIIRS simulator compare favorably with those from VIIRS observations.

  1. Formation of spectral lines in planetary atmospheres. I - Theory for cloudy atmospheres: Application to Venus.

    NASA Technical Reports Server (NTRS)

    Hunt, G. E.

    1972-01-01

    The theory of the formation of spectral lines in a cloudy planetary atmosphere is studied in detail. It is shown that models based upon homogeneous, isotropically scattering atmospheres cannot be used to reproduce observed spectroscopic features of phase effect and the shape of spectral lines for weak and strong bands. The theory must, therefore, be developed using an inhomogeneous (gravitational) model of a planetary atmosphere, accurately incorporating all the physical processes of radiative transfer. Such a model of the lower Venus atmosphere, consistent with our present knowledge, is constructed. The results discussed in this article demonstrate the effects of the parameters that describe the atmospheric model on the spectroscopic features of spectral line profile and phase effect, at visible and near infrared wavelengths. This information enables us to develop a comprehensive theory of line formation in a Venus atmosphere.

  2. Greenhouse effect in the atmosphere

    NASA Astrophysics Data System (ADS)

    Smirnov, B. M.

    2016-04-01

    Average optical atmospheric parameters for the infrared spectrum range are evaluated on the basis of the Earth energetic balance and parameters of the standard atmosphere. The average optical thickness of the atmosphere is u ≈ 2.5 and this atmospheric emission is originated at altitudes below 10 km. Variations of atmospheric radiative fluxes towards the Earth and outward are calculated as a function of the concentration of \\text{CO}2 molecules for the regular model of molecular spectrum. As a result of doubling of the \\text{CO}2 concentration the change of the global Earth temperature is (0.4 +/- 0.2) \\text{K} if other atmospheric parameters are conserved compared to the value (3.0 +/- 1.5) \\text{K} under real atmospheric conditions with the variation of the amount of atmospheric water. An observed variation of the global Earth temperature during the last century (0.8 ^\\circ \\text{C}) follows from an increase of the mass of atmospheric water by 7% or by conversion of 1% of atmospheric water in aerosols.

  3. Application of open-path Fourier transform infrared spectroscopy for atmospheric monitoring of a CO2 back-production experiment at the Ketzin pilot site (Germany).

    PubMed

    Sauer, Uta; Borsdorf, H; Dietrich, P; Liebscher, A; Möller, I; Martens, S; Möller, F; Schlömer, S; Schütze, C

    2018-02-03

    During a controlled "back-production experiment" in October 2014 at the Ketzin pilot site, formerly injected CO 2 was retrieved from the storage formation and directly released to the atmosphere via a vent-off stack. Open-path Fourier transform infrared (OP FTIR) spectrometers, on-site meteorological parameter acquisition systems, and distributed CO 2 point sensors monitored gas dispersion processes in the near-surface part of the atmospheric boundary layer. The test site provides a complex and challenging mosaic-like surface setting for atmospheric monitoring which can also be found at other storage sites. The main aims of the atmospheric monitoring of this experiment were (1) to quantify temporal and spatial variations in atmospheric CO 2 concentrations around the emitting vent-off stack and (2) to test if and how atmospheric monitoring can cope with typical environmental and operational challenges. A low environmental risk was encountered during the whole CO 2 back-production experiment. The study confirms that turbulent wind conditions favor atmospheric mixing processes and are responsible for rapid dilution of the released CO 2 leading to decreased detectability at all sensors. In contrast, calm and extremely stable wind conditions (especially occurring during the night) caused an accumulation of gases in the near-ground atmospheric layer with the highest amplitudes in measured gas concentration. As an important benefit of OP FTIR spectroscopic measurements and their ability to detect multiple gas species simultaneously, emission sources could be identified to a much higher certainty. Moreover, even simulation models using simplified assumptions help to find suitable monitoring network designs and support data analysis for certain wind conditions in such a complex environment.

  4. Validation of NH3 satellite observations by ground-based FTIR measurements

    NASA Astrophysics Data System (ADS)

    Dammers, Enrico; Palm, Mathias; Van Damme, Martin; Shephard, Mark; Cady-Pereira, Karen; Capps, Shannon; Clarisse, Lieven; Coheur, Pierre; Erisman, Jan Willem

    2016-04-01

    Global emissions of reactive nitrogen have been increasing to an unprecedented level due to human activities and are estimated to be a factor four larger than pre-industrial levels. Concentration levels of NOx are declining, but ammonia (NH3) levels are increasing around the globe. While NH3 at its current concentrations poses significant threats to the environment and human health, relatively little is known about the total budget and global distribution. Surface observations are sparse and mainly available for north-western Europe, the United States and China and are limited by the high costs and poor temporal and spatial resolution. Since the lifetime of atmospheric NH3 is short, on the order of hours to a few days, due to efficient deposition and fast conversion to particulate matter, the existing surface measurements are not sufficient to estimate global concentrations. Advanced space-based IR-sounders such as the Tropospheric Emission Spectrometer (TES), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared Sounder (CrIS) enable global observations of atmospheric NH3 that help overcome some of the limitations of surface observations. However, the satellite NH3 retrievals are complex requiring extensive validation. Presently there have only been a few dedicated satellite NH3 validation campaigns performed with limited spatial, vertical or temporal coverage. Recently a retrieval methodology was developed for ground-based Fourier Transform Infrared Spectroscopy (FTIR) instruments to obtain vertical concentration profiles of NH3. Here we show the applicability of retrieved columns from nine globally distributed stations with a range of NH3 pollution levels to validate satellite NH3 products.

  5. Demonstrating the Operational Value of Atmospheric Infrared Sounder (AIRS) Retrieved Profiles in the Pre-Convective Environment

    NASA Technical Reports Server (NTRS)

    Kozlowski, Danielle M.; Zavodsky, T.; Jedloved, Gary J.

    2011-01-01

    The Short-term Prediction Research and Transition Center (SPoRT) is a collaborative partnership between NASA and operational forecasting partners, including a number of National Weather Service offices. SPoRT provides real-time NASA products and capabilities to its partners to address specific operational forecast challenges. One operational forecast challenge is forecasting convective weather in data-void regions such as large bodies of water (e.g. Gulf of Mexico). To address this forecast challenge, SPoRT produces a twice-daily three-dimensional analysis that blends a model first-guess from the Advanced Research Weather Research and Forecasting (WRF-ARW) model with retrieved profiles from the Atmospheric Infrared Sounder (AIRS) -- a hyperspectral sounding instrument aboard NASA's Aqua satellite that provides temperature and moisture profiles of the atmosphere. AIRS profiles are unique in that they give a three dimensional view of the atmosphere that is not available through the current rawinsonde network. AIRS has two overpass swaths across North America each day, one valid in the 0700-0900 UTC timeframe and the other in the 1900-2100 UTC timeframe. This is helpful because the rawinsonde network only has data from 0000 UTC and 1200 UTC at specific land-based locations. Comparing the AIRS analysis product with control analyses that include no AIRS data demonstrates the value of the retrieved profiles to situational awareness for the pre-convective (and convective) environment. In an attempt to verify that the AIRS analysis was a good representation of the vertical structure of the atmosphere, both the AIRS and control analyses are compared to a Rapid Update Cycle (RUC) analysis used by operational forecasters. Using guidance from operational forecasters, convective available potential energy (CAPE) was determined to be a vital variable in making convective forecasts and is used herein to demonstrate the utility of the AIRS profiles in changing the vertical

  6. Prognosis for a mid-infrared magnetic rotation spectrometer for the in situ detection of atmospheric free radicals

    NASA Astrophysics Data System (ADS)

    Blake, Thomas A.; Chackerian, Charles, Jr.; Podolske, James R.

    1996-02-01

    Mid-infrared magnetic rotation spectroscopy (MRS) experiments on nitric oxide (NO) are quantitatively modeled by theoretical calculations. The verified theory is used to specify an instrument that can make in situ measurements on NO and NO2 in the Earth's atmosphere at a sensitivity level of a few parts in 1012 by volume per second. The prototype instrument used in the experiments has an extrapolated detection limit for NO of 30 parts in 109 for a 1-s integration time over a 12-cm path length. The detection limit is an extrapolation of experimental results to a signal-to-noise ratio of one, where the noise is considered to be one-half the peak-to-peak baseline noise. Also discussed are the various factors that can limit the sensitivity of a MRS spectrometer that uses liquid-nitrogen-cooled lead-salt diode lasers and photovoltaic detectors.

  7. Evaluation of atmospheric correction algorithms for processing SeaWiFS data

    NASA Astrophysics Data System (ADS)

    Ransibrahmanakul, Varis; Stumpf, Richard; Ramachandran, Sathyadev; Hughes, Kent

    2005-08-01

    To enable the production of the best chlorophyll products from SeaWiFS data NOAA (Coastwatch and NOS) evaluated the various atmospheric correction algorithms by comparing the satellite derived water reflectance derived for each algorithm with in situ data. Gordon and Wang (1994) introduced a method to correct for Rayleigh and aerosol scattering in the atmosphere so that water reflectance may be derived from the radiance measured at the top of the atmosphere. However, since the correction assumed near infrared scattering to be negligible in coastal waters an invalid assumption, the method over estimates the atmospheric contribution and consequently under estimates water reflectance for the lower wavelength bands on extrapolation. Several improved methods to estimate near infrared correction exist: Siegel et al. (2000); Ruddick et al. (2000); Stumpf et al. (2002) and Stumpf et al. (2003), where an absorbing aerosol correction is also applied along with an additional 1.01% calibration adjustment for the 412 nm band. The evaluation show that the near infrared correction developed by Stumpf et al. (2003) result in an overall minimum error for U.S. waters. As of July 2004, NASA (SEADAS) has selected this as the default method for the atmospheric correction used to produce chlorophyll products.

  8. A Comprehensive Training Data Set for the Development of Satellite-Based Volcanic Ash Detection Algorithms

    NASA Astrophysics Data System (ADS)

    Schmidl, Marius

    2017-04-01

    We present a comprehensive training data set covering a large range of atmospheric conditions, including disperse volcanic ash and desert dust layers. These data sets contain all information required for the development of volcanic ash detection algorithms based on artificial neural networks, urgently needed since volcanic ash in the airspace is a major concern of aviation safety authorities. Selected parts of the data are used to train the volcanic ash detection algorithm VADUGS. They contain atmospheric and surface-related quantities as well as the corresponding simulated satellite data for the channels in the infrared spectral range of the SEVIRI instrument on board MSG-2. To get realistic results, ECMWF, IASI-based, and GEOS-Chem data are used to calculate all parameters describing the environment, whereas the software package libRadtran is used to perform radiative transfer simulations returning the brightness temperatures for each atmospheric state. As optical properties are a prerequisite for radiative simulations accounting for aerosol layers, the development also included the computation of optical properties for a set of different aerosol types from different sources. A description of the developed software and the used methods is given, besides an overview of the resulting data sets.

  9. Simulation of the fixed optical path difference of near infrared wind imaging interferometer

    NASA Astrophysics Data System (ADS)

    Rong, Piao; Zhang, Chunmin; Yan, Tingyu; Liu, Dongdong; Li, Yanfen

    2017-02-01

    As an important part of the earth, atmosphere plays a vital role in filtering the solar radiation, adjusting the temperature and organizing the water circulation and keeping human survival. The passive atmospheric wind measurement is based on the imaging interferometer technology and Doppler effect of electromagnetic wave. By using the wind imaging interferometer to get four interferograms of airglow emission lines, the atmospheric wind velocity, temperature, pressure and emission rate can be derived. Exploring the multi-functional and integrated innovation of detecting wind temperature, wind velocity and trace gas has become a research focus in the field. In the present paper, the impact factors of the fixed optical path difference(OPD) of near infrared wind imaging interferometer(NIWII) are analyzed and the optimum value of the fixed optical path difference is simulated, yielding the optimal results of the fixed optical path difference is 20 cm in near infrared wave band (the O2(a1Δg) airglow emission at 1.27 microns). This study aims at providing theoretical basis and technical support for the detection of stratosphere near infrared wind field and giving guidance for the design and development of near infrared wind imaging interferometer.

  10. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket arrives at the pad. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket arrives at the pad. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  11. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is moved into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is moved into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  12. Photoacoustic Experimental System to Confirm Infrared Absorption Due to Greenhouse Gases

    ERIC Educational Resources Information Center

    Kaneko, Fumitoshi; Monjushiro, Hideaki; Nishiyama, Masayoshi; Kasai, Toshio; Harris, Harold H.

    2010-01-01

    An experimental system for detecting infrared absorption using the photoacoustic (PA) effect is described. It is aimed for use at high-school level to illustrate the difference in infrared (IR) absorption among the gases contained in the atmosphere in connection with the greenhouse effect. The experimental system can be built with readily…

  13. Scientific Payload Of The Emirates Mars Mission: Emirates Mars Infrared Spectrometer (Emirs) Overview.

    NASA Astrophysics Data System (ADS)

    Altunaiji, E. S.; Edwards, C. S.; Christensen, P. R.; Smith, M. D.; Badri, K. M., Sr.

    2017-12-01

    The Emirates Mars Mission (EMM) will launch in 2020 to explore the dynamics in the atmosphere of Mars on a global scale. EMM has three scientific instruments to an improved understanding of circulation and weather in the Martian lower and middle atmosphere. Two of the EMM's instruments, which are the Emirates eXploration Imager (EXI) and Emirates Mars Infrared Spectrometer (EMIRS) will focus on the lower atmosphere observing dust, ice clouds, water vapor and ozone. On the other hand, the third instrument Emirates Mars Ultraviolet Spectrometer (EMUS) will focus on both the thermosphere of the planet and its exosphere. The EMIRS instrument, shown in Figure 1, is an interferometric thermal infrared spectrometer that is jointly developed by Arizona State University (ASU) and Mohammed Bin Rashid Space Centre (MBRSC). It builds on a long heritage of thermal infrared spectrometers designed, built, and managed, by ASU's Mars Space Flight Facility, including the Thermal Emission Spectrometer (TES), Miniature Thermal Emission Spectrometer (Mini-TES), and the OSIRIS-REx Thermal Emission Spectrometer (OTES). EMIRS operates in the 6-40+ µm range with 5 cm-1 spectral sampling, enabled by a Chemical Vapor-Deposited (CVD) diamond beamsplitter and state of the art electronics. This instrument utilizes a 3×3 detector array and a scan mirror to make high-precision infrared radiance measurements over most of a Martian hemisphere. The EMIRS instrument is optimized to capture the integrated, lower-middle atmosphere dynamics over a Martian hemisphere and will capture 60 global images per week ( 20 images per orbit) at a resolution of 100-300 km/pixel. After processing through an atmospheric retrieval algorithm, EMIRS will determine the vertical temperature profiles to 50km altitude and measure the column integrated global distribution and abundances of key atmospheric parameters (e.g. dust, water ice (clouds) and water vapor) over the Martian day, seasons and year.

  14. Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations.

    PubMed

    Wang, Menghua

    2007-03-20

    In the remote sensing of the ocean near-surface properties, it is essential to derive accurate water-leaving radiance spectra through the process of the atmospheric correction. The atmospheric correction algorithm for Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) and Moderate Resolution Imaging Spectroradiometer (MODIS) uses two near-infrared (NIR) bands at 765 and 865 nm (748 and 869 nm for MODIS) for retrieval of aerosol properties with assumption of the black ocean at the NIR wavelengths. Modifications are implemented to account for some of the NIR ocean contributions for the productive but not very turbid waters. For turbid waters in the coastal regions, however, the ocean could have significant contributions in the NIR, leading to significant errors in the satellite-derived ocean water-leaving radiances. For the shortwave infrared (SWIR) wavelengths (approximately > 1000 nm), water has significantly larger absorption than those for the NIR bands. Thus the black ocean assumption at the SWIR bands is generally valid for turbid waters. In addition, for future sensors, it is also useful to include the UV bands to better quantify the ocean organic and inorganic materials, as well as for help in atmospheric correction. Simulations are carried out to evaluate the performance of atmospheric correction for nonabsorbing and weakly absorbing aerosols using the NIR bands and various combinations of the SWIR bands for deriving the water-leaving radiances at the UV (340 nm) and visible wavelengths. Simulations show that atmospheric correction using the SWIR bands can generally produce results comparable to atmospheric correction using the NIR bands. In particular, the water-leaving radiance at the UV band (340 nm) can also be derived accurately. The results from a sensitivity study for the required sensor noise equivalent reflectance, (NE Delta rho), [or the signal-to-noise ratio (SNR)] for the NIR and SWIR bands are provided and discussed.

  15. The effects of atmospheric pressure on infrared reflectance spectra of Martian analogs

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Pieters, Carle M.; Pratt, Stephen F.; Patterson, William

    1993-01-01

    The use of terrestrial samples as analogs of Mars soils are complicated by the Martian atmosphere. Spectral features due to the Martian atmosphere can be removed from telescopic spectra of Mars and ISM spectra of Mars, but this does not account for any spectral differences resulting from atmospheric pressure or any interactions between the atmosphere and the surface. We are examining the effects of atmospheric pressure on reflectance spectra of powdered samples in the laboratory. Contrary to a previous experiment with granite, no significant changes in albedo or the Christiansen feature were observed from 1 bar pressure down to a pressure of 8 micrometers Hg. However, reducing the atmospheric pressure does have a pronounced affect on the hydration features, even for samples retained in a dry environment for years.

  16. Hurricane Frances as Observed by NASA Spaceborne Atmospheric Infrared Sounder AIRS - Total Water Vapor Time Series

    NASA Image and Video Library

    2004-08-30

    Born in the Atlantic, Hurricane Frances became a category 4 hurricane on August 31, 2004, as seen by the Atmospheric Infrared Sounding System AIRS on NASA Aqua. Expectations are the hurricane will hit the Space Coast of Florida in Brevard County early Sunday morning. This frame from a movie is a time-series of maps that show AIRS observations of the total amount of water vapor present in the atmospheric column above each point of the Earth's surface. If all the water vapor in the column were forced to fall as rain, the depth of the resulting puddle on the surface at that point is equal to the value shown on the map. Fifty millimeters (mm) is about 2 inches. The large band of maximum water vapor in the neighborhood of the equator is the Intertropical Convergence Zone (ITCZ), a region of strong convection and powerful thunderstorms. The movie (see PIA00433) shows the total precipitable water vapor from August 23 through September 2, 2004. You can see Hurricane Frances as it moves through the Caribbean toward Florida, and the changes in intensity are visible. The eye has been marked with a red spot. The water vapor encompassed by the hurricane is also the result of the very strong convection which is an integral part of the formation and intensification of tropical storms. If you look at the last frame of the movie in the lower right corner, you can see the emergence of a new tropical storm. Ivan makes its debut in the Atlantic. http://photojournal.jpl.nasa.gov/catalog/PIA00433

  17. Calculation of Precipitable Water for Stratospheric Observatory for Infrared Astronomy Aircraft (SOFIA): Airplane in the Night Sky

    NASA Technical Reports Server (NTRS)

    Wen, Pey Chun; Busby, Christopher M.

    2011-01-01

    Stratospheric Observatory for Infrared Astronomy, or SOFIA, is the new generation airborne observatory station based at NASA s Dryden Aircraft Operations Facility, Palmdale, CA, to study the universe. Since the observatory detects infrared energy, water vapor is a concern in the atmosphere due to its known capacity to absorb infrared energy emitted by astronomical objects. Although SOFIA is hoping to fly above 99% of water vapor in the atmosphere it is still possible to affect astronomical observation. Water vapor is one of the toughest parameter to measure in the atmosphere, several atmosphere modeling are used to calculate water vapor loading. The water vapor loading, or Precipitable water, is being calculated by Matlab along the planned flight path. Over time, these results will help SOFIA to plan flights to regions of lower water vapor loading and hopefully improve the imagery collection of these astronomical features.

  18. Mid-IR Atmospheric Tracers of Jupiter's Storm Oval BA

    NASA Astrophysics Data System (ADS)

    Shannon, Matthew J.; Orton, G.; Fletcher, L.

    2010-10-01

    The 2005-2006 reddening of a major anticyclonic storm, known as Oval BA, in Jupiter's turbulent atmosphere may well be a paradigm for the formation of red-colored vortices on the giant planets, including Jupiters Great Red Spot. Mid-infrared observations can be effectively used to determine physical and chemical properties of the atmosphere, and we present the results of mid-infrared thermal imaging observations, collected from NASAs Infrared Telescope Facility (IRTF) in Hawaii, ESOs Very Large Telescope (VLT) in Chile and the NAOJ Subaru Telescope in Hawaii between spring of 2005 and summer of 2006. These address the role of atmospheric tracers, including cloud opacity, the ammonia gas content, and the variation of the fraction of para- to ortho-hydrogen from local thermal equilibrium in assessing the rate of upwelling. These properties were retrieved with the Oxford-developed code, Nemesis, with the purpose of providing constraints on dynamical models in an effort to identify the mechanism for the color change. The most obvious change is that the temperature gradient from the inner to the outer part of Oval BA increased over the time of the color change, indicating a strengthening of the intensity of the vortex.

  19. Contribution of thermal infrared images on the understanding of the subsurface/atmosphere exchanges on Earth.

    NASA Astrophysics Data System (ADS)

    Lopez, Teodolina; Antoine, Raphaël; Baratoux, David; Rabinowicz, Michel

    2017-04-01

    High temporal resolution of space-based thermal infrared images (METEOSAT, MODIS) and the development of field thermal cameras have permitted the development of thermal remote sensing in Earth Sciences. Thermal images are influenced by many factors such as atmosphere, solar radiation, topography and physico-chemical properties of the surface. However, considering these limitations, we have discovered that thermal images can be used in order to better understand subsurface hydrology. In order to reduce as much as possible the impact of these perturbing factors, our approach combine 1) field observations and 2) numerical modelling of surface/subsurface thermal processes. Thermal images of the Piton de la Fournaise volcano (Réunion Island), acquired by hand, show that the Formica Leo inactive scoria cone and some fractures close to the Bory-Dolomieu caldera are always warmer, inducing a thermal difference with the surrounding of at least 5°C and a Self-Potential anomaly [1, 2]. Topography cannot explain this thermal behaviour, but Piton de la Fournaise is known as highly permeable. This fact allows the development of an air convection within the whole permeable structure volcanic edifice [2]. Cold air enters the base of the volcano, and exits warmer upslope, as the air is warmed by the geothermal flow [1,2]. Then, we have decided to understand the interaction between subsurface hydrogeological flows and the humidity in the atmosphere. In the Lake Chad basin, regions on both sides of Lake Chad present a different thermal behaviour during the diurnal cycle and between seasons [3]. We propose that this thermal behaviour can only be explained by lateral variations of the surface permeability that directly impact the process of evaporation/condensation cycle. These studies bring new highlights on the understanding of the exchanges between subsurface and the atmosphere, as the presence of a very permeable media and/or variations of the surface permeability may enhance or

  20. Atmospheric Emitted Radiance Interferometer (AERI) Handbook

    DOE Data Explorer

    Gero, Jonathan; Hackel, Denny; Garcia, Raymond

    2005-01-01

    The atmospheric emitted radiance interferometer (AERI) is a ground-based instrument that measures the downwelling infrared radiance from the Earth's atmosphere. The observations have broad spectral content and sufficient spectral resolution to discriminate among gaseous emitters (e.g., carbon dioxide and water vapor) and suspended matter (e.g., aerosols, water droplets, and ice crystals). These upward-looking surface observations can be used to obtain vertical profiles of tropospheric temperature and water vapor, as well as measurements of trace gases (e.g., ozone, carbon monoxide, and methane) and downwelling infrared spectral signatures of clouds and aerosols.The AERI is a passive remote sounding instrument, employing a Fourier transform spectrometer operating in the spectral range 3.3-19.2 μm (520-3020 cm-1) at an unapodized resolution of 0.5 cm-1 (max optical path difference of 1 cm). The extended-range AERI (ER-AERI) deployed in dry climates, like in Alaska, have a spectral range of 3.3-25.0 μm (400-3020 cm-1) that allow measurements in the far-infrared region. Typically, the AERI averages views of the sky over a 16-second interval and operates continuously.

  1. Infrared Spectroscopy on Smoke Produced by Cauterization of Animal Tissue

    PubMed Central

    Gianella, Michele; Sigrist, Markus W.

    2010-01-01

    In view of in vivo surgical smoke studies a difference-frequency-generation (DFG) laser spectrometer (spectral range 2900–3144 cm−1) and a Fourier-transform infrared (FTIR) spectrometer were employed for infrared absorption spectroscopy. The chemical composition of smoke produced in vitro with an electroknife by cauterization of different animal tissues in different atmospheres was investigated. Average concentrations derived are: water vapor (0.87%), methane (20 ppm), ethane (4.8 ppm), ethene (17 ppm), carbon monoxide (190 ppm), nitric oxide (25 ppm), nitrous oxide (40 ppm), ethyne (50 ppm) and hydrogen cyanide (25 ppm). No correlation between smoke composition and the atmosphere or the kind of cauterized tissue was found. PMID:22319267

  2. Optimized mid-infrared thermal emitters for applications in aircraft countermeasures

    NASA Astrophysics Data System (ADS)

    Lorenzo, Simón G.; You, Chenglong; Granier, Christopher H.; Veronis, Georgios; Dowling, Jonathan P.

    2017-12-01

    We introduce an optimized aperiodic multilayer structure capable of broad angle and high temperature thermal emission over the 3 μm to 5 μm atmospheric transmission band. This aperiodic multilayer structure composed of alternating layers of silicon carbide and graphite on top of a tungsten substrate exhibits near maximal emittance in a 2 μm wavelength range centered in the mid-wavelength infrared band traditionally utilized for atmospheric transmission. We optimize the layer thicknesses using a hybrid optimization algorithm coupled to a transfer matrix code to maximize the power emitted in this mid-infrared range normal to the structure's surface. We investigate possible applications for these structures in mimicking 800-1000 K aircraft engine thermal emission signatures and in improving countermeasure effectiveness against hyperspectral imagers. We find these structures capable of matching the Planck blackbody curve in the selected infrared range with relatively sharp cutoffs on either side, leading to increased overall efficiency of the structures. Appropriately optimized multilayer structures with this design could lead to matching a variety of mid-infrared thermal emissions. For aircraft countermeasure applications, this method could yield a flare design capable of mimicking engine spectra and breaking the lock of hyperspectral imaging systems.

  3. Improved Remote Sensing Retrieval of Land Surface Temperature in the Thermal Infrared (TIR) Using Visible/Short Wave Infrared (VSWIR) Imaging Spectrometer Estimated Water Vapor

    NASA Astrophysics Data System (ADS)

    Grigsby, S.; Hulley, G. C.; Roberts, D. A.; Scheele, C. J.; Ustin, S.; Alsina, M. M.

    2014-12-01

    Land surface temperature (LST) is an important parameter in many ecological studies, where processes such as evapotranspiration have impacts at temperature gradients less than 1 K. Current errors in standard MODIS and ASTER LST products are greater than 1 K, and for ASTER can be greater than 2 K in humid conditions due to incomplete atmospheric correction of atmospheric water vapor. Estimates of water vapor, either derived from visible-to-shortwave-infrared (VSWIR) remote sensing data or taken from weather simulation data such as NCEP, can be combined with coincident Thermal-Infrared (TIR) remote sensing data to yield improved accuracy in LST measurements. This study compares LST retrieval accuracies derived using the standard JPL MASTER Temperature Emissivity Separation (TES) algorithm, and the Water Vapor Scaling (WVS) atmospheric correction method proposed for the Hyperspectral Infrared Imager, or HyspIRI, mission with ground observations. The 2011 ER-2 Delano/Lost Hills flights acquired TIR data from the MODIS/ASTER Simulator (MASTER) and VSWIR data from Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) instruments flown concurrently. The TES and WVS retrieval methods are run with and without high spatial resolution AVIRIS-derived water vapor maps to assess the improvement using VSWIR water vapor estimates. We find improvement using VSWIR derived water vapor maps in both cases, with the WVS method being most accurate overall. For closed canopy agricultural vegetation we observed canopy temperature retrieval RMSEs of 0.49 K and 0.70 K using the WVS method on MASTER data with and without AVIRIS derived water vapor, respectively.

  4. Determination of cloud parameters from infrared sounder data

    NASA Technical Reports Server (NTRS)

    Yeh, H.-Y. M.

    1984-01-01

    The World Climate Research Programme (WCRP) plan is concerned with the need to develop a uniform global cloud climatology as part of a broad research program on climate processes. The International Satellite Cloud Climatology Project (ISCCP) has been approved as the first project of the WCRP. The ISCCP has the basic objective to collect and analyze satellite radiance data to infer the global distribution of cloud radiative properties in order to improve the modeling of cloud effects on climate. Research is conducted to explore an algorithm for retrieving cloud properties by utilizing the available infrared sounder data from polar-orbiting satellites. A numerical method is developed for computing cloud top heights, amount, and emissivity on the basis of a parameterized infrared radiative transfer equation for cloudy atmospheres. Theoretical studies were carried out by considering a synthetic atmosphere.

  5. Infrared signature modelling of a rocket jet plume - comparison with flight measurements

    NASA Astrophysics Data System (ADS)

    Rialland, V.; Guy, A.; Gueyffier, D.; Perez, P.; Roblin, A.; Smithson, T.

    2016-01-01

    The infrared signature modelling of rocket plumes is a challenging problem involving rocket geometry, propellant composition, combustion modelling, trajectory calculations, fluid mechanics, atmosphere modelling, calculation of gas and particles radiative properties and of radiative transfer through the atmosphere. This paper presents ONERA simulation tools chained together to achieve infrared signature prediction, and the comparison of the estimated and measured signatures of an in-flight rocket plume. We consider the case of a solid rocket motor with aluminized propellant, the Black Brant sounding rocket. The calculation case reproduces the conditions of an experimental rocket launch, performed at White Sands in 1997, for which we obtained high quality infrared signature data sets from DRDC Valcartier. The jet plume is calculated using an in-house CFD software called CEDRE. The plume infrared signature is then computed on the spectral interval 1900-5000 cm-1 with a step of 5 cm-1. The models and their hypotheses are presented and discussed. Then the resulting plume properties, radiance and spectra are detailed. Finally, the estimated infrared signature is compared with the spectral imaging measurements. The discrepancies are analyzed and discussed.

  6. Brown carbon absorption in the red and near-infrared spectral region

    NASA Astrophysics Data System (ADS)

    Hoffer, András; Tóth, Ádám; Pósfai, Mihály; Eddy Chung, Chul; Gelencsér, András

    2017-06-01

    Black carbon (BC) aerosols have often been assumed to be the only light-absorbing carbonaceous particles in the red and near-infrared spectral regions of solar radiation in the atmosphere. Here we report that tar balls (a specific type of organic aerosol particles from biomass burning) do absorb red and near-infrared radiation significantly. Tar balls were produced in a laboratory experiment, and their chemical and optical properties were measured. The absorption of these particles in the range between 470 and 950 nm was measured with an aethalometer, which is widely used to measure atmospheric aerosol absorption. We find that the absorption coefficient of tar balls at 880 nm is more than 10 % of that at 470 nm. The considerable absorption of red and infrared light by tar balls also follows from their relatively low absorption Ångström coefficient (and significant mass absorption coefficient) in the spectral range between 470 and 950 nm. Our results support the previous finding that tar balls may play an important role in global warming. Due to the non-negligible absorption of tar balls in the near-infrared region, the absorption measured in the field at near-infrared wavelengths cannot solely be due to soot particles.

  7. Constraining the atmosphere of exoplanet WASP-34b

    NASA Astrophysics Data System (ADS)

    Challener, Ryan; Harrington, Joseph; Cubillos, Patricio; Garland, Justin; Foster, Andrew S. D.; Blecic, Jasmina; Foster, Austin James; Smalley, Barry

    2016-01-01

    WASP-34b is a short-period exoplanet with a mass of 0.59 +/- 0.01 Jupiter masses orbiting a G5 star with a period of 4.3177 days and an eccentricity of 0.038 +/- 0.012 (Smalley, 2010). We observed WASP-34b using the 3.6 and 4.5 micron channels of the Infrared Array Camera aboard the Spitzer Space Telescope in 2010 (Program 60003). We applied our Photometry for Orbits, Eclipses, and Transits (POET) code to present eclipse-depth measurements, estimates of infrared brightness temperatures, and a refined orbit. With our Bayesian Atmospheric Radiative Transfer (BART) code, we characterized the atmosphere's temperature and pressure profile, and molecular abundances. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G. J. Blecic holds a NASA Earth and Space Science Fellowship.

  8. Measurements of constituents of interest in the photochemistry of the ozone layer using infrared techniques

    NASA Technical Reports Server (NTRS)

    Murcray, D. G.; Williams, J. W.; Barker, D. B.; Goldman, A.; Bradford, C.; Cook, G.

    1978-01-01

    Infrared solar spectra and infrared atmospheric emission spectra were obtained from the ground, from aircraft and from balloons. The initial detection of most stratospheric molecules was achieved by the solar spectral technique because better resolution helps remove interference from other molecules. Because the sun is an intense source of radiation, the resolution which can be obtained with good signal-to-noise, is greater than with atmospheric emission spectroscopy. Data are generally taken using a method that enhances the number of molecules in the optical path i.e. at large solar zenith angles for solar spectra and at low elevation angles for atmospheric emission spectra. The search for molecules which are predicted to be present but which, the detection of a molecule known to be present from other measurement techniques but observed for the first time in infrared solar spectra, and some further data on the variability of HNO3 are discussed.

  9. Hurricane Ivan as Observed by NASA Spaceborne Atmospheric Infrared Sounder AIRS

    NASA Image and Video Library

    2004-09-15

    Hurricane Ivan is the most powerful hurricane to hit the Caribbean in 10 years. On September 7 and 8 it damaged 90 percent of the homes in Grenada and killed at least 16 people as it swept over Grenada, Barbados and the other islands in the area. By Thursday morning on September 9, Ivan's sustained winds reached 160 mph making it a rare category 5 hurricane on the Saffir-Simpson scale. By Monday September 13, Ivan is blamed for 67 deaths and skirts western Cuba with winds clocked at 156 mph. The National Hurricane Center predicted the eye of Ivan will make landfall across Mobile Bay in Alabama late Wednesday or early Thursday. These images of Hurricane Ivan were acquired by the AIRS infrared, microwave, and visible sensors on September 15 at 1:30 pm local time as the storm moves in to Alabama. Ivan at category 4 strength is about 150 miles south of Mobile, Alabama and is moving north at 14 mph. Maximum sustained winds are reported to be at 135 mph and extend 105 miles from the center, while tropical storm-force winds extend 290 miles from the center. Ivan pounded the Gulf coast all day Wednesday, and is expected to make landfall between midnight and 3am in Mobile Bay, Alabama. This image shows how the storm looks through an AIRS Infrared window channel, and reveals a very large eye - about 75 km (50 miles) across. Window channels measure the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures are associated with high, cold cloud tops that make up the top of the hurricane. The infrared signal does not penetrate through clouds, so the purple color indicates the cool cloud tops of the storm. In cloud-free areas, the infrared signal is retrieved at the Earth's surface, revealing warmer temperatures. Cooler areas are pushing to purple and warmer areas are pushing to red. http://photojournal.jpl.nasa.gov/catalog/PIA00431

  10. Aeolian system dynamics derived from thermal infrared data

    NASA Astrophysics Data System (ADS)

    Scheidt, Stephen Paul

    Thermal infrared (TIR) remote-sensing and field-based observations were used to study aeolian systems, specifically sand transport pathways, dust emission sources and Saharan atmospheric dust. A method was developed for generating seamless and radiometrically accurate mosaics of thermal infrared data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument. Using a combination of high resolution thermal emission spectroscopy results of sand samples and mosaic satellite data, surface emissivity was derived to map surface composition, which led to improvement in the understanding of sand accumulation in the Gran Desierto of northern Sonora, Mexico. These methods were also used to map sand transport pathways in the Sahara Desert, where the interaction between sand saltation and dust emission sources was explored. The characteristics and dynamics of dust sources were studied at White Sands, NM and in the Sahara Desert. At White Sands, an application was developed for studying the response of dust sources to surface soil moisture based on the relationship between soil moisture, apparent thermal inertia and the erosion potential of dust sources. The dynamics of dust sources and the interaction with sand transport pathways were also studied, focusing on the Bodele Depression of Chad and large dust sources in Mali and Mauritania. A dust detection algorithm was developed using ASTER data, and the spectral emissivity of observed atmospheric dust was related to the dust source area in the Sahara. At the Atmospheric Observatory (IZO) in Tenerife, Spain where direct measurement of the Saharan Air Layer could be made, the cycle of dust events occurring in July 2009 were examined. From the observation tower at the IZO, measurements of emitted longwave atmospheric radiance in the TIR wavelength region were made using a Forward Looking Infrared Radiometer (FLIR) handheld camera. The use of the FLIR to study atmospheric dust from the Saharan is a

  11. The Zugspitze radiative closure experiment for quantifying water vapor absorption over the terrestrial and solar infrared - Part 1: Setup, uncertainty analysis, and assessment of far-infrared water vapor continuum

    NASA Astrophysics Data System (ADS)

    Sussmann, Ralf; Reichert, Andreas; Rettinger, Markus

    2016-09-01

    Quantitative knowledge of water vapor radiative processes in the atmosphere throughout the terrestrial and solar infrared spectrum is still incomplete even though this is crucial input to the radiation codes forming the core of both remote sensing methods and climate simulations. Beside laboratory spectroscopy, ground-based remote sensing field studies in the context of so-called radiative closure experiments are a powerful approach because this is the only way to quantify water absorption under cold atmospheric conditions. For this purpose, we have set up at the Zugspitze (47.42° N, 10.98° E; 2964 m a.s.l.) a long-term radiative closure experiment designed to cover the infrared spectrum between 400 and 7800 cm-1 (1.28-25 µm). As a benefit for such experiments, the atmospheric states at the Zugspitze frequently comprise very low integrated water vapor (IWV; minimum = 0.1 mm, median = 2.3 mm) and very low aerosol optical depth (AOD = 0.0024-0.0032 at 7800 cm-1 at air mass 1). All instruments for radiance measurements and atmospheric-state measurements are described along with their measurement uncertainties. Based on all parameter uncertainties and the corresponding radiance Jacobians, a systematic residual radiance uncertainty budget has been set up to characterize the sensitivity of the radiative closure over the whole infrared spectral range. The dominant uncertainty contribution in the spectral windows used for far-infrared (FIR) continuum quantification is from IWV uncertainties, while T profile uncertainties dominate in the mid-infrared (MIR). Uncertainty contributions to near-infrared (NIR) radiance residuals are dominated by water vapor line parameters in the vicinity of the strong water vapor bands. The window regions in between these bands are dominated by solar Fourier transform infrared (FTIR) calibration uncertainties at low NIR wavenumbers, while uncertainties due to AOD become an increasing and dominant contribution towards higher NIR wavenumbers

  12. First laboratory high-temperature emissivity measurements of Venus analog measurements in the near-infrared atmospheric windows

    NASA Astrophysics Data System (ADS)

    Helbert, J.; Maturilli, A.; Ferrari, S.; Dyar, M. D.; Smrekar, S. E.

    2014-12-01

    The permanent cloud cover of Venus prohibits observation of the surface with traditional imaging techniques over most of the visible spectral range. Venus' CO2 atmosphere is transparent exclusively in small spectral windows near 1 μm. The Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) team on the European Space Agency Venus-Express mission have recently used these windows successfully to map the southern hemisphere from orbit. VIRTIS is showing variations in surface brightness, which can be interpreted as variations in surface emissivity. Deriving surface composition from these variations is a challenging task. Comparison with laboratory analogue spectra are complicated by the fact that Venus has an average surface temperature of 730K. Mineral crystal structures and their resultant spectral signatures are notably affected by temperature, therefore any interpretations based on room temperature laboratory spectra database can be misleading. In order to support the interpretation of near-infrared data from Venus we have started an extensive measurement campaign at the Planetary Emissivity Laboratory (PEL, Institute of Planetary Research of the German Aerospace Center, Berlin). The PEL facility, which is unique in the world, allows emission measurements covering the 1 to 2 μm wavelength range at sample temperatures of up to 770K. Conciliating the expected emissivity variation between felsic and mafic minerals with Venera and VEGA geochemical data we have started with a set of five analog samples. This set includes basalt, gneiss, granodiorite, anorthosite and hematite, thus covering the range of mineralogies. Preliminary results show significant spectral contrast, thus allowing different samples to be distinguished with only 5 spectral points and validating the use of thermal emissivity for investigating composition. This unique new dataset from PEL not only allows interpretation of the Venus Express VIRTIS data but also provide a baseline for considering

  13. The Impact of Atmospheric InfraRed Sounder (AIRS) Profiles on Short-term Weather Forecasts

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Brad; Jedlovec, Gary J.; Lapenta, William

    2007-01-01

    The Atmospheric Infrared Sounder (AIRS), together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced spacebased atmospheric sounding systems. The combined AlRS/AMSU system provides radiance measurements used to retrieve temperature profiles with an accuracy of 1 K over 1 km layers under both clear and partly cloudy conditions, while the accuracy of the derived humidity profiles is 15% in 2 km layers. Critical to the successful use of AIRS profiles for weather and climate studies is the use of profile quality indicators and error estimates provided with each profile Aside form monitoring changes in Earth's climate, one of the objectives of AIRS is to provide sounding information of sufficient accuracy such that the assimilation of the new observations, especially in data sparse region, will lead to an improvement in weather forecasts. The purpose of this paper is to describe a procedure to optimally assimilate highresolution AIRS profile data in a regional analysis/forecast model. The paper will focus on the impact of AIRS profiles on a rapidly developing east coast storm and will also discuss preliminary results for a 30-day forecast period, simulating a quasi-operation environment. Temperature and moisture profiles were obtained from the prototype version 5.0 EOS science team retrieval algorithm which includes explicit error information for each profile. The error profile information was used to select the highest quality temperature and moisture data for every profile location and pressure level for assimilation into the ARPS Data Analysis System (ADAS). The AIRS-enhanced analyses were used as initial fields for the Weather Research and Forecast (WRF) system used by the SPORT project for regional weather forecast studies. The ADASWRF system will be run on CONUS domain with an emphasis on the east coast. The preliminary assessment of the impact of the AIRS profiles will focus on quality control issues associated with AIRS

  14. Introduction to the special issue on molecular spectroscopy, atmospheric composition and climate change

    NASA Astrophysics Data System (ADS)

    Boudon, Vincent; Sears, Trevor; Coheur, Pierre-François

    2018-06-01

    Changes to the Earth's climate system resulting from modification of the atmosphere caused by both anthropogenic and natural effects are one of the great long-term threats to our society. In order to measure and understand the drivers of these changes, quantitative field measurements combined with precise and accurate laboratory data are needed. The Kyoto Protocol [1], signed in 1997, focused the scientific community on the need for data aimed at developing a better understanding of the physics and chemistry of molecular and aerosol species that lead to long-term climate change. The results have been impressive. Continuous and extensive concentration measurements are now being performed from the ground, e.g. the TCCON network, from balloons and airplanes and, of course, from space (e.g. ACE-Scisat, TANSO-GOSAT, IASI-Metop, OCO-2, Sentinel-5P, …). With the observing system now in place the concentration profiles of a suite of species, including greenhouse gases, aerosol precursors and others are measured with increasing precision over large areas of the Earth, leading to a much more complete understanding of the radiative forcing budget.

  15. A SEARCH FOR MAGNESIUM IN EUROPA'S ATMOSPHERE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoerst, S. M.; Brown, M. E., E-mail: sarah.horst@colorado.edu

    Europa's tenuous atmosphere results from sputtering of the surface. The trace element composition of its atmosphere is therefore related to the composition of Europa's surface. Magnesium salts are often invoked to explain Galileo Near Infrared Mapping Spectrometer spectra of Europa's surface, thus magnesium may be present in Europa's atmosphere. We have searched for magnesium emission in the Hubble Space Telescope Faint Object Spectrograph archival spectra of Europa's atmosphere. Magnesium was not detected and we calculate an upper limit on the magnesium column abundance. This upper limit indicates that either Europa's surface is depleted in magnesium relative to sodium and potassium,more » or magnesium is not sputtered as efficiently resulting in a relative depletion in its atmosphere.« less

  16. Detection of Trace Gases in Biomass Burning Plumes via Infrared Spectroscopy: Updates and Uses of the Northwest Infrared Database (NWIR)

    NASA Astrophysics Data System (ADS)

    Brauer, C. S.; Johnson, T. J.; Blake, T. A.; Sharpe, S. W.; Sams, R. L.; Tonkyn, R. G.

    2014-12-01

    The Northwest Infrared Database (NWIR) contains quantitative, gas-phase infrared spectra of nearly 500 pure chemical species, including over 60 molecules that are known or suspected biomass-burning effluents. The data, recorded at 0.1 cm-1 resolution, are pressure broadened to one atmosphere (N2) and each 25 oC spectrum is a composite composed of a minimum of ten individual measurements. Examples from this set of measurements will be presented and experimental details will be discussed in the context of the utility of NWIR for biomass-burning studies.

  17. CORSAIR-Calibrated Observations of Radiance Spectra from the Atmosphere in the Far- Infrared

    NASA Astrophysics Data System (ADS)

    Mlynczak, M. G.; Johnson, D.; Abedin, N.; Liu, X.; Kratz, D.; Jordan, D.; Wang, J.; Bingham, G.; Latvakoski, H.; Bowman, K.; Kaplan, S.

    2008-12-01

    The CORSAIR project is a new NASA Instrument Incubator Project (IIP) whose primary goal is to develop and demonstrate the necessary technologies to achieve SI-traceable, on-orbit measurements of Earth's spectral radiance in the far-infrared (far-IR). The far-IR plays a vital role in the energy balance of the Earth yet its spectrum has not been comprehensively observed from space for the purposes of climate sensing. The specific technologies being developed under CORSAIR include: passively cooled, antenna-coupled terahertz detectors for the far-IR (by Raytheon Vision Systems); accurately calibrated, SI-traceable blackbody sources for the far-IR (by Space Dynamics Laboratory); and high-performance broad bandpass beamsplitters (by ITT). These technologies complement those already developed under past Langley IIP projects (FIRST; INFLAME) in the areas of Fourier Transform Spectrometers and dedicated far-IR beamsplitters. The antenna-coupled far-IR detectors will be validated in the FIRST instrument at Langley. The SI-traceable far-IR blackbodies will be developed in conjunction with the National Institute of Standards and Technology (NIST). An overview of the CORSAIR technologies will be presented as well as their larger role in the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission. Upon successful completion of CORSAIR these IIP efforts will provide the necessary technologies to achieve the first comprehensive, accurate, high-resolution measurements from a satellite of the far-IR spectrum of the Earth and its atmosphere, enabling major advances in our understanding of Earth's climate.

  18. Development of an atmospheric infrared radiation model with high clouds for target detection

    NASA Astrophysics Data System (ADS)

    Bellisario, Christophe; Malherbe, Claire; Schweitzer, Caroline; Stein, Karin

    2016-10-01

    In the field of target detection, the simulation of the camera FOV (field of view) background is a significant issue. The presence of heterogeneous clouds might have a strong impact on a target detection algorithm. In order to address this issue, we present here the construction of the CERAMIC package (Cloudy Environment for RAdiance and MIcrophysics Computation) that combines cloud microphysical computation and 3D radiance computation to produce a 3D atmospheric infrared radiance in attendance of clouds. The input of CERAMIC starts with an observer with a spatial position and a defined FOV (by the mean of a zenithal angle and an azimuthal angle). We introduce a 3D cloud generator provided by the French LaMP for statistical and simplified physics. The cloud generator is implemented with atmospheric profiles including heterogeneity factor for 3D fluctuations. CERAMIC also includes a cloud database from the French CNRM for a physical approach. We present here some statistics developed about the spatial and time evolution of the clouds. Molecular optical properties are provided by the model MATISSE (Modélisation Avancée de la Terre pour l'Imagerie et la Simulation des Scènes et de leur Environnement). The 3D radiance is computed with the model LUCI (for LUminance de CIrrus). It takes into account 3D microphysics with a resolution of 5 cm-1 over a SWIR bandwidth. In order to have a fast computation time, most of the radiance contributors are calculated with analytical expressions. The multiple scattering phenomena are more difficult to model. Here a discrete ordinate method with correlated-K precision to compute the average radiance is used. We add a 3D fluctuations model (based on a behavioral model) taking into account microphysics variations. In fine, the following parameters are calculated: transmission, thermal radiance, single scattering radiance, radiance observed through the cloud and multiple scattering radiance. Spatial images are produced, with a

  19. Uranus atmospheric dynamics and circulation

    NASA Technical Reports Server (NTRS)

    Allison, Michael; Beebe, Reta F.; Conrath, Barney J.; Hinson, David P.; Ingersoll, Andrew P.

    1991-01-01

    The observations, models, and theories relevant to the atmospheric dynamics and meteorology of Uranus are discussed. The available models for the large-scale heat transport and atmospheric dynamics as well as diagnostic interpretations of the Voyager data are reviewed. Some pertinent ideas and questions regarding the global circulation balance are considered, partly in comparison with other planetary atmospheres. The available data indicate atmospheric rotation at midlatitudes nearly 200 m/s faster than that of the planetary magnetic field. Analysis of the dynamical deformation of the shape and size of isobaric surfaces measured by the Voyager radio-occultation experiment suggests a subrotating equator at comparable altitudes. Infrared temperature retrievals above the cloud deck indicate a smaller equator-to-pole contrast than expected for purely radiative-convective equilibrium, but show local variations implying a latitudinally correlated decrease with altitude in the cloud-tracked wind.

  20. Simutaneous Variational Retrievals of Temperature, Humidity, Surface and Cloud Properties from Satellite and Airborne Hyperspectral Infrared Sounder Data using the Havemann-Taylor Fast Radiative Transfer Code (HT-FRTC) as the Forward Model Operator

    NASA Astrophysics Data System (ADS)

    Havemann, S.; Thelen, J. C.; Harlow, R. C.

    2016-12-01

    Full scattering radiative transfer simulations for hyperspectral infrared and shortwave sounders are essential in order to be able to extract the maximal information content from these instruments for cloudy scenes and those with significant aerosol loading, but have been rarely done because of the high computational demands. The Havemann-Taylor Fast Radiative Transfer Code works in Principal Component space, reducing the computational demand by orders of magnitude thereby making fast simultaneous retrievals of vertical profiles of temperature and humidity, surface temperature and emissivity as well as cloud and aerosol properties feasible. Results of successful retrievals using IASI sounder data as well as data taken during flights of the Airborne Research Interferometer Evaluation System (ARIES) on board the FAAM Bae 146 aircraft will be presented. These will demonstrate that the use of all the instrument channels in PC space can provide valuable information both on temperature and humidity profiles relevant for NWP and on the cirrus cloud properties at the same time. There is very significant information on the humidity profile below semi-transparent cirrus to be gained from IR sounder data. The retrieved ice water content is in good agreement with airborne in-situ measurements during Lagrangian spiral descents. In addition to the full scattering calculations, the HT-FRTC has also been trained with a fast approximation to the scattering problem which reduces it to a clear-sky calculation but with a modified extinction (Chou scaling). Chou scaling is a reasonable approximation in the infrared but is very poor where the solar contribution becomes significant. The comparison of the retrieval performance with the full scattering solution and the Chou scaling solution in the forward model operator for infrared sounders shows that temperature and humidity profiles are only marginally degraded by the use of the Chou scaling approximation. Retrievals of the specific

  1. Sensitivity of high-spectral resolution and broadband thermal infrared nadir instruments to the chemical and microphysical properties of secondary sulfate aerosols in the upper-troposphere/lower-stratosphere

    NASA Astrophysics Data System (ADS)

    Sellitto, Pasquale; Legras, Bernard

    2016-04-01

    the brightness temperature (BT) spectra observed by satellite instruments. We isolated a marked and typical spectral signature of these aerosol layers between 700 and 1200 cm-1, due to the absorption bands of the sulfate and bisulfate ions and the undissociated sulfuric acid, with the main absorption peaks at 1170 and 905 cm-1 (sulfuric acid vibrational bands). The dependence of the residual aerosol spectral BT signature to the sulfuric acid mixing ratio, and effective number concentration and radius, as well as the role of interfering parameters like the ozone, sulfur dioxide, carbon dioxide and ash absorption, and temperature and water vapour profile uncertainties, are analysed and critically discussed. The information content (degrees of freedom and retrieval uncertainties) of synthetic satellite observations is estimated for different instrumental configurations. High spectral resolution (Infrared Atmospheric Sounding Interferometer (IASI)-like pseudo-observations) and broadband spectral features (Moderate Resolution Imaging Spectroradiometer (MODIS) and Spinning Enhanced Visible and InfraRed Imager (SEVIRI)-like pseudo-observations) approaches are proposed and discussed.

  2. Laboratory infrared studies of molecules of atmospheric and astrophysical interest

    NASA Technical Reports Server (NTRS)

    Rao, N. N.

    1982-01-01

    Nineteen reprints on the molecular species are compiled. Much of the work was done by using the Doppler-limited resolution provided by diode lasers. The diode laser was used as a source to a grating spectrometer which has been used earlier for high resolution studies. This technique provided many advantages. Wherever possible, the studies have been directed to intensity determinations of infrared bands.

  3. Highly accurate FTIR observations from the scanning HIS aircraft instrument

    NASA Astrophysics Data System (ADS)

    Revercomb, Henry E.; Tobin, David C.; Knuteson, Robert O.; Best, Fred A.; Smith, William L., Sr.; van Delst, Paul F. W.; LaPorte, Daniel D.; Ellington, Scott D.; Werner, Mark W.; Dedecker, Ralph G.; Garcia, Raymond K.; Ciganovich, Nick N.; Howell, Hugh B.; Olson, Erik R.; Dutcher, Steven B.; Taylor, Joseph K.

    2005-01-01

    Development in the mid 80s of the High-resolution Interferometer Sounder (HIS) instrument for the high altitude NASA ER2 aircraft demonstrated the capability for advanced atmospheric temperature and water vapor sounding and set the stage for new satellite instruments that are now becoming a reality [AIRS(2002), CrIS(2006), IASI(2006), GIFTS(200?), HES(2013)]. Follow-on developments at the University of Wisconsin that employ Fourier Transform Infrared (FTIR) for Earth observations include the ground-based Atmospheric Emitted Radiance Interferometer (AERI) and the new Scanning HIS aircraft instrument. The Scanning HIS is a smaller version of the original HIS that uses cross-track scanning to enhance spatial coverage. Scanning HIS and its close cousin, the NPOESS Airborne Sounder Testbed (NAST), are being used for satellite instrument validation and for atmospheric research. A novel detector configuration on Scanning HIS allows the incorporation of a single focal plane and cooler with three or four spectral bands that view the same spot on the ground. The calibration accuracy of the S-HIS and results from recent field campaigns are presented, including validation comparisons with the NASA EOS infrared observations (AIRS and MODIS). Aircraft comparisons of this type provide a mechanism for periodically testing the absolute calibration of spacecraft instruments with instrumentation for which the calibration can be carefully maintained on the ground. This capability is especially valuable for assuring the long-term consistency and accuracy of climate observations, including those from the NASA EOS spacecrafts (Terra, Aqua and Aura) and the new complement of NPOESS operational instruments. It is expected that aircraft flights of the S-HIS and the NAST will be used to check the long-term stability of AIRS and the NPOESS operational follow-on sounder, the Cross-track Infrared Sounder (CrIS), over the life of the mission.

  4. Impact of Atmospheric Infrared Sounder (AIRS) Thermodynamic Profiles on Regional Precipitation Forecasting

    NASA Technical Reports Server (NTRS)

    Chou, S.-H.; Zavodsky, B. T.; Jedloved, G. J.

    2010-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles in clear and cloudy regions with accuracy which approaches that of radiosondes. The purpose of this paper is to describe an approach to assimilate AIRS thermodynamic profile data into a regional configuration of the Advanced Research WRF (ARW) model using WRF-Var. Quality indicators are used to select only the highest quality temperature and moisture profiles for assimilation in clear and partly cloudy regions, and uncontaminated portions of retrievals above clouds in overcast regions. Separate error characteristics for land and water profiles are also used in the assimilation process. Assimilation results indicate that AIRS profiles produce an analysis closer to in situ observations than the background field. Forecasts from a 37-day case study period in the winter of 2007 show that AIRS profile data can lead to improvements in 6-h cumulative precipitation forecasts resulting from improved thermodynamic fields. Additionally, in a convective heavy rainfall event from February 2007, assimilation of AIRS profiles produces a more unstable boundary layer resulting in enhanced updrafts in the model. These updrafts produce a squall line and precipitation totals that more closely reflect ground-based observations than a no AIRS control forecast. The location of available high-quality AIRS profiles ahead of approaching storm systems is found to be of paramount importance to the amount of impact the observations will have on the resulting forecasts.

  5. Impact of Atmospheric Infrared Sounder (AIRS) Thermodynamic Profiles on Regional Weather Forecasting

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Bradley T.; Jedlovee, Gary J.

    2010-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles with accuracy comparable to that of radiosondes. The purpose of this paper is to describe a procedure to assimilate AIRS thermodynamic profile data into a regional configuration of the Advanced Research Weather Research and Forecasting (WRF-ARW) model using its three-dimension variational (3DVAR) analysis component (WRF-Var). Quality indicators are used to select only the highest quality temperature and moisture profiles for assimilation in both clear and partly cloudy regions. Separate error characteristics for land and water profiles are also used in the assimilation process. Assimilation results indicate that AIRS profiles produce an analysis closer to in situ observations than the background field. Forecasts from a 37-day case study period in the winter of 2007 show that AIRS profile data can lead to improvements in 6-h cumulative precipitation forecasts due to instability added in the forecast soundings by the AIRS profiles. Additionally, in a convective heavy rainfall event from February 2007, assimilation of AIRS profiles produces a more unstable boundary layer resulting in enhanced updrafts in the model. These updrafts produce a squall line and precipitation totals that more closely reflect ground-based observations than a no AIRS control forecast. The location of available high-quality AIRS profiles ahead of approaching storm systems is found to be of paramount importance to the amount of impact the observations will have on the resulting forecasts.

  6. Solving for the Surface: An Automated Approach to THEMIS Atmospheric Correction

    NASA Astrophysics Data System (ADS)

    Ryan, A. J.; Salvatore, M. R.; Smith, R.; Edwards, C. S.; Christensen, P. R.

    2013-12-01

    Here we present the initial results of an automated atmospheric correction algorithm for the Thermal Emission Imaging System (THEMIS) instrument, whereby high spectral resolution Thermal Emission Spectrometer (TES) data are queried to generate numerous atmospheric opacity values for each THEMIS infrared image. While the pioneering methods of Bandfield et al. [2004] also used TES spectra to atmospherically correct THEMIS data, the algorithm presented here is a significant improvement because of the reduced dependency on user-defined inputs for individual images. Additionally, this technique is particularly useful for correcting THEMIS images that have captured a range of atmospheric conditions and/or surface elevations, issues that have been difficult to correct for using previous techniques. Thermal infrared observations of the Martian surface can be used to determine the spatial distribution and relative abundance of many common rock-forming minerals. This information is essential to understanding the planet's geologic and climatic history. However, the Martian atmosphere also has absorptions in the thermal infrared which complicate the interpretation of infrared measurements obtained from orbit. TES has sufficient spectral resolution (143 bands at 10 cm-1 sampling) to linearly unmix and remove atmospheric spectral end-members from the acquired spectra. THEMIS has the benefit of higher spatial resolution (~100 m/pixel vs. 3x5 km/TES-pixel) but has lower spectral resolution (8 surface sensitive spectral bands). As such, it is not possible to isolate the surface component by unmixing the atmospheric contribution from the THEMIS spectra, as is done with TES. Bandfield et al. [2004] developed a technique using atmospherically corrected TES spectra as tie-points for constant radiance offset correction and surface emissivity retrieval. This technique is the primary method used to correct THEMIS but is highly susceptible to inconsistent results if great care in the

  7. OCCIMA: Optical Channel Characterization in Maritime Atmospheres

    NASA Astrophysics Data System (ADS)

    Hammel, Steve; Tsintikidis, Dimitri; deGrassie, John; Reinhardt, Colin; McBryde, Kevin; Hallenborg, Eric; Wayne, David; Gibson, Kristofor; Cauble, Galen; Ascencio, Ana; Rudiger, Joshua

    2015-05-01

    The Navy is actively developing diverse optical application areas, including high-energy laser weapons and free- space optical communications, which depend on an accurate and timely knowledge of the state of the atmospheric channel. The Optical Channel Characterization in Maritime Atmospheres (OCCIMA) project is a comprehensive program to coalesce and extend the current capability to characterize the maritime atmosphere for all optical and infrared wavelengths. The program goal is the development of a unified and validated analysis toolbox. The foundational design for this program coordinates the development of sensors, measurement protocols, analytical models, and basic physics necessary to fulfill this goal.

  8. The SPIRIT airborne instrument: a three-channel infrared absorption spectrometer with quantum cascade lasers for in situ atmospheric trace-gas measurements

    NASA Astrophysics Data System (ADS)

    Catoire, Valéry; Robert, Claude; Chartier, Michel; Jacquet, Patrick; Guimbaud, Christophe; Krysztofiak, Gisèle

    2017-09-01

    An infrared absorption spectrometer called SPIRIT (SPectromètre Infra-Rouge In situ Toute altitude) has been developed for airborne measurements of trace gases in the troposphere. At least three different trace gases can be measured simultaneously every 1.6 s using the coupling of a single Robert multipass optical cell with three Quantum Cascade Lasers (QCLs), easily interchangeable to select species depending on the scientific objectives. Absorptions of the mid-infrared radiations by the species in the cell at reduced pressure (<40 hPa), with path lengths adjustable up to 167.78 m, are quantified using an HgCdTe photodetector cooled by Stirling cycle. The performances of the instrument are assessed: a linearity with a coefficient of determination R 2 > 0.979 for the instrument response is found for CO, CH4, and NO2 volume mixing ratios under typical tropospheric conditions. In-flight comparisons with calibrated gas mixtures allow to show no instrumental drift correlated with atmospheric pressure and temperature changes (when vertical profiling) and to estimate the overall uncertainties in the measurements of CO, CH4, and NO2 to be 0.9, 22, and 0.5 ppbv, respectively. In-flight precision (1 σ) for these species at 1.6 s sampling is 0.3, 5, and 0.3 ppbv, respectively.

  9. Low-latitude variability of ice cloud properties and cloud thermodynamic phase observed by the Atmospheric Infrared Sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    Kahn, B. H.; Yue, Q.; Davis, S. M.; Fetzer, E. J.; Schreier, M. M.; Tian, B.; Wong, S.

    2016-12-01

    We will quantify the time and space dependence of ice cloud effective radius (CER), optical thickness (COT), cloud top temperature (CTT), effective cloud fraction (ECF), and cloud thermodynamic phase (ice, liquid, or unknown) with the Version 6 Atmospheric Infrared Sounder (AIRS) satellite observational data set from September 2002 until present. We show that cloud frequency, CTT, COT, and ECF have substantially different responses to ENSO variations. Large-scale changes in ice CER are also observed with a several micron tropics-wide increase during the 2015-2016 El Niño and similar decreases during the La Niña phase. We show that the ice CER variations reflect fundamental changes in the spatial distributions and relative frequencies of different ice cloud types. Lastly, the high spatial and temporal resolution variability of the cloud fields are explored and we show that these data capture a multitude of convectively coupled tropical waves such as Kelvin, westward and eastward intertio-gravity, equatorial Rossby, and mixed Rossby-gravity waves.

  10. Observations of Tropospheric Carbon Monoxide From the Atmospheric InfraRed Sounder (AIRS): An Alternative Retrieval Scheme and Its Validation.

    NASA Astrophysics Data System (ADS)

    Douglass, D. H.; Kalnay, E.; Li, H.; Cai, M.

    2005-05-01

    Carbon monoxide (CO) is present in the troposphere as a product of fossil fuel combustion, biomass burning and the oxidation of volatile hydrocarbons. It is the principal sink of the hydroxyl radical (OH), thereby affecting the concentrations of greenhouse gases such as CH4 and O3. In addition, CO has a lifetime of 1-3 months, making it a good tracer for studying the long range transport of pollution. Satellite observations present a valuable tool in the investigation of tropospheric CO. The Atmospheric InfraRed Sounder (AIRS), onboard the Aqua satellite, is sensitive to tropospheric CO in a number of its 2378 channels. This sensitivity to CO, combined with the daily global coverage provided by AIRS, makes AIRS a potentially useful instrument for observing CO sources and transport. A maximum a posteriori (MAP) retrieval scheme (Rodgers 2000) has been developed for AIRS, to provide CO profiles from near-surface altitudes to around 150 hPa. An extensive validation data set, consisting of over 50 in-situ aircraft CO profiles, has been constructed. This data set combines CO data from a number of independent aircraft campaigns. Results from this validation study and comparisons with the AIRS level 2 CO product will be presented. Rodgers, C. D. (2000), Inverse Methods for Atmospheric Sounding : Theory and Practice, World Scientific, Singapore.

  11. Hubble Captures Detailed Image of Uranus' Atmosphere

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Hubble Space Telescope has peered deep into Uranus' atmosphere to see clear and hazy layers created by a mixture of gases. Using infrared filters, Hubble captured detailed features of three layers of Uranus' atmosphere.

    Hubble's images are different from the ones taken by the Voyager 2 spacecraft, which flew by Uranus 10 years ago. Those images - not taken in infrared light - showed a greenish-blue disk with very little detail.

    The infrared image allows astronomers to probe the structure of Uranus' atmosphere, which consists of mostly hydrogen with traces of methane. The red around the planet's edge represents a very thin haze at a high altitude. The haze is so thin that it can only be seen by looking at the edges of the disk, and is similar to looking at the edge of a soap bubble. The yellow near the bottom of Uranus is another hazy layer. The deepest layer, the blue near the top of Uranus, shows a clearer atmosphere.

    Image processing has been used to brighten the rings around Uranus so that astronomers can study their structure. In reality, the rings are as dark as black lava or charcoal.

    This false color picture was assembled from several exposures taken July 3, 1995 by the Wide Field Planetary Camera-2.

    The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.

    This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/

  12. Emirates Mars Infrared Spectrometer (EMIRS) Overview from the Emirates Mars Mission

    NASA Astrophysics Data System (ADS)

    Altunaiji, Eman; Edwards, Christopher; Smith, Michael; Christensen, Philip; AlMheiri, Suhail; Reed, Heather

    2017-04-01

    Emirates Mars Infrared Spectrometer (EMIRS) instrument is one of three scientific instruments aboard the Emirate Mars Mission (EMM), with the name of "Hope". EMM is United Arab Emirates' (UAE) mission to be launched in 2020, with the aim of exploring the dynamics of the atmosphere of Mars on a global scale with sampling on a diurnal and sub-seasonal time-scales. EMM has three scientific instruments selected to provide an improved understanding of circulation and weather in the Martian lower atmosphere as well as the thermosphere and exosphere. The EMIRS instrument is an interferometric thermal infrared spectrometer that is jointly developed by Arizona State University (ASU) and Mohammed Bin Rashid Space Centre (MBRSC), Dubai, UAE. It builds on a long heritage of thermal infrared spectrometers designed, built, and managed, by ASU's Mars Space Flight Facility, including the Thermal Emission Spectrometer (TES), Miniature Thermal Emission Spectrometer (Mini-TES), and the OSIRIS-REx Thermal Emission Spectrometer (OTES). EMIRS operates in the 6-40+ μm range with 5 cm-1 spectral sampling, enabled by a Chemical Vapor-Deposited (CVD) diamond beam splitter and state of the art electronics. This instrument utilizes a 3×3 line array detector and a scan mirror to make high-precision infrared radiance measurements over most of the Martian hemisphere. The EMIRS instrument is optimized to capture the integrated, lower-middle atmosphere dynamics over a Martian hemisphere, using a scan-mirror to make 60 global images per week ( 20 images per orbit) at a resolution of 100-300 km/pixel while requiring no special spacecraft maneuvers.

  13. An automated baseline correction protocol for infrared spectra of atmospheric aerosols collected on polytetrafluoroethylene (Teflon) filters

    NASA Astrophysics Data System (ADS)

    Kuzmiakova, Adele; Dillner, Ann M.; Takahama, Satoshi

    2016-06-01

    A growing body of research on statistical applications for characterization of atmospheric aerosol Fourier transform infrared (FT-IR) samples collected on polytetrafluoroethylene (PTFE) filters (e.g., Russell et al., 2011; Ruthenburg et al., 2014) and a rising interest in analyzing FT-IR samples collected by air quality monitoring networks call for an automated PTFE baseline correction solution. The existing polynomial technique (Takahama et al., 2013) is not scalable to a project with a large number of aerosol samples because it contains many parameters and requires expert intervention. Therefore, the question of how to develop an automated method for baseline correcting hundreds to thousands of ambient aerosol spectra given the variability in both environmental mixture composition and PTFE baselines remains. This study approaches the question by detailing the statistical protocol, which allows for the precise definition of analyte and background subregions, applies nonparametric smoothing splines to reproduce sample-specific PTFE variations, and integrates performance metrics from atmospheric aerosol and blank samples alike in the smoothing parameter selection. Referencing 794 atmospheric aerosol samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011, we start by identifying key FT-IR signal characteristics, such as non-negative absorbance or analyte segment transformation, to capture sample-specific transitions between background and analyte. While referring to qualitative properties of PTFE background, the goal of smoothing splines interpolation is to learn the baseline structure in the background region to predict the baseline structure in the analyte region. We then validate the model by comparing smoothing splines baseline-corrected spectra with uncorrected and polynomial baseline (PB)-corrected equivalents via three statistical applications: (1) clustering analysis, (2) functional group quantification

  14. Atmospheric circulation of extrasolar giant planets

    NASA Astrophysics Data System (ADS)

    Showman, A. P.

    2012-12-01

    Of the many known extrasolar planets, over 100 have orbital semi-major axes less than 0.1 AU, and a significant fraction of these hot Jupiters and Neptunes are known to transit their stars, allowing them to be characterized with the Spitzer, Hubble, and groundbased telescopes. The stellar flux incident on these planets is expected to drive an atmospheric circulation that shapes the day-night temperature difference, infrared light curves, spectra, albedo, and atmospheric composition, and recent Spitzer infrared light curves show evidence for dynamical meteorology in these planets' atmospheres. Here, I will survey basic dynamical ideas and detailed 3D numerical models that illuminate the atmospheric circulation of these exotic, tidally locked planets. These models suggest that, generally, the circulation will be characterized by broad, fast zonal jets, with day-night temperature contrasts at the photosphere that may vary from small in some cases to large in others. I will discuss the dynamical mechanisms for maintaining the fast zonal jets that develop in these models, as well as the mechanisms for controlling the temperature patterns, including the day-night temperature contrasts. These mechanisms help to explain current observations, and they predict regime transitions for how the wind and temperature patterns should vary with the incident stellar flux, strength of atmospheric drag, and other parameters. These transitions are observable and in some cases are already becoming evident in the data. I will also compare the circulation of the hot Jupiters to that of young, massive giant planets being directly imaged around other stars, which will be the subject of a new observational vanguard over the next decade. To emphasize the similarities as well as differences, I will ground this discussion in our understanding of the more familiar atmospheric dynamical regime of Earth, as well as our "local" giant planets Jupiter, Saturn, Uranus, and Neptune.

  15. Atmospheric circulation of extrasolar giant planets

    NASA Astrophysics Data System (ADS)

    Showman, A. P.

    2011-12-01

    Of the many known extrasolar planets, nearly 200 have orbital semi-major axes less than 0.1 AU, and a significant fraction of these hot Jupiters and Neptunes are known to transit their stars, allowing them to be characterized with the Spitzer, Hubble, and groundbased telescopes. The stellar flux incident on these planets is expected to drive an atmospheric circulation that shapes the day-night temperature difference, infrared light curves, spectra, albedo, and atmospheric composition, and recent Spitzer infrared light curves show evidence for dynamical meteorology in these planets' atmospheres. Here, I will survey basic dynamical ideas and detailed 3D numerical models that illuminate the atmospheric circulation of these exotic, tidally locked planets. These models suggest that, generally, the circulation will be characterized by broad, fast zonal jets, with day-night temperature contrasts at the photosphere that may vary from small in some cases to large in others. I will discuss the dynamical mechanisms for maintaining the fast zonal jets that develop in these models, as well as the mechanisms for controlling the temperature patterns, including the day-night temperature contrasts. These mechanisms help to explain current observations, and they predict regime transitions for how the wind and temperature patterns should vary with the incident stellar flux, strength of atmospheric drag, and other parameters. These transitions are observable and in some cases are already becoming evident in the data. I will also compare the circulation of the hot Jupiters to that of young, massive giant planets being directly imaged around other stars, which will be the subject of a new observational vanguard over the next decade. To emphasize the similarities as well as differences, I will ground this discussion in our understanding of the more familiar atmospheric dynamical regime of Earth, as well as our "local" giant planets Jupiter, Saturn, Uranus, and Neptune.

  16. Investigating the Water Vapor Component of the Greenhouse Effect from the Atmospheric InfraRed Sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    Gambacorta, A.; Barnet, C.; Sun, F.; Goldberg, M.

    2009-12-01

    We investigate the water vapor component of the greenhouse effect in the tropical region using data from the Atmospheric InfraRed Sounder (AIRS). Differently from previous studies who have relayed on the assumption of constant lapse rate and performed coarse layer or total column sensitivity analysis, we resort to AIRS high vertical resolution to measure the greenhouse effect sensitivity to water vapor along the vertical column. We employ a "partial radiative perturbation" methodology and discriminate between two different dynamic regimes, convective and non-convective. This analysis provides useful insights on the occurrence and strength of the water vapor greenhouse effect and its sensitivity to spatial variations of surface temperature. By comparison with the clear-sky computation conducted in previous works, we attempt to confine an estimate for the cloud contribution to the greenhouse effect. Our results compare well with the current literature, falling in the upper range of the existing global circulation model estimates. We value the results of this analysis as a useful reference to help discriminate among model simulations and improve our capability to make predictions about the future of our climate.

  17. Simulation of the vibrational chemistry and the infrared signature induced by a Sprite streamer in the mesosphere

    NASA Astrophysics Data System (ADS)

    Romand, F.; Payan, S.; Croize, L.

    2017-12-01

    Since their first observation in 1989, effect of TLEs on the atmospheric composition has become an open and important question. The lack of suitable experimental data is a shortcoming that hampers our understanding of the physics and chemistry induced by these effects. HALESIS (High-Altitude Luminous Events Studied by Infrared Spectro-imagery) is a future experiment dedicated to the measurement of the atmospheric perturbation induced by a TLE in the minutes following its occurrence, from a stratospheric balloon flying at an altitude of 25 km to 40 km. This work aims to quantify the local chemical impact of sprites in the stratosphere and mesosphere. In this paper, we will present the development of a tool which simulates (i) the impact of a sprite on the vibrational chemistry, (ii) the resulting infrared signature and (iii) the propagation of this signature through the atmosphere to an observer. First the Non Local Thermodynamic Equilibrium populations of a background atmosphere were computed using SAMM2 code. The initial thermodynamic and chemical description of atmosphere comes from the Whole Atmosphere community Climate Model (WACCM). Then a perturbation was applied to simulate a sprite. Chemistry due to TLEs was computed using Gordillo-Vazquez kinetic model. Rate coefficients that depend on the electron energy distribution function were calculated from collision cross-section data by solving the electron Boltzmann equation (BE). Time evolutions of the species densities and of vibrational populations in the non-thermal plasma consecutive to sprite discharge were simulated using the computer code ZDPlasKin (S. Pancheshn et al.). Finally, the resulting infrared signatures were propagated from the disturbed area through the atmosphere to an instrument placed in a limb line of sight using a line by line radiative transfer model. We will conclude that sprite could produce a significant infrared signature that last a few tens of seconds after the visible flash.

  18. Pressure Sounding of the Middle Atmosphere from ATMOS Solar Occultation Measurements of Atmospheric CO(sub 2) Absorption Lines

    NASA Technical Reports Server (NTRS)

    Abrams, M.; Gunson, M.; Lowes, L.; Rinsland, C.; Zander, R.

    1994-01-01

    A method for retrieving the atmospheric pressure corresponding to the tangent point of an infrared spectrum recorded in the solar occultation mode is described and applied to measurements made by the Atmospheric Trace Molecule Spectroscopy (ATMOS) Fourier transform spectrometer. Tangent pressure values are inferred from measurements of isolated CO(sub 2) lines with temperature-insensitive intensities. Tangent pressures are determined with a spectroscopic precision of 1-3%, corresponding to a tangent point height precision, depending on the scale height, of 70-210 meters.

  19. Multi-wavelength Observations of Neptune’s Atmosphere

    NASA Astrophysics Data System (ADS)

    de Pater, Imke; Fletcher, L.; Luszcz-Cook, S.; deBoer, D.; Butler, B.; Orton, G.; Sitko, M.; Hammel, H.

    2013-10-01

    We conducted a multi-wavelength observing campaign on Neptune between June and October, 2003. We used the 10-m Keck telescope at near- and mid-infrared wavelengths and the VLA at radio wavelengths. Near infrared images were taken in October 2003 in broad- and narrow-band filters between 1 and 2.5 micron, using the infrared camera NIRC2 coupled to the Keck Adaptive Optics system. At these wavelengths we detect sunlight reflected off clouds in the upper troposphere and lower stratosphere. As shown by various authors before, bright bands of discrete cloud features are visible between 20°S and 50°S and near 30°N, as well as several distinct bright cloud features near 70°S, and the south polar “dot”. Mid-infrared images were taken on September 5 and 6 (2003) using the Keck LWS system in atmospheric windows at 8, 8.9, 10.7, 11.7, 12.5, 17.65, 18.75 and 22 micron. At these wavelengths we detect thermal emission from Neptune’s stratosphere due to the presence of hydrocarbons, and from near the tropopause due to collision induced opacity by hydrogen. At all wavelengths the South polar region stands out as a bright spot. At 17 - 22 micron also the equatorial region is slightly enhanced in intensity. These characteristics are consistent with later imaging at similar wavelengths (Hammel et al. 2007; Orton et al. 2007). Microwave images were constructed from NRAO VLA data between 0.7 and 6.0 cm. At these wavelengths depths of several up to >50 bar are probed. An increase in brightness indicates decreased opacity of absorbers (e.g., NH3, H2S), since under such circumstances deep, and hence warm levels (adiabatic temperature-pressure profile), will be probed. The multi-wavelength observing campaign in 2003 was focused on obtaining images that probe different altitudes in Neptune’s atmosphere. Indeed, this set of data probes altitudes from about 0.1 mbar down to ~50 bar, and hence can be used to constrain the global atmospheric circulation in Neptune’s atmosphere. At

  20. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy rocket waits the arrival of the mobile service tower with three additional solid rocket boosters (SRBs). Nine 46-inch-diameter, stretched SRBs will help launch the Space Infrared Telescope Facility (SIRTF). Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-22

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy rocket waits the arrival of the mobile service tower with three additional solid rocket boosters (SRBs). Nine 46-inch-diameter, stretched SRBs will help launch the Space Infrared Telescope Facility (SIRTF). Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  1. KENNEDY SPACE CENTER, FLA. - A solid rocket booster (SRB) for the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF) arrives at Launch Complex 17-B, Cape Canaveral Air Force Station. The Delta II Heavy features nine 46-inch-diameter, stretched SRBs. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-22

    KENNEDY SPACE CENTER, FLA. - A solid rocket booster (SRB) for the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF) arrives at Launch Complex 17-B, Cape Canaveral Air Force Station. The Delta II Heavy features nine 46-inch-diameter, stretched SRBs. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  2. KENNEDY SPACE CENTER, FLA. - In Hangar A&E, Cape Canaveral Air Force Station, the upper canister is lowered toward the Space Infrared Telescope Facility (SIRTF) below. After encapsulation is complete, the spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - In Hangar A&E, Cape Canaveral Air Force Station, the upper canister is lowered toward the Space Infrared Telescope Facility (SIRTF) below. After encapsulation is complete, the spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  3. KENNEDY SPACE CENTER, FLA. - Workers on Launch Complex 17-B, Cape Canaveral Air Force Station, prepare the first stage of a Delta II rocket for its lift up the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - Workers on Launch Complex 17-B, Cape Canaveral Air Force Station, prepare the first stage of a Delta II rocket for its lift up the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  4. KENNEDY SPACE CENTER, FLA. - Working from a stand, technicians fasten the upper portion of the canister to the middle panels around the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - Working from a stand, technicians fasten the upper portion of the canister to the middle panels around the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  5. KENNEDY SPACE CENTER, FLA. - A worker at Hangar A&E, Cape Canaveral Air Force Station, tightens the canister around the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - A worker at Hangar A&E, Cape Canaveral Air Force Station, tightens the canister around the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  6. KENNEDY SPACE CENTER, FLA. - In Hangar A&E, Cape Canaveral Air Force Station, encapsulation of the Space Infrared Telescope Facility (SIRTF) is complete. The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - In Hangar A&E, Cape Canaveral Air Force Station, encapsulation of the Space Infrared Telescope Facility (SIRTF) is complete. The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  7. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is raised off the transporter before lifting and moving it into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is raised off the transporter before lifting and moving it into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  8. KENNEDY SPACE CENTER, FLA. - Workers at Hangar A&E, Cape Canaveral Air Force Station, place the middle row of panels to encapsulate the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - Workers at Hangar A&E, Cape Canaveral Air Force Station, place the middle row of panels to encapsulate the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  9. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket waits to be lifted up and moved into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket waits to be lifted up and moved into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  10. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is lifted up the mobile service tower. In the background is pad 17-A. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is lifted up the mobile service tower. In the background is pad 17-A. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  11. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is nearly erect for its move into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is nearly erect for its move into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  12. KENNEDY SPACE CENTER, FLA. - A worker at Hangar A&E, Cape Canaveral Air Force Station, place the lower panels of the canister around the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - A worker at Hangar A&E, Cape Canaveral Air Force Station, place the lower panels of the canister around the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  13. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket waits to be lifted up into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket waits to be lifted up into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  14. KENNEDY SPACE CENTER, FLA. - In Hangar A&E, Cape Canaveral Air Force Station, the upper canister is mated to the middle panels around the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - In Hangar A&E, Cape Canaveral Air Force Station, the upper canister is mated to the middle panels around the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  15. KENNEDY SPACE CENTER, FLA. - Workers at Hangar A&E, Cape Canaveral Air Force Station, lower the upper canister toward the Space Infrared Telescope Facility (SIRTF) below. After encapsulation is complete, the spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - Workers at Hangar A&E, Cape Canaveral Air Force Station, lower the upper canister toward the Space Infrared Telescope Facility (SIRTF) below. After encapsulation is complete, the spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  16. Atmospheric Correction of High-Spatial-Resolution Commercial Satellite Imagery Products Using MODIS Atmospheric Products

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Holekamp, Kara; Ryan, Robert E.; Vaughan, Ronand; Russell, Jeff; Prados, Don; Stanley, Thomas

    2005-01-01

    Remotely sensed ground reflectance is the foundation of any interoperability or change detection technique. Satellite intercomparisons and accurate vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), require the generation of accurate reflectance maps (NDVI is used to describe or infer a wide variety of biophysical parameters and is defined in terms of near-infrared (NIR) and red band reflectances). Accurate reflectance-map generation from satellite imagery relies on the removal of solar and satellite geometry and of atmospheric effects and is generally referred to as atmospheric correction. Atmospheric correction of remotely sensed imagery to ground reflectance has been widely applied to a few systems only. The ability to obtain atmospherically corrected imagery and products from various satellites is essential to enable widescale use of remotely sensed, multitemporal imagery for a variety of applications. An atmospheric correction approach derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) that can be applied to high-spatial-resolution satellite imagery under many conditions was evaluated to demonstrate a reliable, effective reflectance map generation method. Additional information is included in the original extended abstract.

  17. Atmospheric Correction of High-Spatial-Resolution Commercial Satellite Imagery Products Using MODIS Atmospheric Products

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Holekamp, Kara; Ryan, Robert E.; Vaughan, Ronald; Russell, Jeffrey A.; Prados, Don; Stanley, Thomas

    2005-01-01

    Remotely sensed ground reflectance is the basis for many inter-sensor interoperability or change detection techniques. Satellite inter-comparisons and accurate vegetation indices such as the Normalized Difference Vegetation Index, which is used to describe or to imply a wide variety of biophysical parameters and is defined in terms of near-infrared and redband reflectance, require the generation of accurate reflectance maps. This generation relies upon the removal of solar illumination, satellite geometry, and atmospheric effects and is generally referred to as atmospheric correction. Atmospheric correction of remotely sensed imagery to ground reflectance, however, has been widely applied to only a few systems. In this study, we atmospherically corrected commercially available, high spatial resolution IKONOS and QuickBird imagery using several methods to determine the accuracy of the resulting reflectance maps. We used extensive ground measurement datasets for nine IKONOS and QuickBird scenes acquired over a two-year period to establish reflectance map accuracies. A correction approach using atmospheric products derived from Moderate Resolution Imaging Spectrometer data created excellent reflectance maps and demonstrated a reliable, effective method for reflectance map generation.

  18. Winter Far InfraRed Measurements in the High Arctic

    NASA Astrophysics Data System (ADS)

    S Pelletier, L.; Libois, Q.; Laurence, C.; Blanchet, J. P.

    2017-12-01

    During the polar night the majority of earth emission to space occurs in the Far InfraRed (FIR) (l>15mm). Below 10 mm of column integrated water vapour (WV) the atmosphere becomes partially transparent in this spectral range, extending the atmospheric window to longer wavelength. Small variations of WV content can thus lead to strong variations of the transmittance of the atmosphere, impacting its cooling rate and the water vapor greenhouse effect. This is especially true in the Arctic since more than 50% of atmospheric cooling occurs in the FIR. Furthermore, remote sensing observations from CALIPSO and CloudSat satellites over the Arctic have enlighten the ubiquity of optically thin ice clouds (TIC). Those clouds act as effective radiators through the whole troposphere and their formation process is still poorly understood. Theoretical work has shown the added value of FIR measurements for WV and TIC optical properties retrieval. Even so there is currently no spaceborne instrument performing spectrally resolved measurements in the FIR. The TICFIRE (Thin ice cloud in the far infrared experiment) satellite project aims to fill this gap. Here we present the results of the first ground experiments using a breadboard of the satellite, the Far InfraRed Radiometer (FIRR). It measured downwelling radiance at Eureka, NU (79°59'20″N 085°56'27″W) from 25/02/2016 to 31/05/2016. The FIRR uses an array of uncooled microbolometers to measure radiance in 9 spectral channels spanning from 8 - 50 μm. The emission of the atmosphere in this spectral region is extremely sensitive to its WV content and the effective diameter of TIC ice crystals. By comparing these measurements with the E-AERI, a Fourier transform interferometer which serves as a reference, and a radiative transfers model , we aim to assess the radiative accuracy of this new technology as well as its sensitivity to the state of the atmosphere. Results shows that the in situ radiometric accuracy of the FIRR

  19. Constraints On The Distribution Of Methane In Uranus' Atmosphere

    NASA Astrophysics Data System (ADS)

    Norwood, James; Chanover, N.; Hammel, H.

    2006-09-01

    As Uranus approaches its December 2007 equinox, we are treated to a unique opportunity to observe an atmosphere that has become much more active since Voyager's flyby near solstice, as well as a favorable viewing geometry in which the lines of constant latitude as seen fom Earth are straight and parallel. Here we present analysis of newly obtained spectra of Uranus' visible and near-infrared methane bands. In September 2006, near-IR spectra of Uranus were taken using SpeX (R 1000-2000) at NASA's Infrared Telescope Facility (IRTF). We use these data to constrain the vertical abundance profile of methane, the most abundant component of the Uranian atmosphere following H2 and He. A spectral synthesis program developed at NASA/Goddard Space Flight Center for the analysis of infrared spectroscopy was employed to determine the properties of a model atmosphere that best reproduce the methane features observed. These spectra are supplemented by high-resolution visible spectra taken with the ARC echelle spectrograph (R = 37,500) on the 3.5-m telescope at Apache Point Observatory in Sunspot, New Mexico, in October 2005 and August 2006. The new activity seen in Uranus' atmosphere near equinox, such as the appearance of new cloud features (Hammel et al., Icarus 175, 284-288 [2005]), indicates that the Uranian atmosphere undergoes dramatic seasonal changes. The possibility of changes in the methane profile that have occurred since previous observations (Fink and Larson, ApJ 233, 1021-1040 [1979] and others) is discussed. We also take advantage of the unique observing geometry near Uranian equinox to examine any variations in the methane distribution with latitude. This work was supported by NASA through award number NNG05GB86G.

  20. A climate index indicative of cloudiness derived from satellite infrared sounder data

    NASA Technical Reports Server (NTRS)

    Abel, M. D.; Cox, S. K.

    1981-01-01

    In many current studies conducted to enhance the usefulness of meteorological satellite radiance data, one common objective is to infer conventional weather variables. The present investigation, on the other hand, is mainly concerned with the efficient retrieval (minimization of errors) of a nonstandard atmospheric descriptor. The atmosphere's Vertical Infrared Radiative Emitting Structure (VIRES) is retrieved. VIRES is described by the broadband infrared weighting function curve. The shapes of these weighting curves are primarily a function of the three-dimensional cloud structure. The weighting curves are retrieved by a method which uses satellite spectral radiance data. The basic theory involved in the VIRES retrieval procedure parallels the technique used to retrieve temperature soundings.

  1. A Thermal Infrared Cloud Mapper

    NASA Astrophysics Data System (ADS)

    Mallama, A.; Degnan, J. J.

    2001-12-01

    A thermal infrared imager for mapping the changing cloud cover over a ground based observing site has been developed. There are two main components to our instrument. One is a commercially made uncooled 10 micron thermal infrared detector that outputs a 120x120 pixel thermogram. The other is a convex electroplated reflector, which is situated beneath the detector and in its field of view. The resulting image covers the sky from zenith down to about 10 degrees elevation. The self-reflection of the camera and supporting vanes is removed by interpolation. Atmospheric transparency is distinguished by the difference between the sky temperature and the ambient air temperature. Clear sky is indicated by pixels having a difference of about 20 degrees C or more. The qualitative results 'clear, haze and cloud' have proven to be very reliable during two years of development and testing. Quantitative information, such as the extinction coefficient, is also available though it is not exact. The uncertainty is probably due to variability of the lapse rate under different atmospheric conditions. Software has been written for PC/DOS and VME/LynxOS (similar to Linux) systems in the C programming language. Functionality includes serial communication with the detector, analysis of the thermogram, mapping of cloud cover, data display, and file I/O. The main elements of cost in this system were for the thermal infrared detector and for the machining of an 18-inch diameter stainless steel mandrel. The latter is needed to produce an electroplated reflector. We have had good success with the gold and rhodium reflectors that have been generated. The reflectors themselves are relatively inexpensive now that the mandrel is available.

  2. Cloudless Atmospheres for Young Low-Gravity Substellar Objects

    NASA Technical Reports Server (NTRS)

    Tremblin, P.; Chabrier, G.; Baraffe, I.; Liu, Michael C.; Magnier, E. A.; Lagage, P.-O.; De Oliveira, C. Alves; Burgasser, A. J.; Amundsen, D. S.; Drummond, B.

    2017-01-01

    Atmospheric modeling of low-gravity (VL-G) young brown dwarfs remains challenging. The presence of very thick clouds is a possible source of this challenge, because of their extremely red near-infrared (NIR) spectra, but no cloud models provide a good fit to the data with a radius compatible with the evolutionary models for these objects. We show that cloudless atmospheres assuming a temperature gradient reduction caused by fingering convection provide a very good model to match the observed VL-G NIR spectra. The sequence of extremely red colors in the NIR for atmospheres with effective temperatures from approx. 2000 K down to approx. 1200 K is very well reproduced with predicted radii typical of young low-gravity objects. Future observations with NIRSPEC and MIRI on the James Webb Space Telescope (JWST) will provide more constraints in the mid-infrared, helping to confirm or refute whether or not the NIR reddening is caused by fingering convection. We suggest that the presence or absence of clouds will be directly determined by the silicate absorption features that can be observed with MIRI. JWST will therefore be able to better characterize the atmosphere of these hot young brown dwarfs and their low-gravity exoplanet analogs.

  3. A non-grey analytical model for irradiated atmospheres. I. Derivation

    NASA Astrophysics Data System (ADS)

    Parmentier, Vivien; Guillot, Tristan

    2014-02-01

    Context. Semi-grey atmospheric models (with one opacity for the visible and one opacity for the infrared) are useful for understanding the global structure of irradiated atmospheres, their dynamics, and the interior structure and evolution of planets, brown dwarfs, and stars. When compared to direct numerical radiative transfer calculations for irradiated exoplanets, however, these models systematically overestimate the temperatures at low optical depths, independently of the opacity parameters. Aims: We investigate why semi-grey models fail at low optical depths and provide a more accurate approximation to the atmospheric structure by accounting for the variable opacity in the infrared. Methods: Using the Eddington approximation, we derive an analytical model to account for lines and/or bands in the infrared. Four parameters (instead of two for the semi-grey models) are used: a visible opacity (κv), two infrared opacities, (κ1 and κ2), and β (the fraction of the energy in the beam with opacities κ1). We consider that the atmosphere receives an incident irradiation in the visible with an effective temperature Tirr and at an angle μ∗, and that it is heated from below with an effective temperature Tint. Results: Our non-grey, irradiated line model is found to provide a range of temperatures that is consistent with that obtained by numerical calculations. We find that if the stellar flux is absorbed at optical depth larger than τlim = (κR/κ1κ2)(κRκP/3)1/2, it is mainly transported by the channel of lowest opacity whereas if it is absorbed at τ ≳ τlim it is mainly transported by the channel of highest opacity, independently of the spectral width of those channels. For low values of β (expected when lines are dominant), we find that the non-grey effects significantly cool the upper atmosphere. However, for β ≳ 1/2 (appropriate in the presence of bands with a wavelength-dependence smaller than or comparable to the width of the Planck function), we

  4. Galileo infrared imaging spectroscopy measurements at venus

    USGS Publications Warehouse

    Carlson, R.W.; Baines, K.H.; Encrenaz, Th.; Taylor, F.W.; Drossart, P.; Kamp, L.W.; Pollack, James B.; Lellouch, E.; Collard, A.D.; Calcutt, S.B.; Grinspoon, D.; Weissman, P.R.; Smythe, W.D.; Ocampo, A.C.; Danielson, G.E.; Fanale, F.P.; Johnson, T.V.; Kieffer, H.H.; Matson, D.L.; McCord, T.B.; Soderblom, L.A.

    1991-01-01

    During the 1990 Galileo Venus flyby, the Near Infrared Mapping Spectrometer investigated the night-side atmosphere of Venus in the spectral range 0.7 to 5.2 micrometers. Multispectral images at high spatial resolution indicate substantial cloud opacity variations in the lower cloud levels, centered at 50 kilometers altitude. Zonal and meridional winds were derived for this level and are consistent with motion of the upper branch of a Hadley cell. Northern and southern hemisphere clouds appear to be markedly different. Spectral profiles were used to derive lower atmosphere abundances of water vapor and other species.

  5. Atmospheric CH 4 and H 2 O Monitoring With Near-Infrared InGaAs Laser Diodes by the SDLA, a Balloonborne Spectrometer for Tropospheric and Stratospheric In Situ Measurements

    NASA Astrophysics Data System (ADS)

    Durry, Georges; Megie, Gerard

    1999-12-01

    The Spectrom tre Diodes Laser Accordables (SDLA), a balloonborne spectrometer devoted to the in situ measurement of CH 4 and H 2 O in the atmosphere that uses commercial distributed-feedback InGaAs laser diodes in combination with differential absorption spectroscopy, is described. Absorption spectra of CH 4 (in the 1.653- m region) and H 2 O (in the 1.393- m region) are simultaneously sampled at 1-s intervals by coupling with optical fibers of two near-infrared laser diodes to a Herriott multipass cell open to the atmosphere. Spectra of methane and water vapor in an altitude range of 1 to 31 km recorded during the recent balloon flights of the SDLA are presented. Mixing ratios with a precision error ranging from 5% to 10% are retrieved from the atmospheric spectra by a nonlinear least-squares fit to the spectral line shape in conjunction with in situ simultaneous pressure and temperature measurements.

  6. Model Atmospheres for Novae in Outburst: Summary of Research

    NASA Technical Reports Server (NTRS)

    Hauschildt, Peter H.

    1999-01-01

    This paper presents a final report and summary of research on Model Atmospheres for Novae in Outburst. Some of the topics include: 1) Detailed NLTE (non-local thermodynamic equilibrium) Model Atmospheres for Novae during Outburst: II. Modeling optical and ultraviolet observations of Nova LMC 1988 #1; 2) A Non-LTE Line-Blanketed Stellar Atmosphere Model of the Early B Giant epsilon CMa; 3) Spectroscopy of Low Metallicity Stellar atmospheres; 4) Infrared Colors at the Stellar/Substellar Boundary; 5) On the abundance of Lithium in T CrB; 6) Numerical Solution of the Expanding Stellar Atmosphere Problem; and 7) The NextGen Model Atmosphere grid for 3000 less than or equal to T (sub eff) less than or equal to 10000K.

  7. Space-borne observation of methane from atmospheric infrared sounder version 6: validation and implications for data analysis

    NASA Astrophysics Data System (ADS)

    Xiong, X.; Weng, F.; Liu, Q.; Olsen, E.

    2015-08-01

    Atmospheric Methane (CH4) is generated as a standard product in recent version of the hyperspectral Atmospheric Infrared Sounder (AIRS-V6) aboard NASA's Aqua satellite at the NASA Goddard Earth Sciences Data and Information Services Center (NASA/GES/DISC). Significant improvements in AIRS-V6 was expected but without a thorough validation. This paper first introduced the improvements of CH4 retrieval in AIRS-V6 and some characterizations, then presented the results of validation using ~ 1000 aircraft profiles from several campaigns spread over a couple of years and in different regions. It was found the mean biases of AIRS CH4 at layers 343-441 and 441-575 hPa are -0.76 and -0.05 % and the RMS errors are 1.56 and 1.16 %, respectively. Further analysis demonstrates that the errors in the spring and in the high northern latitudes are larger than in other seasons or regions. The error is correlated with Degree of Freedoms (DOFs), particularly in the tropics or in the summer, and cloud amount, suggesting that the "observed" spatiotemporal variation of CH4 by AIRS is imbedded with some artificial impact from the retrieval sensitivity in addition to its variation in reality, so the variation of information content in the retrievals needs to be taken into account in data analysis of the retrieval products. Some additional filtering (i.e. rejection of profiles with obvious oscillation as well as those deviating greatly from the norm) for quality control is recommended for the users to better utilize AIRS-V6 CH4, and their implementation in the future versions of the AIRS retrieval algorithm is under consideration.

  8. Evaluation of decadal hindcasts using satellite simulators

    NASA Astrophysics Data System (ADS)

    Spangehl, Thomas; Mazurkiewicz, Alex; Schröder, Marc

    2013-04-01

    The evaluation of dynamical ensemble forecast systems requires a solid validation of basic processes such as the global atmospheric water and energy cycle. The value of any validation approach strongly depends on the quality of the observational data records used. Current approaches utilize in situ measurements, remote sensing data and reanalyses. Related data records are subject to a number of uncertainties and limitations such as representativeness, spatial and temporal resolution and homogeneity. However, recently several climate data records with known and sufficient quality became available. In particular, the satellite data records offer the opportunity to obtain reference information on global scales including the oceans. Here we consider the simulation of satellite radiances from the climate model output enabling an evaluation in the instrument's parameter space to avoid uncertainties stemming from the application of retrieval schemes in order to minimise uncertainties on the reference side. Utilizing the CFMIP Observation Simulator Package (COSP) we develop satellite simulators for the Tropical Rainfall Measuring Mission precipitation radar (TRMM PR) and the Infrared Atmospheric Sounding Interferometer (IASI). The simulators are applied within the MiKlip project funded by BMBF (German Federal Ministry of Education and Research) to evaluate decadal climate predictions performed with the MPI-ESM developed at the Max Planck Institute for Meteorology. While TRMM PR enables the evaluation of the vertical structure of precipitation over tropical and sub-tropical areas, IASI is used to support the global evaluation of clouds and radiation. In a first step the reliability of the developed simulators needs to be explored. The simulation of radiances in the instrument space requires the generation of sub-grid scale variability from the climate model output. Furthermore, assumptions are made to simulate radiances such as, for example, the distribution of different

  9. Observation of the water cycle from space with the Atmospheric Infrared Sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    Chahine, M. T.; Waliser, D. E.; Fetzer, E. J.; Olsen, E. T.

    2007-12-01

    AIRS is one of six instruments on board the Aqua satellite, part of NASA's Earth Observing System launched in a sun synchronous near polar orbit on May 4, 2002. AIRS and its partner microwave instrument, AMSU A, provide high quality data facilitating studies of the global water and energy cycles, climate variation and trends, and the response of the climate system to increased greenhouse gases. The exceptional stability of the AIRS instrument provides a climate record of thermal infrared radiance spectra spanning the 3.74 15.4 mm spectral band with 2378 channels at a nominal resolution of 1/1200. (Chahine et al, in BAMS, July 2006) Accurate knowledge of the vertical distribution of water vapor in the atmosphere is critically important to the determination of the warming the Earth will experience as a result of anthropogenic forcing. Comparison of the AIRS specific humidity product to state of the art climate models has shown most models exhibit a pattern of drier than observed (by 10 25%) in the tropics below 800 hPa and moister than observed (by 25 100%) between 300 and 600 hPa in the extra tropics (Pierce et al, GRL 2006). The AIRS water vapor measurements also reveal tropospheric moisture perturbations that are much larger than those depicted in previous NCAR/NCEP reanalysis and ECMWF analysis datasets, both of which have been widely used as observations to validate models. This suggests that the impact of convection induced downdrafts on the atmospheric boundary layer is significantly underestimated in both ECMWF and NCEP reanalysis (Fu et al., GRL 2006). AIRS data have led to the discovery of significant differences in the lower troposphere moisture and temperature fields during the spatial temporal evolution of the Madden Julian Oscillation (MJO). The anomalous lower troposphere temperature structure is observed in detail by AIRS for the Indian and western Pacific Oceans, while it remains much less well defined in the NCEP temperature fields (Tian et al

  10. Energetic particle influences in Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Aplin, Karen; Harrison, R. Giles; Nicoll, Keri; Rycroft, Michael; Briggs, Aaron

    2016-04-01

    Energetic particles from outer space, known as galactic cosmic rays, constantly ionise the entire atmosphere. During strong solar storms, solar energetic particles can also reach the troposphere and enhance ionisation. Atmospheric ionisation generates cluster ions. These facilitate current flow in the global electric circuit, which arises from charge separation in thunderstorms driven by meteorological processes. Energetic particles, whether solar or galactic in origin, may influence the troposphere and stratosphere through a range of different mechanisms, each probably contributing a small amount. Some of the suggested processes potentially acting over a wide spatial area in the troposphere include enhanced scavenging of charged aerosol particles, modification of droplet or droplet-droplet behavior by charging, and the direct absorption of infra-red radiation by the bending and stretching of hydrogen bonds inside atmospheric cluster-ions. As well as reviewing the proposed mechanisms by which energetic particles modulate atmospheric properties, we will also discuss new instrumentation for measurement of energetic particles in the atmosphere.

  11. Polymer optics for the passive infrared

    NASA Astrophysics Data System (ADS)

    Claytor, Richard N.

    2016-10-01

    An important, but largely invisible, area of polymer optics involves sensing the motion of warm objects. It can be further subdivided into optics for security, for energy conservation, and for convenience; the area has become known as optics for the passive infrared. The passive infrared is generally known as the 8 to 14 μm region of the optical spectrum. The region's roots are in the traditional infrared technology of many decades ago; there is a coincident atmospheric window, although that has little relevance to many short-range applications relevant to polymer optics. Regrettably, there is no polymer material ideally suited to the passive infrared, but one material is generally superior to other candidates. The inadequacy of this material makes the Fresnel lens important. Polymer optics for the passive infrared were first introduced in the 1970s. Patents from that period will be shown, as well as early examples. The unfamiliar names of the pioneering companies and their technical leaders will be mentioned. The 1980s and 90s brought a new and improved lens type, and rapid growth. Pigments for visible-light appearance and other reasons were introduced; one was a spectacular failure. Recent advances include faster lenses, a new groove structure, additional pigments, and lens-mirror combinations. New sensor types are also being introduced. Finally, some unique and inventive applications will be discussed.

  12. Thermal Infrared Multispectral Scanner (TIMS): An investigator's guide to TIMS data

    NASA Technical Reports Server (NTRS)

    Palluconi, F. D.; Meeks, G. R.

    1985-01-01

    The Thermal Infrared Multispectral Scanner (TIMS) is a NASA aircraft scanner providing six channel spectral capability in the thermal infrared region of the electromagnetic spectrum. Operating in the atmospheric window region (8 to 12 micrometers) with a channel sensitivity of approximately 0.1 C, TIMS may be used whenever an accurate measure of the Earth's surface is needed. A description of this scanner is provided as well as a discussion of data acquisition and reduction.

  13. Atmospheric imaging results from the Mars Exploration Rovers

    NASA Astrophysics Data System (ADS)

    Lemmon, M.; Athena Science Team

    The Athena science payload of the Spirit and Opportunity Mars Exploration Rovers contains instruments capable of measuring radiometric properties of the Martian atmosphere in the visible and the thermal infrared. Remote sensing instruments include Pancam, a color panoramic camera covering 0.4-1.0 microns, and Mini-TES, a thermal infrared spectrometer covering 5-29 microns. Results from atmospheric imaging by Pancam will be covered here. Visible and near-infrared aerosol opacity is monitored by direct solar imaging. Early results show dust opacity near 1 when both rovers landed. Both Spirit and Opportunity have seen dust opacity fall with time, somewhat faster at Spirit's Gusev crater landing site. Diurnal variations are also being monitored at both sites. There is no direct probe of the dust's vertical distribution, but images of the Sun near the horizon and of the twilight will provide constraints on the dust distribution. Dust optical properties and a cross-section weighted aerosol size will be estimated from Pancam images of the sky at varying geometries and times of day. A series of sky imaging sequences has been run with varying illumination geometry. The observations are similar to those reported for Mars Pathfinder.

  14. Quantitative infrared absorption cross sections of isoprene for atmospheric measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brauer, Carolyn S.; Blake, Thomas A.; Guenther, Alex B.

    2014-11-19

    The OH- and O 3- initiated oxidations of isoprene, which is one of the primary volatile organic compounds produced by vegetation, are a major source of atmospheric formaldehyde and other oxygenated organics, yet little quantitative IR data exists for isoprene. We thus report absorption coefficients and integrated band intensities for isoprene in the 600 - 6500 cm -1 region. The pressure-broadened (1 atmosphere N 2) spectra were recorded at 278, 298 and 323 K in a 19.96 cm path length cell at 0.112 cm -1 resolution, using a Bruker 66V FTIR. Composite spectra are derived from a minimum of sevenmore » pressures at each temperature.« less

  15. FTIR Calibration Methods and Issues

    NASA Astrophysics Data System (ADS)

    Perron, Gaetan

    Over the past 10 years, several space-borne FTIR missions were launched for atmospheric research, environmental monitoring and meteorology. One can think of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) launched by the European Space Agency, the Atmospheric Chemistry Experiment (ACE) launched by the Canadian Space Agency, the Tropospheric Emission Spectrometer (TES) launched by NASA and the Infrared Atmospheric Sounding Interferometer (IASI) launched by Eumetsat in Europe. Others are near to be launched, namely the Cross-track Infrared Sounder (CrIS) from the Integrated Program Of- fice in the United States and the Thermal And Near infrared Sensor for carbon Observation (TANSO) from the Japan Aerospace Exploration Agency. Moreover, several missions under definition foresee the use of this technology as sensor, e.g. Meteosat Third Generation (MTG), Eumetsat Polar System (EPS) and the Premier mission, one of the six candidates of the next ESA Earth Explorer Core Mission. In order to produce good quality products, calibration is essential. Calibrated data is the output of three main sub-systems that are tightly coupled: the instrument, the calibration targets and the level 1B processor. Calibration requirements must be carefully defined and propagated to each sub-system. Often, they are carried out by different parties which add to the complexity. Under budget and schedule pressure, some aspects are sometimes neglected and jeopardized final quality. For space-borne FTIR, level 1B outputs are spectra that are radiometrically, spectrally calibrated and geolocated. Radiometric calibration means to assign an intensity value in units to the y-axis. Spectral calibration means to assign to the x-axis the proper frequency value in units. Finally, geolocated means to assign a target position over the earth geoid i.e. longitude, latitude and altitude. This paper will present calibration methods and issues related to space-borne FTIR missions, e.g. two

  16. Water vapor in Titan's atmosphere observed by Cassini/CIRS data

    NASA Astrophysics Data System (ADS)

    Cottini, V.; Nixon, C. A.; Jennings, D. E.; Teanby, N. A.; Anderson, C. M.; Irwin, P. G.; Flasar, F. M.

    2011-12-01

    Water vapor in Titan's atmosphere has only been detected by whole-disk observations from the Infrared Space Observatory [1]. In fact an earlier attempt to measure water vapor with NASA's Cassini Composite Infrared Spectrometer (CIRS, [2]) was unsuccessful, due to poor signal-to-noise in early versions of the calibration pipeline. In this paper we show the detection of the water vapor in Titan's atmosphere through the analysis of the emission lines present in the spectral range (60 - 300 cm-1) observed by the far-IR Focal Plane 1 (FP1) detector. We model high spectral resolution (0.5 cm-1) disk versus limb data to determine the water mixing ratio as a function of latitude and time (using data acquired from December 2004 to late 2011), also exploring differences between the leading and trailing side of Saturn's moon. The opacity sources in the atmospheric model include thermal emission from the moon, collision-induced absorption (CIA) from pairs of Titan's main atmospheric molecules, the stratospheric aerosol and emission lines from atmospheric gases across the FP1 spectral range (see Cottini et al., 2011 [3] for description of the model). The radiative transfer model and retrieval code (NEMESIS) is based on the method of optimal estimation to perform a correlated-k computation of synthetic spectra.Our determination of the atmospheric abundance of water vapor yields a value of ~0.14 ppb assuming a constant vertical profile, which corresponds to a column abundance of 4.3x1014 molecules/cm2. Preliminary results suggest a change in the atmospheric water vapour abundance during northern winter into early northern spring. We also detected water in CIRS high resolution limb spectra. Modeling these limb observations, mainly centered on two tangent heights, 125 and 225 km, allows us to constrain the water vapor abundance vertical profile; utilizing the limb data allows us to retrieve the water vapor from disk observations using a water vapor mixing ratio that varies in

  17. The development of infrared detectors and mechanisms for use in future infrared space missions

    NASA Technical Reports Server (NTRS)

    Houck, James R.

    1995-01-01

    The environment above earth's atmosphere offers significant advantages in sensitivity and wavelength coverage in infrared astronomy over ground-based observatories. In support of future infrared space missions, technology development efforts were undertaken to develop detectors sensitive to radiation between 2.5 micron and 200 micron. Additionally, work was undertaken to develop mechanisms supporting the imaging and spectroscopy requirements of infrared space missions. Arsenic-doped-Silicon and Antimony-doped-Silicon Blocked Impurity Band detectors, responsive to radiation between 4 micron and 45 micron, were produced in 128x128 picture element arrays with the low noise, high sensitivity performance needed for space environments. Technology development continued on Gallium-doped-Germanium detectors (for use between 80 micron and 200 micron), but were hampered by contamination during manufacture. Antimony-doped-Indium detectors (for use between 2.5 micron and 5 micron) were developed in a 256x256 pixel format with high responsive quantum efficiency and low dark current. Work began on adapting an existing cryogenic mechanism design for space-based missions; then was redirected towards an all-fixed optical design to improve reliability and lower projected mission costs.

  18. Detectability of Noble Gases in Jovian Atmospheres Utilizing Dimer Spectral Structures

    NASA Astrophysics Data System (ADS)

    Kim, S. J.; Min, Y.; Kim, Y.; Lee, Y.; Trafton, L.; Miller, S.; McKellar, A. R. W.

    1997-07-01

    The detection of jovian hydrogen-hydrogen dimers through the clear telluric 2-micron window (Kim et al. 1995; Trafton et al. 1997) suggests possibility to detect noble gases in the form of dimer with hydrogen in jovian atmospheres. Since noble gases do not have spectral structures in the infrared, it has been difficult to derive their abundances in the atmospheres of jovian planets. If there is a significant component of noble gases other than helium in the jovian atmospheres, it might be detected through its dimer spectrum with hydrogen molecule. The relatively sharp spectral structures of hydrogen-argon and hydrogen-neon dimers compared with those of hydrogen-hydrogen dimers are useful for the detection, if adequate S/N is obtained. However, these dimer structures should be much weaker than the nearby hydrogen-hydrogen features because noble gases are expected to be minor constituents of these atmospheres. We will discuss the detectability of these dimers based on laboratory measurements (McKellar, 1994; 1996), and current technology of infrared observations.

  19. Investigation of the radiative forcings of thin cirrus in the tropical atmosphere using remote sensing data

    NASA Astrophysics Data System (ADS)

    Yue, Qing

    Cirrus clouds have a unique influence on the climate system through their effects on the radiation budget of the earth and the atmosphere. To better understand the radiative effect of cirrus clouds, the microphysical and radiative properties of these clouds, especially tropical thin cirrus clouds, are studied based on both insitu cirrus measurements and satellite remote sensing observations. We perform a correlation analysis involving ice water content (IWC) and mean effective diameter (De) for applications to radiative transfer calculations and climate models using insitu measurements obtained from numerous field campaigns in the tropics, midlatitude, and Arctic regions. In conjunction with the study of cirrus clouds, we develop a high-resolution spectral infrared radiative transfer model for thin cirrus cloudy atmosphere, which is employed to retrieve De and cirrus optical depth from the Atmospheric Infrared Sounder (AIRS) infrared spectra. Numerical simulations show that cirrus cloudy radiances in the 800-1130 cm-1 thermal infrared window are sufficiently sensitive to variations in cirrus optical depth, and ice crystal size and habit. A number of nighttime thin cirrus scenes over the Atmospheric Radiation Measurement (ARM) program's Tropical Western Pacific sites have been selected from AIRS datasets for this study. The radiative transfer model is applied to these selected cases to determine cirrus optical depth, De and habit factors. Solar and infrared radiative forcings and heating rates produced by thin cirrus in the tropical atmosphere have been calculated using the retrieved cirrus optical and microphysical properties along with a modified Fu and Liou broadband radiative transfer scheme to analyze their dependence on cirrus cloud properties. Generally, larger TOA warming and smaller surface warming are associated with higher cirrus clouds. To cross-check the validity of our model, the collocated and coincident surface radiation measurements taken by ARM

  20. Advanced infrared astronomy

    NASA Technical Reports Server (NTRS)

    Kostiuk, T.; Deming, Drake; Mumma, M.

    1988-01-01

    This task supports the application of infrared heterodyne and Fourier transform spectroscopy to ultra-high resolution studies of molecular constituents of planetary astomspheres and cometary comae. High spectral and spatial resolutions are especially useful for detection and study of localized, non-thermal phenomena in low temperature and low density regions, for detection of trace constituents and for measurement of winds and dynamical phenomena such as thermal tides. Measurement and analysis of individual spectial lines permits retrieval of atmospheric molecular abundances and temperatures and thus, information on local photochemical processes. Determination of absolute line positions to better than 10 to the minus eighth power permits direct measurements of gas velocity to a few meters/sec. Observations are made from ground based heterodyne spectrometers at the Kitt Peak McMath solar telescope and from the NASA infrared Telescope Facility on Mauna Kea, Hawaii. Wind velocities at 110km altitude on Venus were extracted approximately 1 m/sec from measurements of non-thermal emission cores of 10.3 micron CO2 lines. Results indicate a subsolar to antisolar circulationwith a small zonal retrograde component.