Sample records for iasi satellite instrument

  1. IASI Satellite Observation and Forecast of Pollutants

    NASA Astrophysics Data System (ADS)

    Clerbaux, C.; Boynard, A.; George, M.; Hadji-Lazaro, J.; Safieddine, S.; Viatte, C.; Clarisse, L.; Pierre-Francois, C.; Hurtmans, D.; van Damme, M.; Wespes, C.; Whitburn, S.

    2017-12-01

    The IASI family of instruments has been sounding the atmosphere since 2006 onboard the Metop satellite series. Using the radiance data recorded in the thermal infrared spectral range, concentrations for atmospheric pollutants such as carbon monoxide (CO), ozone (O3), sulfur dioxide (SO2) and ammonia (NH3) can be derived. IASI CO and O3 fields are assimilated in regional and global models in order to predict air quality over Europe. Enhanced levels of pollutants are detected in near-real time, and can be followed at city, country and continent levels. This talk will present the findings for an extended time period (2008-2017), and will review the IASI capability to observe exceptional events both at the local and regional scales, as well as seasonal variations due other dynamic patterns (monsoon, ENSO, …). Progresses and current limitations to derive long term trends will also be discussed.

  2. Inter-comparison between AIRS and IASI through Retrieved Parameters

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Smith, William L.; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Steve

    2008-01-01

    A State-of-the-art retrieval algorithm dealing with all-weather conditions has been applied to satellite/aircraft instruments retrieving cloud/surface and atmospheric conditions. High quality retrievals have been achieved from IASI data. Surface, cloud, and atmospheric structure and variation are well captured by IASI measurements and/or retrievals. The same retrieval algorithm is also applied to AIRS for retrieval inter-comparison. Both AIRS and IASI have a similar FOV size but AIRS has a higher horizontal resolution. AIRS data can be interpolated to IASI horizontal resolution for inter-comparison at the same geophysical locations, however a temporal variation between AIRS and IASI observations need to be considered. JAIVEx has employed aircraft to obtain the atmospheric variation filling the temporal gap between two satellites. First results show that both AIRS and IASI have a very similar vertical resolving power, atmospheric conditions are well captured by both instruments, and radiances are well calibrated. AIRS data shown in retrievals (e.g., surface emissivity and moisture) have a relatively higher noise level. Since the this type of retrieval is very sensitive to its radiance quality, retrieval products inter-comparison is an effective way to identify/compare their radiance quality, in terms of a combination of spectral resolution and noise level, and to assess instrument performance. Additional validation analyses are needed to provide more-definitive conclusions.

  3. Assessing the Parameterization of Nitric Oxide Emissions By Lightning in a Chemical Transport Model with Nitric Acid Columns from the IASI Satellite Instrument

    NASA Astrophysics Data System (ADS)

    Cooper, M.; Martin, R.; Wespes, C.; Coheur, P. F.; Clerbaux, C.; Murray, L. T.

    2014-12-01

    Nitrogen oxides (NOx ≡ NO + NO2) in the free troposphere largely control the production of ozone (O3), an important greenhouse gas and atmospheric oxidant. As HNO3 is the dominant sink of tropospheric NOx, improved understanding of its production and loss mechanisms can help to better constrain NOx emissions, and in turn improve understanding of ozone production and its effect on climate. However, this understanding is inhibited by the scarcity of direct measurements of free tropospheric HNO3, particularly in the tropics. We interpret tropical tropospheric nitric acid columns from the IASI satellite instrument with a global chemical transport model (GEOS-Chem). Overall GEOS-Chem generally agrees with IASI, however we find that the simulation underestimates IASI nitric acid over Southeast Asia by a factor of two. The bias is confirmed by comparing the GEOS-Chem simulation with additional satellite (HIRDLS, ACE-FTS) and aircraft (PEM-Tropics A and PEM-West B) observations of the middle and upper troposphere. We show that this bias can be explained by the parameterization of lightning NOx emissions, primarily from the misrepresentation of concentrated subgrid lightning NOx plumes. We tested a subgrid lightning plume parameterization and found that an additional 0.5 Tg N with an ozone production efficiency of 15 mol/mol would reduce the regional nitric acid bias from 92% to 6% without perturbing the rest of the tropics. Other sensitivity studies such as modified NOx yield per flash, increased altitude of lightning NOx emissions, or changes to convective mass flux or wet deposition of nitric acid required unrealistic changes to reduce the bias. This work demonstrates the importance of a comprehensive lightning parameterization to constraining NOx emissions.

  4. IASI instrument onboard Metop-A: lessons learned after almost two years in orbit

    NASA Astrophysics Data System (ADS)

    Buffet, Laurence; Pequignot, Eric; Blumstein, Denis; Fjørtoft, Roger; Lonjou, Vincent; Millet, Bruno; Larigauderie, Carole

    2017-11-01

    The Infrared Atmospheric Sounding Interferometer (IASI) is a key element of the MetOp payload, dedicated to operational meteorology. IASI measurements allow to retrieve temperature and humidity profiles at a 1 km vertical resolution with an accuracy of respectively 1 K and 10%. The aim of this paper is to give a status of the instrument and to present some lessons learned after almost two years in orbit. As the first European infrared sounder, the IASI instrument has demonstrated its operational capability and its adequacy to user needs, with highly meaningful contributions to meteorology, climate and atmospheric chemistry studies. The in-flight performance of IASI is fully satisfactory. The sensitivity to radiative environment seems to be higher than expected: several SEU related anomalies were recorded, without any consequence on the instrument's health. The first decontamination since the commissioning phase was successfully performed in March 2008. The instrument globally shows a stable behaviour.

  5. Satellite Remote Sensing of the Reactive Lower Atmosphere Using Medium Resolution Infrared Measurements: Highlights from Iasi Mission

    NASA Astrophysics Data System (ADS)

    Coheur, P. F.

    2013-06-01

    Human activities have significantly altered the equilibrium of the Earth atmosphere. If the steady increase in the concentration of greenhouse gases has attracted most of the attention, it is important as well to monitor the evolution of our "reactive atmosphere", as shorter-lived atmospheric species impact human health and ecosystems directly (e.g. local air quality) or indirectly (e.g. chemistry-climate interactions), through poorly known and quantified processes. Optical instruments on board satellites, and especially those operating in the infrared with sufficient spectral resolution, provide unique opportunity for measuring reactive trace gases in the troposphere and the stratosphere on various scales. The presentation focuses on the measurements of the Infrared Atmospheric Sounding Interferometer IASI onboard Metop satellites. IASI makes global measurements of the Earth atmosphere in a nadir view, i.e. looking downward at the terrestrial radiation, with a horizontal resolution of a few hundreds km^2. It provides more than 10^6 radiance spectra daily, which cover the infrared range between 645 and 2760 cm^{-1} at medium spectral resolution (0.5 cm^{-1} apodized) and low noise. This, coupled to the exceptional sampling performances of IASI, made breakthroughs in the fields of atmospheric spectroscopy and chemistry. In this talk, we will shortly describe IASI instrument and its spectral measurements, as well as the radiative transfer model and retrieval scheme set up for near-real-time processing. We will review the principal accomplishments of IASI in probing the reactive atmosphere by measuring simultaneously the concentrations of about 25 trace species with short (e.g. NH_3, SO_2) to medium (e.g. O_3, CO) residence time, and from the local emission hotspot to the planetary scale. We will put emphasis on the challenging measurements of the polluted planetary boundary layer and will also show a series of focused results on pollution outflow, transport and in

  6. Measuring Skin Temperatures with the IASI Hyperspectral Mission

    NASA Astrophysics Data System (ADS)

    Safieddine, S.; George, M.; Clarisse, L.; Clerbaux, C.

    2017-12-01

    Although the role of satellites in observing the variability of the Earth system has increased in recent decades, remote-sensing observations are still underexploited to accurately assess climate change fingerprints, in particular temperature variations. The IASI - Flux and Temperature (IASI-FT) project aims at providing new benchmarks for temperature observations using the calibrated radiances measured twice a day at any location by the IASI thermal infrared instrument on the suite of MetOp satellites (2006-2025). The main challenge is to achieve the accuracy and stability needed for climate studies, particularly that required for climate trends. Time series for land and sea skin surface temperatures are derived and compared with in situ measurements and atmospheric reanalysis. The observed trends are analyzed at seasonal and regional scales in order to disentangle natural (weather/dynamical) variability and human-induced climate forcings.

  7. Hyperspectral IASI L1C Data Compression.

    PubMed

    García-Sobrino, Joaquín; Serra-Sagristà, Joan; Bartrina-Rapesta, Joan

    2017-06-16

    The Infrared Atmospheric Sounding Interferometer (IASI), implemented on the MetOp satellite series, represents a significant step forward in atmospheric forecast and weather understanding. The instrument provides infrared soundings of unprecedented accuracy and spectral resolution to derive humidity and atmospheric temperature profiles, as well as some of the chemical components playing a key role in climate monitoring. IASI collects rich spectral information, which results in large amounts of data (about 16 Gigabytes per day). Efficient compression techniques are requested for both transmission and storage of such huge data. This study reviews the performance of several state of the art coding standards and techniques for IASI L1C data compression. Discussion embraces lossless, near-lossless and lossy compression. Several spectral transforms, essential to achieve improved coding performance due to the high spectral redundancy inherent to IASI products, are also discussed. Illustrative results are reported for a set of 96 IASI L1C orbits acquired over a full year (4 orbits per month for each IASI-A and IASI-B from July 2013 to June 2014) . Further, this survey provides organized data and facts to assist future research and the atmospheric scientific community.

  8. Initial Retrieval Validation from the Joint Airborne IASI Validation Experiment (JAIVEx)

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Liu, Xu; Smith, WIlliam L.; Larar, Allen M.; Taylor, Jonathan P.; Revercomb, Henry E.; Mango, Stephen A.; Schluessel, Peter; Calbet, Xavier

    2007-01-01

    The Joint Airborne IASI Validation Experiment (JAIVEx) was conducted during April 2007 mainly for validation of the Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp satellite, but also included a strong component focusing on validation of the Atmospheric InfraRed Sounder (AIRS) aboard the AQUA satellite. The cross validation of IASI and AIRS is important for the joint use of their data in the global Numerical Weather Prediction process. Initial inter-comparisons of geophysical products have been conducted from different aspects, such as using different measurements from airborne ultraspectral Fourier transform spectrometers (specifically, the NPOESS Airborne Sounder Testbed Interferometer (NAST-I) and the Scanning-High resolution Interferometer Sounder (S-HIS) aboard the NASA WB-57 aircraft), UK Facility for Airborne Atmospheric Measurements (FAAM) BAe146-301 aircraft insitu instruments, dedicated dropsondes, radiosondes, and ground based Raman Lidar. An overview of the JAIVEx retrieval validation plan and some initial results of this field campaign are presented.

  9. Current Sounding Capability From Satellite Meteorological Observation With Ultraspectral Infrared Instruments

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Liu, Xu; Larar, Allen M.

    2008-01-01

    Ultraspectral resolution infrared spectral radiance obtained from near nadir observations provide atmospheric, surface, and cloud property information. The intent of the measurement of tropospheric thermodynamic state and trace abundances is the initialization of climate models and the monitoring of air quality. The NPOESS Airborne Sounder Testbed-Interferometer (NAST-I), designed to support the development of future satellite temperature and moisture sounders, aboard high altitude aircraft has been collecting data throughout many field campaigns. An advanced retrieval algorithm developed with NAST-I is now applied to satellite data collected with the Atmospheric InfraRed Sounder (AIRS) on the Aqua satellite launched on 4 May 2002 and the Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp satellite launched on October 19, 2006. These instruments possess an ultra-spectral resolution, for example, both IASI and NAST-I have 0.25 cm-1 and a spectral coverage from 645 to 2760 cm-1. The retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. The physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multi-variable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. It is shown that relatively accurate temperature and moisture retrievals can be achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to

  10. Potential of multispectral synergism for observing ozone pollution by combining IASI-NG and UVNS measurements from the EPS-SG satellite

    NASA Astrophysics Data System (ADS)

    Costantino, Lorenzo; Cuesta, Juan; Emili, Emanuele; Coman, Adriana; Foret, Gilles; Dufour, Gaëlle; Eremenko, Maxim; Chailleux, Yohann; Beekmann, Matthias; Flaud, Jean-Marie

    2017-04-01

    Present and future satellite observations offer great potential for monitoring air quality on a daily and global basis. However, measurements from currently orbiting satellites do not allow a single sensor to accurately probe surface concentrations of gaseous pollutants such as tropospheric ozone. Combining information from IASI (Infrared Atmospheric Sounding Interferometer) and GOME-2 (Global Ozone Monitoring Experiment-2) respectively in the TIR and UV spectra, a recent multispectral method (referred to as IASI+GOME-2) has shown enhanced sensitivity for probing ozone in the lowermost troposphere (LMT, below 3 km altitude) with maximum sensitivity down to 2.20 km a.s.l. over land, while sensitivity for IASI or GOME-2 alone only peaks at 3 to 4 km at the lowest.In this work we develop a pseudo-observation simulator and evaluate the potential of future EPS-SG (EUMETSAT Polar System - Second Generation) satellite observations, from new-generation sensors IASI-NG (Infrared Atmospheric Sounding Interferometer - New Generation) and UVNS (Ultraviolet Visible Near-infrared Shortwave-infrared), to observe near-surface O3 through the IASI-NG+UVNS multispectral method. The pseudo-real state of the atmosphere is provided by the MOCAGE (MOdèle de Chimie Atmosphérique à Grande Échelle) chemical transport model. We perform full and accurate forward and inverse radiative transfer calculations for a period of 4 days (8-11 July 2010) over Europe.In the LMT, there is a remarkable agreement in the geographical distribution of O3 partial columns between IASI-NG+UVNS pseudo-observations and the corresponding MOCAGE pseudo-reality. With respect to synthetic IASI+GOME-2 products, IASI-NG+UVNS shows a higher correlation between pseudo-observations and pseudo-reality, which is enhanced by about 12 %. The bias on high ozone retrieval is reduced and the average accuracy increases by 22 %. The sensitivity to LMT ozone is also enhanced. On average, the degree of freedom for signal is

  11. IASI-NG: a new generation of infrared sounders for meteorology and atmospheric composition

    NASA Astrophysics Data System (ADS)

    Deschamps, A.; Bermudo, F.; Rousseau, S.; Bernard, F.; Pequignot, E.

    2016-12-01

    IASI-NG is the main payload of the future Metop-SG satellite of the Eumetsat EPS-SG program. This infrared atmospheric sounder generates radiance spectra at high resolution between 645cm-1 and 2760cm-1 and takes benefits from the IASI heritage. As for the first generation, the development of IASI-NG is under CNES responsibility. The first goal of the IASI-NG mission is to support Numerical Weather Prediction (NWP) by improving the estimation of humidity and temperature profiles, especially in the troposphere. To reach this goal, the spectral resolution will be two times better than for IASI first generation, and the radiometric noise will be divided by a factor of two. These performances will enable to support pollution monitoring, climate and atmospheric composition studies as well. CH4 and CO2 columns (but also O3, SO2, CO, NH3, HNO3 concentrations) are some of the products which will be derived from the IASI-NG measurements, in addition to NWP products (such as temperature and water vapor profiles, surface temperature and cloud information). This presentation describes in a first part the main characteristics of the instrument, which allow it to reach this level of performances. The interferometer, developed by Airbus Defense and Space, is based on the Mertz concept and allows to assess the self apodization by a field effect compensation (IASI-NG will be the first mission to implement Mertz Interferometer). In a second part, we present the main performances of the IASI-NG system, in terms of radiometric noise, spectral resolution and geolocation. We describe also the main algorithms which will be used in the ground segment to calibrate the data and correct the instrumental effects. Lastly, we give some information about the status of the project which is currently is the C/D phase and the major milestones in the IASI-NG agenda.

  12. Near Real Time website for IASI observations of atmospheric anomalies

    NASA Astrophysics Data System (ADS)

    Hayer, Catherine; Grainger, Don; Marsh, Kevin; Carboni, Elisa; Ventress, Lucy; Smith, Andrew

    2014-05-01

    Rapid analysis of satellite observations of the state of the atmosphere and the contaminant levels within it can be used for pollution monitoring, forest fire detection and volcanic activity monitoring. There are numerous operational satellite instruments for which this is possible. The IASI instruments, currently flying on board the MetOp-A and MetOp-B satellite platforms, are used to produce Near Real Time (NRT) data using analysis algorithms developed by Oxford University. The data is then displayed on a website within 3 hours of measurement. This allows for the semi-continuous monitoring of the state of the atmosphere over most of the globe, both in daylight and at night. Global coverage is achieved 4 times per day, which is a significant advantage over most of the alternatives, either geostationary, giving limited spatial coverage, or UV instruments which are only able to observe during the daylight side of the orbit. The website includes flags for atmospheric contaminants detectable by IASI, including dust, biomass burning-derived species and volcanic ash and SO2. In the near future, the website will be developed to also include a quantitative estimate of the mass loading of SO2 contained within any volcanic cloud. Emissions of volcanic products, such as ash and SO2, are useful indicators of a change in the activity level of a volcano. Since many volcanoes are only monitored by remote sensing methods, such as satellite instruments, this can be the only such indicator available. These emissions are also dangerous to passing aircraft, causing damage to external surfaces of the plane and to the engines, sometimes leading to failure. Evacuation of regions surrounding volcanoes, and cessation or diversion of air traffic around actively erupting volcanoes is costly and highly disruptive but is sometimes required. Up to date information is of critical importance as to when to make these sensitive decisions. An archive of data will be available to allow for easy

  13. Decreasing Lower Tropospheric Ozone over the North China Plain Observed by IASI: Looking for Explanations

    NASA Astrophysics Data System (ADS)

    Dufour, G.; Eremenko, M.; Lachâtre, M.; Hauglustaine, D.; Fortems-Cheiney, A.; Cuesta, J.; Zhang, Y.; Cai, Z.; Liu, Y.; Xu, X.; Lin, W.; Cooper, O. R.

    2017-12-01

    China, and especially the North China Plain (NCP), is a highly polluted region. Emission reductions have been applied since about 10 years, starting with SO2 emissions in 2006 and with NOx emissions in 2010. Recent satellite observations series show a decrease of NO2 tropospheric columns since 2013 and attributed to the NOx emissions reduction. The question of the impact of such reduction on ozone is then arising. In this study, we use the capabilities of the IASI satellite instrument to retrieve 2 semi-independent columns of ozone in the lower (surface-6km asl) and the upper (6-12km) troposphere - the lower tropospheric (LT) column having a sensitivity maximum at 3-4 km - and we evaluate the variability and trend of LT ozone over the NCP for 2008-2016. Deseasonalized monthly timeseries show two distinct periods: a first period (2008-2012) with no significant trend (slope of the linear fit < -0.1 %/yr) and a second period (2013-2016) with a highly significant negative trend of -1.2 %/yr, leading to an overall trend of -0.77 %/yr for 2008-2016. A first temptation is to attribute this decrease to the NOx emissions changes. However, negative trends have not been reported from background surface measurements in this Chinese region. Furthermore recent work made within the framework of the TOAR initiative reveals discrepancies in the sign of the trends of tropospheric column ozone derived from infrared and ultraviolet satellite instruments. As yet there is no conclusive explanation for the discrepancy. We then investigate the IASI retrieval stability and robustness in terms of vertical sensitivity, interferences with large aerosol loading, and comparing with surface and ozonesonde measurements and the IASI instrument aboard the Metop-B satellite. One issue arises concerning the temporal sampling of IASI that may induce significant change in the trend derived from surface stations. We also explore the possible variables, other than emissions, which could explain the

  14. Retrieval of Saharan desert dust optical depth from thermal infrared measurements by IASI

    NASA Astrophysics Data System (ADS)

    Vandenbussche, S.; Kochenova, S.; Vandaele, A.-C.; Kumps, N.; De Mazière, M.

    2012-04-01

    Aerosols are a major actor in the climate system. They are responsible for climate forcing by both direct (by emission, absorption and scattering) and indirect effects (for example, by altering cloud microphysics). A better knowledge of aerosol optical properties, of the atmospheric aerosol load and of aerosol sources and sinks may therefore significantly improve the modeling of climate changes. Aerosol optical depth and other properties are retrieved on an operational basis from daytime measurements in the visible and near infrared spectral range by a number of instruments, like the satellite instruments MODIS, CALIOP, POLDER, MISR and ground-based sunphotometers. Aerosol retrievals from day and night measurements at thermal infrared (TIR) wavelengths (for example, from SEVIRI, AIRS and IASI satellite instruments) are less common, but they receive growing interest in more recent years. Among those TIR measuring instruments, IASI on METOP has one major advantage for aerosol retrievals: its large continuous spectral coverage, allowing to better capture the broadband signature of aerosols. Furthermore, IASI has a high spectral resolution (0.5cm-1 after apodization) which allows retrieving a large number of trace gases at the same time, it will nominally be in orbit for 15 years and offers a quasi global Earth coverage twice a day. Here we will show recently obtained results of desert aerosol properties (concentration, altitude, optical depth) retrieved from IASI TIR measurements, using the ASIMUT software (BIRA-IASB, Belgium) linked to (V)LIDORT (R. Spurr, RTsolutions Inc, US) and to SPHER (M. Mishchenko, NASA GISS, USA). In particular, we will address the case of Saharan desert dust storms, which are a major source of desert dust particles in the atmosphere. Those storms frequently transport sand to Europe, Western Asia or even South America. We will show some test-case comparisons between our retrievals and measurements from other instruments like those listed

  15. Distributions of δD observations from IASI/MetOp across the globe and intercomparison with other instruments/measurements

    NASA Astrophysics Data System (ADS)

    Lacour, Jean-Lionel; Clarisse, Lieven; Hurtmans, Daniel; Clerbaux, Cathy; Worden, John; Schneider, Matthias; Risi, Camille; Coheur, Pierre-François

    2014-05-01

    The Infrared Atmospheric Sounding Interferometer (IASI) onboard MetOp, through its observations of the water isotopologues, has great potential to support research on hydrological processes responsible for the moistening/drying of the atmosphere. The instrumental characteristics of the spectrometer (low radiometric noise and good spectral resolution) combined with its high sampling (global coverage twice a day) make it particularly suitable for providing numerous observations of the isotopologues ratio (δD) of water vapour in the troposphere. Retrieving isotopologues ratios at the required accuracy is, however, a challenging task. To get meaningful results, the retrieval needs to be well constrained. This can be achieved, with the optimal estimation method, by using an a priori probability density function containing correlation information between HDO and H2O. In this presentation, first, we will show that the measurements are mainly sensitive to δD in the troposphere between 3 and 6 km. We will illustrate the capabilities of IASI to provide δD observations at high spatio-temporal resolution with some distributions across the globe and we will discuss their added values to constrain hydrological processes. Second, we will document how IASI observations compare to other remote sounding observations of δD in the troposphere. Comparisons of IASI observations with the TES sounder and with three ground-based NDACC FTIR (Izaña, Kalsruhe and Kiruna, data generated within the project MUSICA) will be presented. The differences between the instruments as well as the methodology to compare them will be exposed. We will show that the different instruments agree within their own uncertainties and vertical sensitivities, asserting the use of IASI δD observations for scientific purposes.

  16. Understanding Climate Trends Using IR Brightness Temperature Spectra from AIRS, IASI and CrIS

    NASA Astrophysics Data System (ADS)

    Deslover, D. H.; Nikolla, E.; Knuteson, R. O.; Revercomb, H. E.; Tobin, D. C.

    2016-12-01

    NASA's Atmospheric Infrared Sounder (AIRS) provides a data record that extends from its 2002 launch to the present. The Infrared Atmospheric Sounding Interferometer (IASI) onboard Metop- (A launched in 2006, B in 2012), as well as the Joint Polar Satellite System (JPSS) Cross-track Infrared Sounder (CrIS) launched in 2011, complement this data record. Future infrared sounders with similar capabilities will augment these measurements into the near future. We have created a global data set from these infrared measurements, using the nadir-most observations for each of the aforementioned instruments. We can filter the data based upon spatial, diurnal and seasonal properties to discern trends for a given spectral channel and, therefore, a specific atmospheric layer. Subtle differences between spectral sampling among the three instruments can lead significant differences in the resultant probability distribution functions for similar spectral channels. We take advantage of the higher (0.25 cm-1) IASI spectral resolution to subsample the IASI spectra onto AIRS and CrIS spectral grids to better compare AIRS/IASI and CrIS/IASI trends in the brightness temperature anomalies. To better understand the dependance of trace gases on the measured brightness temperature spectral time-series, a companion study has utilized coincident vertical profiles of stratospheric carbon dioxide, water vapor and ozone concentration are used to infer a correlation with the CrIS brightness temperatures. The goal was to investigate the role of ozone heating and carbon dioxide cooling on the observed brightness temperature spectra. Results from that study will be presented alongside the climate trend analysis.

  17. The IASI detection chain

    NASA Astrophysics Data System (ADS)

    Nicol, Patrick; Fleury, Joel; Le Naour, Claire; Bernard, Frédéric

    2017-11-01

    IASI (Infrared Atmospheric Sounding Interferometer) is an infrared atmospheric sounder. It will provide meteorologist and scientific community with atmospheric spectra. The instrument is composed of a Fourier transform spectrometer and an associated infrared imager. The presentation will describe the spectrometer detection chain architecture, composed by three different detectors cooled in a passive cryo-cooler (so called CBS : Cold Box Subsystem) and associated analog electronics up to digital conversion. It will mainly focus on design choices with regards to environment constraints, implemented technologies, and associated performances. CNES is leading the IASI program in collaboration with EUMETSAT. The instrument Prime is ALCATEL SPACE responsible, notably, of the detection chain architecture. SAGEM SA provides the detector package (so called CAU : Cold Acquisition Unit).

  18. The IASI detection chain

    NASA Astrophysics Data System (ADS)

    Nicol, Patrick; Fleury, Joel; Bernard, Frédéric

    2004-06-01

    IASI (Infrared Atmospheric Sounding Interferometer) is an infrared atmospheric sounder. It will provide meteorologist and scientific community with atmospheric spectra. The instrument is composed of a Fourier transform spectrometer and an associated infrared imager. The presentation will describe the spectrometer detection chain architecture, composed by three different detectors cooled in a passive cryo-cooler (so called CBS : Cold Box Subsystem) and associated analog electronics up to digital conversion. It will mainly focus on design choices with regards to environment constraints, implemented technologies, and associated performances . CNES is leading the IASI program in collaboration with EUMETSAT. The instrument Prime is ALCATEL SPACE responsible, notably, of the detection chain architecture. SAGEM SA provides the detector package (so called CAU: Cold Acquisition Unit).

  19. High Vertically Resolved Atmospheric State Revealed with IASI Single FOV Retrievals under All-weather Conditions

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Smith, William L.; Taylor, Jonathan P.; Schluessel, L. Peter; Strow, Larrybee; Mango, Stephen A.

    2008-01-01

    The Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp satellite was launched on October 19, 2006. The Joint Airborne IASI Validation Experiment (JAIVEx) was conducted during April 2007 mainly for validation of the IASI on the MetOp satellite. IASI possesses an ultra-spectral resolution of 0.25 cm(exp -1) and a spectral coverage from 645 to 2760 cm(exp -1). Ultra-spectral resolution infrared spectral radiance obtained from near nadir observations provide atmospheric, surface, and cloud property information. An advanced retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. Preliminary retrievals of atmospheric soundings, surface properties, and cloud optical/microphysical properties with the IASI observations are obtained and presented. These retrievals are further inter-compared with those obtained from airborne FTS system, such as the NPOESS Airborne Sounder Testbed - Interferometer (NAST-I), dedicated dropsondes, radiosondes, and ground based Raman Lidar. The capabilities of satellite ultra-spectral sounder such as the IASI are investigated to benefit future NPOESS operation.

  20. Comparison Between IASI/Metop-A and OMI/Aura Ozone Column Amounts with EUBREWNET Ground-Based Measurements

    NASA Astrophysics Data System (ADS)

    Lopez-Baeza, Ernesto

    2016-07-01

    This work addresses the comparison of {bf IASI (Infrared Atmospheric Sounding Interferometer)} on board Metop-A and {bf OMI (Ozone Monitoring Instrument)} on board Aura to several ground-based Brewer spectrophotometers belonging to the {bf European Brewer Network (EUBREWNET)} for the period September 2010 to December 2015. The focus of this study is to examine how well the satellite retrieval products capture the total ozone column amounts (TOC) at different latitudes and evaluate the different levels of Brewer spectrophotometer data. On this comparison Level 1, 1.5 and 2 Brewer data will be used to evaluate satellite data, where: 1) Level 1 Brewer data are the TOC calculated with the standard Brewer algorithm from the direct sun measurements; 2) Level 1.5 Brewer data are Level 1.0 observations filtered and corrected from instrumental issues: and 3) Level 2.0 Brewer data are 1.5 observations, but validated with a posteriori calibration. The IASI retrievals examined are operational IASI Level 2 products, version 5 from September 2010 to October 2014, and version 6 from October 2014 to December 2015, from {it EUMETSAT Data Centre}, while OMI retrievals are OMI-DOAS TOC products extracted from the {it NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)}. The differences and their implications for the retrieved products will be discussed and, in order to evaluate the quality and sensitivity of each product, special attention will be put on analyzing the instrumental errors from these different measurement techniques. Furthermore, those parameters that could affect the comparison of the different datasets such as the different viewing geometry, the satellite data vertical sensitivity, cloudiness conditions, spectral region used for retrievals, and so on, will be analyzed in detail.

  1. PCA determination of the radiometric noise of high spectral resolution infrared observations from spectral residuals: Application to IASI

    NASA Astrophysics Data System (ADS)

    Serio, C.; Masiello, G.; Camy-Peyret, C.; Jacquette, E.; Vandermarcq, O.; Bermudo, F.; Coppens, D.; Tobin, D.

    2018-02-01

    The problem of characterizing and estimating the instrumental or radiometric noise of satellite high spectral resolution infrared spectrometers directly from Earth observations is addressed in this paper. An approach has been developed, which relies on the Principal Component Analysis (PCA) with a suitable criterion to select the optimal number of PC scores. Different selection criteria have been set up and analysed, which is based on the estimation theory of Least Squares and/or Maximum Likelihood Principle. The approach is independent of any forward model and/or radiative transfer calculations. The PCA is used to define an orthogonal basis, which, in turn, is used to derive an optimal linear reconstruction of the observations. The residual vector that is the observation vector minus the calculated or reconstructed one is then used to estimate the instrumental noise. It will be shown that the use of the spectral residuals to assess the radiometric instrumental noise leads to efficient estimators, which are largely independent of possible departures of the true noise from that assumed a priori to model the observational covariance matrix. Application to the Infrared Atmospheric Sounder Interferometer (IASI) has been considered. A series of case studies has been set up, which make use of IASI observations. As a major result, the analysis confirms the high stability and radiometric performance of IASI. The approach also proved to be efficient in characterizing noise features due to mechanical micro-vibrations of the beam splitter of the IASI instrument.

  2. A simulated observation database to assess the impact of the IASI-NG hyperspectral infrared sounder

    NASA Astrophysics Data System (ADS)

    Andrey-Andrés, Javier; Fourrié, Nadia; Guidard, Vincent; Armante, Raymond; Brunel, Pascal; Crevoisier, Cyril; Tournier, Bernard

    2018-02-01

    The highly accurate measurements of the hyperspectral Infrared Atmospheric Sounding Interferometer (IASI) are used in numerical weather prediction (NWP), atmospheric chemistry and climate monitoring. As the second generation of the European Polar System (EPS-SG) is being developed, a new generation of IASI instruments has been designed to fly on board the MetOp-SG constellation: IASI New Generation (IASI-NG). In order to prepare the arrival of this new instrument, and to evaluate its impact on NWP and atmospheric chemistry applications, a set of IASI and IASI-NG simulated data was built and made available to the public to set a common framework for future impact studies. This paper describes the information available in this database and the procedure followed to run the IASI and IASI-NG simulations. These simulated data were evaluated by comparing IASI-NG to IASI observations. The result is also presented here. Additionally, preliminary impact studies of the benefit of IASI-NG compared to IASI on the retrieval of temperature and humidity in a NWP framework are also shown in the present work. With a channel dataset located in the same wave numbers for both instruments, we showed an improvement of the temperature retrievals throughout the atmosphere, with a maximum in the troposphere with IASI-NG and a lower benefit for the tropospheric humidity.

  3. IASI carbon monoxide validation over the Arctic during POLARCAT spring and summer campaigns

    NASA Astrophysics Data System (ADS)

    Pommier, M.; Law, K. S.; Clerbaux, C.; Turquety, S.; Hurtmans, D.; Hadji-Lazaro, J.; Coheur, P.-F.; Schlager, H.; Ancellet, G.; Paris, J.-D.; Nédélec, P.; Diskin, G. S.; Podolske, J. R.; Holloway, J. S.; Bernath, P.

    2010-06-01

    In this paper, we provide a detailed comparison between carbon monoxide (CO) data measured by the Infrared Atmospheric Sounding Interferometer (IASI)/METOP and aircraft measurements over the Arctic. The CO measurements were obtained during North American campaigns (NASA ARCTAS and NOAA ARCPAC) and European campaigns (POLARCAT-France, POLARCAT-GRACE and YAK-AEROSIB) as part of the International Polar Year (IPY) in spring and summer 2008. During the campaigns different air masses were sampled including clean air, polluted plumes originating from anthropogenic sources in Europe, Asia and North America, and forest fire plumes originating from Siberia and Canada. CO-rich plumes following different transport pathways were captured well by the IASI instrument, illustrated for example by a transport event over the North Pole from Asia on 9 July 2008. The comparison between the IASI CO profiles and aircraft data was achieved by first completing the latter for higher altitudes using a latitudinally dependent climatology of ACE-FTS satellite CO profiles (2004-2009) and by subsequently smoothing the resulting full profiles by the IASI averaging kernels. Proceeding this way, the IASI profiles were shown to be in good agreement with smoothed in situ profiles (with a difference of about 10 ppbv) in spring. In summer, the IASI profiles were higher than the smoothed in situ profiles below 8 km, for all polluted cases. Correlations between IASI and combination ACE-FTS/aircraft derived total columns varied from 0.15 to 0.74 in spring and 0.26 to 0.84 in summer, with better results over the sea in spring (0.73) and over the land in summer (0.69).

  4. On the capability of IASI measurements to inform about CO surface emissions

    NASA Astrophysics Data System (ADS)

    Fortems-Cheiney, A.; Chevallier, F.; Pison, I.; Bousquet, P.; Carouge, C.; Clerbaux, C.; Coheur, P.-F.; George, M.; Hurtmans, D.; Szopa, S.

    2009-03-01

    Between July and November 2008, simultaneous observations were conducted by several orbiting instruments that monitor carbon monoxide in the atmosphere, among them the Infrared Atmospheric Sounding Instrument (IASI) and Measurements Of Pollution In The Troposphere (MOPITT). In this paper, the concentration retrievals at about 700 hPa from these two instruments are successively used in a variational Bayesian system to infer the global distribution of CO emissions. Our posterior estimate of CO emissions using IASI retrievals gives a total of 793 Tg for the considered period, which is 40% higher than the global budget calculated with the MOPITT data (566 Tg). Over six continental regions (Eurasian Boreal, South Asia, South East Asia, North American Boreal, Northern Africa and South American Temperate) and thanks to a better observation density, the theoretical uncertainty reduction obtained with the IASI retrievals is better or similar than with MOPITT. For the other continental regions, IASI constrains the emissions less than MOPITT because of lesser sensitivity in the lower troposphere. These first results indicate that IASI may play a major role in the quantification of the emissions of CO.

  5. Acetylene (C2H2) and hydrogen cyanide (HCN) from IASI satellite observations: global distributions, validation, and comparison with model

    NASA Astrophysics Data System (ADS)

    Duflot, V.; Wespes, C.; Clarisse, L.; Hurtmans, D.; Ngadi, Y.; Jones, N.; Paton-Walsh, C.; Hadji-Lazaro, J.; Vigouroux, C.; De Mazière, M.; Metzger, J.-M.; Mahieu, E.; Servais, C.; Hase, F.; Schneider, M.; Clerbaux, C.; Coheur, P.-F.

    2015-09-01

    We present global distributions of C2H2 and hydrogen cyanide (HCN) total columns derived from the Infrared Atmospheric Sounding Interferometer (IASI) for the years 2008-2010. These distributions are obtained with a fast method allowing to retrieve C2H2 abundance globally with a 5 % precision and HCN abundance in the tropical (subtropical) belt with a 10 % (25 %) precision. IASI data are compared for validation purposes with ground-based Fourier transform infrared (FTIR) spectrometer measurements at four selected stations. We show that there is an overall agreement between the ground-based and space measurements with correlation coefficients for daily mean measurements ranging from 0.28 to 0.81, depending on the site. Global C2H2 and subtropical HCN abundances retrieved from IASI spectra show the expected seasonality linked to variations in the anthropogenic emissions and seasonal biomass burning activity, as well as exceptional events, and are in good agreement with previous spaceborne studies. Total columns simulated by the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4) are compared to the ground-based FTIR measurements at the four selected stations. The model is able to capture the seasonality in the two species in most of the cases, with correlation coefficients for daily mean measurements ranging from 0.50 to 0.86, depending on the site. IASI measurements are also compared to the distributions from MOZART-4. Seasonal cycles observed from satellite data are reasonably well reproduced by the model with correlation coefficients ranging from -0.31 to 0.93 for C2H2 daily means, and from 0.09 to 0.86 for HCN daily means, depending on the considered region. However, the anthropogenic (biomass burning) emissions used in the model seem to be overestimated (underestimated), and a negative global mean bias of 1 % (16 %) of the model relative to the satellite observations was found for C2H2 (HCN).

  6. Carbon monoxide transport in the Arctic: A joint study using IASI satellite and aircraft data in spring and summer 2008. (Invited)

    NASA Astrophysics Data System (ADS)

    Pommier, M.; Law, K.; Clerbaux, C.; Turquety, S.; Hadji-Lazaro, J.; Hurtmans, D.; Coheur, P.; Schlager, H.; Ancellet, G.; Paris, J.; Nédélec, P.; Diskin, G. S.; Podolske, J. R.; Bernath, P.

    2009-12-01

    Carbon monoxide (CO) is a reactive toxic gas, mainly produced by the combustion of fossil fuels and vegetation burning. It also plays an important role in the budget of tropospheric ozone and can be used a tracer for transport of sources of different origin. The impact of the transport of such pollutants on climate change in the Arctic still remains to be quantified with global models often failing to reproduce seasonal cycles especially in summertime. One possible explanation is the underestimation of modelled ozone production in forest fires plumes. This study focuses on the analysis of the POLARCAT/IPY spring and summer campaigns which took place, in Kiruna, Sweden in April 2008 and in Kangerlussuaq, Greenland in July 2008. During the campaigns different air masses were sampled including clean air, polluted plumes originating from anthropogenic sources in Europe and North America, and forest fire plumes from Siberia and Canada. These different transport pathways were well observed by the IASI (Infrared Atmospheric Sounding Interferometer) interferometer, onboard the METOP-A satellite. Measurements of CO collected by the ATR-42 aircraft as part of POLARCAT-France have been used to validate the satellite measurements. Furthermore, a more general validation procedure was developed to compare IASI with ATR-42, DLR-Falcon, NASA DC-8 and NOAA P3-B CO data. YAK summer flights in Siberia are also available for these comparisons. Both in-situ and satellite data are also compared to simulations from the LMDz-INCA global chemistry model. We will discuss how the good global coverage of IASI and regional flights allow can be used improve estimates of CO emissions and to evaluate the impact of forest fires on CO and O3 (ozone) distributions.

  7. The NPOESS Crosstrack Infrared Sounder (CrIS) and Advanced Technology Microwave Sounder (ATMS) as a Companion to the New Generation AIRS/AMSU and IASI/AMSU Sounder Suites

    NASA Astrophysics Data System (ADS)

    Bingham, G. E.; Pougatchev, N. S.; Zavyalov, V.; Esplin, M.; Blackwell, W. J.; Barnet, C.

    2009-12-01

    The NPOESS Preparatory Project is serving the operations and research community as the bridge mission between the Earth Observing System and the National Polar-orbiting Operational Environmental Satellite System. The Cross-track Infrared Sounder (CrIS), combined with the Advanced Technology Microwave Sounder (ATMS) are the core instruments to provide the key performance temperature and humidity profiles (along with some other atmospheric constituent information). Both the high spectral resolution CrIS and the upgraded microwave sounder (ATMS) will be working in parallel with already orbiting Advanced Atmospheric Infrared Sounder (AIRS/AMSU) on EOS AQUA platform and Infrared Atmospheric Sounding Interferometer (IASI/AMSU) on METOP-A satellite. This presentation will review the CrIS/ATMS capabilities in the context of continuity with the excellent performance records established by AIRS and IASI. The CrIS sensor is in the process of its final calibration and characterization testing and the results and Sensor Data Record process are being validated against this excellent dataset. The comparison between CrIS, AIRS, and IASI will include spectral, spatial, radiometric performance and sounding capability comparisons.

  8. Fast retrievals of tropospheric carbonyl sulfide with IASI

    NASA Astrophysics Data System (ADS)

    Vincent, R. Anthony; Dudhia, Anu

    2017-02-01

    Iterative retrievals of trace gases, such as carbonyl sulfide (OCS), from satellites can be exceedingly slow. The algorithm may even fail to keep pace with data acquisition such that analysis is limited to local events of special interest and short time spans. With this in mind, a linear retrieval scheme was developed to estimate total column amounts of OCS at a rate roughly 104 times faster than a typical iterative retrieval. This scheme incorporates two concepts not utilized in previously published linear estimates. First, all physical parameters affecting the signal are included in the state vector and accounted for jointly, rather than treated as effective noise. Second, the initialization point is determined from an ensemble of atmospheres based on comparing the model spectra to the observations, thus improving the linearity of the problem. All of the 2014 data from the Infrared Atmospheric Sounding Interferometer (IASI), instruments A and B, were analysed and showed spatial features of OCS total columns, including depletions over tropical rainforests, seasonal enhancements over the oceans, and distinct OCS features over land. Error due to assuming linearity was found to be on the order of 11 % globally for OCS. However, systematic errors from effects such as varying surface emissivity and extinction due to aerosols have yet to be robustly characterized. Comparisons to surface volume mixing ratio in situ samples taken by NOAA show seasonal correlations greater than 0.7 for five out of seven sites across the globe. Furthermore, this linear scheme was applied to OCS, but may also be used as a rapid estimator of any detectable trace gas using IASI or similar nadir-viewing instruments.

  9. Satellite remote sensing of volcanic plume from Infrared Atmospheric Sounding Interferometer (IASI): results for recent eruptions.

    NASA Astrophysics Data System (ADS)

    Carboni, Elisa; Smith, Andrew; Grainger, Roy; Dudhia, Anu; Thomas, Gareth; Peters, Daniel; Walker, Joanne; Siddans, Richard

    2013-04-01

    The IASI high resolution infrared spectra is exploited to study volcanic emission of ash and sulphur dioxide (SO2). IASI is a Fourier transform spectrometer that covers the spectral range 645 to 2760 cm-1 (3.62-15.5 μm). The IASI field of view consists of four circles of 12 km inside a square of 50 x 50 km, and nominally it can achieve global coverage in 12 hours. The thermal infrared spectra of volcanic plumes shows a rapid variation with wavelength due to absorption lines from atmospheric and volcanic gases as well as broad scale features principally due to particulate absorption. IASI spectra also contain information about the atmospheric profile (temperature, gases, aerosol and cloud) and radiative properties of the surface. In particular the ash signature depends on the composition and size distribution of ash particles as well on their altitude. The sulphur dioxide signature depends on SO2 amount and vertical profile. The results from a new algorithm for the retrieval of sulphur dioxide (SO2) from the Infrared Atmospheric Sounding Interferometer (IASI) data will be presented. The SO2 retrieval follows the method of Carboni et al. (2012) and retrieves SO2 amount and altitude together with a pixel by pixel comprehensive error budget analysis. IASI brightness temperature spectra are analysed, to retrieve ash properties, using an optimal estimation retrieval scheme and a forward model based on RTTOV. The RTTOV output for a clean atmosphere (containing gas but not cloud or aerosol/ash) will be combined with an ash layer using the same scheme as for the Oxford-RAL Retrieval of Aerosol and Cloud (ORAC) algorithm. We exploit the IASI measurements in the atmospheric window spectral range together with the SO2 absorption bands (at 7.3 and 8.7 μm) to study the evolution of ash and SO2 volcanic plume for recent volcanic eruptions case studies. Particular importance is given to investigation of mismatching between the forward model and IASI measurements which can be due

  10. Impact of a priori information on IASI ozone retrievals and trends

    NASA Astrophysics Data System (ADS)

    Barret, B.; Peiro, H.; Emili, E.; Le Flocgmoën, E.

    2017-12-01

    The IASI sensor documents atmospheric water vapor, temperature and composition since 2007. The Software for a Fast Retrieval of IASI Data (SOFRID) has been developped to retrieve O3 and CO profiles from IASI in near-real time on a global scale. Information content analyses have shown that IASI enables the quantification of O3 independently in the troposphere, the UTLS and the stratosphere. Validation studies have demonstrated that the daily to seasonal variability of tropospheric and UTLS O3 was well captured by IASI especially in the tropics. IASI-SOFRID retrievals have also been used to document the tropospheric composition during the Asian monsoon and participated to determine the O3 evolution during the 2008-2016 period in the framework of the TOAR project. Nevertheless, IASI-SOFRID O3 is biased high in the UTLS and in the tropical troposphere and the 8 years O3 trends from the different IASI products are significantly different from the O3 trends from UV-Vis satellite sensors (e.g. OMI)..SOFRID is based on the Optimal Estimation Method that requires a priori information to complete the information provided by the measured thermal infrared radiances. In SOFRID-O3 v1.5 used in TOAR the a priori consists of a single O3 profile and associated covariance matrix based on global O3 radiosoundings. Such a global a priori is characterized by a very large variabilty and does not represent our best kowledge of the O3 profile at a given time and location. Furthermore it is biased towards the northern hemisphere middle latitudes. We have therefore implemented the possibility to use dynamical a priori data in SOFRID and performed experiments using O3 climatological data and MLS O3 analyses. We will present O3 distributions and comparisons with O3 radiosoundings from the different SOFRID-O3 retrievals. We will in particular assess the impact of the use of different a priori data upon the O3 biases and trends during the IASI period.

  11. The importance of using dynamical a-priori profiles for infrared O3 retrievals : the case of IASI.

    NASA Astrophysics Data System (ADS)

    Peiro, H.; Emili, E.; Le Flochmoen, E.; Barret, B.; Cariolle, D.

    2016-12-01

    Tropospheric ozone (O3) is a trace gas involved in the global greenhouse effect. To quantify its contribution to global warming, an accurate determination of O3 profiles is necessary. The instrument IASI (Infrared Atmospheric Sounding Interferometer), on board satellite MetOP-A, is the more sensitive sensor to tropospheric O3 with a high spatio-temporal coverage. Satellite retrievals are often based on the inversion of the measured radiance data with a variational approach. This requires an a priori profile and the correspondent error covariance matrix (COV) as ancillary input. Previous studies have shown some biases ( 20%) in IASI retrievals for tropospheric column in the Southern Hemisphere (SH). A possible source of errors is caused by the a priori profile. This study aims to i) build a dynamical a priori profile O3 with a Chemistry Transport Model (CTM), ii) integrate and to demonstrate the interest of this a priori profile in IASI retrievals.Global O3 profiles are retrieved from IASI radiances with the SOFRID (Software for a fast Retrieval of IASI Data) algorithm. It is based on the RTTOV (Radiative Transfer for TOVS) code and a 1D-Var retrieval scheme. Until now, a constant a priori profile was based on a combination of MOZAIC, WOUDC-SHADOZ and Aura/MLS data named here CLIM PR. The global CTM MOCAGE (Modèle de Chimie Atmosphérique à Grande Echelle) has been used with a linear O3 chemistry scheme to assimilate Microwave Limb Sounder (MLS) data. The model resolution of 2°x2°, with 60 sigma-hybrid vertical levels covering the stratosphere has been used. MLS level 2 products have been assimilated with a 4D-VAR variational algorithm to constrain stratospheric O3 and obtain high quality a priori profiles O3 above the tropopause. From this reanalysis, we built these profiles at a 6h frequency on a coarser resolution grid 10°x20° named MOCAGE+MLS PR.Statistical comparisons between retrievals and ozonesondes have shown better correlations and smaller biases for

  12. A Regularized Neural Net Approach for Retrieval of Atmospheric and Surface Temperatures with the IASI Instrument

    NASA Technical Reports Server (NTRS)

    Aires, F.; Chedin, A.; Scott, N. A.; Rossow, W. B.; Hansen, James E. (Technical Monitor)

    2001-01-01

    Abstract In this paper, a fast atmospheric and surface temperature retrieval algorithm is developed for the high resolution Infrared Atmospheric Sounding Interferometer (IASI) space-borne instrument. This algorithm is constructed on the basis of a neural network technique that has been regularized by introduction of a priori information. The performance of the resulting fast and accurate inverse radiative transfer model is presented for a large divE:rsified dataset of radiosonde atmospheres including rare events. Two configurations are considered: a tropical-airmass specialized scheme and an all-air-masses scheme.

  13. O3 variability/trends in the troposphere from IASI observations in 2008-2017

    NASA Astrophysics Data System (ADS)

    Wespes, C.; Hurtmans, D.; Clerbaux, C.; Pierre-Francois, C.

    2017-12-01

    In this study, we describe the recent changes in the tropospheric ozone (O3) columns (TOCs) measured by the Infrared Atmospheric Sounding Interferometer (IASI) onboard the Metop satellites during the first ten years of the IASI operation (2008-2017). The instrument provides a unique dataset of vertically-resolved O3 profiles with a twice daily global coverage and a fairly good vertical resolution allowing us to monitor the year-to-year variability in the troposphere. The retrievals are performed using the FORLI software, a fast radiative transfer model based on the optimal estimation method, set up for near real time and large scale processing of IASI data. We differentiate trend characteristics from the seasonal and non-seasonal O3 variations captured by IASI in the troposphere by applying appropriate annual and seasonal multivariate regression models, which include important geophysical drivers of O3 variation (e.g. quasi biennial oscillations - QBO, El Niño/Southern Oscillation - ENSO, North Atlantic Oscillation-NAO) and a linear trend term, on time series of spatially gridded averaged O3. The performances of the regression models (annual vs seasonal) are first investigated. Given the large contribution of the interannual variability, we will then describe the effects of the main contributing O3 proxies (e.g. positive - or negatives - ENSO indexes measured during moderate to intense El Niño - or La Niña - episodes in the tropics) in addition to the adjusted O3 trend patterns. A special focus will be given over the Northern Hemisphere which is characterized by decreasing O3 precursor emissions (mainly over Europe and the US). FORLI O3-CO correlations patterns will also be discussed to evaluate the continental influence on the tropospheric O3 trends.

  14. New Mobile Atmospheric Lidar Systems for Spaceborne Instrument Validation

    NASA Astrophysics Data System (ADS)

    Chazette, P.; Raut, J.-C.; Sanak, J.; Berthier, S.; Dulac, F.; Kim, S. W.; Royer, P.

    2009-04-01

    We present an overview of our different approaches using lidar systems as a tool to validate and develop the new generation of spaceborne missions. We have developed several mini-lidars in order to study the vertical structure, the clouds and the particulate composition of the atmosphere from mobile platforms. Here we focus on three mobile instrumental platforms including a backscatter lidar instrument developed for validation of the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) onboard CALIPSO and of the Interféromètre Atmosphérique de Sondage Infrarouge (IASI) onboard METOP. The first system is operated onboard an ultra-light aircraft (ULA) (Chazette et al., Environ. Sci. Technol., 2007). The second one is operated onboard a stratospheric balloon to study the interest of the measurement synergy with the Infrared Atmospheric Sounding Interferometer (IASI). The third one is part of a truck/car mobile station to be positioned close to the satellite ground-track (e.g. CALIPSO) or inside the area delimitated by the instrumental swath (e.g. IASI). CALIPSO was inserted in the A-Train constellation behind Aqua on 28 April, 2006 (http://www-calipso.larc.nasa.gov/about/atrain.php). One of the main objectives of the scientific mission is the study of atmospheric aerosols. Before the CALIOP lidar profiles could be used in an operational way, it has been necessary to validate both the raw and geophysical data of the instrument. For this purpose, we carried out an experiment in south-eastern France in summer 2007 to validate the aerosol product of CALIOP by operating both the ground-based and the airborne mobile lidars in coincidence with CALIOP. The synergy between the new generation of spaceborne passive and active instruments is promising to assess the concentration of main pollutants as aerosol, O3 and CO, and greenhouse gases as CO2 and CH4 within the planetary boundary layer (PBL) and to increase the accuracy on the vertical profile of temperature. IASI is

  15. Removal of instrument artefacts by harmonisation of hyperspectral sensor data from multiple detectors

    NASA Astrophysics Data System (ADS)

    Hultberg, Tim; August, Thomas

    2017-09-01

    IASI has 4 different detectors, CrIS has 9, IASI-NG will have 16 and MTG-IRS 25600. There is a clear interest to harmonise the sensor data originating from different detectors, if it can be done be removing the parts of the instrument artefacts, which are not common to all detectors. When IASI spectra are analysed in principal component (PC) score space, differences between the four detectors are clearly observed. These differences are caused by different characteristics and different strengths of the ghost effect among the detectors and although they are small when analysed in radiance space, they can have a distinct negative impact on the use of the data. Considering that a large part of the operationally disseminated IASI PC scores are dominated by instrument artefacts, the partial removal of instrument artefacts is also of interest for data compression purposes. The instrument artefacts can be partly removed by projection onto a subspace common to all detectors. We show how the techniques of canonical angles can be used to compute a set of orthogonal vectors capturing only directions which are close to directions found in the signal spaces of all detectors. This principle can also be applied to detectors on-board different satellites, as we demonstrate with the example of IASI-A and IASI-B. The danger of the method is that a single deficient detector, 'blind' to one or more directions of the atmo- spheric signal, could potentially 'contaminate' the data from the other detectors. We discuss how to detect and avoid this problem and check it in practice with CrIS data.

  16. Assimilation of IASI and AIRS Data: Information Content and Quality Control

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The Infrared Atmospheric Sounding Interferometer (IASI) and Atmospheric Infrared Sounder (AIRS) instruments have two orders of magnitude more channels that the current operational infrared sounder (High Resolution Infra-Red Sounder (HIRS)). This data volume presents a technological challenge for using the data in a data assimilation system. Data reduction will be a necessary for assimilation. It is important to understand the information content of the radiance measurements for data reduction purposes. In this talk, I will discuss issues relating to information content and quality control for assimilation of the AIRS and IASI data.

  17. Assessing the impacts of assimilating IASI and MOPITT CO retrievals using CESM-CAM-chem and DART

    NASA Astrophysics Data System (ADS)

    Barré, Jérôme; Gaubert, Benjamin; Arellano, Avelino F. J.; Worden, Helen M.; Edwards, David P.; Deeter, Merritt N.; Anderson, Jeffrey L.; Raeder, Kevin; Collins, Nancy; Tilmes, Simone; Francis, Gene; Clerbaux, Cathy; Emmons, Louisa K.; Pfister, Gabriele G.; Coheur, Pierre-François; Hurtmans, Daniel

    2015-10-01

    We show the results and evaluation with independent measurements from assimilating both MOPITT (Measurements Of Pollution In The Troposphere) and IASI (Infrared Atmospheric Sounding Interferometer) retrieved profiles into the Community Earth System Model (CESM). We used the Data Assimilation Research Testbed ensemble Kalman filter technique, with the full atmospheric chemistry CESM component Community Atmospheric Model with Chemistry. We first discuss the methodology and evaluation of the current data assimilation system with coupled meteorology and chemistry data assimilation. The different capabilities of MOPITT and IASI retrievals are highlighted, with particular attention to instrument vertical sensitivity and coverage and how these impact the analyses. MOPITT and IASI CO retrievals mostly constrain the CO fields close to the main anthropogenic, biogenic, and biomass burning CO sources. In the case of IASI CO assimilation, we also observe constraints on CO far from the sources. During the simulation time period (June and July 2008), CO assimilation of both instruments strongly improves the atmospheric CO state as compared to independent observations, with the higher spatial coverage of IASI providing better results on the global scale. However, the enhanced sensitivity of multispectral MOPITT observations to near surface CO over the main source regions provides synergistic effects at regional scales.

  18. High Vertically Resolved Atmospheric and Surface/Cloud Parameters Retrieved with Infrared Atmospheric Sounding Interferometer (IASI)

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Smith, WIlliam L.; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Stephen A.

    2008-01-01

    The Joint Airborne IASI Validation Experiment (JAIVEx) was conducted during April 2007 mainly for validation of the IASI on the MetOp satellite. IASI possesses an ultra-spectral resolution of 0.25/cm and a spectral coverage from 645 to 2760/cm. Ultra-spectral resolution infrared spectral radiance obtained from near nadir observations provide atmospheric, surface, and cloud property information. An advanced retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. This physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the cloud-free and/or clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multi-variable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. It is shown that relatively accurate temperature and moisture retrievals are achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to cloud top level are obtained. For both optically thin and thick cloud situations, the cloud top height can be retrieved with relatively high accuracy (i.e., error < 1 km). Preliminary retrievals of atmospheric soundings, surface properties, and cloud optical/microphysical properties with the IASI observations are obtained and presented. These retrievals will be further inter-compared with those obtained from airborne FTS system, such as the NPOESS Airborne Sounder Testbed - Interferometer (NAST-I), dedicated dropsondes, radiosondes, and ground based Raman Lidar. The

  19. NOAA/NESDIS Operational Sounding Processing Systems using the hyperspectral and microwaves sounders data from CrIS/ATMS, IASI/AMSU, and ATOVS

    NASA Astrophysics Data System (ADS)

    Sharma, A. K.

    2016-12-01

    The current operational polar sounding systems running at the National Oceanic and Atmospheric Administration (NOAA) National Environmental Satellite Data and Information Service (NESDIS) for processing the sounders data from the Cross-track Infrared (CrIS) onboard the Suomi National Polar-orbiting Partnership (SNPP) under the Joint Polar Satellite System (JPSS) program; the Infrared Atmospheric Sounding Interferometer (IASI) onboard Metop-1 and Metop-2 satellites under the program managed by the European Organization for the Exploitation of Meteorological (EUMETSAT); and the Advanced TIROS (Television and Infrared Observation Satellite) Operational Vertical Sounding (ATOVS) onboard NOAA-19 in the NOAA series of Polar Orbiting Environmental Satellites (POES), Metop-1 and Metop-2. In a series of advanced operational sounders CrIS and IASI provide more accurate, detailed temperature and humidity profiles; trace gases such as ozone, nitrous oxide, carbon dioxide, and methane; outgoing longwave radiation; and the cloud cleared radiances (CCR) on a global scale and these products are available to the operational user community. This presentation will highlight the tools developed for the NOAA Unique Combined Atmospheric Processing System (NUCAPS), which will discuss the Environmental Satellites Processing Center (ESPC) system architecture involving sounding data processing and distribution for CrIS, IASI, and ATOVS sounding products. Discussion will also include the improvements made for data quality measurements, granule processing and distribution, and user timeliness requirements envisioned from the next generation of JPSS and GOES-R satellites. There have been significant changes in the operational system due to system upgrades, algorithm updates, and value added data products and services. Innovative tools to better monitor performance and quality assurance of the operational sounder and imager products from the CrIS/ATMS, IASI and ATOVS have been developed and

  20. IASI carbon monoxide validation over the Arctic during POLARCAT spring and summer campaigns

    NASA Astrophysics Data System (ADS)

    Pommier, M.; Law, K. S.; Clerbaux, C.; Turquety, S.; Hurtmans, D.; Hadji-Lazaro, J.; Coheur, P.-F.; Schlager, H.; Ancellet, G.; Paris, J.-D.; Nédélec, P.; Diskin, G. S.; Podolske, J. R.; Holloway, J. S.; Bernath, P.

    2010-11-01

    In this paper, we provide a detailed comparison between carbon monoxide (CO) data measured by the Infrared Atmospheric Sounding Interferometer (IASI)/MetOp and aircraft observations over the Arctic. The CO measurements were obtained during North American (NASA ARCTAS and NOAA ARCPAC) and European campaigns (POLARCAT-France, POLARCAT-GRACE and YAK-AEROSIB) as part of the International Polar Year (IPY) POLARCAT activity in spring and summer 2008. During the campaigns different air masses were sampled including clean air, polluted plumes originating from anthropogenic sources in Europe, Asia and North America, and forest fire plumes originating from Siberia and Canada. The paper illustrates that CO-rich plumes following different transport pathways were well captured by the IASI instrument, in particular due to the high spatial coverage of IASI. The comparison between IASI CO total columns, 0-5 km partial columns and profiles with collocated aircraft data was achieved by taking into account the different sensitivity and geometry of the sounding instruments. A detailed analysis is provided and the agreement is discussed in terms of information content and surface properties at the location of the observations. For profiles, the data were found to be in good agreement in spring with differences lower than 17%, whereas in summer the difference can reach 20% for IASI profiles below 8 km for polluted cases. For total columns the correlation coefficients ranged from 0.15 to 0.74 (from 0.47 to 0.77 for partial columns) in spring and from 0.26 to 0.84 (from 0.66 to 0.88 for partial columns) in summer. A better agreement is seen over the sea in spring (0.73 for total column and 0.78 for partial column) and over the land in summer (0.69 for total columns and 0.81 for partial columns). The IASI vertical sensitivity was better over land than over sea, and better over land than over sea ice and snow allowing a higher potential to detect CO vertical distribution during summer.

  1. Satellite oceanography - The instruments

    NASA Technical Reports Server (NTRS)

    Stewart, R. H.

    1981-01-01

    It is pointed out that no instrument is sensitive to only one oceanographic variable; rather, each responds to a combination of atmospheric and oceanic phenomena. This complicates data interpretation and usually requires that a number of observations, each sensitive to somewhat different phenomena, be combined to provide unambiguous information. The distinction between active and passive instruments is described. A block diagram illustrating the steps necessary to convert data from satellite instruments into oceanographic information is included, as is a diagram illustrating the operation of a radio-frequency radiometer. Attention is also given to the satellites that carry the various oceanographic instruments.

  2. Cloud and Thermodynamic Parameters Retrieved from Satellite Ultraspectral Infrared Measurements

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Smith, William L.; Larar, Allen M.; Liu, Xu; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Stephen A.

    2008-01-01

    Atmospheric-thermodynamic parameters and surface properties are basic meteorological parameters for weather forecasting. A physical geophysical parameter retrieval scheme dealing with cloudy and cloud-free radiance observed with satellite ultraspectral infrared sounders has been developed and applied to the Infrared Atmospheric Sounding Interferometer (IASI) and the Atmospheric InfraRed Sounder (AIRS). The retrieved parameters presented herein are from radiance data gathered during the Joint Airborne IASI Validation Experiment (JAIVEx). JAIVEx provided intensive aircraft observations obtained from airborne Fourier Transform Spectrometer (FTS) systems, in-situ measurements, and dedicated dropsonde and radiosonde measurements for the validation of the IASI products. Here, IASI atmospheric profile retrievals are compared with those obtained from dedicated dropsondes, radiosondes, and the airborne FTS system. The IASI examples presented here demonstrate the ability to retrieve fine-scale horizontal features with high vertical resolution from satellite ultraspectral sounder radiance spectra.

  3. Intra-seasonal Scale Variability of Asian Summer Monsoon Anticyclone from Satellite Data

    NASA Astrophysics Data System (ADS)

    Luo, Jiali; Pan, Laura; Honomichl, Shawn; Bergman, John; Randel, William; Francis, Gene; George, Maya; Clerbaux, Cathy; Liu, Xiong

    2017-04-01

    Intra-seasonal variability of chemical species in the Upper Troposphere Lower Stratosphere (UTLS) associated with the Asian Summer Monsoon (ASM) is investigated using satellite observations. Day-to-day behavior of CO (a tropospheric tracer) and O3 (a stratospheric tracer) in the UTLS from both nadir viewing (IASI and OMI) and limb viewing (MLS) instruments are analyzed to: determine whether the intra-seasonal scale variability that is evident in dynamical fields is also evident in chemical species, analyze the response of chemical distributions to dynamical processes, and assess the capability of satellite data to resolve the characteristics of the ASM anticyclone in the UTLS. Both nadir and limb viewing instruments agree on the location of a CO maximum and an O3 minimum within the anticyclone, indicating the presence of tropospheric air. According to MLS, sub-seasonal anomalies of CO at 150 hPa and 100 hPa, as well as O3 at 100 hPa migrate westward from the eastern mode of the anticyclone, mimicking similar behavior found in anomalies of geopotential height. The enhanced CO within ASM anticyclone and eastern shedding of CO in UTLS is well captured in IASI data while the westward migration is weak. Both O3 data sets exhibit westward propagating anomalies at 100 hPa and neither exhibits the eastern shedding. Vertical profiles of CO from IASI indicate that the relatively high CO in the ASM anticyclone is associated with the upward transport in troposphere.

  4. Potential of the multispectral synergism for observing ozone pollution combining measurements of IASI-NG and UVNS onboard EPS-SG

    NASA Astrophysics Data System (ADS)

    Costantino, Lorenzo; Cuesta, Juan; Emili, Emanuele; Foret, Gilles; Dufour, Gaëlle; Eremenko, Maxim; Chailleux, Yohann; Beekmann, Matthias; Flaud, Jean-Marie

    2016-04-01

    Current and future satellite observations offer a great potential for monitoring air quality on daily and global basis. However, measurements from currently in orbit sensors offer a limited capacity to probe surface concentrations of gaseous pollutants such as tropospheric ozone. Using single-band approaches based on IASI spaceborne thermal infrared measurements, only ozone down to the lower troposphere (3-4 km of altitude at lowest) may be observed (Eremenko et al., 2008). A recent multispectral method combining IASI and GOME-2 (both onboard MetOp satellites) spectra, respectively from the IR and UV, has shown enhanced sensitivity for probing ozone at the lowermost troposphere, but with maximum sensitivity around 2 km at lowest (Cuesta et al., 2013). Future spatial missions will be launched in the upcoming years, such as EPS-SG, carrying new generation sensors like IASI-NG and UVNS that will enhance the capacity to observe ozone pollution, and particularly when combining them through a multispectral synergism. This work presents an analysis of the potential of the multispectral synergism of IASI-NG and UVNS future spaceborne measurements for observing ozone pollution, performed in the framework of SURVEYOZON project (funded by the French Space Agency, CNES). For this, we develop a simulator of synthetic multispectral retrievals or pseudo-observations (referred as OSSE, Observing System Simulation Experiment) derived from IASI-NG+UVNS that will be compared to those from IASI+GOME2. In the first step of the OSSE, we create a pseudo-reality with simulations from the chemical-transport model MOCAGE (provided by CERFACS laboratory), where real O3 data from IASI and surface network stations have been assimilated for a realistic representation of ozone variability at the surface and the free troposphere. We focus on the high pollution event occurred in Europe on 10 July 2010. We use the coupled algorithms KOPRA+VLIDORT to simulate the spectra emitted, scattered and

  5. Version 2 of the IASI NH3 neural network retrieval algorithm: near-real-time and reanalysed datasets

    NASA Astrophysics Data System (ADS)

    Van Damme, Martin; Whitburn, Simon; Clarisse, Lieven; Clerbaux, Cathy; Hurtmans, Daniel; Coheur, Pierre-François

    2017-12-01

    Recently, Whitburn et al.(2016) presented a neural-network-based algorithm for retrieving atmospheric ammonia (NH3) columns from Infrared Atmospheric Sounding Interferometer (IASI) satellite observations. In the past year, several improvements have been introduced, and the resulting new baseline version, Artificial Neural Network for IASI (ANNI)-NH3-v2.1, is documented here. One of the main changes to the algorithm is that separate neural networks were trained for land and sea observations, resulting in a better training performance for both groups. By reducing and transforming the input parameter space, performance is now also better for observations associated with favourable sounding conditions (i.e. enhanced thermal contrasts). Other changes relate to the introduction of a bias correction over land and sea and the treatment of the satellite zenith angle. In addition to these algorithmic changes, new recommendations for post-filtering the data and for averaging data in time or space are formulated. We also introduce a second dataset (ANNI-NH3-v2.1R-I) which relies on ERA-Interim ECMWF meteorological input data, along with surface temperature retrieved from a dedicated network, rather than the operationally provided Eumetsat IASI Level 2 (L2) data used for the standard near-real-time version. The need for such a dataset emerged after a series of sharp discontinuities were identified in the NH3 time series, which could be traced back to incremental changes in the IASI L2 algorithms for temperature and clouds. The reanalysed dataset is coherent in time and can therefore be used to study trends. Furthermore, both datasets agree reasonably well in the mean on recent data, after the date when the IASI meteorological L2 version 6 became operational (30 September 2014).

  6. Cross-validation of IASI/MetOp derived tropospheric δD with TES and ground-based FTIR observations

    NASA Astrophysics Data System (ADS)

    Lacour, J.-L.; Clarisse, L.; Worden, J.; Schneider, M.; Barthlott, S.; Hase, F.; Risi, C.; Clerbaux, C.; Hurtmans, D.; Coheur, P.-F.

    2014-11-01

    The Infrared Atmospheric Sounding Interferometer (IASI) flying on-board MetOpA and MetOpB is able to capture fine isotopic variations of the HDO to H2O ratio (δD) in the troposphere. Such observations at the high spatio temporal resolution of the sounder are of great interest to improve our understanding of the mechanisms controlling humidity in the troposphere. In this study we aim to empirically assess the validity of our error estimation previously evaluated theoretically. To achieve this, we compare IASI δD retrieved profiles with other available profiles of δD, from the TES infrared sounder onboard AURA and from three ground-based FTIR stations produced within the MUSICA project: the NDACC (Network for the Detection of Atmospheric Composition Change) sites Kiruna and Izana, and the TCCON site Karlsruhe, which in addition to near-infrared TCCON spectra also records mid-infrared spectra. We describe the achievable level of agreement between the different retrievals and show that these theoretical errors are in good agreement with empirical differences. The comparisons are made at different locations from tropical to Arctic latitudes, above sea and above land. Generally IASI and TES are similarly sensitive to δD in the free troposphere which allows to compare their measurements directly. At tropical latitudes where IASI's sensitivity is lower than that of TES, we show that the agreement improves when taking into account the sensitivity of IASI in the TES retrieval. For the comparison IASI-FTIR only direct comparisons are performed because of similar sensitivities. We identify a quasi negligible bias in the free troposphere (-3‰) between IASI retrieved δD with the TES one, which are bias corrected, but an important with the ground-based FTIR reaching -47‰. We also suggest that model-satellite observations comparisons could be optimized with IASI thanks to its high spatial and temporal sampling.

  7. Intercomparison of Satellite Dust Retrieval Products over the West African Sahara During the Fennec Campaign in June 2011

    NASA Technical Reports Server (NTRS)

    Banks, J.R.; Brindley, H. E.; Flamant, C.; Garay, M. J.; Hsu, N. C.; Kalashnikova, O. V.; Klueser, L.; Sayer, A. M.

    2013-01-01

    Dust retrievals over the Sahara Desert during June 2011 from the IASI, MISR, MODIS, and SEVIRI satellite instruments are compared against each other in order to understand the strengths and weaknesses of each retrieval approach. Particular attention is paid to the effects of meteorological conditions, land surface properties, and the magnitude of the dust loading. The period of study corresponds to the time of the first Fennec intensive measurement campaign, which provides new ground-based and aircraft measurements of the dust characteristics and loading. Validation using ground-based AERONET sunphotometer data indicate that of the satellite instruments, SEVIRI is most able to retrieve dust during optically thick dust events, whereas IASI and MODIS perform better at low dust loadings. This may significantly affect observations of dust emission and the mean dust climatology. MISR and MODIS are least sensitive to variations in meteorological conditions, while SEVIRI tends to overestimate the aerosol optical depth (AOD) under moist conditions (with a bias against AERONET of 0.31), especially at low dust loadings where the AOD<1. Further comparisons are made with airborne LIDAR measurements taken during the Fennec campaign, which provide further evidence for the inferences made from the AERONET comparisons. The effect of surface properties on the retrievals is also investigated. Over elevated surfaces IASI retrieves AODs which are most consistent with AERONET observations, while the AODs retrieved by MODIS tend to be biased low. In contrast, over the least emissive surfaces IASI significantly underestimates the AOD (with a bias of -0.41), while MISR and SEVIRI show closest agreement.

  8. Select Methodology for Validating Advanced Satellite Measurement Systems

    NASA Technical Reports Server (NTRS)

    Larar, Allen M.; Zhou, Daniel K.; Liu, Xi; Smith, William L.

    2008-01-01

    Advanced satellite sensors are tasked with improving global measurements of the Earth's atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring capability, and environmental change detection. Measurement system validation is crucial to achieving this goal and maximizing research and operational utility of resultant data. Field campaigns including satellite under-flights with well calibrated FTS sensors aboard high-altitude aircraft are an essential part of the validation task. This presentation focuses on an overview of validation methodology developed for assessment of high spectral resolution infrared systems, and includes results of preliminary studies performed to investigate the performance of the Infrared Atmospheric Sounding Interferometer (IASI) instrument aboard the MetOp-A satellite.

  9. A global assessment of NASA AIRS v6 and EUMETSAT IASI v6 precipitable water vapor using ground-based GPS SuomiNet stations

    NASA Astrophysics Data System (ADS)

    Roman, Jacola; Knuteson, Robert; August, Thomas; Hultberg, Tim; Ackerman, Steve; Revercomb, Hank

    2016-08-01

    Satellite remote sensing of precipitable water vapor (PWV) is essential for monitoring moisture in real time for weather applications, as well as tracking the long-term changes in PWV for climate change trend detection. This study assesses the accuracies of the current satellite observing system, specifically the National Aeronautics and Space Administration (NASA) Atmospheric Infrared Sounder (AIRS) v6 PWV product and the European Organization for the Exploitation of Meteorological Satellite Studies (EUMETSAT) Infrared Atmospheric Sounding Interferometer (IASI) v6 PWV product, using ground-based SuomiNet Global Positioning System (GPS) network as truth. Elevation-corrected collocated matchups to each SuomiNet GPS station in North America and around the world were created, and results were broken down by station, ARM region, climate zone, and latitude zone. The greatest difference, exceeding 5%, between IASI and AIRS retrievals occurred in the tropics. Generally, IASI and AIRS fall within a 5% error in the PWV range of 20-40 mm (a mean bias less than 2 mm), with a wet bias for extremely low PWV values (less than 5 mm) and a dry bias for extremely high PWV values (greater than 50 mm). The operational IR satellite products are able to capture the mean PWV but degrade in the extreme dry and wet regimes.

  10. First simultaneous space measurements of atmospheric pollutants in the boundary layer from IASI: a case study in the North China Plain

    NASA Astrophysics Data System (ADS)

    Boynard, Anne; Clerbaux, Cathy; Clarisse, Lieven; Safieddine, Sarah; Pommier, Matthieu; Van Damme, Martin; Bauduin, Sophie; Oudot, Charlotte; Hadji-Lazaro, Juliette; Hurtmans, Daniel; Coheur, Pierre-François

    2014-05-01

    An extremely severe and persistent smog episode occurred in January 2013 over China. The levels of air pollution have been dangerously high, reaching 40 times recommended safety levels and have affected health of millions of people. China faced one of the worst periods of air quality in recent history and drew worldwide attention. This pollution episode was caused by the combination of anthropogenic emissions and stable meteorological conditions (absence of wind and temperature inversion) that trapped pollutants in the boundary layer. To characterize this episode, we used the IASI (Infrared Atmospheric Sounding Interferometer) instrument onboard the MetOp-A platform. IASI observations show high concentrations of key trace gases such as carbon monoxide (CO), sulfur dioxide (SO2) and ammonia (NH3) along with ammonium sulfate aerosol. We show that IASI is able to detect boundary layer pollution in case of large negative thermal contrast combined with high levels of pollution. Our findings demonstrate the ability of thermal infrared instrument such as IASI to monitor boundary layer pollutants, which can support air quality evaluation and management.

  11. Potential for the use of reconstructed IASI radiances in the detection of atmospheric trace gases

    NASA Astrophysics Data System (ADS)

    Atkinson, N. C.; Hilton, F. I.; Illingworth, S. M.; Eyre, J. R.; Hultberg, T.

    2010-07-01

    Principal component (PC) analysis has received considerable attention as a technique for the extraction of meteorological signals from hyperspectral infra-red sounders such as the Infrared Atmospheric Sounding Interferometer (IASI) and the Atmospheric Infrared Sounder (AIRS). In addition to achieving substantial bit-volume reductions for dissemination purposes, the technique can also be used to generate reconstructed radiances in which random instrument noise has been reduced. Studies on PC analysis of hyperspectral infrared sounder data have been undertaken in the context of numerical weather prediction, instrument monitoring and geophysical variable retrieval, as well as data compression. This study examines the potential of PC analysis for chemistry applications. A major concern in the use of PC analysis for chemistry is that the spectral features associated with trace gases may not be well represented in the reconstructed spectra, either due to deficiencies in the training set or due to the limited number of PC scores used in the radiance reconstruction. In this paper we show examples of reconstructed IASI radiances for several trace gases: ammonia, sulphur dioxide, methane and carbon monoxide. It is shown that care must be taken in the selection of spectra for the initial training set: an iterative technique, in which outlier spectra are added to a base training set, gives the best results. For the four trace gases examined, key features of the chemical signatures are retained in the reconstructed radiances, whilst achieving a substantial reduction in instrument noise. A new regional re-transmission service for IASI is scheduled to start in 2010, as part of the EUMETSAT Advanced Retransmission Service (EARS). For this EARS-IASI service it is intended to include PC scores as part of the data stream. The paper describes the generation of the reference eigenvectors for this new service.

  12. Cross-validation of IASI/MetOp derived tropospheric δD with TES and ground-based FTIR observations

    NASA Astrophysics Data System (ADS)

    Lacour, J.-L.; Clarisse, L.; Worden, J.; Schneider, M.; Barthlott, S.; Hase, F.; Risi, C.; Clerbaux, C.; Hurtmans, D.; Coheur, P.-F.

    2015-03-01

    The Infrared Atmospheric Sounding Interferometer (IASI) flying onboard MetOpA and MetOpB is able to capture fine isotopic variations of the HDO to H2O ratio (δD) in the troposphere. Such observations at the high spatio-temporal resolution of the sounder are of great interest to improve our understanding of the mechanisms controlling humidity in the troposphere. In this study we aim to empirically assess the validity of our error estimation previously evaluated theoretically. To achieve this, we compare IASI δD retrieved profiles with other available profiles of δD, from the TES infrared sounder onboard AURA and from three ground-based FTIR stations produced within the MUSICA project: the NDACC (Network for the Detection of Atmospheric Composition Change) sites Kiruna and Izaña, and the TCCON site Karlsruhe, which in addition to near-infrared TCCON spectra also records mid-infrared spectra. We describe the achievable level of agreement between the different retrievals and show that these theoretical errors are in good agreement with empirical differences. The comparisons are made at different locations from tropical to Arctic latitudes, above sea and above land. Generally IASI and TES are similarly sensitive to δD in the free troposphere which allows one to compare their measurements directly. At tropical latitudes where IASI's sensitivity is lower than that of TES, we show that the agreement improves when taking into account the sensitivity of IASI in the TES retrieval. For the comparison IASI-FTIR only direct comparisons are performed because the sensitivity profiles of the two observing systems do not allow to take into account their differences of sensitivity. We identify a quasi negligible bias in the free troposphere (-3‰) between IASI retrieved δD with the TES, which are bias corrected, but important with the ground-based FTIR reaching -47‰. We also suggest that model-satellite observation comparisons could be optimized with IASI thanks to its high

  13. Overview of intercalibration of satellite instruments

    USGS Publications Warehouse

    Chander, G.; Hewison, T.J.; Fox, N.; Wu, X.; Xiong, X.; Blackwell, W.J.

    2013-01-01

    Inter-calibration of satellite instruments is critical for detection and quantification of changes in the Earth’s environment, weather forecasting, understanding climate processes, and monitoring climate and land cover change. These applications use data from many satellites; for the data to be inter-operable, the instruments must be cross-calibrated. To meet the stringent needs of such applications requires that instruments provide reliable, accurate, and consistent measurements over time. Robust techniques are required to ensure that observations from different instruments can be normalized to a common scale that the community agrees on. The long-term reliability of this process needs to be sustained in accordance with established reference standards and best practices. Furthermore, establishing physical meaning to the information through robust Système International d'unités (SI) traceable Calibration and Validation (Cal/Val) is essential to fully understand the parameters under observation. The processes of calibration, correction, stability monitoring, and quality assurance need to be underpinned and evidenced by comparison with “peer instruments” and, ideally, highly calibrated in-orbit reference instruments. Inter-calibration between instruments is a central pillar of the Cal/Val strategies of many national and international satellite remote sensing organizations. Inter-calibration techniques as outlined in this paper not only provide a practical means of identifying and correcting relative biases in radiometric calibration between instruments but also enable potential data gaps between measurement records in a critical time series to be bridged. Use of a robust set of internationally agreed upon and coordinated inter-calibration techniques will lead to significant improvement in the consistency between satellite instruments and facilitate accurate monitoring of the Earth’s climate at uncertainty levels needed to detect and attribute the mechanisms

  14. Multi-year assimilation of IASI and MLS ozone retrievals: variability of tropospheric ozone over the tropics in response to ENSO

    NASA Astrophysics Data System (ADS)

    Peiro, Hélène; Emili, Emanuele; Cariolle, Daniel; Barret, Brice; Le Flochmoën, Eric

    2018-05-01

    The Infrared Atmospheric Sounder Instrument (IASI) allows global coverage with very high spatial resolution and its measurements are promising for long-term ozone monitoring. In this study, Microwave Limb Sounder (MLS) O3 profiles and IASI O3 partial columns (1013.25-345 hPa) are assimilated in a chemistry transport model to produce 6-hourly analyses of tropospheric ozone for 6 years (2008-2013). We have compared and evaluated the IASI-MLS analysis and the MLS analysis to assess the added value of IASI measurements. The global chemical transport model MOCAGE (MOdèle de Chimie Atmosphérique à Grande Echelle) has been used with a linear ozone chemistry scheme and meteorological forcing fields from ERA-Interim (ECMWF global reanalysis) with a horizontal resolution of 2° × 2° and 60 vertical levels. The MLS and IASI O3 retrievals have been assimilated with a 4-D variational algorithm to constrain stratospheric and tropospheric ozone respectively. The ozone analyses are validated against ozone soundings and tropospheric column ozone (TCO) from the OMI-MLS residual method. In addition, an Ozone ENSO Index (OEI) is computed from the analysis to validate the TCO variability during the ENSO events. We show that the assimilation of IASI reproduces the variability of tropospheric ozone well during the period under study. The variability deduced from the IASI-MLS analysis and the OMI-MLS measurements are similar for the period of study. The IASI-MLS analysis can reproduce the extreme oscillation of tropospheric ozone caused by ENSO events over the tropical Pacific Ocean, although a correction is required to reduce a constant bias present in the IASI-MLS analysis.

  15. Infrared detector development for the IASI instrument

    NASA Astrophysics Data System (ADS)

    Royer, Michel; Fleury, Joel; Lorans, Dominique; Pelier, Alain

    1997-10-01

    IASI is an infrared atmospheric sounding interferometer devoted to the operational meteorology and to atmospheric studies and is to be installed on board the ESA/EUMETSAT Polar Platform METOP to be launched in 2002. The required operating lifetime is 5 years. SAGEM/SAT has been developing the cold acquisition unit since 1991. The B-phase study was dedicated to the manufacture of the critical components, among which the IR detectors, optics, cold links and packaging. They concern the 3 types of detectors (InSb, HgCdTe-photovoltaic, HgCdTe- photoconductive) and the assembly technologies. The quantum detectors operate in the IR spectrum, so they are cooled at 100 K. The large spectrum (3.4 to 15.5 micrometer) is divided into 3 spectral bands. After manufacturing of these components, a program of test has been conducted and is reported for the evaluation of the technologies. It shows how the detector focal planes can sustain the space environmental conditions of an operational mission. It comprises two main files of test, mechanical evaluation and electrical evaluation. The detector environment has also been considered with aging and radiation tests, performed successfully. The B- phase is now achieved and all these development and testing activities are here reported.

  16. Potential for the use of reconstructed IASI radiances in the detection of atmospheric trace gases

    NASA Astrophysics Data System (ADS)

    Atkinson, N. C.; Hilton, F. I.; Illingworth, S. M.; Eyre, J. R.; Hultberg, T.

    2010-02-01

    Principal component (PC) analysis has received considerable attention as a technique for the extraction of meteorological signals from hyperspectral infra-red sounders such as the Infrared Atmospheric Sounding Interferometer (IASI) and the Atmospheric Infrared Sounder (AIRS). In addition to achieving substantial bit-volume reductions for dissemination purposes, the technique can also be used to generate reconstructed radiances in which random instrument noise has been suppressed. To date, most studies have been in the context of Numerical Weather Prediction (NWP). This study examines the potential of PC analysis for chemistry applications. A major concern in the use of PC analysis for chemistry has been that the spectral features associated with trace gases may not be well represented in the reconstructed spectra, either due to deficiencies in the training set or due to the limited number of PC scores used in the radiance reconstruction. In this paper we show examples of reconstructed IASI radiances for several trace gases: ammonia, sulphur dioxide, methane and carbon monoxide. It is shown that care must be taken in the selection of spectra for the initial training set: an iterative technique, in which outlier spectra are added to a base training set, gives the best results. For the four trace gases examined, the chemical signatures are retained in the reconstructed radiances, whilst achieving a substantial reduction in instrument noise. A new regional re-transmission service for IASI is scheduled to start in 2010, as part of the EUMETSAT Advanced Retransmission Service (EARS). For this EARS-IASI service it is intended to include PC scores as part of the data stream. The paper describes the generation of the reference eigenvectors for this new service.

  17. Using the full IASI spectrum for the physical retrieval of temperature, H2O, HDO, O3, minor and trace gases

    NASA Astrophysics Data System (ADS)

    Serio, C.; Blasi, M. G.; Liuzzi, G.; Masiello, G.; Venafra, S.

    2017-02-01

    IASI (Infrared Atmospheric Sounder Interferometer) is flying on the European MetOp series of weather satellites. Besides acquiring temperature and humidity data, IASI also observes the infrared emission of the main minor and trace atmospheric components with high precision. The retrieval of these gases would be highly beneficial to the efforts of scientists monitoring Earths climate. IASI retrieval capability and algorithms have been mostly driven by Numerical Weather Prediction centers, whose limited resources for data transmission and computing is hampering the full exploitation of IASI information content. The quest for real or nearly real time processing has affected the precision of the estimation of minor and trace gases, which are normally retrieved on a very coarse spatial grid. The paper presents the very first retrieval of the complete suite of IASI target parameters by exploiting all its 8461 channels. The analysis has been exemplified for sea surface and the target parameters will include sea surface temperature, temperature profile, water vapour and HDO profiles, ozone profile, total column amount of CO, CO2, CH4, N2O, SO2, HNO3, NH3, OCS and CF4. Concerning CO2, CH4 and N2O, it will be shown that their colum amount can be obtained for each single IASI IFOV (Instantaneous Field of View) with a precision better than 1-2%, which opens the possibility to analyze, e.g., the formation of regional patterns of greenhouse gases. To assess the quality of the retrieval, a case study has been set up which considers two years of IASI soundings over the Hawaii, Manua Loa validation station.

  18. Three-Dimensional Distribution of a Major Desert Dust Outbreak over East Asia in March 2008 Derived from IASI Satellite Observations

    NASA Technical Reports Server (NTRS)

    Cuesta, Juan; Eremenko, Maxim; Flamant, Cyrille; Dufour, Gaelle; Laurent, Benoît; Bergametti, Gilles; Hopfner, Michael; Orphal, Johannes; Zhou, Daniel

    2015-01-01

    We describe the daily evolution of the three-dimensional (3D) structure of a major dust outbreak initiated by an extratropical cyclone over East Asia in early March 2008, using new aerosol retrievals derived from satellite observations of IASI (Infrared Atmospheric Sounding Interferometer). A novel auto-adaptive Tikhonov-Phillips-type approach called AEROIASI is used to retrieve vertical profiles of dust extinction coefficient at 10 microns for most cloud-free IASI pixels, both over land and ocean. The dust vertical distribution derived from AEROIASI is shown to agree remarkably well with along-track transects of Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) spaceborne lidar vertical profiles (mean biases less than 110 meters, correlation of 0.95, and precision of 260 meters for mean altitudes of the dust layers). AEROIASI allows the daily characterization of the 3D transport pathways across East Asia of two dust plumes originating from the Gobi and North Chinese deserts. From AEROIASI retrievals, we provide evidence that (i) both dust plumes are transported over the Beijing region and the Yellow Sea as elevated layers above a shallow boundary layer, (ii) as they progress eastward, the dust layers are lifted up by the ascending motions near the core of the extratropical cyclone, and (iii) when being transported over the warm waters of the Japan Sea, turbulent mixing in the deep marine boundary layer leads to high dust concentrations down to the surface. AEROIASI observations and model simulations also show that the progression of the dust plumes across East Asia is tightly related to the advancing cold front of the extratropical cyclone.

  19. Assimilation of IASI partial tropospheric columns with an Ensemble Kalman Filter over Europe

    NASA Astrophysics Data System (ADS)

    Coman, A.; Foret, G.; Beekmann, M.; Eremenko, M.; Dufour, G.; Gaubert, B.; Ung, A.; Schmechtig, C.; Flaud, J.-M.; Bergametti, G.

    2011-09-01

    Partial lower tropospheric ozone columns provided by the IASI (Infrared Atmospheric Sounding Interferometer) instrument have been assimilated into a chemistry-transport model at continental scale (CHIMERE) using an Ensemble Kalman Filter (EnKF). Analyses are made for the month of July 2007 over the European domain. Launched in 2006, aboard the MetOp-A satellite, IASI shows high sensitivity for ozone in the free troposphere and low sensitivity at the ground; therefore it is important to evaluate if assimilation of these observations can improve free tropospheric ozone, and possibly surface ozone. The analyses are validated against independent ozone observations from sondes, MOZAIC1 aircraft and ground based stations (AIRBASE - the European Air quality dataBase) and compared with respect to the free run of CHIMERE. These comparisons show a decrease in error of 6 parts-per-billion (ppb) in the free troposphere over the Frankfurt area, and also a reduction of the root mean square error (respectively bias) at the surface of 19% (33%) for more than 90% of existing ground stations. This provides evidence of the potential of data assimilation of tropospheric IASI columns to better describe the tropospheric ozone distribution, including surface ozone, despite the lower sensitivity. The changes in concentration resulting from the observational constraints were quantified and several geophysical explanations for the findings of this study were drawn. The corrections were most pronounced over Italy and the Mediterranean region, on the average we noted an average reduction of 8-9 ppb in the free troposphere with respect to the free run, and still a reduction of 5.5 ppb at ground, likely due to a longer residence time of air masses in this part associated to the general circulation pattern (i.e. dominant western circulation) and to persistent anticyclonic conditions over the Mediterranean basin. This is an important geophysical result, since the ozone burden is large over this

  20. Assimilation of IASI partial tropospheric columns with an Ensemble Kalman Filter over Europe

    NASA Astrophysics Data System (ADS)

    Coman, A.; Foret, G.; Beekmann, M.; Eremenko, M.; Dufour, G.; Gaubert, B.; Ung, A.; Schmechtig, C.; Flaud, J.-M.; Bergametti, G.

    2012-03-01

    Partial lower tropospheric ozone columns provided by the IASI (Infrared Atmospheric Sounding Interferometer) instrument have been assimilated into a chemistry-transport model at continental scale (CHIMERE) using an Ensemble Square Root Kalman Filter (EnSRF). Analyses are made for the month of July 2007 over the European domain. Launched in 2006, aboard the MetOp-A satellite, IASI shows high sensitivity for ozone in the free troposphere and low sensitivity at the ground; therefore it is important to evaluate if assimilation of these observations can improve free tropospheric ozone, and possibly surface ozone. The analyses are validated against independent ozone observations from sondes, MOZAIC1 aircraft and ground based stations (AIRBASE - the European Air quality dataBase) and compared with respect to the free run of CHIMERE. These comparisons show a decrease in error of 6 parts-per-billion (ppb) in the free troposphere over the Frankfurt area, and also a reduction of the root mean square error (respectively bias) at the surface of 19% (33%) for more than 90% of existing ground stations. This provides evidence of the potential of data assimilation of tropospheric IASI columns to better describe the tropospheric ozone distribution, including surface ozone, despite the lower sensitivity. The changes in concentration resulting from the observational constraints were quantified and several geophysical explanations for the findings of this study were drawn. The corrections were most pronounced over Italy and the Mediterranean region, we noted an average reduction of 8-9 ppb in the free troposphere with respect to the free run, and still a reduction of 5.5 ppb at ground, likely due to a longer residence time of air masses in this part associated to the general circulation pattern (i.e. dominant western circulation) and to persistent anticyclonic conditions over the Mediterranean basin. This is an important geophysical result, since the ozone burden is large over this

  1. Lower Tropospheric Ozone Retrievals from Infrared Satellite Observations Using a Self-Adapting Regularization Method

    NASA Astrophysics Data System (ADS)

    Eremenko, M.; Sgheri, L.; Ridolfi, M.; Dufour, G.; Cuesta, J.

    2017-12-01

    Lower tropospheric ozone (O3) retrievals from nadir sounders is challenging due to the lack of vertical sensitivity of the measurements and towards the lowest layers. If improvements have been made during the last decade, it is still important to explore possibilities to improve the retrieval algorithms themselves. O3 retrieval from nadir satellite observations is an ill-conditioned problem, which requires regularization using constraint matrices. Up to now, most of the retrieval algorithms rely on a fixed constraint. The constraint is determined and fixed beforehand, on the basis of sensitivity tests. This does not allow ones to take advantage of the entire capabilities of the satellite measurements, which vary with the thermal conditions of the observed scenes. To overcome this limitation, we developed a self-adapting and altitude-dependent regularization scheme. A crucial step is the choice of the strength of the constraint. This choice is done during an iterative process and depends on the measurement errors and on the sensitivity of the measurements to the target parameters at the different altitudes. The challenge is to limit the use of a priori constraints to the minimal amount needed to perform the inversion. The algorithm has been tested on synthetic observations matching the future IASI-NG satellite instrument. IASI-NG measurements are simulated on the basis of O3 concentrations taken from an atmospheric model and retrieved using two retrieval schemes (the standard and self-adapting ones). Comparison of the results shows that the sensitivity of the observations to the O3 amount in the lowest layers (given by the degrees of freedom for the solution) is increased, which allows a better description of the ozone distribution, especially in the case of large ozone plumes. Biases are reduced and the spatial correlation is improved. Tentative of application to real observations from IASI, currently onboard the Metop satellite will also be presented.

  2. Evaluation of decadal hindcasts using satellite simulators

    NASA Astrophysics Data System (ADS)

    Spangehl, Thomas; Mazurkiewicz, Alex; Schröder, Marc

    2013-04-01

    The evaluation of dynamical ensemble forecast systems requires a solid validation of basic processes such as the global atmospheric water and energy cycle. The value of any validation approach strongly depends on the quality of the observational data records used. Current approaches utilize in situ measurements, remote sensing data and reanalyses. Related data records are subject to a number of uncertainties and limitations such as representativeness, spatial and temporal resolution and homogeneity. However, recently several climate data records with known and sufficient quality became available. In particular, the satellite data records offer the opportunity to obtain reference information on global scales including the oceans. Here we consider the simulation of satellite radiances from the climate model output enabling an evaluation in the instrument's parameter space to avoid uncertainties stemming from the application of retrieval schemes in order to minimise uncertainties on the reference side. Utilizing the CFMIP Observation Simulator Package (COSP) we develop satellite simulators for the Tropical Rainfall Measuring Mission precipitation radar (TRMM PR) and the Infrared Atmospheric Sounding Interferometer (IASI). The simulators are applied within the MiKlip project funded by BMBF (German Federal Ministry of Education and Research) to evaluate decadal climate predictions performed with the MPI-ESM developed at the Max Planck Institute for Meteorology. While TRMM PR enables the evaluation of the vertical structure of precipitation over tropical and sub-tropical areas, IASI is used to support the global evaluation of clouds and radiation. In a first step the reliability of the developed simulators needs to be explored. The simulation of radiances in the instrument space requires the generation of sub-grid scale variability from the climate model output. Furthermore, assumptions are made to simulate radiances such as, for example, the distribution of different

  3. Estimating Amazonian methane emissions through 4D-Var inverse modelling with satellite observations from GOSAT and IASI

    NASA Astrophysics Data System (ADS)

    Wilson, C. J.; Chipperfield, M.; Gloor, M.; McNorton, J.; Miller, J. B.; Gatti, L. V.; Siddans, R.; Bloom, A. A.; Basso, L. S.; Boesch, H.; Parker, R.; Monks, S. A.

    2015-12-01

    observations prior to data assimilation, some high-methane events indicated by the observations are not captured by the model. We assimilate observations from the NOAA surface measurement network, from the AMAZONICA aircraft and from the GOSAT and IASI satellites, and find that tropical South American CH4 emissions approach 50 Tg(CH4)/yr.

  4. Decrease in tropospheric O3 levels in the Northern Hemisphere observed by IASI

    NASA Astrophysics Data System (ADS)

    Wespes, Catherine; Hurtmans, Daniel; Clerbaux, Cathy; Boynard, Anne; Coheur, Pierre-François

    2018-05-01

    In this study, we describe the recent changes in the tropospheric ozone (O3) columns measured by the Infrared Atmospheric Sounding Interferometer (IASI), onboard the Metop satellite, during the first 9 years of operation (January 2008 to May 2017). Using appropriate multivariate regression methods, we differentiate significant linear trends from other sources of O3 variations captured by IASI. The geographical patterns of the adjusted O3 trends are provided and discussed on the global scale. Given the large contribution of the natural variability in comparison with that of the trend (25-85 % vs. 15-50 %, respectively) to the total O3 variations, we estimate that additional years of IASI measurements are generally required to detect the estimated O3 trends with high precision. Globally, additional 6 months to 6 years of measurements, depending on the regions and the seasons, are needed to detect a trend of |5| DU decade-1. An exception is interestingly found during summer at mid- and high latitudes of the Northern Hemisphere (NH; ˜ 40 to ˜ 75° N), where the large absolute fitted trend values (˜ |0.5| DU yr-1 on average) combined with the small model residuals (˜ 10 %) allow for detection of a band-like pattern of significant negative trends. Despite no consensus in terms of tropospheric O3 trends having been reached from the available independent datasets (UV or IR satellites, O3 sondes, aircrafts, ground-based measurements, etc.) for the reasons that are discussed in the text, this finding is consistent with the reported decrease in O3 precursor emissions in recent years, especially in Europe and USA. The influence of continental pollution on that latitudinal band is further investigated and supported by the analysis of the O3-CO relationship (in terms of correlation coefficient, regression slope and covariance) that we found to be the strongest at northern midlatitudes in summer.

  5. CO Seasonal Variability and Trend over Paris Megacity Using Ground-Based QualAir FTS and Satellite IASI-MetOp Measurements

    NASA Astrophysics Data System (ADS)

    Te, Yao; Jeseck, Pascal; Hadji-Lazaro, Juliette

    2012-11-01

    In a growing world with more than 7 billion inhabitants and big emerging countries such as China, Brazil and India, emissions of anthropogenic pollutants are increasing continuously. Monitoring and control of atmospheric pollutants in megacities have become a major challenge for scientists and public health authorities in environmental research area. The QualAir platform at University Pierre et Marie Curie (UPMC), is an innovating experimental research platform dedicated to survey urban atmospheric pollution and air quality. A Bruker Optics IFS 125HR Fourier transform spectrometer belonged to the Laboratoire de Physique Moléculaire pour l'Atmosphère et l'Astrophysique (LPMAA), was adapted for ground-based atmospheric measurements. As one of the major instruments of the QualAir platform, this ground-based Fourier transform spectrometer (QualAir FTS) analyses the composition of the urban atmosphere of Paris, which is the third largest European megacity. The continuous monitoring of atmospheric pollutants is essential to improve the understanding of urban air pollution processes. Associated with a sun-tracker, the QualAir remote sensing FTS operates in solar infrared absorption and enables to monitor many trace gases, and to follow up their variability in the Ile-de-France region. Concentrations of atmospheric pollutants are retrieved by the radiative transfer model PROFFIT. These ground-based remote sensing measurements are compared to ground in-situ measurements and to satellite data from IASI-MetOp (Infrared Atmospheric Sounding Interferometer). The remote sensing total column of the carbon monoxide (CO) obtained from January 2009 to June 2012, has a seasonal variability with a maximum in April and a minimum in October. While, after 2008, the mean CO level is quite stable (no significant decrease as before 2008).

  6. Comparison results of MOPITT, AIRS and IASI data with ground-based spectroscopic measurements of CO and CH4 total contents

    NASA Astrophysics Data System (ADS)

    Rakitin, Vadim; Elansky, Nikolai; Shtabkin, Yury; Skorokhod, Andrey; Grechko, Eugeny; Pankratova, Natalia; Safronov, Alexandr

    2016-04-01

    A comparative analysis of satellite and ground-based spectroscopic measurements of CO and CH4 total content (CO TC) in the atmosphere in the background and polluted conditions (stations of OIAP RAS and NDACC) for the 2010-2015 time-period. The significant correlation between satellite and ground-based CO TC data for all satellite sensors in background conditions was obtained. Also the empirical private transient relationships between satellite CO MOPITT v6 Joint, AIRS v6, IASI MeTop-A products and the data of solar-tracking ground-based spectrometers are analyzed. Significant correlation between satellite and ground-based data of CO TC was obtained for all satellite sensors if measurements were carried out over unpolluted areas (2010-2014). It was shown that for polluted areas IASI MetOp-A and AIRSv6 data underestimate the actual value of CO TC by the factor of 1.5÷ 2.8. The average correlation between satellite and ground-based data increased significantly for the case if the measurement days, when the height of the planetary boundary layer (PBL) was less than 400-500 meters, were excluded from the comparison. This result was obtained for all of the selected sensors and observational sites. To improve the representativeness of the satellite CO TC data for polluted areas it could be recommended to exclude the days with low height of the PBL from the analysis of spatio-temporal variations and subsequent data assimilation (as example for the CO emissions estimating from powerful surface sources). Best correlation (R2≥0.5) in diurnal CH4 TC with ground-based data was found for AIRS v6. This work has supported by the Russian Scientific Foundation under grant №14-47-00049 and partially by the Russian Foundation for Basic Research (grant № 13-05-41395).

  7. Creating a Satellite-Based Record of Tropospheric Ozone

    NASA Technical Reports Server (NTRS)

    Oetjen, Hilke; Payne, Vivienne H.; Kulawik, Susan S.; Eldering, Annmarie; Worden, John; Edwards, David P.; Francis, Gene L.; Worden, Helen M.

    2013-01-01

    The TES retrieval algorithm has been applied to IASI radiances. We compare the retrieved ozone profiles with ozone sonde profiles for mid-latitudes for the year 2008. We find a positive bias in the IASI ozone profiles in the UTLS region of up to 22 %. The spatial coverage of the IASI instrument allows sampling of effectively the same air mass with several IASI scenes simultaneously. Comparisons of the root-mean-square of an ensemble of IASI profiles to theoretical errors indicate that the measurement noise and the interference of temperature and water vapour on the retrieval together mostly explain the empirically derived random errors. The total degrees of freedom for signal of the retrieval for ozone are 3.1 +/- 0.2 and the tropospheric degrees of freedom are 1.0 +/- 0.2 for the described cases. IASI ozone profiles agree within the error bars with coincident ozone profiles derived from a TES stare sequence for the ozone sonde station at Bratt's Lake (50.2 deg N, 104.7 deg W).

  8. SAO Participation in the GOME and SCIAMACHY Satellite Instrument Programs

    NASA Technical Reports Server (NTRS)

    Hilsenrath, Ernest (Technical Monitor); Chance, Kelly; Kurosu, Thomas

    2004-01-01

    This report summarizes the progress on our three-year program of research to refine the measurement capability for satellite-based instruments that monitor ozone and other trace species in the Earth's stratosphere and troposphere, to retrieve global distributions of these and other constituents h m the GOME and SCIAMACHY satellite instruments, and to conduct scientific studies for the ILAS instruments. This continues our involvements as a U.S. participant in GOME and SCIAMACHY since their inception, and as a member of the ILAS-II Science Team. These programs have led to the launch of the first satellite instrument specifically designed to measure height-resolved ozone, including the tropospheric component (GOME), and the development of the first satellite instrument that will measure tropospheric ozone simultaneously with NO2, CO, HCHO, N2O, H2O, and CH4 (SCIAMACHY). The GOME program now includes the GOME-2 instruments, to be launched on the Eumetsat Metop satellites, providing long-term continuity in European measurements of global ozone that complement the measurements of the TOMS, SBUV, OMI, OMPS instruments. The research primarily focuses on two areas: Data analysis, including algorithm development and validation studies that will improve the quality of retrieved data products, in support for future field campaigns (to complement in situ and airborne campaigns with satellite measurements), and scientific analyses to be interfaced to atmospheric modeling studies.

  9. SAO Participation in the GOME and SCIAMACHY Satellite Instrument Programs

    NASA Technical Reports Server (NTRS)

    Chance, Kelly; Kurosu, Thomas

    2003-01-01

    This report summarizes the progress on our three-year program of research to refine the measurement capability for satellite-based instruments that monitor ozone and other trace species in the Earth's stratosphere and troposphere, to retrieve global distributions of these and other constituents from the GOME and SCIAMACHY satellite instruments, and to conduct scientific studies for the ILAS instruments. This continues our involvements as a U.S. participant in GOME and SCIAMACHY since their inception, and as a member of the ILAS-II Science Team. These programs have led to the launch of the first satellite instrument specifically designed to measure height-resolved ozone, including the tropospheric component (GOME), and the development of the first satellite instrument that will measure tropospheric ozone simultaneously with NO2, CO, HCHO, N2O, H2O, and CH4 (SCIAMACHY). The GOME program now includes the GOME-2 instruments, to be launched on the Eumetsat Metop satellites, providing long-term continuity in European measurements of global ozone that complement the measurements of the TOMS, SBW, OMI, OMPS instruments. The research primarily focuses on two areas: Data analysis, including algorithm development and validation studies that will improve the quality of retrieved data products, in support for future field campaigns (to complement in situ and airborne campaigns with satellite measurements), and scientific analyses to be interfaced to atmospheric modeling studies.

  10. Simultaneous Retrieval of Temperature, Water Vapor and Ozone Atmospheric Profiles from IASI: Compression, De-noising, First Guess Retrieval and Inversion Algorithms

    NASA Technical Reports Server (NTRS)

    Aires, F.; Rossow, W. B.; Scott, N. A.; Chedin, A.; Hansen, James E. (Technical Monitor)

    2001-01-01

    A fast temperature water vapor and ozone atmospheric profile retrieval algorithm is developed for the high spectral resolution Infrared Atmospheric Sounding Interferometer (IASI) space-borne instrument. Compression and de-noising of IASI observations are performed using Principal Component Analysis. This preprocessing methodology also allows, for a fast pattern recognition in a climatological data set to obtain a first guess. Then, a neural network using first guess information is developed to retrieve simultaneously temperature, water vapor and ozone atmospheric profiles. The performance of the resulting fast and accurate inverse model is evaluated with a large diversified data set of radiosondes atmospheres including rare events.

  11. Retrieval of volcanic ash properties from the Infrared Atmospheric Sounding Interferometer (IASI)

    NASA Astrophysics Data System (ADS)

    Ventress, Lucy; Carboni, Elisa; Smith, Andrew; Grainger, Don; Dudhia, Anu; Hayer, Catherine

    2014-05-01

    The Infrared Atmospheric Sounding Interferometer (IASI), on board both the MetOp-A and MetOp-B platforms, is a Fourier transform spectrometer covering the mid-infrared (IR) from 645-2760cm-1 (3.62-15.5 μm) with a spectral resolution of 0.5cm-1 (apodised) and a pixel diameter at nadir of 12km. These characteristics allow global coverage to be achieved twice daily for each instrument and make IASI a very useful tool for the observation of larger aerosol particles (such as desert dust and volcanic ash) and the tracking of volcanic plumes. In recent years, following the eruption of Eyjafjallajökull, interest in the the ability to detect and characterise volcanic ash plumes has peaked due to the hazards to aviation. The thermal infrared spectra shows a rapid variation with wavelength due to absorption lines from atmospheric and volcanic gases as well as broad scale features principally due to particulate absorption. The ash signature depends upon both the composition and size distribution of ash particles as well as the altitude of the volcanic plume. To retrieve ash properties, IASI brightness temperature spectra are analysed using an optimal estimation retrieval scheme and a forward model based on RTTOV. Initially, IASI pixels are flagged for the presence of volcanic ash using a linear retrieval detection method based on departures from a background state. Given a positive ash signal, the RTTOV output for a clean atmosphere (containing atmospheric gases but no cloud or aerosol/ash) is combined with an ash/cloud layer using the same scheme as for the Oxford-RAL Retrieval of Aerosol and Cloud (ORAC) algorithm. The retrieved parameters are ash optical depth (at a reference wavelength of 550nm), ash effective radius, layer altitude and surface temperature. The potential for distinguishing between different ash types is explored and a sensitivity study of the retrieval algorithm is presented. Results are shown from studies of the evolution and composition of ash plumes

  12. MUSICA MetOp/IASI {H2O,δD} pair retrieval simulations for validating tropospheric moisture pathways in atmospheric models

    NASA Astrophysics Data System (ADS)

    Schneider, Matthias; Borger, Christian; Wiegele, Andreas; Hase, Frank; García, Omaira E.; Sepúlveda, Eliezer; Werner, Martin

    2017-02-01

    The project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) has shown that the sensor IASI aboard the satellite MetOp can measure the free tropospheric {H2O,δD} pair distribution twice per day on a quasi-global scale. Such data are very promising for investigating tropospheric moisture pathways, however, the complex data characteristics compromise their usage in the context of model evaluation studies. Here we present a tool that allows for simulating MUSICA MetOp/IASI {H2O,δD} pair remote sensing data for a given model atmosphere, thereby creating model data that have the remote sensing data characteristics assimilated. This model data can then be compared to the MUSICA data. The retrieval simulation method is based on the physical principles of radiative transfer and we show that the uncertainty of the simulations is within the uncertainty of the MUSICA MetOp/IASI products, i.e. the retrieval simulations are reliable enough. We demonstrate the working principle of the simulator by applying it to ECHAM5-wiso model data. The few case studies clearly reveal the large potential of the MUSICA MetOp/IASI {H2O,δD} data pairs for evaluating modelled moisture pathways. The tool is made freely available in form of MATLAB and Python routines and can be easily connected to any atmospheric water vapour isotopologue model.

  13. 2007-2017: 10 years of IASI CO retrievals

    NASA Astrophysics Data System (ADS)

    George, M.; Clerbaux, C.; Hadji-Lazaro, J.; Pierre-Francois, C.; Hurtmans, D.; Edwards, D. P.; Worden, H. M.; Deeter, M. N.; Mao, D.; August, T.; Crapeau, M.

    2017-12-01

    Carbon monoxide (CO) is an important trace gas for understanding air quality and atmospheric composition. It is a good tracer of pollution plumes and atmospheric dynamics. IASI CO concentrations are retrieved from the radiance data using the Fast Operational Retrievals on Layers for IASI (FORLI) algorithm, based on the Optimal Estimation theory. The operational production is performed at EUMETSAT and the products are distributed in NRT via EUMETCast under the AC SAF auspices. We present here an analysis of 10 years of global distributions of CO. Improvements of the last FORLI-CO version (v20151001) will be shown. Updates in the auxiliary parameters (temperature, cloud information) have an impact on the retrieved product. Comparison with MOPITT CO data (v7T, record starting in 2000) was performed, both for partial and total columns. Harmonizing IASI and MOPITT CO products is challenging: a method using corrective factors (developed in the framework of the QA4ECV project) will be presented.

  14. CEOS Visualization Environment (COVE) Tool for Intercalibration of Satellite Instruments

    NASA Technical Reports Server (NTRS)

    Kessler, Paul D.; Killough, Brian D.; Gowda, Sanjay; Williams, Brian R.; Chander, Gyanesh; Qu, Min

    2013-01-01

    Increasingly, data from multiple instruments are used to gain a more complete understanding of land surface processes at a variety of scales. Intercalibration, comparison, and coordination of satellite instrument coverage areas is a critical effort of space agencies and of international and domestic organizations. The Committee on Earth Observation Satellites Visualization Environment (COVE) is a suite of browser-based applications that leverage Google Earth to display past, present, and future satellite instrument coverage areas and coincident calibration opportunities. This forecasting and ground coverage analysis and visualization capability greatly benefits the remote sensing calibration community in preparation for multisatellite ground calibration campaigns or individual satellite calibration studies. COVE has been developed for use by a broad international community to improve the efficiency and efficacy of such calibration efforts. This paper provides a brief overview of the COVE tool, its validation, accuracies and limitations with emphasis on the applicability of this visualization tool for supporting ground field campaigns and intercalibration of satellite instruments.

  15. IASI Radiance Data Assimilation in Local Ensemble Transform Kalman Filter

    NASA Astrophysics Data System (ADS)

    Cho, K.; Hyoung-Wook, C.; Jo, Y.

    2016-12-01

    Korea institute of Atmospheric Prediction Systems (KIAPS) is developing NWP model with data assimilation systems. Local Ensemble Transform Kalman Filter (LETKF) system, one of the data assimilation systems, has been developed for KIAPS Integrated Model (KIM) based on cubed-sphere grid and has successfully assimilated real data. LETKF data assimilation system has been extended to 4D- LETKF which considers time-evolving error covariance within assimilation window and IASI radiance data assimilation using KPOP (KIAPS package for observation processing) with RTTOV (Radiative Transfer for TOVS). The LETKF system is implementing semi operational prediction including conventional (sonde, aircraft) observation and AMSU-A (Advanced Microwave Sounding Unit-A) radiance data from April. Recently, the semi operational prediction system updated radiance observations including GPS-RO, AMV, IASI (Infrared Atmospheric Sounding Interferometer) data at July. A set of simulation of KIM with ne30np4 and 50 vertical levels (of top 0.3hPa) were carried out for short range forecast (10days) within semi operation prediction LETKF system with ensemble forecast 50 members. In order to only IASI impact, our experiments used only conventional and IAIS radiance data to same semi operational prediction set. We carried out sensitivity test for IAIS thinning method (3D and 4D). IASI observation number was increased by temporal (4D) thinning and the improvement of IASI radiance data impact on the forecast skill of model will expect.

  16. Compendium of meteorological satellites and instrumentation. [US, USSR, UK, and French satellites

    NASA Technical Reports Server (NTRS)

    Stoldt, N. W.; Havanac, P. J.

    1973-01-01

    Pertinent information is presented for 98 launched and planned satellites of the U.S., U.K., U.S.S.R., and France, as well as their over 200 meteorological experiments or instruments. Summary information is provided for both operational and research satellites. Three major sections include: (1) an overview by country, of the various series of meteorological satellite programs; (2) brief descriptions of the satellites and their experiments; and (3) an extensive bibliography. A glossary of acronyms and two indexes for cross-referencing are also included. In addition, various tables and figures presenting satellite operating times, data coverage, location of launch sites, and descriptions of the launch vehicles used to orbit the meteorological satellites are given.

  17. CEOS visualization environment (COVE) tool for intercalibration of satellite instruments

    USGS Publications Warehouse

    Kessler, P.D.; Killough, B.D.; Gowda, S.; Williams, B.R.; Chander, G.; Qu, Min

    2013-01-01

    Increasingly, data from multiple instruments are used to gain a more complete understanding of land surface processes at a variety of scales. Intercalibration, comparison, and coordination of satellite instrument coverage areas is a critical effort of international and domestic space agencies and organizations. The Committee on Earth Observation Satellites Visualization Environment (COVE) is a suite of browser-based applications that leverage Google Earth to display past, present, and future satellite instrument coverage areas and coincident calibration opportunities. This forecasting and ground coverage analysis and visualization capability greatly benefits the remote sensing calibration community in preparation for multisatellite ground calibration campaigns or individual satellite calibration studies. COVE has been developed for use by a broad international community to improve the efficiency and efficacy of such calibration planning efforts, whether those efforts require past, present, or future predictions. This paper provides a brief overview of the COVE tool, its validation, accuracies, and limitations with emphasis on the applicability of this visualization tool for supporting ground field campaigns and intercalibration of satellite instruments.

  18. Downward-deployed tethered satellite systems, measurement techniques, and instrumentation - A review

    NASA Technical Reports Server (NTRS)

    Brown, Kenneth G.; Melfi, Leonard T., Jr.; Upchurch, Billy T.; Wood, George M., Jr.

    1992-01-01

    This paper describes a number of scheduled and proposed Shuttle-based downward-deployed tethered satellite systems (TSSs) the purpose of which is to determine the structure of the lower thermosphere and to measure the atmospheric and aerodynamic effects in the vicinity of the satellite, the aerothermodynamic effects on the satellite's surface, and the dynamics of the tether and its endmass, the satellite. The instruments for the downward-deployed tethered missions will include mass spectrometers and other density sensors, plasma instrumentation, optical spectrophotometers, magnetometers, and instrumentation to measure the effects on satellite surface (such as the surface temperature, heat transfer, and pressure; gas adsorption on surfaces, chemistry with other gas molecules and surface material, and desorption from the surface; and surface charging).

  19. Monitoring Surface Climate With its Emissivity Derived From Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu

    2012-01-01

    Satellite thermal infrared (IR) spectral emissivity data have been shown to be significant for atmospheric research and monitoring the Earth fs environment. Long-term and large-scale observations needed for global monitoring and research can be supplied by satellite-based remote sensing. Presented here is the global surface IR emissivity data retrieved from the last 5 years of Infrared Atmospheric Sounding Interferometer (IASI) measurements observed from the MetOp-A satellite. Monthly mean surface properties (i.e., skin temperature T(sub s) and emissivity spectra epsilon(sub v) with a spatial resolution of 0.5x0.5-degrees latitude-longitude are produced to monitor seasonal and inter-annual variations. We demonstrate that surface epsilon(sub v) and T(sub s) retrieved with IASI measurements can be used to assist in monitoring surface weather and surface climate change. Surface epsilon(sub v) together with T(sub s) from current and future operational satellites can be utilized as a means of long-term and large-scale monitoring of Earth 's surface weather environment and associated changes.

  20. Analysis of AIRS and IASI System Performance Under Clear and Cloudy Conditions

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Strow, L. Larrabee

    2010-01-01

    The radiometric and spectral system performance of space-borne infrared radiometers is generally specified and analyzed under strictly cloud-free, spatially uniform and warm conditions, with the assumption that the observed performance applies to the full dynamic range under clear and cloudy conditions and that random noise cancels for the evaluation of the radiometric accuracy. Such clear conditions are found in only one percent of the data. Ninety nine percent of the data include clouds, which produce spatially highly non-uniform scenes with 11 micrometers window brightness temperatures as low as 200K. We use AIRS and IASI radiance spectra to compare system performance under clear and a wide range of cloudy conditions. Although the two instruments are in polar orbits, with the ascending nodes separated by four hours, daily averages already reveal surprisingly similar measurements. The AIRS and IASI radiometric performance based on the mean of large numbers of observation is comparable and agrees within 200 mK over a wide range of temperatures. There are also some unexpected differences at the 200 -500 mK level, which are of significance for climate applications. The results were verified with data from July 2007 through January 2010, but many can already be gleaned from the analysis of a single day of data.

  1. The IASI cold box subsystem (CBS) a passive cryocooler for cryogenic detectors and optics

    NASA Astrophysics Data System (ADS)

    Bailly, B.; Courteau, P.; Maciaszek, T.

    2017-11-01

    In space, cooling down Infra Red detectors and optics to cryogenic temperature raises always the same issue : what is the best way to manage simultaneously thermal cooling, stability, mechanical discoupling and accurate focal plane components location, in a lightweight and compact solution? The passive cryocooler developed by Alcatel SPace Industries under CNES contract in the frame of the IASI instrument (Infrared Atmospheric Sounding Interferometer), offers an efficient solution for 90K to 100K temperature levels. We intend you to present the architecture and performance validation plan of the CBS.

  2. IR detectors for the Infrared Atmospheric Sounding Interferometer (IASI) instrument payload for the METOP-1 ESA polar platform

    NASA Astrophysics Data System (ADS)

    Royer, Michel; Lorans, Dominique; Bischoff, Isabelle; Giotta, Dominique; Wolny, Michel

    1994-12-01

    IASI is an Infrared Atmospheric Sounding Interferometer devoted to the operational meteorology and to atmospheric studies and is to be installed on board the second ESA Polar Platform called METOP-1, planned to be launched in the year 2000. The main purpose of this high performance instrument is to record temperature and humidity profiles. The required lifetime is 4 years. This paper presents the characteristics of the LW IR detection arrays for the IASI spectrometer which consist of HgCdTe de- tectors. SAT has to develop the Engineering Model, Qualification Model and Fight Models of detectors, each having 4 pixels and AR-coated microlenses in a dedicated space housing equipped with a flexible line and a connector. An array is composed of HgCdTe photoconductive detectors. For this long wavelength the array is sensitive from 8.26 micrometers to 15.5 micrometers . The detectors, with sensitive areas of 900 x 900 micrometers 2, are 100 K operating with passive cooling. High quality HgCdTe material is a key feature for the manufacturing of high performance photoconductive detectors. Therefore epitaxial HgCdTe layers are used in this project. These epilayers are grown at CEA/LETI on lattice matched CdZnTe substrates, by Te-rich liquid phase epitaxy, based on a slider technique. The Cd content in the layer is carefully adjusted to meet the required cut off wavelength on the devices. After growth of the epilayers, the samples are annealed under Hg pressure in order to convert them into N type mate- rials. The electrical transport properties of the liquid phase epitaxied wafers are, at 100 K, mobility (mu) over 150,000 cm2/V.s and electrical concentration N of 1.5 1015 cm-3, the residual doping level being 1014 cm-3 at low temperature. On these materials the feasibility study of long wavelength HgCdTe photoconductors has been achieved with the following results: the responsivity is 330 V/W. The bias voltage is Vp=300 mV for a 4 mW limitation of power for each element. The

  3. Characteristics of monsoon inversions over the Arabian Sea observed by satellite sounder and reanalysis data sets

    NASA Astrophysics Data System (ADS)

    Dwivedi, Sanjeev; Narayanan, M. S.; Venkat Ratnam, M.; Narayana Rao, D.

    2016-04-01

    Monsoon inversion (MI) over the Arabian Sea (AS) is one of the important characteristics associated with the monsoon activity over Indian region during summer monsoon season. In the present study, we have used 5 years (2009-2013) of temperature and water vapour measurement data obtained from satellite sounder instrument, an Infrared Atmospheric Sounding Interferometer (IASI) onboard MetOp satellite, in addition to ERA-Interim data, to study their characteristics. The lower atmospheric data over the AS have been examined first to identify the areas where MIs are predominant and occur with higher strength. Based on this information, a detailed study has been made to investigate their characteristics separately in the eastern AS (EAS) and western AS (WAS) to examine their contrasting features. The initiation and dissipation times of MIs, their percentage occurrence, strength, etc., has been examined using the huge database. The relation with monsoon activity (rainfall) over Indian region during normal and poor monsoon years is also studied. WAS ΔT values are ˜ 2 K less than those over the EAS, ΔT being the temperature difference between 950 and 850 hPa. A much larger contrast between the WAS and EAS in ΔT is noticed in ERA-Interim data set vis-à-vis those observed by satellites. The possibility of detecting MI from another parameter, refractivity N, obtained directly from another satellite constellation of GPS Radio Occultation (RO) (COSMIC), has also been examined. MI detected from IASI and Atmospheric Infrared Sounder (AIRS) onboard the NOAA satellite have been compared to see how far the two data sets can be combined to study the MI characteristics. We suggest MI could also be included as one of the semipermanent features of southwest monsoon along with the presently accepted six parameters.

  4. Satellite instrument provides nighttime sensing capability

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-12-01

    "This is not your father's low-light sensor," Steve Miller, senior research scientist and deputy director of the Cooperative Institute for Research in the Atmosphere at Colorado State University, Fort Collins, said at a 5 December news briefing at the AGU Fall Meeting. He and others at the briefing were showing off the nighttime sensing capability of the day/night band of the Visible Infrared Imaging Radiometer Suite (VIIRS) of instruments onboard the Suomi National Polar-orbiting Partnership (NPP) Earth-observing research satellite, a joint NASA and National Oceanic and Atmospheric Administration (NOAA) satellite that was launched on 28 October 2011. Noting that low-light satellite technology has been available for about 40 years, Miller said that the VIIRS day/night band "is truly a paradigm shift in the technology and capability."

  5. Global height-resolved methane retrievals from the Infrared Atmospheric Sounding Interferometer (IASI) on MetOp

    NASA Astrophysics Data System (ADS)

    Siddans, Richard; Knappett, Diane; Kerridge, Brian; Waterfall, Alison; Hurley, Jane; Latter, Barry; Boesch, Hartmut; Parker, Robert

    2017-11-01

    This paper describes the global height-resolved methane (CH4) retrieval scheme for the Infrared Atmospheric Sounding Interferometer (IASI) on MetOp, developed at the Rutherford Appleton Laboratory (RAL). The scheme precisely fits measured spectra in the 7.9 micron region to allow information to be retrieved on two independent layers centred in the upper and lower troposphere. It also uses nitrous oxide (N2O) spectral features in the same spectral interval to directly retrieve effective cloud parameters to mitigate errors in retrieved methane due to residual cloud and other geophysical variables. The scheme has been applied to analyse IASI measurements between 2007 and 2015. Results are compared to model fields from the MACC greenhouse gas inversion and independent measurements from satellite (GOSAT), airborne (HIPPO) and ground (TCCON) sensors. The estimated error on methane mixing ratio in the lower- and upper-tropospheric layers ranges from 20 to 100 and from 30 to 40 ppbv, respectively, and error on the derived column-average ranges from 20 to 40 ppbv. Vertical sensitivity extends through the lower troposphere, though it decreases near to the surface. Systematic differences with the other datasets are typically < 10 ppbv regionally and < 5 ppbv globally. In the Southern Hemisphere, a bias of around 20 ppbv is found with respect to MACC, which is not explained by vertical sensitivity or found in comparison of IASI to TCCON. Comparisons to HIPPO and MACC support the assertion that two layers can be independently retrieved and provide confirmation that the estimated random errors on the column- and layer-averaged amounts are realistic. The data have been made publically available via the Centre for Environmental Data Analysis (CEDA) data archive (Siddans, 2016).

  6. Aerosol in the Upper Troposphere Lower Stratosphere, decadal Simulations of Radiative Forcing using the Chemistry Circulation Model EMAC and MIPAS, GOMOS, IASI and other Satellite Data

    NASA Astrophysics Data System (ADS)

    Bruehl, C.; Schallock, J.; Lelieveld, J.; Bingen, C.; Robert, C. E.; Hoepfner, M.; Clarisse, L.

    2017-12-01

    The atmospheric chemistry - general circulation model EMAC with a modal interactive aerosol module is used to estimate radiative effects of UTLS aerosol for the ENVISAT period 2002 to 2012 in the framework of SPARC/SSIRC. Volcanic SO2 injections by about 230 explosive volcano eruptions are estimated mostly from MIPAS limb observations. For periods of data gaps, injected SO2 is estimated indirectly from extinctions observed by GOMOS. GOMOS extinctions in the UTLS and the seasonal component of radiative forcing can be only reproduced by the model if a comprehensive treatment of desert dust and organic and black carbon is included. Upward transport of particles and gases by the Asian Monsoon appears to contribute importantly. The time series of simulated stratospheric aerosol optical depth and radiative forcing agree with the corresponding quantities derived from different satellite data sets. Comparisons of total aerosol optical depth with IASI show that tropospheric and stratospheric aerosol in the model are consistently and realistically represented.

  7. Characterization of the 3D distribution of ozone and coarse aerosols in the Troposphere using IASI thermal infrared satellite observations

    NASA Astrophysics Data System (ADS)

    Cuesta, J.; Eremenko, M.; Dufour, G.; Hoepfner, M.; Orphal, J.

    2012-04-01

    Both tropospheric ozone and aerosols significantly affect air quality in megacities during pollution events. Moreover, living conditions may be seriously aggravated when such agglomerations are affected by wildfires (e.g. Russian fires over Moscow in 2010), which produce smoke and pollutant precursors, or even during dense desert dust outbreaks (e.g. recurrently over Beijing or Cairo). Moreover, since aerosols diffuse and absorb solar radiation, they have a direct impact on the photochemical production of tropospheric ozone. These interactions during extreme events of high aerosol loads are nowadays poorly known, even though they may significantly affect the tropospheric photochemical equilibrium. In order to address these issues, we have developed a new retrieval technique to jointly characterize the 3D distribution of both tropospheric ozone and coarse aerosols, using spaceborne observations of the infrared spectrometer IASI onboard MetOp-A satellite. Our methodology is based on the inversion of Earth radiance spectra in the atmospheric window from 8 to 12 μm measured by IASI and a «Tikhonov-Philipps»-type regularisation with constraints varying in altitude (as in [Eremenko et al., 2008, GRL; Dufour et al., 2010 ACP]) to simultaneously retrieve ozone profiles, aerosol optical depths at 10 μm and aerosol layer effective heights. Such joint retrieval prevents biases in the ozone profile retrieval during high aerosol load conditions. Aerosol retrievals using thermal infrared radiances mainly account for desert dust and the coarse fraction of biomass burning aerosols. We use radiances from 15 micro-windows within the 8-12 μm atmospheric window, which were carefully chosen (following [Worden et al., 2006 JGR]) for extracting the maximum information on aerosols and ozone and minimizing contamination by other species. We use the radiative transfer code KOPRA, including line-by-line calculations of gas absorption and single scattering for aerosols [Hoepfner et al

  8. Combining the AIRS, CrIS and IASI Radiance Records for Climate Level Retrievals

    NASA Astrophysics Data System (ADS)

    Strow, L. L.

    2016-12-01

    The AIRS record is now 14+ years long, and with the addition of CrIS should provide a 30+ year long hyperspectral radiance record that can be supplemented with another two times in the diurnal cycle with IASI starting in 2007. The stability of these sensors can be established by comparisons to CO2 variability and to tropical sea surface temperature trends. At present the observed stabilities are much better than climate requirements of 0.01/year. SNO observations indicate radiometric agreement among these sensors of 0.1 - 0.3K before any empirical adjustments. A 1-year set of SNO overlaps have statistical uncertainties of less than 0.01K between these three sensors. Moreover, we show that IASI can be used as a transfer standard between AIRS and CrIS (or between CrIS-1 and CrIS-2) should there be a gap in overlap of sensors in the PM orbit. We have done these SNO comparisons by converting AIRS and IASI spectral to the CrIS instrument lineshape (ILS). Achieving climate quality retrievals, trends, and anomalies of temperature and humidity is non-trivial and requires error characterization (not validation) that to date has not been done with single-footprint hyperspectral sensor retrievals. We suggest that the infrared hyperspectral community utilize a common ILS radiance product as a first-step in achieving climate-quality retrievals in order to remove uncertainties in differential instrument sensitivies and in different forward radiative transfer models. We propose a very different approach for Level 3 (climate) products where anomalies and trends (one of the main products of interest to the climate community) are derived directly from Level 3 radiance products, giving far superior error traceability and retrieval regularization in the vertical. Tempertature and humidity trends and anomalies for 14-years of AIRS will be presented and compared to those provided by ERA-Interim, AIRS Level3 data, and microwave sensors. A significant advantage of this approach, which

  9. Utilization of all Spectral Channels of IASI for the Retrieval of the Atmospheric State

    NASA Astrophysics Data System (ADS)

    Del Bianco, S.; Cortesi, U.; Carli, B.

    2010-12-01

    The retrieval of atmospheric state parameters from broadband measurements acquired by high spectral resolution sensors, such as the Infrared Atmospheric Sounding Interferometer (IASI) onboard the Meteorological Operational (MetOp) platform, generally requires to deal with a prohibitively large number of spectral elements available from a single observation (8461 samples in the case of IASI, covering the 645-2760 cm-1 range with a resolution of 0.5 cm-1 and a spectral sampling of 0.25 cm-1). Most inversion algorithms developed for both operational and scientific analysis of IASI spectra perform a reduction of the data - typically based on channel selection, super-channel clustering or Principal Component Analysis (PCA) techniques - in order to handle the high dimensionality of the problem. Accordingly, simultaneous processing of all IASI channels received relatively low attention. Here we prove the feasibility of a retrieval approach exploiting all spectral channels of IASI, to extract information on water vapor, temperature and ozone profiles. This multi-target retrieval removes the systematic errors due to interfering parameters and makes the channel selection no longer necessary. The challenging computation is made possible by the use of a coarse spectral grid for the forward model calculation and by the abatement of the associated modeling errors through the use of a variance-covariance matrix of the residuals that takes into account all the forward model errors.

  10. Evaluation of Q-band instrumentation requirements for Strategic Satellite System (SSS) program

    NASA Astrophysics Data System (ADS)

    Raponi, D. J.

    1981-12-01

    Q-band instrumentation appropriate for testing the Strategic Satellite System (SSS) satellite terminal is evaluated in terms of current and projected availability; desired and practical measurement capabilities; required development; and schedule/cost impacts to the program. The Air Force is considering several approaches to increasing the strategic communications capability now provided by the recently deployed ultra high frequency (UHF) Air Force Satellite Communications (AFSATCOM) system. The Strategic Satellite System (SSS) was proposed to improve antijam (AJ) characteristics through the use of advanced modulation techniques and higher frequencies (8 and 44 GHz) on links between ground and airborne terminals and the satellites. This report is an assessment of Q-band (44 GHz) test instrumentation requirements, availability, and accuracy as these factors affect cost and schedule for the SSS satellite terminal development program. Though the SSS program has been cancelled, information presented in the report has applicability to the EHF MILSTAR program.

  11. Adjusted Levenberg-Marquardt method application to methene retrieval from IASI/METOP spectra

    NASA Astrophysics Data System (ADS)

    Khamatnurova, Marina; Gribanov, Konstantin

    2016-04-01

    Levenberg-Marquardt method [1] with iteratively adjusted parameter and simultaneous evaluation of averaging kernels together with technique of parameters selection are developed and applied to the retrieval of methane vertical profiles in the atmosphere from IASI/METOP spectra. Retrieved methane vertical profiles are then used for calculation of total atmospheric column amount. NCEP/NCAR reanalysis data provided by ESRL (NOAA, Boulder,USA) [2] are taken as initial guess for retrieval algorithm. Surface temperature, temperature and humidity vertical profiles are retrieved before methane vertical profile retrieval for each selected spectrum. Modified software package FIRE-ARMS [3] were used for numerical experiments. To adjust parameters and validate the method we used ECMWF MACC reanalysis data [4]. Methane columnar values retrieved from cloudless IASI spectra demonstrate good agreement with MACC columnar values. Comparison is performed for IASI spectra measured in May of 2012 over Western Siberia. Application of the method for current IASI/METOP measurements are discussed. 1.Ma C., Jiang L. Some Research on Levenberg-Marquardt Method for the Nonlinear Equations // Applied Mathematics and Computation. 2007. V.184. P. 1032-1040 2.http://www.esrl.noaa.gov/psdhttp://www.esrl.noaa.gov/psd 3.Gribanov K.G., Zakharov V.I., Tashkun S.A., Tyuterev Vl.G.. A New Software Tool for Radiative Transfer Calculations and its application to IMG/ADEOS data // JQSRT.2001.V.68.№ 4. P. 435-451. 4.http://www.ecmwf.int/http://www.ecmwf.int

  12. Infrared detectors for Earth observation

    NASA Astrophysics Data System (ADS)

    Barnes, K.; Davis, R. P.; Knowles, P.; Shorrocks, N.

    2016-05-01

    IASI (Infrared Atmospheric Sounding Interferometer), developed by CNES and launched since 2006 on the Metop satellites, is established as a major source of data for atmospheric science and weather prediction. The next generation - IASI NG - is a French national contribution to the Eumetsat Polar System Second Generation on board of the Metop second generation satellites and is under development by Airbus Defence and Space for CNES. The mission aim is to achieve twice the performance of the original IASI instrument in terms of sensitivity and spectral resolution. In turn, this places very demanding requirements on the infrared detectors for the new instrument. Selex ES in Southampton has been selected for the development of the infrared detector set for the IASI-NG instruments. The wide spectral range, 3.6 to 15.5 microns, is covered in four bands, each served by a dedicated detector design, with a common 4 x 4 array format of 1.3 mm square macropixels. Three of the bands up to 8.7 microns employ photovoltaic MCT (mercury cadmium telluride) technology and the very long wave band employs photoconductive MCT, in common with the approach taken between Airbus and Selex ES for the SEVIRI instrument on Second Generation Meteosat. For the photovoltaic detectors, the MCT crystal growth of heterojunction photodiodes is by the MOVPE technique (metal organic vapour phase epitaxy). Novel approaches have been taken to hardening the photovoltaic macropixels against localised crystal defects, and integrating transimpedance amplifiers for each macropixel into a full-custom silicon read out chip, which incorporates radiation hard design.

  13. Applications of high spectral resolution FTIR observations demonstrated by the radiometrically accurate ground-based AERI and the scanning HIS aircraft instruments

    NASA Astrophysics Data System (ADS)

    Revercomb, Henry E.; Knuteson, Robert O.; Best, Fred A.; Tobin, David C.; Smith, William L.; Feltz, Wayne F.; Petersen, Ralph A.; Antonelli, Paolo; Olson, Erik R.; LaPorte, Daniel D.; Ellington, Scott D.; Werner, Mark W.; Dedecker, Ralph G.; Garcia, Raymond K.; Ciganovich, Nick N.; Howell, H. Benjamin; Vinson, Kenneth; Ackerman, Steven A.

    2003-06-01

    Development in the mid 80s of the High-resolution Interferometer Sounder (HIS) for the high altitude NASA ER2 aircraft demonstrated the capability for advanced atmospheric temperature and water vapor sounding and set the stage for new satellite instruments that are now becoming a reality [AIRS (2002), CrIS (2006), IASI (2006), GIFTS (2005/6)]. Follow-on developments at the University of Wisconsin-Madison that employ interferometry for a wide range of Earth observations include the ground-based Atmospheric Emitted Radiance Interferometer (AERI) and the Scanning HIS aircraft instrument (S-HIS). The AERI was developed for the US DOE Atmospheric Radiation Measurement (ARM) Program, primarily to provide highly accurate radiance spectra for improving radiative transfer models. The continuously operating AERI soon demonstrated valuable new capabilities for sensing the rapidly changing state of the boundary layer and properties of the surface and clouds. The S-HIS is a smaller version of the original HIS that uses cross-track scanning to enhance spatial coverage. S-HIS and its close cousin, the NPOESS Airborne Sounder Testbed (NAST) operated by NASA Langley, are being used for satellite instrument validation and for atmospheric research. The calibration and noise performance of these and future satellite instruments is key to optimizing their remote sensing products. Recently developed techniques for improving effective radiometric performance by removing noise in post-processing is a primary subject of this paper.

  14. Potential of multispectral synergism for observing tropospheric ozone by combining IR and UV measurements from incoming LEO (EPS-SG) and GEO (MTG) satellite sensors

    NASA Astrophysics Data System (ADS)

    Costantino, Lorenzo; Cuesta, Juan; Emili, Emanuele; Coman, Adriana; Foret, Gilles; Dufour, Gaëlle; Eremenko, Maxim; Chailleux, Yohann; Beekmann, Matthias; Flaud, Jean-Marie

    2017-04-01

    Satellite observations offer a great potential for monitoring air quality on daily and global basis. However, measurements from currently in orbit sensors do not allow to probe surface concentrations of gaseous pollutants such as tropospheric ozone (Liu et al., 2010). Using single-band approaches based on spaceborne measurements of either thermal infrared radiance (TIR, Eremenko et al., 2008) or ultraviolet reflectance (UV, Liu et al., 2010) only ozone down to the lower troposphere (3 km) may be observed. A recent multispectral method (referred to as IASI+GOME-2) combining the information of IASI and GOME-2 (both onboard MetOp satellites) spectra, respectively from the TIR and UV, has shown enhanced sensitivity for probing ozone at the lowermost troposphere (LMT, below 3 km of altitude) with maximum sensitivity down to 2.20 km a.s.l. over land, while sensitivity for IASI or GOME-2 only peaks at 3 to 4 km at lowest (Cuesta et al., 2013). Future spatial missions will be launched in the upcoming years on both low and geostationary orbits, such as EPS-SG (EUMETSAT Polar System Second Generation) and MTG (Meteosat Third Generation), carrying respectively IASI-NG (for IR) and UVNS (for UV), and IRS (for IR) and UVN (Sentinel 4, for UV). This new-generation sensors will enhance the capacity to observe ozone pollution and particularly by synergism of multispectral measurements. In this work we develop a pseudo-observation simulator and evaluate the potential of future EPS-SG and MTG satellite observations, through IASI-NG+UVNS and IRS+UVN multispectral methods to observe near-surface O3. The pseudo-real state of atmosphere (nature run) is provided by MOCAGE (MOdèle de Chimie Atmosphérique à Grande Échelle) chemical transport model. Simulations are calibrated by careful comparisons with real data, to ensure the best coherence between pseudo-reality and reality, as well as between the pseudo-observation simulator and existing satellite products. We perform full and

  15. Highly accurate FTIR observations from the scanning HIS aircraft instrument

    NASA Astrophysics Data System (ADS)

    Revercomb, Henry E.; Tobin, David C.; Knuteson, Robert O.; Best, Fred A.; Smith, William L., Sr.; van Delst, Paul F. W.; LaPorte, Daniel D.; Ellington, Scott D.; Werner, Mark W.; Dedecker, Ralph G.; Garcia, Raymond K.; Ciganovich, Nick N.; Howell, Hugh B.; Olson, Erik R.; Dutcher, Steven B.; Taylor, Joseph K.

    2005-01-01

    Development in the mid 80s of the High-resolution Interferometer Sounder (HIS) instrument for the high altitude NASA ER2 aircraft demonstrated the capability for advanced atmospheric temperature and water vapor sounding and set the stage for new satellite instruments that are now becoming a reality [AIRS(2002), CrIS(2006), IASI(2006), GIFTS(200?), HES(2013)]. Follow-on developments at the University of Wisconsin that employ Fourier Transform Infrared (FTIR) for Earth observations include the ground-based Atmospheric Emitted Radiance Interferometer (AERI) and the new Scanning HIS aircraft instrument. The Scanning HIS is a smaller version of the original HIS that uses cross-track scanning to enhance spatial coverage. Scanning HIS and its close cousin, the NPOESS Airborne Sounder Testbed (NAST), are being used for satellite instrument validation and for atmospheric research. A novel detector configuration on Scanning HIS allows the incorporation of a single focal plane and cooler with three or four spectral bands that view the same spot on the ground. The calibration accuracy of the S-HIS and results from recent field campaigns are presented, including validation comparisons with the NASA EOS infrared observations (AIRS and MODIS). Aircraft comparisons of this type provide a mechanism for periodically testing the absolute calibration of spacecraft instruments with instrumentation for which the calibration can be carefully maintained on the ground. This capability is especially valuable for assuring the long-term consistency and accuracy of climate observations, including those from the NASA EOS spacecrafts (Terra, Aqua and Aura) and the new complement of NPOESS operational instruments. It is expected that aircraft flights of the S-HIS and the NAST will be used to check the long-term stability of AIRS and the NPOESS operational follow-on sounder, the Cross-track Infrared Sounder (CrIS), over the life of the mission.

  16. The high resolution optical instruments for the Pleiades HR Earth observation satellites

    NASA Astrophysics Data System (ADS)

    Gaudin-Delrieu, Catherine; Lamard, Jean-Luc; Cheroutre, Philippe; Bailly, Bruno; Dhuicq, Pierre; Puig, Olivier

    2017-11-01

    Coming after the SPOT satellites series, PLEIADESHR is a CNES optical high resolution satellite dedicated to Earth observation, part of a larger optical and radar multi-sensors system, ORFEO, which is developed in cooperation between France and Italy for dual Civilian and Defense use. The development of the two PLEIADES-HR cameras was entrusted by CNES to Thales Alenia Space. This new generation of instrument represents a breakthrough in comparison with the previous SPOT instruments owing to a significant step in on-ground resolution, which approaches the capabilities of aerial photography. The PLEIADES-HR instrument program benefits from Thales Alenia Space long and successful heritage in Earth observation from space. The proposed solution benefits from an extensive use of existing products, Cannes Space Optics Centre facilities, unique in Europe, dedicated to High Resolution instruments. The optical camera provides wide field panchromatic images supplemented by 4 multispectral channels with narrow spectral bands. The optical concept is based on a four mirrors Korsch telescope. Crucial improvements in detector technology, optical fabrication and electronics make it possible for the PLEIADES-HR instrument to achieve the image quality requirements while respecting the drastic limitations of mass and volume imposed by the satellite agility needs and small launchers compatibility. The two flight telescopes were integrated, aligned and tested. After the integration phase, the alignment, mainly based on interferometric measurements in vacuum chamber, was successfully achieved within high accuracy requirements. The wave front measurements show outstanding performances, confirmed, after the integration of the PFM Detection Unit, by MTF measurements on the Proto-Flight Model Instrument. Delivery of the proto flight model occurred mi-2008. The FM2 Instrument delivery is planned Q2-2009. The first optical satellite launch of the PLEIADES-HR constellation is foreseen

  17. Spectral Resolution and Coverage Impact on Advanced Sounder Information Content

    NASA Technical Reports Server (NTRS)

    Larar, Allen M.; Liu, Xu; Zhou, Daniel K.; Smith, William L.

    2010-01-01

    Advanced satellite sensors are tasked with improving global measurements of the Earth s atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring capability, and environmental change detection. Achieving such measurement improvements requires instrument system advancements. This presentation focuses on the impact of spectral resolution and coverage changes on remote sensing system information content, with a specific emphasis on thermodynamic state and trace species variables obtainable from advanced atmospheric sounders such as the Infrared Atmospheric Sounding Interferometer (IASI) and Cross-track Infrared Sounder (CrIS) systems on the MetOp and NPP/NPOESS series of satellites. Key words: remote sensing, advanced sounders, information content, IASI, CrIS

  18. Retrievals of methane from IASI radiance spectra and comparisons with ground-based FTIR measurements

    NASA Astrophysics Data System (ADS)

    Kerzenmacher, T.; Kumps, N.; de Mazière, M.; Kruglanski, M.; Senten, C.; Vanhaelewyn, G.; Vandaele, A. C.; Vigouroux, C.

    2009-04-01

    The Infrared Atmospheric Sounding Interferometer (IASI), launched on 19 October 2006, is a Fourier transform spectrometer onboard METOP-1, observing the radiance of the Earth's surface and atmosphere in nadir mode. The spectral range covers the 645 to 2760 cm-1 region with a resolution of 0.35 to 0.5 cm-1. A line-by-line spectral simulation and inversion code, ASIMUT, has been developed for the retrieval of chemical species from infrared spectra. The code includes an analytical calculation of the Jacobians for use in the inversion part of the algorithm based on the Optimal Estimation Method. In 2007 we conducted a measurement campaign at St Denis, Île de la Réunion where we performed ground-based solar absorption observations with a infrared Fourier transform spectrometer. ASIMUT has been used to retrieve methane from the ground-based and collocated satellite measurements. For the latter we selected pixels that are situated over the sea. In this presentation we will show the retrieval strategies, the resulting methane column time series above St Denis and the comparisons of the satellite data with the ground-based data sets. Vertical profile information in these data sets will also be discussed.

  19. A Novel Method making direct use of AIRS and IASI Calibrated Radiances for Measuring Trends in Surface Temperatures

    NASA Astrophysics Data System (ADS)

    Aumann, H. H.; Ruzmaikin, A.

    2014-12-01

    Making unbiased measurements of trends in the surface temperatures, particularly on a gobal scale, is challenging: While the non-frozen oceans temperature measurements are plentiful and accurate, land and polar areas are much less accurately or fairly sampled. Surface temperature deduced from infrared radiometers on polar orbiting satellites (e.g. the Atmospheric Infrared Sounder (AIRS) at 1:30PM, the Interferometer Atmosphere Sounding Interferometer (IASI) at 9:30 AM and the MODerate resolution Imaging Spectro-radiometer (MODIS) at 1:30PM), can produce what appear to be well sampled data, but dealing with clouds either by cloud filtering (MODIS, IASI) or cloud-clearing (AIRS) can create sampling bias. We use a novel method: Random Nadir Sampling (RNS) combined with Probability Density Function (PDF) analysis. We analyze the trend in the PDF of st1231, the water vapor absorption corrected brightness temperatures measured in the 1231 cm-1 atmospheric window channel. The advantage of this method is that trends can be directly traced to the known, less than 3 mK/yr trend for AIRS, in st1231. For this study we created PDFs from 22,000 daily RNS from the AIRS and IASI data. We characterized the PDFs by its daily 90%tile value, st1231p90, and analysed the statistical properties of the this time series between 2002 and 2014. The method was validated using the daily NOAA SST (RTGSST) from the non-frozen oceans: The mean, seasonal variability and anomaly trend of st1231p90 agree with the corrsponding values from the RTGSST and the anomaly correlation is larger than 0.9. Preliminary results (August 2014) confirm the global hiatus in the increase of the globally averaged surface temperatures between 2002 and 2014, with a change of less than 10 mK/yr. This uncertainty is dominated by the large interannual variability related to El Niño events. Further insite is gained by analyzing land/ocean, day/night, artic and antarctic trends. We observe a massive warming trend in the

  20. Development Challenges of Utilizing a Corner Cube Mechanism Design with Successful IASI Flight Heritage for the Infrared Sounder (IRS) on MTG: Recurrent Mechanical Design not Correlated to Recurrent Development

    NASA Astrophysics Data System (ADS)

    Spanoudakis, Peter; Schwab, Philippe; Kiener, Lionel; Saudan, Herve; Perruchoud, Gerald

    2015-09-01

    The Corner Cube Mechanism (CCM) design for the Infra-Red Sounder (IRS) on MTG is based on the successful mechanism currently in orbit on the Infrared Atmospheric Sounding Interferometers (IASI) on the Metop satellites. The overall CCM performance is described with attention given to the specific design developments for the MTG project. A description is presented of the modifications introduced and challenges encountered to adapt the IASI space heritage design (which is only 15 years old) to meet the MTG specifications. A detailed account is provided regarding the tests performed on the adapted components for the new programme. The major issues encountered and solutions proposed are illustrated concerning the voice- coil actuator development, optical switch design, fatigue life of the flexure components and the adaptation of the launch locking device. Nevertheless, an Engineering Qualification Model was rapidly manufactured and now undergoing a qualification test campaign.

  1. Regarding retrievals of methane in the atmosphere from IASI/Metop spectra and their comparison with ground-based FTIR measurements data

    NASA Astrophysics Data System (ADS)

    Khamatnurova, M. Yu.; Gribanov, K. G.; Zakharov, V. I.; Rokotyan, N. V.; Imasu, R.

    2017-11-01

    The algorithm for atmospheric methane distribution retrieval in atmosphere from IASI spectra has been developed. The feasibility of Levenberg-Marquardt method for atmospheric methane total column amount retrieval from the spectra measured by IASI/METOP modified for the case of lack of a priori covariance matrices for methane vertical profiles is studied in this paper. Method and algorithm were implemented into software package together with iterative estimation of a posteriori covariance matrices and averaging kernels for each individual retrieval. This allows retrieval quality selection using the properties of both types of matrices. Methane (XCH4) retrieval by Levenberg-Marquardt method from IASI/METOP spectra is presented in this work. NCEP/NCAR reanalysis data provided by ESRL (NOAA, Boulder, USA) were taken as initial guess. Surface temperature, air temperature and humidity vertical profiles are retrieved before methane vertical profile retrieval. The data retrieved from ground-based measurements at the Ural Atmospheric Station and data of L2/IASI standard product were used for the verification of the method and results of methane retrieval from IASI/METOP spectra.

  2. Validation of Tropospheric Water Vapor as Measured by the 183-GHz Radiometer HAMSTRAD with IASI and Sondes over the Pyrenees Mountains, France

    NASA Astrophysics Data System (ADS)

    Ricaud, P.; Drasin, O.; Gabard, B.; Derrien, S.; Attie, J.-L.; Rose, T.; Czekala, H.

    The HAMSTRAD 183-GHz radiometer has been developed to measure vertical profiles of water vapor above the Dome C (Concordia Station), Antarctica (75°06'S, 123°21'E, 3233 m asml), an extremely cold and dry environment, over decades. Prior to its installation at Dome C in January 2009, the instrument was deployed at the Pic du Midi (PdM) station (42°56'N, 0°08'E, 2877 m asml, France) in the Pyrenees Mountains over the period February-June 2008. Vertical profiles of absolute humidity and Integrated Water Content (IWV) as measured by HAMSTRAD were compared with measurements from radio-sondes launched in three different sites: Lannemezan (43°07'N, 0°23'E, 610 m asml, France) [ 30 km North-East from PdM], Bordeaux-Mérignac Airport (44°49'N, 0°42'W, 50 m asml, France) [ 220 km North-West from PdM], and Zaragoza (41°39'N, 0°53'W, 263 m asml, Spain) [ 170 km South-West from PdM]. The validation process also used the vertical profiles of tropospheric H2O as measured by the nadir-viewing Infrared Atmospheric Sounding Interferometer (IASI) instrument aboard the MetOp-A space platform. The temporal evolution of the HAMSTRAD H2O measurements above the PdM station is very consistent with IASI, sondes, and in situ measurements, tracking the same atmosphere from a dry period in February to a wet period in June. HAMSTRAD showed unrealistic values in periods of well established snow tempest. Whilst the sensitivity of the HAMSTRAD measurements tends to be lost 6 km above the altitude of the instrument, namely above 8877 m asml, the HAMSTRAD measurements seem reasonable at the uppermost retrieval level (namely 10 km, 12877 m asml). In May 2008, the wet periods are systematically showing a good agreement between sondes and HAMSTRAD IWV fields and H2O below 6777 m asml, but a dry bias of-2IASI by more than 4 kg m IWV whilst, outside ofthese periods, the 3 data sets behave consistently.

  3. Long-Term Trends of Carbon Monoxide Total Columnar Amount in Urban Areas and Background Regions: Ground- and Satellite-based Spectroscopic Measurements

    NASA Astrophysics Data System (ADS)

    Wang, Pucai; Elansky, N. F.; Timofeev, Yu. M.; Wang, Gengchen; Golitsyn, G. S.; Makarova, M. V.; Rakitin, V. S.; Shtabkin, Yu.; Skorokhod, A. I.; Grechko, E. I.; Fokeeva, E. V.; Safronov, A. N.; Ran, Liang; Wang, Ting

    2018-07-01

    A comparative study was carried out to explore carbon monoxide total columnar amount (CO TC) in background and polluted atmosphere, including the stations of ZSS (Zvenigorod), ZOTTO (Central Siberia), Peterhof, Beijing, and Moscow, during 1998-2014, on the basis of ground- and satellite-based spectroscopic measurements. Interannual variations of CO TC in different regions of Eurasia were obtained from ground-based spectroscopic observations, combined with satellite data from the sensors MOPITT (2001-14), AIRS (2003-14), and IASI MetOp-A (2010-13). A decreasing trend in CO TC (1998-2014) was found at the urban site of Beijing, where CO TC decreased by 1.14%±0.87% yr-1. Meanwhile, at the Moscow site, CO TC decreased remarkably by 3.73%±0.39% yr-1. In the background regions (ZSS, ZOTTO, Peterhof), the reduction was 0.9%-1.7% yr-1 during the same period. Based on the AIRSv6 satellite data for the period 2003-14, a slight decrease (0.4%-0.6% yr-1) of CO TC was detected over the midlatitudes of Eurasia, while a reduction of 0.9%-1.2% yr-1 was found in Southeast Asia. The degree of correlation between the CO TC derived from satellite products (MOPITTv6 Joint, AIRSv6 and IASI MetOp-A) and ground-based measurements was calculated, revealing significant correlation in unpolluted regions. While in polluted areas, IASI MetOp-A and AIRSv6 data underestimated CO TC by a factor of 1.5-2.8. On average, the correlation coefficient between ground- and satellite-based data increased significantly for cases with PBL heights greater than 500 m.

  4. Atmospheric, Cloud, and Surface Parameters Retrieved from Satellite Ultra-spectral Infrared Sounder Measurements

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Smith, William L.; Yang, Ping; Schluessel, Peter; Strow, Larrabee

    2007-01-01

    An advanced retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. This physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multivariable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. This retrieval algorithm is applied to the MetOp satellite Infrared Atmospheric Sounding Interferometer (IASI) launched on October 19, 2006. IASI possesses an ultra-spectral resolution of 0.25 cm(exp -1) and a spectral coverage from 645 to 2760 cm(exp -1). Preliminary retrievals of atmospheric soundings, surface properties, and cloud optical/microphysical properties with the IASI measurements are obtained and presented.

  5. The MUSICA MetOp/IASI H2O and δD products: characterisation and long-term comparison to NDACC/FTIR data

    NASA Astrophysics Data System (ADS)

    Wiegele, A.; Schneider, M.; Hase, F.; Barthlott, S.; García, O. E.; Sepúlveda, E.; González, Y.; Blumenstock, T.; Raffalski, U.; Gisi, M.; Kohlhepp, R.

    2014-08-01

    Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) ground- and space-based remote sensing as well as in situ data sets of tropospheric water vapour isotopologues are provided. The space-based remote-sensing data set is produced from spectra measured by the IASI (Infrared Atmospheric Sounding Interferometer) sensor and is potentially available on a global scale. Here, we present the MUSICA IASI data for three different geophysical locations (subtropics, midlatitudes, and Arctic), and we provide a comprehensive characterisation of the complex nature of such space-based isotopologue remote-sensing products. The quality assessment study is complemented by a comparison to MUSICA's ground-based FTIR (Fourier Transform InfraRed) remote-sensing data retrieved from the spectra recorded at three different locations within the framework of NDACC (Network for the Detection of Atmospheric Composition Change). We confirm that IASI is able to measure tropospheric H2O profiles with a vertical resolution of about 4 km and a random error of about 10%. In addition IASI can observe middle tropospheric δD that adds complementary value to IASI's middle tropospheric H2O observations. Our study presents theoretical and empirical proof that IASI has the capability for a global observation of middle tropospheric water vapour isotopologues on a daily timescale and at a quality that is sufficiently high for water cycle research purposes.

  6. Assimilation of atmospheric methane products into the MACC-II system: from SCIAMACHY to TANSO and IASI

    NASA Astrophysics Data System (ADS)

    Massart, S.; Agusti-Panareda, A.; Aben, I.; Butz, A.; Chevallier, F.; Crevosier, C.; Engelen, R.; Frankenberg, C.; Hasekamp, O.

    2014-06-01

    The Monitoring Atmospheric Composition and Climate Interim Implementation (MACC-II) delayed-mode (DM) system has been producing an atmospheric methane (CH4) analysis 6 months behind real time since June 2009. This analysis used to rely on the assimilation of the CH4 product from the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) instrument onboard Envisat. Recently the Laboratoire de Météorologie Dynamique (LMD) CH4 products from the Infrared Atmospheric Sounding Interferometer (IASI) and the SRON Netherlands Institute for Space Research CH4 products from the Thermal And Near-infrared Sensor for carbon Observation (TANSO) were added to the DM system. With the loss of Envisat in April 2012, the DM system now has to rely on the assimilation of methane data from TANSO and IASI. This paper documents the impact of this change in the observing system on the methane tropospheric analysis. It is based on four experiments: one free run and three analyses from respectively the assimilation of SCIAMACHY, TANSO and a combination of TANSO and IASI CH4 products in the MACC-II system. The period between December 2010 and April 2012 is studied. The SCIAMACHY experiment globally underestimates the tropospheric methane by 35 part per billion (ppb) compared to the HIAPER Pole-to-Pole Observations (HIPPO) data and by 28 ppb compared the Total Carbon Column Observing Network (TCCON) data, while the free run presents an underestimation of 5 ppb and 1 ppb against the same HIPPO and TCCON data, respectively. The assimilated TANSO product changed in October 2011 from version v.1 to version v.2.0. The analysis of version v.1 globally underestimates the tropospheric methane by 18 ppb compared to the HIPPO data and by 15 ppb compared to the TCCON data. In contrast, the analysis of version v.2.0 globally overestimates the column by 3 ppb. When the high density IASI data are added in the tropical region between 30° N and 30° S, their impact is mainly

  7. The MUSICA MetOp/IASI H2O and δD products: characterisation and long-term comparison to NDACC/FTIR data

    NASA Astrophysics Data System (ADS)

    Wiegele, A.; Schneider, M.; Hase, F.; Barthlott, S.; García, O. E.; Sepúlveda, E.; González, Y.; Blumenstock, T.; Raffalski, U.; Gisi, M.; Kohlhepp, R.

    2014-04-01

    Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) ground- and space-based remote sensing as well as in-situ datasets of tropospheric water vapour isotopologues are provided. The space-based remote-sensing dataset is produced from spectra measured by the IASI (Infrared Atmospheric Sounding Interferometer) sensor and is potentially available on a global scale. Here, we present the MUSICA IASI data for three different geophysical locations (subtropics, mid-latitudes, and arctic) and we provide a comprehensive characterisation of the complex nature of such space-based isotopologue remote sensing products. The quality assessment study is complemented by a comparison to MUSICA's ground-based FTIR (Fourier-Transform InfraRed) remote sensing data retrieved from the spectra recorded at three different locations within the framework of NDACC (Network for the Detection of Atmospheric Composition Change). We confirm that IASI is able to measure tropospheric H2O profiles with a vertical resolution of about 4 km and a random error of about 10%. In addition IASI can observe middle tropospheric δD that adds complementary value to IASI's middle tropospheric H2O observations. Our study is both, a theoretical and an empirical proof that IASI has the capability for a global observation of middle tropospheric water vapour isotopologues on a daily timescale and at a quality that is sufficiently high for water cycle research purposes.

  8. Earth Observatory Satellite system definition study. Report 2: Instrument constraints and interfaces

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The instrument constraints and interface specifications for the Earth Observatory Satellite (EOS) are discussed. The Land Use Classification Mission using a 7 band Thematic Mapper and a 4 band High Resolution Pointable Imager is stressed. The mission and performance of the instruments were reviewed and expanded to reflect the instrument as a part of the total remote sensing system. A preliminary EOS interface handbook is provided to describe the mission and system, to specify the spacecraft interfaces to potential instrument contractors, and to describe the instrument interface data required by the system integration contractor.

  9. Comparison of a Resonant Mirror Biosensor (IAsys) and a Quartz Crystal Microbalance (QCM) for the Study on Interaction between Paeoniae Radix 801 and Endothelin-1.

    PubMed

    Huang, Jiadong; Lin, Qing; Yu, Jinghua; Ge, Shenguang; Li, Jing; Yu, Min; Zhao, Zixia; Wang, Xinsheng; Zhang, Xiuming; He, Xiaorui; Yuan, Liang; Yin, Huijun; Osa, Tetsuo; Chen, Keji; Chen, Qiang

    2008-12-15

    A resonant mirror biosensor, IAsys, and a quartz crystal microbalance (QCM) are known independently as surface sensitive analytical devices capable of label-free and in situ bioassays. In this study, an IAsys and a QCM are employed for a new study on the action mechanism of Paeoniae Radix 801 (P. radix 801) by detecting the specific interaction between P. radix 801 and endothelin-1 (ET-1). In the experiments, ET-1 was immobilized on the surfaces of the IAsys cuvette and the QCM substrate by surface modification techniques, and then P. radix 801 solution was contacted to the cuvette and the substrate, separately. Then, the binding and interaction process between P. radix 801 and ET-1 was monitored by IAsys and QCM, respectively. The experimental results showed that P. radix 801 binds ET-1 specifically. The IAsys and QCM response curves to the ET-1 immobilization and P. radix 801 binding are similar in reaction process, but different in binding profiles, reflecting different resonation principles. Although both IAsys and QCM could detect the interaction of P. radix 801 and ET-1 with high reproducibility and reliability through optimization of the ET-1 coating, the reproducibility and reliability obtained by IAsys are better than those obtained by QCM, since the QCM frequency is more sensitive to temperature fluctuations, atmospheric changes and mechanical disturbances. However, IAsys and QCM are generally potent and reliable tools to study the interaction of P. radix 801 and ET-1, and can conclusively be applied to the action mechanism of P. radix 801.

  10. Satellite-instrument system engineering best practices and lessons

    NASA Astrophysics Data System (ADS)

    Schueler, Carl F.

    2009-08-01

    This paper focuses on system engineering development issues driving satellite remote sensing instrumentation cost and schedule. A key best practice is early assessment of mission and instrumentation requirements priorities driving performance trades among major instrumentation measurements: Radiometry, spatial field of view and image quality, and spectral performance. Key lessons include attention to technology availability and applicability to prioritized requirements, care in applying heritage, approaching fixed-price and cost-plus contracts with appropriate attention to risk, and assessing design options with attention to customer preference as well as design performance, and development cost and schedule. A key element of success either in contract competition or execution is team experience. Perhaps the most crucial aspect of success, however, is thorough requirements analysis and flowdown to specifications driving design performance with sufficient parameter margin to allow for mistakes or oversights - the province of system engineering from design inception to development, test and delivery.

  11. Decadal Record of Satellite Carbon Monoxide Observations

    NASA Astrophysics Data System (ADS)

    Worden, Helen; Deeter, Merritt; Frankenberg, Christian; George, Maya; Nichitiu, Florian; Worden, John; Aben, Ilse; Bowman, Kevin; Clerbaux, Cathy; Coheur, Pierre-Francois; de Laat, Jos; Warner, Juying; Drummond, James; Edwards, David; Gille, John; Hurtmans, Daniel; Ming, Luo; Martinez-Alonso, Sara; Massie, Steven; Pfister, Gabriele

    2013-04-01

    Atmospheric carbon monoxide (CO) distributions are controlled by anthropogenic emissions, biomass burning, chemical production, transport and oxidation by reaction with the hydroxyl radical (OH). Quantifying trends in CO is therefore important for understanding changes related to all of these contributions. Here we present a comprehensive record of satellite observations from 2000 through 2011 of total column CO using the available measurements from nadir-viewing thermal infrared instruments: MOPITT, AIRS, TES and IASI. We examine trends for CO in the Northern and Southern hemispheres along with regional trends for E. China, E. USA, Europe and India. Measurement and sampling methods for each of the instruments are discussed, and we show diagnostics for systematic errors in MOPITT trends. We find that all the satellite observations are consistent with a modest decreasing trend around -1%/year in total column CO over the Northern hemisphere for this time period. Decreasing trends in total CO column are observed for the United States, Europe and E. China with more than 2σ significance. For India, the trend is also decreasing, but smaller in magnitude and less significant. Decreasing trends in surface CO have also been observed from measurements in the U.S. and Europe. Although less information is available for surface CO in China, there is a decreasing trend reported for Beijing. Some of the interannual variability in the observations can be explained by global fire emissions, and there may be some evidence of the global financial crisis in late 2008 to early 2009. But the overall decrease needs further study to understand the implications for changes in anthropogenic emissions.

  12. Development of a PC-based ground support system for a small satellite instrument

    NASA Astrophysics Data System (ADS)

    Deschambault, Robert L.; Gregory, Philip R.; Spenler, Stephen; Whalen, Brian A.

    1993-11-01

    The importance of effective ground support for the remote control and data retrieval of a satellite instrument cannot be understated. Problems with ground support may include the need to base personnel at a ground tracking station for extended periods, and the delay between the instrument observation and the processing of the data by the science team. Flexible solutions to such problems in the case of small satellite systems are provided by using low-cost, powerful personal computers and off-the-shelf software for data acquisition and processing, and by using Internet as a communication pathway to enable scientists to view and manipulate satellite data in real time at any ground location. The personal computer based ground support system is illustrated for the case of the cold plasma analyzer flown on the Freja satellite. Commercial software was used as building blocks for writing the ground support equipment software. Several levels of hardware support, including unit tests and development, functional tests, and integration were provided by portable and desktop personal computers. Satellite stations in Saskatchewan and Sweden were linked to the science team via phone lines and Internet, which provided remote control through a central point. These successful strategies will be used on future small satellite space programs.

  13. Development of Long-term Datasets from Satellite BUV Instruments: The "Soft" Calibration Approach

    NASA Technical Reports Server (NTRS)

    Bhartia, Pawan K.; Taylor, Steven; Jaross, Glen

    2005-01-01

    The first BUV instrument was launched in April 1970 on NASA's Nimbus4 satellite. More than a dozen instruments, broadly based on the same principle, but using very different technologies, have been launched in the last 35 years on NASA, NOAA, Japanese and European satellites. In this paper we describe the basic principles of the "soft" calibration approach that we have successfully applied to the data from many of these instruments to produce a consistent long-term record of total ozone, ozone profile and aerosols. This approach is based on using accurate radiative transfer models and assumed/known properties of the atmosphere in ultraviolet to derive calibration parameters. Although the accuracy of the results inevitably depends upon how well the assumed atmospheric properties are known, the technique has several built-in cross- checks that improve the robustness of the method. To develop further confidence in the data the soft calibration technique can be combined with data collected from few well- calibrated ground-based instruments. We will use examples from past and present BUV instruments to show how the method works.

  14. Earth Observatory Satellite system definition study. Report no. 2: Instrument constraints and interface specifications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The instruments to be flown on the Earth Observatory Satellite (EOS) system are defined. The instruments will be used to support the Land Resources Management (LRM) mission of the EOS. Program planning information and suggested acquisition activities for obtaining the instruments are presented. The subjects considered are as follows: (1) the performance and interface of the Thematic Mapper (TM) and the High Resolution Pointing Imager (HRPI), (2) procedure for interfacing the TM and HRPI with the EOS satellite, (3) a space vehicle integration plan suggesting the steps and sequence of events required to carry out the interface activities, and (4) suggested agreements between the contractors for providing timely and equitable solution of problems at minimum cost.

  15. Multi-sensor satellite monitoring of ash and SO2 volcanic plume in support to aviation control

    NASA Astrophysics Data System (ADS)

    Brenot, Hugues; Theys, Nicolas; Clarisse, Lieven; van Geffen, Jos; van Gent, Jeroen; Van Roozendael, Michel; van der A, Ronald; Hurtmans, Daniel; Coheur, Pierre-Francois; Clerbaux, Cathy; Valks, Pieter; Hedelt, Pascal; Prata, Fred; Rasson, Olivier; Sievers, Klaus; Zehner, Claus

    2014-05-01

    The 'Support to Aviation Control Service' (SACS; http://sacs.aeronomie.be) is an ESA-funded project hosted by the Belgian Institute for Space Aeronomy since 2007. The service provides near real-time (NRT) global volcanic ash and SO2 observations, as well as notifications in case of volcanic eruptions (success rate >95% for ash and SO2). SACS is based on the combined use of UV-visible (OMI, GOME-2 MetOp-A, GOME-2 MetOp-B) and infrared (AIRS, IASI MetOp-A, IASI MetOp-B) satellite instruments. The SACS service is primarily designed to support the Volcanic Ash Advisory Centers (VAACs) in their mandate to gather information on volcanic clouds and give advice to airline and air traffic control organisations. SACS also serves other users that subscribe to the service, in particular local volcano observatories, research scientists and airliner pilots. When a volcanic eruption is detected, SACS issues a warning that takes the form of a notification sent by e-mail to users. The SACS notification points to a dedicated web page where all relevant information is available and can be visualised with user-friendly tools. Information about the volcanic plume height from GOME-2 (MetOp-A and MetOp-B) are also available. The strength of a multi-sensor approach relies in the use of satellite data with different overpasses times, minimising the time-lag for detection and enhancing the reliability of such alerts. This presentation will give an overview of the SACS service, and of the different techniques used to detect volcanic plumes (ash, SO2 and plume height). It will also highlight the strengths and limitations of the service and measurements, and some perspectives.

  16. Quantification of point sources of carbon monoxide using satellite measurements

    NASA Astrophysics Data System (ADS)

    Dekker, Iris; Houweling, Sander; Aben, Ilse; Roeckmann, Thomas; Krol, Maarten

    2017-04-01

    The growth of mega-cities leads to air quality problems directly affecting the citizens. With satellite measurements becoming of higher quality and quantity, satellite instruments can more accurately retrieve the enhanced air pollutant concentrations over large cities. The aim of this research is to quantify carbon monoxide emissions from megacities and their trends using satellite retrievals, combined with an atmospheric chemistry and transport model. Earlier emission estimations of cities have been done using MOPITT satellite data only. To improve the reliability of the emission estimation, we simulate MOPITT retrievals using the Weather Research and Forecast model with chemistry core (WRF-Chem). The difference between model and retrieval is used to optimize CO emissions in WRF-Chem, focusing on the city of Madrid, Spain. A reasonable agreement is obtained between the yearly averaged model output and satellite measurements (R2=0.75) for Madrid. After optimization, the emission of Madrid is reduced by 48% for 2002 and by 17% for 2006 compared with EdgarV4.2. The MOPITT derived emission adjustments lead to a better agreement with a European emission inventory TNO-MAC-III for both years. This suggested that the downward trend in CO emissions over Madrid is overestimated in EdgarV4.2 and more realistically represented in TNO-MAC-III. However, uncertainties remain large using our satellite-based emission estimation method, in the order of 20% for 2002 and 50% for 2006. Therefore, different options to increase the degrees of freedom in the optimization are investigated, to account for the noise in the MOPITT data. We also show comparisons with IASI data, which have a higher temporal resolution. The method is developed for application to Sentinel 5P TROPOMI, to be launched in June 2017.

  17. Simultaneous assimilation of ozone profiles from multiple UV-VIS satellite instruments

    NASA Astrophysics Data System (ADS)

    van Peet, Jacob C. A.; van der A, Ronald J.; Kelder, Hennie M.; Levelt, Pieternel F.

    2018-02-01

    A three-dimensional global ozone distribution has been derived from assimilation of ozone profiles that were observed by satellites. By simultaneous assimilation of ozone profiles retrieved from the nadir looking satellite instruments Global Ozone Monitoring Experiment 2 (GOME-2) and Ozone Monitoring Instrument (OMI), which measure the atmosphere at different times of the day, the quality of the derived atmospheric ozone field has been improved. The assimilation is using an extended Kalman filter in which chemical transport model TM5 has been used for the forecast. The combined assimilation of both GOME-2 and OMI improves upon the assimilation results of a single sensor. The new assimilation system has been demonstrated by processing 4 years of data from 2008 to 2011. Validation of the assimilation output by comparison with sondes shows that biases vary between -5 and +10 % between the surface and 100 hPa. The biases for the combined assimilation vary between -3 and +3 % in the region between 100 and 10 hPa where GOME-2 and OMI are most sensitive. This is a strong improvement compared to direct retrievals of ozone profiles from satellite observations.

  18. The Upper Atmosphere Research Satellite microwave limb sounder instrument

    NASA Astrophysics Data System (ADS)

    Barath, F. T.; Chavez, M. C.; Cofield, R. E.; Flower, D. A.; Frerking, M. A.; Gram, M. B.; Harris, W. M.; Holden, J. R.; Jarnot, R. F.; Kloezeman, W. G.

    1993-06-01

    The microwave limb sounder (MLS) on the Upper Atmosphere Research Satellite (UARS) is the first satellite experiment using limb sounding techniques at microwave frequencies. Primary measurement objectives are stratospheric ClO, O3, H2O, temperature, and pressure. Measurements are of thermal emission: all are performed simultaneously and continuously and are not degraded by ice clouds or volcanic aerosols. The instrument has a 1.6-m mechanically scanning antenna system and contains heterodyne radiometers in spectral bands centred near 63, 183, and 205 GHz. The radiometers operate at ambient temperature and use Schottky-diode mixers with local oscillators derived from phase-locked Gunn oscillators. Frequency tripling by varactor multipliers generates the 183- and 205-GHz local oscillators, and quasi-optical techniques inject these into the mixers. Six 15-channel filter banks spectrally resolve stratospheric thermal emission lines and produce an output spectrum every 2 s. Thermal stability is sufficient for 'total power' measurements which do not require fast chopping. Radiometric calibration, consisting of measurements of cold space and an internal target, is performed every 65-s limb scan. Instrument in-orbit performance has been excellent, and all objectives are being met.

  19. The Upper Atmosphere Research Satellite microwave limb sounder instrument

    NASA Technical Reports Server (NTRS)

    Barath, F. T.; Chavez, M. C.; Cofield, R. E.; Flower, D. A.; Frerking, M. A.; Gram, M. B.; Harris, W. M.; Holden, J. R.; Jarnot, R. F.; Kloezeman, W. G.

    1993-01-01

    The microwave limb sounder (MLS) on the Upper Atmosphere Research Satellite (UARS) is the first satellite experiment using limb sounding techniques at microwave frequencies. Primary measurement objectives are stratospheric ClO, O3, H2O, temperature, and pressure. Measurements are of thermal emission: all are performed simultaneously and continuously and are not degraded by ice clouds or volcanic aerosols. The instrument has a 1.6-m mechanically scanning antenna system and contains heterodyne radiometers in spectral bands centred near 63, 183, and 205 GHz. The radiometers operate at ambient temperature and use Schottky-diode mixers with local oscillators derived from phase-locked Gunn oscillators. Frequency tripling by varactor multipliers generates the 183- and 205-GHz local oscillators, and quasi-optical techniques inject these into the mixers. Six 15-channel filter banks spectrally resolve stratospheric thermal emission lines and produce an output spectrum every 2 s. Thermal stability is sufficient for 'total power' measurements which do not require fast chopping. Radiometric calibration, consisting of measurements of cold space and an internal target, is performed every 65-s limb scan. Instrument in-orbit performance has been excellent, and all objectives are being met.

  20. Operational Monitoring of GOME-2 and IASI Level 1 Product Processing at EUMETSAT

    NASA Astrophysics Data System (ADS)

    Livschitz, Yakov; Munro, Rosemary; Lang, Rüdiger; Fiedler, Lars; Dyer, Richard; Eisinger, Michael

    2010-05-01

    The growing complexity of operational level 1 radiance products from Low Earth Orbiting (LEO) platforms like EUMETSATs Metop series makes near-real-time monitoring of product quality a challenging task. The main challenge is to provide a monitoring system which is flexible and robust enough to identify and to react to anomalies which may be previously unknown to the system, as well as to provide all means and parameters necessary in order to support efficient ad-hoc analysis of the incident. The operational monitoring system developed at EUMETSAT for monitoring of GOME-2 and IASI level 1 data allows to perform near-real-time monitoring of operational products and instrument's health in a robust and flexible fashion. For effective information management, the system is based on a relational database (Oracle). An Extract, Transform, Load (ETL) process transforms products in EUMETSAT Polar System (EPS) format into relational data structures. The identification of commonalities between products and instruments allows for a database structure design in such a way that different data can be analyzed using the same business intelligence functionality. An interactive analysis software implementing modern data mining techniques is also provided for a detailed look into the data. The system is effectively used for day-to-day monitoring, long-term reporting, instrument's degradation analysis as well as for ad-hoc queries in case of an unexpected instrument or processing behaviour. Having data from different sources on a single instrument and even from different instruments, platforms or numerical weather prediction within the same database allows effective cross-comparison and looking for correlated parameters. Automatic alarms raised by checking for deviation of certain parameters, for data losses and other events significantly reduce time, necessary to monitor the processing on a day-to-day basis.

  1. Testing of Environmental Satellite Bus-Instrument Interfaces Using Engineering Models

    NASA Technical Reports Server (NTRS)

    Gagnier, Donald; Hayner, Rick; Nosek, Thomas; Roza, Michael; Hendershot, James E.; Razzaghi, Andrea I.

    2004-01-01

    This paper discusses the formulation and execution of a laboratory test of the electrical interfaces between multiple atmospheric scientific instruments and the spacecraft bus that carries them. The testing, performed in 2002, used engineering models of the instruments and the Aura spacecraft bus electronics. Aura is one of NASA s Earth Observatory System missions. The test was designed to evaluate the complex interfaces in the command and data handling subsystems prior to integration of the complete flight instruments on the spacecraft. A problem discovered during the flight integration phase of the observatory can cause significant cost and schedule impacts. The tests successfully revealed problems and led to their resolution before the full-up integration phase, saving significant cost and schedule. This approach could be beneficial for future environmental satellite programs involving the integration of multiple, complex scientific instruments onto a spacecraft bus.

  2. Deforestation fires versus understory fires in the Amazon Basin: What can we learn from satellite-based CO measurements?

    NASA Astrophysics Data System (ADS)

    Martinez-Alonso, S.; Deeter, M. N.; Worden, H. M.; Gille, J. C.; Clerbaux, C.; George, M.

    2014-12-01

    Deforestation fires in the Amazon Basin abound during the dry season (July to October) and are mostly associated with "slash and burn" agricultural practices. Understory fires occur when fires escape from deforested areas into neighboring standing forests; they spread slowly below the canopy, affecting areas that may be comparable or even larger than clear-cut areas. The interannual variabilities of understory fires and deforestation rates appear to be uncorrelated. Areas burned in understory fires are particularly extensive during droughts. Because they progress below a canopy of living trees, understory fires and their effects are not as easily identifiable from space as deforestation fires. Here we analyze satellite remote sensing products for CO and fire to investigate differences between deforestation fires and understory fires in the Amazon Basin under varying climatic conditions. The MOPITT (Measurements Of Pollution In The Troposphere) instrument on board NASA's Terra satellite has been measuring tropospheric CO since 2000, providing the longest global CO record to date. IASI (the Infrared Atmospheric Sounding Interferometer) A and B are two instruments on board METOP-A and -B, respectively, measuring, among others, CO since 2006 and 2012. MODIS (the Moderate Resolution Imaging Spectroradiometer) instruments on board NASA's Terra and Aqua satellites provide, among other products, a daily record of fires and their effects since 2000 and 2002, respectively. The temporal extent of all these datasets allows for the detailed analysis of drought versus non-drought years. Initial results indicate that MOPITT CO emissions during the dry season peaked in 2005, 2007, and 2010. Those were draught years and coincide with peaks in area affected by understory fires.

  3. On-Orbit Cross-Calibration of AM Satellite Remote Sensing Instruments using the Moon

    NASA Technical Reports Server (NTRS)

    Butler, James J.; Kieffer, Hugh H.; Barnes, Robert A.; Stone, Thomas C.

    2003-01-01

    On April 14,2003, three Earth remote sensing spacecraft were maneuvered enabling six satellite instruments operating in the visible through shortwave infrared wavelength region to view the Moon for purposes of on-orbit cross-calibration. These instruments included the Moderate Resolution Imaging Spectroradiometer (MODIS), the Multi-angle Imaging SpectroRadiometer (MISR), the Advanced Spaceborne Thermal Emission and Reflection (ASTER) radiometer on the Earth Observing System (EOS) Terra spacecraft, the Advanced Land Imager (ALI) and Hyperion instrument on Earth Observing-1 (EO-1) spacecraft, and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) on the SeaStar spacecraft. Observations of the Moon were compared using a spectral photometric mode for lunar irradiance developed by the Robotic Lunar Observatory (ROLO) project located at the United States Geological Survey in Flagstaff, Arizona. The ROLO model effectively accounts for variations in lunar irradiance corresponding to lunar phase and libration angles, allowing intercomparison of observations made by instruments on different spacecraft under different time and location conditions. The spacecraft maneuvers necessary to view the Moon are briefly described and results of using the lunar irradiance model in comparing the radiometric calibration scales of the six satellite instruments are presented here.

  4. The geostationary Earth radiation budget (GERB) instrument on EUMETSAT's MSG satellite

    NASA Astrophysics Data System (ADS)

    Sandford, M. C. W.; Allan, P. M.; Caldwell, M. E.; Delderfield, J.; Oliver, M. B.; Sawyer, E.; Harries, J. E.; Ashmall, J.; Brindley, H.; Kellock, S.; Mossavati, R.; Wrigley, R.; Llewellyn-Jones, D.; Blake, O.; Butcher, G.; Cole, R.; Nelms, N.; DeWitte, S.; Gloesener, P.; Fabbrizzi, F.

    2003-12-01

    Geostationary Earth radiation budget (GERB) is an Announcement of Opportunity Instrument for EUMETSAT's Meteosat Second Generation (MSG) satellite. GERB will make accurate measurements of the Earth Radiation Budget from geostationary orbit, provide an absolute reference calibration for LEO Earth radiation budget instruments and allow studies of the energetics of atmospheric processes. By operating from geostationary orbit, measurements may be made many times a day, thereby providing essentially perfect diurnal sampling of the radiation balance between reflected and emitted radiance for that area of the globe within the field of view. GERB will thus complement other instruments which operate in low orbit and give complete global coverage, but with poor and biased time resolution. GERB measures infrared radiation in two wavelength bands: 0.32-4.0 and 0.32- 30 μm, with a pixel element size of 44 km at sub-satellite point. This paper gives an overview of the project and concentrates on the design and development of the instrument and ground testing and calibration, and lessons learnt from a short time scale low-budget project. The instrument was delivered for integration on the MSG platform in April 1999 ready for the proposed launch in October 2000, which has now been delayed probably to early 2002. The ground segment is being undertaken by RAL and RMIB and produces near real-time data for meteorological applications in conjunction with the main MSG imager—SEVERI. Climate research and other applications which are being developed under a EU Framework IV pilot project will be served by fully processed data. Because of the relevance of the observations to climate change, it is planned to maintain an operating instrument in orbit for at least 3.5 years. Two further GERB instruments are being built for subsequent launches of MSG.

  5. Assessing the Impact of Advanced Satellite Observations in the NASA GEOS-5 Forecast System Using the Adjoint Method

    NASA Technical Reports Server (NTRS)

    Gelaro, Ron; Liu, Emily; Sienkiewicz, Meta

    2011-01-01

    The adjoint of a data assimilation system provides a flexible and efficient tool for estimating observation impacts on short-range weather forecasts. The impacts of any or all observations can be estimated simultaneously based on a single execution of the adjoint system. The results can be easily aggregated according to data type, location, channel, etc., making this technique especially attractive for examining the impacts of new hyper-spectral satellite instruments and for conducting regular, even near-real time, monitoring of the entire observing system. In this talk, we present results from the adjoint-based observation impact monitoring tool in NASA's GEOS-5 global atmospheric data assimilation and forecast system. The tool has been running in various off-line configurations for some time, and is scheduled to run as a regular part of the real-time forecast suite beginning in autumn 20 I O. We focus on the impacts of the newest components of the satellite observing system, including AIRS, IASI and GPS. For AIRS and IASI, it is shown that the vast majority of the channels assimilated have systematic positive impacts (of varying magnitudes), although some channels degrade the forecast. Of the latter, most are moisture-sensitive or near-surface channels. The impact of GPS observations in the southern hemisphere is found to be a considerable overall benefit to the system. In addition, the spatial variability of observation impacts reveals coherent patterns of positive and negative impacts that may point to deficiencies in the use of certain observations over, for example, specific surface types. When performed in conjunction with selected observing system experiments (OSEs), the adjoint results reveal both redundancies and dependencies between observing system impacts as observations are added or removed from the assimilation system. Understanding these dependencies appears to pose a major challenge for optimizing the use of the current observational network and

  6. Retrievals with the Infrared Atmospheric Sounding Interferometer

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Smith, William L.; Taylor, Jonathan P.; Schlussel, Peter; Strow, L. Larrabee; Calbet, Xavier; Mango, Stephen A.

    2007-01-01

    The Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp satellite was launched on October 19, 2006. The Joint Airborne IASI Validation Experiment (JAIVEx) was conducted during April 2007 mainly for validation of the IASI on the MetOp satellite. IASI possesses an ultra-spectral resolution of 0.25/cm and a spectral coverage from 645 to 2760/cm. Ultraspectral resolution infrared spectral radiance obtained from near nadir observations provide atmospheric, surface, and cloud property information. An advanced retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. Preliminary retrievals of atmospheric soundings, surface properties, and cloud optical/microphysical properties with the IASI observations during the JAIVEx are obtained and presented. These retrievals are further inter-compared with those obtained from airborne FTS system, such as the NPOESS Airborne Sounder Testbed Interferometer (NAST-I), dedicated dropsondes, radiosondes, and ground based Raman Lidar. The capabilities of satellite ultra-spectral sounder such as the IASI are investigated.

  7. Testing of Environmental Satellite Bus-Instrument Interfaces Using Engineering Models

    NASA Technical Reports Server (NTRS)

    Gagnier, Don; Hayner, Rick; Roza, Michael; Nosek, Thomas; Razzaghi, Andrea

    2004-01-01

    This paper discusses the formulation and execution of a laboratory test of the electrical interfaces between multiple atmospheric science instruments and the spacecraft bus that carries them. The testing, performed in 2002, used engineering models of the instruments that will be flown on the Aura s p a c m and of the Aura spacecraft bus electronics. Aura is one of NASA's Earth Observing System @OS) Program missions managed by the Goddard Space Flight Center. The test was designed to evaluate the complex interfaces in the spacecraft and instrument command and data handling (C&DH) subsystems prior to integration of the complete flight instruments on the spacecraft. A problem discovered during (and not before) the flight hardware integration phase can cause significant cost and schedule impacts. The testing successfully surfaced problems and led to their resolution before the full-up integration phase, saving significant cost and schedule time. This approach could be used on future environmental satellite programs involving multiple, complex scientific instruments being integrated onto a bus.

  8. The Vector Electric Field Instrument on the C/NOFS Satellite

    NASA Technical Reports Server (NTRS)

    Pfaff, R.; Kujawski, J.; Uribe, P.; Bromund, K.; Fourre, R.; Acuna, M.; Le, G.; Farrell, W.; Holzworth, R.; McCarthy, M.; hide

    2008-01-01

    We provide an overview of the Vector Electric Field Instrument (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite, a mission designed to understand, model, and forecast the presence of equatorial ionospheric irregularities. VEFI is a NASA GSFC instrument designed 1) to investigate the role of the ambient electric fields in initiating nighttime ionospheric density depletions and turbulence; 2) to determine the electric fields associated with abrupt, large amplitude, density depletions and 3) to quantify the spectrum of the wave electric fields and plasma densities (irregularities) associated with density depletions or Equatorial Spread-F. The VEFI instrument includes a vector electric field double probe detector, a Langmuir trigger probe, a flux gate magnetometer, a lightning detector and associated electronics. The heart of the instrument is the set of double probe detectors designed to measure DC and AC electric fields using 6 identical, mutually orthogonal, deployable 9.5 m booms tipped with 10 cm diameter spheres containing embedded preamplifiers. A description of the instrument and its sensors will be presented. If available, representative measurements will be provided.

  9. Validation of Radiometric Standards for the Laboratory Calibration of Reflected-Solar Earth Observing Satellite Instruments

    NASA Technical Reports Server (NTRS)

    Butler, James J.; Johnson, B. Carol; Rice, Joseph P.; Brown, Steven W.; Barnes, Robert A.

    2007-01-01

    Historically, the traceability of the laboratory calibration of Earth-observing satellite instruments to a primary radiometric reference scale (SI units) is the responsibility of each instrument builder. For the NASA Earth Observing System (EOS), a program has been developed using laboratory transfer radiometers, each with its own traceability to the primary radiance scale of a national metrology laboratory, to independently validate the radiances assigned to the laboratory sources of the instrument builders. The EOS Project Science Office also developed a validation program for the measurement of onboard diffuse reflecting plaques, which are also used as radiometric standards for Earth-observing satellite instruments. Summarized results of these validation campaigns, with an emphasis on the current state-of-the-art uncertainties in laboratory radiometric standards, will be presented. Future mission uncertainty requirements, and possible enhancements to the EOS validation program to ensure that those uncertainties can be met, will be presented.

  10. Suborbital Reusable Launch Vehicles as an Opportunity to Consolidate and Calibrate Ground Based and Satellite Instruments

    NASA Astrophysics Data System (ADS)

    Papadopoulos, K.

    2014-12-01

    XCOR Aerospace, a commercial space company, is planning to provide frequent, low cost access to near-Earth space on the Lynx suborbital Reusable Launch Vehicle (sRLV). Measurements in the external vacuum environment can be made and can launch from most runways on a limited lead time. Lynx can operate as a platform to perform suborbital in situ measurements and remote sensing to supplement models and simulations with new data points. These measurements can serve as a quantitative link to existing instruments and be used as a basis to calibrate detectors on spacecraft. Easier access to suborbital data can improve the longevity and cohesiveness of spacecraft and ground-based resources. A study of how these measurements can be made on Lynx sRLV will be presented. At the boundary between terrestrial and space weather, measurements from instruments on Lynx can help develop algorithms to optimize the consolidation of ground and satellite based data as well as assimilate global models with new data points. For example, current tides and the equatorial electrojet, essential to understanding the Thermosphere-Ionosphere system, can be measured in situ frequently and on short notice. Furthermore, a negative-ion spectrometer and a Faraday cup, can take measurements of the D-region ion composition. A differential GPS receiver can infer the spatial gradient of ionospheric electron density. Instruments and optics on spacecraft degrade over time, leading to calibration drift. Lynx can be a cost effective platform for deploying a reference instrument to calibrate satellites with a frequent and fast turnaround and a successful return of the instrument. A calibrated reference instrument on Lynx can make collocated observations as another instrument and corrections are made for the latter, thus ensuring data consistency and mission longevity. Aboard a sRLV, atmospheric conditions that distort remotely sensed data (ground and spacecraft based) can be measured in situ. Moreover, an

  11. Detection in the summer polar stratosphere of air plume pollution from East Asia by balloon-borne in situ CO measurement

    NASA Astrophysics Data System (ADS)

    Huret, N.; Krysztofiak, G.; Thiéblemont, R.; Catoire, V.; Payan, S.; Té, Y. V.; Jegou, F.; Drouin, M.; Robert, C.

    2011-12-01

    The SPIRALE (french acronym for infrared absorption spectroscopy by tunable laser diodes) and SWIR-balloon (shortwave infrared Fourier transform spectrometer in nadir-looking) balloon-borne instruments have been launched in the Arctic polar region (Kiruna, Sweden, 67.9°N - 21.1°E) during summer on 7 and 24 August 2009 and on 14 August 2009, respectively. SPIRALE instrument performed in situ measurements of several trace gases including CO and O3 between 10 and 34 km height, with very high vertical resolution (~5 m) and SWIR-balloon instrument measured total column of several species including CO. The balloon CO measurements for the 3 dates are compared with the satellite data from IASI instrument and show a good agreement. However, the stratospheric profile from SPIRALE on 7 August 2009 presents specific structures associated with a tropical intrusion in the low levels (320-380K potential temperature corresponding to 10-14 km altitude) with respect to the 24 august measurements, which is confirmed by the 15-20% increase of the total column of IASI. Their interpretation is made with the help of results from several modelling tools (MIMOSA, FLEXTRA, REPROBUS and GIRAFE) and from satellite data (MODIS on board TERRA/AQUA, IASI instrument on board MetOp-A and GEOS). The results suggest the impact of East Asia urban pollution on the chemistry of polar stratosphere in summer. The SPIRALE O3 vertical profile was also used in correlation with CO to calculate the proportion of recent air in polar stratosphere. SPIRALE and SWIR-balloon flights were part of the balloon campaign conducted by CNES within the frame of the StraPolÉté project funded by French agencies ANR, CNES and IPEV, contributing to the International Polar Year.

  12. IASI-derived NH3 enhancement ratios relative to CO for the tropical biomass burning regions

    NASA Astrophysics Data System (ADS)

    Whitburn, Simon; Van Damme, Martin; Clarisse, Lieven; Hurtmans, Daniel; Clerbaux, Cathy; Coheur, Pierre-François

    2017-10-01

    Vegetation fires are a major source of ammonia (NH3) in the atmosphere. Their emissions are mainly estimated using bottom-up approaches that rely on uncertain emission factors. In this study, we derive new biome-specific NH3 enhancement ratios relative to carbon monoxide (CO), ERNH3 / CO (directly related to the emission factors), from the measurements of the IASI sounder onboard the Metop-A satellite. This is achieved for large tropical regions and for an 8-year period (2008-2015). We find substantial differences in the ERNH3 / CO ratios between the biomes studied, with calculated values ranging from 7 × 10-3 to 23 × 10-3. For evergreen broadleaf forest these are typically 50-75 % higher than for woody savanna and savanna biomes. This variability is attributed to differences in fuel types and size and is in line with previous studies. The analysis of the spatial and temporal distribution of the ERNH3 / CO ratio also reveals a (sometimes large) within-biome variability. On a regional level, woody savanna shows, for example, a mean ERNH3 / CO ratio for the region of Africa south of the Equator that is 40-75 % lower than in the other five regions studied, probably reflecting regional differences in fuel type and burning conditions. The same variability is also observed on a yearly basis, with a peak in the ERNH3 / CO ratio observed for the year 2010 for all biomes. These results highlight the need for the development of dynamic emission factors that take into better account local variations in fuel type and fire conditions. We also compare the IASI-derived ERNH3 / CO ratio with values reported in the literature, usually calculated from ground-based or airborne measurements. We find general good agreement in the referenced ERNH3 / CO ratio except for cropland, for which the ERNH3 / CO ratio shows an underestimation of about 2-2.5 times.

  13. Design and development of the Sentinel-2 Multi Spectral Instrument and satellite system

    NASA Astrophysics Data System (ADS)

    Chorvalli, Vincent; Cazaubiel, Vincent; Bursch, Stefan; Welsch, Mario; Sontag, Heinz; Martimort, Philippe; Del Bello, Umberto; Sy, Omar; Laberinti, Paolo; Spoto, François

    2010-10-01

    2A and Sentinel-2B satellites currently under development will ensure systematic global acquisition of all land and coastal waters in the visible and short-wave infrared spectral domain with a 5 day revisit time at the equator. The Multi Spectral Instrument is a push-broom imager providing imagery in 13 spectral channels with spatial resolutions ranging from 10 m to 60 m and a swath width of 290 Km, larger than SPOT and Landsat. The instrument features a full field of view calibration device, a silicon carbide Three Mirror Anastigmat telescope with mirror dimensions up to 600 mm, specific filter stripe assemblies, newly developed Si-CMOS and HgCDTe detectors and a low noise wavelet compression video electronics. The 1.4 Tbits/s raw image date rate is reduced down to 490 Mbits/s at the output of the instrument to cope with the overall system transmission capability. The Sentinel-2 program has entered in the CD phase in 2009. Launch of Sentinel-2A satellite is scheduled for 2013.

  14. Multitemporal Monitoring of the Air Quality in Bulgaria by Satellite Based Instruments

    NASA Astrophysics Data System (ADS)

    Nikolov, Hristo; Borisova, Denitsa

    2015-04-01

    Nowadays the effect on climate changes on the population and environment caused by air pollutants at local and regional scale by pollution concentrations higher than allowed is undisputable. Main sources of gas releases are due to anthropogenic emissions caused by the economic and domestic activities of the inhabitants, and to less extent having natural origin. Complementary to pollutants emissions the local weather parameters such as temperature, precipitation, wind speed, clouds, atmospheric water vapor, and wind direction control the chemical reactions in the atmosphere. It should be noted that intrinsic property of the air pollution is its "transboundary-ness" and this is why the air quality (AQ) is not affecting the population of one single country only. This why the exchange of information concerning AQ at EU level is subject to well established legislation and one of EU flagship initiatives for standardization in data exchange, namely INSPIRE, has to cope with. It should be noted that although good reporting mechanism with regard to AQ is already established between EU member states national networks suffer from a serious disadvantage - they don't form a regular grid which is a prerequisite for verification of pollutants transport modeling. Alternative sources of information for AQ are the satellite observations (i.e. OMI, TOMS instruments) providing daily data for ones of the major contributors to air pollution such as O3, NOX and SO2. Those data form regular grids and are processed the same day of the acquisition so they could be used in verification of the outputs generated by numerical modeling of the AQ and pollution transfer. In this research we present results on multitemporal monitoring of several regional "hot spots" responsible for greenhouse gases emissions in Bulgaria with emphasis on satellite-based instruments. Other output from this study is a method for validation of the AQ forecasts and also providing feedback to the service that prepares

  15. Operational Monitoring of GOME-2 and IASI Level 1 Product Processing at EUMETSAT

    NASA Astrophysics Data System (ADS)

    Livschitz, Y.; Munro, R.; Lang, R.; Fiedler, L.; Dyer, R.; Eisinger, M.

    2009-12-01

    The growing complexity of operational level 1 radiance products from Low Earth Orbiting (LEO) platforms like EUMETSATs Metop series makes near-real-time monitoring of product quality a challenging task. The main challenge is to provide a monitoring system which is flexible and robust enough to identify and to react to anomalies which may be previously unknown to the system, as well as to provide all means and parameters necessary in order to support efficient ad-hoc analysis of the incident. The operational monitoring system developed at EUMETSAT for monitoring of GOME-2 and IASI level 1 data allows to perform near-real-time monitoring of operational products and instrument’s health in a robust and flexible fashion. For effective information management, the system is based on a relational database (Oracle). An Extract, Transform, Load (ETL) process transforms products in EUMETSAT Polar System (EPS) format into relational data structures. The identification of commonalities between products and instruments allows for a database structure design in such a way that different data can be analyzed using the same business intelligence functionality. An interactive analysis software implementing modern data mining techniques is also provided for a detailed look into the data. The system is effectively used for day-to-day monitoring, long-term reporting, instrument’s degradation analysis as well as for ad-hoc queries in case of an unexpected instrument or processing behaviour. Having data from different sources on a single instrument and even from different instruments, platforms or numerical weather prediction within the same database allows effective cross-comparison and looking for correlated parameters. Automatic alarms raised by checking for deviation of certain parameters, for data losses and other events significantly reduce time, necessary to monitor the processing on a day-to-day basis.

  16. 27 Years of Satellite Ozone Data: Merging of Data Records from Multiple Instruments to Observe Global Trends and Recovery

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.

    2007-01-01

    Satellite measurements provide a unique global view of the stratospheric ozone layer. The perspective from satellites allowed for the early mapping of the extent of the phenomenon that became known as the ozone hole. The use of the satellite data for global trends outside of the ozone hole confronts the problem of the possible drift of the calibration of the instrument. The TOMS and SBUV instruments on Nimbus 7 lasted for more than a decade. During that time, the diffuser plate used to reflect sunlight into the measurement degraded (darkened) and the instruments each had a number of events that made calibration determination difficult. Initially the TOMS data were used for global trends by adjusting the overall calibration to agree with a set of ground-based measurement stations. But this was unsatisfactory because the record was not independent of those ground measurements and problems were found in many of the ground stations by using TOMS as a transfer standard. After many years of dedicated work, the TOMS/SBUV team learned how to correct for instrument drift, remove the interfering effects of aerosols, and establish instrument-to-instrument calibrations resulting in a long-term record that can be used for accurate trend and recovery determination. The global view of the satellites allows for determination not only of temporal change in ozone, but spatial fingerprints that allow more confidence in assigning cause to observed changes.

  17. Instrumentation for one-way satellite PTTI applications. [calibration and synchronization of clocks from navigation satellite

    NASA Technical Reports Server (NTRS)

    Osborne, A. E.

    1973-01-01

    A review of general principles and operational procedures illustrates how the typical passive user and omni receiving antenna can recover Precise Time and Time Interval (PTTI) information from a low altitude navigation satellite system for clock calibration and synchronization. Detailed discussions of concepts and theory of the receiver design are presented. The importance of RF correlation of the received and local PN encoded sequences is emphasized as a means of reducing delay uncertainties of the instrumentation to values compatible with nanosecond to submicrosecond PTTI objectives. Two receiver configurations were fabricated for use in satellite-to-laboratory experiments. In one receiver the delay-locked loop for PN signals synchronization used a dithered amplitude detection process while the second receiver used a complex sums phase detection method for measurement of delay error. The necessity for compensation of Doppler shift is discussed. Differences in theoretical signal acquisition and tracking performance of the design concepts are noted.

  18. JPSS Preparations at the Satellite Proving Ground for Marine, Precipitation, and Satellite Analysis

    NASA Astrophysics Data System (ADS)

    Folmer, M. J.; Berndt, E.; Clark, J.; Orrison, A.; Kibler, J.; Sienkiewicz, J. M.; Nelson, J. A., Jr.; Goldberg, M.

    2016-12-01

    The National Oceanic and Atmospheric Administration (NOAA) Satellite Proving Ground (PG) for Marine, Precipitation, and Satellite Analysis (MPS) has been demonstrating and evaluating Suomi National Polar-orbiting Partnership (S-NPP) products along with other polar-orbiting satellite platforms in preparation for the Joint Polar Satellite System - 1 (JPSS-1) launch in March 2017. The first S-NPP imagery was made available to the MPS PG during the evolution of Hurricane Sandy in October 2012 and has since been popular in operations. Since this event the MPS PG Satellite Liaison has been working with forecasters on ways to integrate single-channel and multispectral imagery from the Visible Infrared Imaging Radiometer Suite (VIIRS), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Advanced Very High Resolution Radiometer (AVHRR)into operations to complement numerical weather prediction and geostationary satellite savvy National Weather Service (NWS) National Centers. Additional unique products have been introduced to operations to address specific forecast challenges, including the Cooperative Institute for Research in the Atmosphere (CIRA) Layered Precipitable Water, the National Environmental Satellite, Data, and Information Service (NESDIS) Snowfall Rate product, NOAA Unique Combined Atmospheric Processing System (NUCAPS) Soundings, ozone products from the Atmospheric Infrared Sounder (AIRS), Cross-track Infrared Sounder/Advanced Technology Microwave Sounder (CrIS/ATMS), and Infrared Atmospheric Sounding Interferometer (IASI). In addition, new satellite domains have been created to provide forecasters at the NWS Ocean Prediction Center and Weather Prediction Center with better quality imagery at high latitudes. This has led to research projects that are addressing forecast challenges such as tropical to extratropical transition and explosive cyclogenesis. This presentation will provide examples of how the MPS PG has been introducing and integrating

  19. Error Consistency Analysis Scheme for Infrared Ultraspectral Sounding Retrieval Error Budget Estimation

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, Larry, L.

    2013-01-01

    Great effort has been devoted towards validating geophysical parameters retrieved from ultraspectral infrared radiances obtained from satellite remote sensors. An error consistency analysis scheme (ECAS), utilizing fast radiative transfer model (RTM) forward and inverse calculations, has been developed to estimate the error budget in terms of mean difference and standard deviation of error in both spectral radiance and retrieval domains. The retrieval error is assessed through ECAS without relying on other independent measurements such as radiosonde data. ECAS establishes a link between the accuracies of radiances and retrieved geophysical parameters. ECAS can be applied to measurements from any ultraspectral instrument and any retrieval scheme with its associated RTM. In this manuscript, ECAS is described and demonstrated with measurements from the MetOp-A satellite Infrared Atmospheric Sounding Interferometer (IASI). This scheme can be used together with other validation methodologies to give a more definitive characterization of the error and/or uncertainty of geophysical parameters retrieved from ultraspectral radiances observed from current and future satellite remote sensors such as IASI, the Atmospheric Infrared Sounder (AIRS), and the Cross-track Infrared Sounder (CrIS).

  20. Satellite communications provisions on NASA Ames instrumented aircraft platforms for Earth science research/applications

    NASA Technical Reports Server (NTRS)

    Shameson, L.; Brass, J. A.; Hanratty, J. J.; Roberts, A. C.; Wegener, S. S.

    1995-01-01

    Earth science activities at NASA Ames are research in atmospheric and ecosystem science, development of remote sensing and in situ sampling instruments, and their integration into scientific research platform aircraft. The use of satellite communications can greatly extend the capability of these agency research platform aircraft. Current projects and plans involve satellite links on the Perseus UAV and the ER-2 via TDRSS and a proposed experiment on the NASA Advanced Communications Technology Satellite. Provisions for data links on the Perseus research platform, via TDRSS S-band multiple access service, have been developed and are being tested. Test flights at Dryden are planned to demonstrate successful end-to-end data transfer. A Unisys Corp. airborne satcom STARLink system is being integrated into an Ames ER-2 aircraft. This equipment will support multiple data rates up to 43 Mb/s each via the TDRS S Ku-band single access service. The first flight mission for this high-rate link is planned for August 1995. Ames and JPL have proposed an ACTS experiment to use real-time satellite communications to improve wildfire research campaigns. Researchers and fire management teams making use of instrumented aircraft platforms at a prescribed burn site will be able to communicate with experts at Ames, the U.S. Forest Service, and emergency response agencies.

  1. Validation of NH3 satellite observations by ground-based FTIR measurements

    NASA Astrophysics Data System (ADS)

    Dammers, Enrico; Palm, Mathias; Van Damme, Martin; Shephard, Mark; Cady-Pereira, Karen; Capps, Shannon; Clarisse, Lieven; Coheur, Pierre; Erisman, Jan Willem

    2016-04-01

    Global emissions of reactive nitrogen have been increasing to an unprecedented level due to human activities and are estimated to be a factor four larger than pre-industrial levels. Concentration levels of NOx are declining, but ammonia (NH3) levels are increasing around the globe. While NH3 at its current concentrations poses significant threats to the environment and human health, relatively little is known about the total budget and global distribution. Surface observations are sparse and mainly available for north-western Europe, the United States and China and are limited by the high costs and poor temporal and spatial resolution. Since the lifetime of atmospheric NH3 is short, on the order of hours to a few days, due to efficient deposition and fast conversion to particulate matter, the existing surface measurements are not sufficient to estimate global concentrations. Advanced space-based IR-sounders such as the Tropospheric Emission Spectrometer (TES), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared Sounder (CrIS) enable global observations of atmospheric NH3 that help overcome some of the limitations of surface observations. However, the satellite NH3 retrievals are complex requiring extensive validation. Presently there have only been a few dedicated satellite NH3 validation campaigns performed with limited spatial, vertical or temporal coverage. Recently a retrieval methodology was developed for ground-based Fourier Transform Infrared Spectroscopy (FTIR) instruments to obtain vertical concentration profiles of NH3. Here we show the applicability of retrieved columns from nine globally distributed stations with a range of NH3 pollution levels to validate satellite NH3 products.

  2. Episodes of Cross-Polar Transport in the Arctic Troposphere During July 2008 as Seen from Models, Satellite, and Aircraft Observations

    NASA Technical Reports Server (NTRS)

    Sodemann, H.; Pommier, M.; Arnold, S. R.; Monks, S. A.; Stebel, K.; Burkhart, J. F.; Hair, J. W.; Diskin, G. S.; Clerbaux, C.; Coheur, P.-F.; hide

    2011-01-01

    During the POLARCAT summer campaign in 2008, two episodes (2 5 July and 7 10 July 2008) occurred where low-pressure systems traveled from Siberia across the Arctic Ocean towards the North Pole. The two cyclones had extensive smoke plumes from Siberian forest fires and anthropogenic sources in East Asia embedded in their associated air masses, creating an excellent opportunity to use satellite and aircraft observations to validate the performance of atmospheric transport models in the Arctic, which is a challenging model domain due to numerical and other complications. Here we compare transport simulations of carbon monoxide (CO) from the Lagrangian transport model FLEXPART and the Eulerian chemical transport model TOMCAT with retrievals of total column CO from the IASI passive infrared sensor onboard the MetOp-A satellite. The main aspect of the comparison is how realistic horizontal and vertical structures are represented in the model simulations. Analysis of CALIPSO lidar curtains and in situ aircraft measurements provide further independent reference points to assess how reliable the model simulations are and what the main limitations are. The horizontal structure of mid-latitude pollution plumes agrees well between the IASI total column CO and the model simulations. However, finer-scale structures are too quickly diffused in the Eulerian model. Applying the IASI averaging kernels to the model data is essential for a meaningful comparison. Using aircraft data as a reference suggests that the satellite data are biased high, while TOMCAT is biased low. FLEXPART fits the aircraft data rather well, but due to added background concentrations the simulation is not independent from observations. The multi-data, multi-model approach allows separating the influences of meteorological fields, model realisation, and grid type on the plume structure. In addition to the very good agreement between simulated and observed total column CO fields, the results also highlight the

  3. Satellite Data Assimilation within KIAPS-LETKF system

    NASA Astrophysics Data System (ADS)

    Jo, Y.; Lee, S., Sr.; Cho, K.

    2016-12-01

    Korea Institute of Atmospheric Prediction Systems (KIAPS) has been developing an ensemble data assimilation system using four-dimensional local ensemble transform kalman filter (LETKF; Hunt et al., 2007) within KIAPS Integrated Model (KIM), referred to as "KIAPS-LETKF". KIAPS-LETKF system was successfully evaluated with various Observing System Simulation Experiments (OSSEs) with NCAR Community Atmospheric Model - Spectral Element (Kang et al., 2013), which has fully unstructured quadrilateral meshes based on the cubed-sphere grid as the same grid system of KIM. Recently, assimilation of real observations has been conducted within the KIAPS-LETKF system with four-dimensional covariance functions over the 6-hr assimilation window. Then, conventional (e.g., sonde, aircraft, and surface) and satellite (e.g., AMSU-A, IASI, GPS-RO, and AMV) observations have been provided by the KIAPS Package for Observation Processing (KPOP). Wind speed prediction was found most beneficial due to ingestion of AMV and for the temperature prediction the improvement in assimilation is mostly due to ingestion of AMSU-A and IASI. However, some degradation in the simulation of the GPS-RO is presented in the upper stratosphere, even though GPS-RO leads positive impacts on the analysis and forecasts. We plan to test the bias correction method and several vertical localization strategies for radiance observations to improve analysis and forecast impacts.

  4. Comparison of dust-layer heights from active and passive satellite sensors

    NASA Astrophysics Data System (ADS)

    Kylling, Arve; Vandenbussche, Sophie; Capelle, Virginie; Cuesta, Juan; Klüser, Lars; Lelli, Luca; Popp, Thomas; Stebel, Kerstin; Veefkind, Pepijn

    2018-05-01

    Aerosol-layer height is essential for understanding the impact of aerosols on the climate system. As part of the European Space Agency Aerosol_cci project, aerosol-layer height as derived from passive thermal and solar satellite sensors measurements have been compared with aerosol-layer heights estimated from CALIOP measurements. The Aerosol_cci project targeted dust-type aerosol for this study. This ensures relatively unambiguous aerosol identification by the CALIOP processing chain. Dust-layer height was estimated from thermal IASI measurements using four different algorithms (from BIRA-IASB, DLR, LMD, LISA) and from solar GOME-2 (KNMI) and SCIAMACHY (IUP) measurements. Due to differences in overpass time of the various satellites, a trajectory model was used to move the CALIOP-derived dust heights in space and time to the IASI, GOME-2 and SCIAMACHY dust height pixels. It is not possible to construct a unique dust-layer height from the CALIOP data. Thus two CALIOP-derived layer heights were used: the cumulative extinction height defined as the height where the CALIOP extinction column is half of the total extinction column, and the geometric mean height, which is defined as the geometrical mean of the top and bottom heights of the dust layer. In statistical average over all IASI data there is a general tendency to a positive bias of 0.5-0.8 km against CALIOP extinction-weighted height for three of the four algorithms assessed, while the fourth algorithm has almost no bias. When comparing geometric mean height there is a shift of -0.5 km for all algorithms (getting close to zero for the three algorithms and turning negative for the fourth). The standard deviation of all algorithms is quite similar and ranges between 1.0 and 1.3 km. When looking at different conditions (day, night, land, ocean), there is more detail in variabilities (e.g. all algorithms overestimate more at night than during the day). For the solar sensors it is found that on average SCIAMACHY data

  5. Derived Land Surface Emissivity From Suomi NPP CrIS

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu

    2012-01-01

    Presented here is the land surface IR spectral emissivity retrieved from the Cross-track Infrared Sounder (CrIS) measurements. The CrIS is aboard the Suomi National Polar-orbiting Partnership (NPP) satellite launched on October 28, 2011. We describe the retrieval algorithm, demonstrate the surface emissivity retrieved with CrIS measurements, and inter-comparison with the Infrared Atmospheric Sounding Interferometer (IASI) emissivity. We also demonstrate that surface emissivity from satellite measurements can be used in assistance of monitoring global surface climate change, as a long-term measurement of IASI and CrIS will be provided by the series of EUMETSAT MetOp and US Joint Polar Satellite System (JPSS) satellites. Monthly mean surface properties are produced using last 5-year IASI measurements. A temporal variation indicates seasonal diversity and El Nino/La Nina effects not only shown on the water but also on the land. Surface spectral emissivity and skin temperature from current and future operational satellites can be utilized as a means of long-term monitoring of the Earth's environment. CrIS spectral emissivity are retrieved and compared with IASI. The difference is small and could be within expected retrieval error; however it is under investigation.

  6. ESA's Earth observation priority research objectives and satellite instrument requirements

    NASA Astrophysics Data System (ADS)

    Reynolds, M. L.

    2018-04-01

    Since 1996 the European Space Agency has been pursuing an Earth Observation strategy based on a resolution endorsed by European Minister at a meeting in Toulouse. This resolution recognised a broad distinction between purely research objectives, on the one hand, and purely application objectives on the other. However, this is not to be understood as an absolute separation, but rather as an identification of the major driving emphasis for the definition of mission requirement. Indeed, application satellites can provide a wealth of data for research objectives and scientific earth observation programmes can equally provide an important source of data to develop and demonstrate new applications. It is sufficient to look at the data utilisation of Meteosat and ERS to find very many examples of this. This paper identifies the priority research objectives defined for scientific Earth Explorer missions and the resulting instrument needs. It then outlines the requirements for optical instruments.

  7. Global CO emission estimates inferred from assimilation of MOPITT and IASI CO data, together with observations of O3, NO2, HNO3, and HCHO.

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Jones, D. B. A.; Keller, M.; Jiang, Z.; Bourassa, A. E.; Degenstein, D. A.; Clerbaux, C.; Pierre-Francois, C.

    2017-12-01

    Atmospheric carbon monoxide (CO) emissions estimated from inverse modeling analyses exhibit large uncertainties, due, in part, to discrepancies in the tropospheric chemistry in atmospheric models. We attempt to reduce the uncertainties in CO emission estimates by constraining the modeled abundance of ozone (O3), nitrogen dioxide (NO2), nitric acid (HNO3), and formaldehyde (HCHO), which are constituents that play a key role in tropospheric chemistry. Using the GEOS-Chem four-dimensional variational (4D-Var) data assimilation system, we estimate CO emissions by assimilating observations of CO from the Measurement of Pollution In the Troposphere (MOPITT) and the Infrared Atmospheric Sounding Interferometer (IASI), together with observations of O3 from the Optical Spectrograph and InfraRed Imager System (OSIRIS) and IASI, NO2 and HCHO from the Ozone Monitoring Instrument (OMI), and HNO3 from the Microwave Limb Sounder (MLS). Our experiments evaluate the inferred CO emission estimates from major anthropogenic, biomass burning and biogenic sources. Moreover, we also infer surface emissions of nitrogen oxides (NOx = NO + NO2) and isoprene. Our results reveal that this multiple species chemical data assimilation produces a chemical consistent state that effectively adjusts the CO-O3-OH coupling in the model. The O3-induced changes in OH are particularly large in the tropics. Overall, our analysis results in a better constrained tropospheric chemical state.

  8. Design of the high resolution optical instrument for the Pleiades HR Earth observation satellites

    NASA Astrophysics Data System (ADS)

    Lamard, Jean-Luc; Gaudin-Delrieu, Catherine; Valentini, David; Renard, Christophe; Tournier, Thierry; Laherrere, Jean-Marc

    2017-11-01

    As part of its contribution to Earth observation from space, ALCATEL SPACE designed, built and tested the High Resolution cameras for the European intelligence satellites HELIOS I and II. Through these programmes, ALCATEL SPACE enjoys an international reputation. Its capability and experience in High Resolution instrumentation is recognised by the most customers. Coming after the SPOT program, it was decided to go ahead with the PLEIADES HR program. PLEIADES HR is the optical high resolution component of a larger optical and radar multi-sensors system : ORFEO, which is developed in cooperation between France and Italy for dual Civilian and Defense use. ALCATEL SPACE has been entrusted by CNES with the development of the high resolution camera of the Earth observation satellites PLEIADES HR. The first optical satellite of the PLEIADES HR constellation will be launched in mid-2008, the second will follow in 2009. To minimize the development costs, a mini satellite approach has been selected, leading to a compact concept for the camera design. The paper describes the design and performance budgets of this novel high resolution and large field of view optical instrument with emphasis on the technological features. This new generation of camera represents a breakthrough in comparison with the previous SPOT cameras owing to a significant step in on-ground resolution, which approaches the capabilities of aerial photography. Recent advances in detector technology, optical fabrication and electronics make it possible for the PLEIADES HR camera to achieve their image quality performance goals while staying within weight and size restrictions normally considered suitable only for much lower performance systems. This camera design delivers superior performance using an innovative low power, low mass, scalable architecture, which provides a versatile approach for a variety of imaging requirements and allows for a wide number of possibilities of accommodation with a mini-satellite

  9. Intercalibration of Two Polar Satellite Instruments Without Simultaneous Nadir Observations

    NASA Astrophysics Data System (ADS)

    Manninen, Terhikki; Riihela, Aku; Schaaf, Crystal; Key, Jeffrey; Lattanzio, Alessio

    2016-08-01

    A new intercalibration method for two polar satellite instruments is presented. It is based on statistical fitting of two data sets covering the same area during the same period, but not simultaneously. Deming regression with iterative weights is used. The accuracy of the method was better than about 0.5 % for the MODIS vs. MODIS and AVHRR vs. AVHRR test data sets. The intercalibration of AVHRR vs. MODIS red and NIR channels is carried out and showed a difference of reflectance values of 2% (red) and 6 % (NIR). The red channel intercalibration has slightly higher accuracy for all cases studied.

  10. Application of the Langley plot method to the calibration of the solar backscattered ultraviolet instrument on the Nimbus 7 satellite

    NASA Technical Reports Server (NTRS)

    Bhartia, P. K.; Taylor, S.; Mcpeters, R. D.; Wellemeyer, C.

    1995-01-01

    The concept of the well-known Langley plot technique, used for the calibration of ground-based instruments, has been generalized for application to satellite instruments. In polar regions, near summer solstice, the solar backscattered ultraviolet (SBUV) instrument on the Nimbus 7 satellite samples the same ozone field at widely different solar zenith angles. These measurements are compared to assess the long-term drift in the instrument calibration. Although the technique provides only a relative wavelength-to-wavelength calibration, it can be combined with existing techniques to determine the drift of the instrument at any wavelength. Using this technique, we have generated a 12-year data set of ozone vertical profiles from SBUV with an estimated accuracy of +/- 5% at 1 mbar and +/- 2% at 10 mbar (95% confidence) over 12 years. Since the method is insensitive to true changes in the atmospheric ozone profile, it can also be used to compare the calibrations of similar SBUV instruments launched without temporal overlap.

  11. Global multi-sensor satellite monitoring of volcanic SO2 and ash emissions in support to aviation control

    NASA Astrophysics Data System (ADS)

    Brenot, H.; Theys, N.; van Gent, J.; Van Roozendael, M.; van der A, R.; Clarisse, L.; Hurtmans, D.; Ngadi, Y.; Coheur, P.-F.; Clerbaux, C.

    2012-04-01

    The "Support to Aviation Control Service" (SACS; http://sacs.aeronomie.be) is an ESA-funded project hosted by the Belgian Institute for Space Aeronomy. The service provides near real-time (NRT) global SO2 and volcanic ash data, as well as alerts in case of volcanic eruptions. The SACS service is primarily designed to support the Volcanic Ash Advisory Centers (VAACs) in their mandate to gather information on volcanic clouds and give advice to airline and air traffic control organisations. SACS also serves other users that subscribe to the service, in particular local volcano observatories and research scientists. SACS is based on the combined use of UV-visible (SCIAMACHY, OMI, GOME-2) and infrared (AIRS, IASI) satellite instruments. When a volcanic eruption is detected, SACS issues an alert that takes the form of a notification sent by e-mail to users. This notification points to a dedicated web page where all relevant information is available and can be visualized with user-friendly tools. The strength of a multi-sensor approach relies in the use of satellite data with different overpasses times, minimizing the time-lag for detection and enhancing the reliability of such alerts. This paper will give a general presentation of the SACS service, different techniques used to detect volcanic plumes. It will also highlight the strengths and limitations of the service and measurements.

  12. Comparison of spectral radiance responsivity calibration techniques used for backscatter ultraviolet satellite instruments

    NASA Astrophysics Data System (ADS)

    Kowalewski, M. G.; Janz, S. J.

    2015-02-01

    Methods of absolute radiometric calibration of backscatter ultraviolet (BUV) satellite instruments are compared as part of an effort to minimize pre-launch calibration uncertainties. An internally illuminated integrating sphere source has been used for the Shuttle Solar BUV, Total Ozone Mapping Spectrometer, Ozone Mapping Instrument, and Global Ozone Monitoring Experiment 2 using standardized procedures traceable to national standards. These sphere-based spectral responsivities agree to within the derived combined standard uncertainty of 1.87% relative to calibrations performed using an external diffuser illuminated by standard irradiance sources, the customary spectral radiance responsivity calibration method for BUV instruments. The combined standard uncertainty for these calibration techniques as implemented at the NASA Goddard Space Flight Center’s Radiometric Calibration and Development Laboratory is shown to less than 2% at 250 nm when using a single traceable calibration standard.

  13. Using the World Primary Standard Dobson Spectrometer to Monitor the Stability of a Multi-Instrument Satellite Ozone Dataset

    NASA Technical Reports Server (NTRS)

    McPeters, R.D.; Oltmans, Samuel J.

    2000-01-01

    NASA is creating a long term satellite ozone time series by combining data from multiple instruments: Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) (1978 - 1993), Meteor 3 TOMS (1991 - 1994), Earth Probe TOMS (1996 - present), Nimbus 7 SB-JV (1978 - 1990), NOAA-9 Solar Backscatter UV Spectrometer (SBUV/2) (1984 - 1997), NOAA-11 SBUV/2 (1989 - 1994), and NOAA-14 SBUV/2 (1995 - present). The stability of individual data sets and possible instrument-to-instrument differences are best checked by comparison with ground-based measurements. We have examined the time dependence of the calibrations of these instruments by comparing satellite derived ozone with that measured by the world primary standard Dobson spectrometer No. 83. This instrument has been maintained since 1962 as a standard for total ozone to an uncertainty of plus or minus 0.5%. Measurements of AD pair ozone made with instrument No. 83 at Mauna Loa observatory most summers since 1979 were compared with coincident TOMS and SBUV(/2) ozone measurements. The comparison shows that the various instruments were stable relative to instrument No. 83 to within about plus or minus 1%, but that there are instrument-to-instrument biases of as much as 3%. Earth Probe TOMS, for example, is 1% to 2% high relative to Nimbus 7 TOMS when the world standard instrument is used as a transfer standard. Similar results are seen when comparisons are made with an ensemble of 41 Dobson stations throughout the world, demonstrating that the ensemble as a whole is stable despite the fact that many instruments within the ensemble have clear calibration changes.

  14. New Methods for Retrieval of Chlorophyll Red Fluorescence from Hyperspectral Satellite Instruments: Simulations and Application to GOME-2 and SCIAMACHY

    NASA Technical Reports Server (NTRS)

    Joiner, Joanna; Yoshida, Yasuko; Guanter, Luis; Middleton, Elizabeth M.

    2016-01-01

    Global satellite measurements of solar-induced fluorescence (SIF) from chlorophyll over land and ocean have proven useful for a number of different applications related to physiology, phenology, and productivity of plants and phytoplankton. Terrestrial chlorophyll fluorescence is emitted throughout the red and far-red spectrum, producing two broad peaks near 683 and 736nm. From ocean surfaces, phytoplankton fluorescence emissions are entirely from the red region (683nm peak). Studies using satellite-derived SIF over land have focused almost exclusively on measurements in the far red (wavelengths greater than 712nm), since those are the most easily obtained with existing instrumentation. Here, we examine new ways to use existing hyperspectral satellite data sets to retrieve red SIF (wavelengths less than 712nm) over both land and ocean. Red SIF is thought to provide complementary information to that from the far red for terrestrial vegetation. The satellite instruments that we use were designed to make atmospheric trace-gas measurements and are therefore not optimal for observing SIF; they have coarse spatial resolution and only moderate spectral resolution (0.5nm). Nevertheless, these instruments, the Global Ozone Monitoring Instrument 2 (GOME-2) and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY), offer a unique opportunity to compare red and far-red terrestrial SIF at regional spatial scales. Terrestrial SIF has been estimated with ground-, aircraft-, or satellite-based instruments by measuring the filling-in of atmospheric andor solar absorption spectral features by SIF. Our approach makes use of the oxygen (O2) gamma band that is not affected by SIF. The SIF-free O2 gamma band helps to estimate absorption within the spectrally variable O2 B band, which is filled in by red SIF. SIF also fills in the spectrally stable solar Fraunhofer lines (SFLs) at wavelengths both inside and just outside the O2 B band, which further helps

  15. A Comprehensive Training Data Set for the Development of Satellite-Based Volcanic Ash Detection Algorithms

    NASA Astrophysics Data System (ADS)

    Schmidl, Marius

    2017-04-01

    We present a comprehensive training data set covering a large range of atmospheric conditions, including disperse volcanic ash and desert dust layers. These data sets contain all information required for the development of volcanic ash detection algorithms based on artificial neural networks, urgently needed since volcanic ash in the airspace is a major concern of aviation safety authorities. Selected parts of the data are used to train the volcanic ash detection algorithm VADUGS. They contain atmospheric and surface-related quantities as well as the corresponding simulated satellite data for the channels in the infrared spectral range of the SEVIRI instrument on board MSG-2. To get realistic results, ECMWF, IASI-based, and GEOS-Chem data are used to calculate all parameters describing the environment, whereas the software package libRadtran is used to perform radiative transfer simulations returning the brightness temperatures for each atmospheric state. As optical properties are a prerequisite for radiative simulations accounting for aerosol layers, the development also included the computation of optical properties for a set of different aerosol types from different sources. A description of the developed software and the used methods is given, besides an overview of the resulting data sets.

  16. Comparison of horizontal winds from the LIMS satellite instrument with rocket measurements

    NASA Technical Reports Server (NTRS)

    Smith, A. K.; Bailey, P. L.

    1985-01-01

    Statistical results are given for a comparison between horizontal geostrophic winds computed from satellite height data and all available in situ rocket wind soundings during a 7-month period. The satellite data are the daily mapped fields from the Nimbus 7 Limb Infrared Monitor of the Stratosphere (LIMS) instrument, which extend from 100 to 0.1 mbar. Results indicate that in both the tropics and the extratropical Northern Hemisphere, the average zonal and meridional wind speeds agree to within 2-4 m/s throughout the stratosphere. The rms differences are much larger, with values of 5-10 m/s in the lower stratosphere, increasing to 20-40 m/s in the lower mesosphere. Time series show that LIMS and rocketsonde zonal wind speeds show coherent variations with temporal periods of 1-2 weeks and more, and both exhibit irregular variations on time scales of less than one week.

  17. Epidemiology of acute drug poisoning in a tertiary center from Iasi County, Romania.

    PubMed

    Sorodoc, Victorita; Jaba, Irina M; Lionte, Catalina; Mungiu, Ostin C; Sorodoc, Laurentiu

    2011-12-01

    The aim of this retrospective epidemiological study was to investigate the demographical, etiological and clinical characteristics of acute drug poisonings in Iasi County, Romania. All patients were referred and admitted in the Toxicology Clinic of "Sf. Ioan" Emergency Clinic Hospital Iasi, Romania. Between 2003 and 2009, 811 cases of acute drug poisonings were recorded, counting for 28.43% from the total number of poisonings. The majority of these poisonings resulted in mild (51.94%) and medium (28.35%) clinical forms, while 19.71% were coma situations. In all, 63.51% of patients originated from urban areas, 39.94% were unemployed and the patients were predominantly women (66.46%). A high percentage (97.27%) were suicide attempts, using only one type of drug (65.88%) and the 21-30 years group (29.8%) records the highest incidence, for both women and men. The most frequently involved drugs were benzodiazepines 13.69%, anticonvulsive drugs 8.63%, barbiturates 8.51% and cardiovascular drugs 5.92%. Drugs combinations were recorded in 32.92% of cases and 1.2% were combinations between drugs and other substances. Mortality was the outcome in 0.3% of the total registered number of acute drug poisonings. This study underlines that in order to provide a proper management of these situations, a Regional Poison Information Center is absolutely necessary.

  18. Comparison between satellite and instrumental solar irradiance data at the city of Athens, Greece

    NASA Astrophysics Data System (ADS)

    Markonis, Yannis; Dimoulas, Thanos; Atalioti, Athina; Konstantinou, Charalampos; Kontini, Anna; Pipini, Magdalini-Io; Skarlatou, Eleni; Sarantopoulos, Vasilis; Tzouka, Katerina; Papalexiou, Simon; Koutsoyiannis, Demetris

    2015-04-01

    In this study, we examine and compare the statistical properties of satellite and instrumental solar irradiance data at the capital of Greece, Athens. Our aim is to determine whether satellite data are sufficient for the requirements of solar energy modelling applications. To this end we estimate the corresponding probability density functions, the auto-correlation functions and the parameters of some fitted simple stochastic models. We also investigate the effect of sample size to the variance in the temporal interpolation of daily time series. Finally, as an alternative, we examine if temperature can be used as a better predictor for the daily irradiance non-seasonal component instead of the satellite data. Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students in the Assembly.

  19. Integrating Satellite Measurements from Polar-orbiting instruments into Smoke Disperson Forecasts

    NASA Astrophysics Data System (ADS)

    Smith, N.; Pierce, R. B.; Barnet, C.; Gambacorta, A.; Davies, J. E.; Strabala, K.

    2015-12-01

    The IDEA-I (Infusion of Satellite Data into Environmental Applications-International) is a real-time system that currently generates trajectory-based forecasts of aerosol dispersion and stratospheric intrusions. Here we demonstrate new capabilities that use satellite measurements from the Joint Polar Satellite System (JPSS) Suomi-NPP (S-NPP) instruments (operational since 2012) in the generation of trajectory-based predictions of smoke dispersion from North American wildfires. Two such data products are used, namely the Visible Infrared Imaging Radiometer Suite (VIIRS) Aerosol Optical Depth (AOD) and the combined Cross-track Infrared Sounder (CrIS) and Advanced Technology Microwave Sounder (ATMS) NOAA-Unique CrIS-ATMS Processing System (NUCAPS) carbon monoxide (CO) retrievals. The latter is a new data product made possible by the release of full spectral-resolution CrIS measurements since December 2014. Once NUCAPS CO becomes operationally available it will be used in real-time applications such as IDEA-I along with VIIRS AOD and meteorological forecast fields to support National Weather Service (NWS) Incident Meteorologist (IMET) and air quality management decision making. By combining different measurements, the information content of the IDEA-I transport and dispersion forecast is improved within the complex terrain features that dominate the Western US and Alaska. The primary user community of smoke forecasts is the Western regions of the National Weather Service (NWS) and US Environmental Protection Agency (EPA) due to the significant impacts of wildfires in these regions. With this we demonstrate the quality of the smoke dispersion forecasts that can be achieved by integrating polar-orbiting satellite measurements with forecast models to enable on-site decision support services for fire incident management teams and other real-time air quality agencies.

  20. Model-based monitoring and diagnosis of a satellite-based instrument

    NASA Technical Reports Server (NTRS)

    Bos, Andre; Callies, Jorg; Lefebvre, Alain

    1995-01-01

    For about a decade model-based reasoning has been propounded by a number of researchers. Maybe one of the most convincing arguments in favor of this kind of reasoning has been given by Davis in his paper on diagnosis from first principles (Davis 1984). Following their guidelines we have developed a system to verify the behavior of a satellite-based instrument GOME (which will be measuring Ozone concentrations in the near future (1995)). We start by giving a description of model-based monitoring. Besides recognizing that something is wrong, we also like to find the cause for misbehaving automatically. Therefore, we show how the monitoring technique can be extended to model-based diagnosis.

  1. Model-based monitoring and diagnosis of a satellite-based instrument

    NASA Astrophysics Data System (ADS)

    Bos, Andre; Callies, Jorg; Lefebvre, Alain

    1995-05-01

    For about a decade model-based reasoning has been propounded by a number of researchers. Maybe one of the most convincing arguments in favor of this kind of reasoning has been given by Davis in his paper on diagnosis from first principles (Davis 1984). Following their guidelines we have developed a system to verify the behavior of a satellite-based instrument GOME (which will be measuring Ozone concentrations in the near future (1995)). We start by giving a description of model-based monitoring. Besides recognizing that something is wrong, we also like to find the cause for misbehaving automatically. Therefore, we show how the monitoring technique can be extended to model-based diagnosis.

  2. Comparison of Two Methodologies for Calibrating Satellite Instruments in the Visible and Near Infrared

    NASA Technical Reports Server (NTRS)

    Barnes, Robert A.; Brown, Steven W.; Lykke, Keith R.; Guenther, Bruce; Xiong, Xiaoxiong (Jack); Butler, James J.

    2010-01-01

    Traditionally, satellite instruments that measure Earth-reflected solar radiation in the visible and near infrared wavelength regions have been calibrated for radiance response in a two-step method. In the first step, the spectral response of the instrument is determined using a nearly monochromatic light source, such a lamp-illuminated monochromator. Such sources only provide a relative spectral response (RSR) for the instrument, since they do not act as calibrated sources of light nor do they typically fill the field-of-view of the instrument. In the second step, the instrument views a calibrated source of broadband light, such as lamp-illuminated integrating sphere. In the traditional method, the RSR and the sphere spectral radiance are combined and, with the instrument's response, determine the absolute spectral radiance responsivity of the instrument. More recently, an absolute calibration system using widely tunable monochromatic laser systems has been developed, Using these sources, the absolute spectral responsivity (ASR) of an instrument can be determined on a wavelength-hy-wavelength basis. From these monochromatic ASRs. the responses of the instrument bands to broadband radiance sources can be calculated directly, eliminating the need for calibrated broadband light sources such as integrating spheres. Here we describe the laser-based calibration and the traditional broad-band source-based calibration of the NPP VIIRS sensor, and compare the derived calibration coefficients for the instrument. Finally, we evaluate the impact of the new calibration approach on the on-orbit performance of the sensor.

  3. New methods for the retrieval of chlorophyll red fluorescence from hyperspectral satellite instruments: simulations and application to GOME-2 and SCIAMACHY

    NASA Astrophysics Data System (ADS)

    Joiner, Joanna; Yoshida, Yasuko; Guanter, Luis; Middleton, Elizabeth M.

    2016-08-01

    Global satellite measurements of solar-induced fluorescence (SIF) from chlorophyll over land and ocean have proven useful for a number of different applications related to physiology, phenology, and productivity of plants and phytoplankton. Terrestrial chlorophyll fluorescence is emitted throughout the red and far-red spectrum, producing two broad peaks near 683 and 736 nm. From ocean surfaces, phytoplankton fluorescence emissions are entirely from the red region (683 nm peak). Studies using satellite-derived SIF over land have focused almost exclusively on measurements in the far red (wavelengths > 712 nm), since those are the most easily obtained with existing instrumentation. Here, we examine new ways to use existing hyperspectral satellite data sets to retrieve red SIF (wavelengths < 712 nm) over both land and ocean. Red SIF is thought to provide complementary information to that from the far red for terrestrial vegetation. The satellite instruments that we use were designed to make atmospheric trace-gas measurements and are therefore not optimal for observing SIF; they have coarse spatial resolution and only moderate spectral resolution (0.5 nm). Nevertheless, these instruments, the Global Ozone Monitoring Instrument 2 (GOME-2) and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY), offer a unique opportunity to compare red and far-red terrestrial SIF at regional spatial scales. Terrestrial SIF has been estimated with ground-, aircraft-, or satellite-based instruments by measuring the filling-in of atmospheric and/or solar absorption spectral features by SIF. Our approach makes use of the oxygen (O2) γ band that is not affected by SIF. The SIF-free O2 γ band helps to estimate absorption within the spectrally variable O2 B band, which is filled in by red SIF. SIF also fills in the spectrally stable solar Fraunhofer lines (SFLs) at wavelengths both inside and just outside the O2 B band, which further helps to estimate red SIF

  4. Hyperspectral Observations of Land Surfaces Using Ground-based, Airborne, and Satellite Sensors

    NASA Astrophysics Data System (ADS)

    Knuteson, R. O.; Best, F. A.; Revercomb, H. E.; Tobin, D. C.

    2006-12-01

    The University of Wisconsin-Madison Space Science and Engineering Center (UW-SSEC) has helped pioneer the use of high spectral resolution infrared spectrometers for application to atmospheric and surface remote sensing. This paper is focused on observations of land surface infrared emission from high spectral resolution measurements collected over the past 15 years using airborne, ground-based, and satellite platforms. The earliest data was collected by the High-resolution Interferometer Sounder (HIS), an instrument designed in the 1980s for operation on the NASA ER-2 high altitude aircraft. The HIS was replaced in the late 1990s by the Scanning-HIS instrument which has flown on the NASA ER-2, WB-57, DC-8, and Scaled Composites Proteus aircraft and continues to support field campaigns, such as those for EOS Terra, Aqua, and Aura validation. Since 1995 the UW-SSEC has fielded a ground-based Atmospheric Emitted Radiance Interferometer (AERI) in a research vehicle (the AERIBAGO) which has allowed for direct field measurements of land surface emission from a height of about 16 ft above the ground. Several ground-based and aircraft campaigns were conducted to survey the region surrounding the ARM Southern Great Plains site in north central Oklahoma. The ground- based AERIBAGO has also participated in surface emissivity campaigns in the Western U.S.. Since 2002, the NASA Atmospheric InfraRed Sounder (AIRS) has provided similar measurements from the Aqua platform in an afternoon sun-synchronous polar orbit. Ground-based and airborne observations are being used to validate the land surface products derived from the AIRS observations. These cal/val activities are in preparation for similar measurements anticipated from the operational Cross-track InfraRed Sounder (CrIS) on the NPOESS Preparatory Platform (NPP), expected to be launched in 2008. Moreover, high spectral infrared observations will soon be made by the Infrared Atmospheric Sounder Interferometer (IASI) on the

  5. Aspects regarding the hygienic-sanitary conditions at the level of certain dental medicine cabinets in Iasi County.

    PubMed

    Cernei, E R; Maxim, Dana Cristiana; Indrei, L L

    2013-01-01

    This baseline study aims to find out the evaluation of hygienic-sanitary conditions at the level of dental medicine cabinets through the verification of certain hygienic aspects. The study conducted consists in monitoring the hygienic/sanitary conditions at the level of 68 dental medicine cabinets (40 private cabinets and 28 school/university dental cabinets in Iasi county), using sheets for the assessment of the hygienic/sanitary conditions adapted from the control sheets of existing dental medicine cabinets at the level of DSP (Public Health Department) Iasi. The sheets for the assessment of the hygienic/sanitary conditions were evaluated by a specialized team and the results were i llustrated in the specific charts. At the level of all the dental cabinets the study revealed nonconformities regarding the means to carry out cleaning, disinfection operations, including the management of perilous waste, the control of medical personnel. An optimization of the hygienic-sanitary conditions at the level of dental medicine cabinets is still necessary, through participation to the activity of personnel training, who is directly involved in dental medical assistance.

  6. Infrared Spectral Radiance Intercomparisons With Satellite and Aircraft Sensors

    NASA Technical Reports Server (NTRS)

    Larar, Allen M.; Zhou, Daniel K.; Liu, Xu; Smith, William L.

    2014-01-01

    Measurement system validation is critical for advanced satellite sounders to reach their full potential of improving observations of the Earth's atmosphere, clouds, and surface for enabling enhancements in weather prediction, climate monitoring capability, and environmental change detection. Experimental field campaigns, focusing on satellite under-flights with well-calibrated FTS sensors aboard high-altitude aircraft, are an essential part of the validation task. Airborne FTS systems can enable an independent, SI-traceable measurement system validation by directly measuring the same level-1 parameters spatially and temporally coincident with the satellite sensor of interest. Continuation of aircraft under-flights for multiple satellites during multiple field campaigns enables long-term monitoring of system performance and inter-satellite cross-validation. The NASA / NPOESS Airborne Sounder Testbed - Interferometer (NAST-I) has been a significant contributor in this area by providing coincident high spectral/spatial resolution observations of infrared spectral radiances along with independently-retrieved geophysical products for comparison with like products from satellite sensors being validated. This presentation gives an overview of benefits achieved using airborne sensors such as NAST-I utilizing examples from recent field campaigns. The methodology implemented is not only beneficial to new sensors such as the Cross-track Infrared Sounder (CrIS) flying aboard the Suomi NPP and future JPSS satellites but also of significant benefit to sensors of longer flight heritage such as the Atmospheric InfraRed Sounder (AIRS) and the Infrared Atmospheric Sounding Interferometer (IASI) on the AQUA and METOP-A platforms, respectively, to ensure data quality continuity important for climate and other applications. Infrared spectral radiance inter-comparisons are discussed with a particular focus on usage of NAST-I data for enabling inter-platform cross-validation.

  7. Assimilation of Satellite Ozone Observations

    NASA Technical Reports Server (NTRS)

    Stajner, I.; Winslow, N.; Wargan, K.; Hayashi, H.; Pawson, S.; Rood, R.

    2003-01-01

    This talk will discuss assimilation of ozone data from satellite-borne instruments. Satellite observations of ozone total columns and profiles have been measured by a series of Total Ozone Mapping Spectrometer (TOMS), Solar Backscatter Ultraviolet (SBUV) instruments, and more recently by the Global Ozone Monitoring Experiment. Additional profile data are provided by instruments on NASA's Upper Atmosphere Research Satellite and by occultation instruments on other platforms. Instruments on Envisat' and future EOS Aura satellite will supply even more comprehensive data about the ozone distribution. Satellite data contain a wealth of information, but they do not provide synoptic global maps of ozone fields. These maps can be obtained through assimilation of satellite data into global chemistry and transport models. In the ozone system at NASA's Data Assimilation Office (DAO) any combination of TOMS, SBUV, and Microwave Limb sounder (MLS) data can be assimilated. We found that the addition of MLS to SBUV and TOMS data in the system helps to constrain the ozone distribution, especially in the polar night region and in the tropics. The assimilated ozone distribution in the troposphere and lower stratosphere is sensitive also to finer changes in the SBUV and TOMS data selection and to changes in error covariance models. All results are established by comparisons of assimilated ozone with independent profiles from ozone sondes and occultation instruments.

  8. AIRS Retrieval Validation During the EAQUATE

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Smith, William L.; Cuomo, Vincenzo; Taylor, Jonathan P.; Barnet, Christopher D.; DiGirolamo, Paolo; Pappalardo, Gelsomina; Larar, Allen M.; Liu, Xu; Newman, Stuart M.

    2006-01-01

    Atmospheric and surface thermodynamic parameters retrieved with advanced hyperspectral remote sensors of Earth observing satellites are critical for weather prediction and scientific research. The retrieval algorithms and retrieved parameters from satellite sounders must be validated to demonstrate the capability and accuracy of both observation and data processing systems. The European AQUA Thermodynamic Experiment (EAQUATE) was conducted mainly for validation of the Atmospheric InfraRed Sounder (AIRS) on the AQUA satellite, but also for assessment of validation systems of both ground-based and aircraft-based instruments which will be used for other satellite systems such as the Infrared Atmospheric Sounding Interferometer (IASI) on the European MetOp satellite, the Cross-track Infrared Sounder (CrIS) from the NPOESS Preparatory Project and the following NPOESS series of satellites. Detailed inter-comparisons were conducted and presented using different retrieval methodologies: measurements from airborne ultraspectral Fourier transform spectrometers, aircraft in-situ instruments, dedicated dropsondes and radiosondes, and ground based Raman Lidar, as well as from the European Center for Medium range Weather Forecasting (ECMWF) modeled thermal structures. The results of this study not only illustrate the quality of the measurements and retrieval products but also demonstrate the capability of these validation systems which are put in place to validate current and future hyperspectral sounding instruments and their scientific products.

  9. S-NPP VIIRS thermal band spectral radiance performance through 18 months of operation on-orbit

    NASA Astrophysics Data System (ADS)

    Moeller, Chris; Tobin, Dave; Quinn, Greg

    2013-09-01

    The Suomi National Polar-orbiting Partnership (S-NPP) satellite, carrying the first Visible Infrared Imager Radiometer Suite (VIIRS) was successfully launched on October 28, 2011 with first light on November 21, 2011. The passive cryo-radiator cooler doors were opened on January 18, 2012 allowing the cold focal planes (S/MWIR and LWIR) to cool to the nominal operating temperature of 80K. After an early on-orbit functional checkout period, an intensive Cal/Val (ICV) phase has been underway. During the ICV, the VIIRS SDR performance for thermal emissive bands (TEB) has been under evaluation using on-orbit comparisons between VIIRS and the CrIS instrument on S-NPP, as well as VIIRS and the IASI instrument on MetOp-A. CrIS has spectral coverage of VIIRS bands M13, M15, M16, and I5 while IASI covers all VIIRS TEB. These comparisons largely verify that VIIRS TEB SDR are performing within or nearly within pre-launch requirements across the full dynamic range of these VIIRS bands, with the possible exception of warm scenes (<280 K) in band M12 as suggested by VIIRS-IASI comparisons. The comparisons with CrIS also indicate that the VIIRS Half Angle Mirror (HAM) reflectance versus scan (RVS) is well-characterized by virtue that the VIIRS-CrIS differences show little or no dependence on scan angle. The VIIRS-IASI and VIIRS-CrIS findings closely agree for bands M13, M15, and M16 for warm scenes but small offsets exist at cold scenes for M15, M16, and particularly M13. IASI comparisons also show that spectral out-of-band influence on the VIIRS SDR is <0.05 K for all bands across the full dynamic range with the exception of very cold scenes in Band M13 where the OOB influence reaches 0.10 K. TEB performance, outside of small adjustments to the SDR algorithm and supporting look-up tables, has been very stable through 18 months on-orbit. Preliminary analysis from an S-NPP underflight using a NASA ER-2 aircraft with the SHIS instrument (NIST-traceable source) confirms TEB SDR

  10. Determination of enhancement ratios of HCOOH relative to CO in biomass burning plumes by the Infrared Atmospheric Sounding Interferometer (IASI)

    NASA Astrophysics Data System (ADS)

    Pommier, Matthieu; Clerbaux, Cathy; Coheur, Pierre-Francois

    2017-09-01

    Formic acid (HCOOH) concentrations are often underestimated by models, and its chemistry is highly uncertain. HCOOH is, however, among the most abundant atmospheric volatile organic compounds, and it is potentially responsible for rain acidity in remote areas. HCOOH data from the Infrared Atmospheric Sounding Interferometer (IASI) are analyzed from 2008 to 2014 to estimate enhancement ratios from biomass burning emissions over seven regions. Fire-affected HCOOH and CO total columns are defined by combining total columns from IASI, geographic location of the fires from Moderate Resolution Imaging Spectroradiometer (MODIS), and the surface wind speed field from the European Centre for Medium-Range Weather Forecasts (ECMWF). Robust correlations are found between these fire-affected HCOOH and CO total columns over the selected biomass burning regions, allowing the calculation of enhancement ratios equal to 7.30 × 10-3 ± 0.08 × 10-3 mol mol-1 over Amazonia (AMA), 11.10 × 10-3 ± 1.37 × 10-3 mol mol-1 over Australia (AUS), 6.80 × 10-3 ± 0.44 × 10-3 mol mol-1 over India (IND), 5.80 × 10-3 ± 0.15 × 10-3 mol mol-1 over Southeast Asia (SEA), 4.00 × 10-3 ± 0.19 × 10-3 mol mol-1 over northern Africa (NAF), 5.00 × 10-3 ± 0.13 × 10-3 mol mol-1 over southern Africa (SAF), and 4.40 × 10-3 ± 0.09 × 10-3 mol mol-1 over Siberia (SIB), in a fair agreement with previous studies. In comparison with referenced emission ratios, it is also shown that the selected agricultural burning plumes captured by IASI over India and Southeast Asia correspond to recent plumes where the chemistry or the sink does not occur. An additional classification of the enhancement ratios by type of fuel burned is also provided, showing a diverse origin of the plumes sampled by IASI, especially over Amazonia and Siberia. The variability in the enhancement ratios by biome over the different regions show that the levels of HCOOH and CO do not only depend on the fuel types.

  11. Tropical Tropospheric Ozone: A Multi-Satellite View From TOMS and Other Instruments

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Hudson, Robert D.; Guo, Hua; Witte, Jacquelyn C.; Kucsera, Tom L.; Seybold, Matthew G.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    New tropospheric ozone and aerosol products from the TOMS (Total Ozone Mapping Spectrometer) satellite instrument can resolve episodic pollution events in the tropics and interannual and seasonal variability. Modified-residual (MR) Nimbus 7 tropical tropospheric ozone (TTO), two maps/month (1979-1992, 1-deg latitude by 2-deg longitude) within the region in which total ozone displays a tropical wave-one pattern (maximum 20S to 20N), are available in digital form at http://metosrv2.umd.edu/tropo. Also available are preliminary 1996-1999 MR-TTO maps based on real-time Earth-Probe (EP)/TOMS observations. Examples of applications are given.

  12. Multi-instrument observations of midlatitude summer nighttime anomaly from satellite and ground

    NASA Astrophysics Data System (ADS)

    Yamamoto, Mamoru; Thampi, Smitha V.; Liu, Huixin; Lin, Charles

    "Midlatitude Summer Nighttime Anomaly (MSNA)" is a phenomenon that the nighttime elec-tron densities exceed the daytime values on almost all days in summer over latitudes of 33-34N of more. We recently found the MSNA over the northeast Asian region from multi-instrument observations. The observations include the tomography analysis based on the chain of digital beacon receivers at Shionomisaki (33.45N, 135.8E), Shigaraki (34.85N, 136.1E), and Fukui (36.06N,136E), the ionosonde network over Japan (especially data from Wakkanai (45.4N, 141.7E)), ground-based GPS TEC observations using the GEONET. Also from satellites, CHAMP in situ electron density measurements, and Formosat3/COSMIC (F3/C) occultation measurements are useful to confirm the presence of MSNA over this region. In the presen-tation we show detailed features of the MSNA based on these multi-instrument, and discuss importance of the neutral atmosphere as a driver of the phenomenon.

  13. The Multi-Angle Imager for Aerosols (MAIA) Instrument, the Satellite-Based Element of an Investigation to Benefit Public Health

    NASA Astrophysics Data System (ADS)

    Diner, D. J.

    2016-12-01

    Maps of airborne particulate matter (PM) derived from satellite instruments, including MISR and MODIS, have provided key contributions to many health-related investigations. Although it is well established that PM exposure increases the risks of cardiovascular and respiratory disease, adverse birth outcomes, and premature deaths, our understanding of the relative toxicity of specific PM types—mixtures having different size distributions and compositions—is relatively poor. To address this, the Multi-Angle Imager for Aerosols (MAIA) investigation was proposed to NASA's third Earth Venture Instrument (EVI-3) solicitation. MAIA was selected for funding in March 2016. The satellite-based MAIA instrument is one element of the scientific investigation, which will combine WRF-Chem transport model estimates of the abundances of different aerosol types with the data acquired from Earth orbit. Geostatistical models derived from collocated surface and MAIA retrievals will be used to relate retrieved fractional column aerosol optical depths to near-surface concentrations of major PM constituents. Epidemiological analyses of geocoded birth, death, and hospital records will be used to associate exposure to PM types with adverse health outcomes. The MAIA instrument obtains its sensitivity to particle type by building upon the legacies of many satellite sensors; observing in the UV, visible, near-IR, and shortwave-IR regions of the electromagnetic spectrum; acquiring images at multiple angles of view; determining the degree to which the scattered light is polarized; and integrating these capabilities at moderately high spatial resolution. The instrument concept is based on the first and second generation Airborne Multiangle SpectroPolarimetric Imagers, AirMSPI and AirMSPI-2. MAIA incorporates a pair of pushbroom cameras on a two-axis gimbal to provide regional multiangle observations of selected, globally distributed target areas. A set of Primary Target Areas (PTAs) on five

  14. Satellite Instrument Calibration for Measuring Global Climate Change. Report of a Workshop at the University of Maryland Inn and Conference Center, College Park, MD. , November 12-14, 2002

    NASA Technical Reports Server (NTRS)

    Ohring, G.; Wielicki, B.; Spencer, R.; Emery, B.; Datla, R.

    2004-01-01

    Measuring the small changes associated with long-term global climate change from space is a daunting task. To address these problems and recommend directions for improvements in satellite instrument calibration some 75 scientists, including researchers who develop and analyze long-term data sets from satellites, experts in the field of satellite instrument calibration, and physicists working on state of the art calibration sources and standards met November 12 - 14, 2002 and discussed the issues. The workshop defined the absolute accuracies and long-term stabilities of global climate data sets that are needed to detect expected trends, translated these data set accuracies and stabilities to required satellite instrument accuracies and stabilities, and evaluated the ability of current observing systems to meet these requirements. The workshop's recommendations include a set of basic axioms or overarching principles that must guide high quality climate observations in general, and a roadmap for improving satellite instrument characterization, calibration, inter-calibration, and associated activities to meet the challenge of measuring global climate change. It is also recommended that a follow-up workshop be conducted to discuss implementation of the roadmap developed at this workshop.

  15. Set of instruments for solar EUV and soft X-ray monitoring onboard satellite Coronas-Photon

    NASA Astrophysics Data System (ADS)

    Kotov, Yury; Kochemasov, Alexey; Kuzin, Sergey; Kuznetsov, Vladimir; Sylwester, Janusz; Yurov, Vitaly

    Coronas-Photon mission is the third satellite of the Russian Coronas program on solar activity observation. The main goal of the "Coronas-Photon" is the study of solar hard electromagnetic radiation in the wide energy range from UV up to high energy gamma-radiation (2000MeV). Scientific payload for solar radiation observation consists of three types of instruments: Monitors (Natalya-2M, Konus-RF, RT-2, Penguin-M, BRM, PHOKA, Sphin-X, SOKOL spectral and timing measurements of full solar disk radiation have timing in flare/burst mode up to one msec. Instruments Natalya-2M, Konus-RF, RT-2 will cover the wide energy range of hard X-rays and soft gamma-rays (15keV to 2000MeV) and will together constitute the largest area detectors ever used for solar observations. Detectors of gamma-ray monitors are based on structured inorganic scintillators. For X-ray and EUV monitors the scintillation phoswich detectors, gas proportional counter, CdZnTe assembly and filter-covered Si-diodes are used. Telescope-spectrometer TESIS for imaging solar spectroscopy in X-rays has angular resolution up to 1arcsec in three spectral lines. Satellite platform and scientific payload is under construction to be launched in autumn 2008. Satellite orbit is circular with initial height 550km and inclination 82.5degrees. Accuracy of the spacecraft orientation to the Sun is better 3arcmin. In the report the capability of PHOKA, SphinX, SOKOL and TESIS as well as the observation program are described and discussed.

  16. Progress Toward Achieving an IR Radiance Record for Decadal Climate Trending: Fundamental Questions, Challenges, and Assessments

    NASA Astrophysics Data System (ADS)

    Revercomb, H. E.; Knuteson, R. O.; Tobin, D. C.; Best, F. A.; Taylor, J. K.; Martin, G.; Gero, P. J.; Adler, D.; Pettersen, C.; Mulligan, M.; Thielman, D.

    2017-12-01

    Infrared radiance spectra can be measured with very high accuracy (0.1 K 3-sigma brightness temperature at scene brightness temperature) and contain a high degree of information about the state of the Earth's climate, including temperature, water vapor, and trace gas profiles, lapse rates, plus cloud and surface properties. How best to make use of existing EOS-AIRS and Suomi NPP/JPSS-CrIS/IASI observations and how to move toward more extensive future observations is a fundamental question that the climate community and world's space agencies need to address. A major step toward achieving climate quality observations was realized through the successes of the operational sounders IASI-A & B on MetOp and the CrIS on Suomi NPP. Both instrument types are expected to continue as part of the Joint Polar Satellite system through at least 2040 (with upgrades to IASI and hopefully to CrIS as well). IASI covers the 0930 time slot and CrIS the 1330 slot for operational weather forecasting applications. This represents a major step toward the unbiased sampling needed for accurate climate trending products. However, there is still a hole at the 0530 dawn/dusk time slot that needs to be filled. The new Chinese hyperspectral sounder, HIRAS, is expected to fulfill this need when FY3E is launched in 2018. In addition to improved sampling, the system of operational Fourier transform sounding instruments offer other measurement accuracy advantages over earlier instruments. This talk will review some of these, including review of CrIS accuracy estimates, discussion of several specific error sources, and the fundamental ability of these instruments to produce well-defined, stable, and largely instrument independent Instrument Line Shape (ILS) functions. In this context, we will address EOS to Suomi NPP spectral radiance continuity issues. Finally, optimizing this system still requires an on-orbit 0.1 K 3-sigma calibration reference that is not susceptible to long-term drifts and that

  17. Comparison of Two Methodologies for Calibrating Satellite Instruments in the Visible and Near-Infrared

    NASA Technical Reports Server (NTRS)

    Barnes, Robert A.; Brown, Steven W.; Lykke, Keith R.; Guenther, Bruce; Butler, James J.; Schwarting, Thomas; Turpie, Kevin; Moyer, David; DeLuccia, Frank; Moeller, Christopher

    2015-01-01

    Traditionally, satellite instruments that measure Earth-reflected solar radiation in the visible and near infrared wavelength regions have been calibrated for radiance responsivity in a two-step method. In the first step, the relative spectral response (RSR) of the instrument is determined using a nearly monochromatic light source such as a lamp-illuminated monochromator. These sources do not typically fill the field-of-view of the instrument nor act as calibrated sources of light. Consequently, they only provide a relative (not absolute) spectral response for the instrument. In the second step, the instrument views a calibrated source of broadband light, such as a lamp-illuminated integrating sphere. The RSR and the sphere absolute spectral radiance are combined to determine the absolute spectral radiance responsivity (ASR) of the instrument. More recently, a full-aperture absolute calibration approach using widely tunable monochromatic lasers has been developed. Using these sources, the ASR of an instrument can be determined in a single step on a wavelength-by-wavelength basis. From these monochromatic ASRs, the responses of the instrument bands to broadband radiance sources can be calculated directly, eliminating the need for calibrated broadband light sources such as lamp-illuminated integrating spheres. In this work, the traditional broadband source-based calibration of the Suomi National Preparatory Project (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS) sensor is compared with the laser-based calibration of the sensor. Finally, the impact of the new full-aperture laser-based calibration approach on the on-orbit performance of the sensor is considered.

  18. Comparison of two methodologies for calibrating satellite instruments in the visible and near infrared

    PubMed Central

    Barnes, Robert A.; Brown, Steven W.; Lykke, Keith R.; Guenther, Bruce; Butler, James J.; Schwarting, Thomas; Moyer, David; Turpie, Kevin; DeLuccia, Frank; Moeller, Christopher

    2016-01-01

    Traditionally, satellite instruments that measure Earth-reflected solar radiation in the visible and near infrared wavelength regions have been calibrated for radiance responsivity in a two-step method. In the first step, the relative spectral response (RSR) of the instrument is determined using a nearly monochromatic light source such as a lamp-illuminated monochromator. These sources do not typically fill the field-of-view of the instrument nor act as calibrated sources of light. Consequently, they only provide a relative (not absolute) spectral response for the instrument. In the second step, the instrument views a calibrated source of broadband light, such as a lamp-illuminated integrating sphere. The RSR and the sphere absolute spectral radiance are combined to determine the absolute spectral radiance responsivity (ASR) of the instrument. More recently, a full-aperture absolute calibration approach using widely tunable monochromatic lasers has been developed. Using these sources, the ASR of an instrument can be determined in a single step on a wavelength-by-wavelength basis. From these monochromatic ASRs, the responses of the instrument bands to broadband radiance sources can be calculated directly, eliminating the need for calibrated broadband light sources such as integrating spheres. In this work, the traditional broadband source-based calibration of the Suomi National Preparatory Project (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS) sensor is compared with the laser-based calibration of the sensor. Finally, the impact of the new full-aperture laser-based calibration approach on the on-orbit performance of the sensor is considered. PMID:26836861

  19. A Satellite Data Analysis and CubeSat Instrument Simulator Tool for Simultaneous Multi-spacecraft Measurements of Solar Energetic Particles

    NASA Astrophysics Data System (ADS)

    Vannitsen, Jordan; Rizzitelli, Federico; Wang, Kaiti; Segret, Boris; Juang, Jyh-Ching; Miau, Jiun-Jih

    2017-12-01

    This paper presents a Multi-satellite Data Analysis and Simulator Tool (MDAST), developed with the original goal to support the science requirements of a Martian 3-Unit CubeSat mission profile named Bleeping Interplanetary Radiation Determination Yo-yo (BIRDY). MDAST was firstly designed and tested by taking into account the positions, attitudes, instruments field of view and energetic particles flux measurements from four spacecrafts (ACE, MSL, STEREO A, and STEREO B). Secondly, the simulated positions, attitudes and instrument field of view from the BIRDY CubeSat have been adapted for input. And finally, this tool can be used for data analysis of the measurements from the four spacecrafts mentioned above so as to simulate the instrument trajectory and observation capabilities of the BIRDY CubeSat. The onset, peak and end time of a solar particle event is specifically defined and identified with this tool. It is not only useful for the BIRDY mission but also for analyzing data from the four satellites aforementioned and can be utilized for other space weather missions with further customization.

  20. Verification for robustness to laser-induced damage for the Aladin instrument on the ADM-Aeolus satellite

    NASA Astrophysics Data System (ADS)

    Wernham, Denny; Ciapponi, Alessandra; Riede, Wolfgang; Allenspacher, Paul; Era, Fabio; D'Ottavi, Alessandro; Thibault, Dominique

    2016-12-01

    The Aladin instrument will fly on the European Space Agency's ADM Aeolus satellite. The instrument is a Doppler wind LIDAR, primarily designed to measure global wind profiles to improve the accuracy of numerical weather prediction models. At the heart of the instrument is a frequency stabilized 355nm laser which will emit approximately 100mJ of energy in the form of 20ns pulses with a fluence around 1Jcm-2. The pulse repetition frequency is 50Hz meaning that Aladin will eventually have to accumulate 5Gshots over its 3 years planned lifetime in orbit. Due to anomalies that have occurred on previous spaceborne lasers, as well as a number of failures that we have observed in previous tests, an extensive development and verification campaign was undertaken in order to ensure that the Aladin instrument is robust enough to survive the mission. In this paper, we shall report the logic and the results of this verification campaign.

  1. Assessment of Satellite Surface Radiation Products in Highland Regions with Tibet Instrumental Data

    NASA Technical Reports Server (NTRS)

    Yang, Kun; Koike, Toshio; Stackhouse, Paul; Mikovitz, Colleen

    2006-01-01

    This study presents results of comparisons between instrumental radiation data in the elevated Tibetan Plateau and two global satellite products: the Global Energy and Water Cycle Experiment - Surface Radiation Budget (GEWEX-SRB) and International Satellite Cloud Climatology Project - Flux Data (ISCCP-FD). In general, shortwave radiation (SW) is estimated better by ISCCP-FD while longwave radiation (LW) is estimated better by GEWEX-SRB, but all the radiation components in both products are under-estimated. Severe and systematic errors were found in monthly-mean SRB SW (on plateau-average, -48 W/sq m for downward SW and -18 W/sq m for upward SW) and FD LW (on plateau-average, -37 W/sq m for downward LW and -62 W/sq m for upward LW) for radiation. Errors in monthly-mean diurnal variations are even larger than the monthly mean errors. Though the LW errors can be reduced about 10 W/sq m after a correction for altitude difference between the site and SRB and FD grids, these errors are still higher than that for other regions. The large errors in SRB SW was mainly due to a processing mistake for elevation effect, but the errors in SRB LW was mainly due to significant errors in input data. We suggest reprocessing satellite surface radiation budget data, at least for highland areas like Tibet.

  2. The LiteBIRD Satellite Mission: Sub-Kelvin Instrument

    NASA Astrophysics Data System (ADS)

    Suzuki, A.; Ade, P. A. R.; Akiba, Y.; Alonso, D.; Arnold, K.; Aumont, J.; Baccigalupi, C.; Barron, D.; Basak, S.; Beckman, S.; Borrill, J.; Boulanger, F.; Bucher, M.; Calabrese, E.; Chinone, Y.; Cho, S.; Crill, B.; Cukierman, A.; Curtis, D. W.; de Haan, T.; Dobbs, M.; Dominjon, A.; Dotani, T.; Duband, L.; Ducout, A.; Dunkley, J.; Duval, J. M.; Elleflot, T.; Eriksen, H. K.; Errard, J.; Fischer, J.; Fujino, T.; Funaki, T.; Fuskeland, U.; Ganga, K.; Goeckner-Wald, N.; Grain, J.; Halverson, N. W.; Hamada, T.; Hasebe, T.; Hasegawa, M.; Hattori, K.; Hattori, M.; Hayes, L.; Hazumi, M.; Hidehira, N.; Hill, C. A.; Hilton, G.; Hubmayr, J.; Ichiki, K.; Iida, T.; Imada, H.; Inoue, M.; Inoue, Y.; Irwin, K. D.; Ishino, H.; Jeong, O.; Kanai, H.; Kaneko, D.; Kashima, S.; Katayama, N.; Kawasaki, T.; Kernasovskiy, S. A.; Keskitalo, R.; Kibayashi, A.; Kida, Y.; Kimura, K.; Kisner, T.; Kohri, K.; Komatsu, E.; Komatsu, K.; Kuo, C. L.; Kurinsky, N. A.; Kusaka, A.; Lazarian, A.; Lee, A. T.; Li, D.; Linder, E.; Maffei, B.; Mangilli, A.; Maki, M.; Matsumura, T.; Matsuura, S.; Meilhan, D.; Mima, S.; Minami, Y.; Mitsuda, K.; Montier, L.; Nagai, M.; Nagasaki, T.; Nagata, R.; Nakajima, M.; Nakamura, S.; Namikawa, T.; Naruse, M.; Nishino, H.; Nitta, T.; Noguchi, T.; Ogawa, H.; Oguri, S.; Okada, N.; Okamoto, A.; Okamura, T.; Otani, C.; Patanchon, G.; Pisano, G.; Rebeiz, G.; Remazeilles, M.; Richards, P. L.; Sakai, S.; Sakurai, Y.; Sato, Y.; Sato, N.; Sawada, M.; Segawa, Y.; Sekimoto, Y.; Seljak, U.; Sherwin, B. D.; Shimizu, T.; Shinozaki, K.; Stompor, R.; Sugai, H.; Sugita, H.; Suzuki, J.; Tajima, O.; Takada, S.; Takaku, R.; Takakura, S.; Takatori, S.; Tanabe, D.; Taylor, E.; Thompson, K. L.; Thorne, B.; Tomaru, T.; Tomida, T.; Tomita, N.; Tristram, M.; Tucker, C.; Turin, P.; Tsujimoto, M.; Uozumi, S.; Utsunomiya, S.; Uzawa, Y.; Vansyngel, F.; Wehus, I. K.; Westbrook, B.; Willer, M.; Whitehorn, N.; Yamada, Y.; Yamamoto, R.; Yamasaki, N.; Yamashita, T.; Yoshida, M.

    2018-05-01

    Inflation is the leading theory of the first instant of the universe. Inflation, which postulates that the universe underwent a period of rapid expansion an instant after its birth, provides convincing explanation for cosmological observations. Recent advancements in detector technology have opened opportunities to explore primordial gravitational waves generated by the inflation through "B-mode" (divergent-free) polarization pattern embedded in the cosmic microwave background anisotropies. If detected, these signals would provide strong evidence for inflation, point to the correct model for inflation, and open a window to physics at ultra-high energies. LiteBIRD is a satellite mission with a goal of detecting degree-and-larger-angular-scale B-mode polarization. LiteBIRD will observe at the second Lagrange point with a 400 mm diameter telescope and 2622 detectors. It will survey the entire sky with 15 frequency bands from 40 to 400 GHz to measure and subtract foregrounds. The US LiteBIRD team is proposing to deliver sub-Kelvin instruments that include detectors and readout electronics. A lenslet-coupled sinuous antenna array will cover low-frequency bands (40-235 GHz) with four frequency arrangements of trichroic pixels. An orthomode-transducer-coupled corrugated horn array will cover high-frequency bands (280-402 GHz) with three types of single frequency detectors. The detectors will be made with transition edge sensor (TES) bolometers cooled to a 100 milli-Kelvin base temperature by an adiabatic demagnetization refrigerator. The TES bolometers will be read out using digital frequency multiplexing with Superconducting QUantum Interference Device (SQUID) amplifiers. Up to 78 bolometers will be multiplexed with a single SQUID amplifier. We report on the sub-Kelvin instrument design and ongoing developments for the LiteBIRD mission.

  3. The 2003 edition of geisa: a spectroscopic database system for the second generation vertical sounders radiance simulation

    NASA Astrophysics Data System (ADS)

    Jacquinet-Husson, N.; Lmd Team

    The GEISA (Gestion et Etude des Informations Spectroscopiques Atmosphériques: Management and Study of Atmospheric Spectroscopic Information) computer accessible database system, in its former 1997 and 2001 versions, has been updated in 2003 (GEISA-03). It is developed by the ARA (Atmospheric Radiation Analysis) group at LMD (Laboratoire de Météorologie Dynamique, France) since 1974. This early effort implemented the so-called `` line-by-line and layer-by-layer '' approach for forward radiative transfer modelling action. The GEISA 2003 system comprises three databases with their associated management softwares: a database of spectroscopic parameters required to describe adequately the individual spectral lines belonging to 42 molecules (96 isotopic species) and located in a spectral range from the microwave to the limit of the visible. The featured molecules are of interest in studies of the terrestrial as well as the other planetary atmospheres, especially those of the Giant Planets. a database of absorption cross-sections of molecules such as chlorofluorocarbons which exhibit unresolvable spectra. a database of refractive indices of basic atmospheric aerosol components. Illustrations will be given of GEISA-03, data archiving method, contents, management softwares and Web access facilities at: http://ara.lmd.polytechnique.fr The performance of instruments like AIRS (Atmospheric Infrared Sounder; http://www-airs.jpl.nasa.gov) in the USA, and IASI (Infrared Atmospheric Sounding Interferometer; http://smsc.cnes.fr/IASI/index.htm) in Europe, which have a better vertical resolution and accuracy, compared to the presently existing satellite infrared vertical sounders, is directly related to the quality of the spectroscopic parameters of the optically active gases, since these are essential input in the forward models used to simulate recorded radiance spectra. For these upcoming atmospheric sounders, the so-called GEISA/IASI sub-database system has been elaborated

  4. Optimizing Orbit-Instrument Configuration for Global Precipitation Mission (GPM) Satellite Fleet

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Adams, James; Baptista, Pedro; Haddad, Ziad; Iguchi, Toshio; Im, Eastwood; Kummerow, Christian; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Following the scientific success of the Tropical Rainfall Measuring Mission (TRMM) spearheaded by a group of NASA and NASDA scientists, their external scientific collaborators, and additional investigators within the European Union's TRMM Research Program (EUROTRMM), there has been substantial progress towards the development of a new internationally organized, global scale, and satellite-based precipitation measuring mission. The highlights of this newly developing mission are a greatly expanded scope of measuring capability and a more diversified set of science objectives. The mission is called the Global Precipitation Mission (GPM). Notionally, GPM will be a constellation-type mission involving a fleet of nine satellites. In this fleet, one member is referred to as the "core" spacecraft flown in an approximately 70 degree inclined non-sun-synchronous orbit, somewhat similar to TRMM in that it carries both a multi-channel polarized passive microwave radiometer (PMW) and a radar system, but in this case it will be a dual frequency Ku-Ka band radar system enabling explicit measurements of microphysical DSD properties. The remainder of fleet members are eight orbit-synchronized, sun-synchronous "constellation" spacecraft each carrying some type of multi-channel PMW radiometer, enabling no worse than 3-hour diurnal sampling over the entire globe. In this configuration the "core" spacecraft serves as a high quality reference platform for training and calibrating the PMW rain retrieval algorithms used with the "constellation" radiometers. Within NASA, GPM has advanced to the pre-formulation phase which has enabled the initiation of a set of science and technology studies which will help lead to the final mission design some time in the 2003 period. This presentation first provides an overview of the notional GPM program and mission design, including its organizational and programmatic concepts, scientific agenda, expected instrument package, and basic flight

  5. Overview of the Ocean Observer Satellite Study

    NASA Astrophysics Data System (ADS)

    Cunningham, J. D.; McGuire, J. P.; Pichel, W. G.; Gerber, A. J.

    2002-12-01

    A two-year study of ocean satellite remote sensing requirements and instrument/satellite options is nearing completion. This Ocean Observer Study was sponsored by the U.S. Dept. of Commerce/Dept. of Defense/National Aeronautics and Space Administration Integrated Program Office, whose mission is to develop the future U.S. National Polar-Orbiting Operational Environmental Satellite System (NPOESS). A comprehensive Ocean Observer User Requirements Document has been drafted by a team of over 150 government, academic, and private sector scientists, engineers, and administrators. Included are requirements for open and coastal ocean surface, cryospheric, hydrologic, and some land/hazard and atmospheric boundary layer parameters. This document was then used as input to the instrument and satellite study (conducted by the Jet Propulsion Laboratory) which produced five different instrument/satellite configuration options designed to address the maximum number of requirements which will not be met with the already-approved NPOESS instruments. Instruments studied include a synthetic aperture radar (SAR), an altimeter, and a hyper-spectral coastal infrared/visible imager. After analyzing the alternatives, it appears that one of the best options is a two-satellite system consisting of (1) an altimeter mission in the Topex/Poseidon orbit carrying both wide-swath and delayed doppler altimeters, and (2) a multi-polarization, multi-frequency, multi-mode interferometric SAR mission including a coastal imager in a polar sun-synchronous orbit. This paper summarizes the user requirements process, briefly describes the notional satellite configuration, and presents some of the capabilities of the instruments.

  6. The influence of boreal biomass burning emissions on the distribution of tropospheric ozone over North America and the North Atlantic during 2010

    NASA Astrophysics Data System (ADS)

    Parrington, M.; Palmer, P. I.; Henze, D. K.; Tarasick, D. W.; Hyer, E. J.; Owen, R. C.; Helmig, D.; Clerbaux, C.; Bowman, K. W.; Deeter, M. N.; Barratt, E. M.; Coheur, P.-F.; Hurtmans, D.; George, M.; Worden, J. R.

    2011-09-01

    We analyse the tropospheric ozone distribution over North America and the North Atlantic to boreal biomass burning emissions during the summer of 2010 using the GEOS-Chem 3-D global tropospheric chemical transport model, and observations from in situ and satellite instruments. In comparison to observations from the PICO-NARE observatory in the Azores, ozonesondes across Canada, and the Tropospheric Emission Spectrometer (TES) and Infrared Atmospheric Sounding Instrument (IASI) satellite instruments, the model ozone distribution is shown to be in reasonable agreement with mean biases less than 10 ppbv. We use the adjoint of GEOS-Chem to show the model ozone distribution in the free troposphere over Maritime Canada is largely sensitive to NOx emissions from biomass burning sources in Central Canada, lightning sources in the central US, and anthropogenic sources in eastern US and south-eastern Canada. We also use the adjoint of GEOS-Chem to evaluate the Fire Locating And Monitoring of Burning Emissions (FLAMBE) inventory through assimilation of CO observations from the Measurements Of Pollution In The Troposphere (MOPITT) satellite instrument. The CO inversion showed that, on average the FLAMBE emissions needed to be reduced to 89 % of their original values, with scaling factors ranging from 12 % to 102 %, to fit the MOPITT observations in the boreal regions. Applying the CO scaling factors to all species emitted from boreal biomass burning sources led to a decrease of the model tropospheric distributions of CO, PAN, and NOx by as much as -20 ppbv, -50 ppbv, and -20 ppbv respectively. The impact of optimizing the biomass burning emissions was to reduce the model ozone distribution by approximately -3 ppbv (-8 %) and on average improved the agreement of the model ozone distribution compared to the observations throughout the free troposphere reducing the mean model bias from 5.5 to 4.0 ppbv for the PICO-NARE observatory, 3.0 to 0.9 ppbv for ozonesondes, 2.0 to 0.9 ppbv

  7. The influence of boreal biomass burning emissions on the distribution of tropospheric ozone over North America and the North Atlantic during 2010

    NASA Astrophysics Data System (ADS)

    Parrington, M.; Palmer, P. I.; Henze, D. K.; Tarasick, D. W.; Hyer, E. J.; Owen, R. C.; Helmig, D.; Clerbaux, C.; Bowman, K. W.; Deeter, M. N.; Barratt, E. M.; Coheur, P.-F.; Hurtmans, D.; Jiang, Z.; George, M.; Worden, J. R.

    2012-02-01

    We have analysed the sensitivity of the tropospheric ozone distribution over North America and the North Atlantic to boreal biomass burning emissions during the summer of 2010 using the GEOS-Chem 3-D global tropospheric chemical transport model and observations from in situ and satellite instruments. We show that the model ozone distribution is consistent with observations from the Pico Mountain Observatory in the Azores, ozonesondes across Canada, and the Tropospheric Emission Spectrometer (TES) and Infrared Atmospheric Sounding Instrument (IASI) satellite instruments. Mean biases between the model and observed ozone mixing ratio in the free troposphere were less than 10 ppbv. We used the adjoint of GEOS-Chem to show the model ozone distribution in the free troposphere over Maritime Canada is largely sensitive to NOx emissions from biomass burning sources in Central Canada, lightning sources in the central US, and anthropogenic sources in the eastern US and south-eastern Canada. We also used the adjoint of GEOS-Chem to evaluate the Fire Locating And Monitoring of Burning Emissions (FLAMBE) inventory through assimilation of CO observations from the Measurements Of Pollution In The Troposphere (MOPITT) satellite instrument. The CO inversion showed that, on average, the FLAMBE emissions needed to be reduced to 89% of their original values, with scaling factors ranging from 12% to 102%, to fit the MOPITT observations in the boreal regions. Applying the CO scaling factors to all species emitted from boreal biomass burning sources led to a decrease of the model tropospheric distributions of CO, PAN, and NOx by as much as -20 ppbv, -50 pptv, and -20 pptv respectively. The modification of the biomass burning emission estimates reduced the model ozone distribution by approximately -3 ppbv (-8%) and on average improved the agreement of the model ozone distribution compared to the observations throughout the free troposphere, reducing the mean model bias from 5.5 to 4.0 ppbv

  8. Oceanography from satellites

    NASA Technical Reports Server (NTRS)

    Wilson, W. S.

    1981-01-01

    It is pointed out that oceanographers have benefited from the space program mainly through the increased efficiency it has brought to ship operations. For example, the Transit navigation system has enabled oceanographers to compile detailed maps of sea-floor properties and to more accurately locate moored subsurface instrumentation. General descriptions are given of instruments used in satellite observations (altimeter, color scanner, infrared radiometer, microwave radiometer, scatterometer, synthetic aperture radar). It is pointed out that because of the large volume of data that satellite instruments generate, the development of algorithms for converting the data into a form expressed in geophysical units has become especially important.

  9. Satellite Monitoring of Ash and Sulphur Dioxide for the mitigation of Aviation Hazards: Part II. Validation of satellite-derived Volcanic Sulphur Dioxide Levels.

    NASA Astrophysics Data System (ADS)

    Koukouli, MariLiza; Balis, Dimitris; Dimopoulos, Spiros; Clarisse, Lieven; Carboni, Elisa; Hedelt, Pascal; Spinetti, Claudia; Theys, Nicolas; Tampellini, Lucia; Zehner, Claus

    2014-05-01

    The eruption of the Icelandic volcano Eyjafjallajökull in the spring of 2010 turned the attention of both the public and the scientific community to the susceptibility of the European airspace to the outflows of large volcanic eruptions. The ash-rich plume from Eyjafjallajökull drifted towards Europe and caused major disruptions of European air traffic for several weeks affecting the everyday life of millions of people and with a strong economic impact. This unparalleled situation revealed limitations in the decision making process due to the lack of information on the tolerance to ash of commercial aircraft engines as well as limitations in the ash monitoring and prediction capabilities. The European Space Agency project Satellite Monitoring of Ash and Sulphur Dioxide for the mitigation of Aviation Hazards, was introduced to facilitate the development of an optimal End-to-End System for Volcanic Ash Plume Monitoring and Prediction. This system is based on comprehensive satellite-derived ash plume and sulphur dioxide [SO2] level estimates, as well as a widespread validation using supplementary satellite, aircraft and ground-based measurements. The validation of volcanic SO2 levels extracted from the sensors GOME-2/MetopA and IASI/MetopA are shown here with emphasis on the total column observed right before, during and after the Eyjafjallajökull 2010 eruptions. Co-located ground-based Brewer Spectrophotometer data extracted from the World Ozone and Ultraviolet Radiation Data Centre, WOUDC, were compared to the different satellite estimates. The findings are presented at length, alongside a comprehensive discussion of future scenarios.

  10. Post-Launch Calibration and Testing of Space Weather Instruments on GOES-R Satellite

    NASA Technical Reports Server (NTRS)

    Tadikonda, S. K.; Merrow, Cynthia S.; Kronenwetter, Jeffrey A.; Comeyne, Gustave J.; Flanagan, Daniel G.; Todrita, Monica

    2016-01-01

    The Geostationary Operational Environmental Satellite - R (GOES-R) is the first of a series of satellites to be launched, with the first launch scheduled for October 2016. The three instruments Solar UltraViolet Imager (SUVI), Extreme ultraviolet and X-ray Irradiance Sensor (EXIS), and Space Environment In-Situ Suite (SEISS) provide the data needed as inputs for the product updates National Oceanic and Atmospheric Administration (NOAA) provides to the public. SUVI is a full-disk extreme ultraviolet imager enabling Active Region characterization, filament eruption, and flare detection. EXIS provides inputs to solar back-ground-sevents impacting climate models. SEISS provides particle measurements over a wide energy-and-flux range that varies by several orders of magnitude and these data enable updates to spacecraft charge models for electrostatic discharge. EXIS and SEISS have been tested and calibrated end-to-end in ground test facilities around the United States. Due to the complexity of the SUVI design, data from component tests were used in a model to predict on-orbit performance. The ground tests and model updates provided inputs for designing the on-orbit calibration tests. A series of such tests have been planned for the Post-Launch Testing (PLT) of each of these instruments, and specific parameters have been identified that will be updated in the Ground Processing Algorithms, on-orbit parameter tables, or both. Some of SUVI and EXIS calibrations require slewing them off the Sun, while no such maneuvers are needed for SEISS. After a six-month PLT period the GOES-R is expected to be operational. The calibration details are presented in this paper.

  11. Post-Launch Calibration and Testing of Space Weather Instruments on GOES-R Satellite

    NASA Technical Reports Server (NTRS)

    Tadikonda, Sivakumara S. K.; Merrow, Cynthia S.; Kronenwetter, Jeffrey A.; Comeyne, Gustave J.; Flanagan, Daniel G.; Todirita, Monica

    2016-01-01

    The Geostationary Operational Environmental Satellite - R (GOES-R) is the first of a series of satellites to be launched, with the first launch scheduled for October 2016. The three instruments - Solar Ultra Violet Imager (SUVI), Extreme ultraviolet and X-ray Irradiance Sensor (EXIS), and Space Environment In-Situ Suite (SEISS) provide the data needed as inputs for the product updates National Oceanic and Atmospheric Administration (NOAA) provides to the public. SUVI is a full-disk extreme ultraviolet imager enabling Active Region characterization, filament eruption, and flare detection. EXIS provides inputs to solar backgrounds/events impacting climate models. SEISS provides particle measurements over a wide energy-and-flux range that varies by several orders of magnitude and these data enable updates to spacecraft charge models for electrostatic discharge. EXIS and SEISS have been tested and calibrated end-to-end in ground test facilities around the United States. Due to the complexity of the SUVI design, data from component tests were used in a model to predict on-orbit performance. The ground tests and model updates provided inputs for designing the on-orbit calibration tests. A series of such tests have been planned for the Post-Launch Testing (PLT) of each of these instruments, and specific parameters have been identified that will be updated in the Ground Processing Algorithms, on-orbit parameter tables, or both. Some of SUVI and EXIS calibrations require slewing them off the Sun, while no such maneuvers are needed for SEISS. After a six-month PLT period the GOES-R is expected to be operational. The calibration details are presented in this paper.

  12. Reusing Joint Polar Satellite System (jpss) Ground System Components to Process AURA Ozone Monitoring Instrument (omi) Science Products

    NASA Astrophysics Data System (ADS)

    Moses, J. F.; Jain, P.; Johnson, J.; Doiron, J. A.

    2017-12-01

    New Earth observation instruments are planned to enable advancements in Earth science research over the next decade. Diversity of Earth observing instruments and their observing platforms will continue to increase as new instrument technologies emerge and are deployed as part of National programs such as Joint Polar Satellite System (JPSS), Geostationary Operational Environmental Satellite system (GOES), Landsat as well as the potential for many CubeSat and aircraft missions. The practical use and value of these observational data often extends well beyond their original purpose. The practicing community needs intuitive and standardized tools to enable quick unfettered development of tailored products for specific applications and decision support systems. However, the associated data processing system can take years to develop and requires inherent knowledge and the ability to integrate increasingly diverse data types from multiple sources. This paper describes the adaptation of a large-scale data processing system built for supporting JPSS algorithm calibration and validation (Cal/Val) node to a simplified science data system for rapid application. The new configurable data system reuses scalable JAVA technologies built for the JPSS Government Resource for Algorithm Verification, Independent Test, and Evaluation (GRAVITE) system to run within a laptop environment and support product generation and data processing of AURA Ozone Monitoring Instrument (OMI) science products. Of particular interest are the root requirements necessary for integrating experimental algorithms and Hierarchical Data Format (HDF) data access libraries into a science data production system. This study demonstrates the ability to reuse existing Ground System technologies to support future missions with minimal changes.

  13. Which satellites were used?

    Atmospheric Science Data Center

    2014-12-08

    ... instrument packages (Scanner and NonScanner) were used. The NASA Goddard Space Flight Center built the Earth Radiation Budget Satellite ... which the first ERBE instruments were launched by the Space Shuttle Challenger in 1984. ERBE instruments were also launched on two ...

  14. Satellite remote sensing of the ocean

    NASA Technical Reports Server (NTRS)

    Fu, Lee-Lueng; Liu, W. T.; Abbott, Mark R.

    1990-01-01

    A concise description of the principles and applications of several selected instruments that have been utilized most frequently in remote sensing of the ocean from satellites is presented. Emphasis is placed on the current progress in oceanographic applications and the outlook of the instruments in future oceanographic satellite missions is discussed. The instruments under discussion are placed into three groups: active microwave sensors, passive ocean color and infrared sensors, and passive microwave sensors.

  15. Disparities in the access to primary healthcare in rural areas from the county of Iasi - Romania.

    PubMed

    Duma, Olga-Odetta; Roşu, Solange Tamara; Manole, M; Petrariu, F D; Constantin, Brânduşa

    2014-01-01

    To identify the factors that may conduct to various forms of social exclusion of the population from the primary healthcare and to analyze health disparities as population-specific differences in the access to primary healthcare in rural compared to urban residence areas from Iasi, the second biggest county, situated in the North--East region of Romania. This research is a type of inquiry-based opinion survey of the access to primary healthcare in rural compared to urban areas of the county of Iasi. Data were collected by face-to-face interviews. There were taken into account the socioeconomic status (education level in the adult population, employment status, family income, household size) and two temporal variables (the interval of time spent to arrive at the primary healthcare office as a marker for the geographical access and the waiting time for a consultation). The study group consisted of two samples, from rural and urban area, each of 150 patients, all ages, randomly selected, who were waiting at the family doctor's practice. The study has identified disparities related to a poor economic status assessed through the employed status ("not working" 15% in urban and of 20% in rural).The income calculated per member of family and divided in terciles has recorded significant differences for "high" (36.7% urban and 14.7% rural) and "low", respectively (14.6% urban and 56.6% rural). High household size with more than five members represented 22.6% of the total subjects in rural and 15.3% in urban areas. The assessment of the education level in the adult population (> 18 years) revealed that in the rural areas more than a half (56%) of the sample is placed in the category primary and secondary incomplete, whereas the value for secondary complete and postsecondary was 37.3%. The proportion of respondents in the urban areas who have post-secondary education is five times higher than those in rural areas (15.4% vs. 2.7%). The reduced geographical access assessed as

  16. Numerical Model of the Plasma Sheath Generated by the Plasma Source Instrument Aboard the Polar Satellite

    NASA Technical Reports Server (NTRS)

    Leung, Wing C.; Singh, Nagendra; Moore, Thomas E.; Craven, Paul D.

    2000-01-01

    The plasma sheath generated by the operation of the Plasma Source Instrument (PSI) aboard the POLAR satellite is studied by using a 3-dimensional Particle-In-Cell (PIC) code. When the satellite passes through the region of low density plasma, the satellite charges to positive potentials as high as 4050Volts due to the photoelectrons emission. In such a case, ambient core ions cannot accurately be measured or detected. The goal of the onboard PSI is to reduce the floating potential of the satellite to a sufficiently low value so that the ions in the polar wind become detectable. When the PSI is operated, an ion-rich Xenon plasma is ejected from the satellite, such that the floating potential of the satellite is reduced and is maintained at about 2Volts. Accordingly, in our 3-dimensional PIC simulation, we considered that the potential of the satellite is 2Volts as a fixed bias. Considering the relatively high density of the Xenon plasma in the sheath (approx. 10 - 10(exp 3)/cc), the ambient plasma of low density (less than 1/cc) is neglected. In the simulations, the electric fields and plasma dynamics are calculated self-consistently. We found that an "Apple" shape positive potential sheath forms surrounding the satellite. In the region near the PSI emission, a high positive potential hill develops. Near the Thermal Ion Detection Experiment (TIDE) detector away from the PSI, the potentials are sufficiently low for the ambient polar wind ions to reach it. In the simulations, it takes about a hundred electron gyroperiods for the sheath to reach a quasi-steady state. This time is approximately the time taken by the heavy Xe(+) ions to expand up to about one average Larmor radius of electrons from the satellite surface. Using the steady state sheath, we performed trajectory calculations to characterize the detector response to a highly supersonic polar wind flow. The detected ions' velocity distribution shows significant deviations from a shifted Maxwellian in the

  17. Numerical Model of the Plasma Sheath Generated by the Plasma Source Instrument Aboard the Polar Satellite

    NASA Technical Reports Server (NTRS)

    Singh, N.; Leung, W. C.; Moore, T. E.; Craven, P. D.

    2001-01-01

    The plasma sheath generated by the operation of the Plasma Source Instrument (PSI) aboard the Polar satellite is studied by using a three-dimensional particle-in-cell (PIC) code. When the satellite passes through the region of low-density plasma, the satellite charges to positive potentials as high as 40-50 V, owing to the photoelectron emission. In such a case, ambient core ions cannot accurately be measured or detected. The goal of the onboard PSI is to reduce the floating potential of the satellite to a sufficiently low value so that the ions in the polar wind become detectable. When the PSI is operated, ion-rich xenon plasma is ejected from the satellite, such that the floating potential of the satellite is reduced and is maintained at approximately 2 V. Accordingly, in our three-dimensional PIC simulation we considered that the potential of the satellite is 2 V as a fixed bias. Considering the relatively high density of the xenon plasma in the sheath (10-10(exp 3)/cc), the ambient plasma of low density (<1/cc) is neglected. In the simulations the electric fields and plasma dynamics are calculated self-consistently. We found that an 'apple'-shape positive potential sheath forms surrounding the satellite. In the region near the PSI emission a high positive potential hill develops. Near the Thermal Ion Dynamics Experiment detector away from the PSI, the potentials are sufficiently low for the ambient polar wind ions to reach it. In the simulations it takes only about a couple of tens of electron gyroperiods for the sheath to reach a quasi steady state. This time is approximately the time taken by the heavy Xe(+) ions to expand up to about one average Larmor radius of electrons from the satellite surface. After this time the expansion of the sheath in directions transverse to the ambient magnetic field slows down because the electrons are magnetized. Using the quasi steady sheath, we performed trajectory calculations to characterize the detector response to a

  18. Applications of Satellite Remote Sensing Products to Enhance and Evaluate the AIRPACT Regional Air Quality Modeling System

    NASA Astrophysics Data System (ADS)

    Herron-Thorpe, F. L.; Mount, G. H.; Emmons, L. K.; Lamb, B. K.; Jaffe, D. A.; Wigder, N. L.; Chung, S. H.; Zhang, R.; Woelfle, M.; Vaughan, J. K.; Leung, F. T.

    2013-12-01

    The WSU AIRPACT air quality modeling system for the Pacific Northwest forecasts hourly levels of aerosols and atmospheric trace gases for use in determining potential health and ecosystem impacts by air quality managers. AIRPACT uses the WRF/SMOKE/CMAQ modeling framework, derives dynamic boundary conditions from MOZART-4 forecast simulations with assimilated MOPITT CO, and uses the BlueSky framework to derive fire emissions. A suite of surface measurements and satellite-based remote sensing data products across the AIRPACT domain are used to evaluate and improve model performance. Specific investigations include anthropogenic emissions, wildfire simulations, and the effects of long-range transport on surface ozone. In this work we synthesize results for multiple comparisons of AIRPACT with satellite products such as IASI ammonia, AIRS carbon monoxide, MODIS AOD, OMI tropospheric ozone and nitrogen dioxide, and MISR plume height. Features and benefits of the newest version of AIRPACT's web-interface are also presented.

  19. [Industrial sound spectrum entailing noise-induced occupational hearing loss in Iasi industry].

    PubMed

    Carp, Cristina Maria; Costinescu, V N

    2011-01-01

    In European Union every day millions of employees are exposed to noise at work and the risk this can entail. this study presents the sound spectrum in Iasi heavy industry: metal foundries industry, punching and embossing of metal sheets, cold and hot metal processing. it was used a type 2 Sound Level Meter (SLM) and the considered value was the average value over 10 test values in 10 consecutive days for each octave band in common audible frequency range. It is obviously that the large values of sound intensities in the most of frequency octave band exceed maximum admissible and legal values. The study reveals the necessity of hardware, medical and managerial measures in order to reduce the occupational noise and to prevent the hearing acuity damage of the workers.

  20. LIMS Instrument Package (LIP) balloon experiment: Nimbus 7 satellite correlative temperature, ozone, water vapor, and nitric acid measurements

    NASA Technical Reports Server (NTRS)

    Lee, R. B., III; Gandrud, B. W.; Robbins, D. E.; Rossi, L. C.; Swann, N. R. W.

    1982-01-01

    The Limb Infrared Monitor of the Stratosphere (LIMS) LIP balloon experiment was used to obtain correlative temperature, ozone, water vapor, and nitric acid data at altitudes between 10 and 36 kilometers. The performance of the LIMS sensor flown on the Nimbus 7 Satellite was assessed. The LIP consists of the modified electrochemical concentration cell ozonesonde, the ultraviolet absorption photometric of ozone, the water vapor infrared radiometer sonde, the chemical absorption filter instrument for nitric acid vapor, and the infrared radiometer for nitric acid vapor. The limb instrument package (LIP), its correlative sensors, and the resulting data obtained from an engineering and four correlative flights are described.

  1. Instrument interface description for NOAA 2000 instruments with European morning spacecraft and/or NOAA-OPQ spacecraft

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The purpose is to describe at a high level the common interface provisions and constraints placed on the NOAA-2000 instruments and the interfacing spacecraft elements in the following areas: electrical interface, mechanical interface, thermal interface, magnetic interface, electromagnetic compatibility, structural/mechanical environmental interface, contamination control, and the ionizing radiation environment. The requirements reflect the fact that these instruments must be compatible with a number of different polar orbiting satellite vehicles including the NOAA-OPQ satellites and the EUMETSAT METOP satellites.

  2. Aerosol Climate Time Series Evaluation In ESA Aerosol_cci

    NASA Astrophysics Data System (ADS)

    Popp, T.; de Leeuw, G.; Pinnock, S.

    2015-12-01

    Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve algorithms for the retrieval of aerosol information from European sensors. By the end of 2015 full mission time series of 2 GCOS-required aerosol parameters are completely validated and released: Aerosol Optical Depth (AOD) from dual view ATSR-2 / AATSR radiometers (3 algorithms, 1995 - 2012), and stratospheric extinction profiles from star occultation GOMOS spectrometer (2002 - 2012). Additionally, a 35-year multi-sensor time series of the qualitative Absorbing Aerosol Index (AAI) together with sensitivity information and an AAI model simulator is available. Complementary aerosol properties requested by GCOS are in a "round robin" phase, where various algorithms are inter-compared: fine mode AOD, mineral dust AOD (from the thermal IASI spectrometer), absorption information and aerosol layer height. As a quasi-reference for validation in few selected regions with sparse ground-based observations the multi-pixel GRASP algorithm for the POLDER instrument is used. Validation of first dataset versions (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account for a reprocessing. The datasets contain pixel level uncertainty estimates which are also validated. The paper will summarize and discuss the results of major reprocessing and validation conducted in 2015. The focus will be on the ATSR, GOMOS and IASI datasets. Pixel level uncertainties validation will be summarized and discussed including unknown components and their potential usefulness and limitations. Opportunities for time series extension with successor instruments of the Sentinel family will be described and the complementarity of the different satellite aerosol products

  3. Satellite Monitoring of Ash and Sulphur Dioxide for the mitigation of Aviation Hazards: Part I. Validation of satellite-derived Volcanic Ash Levels.

    NASA Astrophysics Data System (ADS)

    Koukouli, MariLiza; Balis, Dimitris; Simopoulos, Spiros; Siomos, Nikos; Clarisse, Lieven; Carboni, Elisa; Wang, Ping; Siddans, Richard; Marenco, Franco; Mona, Lucia; Pappalardo, Gelsomina; Spinetti, Claudia; Theys, Nicolas; Tampellini, Lucia; Zehner, Claus

    2014-05-01

    The 2010 eruption of the Icelandic volcano Eyjafjallajökull attracted the attention of the public and the scientific community to the vulnerability of the European airspace to volcanic eruptions. Major disruptions in European air traffic were observed for several weeks surrounding the two eruptive episodes, which had a strong impact on the everyday life of many Europeans as well as a noticable economic loss of around 2-3 billion Euros in total. The eruptions made obvious that the decision-making bodies were not informed properly and timely about the commercial aircraft capabilities to ash-leaden air, and that the ash monitoring and prediction potential is rather limited. After the Eyjafjallajökull eruptions new guidelines for aviation, changing from zero tolerance to newly established ash threshold values, were introduced. Within this spirit, the European Space Agency project Satellite Monitoring of Ash and Sulphur Dioxide for the mitigation of Aviation Hazards, called for the creation of an optimal End-to-End System for Volcanic Ash Plume Monitoring and Prediction . This system is based on improved and dedicated satellite-derived ash plume and sulphur dioxide level assessments, as well as an extensive validation using auxiliary satellite, aircraft and ground-based measurements. The validation of volcanic ash levels extracted from the sensors GOME-2/MetopA, IASI/MetopA and MODIS/Terra and MODIS/Aqua is presented in this work with emphasis on the ash plume height and ash optical depth levels. Co-located aircraft flights, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation [CALIPSO] soundings and well as European Aerosol Research Lidar Network [EARLINET] measurements were compared to the different satellite estimates for the those two eruptive episodes. The validation results are extremely promising with most satellite sensors performing quite well and within the estimated uncertainties compared to the comparative datasets. The findings are

  4. Spectralon BRDF and DHR Measurements in Support of Satellite Instruments Operating Through Shortwave Infrared

    NASA Technical Reports Server (NTRS)

    Georgiev, Georgi T.; Butler, James J.; Thome, Kurt; Cooksey, Catherine; Ding, Leibo

    2016-01-01

    Satellite instruments operating in the reflective solar wavelength region require accurate and precise determination of the Bidirectional Reflectance Distribution Functions (BRDFs) of the laboratory and flight diffusers used in their pre-flight and on-orbit calibrations. This paper advances that initial work and presents a comparison of spectral Bidirectional Reflectance Distribution Function (BRDF) and Directional Hemispherical Reflectance (DHR) of Spectralon*, a common material for laboratory and onorbit flight diffusers. A new measurement setup for BRDF measurements from 900 nm to 2500 nm located at NASA Goddard Space Flight Center (GSFC) is described. The GSFC setup employs an extended indium gallium arsenide detector, bandpass filters, and a supercontinuum light source. Comparisons of the GSFC BRDF measurements in the ShortWave InfraRed (SWIR) with those made by the NIST Spectral Trifunction Automated Reference Reflectometer (STARR) are presented. The Spectralon sample used in this study was 2 inch diameter, 99% white pressed and sintered Polytetrafluoroethylene (PTFE) target. The NASA/NIST BRDF comparison measurements were made at an incident angle of 0 deg and viewing angle of 45 deg. Additional BRDF data not compared to NIST were measured at additional incident and viewing angle geometries and are not presented here The total combined uncertainty for the measurement of BRDF in the SWIR range made by the GSFC scatterometer is less than 1% (k=1). This study is in support of the calibration of the Joint Polar Satellite System (JPSS) Radiation Budget Instrument (RBI) and Visible Infrared Imaging Radiometer Suite (VIIRS) of and other current and future NASA remote sensing missions operating across the reflected solar wavelength region.

  5. Ultraspectral sounding retrieval error budget and estimation

    NASA Astrophysics Data System (ADS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, Larrabee L.; Yang, Ping

    2011-11-01

    The ultraspectral infrared radiances obtained from satellite observations provide atmospheric, surface, and/or cloud information. The intent of the measurement of the thermodynamic state is the initialization of weather and climate models. Great effort has been given to retrieving and validating these atmospheric, surface, and/or cloud properties. Error Consistency Analysis Scheme (ECAS), through fast radiative transfer model (RTM) forward and inverse calculations, has been developed to estimate the error budget in terms of absolute and standard deviation of differences in both spectral radiance and retrieved geophysical parameter domains. The retrieval error is assessed through ECAS without assistance of other independent measurements such as radiosonde data. ECAS re-evaluates instrument random noise, and establishes the link between radiometric accuracy and retrieved geophysical parameter accuracy. ECAS can be applied to measurements of any ultraspectral instrument and any retrieval scheme with associated RTM. In this paper, ECAS is described and demonstration is made with the measurements of the METOP-A satellite Infrared Atmospheric Sounding Interferometer (IASI).

  6. Ultraspectral Sounding Retrieval Error Budget and Estimation

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, L. Larrabee; Yang, Ping

    2011-01-01

    The ultraspectral infrared radiances obtained from satellite observations provide atmospheric, surface, and/or cloud information. The intent of the measurement of the thermodynamic state is the initialization of weather and climate models. Great effort has been given to retrieving and validating these atmospheric, surface, and/or cloud properties. Error Consistency Analysis Scheme (ECAS), through fast radiative transfer model (RTM) forward and inverse calculations, has been developed to estimate the error budget in terms of absolute and standard deviation of differences in both spectral radiance and retrieved geophysical parameter domains. The retrieval error is assessed through ECAS without assistance of other independent measurements such as radiosonde data. ECAS re-evaluates instrument random noise, and establishes the link between radiometric accuracy and retrieved geophysical parameter accuracy. ECAS can be applied to measurements of any ultraspectral instrument and any retrieval scheme with associated RTM. In this paper, ECAS is described and demonstration is made with the measurements of the METOP-A satellite Infrared Atmospheric Sounding Interferometer (IASI)..

  7. Aerosol Climate Time Series in ESA Aerosol_cci

    NASA Astrophysics Data System (ADS)

    Popp, Thomas; de Leeuw, Gerrit; Pinnock, Simon

    2016-04-01

    Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve algorithms for the retrieval of aerosol information from European sensors. Meanwhile, full mission time series of 2 GCOS-required aerosol parameters are completely validated and released: Aerosol Optical Depth (AOD) from dual view ATSR-2 / AATSR radiometers (3 algorithms, 1995 - 2012), and stratospheric extinction profiles from star occultation GOMOS spectrometer (2002 - 2012). Additionally, a 35-year multi-sensor time series of the qualitative Absorbing Aerosol Index (AAI) together with sensitivity information and an AAI model simulator is available. Complementary aerosol properties requested by GCOS are in a "round robin" phase, where various algorithms are inter-compared: fine mode AOD, mineral dust AOD (from the thermal IASI spectrometer, but also from ATSR instruments and the POLDER sensor), absorption information and aerosol layer height. As a quasi-reference for validation in few selected regions with sparse ground-based observations the multi-pixel GRASP algorithm for the POLDER instrument is used. Validation of first dataset versions (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account for a reprocessing. The datasets contain pixel level uncertainty estimates which were also validated and improved in the reprocessing. For the three ATSR algorithms the use of an ensemble method was tested. The paper will summarize and discuss the status of dataset reprocessing and validation. The focus will be on the ATSR, GOMOS and IASI datasets. Pixel level uncertainties validation will be summarized and discussed including unknown components and their potential usefulness and limitations. Opportunities for time series extension

  8. Surface Emissivity Retrieved with Satellite Ultraspectral IR Measurements for Monitoring Global Change

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Schluessel, Peter

    2009-01-01

    Surface and atmospheric thermodynamic parameters retrieved with advanced ultraspectral remote sensors aboard Earth observing satellites are critical to general atmospheric and Earth science research, climate monitoring, and weather prediction. Ultraspectral resolution infrared radiance obtained from nadir observations provide atmospheric, surface, and cloud information. Presented here is the global surface IR emissivity retrieved from Infrared Atmospheric Sounding Interferometer (IASI) measurements under "clear-sky" conditions. Fast radiative transfer models, applied to the cloud-free (or clouded) atmosphere, are used for atmospheric profile and surface parameter (or cloud parameter) retrieval. The inversion scheme, dealing with cloudy as well as cloud-free radiances observed with ultraspectral infrared sounders, has been developed to simultaneously retrieve atmospheric thermodynamic and surface (or cloud microphysical) parameters. Rapidly produced surface emissivity is initially evaluated through quality control checks on the retrievals of other impacted atmospheric and surface parameters. Surface emissivity and surface skin temperature from the current and future operational satellites can and will reveal critical information on the Earth s ecosystem and land surface type properties, which can be utilized as part of long-term monitoring for the Earth s environment and global climate change.

  9. Lessons Learned from AIRS: Improved Determination of Surface and Atmospheric Temperatures Using Only Shortwave AIRS Channels

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2011-01-01

    This slide presentation reviews the use of shortwave channels available to the Atmospheric Infrared Sounder (AIRS) to improve the determination of surface and atmospheric temperatures. The AIRS instrument is compared with the Infrared Atmospheric Sounding Interferometer (IASI) on-board the MetOp-A satellite. The objectives of the AIRS/AMSU were to (1) provide real time observations to improve numerical weather prediction via data assimilation, (2) Provide observations to measure and explain interannual variability and trends and (3) Use of AIRS product error estimates allows for QC optimized for each application. Successive versions in the AIRS retrieval methodology have shown significant improvement.

  10. Improved model of isoprene emissions in Africa using Ozone Monitoring Instrument (OMI) satellite observations of formaldehyde: implications for oxidants and particulate matter

    EPA Science Inventory

    We use a 2005–2009 record of isoprene emissions over Africa derived from Ozone Monitoring Instrument (OMI) satellite observations of formaldehyde (HCHO) to better understand the factors controlling isoprene emission in the continent and evaluate the impact on atmospheric co...

  11. Weather Prediction Improvement Using Advanced Satellite Technology

    NASA Technical Reports Server (NTRS)

    Einaudi, Franco; Uccellini, L.; Purdom, J.; Rogers, D.; Gelaro, R.; Dodge, J.; Atlas, R.; Lord, S.

    2001-01-01

    We discuss in this paper some of the problems that exist today in the fall utilization of satellite data to improve weather forecasts and we propose specific recommendations to solve them. This discussion can be viewed as an aspect of the general debate on how best to organize the transition from research to operational satellites and how to evaluate the impact of a research instrument on numerical weather predictions. A method for providing this transition is offered by the National Polar-Orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP). This mission will bridge the time between the present NOAA and Department of Defense (DOD) polar orbiting missions and the initiation of the converged NPOESS series and will evaluate some of the Earth Observing System (EOS) instruments as appropriate for operational missions. Thus, this mission can be viewed as an effort to meet the operational requirements of NOAA and DOD and the research requirements of NASA. More generally, however, it can be said that the process of going from the conception of new, more advanced instruments to their operational implementation and full utilization by the weather forecast communities is not optimal. Instruments developed for research purposes may have insufficient funding to explore their potential operational capabilities. Furthermore, instrument development programs designed for operational satellites typically have insufficient funding for assimilation algorithms needed to transform the satellite observations into data that can be used by sophisticated global weather forecast models. As a result, years often go by before satellite data are efficiently used for operational forecasts. NASA and NOAA each have unique expertise in the design of satellite instruments, their use for basic and applied research and their utilization in weather and climate research. At a time of limited resources, the two agencies must combine their efforts to work toward common

  12. Satellite characterization of four interesting sites for astronomical instrumentation

    NASA Astrophysics Data System (ADS)

    Cavazzani, S.; Zitelli, V.

    2013-03-01

    In this paper we have evaluated the amount of available telescope time at four interesting sites for astronomical instrumentation. We use the GOES 12 data for years 2008 and 2009. We use a homogeneous methodology presented in several previous papers to classify the nights as clear (completely cloud-free), mixed (partially cloud-covered) or covered. Additionally, for the clear nights we have evaluated the number of satellite-stable nights, corresponding to the number of ground-based photometric nights, and the clear nights, corresponding to the spectroscopic nights. We have applied this model to two sites in the Northern Hemisphere (San Pedro Martir (SPM), Mexico and Izaña, Canary Islands) and to two sites in the Southern Hemisphere (El Leoncito, Argentina and San Antonio de Los Cobres (SAC), Argentina). We have obtained, for the two years considered, mean percentages of cloud-free nights of 68.6 per cent at Izaña, 76.0 per cent at SPM, 70.6 per cent at Leoncito and 70.0 per cent at SAC. We have evaluated, amongst the cloud-free nights, a proportion of stable nights of 62.6 per cent at Izaña, 69.6 per cent at SPM, 64.9 per cent at Leoncito and 59.7 per cent at SAC.

  13. Satellite Data Simulator Unit: A Multisensor, Multispectral Satellite Simulator Package

    NASA Technical Reports Server (NTRS)

    Masunaga, Hirohiko; Matsui, Toshihisa; Tao, Wei-Kuo; Hou, Arthur Y.; Kummerow, Christian D.; Nakajima, Teruyuki; Bauer, Peter; Olson, William S.; Sekiguchi, Miho; Nakajima, Teruyuki

    2010-01-01

    Several multisensor simulator packages are being developed by different research groups across the world. Such simulator packages [e.g., COSP , CRTM, ECSIM, RTTO, ISSARS (under development), and SDSU (this article), among others] share overall aims, although some are targeted more on particular satellite programs or specific applications (for research purposes or for operational use) than others. The SDSU or Satellite Data Simulator Unit is a general-purpose simulator composed of Fortran 90 codes and applicable to spaceborne microwave radiometer, radar, and visible/infrared imagers including, but not limited to, the sensors listed in a table. That shows satellite programs particularly suitable for multisensor data analysis: some are single satellite missions carrying two or more instruments, while others are constellations of satellites flying in formation. The TRMM and A-Train are ongoing satellite missions carrying diverse sensors that observe clouds and precipitation, and will be continued or augmented within the decade to come by future multisensor missions such as the GPM and Earth-CARE. The ultimate goals of these present and proposed satellite programs are not restricted to clouds and precipitation but are to better understand their interactions with atmospheric dynamics/chemistry and feedback to climate. The SDSU's applicability is not technically limited to hydrometeor measurements either, but may be extended to air temperature and humidity observations by tuning the SDSU to sounding channels. As such, the SDSU and other multisensor simulators would potentially contribute to a broad area of climate and atmospheric sciences. The SDSU is not optimized to any particular orbital geometry of satellites. The SDSU is applicable not only to low-Earth orbiting platforms as listed in Table 1, but also to geostationary meteorological satellites. Although no geosynchronous satellite carries microwave instruments at present or in the near future, the SDSU would be

  14. First Reprocessing of Southern Hemisphere Additional Ozonesondes (SHADOZ) Ozone Profiles (1998-2016): 2. Comparisons With Satellites and Ground-Based Instruments

    NASA Astrophysics Data System (ADS)

    Thompson, Anne M.; Witte, Jacquelyn C.; Sterling, Chance; Jordan, Allen; Johnson, Bryan J.; Oltmans, Samuel J.; Fujiwara, Masatomo; Vömel, Holger; Allaart, Marc; Piters, Ankie; Coetzee, Gert J. R.; Posny, Françoise; Corrales, Ernesto; Diaz, Jorge Andres; Félix, Christian; Komala, Ninong; Lai, Nga; Ahn Nguyen, H. T.; Maata, Matakite; Mani, Francis; Zainal, Zamuna; Ogino, Shin-ya; Paredes, Francisco; Penha, Tercio Luiz Bezerra; da Silva, Francisco Raimundo; Sallons-Mitro, Sukarni; Selkirk, Henry B.; Schmidlin, F. J.; Stübi, Rene; Thiongo, Kennedy

    2017-12-01

    The Southern Hemisphere ADditional OZonesonde (SHADOZ) network was assembled to validate a new generation of ozone-monitoring satellites and to better characterize the vertical structure of tropical ozone in the troposphere and stratosphere. Beginning with nine stations in 1998, more than 7,000 ozone and P-T-U profiles are available from 14 SHADOZ sites that have operated continuously for at least a decade. We analyze ozone profiles from the recently reprocessed SHADOZ data set that is based on adjustments for inconsistencies caused by varying ozonesonde instruments and operating techniques. First, sonde-derived total ozone column amounts are compared to the overpasses from the Earth Probe/Total Ozone Mapping Spectrometer, Ozone Monitoring Instrument, and Ozone Mapping and Profiler Suite satellites that cover 1998-2016. Second, characteristics of the stratospheric and tropospheric columns are examined along with ozone structure in the tropical tropopause layer (TTL). We find that (1) relative to our earlier evaluations of SHADOZ data, in 2003, 2007, and 2012, sonde-satellite total ozone column offsets at 12 stations are 2% or less, a significant improvement; (2) as in prior studies, the 10 tropical SHADOZ stations, defined as within ±19° latitude, display statistically uniform stratospheric column ozone, 229 ± 3.9 DU (Dobson units), and a tropospheric zonal wave-one pattern with a 14 DU mean amplitude; (3) the TTL ozone column, which is also zonally uniform, masks complex vertical structure, and this argues against using satellites for lower stratospheric ozone trends; and (4) reprocessing has led to more uniform stratospheric column amounts across sites and reduced bias in stratospheric profiles. As a consequence, the uncertainty in total column ozone now averages 5%.

  15. Description and primary results of Total Solar Irradiance Monitor, a solar-pointing instrument on an Earth observing satellite

    NASA Astrophysics Data System (ADS)

    Wang, Hongrui; Fang, Wei; Li, Huiduan

    2015-04-01

    Solar driving mechanism for Earth climate has been a controversial problem for centuries. Long-time data of solar activity is required by the investigations of the solar driving mechanism, such as Total Solar Irradiance (TSI) record. Three Total Solar Irradiance Monitors (TSIM) have been developed by Changchun Institute of Optics, Fine Mechanics and Physics for China Meteorological Administration to maintain continuities of TSI data series which lasted for nearly 4 decades.The newest TSIM has recorded TSI daily with accurate solar pointing on the FY-3C meteorological satellite since Oct 2013. TSIM/FY-3C has a pointing system for automatic solar tracking, onboard the satellite designed mainly for Earth observing. Most payloads of FY-3C are developed for observation of land, ocean and atmosphere. Consequently, the FY-3C satellite is a nadir-pointing spacecraft with its z axis to be pointed at the center of the Earth. Previous TSIMs onboard the FY-3A and FY-3B satellites had no pointing system, solar observations were only performed when the sun swept through field-of-view of the instruments. And TSI measurements are influenced inevitably by the solar pointing errors. Corrections of the solar pointing errors were complex. The problem is now removed by TSIM/FY-3C.TSIM/FY-3C follows the sun accurately by itself using its pointing system based on scheme of visual servo control. The pointing system is consisted of a radiometer package, two motors for solar tracking, a sun sensor and etc. TSIM/FY-3C has made daily observations of TSI for more than one year, with nearly zero solar pointing errors. Short time-scale variations in TSI detected by TSIM/FY-3C are nearly the same with VIRGO/SOHO and TIM/SORCE.Instrument details, primary results of solar pointing control, solar observations and etc will be given in the presentation.

  16. Six years of mesospheric CO estimated from ground-based frequency-switched microwave radiometry at 57° N compared with satellite instruments

    NASA Astrophysics Data System (ADS)

    Forkman, P.; Christensen, O. M.; Eriksson, P.; Urban, J.; Funke, B.

    2012-06-01

    Measurements of mesospheric carbon monoxide, CO, provide important information about the dynamics in the mesosphere region since CO has a long lifetime at these altitudes. Ground-based measurements of mesospheric CO made at the Onsala Space Observatory, OSO, (57° N, 12° E) are presented. The dataset covers the period 2002-2008 and is hence uniquely long. The simple and stable 115 GHz frequency-switched radiometer, calibration method, retrieval procedure and error characterization are described. A comparison between our measurements and co-located CO measurements from the satellite sensors ACE-FTS on Scisat (v2.2), MLS on Aura (v3-3), MIPAS on Envisat (V3O_CO_12 + 13 and V4O_CO_200) and SMR on Odin (v225 and v021) is done. Our instrument, OSO, and the four satellite instruments show the same general variation of the vertical distribution of mesospheric CO in both the annual cycle and in shorter time period events with high CO mixing ratios during winter and very low amounts during summer in the observed 55-85 km altitude range. During 2004-2008 the agreement of the OSO instrument and the satellite sensors ACE-FTS, MLS and MIPAS(200) is good in the altitude range 55-70 km. Above 70 km OSO show up to 25% higher CO column values compared to both ACE and MLS. For the time period 2002-2003 CO from MIPAS(12 + 13) is up to 60% lower than OSO between 55 and 70 km. Mesospheric CO from the two versions of SMR deviates up to ±65% when compared to OSO, but the analysis is based on only a few co-locations.

  17. Landsat—Earth observation satellites

    USGS Publications Warehouse

    ,

    2015-11-25

    Since 1972, Landsat satellites have continuously acquired space-based images of the Earth’s land surface, providing data that serve as valuable resources for land use/land change research. The data are useful to a number of applications including forestry, agriculture, geology, regional planning, and education. Landsat is a joint effort of the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). NASA develops remote sensing instruments and the spacecraft, then launches and validates the performance of the instruments and satellites. The USGS then assumes ownership and operation of the satellites, in addition to managing all ground reception, data archiving, product generation, and data distribution. The result of this program is an unprecedented continuing record of natural and human-induced changes on the global landscape.

  18. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation. Volume 4; Inherent Optical Properties: Instruments, Characterizations, Field Measurements and Data Analysis Protocols; Revised

    NASA Technical Reports Server (NTRS)

    Mueller, J. L. (Editor); Fargion, Giuletta S. (Editor); McClain, Charles R. (Editor); Pegau, Scott; Zaneveld, J. Ronald V.; Mitchell, B. Gregg; Kahru, Mati; Wieland, John; Stramska, Malgorzat

    2003-01-01

    This document stipulates protocols for measuring bio-optical and radiometric data for the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project activities and algorithm development. The document is organized into 6 separate volumes as Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4. Volume I: Introduction, Background and Conventions; Volume II: Instrument Specifications, Characterization and Calibration; Volume III: Radiometric Measurements and Data Analysis Methods; Volume IV: Inherent Optical Properties: Instruments, Characterization, Field Measurements and Data Analysis Protocols; Volume V: Biogeochemical and Bio-Optical Measurements and Data Analysis Methods; Volume VI: Special Topics in Ocean Optics Protocols and Appendices. The earlier version of Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 3 (Mueller and Fargion 2002, Volumes 1 and 2) is entirely superseded by the six volumes of Revision 4 listed above.

  19. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, Volume IV: Inherent Optical Properties: Instruments, Characterizations, Field Measurements and Data Analysis Protocols

    NASA Technical Reports Server (NTRS)

    Mueller, J. L.; Fargion, G. S.; McClain, C. R. (Editor); Pegau, S.; Zanefeld, J. R. V.; Mitchell, B. G.; Kahru, M.; Wieland, J.; Stramska, M.

    2003-01-01

    This document stipulates protocols for measuring bio-optical and radiometric data for the Sensor Intercomparision and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project activities and algorithm development. The document is organized into 6 separate volumes as Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4. Volume I: Introduction, Background, and Conventions; Volume II: Instrument Specifications, Characterization and Calibration; Volume III: Radiometric Measurements and Data Analysis Methods; Volume IV: Inherent Optical Properties: Instruments, Characterization, Field Measurements and Data Analysis Protocols; Volume V: Biogeochemical and Bio-Optical Measurements and Data Analysis Methods; Volume VI: Special Topics in Ocean Optics Protocols and Appendices. The earlier version of Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 3 is entirely superseded by the six volumes of Revision 4 listed above.

  20. Landsat's TIRS Instrument

    NASA Image and Video Library

    2017-12-08

    The Thermal Infrared Sensor (TIRS) will fly on the next Landsat satellite, the Landsat Data Continuity Mission (LDCM). The right side of the instrument is what's called the 'nadir side,' that's the side that points toward Earth when the instrument is in space. The black circle visible on the right side is where the optics for the instrument are located. In that area are the lens and the detectors. The white area is a radiator that radiates heat to keep the telescope and the detector cool. The black hole on the white area on the left is what the satellite operators point to deep space when they calibrate the instrument to the cold temperatures of space. TIRS was built on an accelerated schedule at NASA's Goddard Space Flight Center, Greenbelt, Md. and will now be integrated into the LDCM spacecraft at Orbital Science Corp. in Gilbert, Ariz. The Landsat Program is a series of Earth observing satellite missions jointly managed by NASA and the U.S. Geological Survey. Landsat satellites have been consistently gathering data about our planet since 1972. They continue to improve and expand this unparalleled record of Earth's changing landscapes for the benefit of all. For more information on Landsat, visit: www.nasa.gov/landsat Credit: NASA/GSFC/Rebecca Roth NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. GEOS-2 refraction program summary document. [ionospheric and tropospheric propagation errors in satellite tracking instruments

    NASA Technical Reports Server (NTRS)

    Mallinckrodt, A. J.

    1977-01-01

    Data from an extensive array of collocated instrumentation at the Wallops Island test facility were intercompared in order to (1) determine the practical achievable accuracy limitations of various tropospheric and ionospheric correction techniques; (2) examine the theoretical bases and derivation of improved refraction correction techniques; and (3) estimate internal systematic and random error levels of the various tracking stations. The GEOS 2 satellite was used as the target vehicle. Data were obtained regarding the ionospheric and tropospheric propagation errors, the theoretical and data analysis of which was documented in some 30 separate reports over the last 6 years. An overview of project results is presented.

  2. Star sightings by satellite for image navigation

    NASA Technical Reports Server (NTRS)

    Kamel, Ahmed A. (Inventor); Ekman, Donald E. (Inventor); Savides, John (Inventor); Zwirn, Gerald J. (Inventor)

    1988-01-01

    Stars are sensed by one or more instruments (1, 2) on board a three-axis stabilized satellite, for purposes of assisting in image navigation. A star acquistion computer (64), which may be located on the earth, commands the instrument mirror (33, 32) to slew just outside the limb of the earth or other celestial body around which the satellite is orbiting, to look for stars that have been cataloged in a star map stored within the computer (64). The instrument (1, 2) is commanded to dwell for a period of time equal to a star search window time, plus the maximum time the instrument (1, 2) takes to complete a current scan, plus the maximum time it takes for the mirror (33, 32) to slew to the star. When the satellite is first placed in orbit, and following first stationkeeping and eclipse, a special operation is performed in which the star-seeking instrument (1, 2) FOV is broadened. The elevation dimension can be broadened by performing repetitive star seeks; the azimuth dimension can be broadened by lengthening the commanded dwell times.

  3. Six years of mesospheric CO estimated from ground-based frequency-switched microwave radiometry at 57° N compared with satellite instruments

    NASA Astrophysics Data System (ADS)

    Forkman, P.; Christensen, O. M.; Eriksson, P.; Urban, J.; Funke, B.

    2012-11-01

    Measurements of mesospheric carbon monoxide, CO, provide important information about the dynamics in the mesosphere region since CO has a long lifetime at these altitudes. Ground-based measurements of mesospheric CO made at the Onsala Space Observatory, OSO, (57° N, 12° E) are presented. The dataset covers the period 2002-2008 and is hence uniquely long for ground-based observations. The simple and stable 115 GHz frequency-switched radiometer, calibration method, retrieval procedure and error characterization are described. A comparison between our measurements and co-located CO measurements from the satellite sensors ACE-FTS on Scisat (v2.2), MLS on Aura (v3-3), MIPAS on Envisat (V3O_CO_12 + 13 and V4O_CO_200) and SMR on Odin (v225 and v021) is carried out. Our instrument, OSO, and the four satellite instruments show the same general variation of the vertical distribution of mesospheric CO in both the annual cycle and in shorter time period events, with high CO mixing ratios during winter and very low amounts during summer in the observed 55-100 km altitude range. During 2004-2008 the agreement of the OSO instrument and the satellite sensors ACE-FTS, MLS and MIPAS (200) is good in the altitude range 55-70 km. Above 70 km, OSO shows up to 25% higher CO column values compared to both ACE and MLS. For the time period 2002-2004, CO from MIPAS (12 + 13) is up to 50% lower than OSO between 55 and 70 km. Mesospheric CO from the two versions of SMR deviates up to ±65% when compared to OSO, but the analysis is based on only a few co-locations.

  4. An Introduction to the Global Space-based Inter-Calibration System from a EUMETSAT Perspective

    NASA Astrophysics Data System (ADS)

    Wagner, S. C.; Hewison, T.; Roebeling, R. A.; Koenig, M.; Schulz, J.; Miu, P.

    2012-04-01

    The Global Space-based Inter-Calibration System (GSICS) (Goldberg and al. 2011) is an international collaborative effort which aims to monitor, improve and harmonize the quality of observations from operational weather and environmental satellites of the Global Observing System (GOS). GSICS aims at ensuring consistent accuracy among space-based observations worldwide for climate monitoring, weather forecasting, and environmental applications. This is achieved through a comprehensive calibration strategy, which involves monitoring instrument performances, operational inter-calibration of satellite instruments, tying the measurements to absolute references and standards, and recalibration of archived data. A major part of this strategy involves direct comparison of collocated observations from pairs of satellite instruments, which are used to systematically generate calibration functions to compare and correct the calibration of monitored instruments to references. These GSICS Corrections are needed for accurately integrating data from multiple observing systems into both near real-time and re-analysis products, applications and services. This paper gives more insight into the activities carried out by EUMETSAT as a GSICS Processing and Research Centre. Currently these are closely bound to the in-house development and operational implementation of calibration methods for solar and thermal band channels of geostationary and polar-orbiting satellites. They include inter-calibration corrections for Meteosat imagers using reference instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS) on-board the Aqua satellite for solar band channels, the Infrared Atmospheric Sounding Interferometer (IASI) on-board Metop-A and, for historic archive data, the High-resolution InfraRed Sounder (HIRS). Additionally, bias monitoring is routinely performed, allowing users to visualise the calibration accuracy of the instruments in near real-time. These activities are

  5. Desert Dust Satellite Retrieval Intercomparison

    NASA Technical Reports Server (NTRS)

    Carboni, E.; Thomas, G. E.; Sayer, A. M.; Siddans, R.; Poulsen, C. A.; Grainger, R. G.; Ahn, C.; Antoine, D.; Bevan, S.; Braak, R.; hide

    2012-01-01

    This work provides a comparison of satellite retrievals of Saharan desert dust aerosol optical depth (AOD) during a strong dust event through March 2006. In this event, a large dust plume was transported over desert, vegetated, and ocean surfaces. The aim is to identify and understand the differences between current algorithms, and hence improve future retrieval algorithms. The satellite instruments considered are AATSR, AIRS, MERIS, MISR, MODIS, OMI, POLDER, and SEVIRI. An interesting aspect is that the different algorithms make use of different instrument characteristics to obtain retrievals over bright surfaces. These include multi-angle approaches (MISR, AATSR), polarisation measurements (POLDER), single-view approaches using solar wavelengths (OMI, MODIS), and the thermal infrared spectral region (SEVIRI, AIRS). Differences between instruments, together with the comparison of different retrieval algorithms applied to measurements from the same instrument, provide a unique insight into the performance and characteristics of the various techniques employed. As well as the intercomparison between different satellite products, the AODs have also been compared to co-located AERONET data. Despite the fact that the agreement between satellite and AERONET AODs is reasonably good for all of the datasets, there are significant differences between them when compared to each other, especially over land. These differences are partially due to differences in the algorithms, such as as20 sumptions about aerosol model and surface properties. However, in this comparison of spatially and temporally averaged data, at least as significant as these differences are sampling issues related to the actual footprint of each instrument on the heterogeneous aerosol field, cloud identification and the quality control flags of each dataset.

  6. Chemiluminescent methods and instruments for monitoring of the atmosphere and satellite validation on board of research aircrafts and unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Sitnikov, Nikolay; Borisov, Yuriy; Akmulin, Dimitry; Chekulaev, Igor; Sitnikova, Vera; Ulanovsky, Alexey; Sokolov, Alexey

    The results of development of instruments based on heterophase chemiluminescence for measurements of space distribution of ozone and nitrogen oxides concentrations on board of research aircrafts and unmanned aerial vehicles carried out in Central Aerological Observatory are presented. Some results of atmospheric investigations on board of research aircrafts M55 “Geophysica” (Russia) and “Falcon” (Germany) carried out using developed instruments in frame of international projects are demonstrated. Small and low power instruments based on chemiluminescent principle for UAV are developed. The results of measurements on board of UAV are shown. The development can be used for satellite data validation, as well as operative environmental monitoring of contaminated areas in particular, chemical plants, natural and industrial disasters territories, areas and facilities for space purposes etc.

  7. TES Instrument Decommissioning

    Atmospheric Science Data Center

    2018-03-20

    TES Instrument Decommissioning Tuesday, March 20, 2018 ... PST during a scheduled real time satellite contact the TES IOT along with the Aura FOT commanded the TES instrument to its ... generated from an algorithm update to the base Ground Data System software and will be made available to the scientific community in the ...

  8. NUCLEON Satellite Mission. Status and Plans

    NASA Technical Reports Server (NTRS)

    Bashindzhagyan, G.; Adams, J.; Bashindzhagyan, P.; Baranova, N.; Christl, M.; Chilingarian, A.; Chupin, I.; Derrickson, J.; Drury, L.; Egorov, N.

    2003-01-01

    The main objective of the NUCLEON satellite mission is direct measurements of the elemental energy spectra of high-energy (10(exp 11) - 10(exp 15) eV) cosmic rays with Kinematic Lightweight Energy Meter (KLEM) device. The design of the instrument has been corrected to increase geometry factor and improve charge resolution. The special mechanical and electronic systems have been developed for installation of the experimental apparatus in a regular Russian satellite. It is planned to launch the NUCLEON instrument in 2006.

  9. The GOME-2 instrument on the Metop series of satellites: instrument design, calibration, and level 1 data processing - an overview

    NASA Astrophysics Data System (ADS)

    Munro, Rosemary; Lang, Rüdiger; Klaes, Dieter; Poli, Gabriele; Retscher, Christian; Lindstrot, Rasmus; Huckle, Roger; Lacan, Antoine; Grzegorski, Michael; Holdak, Andriy; Kokhanovsky, Alexander; Livschitz, Jakob; Eisinger, Michael

    2016-03-01

    The Global Ozone Monitoring Experiment-2 (GOME-2) flies on the Metop series of satellites, the space component of the EUMETSAT Polar System. In this paper we will provide an overview of the instrument design, the on-ground calibration and characterization activities, in-flight calibration, and level 0 to 1 data processing. The current status of the level 1 data is presented and points of specific relevance to users are highlighted. Long-term level 1 data consistency is also discussed and plans for future work are outlined. The information contained in this paper summarizes a large number of technical reports and related documents containing information that is not currently available in the published literature. These reports and documents are however made available on the EUMETSAT web pages and readers requiring more details than can be provided in this overview paper will find appropriate references at relevant points in the text.

  10. Validation of aerosol optical depth uncertainties within the ESA Climate Change Initiative

    NASA Astrophysics Data System (ADS)

    Stebel, Kerstin; Povey, Adam; Popp, Thomas; Capelle, Virginie; Clarisse, Lieven; Heckel, Andreas; Kinne, Stefan; Klueser, Lars; Kolmonen, Pekka; de Leeuw, Gerrit; North, Peter R. J.; Pinnock, Simon; Sogacheva, Larisa; Thomas, Gareth; Vandenbussche, Sophie

    2017-04-01

    Uncertainty is a vital component of any climate data record as it provides the context with which to understand the quality of the data and compare it to other measurements. Therefore, pixel-level uncertainties are provided for all aerosol products that have been developed in the framework of the Aerosol_cci project within ESA's Climate Change Initiative (CCI). Validation of these estimated uncertainties is necessary to demonstrate that they provide a useful representation of the distribution of error. We propose a technique for the statistical validation of AOD (aerosol optical depth) uncertainty by comparison to high-quality ground-based observations and present results for ATSR (Along Track Scanning Radiometer) and IASI (Infrared Atmospheric Sounding Interferometer) data records. AOD at 0.55 µm and its uncertainty was calculated with three AOD retrieval algorithms using data from the ATSR instruments (ATSR-2 (1995-2002) and AATSR (2002-2012)). Pixel-level uncertainties were calculated through error propagation (ADV/ASV, ORAC algorithms) or parameterization of the error's dependence on the geophysical retrieval conditions (SU algorithm). Level 2 data are given as super-pixels of 10 km x 10 km. As validation data, we use direct-sun observations of AOD from the AERONET (AErosol RObotic NETwork) and MAN (Maritime Aerosol Network) sun-photometer networks, which are substantially more accurate than satellite retrievals. Neglecting the uncertainty in AERONET observations and possible issues with their ability to represent a satellite pixel area, the error in the retrieval can be approximated by the difference between the satellite and AERONET retrievals (herein referred to as "error"). To evaluate how well the pixel-level uncertainty represents the observed distribution of error, we look at the distribution of the ratio D between the "error" and the ATSR uncertainty. If uncertainties are well represented, D should be normally distributed and 68.3% of values should

  11. Evaluation of a dimension-reduction-based statistical technique for Temperature, Water Vapour and Ozone retrievals from IASI radiances

    NASA Astrophysics Data System (ADS)

    Amato, Umberto; Antoniadis, Anestis; De Feis, Italia; Masiello, Guido; Matricardi, Marco; Serio, Carmine

    2009-03-01

    Remote sensing of atmosphere is changing rapidly thanks to the development of high spectral resolution infrared space-borne sensors. The aim is to provide more and more accurate information on the lower atmosphere, as requested by the World Meteorological Organization (WMO), to improve reliability and time span of weather forecasts plus Earth's monitoring. In this paper we show the results we have obtained on a set of Infrared Atmospheric Sounding Interferometer (IASI) observations using a new statistical strategy based on dimension reduction. Retrievals have been compared to time-space colocated ECMWF analysis for temperature, water vapor and ozone.

  12. Evaluation of multi-model aerosol distributions over East Asia using in-situ and satellite observations during summer 2008

    NASA Astrophysics Data System (ADS)

    Quennehen, B.; Raut, J.; Law, K.; Ancellet, G.; Bazureau, A.; Thomas, J.; Daskalakis, N.; Kim, S.; Zhu, T.

    2013-12-01

    As part of the EU ECLIPSE (Evaluating the CLimate and air quality ImPacts of Short-livEd pollutants) project, which aims to quantify the climate impact of short lived climate forcers (SLCFs), including aerosols, black carbon and ozone, the WRF-Chem regional and six global (ECHAM6, EMEP, HadGEM, OsloCTM, NORESM, TM4) models are evaluated using observations in East-Asia. Simulations are compared at horizontal and vertical scales to satellite observations, as well as data from field campaigns which took place in summer 2008, and from long-term measurement stations. Models were run with the same emissions, namely, the ECLIPSE anthropogenic (based on the GAINS model), GFED 3.1 fire and RCP 6.0 ship and aircraft emissions for 2008. The initial and boundary conditions for the WRF-Chem regional model were specified from the TM4 global chemical transport model. Firstly, this study evaluates the ability of the models to simulate aerosol physical, optical and chemical properties at a large scale, both horizontally and vertically, using monthly mean satellite observations such as CALIPSO, MODIS and IASI. Secondly, model daily and hourly results are evaluated at more regional/local scales using ground-based data and measurements from summer 2008 intensive campaigns, including aircraft data (CAPMEX and CAREBEIJING). In this study, we assess aerosol total concentrations and size distributions simulated by the model. The radiative impact of anthropogenic aerosol layers has already been investigated but less is known about the influence of vertical layering in the atmosphere. Pollution layers have different radiative impacts whether they are below or above clouds and in that sense, a better understanding of their spatial and vertical extent is critical. Information about pollution layers and cloud optical properties and locations over East-Asia are determined using observations from IASI for trace gases and CALIPSO for aerosols. The radiative impact of the aerosol layers is

  13. Satellite-Based Evidence of Wavelength-Dependent Aerosol Absorption in Biomass Burning Smoke Inferred from Ozone Monitoring Instrument

    NASA Technical Reports Server (NTRS)

    Jethva, H.; Torres, O.

    2012-01-01

    We provide satellite-based evidence of the spectral dependence of absorption in biomass burning aerosols over South America using near-UV measurements made by the Ozone Monitoring Instrument (OMI) during 2005-2007. In the current near-UV OMI aerosol algorithm (OMAERUV), it is implicitly assumed that the only absorbing component in carbonaceous aerosols is black carbon whose imaginary component of the refractive index is wavelength independent. With this assumption, OMI-derived aerosol optical depth (AOD) is found to be significantly over-estimated compared to that of AERONET at several sites during intense biomass burning events (August-September). Other well-known sources of error affecting the near-UV method of aerosol retrieval do not explain the large observed AOD discrepancies between the satellite and the ground-based observations. A number of studies have revealed strong spectral dependence in carbonaceous aerosol absorption in the near-UV region suggesting the presence of organic carbon in biomass burning generated aerosols. A sensitivity analysis examining the importance of accounting for the presence of wavelength-dependent aerosol absorption in carbonaceous particles in satellite-based remote sensing was carried out in this work. The results convincingly show that the inclusion of spectrally-dependent aerosol absorption in the radiative transfer calculations leads to a more accurate characterization of the atmospheric load of carbonaceous aerosols.

  14. Assessment of the Impact of The East Asian Summer Monsoon on the Air Quality Over China

    NASA Astrophysics Data System (ADS)

    Hao, Nan; Ding, Aijun; Safieddine, Sarah; Valks, Pieter; Clerbaux, Cathy; Trautmann, Thomas

    2016-04-01

    Air pollution is one of the most important environmental problems in developing Asian countries like China. In this region, studies showed that the East Asian monsoon plays a significant role in characterizing the temporal variation and spatial patterns of air pollution, since monsoon is a major atmospheric system affecting air mass transport, convection, and precipitation. Knowledge gaps still exist in the understanding of Asian monsoon impact on the air quality in China under the background of global climate change. For the first time satellite observations of tropospheric ozone and its precursors will be integrated with the ground-based, aircraft measurements of air pollutants and model simulations to study the impact of the East Asian monsoon on air quality in China. We apply multi-platform satellite observations by the GOME-2, IASI, and MOPITT instruments to analyze tropospheric ozone and CO, precursors of ozone (NO2, HCHO and CHOCHO) and other related trace gases over China. Two years measurements of air pollutants including NO2, HONO, SO2, HCHO and CHOCHO at a regional back-ground site in the western part of the Yangtze River Delta (YRD) in eastern China will be presented. The potential of using the current generation of satellite instruments, ground-based instruments and aircraft to monitor air quality changes caused by the East Asian monsoon circulation will be presented. Preliminary comparison results between satellite measurement and limited but valuable ground-based and aircraft measurements will also be showed.

  15. Gravimetric geodesy and sea surface topography studies by means of satellite-to-satellite tracking and satellite altimetry

    NASA Technical Reports Server (NTRS)

    Siry, J. W.

    1972-01-01

    A satellite-to-satellite tracking experiment is planned between ATS-F and GEOS-C with a range accuracy of 2-meters and a range rate accuracy of 0.035 centimeters per second for a 10-second integration time. This experiment is planned for 1974. It is anticipated that it will improve the spatial resolution of the satellite geoid by half an order of magnitude to about 6 degrees. Longer integration times should also permit a modest increase in the acceleration resolution. Satellite altimeter data will also be obtained by means of GEOS-C. An overall accuracy of 5-meters in altitude is the goal. The altimeter, per se, is expected to have an instrumental precision of about 2 meters, and an additional capability to observe with a precision of about 0.2 meters for limited periods.

  16. Vibration and acoustic testing of TOPEX/Poseidon satellite

    NASA Technical Reports Server (NTRS)

    Boatman, Dave; Scharton, Terry; Hershfeld, Donald; Larkin, Paul

    1992-01-01

    The satellite was subjected to a 1.5G swept sine vibration test and a 146 dB overall level acoustic test, in accordance with Ariane launch vehicle requirements, at the NASA Goddard Space Flight Center. Extensive pretest analysis of the sine test was conducted to plan the input notching and to justify vibration testing the satellite only in the longitudinal axis. A unique measurement system was utilized to determine the six components of interface force between the shaker and the satellite in the sine vibration test. The satellite was heavily instrumented in both the sine vibration and acoustic test in order to insure that the launch loads were enveloped with appropriate margin and that satellite responses did not exceed the compatibilities of the structure and equipment. The test specification, objectives, instrumentation, and test results are described herein.

  17. NASA satellite to study earth's oceans from space. [Seasat-A satellite

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The feasibility of using microwave instruments to scan the world's oceans from space in order to obtain scientific data for oceanographers, meteorologists, and commercial users of the seas will be demonstrated during the mission of the Seasat A satellite which will be launched into an 800 kilometer high near circular orbit by an Agena Atlas-Agena launch vehicle. The satellite configuration, its payload, and data collection and processing capabilities are described as well as the launch vehicle system.

  18. Instrument Noise Simulation for GRACE Follow-On

    NASA Astrophysics Data System (ADS)

    Darbeheshti, N.; Mueller, V.; Wegener, H.; Hewitson, M.; Heinzel, G.; Naeimi, M.; Flury, J.

    2016-12-01

    The quality of the temporal gravity field from GRACE Follow-On mission depends on its multi-sensor system consisting of inter-satellite ranging with microwave and laser ranging instrument, GNSS orbit tracking, accelerometry, and attitude sensing. In this presentation, the noise models for GRACE Follow-On major instruments are described and their effect on the estimation of Earth's gravity field accuracy are discussed. To do this the spectrum of the instruments noise models has been related to the spectrum of the disturbing potential of the Earth's gravity field. The instrument noise models are available to the geodesy community through GRACE Follow-On mock data challenges. The performance of gravity field recovery approaches can be tested by comparing observation residuals to the simulated instrument noises. The instrument noise models will also provide valuable insight for inter-satellite ranging configurations beyond GRACE Follow-On.

  19. The GOME-2 instrument on the Metop series of satellites: instrument design, calibration, and level 1 data processing - an overview

    NASA Astrophysics Data System (ADS)

    Munro, R.; Lang, R.; Klaes, D.; Poli, G.; Retscher, C.; Lindstrot, R.; Huckle, R.; Lacan, A.; Grzegorski, M.; Holdak, A.; Kokhanovsky, A.; Livschitz, J.; Eisinger, M.

    2015-08-01

    The Global Ozone Monitoring Experiment-2 (GOME-2) flies on the Metop series of satellites, the space component of the EUMETSAT Polar System. In this paper we will provide an overview of the instrument design, the on-ground calibration and characterisation activities, in-flight calibration, and level 0 to 1 data processing. The quality of the level 1 data is presented and points of specific relevance to users are highlighted. Long-term level 1 data consistency is also discussed and plans for future work are outlined. The information contained in this paper summarises a large number of technical reports and related documents containing information that is not currently available in the published literature. These reports and documents are however made available on the EUMETSAT web pages (http://www.eumetsat.int) and readers requiring more details than can be provided in this overview paper will find appropriate references at relevant points in the text.

  20. A Satellite-Based Imaging Instrumentation Concept for Hyperspectral Thermal Remote Sensing.

    PubMed

    Udelhoven, Thomas; Schlerf, Martin; Segl, Karl; Mallick, Kaniska; Bossung, Christian; Retzlaff, Rebecca; Rock, Gilles; Fischer, Peter; Müller, Andreas; Storch, Tobias; Eisele, Andreas; Weise, Dennis; Hupfer, Werner; Knigge, Thiemo

    2017-07-01

    This paper describes the concept of the hyperspectral Earth-observing thermal infrared (TIR) satellite mission HiTeSEM (High-resolution Temperature and Spectral Emissivity Mapping). The scientific goal is to measure specific key variables from the biosphere, hydrosphere, pedosphere, and geosphere related to two global problems of significant societal relevance: food security and human health. The key variables comprise land and sea surface radiation temperature and emissivity, surface moisture, thermal inertia, evapotranspiration, soil minerals and grain size components, soil organic carbon, plant physiological variables, and heat fluxes. The retrieval of this information requires a TIR imaging system with adequate spatial and spectral resolutions and with day-night following observation capability. Another challenge is the monitoring of temporally high dynamic features like energy fluxes, which require adequate revisit time. The suggested solution is a sensor pointing concept to allow high revisit times for selected target regions (1-5 days at off-nadir). At the same time, global observations in the nadir direction are guaranteed with a lower temporal repeat cycle (>1 month). To account for the demand of a high spatial resolution for complex targets, it is suggested to combine in one optic (1) a hyperspectral TIR system with ~75 bands at 7.2-12.5 µm (instrument NEDT 0.05 K-0.1 K) and a ground sampling distance (GSD) of 60 m, and (2) a panchromatic high-resolution TIR-imager with two channels (8.0-10.25 µm and 10.25-12.5 µm) and a GSD of 20 m. The identified science case requires a good correlation of the instrument orbit with Sentinel-2 (maximum delay of 1-3 days) to combine data from the visible and near infrared (VNIR), the shortwave infrared (SWIR) and TIR spectral regions and to refine parameter retrieval.

  1. A Satellite-Based Imaging Instrumentation Concept for Hyperspectral Thermal Remote Sensing

    PubMed Central

    Udelhoven, Thomas; Schlerf, Martin; Segl, Karl; Mallick, Kaniska; Bossung, Christian; Rock, Gilles; Fischer, Peter; Müller, Andreas; Storch, Tobias; Eisele, Andreas; Weise, Dennis; Hupfer, Werner; Knigge, Thiemo

    2017-01-01

    This paper describes the concept of the hyperspectral Earth-observing thermal infrared (TIR) satellite mission HiTeSEM (High-resolution Temperature and Spectral Emissivity Mapping). The scientific goal is to measure specific key variables from the biosphere, hydrosphere, pedosphere, and geosphere related to two global problems of significant societal relevance: food security and human health. The key variables comprise land and sea surface radiation temperature and emissivity, surface moisture, thermal inertia, evapotranspiration, soil minerals and grain size components, soil organic carbon, plant physiological variables, and heat fluxes. The retrieval of this information requires a TIR imaging system with adequate spatial and spectral resolutions and with day-night following observation capability. Another challenge is the monitoring of temporally high dynamic features like energy fluxes, which require adequate revisit time. The suggested solution is a sensor pointing concept to allow high revisit times for selected target regions (1–5 days at off-nadir). At the same time, global observations in the nadir direction are guaranteed with a lower temporal repeat cycle (>1 month). To account for the demand of a high spatial resolution for complex targets, it is suggested to combine in one optic (1) a hyperspectral TIR system with ~75 bands at 7.2–12.5 µm (instrument NEDT 0.05 K–0.1 K) and a ground sampling distance (GSD) of 60 m, and (2) a panchromatic high-resolution TIR-imager with two channels (8.0–10.25 µm and 10.25–12.5 µm) and a GSD of 20 m. The identified science case requires a good correlation of the instrument orbit with Sentinel-2 (maximum delay of 1–3 days) to combine data from the visible and near infrared (VNIR), the shortwave infrared (SWIR) and TIR spectral regions and to refine parameter retrieval. PMID:28671575

  2. Local or global? How to choose the training set for principal component compression of hyperspectral satellite measurements: a hybrid approach

    NASA Astrophysics Data System (ADS)

    Hultberg, Tim; August, Thomas; Lenti, Flavia

    2017-09-01

    Principal Component (PC) compression is the method of choice to achieve band-width reduction for dissemination of hyper spectral (HS) satellite measurements and will become increasingly important with the advent of future HS missions (such as IASI-NG and MTG-IRS) with ever higher data-rates. It is a linear transformation defined by a truncated set of the leading eigenvectors of the covariance of the measurements as well as the mean of the measurements. We discuss the strategy for generation of the eigenvectors, based on the operational experience made with IASI. To compute the covariance and mean, a so-called training set of measurements is needed, which ideally should include all relevant spectral features. For the dissemination of IASI PC scores a global static training set consisting of a large sample of measured spectra covering all seasons and all regions is used. This training set was updated once after the start of the dissemination of IASI PC scores in April 2010 by adding spectra from the 2010 Russian wildfires, in which spectral features not captured by the previous training set were identified. An alternative approach, which has sometimes been proposed, is to compute the eigenvectors on the fly from a local training set, for example consisting of all measurements in the current processing granule. It might naively be thought that this local approach would improve the compression rate by reducing the number of PC scores needed to represent the measurements within each granule. This false belief is apparently confirmed, if the reconstruction scores (root mean square of the reconstruction residuals) is used as the sole criteria for choosing the number of PC scores to retain, which would overlook the fact that the decrease in reconstruction score (for the same number of PCs) is achieved only by the retention of an increased amount of random noise. We demonstrate that the local eigenvectors retain a higher amount of noise and a lower amount of atmospheric

  3. Earth remote sensing with NPOESS: instruments and environmental data products

    NASA Astrophysics Data System (ADS)

    Glackin, David L.; Cunningham, John D.; Nelson, Craig S.

    2004-02-01

    The NPOESS (National Polar-orbiting Operational Environmental Satellite System) program represents the merger of the NOAA POES (Polar-orbiting Environmental Satellite) program and the DoD DMSP (Defense Meteorological Satellite Program) satellites. Established by presidential directive in 1994, a tri-agency Integrated Program Office (IPO) in Silver Spring, Maryland, has been managing NPOESS development, and is staffed by representatives of NOAA, DoD, and NASA. NPOESS is being designed to provide 55 atmospheric, oceanographic, terrestrial, and solar-geophysical data products, and will disseminate them to civilian and military users worldwide. The first NPOESS satellite is scheduled to be launched late in this decade, with the other two satellites of the three-satellite constellation due to be launched over the ensuing four years. NPOESS will remain operational for at least ten years. The 55 Environmental Data Records (EDRs) will be provided by a number of instruments, many of which will be briefly described in this paper. The instruments will be hosted in various combinations on three NPOESS platforms in three distinct polar sun-synchronous orbits. The instrument complement represents the combined requirements of the weather, climate, and environmental remote sensing communities. The three critical instruments are VIIRS (Visible/Infrared Imager-Radiometer Suite), CMIS (Conical Microwave Imager/Sounder), and CrIS (Cross-track Infrared Sounder). The other IPO-developed instruments are OMPS (Ozone Mapper/Profiler Suite), GPSOS (Global Positioning System Occultation Sensor), the APS (Aerosol Polarimeter Sensor), and the SESS (Space Environment Sensor Suite). NPOESS will also carry various "leveraged" instruments, i.e., ones that do not require development by the IPO. These include the ATMS (Advanced Technology Microwave Sounder), the TSIS (Total Solar Irradiance Sensor), the ERBS (Earth Radiation Budget Sensor), and the ALT (Radar Altimeter).

  4. Instrument Description: The Total Solar Irradiance Monitor on the FY-3C Satellite, an Instrument with a Pointing System

    NASA Astrophysics Data System (ADS)

    Wang, Hongrui; Wang, Yupeng; Ye, Xin; Yang, Dongjun; Wang, Kai; Li, Huiduan; Fang, Wei

    2017-01-01

    The Total Solar Irradiance Monitor (TSIM) onboard the nadir Feng Yun-3C (FY-3C) satellite provides measurements of the total solar irradiance with accurate solar tracking and sound thermal stability of its heat sink. TSIM/FY-3C mainly consists of the pointing system, the radiometer package, the thermal control system, and the electronics. Accurate solar tracking is achieved by the pointing system, which greatly improves the science data quality when compared with the previous TSIM/FY-3A and TSIM/FY-3B. The total solar irradiance (TSI) is recorded by TSIM/FY-3C about 26 times each day, using a two-channel radiometer package. One channel is used to perform routine observation, and the other channel is used to monitor the degradation of the cavity detector in the routine channel. From the results of the ground test, the incoming irradiance is measured by the routine channel (AR1) with a relative uncertainty of 592 ppm. A general description of the TSIM, including the instrument modules, uncertainty evaluation, and its operation, is given in this article.

  5. Visualizing Airborne and Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Bierwirth, Victoria A.

    2011-01-01

    Remote sensing is a process able to provide information about Earth to better understand Earth's processes and assist in monitoring Earth's resources. The Cloud Absorption Radiometer (CAR) is one remote sensing instrument dedicated to the cause of collecting data on anthropogenic influences on Earth as well as assisting scientists in understanding land-surface and atmospheric interactions. Landsat is a satellite program dedicated to collecting repetitive coverage of the continental Earth surfaces in seven regions of the electromagnetic spectrum. Combining these two aircraft and satellite remote sensing instruments will provide a detailed and comprehensive data collection able to provide influential information and improve predictions of changes in the future. This project acquired, interpreted, and created composite images from satellite data acquired from Landsat 4-5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper plus (ETM+). Landsat images were processed for areas covered by CAR during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCT AS), Cloud and Land Surface Interaction Campaign (CLASIC), Intercontinental Chemical Transport Experiment-Phase B (INTEXB), and Southern African Regional Science Initiative (SAFARI) 2000 missions. The acquisition of Landsat data will provide supplemental information to assist in visualizing and interpreting airborne and satellite imagery.

  6. Using High and Low Resolution Profiles of CO2 and CH4 Measured with AirCores to Evaluate Transport Models and Atmospheric Columns Retrieved from Space

    NASA Astrophysics Data System (ADS)

    Membrive, O.; Crevoisier, C. D.; Sweeney, C.; Hertzog, A.; Danis, F.; Picon, L.; Engel, A.; Boenisch, H.; Durry, G.; Amarouche, N.

    2015-12-01

    Over the past decades many methods have been developed to monitor the evolution of greenhouse gases (GHG): ground networks (NOAA, ICOS, TCCON), aircraft campaigns (HIPPO, CARIBIC, Contrail…), satellite observations (GOSAT, IASI, AIRS…). Nevertheless, precise and regular vertical profile measurements are currently still missing from the observing system. To address this need, an original and innovative atmospheric sampling system called AirCore has been developed at NOAA (Karion et al. 2010). This new system allows balloon measurements of GHG vertical profiles from the surface up to 30 km. New versions of this instrument have been developed at LMD: a high-resolution version "AirCore-HR" that differs from other AirCores by its high vertical resolution and two "light" versions (lower resolution) aiming to be flown under meteorological balloon. LMD AirCores were flown on multi-instrument gondolas along with other independent instruments measuring CO2 and CH4 in-situ during the Strato Science balloon campaigns operated by the French space agency CNES in collaboration with the Canadian Space Agency in Timmins (Ontario, Canada) in August 2014 and 2015. First, we will present comparisons of the vertical profiles retrieved with various AirCores (LMD and Frankfurt University) to illustrate repeatability and impact of the vertical resolution as well as comparisons with independent in-situ measurements from other instruments (laser diode based Pico-SDLA). Second, we will illustrate the usefulness of AirCore measurements in the upper troposphere and stratosphere for validating and interpreting vertical profiles from atmospheric transport models as well as observations of total and partial column of methane and carbon dioxide from several current and future spaceborne missions such as: ACE-FTS, IASI and GOSAT.

  7. Use of multiple in situ instruments and remote sensed satellite data for calibration tests at Solfatara (Campi Flegrei volcanic area)

    NASA Astrophysics Data System (ADS)

    Silvestri, Malvina; Musacchio, Massimo; Fabrizia Buongiorno, Maria; Doumaz, Fawzi; Andres Diaz, Jorge

    2017-04-01

    Monitoring natural hazards such as active volcanoes requires specific instruments to measure many parameters (gas emissions, surface temperatures, surface deformation etc.) to determine the activity level of a volcano. Volcanoes in most cases present difficult and dangerous environment for scientists who need to take in situ measurements. Remote Sensing systems on board of satellite permit to measure a large number of parameters especially during the eruptive events but still show large limits to monitor volcanic precursors and phenomena at local scale (gas species emitted by fumarole or summit craters degassing plumes and surface thermal changes of few degrees) for their specific risk. For such reason unmanned aircraft systems (UAS) mounting a variety of multigas sensors instruments (such as miniature mass spectrometer) or single specie sensors (such as electrochemical and IR sensors) allow a safe monitoring of volcanic activities. With this technology, it is possible to perform monitoring measurements of volcanic activity without risking the lives of scientists and personnel performing analysis during the field campaigns in areas of high volcanic activity and supporting the calibration and validation of satellite data measurements. These systems allowed the acquisition of real-time information such as temperature, pressure, relative humidity, SO2, H2S, CO2 contained in degassing plume and fumaroles, with GPS geolocation. The acquired data are both stored in the sensor and transmitted to a computer for real time viewing information. Information in the form of 3D concentration maps can be returned. The equipment used during the campaigns at Solfatara Volcano (in 2014, 2015 and 2016) was miniaturized instruments allowed measurements conducted either by flying drones over the fumarolic sites and by hand carrying into the fumaroles. We present the results of the field campaign held in different years at the Solfatara of Pozzuoli, near Naples, concerning measurements

  8. Rainfall Estimation over the Nile Basin using Multi-Spectral, Multi- Instrument Satellite Techniques

    NASA Astrophysics Data System (ADS)

    Habib, E.; Kuligowski, R.; Sazib, N.; Elshamy, M.; Amin, D.; Ahmed, M.

    2012-04-01

    Management of Egypt's Aswan High Dam is critical not only for flood control on the Nile but also for ensuring adequate water supplies for most of Egypt since rainfall is scarce over the vast majority of its land area. However, reservoir inflow is driven by rainfall over Sudan, Ethiopia, Uganda, and several other countries from which routine rain gauge data are sparse. Satellite- derived estimates of rainfall offer a much more detailed and timely set of data to form a basis for decisions on the operation of the dam. A single-channel infrared (IR) algorithm is currently in operational use at the Egyptian Nile Forecast Center (NFC). In this study, the authors report on the adaptation of a multi-spectral, multi-instrument satellite rainfall estimation algorithm (Self- Calibrating Multivariate Precipitation Retrieval, SCaMPR) for operational application by NFC over the Nile Basin. The algorithm uses a set of rainfall predictors that come from multi-spectral Infrared cloud top observations and self-calibrate them to a set of predictands that come from the more accurate, but less frequent, Microwave (MW) rain rate estimates. For application over the Nile Basin, the SCaMPR algorithm uses multiple satellite IR channels that have become recently available to NFC from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). Microwave rain rates are acquired from multiple sources such as the Special Sensor Microwave/Imager (SSM/I), the Special Sensor Microwave Imager and Sounder (SSMIS), the Advanced Microwave Sounding Unit (AMSU), the Advanced Microwave Scanning Radiometer on EOS (AMSR-E), and the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI). The algorithm has two main steps: rain/no-rain separation using discriminant analysis, and rain rate estimation using stepwise linear regression. We test two modes of algorithm calibration: real- time calibration with continuous updates of coefficients with newly coming MW rain rates, and calibration using static

  9. GLORI (GLObal navigation satellite system Reflectometry Instrument): A New Airborne GNSS-R receiver for land surface applications

    NASA Astrophysics Data System (ADS)

    Motte, Erwan; Zribi, Mehrez; Fanise, Pascal

    2015-04-01

    GLORI (GLObal navigation satellite system Reflectometry Instrument) is a new receiver dedicated to the airborne measurement of surface parameters such as soil moisture and biomass above ground and sea state (wave height and direction) above oceans. The instrument is based on the PARIS concept [Martin-Neira, 1993] using both the direct and surface-reflected L-band signals from the GPS constellation as a multistatic radar source. The receiver is based on one up-looking and one down-looking dual polarization hemispherical active antennas feeding a low-cost 4-channel SDR direct down-conversion receiver tuned to the GPS L1 frequency. The raw measurements are sampled at 16.368MHz and stored as 2-bit, IQ binary files. In post-processing, GPS acquisition and tracking are performed on the direct up-looking signal while the down-looking signal is processed blindly using tracking parameters from the direct signal. The obtained direct and reflected code-correlation waveforms are the basic observables for geophysical parameters inversion. The instrument was designed to be installed aboard the ATR42 experimental aircraft from the French SAFIRE fleet as a permanent payload. The long term goal of the project is to provide real-time continuous surface information for every flight performed. The aircraft records attitude information through its Inertial Measurement Unit and a commercial GPS receiver records additional information such as estimated doppler and code phase, receiver location, satellites azimuth and elevation. A series of test flights were performed over both the Toulouse and Gulf of Lion (Mediterranean Sea) regions during the period 17-21 Nov 2014 together with the KuROS radar [Hauser et al., 2014]. Using processing methods from the literature [Egido et al., 2014], preliminary results demonstrate the instrument sensitivity to both ground and ocean surface parameters estimation. A dedicated scientific flight campaign is planned at the end of second quarter 2015 with

  10. Using Instrument Simulators and a Satellite Database to Evaluate Microphysical Assumptions in High-Resolution Simulations of Hurricane Rita

    NASA Astrophysics Data System (ADS)

    Hristova-Veleva, S. M.; Chao, Y.; Chau, A. H.; Haddad, Z. S.; Knosp, B.; Lambrigtsen, B.; Li, P.; Martin, J. M.; Poulsen, W. L.; Rodriguez, E.; Stiles, B. W.; Turk, J.; Vu, Q.

    2009-12-01

    Improving forecasting of hurricane intensity remains a significant challenge for the research and operational communities. Many factors determine a tropical cyclone’s intensity. Ultimately, though, intensity is dependent on the magnitude and distribution of the latent heating that accompanies the hydrometeor production during the convective process. Hence, the microphysical processes and their representation in hurricane models are of crucial importance for accurately simulating hurricane intensity and evolution. The accurate modeling of the microphysical processes becomes increasingly important when running high-resolution models that should properly reflect the convective processes in the hurricane eyewall. There are many microphysical parameterizations available today. However, evaluating their performance and selecting the most representative ones remains a challenge. Several field campaigns were focused on collecting in situ microphysical observations to help distinguish between different modeling approaches and improve on the most promising ones. However, these point measurements cannot adequately reflect the space and time correlations characteristic of the convective processes. An alternative approach to evaluating microphysical assumptions is to use multi-parameter remote sensing observations of the 3D storm structure and evolution. In doing so, we could compare modeled to retrieved geophysical parameters. The satellite retrievals, however, carry their own uncertainty. To increase the fidelity of the microphysical evaluation results, we can use instrument simulators to produce satellite observables from the model fields and compare to the observed. This presentation will illustrate how instrument simulators can be used to discriminate between different microphysical assumptions. We will compare and contrast the members of high-resolution ensemble WRF model simulations of Hurricane Rita (2005), each member reflecting different microphysical assumptions

  11. NOAA satellite observing systems: status and plans

    NASA Astrophysics Data System (ADS)

    John Hussey, W.; Schneider, Stanley R.; Gird, Ronald S.; Needham, Bruce H.

    1991-07-01

    NOAA's National Environmental Satellite, Data, and Information Service (NESDIS) operates separates series of environmental monitoring satellites in polar and geostationary orbits. Two geostationary spacecraft are normally in opration: one stationed at 75° E longitude (GOES-EAST), and one stationed at 135° W longitude (GOES-WEST). Owing to a combination of premature in-orbit failures and a launch failure there is only one GOES satellite currently operational, GOES-7, which is migrated between 95° and 105° W longitude depending upon season. GOES-7 was launched in February 1987. Its primary observing instrument is a combined imager/sounder, the VISSR Atmospheric Sounder (VAS). The first in the next series of GOES satellite, (GOES I-M), is scheduled for launch in 1992. The major upgrade over the current GOES satellites will be the introduction of simultaneous imaging and sounding capability and improvements in imaging IR and sounding resolution. Because of the long lead times necessary in designing and building new systems, NOAA, in cooperation with NASA, has already begun the planning and study process for the GOES-N series of satellites, which will fly early in the next century. NOAA operates a two polar satellite system with equatorial nodal crossing times of 0730 (descending) and 1345 (ascending). The current operational satellites are NOAA-10 (AM) and NOAA-11 (PM). The next in the series (NOAA-D, which will become NOAA-12 once operational) is scheduled for launch in early summer 1991. The instruments onboard are used to make global measurements of numerous parameters such as atmospheric temperature, water vapor, ozone, sea surface temperature, sea ice, and vegetation. The NOAA K-N series of satellites, scheduled for deployment in the mid 1990's, will provide upgraded imaging and sounding capability. The imager will be enhanced to include a sixth channel for cloud/ice descrimination. A 15 channel advanced microwave sounder will be manifested for atmospheric

  12. Improved NOAA satellite scheduled for launch. [mission update

    NASA Technical Reports Server (NTRS)

    Brennan, W. J.; Mccormack, D.; Senstad, K.

    1981-01-01

    A description of the NOAA-C satellite and its Atlas launch vehicle are presented. The satellite instrumentation and data transmission systems are discussed. A flight sequence of events is given along with a listing of the mission management responsibilities.

  13. FOREWORD: Satellite Remote Sensing Beyond 2015

    NASA Technical Reports Server (NTRS)

    Tucker, Compton J.

    2017-01-01

    Satellite remote sensing has progressed tremendously since the first Landsat was launched on June 23, 1972. Since the 1970s, satellite remote sensing and associated airborne and in situ measurements have resulted in vital and indispensable observations for understanding our planet through time. These observations have also led to dramatic improvements in numerical simulation models of the coupled atmosphere-land-ocean systems at increasing accuracies and predictive capability. The same observations document the Earth's climate and are driving the consensus that Homo sapiens is changing our climate through greenhouse gas emissions. These accomplishments are the combined work of many scientists from many countries and a dedicated cadre of engineers who build the instruments and satellites that collect Earth observation data from satellites, all working toward the goal of improving our understanding of the Earth. This edition of the Remote Sensing Handbook (Vol. I, II, and III) is a compendium of information for many research areas of our Planet that have contributed to our substantial progress since the 1970s. Remote sensing community is now using multiple sources of satellite and in situ data to advance our studies, what ever they might be. In the following paragraphs, I will illustrate how valuable and pivotal role satellite remote sensing has played in climate system study over last five decades, The Chapters in the Remote Sensing Handbook (Vol. I, II, and III) provides many other specific studies on land, water, and other applications using EO data of last five decades, The Landsat system of Earth-observing satellites has led the way in pioneering sustained observations of our planet. From 1972 to the present, at least one and sometimes two Landsat satellites have been in operation. Starting with the launch of the first NOAA-NASA Polar Orbiting Environmental Satellites NOAA-6 in 1978, improved imaging of land, clouds, and oceans and atmospheric soundings of

  14. Communication Satellite Payload Special Check out Equipment (SCOE) for Satellite Testing

    NASA Astrophysics Data System (ADS)

    Subhani, Noman

    2016-07-01

    This paper presents Payload Special Check out Equipment (SCOE) for the test and measurement of communication satellite Payload at subsystem and system level. The main emphasis of this paper is to demonstrate the principle test equipment, instruments and the payload test matrix for an automatic test control. Electrical Ground Support Equipment (EGSE)/ Special Check out Equipment (SCOE) requirements, functions and architecture for C-band and Ku-band payloads are presented in details along with their interface with satellite during different phases of satellite testing. It provides test setup, in a single rack cabinet that can easily be moved from payload assembly and integration environment to thermal vacuum chamber all the way to launch site (for pre-launch test and verification).

  15. Top-Down CO Emissions Based On IASI Observations and Hemispheric Constraints on OH Levels

    NASA Astrophysics Data System (ADS)

    Müller, J.-F.; Stavrakou, T.; Bauwens, M.; George, M.; Hurtmans, D.; Coheur, P.-F.; Clerbaux, C.; Sweeney, C.

    2018-02-01

    Assessments of carbon monoxide emissions through inverse modeling are dependent on the modeled abundance of the hydroxyl radical (OH) which controls both the primary sink of CO and its photochemical source through hydrocarbon oxidation. However, most chemistry transport models (CTMs) fall short of reproducing constraints on hemispherically averaged OH levels derived from methylchloroform (MCF) observations. Here we construct five different OH fields compatible with MCF-based analyses, and we prescribe those fields in a global CTM to infer CO fluxes based on Infrared Atmospheric Sounding Interferometer (IASI) CO columns. Each OH field leads to a different set of optimized emissions. Comparisons with independent data (surface, ground-based remotely sensed, aircraft) indicate that the inversion adopting the lowest average OH level in the Northern Hemisphere (7.8 × 105 molec cm-3, ˜18% lower than the best estimate based on MCF measurements) provides the best overall agreement with all tested observation data sets.

  16. Principal Component-Based Radiative Transfer Model (PCRTM) for Hyperspectral Sensors. Part I; Theoretical Concept

    NASA Technical Reports Server (NTRS)

    Liu, Xu; Smith, William L.; Zhou, Daniel K.; Larar, Allen

    2005-01-01

    Modern infrared satellite sensors such as Atmospheric Infrared Sounder (AIRS), Cosmic Ray Isotope Spectrometer (CrIS), Thermal Emission Spectrometer (TES), Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) and Infrared Atmospheric Sounding Interferometer (IASI) are capable of providing high spatial and spectral resolution infrared spectra. To fully exploit the vast amount of spectral information from these instruments, super fast radiative transfer models are needed. This paper presents a novel radiative transfer model based on principal component analysis. Instead of predicting channel radiance or transmittance spectra directly, the Principal Component-based Radiative Transfer Model (PCRTM) predicts the Principal Component (PC) scores of these quantities. This prediction ability leads to significant savings in computational time. The parameterization of the PCRTM model is derived from properties of PC scores and instrument line shape functions. The PCRTM is very accurate and flexible. Due to its high speed and compressed spectral information format, it has great potential for super fast one-dimensional physical retrievals and for Numerical Weather Prediction (NWP) large volume radiance data assimilation applications. The model has been successfully developed for the National Polar-orbiting Operational Environmental Satellite System Airborne Sounder Testbed - Interferometer (NAST-I) and AIRS instruments. The PCRTM model performs monochromatic radiative transfer calculations and is able to include multiple scattering calculations to account for clouds and aerosols.

  17. Tomographic reconstruction of an aerosol plume using passive multiangle observations from the MISR satellite instrument

    NASA Astrophysics Data System (ADS)

    Garay, Michael J.; Davis, Anthony B.; Diner, David J.

    2016-12-01

    We present initial results using computed tomography to reconstruct the three-dimensional structure of an aerosol plume from passive observations made by the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite. MISR views the Earth from nine different angles at four visible and near-infrared wavelengths. Adopting the 672 nm channel, we treat each view as an independent measure of aerosol optical thickness along the line of sight at 1.1 km resolution. A smoke plume over dark water is selected as it provides a more tractable lower boundary condition for the retrieval. A tomographic algorithm is used to reconstruct the horizontal and vertical aerosol extinction field for one along-track slice from the path of all camera rays passing through a regular grid. The results compare well with ground-based lidar observations from a nearby Micropulse Lidar Network site.

  18. The power of inexpensive satellite constellations

    NASA Astrophysics Data System (ADS)

    Dyrud, Lars P.; La Tour, Rose; Swartz, William H.; Nag, Sreeja; Lorentz, Steven R.; Hilker, Thomas; Wiscombe, Warren J.; Papadakis, Stergios J.

    2014-06-01

    Two thematic drivers are motivating the science community towards constellations of small satellites, the revelation that many next generation system science questions are uniquely addressed with sufficient numbers of simultaneous space based measurements, and the realization that space is historically expensive, and in an environment of constrained costs, we must innovate to ―do more with less‖. We present analysis that answers many of the key questions surrounding constellations of scientific satellites, including research that resulted from the GEOScan community based effort originally intended as hosted payloads on Iridium NEXT. We present analysis that answers the question how many satellites does global system science require? Perhaps serendipitously, the analyses show that many of the key science questions independently converge towards similar results, i.e. that approximately 60+ satellites are needed for transformative, as opposed to incremental capability in system science. The current challenge is how to effectively transition products from design to mass production for space based instruments and vehicles. Ideally, the lesson learned from past designs and builds of various space products should pave the way toward a better manufacturing plan that utilizes just a fraction of the prototype`s cost. Using the commercial products industry implementations of mass customization as an example, we will discuss about the benefits of standardization in design requirements for space instruments and vehicles. For example, the instruments (payloads) are designed to have standardized elements, components, or modules that interchangeably work together within a linkage system. We conclude with a discussion on implementation plans and the new paradigms for community and international cooperation enabled by small satellite constellations.

  19. Applications of Nano-Satellites and Cube-Satellites in Microwave and RF Domain

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Goverdhanam, Kavita

    2015-01-01

    This paper presents an overview of microwave technologies for Small Satellites including NanoSats and CubeSats. In addition, examples of space communication technology demonstration projects using CubeSats are presented. Furthermore, examples of miniature instruments for Earth science measurements are discussed.

  20. Applications of Nano-satellites and Cube-satellites in Microwave and RF Domain

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Goverdhanam, Kavita

    2015-01-01

    This paper presents an overview of microwave technologies for Small Satellites including NanoSats and CubeSats. In addition, examples of space communication technology demonstration projects using CubeSats are presented. Furthermore, examples of miniature instruments for Earth science measurements are discussed.

  1. Monitoring of Observation Errors in the Assimilation of Satellite Ozone Data

    NASA Technical Reports Server (NTRS)

    Stajner, Ivanka; Winslow, Nathan; Rood, Richard B.; Pawson, Steven

    2003-01-01

    The stratospheric ozone layer protects life on Earth from the harmful effects of solar ultravioiet radiation. The ozone layer is currently in a fragile state because of depletion caused by man-made chemicals, especially chlorofluorocarbons. The state of the ozone layer is being monitored and evaluated by scientific experts around the world, in order to help policy makers assess the impacts of international protocols that control the production and release of ozone depleting chemicals. Scientists use a variety ozone measurements and models in order to form a comprehensive picture about the current state of the ozone layer, and to predict the future behavior (expected to be a recovery, as the abundance of the depleting chemicals decreases). Among the data sets used, those from satellite-borne instruments have the advantage of providing a wealth of information about the ozone distribution over most of the globe. Several instruments onboard American and international satellites make measurements of the properties of the atmosphere, from which atmospheric ozone amounts are estimated; long-term measurement programs enable monitoring of trends in ozone. However, the characteristics of satellite instruments change in time. For example, the instrument lenses through which measurements are made may deteriorate over time, or the satellite orbit may drift so that measurements over each location are made later and later in the day. These changes may increase the errors in the retrieved ozone amounts, and degrade the quality of estimated ozone amounts and of their variability. Our work focuses on combining the satellite ozone data with global models that capture atmospheric motion and ozone chemistry, using advanced statistical techniques: this is known as data assimilation. Our method provides a three-dimensional global ozone distribution that is consistent with both the satellite measurements and with our understanding of processes (described in the models) that control ozone

  2. Satellite Data Visualization, Processing and Mapping using VIIRS Imager Data

    NASA Astrophysics Data System (ADS)

    Phyu, A. N.

    2016-12-01

    A satellite is a manmade machine that is launched into space and orbits the Earth. These satellites are used for various purposes for examples: Environmental satellites help us monitor and protect our environment; Navigation (GPS) satellites provides accurate time and position information: and Communication satellites allows us the interact with each other over long distances. Suomi NPP is part of the constellation of Joint Polar Satellite System (JPSS) fleet of satellites which is an Environmental satellite that carries the Visual Infrared Imaging Radiometer Suite (VIIRS) instrument. VIIRS is a scanning radiometer that takes high resolution images of the Earth. VIIRS takes visible, infrared and radiometric measurements of the land, oceans, atmosphere and cryosphere. These high resolution images provide information that helps weather prediction and environmental forecasting of extreme events such as forest fires, ice jams, thunder storms and hurricane. This project will describe how VIIRS instrument data is processed, mapped, and visualized using variety of software and application. It will focus on extreme events like Hurricane Sandy and demonstrate how to use the satellite to map the extent of a storm. Data from environmental satellites such as Suomi NPP-VIIRS is important for monitoring climate change, sea level rise, land surface temperature changes as well as extreme weather events.

  3. Germany's Option for a Moon Satellite

    NASA Astrophysics Data System (ADS)

    Quantius, Dominik

    The German non-profit amateur satellite organisation AMSAT-Deutschland successfully de-signed, built and launched four HEO satellites in the last three decades. Now they are going to build a satellite to leave the Earth orbit based on their flight-proven P3-D satellite design. Due to energetic constraints the most suitable launch date for the planned P5-A satellite to Mars will be in 2018. To efficiently use the relatively long time gap until launch a possible prior Moon mission came into mind. In co-operation with the DLR-Institute of Space Systems in Bremen, Germany, two studies on systems level for a first P5 satellite towards Moon and a following one towards Mars have been performed. By using the DLR's Concurrent Engineering Facility (CEF) two consistent satellite concepts were designed including mission analysis, configuration, propulsion, subsystem dimensioning, payload selection, budgeting and cost. The present paper gives an insight in the accomplished design process and the results of the performed study towards Moon. The developed Moon orbiter is designed to carry the following four main instruments besides flexible communication abilities: • slewable HDTV camera combined with a high gain antenna that allows receiving lunar television using a commercially available satellite TV dish on Earth • sensor imaging infrared spectrometer for mineralogy of lunar silicates and lunar surface temperature measurements • camera for detection and monitoring of impact flashes in visible light (VIS) on lunar night side caused by meteoroid impact events • camera technology test for interplanetary navigation and planetary approach navigation. This study presents a non-industrial satellite concept that could be launched as piggyback load on Ariane 5 into GTO. Due to the fact, that the satellite would be built by the private sector, the mission costs would remain low. Otherwise the scientific and public output would be high using that satellite bus for the instruments

  4. A probabilistic analysis of the implications of instrument failures on ESA's Swarm mission for its individual satellite orbit deployments

    NASA Astrophysics Data System (ADS)

    Jackson, Andrew

    2015-07-01

    On launch, one of Swarm's absolute scalar magnetometers (ASMs) failed to function, leaving an asymmetrical arrangement of redundant spares on different spacecrafts. A decision was required concerning the deployment of individual satellites into the low-orbit pair or the higher "lonely" orbit. I analyse the probabilities for successful operation of two of the science components of the Swarm mission in terms of a classical probabilistic failure analysis, with a view to concluding a favourable assignment for the satellite with the single working ASM. I concentrate on the following two science aspects: the east-west gradiometer aspect of the lower pair of satellites and the constellation aspect, which requires a working ASM in each of the two orbital planes. I use the so-called "expert solicitation" probabilities for instrument failure solicited from Mission Advisory Group (MAG) members. My conclusion from the analysis is that it is better to have redundancy of ASMs in the lonely satellite orbit. Although the opposite scenario, having redundancy (and thus four ASMs) in the lower orbit, increases the chance of a working gradiometer late in the mission; it does so at the expense of a likely constellation. Although the results are presented based on actual MAG members' probabilities, the results are rather generic, excepting the case when the probability of individual ASM failure is very small; in this case, any arrangement will ensure a successful mission since there is essentially no failure expected at all. Since the very design of the lower pair is to enable common mode rejection of external signals, it is likely that its work can be successfully achieved during the first 5 years of the mission.

  5. Earth Viewing Applications Laboratory (EVAL). Instrument catalog

    NASA Technical Reports Server (NTRS)

    1976-01-01

    There were 87 instruments described that are used in earth observation, with an additional 51 instruments containing references to programs and their major functions. These instruments were selected from such sources as: (1) earth observation flight program, (2) operational satellite improvement programs, (3) advanced application flight experiment program, (4) shuttle experiment definition program, and (5) earth observation aircraft program.

  6. Using satellite image data to estimate soil moisture

    NASA Astrophysics Data System (ADS)

    Chuang, Chi-Hung; Yu, Hwa-Lung

    2017-04-01

    Soil moisture is considered as an important parameter in various study fields, such as hydrology, phenology, and agriculture. In hydrology, soil moisture is an significant parameter to decide how much rainfall that will infiltrate into permeable layer and become groundwater resource. Although soil moisture is a critical role in many environmental studies, so far the measurement of soil moisture is using ground instrument such as electromagnetic soil moisture sensor. Use of ground instrumentation can directly obtain the information, but the instrument needs maintenance and consume manpower to operation. If we need wide range region information, ground instrumentation probably is not suitable. To measure wide region soil moisture information, we need other method to achieve this purpose. Satellite remote sensing techniques can obtain satellite image on Earth, this can be a way to solve the spatial restriction on instrument measurement. In this study, we used MODIS data to retrieve daily soil moisture pattern estimation, i.e., crop water stress index (cwsi), over the year of 2015. The estimations are compared with the observations at the soil moisture stations from Taiwan Bureau of soil and water conservation. Results show that the satellite remote sensing data can be helpful to the soil moisture estimation. Further analysis can be required to obtain the optimal parameters for soil moisture estimation in Taiwan.

  7. The status of environmental satellites and availability of their data products

    NASA Technical Reports Server (NTRS)

    Hughes, C. L.; Campbell, C. E.

    1977-01-01

    The latest available information about the status of unclassified environmental satellite (flown by the United States) and their data products is presented. The type of environmental satellites discussed include unmanned earth resource and meteorological satellites, and manned satellites which can act as a combination platform for instruments. The capabilities and data products of projected satellites are discussed along with those of currently operating systems.

  8. Approaching on Colorimetric Change of Porous Calcareous Rocks Exposed in Urban Environmental Conditions from Iasi - Romania

    NASA Astrophysics Data System (ADS)

    Pelin, V.; Rusu, O.; Sandu, I.; Vasilache, V.; Gurlui, S.; Sandu, A. V.; Cazacu, M. M.; Sandu, I. G.

    2017-06-01

    According to the scientific literature, the pollution phenomenon is strongly related by the urban activity from the last decades, with direct effects on the state of conservation of the stone constructions also. This paper presents a preliminary study on the colorimetric evolution of the lithic surfaces exposed under strongly traffic influence from the urban microclimate conditions. The analysed lithic surfaces are similar with the building stone from the structure of an historical monument (from 19th century), such as the Stone Bridge in Iasi-Romania, located in the immediate vicinity of the roadside loop with the same name. The colour change monitoring for the above-mentioned geomaterials aims at anticipating the effects of postponing the decongestion of car traffic and implicitly initiating the assessment of the effects of pollution over this historic monument, which is in an advanced state of deterioration and degradation.

  9. Energetic Particle Observations from Fengyun-2G Satellite

    NASA Astrophysics Data System (ADS)

    Wang, C.

    2017-12-01

    Observations of high energy electrons and protons with High Energy Particle Instrument(HEPI) carried on the Fengyun-2G( FY-2G )satellite are presented. The instrument consists of two sets detectors- high energy electrons detector which can measure 200keV to greater than 4MeV electrons with eleven channels, and high energy protons and heavy ions detector which mainly senses incident flux of solar protons with seven channels from 4MeV to 300 MeV. The observation results showed both of the detectors can reach an accurate response to various disturbances and can provide refined particles data. Comparison of particles dynamic observations of FY2G satellite with GOES series satellites appears that energetic particle fluxes can enter into a coherent level on some quasi-quiet conditions, great difference occur on disturbances times, which can be helpful for data assimilation of multi-satellite as well as further research in more complicated magnetosphere energy particle dynamics.

  10. Atmospheric ammonia and particulate inorganic nitrogen over the United States

    EPA Science Inventory

    We use in situ observations from the Interagency Monitoring of PROtected Visual Environments (IMPROVE) network, the Midwest Ammonia Monitoring Project, 11 surface site campaigns as well as Infrared Atmospheric Sounding Interferometer (IASI) satellite measurements with the GEOS-Ch...

  11. Spatio-temporal variations of nitric acid total columns from 9 years of IASI measurements - a driver study

    NASA Astrophysics Data System (ADS)

    Ronsmans, Gaétane; Wespes, Catherine; Hurtmans, Daniel; Clerbaux, Cathy; Coheur, Pierre-François

    2018-04-01

    This study aims to understand the spatial and temporal variability of HNO3 total columns in terms of explanatory variables. To achieve this, multiple linear regressions are used to fit satellite-derived time series of HNO3 daily averaged total columns. First, an analysis of the IASI 9-year time series (2008-2016) is conducted based on various equivalent latitude bands. The strong and systematic denitrification of the southern polar stratosphere is observed very clearly. It is also possible to distinguish, within the polar vortex, three regions which are differently affected by the denitrification. Three exceptional denitrification episodes in 2011, 2014 and 2016 are also observed in the Northern Hemisphere, due to unusually low arctic temperatures. The time series are then fitted by multivariate regressions to identify what variables are responsible for HNO3 variability in global distributions and time series, and to quantify their respective influence. Out of an ensemble of proxies (annual cycle, solar flux, quasi-biennial oscillation, multivariate ENSO index, Arctic and Antarctic oscillations and volume of polar stratospheric clouds), only the those defined as significant (p value < 0.05) by a selection algorithm are retained for each equivalent latitude band. Overall, the regression gives a good representation of HNO3 variability, with especially good results at high latitudes (60-80 % of the observed variability explained by the model). The regressions show the dominance of annual variability in all latitudinal bands, which is related to specific chemistry and dynamics depending on the latitudes. We find that the polar stratospheric clouds (PSCs) also have a major influence in the polar regions, and that their inclusion in the model improves the correlation coefficients and the residuals. However, there is still a relatively large portion of HNO3 variability that remains unexplained by the model, especially in the intertropical regions, where factors not

  12. New developments in satellite oceanography and current measurements

    NASA Technical Reports Server (NTRS)

    Huang, N. E.

    1979-01-01

    Principal satellite remote sensing techniques and instruments are described and attention is given to the application of such techniques to ocean current measurement. The use of radiometers, satellite tracking drifters, and altimeters for current measurement is examined. Consideration is also given to other applications of satellite remote sensing in physical oceanography, including measurements of surface wind stress, sea state, tides, ice, sea surface temperature, salinity, ocean color, and oceanic leveling.

  13. Intercomparison of Desert Dust Optical Depth from Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Carboni, E.; Thomas, G. E.; Sayer, A. M.; Siddans, R.; Poulsen, C. A.; Grainger, R. G.; Ahn, C.; Antoine, D.; Bevan, S.; Braak, R.; hide

    2012-01-01

    This work provides a comparison of satellite retrievals of Saharan desert dust aerosol optical depth (AOD) during a strong dust event through March 2006. In this event, a large dust plume was transported over desert, vegetated, and ocean surfaces. The aim is to identify the differences between current datasets. The satellite instruments considered are AATSR, AIRS, MERIS, MISR, MODIS, OMI, POLDER, and SEVIRI. An interesting aspect is that the different algorithms make use of different instrument characteristics to obtain retrievals over bright surfaces. These include multi-angle approaches (MISR, AATSR), polarisation measurements (POLDER), single-view approaches using solar wavelengths (OMI, MODIS), and the thermal infrared spectral region (SEVIRI, AIRS). Differences between instruments, together with the comparison of different retrieval algorithms applied to measurements from the same instrument, provide a unique insight into the performance and characteristics of the various techniques employed. As well as the intercomparison between different satellite products, the AODs have also been compared to co-located AERONET data. Despite the fact that the agreement between satellite and AERONET AODs is reasonably good for all of the datasets, there are significant differences between them when compared to each other, especially over land. These differences are partially due to differences in the algorithms, such as assumptions about aerosol model and surface properties. However, in this comparison of spatially and temporally averaged data, it is important to note that differences in sampling, related to the actual footprint of each instrument on the heterogeneous aerosol field, cloud identification and the quality control flags of each dataset can be an important issue.

  14. Microvibrations on a GEO telecommunication satellite

    NASA Astrophysics Data System (ADS)

    Betermier, J. M.; Charmeau, M. C.; Rideau, P.; Garnier, C.

    1993-11-01

    Analyses carried out to assess the microvibration characteristics on a geostationary (GEO) satellite are reported. The aims of these studies were both to increase the knowledge of the levels of dynamic perturbations transmitted to the optical terminal on board the geostationary satellite, and to develop methods and tools able to deal with emerging applications such as SILEX (Semiconductor laser Intersatellite Link Experiment). The simulations and tests which were performed on the TDF1 satellite in order to characterize the microvibration levels at a simulated point of interface between TDF1 and a mounted instrument are summarized. The analysis of the complete transmission of the disturbances generated by onboard pieces of equipment such as momentum wheels and thrusters up to the instrument's line of sight is presented. A general simulation model was developed using JAMES software means to further investigate the coupled system: spacecraft and aerial part. Parameters which may affect microvibration transmission, such as unbalances, friction, gimbal configuration, were tuned and many simulations were run in order to quantify their impacts. A comparison between levels at the interface and on the instrument's line of sight was established for the main sources of disturbance. The adequacy of methods and tools developed for future applications is presented.

  15. Instrumentation and data acquisition for satellite testing in nuclear environments

    NASA Astrophysics Data System (ADS)

    Samyal, B.; Naumann, W.

    1982-06-01

    Electro-optic and magnetic-optic sensors for measurement of SGEMP-induced electromagnetic fields in and around a satellite in a UGT environment and a fiber optic data link suitable for relaying analog measurements inside the satellite to outside data collection devices are described. The electro-optic and magneto-optic sensors are based on the Pockels and Faraday Effects, respectively. The former has a sensitivity range of 10 to the second power - 10 to the 6th power v/m and the latter 1 x 10 to the minus 6th power - 34 x 10 to the minus 4th power Weber/meters square. Brief theoretical reviews and optical systems for the application of these sensors are presented. These sensors have several advantages over the conventional electrical sensors and they exhibit a great potential for measurement of electromagenetic fields. However, the effects of radiation on these sensors are uncertain and need to be assessed for any future development of these sensors. The fiber optic data link consists of several transmitter modules, located at the satellite, connected by optical fibers to the corresponding receiver modules located at a radiation safe alcove.

  16. Validating NO2 measurements in the vertical atmospheric column with the OMI instrument aboard the EOS Aura satellite against ground-based measurements at the Zvenigorod Scientific Station

    NASA Astrophysics Data System (ADS)

    Gruzdev, A. N.; Elokhov, A. S.

    2009-08-01

    Data on the NO2 content in the vertical column of the atmosphere obtained with the Ozone Monitoring Instrument (OMI) aboard the EOS Aura satellite (United States) in the period from October 2004 to October 2007 are compared with the results of ground-based measurements at the Zvenigorod Scientific Station (55.7° N, 36.8° E). The “unpolluted”; part of the total NO2 content in the atmospheric column, which mostly represents the stratosphere, and the NO2 contents in the vertical column of the troposphere, including the lower layer, which is subject to pollution, are included in the comparison. The correlation coefficient between the results of ground-based and satellite measurements of the “unpolluted” total NO2 content is ˜0.9. The content values measured with the OMI instrument are smaller than the results of ground-based measurements (on average, by (0.30 ± 0.03) × 1015 cm-2 or by (11 ± 1)%). Therms discrepancy between the satellite and ground-based data is 0.6 × 1015 cm-2. The NO2 content in the vertical column of the troposphere from the results of satellite measurements is, on average, (1.4 ± 0.5) × 1015 cm-2, (or about 35%) smaller than from the results of ground-based measurements, and the rms discrepancy between them is about 200%. The correlation coefficient between these data is ˜0.4. This considerable discrepancy is evidently caused by the strong spatial (horizontal) inhomogeneity and the temporal variability of the NO2 field during episodes of pollution, which leads to different (and often uncorrelated) estimates of the NO2 content in the lower troposphere due to different spatial resolutions of ground-based and satellite measurements.

  17. Satellite and Instrument Influences on ICESat Waveforms

    NASA Astrophysics Data System (ADS)

    Webb, C. E.; Urban, T. J.; Neuenschwander, A. L.; Gutierrez, R.; Schutz, B. E.

    2007-12-01

    The White Sands Space Harbor (WSSH) has served as the principal ground calibration site throughout the Ice, Cloud and land Elevation Satellite (ICESat) mission. The Center for Space Research (CSR) at the University of Texas at Austin continues to conduct various experiments designed to validate the timing, geolocation and geometric characteristics of individual laser footprints on the surface. In addition, two airborne lidar surveys of the calibration site and surrounding area were conducted during the mission, first in 2003 and again in 2007. Chosen for its limited surface roughness and topographic flatness, this area has been targeted 3-4 times in each of the 12 ICESat mapping campaigns to date, yielding a significant altimetry data set. The derived surface elevations are compared with those from the airborne lidar surveys, as well as those obtained by the Shuttle Radar Topography Mission (SRTM). Furthermore, the Geoscience Laser Altimetry System (GLAS) onboard ICESat records a digitized waveform for each laser pulse returned from the surface. The two methods currently used to fit such signals in ICESat data processing are examined and compared for the WSSH waveforms. The first fits up to two distinct Gaussians and provides a surface elevation at the location of the maximum peak. The second fits up to six overlapping Gaussians and provides a surface elevation at the centroid of the pulse. Observed differences in the reported elevations are discussed in terms of the satellite's off-nadir targeting geometry, the laser energy, and the skewness of the returned waveforms.

  18. Command and data handling for Atmosphere Explorer satellite

    NASA Technical Reports Server (NTRS)

    Fuldner, W. V.

    1974-01-01

    The command and data-handling subsystem of the Atmosphere Explorer satellite provides the necessary controls for the instrumentation and telemetry, and also controls the satellite attitude and trajectory. The subsystem executes all command information within the spacecraft, either in real time (as received over the S-band command transmission link) or remote from the command site (as required by the orbit operations schedule). Power consumption in the spacecraft is optimized by suitable application and removal of power to various instruments; additional functions include control of magnetic torquers and of the orbit-adjust propulsion subsystem. Telemetry data from instruments and the spacecraft equipment are formatted into a single serial bit stream. Attention is given to command types, command formats, decoder operation, and command processing functions.

  19. EAQUATE: An International Experiment for Hyper-Spectral Atmospheric Sounding Validation

    NASA Technical Reports Server (NTRS)

    Taylor, J. P.; Smith, W.; Cuomo, V.; Larar, A.; Zhou, D.; Serio, C.; Maestri, T.; Rizzi, R.; Newman, S.; Antonelli, P.; hide

    2008-01-01

    The international experiment called EAQUATE (European AQUA Thermodynamic Experiment) was held in September 2004 in Italy and the United Kingdom to demonstrate certain ground-based and airborne systems useful for validating hyperspectral satellite sounding observations. A range of flights over land and marine surfaces were conducted to coincide with overpasses of the AIRS instrument on the EOS Aqua platform. Direct radiance evaluation of AIRS using NAST-I and SHIS has shown excellent agreement. Comparisons of level 2 retrievals of temperature and water vapor from AIRS and NAST-I validated against high quality lidar and drop sonde data show that the 1K/1km and 10%/1km requirements for temperature and water vapor (respectively) are generally being met. The EAQUATE campaign has proven the need for synergistic measurements from a range of observing systems for satellite cal/val and has paved the way for future cal/val activities in support of IASI on the European Metop platform and CrIS on the US NPP/NPOESS platform.

  20. L-shell bifurcation of electron outer belt at the recovery phase of geomagnetic storm as observed by STEP-F and SphinX instruments onboard the CORONAS-Photon satellite

    NASA Astrophysics Data System (ADS)

    Dudnik, Oleksiy; Sylwester, Janusz; Kowalinski, Miroslaw; Podgorski, Piotr

    2016-07-01

    Radiation belts and sporadically arising volumes comprising enhanced charged particle fluxes in the Earth's magnetosphere are typically studied by space-borne telescopes, semiconductor, scintillation, gaseous and other types of detectors. Ambient and internal electron bremsstrahlung in hard X-ray arises as a result of interaction of precipitating particles with the atmosphere (balloon experiments) and with the satellite's housings and instrument boxes (orbital experiments). Theses emissions provide a number of new information on the physics of radiation belts. The energies of primary electrons and their spectra responsible for measured X-ray emissions remain usually unknown. Combined measurements of particle fluxes, and their bremsstrahlung by individual satellite instruments placed next to each other provide insight to respective processes. The satellite telescope of electrons and protons STEP-F and the solar X-ray spectrophotometer SphinX were placed in close proximity to each other aboard CORONAS-Photon, the low, circular and highly inclined orbit satellite. Based on joint analysis of the data we detected new features in the high energy particle distributions of the Earth's magnetosphere during deep minimum of solar activity [1-3]. In this research the bifurcation of Van Allen outer electron radiation belt during the weak geomagnetic storm and during passage of interplanetary shock are discussed. Outer belt bifurcation and growth of electron fluxes in a wide energy range were recorded by both instruments during the recovery phase of May 8, 2009 substorm. STEP-F recorded also barely perceptible outer belt splitting on August 5, 2009, after arrival of interplanetary shock to the Earth's magnetosphere bowshock. The STEP-F and SphinX data are compared with the space weather indexes, and with relativistic electron fluxes observed at geostationary orbit. We discuss possible mechanism of the phenomena consisting in the splitting of drift shells because of Earth

  1. Topex/Poseidon satellite - Enabling a joint U.S.-French mission for global ocean study

    NASA Technical Reports Server (NTRS)

    Hall, Ralph L.

    1990-01-01

    A joint U.S./French mission, which represents a merging of the prior NASA Topex and CNES Poseidon progams, is described. The Topex/Poseidon satellite will contribute to two of the World Climate Research Program's phases: the World Ocean Circulation Experiment and the Tropical Ocean Global Atmosphere experiment. The satellite's instruments will measure the ocean currents and their variability on the global basis via satellite altimetry and precision orbit determinations. The paper describes the satellite configuration and characteristics and the mission instruments and system elements. The Topex/Poseidon's design diagrams and block diagrams are included.

  2. Ocean Observation Instrument

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Airborne Ocean Color Imager (AOCI) was developed by Daedalus Enterprises, Inc. for Ames Research Center under a Small Business Innovation Research (SBIR) contract as a simulator for an advanced oceanographic satellite instrument. The instrument measures water temperature and detects water color in nine wavelengths. Water color indicates chlorophyll content or phytoplankton. After EOCAP assistance and technical improvements, the AOCI was successfully commercialized by Daedalus Enterprises, Inc. One version provides commercial fishing fleets with information about fish locations, and the other is used for oceanographic research.

  3. An Overview of the Design and Development of the Geostationary Operational Environmental Satellite R-Series (GOES-R) Space Segment

    NASA Technical Reports Server (NTRS)

    Sullivan, Pamela C.; Krimchansky, Alexander; Walsh, Timothy J.

    2017-01-01

    The first of the National Oceanic and Atmospheric Administration (NOAA) Geostationary Operational Environmental Satellite R-series (GOES-R) satellites was launched in November 2016. GOES-R has been developed by NOAA in partnership with the National Aeronautics and Space Administration (NASA). The satellite represents a quantum leap in the state of the art for geostationary weather satellites by providing data from a suite of six new instruments. All instruments were developed expressly for this mission, and include two Earth-observing instruments (the Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM)), two solar-viewing instruments (Solar Ultraviolet Imager (SUVI) and Extreme ultraviolet and X-ray Irradiance Sensors (EXIS)) and two in situ instruments (Space Environment In-Situ Suite (SEISS) and a magnetometer pair). In addition to hosting the instruments, GOES-R also accommodates several communication packages designed to collect and relay data for weather forecasting and emergency management. Accommodating the six instruments and four communication payloads imposed challenging and competing constraints on the satellite, including requirements for extremely stable earth and solar pointing, high-speed and nearly error-free instrument data transmission, and a very quiet electromagnetic background. To meet mission needs, GOES-R employed several technological innovations, including low-thrust rocket engines that allow instrument observations to continue during maneuvers, and the first civilian use of Global Positioning System-based orbit determination in geostationary orbit. This paper will provide a brief overview of the GOES-R satellite and its instruments as well as the developmental challenges involved in accommodating the instruments and communications payloads.

  4. Data distribution satellite

    NASA Technical Reports Server (NTRS)

    Price, Kent M.; Jorasch, Ronald E.; Wiskerchen, Michael J.

    1991-01-01

    A description is given of a data distribution satellite (DDS) system. The DDS would operate in conjunction with the tracking and data relay satellite system to give ground-based users real time, two-way access to instruments in space and space-gathered data. The scope of work includes the following: (1) user requirements are derived; (2) communication scenarios are synthesized; (3) system design constraints and projected technology availability are identified; (4) DDS communications payload configuration is derived, and the satellite is designed; (5) requirements for earth terminals and network control are given; (6) system costs are estimated, both life cycle costs and user fees; and (7) technology developments are recommended, and a technology development plan is given. The most important results obtained are as follows: (1) a satellite designed for launch in 2007 is feasible and has 10 Gb/s capacity, 5.5 kW power, and 2000 kg mass; (2) DDS features include on-board baseband switching, use of Ku- and Ka-bands, multiple optical intersatellite links; and (3) system user costs are competitive with projected terrestrial communication costs.

  5. Development of the Electron Drift Instrument (EDI) for Cluster

    NASA Technical Reports Server (NTRS)

    Quinn, Jack; Christensen, John L. (Technical Monitor)

    2001-01-01

    The Electron Drift Instrument (EDI) is a new technique for measuring electric fields in space by detecting the effect on weak beams of test electrons. This U.S. portions of the technique, flight hardware, and flight software were developed for the Cluster mission under this contract. Dr. Goetz Paschmann of the Max Planck Institute in Garching, Germany, was the Principle Investigator for Cluster EDI. Hardware for Cluster was developed in the U.S. at the University of New Hampshire, Lockheed Palo Alto Research Laboratory, and University of California, San Diego. The Cluster satellites carrying the original EDI instruments were lost in the catastrophic launch failure of first flight of the Arianne-V rocket in 1996. Following that loss, NASA and ESA approved a rebuild of the Cluster mission, for which all four satellites were successfully launched in the Summer of 2000. Limited operations of EDI were also obtained on the Equator-S satellite, which was launched in December, 1997. A satellite failure caused a loss of the Equator-S mission after only 5 months, but these operations were extremely valuable in learning about the characteristics and operations of the complex EDI instrument. The Cluster mission, satellites, and instruments underwent an extensive on-orbit commissioning phase in the Fall of 2000, carrying over through January 2001. During this period all elements of the instruments were checked and careful measurements of inter-experiments interferences were made. EDI is currently working exceptionally well in orbit. Initial results verify that all aspects of the instrument are working as planned, and returning highly valuable scientific information. The first two papers describing EDI on-orbit results have been submitted for publication in April, 2001. The principles of the EDI technique, and its implementation on Cluster are described in two papers by Paschmann et al., attached as Appendices A and B. The EDI presentation at the formal Cluster Commissioning

  6. Atmospheric verification mission for the TSS/STARFAC tethered satellite

    NASA Technical Reports Server (NTRS)

    Wood, George M., Jr.; Stuart, Thomas D.; Crouch, Donald S.; Deloach, Richard; Brown, Kenneth G.

    1991-01-01

    Two types of a tethered satellite system (TSS) - a basic 1.8-m-diameter spherical spacecraft and the Shuttle Tethered Aerothermodynamic Research Facility (STARFAC) are considered. Issues related to the deployment and retrieval of a large satellite with exceedingly long tethers are discussed, and the objectives of an Atmospheric Verification Mission (ATM) are outlined. Focus is concentrated on the ATM satellite which will fly after TSS-1 and before the fully instrumented and costlier TSS-2. The differences between the AVM and TSS-2, including the configuration of the aerodynamic stabilizers, instrumentation, and the materials of construction are outlined. The basic Kevlar tether defined for the TSS-2 is being considered for use with the AVM, however, a complex tether is under consideration as well.

  7. The Nimbus satellites - Pioneering earth observers

    NASA Technical Reports Server (NTRS)

    White, Carolynne

    1990-01-01

    The many scientific achievements of the Nimbus series of seven satellites for low-altitude atmospheric research and global weather surveillance are reviewed. The series provides information on fishery resources, weather modeling, atmospheric pollution monitoring, earth's radiation budget, ozone monitoring, ocean dynamics, and the effects of cloudiness. Data produced by the forty-eight instruments and sensors flown on the satellites are applied in the fields of oceanography, hydrology, geology, geomorphology, geography, cartography, agriculture and meteorology. The instruments include the Coastal Zone Color Scanner (which depicts phytoplankton concentrations in coastal areas), the Scanning Multichannel Microwave Radiometer (which measures sea-surface temperatures and sea-surface wind-speed), and the Total Ozone Mapping Spectrometer (which provides information on total amounts of ozone in the earth's atmosphere).

  8. Satellite and ground radiotracking of elk

    NASA Technical Reports Server (NTRS)

    Craighead, F. C., Jr.; Craighead, J. J.; Cote, C. E.; Buechner, H. K.

    1972-01-01

    Radiotracking and monitoring of free-living animals in natural environments is providing an effective new technique for acquiring information on biological processes, including animal orientation and navigation. To test the practicability of extending the technique by using satellite systems for tracking animals, a female elk was instrumented with an electronic collar. It contained both the Interrogation Recording Location System (IRLS) transponder and a Craighead-Varney ground-tracking transmitter. The elk was successfully tracked and monitored by satellite during month of April 1970. This was the first time an animal had been tracked by satellite on the surface of the earth.

  9. Severe storms observing satellite (STORMSAT)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The primary payload for this satellite is the Advanced Atmospheric Sounding and Imaging Radiometer which will perform precise infrared temperature sounding and visible/infrared imaging from geostationary orbit. A secondary payload instrument which may be utilized on STORMSAT is the Microwave Atmospheric Sounding Radiometer which provides an independent set of temperature and humidity sounding in cloudy, meteorologically active regions. The study provides satellite designs and identifies mission-unique subsystems using the Multimission Modular Spacecraft using a Shuttle/Interim Upper Stage launch vehicle.

  10. From SPOT 5 to Pleiades HR: evolution of the instrumental specifications

    NASA Astrophysics Data System (ADS)

    Rosak, A.; Latry, C.; Pascal, V.; Laubier, D.

    2017-11-01

    Image quality specifications should aimed to fulfil high resolution mission requirements of remote sensing satellites with a minimum cost. The most important trade-off to be taken into account is between Modulation Transfer Function, radiometric noise and sampling scheme. This compromise is the main driver during design optimisation and requirement definition in order to achieve good performances and to minimise the mission cost. For the SPOT 5 satellite, a new compromise had been chosen. The supermode principle of imagery (sampling at 2.5 meter with a pixel size of 5 meter) imp roves the resolution by a factor of four compared with the SPOT 4 satellite (10 meter resolution). This paper presents the image quality specifications of the HRG-SPOT 5 instrument. We introduce all the efforts made on the instrument to achieve good image quality and low radiometric noise, then we compare the results with the SPOT 4 instrument's performances to highlight the improvements achieved. Then, the in-orbit performance will be described. Finally, we will present the new goals of image quality specifications for the new Pleiades-HR satellite for earth observation (0.7 meter resolution) and the instrument concept.

  11. Control and acquisition system of a space instrument for cosmic ray measurement

    NASA Astrophysics Data System (ADS)

    Prieto, M.; Martín, C.; Quesada, M.; Meziat, D.; Medina, J.; Sánchez, S.; Rodríguez-Frías, M. D.

    2000-04-01

    The PESCA Instrument Control and Acquisition System (PICAS) design, building and tests are presented. The purpose of the PESCA instrument is the study of the Solar Energetic Particles and the Anomalous Cosmic Rays. It is, therefore, a satellite on-board instrument. The PICAS is basically a computer, composed of a microprocessor with a memory block and a set of interfaces for the communication with the rest of the instrument and the satellite. The PICAS manages all the comunication processes with the satellite, that comprises the order reception from the ground station, and the telemetry sending, that includes scientific data and housekeeping data. By means of telecommands, the PICAS is completely controllable from the ground. The PICAS is also a reliable data acquisition system that guarantees the correct reception of the Cosmic Rays data collected in the ground.

  12. Transient response measurements on a satellite system

    NASA Technical Reports Server (NTRS)

    Nanevicz, J. E.; Adamo, R. C.

    1977-01-01

    A set of instruments designed to detect the occurance of electrical breakdown was flown on a synchronous-orbit satellite. The LeRC sensors were installed on cables inside the vehicle. Accordingly, they respond to signals coupled into the satellite wiring system. The SRI sensors were located on the exterior of the vehicle and detected the RF noise pulses associated with surface breakdowns. The results of the earlier SRI program are being used to design and develop a set of intrumentation suitable for inclusion as a general piggy-back package for the detection of the onset of satellite charging and breakdowns on synchronous orbit satellites.

  13. Inter-calibration and validation of observations from SAPHIR and ATMS instruments

    NASA Astrophysics Data System (ADS)

    Moradi, I.; Ferraro, R. R.

    2015-12-01

    We present the results of evaluating observations from microwave instruments aboard the Suomi National Polar-orbiting Partnership (NPP, ATMS instrument) and Megha-Tropiques (SAPHIR instrument) satellites. The study includes inter-comparison and inter-calibration of observations of similar channels from the two instruments, evaluation of the satellite data using high-quality radiosonde data from Atmospheric Radiation Measurement Program and GPS Radio Occultaion Observations from COSMIC mission, as well as geolocation error correction. The results of this study are valuable for generating climate data records from these instruments as well as for extending current climate data records from similar instruments such as AMSU-B and MHS to the ATMS and SAPHIR instruments. Reference: Moradi et al., Intercalibration and Validation of Observations From ATMS and SAPHIR Microwave Sounders. IEEE Transactions on Geoscience and Remote Sensing. 01/2015; DOI: 10.1109/TGRS.2015.2427165

  14. The role of satellites in snow and ice measurements

    NASA Technical Reports Server (NTRS)

    Wiesnet, D. R.

    1974-01-01

    Earth-orbiting polar satellites are desirable platforms for the remote sensing of snow and ice. Geostationary satellites at a very high altitude (35,900 km) are also desirable platforms for many remote sensors, for communications relay, for flood warning systems, and for telemetry of data from unattended instrumentation in remote, inaccessible places such as the Arctic, Antarctic, or mountain tops. Optimum use of satellite platforms is achieved only after careful consideration of the temporal, spatial, and spectral requirements of the environmental mission. The National Environmental Satellite Service will maintain both types of environmental satellites as part of its mission.

  15. Remote Sensing of Aerosol and their Radiative Properties from the MODIS Instrument on EOS-Terra Satellite: First Results and Evaluation

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram; Tanre, Didier; Remer, Lorraine; Holben, Brent; Lau, William K.-M. (Technical Monitor)

    2001-01-01

    The MODIS instrument was launched on the NASA Terra satellite in Dec. 1999. Since last Oct., the sensor and the aerosol algorithm reached maturity and provide global daily retrievals of aerosol optical thickness and properties. MODIS has 36 spectral channels in the visible to IR with resolution down to 250 m. This allows accurate cloud screening and multi-spectral aerosol retrievals. We derive the aerosol optical thickness over the ocean and most of the land areas, distinguishing between fine (mainly man-made aerosol) and coarse aerosol particles. The information is more precise over the ocean where we derive also the effective radius and scattering asymmetry parameter of the aerosol. New methods to derive the aerosol single scattering albedo are also being developed. These measurements are use to track different aerosol sources, transport and the radiative forcing at the top and bottom of the atmosphere. The AErosol RObotic NETwork of ground based radiometers is used for global validation of the satellite derived optical thickness, size parameters and single scattering albedo and measure additional aerosol parameters that cannot be derived from space.

  16. Design and performances of microcameras and photometers instruments on TARANIS satellite for an advanced characterization of Transient Luminous Event in the upper atmosphere

    NASA Astrophysics Data System (ADS)

    Le Mer-Dachard, Fanny; Cansot, Elodie; Hébert, Philippe; Farges, Thomas; Ravel, Karen; Gaillac, Stéphanie

    2015-10-01

    The TARANIS mission aims at studying upper atmosphere coupling with a scientific nadir-pointing microsatellite - CNES Myriade family - at a low-altitude orbit (700 km). The main objectives are to measure the occurrence of Transient Luminous Event (TLE), impulsive energetic optical phenomena generated by storms according to recently discovered process, and Terrestrial Gamma-ray Flash (TGF), their emissions and trigger factors. TARANIS instruments are currently in manufacturing, assembly, integration and testing phase. The MicroCameras and Photometers instruments (MCP) are in charge of the remote sensing of the sprites and the lightning in optical wavelengths. MicroCameras instrument [MCP-MC] is an imager in the visible and Photometers instrument [MCP-PH] is a radiometer with four bands from UV to NIR, able to detect TLEs on-board and to trigger the whole payload. The satellite will provide a complete survey of the atmosphere in low resolution together with a high resolution data of sites of interest automatically detected on board. For MC and PH instruments, CEA defined scientific needs and is in charge of processing data and providing scientific results. CNES described the technical requirements of these two instruments and will run in-flight commissioning. Design, manufacturing and testing is under responsibility of Sodern for MicroCameras and Bertin Technologies for Photometers. This article shortly describes physical characteristics of TLEs and presents the final design of these instruments and first measured performances.

  17. The GEISA Spectroscopic Database System in its latest Edition

    NASA Astrophysics Data System (ADS)

    Jacquinet-Husson, N.; Crépeau, L.; Capelle, V.; Scott, N. A.; Armante, R.; Chédin, A.

    2009-04-01

    GEISA (Gestion et Etude des Informations Spectroscopiques Atmosphériques: Management and Study of Spectroscopic Information)[1] is a computer-accessible spectroscopic database system, designed to facilitate accurate forward planetary radiative transfer calculations using a line-by-line and layer-by-layer approach. It was initiated in 1976. Currently, GEISA is involved in activities related to the assessment of the capabilities of IASI (Infrared Atmospheric Sounding Interferometer on board the METOP European satellite -http://earth-sciences.cnes.fr/IASI/)) through the GEISA/IASI database[2] derived from GEISA. Since the Metop (http://www.eumetsat.int) launch (October 19th 2006), GEISA/IASI is the reference spectroscopic database for the validation of the level-1 IASI data, using the 4A radiative transfer model[3] (4A/LMD http://ara.lmd.polytechnique.fr; 4A/OP co-developed by LMD and Noveltis with the support of CNES). Also, GEISA is involved in planetary research, i.e.: modelling of Titan's atmosphere, in the comparison with observations performed by Voyager: http://voyager.jpl.nasa.gov/, or by ground-based telescopes, and by the instruments on board the Cassini-Huygens mission: http://www.esa.int/SPECIALS/Cassini-Huygens/index.html. The updated 2008 edition of GEISA (GEISA-08), a system comprising three independent sub-databases devoted, respectively, to line transition parameters, infrared and ultraviolet/visible absorption cross-sections, microphysical and optical properties of atmospheric aerosols, will be described. Spectroscopic parameters quality requirement will be discussed in the context of comparisons between observed or simulated Earth's and other planetary atmosphere spectra. GEISA is implemented on the CNES/CNRS Ether Products and Services Centre WEB site (http://ether.ipsl.jussieu.fr), where all archived spectroscopic data can be handled through general and user friendly associated management software facilities. More than 350 researchers are

  18. Comparing upper tropospheric humidity data from microwave satellite instruments and tropical radiosondes

    NASA Astrophysics Data System (ADS)

    Moradi, Isaac; Buehler, Stefan A.; John, Viju O.; Eliasson, Salomon

    2010-12-01

    Atmospheric humidity plays an important role in the Earth's climate. Microwave satellite data provide valuable humidity observations in the upper troposphere with global coverage. In this study, we compare upper tropospheric humidity (UTH) retrieved from the Advanced Microwave Sounding Unit and the Microwave Humidity Sounder against radiosonde data measured at four of the central facilities of the Atmospheric Radiation Measurement program. The Atmospheric Radiative Transfer Simulator (ARTS) was used to simulate satellite brightness temperatures from the radiosonde profiles. Strong ice clouds were filtered out, as their influence on microwave measurements leads to incorrect UTH values. Day and night radiosonde profiles were analyzed separately to take into account the radiosonde radiation bias. The comparison between radiosonde and satellite is most meaningful for data in cloud-free, nighttime conditions and with a time difference of less than 2 hr. We found good agreement between the two data sets. The satellite data were slightly moister than the radiosonde data, with a mean difference of 1%-2.3% relative humidity (RH), depending on the radiosonde site. Monthly gridded data were also compared and showed a slightly larger mean difference of up to 3.3% RH, which can be explained by sampling issues.

  19. Electron temperature and density probe for small aeronomy satellites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyama, K.-I.; Institute of Space and Plasma Sciences, National Cheng Kung University, Tainan, Taiwan; International Center for Space Weather Study and education, Kyushu University, Fukuoka

    2015-08-15

    A compact and low power consumption instrument for measuring the electron density and temperature in the ionosphere has been developed by modifying the previously developed Electron Temperature Probe (ETP). A circuit block which controls frequency of the sinusoidal signal is added to the ETP so that the instrument can measure both T{sub e} in low frequency mode and N{sub e} in high frequency mode from the floating potential shift of the electrode. The floating potential shift shows a minimum at the upper hybrid resonance frequency (f{sub UHR}). The instrument which is named “TeNeP” can be used for tiny satellites whichmore » do not have enough conductive surface area for conventional DC Langmuir probe measurements. The instrument also eliminates the serious problems associated with the contamination of satellite surface as well as the sensor electrode.« less

  20. Advanced Deployable Structural Systems for Small Satellites

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith; Straubel, Marco; Wilkie, W. Keats; Zander, Martin E.; Fernandez, Juan M.; Hillebrandt, Martin F.

    2016-01-01

    One of the key challenges for small satellites is packaging and reliable deployment of structural booms and arrays used for power, communication, and scientific instruments. The lack of reliable and efficient boom and membrane deployment concepts for small satellites is addressed in this work through a collaborative project between NASA and DLR. The paper provides a state of the art overview on existing spacecraft deployable appendages, the special requirements for small satellites, and initial concepts for deployable booms and arrays needed for various small satellite applications. The goal is to enhance deployable boom predictability and ground testability, develop designs that are tolerant of manufacturing imperfections, and incorporate simple and reliable deployment systems.

  1. Interferometric Imaging of Geostationary Satellites: Signal-to-Noise Considerations

    DTIC Science & Technology

    2011-09-01

    instrument a minute time -scale snapshot imager. Snapshot imaging is im- portant because it allows for resolving short time -scale changes of the satellite ...curves of fringe amplitude standard deviation as a function of satellite V-magnitude, giving the corresponding integration time . From this figure we can...combiner (in R-band). We conclude that it is possible to track fringes on typical highly resolved satellites to a magnitude of V = 14.5. This range

  2. Present-day distribution and trends of global tropospheric ozone from satellite observations: Results from the Tropospheric Ozone Assessment Report (TOAR)

    NASA Astrophysics Data System (ADS)

    Gaudel, A.; Cooper, O. R.; Barret, B.; Boynard, A.; Clerbaux, C.; Pierre-Francois, C.; Huang, G.; Hurtmans, D.; Kerridge, B. J.; Latter, B.; Le Flochmoen, E.; Liu, X.; Neu, J. L.; Siddans, R.; Wespes, C.; Worden, H. M.; Ziemke, J. R.

    2017-12-01

    Tropospheric ozone is a greenhouse gas and pollutant detrimental to human health and crop and ecosystem productivity. Since 1990 a large portion of the anthropogenic emissions that react in the atmosphere to produce ozone have shifted from North America and Europe to Asia. This rapid shift, coupled with limited ozone monitoring in developing nations, has left scientists unable to answer the most basic questions: Is ozone continuing to decline in nations with strong emission controls? To what extent is ozone increasing in the developing world? IGAC's Tropospheric Ozone Assessment Report (TOAR) has been designed to answer these questions and this presentation will show the results from the TOAR-Climate initiative, focusing on the present-day distribution and trends of global tropospheric ozone from satellite observations. Five satellite products based on OMI (2 products using two different retrieval methods) and IASI (also 2 products using two different retrieval methods) and the OMI/MLS combined product were intercompared. An important result is the close agreement among the five products regarding the quantification of the total mass of all tropospheric ozone, the so called tropospheric ozone burden (TOB). The mean estimate for TOB between 60° N and 60° S is 296 Tg, with all products agreeing within ± 4%. However, on a regional basis the five satellite products have notable differences and there is no agreement in terms of ozone trends over the past decade. Continuing work is exploring the causes of these differences.

  3. The artificial satellite observation chronograph controlled by single chip microcomputer.

    NASA Astrophysics Data System (ADS)

    Pan, Guangrong; Tan, Jufan; Ding, Yuanjun

    1991-06-01

    The instrument specifications, hardware structure, software design, and other characteristics of the chronograph mounting on a theodolite used for artificial satellite observation are presented. The instrument is a real time control system with a single chip microcomputer.

  4. Radiation Environment at GEO from the FY2G Satellite Observations

    NASA Astrophysics Data System (ADS)

    Wang, C.

    2016-12-01

    WANG Chun-Qin1,2*, Zhang Shen-Yi1,2 Jing Tao1,2, Zhang Huan-Xin1,2 Li Jia-Wei3 Zhang Xiao-Xin3 Sun Yue-Qiang1,2 Liang Jin-Bao1,2 Wei Fei1,2 Shen Guo-Hong1,2 Huang Cong3 Shi Chun-Yan1,21.National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China; 2.Beijing Key Laboratory of Space Environment Exploration, Beijing 100190,China 3.National Satellite Meteorological Center, National Center for Space Weather, Beijing 100081, China; Abstract Recent measurements of the high energy electrons and protons with energetic particle instrument carried on the FY-2G satellite are presented. The instrument consist of two detectors-the high energy electrons instrument which can measure 200keV to greater than 4MeV electrons with eleven channels, and the high energy protons and heavy ions instrument which mainly senses incident flux of solar protons with seven channels from 4MeV to 300 MeV. The paper shows electrons and protons observations from Jan 2015 until Oct 2015. A precise description and preliminary analysis of particle dynamic during disturbances of magnetic storms、substorms and solar eruptions suggest that both of the detectors show accurate response to various disturbances and provide refined particles data. Comparison results of FY2G satellite with GOES series satellites reflect obvious local difference in particle flux evolvement especially during intensive disturbances time, which can be helpful for data assimilation of multi-satellite as well as further research in more complicated magnetosphere energy particle dynamic.

  5. System design and instrument development for future formation-flying magnetospheric satellite mission SCOPE

    NASA Astrophysics Data System (ADS)

    Saito, Y.; Fujimoto, M.; Maezawa, K.; Kojima, H.; Takashima, T.; Matsuoka, A.; Shinohara, I.; Tsuda, Y.; Higuchi, K.; Toda, T.

    Japan Aerospace Exploration Agency JAXA is currently planning a next generation magnetosphere observation mission called SCOPE cross-Scale COupling in the Plasma universE The main purpose of this mission is to investigate the dynamic behaviors of plasmas in the Terrestrial magnetosphere that range over various time and spatial scales The basic idea of the SCOPE mission is to distinguish temporal and spatial variations of physical processes by putting five formation flying spacecraft into the key region of the Terrestrial magnetosphere The orbit of SCOPE is a highly elliptical orbit with its apogee 30Re from the Earth center SCOPE consists of one 450kg mother satellite and four 90kg daughter satellites flying 5 to 5000km apart from each other The inter-satellite link is used for telemetry command operation as well as ranging to determine the relative orbit of 5 satellites in a small distance which cannot be resolved by the ground-based orbit determination The SCOPE mission is designed such that observational studies from the new perspective that is the cross-scale coupling viewpoint are enabled The orbit is so designed that the spacecraft will visit most of the key regions in the magnetosphere that is the bow shock the magnetospheric boundary the inner-magnetosphere and the near-Earth magnetotail In order to realize the science objectives high performance Plasma Particle sensors DC AC Magnetic and Electric field sensors and Wave Particle Correlator are planned to be onboard the SCOPE satellite All the SCOPE satellites have two 5m spin-axis antenna

  6. Design definition study of the Earth radiation budget satellite system

    NASA Technical Reports Server (NTRS)

    Vonderhaar, T. H.; Wallschlaeger, W. H.

    1978-01-01

    Instruments for measuring the radiation budget components are discussed, and the conceptual design of instruments for the Earth Radiation Budget Satellite System (ERBSS) are reported. Scanning and nonscanning assemblies are described. The ERBSS test program is also described.

  7. GOES (Geostationary Operational Environmental Satellite)-Next Overview.

    DTIC Science & Technology

    1985-09-01

    shows the locations and sizes of warm and cold eddies. r * Hydrological services. GOES (and polar orbiter) data are used to produce maps and charts...rationale used to develop specifications for the N next generation of satellites of this series. The payload * instruments of the current satellites are...reviewed in con- junction with the products prepared from their data outputs. The rationale used by the National Weather Service (NWS) in developing

  8. Assembly of Landsat's TIRS Instrument

    NASA Image and Video Library

    2012-02-14

    Aleksandra Bogunovic reaches across the instrument to affix the corners of a Multi-Layer Insulation blanket to the TIRS instrument. The Thermal Infrared Sensor (TIRS) will fly on the next Landsat satellite, the Landsat Data Continuity Mission (LDCM). TIRS was built on an accelerated schedule at NASA's Goddard Space Flight Center, Greenbelt, Md. and will now be integrated into the LDCM spacecraft at Orbital Science Corp. in Gilbert, Ariz. The Landsat Program is a series of Earth observing satellite missions jointly managed by NASA and the U.S. Geological Survey. Landsat satellites have been consistently gathering data about our planet since 1972. They continue to improve and expand this unparalleled record of Earth's changing landscapes for the benefit of all. For more information on Landsat, visit: www.nasa.gov/landsat Credit: NASA/GSFC/Rebecca Roth NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Scientific analysis of satellite ranging data

    NASA Technical Reports Server (NTRS)

    Smith, David E.

    1994-01-01

    A network of satellite laser ranging (SLR) tracking systems with continuously improving accuracies is challenging the modelling capabilities of analysts worldwide. Various data analysis techniques have yielded many advances in the development of orbit, instrument and Earth models. The direct measurement of the distance to the satellite provided by the laser ranges has given us a simple metric which links the results obtained by diverse approaches. Different groups have used SLR data, often in combination with observations from other space geodetic techniques, to improve models of the static geopotential, the solid Earth, ocean tides, and atmospheric drag models for low Earth satellites. Radiation pressure models and other non-conservative forces for satellite orbits above the atmosphere have been developed to exploit the full accuracy of the latest SLR instruments. SLR is the baseline tracking system for the altimeter missions TOPEX/Poseidon, and ERS-1 and will play an important role in providing the reference frame for locating the geocentric position of the ocean surface, in providing an unchanging range standard for altimeter calibration, and for improving the geoid models to separate gravitational from ocean circulation signals seen in the sea surface. However, even with the many improvements in the models used to support the orbital analysis of laser observations, there remain systematic effects which limit the full exploitation of SLR accuracy today.

  10. Scientific Set of Instruments "Solar Cosmic Rays"

    NASA Astrophysics Data System (ADS)

    Kuznetsov, S. N.; Bogomolov, A. V.; Galkin, V. I.; Denisov, Yu. I.; Podorolsky, A. N.; Ryumin, S. P.; Kudela, K.; Rojko, J.

    A set of scientific instruments SCR (Solar Cosmic Rays) was developed by the scientists of SINP MSU and IEP SAS in order to study relations between the radiation conditions in the near-Earth space and solar activity. This set of instruments was installed on board the satellites CORONAS-I and CORONAS-F launched to the orbit on March 2, 1994, and July 30, 2001, respectively. Detailed description of the instruments is presented.

  11. HYDROSAT - An instrument platform for hydrology

    NASA Technical Reports Server (NTRS)

    Ormsby, J. P.; Engman, E. T.

    1993-01-01

    This paper discusses a multisensor satellite approach for the study of hydrological applications. Spectral as well as spatial and temporal characteristics of specific operational and planned instruments applicable to hydrology are presented. A hydrology specific series of sensors are proposed to fill the gaps not covered by the current and planned systems. We have called this hypothetical platform HYDROSAT. In addition, the trade-offs between a geostationary satellite and a polar orbiter are explored.

  12. A Fast and Sensitive New Satellite SO2 Retrieval Algorithm based on Principal Component Analysis: Application to the Ozone Monitoring Instrument

    NASA Technical Reports Server (NTRS)

    Li, Can; Joiner, Joanna; Krotkov, A.; Bhartia, Pawan K.

    2013-01-01

    We describe a new algorithm to retrieve SO2 from satellite-measured hyperspectral radiances. We employ the principal component analysis technique in regions with no significant SO2 to capture radiance variability caused by both physical processes (e.g., Rayleigh and Raman scattering and ozone absorption) and measurement artifacts. We use the resulting principal components and SO2 Jacobians calculated with a radiative transfer model to directly estimate SO2 vertical column density in one step. Application to the Ozone Monitoring Instrument (OMI) radiance spectra in 310.5-340 nm demonstrates that this approach can greatly reduce biases in the operational OMI product and decrease the noise by a factor of 2, providing greater sensitivity to anthropogenic emissions. The new algorithm is fast, eliminates the need for instrument-specific radiance correction schemes, and can be easily adapted to other sensors. These attributes make it a promising technique for producing longterm, consistent SO2 records for air quality and climate research.

  13. Ten years of OMI observations: scientific highlights and impacts on the new generation of UV/VIS satellite instrumentation

    NASA Astrophysics Data System (ADS)

    Levelt, Pieternel; Veefkind, Pepijn; Bhartia, Pawan; Joiner, Joanna; Tamminen, Johanna; OMI Science Team

    2014-05-01

    contributes to several operational services, including volcanic plume warning systems for aviation, UV forecasts and the air quality forecasts. In this invited talk an overview will be given of unique findings and new scientific results based on OMI data over the last 10 years and which unique OMI instrument features are recurring in the new generation of UV/VIS satellite instrumentation in Europe, USA and Asia.

  14. Progress in Near Real-Time Volcanic Cloud Observations Using Satellite UV Instruments

    NASA Astrophysics Data System (ADS)

    Krotkov, N. A.; Yang, K.; Vicente, G.; Hughes, E. J.; Carn, S. A.; Krueger, A. J.

    2011-12-01

    Volcanic clouds from explosive eruptions can wreak havoc in many parts of the world, as exemplified by the 2010 eruption at the Eyjafjöll volcano in Iceland, which caused widespread disruption to air traffic and resulted in economic impacts across the globe. A suite of satellite-based systems offer the most effective means to monitor active volcanoes and to track the movement of volcanic clouds globally, providing critical information for aviation hazard mitigation. Satellite UV sensors, as part of this suite, have a long history of making unique near-real time (NRT) measurements of sulfur dioxide (SO2) and ash (aerosol Index) in volcanic clouds to supplement operational volcanic ash monitoring. Recently a NASA application project has shown that the use of near real-time (NRT,i.e., not older than 3 h) Aura/OMI satellite data produces a marked improvement in volcanic cloud detection using SO2 combined with Aerosol Index (AI) as a marker for ash. An operational online NRT OMI AI and SO2 image and data product distribution system was developed in collaboration with the NOAA Office of Satellite Data Processing and Distribution. Automated volcanic eruption alarms, and the production of volcanic cloud subsets for multiple regions are provided through the NOAA website. The data provide valuable information in support of the U.S. Federal Aviation Administration goal of a safe and efficient National Air Space. In this presentation, we will highlight the advantages of UV techniques and describe the advances in volcanic SO2 plume height estimation and enhanced volcanic ash detection using hyper-spectral UV measurements, illustrated with Aura/OMI observations of recent eruptions. We will share our plan to provide near-real-time volcanic cloud monitoring service using the Ozone Mapping and Profiler Suite (OMPS) on the Joint Polar Satellite System (JPSS).

  15. Preliminary results from the portable standard satellite laser ranging intercomparison with MOBLAS-7

    NASA Technical Reports Server (NTRS)

    Selden, Michael; Varghese, Thomas K.; Heinick, Michael; Oldham, Thomas

    1993-01-01

    Conventional Satellite Laser Ranging (SLR) instrumentation has been configured and successfully used to provide high-accuracy laboratory measurements on the LAGEOS-2 and TOPEX cube-corner arrays. The instrumentation, referred to as the Portable Standard, has also been used for field measurements of satellite ranges in tandem with MOBLAS-7. Preliminary results of the SLR measurements suggest that improved range accuracy can be achieved using this system. Results are discussed.

  16. Trace Gas Measurements from the GeoTASO and GCAS Airborne Instruments: An Instrument and Algorithm Test-Bed for Air Quality Observations from Geostationary Orbit

    NASA Astrophysics Data System (ADS)

    Nowlan, C. R.; Liu, X.; Janz, S. J.; Leitch, J. W.; Al-Saadi, J. A.; Chance, K.; Cole, J.; Delker, T.; Follette-Cook, M. B.; Gonzalez Abad, G.; Good, W. S.; Kowalewski, M. G.; Loughner, C.; Pickering, K. E.; Ruppert, L.; Soo, D.; Szykman, J.; Valin, L.; Zoogman, P.

    2016-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) and the GEO-CAPE Airborne Simulator (GCAS) instruments are pushbroom sensors capable of making remote sensing measurements of air quality and ocean color. Originally developed as test-bed instruments for the Geostationary Coastal and Air Pollution Events (GEO-CAPE) decadal survey, these instruments are now also part of risk reduction for the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) and Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite missions, and will provide validation capabilities after the satellite instruments are in orbit. GeoTASO and GCAS flew on two different aircraft in their first intensive air quality field campaigns during the DISCOVER-AQ missions over Texas in 2013 and Colorado in 2014. GeoTASO was also deployed in 2016 during the KORUS-AQ field campaign to make measurements of trace gases and aerosols over Korea. GeoTASO and GCAS collect spectra of backscattered solar radiation in the UV and visible that can be used to derive 2-D maps of trace gas columns below the aircraft at spatial resolutions on the order of 250 x 500 m. We present spatially resolved maps of trace gas retrievals of ozone, nitrogen dioxide, formaldehyde and sulfur dioxide over urban areas and power plants from flights during the field campaigns, and comparisons with data from ground-based spectrometers, in situ monitoring instruments, and satellites.

  17. Joint Polar Satellite System: the United States New Generation Civilian Polar Orbiting Environmental Satellite System

    NASA Astrophysics Data System (ADS)

    Mandt, G.

    2017-12-01

    The Joint Polar Satellite System (JPSS) is the Nation's advanced series of polar-orbiting environmental satellites. JPSS represents significant technological and scientific advancements in observations used for severe weather prediction and environmental monitoring. The Suomi National Polar-orbiting Partnership (S-NPP) is providing state-of-the art atmospheric, oceanographic, and environmental data, as the first of the JPSS satellites while the second in the series, J-1, is scheduled to launch in October 2017. The JPSS baseline consists of a suite of four instruments: an advanced microwave and infrared sounders which are critical for weather forecasting; a leading-edge visible and infrared imager critical to data sparse areas such as Alaska and needed for environmental assessments such as snow/ice cover, droughts, volcanic ash, forest fires and surface temperature; and an ozone sensor primarily used for global monitoring of ozone and input to weather and climate models. The same suite of instruments that are on JPSS-1 will be on JPSS-2, 3 and 4. The JPSS-2 instruments are well into their assembly and test phases and are scheduled to be completed in 2018. The JPSS-2 spacecraft critical design review (CDR) is scheduled for 2Q 2018 with the launch in 2021. The sensors for the JPSS-3 and 4 spacecraft have been approved to enter into their acquisition phases. JPSS partnership with the US National Aeronautics and Space Agency (NASA) continues to provide a strong foundation for the program's success. JPSS also continues to maintain its important international relationships with European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) and the Japan Aerospace Exploration Agency (JAXA). JPSS works closely with its user community through the Proving Ground and Risk Reduction (PGRR) Program to identify opportunities to maximize the operational application of current JPSS capabilities. The PGRR Program also helps identify and evaluate the use of JPSS

  18. Color Survey of the Irregular Planetary Satellites

    NASA Astrophysics Data System (ADS)

    Graykowski, Ariel; Jewitt, David

    2017-10-01

    Irregular planetary satellites are characterized by their large orbital distance from their planet, their high eccentricity and their high inclination, all indicating that they were captured. However, the mechanism of capture and the source region of the satellites remain subjects of conjecture. This work presents the optical magnitudes and colors from a photometric survey of 42 irregular satellites with data obtained from the LRIS instrument on the 10-meter telescope at the Keck Observatory in Hawaii. Color is used as a proxy for composition. We compare the satellite populations of different planets and compare the satellites as a whole with other solar system small-body populations. For instance, if irregular satellites were captured from the Kuiper Belt, as is commonly proposed, then some might contain the ultrared material that is common in the trans-Neptunian and Centaur populations. Overall our data show that the irregular satellites lack ultrared matter. They are color-wise more similar to the comets, giant planet Trojans and other bodies of the middle solar system. Implications of our observations, and comparisons with previous color work, will be discussed.

  19. Web-based Data Exploration, Exploitation and Visualization Tools for Satellite Sensor VIS/IR Calibration Applications

    NASA Astrophysics Data System (ADS)

    Gopalan, A.; Doelling, D. R.; Scarino, B. R.; Chee, T.; Haney, C.; Bhatt, R.

    2016-12-01

    The CERES calibration group at NASA/LaRC has developed and deployed a suite of online data exploration and visualization tools targeted towards a range of spaceborne VIS/IR imager calibration applications for the Earth Science community. These web-based tools are driven by the open-source R (Language for Statistical Computing and Visualization) with a web interface for the user to customize the results according to their application. The tool contains a library of geostationary and sun-synchronous imager spectral response functions (SRF), incoming solar spectra, SCIAMACHY and Hyperion Earth reflected visible hyper-spectral data, and IASI IR hyper-spectral data. The suite of six specific web-based tools was designed to provide critical information necessary for sensor cross-calibration. One of the challenges of sensor cross-calibration is accounting for spectral band differences and may introduce biases if not handled properly. The spectral band adjustment factors (SBAF) are a function of the earth target, atmospheric and cloud conditions or scene type and angular conditions, when obtaining sensor radiance pairs. The SBAF will need to be customized for each inter-calibration target and sensor pair. The advantages of having a community open source tool are: 1) only one archive of SCIAMACHY, Hyperion, and IASI datasets needs to be maintained, which is on the order of 50TB. 2) the framework will allow easy incorporation of new satellite SRFs and hyper-spectral datasets and associated coincident atmospheric and cloud properties, such as PW. 3) web tool or SBAF algorithm improvements or suggestions when incorporated can benefit the community at large. 4) The customization effort is on the user rather than on the host. In this paper we discuss each of these tools in detail and explore the variety of advanced options that can be used to constrain the results along with specific use cases to highlight the value-added by these datasets.

  20. Detection of Transionospheric SuperDARN HF Waves by the Radio Receiver Instrument on the enhanced Polar Outflow Probe Satellite

    NASA Astrophysics Data System (ADS)

    Gillies, R. G.; Yau, A. W.; James, H. G.; Hussey, G. C.; McWilliams, K. A.

    2014-12-01

    The enhanced Polar Outflow Probe (ePOP) Canadian small-satellite was launched in September 2013. Included in this suite of eight scientific instruments is the Radio Receiver Instrument (RRI). The RRI has been used to measure VLF and HF radio waves from various ground and spontaneous ionospheric sources. The first dedicated ground transmission that was detected by RRI was from the Saskatoon Super Dual Auroral Radar Network (SuperDARN) radar on Nov. 7, 2013 at 14 MHz. Several other passes over the Saskatoon SuperDARN radar have been recorded since then. Ground transmissions have also been observed from other radars, such as the SPEAR, HAARP, and SURA ionospheric heaters. However, the focus of this study will be on the results obtained from the SuperDARN passes. An analysis of the signal recorded by the RRI provides estimates of signal power, Doppler shift, polarization, absolute time delay, differential mode delay, and angle of arrival. By comparing these parameters to similar parameters derived from ray tracing simulations, ionospheric electron density structures may be detected and measured. Further analysis of the results from the other ground transmitters and future SuperDARN passes will be used to refine these results.

  1. A Comparison of MICROTOPS II and OMI Satellite Ozone Measurements in Novi Sad from 2007 to 2015

    NASA Astrophysics Data System (ADS)

    Podrascanin, Z.; Balog, I.; Jankovic, A.; Mijatovic, Z.; Nadj, Z.

    2017-12-01

    In this paper, we present consecutive daily measurements of the total ozone column (TOC) using MICROTOPS II in Novi Sad, the Republic of Serbia (45.3 N, 19.8 E and the altitude of 84 m) from 2007 to 2015. The MICROTOPS II data set was compared to the ozone monitoring instrument (OMI) satellite data, since there was no nearby comparative long-time series available for the Dobson or Brewer instrument. The data quality control of the measured MICROTOPS II TOC data was carried out before the comparison with the satellite data. The MICROTOPS II was calibrated at the manufacturer's facilities and only TOC values drawn from the 305.5/312.5 nm wavelength combination were compared with the satellite data. The mean bias deviation between MICROTOPS II and OMI satellite data sets was obtained to be less than 2%, and the mean absolute deviation was in the range of 5%. The difference in the mean seasonal TOC values in summer and autumn was less than 0.5%, while in winter and spring this difference reached 2.8%. A possible calibration of MICROTOPS II instrument with the satellite data is presented, where the calibration coefficients for all channels were calculated for every satellite and MICROTPS II data pair during one year. Then, the average value of all the calculated coefficients was used for instrument calibration. The presented calibration improves the MICROTOPS II instrument stability and enables the usage of all the wavelength combinations.

  2. Instrumentation for the Atmospheric Explorer photoelectron spectrometer

    NASA Technical Reports Server (NTRS)

    Peletier, D. P.

    1973-01-01

    The photoelectron spectrometer (PES) is part of the complements of scientific instruments aboard three NASA Atmosphere Explorer (AE) satellites. The PES measures the energy spectrum, angular distribution, and intensity of electrons in the earth's thermosphere. Measurements of energies between 2 and 500 eV are made at altitudes as low as 130 km. The design, characteristics, and performance of the instrument are described.

  3. Overview of the Upper Atmosphere Research Satellite: Observations from 1991 to 2002

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; Douglass, Anne R.

    2003-01-01

    The Upper Atmosphere Research Satellite (UARS) was launched in September 1991 by the Space Shuttle Discovery and continues to make relevant atmospheric measurements (as of October 2002). This successful satellite has fostered a better understanding of the middle atmospheric processes, especially those important in the control of ozone. Seven of the original ten instruments aboard the UARS are still functional and six instruments regularly make measurements. The UARS is in a stable observing configuration, in spite of experiencing several anomalies over its lifetime. It is expected that the UARS will overlap the Earth Observing System (EOS) Aura satellite (scheduled launch in January 2004) for several months before the end of the UARS mission.

  4. Retrieval with Infrared Atmospheric Sounding Interferometer and Validation during JAIVEx

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Smith, William L.; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Stephen A.

    2008-01-01

    A state-of-the-art IR-only retrieval algorithm has been developed with an all-season-global EOF Physical Regression and followed by 1-D Var. Physical Iterative Retrieval for IASI, AIRS, and NAST-I. The benefits of this retrieval are to produce atmospheric structure with a single FOV horizontal resolution (approx. 15 km for IASI and AIRS), accurate profiles above the cloud (at least) or down to the surface, surface parameters, and/or cloud microphysical parameters. Initial case study and validation indicates that surface, cloud, and atmospheric structure (include TBL) are well captured by IASI and AIRS measurements. Coincident dropsondes during the IASI and AIRS overpasses are used to validate atmospheric conditions, and accurate retrievals are obtained with an expected vertical resolution. JAIVEx has provided the data needed to validate the retrieval algorithm and its products which allows us to assess the instrument ability and/or performance. Retrievals with global coverage are under investigation for detailed retrieval assessment. It is greatly desired that these products be used for testing the impact on Atmospheric Data Assimilation and/or Numerical Weather Prediction.

  5. Structural assurance testing for post-shipping satellite inspection

    NASA Astrophysics Data System (ADS)

    Reynolds, Whitney D.; Doyle, Derek; Arritt, Brandon

    2012-04-01

    Current satellite transportation sensors can provide a binary indication of the acceleration or shock that a satellite has experienced during the shipping process but do little to identify if significant structural change has occurred in the satellite and where it may be located. When a sensor indicates that the satellite has experienced shock during transit, an extensive testing process begins to evaluate the satellite functionality. If errors occur during the functional checkout, extensive physical inspection of the structure follows. In this work an alternate method for inspecting satellites for structural defects after shipping is presented. Electro- Mechanical Impedance measurements are used as an indication of the structural state. In partnership with the Air Force Research Laboratory University Nanosatellite Program, Cornell's CUSat mass model was instrumented with piezoelectric transducers and tested under several structural damage scenarios. A method for detecting and locating changes in the structure using EMI data is presented.

  6. Sensitivity of high-spectral resolution and broadband thermal infrared nadir instruments to the chemical and microphysical properties of secondary sulfate aerosols in the upper-troposphere/lower-stratosphere

    NASA Astrophysics Data System (ADS)

    Sellitto, Pasquale; Legras, Bernard

    2016-04-01

    the brightness temperature (BT) spectra observed by satellite instruments. We isolated a marked and typical spectral signature of these aerosol layers between 700 and 1200 cm-1, due to the absorption bands of the sulfate and bisulfate ions and the undissociated sulfuric acid, with the main absorption peaks at 1170 and 905 cm-1 (sulfuric acid vibrational bands). The dependence of the residual aerosol spectral BT signature to the sulfuric acid mixing ratio, and effective number concentration and radius, as well as the role of interfering parameters like the ozone, sulfur dioxide, carbon dioxide and ash absorption, and temperature and water vapour profile uncertainties, are analysed and critically discussed. The information content (degrees of freedom and retrieval uncertainties) of synthetic satellite observations is estimated for different instrumental configurations. High spectral resolution (Infrared Atmospheric Sounding Interferometer (IASI)-like pseudo-observations) and broadband spectral features (Moderate Resolution Imaging Spectroradiometer (MODIS) and Spinning Enhanced Visible and InfraRed Imager (SEVIRI)-like pseudo-observations) approaches are proposed and discussed.

  7. Accomplishments of the MUSICA project to provide accurate, long-term, global and high-resolution observations of tropospheric {H2O,δD} pairs - a review

    NASA Astrophysics Data System (ADS)

    Schneider, Matthias; Wiegele, Andreas; Barthlott, Sabine; González, Yenny; Christner, Emanuel; Dyroff, Christoph; García, Omaira E.; Hase, Frank; Blumenstock, Thomas; Sepúlveda, Eliezer; Mengistu Tsidu, Gizaw; Takele Kenea, Samuel; Rodríguez, Sergio; Andrey, Javier

    2016-07-01

    In the lower/middle troposphere, {H2O,δD} pairs are good proxies for moisture pathways; however, their observation, in particular when using remote sensing techniques, is challenging. The project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) addresses this challenge by integrating the remote sensing with in situ measurement techniques. The aim is to retrieve calibrated tropospheric {H2O,δD} pairs from the middle infrared spectra measured from ground by FTIR (Fourier transform infrared) spectrometers of the NDACC (Network for the Detection of Atmospheric Composition Change) and the thermal nadir spectra measured by IASI (Infrared Atmospheric Sounding Interferometer) aboard the MetOp satellites. In this paper, we present the final MUSICA products, and discuss the characteristics and potential of the NDACC/FTIR and MetOp/IASI {H2O,δD} data pairs. First, we briefly resume the particularities of an {H2O,δD} pair retrieval. Second, we show that the remote sensing data of the final product version are absolutely calibrated with respect to H2O and δD in situ profile references measured in the subtropics, between 0 and 7 km. Third, we reveal that the {H2O,δD} pair distributions obtained from the different remote sensors are consistent and allow distinct lower/middle tropospheric moisture pathways to be identified in agreement with multi-year in situ references. Fourth, we document the possibilities of the NDACC/FTIR instruments for climatological studies (due to long-term monitoring) and of the MetOp/IASI sensors for observing diurnal signals on a quasi-global scale and with high horizontal resolution. Fifth, we discuss the risk of misinterpreting {H2O,δD} pair distributions due to incomplete processing of the remote sensing products.

  8. Software-type Wave-Particle Interaction Analyzer on board the Arase satellite

    NASA Astrophysics Data System (ADS)

    Katoh, Yuto; Kojima, Hirotsugu; Hikishima, Mitsuru; Takashima, Takeshi; Asamura, Kazushi; Miyoshi, Yoshizumi; Kasahara, Yoshiya; Kasahara, Satoshi; Mitani, Takefumi; Higashio, Nana; Matsuoka, Ayako; Ozaki, Mitsunori; Yagitani, Satoshi; Yokota, Shoichiro; Matsuda, Shoya; Kitahara, Masahiro; Shinohara, Iku

    2018-01-01

    We describe the principles of the Wave-Particle Interaction Analyzer (WPIA) and the implementation of the Software-type WPIA (S-WPIA) on the Arase satellite. The WPIA is a new type of instrument for the direct and quantitative measurement of wave-particle interactions. The S-WPIA is installed on the Arase satellite as a software function running on the mission data processor. The S-WPIA on board the Arase satellite uses an electromagnetic field waveform that is measured by the waveform capture receiver of the plasma wave experiment (PWE), and the velocity vectors of electrons detected by the medium-energy particle experiment-electron analyzer (MEP-e), the high-energy electron experiment (HEP), and the extremely high-energy electron experiment (XEP). The prime objective of the S-WPIA is to measure the energy exchange between whistler-mode chorus emissions and energetic electrons in the inner magnetosphere. It is essential for the S-WPIA to synchronize instruments to a relative time accuracy better than the time period of the plasma wave oscillations. Since the typical frequency of chorus emissions in the inner magnetosphere is a few kHz, a relative time accuracy of better than 10 μs is required in order to measure the relative phase angle between the wave and velocity vectors. In the Arase satellite, a dedicated system has been developed to realize the time resolution required for inter-instrument communication. Here, both the time index distributed over all instruments through the satellite system and an S-WPIA clock signal are used, that are distributed from the PWE to the MEP-e, HEP, and XEP through a direct line, for the synchronization of instruments within a relative time accuracy of a few μs. We also estimate the number of particles required to obtain statistically significant results with the S-WPIA and the expected accumulation time by referring to the specifications of the MEP-e and assuming a count rate for each detector.

  9. GOES Imager Instrument - NOAA Satellite Information System (NOAASIS);

    Science.gov Websites

    Instrument Characteristics (GOES I-M) Channel number: 1 (Visible) 2 (Shortwave) 3 (Moisture) 4 (IR 1) 5 (IR 2 ) Infrared: 30 minutes typical System absolute accuracy IR channels: less than or equal to 1 K Visible

  10. An observational philosophy for GEOS-C satellite altimetry

    NASA Technical Reports Server (NTRS)

    Weiffenbach, G. C.

    1972-01-01

    The parameters necessary for obtaining a 10 cm accuracy for GEOS-C satellite altimetry are outlined. These data include oceanographic parameters, instrument calibration, pulse propagation, sea surface effects, and optimum design.

  11. Monthly mean global satellite data sets available in CCM history tape format

    NASA Technical Reports Server (NTRS)

    Hurrell, James W.; Campbell, G. Garrett

    1992-01-01

    Satellite data for climate monitoring have become increasingly important over the past decade, especially with increasing concern for inadvertent antropogenic climate change. Although most satellite based data are of short record, satellites can provide the global coverage that traditional meteorological observations network lack. In addition, satellite data are invaluable for the validation of climate models, and they are useful for many diagnostic studies. Herein, several satellite data sets were processed and transposed into 'history tape' format for use with the Community Climate Model (CCM) modular processor. Only a few of the most widely used and best documented data sets were selected at this point, although future work will expand the number of data sets examined as well as update the archived data sets. An attempt was made to include data of longer record and only monthly averaged data were processed. For studies using satellite data over an extended period, it is important to recognize the impact of changes in instrumentation, drift in instrument calibration, errors introduced by retrieval algorithms and other sources of errors such as those resulting from insufficient space and/or time sampling.

  12. Space Weather Monitoring with GOES-16: Instruments and Data Products

    NASA Astrophysics Data System (ADS)

    Loto'aniu, Paul; Rodriguez, Juan; Redmon, Robert; Machol, Janet; Kress, Brian; Seaton, Daniel; Darnel, Jonathan; Rowland, William; Tilton, Margaret; Denig, William; Boudouridis, Athanasios; Codrescu, Stefan; Claycomb, Abram

    2017-04-01

    Since their inception in the 1970s, the NOAA GOES satellites have monitored the sources of space weather on the sun and the effects of space weather at Earth. The GOES-16 spacecraft, the first of four satellites as part of the GOES-R spacecraft series mission, was launched in November 2016. The space weather instruments on GOES-16 have significantly improved capabilities over older GOES instruments. They will image the sun's atmosphere in extreme-ultraviolet and monitor solar irradiance in X-rays and UV, solar energetic particles, magnetospheric energetic particles, galactic cosmic rays, and the Earth's magnetic field. These measurements are important for providing alerts and warnings to many worldwide customers, including the NOAA National Weather Service, satellite operators, the power utilities, and NASA's human activities in space. This presentation reviews the capabilities of the GOES-16 space weather instruments and presents initial post launch data along with a discussion of calibration activities and the current status of the instruments. We also describe the space weather Level 2+ products that are being developed for the GOES-R series including solar thematic maps, automated magnetopause crossing detection and spacecraft charging estimates. These new and continuing data products will be an integral part of NOAA space weather operations in the GOES-R era.

  13. (?) The Air Force Geophysics Laboratory: Aeronomy, aerospace instrumentation, space physics, meteorology, terrestrial sciences and optical physics

    NASA Astrophysics Data System (ADS)

    McGinty, A. B.

    1982-04-01

    Contents: The Air Force Geophysics Laboratory; Aeronomy Division--Upper Atmosphere Composition, Middle Atmosphere Effects, Atmospheric UV Radiation, Satellite Accelerometer Density Measurement, Theoretical Density Studies, Chemical Transport Models, Turbulence and Forcing Functions, Atmospheric Ion Chemistry, Energy Budget Campaign, Kwajalein Reference Atmospheres, 1979, Satellite Studies of the Neutral Atmosphere, Satellite Studies of the Ionosphere, Aerospace Instrumentation Division--Sounding Rocket Program, Satellite Support, Rocket and Satellite Instrumentation; Space Physics Division--Solar Research, Solar Radio Research, Environmental Effects on Space Systems, Solar Proton Event Studies, Defense Meteorological Satellite Program, Ionospheric Effects Research, Spacecraft Charging Technology; Meteorology Division--Cloud Physics, Ground-Based Remote-Sensing Techniques, Mesoscale Observing and Forecasting, Design Climatology, Aircraft Icing Program, Atmospheric Dynamics; Terrestrial Sciences Division--Geodesy and Gravity, Geokinetics; Optical Physics Division--Atmospheric Transmission, Remote Sensing, INfrared Background; and Appendices.

  14. Energetic charged particle interactions at icy satellites

    NASA Astrophysics Data System (ADS)

    Nordheim, T.; Hand, K. P.; Paranicas, C.; Howett, C.; Hendrix, A. R.

    2016-12-01

    Satellites embedded within planetary magnetospheres are typically exposed to bombardment by charged particles, from thermal plasma to more energetic particles at radiation belt energies. At many planetary satellites, energetic charged particles are typically unimpeded by patchy atmospheres or induced satellite magnetic fields and instead are stopped in the surface itself. Most of these primaries have ranges in porous water ice that are at most centimeters, but some of their secondary photons, emitted during the deceleration process, can reach meter depths [Paranicas et al., 2002, 2004; Johnson et al., 2004]. Examples of radiation-induced surface alteration includes sputtering, radiolysis and grain sintering, processes that are capable of significantly altering the physical properties of surface material. Thus, accurate characterization of energetic charged particle weathering at icy satellites is crucial to a more comprehensive understanding of these bodies. At Saturn's inner mid-size moons remote sensing observations by several instruments onboard the Cassini spacecraft have revealed distinct weathering patterns which have been attributed to energetic electron bombardment of the surface [Howett et al., 2011, 2012, 2014; Schenk et al., 2011; Paranicas et al., 2014]. In the Jovian system, radiolytic production of oxidants has been invoked as a potential source of energy for life which may reside in the sub-surface ocean of its satellite Europa [Johnson et al., 2003; Hand et al., 2007; Vance et al., 2016]. Here we will discuss the near-surface energetic charged particle environment of icy satellites, with particular emphasis on comparative studies between the Saturnian and Jovian systems and interpretation of remote sensing observations by instruments onboard missions such as Cassini and Galileo. In addition, we will discuss implications for surface sampling by future lander missions (e.g. the proposed Europa lander now under study).

  15. Development of unified propulsion system for geostationary satellite

    NASA Astrophysics Data System (ADS)

    Murayama, S.; Kobayashi, H.; Masuda, I.; Kameishi, M.; Miyoshi, K.; Takahashi, M.

    Japan's first Liquid Apogee Propulsion System (LAPS) has been developed for ETS-VI (Engineering Test Satellite - VI) 2-ton class geostationary satellite. The next largest (2-ton class) geostationary satellite, COMETS (Communication and Broadcasting Engineering Test Satellite), requires a more compact apogee propulsion system in order to increase the space for mission instruments. The study for such a propulsion system concluded with a Unified Propulsion System (UPS), which uses a common N2H4 propellant tank for both bipropellant apogee engines and monopropellant Reaction Control System (RCS) thrusters. This type of propulsion system has several significant advantages compared with popular nitrogen tetroxide/monomethyl hydrazine (NTO/MMH) bipropellant satellite propulsion systems: The NTO/N2H4 apogee engine has a high specific impulse, and N2H4 thrusters have high reliability. Residual of N2H4 caused by propellant utilization of apogee engine firing (AEF) can be consumed by N2H4 monopropellant thrusters; that means a considerably prolonged satellite life.

  16. Coupling Satellite and Ground-Based Instruments to Map Climate Forcing by Anthropogenic Aerosols

    NASA Technical Reports Server (NTRS)

    Charlson, Robert J.; Anderson, Theodore L.; Hostetler, Chris (Technical Monitor)

    2000-01-01

    Climate forcing by anthropogenic aerosols is a significant but highly uncertain factor in global climate change. Only satellites can offer the global coverage essential to reducing this uncertainty; however, satellite measurements must be coupled with correlative, in situ measurements both to constrain the aerosol optical properties required in satellite retrieval algorithms and to provide chemical identification of aerosol sources. This grant funded the first two years of a three-year project which seeks to develop methodologies for combining spaceborne lidar with in-situ aerosol data sets to improve estimates of direct aerosol climate forcing. Progress under this two-year grant consisted in the development and deployment of a new in-situ capability for measuring aerosol 180' backscatter and the extinction-to-backscatter ratio. This new measurement capacity allows definitive lidar/in-situ comparisons and improves our ability to interpret lidar data in terms of climatically relevant quantities such as the extinction coefficient and optical depth. Measurements were made along the coast of Washington State, in Central Illinois, over the Indian Ocean, and in the Central Pacific. Thus, this research, combined with previous measurements by others, is rapidly building toward a global data set of extinction-to-backscatter ratio for key aerosol types. Such information will be critical to interpreting lidar data from the upcoming PICASSO-CENA, or P-C, satellite mission. Another aspect of this project is to investigate innovative ways to couple the lidar-satellite signal with targeted in-situ measurements toward a direct determination of aerosol forcing. This aspect is progressing in collaboration with NASA Langley's P-C lidar simulator and radiative transfer modeling by the University of Lille, France.

  17. Coupling Satellite and Ground-Based Instruments to Map Climate Forcing by Anthropogenic Aerosol

    NASA Technical Reports Server (NTRS)

    Charlson, Robert J.; Anderson, Theodore L.; Hostetler, Chris (Technical Monitor)

    2000-01-01

    Climate forcing by anthropogenic aerosols is a significant but highly uncertain factor in global climate change. Only satellites can offer the global coverage essential to reducing this uncertainty; however, satellite measurements must be coupled with correlative, in situ measurements both to constrain the aerosol optical properties required in satellite retrieval algorithms and to provide chemical identification of aerosol sources. This grant funded the third year of a three-year project which seeks to develop methodologies for combining spaceborne lidar with in-situ aerosol data sets to improve estimates of direct aerosol climate forcing. Progress under this one-year grant consisted in analysis and publication of field studies using a new in-situ capability for measuring aerosol 180 deg backscatter and the extinction-to-backscatter ratio. This new measurement capacity allows definitive lidar/in-situ comparisons and improves our ability to interpret lidar data in terms of climatically relevant quantities such as the extinction coefficient and optical depth. Analyzed data consisted of measurements made along the coast of Washington State, in Central Illinois, over the Indian Ocean, and in the Central Pacific. Thus, this research, combined with previous measurements by others, is rapidly building toward a global data set of extinction-to-backscatter ratio for key aerosol types. Such information will be critical to interpreting lidar data from the upcoming PICASSO-CENA, or P-C, satellite mission. Another aspect of this project is to investigate innovative ways to couple the lidar-satellite signal with target in-situ measurements toward a direct determination of aerosol forcing. This aspect is progressing in collaboration with NASA Langley's P-C lidar simulator.

  18. New GOES satellite synchronized time code generation

    NASA Technical Reports Server (NTRS)

    Fossler, D. E.; Olson, R. K.

    1984-01-01

    The TRAK Systems' GOES Satellite Synchronized Time Code Generator is described. TRAK Systems has developed this timing instrument to supply improved accuracy over most existing GOES receiver clocks. A classical time code generator is integrated with a GOES receiver.

  19. The Combined Release and Radiation Effects Satellite program (CRRES): A unique series of scientific experiments

    NASA Technical Reports Server (NTRS)

    1991-01-01

    CRRES is a program to study the space environment which surrounds Earth and the effects of space radiation on modern satellite electronic systems. The satellite will carry an array of active experiments including chemical releases and a complement of sophisticated scientific instruments to accomplish these objectives. Other chemical release active experiments will be performed with suborbital rocket probes. These chemical releases will paint the magnetic and electric fields in Earthspace with clouds of glowing ions. Earthspace will be a laboratory, and the releases will be studied with an extensive network of ground-, aircraft-, and satellite-based diagnostic instruments.

  20. History of satellite missions and measurements of the Earth Radiation Budget (1957-1984)

    NASA Technical Reports Server (NTRS)

    House, F. B.; Gruber, A.; Hunt, G. E.; Mecherikunnel, A. T.

    1986-01-01

    The history of satellite missions and their measurements of the earth radiation budget from the beginning of the space age until the present time are reviewed. The survey emphasizes the early struggle to develop instrument systems to monitor reflected shortwave and emitted long-wave exitances from the earth, and the problems associated with the interpretation of these observations from space. In some instances, valuable data sets were developed from satellite measurements whose instruments were not specifically designed for earth radiation budget observations.

  1. Heating of the quiet solar corona from measurements of the FET/TESIS instrument on-board the KORONAS-FOTON satellite

    NASA Astrophysics Data System (ADS)

    Rybák, J.; Gömöry, P.; Benz, A.; Bogachev, P.; Brajša, R.

    2010-12-01

    The paper presents the first results of the observations of time evolution of the quiet solar corona brightenings obtained due to very rapid photography of the corona with full-disk EUV telescopes of the FET/TESIS instrument onboard the KORONA FOTON satellite. The measurements were performed simultaneously in the emission of the Fe IX / X 17.1 and Fe VIII 13.1 spectral lines with 10 second temporal cadence and spatial scale of 1.7 arc seconds within one hour. This test observation, carried out on 15 July 2009, was analyzed in order to determine whether this type of observation can be used to identify individual microevents in the solar corona heating that are above the tresholds of spatial and temporal resolutions of the observations of non-active regions in the solar atmosphere. For this purpose, a simple method was used involving cross-correlation of the plasma emission time evolution at different temperatures, each time from observations of identical elements. The results obtained are confronted with the expected observable manifestations of the corona heating via nanoflares. TESIS is a set of instruments for the Sun photography developed in the Lebedev Physics Institute of the Russian Academy of Sciences that was launched into orbit in January 2009.

  2. Active Cavity Irradiance Monitor Satellite ACRIMSAT Artist Concept

    NASA Image and Video Library

    1999-12-21

    The Active Cavity Irradiance Monitor Satellite, or ACRIMSAT, mission is a climate change investigation that measures changes in how much of the sun's energy reaches Earth's atmosphere. This energy, called solar irradience, creates winds, heats the land and drives ocean currents, and therefore contains significant data that climatologists can use to improve predictions of climate change and global warming. The satellite's Active Cavity Irradiance Monitor III instrument, now in its third generation, has been used since the 1980s to study solar irradiance and its impacts on global warming. Scientists, using data from the instrument, now theorize that there is a significant correlation between solar radiation and global warming. ACRIMSAT completed its five-year primary mission in 2005 when it began operating under its extended mission. http://photojournal.jpl.nasa.gov/catalog/PIA18157

  3. Arctic Methane: the View from Space

    NASA Astrophysics Data System (ADS)

    Leifer, I.; Yurganov, L.; Xiong, X.

    2014-12-01

    Global increase of methane that started in 2007-2008 after a decade of stability requires investigation and explanation. Recent Arctic warming has stimulated speculation about dissociation of Arctic Ocean methane hydrates providing a potentially important new climatic positive feedback. Satellite thermal infrared (TIR) data do not require sunlight, providing key advantages for Arctic data collection compared to shortwave infrared spectroscopy. The US Atmospheric IR Sounder (AIRS) has been delivering CH4 tropospheric data since 2002; NOAA CH4 retrievals from the European Infrared Atmospheric Sounding Interferometer (IASI) radiation data are available since 2008 and analyzed here since 2009. Accuracy of TIR satellite retrievals, especially for the lower troposphere, diminishes for a cold, underlying surface. In this analysis the dependence is parameterized using the Thermal Contrast (a difference between surface temperature and air temperature at the altitude of 4 km, defined THC). A correction function was applied to CH4 data based on a data-derived relationship between THC and retrieved CH4 for areas with positive THC (in other words, without temperature inversions). The seasonal cycles of the adjusted low tropospheric data are in agreement with the surface in situ measurements. Instantaneous IASI retrievals exhibit less variability than AIRS v6 data. Maximum positive deviation of methane concentration measured by IASI for the study period was found for Baffin Bay in November-December, 2013 (Figure). It was concluded that the methane anomaly could indicate both coastal and off-shore emissions. Off-shore data were spatially consistent with a hydrate dissociation mechanisms, active for water depths below the hydrate stability zone top at ~300 m. These are hypothesized to dissociate during seasonal temperature maximum in the bottom layer of the ocean, which occurs in fall. IASI data may be considered as a reliable source of information about Arctic CH4 for conditions

  4. Assessment of needs for satellite tracking of birds and suggestions for expediting a program. [experimental design using Nimbus 6

    NASA Technical Reports Server (NTRS)

    Craighead, F. C., Jr.

    1978-01-01

    Equipment development and testing, animal-instrument interphase or attachment methods, and the evaluation of various feasibility-tracking experiments with raptors are described as well as suggestions for expediting a future program. Results of animal-instrument interphases work indicate that large free-flying birds can be successfully instrumented with radio packages comparable in weight to satellite-transmitter packages. The 401 MHz frequency proved satisfactory for a combination of satellite and ground tracking of migrating birds. Tests run for nearly a year with the Nimbus 6 satellite and a miniaturized, one-watt prototype RAMS transmitter produced encouraging results in regard to location accuracy, frequency of contact with satellite and use of whip antennas. A future program is recommended with priority given to development of six operational transmitters for feasibility experiments.

  5. Assembly of Landsat's TIRS Instrument

    NASA Image and Video Library

    2012-02-14

    Aleksandra Bogunovic (left) and Veronica Otero (right) look on while Pete Steigner (in the middle) adds a flow tube that will make sure that nitrogen gas flows through the instrument while it's being shipped. The gas will keep contaminating particles from infiltrating the instrument. The Thermal Infrared Sensor (TIRS) will fly on the next Landsat satellite, the Landsat Data Continuity Mission (LDCM). TIRS was built on an accelerated schedule at NASA's Goddard Space Flight Center, Greenbelt, Md. and will now be integrated into the LDCM spacecraft at Orbital Science Corp. in Gilbert, Ariz. The Landsat Program is a series of Earth observing satellite missions jointly managed by NASA and the U.S. Geological Survey. Landsat satellites have been consistently gathering data about our planet since 1972. They continue to improve and expand this unparalleled record of Earth's changing landscapes for the benefit of all. For more information on Landsat, visit: www.nasa.gov/landsat Credit: NASA/GSFC/Rebecca Roth NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. Calibration for the SAGE III/EOS instruments

    NASA Technical Reports Server (NTRS)

    Chu, W. P.; Mccormick, M. P.; Zawodny, J. M.; Mcmaster, L. R.

    1991-01-01

    The calibration plan for the SAGE III instruments for maintaining instrument performance during the Earth Observing System (EOS) mission lifetime is described. The SAGE III calibration plan consists of detailed preflight and inflight calibration on the instrument performance together with the correlative measurement program to validate the data products from the inverted satellite measurements. Since the measurement technique is primarily solar/lunar occultation, the instrument will be self-calibrating by using the sun as the calibration source during the routine operation of the instrument in flight. The instrument is designed to perform radiometric calibration of throughput, spectral, and spatial response in flight during routine operation. Spectral calibration can be performed in-flight from observation of the solar Fraunhofer lines within the spectral region from 290 to 1030 nm wavelength.

  7. Infrared calibration for climate: a perspective on present and future high-spectral resolution instruments

    NASA Astrophysics Data System (ADS)

    Revercomb, Henry E.; Anderson, James G.; Best, Fred A.; Tobin, David C.; Knuteson, Robert O.; LaPorte, Daniel D.; Taylor, Joe K.

    2006-12-01

    The new era of high spectral resolution infrared instruments for atmospheric sounding offers great opportunities for climate change applications. A major issue with most of our existing IR observations from space is spectral sampling uncertainty and the lack of standardization in spectral sampling. The new ultra resolution observing capabilities from the AIRS grating spectrometer on the NASA Aqua platform and from new operational FTS instruments (IASI on Metop, CrIS for NPP/NPOESS, and the GIFTS for a GOES demonstration) will go a long way toward improving this situation. These new observations offer the following improvements: 1. Absolute accuracy, moving from issues of order 1 K to <0.2-0.4 K brightness temperature, 2. More complete spectral coverage, with Nyquist sampling for scale standardization, and 3. Capabilities for unifying IR calibration among different instruments and platforms. However, more needs to be done to meet the immediate needs for climate and to effectively leverage these new operational weather systems, including 1. Place special emphasis on making new instruments as accurate as they can be to realize the potential of technological investments already made, 2. Maintain a careful validation program for establishing the best possible direct radiance check of long-term accuracy--specifically, continuing to use aircraft-or balloon-borne instruments that are periodically checked directly with NIST, and 3. Commit to a simple, new IR mission that will provide an ongoing backbone for the climate observing system. The new mission would make use of Fourier Transform Spectrometer measurements to fill in spectral and diurnal sampling gaps of the operational systems and provide a benchmark with better than 0.1K 3-sigma accuracy based on standards that are verifiable in-flight.

  8. Solar Radiation and Climate Experiment (SORCE) Satellite

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This is a close-up of the NASA-sponsored Solar Radiation and Climate Experiment (SORCE) Satellite. The SORCE mission, launched aboard a Pegasus rocket January 25, 2003, will provide state of the art measurements of incoming x-ray, ultraviolet, visible, near-infrared, and total solar radiation. Critical to studies of the Sun and its effect on our Earth system and mankind, SORCE will provide measurements that specifically address long-term climate change, natural variability and enhanced climate prediction, and atmospheric ozone and UV-B radiation. Orbiting around the Earth accumulating solar data, SORCE measures the Sun's output with the use of state-of-the-art radiometers, spectrometers, photodiodes, detectors, and bolo meters engineered into instruments mounted on a satellite observatory. SORCE is carrying 4 instruments: The Total Irradiance Monitor (TIM); the Solar Stellar Irradiance Comparison Experiment (SOLSTICE); the Spectral Irradiance Monitor (SIM); and the XUV Photometer System (XPS).

  9. National Geodetic Satellite Program, Part 1

    NASA Technical Reports Server (NTRS)

    Henriksen, S. W. (Editor)

    1977-01-01

    The work performed by individual contributors to the National Geodetic Satellite Program is presented. The purpose of the organization, the instruments used in obtaining the data, a description of the data itself, the theory used in processing the data, and evaluation of the results are detailed for the participating organizations.

  10. On-orbit checkout of satellites, volume 2. Part 3 of on-orbit checkout study. [space maintenance

    NASA Technical Reports Server (NTRS)

    Pritchard, E. I.

    1978-01-01

    Early satellite failures significantly degrading satellite operations are reviewed with emphasis on LANDSAT D, the Technology Demonstration Satellite, the ATREX/AEM spacecraft, STORMSAT 2, and the synchronous meteorological satellite. Candidates for correction with on-orbit checkout and appropriate actions are analyzed. On-orbit checkout subsystem level studies are summarized for electrical power, attitude control, thermal control, reaction control and propulsion, instruments, and angular rate matching for alignment of satellite IRU.

  11. Some validation results of orbital and ground based CO and CH4 total content measurements in background and industrial regions

    NASA Astrophysics Data System (ADS)

    Rakitin, Vadim; Shtabkin, Yury; Elansky, Nikolai; Skorokhod, Andrey; Safronov, Alexandr; Dzhola, Anatoly

    2015-04-01

    The results of ground-based spectroscopic measurements of CO and CH4 total content (TC) in Moscow, Zvenigorod (53 km toward West from the Moscow center), ZOTTO station (Central Siberia) and Beijing (China) during 2010-2014 years for conditions of typical and anomalous emission rates are presented and compared with satellite TC data (the latest versions of MOPITT, AIRS, IASI products). The empiric coefficients and relationships between data of ground-based and satellite CO and CH4 total contents (TC) are discussed. The comparison demonstrated a good agreement (R2 ~ 0.6-0.9) of satellite and ground-based CO TC data in low pollution conditions and systematic underestimation of satellite CO TC (150-300 %) in condition of intense surface emissions (events of wild fires in Siberia in 2011-2012 and strong atmospheric pollutions in Beijing). The best correlation (R2 ~ 0.4) for polluted conditions of Beijing was obtained in summer time-period for averaged AIRS v.6 CO TC data for 1o*1o grid, but K=Ugrb/Ustl = 2.5, where Ugrb and Ustlare ground based and satellite diurnal TC values relatively. Under excluding of the days with low ABL heights (HABL ≥1000m selection) the correlation between satellite and ground based CO TC diurnal data increases (R2 ~ 0.7, K=1.5). Orbital AIRS CH4 total columns good enough correlate with ground-based data (R2 ~0.4-0.7). IASI CH4TC diurnal data have no correlation with AIRS and ground-based TC.

  12. Satellite Studies of Storm-Time Thermospheric Winds

    NASA Technical Reports Server (NTRS)

    Fejer, Bela G.

    2005-01-01

    In this project we have studied the climatology and storm-time dependence of longitude-averaged mid- and low-latitude thermospheric neutral winds observed by the WINDII instrument on board the UARS satellite. This satellite is in a circular, 57 deg inclination orbit at a height of 585 km; the orbit precesses at a rate of 5 deg per day. WINDII is a Michelson interferometer that measures Doppler shifts of the green line (557.7 nm) and red line (630.0 nm) airglow emissions at the Earth's limb, covering latitudes up to 72 deg.

  13. Interstellar matter research with the Copernicus satellite

    NASA Technical Reports Server (NTRS)

    Spitzer, L., Jr.

    1976-01-01

    The use of the Copernicus satellite in an investigation of interstellar matter makes it possible to study absorption lines in the ultraviolet range which cannot be observed on the ground because of atmospheric absorption effects. A brief description is given of the satellite and the instrument used in the reported studies of interstellar matter. The results of the studies are discussed, giving attention to interstellar molecular hydrogen, the chemical composition of the interstellar gas, the coronal gas between the stars, and the interstellar abundance ratio of deuterium to hydrogen.

  14. 2013 Yosemite Fire Assessed by NASA Satellite Data

    NASA Image and Video Library

    2014-09-02

    In this image from NASA Aqua satellite, the red areas seen by the MODIS instrument revealed that live fuel moisture had excessively dried up by more than 50 percent prior to the Rim Fire in August 2013.

  15. Translating Radiometric Requirements for Satellite Sensors to Match International Standards.

    PubMed

    Pearlman, Aaron; Datla, Raju; Kacker, Raghu; Cao, Changyong

    2014-01-01

    International scientific standards organizations created standards on evaluating uncertainty in the early 1990s. Although scientists from many fields use these standards, they are not consistently implemented in the remote sensing community, where traditional error analysis framework persists. For a satellite instrument under development, this can create confusion in showing whether requirements are met. We aim to create a methodology for translating requirements from the error analysis framework to the modern uncertainty approach using the product level requirements of the Advanced Baseline Imager (ABI) that will fly on the Geostationary Operational Environmental Satellite R-Series (GOES-R). In this paper we prescribe a method to combine several measurement performance requirements, written using a traditional error analysis framework, into a single specification using the propagation of uncertainties formula. By using this approach, scientists can communicate requirements in a consistent uncertainty framework leading to uniform interpretation throughout the development and operation of any satellite instrument.

  16. Translating Radiometric Requirements for Satellite Sensors to Match International Standards

    PubMed Central

    Pearlman, Aaron; Datla, Raju; Kacker, Raghu; Cao, Changyong

    2014-01-01

    International scientific standards organizations created standards on evaluating uncertainty in the early 1990s. Although scientists from many fields use these standards, they are not consistently implemented in the remote sensing community, where traditional error analysis framework persists. For a satellite instrument under development, this can create confusion in showing whether requirements are met. We aim to create a methodology for translating requirements from the error analysis framework to the modern uncertainty approach using the product level requirements of the Advanced Baseline Imager (ABI) that will fly on the Geostationary Operational Environmental Satellite R-Series (GOES-R). In this paper we prescribe a method to combine several measurement performance requirements, written using a traditional error analysis framework, into a single specification using the propagation of uncertainties formula. By using this approach, scientists can communicate requirements in a consistent uncertainty framework leading to uniform interpretation throughout the development and operation of any satellite instrument. PMID:26601032

  17. Use of satellite data in volcano monitoring

    NASA Technical Reports Server (NTRS)

    Mcclelland, Lindsay

    1987-01-01

    It is argued that Total Ozone Mapping Spectrometer (TOMS) data, especially data on sulfur dioxide detection in volcanic clouds, and weather satellite data complement each other. TOMS data is most useful for discovering previously unknown eruptions and indicating a minimum volume of SO sub 2 produced by a given eruption. Once an eruption has been reported, weather satellite data can be used to accurately monitor its progress. To be used effectively, these data need to be analyzed jointly and in real time. Toward this end, it is hoped that full and timely utilization can be made of existing TOMS data, a polar orbiting TOMS can be launched in the near future, and that TOMS type instruments can be included on future geostationary satellites.

  18. Launch summary for 1978 - 1982. [sounding rockets, space probes, and satellites

    NASA Technical Reports Server (NTRS)

    Hills, H. K.

    1984-01-01

    Data pertinent to the launching of space probes, soundings rockets, and satellites presented in tables include launch date, time, and site; agency rocket identification; sponsoring country or countries; instruments carried for experiments; the peak altitude achieved by the rockets; and the apoapsis and periapsis for satellites. The experimenter or institution involved in the launching is also cited.

  19. Application of multi-constituent satellite data assimilation for KORUS-AQ

    NASA Astrophysics Data System (ADS)

    Miyazaki, K.; Sekiya, T.; Fu, D.; Bowman, K. W.; Kulawik, S. S.; Walker, T.; Takigawa, M.; Ogochi, K.; Gaubert, B.; Barré, J.; Emmons, L. K.

    2017-12-01

    Comprehensive tropospheric maps of multi-constituent fields at 1.1 degree resolution, provided by an assimilation of multiple satellite measurements of O3, CO, NO2, and HNO3 from multiple satellite (OMI, GOME-2, MOPITT, MLS, and AIRS) using an ensemble Kalman filter, are used to study variations in tropospheric composition over east Asia during KORUS-AQ. Assimilated model results for both direct ozone assimilations and assimilations of ozone precursors (NOx and CO) were compared to DC-8 aircraft observations, with significant improvements in model/aircraft comparisons for ozone (the negative model bias was reduced by up to 80 %), CO (by up to 90 %), OH (by up to 40 %), and NOx seen in both approaches. Corrections made to the precursor emissions (i.e., surface NOx and CO emissions), especially over eastern and central China and over South Korea, were important in reducing the negative bias of O3 and CO over South Korea. We obtained additional bias reductions from assimilation of multispectral retrievals of tropospheric ozone profiles from AIRS and OMI, especially for the middle troposphere ozone. Improved agreements with the ground-based measurements at remote sites over South Korea and western Japan suggest that the representation of long-range transport of polluted air is improved by data assimilation, as a result of the optimization of precursor emissions, mainly over China. The higher estimated NOx, by 60-90 % over South Korea and by 20-40 % over eastern China compared to bottom-up inventories, suggests an important underestimation of anthropogenic sources in the emission inventories in these areas. Additional bias reductions were obtained by assimilating the multispectral retrievals, especially for the middle troposphere O3. In the future, assimilating datasets from a new constellation of low Earth orbiting sounders (e.g., IASI, AIRS, CrIS, Sentinel-5p (TROPOMI), and Sentinel-5) and geostationary satellites (Sentinel-4, GEMS, and TEMPO) will provide more

  20. Global-scale Observations of the Limb and Disk (GOLD): Hosted Payload Accommodation on a Commercial Satellite

    NASA Astrophysics Data System (ADS)

    Lankton, M.; Eastes, R.; McClintock, W. E.; Pang, R.; Caffrey, R.; Krywonos, A.

    2013-12-01

    The Global-Scale Observations of the Limb and Disk (GOLD) mission will perform unprecedented imaging of the Earth's thermosphere and ionosphere (TI) system from geostationary (GEO) orbit. Flying as a hosted payload on a commercial communications satellite, GOLD takes advantage of the resource margins available in the early years of the commercial mission's planned 15-year life. This hosted payload approach is a pathfinder for cost-effective NASA science missions. The affordable ride to GEO makes it possible for an Explorer-class Mission of Opportunity to perform Far UltraViolet (FUV) imaging of nearly a complete hemisphere on a 30-minute cadence. This global-scale, high cadence imaging will enable GOLD to distinguish between spatial and temporal variations in the TI system caused by geomagnetic storms, variations in solar EUV, and forcing from the lower atmosphere. The most significant difference between developing instrumentation for a NASA-owned mission and accomplishing the same task for a commercial satellite is that communications satellites are procured on a faster schedule - 24 to 36 months from satellite contract to launch - than the instrument development. GOLD has partnered with SES Government Solutions (SES-GS), the comsat mission owner-operator, to define instrument interfaces and requirements that will be included in the eventual Request for Proposal to candidate spacecraft vendors. SES-GS launches 3 to 4 missions per year, which allows the GOLD-SES-GS partnership to match the instrument's launch readiness date with a suitable mission. In addition to making geostationary orbit accessible to a science instrument at relatively low cost, commercial communications satellites provides a host platform with very high reliability and long life, easy access to continuous high-speed data downlink and near-real-time data delivery, and stable pointing. SES-GS operates their satellite from established Telemetry, Tracking and Control (TT&C) centers. The GOLD Science

  1. An intercomparison of longwave measurements by ERBE radiometers on the NOAA-9 and ERBS satellites

    NASA Technical Reports Server (NTRS)

    House, Frederick B.

    1989-01-01

    Two instrument modules of each satellite on which the Earth Radiation Budget Experiment (ERBE) is orbiting observe components of the earth radiation budget with three different scales of earth view. An intercomparison of longwave measurements by these instruments provides relative information concerning radiometric performance at satellite altitude, techniques of estimating upwelling exitances, and an end-to-end evaluation of the data processing system. Results indicate that the ERBE radiometers are mildly sensitive to varying thermal loads from the spacecraft and/or the earth-space environment. Radiometric variations at the satellite and methods of data interpretation contribute about equally to the uncertainty of radiant exitances from the earth.

  2. Evaluation of NOx emissions from U.S. wildfires occurring during August-October 2006 using WRF-Chem model simulations and satellite observations

    NASA Astrophysics Data System (ADS)

    Kim, S.; Brioude, J.; Hilboll, A.; Richter, A.; Gleason, J. F.; Burrows, J. P.; Ryerson, T. B.; Peischl, J. W.; Holloway, J.; Lee, S.; Frost, G. J.; McKeen, S. A.; Trainer, M.

    2009-12-01

    During August-October 2006, there were many fire events in the U.S., including a month-long fire in Los Padres National Forest in California and numerous fires in the southeastern U.S. The OMI instrument onboard NASA's Aura satellite, the MODIS instrument on NASA's Terra satellite, and instruments on the NOAA GOES satellites clearly detected fire plumes during this period, opening the possibility of using trace gas and aerosol measurements from satellites to improve bottom-up emission estimates from wildfires. WRF-Chem model simulations of U.S. air quality without bottom-up fire emissions underestimated satellite-observed nitrogen dioxide columns substantially over fire-impacted regions during this time period. In this presentation, nitrogen dioxide columns simulated from the model including the wildfire emissions will be compared with the satellite retrievals and uncertainties in the bottom-up fire NOx emissions will be discussed. In addition, the sensitivities of satellite retrievals to aerosols resulting from these fires will be shown. The satellite NO2 columns will also be tested with aircraft observations made over the Texas region during September-October 2006 as part of the TexAQS/GoMACCS field campaign.

  3. Searching for the Beginning of the Ozone Turnaround Using a 22-Year Merged Satellite Data Set

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.; Meeson, Blanche W. (Technical Monitor)

    2001-01-01

    We have used the data from six satellite instruments that measure the total column amount of ozone to construct a consistent merged data set extending from late 1978 into 2000. The keys to constructing a merged data set are to minimize potential drift of individual instruments and to accurately establish instrument-to-instrument offsets. We have used the short-wavelength D-pair measurements (306nm-313nm) of the SBUV and SBUV/2 instruments near the equator to establish a relatively drift-free record for these instruments. We have then used their overlap with the Nimbus 7 and EP TOMS instruments to establish the relative calibration of the various instruments. We have evaluated the drift uncertainty in our merged ozone data (MOD) set by examining both the individual instrument drift uncertainty and the uncertainty in establishing the instrument- to-instrument differences. We conclude that the instrumental drift uncertainty over the 22-year data record is 0.9 %/decade (2-sigma). We have compared our MOD record with 37 ground stations that have a continuous record over that time period. We have a mean drift with respect to the stations of +0.3 %/decade which is within 1-sigma of our uncertainty estimate. Using the satellite record as a transfer standard, we can estimate the capability of the ground instruments to establish satellite calibration. Adding the statistical variability of the station drifts with respect to the satellite to an estimate of the overall drift uncertainty of the world standard instrument, we conclude that the stations should be able to be used to establish the drift of the satellite data record to within and uncertainty of 0.6 %/decade (2-sigma). Adding to this an uncertainty due to the-incomplete global coverage of the stations, we conclude that the station data should be able to establish the global trend with an uncertainty of about 0.7 %/decade, slightly better than for the satellite record. We conclude that merging the two records together

  4. Eighth International Workshop on Laser Ranging Instrumentation

    NASA Technical Reports Server (NTRS)

    Degnan, John J. (Compiler)

    1993-01-01

    The Eighth International Workshop for Laser Ranging Instrumentation was held in Annapolis, Maryland in May 1992, and was sponsored by the NASA Goddard Space Flight Center in Greenbelt, Maryland. The workshop is held once every 2 to 3 years under differing institutional sponsorship and provides a forum for participants to exchange information on the latest developments in satellite and lunar laser ranging hardware, software, science applications, and data analysis techniques. The satellite laser ranging (SLR) technique provides sub-centimeter precision range measurements to artificial satellites and the Moon. The data has application to a wide range of Earth and lunar science issues including precise orbit determination, terrestrial reference frames, geodesy, geodynamics, oceanography, time transfer, lunar dynamics, gravity and relativity.

  5. Assessment of Satellite Radiometry in the Visible Domain

    NASA Technical Reports Server (NTRS)

    Melin, Frederick; Franz, Bryan A.

    2014-01-01

    Marine reflectance and chlorophyll-a concentration are listed among the Essential Climate Variables by the Global Climate Observing System. To contribute to climate research, the satellite ocean color data records resulting from successive missions need to be consistent and well characterized in terms of uncertainties. This chapter reviews various approaches that can be used for the assessment of satellite ocean color data. Good practices for validating satellite products with in situ data and the current status of validation results are illustrated. Model-based approaches and inter-comparison techniques can also contribute to characterize some components of the uncertainty budget, while time series analysis can detect issues with the instrument radiometric characterization and calibration. Satellite data from different missions should also provide a consistent picture in scales of variability, including seasonal and interannual signals. Eventually, the various assessment approaches should be combined to create a fully characterized climate data record from satellite ocean color.

  6. Initial operation and checkout of stratospheric aerosol gas experiment and Meteor-3M satellite

    NASA Astrophysics Data System (ADS)

    Habib, Shahid; Makridenko, Leonid; Chu, William P.; Salikhov, Rashid; Moore, Alvah S., Jr.; Trepte, Charles R.; Cisewski, Michael S.

    2003-04-01

    Under a joint agreement between the National Aeronautics and Space Agency (NASA) and the Russian Aviation and Space Agency (RASA), the Stratospheric Aerosol Gas Experiment III (SAGE III) instrument was launched in low earth orbit on December 10, 2001 aboard the Russian Meteor-3M(1) satellite from the Baikonur Cosmodrome. SAGE III is a spectrometer that measures attenuated radiation in the 282 nm to 1550 nm wavelength range to obtain the vertical profiles of ozone, aerosols, and other chemical species that are critical in studying the trends for the global climate change phenomena. This instrument version is more advanced than any of the previous versions and has more spectral bands, elaborate data gathering and storage, and intelligent terrestrial software. There are a number of Russian scientific instruments aboard the Meteor satellite in addition to the SAGE III instrument. These instruments deal with land imaging and biomass changes, hydro-meteorological monitoring, and helio-geophysical research. This mission was under development for over a period of six years and offered a number of unique technical and program management challenges for both Agencies. SAGE III has a long space heritage, and four earlier versions of this instrument have flown in space for nearly two decades now. In fact, SAGE II, the fourth instrument, is still flying in space on NASA's Earth Radiation Budget Satellite (ERBS), and has been providing important atmospheric data over the last 18 years. It has provided vital ozone and aerosol data in the mid latitudes and has contributed vastly in ozone depletion research. Ball Aerospace built the instrument under Langley Research Center's (LaRC) management. This paper presents the process and approach deployed by the SAGE III and the Meteor teams in performing the initial on-orbit checkout. It further documents a number of early science results obtained by deploying low risk, carefully coordinated procedures in resolving the serious operational

  7. Evaluation of spectroscopic databases through radiative transfer simulations compared to observations. Application to the validation of GEISA 2015 with IASI and TCCON

    NASA Astrophysics Data System (ADS)

    Armante, Raymond; Scott, Noelle; Crevoisier, Cyril; Capelle, Virginie; Crepeau, Laurent; Jacquinet, Nicole; Chédin, Alain

    2016-09-01

    of particular interest for several currently exploited or planned Earth space missions: the thermal infrared domain and the short-wave infrared domain, for which observations from the space-borne IASI instrument and from the ground-based FTS instruments at the Parkfalls TCCON site are used respectively. Main results include: (i) the validation of the positions and intensities of line parameters, with overall significantly lower residuals for GEISA-2015 than for GEISA-2011 and (iii) the validation of the choice made on the parameters (such as pressure shift and air-broadened width) which has not been given by the provider but completed by ourselves. For example, comparisons between residuals obtained with GEISA-2015 and HITRAN-2012 have highlighted a specific issue with some HWHM values in the latter that can be clearly identified on the 'calculated-observed' residuals.

  8. NASA Newest SeaWinds Instrument Breezes Into Operation

    NASA Image and Video Library

    2003-02-24

    One of NASA newest Earth-observing instruments, the SeaWinds scatterometer aboard Japan Advanced Earth Observing Satellite Adeos 2--now renamed Midori 2--has successfully transmitted its first radar data to our home planet.

  9. Report of the Terrestrial Bodies Science Working Group. Volume 7: The Galilean satellites

    NASA Technical Reports Server (NTRS)

    Fanale, F. P.; Beckman, J. C.; Chapman, C. R.; Coroniti, F. V.; Johnson, T. V.; Malin, M. C.

    1977-01-01

    The formational and evolutionary history of natural satellites, their mineralogical composition and other phenomena of scientific interest are discussed. Key scientific questions about IO, Ganymede, Callisto, and Europa are posed and the measurements and instruments required for a Galilean satellite lander in the 1980's are described.

  10. Physically-Retrieving Cloud and Thermodynamic Parameters from Ultraspectral IR Measurements

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Smith, William L., Sr.; Liu, Xu; Larar, Allen M.; Mango, Stephen A.; Huang, Hung-Lung

    2007-01-01

    A physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multi-variable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. It is shown that relatively accurate temperature and moisture retrievals can be achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to cloud top level are obtained. For both optically thin and thick cloud situations, the cloud top height can be retrieved with relatively high accuracy (i.e., error < 1 km). NPOESS Airborne Sounder Testbed Interferometer (NAST-I) retrievals from the Atlantic-THORPEX Regional Campaign are compared with coincident observations obtained from dropsondes and the nadir-pointing Cloud Physics Lidar (CPL). This work was motivated by the need to obtain solutions for atmospheric soundings from infrared radiances observed for every individual field of view, regardless of cloud cover, from future ultraspectral geostationary satellite sounding instruments, such as the Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) and the Hyperspectral Environmental Suite (HES). However, this retrieval approach can also be applied to the ultraspectral sounding instruments to fly on Polar satellites, such as the Infrared Atmospheric Sounding Interferometer (IASI) on the European MetOp satellite, the Cross-track Infrared Sounder (CrIS) on the NPOESS Preparatory Project and the following NPOESS series of satellites.

  11. Cloud properties and bulk microphysical properties of semi-transparent cirrus from IR Sounders

    NASA Astrophysics Data System (ADS)

    Stubenrauch, Claudia; Feofilov, Artem; Armante, Raymond; Guignard, Anthony

    2013-04-01

    Satellite observations provide a continuous survey of the atmosphere over the whole globe. IR sounders have been observing our planet since 1979. The spectral resolution has improved from TIROS-N Operational Vertical Sounders (TOVS) to the Atmospheric InfraRed Sounder (AIRS), and to the InfraRed Atmospheric Sounding Interferometer (IASI); resolution within the CO2 absorption band makes these passive sounders most sensitive to semi-transparent cirrus (about 30% of all clouds), day and night. The LMD cloud property retrieval method developed for TOVS, has been adapted to the second generation of IR sounders like AIRS and, recently, IASI. It is based on a weighted χ2 method using different channels within the 15 micron CO2 absorption band. Once the cloud physical properties (cloud pressure and IR emissivity) are retrieved, cirrus bulk microphysical properties (De and IWP) are determined from spectral emissivity differences between 8 and 12 μm. The emissivities are determined using the retrieved cloud pressure and are then compared to those simulated by the radiative transfer model. For IASI, we use the latest version of the radiative transfer model 4A (http://4aop.noveltis.com), which has been coupled with the DISORT algorithm to take into account multiple scattering of ice crystals. The code incorporates single scattering properties of column-like or aggregate-like ice crystals provided by MetOffice (Baran et al. (2001); Baran and Francis (2004)). The synergy of AIRS and two active instruments of the A-Train (lidar and radar of the CALIPSO and CloudSat missions), which provide accurate information on vertical cloud structure, allowed the evaluation of cloud properties retrieved by the weighted χ2 method. We present first results for cloud properties obtained with IASI/ Metop-A and compare them with those of AIRS and other cloud climatologies having participated in the GEWEX cloud assessment. The combination of IASI observations at 9:30 AM and 9:30 PM complement

  12. Multipurpose Spectroradiometer for Satellite Instrument Calibration and Zenith Sky Remote Sensing Measurements

    NASA Technical Reports Server (NTRS)

    Heath, Donald F.; Ahmad, Zia

    2001-01-01

    In the early 1990s a series of surface-based direct sun and zenith sky measurements of total column ozone were made with SBUV/2 flight models and the SSBUV Space Shuttle instrument in Boulder, Colorado which were compared with NOAA Dobson Instrument direct sun observations and TOMS instrument overpass observations of column ozone. These early measurements led to the investigation of the accuracy of derived total column ozone amounts and aerosol optical depths from zenith sky observations. Following the development and availability of radiometrically stable IAD narrow band interference filter and nitrided silicon photodiodes a simple compact multifilter spectroradiometer was developed which can be used as a calibration transfer standard spectroradiometer (CTSS) or as a surface based instrument remote sensing instruments for measurements of total column ozone and aerosol optical depths. The total column ozone derived from zenith sky observations agrees with Dobson direct sun AD double wavelength pair measurements and with TOMS overpass ozone amounts within uncertainties of about 1%. When used as a calibration transfer standard spectroradiometer the multifilter spectroradiometer appears to be capable of establishing instrument radiometric calibration uncertainties of the order of 1% or less relative to national standards laboratory radiometric standards.

  13. A review of future remote sensing satellite capabilities

    NASA Technical Reports Server (NTRS)

    Calabrese, M. A.

    1980-01-01

    Existing, planned and future NASA capabilities in the field of remote sensing satellites are reviewed in relation to the use of remote sensing techniques for the identification of irrigated lands. The status of the currently operational Landsat 2 and 3 satellites is indicated, and it is noted that Landsat D is scheduled to be in operation in two years. The orbital configuration and instrumentation of Landsat D are discussed, with particular attention given to the thematic mapper, which is expected to improve capabilities for small field identification and crop discrimination and classification. Future possibilities are then considered, including a multi-spectral resource sampler supplying high spatial and temporal resolution data possibly based on push-broom scanning, Shuttle-maintained Landsat follow-on missions, a satellite to obtain high-resolution stereoscopic data, further satellites providing all-weather radar capability and the Large Format Camera.

  14. Satellite (Timed, Aura, Aqua) and In Situ (Meteorological Rockets, Balloons) Measurement Comparability

    NASA Technical Reports Server (NTRS)

    Schmidlin, F. J.; Goldberg, Richard A.; Feofilov, A.; Rose, R.

    2010-01-01

    Measurements using the inflatable falling sphere often are requested to provide density data in support of special sounding rocket launchings into the mesosphere and thermosphere. To insure density measurements within narrow time frames and close in space, the inflatable falling sphere is launched within minutes of the major test. Sphere measurements are reliable for the most part, however, availability of these rocket systems has become more difficult and, in fact, these instruments no longer are manufactured resulting in a reduction of the meager stockpile of instruments. Sphere measurements also are used to validate remotely measured temperatures and have the advantage of measuring small-scale atmospheric features. Even so, with the dearth of remaining falling spheres perhaps it is time to consider whether the remote measurements are mature enough to stand alone. Presented are two field studies, one in 2003 from Northern Sweden and one in 2010 from the vicinity of Kwajalein Atoll that compare temperature retrievals between satellite and in situ failing spheres. The major satellite instruments employed are SABER, MLS, and AIRS. The comparisons indicate that remotely measured temperatures mimic the sphere temperature measurements quite well. The data also confirm that satellite retrievals, while not always at the exact location required for individual studies, are adaptable enough and highly useful. Although the falling sphere will provide a measurement at a specific location and time, satellites only pass a given location daily or less often. This report reveals that averaged satellite measurements can provide temperatures and densities comparable to the falling sphere.

  15. The solar panels on the GOES-L satellite are deployed

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The solar panels on the GOES-L weather satellite are fully deployed. Final testing of the imaging system, instrumentation, communications and power systems also will be performed at the Astrotech facility, Titusville, Fla. The satellite is to be launched from Cape Canaveral Air Station (CCAS) aboard an Atlas II rocket in late March. The GOES- L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite.

  16. CBERS-03 Satellite Power Supply Subsystem

    NASA Astrophysics Data System (ADS)

    Almeida, Mario C. P.; Bo, Han

    2005-05-01

    The second China Brazil Earth Resources Satellite, CBERS-2, was successfully launched on October 21st, 2003 from the Taiyuan Satellite Launch Center, China, through a Long March 4B launcher.The cooperation between China and Brazil for the construction of CBERS satellites is a continued mission and the governments of both countries are committed to building CBERS-3 for the continued and improved services started with the launch of CBERS-1 satellite [1]. Given to its success, the CBERS program is considered as a model for other joint scientific and technological projects between those two countries. CBERS-3 will have new instruments with higher resolution and higher power consumption requirements. The Power Supply Subsystem of CBERS-3 will be a scaled-up version of the one used in the previous missions, but will also present some innovations now possible due to improvements in components, technologies and materials. The modular concept used in the previous design, and repeated in this new mission, will allow the development of the new power subsystem equipments in a straightforward manner.

  17. Remote Acoustic Imaging of Geosynchronous Satellites

    NASA Astrophysics Data System (ADS)

    Watson, Z.; Hart, M.

    Identification and characterization of orbiting objects that are not spatially resolved are challenging problems for traditional remote sensing methods. Hyper temporal imaging, enabled by fast, low-noise electro-optical detectors is a new sensing modality which may allow the direct detection of acoustic resonances on satellites enabling a new regime of signature and state detection. Detectable signatures may be caused by the oscillations of solar panels, high-gain antennae, or other on-board subsystems driven by thermal gradients, fluctuations in solar radiation pressure, worn reaction wheels, or orbit maneuvers. Herein we present the first hyper-temporal observations of geosynchronous satellites. Data were collected at the Kuiper 1.54-meter telescope in Arizona using an experimental dual-channel imaging instrument that simultaneously measures light in two orthogonally polarized beams at sampling rates extending up to 1 kHz. In these observations, we see evidence of acoustic resonances in the polarization state of satellites. The technique is expected to support object identification and characterization of on-board components and to act as a discriminant between active satellites, debris, and passive bodies.

  18. Solar measurements from the Airglow-Solar Spectrometer Instrument (ASSI) on the San Marco 5 satellite

    NASA Technical Reports Server (NTRS)

    Woods, Thomas N.

    1994-01-01

    The analysis of the solar spectral irradiance from the Airglow-Solar Spectrometer Instrument (ASSI) on the San Marco 5 satellite is the focus for this research grant. A pre-print copy of the paper describing the calibrations of and results from the San Marco ASSI is attached to this report. The calibration of the ASSI included (1) transfer of photometric calibration from a rocket experiment and the Solar Mesosphere Explorer (SME), (2) use of the on-board radioactive calibration sources, (3) validation of the ASSI sensitivity over its field of view, and (4) determining the degradation of the spectrometers. We have determined that the absolute values for the solar irradiance needs adjustment in the current proxy models of the solar UV irradiance, and the amount of solar variability from the proxy models are in reasonable agreement with the ASSI measurements. This research grant also has supported the development of a new solar EUV irradiance proxy model. We expected that the magnetic flux is responsible for most of the heating, via Alfen waves, in the chromosphere, transition region, and corona. From examining time series of solar irradiance data and magnetic fields at different levels, we did indeed find that the chromospheric emissions correlate best with the large magnetic field levels.

  19. Nimbus-F to carry advanced weather instruments

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Meteorological research instruments launched aboard NASA's Nimbus-F spacecraft are briefly described along with the Nimbus satellite program initiated to develop an observatory system capable of meeting the research and development needs of the nation's atmospheric and earth sciences program. The following aspects of the mission are described: spacecraft design, launch operations, sequence of orbital events, and operations control and tracking. The Global Atmospheric Research program is discussed in terms of the Nimbus-F experiments and atmospheric sounding instruments.

  20. Volcanic Ash Cloud Altitude retrievals from passive satellite sensors: the 03-09 December 2015 Etna eruption.

    NASA Astrophysics Data System (ADS)

    corradini, stefano; merucci, luca; guerrieri, lorenzo; pugnaghi, sergio; mcgarragh, greg; carboni, elisa; ventress, lucy; grainger, roy; scollo, simona; pardini, federica; zaksek, klemen; langmann, baerbel; bancalá, severin; stelitano, dario

    2016-04-01

    The volcanic ash cloud altitude is one of the most important parameter needed for the volcanic ash cloud estimations (mass, effective radius and optical depth). It is essential by modelers to initialize the ash cloud transportation models, and by volcanologists to give insights into eruption dynamics. Moreover, it is extremely important in order to reduce the disruption to flights as a result of volcanic activity whilst still ensuring safe travel. In this work, the volcanic ash cloud altitude is computed from remote sensing passive satellite data (SEVIRI, MODIS, IASI and MISR) by using the most of the existing retrieval techniques. A novel approach, based on the CO2 slicing procedure, is also shown. The comparisons among different techniques are presented and advantages and drawbacks emphasized. As test cases Etna eruptions in the period between 03 and 09 December 2015 are considered. During this time four lava fountain events occurred at the Voragine crater, forming eruption columns higher than 12 km asl and producing copious tephra fallout on volcano flanks. These events, among the biggest of the last 20 years, produced emissions that reached the stratosphere and produced a circum-global transport throughout the northern hemisphere.

  1. Management Approach for Earth Venture Instrument

    NASA Technical Reports Server (NTRS)

    Hope, Diane L.; Dutta, Sanghamitra

    2013-01-01

    The Earth Venture Instrument (EVI) element of the Earth Venture Program calls for developing instruments for participation on a NASA-arranged spaceflight mission of opportunity to conduct innovative, integrated, hypothesis or scientific question-driven approaches to pressing Earth system science issues. This paper discusses the EVI element and the management approach being used to manage both an instrument development activity as well as the host accommodations activity. In particular the focus will be on the approach being used for the first EVI (EVI-1) selected instrument, Tropospheric Emissions: Monitoring of Pollution (TEMPO), which will be hosted on a commercial GEO satellite and some of the challenges encountered to date and corresponding mitigations that are associated with the management structure for the TEMPO Mission and the architecture of EVI.

  2. Surface reflectance retrieval from satellite and aircraft sensors: Results of sensor and algorithm comparisons during FIFE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markham, B.L.; Halthore, R.N.; Goetz, S.J.

    1992-11-30

    This work is part of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE), an international land-surface-atmosphere experiment aimed at improving the way climate models represent energy, water, heat, and carbon exchanges, and improving the utilization of satellite based remote sensing to monitor such parameters. This paper reports on comparison of measurement systems which were deployed to measure surface reflectance factors, from aircraft or satellites. These instruments look over the general range of 0.4 to 2.5[mu]m. Instruments studied include Landsat 5 thematic mapper (TM), the SPOT 1 high-resolution visible sensor (HRV) 1, the NS001 thematic mapper simulator,more » and the modular multispectral radiometers (MMRs). The study looked at the radiometric consistency of the different instruments, and the adequacy of the atmospheric correction routines applied to data analysis.« less

  3. Outline of the survey on the development of earth observation satellites

    NASA Technical Reports Server (NTRS)

    1977-01-01

    An independent earth observation system with land and sea satellites to be developed by Japan is described. Visible and infrared radiometers, microwave radiometers, microwave scattermeters, synthetic aperture radar, and laser sensors are among the instrumentation discussed. Triaxial attitude control, basic technology common to sea and land observation satellites as well as land data analytical technology developed for U.S. LANDSAT data are reviewed.

  4. NASA's Aqua Satellite Celebrates 10th Annivesary

    NASA Image and Video Library

    2017-12-08

    NASA's Aqua Satellite Celebrates 10th Anniversary The Aqua satellite mission has proved to be a major component of the Earth Observing System (EOS) for its ability to gather unprecedented amounts of information on Earth’s water cycle, including measurements on water vapor, clouds, precipitation, ice, and snow. Aqua data has helped improve weather prediction, detection of forest fires, volcanic ash, and sandstorms. In addition, Aqua data have been used to detect and monitor such greenhouse gases as carbon dioxide, water vapor, and methane, and to examine the energy imbalance at the top of the Earth's atmosphere and the various components of it. With these uses of Aqua data, scientists have been able to better understand our Earth over the course of the past ten years. Aqua is a major international Earth Science satellite mission centered at NASA. Launched on May 4, 2002, the satellite has six different Earth-observing instruments on board and is named for the large amount of information being obtained about water in the Earth system from its stream of approximately 89 Gigabytes of data a day. The water variables being measured include almost all elements of the water cycle and involve water in its liquid, solid, and vapor forms. Additional variables being measured include radiative energy fluxes, aerosols, vegetation cover on the land, phytoplankton and dissolved organic matter in the oceans, and air, land, and water temperatures. For more information about NASA's Aqua satellite, visit: aqua.nasa.gov ------------ Caption: Artist rendition of the NASA's Aqua satellite, which carries the MODIS and AIRS instruments. Credit: NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on

  5. X-ray satellite

    NASA Technical Reports Server (NTRS)

    1985-01-01

    An overview of the second quarter 1985 development of the X-ray satellite project is presented. It is shown that the project is proceeding according to plan and that the projected launch date of September 9, 1987 is on schedule. An overview of the work completed and underway on the systems, subsystems, payload, assembly, ground equipment and interfaces is presented. Problem areas shown include cost increases in the area of focal instrumentation, the star sensor light scattering requirements, and postponements in the data transmission subsystems.

  6. The TOPEX satellite option study

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The applicability of an existing spacecraft bus and subsystems to the requirements of ocean circulation measurements are assessed. The operational meteorological satellite family TIROS and DMSP are recommended. These programs utilize a common bus to satisfy their Earth observation missions. Note that although the instrument complements were different, the pointing accuracies were different, and, initially, the boosters were different, a high degree of commonality was achieved.

  7. Potential for calibration of geostationary meteorological satellite imagers using the Moon

    USGS Publications Warehouse

    Stone, T.C.; Kieffer, H.H.; Grant, I.F.; ,

    2005-01-01

    Solar-band imagery from geostationary meteorological satellites has been utilized in a number of important applications in Earth Science that require radiometric calibration. Because these satellite systems typically lack on-board calibrators, various techniques have been employed to establish "ground truth", including observations of stable ground sites and oceans, and cross-calibrating with coincident observations made by instruments with on-board calibration systems. The Moon appears regularly in the margins and corners of full-disk operational images of the Earth acquired by meteorological instruments with a rectangular field of regard, typically several times each month, which provides an excellent opportunity for radiometric calibration. The USGS RObotic Lunar Observatory (ROLO) project has developed the capability for on-orbit calibration using the Moon via a model for lunar spectral irradiance that accommodates the geometries of illumination and viewing by a spacecraft. The ROLO model has been used to determine on-orbit response characteristics for several NASA EOS instruments in low Earth orbit. Relative response trending with precision approaching 0.1% per year has been achieved for SeaWiFS as a result of the long time-series of lunar observations collected by that instrument. The method has a demonstrated capability for cross-calibration of different instruments that have viewed the Moon. The Moon appears skewed in high-resolution meteorological images, primarily due to satellite orbital motion during acquisition; however, the geometric correction for this is straightforward. By integrating the lunar disk image to an equivalent irradiance, and using knowledge of the sensor's spectral response, a calibration can be developed through comparison against the ROLO lunar model. The inherent stability of the lunar surface means that lunar calibration can be applied to observations made at any time, including retroactively. Archived geostationary imager data

  8. Extreme Thunderstorms as Seen by Satellite

    NASA Technical Reports Server (NTRS)

    Cecil, Daniel J.

    2014-01-01

    Extreme events by their nature fall outside the bounds of routine experience. With imperfect or ambiguous measuring systems, it is appropriate to question whether an unusual measurement represents an extreme event or is the result of instrument errors or other sources of noise. About three weeks after the Tropical Rainfall Measuring Mission (TRMM) satellite began collecting data in Dec 1997, a thunderstorm was observed over northern Argentina with 85 GHz brightness temperatures below 50 K and 37 GHz brightness temperatures below 70 K (Zipser et al. 2006). These values are well below what had previously been observed from satellite sensors with lower resolution. The 37 GHz brightness temperatures are also well below those measured by TRMM for any other storm in the subsequent 16 years. Without corroborating evidence, it would be natural to suspect a problem with the instrument, or perhaps an irregularity with the platform during the first weeks of the satellite mission. But the TRMM satellite also carries a radar and a lightning sensor, both confirming the presence of an intense thunderstorm. The radar recorded 40+ dBZ (decibels relative to Z) reflectivity up to about 19 km altitude. More than 200 lightning flashes per minute were recorded. That same storm's 19 GHz brightness temperatures below 150 K would normally be interpreted as the result of a low-emissivity water surface (e.g., a lake, or flood waters) if not for the simultaneous measurements of such intense convection. This paper will examine records from TRMM and related satellite sensors including SSMI and AMSR-E to find the strongest signatures resulting from thunderstorms, and distinguishing those from sources of noise. The lowest brightness temperatures resulting from thunderstorms as seen by TRMM have been in Argentina in November and December. For SSMI sensors carried on five DMSP satellites examined so far, the lowest thunderstorm-related brightness temperatures have been from Argentina in November

  9. Aqua Satellite Orbiting Earth Artist Concept

    NASA Image and Video Library

    2002-05-08

    NASA Aqua satellite carries six state-of-the-art instruments in a near-polar low-Earth orbit. Aqua is seen in this artist concept orbiting Earth. The six instruments are the Atmospheric Infrared Sounder (AIRS), the Advanced Microwave Sounding Unit (AMSU-A), the Humidity Sounder for Brazil (HSB), the Advanced Microwave Scanning Radiometer for EOS (AMSR-E), the Moderate Resolution Imaging Spectroradiometer (MODIS), and Clouds and the Earth's Radiant Energy System (CERES). Each has unique characteristics and capabilities, and all six serve together to form a powerful package for Earth observations. http://photojournal.jpl.nasa.gov/catalog/PIA18156

  10. Use of the transect method in satellite survey missions with application to the infrared astronomical satellite /IRAS/

    NASA Technical Reports Server (NTRS)

    Mclaughlin, W. I.; Lundy, S. A.; Ling, H. Y.; Stroberg, M. W.

    1980-01-01

    The coverage of the celestial sphere or the surface of the earth with a narrow-field instrument onboard a satellite can be described by a set of swaths on the sphere. A transect is a curve on this sphere constructed to sample the coverage. At each point on the transect the number of times that the field-of-view of the instrument has passed over the point is recorded. This information is conveniently displayed as an integer-valued histogram over the length of the transect. The effectiveness of the transect method for a particular observing plan and the best placement of the transects depends upon the structure of the set of observations. Survey missions are usually characterized by a somewhat parallel alignment of the instrument swaths. Using autocorrelation and cross-correlation functions among the histograms the structure of a survey has been analyzed into two components, and each is illustrated by a simple mathematical model. The complex, all-sky survey to be performed by the Infrared Astronomical Satellite (IRAS) is synthesized in some detail utilizing the objectives and constraints of that mission. It is seen that this survey possesses the components predicted by the simple models and this information is useful in characterizing the properties of the IRAS survey and the placement of the transects as a function of celestial latitude and certain structural properties of the coverage.

  11. Saturn's satellites: Predictions for Cassini

    NASA Astrophysics Data System (ADS)

    Delitsky, M. L.; Hibbitts, C. A.

    2004-11-01

    Saturn's satellites are subjected to a variety of energy inputs (from photons, magnetospheric and solar ions and electrons) which will affect their surface composition. The Saturn magnetosphere contains an assortment of ions, including O+ and H+ from sputtering of water ice on the inner satellites and N+ from sputtering of Titan's atmosphere. Implantation of these ions onto the surfaces of the satellites may produce compounds possibly detectable by Cassini instruments. The satellites contain water ice and carbon dioxide ice (and possibly organics, on Phoebe). In Delitsky and Lane (2002), chemistry resulting from nitrogen ion implantation into water ice and carbon dioxide ice was outlined. From deposition of N+ ions into H2O/CO2, a complicated C-H-N-O chemistry may result, including formation of isocyanates, nitriles, nitrogen oxides and amino acids. Upon irradiation, H2O/CO2 mixtures will yield esters, ketones, alcohols, carboxylic acids and other interesting compounds. Cassini's infrared instruments CIRS and VIMS have spectral ranges that can detect many bands of these compounds. VIMS spectral range is 0.35 - 5.1 microns; CIRS covers the spectral range 7 - 100 microns, although its Mid-IR interferometer portion (7 -16 microns) is where organic materials are particularly spectrally active. Weak features are present in the short IR for NO (1.91 microns), NO2 (1.95), NH3 (2.00, 2.24), CH3OH (2.27, 2.34), and CO2 (1.965, 2.01) [Quirico et al.,1999]. Some molecules have stronger absorption features at these wavelengths: [CO2: 4.25 - 4.27 microns; NH3: 3 microns and 9.2 microns (important because the 3 micron band can be masked by water); H2CO3: 3.88 microns (weak); HCOOH: 8.2 microns; O2: 9.7 microns]. These molecules may exist as ices, or as molecules trapped in the surface. CH- and CN-containing molecules absorb at 3.2 - 3.4 microns, and 4.6 microns, respectively. H2O2, detected on Europa by its 3.5 micron band, may exist in the icy surfaces of the Saturn satellites

  12. Hybrid Atom Electrostatic System for Satellite Geodesy

    NASA Astrophysics Data System (ADS)

    Zahzam, Nassim; Bidel, Yannick; Bresson, Alexandre; Huynh, Phuong-Anh; Liorzou, Françoise; Lebat, Vincent; Foulon, Bernard; Christophe, Bruno

    2017-04-01

    The subject of this poster comes within the framework of new concepts identification and development for future satellite gravity missions, in continuation of previously launched space missions CHAMP, GRACE, GOCE and ongoing and prospective studies like NGGM, GRACE 2 or E-GRASP. We were here more focused on the inertial sensors that complete the payload of such satellites. The clearly identified instruments for space accelerometry are based on the electrostatic technology developed for many years by ONERA and that offer a high level of performance and a high degree of maturity for space applications. On the other hand, a new generation of sensors based on cold atom interferometry (AI) is emerging and seems very promising in this context. These atomic instruments have already demonstrated on ground impressive results, especially with the development of state-of-the-art gravimeters, and should reach their full potential only in space, where the microgravity environment allows long interaction times. Each of these two types of instruments presents their own advantages which are, for the electrostatic sensors (ES), their demonstrated short term sensitivity and their high TRL, and for AI, amongst others, the absolute nature of the measurement and therefore no need for calibration processes. These two technologies seem in some aspects very complementary and a hybrid sensor bringing together all their assets could be the opportunity to take a big step in this context of gravity space missions. We present here the first experimental association on ground of an electrostatic accelerometer and an atomic accelerometer and underline the interest of calibrating the ES instrument with the AI. Some technical methods using the ES proof-mass as the Raman Mirror seem very promising to remove rotation effects of the satellite on the AI signal. We propose a roadmap to explore further in details and more rigorously this attractive hybridization scheme in order to assess its potential

  13. MLRS - A lunar/artificial satellite laser ranging facility at the McDonald Observatory

    NASA Technical Reports Server (NTRS)

    Shelus, P. J.

    1985-01-01

    Experience from lunar and satellite laser ranging experiments carried out at McDonald Observatory has been used to design the McDonald Laser Ranging Station (MLRS). The MLRS is a dual-purpose installation designed to obtain observations from the LAGEOS satellite and lunar targets. The instruments used at the station include a telescope assembly 0.76 meters in diameter; a Q-switched doubled neodymium YAG laser with a pulse rate of three nanoseconds; and a GaAs photodetector with Fabry-Perot interferometric filter. A functional diagram of the system is provided. The operating parameters of the instruments are summarized in a table.

  14. Physical and performance characteristics of instruments selected for global change monitoring

    NASA Technical Reports Server (NTRS)

    Allen, Cheryl L.

    1991-01-01

    The following appendix (appendix B) lists the instruments chosen for the Global Change Monitoring program. The instruments are described according to the following categories: (1) Title; (2) Measurement; (3) Contact; (4) Instrument Type; (5) Dimensions; (6) Mass; (7) Average Operational Power; (8) Data Rate; (9) Spectral/Frequency Range; (10) Number of Channels/Frequencies; (11) Viewing Field; (12) Scanning Characteristics; (13) Resolution (Horizontal/Vertical); (14) Swath Width; (15) Satellite Application; and (16) Technology Status. A technical drawing of each instrument is also provided.

  15. The NASA Earth Science Program and Small Satellites

    NASA Technical Reports Server (NTRS)

    Neeck, Steven P.

    2015-01-01

    Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by Government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the spacebased observing systems and supporting infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 21 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission, the Orbiting Carbon Observatory-2 (OCO-2), the Soil Moisture Active Passive (SMAP) mission, and the International Space Station (ISS) RapidSCAT and Cloud-Aerosol Transport System (CATS) instruments. The ESD has 22 more missions and instruments planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions to assure availability of key climate data sets, and small-sized competitively selected orbital missions and instrument missions of opportunity belonging to the Earth Venture (EV) Program. Small satellites (500 kg or less) are critical contributors to these current and future satellite missions

  16. Instrument-induced spatial crosstalk deconvolution algorithm

    NASA Technical Reports Server (NTRS)

    Wright, Valerie G.; Evans, Nathan L., Jr.

    1986-01-01

    An algorithm has been developed which reduces the effects of (deconvolves) instrument-induced spatial crosstalk in satellite image data by several orders of magnitude where highly precise radiometry is required. The algorithm is based upon radiance transfer ratios which are defined as the fractional bilateral exchange of energy betwen pixels A and B.

  17. Satellite Observations of NO2 Trend over Romania

    PubMed Central

    Voiculescu, Mirela; Georgescu, Lucian

    2013-01-01

    Satellite-based measurements of atmospheric trace gases loading give a realistic image of atmospheric pollution at global, regional, and urban level. The aim of this paper is to investigate the trend of atmospheric NO2 content over Romania for the period 1996–2010 for several regions which are generally characterized by different pollutant loadings, resulting from GOME-1, SCIAMACHY, OMI, and GOME-2 instruments. Satellite results are then compared with ground-based in situ measurements made in industrial and relatively clean areas of one major city in Romania. This twofold approach will help in estimating whether the trend of NO2 obtained by means of data satellite retrievals can be connected with the evolution of national industry and transportation. PMID:24453819

  18. Energy spectrum of secondary protons above the atmosphere measured by the instruments NINA and NINA-2

    NASA Astrophysics Data System (ADS)

    Bidoli, V.; Casolino, M.; de Pascale, M.; Furano, G.; Iannucci, A.; Morselli, A.; Picozza, P.; Sparvoli, R.; Bakaldin, A.; Galper, A.; Koldashov, S.; Korotkov, M.; Leonov, A.; Mikhailov, V.; Voronov, S.; Boezio, M.; Bonvicini, V.; Vacchi, A.; Zampa, G.; Zampa, N.; Ambriola, M.; Cafagna, F.; Circella, M.; de Marzo, C.; Adriani, O.; Papini, P.; Spillantini, P.; Straulino, S.; Vannuccini, E.; Ricci, M.; Castellini, G.

    2002-10-01

    In this paper we report on the energy spectrum of protons of albedo origin measured by the instruments NINA and NINA-2 at different geomagnetic locations, and the behaviour of the proton flux as a function of altitude out of the South Atlantic Anomaly. The instrument NINA was used on board the satellite Resurs-01-N4 between 1998 and 1999, at an altitude of about 830 km. The NINA-2 apparatus, on board the satellite MITA, was put into orbit in July 2000, at an altitude of about 450 km. A detailed understanding of the fluxes of charged particles in near Earth orbit is important to reach an accurate theoretical description of the Earth’s magnetic field, but also as input for the calculation of the back-ground for scientific instruments aboard satellites, like the future AGILE and GLAST g

  19. Compendium of meteorological space programs, satellites, and experiments

    NASA Technical Reports Server (NTRS)

    Dubach, Leland L.; Ng, Carolyn

    1988-01-01

    This compendium includes plans and events known to the authors through January 1987. Compilation of the information began in 1967. This document is intended: (1) as a historical record of all satellites and instrumentation that has been useful for meteorological research or operational uses; and (2) as a working document to be used to assist meteorologists in identifying meteorological satellites, locating data from these satellites, and understanding experiment operation which is related to satellite data that may be of interest to them. A summary of all known launched satellites for all countries and their experiments, which were concerned with meteorological operations or research, are included. Programs covered include AEM, Apollo, ATS, Bhaskara, Cosmos, Discoverer, DMSP, DOD, DODGE, EOLE, ERBE, ESSA, Explorer, Gemini, GMS, GOES/SMS, INSAT, IRS, LANDSAT, Mercury, Meteor 1 and 2, Meteosat, Molniya, MOS, Nimbus, NOAA (1-5)/ITOS, NOAA (6,7,D)/TIROS-N, NOAA (8-10, H-J)/ATN, Salyut, Seasat, Shuttle 1, Shuttle 2: Spacelab, Skylab, Soyuz, TIROS, TOPEX, Vanguard, Voskhod, Vostok, and Zond.

  20. Satellite Ocean Color Validation Using Merchant Ships. Chapter 10

    NASA Technical Reports Server (NTRS)

    Frouin, Robert; Cutchin, David L.; Deschamps, Pierre-Yves

    2001-01-01

    A collaborative measurement program for evaluating satellite-derived ocean color has been developed based on ships of opportunity (merchant, oceanographic) and specific instrumentation, the SIMBAD radiometer. The purpose of the measurement program is to complement, in a cost-effective way, dedicated evaluation experiments at sea, which are expensive, cannot be carried out over the full range of expected oceanic and atmospheric conditions, and generally provide a few match-ups. Ships participate in the program on a volunteer basis or at a very small cost, and measurement procedures do not interfere with other ship activities. The SIMBAD radiometer is a portable, easy-to-operate instrument that measures the basic ocean color variables, namely aerosol optical thickness and water-leaving radiance, in typical spectral bands of ocean-color sensors, i.e., 443, 490, 560, 670, and 870 nm. Measuring these variables at the time of satellite overpass is usually sufficient to verify satellite-derived ocean color and to evaluate atmospheric correction algorithms. Any ordinary crew can learn quickly how to make measurements. Importantly, the ship is not required to stop, making it possible to collect data along regular routes traveled by merchant ships in the world's oceans.

  1. Ion composition of coarse and fine particles in Iasi, north-eastern Romania: Implications for aerosols chemistry in the area

    NASA Astrophysics Data System (ADS)

    Arsene, Cecilia; Olariu, Romeo Iulian; Zarmpas, Pavlos; Kanakidou, Maria; Mihalopoulos, Nikolaos

    2011-02-01

    Atmospheric loadings of the aerosols coarse (particles of AED > 1.5 μm) and fine fractions (particles of AED < 1.5 μm) were determined in Iasi, north-eastern Romania from January 2007 to March 2008. Concentrations of water soluble ions (SO 42-, NO 3-, Cl -, C 2O 42-, NH 4+, K +, Na +, Ca 2+ and Mg 2+) were measured using ion chromatography (IC). In the coarse particles, calcium and carbonate are the main ionic constituents (˜65%), whereas in the fine particles SO 42-, NO 3-, Cl - and NH 4+ are the most abundant. Temperature and relative humidity (RH) associated with increased concentrations of specific ions might be the main factors controlling the aerosol chemistry at the investigated site. From August 2007 to March 2008 high RH (as high as 80% for about 82% of the investigated period) was prevailing in Iasi and the collected particles were expected to have deliquesced and form an internal mixture. We found that in fine particles ammonium nitrate (NH 4NO 3) is important especially under conditions of NH 4+/SO 42- ratio higher than 1.5 and high RH (RH above deliquescence of NH 4Cl, NH 4NO 3 and (NH 4) 2SO 4). At the investigated site large ammonium artifacts may occur due to inter-particle interaction especially under favorable meteorological conditions. A methodology for estimating the artifact free ambient ammonium concentration is proposed for filter pack sampling data of deliquesced particles. Nitrate and sulfate ions in coarse particles are probably formed via reactions of nitric and sulfuric acid with calcium carbonate and sodium chloride which during specific seasons are abundant at the investigated site. In the fine mode sulfate concentration maximized during summer (due to enhanced photochemistry) and winter (due to high concentration of SO 2 emitted from coal burning). Natural contributions, dust or sea-salt related, prevail mainly in the coarse particles. From May 2007 to August 2007, when air masses originated mainly from Black Sea, in the coarse

  2. Machine Learning Algorithms for Automated Satellite Snow and Sea Ice Detection

    NASA Astrophysics Data System (ADS)

    Bonev, George

    The continuous mapping of snow and ice cover, particularly in the arctic and poles, are critical to understanding the earth and atmospheric science. Much of the world's sea ice and snow covers the most inhospitable places, making measurements from satellite-based remote sensors essential. Despite the wealth of data from these instruments many challenges remain. For instance, remote sensing instruments reside on-board different satellites and observe the earth at different portions of the electromagnetic spectrum with different spatial footprints. Integrating and fusing this information to make estimates of the surface is a subject of active research. In response to these challenges, this dissertation will present two algorithms that utilize methods from statistics and machine learning, with the goal of improving on the quality and accuracy of current snow and sea ice detection products. The first algorithm aims at implementing snow detection using optical/infrared instrument data. The novelty in this approach is that the classifier is trained using ground station measurements of snow depth that are collocated with the reflectance observed at the satellite. Several classification methods are compared using this training data to identify the one yielding the highest accuracy and optimal space/time complexity. The algorithm is then evaluated against the current operational NASA snow product and it is found that it produces comparable and in some cases superior accuracy results. The second algorithm presents a fully automated approach to sea ice detection that integrates data obtained from passive microwave and optical/infrared satellite instruments. For a particular region of interest the algorithm generates sea ice maps of each individual satellite overpass and then aggregates them to a daily composite level, maximizing the amount of high resolution information available. The algorithm is evaluated at both, the individual satellite overpass level, and at the daily

  3. The Microscope Space Mission and the In-Orbit Calibration Plan for its Instrument

    NASA Astrophysics Data System (ADS)

    Levy, Agnès Touboul, Pierre; Rodrigues, Manuel; Onera, Émilie Hardy; Métris, Gilles; Robert, Alain

    2015-01-01

    The MICROSCOPE space mission aims at testing the Equivalence Principle (EP) with an accuracy of 10-15. This principle is one of the basis of the General Relativity theory; it states the equivalence between gravitational and inertial mass. The test is based on the precise measurement of a gravitational signal by a differential electrostatic accelerometer which includes two cylindrical test masses made of different materials. The accelerometers constitute the payload accommodated on board a drag-free micro-satellite which is controlled inertial or rotating about the normal to the orbital plane. The acceleration estimates used for the EP test are disturbed by the instruments physical parameters and by the instrument environment conditions on-board the satellite. These parameters are partially measured with ground tests or during the integration of the instrument in the satellite (alignment). Nevertheless, the ground evaluations are not sufficient with respect to the EP test accuracy objectives. An in-orbit calibration is therefore needed to characterize them finely. The calibration process for each parameter has been defined.

  4. One-Dimensional Hybrid Satellite Track Model for the Dynamics Explorer 2 (DE 2) Satellite

    NASA Technical Reports Server (NTRS)

    Deng, Wei; Killeen, T. L.; Burns, A. G.; Johnson, R. M.; Emery, B. A.; Roble, R. G.; Winningham, J. D.; Gary, J. B.

    1995-01-01

    A one-dimensional hybrid satellite track model has been developed to calculate the high-latitude thermospheric/ionospheric structure below the satellite altitude using Dynamics Explorer 2 (DE 2) satellite measurements and theory. This model is based on Emery et al. satellite track code but also includes elements of Roble et al. global mean thermosphere/ionosphere model. A number of parameterizations and data handling techniques are used to input satellite data from several DE 2 instruments into this model. Profiles of neutral atmospheric densities are determined from the MSIS-90 model and measured neutral temperatures. Measured electron precipitation spectra are used in an auroral model to calculate particle impact ionization rates below the satellite. These rates are combined with a solar ionization rate profile and used to solve the O(+) diffusion equation, with the measured electron density as an upper boundary condition. The calculated O(+) density distribution, as well as the ionization profiles, are then used in a photochemical equilibrium model to calculate the electron and molecular ion densities. The electron temperature is also calculated by solving the electron energy equation with an upper boundary condition determined by the DE 2 measurement. The model enables calculations of altitude profiles of conductivity and Joule beating rate along and below the satellite track. In a first application of the new model, a study is made of thermospheric and ionospheric structure below the DE 2 satellite for a single orbit which occurred on October 25, 1981. The field-aligned Poynting flux, which is independently obtained for this orbit, is compared with the model predictions of the height-integrated energy conversion rate. Good quantitative agreement between these two estimates has been reached. In addition, measurements taken at the incoherent scatter radar site at Chatanika (65.1 deg N, 147.4 deg W) during a DE 2 overflight are compared with the model

  5. Planning and Scheduling for Fleets of Earth Observing Satellites

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Jonsson, Ari; Morris, Robert; Smith, David E.; Norvig, Peter (Technical Monitor)

    2001-01-01

    We address the problem of scheduling observations for a collection of earth observing satellites. This scheduling task is a difficult optimization problem, potentially involving many satellites, hundreds of requests, constraints on when and how to service each request, and resources such as instruments, recording devices, transmitters, and ground stations. High-fidelity models are required to ensure the validity of schedules; at the same time, the size and complexity of the problem makes it unlikely that systematic optimization search methods will be able to solve them in a reasonable time. This paper presents a constraint-based approach to solving the Earth Observing Satellites (EOS) scheduling problem, and proposes a stochastic heuristic search method for solving it.

  6. Satellite Applications to Acoustic Prediction Systems.

    DTIC Science & Technology

    1982-10-01

    Spin Scan Radiometer (VISSR) Channlization. . .1. . . . . . . . * 0 .0 35 III Coastal Zone Color Scanner (CZCS) Channelization. • .o . ... ....... 38...surface condit.ions observable remotely by satellite include sea surface temperature, ocean color , and topography. C. EXPERINENTAL BASIS FOR THIS...resolution at infrared wavelengths) . The limbus-7 spacecraft carries the Coastal Zone Color Scanner (CZCS), which is a visual radiation instrument

  7. Highlights from 40 Years of Satellite UV Measurements

    NASA Technical Reports Server (NTRS)

    Bhartia, Pawan K.

    2010-01-01

    This year we are celebrating the 40th anniversary of the launch of the Backscatter Ultraviolet (BUV) instrument on NASA's Nimbus-4 satellite. The purpose of this instrument was to demonstrate the capability to measure total column ozone and its vertical distribution from space. The success of this instrument led to about a dozen instruments of this type on various NASA and NOAA satellites. These instruments used a single photomultiplier tube (PMT) that restricted the measurements to 6-12 discrete wavelengths in the 250-380 nm range. With the availability of solid-state detector arrays in the past decade it has been possible to make similar measurements but with hyperspectral (contiguous in wavelength) sampling and enhanced spectral resolution. This has allowed global mapping of several weakly-absorbing trace gases including S0 2, NO2, BrO, HCHO, and CIIOCHO. Since these measurements are affected by clouds and aerosols, a great deal of effort has gone into understanding their effect on ultraviolet radiation- both upwelling and downwelling. The downwelling UV radiation is chemically and biologically active and has both negative (genetic damage, air pollution) and positive (production of vitamin D and OH radical) environmental effects. I will discuss how the interaction of Rayleigh-scattered UV radiation with clouds and aerosols produce a variety of interesting effects that are leading to new methods of remote sensing of their properties. The UV measurements can greatly enhance the information that one derives from more traditional methods that use infrared and visible part of the solar spectrum.

  8. Meteorological Satellite Education Resources: Web-based Learning Modules, Initiatives, and the Environmental Satellite Resource Center (ESRC)

    NASA Astrophysics Data System (ADS)

    Schreiber-Abshire, W.; Dills, P.

    2008-12-01

    The COMET® Program (www.comet.ucar.edu) receives funding from NOAA NESDIS and the NPOESS Integrated Program Office (IPO), with additional contributions from the GOES-R Program Office and EUMETSAT, to directly support education and training efforts in the area of satellite meteorology. This partnership enables COMET to create educational materials of global interest on geostationary and polar- orbiting remote sensing platforms and their instruments, data, products, and operational applications. Over the last several years, COMET's satellite education programs have focused on the capabilities and applications of the upcoming next generation operational polar-orbiting NPP/NPOESS system and its relevance to operational forecasters and other user communities. COMET's activities have recently expanded to include education on the future Geostationary Operational Environmental Satellites (GOES-R). By partnering with experts from the Naval Research Laboratory, NOAA-NESDIS and various user communities, COMET stimulates greater utilization of both current and future satellite observations and products. In addition, COMET has broadened the scope of its online training to include materials on the EUMETSAT Polar-orbiting System (EPS) and Meteosat geostationary satellites. EPS represents an important contribution to the Initial Joint Polar System (IJPS) between NOAA and EUMETSAT, while Meteosat imaging capabilities provide an early look for the next generation GOES-R satellites. Also in collaboration with EUMETSAT, COMET is developing future modules on the joint NASA-CNES Jason altimetry mission and on satellite capabilities for monitoring the global climate. COMET also provides Spanish translations of relevant GOES materials in order to support the GEOSS (Global Earth Observation System of Systems) Americas effort, which is associated with the move of GOES-10 to provide routine satellite coverage over South America. This poster presentation provides an overview of COMET

  9. Comparing Data from Telescopic X-Ray Instruments: Can We Trust All Satellites?

    NASA Astrophysics Data System (ADS)

    Joyce, Quianah T.; Fortenberry, Alexander; Gendre, Bruce

    2017-01-01

    In astronomy and astrophysics, X-ray emissions from cosmic entities aid in revealing what type of sources they emanate from. Swift, NASA’s latest X-ray satellite, has not been operating at its intended configurations. The satellite is experiencing difficulties maintaining a stable temperature in its charge capture device. This research intends to determine if this complication causes discrepancies in Swift’s collected data by using gamma-ray burst data. Gamma-ray bursts are excellent comparison candidates due to their brightness and fluctuations. We compared archived data of GRB 130427A and GRB 090423A from Swift and the European Space Agency’s XMM-Newton observatory. Next, we reduced the data and produced the respective spectra. We then analyzed and compared the spectra to one another to find any discrepancies. We have determined, based on data analysis of the spectra, that Swift is working properly despite the cooling malfunction.

  10. Improved NOAA weather satellite scheduled for NASA launch

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A description of the GOES-E mission is presented and includes the instrumentation of the satellite, data acquisition, spacecraft description, and Delta Launch Vehicle description. The launch operations are presented and include major launch events, post-launch events, and a review of the Delta/GOES-E team.

  11. TerraHertz Free Electron Laser Applications for Satellite Remote Sensing

    NASA Technical Reports Server (NTRS)

    Heaps, William S.

    2003-01-01

    The development of a Free Electron Laser (EL) operating in the terahertz frequency regime by the group at the University of Hawaii (Elias et al.) represents a significant new opportunity in the area of atmospheric remote sensing. The FEL has 2 salient features that create a unique opportunity. First of all it represents the only source in this frequency range with sufficient power to enable lidar instrumentation. Secondly its very high electrical efficiency (several times more efficient than any currently employed spaceborne laser) renders it a strong candidate for use in satellite remote sensing. On the negative side the atmosphere is rather strongly absorbing throughout this frequency range due primarily to the water vapor continuum absorption. This means that the instruments using this laser will not be able to access the lower troposphere because of its very high water concentration.. However the instrument will be very capable of measurements in the upper troposphere and stratosphere. A passive instrument, the Microwave Limb Sounder on the UARS satellite operated by Jet Propulsion Laboratory, has already demonstrated that this wavelength region can be used for chemical species with strong emission lines. A lidar would complement the capabilities of this instrument by providing the capability to measure absorbing species in the upper atmosphere. I will discuss the design of such an instrument in greater detail and estimate its performance in measuring a number of chemical species of interest to the Earth Science community.

  12. Lunar Crater Observation and Sensing Satellite (LCROSS) Instrument Calibration Summary. Version 1

    NASA Technical Reports Server (NTRS)

    Smith, Kimberly Ennico; Colaprete, Anthony; Shirley, Mark H.; Wooden, Diane H.

    2010-01-01

    This document describes the calibration of the LCROSS instruments. It will be released to the public via the Planetary Data System. We need a quick review, if possible, because the data has been delivered to the PDS, and this document is needed to interpret the LCROSS impact data fully. [My mistake [shirley) in not realizing this needed to be treated as a normal publication.] The LCROSS instruments are commercially available units except for one designed and built at Ames. The commercially available instruments don't seem to me to present ITAR issues (Sony video camera, thermal camera from England, and so on.) Also, the internal design details of the instruments are not included in this report, only the process of calibrating them against standard targets. Only very high-level descriptions of the spacecraft are included, comparable to the level of detail included in the public web pages on nasa.gov.

  13. Plots of ground coverage achieveable by global change monitoring instruments and spacecraft

    NASA Technical Reports Server (NTRS)

    Knight, Heather R.; Foernsler, Lynda

    1991-01-01

    Low Earth Orbit (LEO) and Geosynchronous Earth Orbit (GEO) satellite plots are given. All satellites are in an 800 km circular orbit at an inclination of 98.6 deg (sun synchronous). Specifics of the instrument package are given. Additionally, the time period of the plot and the percentage of the Earth covered during the time period are listed.

  14. Deriving a Core Magnetic Field Model from Swarm Satellite Data

    NASA Astrophysics Data System (ADS)

    Lesur, V.; Rother, M.; Wardinski, I.

    2014-12-01

    A model of the Earth's core magnetic field has been built using Swarm satellite mission data and observatory quasi-definitive data. The satellite data processing scheme, which was used to derive previous satellite field models (i.e. GRIMM series), has been modified to handle discrepancies between the satellite total intensity data derived from the vector fluxgate magnetometer and the absolute scalar instrument. Further, the Euler angles, i.e. the angles between the vector magnetometer and the satellite reference frame, have been recalculated on a series of 30-day windows to obtain an accurate model of the core field for 2014. Preliminary derivations of core magnetic field and SV models for 2014 present the same characteristics as during the CHAMP era. The acceleration (i.e. the field second time derivative) has shown a rapid evolution over the last few years, and is present in the current model, which confirms previous observations.

  15. Satellite Relaying of Geophysical Data

    NASA Technical Reports Server (NTRS)

    Allenby, R. J.

    1977-01-01

    Data Collection Platforms (DCPs) for transmitting surface data to an orbiting satellite for relaying to a central data distribution center are being used in a number of geophysical applications. "Off-the-shelf" DCP's, transmitting through Landsat or GOES satellites, are fully capable of relaying data from low-data-rate instruments, such as tiltmeters or tide gauges. In cooperation with the Lamont-Doherty Geological Observatory, Goddard has successfully installed DCP systems on a tide gauge and tiltmeter array on Anegada, British Virgin Islands. Because of the high-data-rate requirements, a practical relay system capable of handling seismic information is not yet available. Such a system could become the basis of an operational hazard prediction system for reducing losses due to major natural catastrophies such as earthquakes, volcanic eruptions, landslides or tsunamis.

  16. Infrared sensor for hot spot recognition for a small satellite mission

    NASA Astrophysics Data System (ADS)

    Skrbek, W.; Bachmann, K.; Lorenz, E.; Neidhardt, M.; Peschel, M.; Walter, I.; Zender, B.

    1996-11-01

    High temperature events strongly influence the environmental processes. Therefore, their observation is an important constituent of the global monitoring network. Unfortunately the current remote sensing systems are not able to deliver the necessary information about the world wide burn out of vegetation and its consequences. For global observations a dedicated system of small satellites is required. The main components of the corresponding instrumentation are the infrared channels. The proposed HSRS (HOT SPOT RECOGNITION SENSOR) has to demonstrate the possibilities of an such instrumentation and its feasibility for small satellites. The main drawbacks of the HSRS design are the handling of the hot spot recognition in the subpixel area and of the saturation in the case of larger hot areas by a suitable signal processing hardware.

  17. Applications of Satellite Observations of Tropospheric Composition

    NASA Astrophysics Data System (ADS)

    Monks, Paul S.; Beirle, Steffen

    A striking feature of the field of tropospheric composition is the sheer number of chemical species that have been detected and measured with satellite instruments. The measurements have found application both in atmospheric chemistry itself, providing evidence, for example, of unexpected cryochemistry in the Arctic regions, and also in environmental monitoring with, for example, the observed growth in NO2 emissions over eastern Asia. Chapter 8 gives an overview of the utility of satellite observations for measuring tropospheric composition, dealing with each of the many compounds seen in detail. A comprehensive compound by compound table of the many studies performed is a most useful feature.

  18. Energy Spectra of Geomagnetically Trapped Light Isotopes Measured by NINA-2 Instrument

    NASA Astrophysics Data System (ADS)

    Mikhailov, V. V.; Bakaldin, A.; Galper, A.; Koldashov, S.; Korotkov, M.; Leonov, A.; Voronov, S.; Bidoli, V.; Caoslino, M.; De Pascale, M.; Furano, G.; Iannucci, A.; Morselli, A.; Picozza, P.; Sparvoli, R.; Boezio, M.; Bonvincini, V.; Vacchi, A.; Zampa, N.; Ambriola, M.; Bellotti, R.; Cafagna, F.; Circella, M.; De Marzo, C.; Adriani, O.; Papini, P.; Spillantini, P.; Straulino, S.; Vannuccini, E.; Ricci, M.; Castellini, G.

    2003-07-01

    This paper reports about the energy spectrum of geomagnetically trapped protons, deuterons, tritons and He isotop es measured by the instrument NINA2 at the low boundary of the South Atlantic Anomaly. NINA-2 on board the satellite MITA has been in orbit from 15 July 2000 to 10 August 2001, flying with circular polar orbit (87° inclination), at an altitude between 300-440 km. Differential energy spectra were measured at L-shell ˜ 1.2 and local magnetic field b< 0.22 G. Data from NINA-2 are compared with measurements made onboard Resurs-01 N4 satellite with NINA instrument. Possible solar modulation effects are discussed.

  19. Trace Gas Retrievals from the GeoTASO Aircraft Instrument During the DISCOVER-AQ Campaigns

    NASA Astrophysics Data System (ADS)

    Nowlan, C. R.; Liu, X.; Leitch, J. W.; Liu, C.; Gonzalez Abad, G.; Chance, K.; Delker, T.; Good, W. S.; Murcray, F.; Ruppert, L.; Kaptchen, P. F.; Loughner, C.; Follette-Cook, M. B.; Pickering, K. E.

    2014-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) instrument is a recently-developed passive remote sensing instrument capable of making 2-D measurements of trace gases from aircraft. GeoTASO was developed under NASA's Instrument Incubator program and is a test-bed instrument for the Geostationary Coastal and Air Pollution Events (GEO-CAPE) decadal survey and the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite missions. The instrument collects spectra of backscattered UV-visible radiation for the detection of tropospheric trace gases such as NO2, ozone, formaldehyde and SO2. GeoTASO flew on the NASA HU-25C Falcon aircraft during the 2013 (Texas) and 2014 (Colorado) DISCOVER-AQ field campaigns, making satellite-analog measurements of trace gases at a spatial resolution of approximately 500x500 m over urban areas, power plants and other industrial sources of pollution. We present the GeoTASO retrieval algorithms, trace gas measurement results, and validation comparisons with ground-based observations and other aircraft instruments during these campaigns.

  20. Detecting negative ions on board small satellites

    NASA Astrophysics Data System (ADS)

    Lepri, S. T.; Raines, J. M.; Gilbert, J. A.; Cutler, J.; Panning, M.; Zurbuchen, T. H.

    2017-04-01

    Recent measurements near comets, planets, and their satellites have shown that heavy ions, energetic neutral atoms, molecular ions, and charged dust contain a wealth of information about the origin, evolution, and interaction of celestial bodies with their space environment. Using highly sensitive plasma instruments, positively charged heavy ions have been used to trace exospheric and surface composition of comets, planets, and satellites as well as the composition of interplanetary and interstellar dust. While positive ions dominate throughout the heliosphere, negative ions are also produced from surface interactions. In fact, laboratory experiments have shown that oxygen released from rocky surfaces is mostly negatively charged. Negative ions and negatively charged nanograins have been detected with plasma electron analyzers in several different environments (e.g., by Cassini and Rosetta), though more extensive studies have been challenging without instrumentation dedicated to negative ions. We discuss an adaptation of the Fast Imaging Plasma Spectrometer (FIPS) flown on MErcury Surface, Space ENvironment, GEochemistry and Ranging (MESSENGER) for the measurement of negatively charged particles. MESSENGER/FIPS successfully measured the plasma environment of Mercury from 2011 until 2015, when the mission ended, and has been used to map multiple ion species (H+ through Na+ and beyond) throughout Mercury's space environment. Modifications to the existing instrument design fits within a 3U CubeSat volume and would provide a low mass, low power instrument, ideal for future CubeSat or distributed sensor missions seeking, for the first time, to characterize the contribution of negative particles in the heliospheric plasmas near the planets, moons, comets, and other sources.

  1. Upscaling sparse ground-based soil moisture observations for the validation of satellite surface soil moisture products

    USDA-ARS?s Scientific Manuscript database

    The contrast between the point-scale nature of current ground-based soil moisture instrumentation and the footprint resolution (typically >100 square kilometers) of satellites used to retrieve soil moisture poses a significant challenge for the validation of data products from satellite missions suc...

  2. Pre-Launch Radiometric Performance Characterization of the Advanced Technology Microwave Sounder on the Joint Polar Satellite System-1 Satellite

    NASA Technical Reports Server (NTRS)

    Smith, Craig K.; Kim, Edward; Leslie, R. Vincent; Lyu, Joseph; McCormick, Lisa M.; Anderson, Kent

    2017-01-01

    The Advanced Technology Microwave Sounder (ATMS) is a space-based, cross-track radiometer for operational atmospheric temperature and humidity sounding, utilizing 22 channels over a frequency range from 23 to 183 gigahertz. The ATMS for the Joint Polar Satellite System-1 has undergone two rounds of re-work in 2014-2015 and 2016, following performance issues discovered during and following thermal vacuum chamber (TVAC) testing at the instrument and observatory level. Final shelf-level testing, including measurement of pass band characteristics and spectral response functions, was completed in December 2016. Final instrument-level TVAC testing and calibration occurred during February 2017. Here we will describe the instrument-level TVAC calibration process, and illustrate with results from the final TVAC calibration effort.

  3. The MetOp second generation 3MI instrument

    NASA Astrophysics Data System (ADS)

    Manolis, Ilias; Grabarnik, Semen; Caron, Jérôme; Bézy, Jean-Loup; Loiselet, Marc; Betto, Maurizio; Barré, Hubert; Mason, Graeme; Meynart, Roland

    2013-10-01

    The MetOp-SG programme is a joint Programme of EUMETSAT and ESA. ESA develops the prototype MetOp-SG satellites (including associated instruments) and procures, on behalf of EUMETSAT, the recurrent satellites (and associated instruments). Two parallel, competitive phase A/B1 studies for MetOp Second Generation (MetOp-SG) have been concluded in May 2013. The implementation phases (B2/C/D/E) are planned to start the first quarter of 2014. ESA is responsible for instrument design of six missions, namely Microwave Sounding Mission (MWS), Scatterometer mission (SCA), Radio Occultation mission (RO), Microwave Imaging mission (MWI), Ice Cloud Imager (ICI) and Multi-viewing, Multi-channel, Multi-polarisation imaging mission (3MI). The paper will present the main performances of the 3MI instrument and will highlight the performance improvements with respect to its heritage derived by the POLDER instrument, such as number of spectral channels and spectral range coverage, swath and ground spatial resolution. The engineering of some key performance requirements (multi-viewing, polarisation sensitivity, straylight etc.) will also be discussed. The results of the feasibility studies will be presented together with the programmatics for the instrument development. Several pre-development activities have been initiated to retire highest risks and to demonstrate the ultimate performances of the 3MI optics. The scope, objectives and current status of those activities will be presented. Key technologies involved in the 3MI instrument design and implementation are considered to be: the optical design featuring aspheric optics, the implementation of broadband Anti Reflection coatings featuring low polarisation and low de-phasing properties, the development and qualification of polarisers with acceptable performances as well as spectral filters with good uniformities over a large clear aperture.

  4. NASA SMD Airborne Science Capabilities for Development and Testing of New Instruments

    NASA Technical Reports Server (NTRS)

    Fladeland, Matthew

    2015-01-01

    The SMD NASA Airborne Science Program operates and maintains a fleet of highly modified aircraft to support instrument development, satellite instrument calibration, data product validation and earth science process studies. This poster will provide an overview of aircraft available to NASA researchers including performance specifications and modifications for instrument support, processes for requesting aircraft time and developing cost estimates for proposals, and policies and procedures required to ensure safety of flight.

  5. Remote sensing of the atmosphere from environmental satellites

    NASA Technical Reports Server (NTRS)

    Allison, L. J.; Wexler, R.; Laughlin, C. R.; Bandeen, W. R.

    1977-01-01

    Various applications of satellite remote sensing of the earth are reviewed, including (1) the use of meteorological satellites to obtain photographic and radiometric data for determining weather conditions; (2) determination of the earth radiation budget from measurements of reflected solar radiation and emitted long wave terrestrial radiation; (3) the use of microwave imagery for measuring ice and snow cover; (4) LANDSAT visual and near infrared observation of floods and crop growth; and (5) the use of the Nimbus 4 backscatter ultraviolet instrument to measure total ozone and vertical ozone distribution. Plans for future activities are also discussed.

  6. Instrumentation for Mars Environments

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    1997-01-01

    The main portion of the project was to support the "MAE" experiment on the Mars Pathfinder mission and to design instrumentation for future space missions to measure dust deposition on Mars and to characterize the properties of the dust. A second task was to analyze applications for photovoltaics in new space environments, and a final task was analysis of advanced applications for solar power, including planetary probes, photovoltaic system operation on Mars, and satellite solar power systems.

  7. Radiometric consistency assessment of hyperspectral infrared sounders

    NASA Astrophysics Data System (ADS)

    Wang, L.; Han, Y.; Jin, X.; Chen, Y.; Tremblay, D. A.

    2015-07-01

    The radiometric and spectral consistency among the Atmospheric Infrared Sounder (AIRS), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared Sounder (CrIS) is fundamental for the creation of long-term infrared (IR) hyperspectral radiance benchmark datasets for both inter-calibration and climate-related studies. In this study, the CrIS radiance measurements on Suomi National Polar-orbiting Partnership (SNPP) satellite are directly compared with IASI on MetOp-A and -B at the finest spectral scale and with AIRS on Aqua in 25 selected spectral regions through one year of simultaneous nadir overpass (SNO) observations to evaluate radiometric consistency of these four hyperspectral IR sounders. The spectra from different sounders are paired together through strict spatial and temporal collocation. The uniform scenes are selected by examining the collocated Visible Infrared Imaging Radiometer Suite (VIIRS) pixels. Their brightness temperature (BT) differences are then calculated by converting the spectra onto common spectral grids. The results indicate that CrIS agrees well with IASI on MetOp-A and IASI on MetOp-B at the longwave IR (LWIR) and middle-wave IR (MWIR) bands with 0.1-0.2 K differences. There are no apparent scene-dependent patterns for BT differences between CrIS and IASI for individual spectral channels. CrIS and AIRS are compared at the 25 spectral regions for both Polar and Tropical SNOs. The combined global SNO datasets indicate that, the CrIS-AIRS BT differences are less than or around 0.1 K among 21 of 25 comparison spectral regions and they range from 0.15 to 0.21 K in the remaining 4 spectral regions. CrIS-AIRS BT differences in some comparison spectral regions show weak scene-dependent features.

  8. Radiometric consistency assessment of hyperspectral infrared sounders

    NASA Astrophysics Data System (ADS)

    Wang, L.; Han, Y.; Jin, X.; Chen, Y.; Tremblay, D. A.

    2015-11-01

    The radiometric and spectral consistency among the Atmospheric Infrared Sounder (AIRS), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared Sounder (CrIS) is fundamental for the creation of long-term infrared (IR) hyperspectral radiance benchmark data sets for both intercalibration and climate-related studies. In this study, the CrIS radiance measurements on Suomi National Polar-orbiting Partnership (SNPP) satellite are directly compared with IASI on MetOp-A and MetOp-B at the finest spectral scale and with AIRS on Aqua in 25 selected spectral regions through simultaneous nadir overpass (SNO) observations in 2013, to evaluate radiometric consistency of these four hyperspectral IR sounders. The spectra from different sounders are paired together through strict spatial and temporal collocation. The uniform scenes are selected by examining the collocated Visible Infrared Imaging Radiometer Suite (VIIRS) pixels. Their brightness temperature (BT) differences are then calculated by converting the spectra onto common spectral grids. The results indicate that CrIS agrees well with IASI on MetOp-A and IASI on MetOp-B at the long-wave IR (LWIR) and middle-wave IR (MWIR) bands with 0.1-0.2 K differences. There are no apparent scene-dependent patterns for BT differences between CrIS and IASI for individual spectral channels. CrIS and AIRS are compared at the 25 spectral regions for both polar and tropical SNOs. The combined global SNO data sets indicate that the CrIS-AIRS BT differences are less than or around 0.1 K among 21 of 25 spectral regions and they range from 0.15 to 0.21 K in the remaining four spectral regions. CrIS-AIRS BT differences in some comparison spectral regions show weak scene-dependent features.

  9. Satellite Calibration With LED Detectors at Mud Lake

    NASA Technical Reports Server (NTRS)

    Hiller, Jonathan D.

    2005-01-01

    Earth-monitoring instruments in orbit must be routinely calibrated in order to accurately analyze the data obtained. By comparing radiometric measurements taken on the ground in conjunction with a satellite overpass, calibration curves are derived for an orbiting instrument. A permanent, automated facility is planned for Mud Lake, Nevada (a large, homogeneous, dry lakebed) for this purpose. Because some orbiting instruments have low resolution (250 meters per pixel), inexpensive radiometers using LEDs as sensors are being developed to array widely over the lakebed. LEDs are ideal because they are inexpensive, reliable, and sense over a narrow bandwidth. By obtaining and averaging widespread data, errors are reduced and long-term surface changes can be more accurately observed.

  10. MARXS: A Modular Software to Ray-trace X-Ray Instrumentation

    NASA Astrophysics Data System (ADS)

    Günther, Hans Moritz; Frost, Jason; Theriault-Shay, Adam

    2017-12-01

    To obtain the best possible scientific result, astronomers must understand the properties of the available instrumentation well. This is important both when designing new instruments and when using existing instruments close to the limits of their specified capabilities or beyond. Ray-tracing is a technique for numerical simulations where the path of many light rays is followed through the system to understand how individual system components influence the observed properties, such as the shape of the point-spread-function. In instrument design, such simulations can be used to optimize the performance. For observations with existing instruments, this helps to discern instrumental artefacts from a true signal. Here, we describe MARXS, a new python package designed to simulate X-ray instruments on satellites and sounding rockets. MARXS uses probability tracking of photons and has polarimetric capabilities.

  11. Antennas Lower Cost of Satellite Access

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Whether for scientific inquiry, weather forecasting, or public safety, the world relies upon the data gathered by satellite remote sensing. Some of NASA s most valuable work is in its remote sensing capabilities - the ability to retrieve data acquired at great distances - affording a height and scope not available from the ground. NASA satellites in low Earth orbit (LEO) monitor ocean health by taking large-scale pictures of phytoplankton blooms and measuring surface temperatures; snap photographs of full hurricanes from above, teaching researchers about how these giant storms form; and capture images of cloud formation and air pollution, all allowing researchers to further develop understanding of the planet s health. NASA remote sensing satellites also monitor shifts in the Earth s crust, analyze wind patterns around the world to develop efficient wind energy, help people around the world recover from natural disasters, and monitor diminishing sea ice levels. Just as researchers are more heavily relying on this data from space to conduct their work, the instruments carried on satellites are getting more sophisticated and capable of capturing increasingly complex and accurate measurements. The satellites are covering larger areas, from farther away, and generating more and more valuable data. The ground-based receivers for this wealth of satellite data have grown increasingly capable of handling greater bandwidth and higher power levels. They have also become less expensive, through a NASA research partnership, with the creation of a high-rate X-band data receiver system that is now in widespread use around the globe.

  12. VISAGE Visualization for Integrated Satellite, Airborne and Ground-Based Data Exploration

    NASA Technical Reports Server (NTRS)

    Conover, Helen; Berendes, Todd; Naeger, Aaron; Maskey, Manil; Gatlin, Patrick; Wingo, Stephanie; Kulkarni, Ajinkya; Gupta, Shivangi; Nagaraj, Sriraksha; Wolff, David; hide

    2017-01-01

    The primary goal of the VISAGE project is to facilitate more efficient Earth Science investigations via a tool that can provide visualization and analytic capabilities for diverse coincident datasets. This proof-of-concept project will be centered around the GPM Ground Validation program, which provides a valuable source of intensive, coincident observations of atmospheric phenomena. The data are from a wide variety of ground-based, airborne and satellite instruments, with a wide diversity in spatial and temporal scales, variables, and formats, which makes these data difficult to use together. VISAGE will focus on "golden cases" where most ground instruments were in operation and multiple research aircraft sampled a significant weather event, ideally while the GPM Core Observatory passed overhead. The resulting tools will support physical process studies as well as satellite and model validation.

  13. Development of New Research-Quality Low-Resource Magnetometers for Small Satellites

    NASA Technical Reports Server (NTRS)

    Moldwin, Mark; Hunter, Roger C.; Baker, Christopher

    2017-01-01

    Researchers from the University of Michigan (UM) and NASA Goddard Spaceflight Center (GSFC) are partnering to develop new types of magnetometers for use on future small satellites. These new instruments not only fulfill stringent requirements for low-amplitude and high-precision measurements, they are also enabling the team to develop a new approach to achieve high-quality magnetic measurements from space, without the need for a boom. Typically, space-based magnetometers are deployed on a boom that extends from the space vehicle to reduce exposure of magnetic noise emanating from the spacecraft, which could potentially contaminate measurements. The UMNASA team has developed algorithms to identify and eliminate spacecraft magnetic noise, which will allow placement of these economical, science-grade instrument magnetometers on and inside the satellite bus, instead of on a boom.

  14. Scientific Objectives of Electron Losses and Fields INvestigation Onboard Lomonosov Satellite

    NASA Astrophysics Data System (ADS)

    Shprits, Y. Y.; Angelopoulos, V.; Russell, C. T.; Strangeway, R. J.; Runov, A.; Turner, D.; Caron, R.; Cruce, P.; Leneman, D.; Michaelis, I.; Petrov, V.; Panasyuk, M.; Yashin, I.; Drozdov, A.; Russell, C. L.; Kalegaev, V.; Nazarkov, I.; Clemmons, J. H.

    2018-02-01

    The objective of the Electron Losses and Fields INvestigation on board the Lomonosov satellite (ELFIN-L) project is to determine the energy spectrum of precipitating energetic electrons and ions and, together with other polar-orbiting and equatorial missions, to better understand the mechanisms responsible for scattering these particles into the atmosphere. This mission will provide detailed measurements of the radiation environment at low altitudes. The 400-500 km sun-synchronous orbit of Lomonosov is ideal for observing electrons and ions precipitating into the atmosphere. This mission provides a unique opportunity to test the instruments. Similar suite of instruments will be flown in the future NSF- and NASA-supported spinning CubeSat ELFIN satellites which will augment current measurements by providing detailed information on pitch-angle distributions of precipitating and trapped particles.

  15. The GOES-R Spacecraft Space Weather Instruments and Level 2+ Products

    NASA Astrophysics Data System (ADS)

    Loto'aniu, Paul; Rodriguez, Juan; Machol, Janet; Kress, Brian; Darnel, Jonathan; Redmon, Robert; Rowland, William; Seation, Daniel; Tilton, Margaret; Denig, William

    2016-04-01

    Since their inception in the 1970s, the GOES satellites have monitored the sources of space weather on the sun and the effects of space weather at Earth. The space weather instruments on GOES-R will monitor: solar X-rays, UV light, solar energetic particles, magnetospheric energetic particles, galactic cosmic rays, and Earth's magnetic field. These measurements are important for providing alerts and warnings to many customers, including satellite operators, the power utilities, and NASA's human activities in space. This presentation reviews the capabilities of the GOES-R space weather instruments and describes the space weather Level 2+ products that are being developed for GOES-R. These new and continuing data products will be an integral part of NOAA space weather operations in the GOES-R era.

  16. Estimation of Chinese surface NO2 concentrations combining satellite data and Land Use Regression

    NASA Astrophysics Data System (ADS)

    Anand, J.; Monks, P.

    2016-12-01

    Monitoring surface-level air quality is often limited by in-situ instrument placement and issues arising from harmonisation over long timescales. Satellite instruments can offer a synoptic view of regional pollution sources, but in many cases only a total or tropospheric column can be measured. In this work a new technique of estimating surface NO2 combining both satellite and in-situ data is presented, in which a Land Use Regression (LUR) model is used to create high resolution pollution maps based on known predictor variables such as population density, road networks, and land cover. By employing a mixed effects approach, it is possible to take advantage of the spatiotemporal variability in the satellite-derived column densities to account for daily and regional variations in surface NO2 caused by factors such as temperature, elevation, and wind advection. In this work, surface NO2 maps are modelled over the North China Plain and Pearl River Delta during high-pollution episodes by combining in-situ measurements and tropospheric columns from the Ozone Monitoring Instrument (OMI). The modelled concentrations show good agreement with in-situ data and surface NO2 concentrations derived from the MACC-II global reanalysis.

  17. Adaptive Instrument Module: Space Instrument Controller "Brain" through Programmable Logic Devices

    NASA Technical Reports Server (NTRS)

    Darrin, Ann Garrison; Conde, Richard; Chern, Bobbie; Luers, Phil; Jurczyk, Steve; Mills, Carl; Day, John H. (Technical Monitor)

    2001-01-01

    The Adaptive Instrument Module (AIM) will be the first true demonstration of reconfigurable computing with field-programmable gate arrays (FPGAs) in space, enabling the 'brain' of the system to evolve or adapt to changing requirements. In partnership with NASA Goddard Space Flight Center and the Australian Cooperative Research Centre for Satellite Systems (CRC-SS), APL has built the flight version to be flown on the Australian university-class satellite FEDSAT. The AIM provides satellites the flexibility to adapt to changing mission requirements by reconfiguring standardized processing hardware rather than incurring the large costs associated with new builds. This ability to reconfigure the processing in response to changing mission needs leads to true evolveable computing, wherein the instrument 'brain' can learn from new science data in order to perform state-of-the-art data processing. The development of the AIM is significant in its enormous potential to reduce total life-cycle costs for future space exploration missions. The advent of RAM-based FPGAs whose configuration can be changed at any time has enabled the development of the AIM for processing tasks that could not be performed in software. The use of the AIM enables reconfiguration of the FPGA circuitry while the spacecraft is in flight, with many accompanying advantages. The AIM demonstrates the practicalities of using reconfigurable computing hardware devices by conducting a series of designed experiments. These include the demonstration of implementing data compression, data filtering, and communication message processing and inter-experiment data computation. The second generation is the Adaptive Processing Template (ADAPT) which is further described in this paper. The next step forward is to make the hardware itself adaptable and the ADAPT pursues this challenge by developing a reconfigurable module that will be capable of functioning efficiently in various applications. ADAPT will take advantage of

  18. Evaluation of Experimental Data from the Gains Balloon GPS Surface Reflection Instrument

    NASA Technical Reports Server (NTRS)

    Ganoe, George G.; Johnson, Thomas A.; Somero, John Ryan

    2002-01-01

    The GPS Surface Reflection Instrument was integrated as an experiment on the GAINS (Global Airocean IN-situ System) 48-hour balloon mission flown in June 2002. The data collected by similar instruments in the past has been used to measure sea state from which ocean surface winds can be accurately estimated. The GPS signal has also been shown to be reflected from wetland areas and even from subsurface moisture. The current version of the instrument has been redesigned to be more compact, use less power, and withstand a greater variation in environmental conditions than previous versions. This instrument has also incorporated a new data collection mode to track 5 direct satellites (providing a continuous navigation solution) and multiplex the remaining 7 channels to track the reflected signal of the satellite tracked in channel 0. The new software mode has been shown to increase the signal to noise ratio of the collected data and enhance the science return of the instrument. During the GAINS balloon flight over the Northwest US, the instrument measured surface reflections as they were detected over the balloon's ground track. Since ground surface elevations in this area vary widely from the WGS-84 ellipsoid altitude, the instrument software has been modified to incorporate a surface altitude correction based on USGS 30-minute Digital Elevation Models. Information presented will include facts about instrument design goals, data collection methodologies and algorithms, and will focus on results of the science data analyses for the mission.

  19. Evaluation of Experimental Data from the GAINS Balloon GPS Surface Reflection Instrument

    NASA Technical Reports Server (NTRS)

    Gance, George G.; Johnson, Thomas A.

    2004-01-01

    The GPS Surface Reflection Instrument was integrated as an experiment on the GAINS (Global Airocean IN-situ System) 48-hour balloon mission flown in September 2001. The data collected by similar instruments in the past has been used to measure sea state from which ocean surface winds can be accurately estimated. The GPS signal has also been shown to be reflected from wetland areas and even from subsurface moisture. The current version of the instrument has been redesigned to be more compact, use less power, and withstand a greater variation in environmental conditions than previous versions. This instrument has also incorporated a new data collection mode to track 5 direct satellites (providing a continuous navigation solution) and multiplex the remaining 7 channels to track the reflected signal of the satellite tracked in channel 0. The new software mode has been shown to increase the signal to noise ratio of the collected data and enhance the science return of the instrument. During the 48-hour flight over the Northwest US, the instrument will measure surface reflections that can be detected over the balloon's ground track. Since ground surface elevations in this area vary widely from the WGS-84 ellipsoid altitude, the instrument software has been modified to incorporate a surface altitude correction based on USGS 30-minute Digital Elevation Models. Information presented will include facts about instrument design goals, data collection methodologies and algorithms, and results of the science data analyses for the 48-hour mission.

  20. Accurate Satellite-Derived Estimates of Tropospheric Ozone Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Joiner, Joanna; Schoeberl, Mark R.; Vasilkov, Alexander P.; Oreopoulos, Lazaros; Platnick, Steven; Livesey, Nathaniel J.; Levelt, Pieternel F.

    2008-01-01

    Estimates of the radiative forcing due to anthropogenically-produced tropospheric O3 are derived primarily from models. Here, we use tropospheric ozone and cloud data from several instruments in the A-train constellation of satellites as well as information from the GEOS-5 Data Assimilation System to accurately estimate the instantaneous radiative forcing from tropospheric O3 for January and July 2005. We improve upon previous estimates of tropospheric ozone mixing ratios from a residual approach using the NASA Earth Observing System (EOS) Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) by incorporating cloud pressure information from OMI. Since we cannot distinguish between natural and anthropogenic sources with the satellite data, our estimates reflect the total forcing due to tropospheric O3. We focus specifically on the magnitude and spatial structure of the cloud effect on both the shortand long-wave radiative forcing. The estimates presented here can be used to validate present day O3 radiative forcing produced by models.

  1. Appraising city-scale pollution monitoring capabilities of multi-satellite datasets using portable pollutant monitors

    NASA Astrophysics Data System (ADS)

    Aliyu, Yahaya A.; Botai, Joel O.

    2018-04-01

    The retrieval characteristics for a city-scale satellite experiment was explored over a Nigerian city. The study evaluated carbon monoxide and aerosol contents in the city atmosphere. We utilized the MSA Altair 5× gas detector and CW-HAT200 particulate counter to investigate the city-scale monitoring capabilities of satellite pollution observing instruments; atmospheric infrared sounder (AIRS), measurement of pollution in the troposphere (MOPITT), moderate resolution imaging spectroradiometer (MODIS), multi-angle imaging spectroradiometer (MISR) and ozone monitoring instrument (OMI). To achieve this, we employed the Kriging interpolation technique to collocate the satellite pollutant estimations over 19 ground sample sites for the period of 2015-2016. The portable pollutant devices were validated using the WHO air filter sampling model. To determine the city-scale performance of the satellite datasets, performance indicators: correlation coefficient, model efficiency, reliability index and root mean square error, were adopted as measures. The comparative analysis revealed that MOPITT carbon monoxide (CO) and MODIS aerosol optical depth (AOD) estimates are the appropriate satellite measurements for ground equivalents in Zaria, Nigeria. Our findings were within the acceptable limits of similar studies that utilized reference stations. In conclusion, this study offers direction to Nigeria's air quality policy organizers about available alternative air pollution measurements for mitigating air quality effects within its limited resource environment.

  2. Monitoring Earth's Shortwave Reflectance: GEO Instrument Concept

    NASA Technical Reports Server (NTRS)

    Brageot, Emily; Mercury, Michael; Green, Robert; Mouroulis, Pantazis; Gerwe, David

    2015-01-01

    In this paper we present a GEO instrument concept dedicated to monitoring the Earth's global spectral reflectance with a high revisit rate. Based on our measurement goals, the ideal instrument needs to be highly sensitive (SNR greater than 100) and to achieve global coverage with spectral sampling (less than or equal to 10nm) and spatial sampling (less than or equal to 1km) over a large bandwidth (380-2510 nm) with a revisit time (greater than or equal to greater than or equal to 3x/day) sufficient to fully measure the spectral-radiometric-spatial evolution of clouds and confounding factor during daytime. After a brief study of existing instruments and their capabilities, we choose to use a GEO constellation of up to 6 satellites as a platform for this instrument concept in order to achieve the revisit time requirement with a single launch. We derive the main parameters of the instrument and show the above requirements can be fulfilled while retaining an instrument architecture as compact as possible by controlling the telescope aperture size and using a passively cooled detector.

  3. Mission description and in-flight operations of ERBE instruments on ERBS, NOAA 9, and NOAA 10 spacecraft

    NASA Technical Reports Server (NTRS)

    Weaver, William L.; Bush, Kathryn A.; Degnan, Keith T.; Howerton, Clayton E.; Tolson, Carol J.

    1992-01-01

    Instruments of the Earth Radiation Budget Experiment (ERBE) are operating on three different Earth-orbiting spacecraft. The Earth Radiation Budget Satellite (ERBS) is operated by NASA, and NOAA 9 and NOAA 10 weather satellites are operated by the National Oceanic and Atmospheric Administration (NOAA). This paper is the second in a series that describes the ERBE mission, and data processing and validation procedures. This paper describes the spacecraft and instrument operations for the second full year of in-orbit operations, which extend from February 1986 through January 1987. Validation and archival of radiation measurements made by ERBE instruments during this second year of operation were completed in July 1991. This period includes the only time, November 1986 through January 1987, during which all ERBE instruments aboard the ERBE, NOAA 9, and NOAA 10 spacecraft were simultaneously operational. This paper covers normal and special operations of the spacecraft and instruments, operational anomalies, and the responses of the instruments to in-orbit and seasonal variations in the solar environment.

  4. Mission Description and In-Flight Operations of ERBE Instruments on ERBS, NOAA 9, and NOAA 10 Spacecraft

    NASA Technical Reports Server (NTRS)

    Snyder, Dianne; Bush, Kathryn; Lee, Kam-Pui; Summerville, Jessica

    1998-01-01

    Instruments of the Earth Radiation Budget Experiment (ERBE) have operated on three different Earth-orbiting spacecraft. The Earth Radiation Budget Satellite (ERBS) is operated by the National Aeronautics and Space Administration (NASA), and the NOAA 9 and NOAA 10 weather satellites are operated by the National Oceanic and Atmospheric Administration (NOAA). This paper is one of a series that describes the ERBE mission, in-orbit environments, instrument design and operational features, and data processing and validation procedures. This paper also describes the in-flight operations for the ERBE nonscanner instruments aboard the ERBS, NOAA 9, and NOAA 10 spacecraft from January 1990 through December 1990. Validation and archives of radiation measurements made by ERBE nonscanner instruments during this period were completed in August 1996. This paper covers normal and special operations of the spacecraft and instruments, operational anomalies, and the responses of the instruments to in-orbit and seasonal variations in the solar environment.

  5. Studying the Formation, Evolution, and Habitability of the Galilean Satellites

    NASA Technical Reports Server (NTRS)

    McGrath, M.; Waite, J. H. Jr.; Brockwell, T.; McKinnon, W.; Wyrick, D.; Mousis, O.; Magee, B.

    2013-01-01

    Highly sensitive, high-mass resolution mass spectrometry is an important in situ tool for the study of solar system bodies. In this talk we detail the science objectives, develop the rationale for the measurement requirements, and describe potential instrument/mission methodologies for studying the formation, evolution, and habitability of the Galilean satellites. We emphasize our studies of Ganymede and Europa as described in our instrument proposals for the recently selected JUICE mission and the proposed Europa Clipper mission.

  6. Virtual Instrument Simulator for CERES

    NASA Technical Reports Server (NTRS)

    Chapman, John J.

    1997-01-01

    A benchtop virtual instrument simulator for CERES (Clouds and the Earth's Radiant Energy System) has been built at NASA, Langley Research Center in Hampton, VA. The CERES instruments will fly on several earth orbiting platforms notably NASDA's Tropical Rainfall Measurement Mission (TRMM) and NASA's Earth Observing System (EOS) satellites. CERES measures top of the atmosphere radiative fluxes using microprocessor controlled scanning radiometers. The CERES Virtual Instrument Simulator consists of electronic circuitry identical to the flight unit's twin microprocessors and telemetry interface to the supporting spacecraft electronics and two personal computers (PC) connected to the I/O ports that control azimuth and elevation gimbals. Software consists of the unmodified TRW developed Flight Code and Ground Support Software which serves as the instrument monitor and NASA/TRW developed engineering models of the scanners. The CERES Instrument Simulator will serve as a testbed for testing of custom instrument commands intended to solve in-flight anomalies of the instruments which could arise during the CERES mission. One of the supporting computers supports the telemetry display which monitors the simulator microprocessors during the development and testing of custom instrument commands. The CERES engineering development software models have been modified to provide a virtual instrument running on a second supporting computer linked in real time to the instrument flight microprocessor control ports. The CERES Instrument Simulator will be used to verify memory uploads by the CERES Flight Operations TEAM at NASA. Plots of the virtual scanner models match the actual instrument scan plots. A high speed logic analyzer has been used to track the performance of the flight microprocessor. The concept of using an identical but non-flight qualified microprocessor and electronics ensemble linked to a virtual instrument with identical system software affords a relatively inexpensive

  7. The Smithsonian Earth Physics Satellite (SEPS) definition study, volumes 1 through 4

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A limited Phase B study was undertaken to determine the merit and feasibility of launching a proposed earth physics satellite with Apollo-type hardware. The study revealed that it would be feasible to launch this satellite using a S-IB stage, a S-IVB with restart capability, an instrument unit, a SLA for the satellite shroud, and a nose cone (AS-204 configuration). A definition of the proposed satellite is provided, which is specifically designed to satisfy the fundamental requirement of providing an orbiting benchmark of maximum accuracy. The satellite is a completely passive, solid 3628-kg sphere of 38.1-cm radius and very high mass-to-area ratio (7980 kg sq mi). In the suggested orbit of 55 degrees inclination, 3720 km altitude, and low eccentricity, the orbital lifetime is extremely long, so many decades of operation can be expected.

  8. Detection of the long-range transport of wildfire pollution to the Arctic using a network of ground-based FTIR spectrometers, satellite observations and model result

    NASA Astrophysics Data System (ADS)

    Lutsch, E.; Conway, S. A.; Strong, K.; Jones, D. B. A.; Drummond, J. R.; Ortega, I.; Hannigan, J. W.; Makarova, M.; Notholt, J.; Blumenstock, T.; Sussmann, R.; Mahieu, E.; Kasai, Y.; Clerbaux, C.

    2017-12-01

    We present a multi-year time series of the total columns of carbon monoxide (CO), hydrogen cyanide (HCN) and ethane (C2H6) obtained by Fourier Transform Infrared (FTIR) spectrometer measurements at nine sites. Six are high-latitude sites: Eureka, Nunavut; Ny Alesund, Norway; Thule, Greenland; Kiruna, Sweden; Poker Flat, Alaska and St. Petersburg, Russia and three are mid-latitude sites; Zugspitze, Germany; Jungfraujoch, Switzerland and Toronto, Ontario. For each site, the inter-annual trends and seasonal variabilities of the CO total column time series are accounted for, allowing ambient concentrations to be determined. Enhancements above ambient levels are then used to identify possible wildfire pollution events. Since the abundance of each trace gas species emitted in a wildfire event is specific to the type of vegetation burned and the burning phase, correlations of CO to the other long-lived wildfire tracers HCN and C2H6 allow for further confirmation of the detection of wildfire pollution. Back-trajectories from HYSPLIT and FLEXPART as well as fire detections from the Moderate Resolution Spectroradiometer (MODIS) allow the source regions of the detected enhancements to be determined while satellite observations of CO from the Measurement of Pollution in the Troposphere (MOPITT) and Infrared Atmospheric Sounding Interferometer (IASI) instruments can be used to track the transport of the smoke plume. Differences in travel times between sites allows ageing of biomass burning plumes to be determined, providing a means to infer the physical and chemical processes affecting the loss of each species during transport. Comparisons of ground-based FTIR measurements to GEOS-Chem chemical transport model results are used to investigate these processes, evaluate wildfire emission inventories and infer the influence of wildfire emissions on the Arctic.

  9. The HEAO-A Scanning Modulation Collimator instrument

    NASA Technical Reports Server (NTRS)

    Roy, A.; Ballas, J.; Jagoda, N.; Mckinnon, P.; Ramsey, A.; Wester, E.

    1977-01-01

    The Scanning Modulation Collimator X-ray instrument for the HEAO-A satellite was designed to measure celestial radiation in the range between 1 and 15 KeV and to resolve, and correlate, the position of X-ray sources with visible light sources on the celestial sphere to within 5 arc seconds. The positional accuracy is made possible by mechanical collimation of the X-ray sources viewed by the instrument. High sensitivity is provided from two systems each containing four gas filled proportional counters followed by preamplification, signal summing, pulse height analysis, pulse shape discrimination, X-ray event accumulators and telemetry processing electronics.

  10. Establishing the Antarctic Dome C community reference standard site towards consistent measurements from Earth observation satellites

    USGS Publications Warehouse

    Cao, C.; Uprety, S.; Xiong, J.; Wu, A.; Jing, P.; Smith, D.; Chander, G.; Fox, N.; Ungar, S.

    2010-01-01

    Establishing satellite measurement consistency by using common desert sites has become increasingly more important not only for climate change detection but also for quantitative retrievals of geophysical variables in satellite applications. Using the Antarctic Dome C site (75°06′S, 123°21′E, elevation 3.2 km) for satellite radiometric calibration and validation (Cal/Val) is of great interest owing to its unique location and characteristics. The site surface is covered with uniformly distributed permanent snow, and the atmospheric effect is small and relatively constant. In this study, the long-term stability and spectral characteristics of this site are evaluated using well-calibrated satellite instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS). Preliminary results show that despite a few limitations, the site in general is stable in the long term, the bidirectional reflectance distribution function (BRDF) model works well, and the site is most suitable for the Cal/Val of reflective solar bands in the 0.4–1.0 µm range. It was found that for the past decade, the reflectivity change of the site is within 1.35% at 0.64 µm, and interannual variability is within 2%. The site is able to resolve calibration biases between instruments at a level of ~1%. The usefulness of the site is demonstrated by comparing observations from seven satellite instruments involving four space agencies, including OrbView-2–SeaWiFS, Terra–Aqua MODIS, Earth Observing 1 (EO-1) – Hyperion, Meteorological Operational satellite programme (MetOp) – Advanced Very High Resolution Radiometer (AVHRR), Envisat Medium Resolution Imaging Spectrometer (MERIS) – dvanced Along-Track Scanning Radiometer (AATSR), and Landsat 7 Enhanced Thematic Mapper Plus (ETM+). Dome C is a promising candidate site for climate quality calibration of satellite radiometers towards more consistent satellite measurements, as part

  11. Using Lunar Observations to Validate In-Flight Calibrations of Clouds and Earth Radiant Energy System Instruments

    NASA Technical Reports Server (NTRS)

    Daniels, Janet L.; Smith, G. Louis; Priestley, Kory J.; Thomas, Susan

    2014-01-01

    The validation of in-orbit instrument performance requires stability in both instrument and calibration source. This paper describes a method of validation using lunar observations scanning near full moon by the Clouds and Earth Radiant Energy System (CERES) instruments. Unlike internal calibrations, the Moon offers an external source whose signal variance is predictable and non-degrading. From 2006 to present, in-orbit observations have become standardized and compiled for the Flight Models-1 and -2 aboard the Terra satellite, for Flight Models-3 and -4 aboard the Aqua satellite, and beginning 2012, for Flight Model-5 aboard Suomi-NPP. Instrument performance parameters which can be gleaned are detector gain, pointing accuracy and static detector point response function validation. Lunar observations are used to examine the stability of all three detectors on each of these instruments from 2006 to present. This validation method has yielded results showing trends per CERES data channel of 1.2% per decade or less.

  12. Improving Societal Benefit Areas from Applications Enhanced by the Joint Polar Satellite System

    NASA Astrophysics Data System (ADS)

    Goldberg, M.

    2016-12-01

    Applications of satellite data are paramount to transform science and technology to product and services which are used in critical decision making for societal benefits. For the satellite community, good representations of technology are the satellite sensors, while science provides the instrument calibration and derived geophysical parameters. Weather forecasting is an application of the science and technology provided by remote sensing satellites. The Joint Polar Satellite System, which includes the Suomi National Polar-orbiting Partnership (S-NPP) provides formidable science and technology to support many applications and includes support to 1) weather forecasting - data from the JPSS Cross-track Infrared Sounder (CrIS) and the Advanced Technology Microwave Sounder (ATMS) are used to forecast weather events out to 7 days - nearly 85% of all data used in weather forecasting are from polar orbiting satellites; 2) environmental monitoring -data from the JPSS Visible Infrared Imager Radiometer Suite (VIIRS) are used to monitor the environment including the health of coastal ecosystems, drought conditions, fire, smoke, dust, snow and ice, and the state of oceans, including sea surface temperature and ocean color; and 3) climate monitoring - data from JPSS instruments, including OMPS and CERES will provide continuity to climate data records established using NOAA POES and NASA Earth Observing System (EOS) satellite observations. To bridge the gap between products and applications, the JPSS Program has established a proving ground program to optimize the use of JPSS data with other data sources to improve key products and services. A number of operational and research applications will be presented along with how the data and applications support a large number of societal benefit areas of the Global Earth Observation Systems of Systems (GEOSS).

  13. A Conceptual Design for a Small Deployer Satellite

    NASA Astrophysics Data System (ADS)

    Zumbo, S.

    2002-01-01

    industrial partners, has started the development of a space mission, named DeSat, focused on a new highly innovative micro satellite bus for LEO, entirely designed by an integrated team of students and researchers. The first mission is scheduled to fly at the end of 2003 on a converted Russian ICBM. The paper is intended to present the main features of DeSat mission, its goals and the activities that have been done by students and researchers to achieve the micro satellite platform design. The principal payload of the entire system is represented by a recirculating ball screw boom whose mass reaches one third of the total mass budget. The goal of the mission is to demonstrate the validity of its design also for space applications, which may range from precise off platform positioning of devices and instruments to GPS interferometry, sensor measurements and robotics. The satellite geometry, when the boom is in deployed configuration, is so stretched that the name "deployable satellite" has come out naturally. The large deployment mechanism, compared to the small bus, has influenced the design of every satellite subsystem leading to innovative solutions in terms of design, materials, equipment and instruments.

  14. Active Thermal Architecture for Cryogenic Optical Instrumentation (ATACOI)

    NASA Technical Reports Server (NTRS)

    Swenson, Charles; Hunter, Roger C.; Baker, Christopher E.

    2018-01-01

    The Active Thermal Architecture for Cryogenic Optical Instrumentation (ATACOI) project will demonstrate an advanced thermal control system for CubeSats and enable the use of cryogenic electro-optical instrumentation on small satellite platforms. Specifically, the project focuses on the development of a deployable solar tracking radiator, a rotationally flexible rotary union fluid joint, and a thermal/vibrational isolation system for miniature cryogenic detectors. This technology will represent a significant improvement over the current state of the art for CubeSat thermal control, which generally relies on simple passive and conductive methods.

  15. Online Resource for Earth-Observing Satellite Sensor Calibration

    NASA Technical Reports Server (NTRS)

    McCorkel, J.; Czapla-Myers, J.; Thome, K.; Wenny, B.

    2015-01-01

    The Radiometric Calibration Test Site (RadCaTS) at Railroad Valley Playa, Nevada is being developed by the University of Arizona to enable improved accuracy and consistency for airborne and satellite sensor calibration. Primary instrumentation at the site consists of ground-viewing radiometers, a sun photometer, and a meteorological station. Measurements made by these instruments are used to calculate surface reflectance, atmospheric properties and a prediction for top-of-atmosphere reflectance and radiance. This work will leverage research for RadCaTS, and describe the requirements for an online database, associated data formats and quality control, and processing levels.

  16. Improved Satellite Estimation of Near-Surface Humidity Using Vertical Water Vapor Profile Information

    NASA Astrophysics Data System (ADS)

    Tomita, H.; Hihara, T.; Kubota, M.

    2018-01-01

    Near-surface air-specific humidity is a key variable in the estimation of air-sea latent heat flux and evaporation from the ocean surface. An accurate estimation over the global ocean is required for studies on global climate, air-sea interactions, and water cycles. Current remote sensing techniques are problematic and a major source of errors for flux and evaporation. Here we propose a new method to estimate surface humidity using satellite microwave radiometer instruments, based on a new finding about the relationship between multichannel brightness temperatures measured by satellite sensors, surface humidity, and vertical moisture structure. Satellite estimations using the new method were compared with in situ observations to evaluate this method, confirming that it could significantly improve satellite estimations with high impact on satellite estimation of latent heat flux. We recommend the adoption of this method for any satellite microwave radiometer observations.

  17. Videoconferencing via Satellite: Opening Congress to the People. Final Report.

    ERIC Educational Resources Information Center

    Wood, Fred B.; And Others

    This evaluative study investigated through actual demonstrations the effectiveness of satellite videoconferencing in providing a new mechanism for informed dialogue between congressmen and constituents, thus strengthening the legislative process. In this experiment, the use of NASA's portable earth terminal was instrumental in making satellite…

  18. Gamma-ray detection efficiency of the microchannel plate installed as an ion detector in the low energy particle instrument onboard the GEOTAIL satellite.

    PubMed

    Tanaka, Y T; Yoshikawa, I; Yoshioka, K; Terasawa, T; Saito, Y; Mukai, T

    2007-03-01

    A microchannel plate (MCP) assembly has been used as an ion detector in the low energy particle (LEP) instrument onboard the magnetospheric satellite GEOTAIL. Recently the MCP assembly has detected gamma rays emitted from an astronomical object and has been shown to provide unique information of gamma rays if they are intense enough. However, the detection efficiency for gamma rays was not measured before launch, and therefore we could not analyze the LEP data quantitatively. In this article, we report the gamma-ray detection efficiency of the MCP assembly. The measured efficiencies are 1.29%+/-0.71% and 0.21%+/-0.14% for normal incidence 60 and 662 keV gamma rays, respectively. The incident angle dependence is also presented. Our calibration is crucial to study high energy astrophysical phenomena by using the LEP.

  19. Estimating ground-level PM2.5 in eastern China using aerosol optical depth determined from the GOCI satellite instrument

    NASA Astrophysics Data System (ADS)

    Xu, J.-W.; Martin, R. V.; van Donkelaar, A.; Kim, J.; Choi, M.; Zhang, Q.; Geng, G.; Liu, Y.; Ma, Z.; Huang, L.; Wang, Y.; Chen, H.; Che, H.; Lin, P.; Lin, N.

    2015-11-01

    We determine and interpret fine particulate matter (PM2.5) concentrations in eastern China for January to December 2013 at a horizontal resolution of 6 km from aerosol optical depth (AOD) retrieved from the Korean geostationary ocean color imager (GOCI) satellite instrument. We implement a set of filters to minimize cloud contamination in GOCI AOD. Evaluation of filtered GOCI AOD with AOD from the Aerosol Robotic Network (AERONET) indicates significant agreement with mean fractional bias (MFB) in Beijing of 6.7 % and northern Taiwan of -1.2 %. We use a global chemical transport model (GEOS-Chem) to relate the total column AOD to the near-surface PM2.5. The simulated PM2.5 / AOD ratio exhibits high consistency with ground-based measurements in Taiwan (MFB = -0.52 %) and Beijing (MFB = -8.0 %). We evaluate the satellite-derived PM2.5 versus the ground-level PM2.5 in 2013 measured by the China Environmental Monitoring Center. Significant agreement is found between GOCI-derived PM2.5 and in situ observations in both annual averages (r2 = 0.66, N = 494) and monthly averages (relative RMSE = 18.3 %), indicating GOCI provides valuable data for air quality studies in Northeast Asia. The GEOS-Chem simulated chemical composition of GOCI-derived PM2.5 reveals that secondary inorganics (SO42-, NO3-, NH4+) and organic matter are the most significant components. Biofuel emissions in northern China for heating increase the concentration of organic matter in winter. The population-weighted GOCI-derived PM2.5 over eastern China for 2013 is 53.8 μg m-3, with 400 million residents in regions that exceed the Interim Target-1 of the World Health Organization.

  20. Air Quality Measurements from Satellites during the 2008 Beijing Olympics and Paralympics

    NASA Astrophysics Data System (ADS)

    Witte, J. C.; Schoeberl, M.; Douglass, A.; Gleason, J.; Krotkov, N.; Gille, J.; Pickering, K.; Livesey, N.

    2009-05-01

    In preparation for the Olympic and Paralympic games in August and September 2008 in Beijing, China, the Chinese government imposed strict controls on industrial emissions and motor vehicle traffic in and around the city and vicinity before and during the events to improve the air quality for the competitors and visitors. To test the efficacy of these measures, we used satellite data from NASA's Aura/Ozone Monitoring Instrument (OMI) and Terra/Measurements Of Pollution In The Troposphere (MOPITT) over Beijing and surrounding areas during the Olympic and Paralympic period. The satellite instruments recorded significant reductions in nitrogen dioxide of up to 50%, up to 10% in tropospheric column ozone, 20-40% in boundary layer sulfur dioxide, and 10-20% reductions in carbon monoxide concentrations below 700 hPa.

  1. Scientific and economic potential of the SEASAT Program. [satellite system for global oceanographic data

    NASA Technical Reports Server (NTRS)

    Mccandless, S. W.; Miller, B. P.

    1974-01-01

    The SEASAT satellite system is planned as a user-oriented system for timely monitoring of global ocean dynamics and mapping the global ocean geoid. The satellite instrumentation and modular concept are discussed. Operational data capabilities will include oceanographic data services, direct satellite read-out to users, and conversational retrieval and analysis of stored data. A case-study technique, generalized through physical and econometric modeling, indicates potential economic benefit from SEASAT to users in the following areas: ship routing, iceberg reconnaissance, arctic operations, Alaska pipeline ship link, and off-shore oil production.

  2. Intra-pixel variability in satellite tropospheric NO2 column densities derived from simultaneous space-borne and airborne observations over the South African Highveld

    NASA Astrophysics Data System (ADS)

    Broccardo, Stephen; Heue, Klaus-Peter; Walter, David; Meyer, Christian; Kokhanovsky, Alexander; van der A, Ronald; Piketh, Stuart; Langerman, Kristy; Platt, Ulrich

    2018-05-01

    Aircraft measurements of NO2 using an imaging differential optical absorption spectrometer (iDOAS) instrument over the South African Highveld region in August 2007 are presented and compared to satellite measurements from OMI and SCIAMACHY. In situ aerosol and trace-gas vertical profile measurements, along with aerosol optical thickness and single-scattering albedo measurements from the Aerosol Robotic Network (AERONET), are used to devise scenarios for a radiative transfer modelling sensitivity study. Uncertainty in the air-mass factor due to variations in the aerosol and NO2 profile shape is constrained and used to calculate vertical column densities (VCDs), which are compared to co-located satellite measurements. The lower spatial resolution of the satellites cannot resolve the detailed plume structures revealed in the aircraft measurements. The airborne DOAS in general measured steeper horizontal gradients and higher peak NO2 vertical column density. Aircraft measurements close to major sources, spatially averaged to the satellite resolution, indicate NO2 column densities more than twice those measured by the satellite. The agreement between the high-resolution aircraft instrument and the satellite instrument improves with distance from the source, this is attributed to horizontal and vertical dispersion of NO2 in the boundary layer. Despite the low spatial resolution, satellite images reveal point sources and plumes that retain their structure for several hundred kilometres downwind.

  3. GPS Radiation Measurements: Instrument Modeling and Simulation (Project w14_gpsradiation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, John P.

    The following topics are covered: electron response simulations and typical calculated response. Monte Carlo calculations of the response of future charged particle instruments (dosimeters) intended to measure the flux of charged particles in space were performed. The electron channels are called E1- E11 – each of which is intended to detect a different range of electron energies. These instruments are on current and future GPS satellites.

  4. Satellite-Based Stratospheric and Tropospheric Measurements: Determination of Global Ozone and other Trace Species

    NASA Technical Reports Server (NTRS)

    Chance, K. V.

    2001-01-01

    This report summarizes research done under NASA Grant NAG5-3461 from November 1, 1996 through December 31, 2000. The research performed during this reporting period includes development and maintenance of scientific software for the GOME retrieval algorithms, consultation on operational software development for GOME, sensitivity and instrument studies to help finalize the definition of the SCIAMACHY instrument, leading the development of the SCIAMACHY Scientific Requirements Document for Data and Algorithm Development, consultation and development for SCIAMACHY near-real-time (NRT) and off-line (OL) data products, radiative transfer model development for utilization in GOME, SCIAMACHY and other programs, development of infrared line-by-line atmospheric modeling and retrieval capability for SCIAMACHY, and participation in GOME and SCIAMACHY validation studies. The Global Ozone Monitoring Experiment was successfully launched on the ERS-2 satellite on April 20, 1995, and remains working in normal fashion. SCIAMACHY is currently planned for launch in late 2001 on the ESA Envisat satellite. Three GOME-2 instruments are now scheduled to fly on the Metop series of operational meteorological satellites (Eumetsat). K. Chance is a member of the reconstituted GOME Scientific Advisory Group, which will guide the GOME-2 program as well as the continuing ERS-2 GOME program.

  5. Analytic studies on satellite detection of severe, two-cell tornadoes

    NASA Technical Reports Server (NTRS)

    Carrier, G. F.; Dergarabedian, P.; Fendell, F. E.

    1979-01-01

    It is argued that a two-cell structure is likely to be the unique property, and potentially satellite-accessible observable, of the exceptionally severe tornado. Analysis elucidating the dynamic, thermodynamic, and geometric properties of this two-cell structure is described. The analysis ultimately will furnish instrumentation requirements.

  6. Observations of sea ice and icebergs from satellite radar altimeters

    NASA Technical Reports Server (NTRS)

    Rapley, C. G.

    1984-01-01

    Satellite radar altimeters can make useful contributions to the study of sea ice both by enhancing observations from other instruments and by providing a unique probe of ocean-ice interaction in the Marginal Ice Zone (MIZ). The problems, results and future potential of such observations are discussed.

  7. Evaluation of data thinning strategies for climate applications using the first four years of AIRS hyperspectral data

    NASA Astrophysics Data System (ADS)

    Aumann, Hartmut H.; Fishbein, Evan; Gohlke, Jan

    2007-09-01

    The application of infrared hyper-spectral sounder data to climate research requires the global analysis of multi-decadal time series of various atmosphere, surface or cloud related parameters. The data used in this analysis has to meet stringent global and scene independent absolute accuracy and stability requirements, it also has to be spatially and radiometrically unbiased, manageable in size and self-contained. Self-contained means that the data set contains not only a globally unbiased sample of the state of the Earth Climate system as seen in the infrared, it has to contain enough data to contrast clear with average (cloudy) data and to allow an independent assessment of the radiometric and spectral accuracy and stability of the data. We illustrate this with data from the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounder Interferometer (IASI) data. AIRS and IASI were designed with fairly similar functional requirements. AIRS was launched on the EOS Aqua spacecraft in May 2002 into a 705 km polar sun-synchronous orbit with accurately maintained 1:30 PM ascending node. Essentially un-interrupted data are available since September 2002. Since October 2006 IASI is in a 9:30 AM polar orbit at 815 km altitude on the MetOp2 satellite, with data available since May 2007.

  8. Satellite Systems Design/Simulation Environment: A Systems Approach to Pre-Phase A Design

    NASA Technical Reports Server (NTRS)

    Ferebee, Melvin J., Jr.; Troutman, Patrick A.; Monell, Donald W.

    1997-01-01

    A toolset for the rapid development of small satellite systems has been created. The objective of this tool is to support the definition of spacecraft mission concepts to satisfy a given set of mission and instrument requirements. The objective of this report is to provide an introduction to understanding and using the SMALLSAT Model. SMALLSAT is a computer-aided Phase A design and technology evaluation tool for small satellites. SMALLSAT enables satellite designers, mission planners, and technology program managers to observe the likely consequences of their decisions in terms of satellite configuration, non-recurring and recurring cost, and mission life cycle costs and availability statistics. It was developed by Princeton Synergetic, Inc. and User Systems, Inc. as a revision of the previous TECHSAT Phase A design tool, which modeled medium-sized Earth observation satellites. Both TECHSAT and SMALLSAT were developed for NASA.

  9. Laser Communication Experiments with Artemis Satellite

    NASA Astrophysics Data System (ADS)

    Kuzkov, Sergii; Sodnik, Zoran; Kuzkov, Volodymyr

    2013-10-01

    In November 2001, the European Space Agency (ESA) established the world-first inter-satellite laser communication link between the geostationary ARTEMIS satellite and the low Earth orbiting (LEO) SPOT-4 Earth observation satellite, demonstrating data rates of 50 Mbps. In 2006, the Japanese Space Agency launched the KIRARI (OICETS) LEO satellite with a compatible laser communication terminal and bidirectional laser communication links (50 Mbps and 2 Mbps) were successfully realized between KIRARI and ARTEMIS. ESA is now developing the European Data Relay Satellite (EDRS) system, which will use laser communication technology to transmit data between the Sentinel 1 and 2 satellites in LEO to two geostationary satellites (EDRS-A and EDRS-C) at data rates of 1.8 Gbps. As the data handling capabilities of state-of-the-art telecommunication satellites in GEO increase so is the demand for the feeder-link bandwidth to be transmitted from ground. This is why there is an increasing interest in developing high bandwidth ground-to-space laser communication systems working through atmosphere. In 2002, the Main Astronomical Observatory (MAO) started the development of its own laser communication system for its 0.7m AZT-2 telescope, located in Kyiv, Ukraine. The work was supported by the National Space Agency of Ukraine and by ESA. MAO developed a highly accurate computerized tracking system for AZT-2 telescope and a compact laser communication package called LACES (Laser Atmosphere and Communication Experiments with Satellites). The LACES instrument includes a camera of the pointing and tracking subsystems, a receiver module, a laser transmitter module, a tip/tilt atmospheric turbulence compensation subsystem, a bit error rate tester module and other optical and electronic components. The principal subsystems are mounted on a platform, which is located at the Cassegrain focus of the AZT-2 telescope. All systems were tested with the laser communication payload on-board ARTEMIS and

  10. Filtering and Gridding Satellite Observations of Cloud Variables to Compare with Climate Model Output

    NASA Astrophysics Data System (ADS)

    Pitts, K.; Nasiri, S. L.; Smith, N.

    2013-12-01

    Global climate models have improved considerably over the years, yet clouds still represent a large factor of uncertainty for these models. Comparisons of model-simulated cloud variables with equivalent satellite cloud products are the best way to start diagnosing the differences between model output and observations. Gridded (level 3) cloud products from many different satellites and instruments are required for a full analysis, but these products are created by different science teams using different algorithms and filtering criteria to create similar, but not directly comparable, cloud products. This study makes use of a recently developed uniform space-time gridding algorithm to create a new set of gridded cloud products from each satellite instrument's level 2 data of interest which are each filtered using the same criteria, allowing for a more direct comparison between satellite products. The filtering is done via several variables such as cloud top pressure/height, thermodynamic phase, optical properties, satellite viewing angle, and sun zenith angle. The filtering criteria are determined based on the variable being analyzed and the science question at hand. Each comparison of different variables may require different filtering strategies as no single approach is appropriate for all problems. Beyond inter-satellite data comparison, these new sets of uniformly gridded satellite products can also be used for comparison with model-simulated cloud variables. Of particular interest to this study are the differences in the vertical distributions of ice and liquid water content between the satellite retrievals and model simulations, especially in the mid-troposphere where there are mixed-phase clouds to consider. This presentation will demonstrate the proof of concept through comparisons of cloud water path from Aqua MODIS retrievals and NASA GISS-E2-[R/H] model simulations archived in the CMIP5 data portal.

  11. Observing System Simulations for Small Satellite Formations Estimating Bidirectional Reflectance

    NASA Technical Reports Server (NTRS)

    Nag, Sreeja; Gatebe, Charles K.; de Weck, Olivier

    2015-01-01

    The bidirectional reflectance distribution function (BRDF) gives the reflectance of a target as a function of illumination geometry and viewing geometry, hence carries information about the anisotropy of the surface. BRDF is needed in remote sensing for the correction of view and illumination angle effects (for example in image standardization and mosaicing), for deriving albedo, for land cover classification, for cloud detection, for atmospheric correction, and other applications. However, current spaceborne instruments provide sparse angular sampling of BRDF and airborne instruments are limited in the spatial and temporal coverage. To fill the gaps in angular coverage within spatial, spectral and temporal requirements, we propose a new measurement technique: Use of small satellites in formation flight, each satellite with a VNIR (visible and near infrared) imaging spectrometer, to make multi-spectral, near-simultaneous measurements of every ground spot in the swath at multiple angles. This paper describes an observing system simulation experiment (OSSE) to evaluate the proposed concept and select the optimal formation architecture that minimizes BRDF uncertainties. The variables of the OSSE are identified; number of satellites, measurement spread in the view zenith and relative azimuth with respect to solar plane, solar zenith angle, BRDF models and wavelength of reflection. Analyzing the sensitivity of BRDF estimation errors to the variables allow simplification of the OSSE, to enable its use to rapidly evaluate formation architectures. A 6-satellite formation is shown to produce lower BRDF estimation errors, purely in terms of angular sampling as evaluated by the OSSE, than a single spacecraft with 9 forward-aft sensors. We demonstrate the ability to use OSSEs to design small satellite formations as complements to flagship mission data. The formations can fill angular sampling gaps and enable better BRDF products than currently possible.

  12. Observing system simulations for small satellite formations estimating bidirectional reflectance

    NASA Astrophysics Data System (ADS)

    Nag, Sreeja; Gatebe, Charles K.; Weck, Olivier de

    2015-12-01

    The bidirectional reflectance distribution function (BRDF) gives the reflectance of a target as a function of illumination geometry and viewing geometry, hence carries information about the anisotropy of the surface. BRDF is needed in remote sensing for the correction of view and illumination angle effects (for example in image standardization and mosaicing), for deriving albedo, for land cover classification, for cloud detection, for atmospheric correction, and other applications. However, current spaceborne instruments provide sparse angular sampling of BRDF and airborne instruments are limited in the spatial and temporal coverage. To fill the gaps in angular coverage within spatial, spectral and temporal requirements, we propose a new measurement technique: use of small satellites in formation flight, each satellite with a VNIR (visible and near infrared) imaging spectrometer, to make multi-spectral, near-simultaneous measurements of every ground spot in the swath at multiple angles. This paper describes an observing system simulation experiment (OSSE) to evaluate the proposed concept and select the optimal formation architecture that minimizes BRDF uncertainties. The variables of the OSSE are identified; number of satellites, measurement spread in the view zenith and relative azimuth with respect to solar plane, solar zenith angle, BRDF models and wavelength of reflection. Analyzing the sensitivity of BRDF estimation errors to the variables allow simplification of the OSSE, to enable its use to rapidly evaluate formation architectures. A 6-satellite formation is shown to produce lower BRDF estimation errors, purely in terms of angular sampling as evaluated by the OSSE, than a single spacecraft with 9 forward-aft sensors. We demonstrate the ability to use OSSEs to design small satellite formations as complements to flagship mission data. The formations can fill angular sampling gaps and enable better BRDF products than currently possible.

  13. Instrument constraints and interface specifications. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The equipment specifications for the thematic mapper and high resolution pointable imager for use on the Earth Observatory Satellite (EOS) are presented. The interface requirements of the systems are defined. The interface requirements are extracted from the equipment specifications and are intended as a summary to be used by the system and spacecraft designer. The appropriate documentation from which the specifications of the equipment are established are identified.

  14. A New Instrument Design for Imaging Low Energy Neutral Atoms

    NASA Technical Reports Server (NTRS)

    Keller, John W.; Collier, Michael R.; Chornay, Dennis; Rozmarynowski, Paul; Getty, Stephanie; Cooper, John F.; Smith, Billy

    2007-01-01

    The MidSTAR-2 satellite, to be built at the US Naval Academy as a follow-on to the successful MidSTAR-1 satellite (http://web.ew.usna.edu/midstar/), will launch in 2011 and carry three Goddard Space Flight Center (GSFC) experiments developed under Goddard's Internal Research and Development (IRAD) program. One of these GSFC instruments, the Miniature Imager for Neutral Ionospheric atoms and Magnetospheric Electrons (MINI-ME) builds on the heritage of the Goddard-developed Low-Energy Neutral Atom (LENA) imager launched on the IMAGE spacecraft in 2000. MINI-ME features a Venetian-blind conversion surface assembly that improves both light rejection and conversion efficiency in a smaller and lighter package than LENA making this an highly effective instrument for viewing solar wind charge exchange with terrestrial and planetary exospheres. We will describe the MINI-ME prototyping effort and its science targets.

  15. Development of the Multi-Angle Stratospheric Aerosol Radiometer (MASTAR) Instrument

    NASA Astrophysics Data System (ADS)

    DeLand, M. T.; Colarco, P. R.; Kowalewski, M. G.; Gorkavyi, N.; Ramos-Izquierdo, L.

    2017-12-01

    Aerosol particles in the stratosphere ( 15-25 km altitude), both produced naturally and perturbed by volcanic eruptions and anthropogenic emissions, continue to be a source of significant uncertainty in the Earth's energy budget. Stratospheric aerosols can offset some of the warming effects caused by greenhouse gases. These aerosols are currently monitored using measurements from the Ozone Mapping and Profiling Suite (OMPS) Limb Profiler (LP) instrument on the Suomi NPP satellite. In order to improve the sensitivity and spatial coverage of these aerosol data, we are developing an aerosol-focused compact version of the OMPS LP sensor called Multi-Angle Stratospheric Aerosol Radiometer (MASTAR) to fly on a 3U Cubesat satellite, using a NASA Instrument Incubator Program (IIP) grant. This instrument will make limb viewing measurements of the atmosphere in multiple directions simultaneously, and uses only a few selected wavelengths to reduce size and cost. An initial prototype version has been constructed using NASA GSFC internal funding and tested in the laboratory. Current design work is targeted towards a preliminary field test in Spring 2018. We will discuss the scientific benefits of MASTAR and the status of the project.

  16. New satellite altimetry products for coastal oceans

    NASA Astrophysics Data System (ADS)

    Dufau, Claire; Mercier, F.; Ablain, M.; Dibarboure, G.; Carrere, L.; Labroue, S.; Obligis, E.; Sicard, P.; Thibaut, P.; Birol, F.; Bronner, E.; Lombard, A.; Picot, N.

    Since the launch of Topex-Poseidon in 1992, satellite altimetry has become one of the most essential elements of the Earth's observing system. Its global view of the ocean state has permitted numerous improvements in the environment understanding, particularly in the global monitoring of climate changes and ocean circulation. Near the coastlines where human activities have a major impact on the ocean, satellite altimeter techniques are unfortunately limited by a growth of their error budget. This quality loss is due to land contamination in the altimetric and radiometric footprints but also to inaccurate geophysical corrections (tides, high-frequency processes linked to atmospheric forcing).Despite instrumental perturbations by emerged lands until 10 km (altimeter) and 50 km (radiometer) off the coasts, measurements are made and may contain useful information for coastal studies. In order to recover these data close to the coast, the French Spatial Agency (CNES) has funded the development of the PISTACH prototype dedicated to Jason-2 altimeter processing in coastal ocean. Since November 2008, these new satellite altimeter products have been providing new retracking solutions, several state-of-the-art or with higher resolution corrections in addition to standard fields. This presentation will present and illustrate this new set of satellite data for the coastal oceans.

  17. Meteorological satellite products support for project COHMEX

    NASA Technical Reports Server (NTRS)

    Velden, Christopher S.; Goodman, Brian M.; Smith, William L.

    1988-01-01

    The first year effort focussed on real-time support and satellite data collection during the field phase of COHMEX. Work efforts following the field phase of COHMEX concentrated on post-processing of the real-time data sets, and generation of enhanced, research-quality satellite data sets for selected COHMEX core days. These satellite-derived data sets will augment the special COHMEX conventional data base with high horizontal and temporal resolution information. The data sets will be examined for their usefulness in delineating important elements in the meteorological environment leading to convective activity. In addition, a limited research effort was conducted using the Cooperative Institute for Meteorological Satellite Studies (CIMSS) 4-d data assimilation system in conjunction with evaluating VISSR Atmospheric Sounder (VAS) and His-resolution Interferometer Sounder (HIS) data. The need to address the characteristics of the data types, and the problems they introduce into 4-d assimilation procedures is evident. The HIS instrument was flown aboard an ER-2 aircraft on several occasions during COHMEX. One of the flights was chosen for further study. Processed VAS soundings and COHMEX radiosonde data were also collected for this day. The case study included an evaluation of the HIS and VAS data and an impact study of the data on the assimilation system analysis.

  18. Mission description and in-flight operations of ERBE instruments on ERBS and NOAA 10 spacecraft, February 1987 - February 1990

    NASA Technical Reports Server (NTRS)

    Busch, Kathryn A.; Degnan, Keith T.

    1994-01-01

    Instruments of the Earth Radiation Budget Experiment (ERBE) are operating on three different Earth-orbiting spacecraft. The Earth Radiation Budget Satellite (ERBS) is operated by the National Aeronautics and Space Administration (NASA), and the NOAA 9 and NOAA 10 weather satellites are operated by the National Oceanic and Atmospheric Administration (NOAA). This paper is the third in a series that describes the ERBE mission in-orbit environments, instrument design and operational features, and data processing and validation procedures. This paper describes the in-flight operations for the ERBE instruments aboard the ERBS and NOAA 10 spacecraft for the period from February 1987 through February 1990. Validation and archival of radiation measurements made by ERBE instruments during this period were completed in May 1992. This paper covers normal and special operations of the spacecraft and instruments, operational anomalies, and the responses of the instruments to in-orbit and seasonal variations in the solar environment.

  19. New approaches to merging multi-sensor satellite measurements of volcanic SO2 emissions

    NASA Astrophysics Data System (ADS)

    Carn, S. A.; Telling, J. W.; Krotkov, N. A.

    2015-12-01

    As part of the NASA MEaSUREs program, we are developing a unique long-term database of volcanic sulfur dioxide (SO2) emissions for use by the scientific community, using observations from multiple satellite instruments collected since 1978. Challenges to creating such a database include assessing data continuity between multiple satellite missions and SO2 retrieval algorithms and estimating measurement uncertainties. Here, we describe the approaches that we are using to merge multi-decadal SO2 measurements from the ultraviolet (UV) Total Ozone Mapping Spectrometer (TOMS), Ozone Monitoring Instrument (OMI) and Ozone Monitoring and Profiler Suite (OMPS) sensors. A particular challenge has involved accounting for the OMI row anomaly (ORA), a data gap in OMI measurements since 2008 that partially or wholly obscures some volcanic eruption clouds, whilst still profiting from the high OMI spatial resolution and data quality, and prior OMI SO2 validation. We present a new method to substitute missing SO2 information in the ORA with near-coincident SO2 data from OMPS, providing improved estimates of eruptive volcanic SO2 emissions. The technique can also be used to assess consistency between different satellite instruments and SO2 retrieval algorithms, investigate the impact of variable sensor spatial resolution, and estimate measurement uncertainties. It is particularly effective for larger eruptions producing extensive SO2 clouds where the ORA obscures the volcanic plume in multiple contiguous orbits. Application of the technique is demonstrated using recent volcanic eruptions including the 2015 eruption of Calbuco, Chile. We also provide an update on the status of the multi-satellite long-term volcanic SO2 database (MSVOLSO2L4).

  20. The NASA CYGNSS Small Satellite Constellation

    NASA Astrophysics Data System (ADS)

    Ruf, C. S.; Gleason, S.; McKague, D. S.; Rose, R.; Scherrer, J.

    2017-12-01

    The NASA Cyclone Global Navigation Satellite System (CYGNSS) is a constellation of eight microsatellite observatories that was launched into a low (35°) inclination, low Earth orbit on 15 December 2016. Each observatory carries a 4-channel GNSS-R bistatic radar receiver. The radars are tuned to receive the L1 signals transmitted by GPS satellites, from which near-surface ocean wind speed is estimated. The mission architecture is designed to improve the temporal sampling of winds in tropical cyclones (TCs). The 32 receive channels of the complete CYGNSS constellation, combined with the 30 GPS satellite transmitters, results in a revisit time for sampling of the wind of 2.8 hours (median) and 7.2 hours (mean) at all locations between 38 deg North and 38 deg South latitude. Operation at the GPS L1 frequency of 1575 MHz allows for wind measurements in the TC inner core that are often obscured from other spaceborne remote sensing instruments by intense precipitation in the eye wall and inner rain bands. An overview of the CYGNSS mission wil be presented, followed by early on-orbit status and results.

  1. The NOAA Satellite Observing System Architecture Study

    NASA Technical Reports Server (NTRS)

    Volz, Stephen; Maier, Mark; Di Pietro, David

    2016-01-01

    NOAA is beginning a study, the NOAA Satellite Observing System Architecture (NSOSA) study, to plan for the future operational environmental satellite system that will follow GOES and JPSS, beginning about 2030. This is an opportunity to design a modern architecture with no pre-conceived notions regarding instruments, platforms, orbits, etc. The NSOSA study will develop and evaluate architecture alternatives to include partner and commercial alternatives that are likely to become available. The objectives will include both functional needs and strategic characteristics (e.g., flexibility, responsiveness, sustainability). Part of this study is the Space Platform Requirements Working Group (SPRWG), which is being commissioned by NESDIS. The SPRWG is charged to assess new or existing user needs and to provide relative priorities for observational needs in the context of the future architecture. SPRWG results will serve as input to the process for new foundational (Level 0 and Level 1) requirements for the next generation of NOAA satellites that follow the GOES-R, JPSS, DSCOVR, Jason-3, and COSMIC-2 missions.

  2. TES Carbon Monoxide Validation during the Two AVE Campaigns using the Argus and ALIAS Instruments on NASA's WB-57F

    NASA Technical Reports Server (NTRS)

    Lopez, Jinena P.; Luo, Ming; Christensen, Lance E.; Loewenstein, Max; Jost, Hansjurg; Webster, Christopher R.; Osterman, Greg

    2008-01-01

    The Aura Validation Experiment (AVE) focuses on validating Aura satellite measurements of important atmospheric trace gases using ground-based, aircraft, and balloon-borne instruments. Global satellite observations of CO from the Tropospheric Emission Spectrometer (TES) on the EOS Aura satellite have been ongoing since September 2004. This paper discusses CO validation experiments during the Oct-AVE (2004 Houston, Texas) and CR-AVE (2006 San Jose, Costa Rica) campaigns. The coincidences in location and time between the satellite observations and the available in situ profiles for some cases are not ideal. However, the CO distribution patterns in the two validation flight areas are shown to have very little variability in the aircraft and satellite . observations, thereby making them suitable for validation comparisons. TES CO profiles, which typically have a retrieval uncertainty of 10-20%, are compared with in situ CO measurements from NASA Ames Research Center's Argus instrument taken on board the WB-57F aircraft during Oct-AVE. TES CO retrievals during CR-AVE are compared with in situ measurements from Jet Propulsion Laboratory's Aircraft Laser Infrared Absorption Spectrometer (ALIAS) instrument as well as with the Argus instrument, both taken on board the WB-57F aircraft. During CR-AVE, the average overall difference between ALIAS and Argus CO was 4%, with the ALIAS measurement higher. During individual flights, 2-min time-averaged differences between the two in situ instruments had standard deviation of 14%. The TES averaging kernels and a priori constraint profiles for CO are applied to the in situ data for proper comparisons to account for the reduced vertical resolution and the influence of the a priori in the satellite-derived profile. In the TES sensitive pressure range, approx.700-200 hPa, the in situ profiles and TES profiles agree within 5-10%, less than the variability in CO distributions obtained by both TES and the aircraft instruments in the two

  3. The Combined Release and Radiation Effects Satellite (CRRES) program: A unique series of scientific experiments

    NASA Astrophysics Data System (ADS)

    Reasoner, David L.; McCook, Morgan W.; Vaughan, William W.

    The Defense Department and NASA have joined in a program to study the space environment which surrounds the earth and the effects of space radiation on modern satellite electronic systems. The Combined Release and Radiation Effects Satellite (CRRES) will carry an array of active experiments including chemical releases and a complement of sophisticated scientific instruments to accomplish these objectives. Other chemical release active experiments will be performed with sub-orbital rocket probes. The chemical releases will 'paint' the magnetic and electric fields of earthspace with clouds of glowing ions. Earthspace will be a laboratory, and the releases will be studied with an extensive network of ground-, aircraft-, and satellite-based diagnostic instruments. Some of the topics discussed include the following: the effects of earthspace; the need for active experiments; types of chemical releases; the CRRES program schedule; international support and coordinated studies; photographing chemical releases; information on locating chemical releases for observation by the amateur; and CRRES as a program.

  4. The Combined Release and Radiation Effects Satellite (CRRES) program: A unique series of scientific experiments

    NASA Technical Reports Server (NTRS)

    Reasoner, David L.; Mccook, Morgan W. (Editor); Vaughan, William W. (Editor)

    1990-01-01

    The Defense Department and NASA have joined in a program to study the space environment which surrounds the earth and the effects of space radiation on modern satellite electronic systems. The Combined Release and Radiation Effects Satellite (CRRES) will carry an array of active experiments including chemical releases and a complement of sophisticated scientific instruments to accomplish these objectives. Other chemical release active experiments will be performed with sub-orbital rocket probes. The chemical releases will 'paint' the magnetic and electric fields of earthspace with clouds of glowing ions. Earthspace will be a laboratory, and the releases will be studied with an extensive network of ground-, aircraft-, and satellite-based diagnostic instruments. Some of the topics discussed include the following: the effects of earthspace; the need for active experiments; types of chemical releases; the CRRES program schedule; international support and coordinated studies; photographing chemical releases; information on locating chemical releases for observation by the amateur; and CRRES as a program.

  5. Data Recovery from SCATHA Satellite

    NASA Technical Reports Server (NTRS)

    Fennell, J. F.; Boyd, G. M.; Redding, M. T.; McNab, M. C.

    1997-01-01

    This document gives a brief description of the SCATHA (P78-2) satellite and consolidates into one location information relevant to the generation of the SCATHA Summary Data parameters for the European Space Agency (ESA), under ESTEC Contract No. 11006/94/NL/CC, and the National Aeronautics and Space Administration (NASA), under Grant No. NAGW-414 1. Included are descriptions of the instruments from which the Summary Data parameters are generated, their derivation, and archival. Any questions pertaining to the Summary Data parameters should be directed to Dr. Joseph Fennell.

  6. High-energy electron experiments (HEP) aboard the ERG (Arase) satellite

    NASA Astrophysics Data System (ADS)

    Mitani, Takefumi; Takashima, Takeshi; Kasahara, Satoshi; Miyake, Wataru; Hirahara, Masafumi

    2018-05-01

    This paper reports the design, calibration, and operation of high-energy electron experiments (HEP) aboard the exploration of energization and radiation in geospace (ERG) satellite. HEP detects 70 keV-2 MeV electrons and generates a three-dimensional velocity distribution for these electrons in every period of the satellite's rotation. Electrons are detected by two instruments, namely HEP-L and HEP-H, which differ in their geometric factor (G-factor) and range of energies they detect. HEP-L detects 70 keV-1 MeV electrons and its G-factor is 9.3 × 10-4 cm2 sr at maximum, while HEP-H observes 0.7-2 MeV electrons and its G-factor is 9.3 × 10-3 cm2 sr at maximum. The instruments utilize silicon strip detectors and application-specific integrated circuits to readout the incident charge signal from each strip. Before the launch, we calibrated the detectors by measuring the energy spectra of all strips using γ-ray sources. To evaluate the overall performance of the HEP instruments, we measured the energy spectra and angular responses with electron beams. After HEP was first put into operation, on February 2, 2017, it was demonstrated that the instruments performed normally. HEP began its exploratory observations with regard to energization and radiation in geospace in late March 2017. The initial results of the in-orbit observations are introduced briefly in this paper.[Figure not available: see fulltext.

  7. Pre-Flight Radiometric Model of Linear Imager on LAPAN-IPB Satellite

    NASA Astrophysics Data System (ADS)

    Hadi Syafrudin, A.; Salaswati, Sartika; Hasbi, Wahyudi

    2018-05-01

    LAPAN-IPB Satellite is Microsatellite class with mission of remote sensing experiment. This satellite carrying Multispectral Line Imager for captured of radiometric reflectance value from earth to space. Radiometric quality of image is important factor to classification object on remote sensing process. Before satellite launch in orbit or pre-flight, Line Imager have been tested by Monochromator and integrating sphere to get spectral and every pixel radiometric response characteristic. Pre-flight test data with variety setting of line imager instrument used to see correlation radiance input and digital number of images output. Output input correlation is described by the radiance conversion model with imager setting and radiometric characteristics. Modelling process from hardware level until normalize radiance formula are presented and discussed in this paper.

  8. Dual view Geostationary Earth Radiation Budget from the Meteosat Second Generation satellites.

    NASA Astrophysics Data System (ADS)

    Dewitte, Steven; Clerbaux, Nicolas; Ipe, Alessandro; Baudrez, Edward; Moreels, Johan

    2017-04-01

    The diurnal cycle of the radiation budget is a key component of the tropical climate. The geostationary Meteosat Second Generation (MSG) satellites carrying both the broadband Geostationary Earth Radiation Budget (GERB) instrument with nadir resolution of 50 km and the multispectral Spinning Enhanced VIsible and InfraRed Imager (SEVIRI) with nadir resolution of 3 km offer a unique opportunity to observe this diurnal cycle. The geostationary orbit has the advantage of good temporal sampling but the disadvantage of fixed viewing angles, which makes the measurements of the broadband Top Of Atmosphere (TOA) radiative fluxes more sensitive to angular dependent errors. The Meteosat-10 (MSG-3) satellite observes the earth from the standard position at 0° longitude. From October 2016 onwards the Meteosat-8 (MSG-1) satellite makes observations from a new position at 41.5° East over the Indian Ocean. The dual view from Meteosat-8 and Meteosat-10 allows the assessment and correction of angular dependent systematic errors of the flux estimates. We demonstrate this capability with the validation of a new method for the estimation of the clear-sky TOA albedo from the SEVIRI instruments.

  9. Nonlinear bias analysis and correction of microwave temperature sounder observations for FY-3C meteorological satellite

    NASA Astrophysics Data System (ADS)

    Hu, Taiyang; Lv, Rongchuan; Jin, Xu; Li, Hao; Chen, Wenxin

    2018-01-01

    The nonlinear bias analysis and correction of receiving channels in Chinese FY-3C meteorological satellite Microwave Temperature Sounder (MWTS) is a key technology of data assimilation for satellite radiance data. The thermal-vacuum chamber calibration data acquired from the MWTS can be analyzed to evaluate the instrument performance, including radiometric temperature sensitivity, channel nonlinearity and calibration accuracy. Especially, the nonlinearity parameters due to imperfect square-law detectors will be calculated from calibration data and further used to correct the nonlinear bias contributions of microwave receiving channels. Based upon the operational principles and thermalvacuum chamber calibration procedures of MWTS, this paper mainly focuses on the nonlinear bias analysis and correction methods for improving the calibration accuracy of the important instrument onboard FY-3C meteorological satellite, from the perspective of theoretical and experimental studies. Furthermore, a series of original results are presented to demonstrate the feasibility and significance of the methods.

  10. Instrument performance and simulation verification of the POLAR detector

    NASA Astrophysics Data System (ADS)

    Kole, M.; Li, Z. H.; Produit, N.; Tymieniecka, T.; Zhang, J.; Zwolinska, A.; Bao, T. W.; Bernasconi, T.; Cadoux, F.; Feng, M. Z.; Gauvin, N.; Hajdas, W.; Kong, S. W.; Li, H. C.; Li, L.; Liu, X.; Marcinkowski, R.; Orsi, S.; Pohl, M.; Rybka, D.; Sun, J. C.; Song, L. M.; Szabelski, J.; Wang, R. J.; Wang, Y. H.; Wen, X.; Wu, B. B.; Wu, X.; Xiao, H. L.; Xiong, S. L.; Zhang, L.; Zhang, L. Y.; Zhang, S. N.; Zhang, X. F.; Zhang, Y. J.; Zhao, Y.

    2017-11-01

    POLAR is a new satellite-born detector aiming to measure the polarization of an unprecedented number of Gamma-Ray Bursts in the 50-500 keV energy range. The instrument, launched on-board the Tiangong-2 Chinese Space lab on the 15th of September 2016, is designed to measure the polarization of the hard X-ray flux by measuring the distribution of the azimuthal scattering angles of the incoming photons. A detailed understanding of the polarimeter and specifically of the systematic effects induced by the instrument's non-uniformity are required for this purpose. In order to study the instrument's response to polarization, POLAR underwent a beam test at the European Synchrotron Radiation Facility in France. In this paper both the beam test and the instrument performance will be described. This is followed by an overview of the Monte Carlo simulation tools developed for the instrument. Finally a comparison of the measured and simulated instrument performance will be provided and the instrument response to polarization will be presented.

  11. The utility of satellite observations for constraining fine-scale and transient methane sources

    NASA Astrophysics Data System (ADS)

    Turner, A. J.; Jacob, D.; Benmergui, J. S.; Brandman, J.; White, L.; Randles, C. A.

    2017-12-01

    Resolving differences between top-down and bottom-up emissions of methane from the oil and gas industry is difficult due, in part, to their fine-scale and often transient nature. There is considerable interest in using atmospheric observations to detect these sources. Satellite-based instruments are an attractive tool for this purpose and, more generally, for quantifying methane emissions on fine scales. A number of instruments are planned for launch in the coming years from both low earth and geostationary orbit, but the extent to which they can provide fine-scale information on sources has yet to be explored. Here we present an observation system simulation experiment (OSSE) exploring the tradeoffs between pixel resolution, measurement frequency, and instrument precision on the fine-scale information content of a space-borne instrument measuring methane. We use the WRF-STILT Lagrangian transport model to generate more than 200,000 column footprints at 1.3×1.3 km2 spatial resolution and hourly temporal resolution over the Barnett Shale in Texas. We sub-sample these footprints to match the observing characteristics of the planned TROPOMI and GeoCARB instruments as well as different hypothetical observing configurations. The information content of the various observing systems is evaluated using the Fisher information matrix and its singular values. We draw conclusions on the capabilities of the planned satellite instruments and how these capabilities could be improved for fine-scale source detection.

  12. Chemical characteristics of size-resolved atmospheric aerosols in Iasi, north-eastern Romania: nitrogen-containing inorganic compounds control aerosol chemistry in the area

    NASA Astrophysics Data System (ADS)

    Giorgiana Galon-Negru, Alina; Iulian Olariu, Romeo; Arsene, Cecilia

    2018-04-01

    This study assesses the effects of particle size and season on the content of the major inorganic and organic aerosol ionic components in the Iasi urban area, north-eastern Romania. Continuous measurements were carried out over 2016 using a cascade Dekati low-pressure impactor (DLPI) performing aerosol size classification in 13 specific fractions over the 0.0276-9.94 µm size range. Fine-particulate Cl-, NO3-, NH4+, and K+ exhibited clear minima during the warm season and clear maxima over the cold season, mainly due to trends in emission sources, changes in the mixing layer depth and specific meteorological conditions. Fine-particulate SO42- did not show much variation with respect to seasons. Particulate NH4+ and NO3- ions were identified as critical parameters controlling aerosol chemistry in the area, and their measured concentrations in fine-mode (PM2.5) aerosols were found to be in reasonable good agreement with modelled values for winter but not for summer. The likely reason is that NH4NO3 aerosols are lost due to volatility over the warm season. We found that NH4+ in PM2.5 is primarily associated with SO42- and NO3- but not with Cl-. Actually, indirect ISORROPIA-II estimations showed that the atmosphere in the Iasi area might be ammonia rich during both the cold and warm seasons, enabling enough NH3 to be present to neutralize H2SO4, HNO3, and HCl acidic components and to generate fine-particulate ammonium salts, in the form of (NH4)2SO4, NH4NO3, and NH4Cl. ISORROPIA-II runs allowed us to estimate that over the warm season ˜ 35 % of the total analysed samples had very strongly acidic pH (0-3), a fraction that rose to ˜ 43 % over the cold season. Moreover, while in the cold season the acidity is mainly accounted for by inorganic acids, in the warm ones there is an important contribution by other compounds, possibly organic. Indeed, changes in aerosol acidity would most likely impact the gas-particle partitioning of semi-volatile organic acids. Overall, we

  13. SeaSat-A Satellite Scatterometer (SASS) Validation and Experiment Plan

    NASA Technical Reports Server (NTRS)

    Schroeder, L. C. (Editor)

    1978-01-01

    This plan was generated by the SeaSat-A satellite scatterometer experiment team to define the pre-and post-launch activities necessary to conduct sensor validation and geophysical evaluation. Details included are an instrument and experiment description/performance requirements, success criteria, constraints, mission requirements, data processing requirement and data analysis responsibilities.

  14. Assessment of NOAA NUCAPS upper air temperature profiles using COSMIC GPS radio occultation and ARM radiosondes

    NASA Astrophysics Data System (ADS)

    Feltz, M. L.; Borg, L.; Knuteson, R. O.; Tobin, D.; Revercomb, H.; Gambacorta, A.

    2017-09-01

    The U.S. National Oceanic and Atmospheric Administration (NOAA) recently began operational processing to derive vertical temperature profiles from two new sensors, Cross-Track Infrared Sounder and Advanced Technology Microwave Sounder, which were developed for the next generation of U.S. weather satellites. The NOAA-Unique Combined Atmospheric Processing System (NUCAPS) has been developed by NOAA to routinely process data from future Joint Polar Satellite System operational satellites and the preparatory Suomi-NPP satellite. This paper assesses the NUCAPS vertical temperature profile product from the upper troposphere into the middle stratosphere using radiosonde and GPS radio occultation (RO) data. Radiosonde data from the Department of Energy Atmospheric Radiation Measurement (ARM) program are=] compared to both the NUCAPS and GPS RO temperature products to evaluate bias and RMS errors. At all three fixed ARM sites for time periods investigated the NUCAPS temperature in the 100-40 hPa range is found to have an average bias to the radiosondes of less than 0.45 K and an RMS error of less than 1 K when temperature averaging kernels are applied. At a 95% confidence level, the radiosondes and RO were found to agree within 0.4 K at the North Slope of Alaska site and within 0.83 K at Southern Great Plains and Tropical Western Pacific. The GPS RO-derived dry temperatures, obtained from the University Corporation for Atmospheric Research Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) mission, are used as a common reference for the intercomparison of NUCAPS temperature products to similar products produced by NASA from Atmospheric Infrared Sounder (AIRS) and by European Organisation for the Exploitation of Meteorological Satellites from MetOp-B Infrared Atmospheric Sounding Interferometer (IASI). For seasonal and zonal scales, the NUCAPS agreement with AIRS and IASI is less than 0.5 K after application of averaging kernels.

  15. Validation of GOES-10 Satellite-derived Cloud and Radiative Properties for the MASRAD ARM Mobile Facility Deployment

    NASA Technical Reports Server (NTRS)

    Khaiyer, M. M.; Doelling, D. R.; Palikonda, R.; Mordeen, M. L.; Minnis, P.

    2007-01-01

    This poster presentation reviews the process used to validate the GOES-10 satellite derived cloud and radiative properties. The ARM Mobile Facility (AMF) deployment at Pt Reyes, CA as part of the Marine Stratus Radiation Aerosol and Drizzle experiment (MASRAD), 14 March - 14 September 2005 provided an excellent chance to validate satellite cloud-property retrievals with the AMF's flexible suite of ground-based remote sensing instruments. For this comparison, NASA LaRC GOES10 satellite retrievals covering this region and period were re-processed using an updated version of the Visible Infrared Solar-Infrared Split-Window Technique (VISST), which uses data taken at 4 wavelengths (0.65, 3.9,11 and 12 m resolution), and computes broadband fluxes using improved CERES (Clouds and Earth's Radiant Energy System)-GOES-10 narrowband-to-broadband flux conversion coefficients. To validate MASRAD GOES-10 satellite-derived cloud property data, VISST-derived cloud amounts, heights, liquid water paths are compared with similar quantities derived from available ARM ground-based instrumentation and with CERES fluxes from Terra.

  16. Interferometric analysis computer code for the infrared atmospheric sounding interferometer (IASI) fourier transform spectrometer (FTS)

    NASA Astrophysics Data System (ADS)

    Labate, Demetrio; Pieri, Silvano; Pili, Paolo

    1994-09-01

    The Interferometric Analysis Computer Code is a program developed to evaluate the performances of Fourier Transform Spectrometers. It has been carried out in the frame of the IASI program. It is a stand-alone code which can use as input the optical system data set up by an optical design software. The interference phenomenon is evaluated using the optical data of both interferometer arms by means of real ray-tracing. The mathematical model used to obtain the output signal is based on the concept that, for a monochromatic source, this signal is quite similar to an ideal sine. This allows to calculate three functions describing the difference between the ideal interferogram and the simulated one. These represent the average level of the output irradiance, the modulation and the phase of the oscillating terms as a function of the Optical Path Difference. These functions are quite smooth and then easily representable by fitting. Therefore in order to have a good representation of them it is sufficient a number of points much smaller than those necessary to represent correctly an interferogram. Then a great advantage in terms of computation time is obtained, especially when many signals have to be added to simulate the effect of a detector covering a quite large field of view. Furthermore, the possibility to input in the optical data files different kinds of manufacturing or assembly errors allows to estimate the sensitivity of the optical components respect to these aspects. This makes possible the calculation of an exhaustive tolerance budget.

  17. Satellite Sensed Skin Sea Surface Temperature

    NASA Technical Reports Server (NTRS)

    Donlon, Craig

    1997-01-01

    Quantitative predictions of spatial and temporal changes the global climate rely heavily on the use of computer models. Unfortunately, such models cannot provide the basis for climate prediction because key physical processes are inadequately treated. Consequently, fine tuning procedures are often used to optimize the fit between model output and observational data and the validation of climate models using observations is essential if model based predictions of climate change are to be treated with any degree of confidence. Satellite Sea Surface Temperature (SST) observations provide high spatial and temporal resolution data which is extremely well suited to the initialization, definition of boundary conditions and, validation of climate models. In the case of coupled ocean-atmosphere models, the SST (or more correctly the 'Skin' SST (SSST)) is a fundamental diagnostic variable to consider in the validation process. Daily global SST maps derived from satellite sensors also provide adequate data for the detection of global patterns of change which, unlike any other SST data set, repeatedly extend into the southern hemisphere extra-tropical regions. Such data are essential to the success of the spatial 'fingerprint' technique, which seeks to establish a north-south asymmetry where warming is suppressed in the high latitude Southern Ocean. Some estimates suggest that there is a greater than 80% chance of directly detecting significant change (97.5 % confidence level) after 10-12 years of consistent global observations of mean sea surface temperature. However, these latter statements should be qualified with the assumption that a negligible drift in the observing system exists and that biases between individual instruments required to derive a long term data set are small. Given that current estimates for the magnitude of global warming of 0.015 K yr(sup -1) - 0.025 K yr(sup -1), satellite SST data sets need to be both accurate and stable if such a warming trend is to

  18. Comparison of Satellite based Ion Density Measurements with Digisonde electron density measurements

    NASA Astrophysics Data System (ADS)

    Wilson, G.; Balthazor, R. L.; Reinisch, B. W.; McHarg, M.; Maldonado, C.

    2017-12-01

    The integrated Miniaturized Electrostatic Analyzer (IMESA) flying on the STPSat-3 satellite has collected more than 3 years of ion density data. This instrument is the first in a constellation of up to 6 instruments. We plan on integrating the data from all IMESAs into an approiate ionospheric model. OUr first step is to validate the IMESA data and calibrate the instrument. In this presentation we discuss our process for preparing IMESA data and comparing it to ground based measurements. Lastly, we present a number of comparisons between IMESA ion density measurements and digisonde electron density measurements.

  19. The ASTRO-H (Hitomi) X-Ray Astronomy Satellite

    NASA Technical Reports Server (NTRS)

    Takahashi, Tadayuki; Kokubun, Motohide; Mitsuda, Kazuhisa; Kelley, Richard; Ohashi, Takaya; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steve; Anabuki, Naohisa; hide

    2016-01-01

    The Hitomi (ASTRO-H) mission is the sixth Japanese X-ray astronomy satellite developed by a large international collaboration, including Japan, USA, Canada, and Europe. The mission aimed to provide the highest energy resolution ever achieved at E greater than 2 keV, using a microcalorimeter instrument, and to cover a wide energy range spanning four decades in energy from soft X-rays to gamma-rays. After a successful launch on 2016 February 17, the spacecraft lost its function on 2016 March 26, but the commissioning phase for about a month provided valuable information on the on-board instruments and the spacecraft system, including astrophysical results obtained from first light observations. The paper describes the Hitomi (ASTRO-H) mission, its capabilities, the initial operation, and the instruments/spacecraft performances confirmed during the commissioning operations for about a month.

  20. The ASTRO-H (Hitomi) x-ray astronomy satellite

    NASA Astrophysics Data System (ADS)

    Takahashi, Tadayuki; Kokubun, Motohide; Mitsuda, Kazuhisa; Kelley, Richard; Ohashi, Takaya; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steve; Anabuki, Naohisa; Angelini, Lorella; Arnaud, Keith; Asai, Makoto; Audard, Marc; Awaki, Hisamitsu; Axelsson, Magnus; Azzarello, Philipp; Baluta, Chris; Bamba, Aya; Bando, Nobutaka; Bautz, Marshall; Bialas, Thomas; Blandford, Roger; Boyce, Kevin; Brenneman, Laura; Brown, Greg; Bulbul, Esra; Cackett, Edward; Canavan, Edgar; Chernyakova, Maria; Chiao, Meng; Coppi, Paolo; Costantini, Elisa; de Plaa, Jelle; den Herder, Jan-Willem; DiPirro, Michael; Done, Chris; Dotani, Tadayasu; Doty, John; Ebisawa, Ken; Eckart, Megan; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew; Ferrigno, Carlo; Foster, Adam; Fujimoto, Ryuichi; Fukazawa, Yasushi; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi; Gandhi, Poshak; Gilmore, Kirk; Giustini, Margherita; Goldwurm, Andrea; Gu, Liyi; Guainazzi, Matteo; Haas, Daniel; Haba, Yoshito; Hagino, Kouichi; Hamaguchi, Kenji; Harayama, Atsushi; Harrus, Ilana; Hatsukade, Isamu; Hayashi, Takayuki; Hayashi, Katsuhiro; Hayashida, Kiyoshi; Hiraga, Junko; Hirose, Kazuyuki; Hornschemeier, Ann; Hoshino, Akio; Hughes, John; Ichinohe, Yuto; Iizuka, Ryo; Inoue, Yoshiyuki; Inoue, Hajime; Ishibashi, Kazunori; Ishida, Manabu; Ishikawa, Kumi; Ishimura, Kosei; Ishisaki, Yoshitaka; Itoh, Masayuki; Iwata, Naoko; Iyomoto, Naoko; Jewell, Chris; Kaastra, Jelle; Kallman, Timothy; Kamae, Tuneyoshi; Kara, Erin; Kataoka, Jun; Katsuda, Satoru; Katsuta, Junichiro; Kawaharada, Madoka; Kawai, Nobuyuki; Kawano, Taro; Kawasaki, Shigeo; Khangulyan, Dmitry; Kilbourne, Caroline; Kimball, Mark; King, Ashley; Kitaguchi, Takao; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kosaka, Tatsuro; Koujelev, Alex; Koyama, Katsuji; Koyama, Shu; Kretschmar, Peter; Krimm, Hans; Kubota, Aya; Kunieda, Hideyo; Laurent, Philippe; Lebrun, François; Lee, Shiu-Huang; Leutenegger, Maurice; Limousin, Olivier; Loewenstein, Michael; Long, Knox; Lumb, David; Madejski, Grzegorz; Maeda, Yoshitomo; Maier, Daniel; Makishima, Kazuo; Markevitch, Maxim; Masters, Candace; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McGuinness, Daniel; McNamara, Brian; Mehdipour, Missagh; Miko, Joseph; Miller, Jon; Miller, Eric; Mineshige, Shin; Minesugi, Kenji; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Koji; Mori, Hideyuki; Moroso, Franco; Moseley, Harvey; Muench, Theodore; Mukai, Koji; Murakami, Hiroshi; Murakami, Toshio; Mushotzky, Richard; Nagano, Housei; Nagino, Ryo; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakano, Toshio; Nakashima, Shinya; Nakazawa, Kazuhiro; Namba, Yoshiharu; Natsukari, Chikara; Nishioka, Yusuke; Nobukawa, Masayoshi; Nobukawa, Kumiko; Noda, Hirofumi; Nomachi, Masaharu; O'Dell, Steve; Odaka, Hirokazu; Ogawa, Hiroyuki; Ogawa, Mina; Ogi, Keiji; Ohno, Masanori; Ohta, Masayuki; Okajima, Takashi; Okamoto, Atsushi; Okazaki, Tsuyoshi; Ota, Naomi; Ozaki, Masanobu; Paerels, Frederik; Paltani, Stéphane; Parmar, Arvind; Petre, Robert; Pinto, Ciro; Pohl, Martin; Pontius, James; Porter, F. Scott; Pottschmidt, Katja; Ramsey, Brian; Reynolds, Christopher; Russell, Helen; Safi-Harb, Samar; Saito, Shinya; Sakai, Shin-ichiro; Sakai, Kazuhiro; Sameshima, Hiroaki; Sasaki, Toru; Sato, Goro; Sato, Yoichi; Sato, Kosuke; Sato, Rie; Sawada, Makoto; Schartel, Norbert; Serlemitsos, Peter; Seta, Hiromi; Shibano, Yasuko; Shida, Maki; Shidatsu, Megumi; Shimada, Takanobu; Shinozaki, Keisuke; Shirron, Peter; Simionescu, Aurora; Simmons, Cynthia; Smith, Randall; Sneiderman, Gary; Soong, Yang; Stawarz, Łukasz; Sugawara, Yasuharu; Sugita, Hiroyuki; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takeda, Shin'ichiro; Takei, Yoh; Tamagawa, Toru; Tamura, Takayuki; Tamura, Keisuke; Tanaka, Takaaki; Tanaka, Yasuo; Tanaka, Yasuyuki; Tashiro, Makoto; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yohko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi; Uchida, Hiroyuki; Uchiyama, Yasunobu; Uchiyama, Hideki; Ueda, Yoshihiro; Ueda, Shutaro; Ueno, Shiro; Uno, Shin'ichiro; Urry, Meg; Ursino, Eugenio; de Vries, Cor; Wada, Atsushi; Watanabe, Shin; Watanabe, Tomomi; Werner, Norbert; Wik, Daniel; Wilkins, Dan; Williams, Brian; Yamada, Takahiro; Yamada, Shinya; Yamaguchi, Hiroya; Yamaoka, Kazutaka; Yamasaki, Noriko; Yamauchi, Makoto; Yamauchi, Shigeo; Yaqoob, Tahir; Yatsu, Yoichi; Yonetoku, Daisuke; Yoshida, Atsumasa; Yuasa, Takayuki; Zhuravleva, Irina; Zoghbi, Abderahmen

    2016-07-01

    The Hitomi (ASTRO-H) mission is the sixth Japanese X-ray astronomy satellite developed by a large international collaboration, including Japan, USA, Canada, and Europe. The mission aimed to provide the highest energy resolution ever achieved at E > 2 keV, using a microcalorimeter instrument, and to cover a wide energy range spanning four decades in energy from soft X-rays to gamma-rays. After a successful launch on 2016 February 17, the spacecraft lost its function on 2016 March 26, but the commissioning phase for about a month provided valuable information on the on-board instruments and the spacecraft system, including astrophysical results obtained from first light observations. The paper describes the Hitomi (ASTRO-H) mission, its capabilities, the initial operation, and the instruments/spacecraft performances confirmed during the commissioning operations for about a month.