Sample records for ibuprofen inhibit mhc-restricted

  1. Effect of racemic ibuprofen dose on the magnitude and duration of platelet cyclo-oxygenase inhibition: relationship between inhibition of thromboxane production and the plasma unbound concentration of S(+)-ibuprofen.

    PubMed

    Evans, A M; Nation, R L; Sansom, L N; Bochner, F; Somogyi, A A

    1991-02-01

    1. Four healthy male subjects received racemic ibuprofen (200, 400, 800 and 1200 mg), orally, on four occasions, 2 weeks apart, according to a four-way Latin-square design, in order to investigate the influence of increasing dose of ibuprofen on the magnitude and duration of its antiplatelet effect as well as on the relationship between such effect and drug concentration. 2. The antiplatelet effect of ibuprofen was assessed by measuring the inhibition of platelet thromboxane B2 (TXB2) generation during the controlled clotting of whole blood. The plasma unbound concentration of S(+)-ibuprofen, the enantiomer shown in an in vitro study to be responsible for the inhibitory effect of platelet TXB2 generation, was measured using an enantioselective method. 3. The maximum percentage inhibition of TXB2 generation increased significantly with dose from a mean +/- s.d. of 93.4 +/- 1.2% after the 200 mg dose to 98.8 +/- 0.3% after the 1200 mg dose, and there was an increase with dose in the duration of inhibition of TXB2 generation. The effect of ibuprofen on platelet TXB2 generation was transient and mirrored the time-course of unbound S(+)-ibuprofen in plasma; on all but one of the 16 occasions, serum TXB2 concentrations returned to at least within 10% of the pretreatment concentrations within 24 h of ibuprofen administration. 4. For each subject, the relationship between the percentage inhibition of TXB2 generation and the unbound concentration of S(+)-ibuprofen in plasma was modelled according to a sigmoidal Emax equation. The mean plasma unbound concentration of S(+)-ibuprofen required to inhibit platelet TXB2 generation by 50% (EC50) was 9.8 +/- 1.0 micrograms l-1.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Inhibition of endocannabinoid metabolism by the metabolites of ibuprofen and flurbiprofen.

    PubMed

    Karlsson, Jessica; Fowler, Christopher J

    2014-01-01

    In addition to their effects upon prostaglandin synthesis, the non-steroidal anti-inflammatory drugs ibuprofen and flurbiprofen inhibit the metabolism of the endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide (AEA) by cyclooxygenase-2 (COX-2) and fatty acid amide hydrolase (FAAH), respectively. Here, we investigated whether these effects upon endocannabinoid metabolism are shared by the main metabolites of ibuprofen and flurbiprofen. COX activities were measured via changes in oxygen consumption due to oxygenation of arachidonic acid (for COX-1) and arachidonic acid and 2-AG (for COX-2). FAAH activity was quantified by measuring hydrolysis of tritium labelled AEA in rat brain homogenates. The ability of ibuprofen and flurbiprofen to inhibit COX-2-catalysed oxygenation of 2-AG at lower concentrations than the oxygenation of arachidonic acid was seen with 4'-hydroxyflurbiprofen and possibly also 3'-hydroxyibuprofen, albeit at lower potencies than the parent compounds. All ibuprofen and flurbiprofen metabolites retained the ability to inhibit FAAH in a pH-dependent manner, although the potency was lower than seen with the parent compounds. It is concluded that the primary metabolites of ibuprofen and flurbiprofen retain some of the properties of the parent compound with respect to inhibition of endocannabinoid metabolism. However, these effects are unlikely to contribute to the actions of the parent compounds in vivo.

  3. Inhibition of Endocannabinoid Metabolism by the Metabolites of Ibuprofen and Flurbiprofen

    PubMed Central

    Karlsson, Jessica; Fowler, Christopher J.

    2014-01-01

    Background In addition to their effects upon prostaglandin synthesis, the non-steroidal anti-inflammatory drugs ibuprofen and flurbiprofen inhibit the metabolism of the endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide (AEA) by cyclooxygenase-2 (COX-2) and fatty acid amide hydrolase (FAAH), respectively. Here, we investigated whether these effects upon endocannabinoid metabolism are shared by the main metabolites of ibuprofen and flurbiprofen. Methodology/Principal Findings COX activities were measured via changes in oxygen consumption due to oxygenation of arachidonic acid (for COX-1) and arachidonic acid and 2-AG (for COX-2). FAAH activity was quantified by measuring hydrolysis of tritium labelled AEA in rat brain homogenates. The ability of ibuprofen and flurbiprofen to inhibit COX-2-catalysed oxygenation of 2-AG at lower concentrations than the oxygenation of arachidonic acid was seen with 4′-hydroxyflurbiprofen and possibly also 3′-hydroxyibuprofen, albeit at lower potencies than the parent compounds. All ibuprofen and flurbiprofen metabolites retained the ability to inhibit FAAH in a pH-dependent manner, although the potency was lower than seen with the parent compounds. Conclusions/Significance It is concluded that the primary metabolites of ibuprofen and flurbiprofen retain some of the properties of the parent compound with respect to inhibition of endocannabinoid metabolism. However, these effects are unlikely to contribute to the actions of the parent compounds in vivo. PMID:25061885

  4. Nonclassical MHC Ib-restricted CD8+ T Cells Recognize Mycobacterium tuberculosis-Derived Protein Antigens and Contribute to Protection Against Infection

    PubMed Central

    Shang, Shaobin; Siddiqui, Sarah; Bian, Yao; Zhao, Jie; Wang, Chyung-Ru

    2016-01-01

    MHC Ib-restricted CD8+ T cells have been implicated in host defense against Mycobacterium tuberculosis (Mtb) infection. However, the relative contribution of various MHC Ib-restricted T cell populations to anti-mycobacterial immunity remains elusive. In this study, we used mice that lack MHC Ia (Kb-/-Db-/-), MHC Ia/H2-M3 (Kb-/-Db-/-M3-/-), or β2m (β2m-/-) to study the role of M3-restricted and other MHC Ib-restricted T cells in immunity against Mtb. Unlike their dominant role in Listeria infection, we found that M3-restricted CD8+ T cells only represented a small proportion of the CD8+ T cells responding to Mtb infection. Non-M3, MHC Ib-restricted CD8+ T cells expanded preferentially in the lungs of Mtb-infected Kb-/-Db-/-M3-/- mice, exhibited polyfunctional capacities and conferred protection against Mtb. These MHC Ib-restricted CD8+ T cells recognized several Mtb-derived protein antigens at a higher frequency than MHC Ia-restricted CD8+ T cells. The presentation of Mtb antigens to MHC Ib-restricted CD8+ T cells was mostly β2m-dependent but TAP-independent. Interestingly, a large proportion of Mtb-specific MHC Ib-restricted CD8+ T cells in Kb-/-Db-/-M3-/- mice were Qa-2-restricted while no considerable numbers of MR1 or CD1-restricted Mtb-specific CD8+ T cells were detected. Our findings indicate that nonclassical CD8+ T cells other than the known M3, CD1, and MR1-restricted CD8+ T cells contribute to host immune responses against Mtb infection. Targeting these MHC Ib-restricted CD8+ T cells would facilitate the design of better Mtb vaccines with broader coverage across MHC haplotypes due to the limited polymorphism of MHC class Ib molecules. PMID:27272249

  5. The MHC-II transactivator CIITA, a restriction factor against oncogenic HTLV-1 and HTLV-2 retroviruses: similarities and differences in the inhibition of Tax-1 and Tax-2 viral transactivators

    PubMed Central

    Forlani, Greta; Abdallah, Rawan; Accolla, Roberto S.; Tosi, Giovanna

    2013-01-01

    The activation of CD4+ T helper cells is strictly dependent on the presentation of antigenic peptides by MHC class II (MHC-II) molecules. MHC-II expression is primarily regulated at the transcriptional level by the AIR-1 gene product CIITA (class II transactivator). Thus, CIITA plays a pivotal role in the triggering of the adaptive immune response against pathogens. Besides this well known function, we recently found that CIITA acts as an endogenous restriction factor against HTLV-1 (human T cell lymphotropic virus type 1) and HTLV-2 oncogenic retroviruses by targeting their viral transactivators Tax-1 and Tax-2, respectively. Here we review our findings on CIITA-mediated inhibition of viral replication and discuss similarities and differences in the molecular mechanisms by which CIITA specifically counteracts the function of Tax-1 and Tax-2 molecules. The dual function of CIITA as a key regulator of adaptive and intrinsic immunity represents a rather unique example of adaptation of host-derived factors against pathogen infections during evolution. PMID:23986750

  6. Ibuprofen Inhibits Colitis-Induced Overexpression of Tumor-Related Rac1b1

    PubMed Central

    Matos, Paulo; Kotelevets, Larissa; Goncalves, Vania; Henriques, Andreia; Zerbib, Philippe; Moyer, Mary Pat; Chastre, Eric; Jordan, Peter

    2013-01-01

    The serrated pathway to colorectal tumor formation involves oncogenic mutations in the BRAF gene, which are sufficient for initiation of hyperplastic growth but not for tumor progression. A previous analysis of colorectal tumors revealed that overexpression of splice variant Rac1b occurs in around 80% of tumors with mutant BRAF and both events proved to cooperate in tumor cell survival. Here, we provide evidence for increased expression of Rac1b in patients with inflamed human colonic mucosa as well as following experimentally induced colitis in mice. The increase of Rac1b in the mouse model was specifically prevented by the nonsteroidal anti-inflammatory drug ibuprofen, which also inhibited Rac1b expression in cultured HT29 colorectal tumor cells through a cyclooxygenase inhibition.independent mechanism. Accordingly, the presence of ibuprofen led to a reduction of HT29 cell survival in vitro and inhibited Rac1b-dependent tumor growth of HT29 xenografts. Together, our results suggest that stromal cues, namely, inflammation, can trigger changes in Rac1b expression in the colon and identify ibuprofen as a highly specific and efficient inhibitor of Rac1b overexpression in colorectal tumors. Our data suggest that the use of ibuprofen may be beneficial in the treatment of patients with serrated colorectal tumors or with inflammatory colon syndromes. PMID:23359345

  7. Sibling rivalry: competition between MHC class II family members inhibits immunity.

    PubMed

    Denzin, Lisa K; Cresswell, Peter

    2013-01-01

    Peptide loading of major histocompatibility complex (MHC) class II molecules in the endosomes and lysosomes of antigen-presenting cells is catalyzed by human leukocyte antigen-DM (HLA-DM) and modulated by HLA-DO. In a structural study in this issue, Guce et al. show that HLA-DO is an MHC class II mimic and functions as a competitive and essentially irreversible inhibitor of HLA-DM activity, thereby inhibiting MHC class II antigen presentation.

  8. Inhibition of RhoA/Rho kinase by ibuprofen exerts cardioprotective effect on isoproterenol induced myocardial infarction in rats.

    PubMed

    Patel, Prexita; Parikh, Mihir; Shah, Hital; Gandhi, Tejal

    2016-11-15

    Myocardial infarction (MI) and hypertension are the leading cause of death worldwide so protection of heart is focus of intense research. Rho-kinase, a downstream effector of protein involved in MI and hypertension, is inhibited by ibuprofen. This study aims to elucidate cardioprotective effect of ibuprofen in rats. MI was produced in rats with 85mg/kg isoproterenol (ISO) administered s.c. twice at an interval of 24h. The rats were randomized into six groups: (I) Normal; (II) ISO; (III) ISO + ascorbic acid (250mg/kg p.o.); (IV-VI) ISO + ibuprofen (30, 60 and 90mg/kg p.o). After the completion of the study period of 21 days, cardiac function and biomarkers were assessed. Pre-treatment with ibuprofen (30, 60 and 90mg/kg p.o) ameliorated high BP and left ventricular dysfunction, furthermore it prevented the rise in CKMB, LDH and α-HBDH, suggesting the effect of ibuprofen in maintenance of cell membrane integrity. In addition, it also prevented alteration in the levels of electrolytes, ATPase activity and antioxidant status. Ibuprofen suppressed ISO-induced ROCK-1 mRNA expression and histological changes. Ibuprofen provided cardioprotection in a model of myocardial infarction, by restoring most of the altered physical, physiological, biochemical, haemodynamic parameters, antioxidant status, and histological changes and by inhibiting ROCK-1 mRNA expression. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Immunization with SV40-transformed cells yields mainly MHC-restricted monoclonal antibodies

    PubMed Central

    1986-01-01

    Recognition of antigens on cell surfaces only in the context of the MHC- encoded alloantigens of the presenting cell (self + X) has classically been considered the province of T cells. However, evidence from several sources has indicated that B cells and antibodies can exhibit self + X- restricted recognition as well. This report concerns the mAb response to SV40-transformed H-2b fibroblast cell lines. The specificities of the antibodies obtained have been analyzed for binding to a panel of SV40-transformed H-2-syngeneic, H-2-allogeneic, and H-2b mutant fibroblast cell lines, as well as cell lines not bearing cell surface SV40 transformation-associated antigens. A large proportion of primary C57BL/6 (71%) and BALB/c (68%) splenic B cells responding to in vitro stimulation with SV40-transformed H-2b cells recognize cell surface antigens associated with SV40 transformation only when coexpressed with MHC antigens of the immunizing cell, particularly the Kb molecule, on transformed cells. To extensively define the nature of antigen recognition by these antibodies, we have generated and characterized nine hybridoma antibodies specific for SV40-transformed H-2-syngeneic cell lines. Seven of these hybridoma antibodies recognize SV40- associated transformation antigens in the context of H-2b molecules. Six of these are restricted by the Kb molecule and discriminate among a panel of SV40-transformed Kb mutant cell lines, thus confirming the participation of class I MHC-encoded molecules in the recognition by B cells of cell surface antigens. PMID:3014034

  10. Enhanced Longevity by Ibuprofen, Conserved in Multiple Species, Occurs in Yeast through Inhibition of Tryptophan Import

    PubMed Central

    He, Chong; Tsuchiyama, Scott K.; Nguyen, Quynh T.; Plyusnina, Ekaterina N.; Terrill, Samuel R.; Sahibzada, Sarah; Patel, Bhumil; Faulkner, Alena R.; Shaposhnikov, Mikhail V.; Tian, Ruilin; Tsuchiya, Mitsuhiro; Kaeberlein, Matt; Moskalev, Alexey A.; Kennedy, Brian K.; Polymenis, Michael

    2014-01-01

    The common non-steroidal anti-inflammatory drug ibuprofen has been associated with a reduced risk of some age-related pathologies. However, a general pro-longevity role for ibuprofen and its mechanistic basis remains unclear. Here we show that ibuprofen increased the lifespan of Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster, indicative of conserved eukaryotic longevity effects. Studies in yeast indicate that ibuprofen destabilizes the Tat2p permease and inhibits tryptophan uptake. Loss of Tat2p increased replicative lifespan (RLS), but ibuprofen did not increase RLS when Tat2p was stabilized or in an already long-lived strain background impaired for aromatic amino acid uptake. Concomitant with lifespan extension, ibuprofen moderately reduced cell size at birth, leading to a delay in the G1 phase of the cell cycle. Similar changes in cell cycle progression were evident in a large dataset of replicatively long-lived yeast deletion strains. These results point to fundamental cell cycle signatures linked with longevity, implicate aromatic amino acid import in aging and identify a largely safe drug that extends lifespan across different kingdoms of life. PMID:25521617

  11. Brucella abortus down-regulates MHC class II by the IL-6-dependent inhibition of CIITA through the downmodulation of IFN regulatory factor-1 (IRF-1).

    PubMed

    Velásquez, Lis N; Milillo, M Ayelén; Delpino, M Victoria; Trotta, Aldana; Fernández, Pablo; Pozner, Roberto G; Lang, Roland; Balboa, Luciana; Giambartolomei, Guillermo H; Barrionuevo, Paula

    2017-03-01

    Brucella abortus is an intracellular pathogen capable of surviving inside of macrophages. The success of B. abortus as a chronic pathogen relies on its ability to orchestrate different strategies to evade the adaptive CD4 + T cell responses that it elicits. Previously, we demonstrated that B. abortus inhibits the IFN-γ-induced surface expression of MHC class II (MHC-II) molecules on human monocytes, and this phenomenon correlated with a reduction in antigen presentation. However, the molecular mechanisms, whereby B. abortus is able to down-regulate the expression of MHC-II, remained to be elucidated. In this study, we demonstrated that B. abortus infection inhibits the IFN-γ-induced transcription of MHC-II, transactivator (CIITA) and MHC-II genes. Accordingly, we observed that the synthesis of MHC-II proteins was also diminished. B. abortus was not only able to reduce the expression of mature MHC-II, but it also inhibited the expression of invariant chain (Ii)-associated immature MHC-II molecules. Outer membrane protein 19 (Omp19), a prototypical B. abortus lipoprotein, diminished the expression of MHC-II and CIITA transcripts to the same extent as B. abortus infection. IL-6 contributes to these down-regulatory phenomena. In addition, B. abortus and its lipoproteins, through IL-6 secretion, induced the transcription of the negative regulators of IFN-γ signaling, suppressor of cytokine signaling (SOCS)-1 and -3, without interfering with STAT1 activation. Yet, B. abortus lipoproteins via IL-6 inhibit the expression of IFN regulatory factor 1 (IRF-1), a critical regulatory transcription factor for CIITA induction. Overall, these results indicate that B. abortus inhibits the expression of MHC-II molecules at very early points in their synthesis and in this way, may prevent recognition by T cells establishing a chronic infection. © Society for Leukocyte Biology.

  12. Differences in antigen presentation to MHC class I-and class II- restricted influenza virus-specific cytolytic T lymphocyte clones

    PubMed Central

    1986-01-01

    We have examined requirements for antigen presentation to a panel of MHC class I-and class II-restricted, influenza virus-specific CTL clones by controlling the form of virus presented on the target cell surface. Both H-2K/D- and I region-restricted CTL recognize target cells exposed to infectious virus, but only the I region-restricted clones efficiently lysed histocompatible target cells pulsed with inactivated virus preparations. The isolated influenza hemagglutinin (HA) polypeptide also could sensitize target cells for recognition by class II-restricted, HA-specific CTL, but not by class I-restricted, HA- specific CTL. Inhibition of nascent viral protein synthesis abrogated the ability of target cells to present viral antigen relevant for class I-restricted CTL recognition. Significantly, presentation for class II- restricted recognition was unaffected in target cells exposed to preparations of either inactivated or infectious virus. This differential sensitivity suggested that these H-2I region-restricted CTL recognized viral polypeptides derived from the exogenously introduced virions, rather than viral polypeptides newly synthesized in the infected cell. In support of this contention, treatment of the target cells with the lysosomotropic agent chloroquine abolished recognition of infected target cells by class II-restricted CTL without diminishing class I-restricted recognition of infected target cells. Furthermore, when the influenza HA gene was introduced into target cells without exogenous HA polypeptide, the target cells that expressed the newly synthesized protein product of the HA gene were recognized only by H-2K/D-restricted CTL. These observations suggest that important differences may exist in requirements for antigen presentation between H-2K/D and H-2I region-restricted CTL. These differences may reflect the nature of the antigenic epitopes recognized by these two CTL subsets. PMID:3485173

  13. Streptococcus suis Serotype 2 Infection Impairs Interleukin-12 Production and the MHC-II-Restricted Antigen Presentation Capacity of Dendritic Cells

    PubMed Central

    Letendre, Corinne; Auger, Jean-Philippe; Lemire, Paul; Galbas, Tristan; Gottschalk, Marcelo; Thibodeau, Jacques; Segura, Mariela

    2018-01-01

    Streptococcus suis is an important swine pathogen and emerging zoonotic agent. Encapsulated strains of S. suis modulate dendritic cell (DC) functions, leading to poorly activated CD4+ T cells. However, the antigen presentation ability of S. suis-stimulated DCs has not been investigated yet. In this work, we aimed to characterize the antigen presentation profiles of S. suis-stimulated DCs, both in vitro and in vivo. Upon direct activation in vitro, S. suis-stimulated murine bone marrow-derived DCs (bmDCs) preserved their antigen capture/processing capacities. However, they showed delayed kinetics of MHC-II expression compared to lipopolysaccharide-stimulated bmDCs. Meanwhile, splenic DCs from infected mice exhibited a compromised MHC-II expression, despite an appropriate expression of maturation markers. To identify potential interfering mechanisms, Class II Major Histocompatibility Complex Transactivator (CIITA) and membrane-associated RING-CH (MARCH)1/8 transcription were studied. S. suis-stimulated DCs maintained low levels of CIITA at early time points, both in vitro and in vivo, which could limit their ability to increase MHC-II synthesis. S. suis-stimulated DCs also displayed sustained/upregulated levels of MARCH1/8, thus possibly leading to MHC-II lysosomal degradation. The bacterial capsular polysaccharide played a partial role in this modulation. Finally, interleukin (IL)-12p70 production was inhibited in splenic DCs from infected mice, a profile compatible with DC indirect activation by pro-inflammatory compounds. Consequently, these cells induced lower levels of IL-2 and TNF-α in an antigen-specific CD4+ T cell presentation assay and blunted T cell CD25 expression. It remains unclear at this stage whether these phenotypical and transcriptional modulations observed in response to S. suis in in vivo infections are part of a bacterial immune evasion strategy or rather a feature common to systemic inflammatory response-inducing agents. However, it appears

  14. Bioavailability of ibuprofen following oral administration of standard ibuprofen, sodium ibuprofen or ibuprofen acid incorporating poloxamer in healthy volunteers

    PubMed Central

    2009-01-01

    Background The aim of this study was to compare the pharmacokinetic properties of sodium ibuprofen and ibuprofen acid incorporating poloxamer with standard ibuprofen acid tablets. Methods Twenty-two healthy volunteers were enrolled into this randomised, single-dose, 3-way crossover, open-label, single-centre, pharmacokinetic study. After 14 hours' fasting, participants received a single dose of 2 × 200 mg ibuprofen acid tablets (standard ibuprofen), 2 × 256 mg ibuprofen sodium dihydrate tablets (sodium ibuprofen; each equivalent to 200 mg ibuprofen acid) and 2 × 200 mg ibuprofen acid incorporating 60 mg poloxamer 407 (ibuprofen/poloxamer). A washout period of 2-7 days separated consecutive dosing days. On each of the 3 treatment days, blood samples were collected post dose for pharmacokinetic analyses and any adverse events recorded. Plasma concentration of ibuprofen was assessed using a liquid chromatographic-mass spectrometry procedure in negative ion mode. A standard statistical ANOVA model, appropriate for bioequivalence studies, was used and ratios of 90% confidence intervals (CIs) were calculated. Results Tmax for sodium ibuprofen was less than half that of standard ibuprofen (median 35 min vs 90 min, respectively; P = 0.0002) and Cmax was significantly higher (41.47 μg/mL vs 31.88 μg/mL; ratio test/reference = 130.06%, 90% CI 118.86-142.32%). Ibuprofen/poloxamer was bioequivalent to the standard ibuprofen formulation, despite its Tmax being on average 20 minutes shorter than standard ibuprofen (median 75 mins vs 90 mins, respectively; P = 0.1913), as the ratio of test/reference = 110.48% (CI 100.96-120.89%), which fell within the 80-125% limit of the CPMP and FDA guidelines for bioequivalence. The overall extent of absorption was similar for the three formulations, which were all well tolerated. Conclusion In terms of Tmax, ibuprofen formulated as a sodium salt was absorbed twice as quickly as from standard ibuprofen acid. The addition of poloxamer to

  15. BiodMHC: an online server for the prediction of MHC class II-peptide binding affinity.

    PubMed

    Wang, Lian; Pan, Danling; Hu, Xihao; Xiao, Jinyu; Gao, Yangyang; Zhang, Huifang; Zhang, Yan; Liu, Juan; Zhu, Shanfeng

    2009-05-01

    Effective identification of major histocompatibility complex (MHC) molecules restricted peptides is a critical step in discovering immune epitopes. Although many online servers have been built to predict class II MHC-peptide binding affinity, they have been trained on different datasets, and thus fail in providing a unified comparison of various methods. In this paper, we present our implementation of seven popular predictive methods, namely SMM-align, ARB, SVR-pairwise, Gibbs sampler, ProPred, LP-top2, and MHCPred, on a single web server named BiodMHC (http://biod.whu.edu.cn/BiodMHC/index.html, the software is available upon request). Using a standard measure of AUC (Area Under the receiver operating characteristic Curves), we compare these methods by means of not only cross validation but also prediction on independent test datasets. We find that SMM-align, ProPred, SVR-pairwise, ARB, and Gibbs sampler are the five best-performing methods. For the binding affinity prediction of class II MHC-peptide, BiodMHC provides a convenient online platform for researchers to obtain binding information simultaneously using various methods.

  16. Stimulus specific effect of ibuprofen on chemiluminescence of sheep neutrophils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tahamont, M.V.; Margiotta, M.; Gee, M.H.

    1986-03-05

    The authors have shown that pretreatment with ibuprofen inhibits free radical release from complement stimulated neutrophils. To further examine the effect of ibuprofen on neutrophil free radical release, they stimulated neutrophils with the synthetic peptide, FMLP, phorbol myristate acetate (PMA), or zymosan-activated plasma (ZAP). Pure (>95%), viable (>95%) sheep neutrophils (2 x 10/sup 6/) were placed in HEPES buffer, luminol, drug or vehicle and stimulated in the luminometer with one of the stimuli. The chemiluminescence (CL) response was recorded and the drug treated samples were compared to vehicle treated controls. Ibuprofen had a dose dependent effect on CL in ZAPmore » stimulated neutrophils. At the highest dose (10/sup -2/M) these cells produced only 37 +/- 7% of the CL response observed in the control cells. In contrast, at the same dose, ibuprofen did not significantly attenuate CL seen in FMLP stimulated cells, with these cells producing 79 +/- 7% of the control cells; nor did ibuprofen effect PMA stimulated CL, as these cells produced a CL response that was 85 +/- 8% of the control cells. Ibuprofen appears to have a stimulus specific effect on free radical release in activated neutrophils. It is also apparent that ibuprofen inhibits complement stimulated free radical release by some mechanism independent of its cyclooxygenase inhibitory effect.« less

  17. Ibuprofen: from invention to an OTC therapeutic mainstay.

    PubMed

    Rainsford, K D

    2013-01-01

    The discovery of ibuprofen's anti-inflammatory activity by Dr (now Professor) Stewart Adams and colleagues (Boots Pure Chemical Company Ltd, Nottingham, UK) 50 years ago represented a milestone in the development of anti-inflammatory analgesics. Subsequent clinical studies were the basis for ibuprofen being widely accepted for treating painful conditions at high anti-rheumatic doses (≤ 2400 mg/d), with lower doses (≤ 1200 mg/d for ≤ 10 days) for mild-moderate acute pain (e.g. dental pain, headache, dysmenorrhoea, respiratory symptoms and acute injury). The early observations have since been verified in studies comparing ibuprofen with newer cyclo-oxygenase-2 selective inhibitors ('coxibs'), paracetamol and other non-steroidal anti-inflammatory drugs (NSAIDs). The use of the low-dose, non-prescription, over-the-counter (OTC) drug was based on marketing approval in 1983 (UK) and 1984 (USA); and it is now available in over 80 countries. The relative safety of OTC ibuprofen has been supported by large-scale controlled studies. It has the same low gastro-intestinal (GI) effects as paracetamol (acetaminophen) and fewer GI effects than aspirin. Ibuprofen is a racemate. Its physicochemical properties and the short plasma-elimination half-life of the R(-) isomer, together with its limited ability to inhibit cyclo-oxygenase-1 (COX-1) and thus prostaglandin (PG) synthesis, compared with that of S(+)-ibuprofen, are responsible for the relatively low GI toxicity. The R(-) isomer is then converted in the body to the S(+) isomer after absorption in the GI tract. Ex vivo inhibition of COX-1 (thromboxane A(2)) and COX-2 (PGE(2)) at the plasma concentrations of S(+)-ibuprofen corresponding to those found in the plasma following ingestion of 400 mg ibuprofen in dental and other inflammatory pain models provides evidence of the anti-inflammatory mechanism at OTC dosages. R(-)-ibuprofen has effects on leucocytes, suggesting that ibuprofen has anti-leucocyte effects, which

  18. Inhibitory effects of thymus-independent type 2 antigens on MHC class II-restricted antigen presentation: comparative analysis of carbohydrate structures and the antigen presenting cell.

    PubMed

    González-Fernández, M; Carrasco-Marín, E; Alvarez-Domínguez, C; Outschoorn, I M; Leyva-Cobián, F

    1997-02-25

    The role of thymus-independent type 2 (TI-2) antigens (polysaccharides) on the MHC-II-restricted processing of protein antigens was studied in vitro. In general, antigen presentation is inhibited when both peritoneal and splenic macrophages (M phi) as well as Küpffer cells (KC) are preincubated with acidic polysaccharides or branched dextrans. However, the inhibitory effect of neutral polysaccharides was minimal when KC were used as antigen presenting cells (APC). Morphological evaluation of the uptake of fluoresceinated polysaccharides clearly correlates with this selective and differential interference. Polysaccharides do not block MHC-I-restricted antigen presentation. Some chemical characteristics shared by different saccharides seem to be specially related to their potential inhibitory abilities: (i) those where two anomeric carbon atoms of two interlinked sugars and (ii) those containing several sulfate groups per disaccharide repeating unit. No polysaccharide being inhibitory in M phi abrogated antigen processing in other APC: lipopolysaccharide-activated B cells, B lymphoma cells, or dendritic cells (DC). Using radiolabeled polysaccharides it was observed that DC and B cells incorporated less radioactivity as a function of time than M phi. Morphological evaluation of these different APC incubated for extended periods of time with inhibitory concentrations of polysaccharides revealed intense cytoplasmic vacuolization in M phi but not in B cells or DC. The large majority of M phi lysosomes containing polysaccharides fail to fuse with incoming endocytic vesicles and delivery of fluid-phase tracers was reduced, suggesting that indigestible carbohydrates reduced the fusion of these loaded lysosomes with endosomes containing recently internalized tracers. It is suggested that the main causes of this antigen presentation blockade are (i) the chemical characteristics of certain carbohydrates and whether the specific enzymatic machinery for their intracellular

  19. HIV-1 Nef disrupts MHC-I trafficking by recruiting AP-1 to the MHC-I cytoplasmic tail

    PubMed Central

    Roeth, Jeremiah F.; Williams, Maya; Kasper, Matthew R.; Filzen, Tracey M.; Collins, Kathleen L.

    2004-01-01

    To avoid immune recognition by cytotoxic T lymphocytes (CTLs), human immunodeficiency virus (HIV)-1 Nef disrupts the transport of major histocompatibility complex class I molecules (MHC-I) to the cell surface in HIV-infected T cells. However, the mechanism by which Nef does this is unknown. We report that Nef disrupts MHC-I trafficking by rerouting newly synthesized MHC-I from the trans-Golgi network (TGN) to lysosomal compartments for degradation. The ability of Nef to target MHC-I from the TGN to lysosomes is dependent on expression of the μ1 subunit of adaptor protein (AP) AP-1A, a cellular protein complex implicated in TGN to endolysosomal pathways. We demonstrate that in HIV-infected primary T cells, Nef promotes a physical interaction between endogenous AP-1 and MHC-I. Moreover, we present data that this interaction uses a novel AP-1 binding site that requires amino acids in the MHC-I cytoplasmic tail. In sum, our evidence suggests that binding of AP-1 to the Nef–MHC-I complex is an important step required for inhibition of antigen presentation by HIV. PMID:15569716

  20. Clinical pharmacology of ibuprofen and indomethacin in preterm infants with patent ductus arteriosus.

    PubMed

    Pacifici, Gian Maria

    2014-01-01

    Ibuprofen and indomethacin are potent non-selective cyclo-oxygenase inhibitors and inhibit prostaglandin E2 synthesis. The patent ductus arteriosus (PDA) occurs in more than 70% of preterm infants weighing <1500 g. Prostaglandin E2 relaxes smooth muscle, tends to inhibit the closure of PDA, yields vasodilatation of the afferent renal arterioles and maintains glomerular filtration rate (GFR). Ibuprofen and indomethacin inhibiting prostaglandin E2 synthesis close PDA and reduce GFR with consequent decrease of urine output and increase of serum creatinine concentrations. The aims of this study are to give the definitive estimates of PDA closure rate following ibuprofen or indomethacin treatment and to evaluate the extent of renal side effects following the administration of these drugs to preterm infants. Other aims are to review the metabolism and the pharmacokinetics of ibuprofen and indomethacin in preterm infants with PDA. The bibliographic search was performed using PubMed and EMBASE databases as search engines, January 2013 was the cutoff point. The %PDA closed by ibuprofen (n=24) and indomethacin (n=24) is 77.7±14.1 and 77.3±11.0, respectively. For ibuprofen, the gestational age of the infants included in the study ranged from 25.0 to 39.0 weeks (mean±SD=29.3±3.1 weeks). The %PDA did not correlate with the gestational age (p=0.2516). For indomethacin, the gestational age of infants included in the study ranged from 25.0 and 39.0 weeks (mean±SD=29.4±2.9 weeks). The %PDA did not correlate with the gestational age (p=0.3742). The treatment with ibuprofen reduces the urine output and increases the serum creatinine concentrations less extensively than indomethacin. The half-life (t1/2) of ibuprofen and indomethacin is lengthened and the clearance is reduced in preterm infants as compared with fullterm infants. Ibuprofen and indomethacin are equally effective in closing PDA. Treatment with ibuprofen decreases the risk of renal failure. Ibuprofen has the most

  1. Dose Responses of Ibuprofen In Vitro on Platelet Aggregation and Coagulation in Human and Pig Blood Samples.

    PubMed

    Martini, Wenjun Z; Rodriguez, Cassandra M; Deguzman, Rodolfo; Guerra, Jessica B; Martin, Angela K; Pusateri, Anthony E; Cap, Andrew P; Dubick, Michael A

    2016-05-01

    Ibuprofen is commonly used by warfighters in the deployed environment. This study investigated its dose effects on in vitro coagulation in human and pig blood. Blood samples were collected from 6 normal volunteers and 6 healthy pigs and processed to make platelet-adjusted samples (100 × 10(3)/μL, common transfusion trigger in trauma). Ibuprofen was added to the samples at concentrations of 0 μg/mL (control), the concentration from the highest recommended oral dose (163 μg/mL, 1×), and 2×, 4×, 8×, 10×, 12×, 16×, and 20×. Platelet aggregation by Chrono-Log aggregometer and coagulation by rotational thrombelastogram (Rotem) were assessed at 15 minutes after the addition of ibuprofen. A robust inhibition of ibuprofen on arachidonic acid-induced platelet aggregation was observed at all doses tested in human or pig blood. Collagen-stimulated platelet aggregation was inhibited starting at 1× in human blood and 4× in pig blood. Rotem measurements were similarly compromised in pig and human blood starting at 16×, except clot formation time was prolonged at 1× in human blood (all p < 0.05). Ibuprofen inhibited platelet aggregation at recommended doses, and compromised coagulation at higher doses. Human blood was more sensitive to ibuprofen inhibition. Further effort is needed to investigate ibuprofen dose responses on coagulation in vivo. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.

  2. The novel agent phospho-glycerol-ibuprofen-amide (MDC-330) inhibits glioblastoma growth in mice: an effect mediated by cyclin D1

    PubMed Central

    Bartels, Lauren E.; Mattheolabakis, George; Vaeth, Brandon M.; LaComb, Joseph F.; Wang, Ruixue; Zhi, Jizu; Komninou, Despina; Rigas, Basil; Mackenzie, Gerardo G.

    2016-01-01

    Given that glioblastoma multiforme (GBM) is associated with poor prognosis, new agents are urgently needed. We developed phospho-glycerol-ibuprofen-amide (PGIA), a novel ibuprofen derivative, and evaluated its safety and efficacy in preclinical models of GBM, and its mechanism of action using human GBM cells and animal tumor models. Furthermore, we explored whether formulating PGIA in polymeric nanoparticles could enhance its levels in the brain. PGIA was 3.7- to 5.1-fold more potent than ibuprofen in suppressing the growth of human GBM cell lines. PGIA 0.75× IC50 inhibited cell proliferation by 91 and 87% in human LN-229 and U87-MG GBM cells, respectively, and induced strong G1/S arrest. In vivo, compared with control, PGIA reduced U118-MG and U87-MG xenograft growth by 77 and 56%, respectively (P < 0.05), and was >2-fold more efficacious than ibuprofen. Normal human astrocytes were resistant to PGIA, indicating selectivity. Mechanistically, PGIA reduced cyclin D1 levels in a time- and concentration-dependent manner in GBM cells and in xenografts. PGIA induced cyclin D1 degradation via the proteasome pathway and induced dephosphorylation of GSK3β, which was required for cyclin D1 turnover. Furthermore, cyclin D1 overexpression rescued GBM cells from the cell growth inhibition by PGIA. Moreover, the formulation of PGIA in poly-(l)-lactic acid poly(ethylene glycol) polymeric nanoparticles improved its pharmacokinetics in mice, delivering PGIA to the brain. PGIA displays strong efficacy against GBM, crosses the blood-brain barrier when properly formulated, reaching the target tissue, and establishes cyclin D1 as an important molecular target. Thus, PGIA merits further evaluation as a potential therapeutic option for GBM. PMID:26905586

  3. Recombinant Lipoprotein Rv1016c Derived from Mycobacterium tuberculosis Is a TLR-2 Ligand that Induces Macrophages Apoptosis and Inhibits MHC II Antigen Processing.

    PubMed

    Su, Haibo; Zhu, Shenglin; Zhu, Lin; Huang, Wei; Wang, Honghai; Zhang, Zhi; Xu, Ying

    2016-01-01

    TLR2-dependent cellular signaling in Mycobacterium tuberculosis -infected macrophages causes apoptosis and inhibits class II major histocompatibility complex (MHC-II) molecules antigen processing, leading to evasion of surveillance. Mycobacterium tuberculosis (MTB) lipoproteins are an important class of Toll-like receptor (TLR) ligand, and identified as specific components that mediate these effects. In this study, we identified and characterized MTB lipoprotein Rv1016c (lpqT) as a cell wall associated-protein that was exposed on the cell surface and enhanced the survival of recombinants M. smegmatis_Rv1016c under stress conditions. We found that Rv1016c lipoprotein was a novel TLR2 ligand and able to induce macrophage apoptosis in a both dose- and time-dependent manner. Additionally, apoptosis induced by Rv1016c was reserved in THP-1 cells blocked with anti-TLR-2 Abs or in TLR2 -/- mouse macrophages, indicating that Rv1016c-induced apoptosis is dependent on TLR2. Moreover, we demonstrated that Rv1016c lipoprotein inhibited IFN-γ-induced MHC-II expression and processing of soluble antigens in a TLR2 dependent manner. Class II transactivator (CIITA) regulates MHC II expression. In this context, Rv1016c lipoprotein diminished IFN-γ-induced expression of CIITA IV through TLR2 and MAPK Signaling. TLR2-dependent apoptosis and inhibition of MHC-II Ag processing induced by Rv1016c during mycobacteria infection may promote the release of residual bacilli from apoptotic cells and decrease recognition by CD4 + T cells. These mechanisms may allow intracellular MTB to evade immune surveillance and maintain chronic infection.

  4. Ibuprofen partially attenuates neurodegenerative symptoms in presenilin conditional double-knockout mice.

    PubMed

    Dong, Z; Yan, L; Huang, G; Zhang, L; Mei, B; Meng, B

    2014-06-13

    Ibuprofen is a widely used nonsteroidal anti-inflammatory drug that reportedly reduces the risk of Alzheimer's disease (AD) development. The anti-inflammatory effect of ibuprofen occurred via inhibition of cyclooxygenases and anti-amyloidogenesis through modulation of γ-secretase. Presenilin 1 and 2 conditional double-knockout (cDKO) mice exhibited age-dependent memory impairment and forebrain degeneration without elevation of amyloid β deposition. Therefore, cDKO mice can be an ideal animal model on which to independently test the effects of ibuprofen anti-inflammatory properties on the prevention of AD. Three- and six-month-old cDKO mice were fed diet containing 375 ppm ibuprofen for six months. After multiple, well-validated behavioral tests, treatment with ibuprofen improved cognition-related behavioral performance, and drug efficacy was correlated with the timing of administration. Ibuprofen was more effective on six-month-old than on three-month-old cDKO mice. Biochemical analysis demonstrated that the effects of ibuprofen on glial fibrillary acidic protein and CD68 expression levels were uneven in different brain regions of cDKO mice and that age also influenced such effects. Tau hyperphosphorylation and the cleavage of caspase-3 decreased after ibuprofen treatment, and this effect was more significant in the older than the younger group of mice, which was consistent with the results of behavioral tests. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. p53 is important for the anti-proliferative effect of ibuprofen in colon carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janssen, Astrid; Schiffmann, Susanne; Birod, Kerstin

    2008-01-25

    S-ibuprofen which inhibits the cyclooxygenase-1/-2 and R-ibuprofen which shows no COX-inhibition at therapeutic concentrations have anti-carcinogenic effects in human colon cancer cells; however, the molecular mechanisms for these effects are still unknown. Using HCT-116 colon carcinoma cell lines, expressing either the wild-type form of p53 (HCT-116 p53{sup wt}) or being p(HCT-116 p53{sup -/-}), we demonstrated that both induction of a cell cycle block and apoptosis after S- and R-ibuprofen treatment is in part dependent on p53. Also in the in vivo nude mice model HCT-116 p53{sup -/-} xenografts were less sensitive for S- and R-ibuprofen treatment than HCT-116 p53{sup wt}more » cells. Furthermore, results indicate that induction of apoptosis in HCT-116 p53{sup wt} cells after ibuprofen treatment is in part dependent on a signalling pathway including the neutrophin receptor p75{sup NTR}, p53 and Bax.« less

  6. MHC class II presentation of gp100 epitopes in melanoma cells requires the function of conventional endosomes, and is influenced by melanosomes1

    PubMed Central

    Robila, Valentina; Ostankovitch, Marina; Altrich-VanLith, Michelle L.; Theos, Alexander C.; Drover, Sheila; Marks, Michael S.; Restifo, Nicholas; Engelhard, Victor H.

    2009-01-01

    Many human solid tumors express MHC II molecules, and proteins normally localized to melanosomes give rise to MHC II restricted epitopes in melanoma. However, the pathways by which this occurs have not been defined. We analyzed the processing of one such epitope, gp10044-59, derived from gp100/Pmel17. In melanomas that have down-regulated components of the melanosomal pathway, but constitutively express HLA-DR*0401, the majority of gp100 is sorted to LAMP-1hi/MHC II+ late endosomes. Using mutant gp100 molecules with altered intracellular trafficking, we demonstrate that endosomal localization is necessary for gp10044-59 presentation. By depletion of the AP2 adaptor protein using siRNA, we demonstrate that gp100 protein internalized from the plasma membrane to such endosomes is a major source for gp10044-59 epitope production. Gp100 trapped in early endosomes gives rise to epitopes that are indistinguishable from those produced in late endosomes but their production is less sensitive to inhibition of lysosomal proteases. In melanomas containing melanosomes, gp100 is underrepresented in late endosomes, and accumulates in stage II melanosomes devoid of MHC II molecules. Gp10044-59 presentation is dramatically reduced, and processing occurs entirely in early endosomes / stage I melanosomes. This suggests that melanosomes are inefficient antigen processing compartments. Thus, melanoma de-differentiation may be accompanied by increased presentation of MHC II restricted epitopes from gp100 and other melanosome-localized proteins, leading to enhanced immune recognition. PMID:19017974

  7. Brucella abortus Inhibits Major Histocompatibility Complex Class II Expression and Antigen Processing through Interleukin-6 Secretion via Toll-Like Receptor 2▿

    PubMed Central

    Barrionuevo, Paula; Cassataro, Juliana; Delpino, M. Victoria; Zwerdling, Astrid; Pasquevich, Karina A.; Samartino, Clara García; Wallach, Jorge C.; Fossati, Carlos A.; Giambartolomei, Guillermo H.

    2008-01-01

    The strategies that allow Brucella abortus to survive inside macrophages for prolonged periods and to avoid the immunological surveillance of major histocompatibility complex class II (MHC-II)-restricted gamma interferon (IFN-γ)-producing CD4+ T lymphocytes are poorly understood. We report here that infection of THP-1 cells with B. abortus inhibited expression of MHC-II molecules and antigen (Ag) processing. Heat-killed B. abortus (HKBA) also induced both these phenomena, indicating the independence of bacterial viability and involvement of a structural component of the bacterium. Accordingly, outer membrane protein 19 (Omp19), a prototypical B. abortus lipoprotein, inhibited both MHC-II expression and Ag processing to the same extent as HKBA. Moreover, a synthetic lipohexapeptide that mimics the structure of the protein lipid moiety also inhibited MHC-II expression, indicating that any Brucella lipoprotein could down-modulate MHC-II expression and Ag processing. Inhibition of MHC-II expression and Ag processing by either HKBA or lipidated Omp19 (L-Omp19) depended on Toll-like receptor 2 and was mediated by interleukin-6. HKBA or L-Omp19 also inhibited MHC-II expression and Ag processing of human monocytes. In addition, exposure to the synthetic lipohexapeptide inhibited Ag-specific T-cell proliferation and IFN-γ production of peripheral blood mononuclear cells from Brucella-infected patients. Together, these results indicate that there is a mechanism by which B. abortus may prevent recognition by T cells to evade host immunity and establish a chronic infection. PMID:17984211

  8. MHC Class II Activation and Interferon-γ Mediate the Inhibition of Neutrophils and Eosinophils by Staphylococcal Enterotoxin Type A (SEA).

    PubMed

    Ferreira-Duarte, Ana P; Pinheiro-Torres, Anelize S; Anhê, Gabriel F; Condino-Neto, Antônio; Antunes, Edson; DeSouza, Ivani A

    2017-01-01

    Staphylococcal enterotoxins are classified as superantigens that act by linking T-cell receptor with MHC class II molecules, which are expressed on classical antigen-presenting cells (APC). Evidence shows that MHC class II is also expressed in neutrophils and eosinophils. This study aimed to investigate the role of MHC class II and IFN-γ on chemotactic and adhesion properties of neutrophils and eosinophils after incubation with SEA. Bone marrow (BM) cells obtained from BALB/c mice were resuspended in culture medium, and incubated with SEA (3-30 ng/ml; 1-4 h), after which chemotaxis and adhesion were evaluated. Incubation with SEA significantly reduced the chemotactic and adhesive responses in BM neutrophils activated with IL-8 (200 ng/ml). Likewise, SEA significantly reduced the chemotactic and adhesive responses of BM eosinophils activated with eotaxin (300 ng/ml). The inhibitory effects of SEA on cell chemotaxis and adhesion were fully prevented by prior incubation with an anti-MHC class II blocking antibody (2 μg/ml). SEA also significantly reduced the intracellular Ca 2+ levels in IL-8- and eotaxin-activated BM cells. No alterations of MAC-1, VLA4, and LFA-1α expressions were observed after SEA incubation. In addition, SEA elevated by 3.5-fold ( P < 0.05) the INF-γ levels in BM cells. Incubation of BM leukocytes with IFN-γ (10 ng/ml, 2 h) reduced both neutrophil and eosinophil chemotaxis and adhesion, which were prevented by prior incubation with anti-MHC class II antibody (2 μg/ml). In conclusion, SEA inhibits neutrophil and eosinophil by MHC class II-dependent mechanism, which may be modulated by concomitant release of IFN-γ.

  9. Pharmacokinetic and pharmacodynamic interaction between the lipoxygenase inhibitor MK-0591 and the cyclooxygenase inhibitor ibuprofen in man.

    PubMed

    Depré, M; Van Hecken, A; Verbesselt, R; De Lepeleire, I; Schwartz, J; Porras, A; Larson, P; Lin, C; De Schepper, P J

    1998-01-01

    Twelve healthy male subjects participated in a double-blind, placebo-controlled, randomized, three-period, crossover study to investigate the safety, tolerability, biochemical activity and pharmacokinetics of ibuprofen, a cyclooxygenase inhibitor and MK-0591, a 5-lipoxygenase inhibitor, given as single entities and in combination. Each subject received for three consecutive 8-day periods, separated by 1 week washout, each of the following treatments: ibuprofen 600 mg three times a day with 125 mg MK-0591 twice a day, ibuprofen 600 mg three times a day with placebo for MK-0591 and MK-0591 125 mg twice a day with placebo for ibuprofen. Cyclooxygenase inhibition was measured by platelet thromboxane (TxB2) generation test, and 5-lipoxygenase inhibition was measured by urinary leukotriene E4 excretion and ex vivo LTB4 generation in calcium-ionophore-stimulated blood. TxB2 suppression on day 8 by ibuprofen was not affected by concomitant treatment with MK-0591. MK-0591 alone had no effect on TxB2 generation. Leukotriene biosynthesis was inhibited by more than 90% by MK-0591 alone and by combined treatment, while ibuprofen alone had no effect. Coadministration appears to affect the pharmacokinetics of MK-0591 (decrease of area under the plasma concentration-vs-time curve [AUC] and maximum plasma concentrations [Cmax]) and of ibuprofen (increase of AUC and half-lives of elimination (t1/2) of the (S)-enantiomer, increase of t1/2 the (R)-enantiomer). Combined treatment had no effect on creatinine clearance nor on the number and intensity of the reported adverse experiences.

  10. Identification, inheritance, and linkage of B-G-like and MHC class I genes in cranes

    USGS Publications Warehouse

    Jarvi, S.I.; Goto, R.M.; Gee, G.F.; Briles, W.E.; Miller, M.M.

    1999-01-01

    We identified B-G-like genes in the whooping and Florida sandhill cranes and linked them to the major histocompatibility complex (MHC). We evaluated the inheritance of B-G-like genes in families of whooping and Florida sandhill cranes using restriction fragment patterns (RFPs). Two B-G-like genes, designated wcbgl and wcbg2, were located within 8 kb of one another. The fully sequenced wcbg2 gene encodes a B-G IgV-like domain, an additional Ig-like domain, a transmembrane domain, and a single heptad domain typical of '-helical coiled coils. Patterns of restriction fragments in DNA from the whooping crane and from a number of other species indicate that the B-G-like gene families of cranes are large with diverse sequences. Segregation of RFPs in families of Florida sandhill cranes provide evidence for genetic polymorphism in the B-G-like genes. The restriction fragments generally segregated in concert with MHC haplotypes assigned by serological typing and by single stranded conformational polymorphism (SSCP) assays based in the second exon of the crane MHC class I genes. This study supports the concept of a long-term association of polymorphic B-G-like genes with the MHC. It also establishes SSCP as a means for evaluating MHC genetic variability in cranes.

  11. Identification, inheritance, and linkage of B-G-like and MHC class I genes in cranes.

    PubMed

    Jarvi, S I; Goto, R M; Gee, G F; Briles, W E; Miller, M M

    1999-01-01

    We identified B-G-like genes in the whooping and Florida sandhill cranes and linked them to the major histocompatibility complex (MHC). We evaluated the inheritance of B-G-like genes in families of whooping and Florida sandhill cranes using restriction fragment patterns (RFPs). Two B-G-like genes, designated wcbg1 and wcbg2, were located within 8 kb of one another. The fully sequenced wcbg2 gene encodes a B-G IgV-like domain, an additional Ig-like domain, a transmembrane domain, and a single heptad domain typical of alpha-helical coiled coils. Patterns of restriction fragments in DNA from the whooping crane and from a number of other species indicate that the B-G-like gene families of cranes are large with diverse sequences. Segregation of RFPs in families of Florida sandhill cranes provide evidence for genetic polymorphism in the B-G-like genes. The restriction fragments generally segregated in concert with MHC haplotypes assigned by serological typing and by single stranded conformational polymorphism (SSCP) assays based in the second exon of the crane MHC class I genes. This study supports the concept of a long-term association of polymorphic B-G-like genes with the MHC. It also establishes SSCP as a means for evaluating MHC genetic variability in cranes.

  12. Chronic ibuprofen administration reduces neuropathic pain but does not exert neuroprotection after spinal cord injury in adult rats.

    PubMed

    Redondo-Castro, Elena; Navarro, Xavier

    2014-02-01

    Ibuprofen is commonly used as an anti-inflammatory analgesic drug, although it is not amongst the first-line treatments for neuropathic pain. Its main effects are mediated by non-specific inhibition of COX enzymes, but it also exerts some COX-independent effects, such as the inhibition of RhoA signaling and the modulation of glial activity. These effects have boosted the use of ibuprofen as a tool to promote axonal regeneration and to increase functional recovery after neural injuries, although with controversial results showing positive and negative outcomes of ibuprofen treatment in several experimental models. We have evaluated the effects of ibuprofen administered at 60 mg/kg twice a day to rats subjected to a mild spinal cord contusion. Our results indicate that ibuprofen ameliorates mechanical hyperalgesia in rats by reducing central hyperexcitability, but failed to produce improvements in the recovery of locomotion. Despite an early effect on reducing microglial reactivity, the ibuprofen treatment did not provide histological evidence of neuroprotection; indeed the volume of cord tissue spared rostral to the lesion was decreased in ibuprofen treated rats. In summary, the early modulation of neuroinflammation produced by the administration of ibuprofen seems to eventually lead to a worse resolution of detrimental events occurring in the secondary injury phase, but also to reduce the development of neuropathic pain. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. TAP, a novel T cell-activating protein involved in the stimulation of MHC-restricted T lymphocytes

    PubMed Central

    1986-01-01

    Five mAbs have been generated and used to characterize TAP (T cell activating protein) a novel, functional murine T cell membrane antigen. The TAP molecule is a 12-kD protein that is synthesized by T cells. By antibody crossblocking, it appears to be closely associated with a 16- kD protein on the T cell membrane also identified with a novel mAb. These molecules are clearly distinct from the major well-characterized murine T cell antigens previously described. Antibody binding to TAP can result in the activation of MHC-restricted, antigen-specific inducer T cell hybridomas that is equivalent in magnitude to maximal antigen or lectin stimulation. This is a direct effect of soluble antibody and does not require accessory cells or other factors. The activating anti-TAP mAbs are also mitogenic for normal heterogeneous T lymphocytes in the presence of accessory cells or IL-1. In addition, these antibodies are observed to modulate specific immune stimulation. Thus, the activating anti-TAP mAbs synergise with antigen-specific stimulation of T cells, while a nonactivating anti-TAP mAb inhibits antigen driven activation. These observations suggest that the TAP molecule may participate in physiologic T cell activation. The possible relationship of TAP to known physiologic triggering structures, the T3- T cell receptor complex, is considered. TAP is expressed on 70% of peripheral T cells and therefore defines a major T cell subset, making it perhaps the first example of a murine subset-specific activating protein. PMID:2418146

  14. Reprogramming MHC specificity by CRISPR-Cas9-assisted cassette exchange

    PubMed Central

    Kelton, William; Waindok, Ann Cathrin; Pesch, Theresa; Pogson, Mark; Ford, Kyle; Parola, Cristina; Reddy, Sai T.

    2017-01-01

    The development of programmable nucleases has enabled the application of new genome engineering strategies for cellular immunotherapy. While targeted nucleases have mostly been used to knock-out or knock-in genes in immune cells, the scarless exchange of entire immunogenomic alleles would be of great interest. In particular, reprogramming the polymorphic MHC locus could enable the creation of matched donors for allogeneic cellular transplantation. Here we show a proof-of-concept for reprogramming MHC-specificity by performing CRISPR-Cas9-assisted cassette exchange. Using murine antigen presenting cell lines (RAW264.7 macrophages), we demonstrate that the generation of Cas9-induced double-stranded breaks flanking the native MHC-I H2-Kd locus led to exchange of an orthogonal H2-Kb allele. MHC surface expression allowed for easy selection of reprogrammed cells by flow cytometry, thus obviating the need for additional selection markers. MHC-reprogrammed cells were fully functional as they could present H2-Kd-restricted peptide and activate cognate T cells. Finally, we investigated the role of various donor template formats on exchange efficiency, discovering that templates that underwent in situ linearization resulted in the highest MHC-reprogramming efficiency. These findings highlight a potential new approach for the correcting of MHC mismatches in cellular transplantation. PMID:28374766

  15. MHC-correlated mate choice in humans: a review.

    PubMed

    Havlicek, Jan; Roberts, S Craig

    2009-05-01

    Extremely high variability in genes of the major histocompatibility complex (MHC) in vertebrates is assumed to be a consequence of frequency-dependent parasite-driven selection and mate preferences based on promotion of offspring heterozygosity at MHC, or potentially, genome-wide inbreeding avoidance. Where effects have been found, mate choice studies on rodents and other species usually find preference for MHC-dissimilarity in potential partners. Here we critically review studies on MHC-associated mate choice in humans. These are based on three broadly different aspects: (1) odor preferences, (2) facial preferences and (3) actual mate choice surveys. As in animal studies, most odor-based studies demonstrate disassortative preferences, although there is variation in the strength and nature of the effects. In contrast, facial attractiveness research indicates a preference for MHC-similar individuals. Results concerning MHC in actual couples show a bias towards similarity in one study, dissimilarity in two studies and random distribution in several other studies. These vary greatly in sample size and heterogeneity of the sample population, both of which may significantly bias the results. This pattern of mixed results across studies may reflect context-dependent and/or life history sensitive preference expression, in addition to higher level effects arising out of population differences in genetic heterogeneity or cultural and ethnic restrictions on random mating patterns. Factors of special relevance in terms of individual preferences are reproductive status and long- vs. short-term mating context. We discuss the idea that olfactory and visual channels may work in a complementary way (i.e. odor preference for MHC-dissimilarity and visual preference for MHC-similarity) to achieve an optimal level of genetic variability, methodological issues and interesting avenues for further research.

  16. Narrow Groove and Restricted Anchors of MHC Class I Molecule BF2*0401 Plus Peptide Transporter Restriction can Explain Disease Susceptibility of B4 Chickens

    PubMed Central

    Zhang, Jianhua; Chen, Yong; Qi, Jianxun; Gao, Feng; Liu, Yanjie; Liu, Jun; Zhou, Xuyu; Kaufman, Jim; Xia, Chun; Gao, George F.

    2016-01-01

    The major histocompatibility complex (MHC) has genetic associations with many diseases, often due to differences in presentation of antigenic peptides by polymorphic MHC molecules to T lymphocytes of the immune system. In chickens, only a single classical class I molecule in each MHC haplotype is expressed well due to co-evolution with the polymorphic transporters associated with antigen presentation (TAPs), which means that resistance and susceptibility to infectious pathogens are particularly easy to observe. Previously, structures of chicken MHC class I molecule BF2*2101 from B21 haplotype showed an unusually large peptide-binding groove that accommodates a broad spectrum of peptides to present as epitopes to cytotoxic T lymphocytes (CTL), explaining the MHC-determined resistance of B21 chickens to Marek's disease. Here, we report the crystal structure of BF2*0401 from the B4 (also known as B13) haplotype, showing a highly positively-charged surface hitherto unobserved in other MHC molecules, as well as a remarkably narrow groove due to the allele-specific residues with bulky side chains. Together, these properties limit the number of epitope peptides that can bind this class I molecule. However, peptide-binding assays show that in vitro BF2*0401 can bind a wider variety of peptides than are found on the surface of B4 cells. Thus, a combination of the specificities of the polymorphic TAP transporter and the MHC results in a very limited set of BF2*0401 peptides with negatively charged anchors to be presented to T lymphocytes. PMID:23041567

  17. Hydrophobicity as a driver of MHC class I antigen processing

    PubMed Central

    Huang, Lan; Kuhls, Matthew C; Eisenlohr, Laurence C

    2011-01-01

    The forces that drive conversion of nascent protein to major histocompatibility complex (MHC) class I-restricted peptides remain unknown. We explored the fundamental property of overt hydrophobicity as such a driver. Relocation of a membrane glycoprotein to the cytosol via signal sequence ablation resulted in rapid processing of nascent protein not because of the misfolded luminal domain but because of the unembedded transmembrane (TM) domain, which serves as a dose-dependent degradation motif. Dislocation of the TM domain during the natural process of endoplasmic reticulum-associated degradation (ERAD) similarly accelerated peptide production, but in the context of markedly prolonged processing that included nonnascent species. These insights into intracellular proteolytic pathways and their selective contributions to MHC class I-restricted peptide supply, may point to new approaches in rational vaccine design. PMID:21378750

  18. Hydrophobicity as a driver of MHC class I antigen processing.

    PubMed

    Huang, Lan; Kuhls, Matthew C; Eisenlohr, Laurence C

    2011-04-20

    The forces that drive conversion of nascent protein to major histocompatibility complex (MHC) class I-restricted peptides remain unknown. We explored the fundamental property of overt hydrophobicity as such a driver. Relocation of a membrane glycoprotein to the cytosol via signal sequence ablation resulted in rapid processing of nascent protein not because of the misfolded luminal domain but because of the unembedded transmembrane (TM) domain, which serves as a dose-dependent degradation motif. Dislocation of the TM domain during the natural process of endoplasmic reticulum-associated degradation (ERAD) similarly accelerated peptide production, but in the context of markedly prolonged processing that included nonnascent species. These insights into intracellular proteolytic pathways and their selective contributions to MHC class I-restricted peptide supply, may point to new approaches in rational vaccine design.

  19. An ontology for major histocompatibility restriction.

    PubMed

    Vita, Randi; Overton, James A; Seymour, Emily; Sidney, John; Kaufman, Jim; Tallmadge, Rebecca L; Ellis, Shirley; Hammond, John; Butcher, Geoff W; Sette, Alessandro; Peters, Bjoern

    2016-01-01

    MHC molecules are a highly diverse family of proteins that play a key role in cellular immune recognition. Over time, different techniques and terminologies have been developed to identify the specific type(s) of MHC molecule involved in a specific immune recognition context. No consistent nomenclature exists across different vertebrate species. To correctly represent MHC related data in The Immune Epitope Database (IEDB), we built upon a previously established MHC ontology and created an ontology to represent MHC molecules as they relate to immunological experiments. This ontology models MHC protein chains from 16 species, deals with different approaches used to identify MHC, such as direct sequencing verses serotyping, relates engineered MHC molecules to naturally occurring ones, connects genetic loci, alleles, protein chains and multi-chain proteins, and establishes evidence codes for MHC restriction. Where available, this work is based on existing ontologies from the OBO foundry. Overall, representing MHC molecules provides a challenging and practically important test case for ontology building, and could serve as an example of how to integrate other ontology building efforts into web resources.

  20. Oral versus rectal ibuprofen in healthy volunteers.

    PubMed

    Vilenchik, Rolanda; Berkovitch, Matitiahu; Jossifoff, Azaria; Ben-Zvi, Zvi; Kozer, Eran

    2012-01-01

    Ibuprofen is a safe and effective non steroidal anti-inflammatory drug (NSAID). Ibuprofen suppositories are marketed in Europe; but data regarding pharmacokinetics of rectal vs. oral ibuprofen in humans is scarce. The objective of this study is to compare the pharmacokinetics of single-dose rectal vs. oral ibuprofen in healthy adult volunteers. Ten healthy adult male volunteers, aged 20-37 years, received in a non-blind, cross-over setting, two formulations of ibuprofen. First, a 400 mg (about 5 mg/kg) of racemic ibuprofen suppository; second (after a three week washout period) the same dosage of ibuprofen syrup. Blood samples were collected before dosing and for 12 hours after administration. Pharmacokinetics analysis was preformed. Mean peak plasma concentration (Cmax) of rectal ibuprofen was considerably lower, and the mean time to peak (Tmax) considerably longer, compared to oral ibuprofen. Absorption of rectal ibuprofen was considerably lower than oral ibuprofen, with a relative bioequivalence of 63%. Rectal ibuprofen reached therapeutic plasma concentration (>10 µg/ml) 45 minutes after dosing and remained in that range for four hours. The values of Vd/F and CL/F also differ significantly after rectal and oral administration, while no difference was found in the elimination rate constant (Kel) or half-life elimination (t1/2). Racemic ibuprofen suppository has lower bioavailability compared with ibuprofen syrup. Therapeutic plasma concentrations of ibuprofen were reached 45 minutes after dosing and remained in that range for 4 hours. Ibuprofen suppositories can contribute to the management of fever and pain when the oral route is not available.

  1. Localized periorbital edema induced by Ibuprofen.

    PubMed

    Palungwachira, Piti; Palungwachira, Pranee; Ogawa, Hideoki

    2005-12-01

    We documented localized periorbital edema in one patient with ibuprofen sensitivity without underlying chronic urticaria. The reaction developed one hour after ingestion of 200 mg of ibuprofen. No systemic symptoms were observed. No other NSAIDs did not induce symptoms. This patient was able to tolerate doses of ibuprofen after pretreatment with terfenadine. These observations suggest that histamine played a central role in this ibuprofen-induced skin reaction. Treatment with terfenadine enabled the patient to tolerate ibuprofen without experiencing any side effects. To the best of our knowledge, this is the first reported case of periorbital edema induced by ibuprofen.

  2. An ibuprofen-antagonized plasmin inhibitor released by human endothelial cells.

    PubMed

    Rockwell, W B; Ehrlich, H P

    1991-02-01

    Serum-free culture medium harvested from endothelial cell monolayer cultures derived from human scars and dermis was examined for inhibition of fibrinolysis using a fibrin plate assay. Human cultured fibroblasts and smooth muscle cells did not produce any detectable inhibitory activity. The inhibitor is spontaneously released from the cultured endothelial cells over time. In the fibrin plate assay of plasmin-induced fibrinolysis, one nonsteroidal antiinflammatory (NSAI) drug, ibuprofen, was demonstrated to antagonize the inhibition of fibrinolysis. The antagonistic activity of ibuprofen appears unrelated to its NSAI drug activity because other NSAI drugs such as indomethacin and tolmetin have minimal antagonistic activity. Heating the cultured endothelial cells to 42 degrees C stimulates greater release of the inhibitor in a shorter period of time. This plasmin inhibitor, which is produced by endothelial cells, may contribute to postburn vascular occlusion, leading to secondary progressive necrosis in burn-traumatized patients.

  3. MHC class I antigen presentation and implications for developing a new generation of therapeutic vaccines.

    PubMed

    Comber, Joseph D; Philip, Ramila

    2014-05-01

    Major histocompatibility complex class I (MHC-I) presented peptide epitopes provide a 'window' into the changes occurring in a cell. Conventionally, these peptides are generated by proteolysis of endogenously synthesized proteins in the cytosol, loaded onto MHC-I molecules, and presented on the cell surface for surveillance by CD8(+) T cells. MHC-I restricted processing and presentation alerts the immune system to any infectious or tumorigenic processes unfolding intracellularly and provides potential targets for a cytotoxic T cell response. Therefore, therapeutic vaccines based on MHC-I presented peptide epitopes could, theoretically, induce CD8(+) T cell responses that have tangible clinical impacts on tumor eradication and patient survival. Three major methods have been used to identify MHC-I restricted epitopes for inclusion in peptide-based vaccines for cancer: genetic, motif prediction and, more recently, immunoproteomic analysis. Although the first two methods are capable of identifying T cell stimulatory epitopes, these have significant disadvantages and may not accurately represent epitopes presented by a tumor cell. In contrast, immunoproteomic methods can overcome these disadvantages and identify naturally processed and presented tumor associated epitopes that induce more clinically relevant tumor specific cytotoxic T cell responses. In this review, we discuss the importance of using the naturally presented MHC-I peptide repertoire in formulating peptide vaccines, the recent application of peptide-based vaccines in a variety of cancers, and highlight the pros and cons of the current state of peptide vaccines.

  4. Ibuprofen hepatic encephalopathy, hepatomegaly, gastric lesion and gastric pentadecapeptide BPC 157 in rats.

    PubMed

    Ilic, Spomenko; Drmic, Domagoj; Zarkovic, Kamelija; Kolenc, Danijela; Brcic, Luka; Radic, Bozo; Djuzel, Viktor; Blagaic, Alenka Boban; Romic, Zeljko; Dzidic, Senka; Kalogjera, Livije; Seiwerth, Sven; Sikiric, Predrag

    2011-09-30

    Chronic ibuprofen (0.4 g/kg intraperitoneally, once daily for 4 weeks) evidenced a series of pathologies, not previously reported in ibuprofen-dosed rats, namely hepatic encephalopathy, gastric lesions, hepatomegaly, increased AST and ALT serum values with prolonged sedation/unconsciousness, and weight loss. In particular, ibuprofen toxicity was brain edema, particularly in the cerebellum, with the white matter being more affected than in gray matter. In addition, damaged and red neurons, in the absence of anti-inflammatory reaction was observed, particularly in the cerebral cortex and cerebellar nuclei, but was also present although to a lesser extent in the hippocampus, dentate nucleus and Purkinje cells. An anti-ulcer peptide shown to have no toxicity, the stable gastric pentadecapeptide BPC 157 (GEPPPGKPADDAGLV, MW 1419, 10 μg, 10 ng/kg) inhibited the pathology seen with ibuprofen (i) when given intraperitoneally, immediately after ibuprofen daily or (ii) when given in drinking water (0.16 μg, 0.16 ng/ml). Counteracted were all adverse effects, such as hepatic encephalopathy, the gastric lesions, hepatomegaly, increased liver serum values. In addition, BPC 157 treated rats showed no behavioral disturbances and maintained normal weight gain. Thus, apart from efficacy in inflammatory bowel disease and various wound treatments, BPC 157 was also effective when given after ibuprofen. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Predicting rapid analgesic onset of ibuprofen salts compared with ibuprofen acid: Tlag, Tlow, Tmed, and a novel parameter, TCmaxRef.

    PubMed

    Miles, Lisa; Hall, Jessica; Jenner, Bartosz; Addis, Richard; Hutchings, Simon

    2018-04-27

    This study evaluated the early absorption characteristics of ibuprofen salt formulations and standard ibuprofen acid (the reference). In this open-label, crossover, single-center study (NCT02452450) in 32 healthy, fasted adults receiving single oral doses (400 mg ibuprofen) of ibuprofen lysine, ibuprofen liquid capsule, ibuprofen sodium, ibuprofen acid, and paracetamol, intensive blood sampling was conducted for up to 6 h. Time between dosing and the start of absorption (T lag ); a novel parameter, time at which the test formulations (ibuprofen salts) reached the observed maximum plasma concentration (C max ) of the reference (standard ibuprofen acid) (T C maxRef ); and time to achieve therapeutic plasma concentration were measured. Ibuprofen was absorbed more rapidly from the salt formulations than the reference; T lag was 3.3-6.4 min for salt formulations compared with 10.9 min for the reference, and 100% of subjects had a T lag ≤ 5 min for ibuprofen lysine, compared with 61% for ibuprofen liquid capsule, 21% for ibuprofen sodium, and 7% for the reference. T C maxRef was 3.22-5.74-times shorter for salt formulations than for the reference (all p < .0001). The salt formulations reached therapeutic levels earlier than the reference (all p < .0001). All formulations were well tolerated. This study shows that ibuprofen salts are absorbed faster than ibuprofen acid. T lag and T C maxRef demonstrated early start and increased speed of absorption of salts compared with the reference, and may predict more rapid onset of analgesia.

  6. Analysis of MHC class I genes across horse MHC haplotypes

    PubMed Central

    Tallmadge, Rebecca L.; Campbell, Julie A.; Miller, Donald C.; Antczak, Douglas F.

    2010-01-01

    The genomic sequences of 15 horse Major Histocompatibility Complex (MHC) class I genes and a collection of MHC class I homozygous horses of five different haplotypes were used to investigate the genomic structure and polymorphism of the equine MHC. A combination of conserved and locus-specific primers was used to amplify horse MHC class I genes with classical and non-classical characteristics. Multiple clones from each haplotype identified three to five classical sequences per homozygous animal, and two to three non-classical sequences. Phylogenetic analysis was applied to these sequences and groups were identified which appear to be allelic series, but some sequences were left ungrouped. Sequences determined from MHC class I heterozygous horses and previously described MHC class I sequences were then added, representing a total of ten horse MHC haplotypes. These results were consistent with those obtained from the MHC homozygous horses alone, and 30 classical sequences were assigned to four previously confirmed loci and three new provisional loci. The non-classical genes had few alleles and the classical genes had higher levels of allelic polymorphism. Alleles for two classical loci with the expected pattern of polymorphism were found in the majority of haplotypes tested, but alleles at two other commonly detected loci had more variation outside of the hypervariable region than within. Our data indicate that the equine Major Histocompatibility Complex is characterized by variation in the complement of class I genes expressed in different haplotypes in addition to the expected allelic polymorphism within loci. PMID:20099063

  7. Physical aspects of dexibuprofen and racemic ibuprofen.

    PubMed

    Leising, G; Resel, R; Stelzer, F; Tasch, S; Lanziner, A; Hantich, G

    1996-12-01

    This article presents a comparative study of ibuprofen materials in their solid state. Ibuprofen crystallizes into two different structures for the S(+) enantiomer (dexibuprofen) and racemic ibuprofen. The crystal structure of ibuprofen, its optical absorption and photoluminescence, and the thermodynamic results (melting point and heat of fusion) are discussed. From these physicochemical properties, the authors conclude that dexibuprofen, which is the most active species pharmaceutically, and racemic ibuprofen are inherently different solid-state materials.

  8. Effective Control of Chronic γ-Herpesvirus Infection by Unconventional MHC Class Ia–Independent CD8 T Cells

    PubMed Central

    Tibbetts, Scott A; McClellan, Kelly B

    2006-01-01

    Control of virus infection is mediated in part by major histocompatibility complex (MHC) Class Ia presentation of viral peptides to conventional CD8 T cells. Although important, the absolute requirement for MHC Class Ia–dependent CD8 T cells for control of chronic virus infection has not been formally demonstrated. We show here that mice lacking MHC Class Ia molecules (Kb−/−xDb−/− mice) effectively control chronic γ-herpesvirus 68 (γHV68) infection via a robust expansion of β2-microglobulin (β2-m)-dependent, but CD1d-independent, unconventional CD8 T cells. These unconventional CD8 T cells expressed: (1) CD8αβ and CD3, (2) cell surface molecules associated with conventional effector/memory CD8 T cells, (3) TCRαβ with a significant Vβ4, Vβ3, and Vβ10 bias, and (4) the key effector cytokine interferon-γ (IFNγ). Unconventional CD8 T cells utilized a diverse TCR repertoire, and CDR3 analysis suggests that some of that repertoire may be utilized even in the presence of conventional CD8 T cells. This is the first demonstration to our knowledge that β2-m–dependent, but Class Ia–independent, unconventional CD8 T cells can efficiently control chronic virus infection, implicating a role for β2-n–dependent non-classical MHC molecules in control of chronic viral infection. We speculate that similar unconventional CD8 T cells may be able to control of other chronic viral infections, especially when viruses evade immunity by inhibiting generation of Class Ia–restricted T cells. PMID:16733540

  9. Safety of preoperative ibuprofen in pediatric tonsillectomy.

    PubMed

    Michael, Alexander; Buchinsky, Farrel J; Isaacson, Glenn

    2018-05-14

    Oral ibuprofen is believed to be safe and effective after pediatric adenotonsillectomy. There has been little study of its use as a preoperative analgesic. We attempt to document its safety in this setting. Individual case control study. Children who underwent tonsillectomy or adenotonsillectomy from January 2013 to December 2015 did not receive preoperative ibuprofen. Those who underwent tonsillectomy or adenotonsillectomy from January 2016 to December 2017 received oral ibuprofen 7 mg/kg preoperatively. Pre- and postoperative records were reviewed. Intraoperative bleeding > 50 mL or early postoperative bleeding requiring surgical control were outcome measures. Delayed bleeding events were also recorded. A total of 217 children met inclusion criteria. Of those, 112 patients did not receive preoperative ibuprofen, and 105 patients did receive preoperative ibuprofen. Mean age was 8.7 years (range: 1-18) in the control/non-ibuprofen cohort and 8.3 years (range: 1-18) in the ibuprofen cohort. No child experienced significant intraoperative or early postoperative bleeding in the non-ibuprofen (95% confidence interval [CI] 0-0.027) or in the ibuprofen cohort (95% CI 0- 0.029). Delayed bleeding rates were similar in both groups. In this series, children treated with preoperative ibuprofen did not experience increased bleeding during or soon after tonsillectomy compared to controls. Pain control was not studied in these patients. These favorable safety data argue for a future prospective randomized study of preoperative ibuprofen's effectiveness in reducing pain and opioid requirement after pediatric tonsillectomy. 3B. Laryngoscope, 2018. © 2018 The American Laryngological, Rhinological and Otological Society, Inc.

  10. NetCTLpan: pan-specific MHC class I pathway epitope predictions

    PubMed Central

    Larsen, Mette Voldby; Lundegaard, Claus; Nielsen, Morten

    2010-01-01

    Reliable predictions of immunogenic peptides are essential in rational vaccine design and can minimize the experimental effort needed to identify epitopes. In this work, we describe a pan-specific major histocompatibility complex (MHC) class I epitope predictor, NetCTLpan. The method integrates predictions of proteasomal cleavage, transporter associated with antigen processing (TAP) transport efficiency, and MHC class I binding affinity into a MHC class I pathway likelihood score and is an improved and extended version of NetCTL. The NetCTLpan method performs predictions for all MHC class I molecules with known protein sequence and allows predictions for 8-, 9-, 10-, and 11-mer peptides. In order to meet the need for a low false positive rate, the method is optimized to achieve high specificity. The method was trained and validated on large datasets of experimentally identified MHC class I ligands and cytotoxic T lymphocyte (CTL) epitopes. It has been reported that MHC molecules are differentially dependent on TAP transport and proteasomal cleavage. Here, we did not find any consistent signs of such MHC dependencies, and the NetCTLpan method is implemented with fixed weights for proteasomal cleavage and TAP transport for all MHC molecules. The predictive performance of the NetCTLpan method was shown to outperform other state-of-the-art CTL epitope prediction methods. Our results further confirm the importance of using full-type human leukocyte antigen restriction information when identifying MHC class I epitopes. Using the NetCTLpan method, the experimental effort to identify 90% of new epitopes can be reduced by 15% and 40%, respectively, when compared to the NetMHCpan and NetCTL methods. The method and benchmark datasets are available at http://www.cbs.dtu.dk/services/NetCTLpan/. Electronic supplementary material The online version of this article (doi:10.1007/s00251-010-0441-4) contains supplementary material, which is available to authorized users. PMID

  11. MHC class II B diversity in blue tits: a preliminary study.

    PubMed

    Aguilar, Juan Rivero-de; Schut, Elske; Merino, Santiago; Martínez, Javier; Komdeur, Jan; Westerdahl, Helena

    2013-07-01

    In this study, we partly characterize major histocompatibility complex (MHC) class II B in the blue tit (Cyanistes caeruleus). A total of 22 individuals from three different European locations: Spain, The Netherlands, and Sweden were screened for MHC allelic diversity. The MHC genes were investigated using both PCR-based methods and unamplified genomic DNA with restriction fragment length polymorphism (RFLP) and southern blots. A total of 13 different exon 2 sequences were obtained independently from DNA and/or RNA, thus confirming gene transcription and likely functionality of the genes. Nine out of 13 alleles were found in more than one country, and two alleles appeared in all countries. Positive selection was detected in the region coding for the peptide binding region (PBR). A maximum of three alleles per individual was detected by sequencing and the RFLP pattern consisted of 4-7 fragments, indicating a minimum number of 2-4 loci per individual. A phylogenetic analysis, demonstrated that the blue tit sequences are divergent compared to sequences from other passerines resembling a different MHC lineage than those possessed by most passerines studied to date.

  12. Anaphylaxis to ibuprofen in a 12-year-old boy

    PubMed Central

    Kay, Emily; Ben-Shoshan, Moshe

    2013-01-01

    Non-steroidal anti-inflammatory (NSAIDs) drugs are a group of medications acting through cyclooxygenase  (COX-1) and cyclooxygenase  (COX-2) enzymes inhibition. Hypersensitivity reactions to NSAIDs, although not rare, are poorly characterised and often go undiagnosed especially in children. We present in this paper a case of ibuprofen anaphylaxis that exemplifies the challenges involved in diagnosis and management of hypersensitivity reactions to NSAIDs. PMID:23322307

  13. Ibuprofen

    MedlinePlus

    ... be giving cough and cold medications to a child.Nonprescription cough and cold combination products, including products ... a combination product that contains ibuprofen to a child, read the package label carefully to be sure ...

  14. Real-time monitoring of the mechanism of ibuprofen-cationic dextran crystanule formation using crystallization process informatics system (CryPRINS).

    PubMed

    Abioye, Amos Olusegun; Chi, George Tangyie; Simone, Elena; Nagy, Zoltan

    2016-07-25

    One step aqueous melt-crystallization and in situ granulation was utilized to produce ibuprofen-cationic dextran [diethylaminoethyl dextran (Ddex)] conjugate crystanules without the use of surfactants or organic solvents. This study investigates the mechanism of in situ granulation-induced crystanule formation using ibuprofen (Ibu) and Ddex. Laboratory scale batch aqueous crystallization system containing in situ monitoring probes for particle vision measurement (PVM), UV-vis measurement and focused beam reflectance measurements (FBRM) was adapted using pre-defined formulation and process parameters. Pure ibuprofen showed nucleation domain between 25 and 64°C, producing minicrystals with onset of melting at 76°C and enthalpy of fusion (ΔH) of 26.22kJ/mol. On the other hand Ibu-Ddex crystanules showed heterogeneous nucleation which produced spherical core-shell structure. PVM images suggest that internalization of ibuprofen in Ddex corona occurred during the melting phase (before nucleation) which inhibited crystal growth inside the Ddex corona. The remarkable decrease in ΔH of the crystanules from 26.22 to 11.96kJ/mol and the presence of broad overlapping DSC thermogram suggests formation of ibuprofen-Ddex complex and crystalline-amorphous transformation. However Raman and FTIR spectra did not show any significant chemical interaction between ibuprofen and Ddex. A significant increase in dissolution efficiency from 45 to 81% within 24h and reduced burst release provide evidence for potential application of crystanules in controlled drug delivery systems. It was evident that in situ granulation of ibuprofen inhibited the aqueous crystallization process. It was concluded that in situ granulation-aqueous crystallization technique is a novel unit operation with potential application in continuous pharmaceutical processing. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Perioperative pharmacokinetics of ibuprofen enantiomers after rectal administration.

    PubMed

    Kyllönen, Matti; Olkkola, Klaus T; Seppälä, Timo; Ryhänen, Pauli

    2005-07-01

    Ibuprofen is a nonsteroidal anti-inflammatory drug which has both peripheral and central analgesic effects. Ibuprofen has been shown to be an effective antipyretic and postoperative analgesic drug both in adults and children with few side effects. Pharmacokinetics of rectal ibuprofen has not been studied, although suppositories are frequently used for perioperative pain control in children. There were four study groups: full-term infants aged 1-7 weeks (n = 9), infants aged 8-25 weeks (n = 8), and infants aged 26-52 weeks (n = 7). Adult patients were 20-40 years old (n = 7). Ibuprofen suppository 20 mg.kg(-1) was administered after induction of anesthesia. Blood samples were collected from 20 min to 10 h after dosing and pharmacokinetic analysis of ibuprofen enantiomers were done. Both ibuprofen enantiomers were detectable in blood in 20 min. Total ibuprofen plasma concentrations >10 mg.l(-1) were seen from 40 min to 8 h. Values for T(max) of ibuprofen enantiomers and total ibuprofen were higher in the adult group than any of the infant groups (P < 0.05). In addition, values for physiological (standardized) t(1/2) of (R)-(-)- and (S)-(+)-ibuprofen were higher in infants aged 1-7 weeks than the adults (P < 0.05). None of the other pharmacokinetic variables, C(max), AUC, chronological t(1/2) or AUC ratio differed between the groups. A single dose of ibuprofen suppository 20 mg.kg(-1) after induction of anesthesia guarantees analgesic plasma concentrations during the early postoperative period. Except for the delayed absorption of ibuprofen in adults and higher physiological t(1/2) in infants aged 1-7 weeks, no major pharmacokinetic differences were observed between study groups.

  16. MHC class II B diversity in blue tits: a preliminary study

    PubMed Central

    Aguilar, Juan Rivero-de; Schut, Elske; Merino, Santiago; Martínez, Javier; Komdeur, Jan; Westerdahl, Helena

    2013-01-01

    In this study, we partly characterize major histocompatibility complex (MHC) class II B in the blue tit (Cyanistes caeruleus). A total of 22 individuals from three different European locations: Spain, The Netherlands, and Sweden were screened for MHC allelic diversity. The MHC genes were investigated using both PCR-based methods and unamplified genomic DNA with restriction fragment length polymorphism (RFLP) and southern blots. A total of 13 different exon 2 sequences were obtained independently from DNA and/or RNA, thus confirming gene transcription and likely functionality of the genes. Nine out of 13 alleles were found in more than one country, and two alleles appeared in all countries. Positive selection was detected in the region coding for the peptide binding region (PBR). A maximum of three alleles per individual was detected by sequencing and the RFLP pattern consisted of 4–7 fragments, indicating a minimum number of 2–4 loci per individual. A phylogenetic analysis, demonstrated that the blue tit sequences are divergent compared to sequences from other passerines resembling a different MHC lineage than those possessed by most passerines studied to date. PMID:23919136

  17. Broadly targeted CD8 + T cell responses restricted by major histocompatibility complex E

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Scott G.; Wu, Helen L.; Burwits, Benjamin J.

    Major histocompatibility complex (MHC)-E is a highly conserved, ubiquitously expressed, nonclassical, MHC-Ib molecule with limited polymorphism primarily involved in regulation of NK cell reactivity via interaction with NKG2/CD94 receptors. We found that vaccination of rhesus macaques with Rh157.5/.4 gene-deleted rhesus Cytomegalovirus (RhCMV) vectors uniquely diverts MHC-E function to presentation of highly diverse peptide epitopes to CD8α/β + T cells, approximately 4 distinct epitopes per 100 amino acids, in all tested protein antigens. Computational structural analysis revealed that a relatively stable, open binding groove in MHC-E attains broad peptide binding specificity by imposing a similar backbone configuration on bound peptides withmore » few restrictions based on amino acid side chains. Since MHC-E is up-regulated on cells infected with HIV/SIV and other persistent viruses to evade NK cell activity, MHC-E-restricted CD8 + T cell responses have the potential to exploit pathogen immune evasion adaptations, a capability that might endow these unconventional responses with superior efficacy.« less

  18. Broadly targeted CD8 + T cell responses restricted by major histocompatibility complex E

    DOE PAGES

    Hansen, Scott G.; Wu, Helen L.; Burwits, Benjamin J.; ...

    2016-02-12

    Major histocompatibility complex (MHC)-E is a highly conserved, ubiquitously expressed, nonclassical, MHC-Ib molecule with limited polymorphism primarily involved in regulation of NK cell reactivity via interaction with NKG2/CD94 receptors. We found that vaccination of rhesus macaques with Rh157.5/.4 gene-deleted rhesus Cytomegalovirus (RhCMV) vectors uniquely diverts MHC-E function to presentation of highly diverse peptide epitopes to CD8α/β + T cells, approximately 4 distinct epitopes per 100 amino acids, in all tested protein antigens. Computational structural analysis revealed that a relatively stable, open binding groove in MHC-E attains broad peptide binding specificity by imposing a similar backbone configuration on bound peptides withmore » few restrictions based on amino acid side chains. Since MHC-E is up-regulated on cells infected with HIV/SIV and other persistent viruses to evade NK cell activity, MHC-E-restricted CD8 + T cell responses have the potential to exploit pathogen immune evasion adaptations, a capability that might endow these unconventional responses with superior efficacy.« less

  19. Polyuria, acidosis, and coma following massive ibuprofen ingestion.

    PubMed

    Levine, Michael; Khurana, Amandeep; Ruha, Anne-Michelle

    2010-09-01

    Ibuprofen was the first over-the-counter nonsteroidal anti-inflammatory drug available in the United States. Despite being a common agent of ingestion, significant toxicity in overdose is rare. We report a case of a massive ibuprofen ingestion who developed polyuria, acidosis, and coma but survived, despite having a serum ibuprofen concentration greater than previous fatal cases. A 19-year-old man ingested 90 g (1,200 mg/kg) ibuprofen. He was initially awake and alert, but his level of consciousness deteriorated over several hours. Seven hours following the ingestion, he was intubated and mechanically ventilated secondary to loss of airway reflexes. He developed a lactic acidosis and polyuria, which lasted for nearly 24 h. His serum creatinine peaked at 1.12 mg/dL. An ibuprofen level drawn 7 h postingestion was 739.2 mg/L (therapeutic 5-49 mg/L). We describe a case of a massive ibuprofen overdose characterized by metabolic acidosis, coma, and a state of high urine output who survived with aggressive supportive care. This case is unique in several ways. First, ibuprofen levels this high have only rarely been described. Second, polyuria is very poorly described following ibuprofen ingestions.

  20. HIV-1 Nef sequesters MHC-I intracellularly by targeting early stages of endocytosis and recycling

    PubMed Central

    Dirk, Brennan S.; Pawlak, Emily N.; Johnson, Aaron L.; Van Nynatten, Logan R.; Jacob, Rajesh A.; Heit, Bryan; Dikeakos, Jimmy D.

    2016-01-01

    A defining characteristic of HIV-1 infection is the ability of the virus to persist within the host. Specifically, MHC-I downregulation by the HIV-1 accessory protein Nef is of critical importance in preventing infected cells from cytotoxic T-cell mediated killing. Nef downregulates MHC-I by modulating the host membrane trafficking machinery, resulting in the endocytosis and eventual sequestration of MHC-I within the cell. In the current report, we utilized the intracellular protein-protein interaction reporter system, bimolecular fluorescence complementation (BiFC), in combination with super-resolution microscopy, to track the Nef/MHC-I interaction and determine its subcellular localization in cells. We demonstrate that this interaction occurs upon Nef binding the MHC-I cytoplasmic tail early during endocytosis in a Rab5-positive endosome. Disruption of early endosome regulation inhibited Nef-dependent MHC-I downregulation, demonstrating that Nef hijacks the early endosome to sequester MHC-I within the cell. Furthermore, super-resolution imaging identified that the Nef:MHC-I BiFC complex transits through both early and late endosomes before ultimately residing at the trans-Golgi network. Together we demonstrate the importance of the early stages of the endocytic network in the removal of MHC-I from the cell surface and its re-localization within the cell, which allows HIV-1 to optimally evade host immune responses. PMID:27841315

  1. Update on ibuprofen for rheumatoid arthritis.

    PubMed

    Ward, J R

    1984-07-13

    In doses of 1,200 mg/day or more, ibuprofen is as effective as aspirin and other nonsteroidal anti-inflammatory drugs (NSAIDs) in the treatment of rheumatoid arthritis. The tolerability and safety of ibuprofen are superior to those of aspirin and compare favorably with those of other NSAIDs. Although additional controlled trials are indicated to determine optimal dose, ibuprofen's excellent therapeutic index establishes it as a useful drug in the treatment of rheumatoid arthritis.

  2. Natural Host Genetic Resistance to Lentiviral CNS Disease: A Neuroprotective MHC Class I Allele in SIV-Infected Macaques

    PubMed Central

    Mankowski, Joseph L.; Queen, Suzanne E.; Fernandez, Caroline S.; Tarwater, Patrick M.; Karper, Jami M.; Adams, Robert J.; Kent, Stephen J.

    2008-01-01

    Human immunodeficiency virus (HIV) infection frequently causes neurologic disease even with anti-retroviral treatment. Although associations between MHC class I alleles and acquired immunodeficiency syndrome (AIDS) have been reported, the role MHC class I alleles play in restricting development of HIV-induced organ-specific diseases, including neurologic disease, has not been characterized. This study examined the relationship between expression of the MHC class I allele Mane-A*10 and development of lentiviral-induced central nervous system (CNS) disease using a well-characterized simian immunodeficiency (SIV)/pigtailed macaque model. The risk of developing CNS disease (SIV encephalitis) was 2.5 times higher for animals that did not express the MHC class I allele Mane-A*10 (P = 0.002; RR = 2.5). Animals expressing the Mane-A*10 allele had significantly lower amounts of activated macrophages, SIV RNA, and neuronal dysfunction in the CNS than Mane-A*10 negative animals (P<0.001). Mane-A*10 positive animals with the highest CNS viral burdens contained SIV gag escape mutants at the Mane-A*10-restricted KP9 epitope in the CNS whereas wild type KP9 sequences dominated in the brain of Mane-A*10 negative animals with comparable CNS viral burdens. These concordant findings demonstrate that particular MHC class I alleles play major neuroprotective roles in lentiviral-induced CNS disease. PMID:18978944

  3. Demonstration of synergy with fluconazole and either ibuprofen, sodium salicylate, or propylparaben against Candida albicans in vitro.

    PubMed

    Scott, E M; Tariq, V N; McCrory, R M

    1995-12-01

    The combination of fluconazole with either ibuprofen, sodium salicylate, or propylparaben resulted in synergistic activity (fractional inhibitory index, < 0.5) against Candida albicans NCYC 620 in a microdilution checkerboard assay. Synergism between miconazole and ibuprofen was also demonstrated. In three or four clinical isolates of C. albicans from AIDS patients, the combination of fluconazole and ibuprofen was synergistic. Preparation of the inoculum and the growth conditions used were those recommended by the National Committee for Clinical Laboratory Standards for susceptibility testing. A visual estimation of total inhibition of growth and determination of an 80% reduction in the optical density at 492 nm compared with those for the control were taken as endpoints for the calculation of synergy, and a good correlation between both estimates was demonstrated.

  4. MPID-T2: a database for sequence-structure-function analyses of pMHC and TR/pMHC structures.

    PubMed

    Khan, Javed Mohammed; Cheruku, Harish Reddy; Tong, Joo Chuan; Ranganathan, Shoba

    2011-04-15

    Sequence-structure-function information is critical in understanding the mechanism of pMHC and TR/pMHC binding and recognition. A database for sequence-structure-function information on pMHC and TR/pMHC interactions, MHC-Peptide Interaction Database-TR version 2 (MPID-T2), is now available augmented with the latest PDB and IMGT/3Dstructure-DB data, advanced features and new parameters for the analysis of pMHC and TR/pMHC structures. http://biolinfo.org/mpid-t2. shoba.ranganathan@mq.edu.au Supplementary data are available at Bioinformatics online.

  5. Demonstration of synergy with fluconazole and either ibuprofen, sodium salicylate, or propylparaben against Candida albicans in vitro.

    PubMed Central

    Scott, E M; Tariq, V N; McCrory, R M

    1995-01-01

    The combination of fluconazole with either ibuprofen, sodium salicylate, or propylparaben resulted in synergistic activity (fractional inhibitory index, < 0.5) against Candida albicans NCYC 620 in a microdilution checkerboard assay. Synergism between miconazole and ibuprofen was also demonstrated. In three or four clinical isolates of C. albicans from AIDS patients, the combination of fluconazole and ibuprofen was synergistic. Preparation of the inoculum and the growth conditions used were those recommended by the National Committee for Clinical Laboratory Standards for susceptibility testing. A visual estimation of total inhibition of growth and determination of an 80% reduction in the optical density at 492 nm compared with those for the control were taken as endpoints for the calculation of synergy, and a good correlation between both estimates was demonstrated. PMID:8592988

  6. BG1 has a major role in MHC-linked resistance to malignant lymphoma in the chicken.

    PubMed

    Goto, Ronald M; Wang, Yujun; Taylor, Robert L; Wakenell, Patricia S; Hosomichi, Kazuyoshi; Shiina, Takashi; Blackmore, Craig S; Briles, W Elwood; Miller, Marcia M

    2009-09-29

    Pathogen selection is postulated to drive MHC allelic diversity at loci for antigen presentation. However, readily apparent MHC infectious disease associations are rare in most species. The strong link between MHC-B haplotype and the occurrence of virally induced tumors in the chicken provides a means for defining the relationship between pathogen selection and MHC polymorphism. Here, we verified a significant difference in resistance to gallid herpesvirus-2 (GaHV-2)-induced lymphomas (Marek's disease) conferred by two closely-related recombinant MHC-B haplotypes. We mapped the crossover breakpoints that distinguish these haplotypes to the highly polymorphic BG1 locus. BG1 encodes an Ig-superfamily type I transmembrane receptor-like protein that contains an immunoreceptor tyrosine-based inhibition motif (ITIM), which undergoes phosphorylation and is recognized by Src homology 2 domain-containing protein tyrosine phosphatase (SHP-2). The recombinant haplotypes are identical, except for differences within the BG1 3'-untranslated region (3'-UTR). The 3'-UTR of the BG1 allele associated with increased lymphoma contains a 225-bp insert of retroviral origin and showed greater inhibition of luciferase reporter gene translation compared to the other allele. These findings suggest that BG1 could affect the outcome of GaHV-2 infection through modulation of the lymphoid cell responsiveness to infection, a condition that is critical for GaHV-2 replication and in which the MHC-B haplotype has been previously implicated. This work provides a mechanism by which MHC-B region genetics contributes to the incidence of GaHV-2-induced malignant lymphoma in the chicken and invites consideration of the possibility that similar mechanisms might affect the incidence of lymphomas associated with other oncogenic viral infections.

  7. Vapour-phase method in the synthesis of polymer-ibuprofen sodium-silica gel composites.

    PubMed

    Kierys, Agnieszka; Krasucka, Patrycja; Grochowicz, Marta

    2017-11-01

    The study discusses the synthesis of polymer-silica composites comprising water soluble drug (ibuprofen sodium, IBS). The polymers selected for this study were poly(TRIM) and poly(HEMA- co -TRIM) produced in the form of permanently porous beads via the suspension-emulsion polymerization method. The acid and base set ternary composites were prepared by the saturation of the solid dispersions of drug (poly(TRIM)-IBS and/or poly(HEMA- co -TRIM)-IBS) with TEOS, and followed by their exposition to the vapour mixture of water and ammonia, or water and hydrochloric acid, at autogenous pressure. The conducted analyses reveal that the internal structure and total porosity of the resulting composites strongly depend on the catalyst which was used for silica precursor gelation. The parameters characterizing the porosity of both of the acid set composites are much lower than the parameters of the base set composites. Moreover, the basic catalyst supplied in the vapour phase does not affect the ibuprofen sodium molecules, whereas the acid one causes transformation of the ibuprofen sodium into the sodium chloride and a derivative of propanoic acid, which is poorly water soluble. The release profiles of ibuprofen sodium from composites demonstrate that there are differences in the rate and efficiency of drug desorption from them. They are mainly affected by the chemical character of the polymeric carrier but are also associated with the restricted swelling of the composites in the buffer solution after precipitation of silica gel.

  8. Coevolution of T-cell receptors with MHC and non-MHC ligands

    PubMed Central

    Castro, Caitlin C.; Luoma, Adrienne M.; Adams, Erin J.

    2015-01-01

    Summary The structure and amino acid diversity of the T-cell receptor (TCR), similar in nature to that of Fab portions of antibodies, would suggest these proteins have a nearly infinite capacity to recognize antigen. Yet all currently defined native T cells expressing an α and β chain in their TCR can only sense antigen when presented in the context of a major histocompatibility complex (MHC) molecule. This MHC molecule can be one of many that exist in vertebrates, presenting small peptide fragments, lipid molecules, or small molecule metabolites. Here we review the pattern of TCR recognition of MHC molecules throughout a broad sampling of species and T-cell lineages and also touch upon T cells that do not appear to require MHC presentation for their surveillance function. We review the diversity of MHC molecules and information on the corresponding T-cell lineages identified in divergent species. We also discuss TCRs with structural domains unlike that of conventional TCRs of mouse and human. By presenting this broad view of TCR sequence, structure, domain organization, and function, we seek to explore how this receptor has evolved across time and been selected for alternative antigen-recognition capabilities in divergent lineages. PMID:26284470

  9. In vivo virulence of MHC-adapted AIDS virus serially-passaged through MHC-mismatched hosts

    PubMed Central

    Yamamoto, Hiroyuki; Ishii, Hiroshi; Matsuoka, Saori; Mizuta, Kazuta; Sakawaki, Hiromi; Miura, Tomoyuki; Naruse, Taeko K.; Kimura, Akinori

    2017-01-01

    CD8+ T-cell responses exert strong suppressive pressure on HIV replication and select for viral escape mutations. Some of these major histocompatibility complex class I (MHC-I)-associated mutations result in reduction of in vitro viral replicative capacity. While these mutations can revert after viral transmission to MHC-I-disparate hosts, recent studies have suggested that these MHC-I-associated mutations accumulate in populations and make viruses less pathogenic in vitro. Here, we directly show an increase in the in vivo virulence of an MHC-I-adapted virus serially-passaged through MHC-I-mismatched hosts in a macaque AIDS model despite a reduction in in vitro viral fitness. The first passage simian immunodeficiency virus (1pSIV) obtained 1 year after SIVmac239 infection in a macaque possessing a protective MHC-I haplotype 90-120-Ia was transmitted into 90-120-Ia- macaques, whose plasma 1 year post-infection was transmitted into other 90-120-Ia- macaques to obtain the third passage SIV (3pSIV). Most of the 90-120-Ia-associated mutations selected in 1pSIV did not revert even in 3pSIV. 3pSIV showed lower in vitro viral fitness but induced persistent viremia in 90-120-Ia- macaques. Remarkably, 3pSIV infection in 90-120-Ia+ macaques resulted in significantly higher viral loads and reduced survival compared to wild-type SIVmac239. These results indicate that MHC-I-adapted SIVs serially-transmitted through MHC-I-mismatched hosts can have higher virulence in MHC-I-matched hosts despite their lower in vitro viral fitness. This study suggests that multiply-passaged HIVs could result in loss of HIV-specific CD8+ T cell responses in human populations and the in vivo pathogenic potential of these escaped viruses may be enhanced. PMID:28931083

  10. Silicon containing ibuprofen derivatives with antioxidant and anti-inflammatory activities: An in vivo and in silico study.

    PubMed

    Pérez, David J; Díaz-Reval, M Irene; Obledo-Benicio, Fernando; Zakai, Uzma I; Gómez-Sandoval, Zeferino; Razo-Hernández, Rodrigo Said; West, Robert; Sumaya-Martínez, María Teresa; Pineda-Urbina, Kayim; Ramos-Organillo, Ángel

    2017-11-05

    There are many chronic diseases related with inflammation. The chronic inflammation can produce other problems as cancer. Therefore, it is necessary to design drugs with better anti-inflammatory activity than those in the clinic. Likewise, these could be used in chronic treatments with minimum adverse effects. The amide or ester functionality in combination with the insertion of a silyl alkyl moiety is able to improve some drug properties. In this context, the evaluation of a group of silicon containing ibuprofen derivatives (SCIDs) as antioxidants and anti-inflammatory agents is reported. Antioxidant activity was evaluated by the 2,2-Diphenyl-1-picrylhydrazyl (DPPH⨪), 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic) acid (ABTS • + ) and the Fe(II) chelating ability methods. The anti-inflammatory activity was determined by using the carrageenan induced rat paw edema. The gastrotoxic profile of the SCIDs that displayed significant anti-inflammatory activity was determined by the indomethacin induced ulceration method. The SCIDs performed better than ibuprofen as chelating agents for Fe(II) and as scavengers for the free radicals DPPH• and ABTS • + . On the anti-inflammatory test, compound 4a inhibited the edema up to 87%, while 4d &10b achieved significant inflammation inhibition at a lower effective dose 50 (ED 50 ) than ibuprofen´s. None of the SCIDs endowed with anti-inflammatory activity, showed significant gastrotoxic effects with respect to those displayed by ibuprofen. Based on the experimental results and aided by the theoretical docking approach, it was possible to rationalize how the SCIDs may bind to cyclooxygenase isoforms and helped to explain their reduced gastrotoxicity. The evaluated effects were improved in SCIDs with respect to ibuprofen. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. New design of MHC class II tetramers to accommodate fundamental principles of antigen presentation.

    PubMed

    Landais, Elise; Romagnoli, Pablo A; Corper, Adam L; Shires, John; Altman, John D; Wilson, Ian A; Garcia, K Christopher; Teyton, Luc

    2009-12-15

    Direct identification and isolation of Ag-specific T cells became possible with the development of MHC tetramers, based on fluorescent avidins displaying biotinylated peptide-MHC complexes. This approach, extensively used for MHC class I-restricted T cells, has met very limited success with class II peptide-MHC complex tetramers (pMHCT-2) for the detection of CD4(+)-specific T cells. In addition, a very large number of these reagents, although capable of specifically activating T cells after being coated on solid support, is still unable to stain. To try to understand this puzzle and design usable tetramers, we examined each parameter critical for the production of pMHCT-2 using the I-A(d)-OVA system as a model. Through this process, the geometry of peptide-MHC display by avidin tetramers was examined, as well as the stability of rMHC molecules. However, we discovered that the most important factor limiting the reactivity of pMHCT-2 was the display of peptides. Indeed, long peptides, as presented by MHC class II molecules, can be bound to I-A/HLA-DQ molecules in more than one register, as suggested by structural studies. This mode of anchorless peptide binding allows the selection of a broader repertoire on single peptides and should favor anti-infectious immune responses. Thus, beyond the technical improvements that we propose, the redesign of pMHCT-2 will give us the tools to evaluate the real size of the CD4 T cell repertoire and help us in the production and testing of new vaccines.

  12. The activation threshold of CD4+ T cells is defined by TCR/peptide-MHC class II interactions in the thymic medulla.

    PubMed

    Stephen, Tom Li; Tikhonova, Anastasia; Riberdy, Janice M; Laufer, Terri M

    2009-11-01

    Immature thymocytes that are positively selected based upon their response to self-peptide-MHC complexes develop into mature T cells that are not overtly reactive to those same complexes. Developmental tuning is the active process through which TCR-associated signaling pathways of single-positive thymocytes are attenuated to respond appropriately to the peptide-MHC molecules that will be encountered in the periphery. In this study, we explore the mechanisms that regulate the tuning of CD4(+) single-positive T cells to MHC class II encountered in the thymic medulla. Experiments with murine BM chimeras demonstrate that tuning can be mediated by MHC class II expressed by either thymic medullary epithelial cells or thymic dendritic cells. Tuning does not require the engagement of CD4 by MHC class II on stromal cells. Rather, it is mediated by interactions between MHC class II and the TCR. To understand the molecular changes that distinguish immature hyperactive T cells from tuned mature CD4(+) T cells, we compared their responses to TCR stimulation. The altered response of mature CD4 single-positive thymocytes is characterized by the inhibition of ERK activation by low-affinity self-ligands and increased expression of the inhibitory tyrosine phosphatase SHP-1. Thus, persistent TCR engagement by peptide-MHC class II on thymic medullary stroma inhibits reactivity to self-Ags and prevents autoreactivity in the mature repertoire.

  13. Determination of Solubility Parameters of Ibuprofen and Ibuprofen Lysinate.

    PubMed

    Kitak, Teja; Dumičić, Aleksandra; Planinšek, Odon; Šibanc, Rok; Srčič, Stanko

    2015-12-03

    In recent years there has been a growing interest in formulating solid dispersions, which purposes mainly include solubility enhancement, sustained drug release and taste masking. The most notable problem by these dispersions is drug-carrier (in)solubility. Here we focus on solubility parameters as a tool for predicting the solubility of a drug in certain carriers. Solubility parameters were determined in two different ways: solely by using calculation methods, and by experimental approaches. Six different calculation methods were applied in order to calculate the solubility parameters of the drug ibuprofen and several excipients. However, we were not able to do so in the case of ibuprofen lysinate, as calculation models for salts are still not defined. Therefore, the extended Hansen's approach and inverse gas chromatography (IGC) were used for evaluating of solubility parameters for ibuprofen lysinate. The obtained values of the total solubility parameter did not differ much between the two methods: by the extended Hansen's approach it was δt = 31.15 MPa(0.5) and with IGC it was δt = 35.17 MPa(0.5). However, the values of partial solubility parameters, i.e., δd, δp and δh, did differ from each other, what might be due to the complex behaviour of a salt in the presence of various solvents.

  14. Major Histocompatibility Complex (MHC) Class I and MHC Class II Proteins: Conformational Plasticity in Antigen Presentation

    PubMed Central

    Wieczorek, Marek; Abualrous, Esam T.; Sticht, Jana; Álvaro-Benito, Miguel; Stolzenberg, Sebastian; Noé, Frank; Freund, Christian

    2017-01-01

    Antigen presentation by major histocompatibility complex (MHC) proteins is essential for adaptive immunity. Prior to presentation, peptides need to be generated from proteins that are either produced by the cell’s own translational machinery or that are funneled into the endo-lysosomal vesicular system. The prolonged interaction between a T cell receptor and specific pMHC complexes, after an extensive search process in secondary lymphatic organs, eventually triggers T cells to proliferate and to mount a specific cellular immune response. Once processed, the peptide repertoire presented by MHC proteins largely depends on structural features of the binding groove of each particular MHC allelic variant. Additionally, two peptide editors—tapasin for class I and HLA-DM for class II—contribute to the shaping of the presented peptidome by favoring the binding of high-affinity antigens. Although there is a vast amount of biochemical and structural information, the mechanism of the catalyzed peptide exchange for MHC class I and class II proteins still remains controversial, and it is not well understood why certain MHC allelic variants are more susceptible to peptide editing than others. Recent studies predict a high impact of protein intermediate states on MHC allele-specific peptide presentation, which implies a profound influence of MHC dynamics on the phenomenon of immunodominance and the development of autoimmune diseases. Here, we review the recent literature that describe MHC class I and II dynamics from a theoretical and experimental point of view and we highlight the similarities between MHC class I and class II dynamics despite the distinct functions they fulfill in adaptive immunity. PMID:28367149

  15. Modeling alternative binding registers of a minimal immunogenic peptide on two class II major histocompatibility complex (MHC II) molecules predicts polarized T-cell receptor (TCR) contact positions.

    PubMed

    Murray, J S; Fois, S D S; Schountz, T; Ford, S R; Tawde, M D; Brown, J C; Siahaan, T J

    2002-03-01

    Several major histocompatibility complex class II (MHC II) complexes with known minimal immunogenic peptides have now been solved by X-ray crystallography. Specificity pockets within the MHC II binding groove provide distinct peptide contacts that influence peptide conformation and define the binding register within different allelic MHC II molecules. Altering peptide ligands with respect to the residues that contact the T-cell receptor (TCR) can drastically change the nature of the ensuing immune response. Here, we provide an example of how MHC II (I-A) molecules may indirectly effect TCR contacts with a peptide and drive functionally distinct immune responses. We modeled the same immunogenic 12-amino acid peptide into the binding grooves of two allelic MHC II molecules linked to distinct cytokine responses against the peptide. Surprisingly, the favored conformation of the peptide in each molecule was distinct with respect to the exposure of the N- or C-terminus of the peptide above the MHC II binding groove. T-cell clones derived from each allelic MHC II genotype were found to be allele-restricted with respect to the recognition of these N- vs. C-terminal residues on the bound peptide. Taken together, these data suggest that MHC II alleles may influence T-cell functions by restricting TCR access to specific residues of the I-A-bound peptide. Thus, these data are of significance to diseases that display genetic linkage to specific MHC II alleles, e.g. type 1 diabetes and rheumatoid arthritis.

  16. The effect of operational stressors on ibuprofen pharmacokinetics.

    PubMed

    Boscarino, Cathy; Edginton, Andrea N; Peng, Henry; Riggs, K Wayne; Szeitz, András; Cheung, Bob

    2013-01-01

    To determine whether two of the major operational stressors associated with military missions in Afghanistan: dry heat and long durations of soldier patrol (SP), alter the pharmacokinetics of ibuprofen. Thirteen healthy and physically fit participants (19-32 years) were randomized to a four-arm crossover study, as follows: Arm 4 consisted of a simulated 2.5 h SP on a treadmill set at 4.5 km/h, 2% incline (15-min walk/5-min rest cycle) in a climatic chamber set to 42°C, 9% relative humidity. Arm 3 was similar to arm 4 but at room temperature, and arms 1 and 2 were sham SP to 3 and 4, respectively. For the final 2.5 h, participants remained in a semi-supine position. Each participant orally administered one 400-mg Advil Liqui-Gel® capsule. Blood samples were drawn over time and analyzed for (R)-ibuprofen and (S)-plasma ibuprofen concentrations using UPLC/MS/MS. Concentration-time data were analyzed by compartmental methods. Exercise significantly decreased the t(1/2abs) (h) of (S)-ibuprofen (0.26 to 0.17; p = 0.015) and T(max) (h) for both (R)-ibuprofen (0.97 to 0.73; p = 0.008) and (S)-ibuprofen (1.13 to 0.84; p = 0.005). Values for t(lag) (h) also decreased with exercise for both (R)-ibuprofen (0.38 to 0.22; p = 0.005), and (S)-ibuprofen (0.39 to 0.23; p = 0.001). Exercise stress had a significant impact on the absorption profile of (R)- and (S)-ibuprofen. Excessive self-administration rate and dose may not be due to the military operational stressors of heat and soldier presence patrol.

  17. Treatment with chemotherapy and dendritic cells pulsed with multiple Wilms' tumor 1 (WT1)-specific MHC class I/II-restricted epitopes for pancreatic cancer.

    PubMed

    Koido, Shigeo; Homma, Sadamu; Okamoto, Masato; Takakura, Kazuki; Mori, Masako; Yoshizaki, Shinji; Tsukinaga, Shintaro; Odahara, Shunichi; Koyama, Seita; Imazu, Hiroo; Uchiyama, Kan; Kajihara, Mikio; Arakawa, Hiroshi; Misawa, Takeyuki; Toyama, Yoichi; Yanagisawa, Satoru; Ikegami, Masahiro; Kan, Shin; Hayashi, Kazumi; Komita, Hideo; Kamata, Yuko; Ito, Masaki; Ishidao, Takefumi; Yusa, Sei-Ichi; Shimodaira, Shigetaka; Gong, Jianlin; Sugiyama, Haruo; Ohkusa, Toshifumi; Tajiri, Hisao

    2014-08-15

    We performed a phase I trial to investigate the safety, clinical responses, and Wilms' tumor 1 (WT1)-specific immune responses following treatment with dendritic cells (DC) pulsed with a mixture of three types of WT1 peptides, including both MHC class I and II-restricted epitopes, in combination with chemotherapy. Ten stage IV patients with pancreatic ductal adenocarcinoma (PDA) and 1 patient with intrahepatic cholangiocarcinoma (ICC) who were HLA-positive for A*02:01, A*02:06, A*24:02, DRB1*04:05, DRB1*08:03, DRB1*15:01, DRB1*15:02, DPB1*05:01, or DPB1*09:01 were enrolled. The patients received one course of gemcitabine followed by biweekly intradermal vaccinations with mature DCs pulsed with MHC class I (DC/WT1-I; 2 PDA and 1 ICC), II (DC/WT1-II; 1 PDA), or I/II-restricted WT1 peptides (DC/WT1-I/II; 7 PDA), and gemcitabine. The combination therapy was well tolerated. WT1-specific IFNγ-producing CD4(+) T cells were significantly increased following treatment with DC/WT1-I/II. WT1 peptide-specific delayed-type hypersensitivity (DTH) was detected in 4 of the 7 patients with PDA vaccinated with DC/WT1-I/II and in 0 of the 3 patients with PDA vaccinated with DC/WT1-I or DC/WT1-II. The WT1-specific DTH-positive patients showed significantly improved overall survival (OS) and progression-free survival (PFS) compared with the negative control patients. In particular, all 3 patients with PDA with strong DTH reactions had a median OS of 717 days. The activation of WT1-specific immune responses by DC/WT1-I/II combined with chemotherapy may be associated with disease stability in advanced pancreatic cancer. ©2014 American Association for Cancer Research.

  18. Influence of ibuprofen on phospholipid membranes

    NASA Astrophysics Data System (ADS)

    Jaksch, Sebastian; Lipfert, Frederik; Koutsioubas, Alexandros; Mattauch, Stefan; Holderer, Olaf; Ivanova, Oxana; Frielinghaus, Henrich; Hertrich, Samira; Fischer, Stefan F.; Nickel, Bert

    2015-02-01

    A basic understanding of biological membranes is of paramount importance as these membranes comprise the very building blocks of life itself. Cells depend in their function on a range of properties of the membrane, which are important for the stability and function of the cell, information and nutrient transport, waste disposal, and finally the admission of drugs into the cell and also the deflection of bacteria and viruses. We have investigated the influence of ibuprofen on the structure and dynamics of L-α -phosphatidylcholine (SoyPC) membranes by means of grazing incidence small-angle neutron scattering, neutron reflectometry, and grazing incidence neutron spin echo spectroscopy. From the results of these experiments, we were able to determine that ibuprofen induces a two-step structuring behavior in the SoyPC films, where the structure evolves from the purely lamellar phase for pure SoyPC over a superposition of two hexagonal phases to a purely hexagonal phase at high concentrations. A relaxation, which is visible when no ibuprofen is present in the membrane, vanishes upon addition of ibuprofen. This we attribute to a stiffening of the membrane. This behavior may be instrumental in explaining the toxic behavior of ibuprofen in long-term application.

  19. Niosomes encapsulating Ibuprofen-cyclodextrin complexes: preparation and characterization.

    PubMed

    Marianecci, Carlotta; Rinaldi, Federica; Esposito, Sara; Di Marzio, Luisa; Carafa, Maria

    2013-08-01

    A new delivery system based on ibuprofen-β-cyclodextrin (βCd) complexation and its loading into non-ionic surfactant vesicles (NSVs) was developed to improve ibuprofen therapeutic efficacy in topical formulations. The proposed strategy exploits the well known solubilizing and stabilizing properties of cyclodextrins together with the high tolerability and percutaneous absorption enhancing properties of NSVs. The complexing capacity of Cds in the presence of Ibuprofen in aqueous solution was evaluated by means of phase solubility studies. The technique used to obtain solid ibuprofen-βCd complexes was the co-lyophilization method. The influence of the preparation method on the physicochemical properties of the final product was evaluated by means of Fourier Transform Infrared Spectroscopy and Differential scanning calorimetry studies. Ibuprofen-βCd complexes were included in Tween 20/Cholesterol vesicles and characterized in terms of size, zeta (ζ)-potential, stability, drug entrapment efficiency and drug release. The best ibuprofen-βCd-NSV system exhibited in vitro drug permeation properties significantly improved with respect to those of the plain drug suspension.

  20. Experimental viral evolution to specific host MHC genotypes reveals fitness and virulence trade-offs in alternative MHC types.

    PubMed

    Kubinak, Jason L; Ruff, James S; Hyzer, Cornelius Whitney; Slev, Patricia R; Potts, Wayne K

    2012-02-28

    The unprecedented genetic diversity found at vertebrate MHC (major histocompatibility complex) loci influences susceptibility to most infectious and autoimmune diseases. The evolutionary explanation for how these polymorphisms are maintained has been controversial. One leading explanation, antagonistic coevolution (also known as the Red Queen), postulates a never-ending molecular arms race where pathogens evolve to evade immune recognition by common MHC alleles, which in turn provides a selective advantage to hosts carrying rare MHC alleles. This cyclical process leads to negative frequency-dependent selection and promotes MHC diversity if two conditions are met: (i) pathogen adaptation must produce trade-offs that result in pathogen fitness being higher in familiar (i.e., host MHC genotype adapted to) vs. unfamiliar host MHC genotypes; and (ii) this adaptation must produce correlated patterns of virulence (i.e., disease severity). Here we test these fundamental assumptions using an experimental evolutionary approach (serial passage). We demonstrate rapid adaptation and virulence evolution of a mouse-specific retrovirus to its mammalian host across multiple MHC genotypes. Critically, this adaptive response results in trade-offs (i.e., antagonistic pleiotropy) between host MHC genotypes; both viral fitness and virulence is substantially higher in familiar versus unfamiliar MHC genotypes. These data are unique in experimentally confirming the requisite conditions of the antagonistic coevolution model of MHC evolution and providing quantification of fitness effects for pathogen and host. These data help explain the unprecedented diversity of MHC genes, including how disease-causing alleles are maintained.

  1. Detection and Analysis of the Quality of Ibuprofen Granules

    NASA Astrophysics Data System (ADS)

    Yu-bin, Ji; Xin, LI; Guo-song, Xin; Qin-bing, Xue

    2017-12-01

    The Ibuprofen Granules comprehensive quality testing to ensure that it is in accordance with the provisions of Chinese pharmacopoeia. With reference of Chinese pharmacopoeia, the Ibuprofen Granules is tested by UV, HPLC, in terms of grain size checking, volume deviation, weight loss on drying detection, dissolution rate detection, and quality evaluation. Results indicated that Ibuprofen Granules conform to the standards. The Ibuprofen Granules are qualified and should be permitted to be marketed.

  2. Vaccinia virus decreases major histocompatibility complex (MHC) class II antigen presentation, T-cell priming, and peptide association with MHC class II

    PubMed Central

    Rehm, Kristina E; Connor, Ramsey F; Jones, Gwendolyn J B; Yimbu, Kenneth; Mannie, Mark D; Roper, Rachel L

    2009-01-01

    Vaccinia virus (VACV) is the current live virus vaccine used to protect humans against smallpox and monkeypox, but its use is contraindicated in several populations because of its virulence. It is therefore important to elucidate the immune evasion mechanisms of VACV. We found that VACV infection of antigen-presenting cells (APCs) significantly decreased major histocompatibility complex (MHC) II antigen presentation and decreased synthesis of 13 chemokines and cytokines, suggesting a potent viral mechanism for immune evasion. In these model systems, responding T cells were not directly affected by virus, indicating that VACV directly affects the APC. VACV significantly decreased nitric oxide production by peritoneal exudate cells and the RAW macrophage cell line in response to lipopolysaccharide (LPS) and interferon (IFN)-γ, decreased class II MHC expression on APCs, and induced apoptosis in macrophages and dendritic cells. However, VACV decreased antigen presentation by 1153 B cells without apparent apoptosis induction, indicating that VACV differentially affects B lymphocytes and other APCs. We show that the key mechanism of VACV inhibition of antigen presentation may be its reduction of antigenic peptide loaded into the cleft of MHC class II molecules. These data indicate that VACV evades the host immune response by impairing critical functions of the APC. PMID:20067538

  3. MHC class II expression in lung cancer.

    PubMed

    He, Yayi; Rozeboom, Leslie; Rivard, Christopher J; Ellison, Kim; Dziadziuszko, Rafal; Yu, Hui; Zhou, Caicun; Hirsch, Fred R

    2017-10-01

    Immunotherapy is an exciting development in lung cancer research. In this study we described major histocompatibility complex (MHC) Class II protein expression in lung cancer cell lines and patient tissues. We studied MHC Class II (DP, DQ, DR) (CR3/43, Abcam) protein expression in 55 non-small cell lung cancer (NSCLC) cell lines, 42 small cell lung cancer (SCLC) cell lines and 278 lung cancer patient tissues by immunohistochemistry (IHC). Seven (12.7%) NSCLC cell lines were positive for MHC Class II. No SCLC cell lines were found to be MHC Class II positive. We assessed 139 lung cancer samples available in the Hirsch Lab for MHC Class II. There was no positive MHC Class II staining on SCLC tumor cells. MHC Class II expression on TILs in SCLC was significantly lower than that on TILs in NSCLC (P<0.001). MHC Class II was also assessed in an additional 139 NSCLC tumor tissues from Medical University of Gdansk, Poland. Patients with positive staining of MHC Class II on TILs had longer regression-free survival (RFS) and overall survival (OS) than those whose TILs were MHC Class II negative (2.980 years, 95% CI 1.628-4.332 vs. 1.050 years, 95% CI 0.556-1.554, P=0.028) (3.230 years, 95% CI 2.617-3.843 vs. 1.390 years, 95% CI 0.629-2.151, P=0.014). MHC Class II was expressed both in NSCLC cell lines and tissues. However, MHC Class II was not detected in SCLC cell lines or tissue tumor cells. MHC Class II expression was lower on SCLC TILs than on NSCLC TILs. Loss of expression of MHC Class II on SCLC tumor cells and reduced expression on SCLC TILs may be a means of escaping anti-cancer immunity. Higher MHC Class II expression on TILs was correlated with better prognosis in patients with NSCLC. Copyright © 2017. Published by Elsevier B.V.

  4. An Overview of Clinical Pharmacology of Ibuprofen

    PubMed Central

    Bushra, Rabia; Aslam, Nousheen

    2010-01-01

    Ibuprofen was the first member of Propionic acid derivatives introduced in 1969. It is a popular domestic and over the counter analgesic and antipyretic for adults and children. Ibuprofen has been rated as the safest conventional NSAID by spontaneous adverse drug reaction reporting systems in the UK. This article summarizes the main pharmacological effects, therapeutical applications and adverse drug reactions, drug-drug interactions and food drug interactions of ibuprofen that have been reported especially during the last 10 years. PMID:22043330

  5. Encapsulation of Ibuprofen in CD-MOF and Related Bioavailability Studies.

    PubMed

    Hartlieb, Karel J; Ferris, Daniel P; Holcroft, James M; Kandela, Irawati; Stern, Charlotte L; Nassar, Majed S; Botros, Youssry Y; Stoddart, J Fraser

    2017-05-01

    Although ibuprofen is one of the most widely used nonsteroidal anti-inflammatory drugs (NSAIDs), it exhibits poor solubility in aqueous and physiological environments as a free acid. In order to improve its oral bioavailability and rate of uptake, extensive research into the development of new formulations of ibuprofen has been undertaken, including the use of excipients as well as ibuprofen salts, such as ibuprofen lysinate and ibuprofen, sodium salt. The ultimate goals of these studies are to reduce the time required for maximum uptake of ibuprofen, as this period of time is directly proportional to the rate of onset of analgesic/anti-inflammatory effects, and to increase the half-life of the drug within the body; that is, the duration of action of the effects of the drug. Herein, we present a pharmaceutical cocrystal of ibuprofen and the biocompatible metal-organic framework called CD-MOF. This metal-organic framework (MOF) is based upon γ-cyclodextrin (γ-CD) tori that are coordinated to alkali metal cations (e.g., K + ions) on both their primary and secondary faces in an alternating manner to form a porous framework built up from (γ-CD) 6 cubes. We show that ibuprofen can be incorporated within CD-MOF-1 either by (i) a crystallization process using the potassium salt of ibuprofen as the alkali cation source for production of the MOF or by (ii) absorption and deprotonation of the free-acid, leading to an uptake of 23-26 wt % of ibuprofen within the CD-MOF. In vitro viability studies revealed that the CD-MOF is inherently not affecting the viability of the cells with no IC 50 value determined up to a concentration of 100 μM. Bioavailability investigations were conducted on mice, and the ibuprofen/CD-MOF pharmaceutical cocrystal was compared to control samples of the potassium salt of ibuprofen in the presence and absence of γ-CD. From these animal studies, we observed that the ibuprofen/CD-MOF-1 cocrystal exhibits the same rapid uptake of ibuprofen as the

  6. Improved pan-specific MHC class I peptide-binding predictions using a novel representation of the MHC-binding cleft environment.

    PubMed

    Carrasco Pro, S; Zimic, M; Nielsen, M

    2014-02-01

    Major histocompatibility complex (MHC) molecules play a key role in cell-mediated immune responses presenting bounded peptides for recognition by the immune system cells. Several in silico methods have been developed to predict the binding affinity of a given peptide to a specific MHC molecule. One of the current state-of-the-art methods for MHC class I is NetMHCpan, which has a core ingredient for the representation of the MHC class I molecule using a pseudo-sequence representation of the binding cleft amino acid environment. New and large MHC-peptide-binding data sets are constantly being made available, and also new structures of MHC class I molecules with a bound peptide have been published. In order to test if the NetMHCpan method can be improved by integrating this novel information, we created new pseudo-sequence definitions for the MHC-binding cleft environment from sequence and structural analyses of different MHC data sets including human leukocyte antigen (HLA), non-human primates (chimpanzee, macaque and gorilla) and other animal alleles (cattle, mouse and swine). From these constructs, we showed that by focusing on MHC sequence positions found to be polymorphic across the MHC molecules used to train the method, the NetMHCpan method achieved a significant increase in the predictive performance, in particular, of non-human MHCs. This study hence showed that an improved performance of MHC-binding methods can be achieved not only by the accumulation of more MHC-peptide-binding data but also by a refined definition of the MHC-binding environment including information from non-human species. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. HLA-F and MHC-I Open Conformers Cooperate in a MHC-I Antigen Cross-Presentation Pathway

    PubMed Central

    Goodridge, Jodie P.; Lee, Ni; Burian, Aura; Pyo, Chul-Woo; Tykodi, Scott S.; Warren, Edus H.; Yee, Cassian; Riddell, Stanley R.

    2013-01-01

    Peptides that are presented by MHC class I (MHC-I) are processed from two potential sources, as follows: newly synthesized endogenous proteins for direct presentation on the surface of most nucleated cells and exogenous proteins for cross-presentation typically by professional APCs. In this study, we present data that implicate the nonclassical HLA-F and open conformers of MHC-I expressed on activated cells in a pathway for the presentation of exogenous proteins by MHC-I. This pathway is distinguished from the conventional endogenous pathway by its independence from TAP and tapasin and its sensitivity to inhibitors of lysosomal enzymes, and further distinguished by its dependence on MHC-I allotype-specific epitope recognition for Ag uptake. Thus, our data from in vitro experiments collectively support a previously unrecognized model of Ag cross-presentation mediated by HLA-F and MHC-I open conformers on activated lymphocytes and monocytes, which may significantly contribute to the regulation of immune system functions and the immune defense. PMID:23851683

  8. Bone Loss from High Repetitive High Force Loading is Prevented by Ibuprofen Treatment

    PubMed Central

    Jain, Nisha X.; Barr-Gillespie, Ann E.; Clark, Brian D.; Kietrys, David M.; Wade, Christine K.; Litvin, Judith; Popoff, Steven N.; Barbe, Mary F.

    2014-01-01

    We examined roles of loading and inflammation on forearm bones in a rat model of upper extremity overuse. Trabecular structure in distal radius and ulna was examined in three groups of young adult rats: 1) 5% food-restricted that underwent an initial training period of 10 min/day for 5 weeks to learn the repetitive task (TRHF); 2) rats that underwent the same training before performing a high repetition high force task, 2 hours/day for 12 weeks (HRHF); and 3) food-restricted only (FRC). Subsets were treated with oral ibuprofen (IBU). TRHF rats had increased trabecular bone volume and numbers, osteoblasts, and serum osteocalcin, indicative of bone adaptation. HRHF rats had constant muscle pulling forces, showed limited signs of bone adaptation, but many signs of bone resorption, including decreased trabecular bone volume and bone mineral density, increased osteoclasts and bone inflammatory cytokines, and reduced median nerve conduction velocity (15%). HRHF+IBU rats showed no trabecular resorptive changes, no increased osteoclasts or bone inflammatory cytokines, no nerve inflammation, preserved nerve conduction, and increased muscle voluntary pulling forces. Ibuprofen treatment preserved trabecular bone quality by reducing osteoclasts and bone inflammatory cytokines, and improving muscle pulling forces on bones as a result of reduced nerve inflammation. PMID:24583543

  9. MHC class I and MHC class II DRB gene variability in wild and captive Bengal tigers (Panthera tigris tigris).

    PubMed

    Pokorny, Ina; Sharma, Reeta; Goyal, Surendra Prakash; Mishra, Sudanshu; Tiedemann, Ralph

    2010-10-01

    Bengal tigers are highly endangered and knowledge on adaptive genetic variation can be essential for efficient conservation and management. Here we present the first assessment of allelic variation in major histocompatibility complex (MHC) class I and MHC class II DRB genes for wild and captive tigers from India. We amplified, cloned, and sequenced alpha-1 and alpha-2 domain of MHC class I and beta-1 domain of MHC class II DRB genes in 16 tiger specimens of different geographic origin. We detected high variability in peptide-binding sites, presumably resulting from positive selection. Tigers exhibit a low number of MHC DRB alleles, similar to other endangered big cats. Our initial assessment-admittedly with limited geographic coverage and sample size-did not reveal significant differences between captive and wild tigers with regard to MHC variability. In addition, we successfully amplified MHC DRB alleles from scat samples. Our characterization of tiger MHC alleles forms a basis for further in-depth analyses of MHC variability in this illustrative threatened mammal.

  10. Enhanced rectal bioavailability of ibuprofen in rats by poloxamer 188 and menthol.

    PubMed

    Yong, Chul Soon; Yang, Chae Ha; Rhee, Jong-Dal; Lee, Beom-Jin; Kim, Dong-Chool; Kim, Dae-Duk; Kim, Chong-Kook; Choi, Jun-Shik; Choi, Han-Gon

    2004-01-09

    To improve the bioavailability of poorly water-soluble ibuprofen in the rectum with poloxamer and menthol, the effects of menthol and poloxamer 188 on the aqueous solubility of ibuprofen were investigated. The dissolution and pharmacokinetic study of ibuprofen delivered by the poloxamer gels composed of poloxamer 188 and menthol were then performed. In the absence of poloxamer, the solubility of ibuprofen increased until the ratio of menthol to ibuprofen increased from 0:10 to 4:6 followed by an abrupt decrease in solubility above the ratio of 4:6, indicating that four parts menthol formed eutectic mixture with six parts ibuprofen. In the presence of poloxamer, the solutions with the same ratio of menthol to ibuprofen showed abrupt increase in the solubility of ibuprofen. The poloxamer gel with menthol/ibuprofen ratio of 1:9 and higher than 15% poloxamer 188 showed the maximum solubility of ibuprofen, 1.2mg/ml. Menthol improved the dissolution rates of ibuprofen from poloxamer gels. Release mechanism showed that the release rate of ibuprofen from the poloxamer gels without menthol was independent of the time but the drug might be released from the poloxamer gels with menthol by Fickian diffusion. Furthermore, the poloxamer gel with menthol (poloxamer/menthol/ibuprofen (15%/0.25%/2.5%)) gave significantly higher initial plasma concentrations, C(max) and AUC of ibuprofen than did solid suppository, indicating that the drug from poloxamer gel could be more absorbed than that from solid one in rats. Thus, the poloxamer gel with poloxamer 188 and menthol was a more effective rectal dosage form for ibuprofen.

  11. Modeling the onset and offset of dental pain relief by ibuprofen.

    PubMed

    Li, Hanbin; Mandema, Jaap; Wada, Russell; Jayawardena, Shyamalie; Desjardins, Paul; Doyle, Geraldine; Kellstein, David

    2012-01-01

    Onset and offset of dental pain relief by ibuprofen following third molar extraction were modeled in a randomized, double-blind, placebo-controlled, parallel-group, 8-hour study of patients receiving either a novel effervescent ibuprofen tablet (400 mg; N = 30), standard ibuprofen tablets (Nurofen(®) 2 × 200 mg; N = 22), or placebo (N = 37). An Emax model was fit to pain relief scores. Linear hazard models were used to analyze the time to first perceptible relief (TFPR), the time to meaningful pain relief (TMPR), and time to remedication (REMD). Nomograms were created to correlate TFPR, TMPR, and REMD with different ibuprofen pharmacokinetic profiles. Effervescent ibuprofen was absorbed rapidly with 95% completion within 15 minutes. Maximum pain relief score by ibuprofen was 1.8 units greater than placebo, with an EC50 (effect-site) for ibuprofen concentration of 10.2 µg·mL(-1). The likelihood to achieve TFPR and TMPR was doubled for every 10 µg·mL(-1) increase in ibuprofen plasma concentration. REMD risk decreased 40-fold as the categorical pain relief score increased from 0 to 3. Rapid absorption of ibuprofen effervescent resulted in an earlier TFPR and TMPR, and a lower REMD rate than standard ibuprofen. The nomograms may be useful in predicting the onset and offset of new faster acting ibuprofen formulations, based on pharmacokinetic profiles.

  12. Prophylactic Acetaminophen or Ibuprofen Results in Equivalent Acute Mountain Sickness Incidence at High Altitude: A Prospective Randomized Trial.

    PubMed

    Kanaan, Nicholas C; Peterson, Alicia L; Pun, Matiram; Holck, Peter S; Starling, Jennifer; Basyal, Bikash; Freeman, Thomas F; Gehner, Jessica R; Keyes, Linda; Levin, Dana R; O'Leary, Catherine J; Stuart, Katherine E; Thapa, Ghan B; Tiwari, Aditya; Velgersdyk, Jared L; Zafren, Ken; Basnyat, Buddha

    2017-06-01

    Recent trials have demonstrated the usefulness of ibuprofen in the prevention of acute mountain sickness (AMS), yet the proposed anti-inflammatory mechanism remains unconfirmed. Acetaminophen and ibuprofen were tested for AMS prevention. We hypothesized that a greater clinical effect would be seen from ibuprofen due to its anti-inflammatory effects compared with acetaminophen's mechanism of possible symptom reduction by predominantly mediating nociception in the brain. A double-blind, randomized trial was conducted testing acetaminophen vs ibuprofen for the prevention of AMS. A total of 332 non-Nepali participants were recruited at Pheriche (4371 m) and Dingboche (4410 m) on the Everest Base Camp trek. The participants were randomized to either acetaminophen 1000 mg or ibuprofen 600 mg 3 times a day until they reached Lobuche (4940 m), where they were reassessed. The primary outcome was AMS incidence measured by the Lake Louise Questionnaire score. Data from 225 participants who met inclusion criteria were analyzed. Twenty-five participants (22.1%) in the acetaminophen group and 18 (16.1%) in the ibuprofen group developed AMS (P = .235). The combined AMS incidence was 19.1% (43 participants), 14 percentage points lower than the expected AMS incidence of untreated trekkers in prior studies at this location, suggesting that both interventions reduced the incidence of AMS. We found little evidence of any difference between acetaminophen and ibuprofen groups in AMS incidence. This suggests that AMS prevention may be multifactorial, affected by anti-inflammatory inhibition of the arachidonic-acid pathway as well as other analgesic mechanisms that mediate nociception. Additional study is needed. Copyright © 2017 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  13. Refinement of the MHC Risk Map in a Scandinavian Primary Sclerosing Cholangitis Population

    PubMed Central

    Næss, Sigrid; Lie, Benedicte A.; Melum, Espen; Olsson, Marita; Hov, Johannes R.; Croucher, Peter J. P.; Hampe, Jochen; Thorsby, Erik; Bergquist, Annika; Traherne, James A.; Schrumpf, Erik; Boberg, Kirsten Muri; Schreiber, Stefan; Franke, Andre; Karlsen, Tom H.

    2014-01-01

    Background Genetic variants within the major histocompatibility complex (MHC) represent the strongest genetic susceptibility factors for primary sclerosing cholangitis (PSC). Identifying the causal variants within this genetic complex represents a major challenge due to strong linkage disequilibrium and an overall high physical density of candidate variants. We aimed to refine the MHC association in a geographically restricted PSC patient panel. Methodology/Principal Findings A total of 365 PSC cases and 368 healthy controls of Scandinavian ancestry were included in the study. We incorporated data from HLA typing (HLA-A, -B, -C, -DRB3, -DRB1, -DQB1) and single nucleotide polymorphisms across the MHC (n = 18,644; genotyped and imputed) alongside previously suggested PSC risk determinants in the MHC, i.e. amino acid variation of DRβ, a MICA microsatellite polymorphism and HLA-C and HLA-B according to their ligand properties for killer immunoglobulin-like receptors. Breakdowns of the association signal by unconditional and conditional logistic regression analyses demarcated multiple PSC associated MHC haplotypes, and for eight of these classical HLA class I and II alleles represented the strongest association. A novel independent risk locus was detected near NOTCH4 in the HLA class III region, tagged by rs116212904 (odds ratio [95% confidence interval] = 2.32 [1.80, 3.00], P = 1.35×10−11). Conclusions/Significance Our study shows that classical HLA class I and II alleles, predominantly at HLA-B and HLA-DRB1, are the main risk factors for PSC in the MHC. In addition, the present assessments demonstrated for the first time an association near NOTCH4 in the HLA class III region. PMID:25521205

  14. Single dose oral ibuprofen plus paracetamol (acetaminophen) for acute postoperative pain.

    PubMed

    Derry, Christopher J; Derry, Sheena; Moore, R Andrew

    2013-06-24

    Combining two different analgesics in fixed doses in a single tablet can provide better pain relief than either drug alone in acute pain. This appears to be broadly true across a range of different drug combinations, in postoperative pain and migraine headache. Some combinations of ibuprofen and paracetamol are available for use without prescription in some acute pain situations. To assess the efficacy and adverse effects of single dose oral ibuprofen plus paracetamol for acute postoperative pain using methods that permit comparison with other analgesics evaluated in standardised trials using almost identical methods and outcomes. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) on The Cochrane Library (Issue 4 of 12, 2013), MEDLINE (1950 to May 21st 2013), EMBASE (1974 to May 21st 2013), the Oxford Pain Database, ClinicalTrials.gov, and reference lists of articles. Randomised, double-blind clinical trials of single dose, oral ibuprofen plus paracetamol compared with placebo or the same dose of ibuprofen alone for acute postoperative pain in adults. Two review authors independently considered trials for inclusion in the review, assessed quality, and extracted data. We used validated equations to calculate the area under the pain relief versus time curve and derive the proportion of participants with at least 50% of maximum pain relief over six hours. We calculated relative risk (RR) and number needed to treat to benefit (NNT) for ibuprofen plus paracetamol, ibuprofen alone, or placebo. We used information on use of rescue medication to calculate the proportion of participants requiring rescue medication and the weighted mean of the median time to use. We also collected information on adverse events. Searches identified three studies involving 1647 participants. Each of them examined several dose combinations. Included studies provided data from 508 participants for the comparison of ibuprofen 200 mg + paracetamol 500 mg with placebo, 543

  15. Modular nucleic acid assembled p/MHC microarrays for multiplexed sorting of antigen-specific T cells.

    PubMed

    Kwong, Gabriel A; Radu, Caius G; Hwang, Kiwook; Shu, Chengyi J; Ma, Chao; Koya, Richard C; Comin-Anduix, Begonya; Hadrup, Sine Reker; Bailey, Ryan C; Witte, Owen N; Schumacher, Ton N; Ribas, Antoni; Heath, James R

    2009-07-22

    The human immune system consists of a large number of T cells capable of recognizing and responding to antigens derived from various sources. The development of peptide-major histocompatibility (p/MHC) tetrameric complexes has enabled the direct detection of these antigen-specific T cells. With the goal of increasing throughput and multiplexing of T cell detection, protein microarrays spotted with defined p/MHC complexes have been reported, but studies have been limited due to the inherent instability and reproducibility of arrays produced via conventional spotted methods. Herein, we report on a platform for the detection of antigen-specific T cells on glass substrates that offers significant advantages over existing surface-bound schemes. In this approach, called "Nucleic Acid Cell Sorting (NACS)", single-stranded DNA oligomers conjugated site-specifically to p/MHC tetramers are employed to immobilize p/MHC tetramers via hybridization to a complementary-printed substrate. Fully assembled p/MHC arrays are used to detect and enumerate T cells captured from cellular suspensions, including primary human T cells collected from cancer patients. NACS arrays outperform conventional spotted arrays assessed in key criteria such as repeatability and homogeneity. The versatility of employing DNA sequences for cell sorting is exploited to enable the programmed, selective release of target populations of immobilized T cells with restriction endonucleases for downstream analysis. Because of the performance, facile and modular assembly of p/MHC tetramer arrays, NACS holds promise as a versatile platform for multiplexed T cell detection.

  16. Ibuprofen results in alterations of human fetal testis development

    PubMed Central

    Ben Maamar, Millissia; Lesné, Laurianne; Hennig, Kristin; Desdoits-Lethimonier, Christèle; Kilcoyne, Karen R.; Coiffec, Isabelle; Rolland, Antoine D.; Chevrier, Cécile; Kristensen, David M.; Lavoué, Vincent; Antignac, Jean-Philippe; Le Bizec, Bruno; Dejucq-Rainsford, Nathalie; Mitchell, Rod T.; Mazaud-Guittot, Séverine; Jégou, Bernard

    2017-01-01

    Among pregnant women ibuprofen is one of the most frequently used pharmaceutical compounds with up to 28% reporting use. Regardless of this, it remains unknown whether ibuprofen could act as an endocrine disruptor as reported for fellow analgesics paracetamol and aspirin. To investigate this, we exposed human fetal testes (7–17 gestational weeks (GW)) to ibuprofen using ex vivo culture and xenograft systems. Ibuprofen suppressed testosterone and Leydig cell hormone INSL3 during culture of 8–9 GW fetal testes with concomitant reduction in expression of the steroidogenic enzymes CYP11A1, CYP17A1 and HSD17B3, and of INSL3. Testosterone was not suppressed in testes from fetuses younger than 8 GW, older than 10–12 GW, or in second trimester xenografted testes (14–17 GW). Ex vivo, ibuprofen also affected Sertoli cell by suppressing AMH production and mRNA expression of AMH, SOX9, DHH, and COL2A1. While PGE2 production was suppressed by ibuprofen, PGD2 production was not. Germ cell transcripts POU5F1, TFAP2C, LIN28A, ALPP and KIT were also reduced by ibuprofen. We conclude that, at concentrations relevant to human exposure and within a particular narrow ‘early window’ of sensitivity within first trimester, ibuprofen causes direct endocrine disturbances in the human fetal testis and alteration of the germ cell biology. PMID:28281692

  17. MHC variability in heritage breeds of chickens.

    PubMed

    Fulton, J E; Lund, A R; McCarron, A M; Pinegar, K N; Korver, D R; Classen, H L; Aggrey, S; Utterbach, C; Anthony, N B; Berres, M E

    2016-02-01

    The chicken Major Histocompatibility Complex (MHC) is very strongly associated with disease resistance and thus is a very important region of the chicken genome. Historically, MHC (B locus) has been identified by the use of serology with haplotype specific alloantisera. These antisera can be difficult to produce and frequently cross-react with multiple haplotypes and hence their application is generally limited to inbred and MHC-defined lines. As a consequence, very little information about MHC variability in heritage chicken breeds is available. DNA-based methods are now available for examining MHC variability in these previously uncharacterized populations. A high density SNP panel consisting of 101 SNP that span a 230,000 bp region of the chicken MHC was used to examine MHC variability in 17 heritage populations of chickens from five universities from Canada and the United States. The breeds included 6 heritage broiler lines, 3 Barred Plymouth Rock, 2 New Hampshire and one each of Rhode Island Red, Light Sussex, White Leghorn, Dark Brown Leghorn, and 2 synthetic lines. These heritage breeds contained from one to 11 haplotypes per line. A total of 52 unique MHC haplotypes were found with only 10 of them identical to serologically defined haplotypes. Furthermore, nine MHC recombinants with their respective parental haplotypes were identified. This survey confirms the value of these non-commercially utilized lines in maintaining genetic diversity. The identification of multiple MHC haplotypes and novel MHC recombinants indicates that diversity is being generated and maintained within these heritage populations. © 2016 Poultry Science Association Inc.

  18. Variation analysis and gene annotation of eight MHC haplotypes: The MHC Haplotype Project

    PubMed Central

    Horton, Roger; Gibson, Richard; Coggill, Penny; Miretti, Marcos; Allcock, Richard J.; Almeida, Jeff; Forbes, Simon; Gilbert, James G. R.; Halls, Karen; Harrow, Jennifer L.; Hart, Elizabeth; Howe, Kevin; Jackson, David K.; Palmer, Sophie; Roberts, Anne N.; Sims, Sarah; Stewart, C. Andrew; Traherne, James A.; Trevanion, Steve; Wilming, Laurens; Rogers, Jane; de Jong, Pieter J.; Elliott, John F.; Sawcer, Stephen; Todd, John A.; Trowsdale, John

    2008-01-01

    The human major histocompatibility complex (MHC) is contained within about 4 Mb on the short arm of chromosome 6 and is recognised as the most variable region in the human genome. The primary aim of the MHC Haplotype Project was to provide a comprehensively annotated reference sequence of a single, human leukocyte antigen-homozygous MHC haplotype and to use it as a basis against which variations could be assessed from seven other similarly homozygous cell lines, representative of the most common MHC haplotypes in the European population. Comparison of the haplotype sequences, including four haplotypes not previously analysed, resulted in the identification of >44,000 variations, both substitutions and indels (insertions and deletions), which have been submitted to the dbSNP database. The gene annotation uncovered haplotype-specific differences and confirmed the presence of more than 300 loci, including over 160 protein-coding genes. Combined analysis of the variation and annotation datasets revealed 122 gene loci with coding substitutions of which 97 were non-synonymous. The haplotype (A3-B7-DR15; PGF cell line) designated as the new MHC reference sequence, has been incorporated into the human genome assembly (NCBI35 and subsequent builds), and constitutes the largest single-haplotype sequence of the human genome to date. The extensive variation and annotation data derived from the analysis of seven further haplotypes have been made publicly available and provide a framework and resource for future association studies of all MHC-associated diseases and transplant medicine. PMID:18193213

  19. Ibuprofen timing for hand surgery in ambulatory care

    PubMed Central

    Giuliani, Enrico; Bianchi, Anna; Marcuzzi, Augusto; Landi, Antonio; Barbieri, Alberto

    2015-01-01

    OBJECTIVE: To evaluate the effect of pre-operative administration of ibuprofen on post-operative pain control vs. early post-operative administration for hand surgery procedures performed under local anaesthesia in ambulatory care. METHODS: Candidates to trigger finger release by De Quervain tenosynovitis and carpal tunnel operation under local anesthesia were enrolled in the study. Group A received 400 mg ibuprofen before the operation and placebo after the procedure; group B received placebo before the operation and ibuprofen 400 mg at the end of the procedure; both groups received ibuprofen 400 mg every 6h thereafter. Visual analogue scale (VAS) was measured at fixed times before and every 6h after surgery, for a total follow-up of 18h. RESULTS: Groups were similar according to age, gender and type of surgery. Median VAS values did not produce any statistical significance, while there was a statistically significant difference on pre-operative and early post-operative VAS values between groups (A -8.53 mm vs. B 3.36 mm, p=0.0085). CONCLUSION: Average pain levels were well controlled by local anesthesia and post-operative ibuprofen analgesia. Pre-operative ibuprofen administration can contribute to improve early pain management. Level of Evidence II, Therapeutic Studies. PMID:26327799

  20. Efficacy of Ibuprofen and ibuprofen/acetaminophen on postoperative pain in symptomatic patients with a pulpal diagnosis of necrosis.

    PubMed

    Wells, L Kevin; Drum, Melissa; Nusstein, John; Reader, Al; Beck, Mike

    2011-12-01

    The purpose of this prospective, randomized, double-blind study was to determine ibuprofen versus ibuprofen/acetaminophen use for postoperative endodontic pain in symptomatic patients with a pulpal diagnosis of necrosis and an associated periapical radiolucency who were experiencing moderate to severe preoperative pain. We also recorded escape medication use. Seventy-one adult patients presenting for emergency endodontic treatment with a symptomatic maxillary or mandibular tooth with a pulpal diagnosis of necrosis, periapical radiolucent area, and moderate to severe pain participated in this study. The patients were randomly divided into 2 groups by random assignment and numeric coding. An emergency debridement of the tooth was completed with hand and rotary instrumentation. At the end of the appointment, the patients randomly received capsules of either 600 mg ibuprofen or 600 mg ibuprofen combined with 1000 mg acetaminophen (blinded to both operator and patient). Patients also received a 6-day diary to be completed after anesthesia wore off and every morning for 5 days. Patients were asked to record pain, symptoms, and the number of capsules taken. Patients received escape medication (Vicodin) if the study medication did not control their pain. Postoperative data were analyzed by randomization test and step-down Bonferroni method of Holm. There were decreases in pain levels and analgesic use over time for the ibuprofen and ibuprofen/acetaminophen groups. There was no statistically significant difference between the 2 groups for analgesic use or escape medication use. Approximately 20% of patients in both groups required escape medication to control pain. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Spectrofluorimetric study of the beta-cyclodextrin-ibuprofen complex and determination of ibuprofen in pharmaceutical preparations and serum.

    PubMed

    Hergert, L A; Escandar, G M

    2003-06-13

    The inclusion complexation of ibuprofen in beta-cyclodextrin (beta-CD) has been examined by means of spectrofluorimetry at both acid and alkaline pH. The results suggest that stable 1:1 complexes are formed in both media. The analysis of the pK(a) values for ibuprofen in both the absence and presence of beta-CD (4.12 and 4.66, respectively) suggests that in the inclusion complex the carboxylic group is located outside the cyclodextrin (CD) but interacting with it. Further structural characterization of the complex was carried out by means of am1 semiempiral calculations. Based on the obtained results, a spectrofluorimetric method for the determination of ibuprofen in the presence of beta-CD at 10 degrees C was developed in the range of 4.7-58 mug ml(-1). Better limits of detection (1.6 mug ml(-1)) and quantification (4.7 mug ml(-1)) were obtained in this latter case with respect to those obtained in the absence of beta-CD. The method was satisfactorily applied to the quantification of ibuprofen in pharmaceutical preparations. A novel spectrofluorimetric determination of ibuprofen in the presence of beta-CD was also developed for serum samples at concentration levels between 5 and 70 mug ml(-1). It uses second-order fluorescence excitation-emission matrices coupled to an algorithm based on self-weighted alternating trilinear decomposition (SWATLD), and avoids resorting to separative instrumental analyses.

  2. Photodegradation of ibuprofen under UV-Vis irradiation: mechanism and toxicity of photolysis products.

    PubMed

    Li, Fu Hua; Yao, Kun; Lv, Wen Ying; Liu, Guo Guang; Chen, Ping; Huang, Hao Ping; Kang, Ya Pu

    2015-04-01

    The photodegradation of ibuprofen (IBP) in aqueous media was studied in this paper. The degradation mechanism, the reaction kinetics and toxicity of the photolysis products of IBP under UV-Vis irradiation were investigated by dissolved oxygen experiments, quenching experiments of reactive oxygen species (ROS), and toxicity evaluation utilizing Vibrio fischeri. The results demonstrated that the IBP degradation process could be fitted by the pseudo first-order kinetics model. The degradation of IBP by UV-Vis irradiation included direct photolysis and self-sensitization via ROS. The presence of dissolved oxygen inhibited the photodegradation of IBP, which indicated that direct photolysis was more rapid than the self-sensitization. The contribution rates of ·OH and (1)O2 were 21.8 % and 38.6 % in self-sensitization, respectively. Ibuprofen generated a number of intermediate products that were more toxic than the base compound during photodegradation.

  3. The SysteMHC Atlas project

    PubMed Central

    Shao, Wenguang; Pedrioli, Patrick G A; Wolski, Witold; Scurtescu, Cristian; Schmid, Emanuel; Courcelles, Mathieu; Schuster, Heiko; Kowalewski, Daniel; Marino, Fabio; Arlehamn, Cecilia S L; Vaughan, Kerrie; Peters, Bjoern; Sette, Alessandro; Ottenhoff, Tom H M; Meijgaarden, Krista E; Nieuwenhuizen, Natalie; Kaufmann, Stefan H E; Schlapbach, Ralph; Castle, John C; Nesvizhskii, Alexey I; Nielsen, Morten; Deutsch, Eric W; Campbell, David S; Moritz, Robert L; Zubarev, Roman A; Ytterberg, Anders Jimmy; Purcell, Anthony W; Marcilla, Miguel; Paradela, Alberto; Wang, Qi; Costello, Catherine E; Ternette, Nicola; van Veelen, Peter A; van Els, Cécile A C M; de Souza, Gustavo A; Sollid, Ludvig M; Admon, Arie; Stevanovic, Stefan; Rammensee, Hans-Georg; Thibault, Pierre; Perreault, Claude; Bassani-Sternberg, Michal

    2018-01-01

    Abstract Mass spectrometry (MS)-based immunopeptidomics investigates the repertoire of peptides presented at the cell surface by major histocompatibility complex (MHC) molecules. The broad clinical relevance of MHC-associated peptides, e.g. in precision medicine, provides a strong rationale for the large-scale generation of immunopeptidomic datasets and recent developments in MS-based peptide analysis technologies now support the generation of the required data. Importantly, the availability of diverse immunopeptidomic datasets has resulted in an increasing need to standardize, store and exchange this type of data to enable better collaborations among researchers, to advance the field more efficiently and to establish quality measures required for the meaningful comparison of datasets. Here we present the SysteMHC Atlas (https://systemhcatlas.org), a public database that aims at collecting, organizing, sharing, visualizing and exploring immunopeptidomic data generated by MS. The Atlas includes raw mass spectrometer output files collected from several laboratories around the globe, a catalog of context-specific datasets of MHC class I and class II peptides, standardized MHC allele-specific peptide spectral libraries consisting of consensus spectra calculated from repeat measurements of the same peptide sequence, and links to other proteomics and immunology databases. The SysteMHC Atlas project was created and will be further expanded using a uniform and open computational pipeline that controls the quality of peptide identifications and peptide annotations. Thus, the SysteMHC Atlas disseminates quality controlled immunopeptidomic information to the public domain and serves as a community resource toward the generation of a high-quality comprehensive map of the human immunopeptidome and the support of consistent measurement of immunopeptidomic sample cohorts. PMID:28985418

  4. Cutaneous irritancy of an ibuprofen medicated plaster in healthy volunteers.

    PubMed

    Maganji, Manisha; Connolly, Mark P; Bhatt, Aomesh

    2018-01-01

    Ibuprofen is a commonly used non-steroidal anti-inflammatory drug administered to treat injuries, joint pain, and recurrent muscular skeletal pain. The aim of this study was to determine the cutaneous irritancy of a medicated ibuprofen plaster compared with a placebo plaster in healthy volunteers. Healthy volunteers (N = 31) were treated at the same time with one ibuprofen and one placebo plaster. The ibuprofen and placebo plaster were applied in a randomized fashion to sites on the left or right side of subjects' lower backs. At each scheduled visit, the plasters and applications sites were assessed for degree of adhesion and skin irritancy, respectively. The plasters were applied on study Days 1, 2, 3, 5, 8, 10, 12, 15, 17, and 19, with final plaster removal on Day 22. The ibuprofen medicated plaster compared with placebo had a lower percentage of Grade 1 (23.3% vs. 46.7%, respectively), Grade 2 (10% vs. 20%), and ≥Grade 3 (3% vs. 16.1%) irritancy scores after 21 days of application. The mean irritation score across the study was 0.40 for the ibuprofen medicated plaster and 1.18 for the placebo plaster. The irritation score on Day 22 of the study was 0.53 for the ibuprofen medicated plaster and 1.50 for placebo. The placebo plaster was associated with a higher number of stopped applications due to Grade 3 or above skin reactions compared with the ibuprofen medicated plaster (5 vs. 1, respectively). The ibuprofen medicated plaster was well tolerated and was associated with lower irritancy than the placebo plaster.

  5. Formulation studies on ibuprofen sodium-cationic dextran conjugate: effect on tableting and dissolution characteristics of ibuprofen.

    PubMed

    Abioye, Amos Olusegun; Kola-Mustapha, Adeola

    2016-01-01

    The effect of electrostatic interaction between ibuprofen sodium (IbS) and cationic diethylaminoethyl dextran (Ddex), on the tableting properties and ibuprofen release from the conjugate tablet was investigated. Ibuprofen exhibits poor flow, compaction (tableting) and dissolution behavior due to its hydrophobic structure, high cohesive, adhesive and viscoelastic properties therefore it was granulated with cationic Ddex to improve its compression and dissolution characteristics. Electrostatic interaction and hydrogen bonding between IbS and Ddex was confirmed with FT-IR and DSC results showed a stepwise endothermic solid-solid structural transformation from racemic to anhydrous forms between 120 and 175 °C which melted into liquid form at 208.15 °C. The broad and diffused DSC peaks of the conjugate granules as well as the disappearance of ibuprofen melting peak provided evidence for their highly amorphous state. It was evident that Ddex improved the flowability and densification of the granules and increased the mechanical and tensile strengths of the resulting tablets as the tensile strength increased from 0.67 ± 0.0172 to 1.90 ± 0.0038 MPa with increasing Ddex concentration. Both tapping and compression processes showed that the most prominent mechanism of densification were particle slippage, rearrangement and plastic deformation while fragmentation was minimized. Ddex retarded the extent of dissolution in general, indicating potentials for controlled release formulations. Multiple release mechanisms including diffusion; anomalous transport and super case II transport were noted. It was concluded that interaction between ibuprofen sodium and Ddex produced a novel formulation with improved flowability, tableting and dissolution characteristics with potential controlled drug release characteristics dictated by Ddex concentration.

  6. Antigen-B Cell Receptor Complexes Associate with Intracellular major histocompatibility complex (MHC) Class II Molecules*

    PubMed Central

    Barroso, Margarida; Tucker, Heidi; Drake, Lisa; Nichol, Kathleen; Drake, James R.

    2015-01-01

    Antigen processing and MHC class II-restricted antigen presentation by antigen-presenting cells such as dendritic cells and B cells allows the activation of naïve CD4+ T cells and cognate interactions between B cells and effector CD4+ T cells, respectively. B cells are unique among class II-restricted antigen-presenting cells in that they have a clonally restricted antigen-specific receptor, the B cell receptor (BCR), which allows the cell to recognize and respond to trace amounts of foreign antigen present in a sea of self-antigens. Moreover, engagement of peptide-class II complexes formed via BCR-mediated processing of cognate antigen has been shown to result in a unique pattern of B cell activation. Using a combined biochemical and imaging/FRET approach, we establish that internalized antigen-BCR complexes associate with intracellular class II molecules. We demonstrate that the M1-paired MHC class II conformer, shown previously to be critical for CD4 T cell activation, is incorporated selectively into these complexes and loaded selectively with peptide derived from BCR-internalized cognate antigen. These results demonstrate that, in B cells, internalized antigen-BCR complexes associate with intracellular MHC class II molecules, potentially defining a site of class II peptide acquisition, and reveal a selective role for the M1-paired class II conformer in the presentation of cognate antigen. These findings provide key insights into the molecular mechanisms used by B cells to control the source of peptides charged onto class II molecules, allowing the immune system to mount an antibody response focused on BCR-reactive cognate antigen. PMID:26400081

  7. Innate lymphoid cells and the MHC.

    PubMed

    Robinette, M L; Colonna, M

    2016-01-01

    Innate lymphoid cells (ILCs) are a new class of immune cells that include natural killer (NK) cells and appear to be the innate counterparts to CD4(+) helper T cells and CD8(+) cytotoxic T cells based on developmental and functional similarities. Like T cells, both NK cells and other ILCs also show connections to the major histocompatibility complex (MHC). In human and mouse, NK cells recognize and respond to classical and nonclassical MHC I molecules as well as structural homologues, whereas mouse ILCs have recently been shown to express MHC II. We describe the history of MHC I recognition by NK cells and discuss emerging roles for MHC II expression by ILC subsets, making comparisons between both mouse and human when possible. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Design and study of some novel ibuprofen derivatives with potential nootropic and neuroprotective properties.

    PubMed

    Siskou, Ioanna C; Rekka, Eleni A; Kourounakis, Angeliki P; Chrysselis, Michael C; Tsiakitzis, Kariofyllis; Kourounakis, Panos N

    2007-01-15

    Six novel ibuprofen derivatives and related structures, incorporating a proline moiety and designed for neurodegenerative disorders, are studied. They possess anti-inflammatory properties and three of them inhibited lipoxygenase. One compound was found to inhibit cyclooxygenase (COX)-2 production in spleenocytes from arthritic rats. The HS-containing compounds are potent antioxidants and one of them protected against glutathione loss after cerebral ischemia/reperfusion. They demonstrated lipid-lowering ability and seem to acquire low gastrointestinal toxicity. Acetylcholinesterase inhibitory activity, found in two of these compounds, may be an asset to their actions.

  9. Effect of Ibuprofen on masking endodontic diagnosis.

    PubMed

    Read, Jason K; McClanahan, Scott B; Khan, Asma A; Lunos, Scott; Bowles, Walter R

    2014-08-01

    An accurate diagnosis is of upmost importance before initiating endodontic treatment; yet, there are occasions when the practitioner cannot reproduce the patient's chief complaint because the patient has become asymptomatic. Ibuprofen taken beforehand may "mask" or eliminate the patient's symptoms. In fact, 64%-83% of patients with dental pain take analgesics before seeing a dentist. The purpose of this study was to examine the possible "masking" effect of ibuprofen on endodontic diagnostic tests. Forty-two patients with endodontic pain underwent testing (cold, percussion, palpation, and bite force measurement) and then received either placebo or 800 mg ibuprofen. Both patients and operators were blinded to the medication received. One hour later, diagnostic testing was repeated and compared with pretreatment testing. Ibuprofen affected testing values for vital teeth by masking palpation 40%, percussion 25%, and cold 25% on affected teeth with symptomatic irreversible pulpitis and symptomatic apical periodontitis. There was no observed masking effect in the placebo group on palpation, percussion, or cold values. When nonvital teeth were included, the masking effect of ibuprofen was decreased. However, little masking occurred with the bite force measurement differences. Analgesics taken before the dental appointment can affect endodontic diagnostic testing results. Bite force measurements can assist in identifying the offending tooth in cases in which analgesics "mask" the endodontic diagnosis. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  10. Ibuprofen does not reverse ventilatory acclimatization to chronic hypoxia.

    PubMed

    De La Zerda, D J; Stokes, J A; Do, J; Go, A; Fu, Z; Powell, F L

    2017-07-27

    Ventilatory acclimatization to hypoxia involves an increase in the acute hypoxic ventilatory response that is blocked by non-steroidal anti-inflammatory drugs administered during sustained hypoxia. We tested the hypothesis that inflammatory signals are necessary to sustain ventilatory acclimatization to hypoxia once it is established. Adult, rats were acclimatized to normoxia or chronic hypoxia (CH, [Formula: see text] =70Torr) for 11-12days and treated with ibuprofen or saline for the last 2days of hypoxia. Ventilation, metabolic rate, and arterial blood gas responses to O 2 and CO 2 were not affected by ibuprofen after acclimatization had been established. Immunohistochemistry and image analysis showed acute (1h) hypoxia activated microglia in a medullary respiratory center (nucleus tractus solitarius, NTS) and this was blocked by ibuprofen administered from the beginning of hypoxic exposure. Microglia returned to the control state after 7days of CH and were not affected by ibuprofen administered for 2 more days of CH. In contrast, NTS astrocytes were activated by CH but not acute hypoxia and activation was not reversed by administering ibuprofen for the last 2days of CH. Hence, ibuprofen cannot reverse ventilatory acclimatization or astrocyte activation after they have been established by sustained hypoxia. The results are consistent with a model for microglia activation or other ibuprofen-sensitive processes being necessary for the induction but not maintenance of ventilatory acclimatization to hypoxia. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Development of novel ibuprofen-loaded solid dispersion with enhanced bioavailability using cycloamylose.

    PubMed

    Baek, Hyung Hee; Kim, Dae-Hwan; Kwon, So Young; Rho, Shin-Joung; Kim, Dong-Wuk; Choi, Han-Gon; Kim, Yong-Ro; Yong, Chul Soon

    2012-03-01

    To develop a novel ibuprofen-loaded solid dispersion with enhanced bioavailability using cycloamylose, it was prepared using spray-drying techniques with cycloamylose at a weight ratio of 1:1. The effect of cycloamylose on aqueous solubility of ibuprofen was investigated. The physicochemical properties of solid dispersions were investigated using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray diffraction. The dissolution and bioavailability in rats were evaluated compared with ibuprofen powder. This ibuprofen-loaded solid dispersion improved about 14-fold drug solubility. Ibuprofen was present in an unchanged crystalline state, and cycloamylose played the simple role of a solubilizing agent in this solid dispersion. Moreover, the dispersion gave 2-fold higher AUC (area under the drug concentration-time curve) value compared with a ibuprofen powder, indicating that it improved the oral bioavailability of ibuprofen in rats. Thus, the solid dispersion may be useful to deliver ibuprofen with enhanced bioavailability without crystalline change.

  12. The SysteMHC Atlas project.

    PubMed

    Shao, Wenguang; Pedrioli, Patrick G A; Wolski, Witold; Scurtescu, Cristian; Schmid, Emanuel; Vizcaíno, Juan A; Courcelles, Mathieu; Schuster, Heiko; Kowalewski, Daniel; Marino, Fabio; Arlehamn, Cecilia S L; Vaughan, Kerrie; Peters, Bjoern; Sette, Alessandro; Ottenhoff, Tom H M; Meijgaarden, Krista E; Nieuwenhuizen, Natalie; Kaufmann, Stefan H E; Schlapbach, Ralph; Castle, John C; Nesvizhskii, Alexey I; Nielsen, Morten; Deutsch, Eric W; Campbell, David S; Moritz, Robert L; Zubarev, Roman A; Ytterberg, Anders Jimmy; Purcell, Anthony W; Marcilla, Miguel; Paradela, Alberto; Wang, Qi; Costello, Catherine E; Ternette, Nicola; van Veelen, Peter A; van Els, Cécile A C M; Heck, Albert J R; de Souza, Gustavo A; Sollid, Ludvig M; Admon, Arie; Stevanovic, Stefan; Rammensee, Hans-Georg; Thibault, Pierre; Perreault, Claude; Bassani-Sternberg, Michal; Aebersold, Ruedi; Caron, Etienne

    2018-01-04

    Mass spectrometry (MS)-based immunopeptidomics investigates the repertoire of peptides presented at the cell surface by major histocompatibility complex (MHC) molecules. The broad clinical relevance of MHC-associated peptides, e.g. in precision medicine, provides a strong rationale for the large-scale generation of immunopeptidomic datasets and recent developments in MS-based peptide analysis technologies now support the generation of the required data. Importantly, the availability of diverse immunopeptidomic datasets has resulted in an increasing need to standardize, store and exchange this type of data to enable better collaborations among researchers, to advance the field more efficiently and to establish quality measures required for the meaningful comparison of datasets. Here we present the SysteMHC Atlas (https://systemhcatlas.org), a public database that aims at collecting, organizing, sharing, visualizing and exploring immunopeptidomic data generated by MS. The Atlas includes raw mass spectrometer output files collected from several laboratories around the globe, a catalog of context-specific datasets of MHC class I and class II peptides, standardized MHC allele-specific peptide spectral libraries consisting of consensus spectra calculated from repeat measurements of the same peptide sequence, and links to other proteomics and immunology databases. The SysteMHC Atlas project was created and will be further expanded using a uniform and open computational pipeline that controls the quality of peptide identifications and peptide annotations. Thus, the SysteMHC Atlas disseminates quality controlled immunopeptidomic information to the public domain and serves as a community resource toward the generation of a high-quality comprehensive map of the human immunopeptidome and the support of consistent measurement of immunopeptidomic sample cohorts. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Use of ibuprofen and risk of Parkinson disease

    PubMed Central

    Chen, Honglei; Schwarzschild, Michael A.; Ascherio, Alberto

    2011-01-01

    Background: Neuroinflammation may contribute to the pathogenesis of Parkinson disease (PD). Use of nonsteroidal anti-inflammatory drugs (NSAID) in general, and possibly ibuprofen in particular, has been shown to be related to lower PD risk in previous epidemiologic studies. Methods: We prospectively examined whether use of ibuprofen or other NSAIDs is associated with lower PD risk among 136,197 participants in the Nurses' Health Study (NHS) and the Health Professionals Follow-up Study (HPFS) free of PD at baseline (1998 for NHS and 2000 for HPFS). NSAIDs use was assessed via questionnaire. Results were combined in a meta-analysis with those of published prospective investigations. Results: We identified 291 incident PD cases during 6 years of follow-up. Users of ibuprofen had a significantly lower PD risk than nonusers (relative risk [RR], adjusted for age, smoking, caffeine, and other covariates = 0.62; 95% confidence interval [CI] 0.42–0.93; p = 0.02). There was a dose–response relationship between tablets of ibuprofen taken per week and PD risk (p trend = 0.01). In contrast, PD risk was not significantly related to use of aspirin (RR = 0.99; 95% CI 0.78–1.26), other NSAIDs (RR = 1.26; 95% CI 0.86–1.84), or acetaminophen (RR = 0.86; 95% CI 0.62–1.18). Similar results were obtained in the meta-analyses: the pooled RR was 0.73 (95% CI 0.63–0.85; p < 0.0001) for ibuprofen use, whereas use of other types of analgesics was not associated with lower PD risk. Conclusions: The association between use of ibuprofen and lower PD risks, not shared by other NSAIDs or acetaminophen, suggests ibuprofen should be further investigated as a potential neuroprotective agent against PD. PMID:21368281

  14. MHC class I, MHC class II and intercellular adhesion molecule-1 (ICAM-1) expression in inflammatory myopathies.

    PubMed

    Bartoccioni, E; Gallucci, S; Scuderi, F; Ricci, E; Servidei, S; Broccolini, A; Tonali, P

    1994-01-01

    We investigated the relationship between the MHC-I, MHC-II and intercellular adhesion molecule-1 (ICAM-1) expression on myofibres and the presence of inflammatory cells in muscle specimens of 18 patients with inflammatory myopathies (nine polymyositis, seven dermatomyositis, two inclusion body myositis). We observed MHC-I expression in muscle fibres, infiltrating mononuclear cells and endothelial cells in every specimen. In seven patients, some muscle fibres were MHC-II-positive for the DR antigen, while the DP and DQ antigens were absent. ICAM-1 expression, detected in seven patients, was found in clusters of myofibres, associated with a marked MHC-I positivity and a widespread mononuclear infiltration. Most of the ICAM-1-positive fibres were regenerating fibres. Furthermore, some fibres expressed both ICAM-1 and DR antigens near infiltrating cells. This finding could support the hypothesis that myofibres may themselves be the site of autosensitization.

  15. Inhibitor-binding mode of homobelactosin C to proteasomes: New insights into class I MHC ligand generation

    PubMed Central

    Groll, Michael; Larionov, Oleg V.; Huber, Robert; de Meijere, Armin

    2006-01-01

    Most class I MHC ligands are generated from the vast majority of cellular proteins by proteolysis within the ubiquitin–proteasome pathway and are presented on the cell surface by MHC class I molecules. Here, we present the crystallographic analysis of yeast 20S proteasome in complex with the inhibitor homobelactosin C. The structure reveals a unique inhibitor-binding mode and provides information about the composition of proteasomal primed substrate-binding sites. IFN-γ inducible substitution of proteasomal constitutive subunits by immunosubunits modulates characteristics of generated peptides, thus producing fragments with higher preference for binding to MHC class I molecules. The structural data for the proteasome:homobelactosin C complex provide an explanation for involvement of immunosubunits in antigen generation and open perspectives for rational design of ligands, inhibiting exclusively constitutive proteasomes or immunoproteasomes. PMID:16537370

  16. Development of MHC-Linked Microsatellite Markers in the Domestic Cat and Their Use to Evaluate MHC Diversity in Domestic Cats, Cheetahs, and Gir Lions

    PubMed Central

    Morris, Katrina M.; Kirby, Katherine; Beatty, Julia A.; Barrs, Vanessa R.; Cattley, Sonia; David, Victor; O’Brien, Stephen J.; Menotti-Raymond, Marilyn

    2014-01-01

    Diversity within the major histocompatibility complex (MHC) reflects the immunological fitness of a population. MHC-linked microsatellite markers provide a simple and an inexpensive method for studying MHC diversity in large-scale studies. We have developed 6 MHC-linked microsatellite markers in the domestic cat and used these, in conjunction with 5 neutral microsatellites, to assess MHC diversity in domestic mixed breed (n = 129) and purebred Burmese (n = 61) cat populations in Australia. The MHC of outbred Australian cats is polymorphic (average allelic richness = 8.52), whereas the Burmese population has significantly lower MHC diversity (average allelic richness = 6.81; P < 0.01). The MHC-linked microsatellites along with MHC cloning and sequencing demonstrated moderate MHC diversity in cheetahs (n = 13) and extremely low diversity in Gir lions (n = 13). Our MHC-linked microsatellite markers have potential future use in diversity and disease studies in other populations and breeds of cats as well as in wild felid species. PMID:24620003

  17. Acute pain management: acetaminophen and ibuprofen are often under-dosed.

    PubMed

    Milani, Gregorio P; Benini, Franca; Dell'Era, Laura; Silvagni, Davide; Podestà, Alberto F; Mancusi, Rossella Letizia; Fossali, Emilio F

    2017-07-01

    Most children with pain are managed by either acetaminophen or ibuprofen. However, no study has so far investigated if children are prescribed adequate doses of acetaminophen or ibuprofen in emergency department. Aim of this retrospective study was to investigate the prevalence of under-dosage of these drugs in children presenting with pain in emergency department. Children initially prescribed with acetaminophen or ibuprofen for pain management were included. The χ 2 automatic interaction detection method was used considering the percentage variation from the minimum of the appropriate dose as dependent variable while prescribed drug, age, gender, body weight, type of hospital (pediatric or general), and availability of internal guidelines on pediatric pain management in the emergency department as independent variables. Data on 1471 children managed for pain were available. Under-dosage was prescribed in 893 subjects (61%), of whom 577 were prescribed acetaminophen and 316 ibuprofen. The use of acetaminophen suppositories, body weight <12 kg or >40 kg, and the use of oral ibuprofen identified clusters of children associated with under-dosage prescription. Prescription of acetaminophen and ibuprofen was frequently under-dosed. The use of suppositories, lower and higher body weight, and the use of ibuprofen were associated with under-dosage. Under-dosing may reflect prescription of anti-pyretic doses. Agenzia Italiana del Farmaco-Observational Study Register (RSO). Registration code: PIERRE/1 What is Known: • Pain is frequent in children presented to emergency department. • International recommendations on pain management are often not implemented. What is New: • Acetaminophen and ibuprofen were frequently underdosed in children prescribed for pain in the Italian emergency departments. • Under-dosage may be related to the habit of using acetaminophen and ibuprofen in the recommended range for fever treatment.

  18. Recent advances in Major Histocompatibility Complex (MHC) class I antigen presentation: Plastic MHC molecules and TAPBPR-mediated quality control

    PubMed Central

    van Hateren, Andy; Bailey, Alistair; Elliott, Tim

    2017-01-01

    We have known since the late 1980s that the function of classical major histocompatibility complex (MHC) class I molecules is to bind peptides and display them at the cell surface to cytotoxic T cells. Recognition by these sentinels of the immune system can lead to the destruction of the presenting cell, thus protecting the host from pathogens and cancer. Classical MHC class I molecules (MHC I hereafter) are co-dominantly expressed, polygenic, and exceptionally polymorphic and have significant sequence diversity. Thus, in most species, there are many different MHC I allotypes expressed, each with different peptide-binding specificity, which can have a dramatic effect on disease outcome. Although MHC allotypes vary in their primary sequence, they share common tertiary and quaternary structures. Here, we review the evidence that, despite this commonality, polymorphic amino acid differences between allotypes alter the ability of MHC I molecules to change shape (that is, their conformational plasticity). We discuss how the peptide loading co-factor tapasin might modify this plasticity to augment peptide loading. Lastly, we consider recent findings concerning the functions of the non-classical MHC I molecule HLA-E as well as the tapasin-related protein TAPBPR (transporter associated with antigen presentation binding protein-related), which has been shown to act as a second quality-control stage in MHC I antigen presentation. PMID:28299193

  19. Timing of ibuprofen use and bone mineral density adaptations to exercise training.

    PubMed

    Kohrt, Wendy M; Barry, Daniel W; Van Pelt, Rachael E; Jankowski, Catherine M; Wolfe, Pamela; Schwartz, Robert S

    2010-06-01

    Prostaglandins (PGs) are essential signaling factors in bone mechanotransduction. In animals, inhibition of the enzyme responsible for PG synthesis (cyclooxygenase) by nonsteroidal anti-inflammatory drugs (NSAIDs) blocks the bone-formation response to loading when administered before, but not immediately after, loading. The aim of this proof-of-concept study was to determine whether the timing of NSAID use influences bone mineral density (BMD) adaptations to exercise in humans. Healthy premenopausal women (n = 73) aged 21 to 40 years completed a supervised 9-month weight-bearing exercise training program. They were randomized to take (1) ibuprofen (400 mg) before exercise, placebo after (IBUP/PLAC), (2) placebo before, ibuprofen after (PLAC/IBUP), or (3) placebo before and after (PLAC/PLAC) exercise. Relative changes in hip and lumbar spine BMD from before to after exercise training were assessed using a Hologic Delphi-W dual-energy X-ray absorptiometry (DXA) instrument. Because this was the first study to evaluate whether ibuprofen use affects skeletal adaptations to exercise, only women who were compliant with exercise were included in the primary analyses (IBUP/PLAC, n = 17; PLAC/PLAC, n = 23; and PLAC/IBUP, n = 14). There was a significant effect of drug treatment, adjusted for baseline BMD, on the BMD response to exercise for regions of the hip (total, p < .001; neck, p = .026; trochanter, p = .040; shaft, p = .019) but not the spine (p = .242). The largest increases in BMD occurred in the group that took ibuprofen after exercise. Total-hip BMD changes averaged -0.2% +/- 1.3%, 0.4% +/- 1.8%, and 2.1% +/- 1.7% in the IBUP/PLAC, PLAC/PLAC, and PLAC/IBUP groups, respectively. This preliminary study suggests that taking NSAIDs after exercise enhances the adaptive response of BMD to exercise, whereas taking NSAIDs before may impair the adaptive response. (c) 2010 American Society for Bone and Mineral Research.

  20. MHC class I, MHC class II and intercellular adhesion molecule-1 (ICAM-1) expression in inflammatory myopathies.

    PubMed Central

    Bartoccioni, E; Gallucci, S; Scuderi, F; Ricci, E; Servidei, S; Broccolini, A; Tonali, P

    1994-01-01

    We investigated the relationship between the MHC-I, MHC-II and intercellular adhesion molecule-1 (ICAM-1) expression on myofibres and the presence of inflammatory cells in muscle specimens of 18 patients with inflammatory myopathies (nine polymyositis, seven dermatomyositis, two inclusion body myositis). We observed MHC-I expression in muscle fibres, infiltrating mononuclear cells and endothelial cells in every specimen. In seven patients, some muscle fibres were MHC-II-positive for the DR antigen, while the DP and DQ antigens were absent. ICAM-1 expression, detected in seven patients, was found in clusters of myofibres, associated with a marked MHC-I positivity and a widespread mononuclear infiltration. Most of the ICAM-1-positive fibres were regenerating fibres. Furthermore, some fibres expressed both ICAM-1 and DR antigens near infiltrating cells. This finding could support the hypothesis that myofibres may themselves be the site of autosensitization. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7507012

  1. The central repeat domain 1 of Kaposi's sarcoma-associated herpesvirus (KSHV) latency associated-nuclear antigen 1 (LANA1) prevents cis MHC class I peptide presentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwun, Hyun Jin; Ramos da Silva, Suzane; Department of Pathology, Botucatu School of Medicine at Sao Paulo State University, Sao Paulo

    KSHV LANA1, a latent protein expressed during chronic infection to maintain a viral genome, inhibits major histocompatibility complex class I (MHC I) peptide presentation in cis as a means of immune evasion. Through deletional cloning, we localized this function to the LANA1 central repeat 1 (CR1) subregion. Other CR subregions retard LANA1 translation and proteasomal processing but do not markedly inhibit LANA1 peptide processing by MHC I. Inhibition of proteasomal processing ablates LANA1 peptide presentation. Direct expression of LANA1 within the endoplasmic reticulum (ER) overcomes CR1 inhibition suggesting that CR1 acts prior to translocation of cytoplasmic peptides into the ER.more » By physically separating CR1 from other subdomains, we show that LANA1 evades MHC I peptide processing by a mechanism distinct from other herpesviruses including Epstein-Barr virus (EBV). Although LANA1 and EBV EBNA1 are functionally similar, they appear to use different mechanisms to evade host cytotoxic T lymphocyte surveillance.« less

  2. pH dependent conjugation of Ibuprofen to PEGylated nanoparticles

    NASA Astrophysics Data System (ADS)

    Bharti, Shivani; Jain, Shikshita; Kaur, Gurvir; Gupta, Shikha; Tripathi, S. K.

    2018-04-01

    In this paper, Ibuprofen, a water insoluble drug was covalently attached to PEGylated nanoparticles. Firstly, Surface functionalization of water dispersed core/shell nanoparticles had been done using hydrophilic polymer PEG-diamine. Therefore, PEGylated nanoparticles contain NH2 groups over the surface of nanoparticles and can be used for the further attachment of biomolecules. Ibuprofen was covalently loaded on the PEGylated core/shell nanoparticles using carbodiimide reaction. The synthesis had been carried out under two different pH environments, as the solubility of Ibuprofen is pH dependent. The resultant samples were characterized using UV-Vis absorption and FT-IR spectroscopy. The results strongly suggest the successful chemical conjugation of Ibuprofen to PEGylated nanoparticles in aqueous media and they could be further used for drug delivery applications.

  3. Fulvic Acid Mediated Photolysis of Ibuprofen in Water.

    EPA Science Inventory

    Photolysis of the nonsteroidal anti-inflammatory drug ibuprofen was studied in solutions of fulvic acid (FA) isolated from Pony Lake, Antarctica; Suwannee River, GA, USA; and Old Woman Creek, OH, USA. At an initial concentration of 10 µM ibuprofen degrades by direct photolysis...

  4. Re-evaluating the generation of a "proteasome-independent" MHC class I-restricted CD8 T cell epitope.

    PubMed

    Wherry, E John; Golovina, Tatiana N; Morrison, Susan E; Sinnathamby, Gomathinayagam; McElhaugh, Michael J; Shockey, David C; Eisenlohr, Laurence C

    2006-02-15

    The proteasome is primarily responsible for the generation of MHC class I-restricted CTL epitopes. However, some epitopes, such as NP(147-155) of the influenza nucleoprotein (NP), are presented efficiently in the presence of proteasome inhibitors. The pathways used to generate such apparently "proteasome-independent" epitopes remain poorly defined. We have examined the generation of NP(147-155) and a second proteasome-dependent NP epitope, NP(50-57), using cells adapted to growth in the presence of proteasome inhibitors and also through protease overexpression. We observed that: 1) Ag processing and presentation proceeds in proteasome-inhibitor adapted cells but may become more dependent, at least in part, on nonproteasomal protease(s), 2) tripeptidyl peptidase II does not substitute for the proteasome in the generation of NP(147-155), 3) overexpression of leucine aminopeptidase, thymet oligopeptidase, puromycin-sensitive aminopeptidase, and bleomycin hydrolase, has little impact on the processing and presentation of NP(50-57) or NP(147-155), and 4) proteasome-inhibitor treatment altered the specificity of substrate cleavage by the proteasome using cell-free digests favoring NP(147-155) epitope preservation. Based on these results, we propose a central role for the proteasome in epitope generation even in the presence of proteasome inhibitors, although such inhibitors will likely alter cleavage patterns and may increase the dependence of the processing pathway on postproteasomal enzymes.

  5. MHC class I loaded ligands from breast cancer cell lines: A potential HLA-I-typed antigen collection

    PubMed Central

    Rozanov, Dmitri V.; Rozanov, Nikita D.; Chiotti, Kami; Reddy, Ashok; Wilmarth, Phillip A.; David, Larry L.; Cha, Seung W.; Woo, Sunghee; Pevzner, Pavel; Bafna, Vineet; Burrows, Gregory G.; Rantala, Juha K.; Levin, Trevor; Anur, Pavana; Johnson-Camacho, Katie; Tabatabaei, Shaadi; Munson, Daniel J.; Bruno, Tullia C.; Slansky, Jill E.; Kappler, John W.; Hirano, Naoto; Boegel, Sebastian; Fox, Bernard A.; Egelston, Colt; Simons, Diana L.; Jimenez, Grecia; Lee, Peter P.; Gray, Joe W.; Spellman, Paul T.

    2018-01-01

    Breast cancer therapy based on amplifying a patient’s antitumor immune response depends on the availability of appropriate MHC class I-restricted, breast cancer-specific epitopes. To build a catalog of peptides presented by breast cancer cells, we undertook systematic MHC class I immunoprecipitation followed by elution of MHC class I-loaded peptides in breast cancer cell lines. We determined the sequence of 3,196 MHC class I-bound peptides representing 1,921 proteins from a panel of 20 breast cancer cell lines including basal, luminal, and claudin-low subtypes. The data has been deposited to the ProteomeXchange with identifier PXD006406. After removing duplicate peptides, i.e., the same peptide eluted from more than one cell line, the total number of unique peptides was 2,740. Of the unique peptides eluted, more than 1,750 had been previously identified, and of these, sixteen have been shown to be immunogenic. Importantly, only 3 of these immunogenic peptides have been identified in breast cancer cells in earlier studies. MHC class I binding probability of eluted peptides was used to plot the distribution of MHC class I allele-specific peptides in accordance with the binding score for each breast cancer cell line. We also determined that the tested breast cancer cells presented 89 mutation-containing peptides and peptides derived from aberrantly translated genes, 7 of which were shared between four or two different cell lines. Overall, the high throughput identification of MHC class I-loaded peptides is an effective strategy for systematic characterization of cancer peptides, and could be employed for design of multi-peptide anticancer vaccines. PMID:29331515

  6. Peptide-MHC Class I Tetramers Can Fail To Detect Relevant Functional T Cell Clonotypes and Underestimate Antigen-Reactive T Cell Populations.

    PubMed

    Rius, Cristina; Attaf, Meriem; Tungatt, Katie; Bianchi, Valentina; Legut, Mateusz; Bovay, Amandine; Donia, Marco; Thor Straten, Per; Peakman, Mark; Svane, Inge Marie; Ott, Sascha; Connor, Tom; Szomolay, Barbara; Dolton, Garry; Sewell, Andrew K

    2018-04-01

    Peptide-MHC (pMHC) multimers, usually used as streptavidin-based tetramers, have transformed the study of Ag-specific T cells by allowing direct detection, phenotyping, and enumeration within polyclonal T cell populations. These reagents are now a standard part of the immunology toolkit and have been used in many thousands of published studies. Unfortunately, the TCR-affinity threshold required for staining with standard pMHC multimer protocols is higher than that required for efficient T cell activation. This discrepancy makes it possible for pMHC multimer staining to miss fully functional T cells, especially where low-affinity TCRs predominate, such as in MHC class II-restricted responses or those directed against self-antigens. Several recent, somewhat alarming, reports indicate that pMHC staining might fail to detect the majority of functional T cells and have prompted suggestions that T cell immunology has become biased toward the type of cells amenable to detection with multimeric pMHC. We use several viral- and tumor-specific pMHC reagents to compare populations of human T cells stained by standard pMHC protocols and optimized protocols that we have developed. Our results confirm that optimized protocols recover greater populations of T cells that include fully functional T cell clonotypes that cannot be stained by regular pMHC-staining protocols. These results highlight the importance of using optimized procedures that include the use of protein kinase inhibitor and Ab cross-linking during staining to maximize the recovery of Ag-specific T cells and serve to further highlight that many previous quantifications of T cell responses with pMHC reagents are likely to have considerably underestimated the size of the relevant populations. Copyright © 2018 The Authors.

  7. MHC class I D(k) expression in hematopoietic and nonhematopoietic cells confers natural killer cell resistance to murine cytomegalovirus.

    PubMed

    Xie, Xuefang; Stadnisky, Michael D; Coats, Ebony R; Ahmed Rahim, Mir Munir; Lundgren, Alyssa; Xu, Wenhao; Makrigiannis, Andrew P; Brown, Michael G

    2010-05-11

    NK cell-mediated murine cytomegalovirus (MCMV) resistance (Cmv(r)) is under H-2(k) control in MA/My mice, but the underlying gene(s) is unclear. Prior genetic analysis mapped Cmv(r) to the MHC class I (MHC-I) D(k) gene interval. Because NK cell receptors are licensed by and responsive to MHC class I molecules, D(k) itself is a candidate gene. A 10-kb genomic D(k) fragment was subcloned and microinjected into MCMV-susceptible (Cmv(s)) (MA/My.L-H2(b) x C57L)F(1) or (B6 x DBA/2)F(2) embryos. Transgenic founders, which are competent for D(k) expression and germline transgene transmission, were identified and further backcrossed to MA/My.L-H2(b) or C57L mice. Remarkably, D(k) expression delivered NK-mediated resistance in either genetic background. Further, NK cells with cognate inhibitory Ly49G receptors for self-MHC-I D(k) were licensed and critical in protection against MCMV infection. In radiation bone marrow chimeras, NK resistance was significantly diminished when MHC-I D(k) expression was restricted to only hematopoietic or nonhematopoietic cells. Thus, MHC-I D(k) is the H-2(k)-linked Cmv(r) locus; these findings suggest a role for NK cell interaction with D(k)-bearing hematopoietic and nonhematopoietic cells to shape NK-mediated virus immunity.

  8. Solid-phase microextraction and chiral HPLC analysis of ibuprofen in urine.

    PubMed

    de Oliveira, Anderson Rodrigo Moraes; Cesarino, Evandro José; Bonato, Pierina Sueli

    2005-04-25

    A simple and rapid solid-phase microextraction method was developed for the enantioselective analysis of ibuprofen in urine. The sampling was made with a polydimethylsiloxane-divinylbenzene coated fiber immersed in the liquid sample. After desorptioning from the fiber, ibuprofen enantiomers were analyzed by HPLC using a Chiralpak AD-RH column and UV detection. The mobile phase was made of methanol-pH 3.0 phosphoric acid solution (75:25, v/v), at a flow rate of 0.45 mL/min. The mean recoveries of SPME were 19.8 and 19.1% for (-)-R-ibuprofen and (+)-(S)-ibuprofen, respectively. The method was linear at the range of 0.25-25 microg/mL. Within-day and between-day assay precision and accuracy were below 15% for both ibuprofen enantiomers at concentrations of 0.75, 7.5 and 20 microg/mL. The method was tested with urine quality control samples and human urine fractions after administration of 200 mg rac-ibuprofen.

  9. The Effect of Cyclooxygenase Inhibition on Tendon-Bone Healing in an In Vitro Coculture Model

    PubMed Central

    Schwarting, Tim; Pretzsch, Sebastian; Debus, Florian; Ruchholtz, Steffen; Lechler, Philipp

    2015-01-01

    The effects of cyclooxygenase (COX) inhibition following the reconstruction of the anterior cruciate ligament remain unclear. We examined the effects of selective COX-2 and nonselective COX inhibition on bone-tendon integration in an in vitro model. We measured the dose-dependent effects of ibuprofen and parecoxib on the viability of lipopolysaccharide- (LPS-) stimulated and unstimulated mouse MC3T3-E1 and 3T3 cells, the influence on gene expression at the osteoblast, interface, and fibroblast regions measured by quantitative PCR, and cellular outgrowth assessed on histological sections. Ibuprofen led to a dose-dependent suppression of MC3T3 cell viability, while parecoxib reduced the viability of 3T3 cultures. Exposure to ibuprofen significantly suppressed expression of Alpl (P < 0.01), Bglap (P < 0.001), and Runx2 (P < 0.01), and although parecoxib reduced expression of Alpl (P < 0.001), Fmod (P < 0.001), and Runx2 (P < 0.01), the expression of Bglap was increased (P < 0.01). Microscopic analysis showed a reduction in cellular outgrowth in LPS-stimulated cultures following exposure to ibuprofen and parecoxib. Nonselective COX inhibition and the specific inhibition of COX-2 led to region-specific reductions in markers of calcification and cell viability. We suggest further in vitro and in vivo studies examining the biologic and biomechanical effects of selective and nonselective COX inhibition. PMID:26063979

  10. Ibuprofen and Pregnancy

    MedlinePlus

    ... care provider may follow the status of your baby’s heart and amniotic fluid volume in the third trimester by ultrasound. You should be on the lowest dose needed to treat your ... When needed, it is given to infants at higher doses. Ibuprofen use by the mother ...

  11. JMJD3 inhibition protects against isoproterenol-induced cardiac hypertrophy by suppressing β-MHC expression.

    PubMed

    Guo, Zhen; Lu, Jing; Li, Jingyan; Wang, Panxia; Li, Zhenzhen; Zhong, Yao; Guo, Kaiteng; Wang, Junjian; Ye, Jiantao; Liu, Peiqing

    2018-05-10

    Jumonji domain-containing protein D3 (JMJD3), a histone 3 lysine 27 (H3K27) demethylase, has been extensively studied for their participation in development, cellular physiology and a variety of diseases. However, its potential roles in cardiovascular system remain unknown. In this study, we found that JMJD3 played a pivotal role in the process of cardiac hypertrophy. JMJD3 expression was elevated by isoproterenol (ISO) stimuli both in vitro and in vivo. Overexpression of wild-type JMJD3, but not the demethylase-defective mutant, promoted cardiomyocyte hypertrophy, as implied by increased cardiomyocyte surface area and the expression of hypertrophy marker genes. In contrary, JMJD3 silencing or its inhibitor GSK-J4 suppressed ISO-induced cardiac hypertrophy. Mechanistically, JMJD3 was recruited to demethylate H3K27me3 at the promoter of β-MHC to promote its expression and cardiac hypertrophy. Thus, our results reveal that JMJD3 may be a key epigenetic regulator of β-MHC expression in cardiomyocytes and a potential therapeutic target for cardiac hypertrophy. Copyright © 2018. Published by Elsevier B.V.

  12. Synergistic inhibition of natural killer cells by the nonsignaling molecule CD94.

    PubMed

    Cheent, Kuldeep S; Jamil, Khaleel M; Cassidy, Sorcha; Liu, Mengya; Mbiribindi, Berenice; Mulder, Arend; Claas, Frans H J; Purbhoo, Marco A; Khakoo, Salim I

    2013-10-15

    Peptide selectivity is a feature of inhibitory receptors for MHC class I expressed by natural killer (NK) cells. CD94-NKG2A operates in tandem with the polymorphic killer cell Ig-like receptors (KIR) and Ly49 systems to inhibit NK cells. However, the benefits of having two distinct inhibitory receptor-ligand systems are not clear. We show that noninhibitory peptides presented by HLA-E can augment the inhibition of NKG2A(+) NK cells mediated by MHC class I signal peptides through the engagement of CD94 without a signaling partner. Thus, CD94 is a peptide-selective NK cell receptor, and NK cells can be regulated by nonsignaling interactions. We also show that KIR(+) and NKG2A(+) NK cells respond with differing stoichiometries to MHC class I down-regulation. MHC-I-bound peptide functions as a molecular rheostat controlling NK cell function. Selected peptides which in isolation do not inhibit NK cells can have different effects on KIR and NKG2A receptors. Thus, these two inhibitory systems may complement each other by having distinct responses to bound peptide and surface levels of MHC class I.

  13. Synergistic inhibition of natural killer cells by the nonsignaling molecule CD94

    PubMed Central

    Cheent, Kuldeep S.; Jamil, Khaleel M.; Cassidy, Sorcha; Liu, Mengya; Mbiribindi, Berenice; Mulder, Arend; Claas, Frans H. J.; Purbhoo, Marco A.; Khakoo, Salim I.

    2013-01-01

    Peptide selectivity is a feature of inhibitory receptors for MHC class I expressed by natural killer (NK) cells. CD94–NKG2A operates in tandem with the polymorphic killer cell Ig-like receptors (KIR) and Ly49 systems to inhibit NK cells. However, the benefits of having two distinct inhibitory receptor–ligand systems are not clear. We show that noninhibitory peptides presented by HLA-E can augment the inhibition of NKG2A+ NK cells mediated by MHC class I signal peptides through the engagement of CD94 without a signaling partner. Thus, CD94 is a peptide-selective NK cell receptor, and NK cells can be regulated by nonsignaling interactions. We also show that KIR+ and NKG2A+ NK cells respond with differing stoichiometries to MHC class I down-regulation. MHC-I–bound peptide functions as a molecular rheostat controlling NK cell function. Selected peptides which in isolation do not inhibit NK cells can have different effects on KIR and NKG2A receptors. Thus, these two inhibitory systems may complement each other by having distinct responses to bound peptide and surface levels of MHC class I. PMID:24082146

  14. Pharmacokinetics of ibuprofen sodium dihydrate and gastrointestinal tolerability of short-term treatment with a novel, rapidly absorbed formulation.

    PubMed

    Sörgel, F; Fuhr, U; Minic, M; Siegmund, M; Maares, J; Jetter, A; Kinzig-Schippers, M; Tomalik-Scharte, D; Szymanski, J; Goeser, T; Toex, U; Scheidel, B; Lehmacher, W

    2005-03-01

    This paper describes four studies investigating the dissolution, plasma pharmacokinetics and safety of a novel, fast-acting ibuprofen formulation, ibuprofen sodium dihydrate. Four separate studies investigated: the in vitro dissolution rates of ibuprofen sodium dihydrate (at pH 1.2, 3.5 and 7.2); the bioavailability of ibuprofen sodium dihydrate (in two pharmacokinetic studies; combined n = 38) compared with conventional ibuprofen, ibuprofen lysinate, ibuprofen arginate and ibuprofen liquagels (all 2 x 200 mg ibuprofen); and the gastroduodenal tolerance of ibuprofen sodium dihydrate and ibuprofen arginate (both 2 x 200 mg ibuprofen t.i.d.) in an endoscopy safety study, where endoscopy was performed at baseline and at the end of each treatment period using a five-point scale to assess the integrity of the gastric and duodenal mucosa. Ibuprofen sodium dihydrate dissolved significantly more rapidly at pH 1.2, 3.5 and 7.2 than conventional ibuprofen, ibuprofen lysinate and ibuprofen liquagels. Ibuprofen sodium dihydrate had similar C(max) to ibuprofen lysinate and ibuprofen liquagels and significantly higher Cmax than conventional ibuprofen (p = 0.002). The mean plasma concentration for ibuprofen sodium dihydrate was significantly higher than for conventional ibuprofen (p = 0.028) 10 minutes post-dose and the t(max) for ibuprofen sodium dihydrate was reached significantly earlier than for conventional ibuprofen (p = 0.018). All three formulations were bioequivalent according to the acceptable boundaries (90% confidence intervals). No statistically significant difference was observed between the ibuprofen formulations in terms of adverse events and specifically with respect to hemorrhagic scores; 41 (46.0%) adverse events (AEs) occurred after administration of ibuprofen sodium dihydrate, and 46 (52.9%) after ibuprofen arginate. One occurrence of an invasive ulcer was observed after administration of ibuprofen arginate. The new formulation of ibuprofen sodium dihydrate

  15. Both positive and negative effects on immune responses by expression of a second class II MHC molecule.

    PubMed

    Ni, Peggy P; Wang, Yaming; Allen, Paul M

    2014-11-01

    It is perplexing why vertebrates express a limited number of major histocompatibility complex (MHC) molecules when theoretically, having a greater repertoire of MHC molecules would increase the number of epitopes presented, thereby enhancing thymic selection and T cell response to pathogens. It is possible that any positive effects would either be neutralized or outweighed by negative selection restricting the T cell repertoire. We hypothesize that the limit on MHC number is due to negative consequences arising from expressing additional MHC. We compared T cell responses between B6 mice (I-A(+)) and B6.E(+) mice (I-A(+), I-E(+)), the latter expressing a second class II MHC molecule, I-E(b), due to a monomorphic Eα(k) transgene that pairs with the endogenous I-Eβ(b) chain. First, the naive T cell Vβ repertoire was altered in B6.E(+) thymi and spleens, potentially mediating different outcomes in T cell reactivity. Although the B6 and B6.E(+) responses to hen egg-white lysozyme (HEL) protein immunization remained similar, other immune models yielded differences. For viral infection, the quality of the T cell response was subtly altered, with diminished production of certain cytokines by B6.E(+) CD4(+) T cells. In alloreactivity, the B6.E(+) T cell response was significantly dampened. Finally, we observed markedly enhanced susceptibility to experimental autoimmune encephalomyelitis (EAE) in B6.E(+) mice. This correlated with decreased percentages of nTreg cells, supporting the concept of Tregs exhibiting differential susceptibility to negative selection. Altogether, our data suggest that expressing an additional class II MHC can produce diverse effects, with more severe autoimmunity providing a compelling explanation for limiting the expression of MHC molecules. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Design of Peptide Immunotherapies for MHC Class-II-Associated Autoimmune Disorders

    PubMed Central

    2013-01-01

    Autoimmune disorders, that occur when autoreactive immune cells are induced to activate their responses against self-tissues, affect one percent of the world population and represent one of the top 10 leading causes of death. The major histocompatibility complex (MHC) is a principal susceptibility locus for many human autoimmune diseases, in which self-tissue antigens providing targets for pathogenic lymphocytes are bound to HLA molecules encoded by disease-associated alleles. In spite of the attempts to design strategies for inhibition of antigen presentation targeting the MHC-peptide/TCR complex via generation of blocking antibodies, altered peptide ligands (APL), or inhibitors of costimulatory molecules, potent therapies with minimal side effects have yet to be developed. Copaxone (glatiramer acetate, GA) is a random synthetic amino acid copolymer that reduces the relapse rate by about 30% in relapsing-remitting multiple sclerosis (MS) patients. Based on the elucidated binding motifs of Copaxone and of the anchor residues of the immunogenic myelin basic protein (MBP) peptide to HLA-DR molecules, novel copolymers have been designed and proved to be more effective in suppressing MS-like disease in mice. In this report, we describe the rationale for design of second-generation synthetic random copolymers as candidate drugs for a number of MHC class-II-associated autoimmune disorders. PMID:24324511

  17. Processing of two latent membrane protein 1 MHC class I epitopes requires tripeptidyl peptidase II involvement.

    PubMed

    Diekmann, Jan; Adamopoulou, Eleni; Beck, Olaf; Rauser, Georg; Lurati, Sarah; Tenzer, Stefan; Einsele, Hermann; Rammensee, Hans-Georg; Schild, Hansjörg; Topp, Max S

    2009-08-01

    The EBV Ag latent membrane protein 1 (LMP1) has been described as a potential target for T cell immunotherapy in EBV-related malignancies. However, only a few CD8(+) T cell epitopes are known, and the benefit of LMP1-specific T cell immunotherapy has not yet been proven. In this work, we studied the processing of the two LMP1 HLA-A02-restricted epitopes, YLLEMLRWL and YLQQNWWTL. We found that target cells endogenously expressing the native LMP1 are not recognized by CTLs specific for these epitopes because the N-terminal part of LMP1 limits the efficiency of epitope generation. We further observed that the proteasome is not required for the generation of both epitopes and that the YLLEMLRWL epitope seems to be destroyed by the proteasome, because blocking of proteasomal activities enhanced specific CTL activation. Activation of LMP1-specific CTLs could be significantly reduced after inhibition of the tripeptidyl peptidase II, suggesting a role for this peptidase in the processing of both epitopes. Taken together, our results demonstrate that the MHC class I-restricted LMP1 epitopes studied in this work are two of very few epitopes known to date to be processed proteasome independently by tripeptidyl peptidase II.

  18. An analysis of the sensitivity and specificity of MHC-I and MHC-II immunohistochemical staining in muscle biopsies for the diagnosis of inflammatory myopathies.

    PubMed

    Rodríguez Cruz, Pedro M; Luo, Yue-Bei; Miller, James; Junckerstorff, Reimar C; Mastaglia, Frank L; Fabian, Victoria

    2014-12-01

    Although there have been several previous reports of immunohistochemical staining for MHC antigens in muscle biopsies, there appears to be a lack of consensus about its routine use in the diagnostic evaluation of biopsies from patients with suspected inflammatory myopathy. Positive MHC-I staining is nonspecific but is widely used as a marker for inflammatory myopathy, whilst the role of MHC-II staining is not clearly defined. We investigated the sensitivity and specificity of MHC-I and MHC-II immunostaining for the diagnosis of inflammatory myopathy in a large group of biopsies from a single reference laboratory. Positive staining for MHC-I was found to have a high sensitivity in biopsies from patients with inflammatory myopathy but a very low specificity, as it was also common in other non-inflammatory myopathies and neurogenic disorders. On the other hand, MHC-II positivity had a much higher specificity in all major subgroups of inflammatory myopathy, especially inclusion body myositis. The findings indicate that the combination of MHC-I and MHC-II staining results in a higher degree of specificity for the diagnosis of inflammatory myopathy and that in biopsies with inflammation, positive MHC-II staining strongly supports the diagnosis of an immune-mediated myopathy. We recommend that immunohistochemical staining for both MHC-I and MHC-II should be included routinely in the diagnostic evaluation of muscle biopsies from patients with suspected inflammatory myopathy. However, as the sensitivity and interpretation of MHC staining may depend on the technique used, further studies are needed to compare procedures in different centres and develop standardised protocols. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. In vitro permeation characterization of the analgesic ibuprofen and the sunscreen oxybenzone.

    PubMed

    Gu, Xiaochen; Dannefaer, Jennifer L; Collins, Benjamin R

    2008-08-01

    Ibuprofen, one of the mostly prescribed nonsteroidal anti-inflammatory drugs (NSAIDs), has been proposed as a topical medication for secondary prevention against skin damage induced by sunburn. The objective of this study was to characterize transmembrane permeation of ibuprofen and sunscreen oxybenzone across poly(dimethyl siloxane) (PDMS) membrane. In vitro diffusion studies were carried out at 37 degrees and 45 degrees C, using a series of ibuprofen and oxybenzone samples, either individually or in combination. Concentrations of ibuprofen and oxybenzone in the receptor compartment for up to 6 h were measured using a high-performance liquid chromatography (HPLC) assay. Ibuprofen and oxybenzone permeated across the PDMS membrane in all diffusion studies. When applied individually, permeation percentages of ibuprofen and oxybenzone ranged from 1.0 to 4.1% and from 13.2 to 25.8%, respectively. When applied in combination, permeation percentages of ibuprofen and oxybenzone were 0.3-1.4% and 7.8-24.3%, respectively. Transmembrane permeation was significantly suppressed when both compounds were present concurrently. High temperature promoted the diffusion process of oxybenzone; a linear correlation was also observed between oxybenzone concentration and its permeation. The proposed permeation enhancement between ibuprofen and oxybenzone was not observed from this study. The potential transdermal interaction and systemic absorption from concurrent application of topical analgesics and sunscreens thus requires further systematic evaluation.

  20. An integrated safety analysis of intravenous ibuprofen (Caldolor®) in adults

    PubMed Central

    Southworth, Stephen R; Woodward, Emily J; Peng, Alex; Rock, Amy D

    2015-01-01

    Intravenous (IV) nonsteroidal anti-inflammatory drugs such as IV ibuprofen are increasingly used as a component of multimodal pain management in the inpatient and outpatient settings. The safety of IV ibuprofen as assessed in ten sponsored clinical studies is presented in this analysis. Overall, 1,752 adult patients have been included in safety and efficacy trials over 11 years; 1,220 of these patients have received IV ibuprofen and 532 received either placebo or comparator medication. The incidence of adverse events (AEs), serious AEs, and changes in vital signs and clinically significant laboratory parameters have been summarized and compared to patients receiving placebo or active comparator drug. Overall, IV ibuprofen has been well tolerated by hospitalized and outpatient patients when administered both prior to surgery and postoperatively as well as for nonsurgical pain or fever. The overall incidence of AEs is lower in patients receiving IV ibuprofen as compared to those receiving placebo in this integrated analysis. Specific analysis of hematological and renal effects showed no increased risk for patients receiving IV ibuprofen. A subset analysis of elderly patients suggests that no dose adjustment is needed in this higher risk population. This integrated safety analysis demonstrates that IV ibuprofen can be safely administered prior to surgery and continued in the postoperative period as a component of multimodal pain management. PMID:26604816

  1. Secondary anchor polymorphism in the HA-1 minor histocompatibility antigen critically affects MHC stability and TCR recognition

    PubMed Central

    Nicholls, Sarah; Piper, Karen P.; Mohammed, Fiyaz; Dafforn, Timothy R.; Tenzer, Stefan; Salim, Mahboob; Mahendra, Premini; Craddock, Charles; van Endert, Peter; Schild, Hansjörg; Cobbold, Mark; Engelhard, Victor H.; Moss, Paul A. H.; Willcox, Benjamin E.

    2009-01-01

    T cell recognition of minor histocompatibility antigens (mHags) underlies allogeneic immune responses that mediate graft-versus-host disease and the graft-versus-leukemia effect following stem cell transplantation. Many mHags derive from single amino acid polymorphisms in MHC-restricted epitopes, but our understanding of the molecular mechanisms governing mHag immunogenicity and recognition is incomplete. Here we examined antigenic presentation and T-cell recognition of HA-1, a prototypic autosomal mHag derived from single nucleotide dimorphism (HA-1H versus HA-1R) in the HMHA1 gene. The HA-1H peptide is restricted by HLA-A2 and is immunogenic in HA-1R/R into HA-1H transplants, while HA-1R has been suggested to be a “null allele” in terms of T cell reactivity. We found that proteasomal cleavage and TAP transport of the 2 peptides is similar and that both variants can bind to MHC. However, the His>Arg change substantially decreases the stability and affinity of HLA-A2 association, consistent with the reduced immunogenicity of the HA-1R variant. To understand these findings, we determined the structure of an HLA-A2-HA-1H complex to 1.3Å resolution. Whereas His-3 is accommodated comfortably in the D pocket, incorporation of the lengthy Arg-3 is predicted to require local conformational changes. Moreover, a soluble TCR generated from HA-1H-specific T-cells bound HA-1H peptide with moderate affinity but failed to bind HA-1R, indicating complete discrimination of HA-1 variants at the level of TCR/MHC interaction. Our results define the molecular mechanisms governing immunogenicity of HA-1, and highlight how single amino acid polymorphisms in mHags can critically affect both MHC association and TCR recognition. PMID:19234124

  2. Mechanistic studies of the metabolic chiral inversion of (R)-ibuprofen in humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baillie, T.A.; Adams, W.J.; Kaiser, D.G.

    1989-05-01

    The metabolic chiral inversion of R-(-)-ibuprofen has been studied in human subjects by means of specific deuterium labeling and stereoselective gas chromatography-mass spectrometry methodology. After simultaneous p.o. administration of a mixture of R-(-)-ibuprofen (300 mg) and R-(-)-(3,3,3-2H3)ibuprofen (304 mg) to four adult male volunteers, the enantiomeric composition and deuterium content of the drug in serum, and of the drug and its principal metabolites in urine, were followed over a period of 24 hr. The results of these analyses indicated that: (1) conversion of R-(-)- to S-(+)-ibuprofen takes place with complete retention of deuterium at the beta-methyl (C-3) position; (2) chiralmore » inversion of R-(-)-(2H3)ibuprofen is not subject to a discernible deuterium isotope effect; and (3) replacement of the beta-methyl hydrogen atoms by deuterium has no effect on any of the serum pharmacokinetic parameters for R-(-)- or S-(+)-ibuprofen. These data indicate that the process whereby R-(-)-ibuprofen undergoes metabolic inversion in human subjects does not involve 2,3-dehydroibuprofen as an intermediate, and that the underlying mechanism cannot, therefore, entail a desaturation/reduction sequence.« less

  3. Ibuprofen Blunts Ventilatory Acclimatization to Sustained Hypoxia in Humans

    PubMed Central

    Basaran, Kemal Erdem; Villongco, Michael; Ho, Baran; Ellis, Erika; Zarndt, Rachel; Antonova, Julie; Hopkins, Susan R.; Powell, Frank L.

    2016-01-01

    Ventilatory acclimatization to hypoxia is a time-dependent increase in ventilation and the hypoxic ventilatory response (HVR) that involves neural plasticity in both carotid body chemoreceptors and brainstem respiratory centers. The mechanisms of such plasticity are not completely understood but recent animal studies show it can be blocked by administering ibuprofen, a nonsteroidal anti-inflammatory drug, during chronic hypoxia. We tested the hypothesis that ibuprofen would also block the increase in HVR with chronic hypoxia in humans in 15 healthy men and women using a double-blind, placebo controlled, cross-over trial. The isocapnic HVR was measured with standard methods in subjects treated with ibuprofen (400mg every 8 hrs) or placebo for 48 hours at sea level and 48 hours at high altitude (3,800 m). Subjects returned to sea level for at least 30 days prior to repeating the protocol with the opposite treatment. Ibuprofen significantly decreased the HVR after acclimatization to high altitude compared to placebo but it did not affect ventilation or arterial O2 saturation breathing ambient air at high altitude. Hence, compensatory responses prevent hypoventilation with decreased isocapnic ventilatory O2-sensitivity from ibuprofen at this altitude. The effect of ibuprofen to decrease the HVR in humans provides the first experimental evidence that a signaling mechanism described for ventilatory acclimatization to hypoxia in animal models also occurs in people. This establishes a foundation for the future experiments to test the potential role of different mechanisms for neural plasticity and ventilatory acclimatization in humans with chronic hypoxemia from lung disease. PMID:26726885

  4. Ibuprofen Blunts Ventilatory Acclimatization to Sustained Hypoxia in Humans.

    PubMed

    Basaran, Kemal Erdem; Villongco, Michael; Ho, Baran; Ellis, Erika; Zarndt, Rachel; Antonova, Julie; Hopkins, Susan R; Powell, Frank L

    2016-01-01

    Ventilatory acclimatization to hypoxia is a time-dependent increase in ventilation and the hypoxic ventilatory response (HVR) that involves neural plasticity in both carotid body chemoreceptors and brainstem respiratory centers. The mechanisms of such plasticity are not completely understood but recent animal studies show it can be blocked by administering ibuprofen, a nonsteroidal anti-inflammatory drug, during chronic hypoxia. We tested the hypothesis that ibuprofen would also block the increase in HVR with chronic hypoxia in humans in 15 healthy men and women using a double-blind, placebo controlled, cross-over trial. The isocapnic HVR was measured with standard methods in subjects treated with ibuprofen (400 mg every 8 hrs) or placebo for 48 hours at sea level and 48 hours at high altitude (3,800 m). Subjects returned to sea level for at least 30 days prior to repeating the protocol with the opposite treatment. Ibuprofen significantly decreased the HVR after acclimatization to high altitude compared to placebo but it did not affect ventilation or arterial O2 saturation breathing ambient air at high altitude. Hence, compensatory responses prevent hypoventilation with decreased isocapnic ventilatory O2-sensitivity from ibuprofen at this altitude. The effect of ibuprofen to decrease the HVR in humans provides the first experimental evidence that a signaling mechanism described for ventilatory acclimatization to hypoxia in animal models also occurs in people. This establishes a foundation for the future experiments to test the potential role of different mechanisms for neural plasticity and ventilatory acclimatization in humans with chronic hypoxemia from lung disease.

  5. Selective degradation of ibuprofen and clofibric acid in two model river biofilm systems.

    PubMed

    Winkler, M; Lawrence, J R; Neu, T R

    2001-09-01

    A field survey indicated that the Elbe and Saale Rivers were contaminated with both clofibric acid and ibuprofen. In Elbe River water we could detect the metabolite hydroxy-ibuprofen. Analyses of the city of Saskatoon sewage effluent discharged to the South Saskatchewan river detected clofibric acid but neither ibuprofen nor any metabolite. Laboratory studies indicated that the pharmaceutical ibuprofen was readily degraded in a river biofilm reactor. Two metabolites were detected and identified as hydroxy- and carboxy-ibuprofen. Both metabolites were observed to degrade in the biofilm reactors. However, in human metabolism the metabolite carboxy-ibuprofen appears and degrades second whereas the opposite occurs in biofilm systems. In biofilms the pharmacologically inactive stereoisomere of ibuprofen is degraded predominantly. In contrast, clofibric acid was not biologically degraded during the experimental period of 21 days. Similar results were obtained using biofilms developed using waters from either the South Saskatchewan or Elbe River. In a sterile reactor no losses of ibuprofen were observed. These results suggested that abiotic losses and adsorption played only a minimal role in the fate of the pharmaceuticals in the river biofilm reactors.

  6. Influence of acidic beverage (Coca-Cola) on pharmacokinetics of ibuprofen in healthy rabbits.

    PubMed

    Kondal, Amit; Garg, S K

    2003-11-01

    The study was aimed at determining the effect of Coca-Cola on the pharmacokinetics of ibuprofen in rabbits. In a cross-over study, ibuprofen was given orally in a dose of 56 mg/kg, prepared as 0.5% suspension in carboxymethyl cellulose (CMC) and blood samples (1 ml) were drawn at different time intervals from 0-12 hr. After a washout period of 7 days, Coca-Cola in a dose of (5 ml/kg) was administered along with ibuprofen (56 mg/kg) and blood samples were drawn from 0-12 hr. To these rabbits, 5 ml/kg Coca-Cola was administered once daily for another 7 days. On 8th day, Coca-Cola (5 ml/kg) along with ibuprofen (56 mg/kg), prepared as a suspension was administered and blood samples (1 ml each) were drawn at similar time intervals. Plasma was separated and assayed for ibuprofen by HPLC technique and various pharmacokinetic parameters were calculated. The Cmax and AUC0-alpha of ibuprofen were significantly increased after single and multiple doses of Coca-Cola, thereby indicating increased extent of absorption of ibuprofen. The results warrant the reduction of ibuprofen daily dosage, frequency when administered with Coca-Cola.

  7. Morpho-physiological effects of ibuprofen on Scenedesmus rubescens.

    PubMed

    Moro, Isabella; Matozzo, Valerio; Piovan, Anna; Moschin, Emanuela; Vecchia, Francesca Dalla

    2014-09-01

    The pollution of aquatic bodies by drugs is an emerging environmental problem, because of their extensive use in animal and human context. Ibuprofen, 2-[4-(2-methylpropyl)phenyl]propanoic acid, is the non-steroidal anti-inflammatory drug mainly present both in wastewater and in rivers and lakes in Europe. Since in literature there is little information about the effects of ibuprofen on microalgae, in this paper we presented the results on the effects of this molecule at different concentrations (62.5μgL(-1), 250μgL(-1) and 1000μgL(-1)) on cultures of the freshwater microalga Scenedesmus rubescens (P.J.L. Dangeard) E. Kesslet et al. Ibuprofen effects on the alga were assayed at first through analyses of the growth curve. Moreover, analyses of cell morphology, ultrastructure, and photosynthetic pigments were additionally performed. The first negative effect of the drug was on the microalga growth, suggesting a drug action dose-dependent mechanism type, more evident at the concentration of 1000μgL(-1) ibuprofen and in the last phase of the growth curve. In support of this, following ibuprofen exposure, the cells exhibited morphological and ultrastructural alterations, mainly consisting in large cytoplasmic inclusions, probably of lipids and/or carotenoids. The decrease of chlorophyll amounts and, on the contrary, the increase of carotenoids were correlated with a stressful condition induced by drug. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. The MHC big bang.

    PubMed

    Abi Rached, L; McDermott, M F; Pontarotti, P

    1999-02-01

    The human Major Histocompatibility Complex (MHC) shares similarities with three other chromosome regions in human. This could be the vestige of ancestral large scale duplications. We discuss here the possibility i) that these duplications occurred during two rounds of tetraploidization supposed to have taken place during chordate evolution before the jawed vertebrate radiation, and ii) that one of the quadruplicate regions, relaxed of functional constraints, gave rise to the vertebrate MHC by a quick round of gene cis-duplication and cis-exon shuffling. These different rounds of cis-duplications and exon shufflings allowed the emergence of new genes participating in novel biological functions i.e. adaptive immune responses. Cis-duplications and cis-exon shufflings are ongoing processes in the evolution of some of these genes in this region as they have occurred and were fixed at different times and in different lineages during vertebrate evolution. In contrast, other genes within the MHC have remained stable since the emergence of jawed vertebrates.

  9. Comparative Genome Analyses Reveal Distinct Structure in the Saltwater Crocodile MHC

    PubMed Central

    Jaratlerdsiri, Weerachai; Deakin, Janine; Godinez, Ricardo M.; Shan, Xueyan; Peterson, Daniel G.; Marthey, Sylvain; Lyons, Eric; McCarthy, Fiona M.; Isberg, Sally R.; Higgins, Damien P.; Chong, Amanda Y.; John, John St; Glenn, Travis C.; Ray, David A.; Gongora, Jaime

    2014-01-01

    The major histocompatibility complex (MHC) is a dynamic genome region with an essential role in the adaptive immunity of vertebrates, especially antigen presentation. The MHC is generally divided into subregions (classes I, II and III) containing genes of similar function across species, but with different gene number and organisation. Crocodylia (crocodilians) are widely distributed and represent an evolutionary distinct group among higher vertebrates, but the genomic organisation of MHC within this lineage has been largely unexplored. Here, we studied the MHC region of the saltwater crocodile (Crocodylus porosus) and compared it with that of other taxa. We characterised genomic clusters encompassing MHC class I and class II genes in the saltwater crocodile based on sequencing of bacterial artificial chromosomes. Six gene clusters spanning ∼452 kb were identified to contain nine MHC class I genes, six MHC class II genes, three TAP genes, and a TRIM gene. These MHC class I and class II genes were in separate scaffold regions and were greater in length (2–6 times longer) than their counterparts in well-studied fowl B loci, suggesting that the compaction of avian MHC occurred after the crocodilian-avian split. Comparative analyses between the saltwater crocodile MHC and that from the alligator and gharial showed large syntenic areas (>80% identity) with similar gene order. Comparisons with other vertebrates showed that the saltwater crocodile had MHC class I genes located along with TAP, consistent with birds studied. Linkage between MHC class I and TRIM39 observed in the saltwater crocodile resembled MHC in eutherians compared, but absent in avian MHC, suggesting that the saltwater crocodile MHC appears to have gene organisation intermediate between these two lineages. These observations suggest that the structure of the saltwater crocodile MHC, and other crocodilians, can help determine the MHC that was present in the ancestors of archosaurs. PMID:25503521

  10. Cardiovascular Safety of Celecoxib, Naproxen, or Ibuprofen for Arthritis.

    PubMed

    Nissen, Steven E; Yeomans, Neville D; Solomon, Daniel H; Lüscher, Thomas F; Libby, Peter; Husni, M Elaine; Graham, David Y; Borer, Jeffrey S; Wisniewski, Lisa M; Wolski, Katherine E; Wang, Qiuqing; Menon, Venu; Ruschitzka, Frank; Gaffney, Michael; Beckerman, Bruce; Berger, Manuela F; Bao, Weihang; Lincoff, A Michael

    2016-12-29

    The cardiovascular safety of celecoxib, as compared with nonselective nonsteroidal antiinflammatory drugs (NSAIDs), remains uncertain. Patients who required NSAIDs for osteoarthritis or rheumatoid arthritis and were at increased cardiovascular risk were randomly assigned to receive celecoxib, ibuprofen, or naproxen. The goal of the trial was to assess the noninferiority of celecoxib with regard to the primary composite outcome of cardiovascular death (including hemorrhagic death), nonfatal myocardial infarction, or nonfatal stroke. Noninferiority required a hazard ratio of 1.12 or lower, as well as an upper 97.5% confidence limit of 1.33 or lower in the intention-to-treat population and of 1.40 or lower in the on-treatment population. Gastrointestinal and renal outcomes were also adjudicated. A total of 24,081 patients were randomly assigned to the celecoxib group (mean [±SD] daily dose, 209±37 mg), the naproxen group (852±103 mg), or the ibuprofen group (2045±246 mg) for a mean treatment duration of 20.3±16.0 months and a mean follow-up period of 34.1±13.4 months. During the trial, 68.8% of the patients stopped taking the study drug, and 27.4% of the patients discontinued follow-up. In the intention-to-treat analyses, a primary outcome event occurred in 188 patients in the celecoxib group (2.3%), 201 patients in the naproxen group (2.5%), and 218 patients in the ibuprofen group (2.7%) (hazard ratio for celecoxib vs. naproxen, 0.93; 95% confidence interval [CI], 0.76 to 1.13; hazard ratio for celecoxib vs. ibuprofen, 0.85; 95% CI, 0.70 to 1.04; P<0.001 for noninferiority in both comparisons). In the on-treatment analysis, a primary outcome event occurred in 134 patients in the celecoxib group (1.7%), 144 patients in the naproxen group (1.8%), and 155 patients in the ibuprofen group (1.9%) (hazard ratio for celecoxib vs. naproxen, 0.90; 95% CI, 0.71 to 1.15; hazard ratio for celecoxib vs. ibuprofen, 0.81; 95% CI, 0.65 to 1.02; P<0.001 for noninferiority in

  11. Ibuprofen Ameliorates Fatigue- and Depressive-like Behavior in Tumor-bearing Mice

    PubMed Central

    Norden, Diana M.; McCarthy, Donna O.; Bicer, Sabahattin; Devine, Raymond; Reiser, Peter J.; Godbout, Jonathan P.; Wold, Loren E.

    2015-01-01

    Aims Cancer-related fatigue (CRF) is often accompanied by depressed mood, both of which reduce functional status and quality of life. Research suggests that increased expression of pro-inflammatory cytokines are associated with skeletal muscle wasting and depressive- and fatigue- like behaviors in rodents and cancer patients. We have previously shown that treatment with ibuprofen, a nonsteroidal anti-inflammatory drug, preserved muscle mass in tumor-bearing mice. Therefore, the purpose of the present study was to determine the behavioral effects of ibuprofen in a mouse model of CRF. Main Methods Mice were injected with colon-26 adenocarcinoma cells and treated with ibuprofen (10mg/kg) in the drinking water. Depressive-like behavior was determined using the forced swim test (FST). Fatigue-like behaviors were determined using voluntary wheel running activity (VWRA) and grip strength. The hippocampus, gastrocnemius muscle, and serum were collected for cytokine analysis. Key Findings Tumor-bearing mice showed depressive-like behavior in the FST, which was not observed in mice treated with ibuprofen. VWRA and grip strength declined in tumor-bearing mice, and ibuprofen attenuated this decline. Tumor-bearing mice had decreased gastrocnemius muscle mass and increased expression of IL-6, MAFBx and MuRF mRNA, biomarkers of protein degradation, in the muscle. Expression of IL-1β and IL-6 was also increased in the hippocampus. Treatment with ibuprofen improved muscle mass and reduced cytokine expression in both the muscle and hippocampus of tumor-bearing mice. Significance Ibuprofen treatment reduced skeletal muscle wasting, inflammation in the brain, and fatigue- and depressive-like behavior in tumor-bearing mice. Therefore, ibuprofen warrants evaluation as an adjuvant treatment for CRF. PMID:26498217

  12. Predicting MHC-II binding affinity using multiple instance regression

    PubMed Central

    EL-Manzalawy, Yasser; Dobbs, Drena; Honavar, Vasant

    2011-01-01

    Reliably predicting the ability of antigen peptides to bind to major histocompatibility complex class II (MHC-II) molecules is an essential step in developing new vaccines. Uncovering the amino acid sequence correlates of the binding affinity of MHC-II binding peptides is important for understanding pathogenesis and immune response. The task of predicting MHC-II binding peptides is complicated by the significant variability in their length. Most existing computational methods for predicting MHC-II binding peptides focus on identifying a nine amino acids core region in each binding peptide. We formulate the problems of qualitatively and quantitatively predicting flexible length MHC-II peptides as multiple instance learning and multiple instance regression problems, respectively. Based on this formulation, we introduce MHCMIR, a novel method for predicting MHC-II binding affinity using multiple instance regression. We present results of experiments using several benchmark datasets that show that MHCMIR is competitive with the state-of-the-art methods for predicting MHC-II binding peptides. An online web server that implements the MHCMIR method for MHC-II binding affinity prediction is freely accessible at http://ailab.cs.iastate.edu/mhcmir. PMID:20855923

  13. Using cyclodextrin complexation to enhance secondary photoprotection of topically applied ibuprofen.

    PubMed

    Godwin, Donald A; Wiley, Cody J; Felton, Linda A

    2006-01-01

    Each year millions of people are overexposed to the sun resulting in photodamage of the skin. Secondary photoprotection is the application of medicinal agents to the body after sun exposure to reduce this damage. The objective of this study was to determine the affects of hydroxypropyl-beta-cyclodextrin (HPCD) complexation on the secondary photoprotective properties of topically applied ibuprofen. Complexation of ibuprofen by HPCD was demonstrated by differential scanning calorimetry, while solubilities were determined using HPLC. A linear (r2>0.999) relationship was found between ibuprofen solubility and HPCD concentration. For subsequent experiments, the concentration of ibuprofen was held constant at the solubility in 10% HPCD (10.6 mg/ml), while the HPCD concentration varied from 0 to 20% (w/w). In vitro transdermal permeation experiments demonstrated a parabolic relationship between transdermal kinetic parameters and HPCD concentration, with maximum values for both flux and skin accumulation occurring with the 10% HPCD formulation. In vivo experiments were performed by exposing hairless mice to UV radiation and applying ibuprofen-HPCD formulations topically at various times following UV exposure. Edema and epidermal lipid damage data demonstrated that application of ibuprofen-HPCD formulations within 1h of UV exposure provided significant photoprotection.

  14. Primordial linkage of β2-microglobulin to the MHC.

    PubMed

    Ohta, Yuko; Shiina, Takashi; Lohr, Rebecca L; Hosomichi, Kazuyoshi; Pollin, Toni I; Heist, Edward J; Suzuki, Shingo; Inoko, Hidetoshi; Flajnik, Martin F

    2011-03-15

    β2-Microglobulin (β2M) is believed to have arisen in a basal jawed vertebrate (gnathostome) and is the essential L chain that associates with most MHC class I molecules. It contains a distinctive molecular structure called a constant-1 Ig superfamily domain, which is shared with other adaptive immune molecules including MHC class I and class II. Despite its structural similarity to class I and class II and its conserved function, β2M is encoded outside the MHC in all examined species from bony fish to mammals, but it is assumed to have translocated from its original location within the MHC early in gnathostome evolution. We screened a nurse shark bacterial artificial chromosome library and isolated clones containing β2M genes. A gene present in the MHC of all other vertebrates (ring3) was found in the bacterial artificial chromosome clone, and the close linkage of ring3 and β2M to MHC class I and class II genes was determined by single-strand conformational polymorphism and allele-specific PCR. This study satisfies the long-held conjecture that β2M was linked to the primordial MHC (Ur MHC); furthermore, the apparent stability of the shark genome may yield other genes predicted to have had a primordial association with the MHC specifically and with immunity in general.

  15. Colonizing the world in spite of reduced MHC variation

    USGS Publications Warehouse

    Gangoso, L.; Alcaide, M.; Grande, J.M.; Muñoz, J.; Talbot, Sandra L.; Sonsthagen, Sarah A.; Sage, Kevin; Figuerola, J.

    2012-01-01

    Reduced immune gene diversity is thought to negatively affect the capacity of organisms to adapt to pathogen challenges, which represent a major force in natural selection. Genes of the Major Histocompatibility Complex (MHC) are the most widely invoked adaptive loci in conservation biology, and have become the most popular genetic markers to investigate pathogen-host interactions in vertebrates. Although MHC genes are the most polymorphic genes described in the vertebrate genome, the extent to which MHC diversity determines the long-term persistence of populations is, unclear and often debated, as recent studies have documented the occurrence of natural populations thriving even after a depletion of MHC diversity caused by genetic drift. Here, we show that some phylogenetically related species belonging to the Falco genus (Aves: Falconidae) present a dramatically low MHC variability that has not precluded, nevertheless, the successful colonization of almost all existing regions and habitats worldwide. We found evidence for two remarkably different patterns of MHC variation within the genus. While kestrels show a high MHC variation according to the general theory, falcons exhibit an ancestrally low intra- and inter-specific MHC allelic diversity. We provide compelling evidence that this pattern is not caused by the degeneration of functional genes into pseudogenes, the inadvertent analyses of paralogous MHC genes, or the devastating action of genetic drift. Instead, our results strongly support the idea of an evolutionary transition driven and maintained by natural selection from primarily highly variable towards low polymorphic, but functional and expressed, MHC genes with species-specific pathogen-recognition capabilities.

  16. A Multi-Center, Randomized, Double-Blind Placebo-Controlled Trial of Intravenous-Ibuprofen (IV-Ibuprofen) for Treatment of Pain in Post-Operative Orthopedic Adult Patients

    PubMed Central

    Singla, Neil; Rock, Amy; Pavliv, Leo

    2010-01-01

    Objective To determine whether pre- and post-operative administration of intravenous ibuprofen (IV-ibuprofen) can significantly decrease pain and morphine use when compared with placebo in adult orthopedic surgical patients. Design This was a multi-center, randomized, double-blind placebo-controlled trial. Setting This study was completed at eight hospitals; six in the United States and two in South Africa. Patients A total of 185 adult patients undergoing elective orthopedic surgery. Interventions Patients were randomized to receive either 800 mg IV-ibuprofen or placebo every 6 hours, with the first dose administered pre-operatively. Additionally, all patients had access to intravenous morphine for rescue. Outcome Measures Efficacy of IV-ibuprofen was demonstrated by measuring the patient's self assessment of pain using a visual analog scale (VAS; assessed with movement and at rest) and a verbal response scale (VRS). Morphine consumption during the post-operative period was also assessed. Results In the immediate post-operative period, there was a 25.8% reduction in mean area under the curve-VAS assessed with movement (AUC-VASM) in patients receiving IV-ibuprofen (P < 0.001); a 31.8% reduction in mean AUC-VAS assessed at rest (AUC-VASR; P < 0.001) and a 20.2% reduction in mean VRS (P < 0.001) compared to those receiving placebo. Patients receiving IV-ibuprofen used 30.9% less morphine (P < 0.001) compared to those receiving placebo. Similar treatment emergent adverse events occurred in both study groups and there were no significant differences in the incidence of serious adverse events. Conclusion Pre- and post-operative administration of IV-ibuprofen significantly reduced both pain and morphine use in orthopedic surgery patients in this prospective randomized placebo-controlled trial. PMID:20609131

  17. Cutaneous irritancy of an ibuprofen medicated plaster in healthy volunteers.

    PubMed

    Maganji, Manisha; Connolly, Mark P; Bhatt, Aomesh

    2018-04-01

    To assess the irritation and contact sensitization potential of a 200 mg ibuprofen medicated plaster. This double-blind, phase-1 placebo controlled study had two phases; the induction phase to evaluate the irritant potential of continuous application of the plaster, and the challenge phase to assess contact sensitivity (allergy). The cumulative irritancy potential was evaluated using an adaptation of the Shelanski method. Healthy adults (≥18 years of age) (N = 210) were treated simultaneously with one ibuprofen medicated and one placebo plaster applied in a randomized fashion to either the left or right side of the lower back. During the induction phase, plasters were applied on Days 1, 3, 5, 8, 10, 12, 15, 17, and 19 and the final plaster removed on Day 22. At each scheduled visit plasters and applications sites were assessed for degree of adhesion and skin irritation (score of 1 = no irritation to 7 = strong reaction spreading beyond test sites), respectively. The challenge phase followed a two-week washout period. A plaster was applied on Day 36 for 48 h and assessment occurred on Days 38, 39, and 40. The mean cumulative irritation score during the induction phase was lower for the ibuprofen medicated plaster than the placebo plaster (0.32 vs. 1.23, respectively). Three (1.4%) subjects experience a dermal reaction of grade ≥3 for the ibuprofen medicated plaster compared with 27 (12.7%) for the placebo plaster. Following challenge with ibuprofen or placebo plasters, 12 subjects (6.2%) with the ibuprofen medicated plaster and four (2.2%) with the placebo plaster had skin reaction of assessment grade higher than the induction phase. One subject for the ibuprofen and two for the placebo plaster had reactions with grade >2. No subjects showed an increase in sensitization on Day 39 or 40 compared with Day 38. The findings indicate that the both the irritancy and contact sensitization of the ibuprofen medicated plaster is acceptable.

  18. Timing of Ibuprofen Use and Bone Mineral Density Adaptations to Exercise Training

    PubMed Central

    Kohrt, Wendy M; Barry, Daniel W; Van Pelt, Rachael E; Jankowski, Catherine M; Wolfe, Pamela; Schwartz, Robert S

    2010-01-01

    Prostaglandins (PGs) are essential signaling factors in bone mechanotransduction. In animals, inhibition of the enzyme responsible for PG synthesis (cyclooxygenase) by nonsteroidal anti-inflammatory drugs (NSAIDs) blocks the bone-formation response to loading when administered before, but not immediately after, loading. The aim of this proof-of-concept study was to determine whether the timing of NSAID use influences bone mineral density (BMD) adaptations to exercise in humans. Healthy premenopausal women (n = 73) aged 21 to 40 years completed a supervised 9-month weight-bearing exercise training program. They were randomized to take (1) ibuprofen (400 mg) before exercise, placebo after (IBUP/PLAC), (2) placebo before, ibuprofen after (PLAC/IBUP), or (3) placebo before and after (PLAC/PLAC) exercise. Relative changes in hip and lumbar spine BMD from before to after exercise training were assessed using a Hologic Delphi-W dual-energy X-ray absorptiometry (DXA) instrument. Because this was the first study to evaluate whether ibuprofen use affects skeletal adaptations to exercise, only women who were compliant with exercise were included in the primary analyses (IBUP/PLAC, n = 17; PLAC/PLAC, n = 23; and PLAC/IBUP, n = 14). There was a significant effect of drug treatment, adjusted for baseline BMD, on the BMD response to exercise for regions of the hip (total, p < .001; neck, p = .026; trochanter, p = .040; shaft, p = .019) but not the spine (p = .242). The largest increases in BMD occurred in the group that took ibuprofen after exercise. Total-hip BMD changes averaged –0.2% ± 1.3%, 0.4% ± 1.8%, and 2.1% ± 1.7% in the IBUP/PLAC, PLAC/PLAC, and PLAC/IBUP groups, respectively. This preliminary study suggests that taking NSAIDs after exercise enhances the adaptive response of BMD to exercise, whereas taking NSAIDs before may impair the adaptive response. © 2010 American Society for Bone and Mineral Research. PMID:20200939

  19. Ibuprofen reverts antifungal resistance on Candida albicans showing overexpression of CDR genes.

    PubMed

    Ricardo, Elisabete; Costa-de-Oliveira, Sofia; Dias, Ana Silva; Guerra, José; Rodrigues, Acácio Gonçalves; Pina-Vaz, Cidália

    2009-06-01

    Several mechanisms may be associated with Candida albicans resistance to azoles. Ibuprofen was described as being able to revert resistance related to efflux activity in Candida. The aim of this study was to uncover the molecular base of antifungal resistance in C. albicans clinical strains that could be reverted by ibuprofen. Sixty-two clinical isolates and five control strains of C. albicans were studied: the azole susceptibility phenotype was determined according to the Clinical Laboratory for Standards Institute, M27-A2 protocol and minimal inhibitory concentration values were recalculated with ibuprofen (100 microg mL(-1)); synergistic studies between fluconazole and FK506, a Cdr1p inhibitor, were performed using an agar disk diffusion assay and were compared with ibuprofen results. Gene expression was quantified by real-time PCR, with and without ibuprofen, regarding CDR1, CDR2, MDR1, encoding for efflux pumps, and ERG11, encoding for azole target protein. A correlation between susceptibility phenotype and resistance gene expression profiles was determined. Ibuprofen and FK506 showed a clear synergistic effect when combined with fluconazole. Resistant isolates reverting to susceptible after incubation with ibuprofen showed CDR1 and CDR2 overexpression especially of the latter. Conversely, strains that did not revert displayed a remarkable increase in ERG11 expression along with CDR genes. Ibuprofen did not alter resistance gene expression significantly (P>0.05), probably acting as a Cdrp blocker.

  20. MHC, mate choice and heterozygote advantage in a wild social primate.

    PubMed

    Huchard, Elise; Knapp, Leslie A; Wang, Jinliang; Raymond, Michel; Cowlishaw, Guy

    2010-06-01

    Preferences for mates carrying dissimilar genes at the major histocompatibility complex (MHC) may help animals increase offspring pathogen resistance or avoid inbreeding. Such preferences have been reported across a range of vertebrates, but have rarely been investigated in social species other than humans. We investigated mate choice and MHC dynamics in wild baboons (Papio ursinus). MHC Class II DRB genes and 16 microsatellite loci were genotyped across six groups (199 individuals). Based on the survey of a key segment of the gene-rich MHC, we found no evidence of mate choice for MHC dissimilarity, diversity or rare MHC genotypes. First, MHC dissimilarity did not differ from random expectation either between parents of the same offspring or between immigrant males and females from the same troop. Second, female reproductive success was not influenced by MHC diversity or genotype frequency. Third, population genetic structure analysis revealed equally high genotypic differentiation among troops, and comparable excess heterozygosity within troops for juveniles, at both Mhc-DRB and neutral loci. Nevertheless, the age structure of Mhc-DRB heterozygosity suggested higher longevity for heterozygotes, which should favour preferences for MHC dissimilarity. We propose that high levels of within-group outbreeding, resulting from group-living and sex-biased dispersal, might weaken selection for MHC-disassortative mate choice.

  1. CD1d-restricted immunoglobulin G formation to GPI-anchored antigens mediated by NKT cells.

    PubMed

    Schofield, L; McConville, M J; Hansen, D; Campbell, A S; Fraser-Reid, B; Grusby, M J; Tachado, S D

    1999-01-08

    Immunoglobulin G (IgG) responses require major histocompatibility complex (MHC)-restricted recognition of peptide fragments by conventional CD4(+) helper T cells. Immunoglobulin G responses to glycosylphosphatidylinositol (GPI)- anchored protein antigens, however, were found to be regulated in part through CD1d-restricted recognition of the GPI moiety by thymus-dependent, interleukin-4-producing CD4(+), natural killer cell antigen 1.1 [(NK1.1)+] helper T cells. The CD1-NKT cell pathway regulated immunogobulin G responses to the GPI-anchored surface antigens of Plasmodium and Trypanosoma and may be a general mechanism for rapid, MHC-unrestricted antibody responses to diverse pathogens.

  2. Ibuprofen Differentially Affects Supraspinatus Muscle and Tendon Adaptations to Exercise in a Rat Model

    PubMed Central

    Rooney, Sarah Ilkhanipour; Baskin, Rachel; Torino, Daniel J.; Vafa, Rameen P.; Khandekar, Pooja S.; Kuntz, Andrew F.; Soslowsky, Louis J.

    2017-01-01

    Background Previous studies have shown that ibuprofen is detrimental to tissue healing following acute injury; however, the effects of ibuprofen when combined with non-injurious exercise are debated. Hypothesis We hypothesized that administration of ibuprofen to rats undergoing a non-injurious treadmill exercise protocol would abolish the beneficial adaptations found with exercise but have no effect on sedentary muscle and tendon properties. Study Design Controlled laboratory study Methods Rats were divided into exercise or cage activity (sedentary) groups and acute (a single bout of exercise followed by 24 hours of rest) and chronic (2 or 8 weeks of repeated exercise) time points. Half of the rats received ibuprofen to investigate the effects of this drug over time when combined with different activity levels (exercise and sedentary). Supraspinatus tendons were used for mechanical testing and histology (organization, cell shape, cellularity), and supraspinatus muscles were used for morphological (fiber CSA, centrally nucleated fibers) and fiber type analysis. Results Chronic intake of ibuprofen did not impair supraspinatus tendon organization or mechanical adaptations (stiffness, modulus, max load, max stress, dynamic modulus, or viscoelastic properties) to exercise. Tendon mechanical properties were not diminished and in some instances increased with ibuprofen. In contrast, total supraspinatus muscle fiber cross-sectional area decreased with ibuprofen at chronic time points, and some fiber type-specific changes were detected. Conclusions Chronic administration of ibuprofen does not impair supraspinatus tendon mechanical properties in a rat model of exercise but does decrease supraspinatus muscle fiber cross-sectional area. Clinically, these findings suggest that ibuprofen does not detrimentally affect regulation of supraspinatus tendon adaptions to exercise but does decrease muscle growth. Individuals should be advised on the risk of decreased muscle hypertrophy

  3. Effects of humidity and surfaces on the melt crystallization of ibuprofen.

    PubMed

    Lee, Dong-Joo; Lee, Suyang; Kim, Il Won

    2012-01-01

    Melt crystallization of ibuprofen was studied to understand the effects of humidity and surfaces. The molecular self-assembly during the amorphous-to-crystal transformation was examined in terms of the nucleation and growth of the crystals. The crystallization was on Al, Au, and self-assembled monolayers with -CH(3), -OH, and -COOH functional groups. Effects of the humidity were studied at room temperature (18-20 °C) with relative humidity 33%, 75%, and 100%. Effects of the surfaces were observed at -20 °C (relative humidity 36%) to enable close monitoring with slower crystal growth. The nucleation time of ibuprofen was faster at high humidity conditions probably due to the local formation of the unfavorable ibuprofen melt/water interface. The crystal morphologies of ibuprofen were governed by the nature of the surfaces, and they could be associated with the growth kinetics by the Avrami equation. The current study demonstrated the effective control of the melt crystallization of ibuprofen through the melt/atmosphere and melt/surface interfaces.

  4. MHC class II-assortative mate choice in European badgers (Meles meles).

    PubMed

    Sin, Yung Wa; Annavi, Geetha; Newman, Chris; Buesching, Christina; Burke, Terry; Macdonald, David W; Dugdale, Hannah L

    2015-06-01

    The major histocompatibility complex (MHC) plays a crucial role in the immune system, and in some species, it is a target by which individuals choose mates to optimize the fitness of their offspring, potentially mediated by olfactory cues. Under the genetic compatibility hypothesis, individuals are predicted to choose mates with compatible MHC alleles, to increase the fitness of their offspring. Studies of MHC-based mate choice in wild mammals are under-represented currently, and few investigate more than one class of MHC genes. We investigated mate choice based on the compatibility of MHC class I and II genes in a wild population of European badgers (Meles meles). We also investigated mate choice based on microsatellite-derived pairwise relatedness, to attempt to distinguish MHC-specific effects from genomewide effects. We found MHC-assortative mating, based on MHC class II, but not class I genes. Parent pairs had smaller MHC class II DRB amino acid distances and smaller functional distances than expected from random pairings. When we separated the analyses into within-group and neighbouring-group parent pairs, only neighbouring-group pairs showed MHC-assortative mating, due to similarity at MHC class II loci. Our randomizations showed no evidence of genomewide-based inbreeding, based on 35 microsatellite loci; MHC class II similarity was therefore the apparent target of mate choice. We propose that MHC-assortative mate choice may be a local adaptation to endemic pathogens, and this assortative mate choice may have contributed to the low MHC genetic diversity in this population. © 2015 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.

  5. Open conformers: the hidden face of MHC-I molecules.

    PubMed

    Arosa, Fernando A; Santos, Susana G; Powis, Simon J

    2007-03-01

    A pool of MHC-I molecules present at the plasma membrane can dissociate from the peptide and/or the light chain, becoming open MHC-I conformers. Whereas peptide-bound MHC-I molecules have an important role in regulating adaptive and innate immune responses, through trans-interactions with T cell and NK cell receptors, the function of the open MHC-I conformers is less clear but seems to be related to their inherent ability to cis-associate, both with themselves and with other receptors. Here, we review data indicating the open MHC-I conformers as regulators of ligand-receptor interactions and discuss the biological implications for immune and non-immune cells. The likelihood that the MHC-I heavy chains have hidden functions that are determined by the amino acid sequence of the alpha1 and alpha2 domains are discussed.

  6. Co-expression of HLA-B7 and HLA-B27 alleles is associated with B7-restricted immunodominant responses following influenza infection.

    PubMed

    Akram, Ali; Inman, Robert D

    2013-12-01

    It is recognized that host response following viral infection is characterized by immunodominance, but deciphering the different factors contributing to immunodominance has proved a challenge due to concurrent expression of multiple MHC class I alleles. To address this, we generated H2-K(-/-)/D(-/-) double-knockout transgenic mice expressing either one or two human MHC-I alleles. We hypothesized that co-expression of different allele combinations figures critically in immunodominance and examined this in influenza-infected, double Tg MHC-I mice. In A2/B7 or A2/B27 mice, using ELISpot assays with the A2-restricted matrix I.58-66, the B7-restricted NP418-426 or the B27-restricted NP383-391 influenza A (flu) epitopes, we observed the expected recognition of both peptides for both alleles. In contrast, in flu-infected B7/B27 mice, a significantly reduced level of B27/NP383-restricted CTL response was detected while there was no change in the B7/NP418-restricted CTL response. Flu-specific tetramer studies revealed a partial deletion of Vβ8.1(+) NP383/B27-restricted CD8(+) T cells, and a diminished Vβ12(+) CD8(+) T-cell expansion in B7/B27 Tg mice. Using HLA Tg chimeric mice, we confirmed these findings. These findings shed light on the immune consequences of co-dominant expression of MHC-I alleles for host immune response to pathogens. © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Effects of pH, dissolved organic matter, and salinity on ibuprofen sorption on sediment.

    PubMed

    Oh, Sanghwa; Shin, Won Sik; Kim, Hong Tae

    2016-11-01

    Ibuprofen is well known as one of the most frequently detected pharmaceuticals and personal care products (PPCPs) in rivers. However, sorption of ibuprofen onto sediment has not been considered in spite of its high K ow (3.5). In this study, the effects of various environmental conditions such as pH (4, 5.3, and 7), the concentrations of dissolved organic matters (0 to 1.0 mM citrate and urea), salinity (0, 10, 20, and 30 part per thousand), and presence of other PPCP (salicylic acid) on ibuprofen sorption were investigated. Linear model mainly fitted the experimental data for analysis. The distribution coefficient (K d ) in the linear model decreased from 6.76 at pH 4 to near zero at pH 7, indicating that neutral form of ibuprofen at pH below pKa (5.2) was easily sorbed onto the sediment whereas the sorption of anionic form at pH over pKa was not favorable. To investigate the effect of dissolved organic matters (DOMs) on ibuprofen sorption, citrate and urea were used as DOMs. As citrate concentration increased, the K d value decreased but urea did not interrupt the ibuprofen sorption. Citrate has three carboxyl functional groups which can attach easily ibuprofen and hinder its sorption onto sediment. Salinity also affected ibuprofen sorption due to decrease of the solubility of ibuprofen as salinity increased. In competitive sorption experiment, the addition of salicylic acid also led to enhance ibuprofen sorption. Conclusively, ibuprofen can be more easily sorbed onto the acidified sediments of river downstream, especially estuaries or near-shore environment with low DOM concentration.

  8. Controlled release of ibuprofen by meso–macroporous silica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santamaría, E., E-mail: esthersantamaria@ub.edu; Maestro, A.; Porras, M.

    2014-02-15

    Structured meso–macroporous silica was successfully synthesized from an O/W emulsion using decane as a dispersed phase. Sodium silicate solution, which acts as a silica source and a poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (EO{sub 19}PO{sub 39}EO{sub 19}) denoted as P84 was used in order to stabilize the emulsion and as a mesopore template. The materials obtained were characterized through transmission electron microscopy (TEM), scanning electron microscopy (SEM), small-angle X-ray diffraction scattering (SAXS) and nitrogen adsorption–desorption isotherms. Ibuprofen (IBU) was selected as the model drug and loaded into ordered meso–macroporous materials. The effect of the materials’ properties on IBU drug loading and releasemore » was studied. The results showed that the loading of IBU increases as the macropore presence in the material is increased. The IBU adsorption process followed the Langmuir adsorption isotherm. A two-step release process, consisting of an initial fast release and then a slower release was observed. Macropores enhanced the adsorption capacity of the material; this was probably due to the fact that they allowed the drug to access internal pores. When only mesopores were present, ibuprofen was probably adsorbed on the mesopores close to the surface. Moreover, the more macropore present in the material, the slower the release behaviour observed, as the ibuprofen adsorbed in the internal pores had to diffuse along the macropore channels up to the surface of the material. The material obtained from a highly concentrated emulsion was functionalized with amino groups using two methods, the post-grafting mechanism and the co-condensation mechanism. Both routes improve IBU adsorption in the material and show good behaviour as a controlled drug delivery system. - Graphical abstract: Ibuprofen release profiles for the materials obtained from samples P84{sub m}eso (black diamonds), P84{sub 2}0% (white squares), P84

  9. Loss of Mhc and Neutral Variation in Peary Caribou: Genetic Drift Is Not Mitigated by Balancing Selection or Exacerbated by Mhc Allele Distributions

    PubMed Central

    Taylor, Sabrina S.; Jenkins, Deborah A.; Arcese, Peter

    2012-01-01

    Theory and empirical results suggest that the rate of loss of variation at Mhc and neutral microsatellite loci may differ because selection influences Mhc genes, and because a high proportion of rare alleles at Mhc loci may result in high rates of loss via drift. Most published studies compare Mhc and microsatellite variation in various contemporary populations to infer the effects of population size on genetic variation, even though different populations are likely to have different demographic histories that may also affect contemporary genetic variation. We directly compared loss of variation at Mhc and microsatellite loci in Peary caribou by comparing historical and contemporary samples. We observed that similar proportions of genetic variation were lost over time at each type of marker despite strong evidence for selection at Mhc genes. These results suggest that microsatellites can be used to estimate genome-wide levels of variation, but also that adaptive potential is likely to be lost following population bottlenecks. However, gene conversion and recombination at Mhc loci may act to increase variation following bottlenecks. PMID:22655029

  10. β-TCP porous pellets as an orthopaedic drug delivery system: ibuprofen/carrier physicochemical interactions

    NASA Astrophysics Data System (ADS)

    Baradari, Hiba; Damia, Chantal; Dutreih-Colas, Maggy; Champion, Eric; Chulia, Dominique; Viana, Marylène

    2011-10-01

    Calcium phosphate bone substitute materials can be loaded with active substances for in situ, targeted drug administration. In this study, porous β-TCP pellets were investigated as an anti-inflammatory drug carrier. Porous β-TCP pellets were impregnated with an ethanolic solution of ibuprofen. The effects of contact time and concentration of ibuprofen solution on drug adsorption were studied. The ibuprofen adsorption equilibrium time was found to be one hour. The adsorption isotherms fitted to the Freundlich model, suggesting that the interaction between ibuprofen and β-TCP is weak. The physicochemical characterizations of loaded pellets confirmed that the reversible physisorption of ibuprofen on β-TCP pellets is due to Van der Waals forces, and this property was associated with the 100% ibuprofen release.

  11. Young Alu insertions within the MHC class I region in native American populations: insights into the origin of the MHC-Alu repeats.

    PubMed

    Gómez-Pérez, Luis; Alfonso-Sánchez, Miguel A; Dipierri, José E; Sánchez, Dora; Espinosa, Ibone; De Pancorbo, Marian M; Peña, José A

    2013-01-01

    Genetic heterogeneity of two Amerindian populations (Jujuy province, Argentina, and Waorani tribe, Ecuador) was characterized by analyzing data on polymorphic Alu insertions within the human major histocompatibility complex (MHC) class I region (6p21.31), which are completely nonexistent in Native Americans. We further evaluated the haplotype distribution and genetic diversity among continental ancestry groups and their potential implications for the dating of the origin of MHC-Alus. Five MHC-Alu elements (AluMicB, AluTF, AluHJ, AluHG, and AluHF) were typed in samples from Jujuy (N = 108) and Waorani (N = 36). Allele and haplotype frequency data on worldwide populations were compiled to explore spatial structuring of the MHC-Alu diversity through AMOVA tests. We utilized the median-joining network approach to illustrate the continental distribution of the MHC-Alu haplotypes and their phylogenetic relationships. Allele and haplotype distributions differed significantly between Jujuy and Waorani. The Waorani featured a low average heterozygosity attributable to strong population isolation. Overall, Alu markers showed great genetic heterogeneity both within and among populations. The haplotype distribution was distinctive of each continental ancestry group. Contrary to expectations, Africans showed the lowest MHC-Alu diversity. Genetic drift mainly associated to population bottlenecks seems to be reflected in the low MHC-Alu diversity of the Amerindians, mainly in Waorani. Geographical structuring of the haplotype distribution supports the efficiency of the MHC-Alu loci as lineage (ancestry) markers. The markedly low Alu diversity of African populations relative to other continental clusters suggests that these MHC-Alus might have arisen after the anatomically modern humans expanded out of Africa. Copyright © 2013 Wiley Periodicals, Inc.

  12. MHC class I diversity in chimpanzees and bonobos.

    PubMed

    Maibach, Vincent; Hans, Jörg B; Hvilsom, Christina; Marques-Bonet, Tomas; Vigilant, Linda

    2017-10-01

    Major histocompatibility complex (MHC) class I genes are critically involved in the defense against intracellular pathogens. MHC diversity comparisons among samples of closely related taxa may reveal traces of past or ongoing selective processes. The bonobo and chimpanzee are the closest living evolutionary relatives of humans and last shared a common ancestor some 1 mya. However, little is known concerning MHC class I diversity in bonobos or in central chimpanzees, the most numerous and genetically diverse chimpanzee subspecies. Here, we used a long-read sequencing technology (PacBio) to sequence the classical MHC class I genes A, B, C, and A-like in 20 and 30 wild-born bonobos and chimpanzees, respectively, with a main focus on central chimpanzees to assess and compare diversity in those two species. We describe in total 21 and 42 novel coding region sequences for the two species, respectively. In addition, we found evidence for a reduced MHC class I diversity in bonobos as compared to central chimpanzees as well as to western chimpanzees and humans. The reduced bonobo MHC class I diversity may be the result of a selective process in their evolutionary past since their split from chimpanzees.

  13. Does ibuprofen treatment in patent ductus arteriosus alter oxygen free radicals in premature infants?

    PubMed

    Akar, Melek; Yildirim, Tulin G; Sandal, Gonca; Bozdag, Senol; Erdeve, Omer; Altug, Nahide; Uras, Nurdan; Oguz, Serife S; Dilmen, Ugur

    2017-04-01

    Introduction Ibuprofen is used widely to close patent ductus arteriosus in preterm infants. The anti-inflammatory activity of ibuprofen may also be partly due to its ability to scavenge reactive oxygen species and reactive nitrogen species. We evaluated the interaction between oxidative status and the medical treatment of patent ductus arteriosus with two forms of ibuprofen. Materials and methods This study enrolled newborns of gestational age ⩽32 weeks, birth weight ⩽1500 g, and postnatal age 48-96 hours, who received either intravenous or oral ibuprofen to treat patent ductus arteriosus. Venous blood was sampled before ibuprofen treatment from each patient to determine antioxidant and oxidant concentrations. Secondary samples were collected 24 hours after the end of the treatment. Total oxidant status and total antioxidant capacity were measured using Erel's method. This prospective randomised study enrolled 102 preterm infants with patent ductus arteriosus. The patent ductus arteriosus closure rate was significantly higher in the oral ibuprofen group (84.6 versus 62%) after the first course of treatment (p=0.011). No significant difference was found between the pre- and post-treatment total oxidant status and total antioxidant capacity in the groups. Discussion Ibuprofen treatment does not change the total oxidant status or total antioxidant capacity. We believe that the effect of ibuprofen treatment in inducing ischaemia overcomes the scavenging effect of ibuprofen.

  14. Cell-type–restricted anti-cytokine therapy: TNF inhibition from one pathogenic source

    PubMed Central

    Efimov, Grigory A.; Kruglov, Andrei A.; Khlopchatnikova, Zoya V.; Rozov, Fedor N.; Mokhonov, Vladislav V.; Rose-John, Stefan; Scheller, Jürgen; Gordon, Siamon; Stacey, Martin; Drutskaya, Marina S.; Tillib, Sergei V.; Nedospasov, Sergei A.

    2016-01-01

    Overexpression of TNF contributes to pathogenesis of multiple autoimmune diseases, accounting for a remarkable success of anti-TNF therapy. TNF is produced by a variety of cell types, and it can play either a beneficial or a deleterious role. In particular, in autoimmunity pathogenic TNF may be derived from restricted cellular sources. In this study we evaluated the feasibility of cell-type–restricted TNF inhibition in vivo. To this end, we engineered MYSTI (Myeloid-Specific TNF Inhibitor)—a recombinant bispecific antibody that binds to the F4/80 surface molecule on myeloid cells and to human TNF (hTNF). In macrophage cultures derived from TNF humanized mice MYSTI could capture the secreted hTNF, limiting its bioavailability. Additionally, as evaluated in TNF humanized mice, MYSTI was superior to an otherwise analogous systemic TNF inhibitor in protecting mice from lethal LPS/D-Galactosamine–induced hepatotoxicity. Our results suggest a novel and more specific approach to inhibiting TNF in pathologies primarily driven by macrophage-derived TNF. PMID:26936954

  15. Methods for MHC genotyping in non-model vertebrates.

    PubMed

    Babik, W

    2010-03-01

    Genes of the major histocompatibility complex (MHC) are considered a paradigm of adaptive evolution at the molecular level and as such are frequently investigated by evolutionary biologists and ecologists. Accurate genotyping is essential for understanding of the role that MHC variation plays in natural populations, but may be extremely challenging. Here, I discuss the DNA-based methods currently used for genotyping MHC in non-model vertebrates, as well as techniques likely to find widespread use in the future. I also highlight the aspects of MHC structure that are relevant for genotyping, and detail the challenges posed by the complex genomic organization and high sequence variation of MHC loci. Special emphasis is placed on designing appropriate PCR primers, accounting for artefacts and the problem of genotyping alleles from multiple, co-amplifying loci, a strategy which is frequently necessary due to the structure of the MHC. The suitability of typing techniques is compared in various research situations, strategies for efficient genotyping are discussed and areas of likely progress in future are identified. This review addresses the well established typing methods such as the Single Strand Conformation Polymorphism (SSCP), Denaturing Gradient Gel Electrophoresis (DGGE), Reference Strand Conformational Analysis (RSCA) and cloning of PCR products. In addition, it includes the intriguing possibility of direct amplicon sequencing followed by the computational inference of alleles and also next generation sequencing (NGS) technologies; the latter technique may, in the future, find widespread use in typing complex multilocus MHC systems. © 2009 Blackwell Publishing Ltd.

  16. Effects of Humidity and Surfaces on the Melt Crystallization of Ibuprofen

    PubMed Central

    Lee, Dong-Joo; Lee, Suyang; Kim, Il Won

    2012-01-01

    Melt crystallization of ibuprofen was studied to understand the effects of humidity and surfaces. The molecular self-assembly during the amorphous-to-crystal transformation was examined in terms of the nucleation and growth of the crystals. The crystallization was on Al, Au, and self-assembled monolayers with –CH3, –OH, and –COOH functional groups. Effects of the humidity were studied at room temperature (18–20 °C) with relative humidity 33%, 75%, and 100%. Effects of the surfaces were observed at −20 °C (relative humidity 36%) to enable close monitoring with slower crystal growth. The nucleation time of ibuprofen was faster at high humidity conditions probably due to the local formation of the unfavorable ibuprofen melt/water interface. The crystal morphologies of ibuprofen were governed by the nature of the surfaces, and they could be associated with the growth kinetics by the Avrami equation. The current study demonstrated the effective control of the melt crystallization of ibuprofen through the melt/atmosphere and melt/surface interfaces. PMID:22949861

  17. Repurposing of Aspirin and Ibuprofen as Candidate Anti-Cryptococcus Drugs.

    PubMed

    Ogundeji, Adepemi O; Pohl, Carolina H; Sebolai, Olihile M

    2016-08-01

    The usage of fluconazole and amphotericin B in clinical settings is often limited by, among other things, drug resistance development and undesired side effects. Thus, there is a constant need to find new drugs to better manage fungal infections. Toward this end, the study described in this paper considered the repurposing of aspirin (acetylsalicylic acid) and ibuprofen as alternative drugs to control the growth of cryptococcal cells. In vitro susceptibility tests, including a checkerboard assay, were performed to assess the response of Cryptococcus neoformans and Cryptococcus gattii to the above-mentioned anti-inflammatory drugs. Next, the capacity of these two drugs to induce stress as well as their mode of action in the killing of cryptococcal cells was determined. The studied fungal strains revealed a response to both aspirin and ibuprofen that was dose dependent, with ibuprofen exerting greater antimicrobial action. More importantly, the MICs of these drugs did not negatively (i) affect growth or (ii) impair the functioning of macrophages; rather, they enhanced the ability of these immune cells to phagocytose cryptococcal cells. Ibuprofen was also shown to act in synergy with fluconazole and amphotericin B. The treatment of cryptococcal cells with aspirin or ibuprofen led to stress induction via activation of the high-osmolarity glycerol (HOG) pathway, and cell death was eventually achieved through reactive oxygen species (ROS)-mediated membrane damage. The presented data highlight the potential clinical application of aspirin and ibuprofen as candidate anti-Cryptococcus drugs. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Complex MHC class I gene transcription profiles and their functional impact in orangutans

    PubMed Central

    de Groot, Natasja G.; Heijmans, Corrine M.C.; van der Wiel, Marit K.H.; Blokhuis, Jeroen H.; Mulder, Arend; Guethlein, Lisbeth A.; Doxiadis, Gaby G.M.; Claas, Frans H.J.; Parham, Peter; Bontrop, Ronald E.

    2015-01-01

    MHC haplotypes of humans and the African great ape species have one copy of the MHC-A, -B, and -C genes. In contrast, MHC haplotypes of orangutans, the Asian great ape species, exhibit variation in the number of gene copies. An in-depth analysis of the MHC class I gene repertoire in the two orangutan species, Pongo abelii and Pongo pygmaeus, is presented here. This analysis involved Sanger and next-generation sequencing methodologies, revealing diverse and complicated transcription profiles for orangutan MHC-A, -B, and -C. Thirty-five previously unreported MHC class I alleles are described. The data demonstrate that each orangutan MHC haplotype has one copy of the MHC-A gene, and that the MHC-B region has been subject to duplication, giving rise to at least three MHC-B genes. The MHC-B*03 and -B*08 lineages of alleles each account for a separate MHC-B gene. All MHC-B*08 allotypes have the C1-epitope motif recognized by KIR. At least one other MHC-B gene is present, pointing to MHC-B alleles that are not B*03 or B*08. The MHC-C gene is present only on some haplotypes, and each MHC-C allotype has the C1-epitope. The transcription profiles demonstrate that MHC-A alleles are highly transcribed, whereas MHC-C alleles, when present, are transcribed at very low levels. The MHC-B alleles are transcribed to a variable extent and over a wide range. For those orangutan MHC class I allotypes that are detected by human monoclonal anti-HLA class I antibodies, the level of cell-surface expression of proteins correlates with the level of transcription of the allele. PMID:26685209

  19. Fab antibodies capable of blocking T cells by competitive binding have the identical specificity but a higher affinity to the MHC-peptide-complex than the T cell receptor.

    PubMed

    Neumann, Frank; Sturm, Christine; Hülsmeyer, Martin; Dauth, Nina; Guillaume, Philippe; Luescher, Immanuel F; Pfreundschuh, Michael; Held, Gerhard

    2009-08-15

    In transplant rejection, graft versus host or autoimmune diseases T cells are mediating the pathophysiological processes. Compared to unspecific pharmacological immune suppression specific inhibition of those T cells, that are involved in the disease, would be an alternative and attractive approach. T cells are activated after their T cell receptor (TCR) recognizes an antigenic peptide displayed by the Major Histocompatibility Complex (MHC). Molecules that interact with MHC-peptide-complexes in a specific fashion should block T cells with identical specificity. Using the model of the SSX2 (103-111)/HLA-A*0201 complex we investigated a panel of MHC-peptide-specific Fab antibodies for their capacity blocking specific T cell clones. Like TCRs all Fab antibodies reacted with the MHC complex only when the SSX2 (103-111) peptide was displayed. By introducing single amino acid mutations in the HLA-A*0201 heavy chain we identified the K66 residue as the most critical binding similar to that of TCRs. However, some Fab antibodies did not inhibit the reactivity of a specific T cell clone against peptide pulsed, artificial targets, nor cells displaying the peptide after endogenous processing. Measurements of binding kinetics revealed that only those Fab antibodies were capable of blocking T cells that interacted with an affinity in the nanomolar range. Fab antibodies binding like TCRs with affinities on the lower micromolar range did not inhibit T cell reactivity. These results indicate that molecules that block T cells by competitive binding with the TCR must have the same specificity but higher affinity for the MHC-peptide-complex than the TCR.

  20. Rofecoxib versus ibuprofen for acute treatment of migraine: a randomised placebo controlled trial

    PubMed Central

    Misra, U; Jose, M; Kalita, J

    2004-01-01

    Background: Rofecoxib is a potent cyclo-oxygenase-2 inhibitor with a long duration of action. Its role in migraine has not been systematically evaluated. Aim: To study the efficacy of rofecoxib in migraine. Method: In a randomised placebo controlled trial rofecoxib 25 mg, ibuprofen 400 mg, and placebo were compared regarding their efficacy in relieving acute migraine attack. Migraine patients with 2–6 attacks per month were recruited. Headache severity, functional disability, and severity of associated symptoms were graded on a 0–3 scale. The primary endpoint was pain relief at two hours. Relief of associated symptoms and sustained pain relief for 24 hours were also noted. Result: One hundred and twenty four patients were randomised into rofecoxib (42), ibuprofen (40), and placebo (42) groups. One hundred and one patients were followed up: 33 on rofecoxib, 35 ibuprofen, and 33 placebo. Patients' ages ranged from 16–62 (mean 31.4) years, and 83 were females. Pain relief at two hours was noted in 45.5% on rofecoxib, 55.6% on ibuprofen, and 9.1% in the placebo group. The associated symptoms at two hours were reduced in 39.4% on rofecoxib, 50% on ibuprofen, and 9.1% in the placebo group. Sustained 24 hour pain relief was noted in 36.4% on rofecoxib, 41% on ibuprofen, and 6.1% in the placebo group. In the ibuprofen group, five patients had abdominal pain but there were no side effects in those on rofecoxib or in the control group. Both rofecoxib and ibuprofen were significantly effective in relieving pain, associated symptoms at two hours, and in sustained pain relief. There was no significant difference between rofecoxib and ibuprofen in aborting acute migraine attacks. Conclusions: Both ibuprofen and rofecoxib were superior to placebo in aborting an acute migraine attack, and there was no significant difference in their efficacy in an acute migraine attack. PMID:15579612

  1. Human MHC architecture and evolution: implications for disease association studies

    PubMed Central

    Traherne, J A

    2008-01-01

    Major histocompatibility complex (MHC) variation is a key determinant of susceptibility and resistance to a large number of infectious, autoimmune and other diseases. Identification of the MHC variants conferring susceptibility to disease is problematic, due to high levels of variation and linkage disequilibrium. Recent cataloguing and analysis of variation over the complete MHC has facilitated localization of susceptibility loci for autoimmune diseases, and provided insight into the MHC's evolution. This review considers how the unusual genetic characteristics of the MHC impact on strategies to identify variants causing, or contributing to, disease phenotypes. It also considers the MHC in relation to novel mechanisms influencing gene function and regulation, such as epistasis, epigenetics and microRNAs. These developments, along with recent technological advances, shed light on genetic association in complex disease. PMID:18397301

  2. A dose ranging study of ibuprofen suspension as an antipyretic.

    PubMed Central

    Marriott, S C; Stephenson, T J; Hull, D; Pownall, R; Smith, C M; Butler, A

    1991-01-01

    A double blind trial was conducted to determine the dose of ibuprofen suspension, which is effective in reducing the body temperature. The principal measure of efficacy was a reduction in axillary temperature of 1 degree C or more three hours after dosing. A second objective of the trial was to compare the incidence and severity of side effects and the palatability of a range of ibuprofen doses. Ninety three children were included in the analysis. All four doses of ibuprofen studied (0.625 mg/kg-5 mg/kg) were associated with temperature reduction and only the lowest dose failed to satisfy the principal measure of efficacy. The influence of dose on the magnitude of the body temperature reduction was significant and the 5 mg/kg dose achieved the largest mean reduction in body temperature (2 degrees C). The tolerability and palatability of all doses studied were excellent. These findings suggest that ibuprofen is a good alternative to paracetamol as an antipyretic. PMID:1929509

  3. Ryegrass uptake of carbamazepine and ibuprofen applied by urine fertilization.

    PubMed

    Winker, Martina; Clemens, Joachim; Reich, Margrit; Gulyas, Holger; Otterpohl, Ralf

    2010-03-15

    Human urine is a potential alternative fertilizer for agriculture. However, its usage is associated with a risk of spreading pharmaceutical residues to fields. The individual and combined behavior of carbamazepine and ibuprofen was investigated by GC/MS analysis in a greenhouse experiment using ryegrass fertilized with pharmaceutical-spiked urine. Only carbamazepine could be detected in soil, roots, and aerial plant parts. Fifty-three per cent of carbamazepine originally present in the urine was recovered in soil samples taken after three months. Additionally, 34% of carbamazepine was found in aerial plant parts and 0.3% in roots. Model calculations showed that neither roots nor Casparian strip posed a considerable barrier to uptake. Carbamazepine transport was clearly driven by transpiration. Ibuprofen was not detected in the soil or in any plant parts after three months. This was assumed to be due to biodegradation of ibuprofen. Carbamazepine and ibuprofen, singly or in combination, did not adversely affect the growth of ryegrass.

  4. Pharmacological assessment of ibuprofen arginate on platelet aggregation and colon cancer cell killing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmetaj-Shala, B., E-mail: b.ahmetaj@imperial.ac.uk; Tesfai, A.; Constantinou, C.

    Nonsteroidal anti-inflammatory drugs (NSAIDs), including ibuprofen, are amongst the most commonly used medications and produce their anti-inflammatory and analgesic benefits by blocking cyclooxygenase (COX)-2. These drugs also have the potential to prevent and treat cancer and some members of the class including ibuprofen can produce anti-platelet effects. Despite their utility, all NSAIDs are associated with increased risk of cardiovascular side effects which our recent work suggests could be mediated by increased levels of the endogenous NO synthase (NOS) inhibitor asymmetric dimethylarginine (ADMA) leading to reduced endothelial NOS activity and associated endothelial cell dysfunction. ADMA is a cardiotoxic hormone and biomarkermore » of cardiovascular risk whose effects can be prevented by L-arginine. The ibuprofen salt, ibuprofen arginate (Spididol{sup ®}) was created to increase drug solubility but we have previously established that it not only effectively blocks COX-2 but also provides an arginine source able to reverse the effects of ADMA in vitro and in vivo. Here we have gone on to explore whether the formulation of ibuprofen with arginine influences the potency and efficacy of the parent molecule using a range of simple in vitro assays designed to test the effects of NSAIDs on (i) platelet aggregation and (iii) colon cancer cell killing. Our findings demonstrate that ibuprofen arginate retains these key functional effects of NSAIDs with similar or increased potency compared to ibuprofen sodium, further illustrating the potential of ibuprofen arginate as an efficacious drug with the possibility of improved cardiovascular safety. - Highlights: • Arginine salts of ibuprofen have improved solubility and deliver arginine. • They retain full anti-inflammatory, anti-cancer and anti-platelet activity. • Arginine formulations may provide a safer but still efficacious NSAID therapy.« less

  5. Pterocarpus santalinus: a traditional herbal drug as a protectant against ibuprofen induced gastric ulcers.

    PubMed

    Narayan, Shoba; Devi, R S; Srinivasan, P; Shyamala Devi, C S

    2005-11-01

    The ethanol extract of Pterocarpus santalinus (PS) was evaluated for gastroprotection in rats using ibuprofen as the induction model. Rats treated with PS (100-400 mg/kg) showed a significant reduction in gastric lesions. PS at a dose of 200 mg/kg was found to be the minimum effective dose and hence further studies with that dose were carried out. PS treatment increased the LDH activity and decreased the lipid peroxidation levels. The extract had the ability to increase the antioxidant enzymes SOD, CAT and GPx when compared with the untreated but induced rats. The membrane bound ATPases - H(+)K(+)ATPase, Na(+)K(+)ATPase and Ca(2+)ATPases were increased upon the induction with ulcerogen. The treated group showed a decrease in the activities of these enzymes and also had the ability to restore the sodium and potassium ion concentrations to near normal levels, which were altered by ibuprofen mediated acid stimulation. The results suggest that the antiulcer properties of PS could traced to its acid inhibiting potential, antioxidant activity and the ability to maintain functional integrity of the cell membranes.

  6. NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11.

    PubMed

    Lundegaard, Claus; Lamberth, Kasper; Harndahl, Mikkel; Buus, Søren; Lund, Ole; Nielsen, Morten

    2008-07-01

    NetMHC-3.0 is trained on a large number of quantitative peptide data using both affinity data from the Immune Epitope Database and Analysis Resource (IEDB) and elution data from SYFPEITHI. The method generates high-accuracy predictions of major histocompatibility complex (MHC): peptide binding. The predictions are based on artificial neural networks trained on data from 55 MHC alleles (43 Human and 12 non-human), and position-specific scoring matrices (PSSMs) for additional 67 HLA alleles. As only the MHC class I prediction server is available, predictions are possible for peptides of length 8-11 for all 122 alleles. artificial neural network predictions are given as actual IC(50) values whereas PSSM predictions are given as a log-odds likelihood scores. The output is optionally available as download for easy post-processing. The training method underlying the server is the best available, and has been used to predict possible MHC-binding peptides in a series of pathogen viral proteomes including SARS, Influenza and HIV, resulting in an average of 75-80% confirmed MHC binders. Here, the performance is further validated and benchmarked using a large set of newly published affinity data, non-redundant to the training set. The server is free of use and available at: http://www.cbs.dtu.dk/services/NetMHC.

  7. Complex Mhc-based mate choice in a wild passerine

    PubMed Central

    Bonneaud, Camille; Chastel, Olivier; Federici, Pierre; Westerdahl, Helena; Sorci, Gabriele

    2006-01-01

    The extreme polymorphism of the vertebrate major histocompatibility complex (Mhc) is famous for protecting hosts against constantly evolving pathogens. Mate choice is often evoked as a means of maintaining Mhc variability through avoidance of partners with similar Mhc alleles or preference for heterozygotes. Evidence for these two hypotheses mostly comes from studies on humans and laboratory mice. Here, we tested these hypotheses in a wild outbred population of house sparrows (Passer domesticus). Females were not more or less closely related to the males they paired with when considering neutral genetic variation. However, males failed to form breeding pairs when they had too few Mhc alleles and when they were too dissimilar from females at Mhc loci (i.e. had no common alleles). Furthermore, pairs did not form at random as Mhc diversity positively correlated in mating pairs. These results suggest that mate choice evolves in response to (i) benefits in terms of parasite resistance acquired from allelic diversity, and (ii) costs associated with the disruption of co-adapted genes. PMID:16600889

  8. Complex Mhc-based mate choice in a wild passerine.

    PubMed

    Bonneaud, Camille; Chastel, Olivier; Federici, Pierre; Westerdahl, Helena; Sorci, Gabriele

    2006-05-07

    The extreme polymorphism of the vertebrate major histocompatibility complex (Mhc) is famous for protecting hosts against constantly evolving pathogens. Mate choice is often evoked as a means of maintaining Mhc variability through avoidance of partners with similar Mhc alleles or preference for heterozygotes. Evidence for these two hypotheses mostly comes from studies on humans and laboratory mice. Here, we tested these hypotheses in a wild outbred population of house sparrows (Passer domesticus). Females were not more or less closely related to the males they paired with when considering neutral genetic variation. However, males failed to form breeding pairs when they had too few Mhc alleles and when they were too dissimilar from females at Mhc loci (i.e. had no common alleles). Furthermore, pairs did not form at random as Mhc diversity positively correlated in mating pairs. These results suggest that mate choice evolves in response to (i) benefits in terms of parasite resistance acquired from allelic diversity, and (ii) costs associated with the disruption of co-adapted genes.

  9. Ibuprofen Differentially Affects Supraspinatus Muscle and Tendon Adaptations to Exercise in a Rat Model.

    PubMed

    Rooney, Sarah Ilkhanipour; Baskin, Rachel; Torino, Daniel J; Vafa, Rameen P; Khandekar, Pooja S; Kuntz, Andrew F; Soslowsky, Louis J

    2016-09-01

    Previous studies have shown that ibuprofen is detrimental to tissue healing after acute injury; however, the effects of ibuprofen when combined with noninjurious exercise are debated. Administration of ibuprofen to rats undergoing a noninjurious treadmill exercise protocol will abolish the beneficial adaptations found with exercise but will have no effect on sedentary muscle and tendon properties. Controlled laboratory study. A total of 167 male Sprague-Dawley rats were divided into exercise or cage activity (sedentary) groups and acute (a single bout of exercise followed by 24 hours of rest) and chronic (2 or 8 weeks of repeated exercise) response times. Half of the rats were administered ibuprofen to investigate the effects of this drug over time when combined with different activity levels (exercise and sedentary). Supraspinatus tendons were used for mechanical testing and histologic assessment (organization, cell shape, cellularity), and supraspinatus muscles were used for morphologic (fiber cross-sectional area, centrally nucleated fibers) and fiber type analysis. Chronic intake of ibuprofen did not impair supraspinatus tendon organization or mechanical adaptations (stiffness, modulus, maximum load, maximum stress, dynamic modulus, or viscoelastic properties) to exercise. Tendon mechanical properties were not diminished and in some instances increased with ibuprofen. In contrast, total supraspinatus muscle fiber cross-sectional area decreased with ibuprofen at chronic response times, and some fiber type-specific changes were detected. Chronic administration of ibuprofen does not impair supraspinatus tendon mechanical properties in a rat model of exercise but does decrease supraspinatus muscle fiber cross-sectional area. This fundamental study adds to the growing literature on the effects of ibuprofen on musculoskeletal tissues and provides a solid foundation on which future work can build. The study findings suggest that ibuprofen does not detrimentally affect

  10. Modeling the MHC class I pathway by combining predictions of proteasomal cleavage, TAP transport and MHC class I binding.

    PubMed

    Tenzer, S; Peters, B; Bulik, S; Schoor, O; Lemmel, C; Schatz, M M; Kloetzel, P-M; Rammensee, H-G; Schild, H; Holzhütter, H-G

    2005-05-01

    Epitopes presented by major histocompatibility complex (MHC) class I molecules are selected by a multi-step process. Here we present the first computational prediction of this process based on in vitro experiments characterizing proteasomal cleavage, transport by the transporter associated with antigen processing (TAP) and MHC class I binding. Our novel prediction method for proteasomal cleavages outperforms existing methods when tested on in vitro cleavage data. The analysis of our predictions for a new dataset consisting of 390 endogenously processed MHC class I ligands from cells with known proteasome composition shows that the immunological advantage of switching from constitutive to immunoproteasomes is mainly to suppress the creation of peptides in the cytosol that TAP cannot transport. Furthermore, we show that proteasomes are unlikely to generate MHC class I ligands with a C-terminal lysine residue, suggesting processing of these ligands by a different protease that may be tripeptidyl-peptidase II (TPPII).

  11. High levels of diversity characterize mandrill (Mandrillus sphinx) Mhc-DRB sequences.

    PubMed

    Abbott, Kristin M; Wickings, E Jean; Knapp, Leslie A

    2006-08-01

    The major histocompatibility complex (MHC) is highly polymorphic in most primate species studied thus far. The rhesus macaque (Macaca mulatta) has been studied extensively and the Mhc-DRB region demonstrates variability similar to humans. The extent of MHC diversity is relatively unknown for other Old World monkeys (OWM), especially among genera other than Macaca. A molecular survey of the Mhc-DRB region in mandrills (Mandrillus sphinx) revealed extensive variability, suggesting that other OWMs may also possess high levels of Mhc-DRB polymorphism. In the present study, 33 Mhc-DRB loci were identified from only 13 animals. Eleven were wild-born and presumed to be unrelated and two were captive-born twins. Two to seven different sequences were identified for each individual, suggesting that some mandrills may have as many as four Mhc-DRB loci on a single haplotype. From these sequences, representatives of at least six Mhc-DRB loci or lineages were identified. As observed in other primates, some new lineages may have arisen through the process of gene conversion. These findings indicate that mandrills have Mhc-DRB diversity not unlike rhesus macaques and humans.

  12. Fisher Discrimination of Metabolic Changes in Rats Treated with Aspirin and Ibuprofen.

    PubMed

    Zhang, Jing; Song, Huanchun; Jiang, Shuying; Chen, Zhibin; Tong, Shuhua; Lin, Feiyan; Wen, Congcong; Zhang, Xiuhua; Hu, Lufeng

    2017-01-01

    Aspirin and ibuprofen are the most frequently prescribed non-steroidal anti-inflammatory drugs in the world. However, both are associated with a variety of toxicities. We applied serum metabonomics and Fisher discrimination for the early diagnosis of its toxic reaction in order to help diagnose these toxicities. A total of 45 rats were randomly divided into Control group, Aspirin group, and Ibuprofen groups. The experiment groups were given intragastric aspirin (15 mg/kg) or ibuprofen (15 mg/kg) for 3 weeks. Liver function tests were performed and blood metabonomics were analyzed by gas chromatography-mass spectrometry. The most important compounds altered were trihydroxybutyric acid and l-alanine in the aspirin group, and acetoacetic acid, l-alanine, and trihydroxybutyric acid in the ibuprofen group. With respect to metabolic profiles, all 3 groups were completely distinct from one another. Fisher discrimination showed that 91.1% of the original grouped cases were correctly classified by the third week. However, only 55.6% of liver function tests were able to classify grouped cases correctly. Trihydroxybutyric acid, l-alanine, and acetoacetic acid were the most significant indicators of altered serum metabolites following intragastric administration of aspirin and ibuprofen in rates. These metabolomic data may be used for classification of aspirin and ibuprofen toxicity. © 2017 S. Karger AG, Basel.

  13. An Integrated Tool to Study MHC Region: Accurate SNV Detection and HLA Genes Typing in Human MHC Region Using Targeted High-Throughput Sequencing

    PubMed Central

    Liu, Xiao; Xu, Yinyin; Liang, Dequan; Gao, Peng; Sun, Yepeng; Gifford, Benjamin; D’Ascenzo, Mark; Liu, Xiaomin; Tellier, Laurent C. A. M.; Yang, Fang; Tong, Xin; Chen, Dan; Zheng, Jing; Li, Weiyang; Richmond, Todd; Xu, Xun; Wang, Jun; Li, Yingrui

    2013-01-01

    The major histocompatibility complex (MHC) is one of the most variable and gene-dense regions of the human genome. Most studies of the MHC, and associated regions, focus on minor variants and HLA typing, many of which have been demonstrated to be associated with human disease susceptibility and metabolic pathways. However, the detection of variants in the MHC region, and diagnostic HLA typing, still lacks a coherent, standardized, cost effective and high coverage protocol of clinical quality and reliability. In this paper, we presented such a method for the accurate detection of minor variants and HLA types in the human MHC region, using high-throughput, high-coverage sequencing of target regions. A probe set was designed to template upon the 8 annotated human MHC haplotypes, and to encompass the 5 megabases (Mb) of the extended MHC region. We deployed our probes upon three, genetically diverse human samples for probe set evaluation, and sequencing data show that ∼97% of the MHC region, and over 99% of the genes in MHC region, are covered with sufficient depth and good evenness. 98% of genotypes called by this capture sequencing prove consistent with established HapMap genotypes. We have concurrently developed a one-step pipeline for calling any HLA type referenced in the IMGT/HLA database from this target capture sequencing data, which shows over 96% typing accuracy when deployed at 4 digital resolution. This cost-effective and highly accurate approach for variant detection and HLA typing in the MHC region may lend further insight into immune-mediated diseases studies, and may find clinical utility in transplantation medicine research. This one-step pipeline is released for general evaluation and use by the scientific community. PMID:23894464

  14. Ibuprofen-Mediated Reversal of Fluconazole Resistance in Clinical Isolates of Candida

    PubMed Central

    Sharma, Monika; Kotwal, Aarti; Thakuria, Bhaskar; Kakati, Barnali; Chauhan, Bhupendra Singh; Patras, Abhishek

    2015-01-01

    Introduction: In view of the increasing prevalence of invasive Candidiasis in today’s health-care scenario and the emergence of fluconazole resistance among clinical isolates of Candida, we sought to determine if Ibuprofen could elicit a reversal of fluconazole resistance and thereby offer a potential therapeutic breakthrough in fluconazole-resistant Candidiasis. Materials and Methods: We selected 69 clinical isolates of Candida, which demonstrated an MIC of >32 μg/ml for fluconazole, and subjected them to broth microdilution in presence and absence of Ibuprofen. Results: Forty two of the 69 isolates (60.9%) demonstrated reversal of Fluconazole resistance with concomitant use of Ibuprofen. This was characterized by significant species-wise variation (p=0.00008), with all the C. albicans isolates and none of the C. glabrata isolates demonstrating such reversal. Only 22.2% and 37.7% of C. krusei and C. tropicalis isolates respectively showed Ibuprofen-mediated reversal of Fluconazole resistance. Conclusion: Since Ibuprofen is a known efflux pump inhibitor, our findings hint at the possible mechanism of Fluconazole resistance in most of our Candida isolates and suggest a potential therapeutic alternative that could be useful in the majority of Fluconazole-resistant clinical isolates of Candida. PMID:25737988

  15. Extensive variation at MHC DRB in the New Zealand sea lion (Phocarctos hookeri) provides evidence for balancing selection

    PubMed Central

    Osborne, A J; Zavodna, M; Chilvers, B L; Robertson, B C; Negro, S S; Kennedy, M A; Gemmell, N J

    2013-01-01

    Marine mammals are often reported to possess reduced variation of major histocompatibility complex (MHC) genes compared with their terrestrial counterparts. We evaluated diversity at two MHC class II B genes, DQB and DRB, in the New Zealand sea lion (Phocarctos hookeri, NZSL) a species that has suffered high mortality owing to bacterial epizootics, using Sanger sequencing and haplotype reconstruction, together with next-generation sequencing. Despite this species' prolonged history of small population size and highly restricted distribution, we demonstrate extensive diversity at MHC DRB with 26 alleles, whereas MHC DQB is dimorphic. We identify four DRB codons, predicted to be involved in antigen binding, that are evolving under adaptive evolution. Our data suggest diversity at DRB may be maintained by balancing selection, consistent with the role of this locus as an antigen-binding region and the species' recent history of mass mortality during a series of bacterial epizootics. Phylogenetic analyses of DQB and DRB sequences from pinnipeds and other carnivores revealed significant allelic diversity, but little phylogenetic depth or structure among pinniped alleles; thus, we could neither confirm nor refute the possibility of trans-species polymorphism in this group. The phylogenetic pattern observed however, suggests some significant evolutionary constraint on these loci in the recent past, with the pattern consistent with that expected following an epizootic event. These data may help further elucidate some of the genetic factors underlying the unusually high susceptibility to bacterial infection of the threatened NZSL, and help us to better understand the extent and pattern of MHC diversity in pinnipeds. PMID:23572124

  16. A novel strategy for the identification of antigens that are recognised by bovine MHC class I restricted cytotoxic T cells in a protozoan infection using reverse vaccinology.

    PubMed

    Graham, Simon P; Honda, Yoshikazu; Pellé, Roger; Mwangi, Duncan M; Glew, E Jane; de Villiers, Etienne P; Shah, Trushar; Bishop, Richard; van der Bruggen, Pierre; Nene, Vishvanath; Taracha, Evans L N

    2007-02-09

    Immunity against the bovine protozoan parasite Theileria parva has previously been shown to be mediated through lysis of parasite-infected cells by MHC class I restricted CD8+ cytotoxic T lymphocytes. It is hypothesized that identification of CTL target schizont antigens will aid the development of a sub-unit vaccine. We exploited the availability of the complete genome sequence data and bioinformatics tools to identify genes encoding secreted or membrane anchored proteins that may be processed and presented by the MHC class I molecules of infected cells to CTL. Of the 986 predicted open reading frames (ORFs) encoded by chromosome 1 of the T. parva genome, 55 were selected based on the presence of a signal peptide and/or a transmembrane helix domain. Thirty six selected ORFs were successfully cloned into a eukaryotic expression vector, transiently transfected into immortalized bovine skin fibroblasts and screened in vitro using T. parva-specific CTL. Recognition of gene products by CTL was assessed using an IFN-gamma ELISpot assay. A 525 base pair ORF encoding a 174 amino acid protein, designated Tp2, was identified by T. parva-specific CTL from 4 animals. These CTL recognized and lysed Tp2 transfected skin fibroblasts and recognized 4 distinct epitopes. Significantly, Tp2 specific CD8+ T cell responses were observed during the protective immune response against sporozoite challenge. The identification of an antigen containing multiple CTL epitopes and its apparent immunodominance during a protective anti-parasite response makes Tp2 an attractive candidate for evaluation of its vaccine potential.

  17. The IPSO study: ibuprofen, paracetamol study in osteoarthritis. A randomised comparative clinical study comparing the efficacy and safety of ibuprofen and paracetamol analgesic treatment of osteoarthritis of the knee or hip

    PubMed Central

    Boureau, F; Schneid, H; Zeghari, N; Wall, R; Bourgeois, P

    2004-01-01

    Objective: To compare the analgesic efficacy of single and multiple doses of ibuprofen with that of paracetamol in patients with knee or hip osteoarthritis (IPSO study). Method: 222 patients were randomised in a double blind, multicentre study—156 (70%) had a painful knee joint and 66 (30%) a painful hip joint. The main efficacy criterion was pain intensity assessment after a single dose (ibuprofen 400 mg, paracetamol 1000 mg). Functional disability assessment and patient global assessment were carried out over 14 days. Results: The sum of the pain intensity difference over 6 hours after the first administration was significantly higher (p = 0.046) in the ibuprofen group than in the paracetamol group. Over 14 days pain intensity decreased from the first day and was significantly lower in the ibuprofen group than in the paracetamol group (p<0.05). The functional disability of the patient was assessed using the WOMAC; the ibuprofen group improved significantly over 2 weeks compared with the paracetamol group for each of the subscales: stiffness (p<0.002), pain (p<0.001), physical function (p<0.002). The drugs were equally safe. Conclusion: The IPSO study shows that for the treatment of osteoarthritic pain, ibuprofen 400 mg at a single and multiple dose (1200 mg/day) for 14 days is more effective than paracetamol, either as a single dose of 1000 mg or a multiple dose (3000 mg/day). Because ibuprofen and paracetamol have similar tolerability, this study indicates that the efficacy/tolerability ratio of ibuprofen is better than that of paracetamol in this indication over 14 days. PMID:15308513

  18. Structural analysis of ibuprofen binding to human adipocyte fatty-acid binding protein (FABP4).

    PubMed

    González, Javier M; Fisher, S Zoë

    2015-02-01

    Inhibition of human adipocyte fatty-acid binding protein (FABP4) has been proposed as a treatment for type 2 diabetes, fatty liver disease and atherosclerosis. However, FABP4 displays a naturally low selectivity towards hydrophobic ligands, leading to the possibility of side effects arising from cross-inhibition of other FABP isoforms. In a search for structural determinants of ligand-binding selectivity, the binding of FABP4 towards a group of small molecules structurally related to the nonsteroidal anti-inflammatory drug ibuprofen was analyzed through X-ray crystallography. Several specific hydrophobic interactions are shown to enhance the binding affinities of these compounds, whereas an aromatic edge-to-face interaction is proposed to determine the conformation of bound ligands, highlighting the importance of aromatic interactions in hydrophobic environments.

  19. MHC diversity in two Acrocephalus species: the outbred Great reed warbler and the inbred Seychelles warbler.

    PubMed

    Richardson, David S; Westerdahl, Helena

    2003-12-01

    The Great reed warbler (GRW) and the Seychelles warbler (SW) are congeners with markedly different demographic histories. The GRW is a normal outbred bird species while the SW population remains isolated and inbred after undergoing a severe population bottleneck. We examined variation at Major Histocompatibility Complex (MHC) class I exon 3 using restriction fragment length polymorphism, denaturing gradient gel electrophoresis and DNA sequencing. Although genetic variation was higher in the GRW, considerable variation has been maintained in the SW. The ten exon 3 sequences found in the SW were as diverged from each other as were a random sub-sample of the 67 sequences from the GRW. There was evidence for balancing selection in both species, and the phylogenetic analysis showing that the exon 3 sequences did not separate according to species, was consistent with transspecies evolution of the MHC.

  20. NLRC5: a key regulator of MHC class I-dependent immune responses.

    PubMed

    Kobayashi, Koichi S; van den Elsen, Peter J

    2012-12-01

    The expression of MHC class I molecules is crucial for the initiation and regulation of adaptive immune responses against pathogens. NOD-, LRR- and CARD-containing 5 (NLRC5) was recently identified as a specific transactivator of MHC class I genes (CITA). NLRC5 and the master regulator for MHC class II genes, class II transactivator (CIITA), interact with similar MHC promoter-bound factors. Here, we provide a broad overview of the molecular mechanisms behind MHC class I transcription and the role of the class I transactivator NLRC5 in MHC class I-dependent immune responses.

  1. Effect of pH and Ibuprofen on Phopholipid Bilayer Bending Modulus

    NASA Astrophysics Data System (ADS)

    Boggara, Mohan; Faraone, Antonio; Krishnamoorti, Ramanan

    2010-03-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) e.g. Aspirin and Ibuprofen, are known to cause gastrointestinal (GI) toxicity with chronic usage. However, NSAIDs pre-associated with phospholipids has been experimentally shown to reduce the GI toxicity and increase the therapeutic efficacy. In this study, using neutron spin-echo the effect of ibuprofen on the phospholipid membrane bending modulus is studied as a function of pH and temperature. Ibuprofen was found to lower the bending modulus at all pH values. We further present molecular insights into the observed effect on membrane dynamics based on structural studies using molecular dynamics simulations and small angle neutron scattering data as well as changes in zwitterionic headgroup electrostatics due to pH and addition of ibuprofen. This study is expected to help towards effective design of drug delivery nanoparticles based on variety of soft condensed matter such as lipids or polymers.

  2. Ibuprofen-associated acute kidney injury in dehydrated children with acute gastroenteritis.

    PubMed

    Balestracci, Alejandro; Ezquer, Mauricio; Elmo, María Eugenia; Molini, Andrea; Thorel, Claudia; Torrents, Milagros; Toledo, Ismael

    2015-10-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) induce acute kidney injury (AKI) in volume-depleted patients; however the prevalence of this complication is likely underestimated. We assessed the impact of ibuprofen exposure on renal function among dehydrated children with acute gastroenteritis (AGE) to further characterize NSAID-associated AKI. Over a 1-year period dehydrated children with AGE (n = 105) were prospectively enrolled and grouped as cases, presenting with AKI (n = 46) or controls, not presenting with AKI (n = 59). AKI was defined by pediatric RIFLE (pRIFLE) criteria. Among the children enrolled in the study, AKI prevalence was 44 %, and 34 (54 %) of the 63 patients who received ibuprofen developed renal impairment. Relative to the controls, children presenting with AKI were younger (median age 0.66 vs. 1.74 years; p < 0.001) and received ibuprofen more frequently (74 vs. 49 %, p = 0.01). After adjusting for the degree of dehydration, ibuprofen exposure remained an independent risk factor for AKI (p < 0.001, odds ratio 2.47, 95 % confidence interval 1.78-3.42). According to the pRIFLE criteria, 17 patients were at the 'risk' stage of AKI severity, 24 were at the 'injury' stage, and five were at the 'failure' stage; none required dialysis. Distribution of patients within categories was similar regardless of ibuprofen exposure. All cases fulled recovered from AKI. Ibuprofen-associated AKI was 54 % in our cohort of dehydrated children with AGE. Drug exposure increased the risk for developing AKI by more than twofold, independent of the magnitude of the dehydration.

  3. Characterization of a Nonclassical Class I MHC Gene in a Reptile, the Galápagos Marine Iguana (Amblyrhynchus cristatus)

    PubMed Central

    Glaberman, Scott; Du Pasquier, Louis; Caccone, Adalgisa

    2008-01-01

    Squamates are a diverse order of vertebrates, representing more than 7,000 species. Yet, descriptions of full-length major histocompatibility complex (MHC) genes in this group are nearly absent from the literature, while the number of MHC studies continues to rise in other vertebrate taxa. The lack of basic information about MHC organization in squamates inhibits investigation into the relationship between MHC polymorphism and disease, and leaves a large taxonomic gap in our understanding of amniote MHC evolution. Here, we use both cDNA and genomic sequence data to characterize a class I MHC gene (Amcr-UA) from the Galápagos marine iguana, a member of the squamate subfamily Iguaninae. Amcr-UA appears to be functional since it is expressed in the blood and contains many of the conserved peptide-binding residues that are found in classical class I genes of other vertebrates. In addition, comparison of Amcr-UA to homologous sequences from other iguanine species shows that the antigen-binding portion of this gene is under purifying selection, rather than balancing selection, and therefore may have a conserved function. A striking feature of Amcr-UA is that both the cDNA and genomic sequences lack the transmembrane and cytoplasmic domains that are necessary to anchor the class I receptor molecule into the cell membrane, suggesting that the product of this gene is secreted and consequently not involved in classical class I antigen-presentation. The truncated and conserved character of Amcr-UA lead us to define it as a nonclassical gene that is related to the few available squamate class I sequences. However, phylogenetic analysis placed Amcr-UA in a basal position relative to other published classical MHC genes from squamates, suggesting that this gene diverged near the beginning of squamate diversification. PMID:18682845

  4. Gastrointestinal safety and tolerance of ibuprofen at maximum over-the-counter dose.

    PubMed

    Doyle, G; Furey, S; Berlin, R; Cooper, S; Jayawardena, S; Ashraf, E; Baird, L

    1999-07-01

    Delineation of non-steroidal anti-inflammatory drug (NSAID) gastrointestinal toxicity has largely depended on retrospective epidemiologic studies which demonstrate that lower doses of NSAIDs pose a lower risk of gastrointestinal toxicity. Ibuprofen, a propionic acid NSAID, has, in most such studies, exhibited a favourable profile in terms of gastrointestinal bleeding. Since 1984, ibuprofen has been available as a non-prescription analgesic/antipyretic with a limit of 1200 mg/day for 10 days of continuous use. Trials and spontaneously reported adverse experiences suggest that gastrointestinal symptoms and bleeding are rare. This study prospectively evaluated the gastrointestinal tolerability, as compared to placebo, of the maximum non-prescription dose and duration of ibuprofen use in healthy subjects representative of a non-prescription analgesic user population. Gastrointestinal adverse experiences were similar in the placebo and ibuprofen groups (67 out of 413, 16% with placebo vs. 161 out of 833, 19% with ibuprofen). There was no difference between the two groups in the proportion discontinuing due to a gastrointestinal event. Gastrointestinal adverse experiences reported by >/= 1% of subjects were: dyspepsia, abdominal pain, nausea, diarrhoea, flatulence, and constipation. Seventeen (1.4%) subjects had positive occult blood tests: their frequency was comparable between treatments. When used as directed to treat episodic pain, non-prescription ibuprofen at the maximum dose of 1200 mg/day for 10 days, is well-tolerated.

  5. Impact of oral versus intravenous ibuprofen on neurodevelopmental outcome: a randomized controlled parallel study.

    PubMed

    Eras, Zeynep; Gokmen, Tulin; Erdeve, Omer; Ozyurt, Banu Mutlu; Saridas, Bagdagul; Dilmen, Ugur

    2013-11-01

    Although neurodevelopmental outcomes related to the management of patent ductus arteriosus with intravenous indomethacin and ibuprofen are known, little data on the long-term effects of oral ibuprofen can be found in the literature. A follow-up study of 99 infants with birth weight ≤ 1,500 g and gestational age ≤ 32 weeks who received either oral or intravenous ibuprofen for patent ductus arteriosus was conducted to assess at 18 to 24 months (corrected age), abnormal neurological, neurosensory, and cognitive impairment were defined as follows:neurological outcomes included moderate/severe cerebral palsy, neurosensory outcomes included bilateral hearing loss and blindness in either eye, and cognitive impairment included mental developmental index score < 70. The 18- to 24-month (corrected age) long-term outcomes of 30 subjects who received oral ibuprofen were compared with 27 subjects who received intravenous ibuprofen by certified and experienced examiners who were blind to the definitions of the groups. The results revealed that the long-term outcomes of the treatment regimens did not significantly differ. Preterm infants who were treated with oral ibuprofen for patent ductus arteriosus had similar neurological, neurosensory, and cognitive outcomes to patients who received intravenous ibuprofen at 2 years of age. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  6. Bacterial Superantigens Promote Acute Nasopharyngeal Infection by Streptococcus pyogenes in a Human MHC Class II-Dependent Manner

    PubMed Central

    Kasper, Katherine J.; Zeppa, Joseph J.; Wakabayashi, Adrienne T.; Xu, Stacey X.; Mazzuca, Delfina M.; Welch, Ian; Baroja, Miren L.; Kotb, Malak; Cairns, Ewa; Cleary, P. Patrick; Haeryfar, S. M. Mansour; McCormick, John K.

    2014-01-01

    Establishing the genetic determinants of niche adaptation by microbial pathogens to specific hosts is important for the management and control of infectious disease. Streptococcus pyogenes is a globally prominent human-specific bacterial pathogen that secretes superantigens (SAgs) as ‘trademark’ virulence factors. SAgs function to force the activation of T lymphocytes through direct binding to lateral surfaces of T cell receptors and class II major histocompatibility complex (MHC-II) molecules. S. pyogenes invariably encodes multiple SAgs, often within putative mobile genetic elements, and although SAgs are documented virulence factors for diseases such as scarlet fever and the streptococcal toxic shock syndrome (STSS), how these exotoxins contribute to the fitness and evolution of S. pyogenes is unknown. Here we show that acute infection in the nasopharynx is dependent upon both bacterial SAgs and host MHC-II molecules. S. pyogenes was rapidly cleared from the nasal cavity of wild-type C57BL/6 (B6) mice, whereas infection was enhanced up to ∼10,000-fold in B6 mice that express human MHC-II. This phenotype required the SpeA superantigen, and vaccination with an MHC –II binding mutant toxoid of SpeA dramatically inhibited infection. Our findings indicate that streptococcal SAgs are critical for the establishment of nasopharyngeal infection, thus providing an explanation as to why S. pyogenes produces these potent toxins. This work also highlights that SAg redundancy exists to avoid host anti-SAg humoral immune responses and to potentially overcome host MHC-II polymorphisms. PMID:24875883

  7. Periorbital edema associated with separate courses of ibuprofen and naproxen.

    PubMed

    Balas, Morad; Plakogiannis, Roda; Sinnett, Mark

    2010-06-01

    A case of periorbital edema associated with separate courses of ibuprofen and naproxen is reported. An 80-year-old African- American woman with a history of osteoarthritis and hypertension came to the clinic. Her medication regimen included fosinopril sodium 40 mg daily, which she began two years prior. She had no known drug allergies and denied consuming any over-the-counter medications or herbal substances and reported a negative atopic status. She had seen her primary care provider several days prior and reported pain in the hands, fingers, and ankles, which would escalate in the morning and progressively lessen during the course of the day. Her physician prescribed naproxen 375 mg every eight hours as needed. After ingesting two doses of naproxen, she developed itching, swelling, and erythema around the left eye that became progressively worse and spread to the right eye. She contacted her primary care physician, who instructed her to discontinue the naproxen, and the reaction resolved within three days. The patient was maintained on acetaminophen for the arthritic pain with no issues. Approximately three months prior, ibuprofen 600 mg every eight hours as needed was prescribed for the same pain. She stated that after ingesting two doses of ibuprofen, she experienced a reaction similar to that recently experienced with naproxen. At that time, she was instructed to discontinue the ibuprofen, and her symptoms resolved. An elderly woman developed periorbital edema after taking ibuprofen on one occasion and naproxen on another.

  8. Ibuprofen-loaded poly(lactic-co-glycolic acid) films for controlled drug release.

    PubMed

    Pang, Jianmei; Luan, Yuxia; Li, Feifei; Cai, Xiaoqing; Du, Jimin; Li, Zhonghao

    2011-01-01

    Ibuprofen- (IBU) loaded biocompatible poly(lactic-co-glycolic acid) (PLGA) films were prepared by spreading polymer/ibuprofen solution on the nonsolvent surface. By controlling the weight ratio of drug and polymer, different drug loading polymer films can be obtained. The synthesized ibuprofen-loaded PLGA films were characterized with scanning electron microscopy, powder X-ray diffraction, and differential scanning calorimetry. The drug release behavior of the as-prepared IBU-loaded PLGA films was studied to reveal their potential application in drug delivery systems. The results show the feasibility of the as-obtained films for controlling drug release. Furthermore, the drug release rate of the film could be controlled by the drug loading content and the release medium. The development of a biodegradable ibuprofen system, based on films, should be of great interest in drug delivery systems.

  9. Enhancement of transdermal delivery of ibuprofen using microemulsion vehicle.

    PubMed

    Hu, Liandong; Hu, Qiaofeng; Yang, Jianxue

    2014-10-01

    The objective of this study was to find a stable microemulsion vehicle for transdermal delivery of ibuprofen to improve the skin permeability. Microemulsion was prepared using different sorts of oils, surfactants and co-surfactants. Pseudo-ternary phase diagrams were used to evaluate the microemulsion domain. The effects of oleic acid and surfactant mixture on skin permeation of ibuprofen were evaluated with excised skins. The optimum formulation F3 consisting of 6% oleic acid, 30% Cremophor RH40/Transcutol P (2:1, w/w) and 59% water phase, showed a high permeation rate of 42.98 µg/cm(2)/hr. The mean droplet size of microemulsion was about 43 nm and no skin irritation signs were observed on the skin of rabbits. These results indicated that this novel microemulsion is a useful formulation for the transdermal delivery of ibuprofen.

  10. Effect of halide ions on the photodegradation of ibuprofen in aqueous environments.

    PubMed

    Li, Fuhua; Kong, Qingqing; Chen, Ping; Chen, Min; Liu, Guoguang; Lv, Wenying; Yao, Kun

    2017-01-01

    Typically contained within ambient surface waters and certain industrial wastewaters, are plentiful halide ions, which possess varying degrees of photosensitivity. The effects of halide ions on the photodegradation of ibuprofen (IBP) were investigated under UV irradiation using a 500 W mercury lamp as a light source. Studies of the mechanism of halide ions were inclusive of both their light shielding effects and quenching experiments. The results indicated that chloride ion has a slight inhibition against IBP photodegradation under neutral condition, and significant inhibition is observed with bromide ions and iodide ions. In addition to the observed increased rate of IBP photodegradation in conjunction with elevated pH in solution, the inhibitory effect of halide ions was different. When the pH value of the IBP solution was 5, chloride ions were seen to facilitate the photodegradation of IBP. Halide ions can inhibit IBP photodegradation by means of a light attenuation effect. All of the halide ions significantly facilitated the generation of 1 O 2 . Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Rational design of class I MHC ligands

    NASA Astrophysics Data System (ADS)

    Rognan, D.; Scapozza, L.; Folkers, G.; Daser, Angelika

    1995-04-01

    From the knowledge of the three-dimensional structure of a class I MHC protein, several non natural peptides were designed in order to either optimize the interactions of one secondary anchor amino acid with its HLA binding pocket or to substitute the non interacting part with spacer residues. All peptides were synthesized and tested for binding to the class I MHC protein in an in vitro reconstitution assay. As predicted, the non natural peptides present an enhanced binding to the HLA-B27 molecule with respect to their natural parent peptides. This study constitutes the first step towards the rational design of non peptidic MHC ligands that should be very promising tools for the selective immunotherapy of autoimmune diseases.

  12. The C-Terminal Amino Acid of the MHC-I Heavy Chain Is Critical for Binding to Derlin-1 in Human Cytomegalovirus US11-Induced MHC-I Degradation

    PubMed Central

    Cho, Sunglim; Kim, Bo Young; Ahn, Kwangseog; Jun, Youngsoo

    2013-01-01

    Derlin-1 plays a critical role in endoplasmic reticulum-associated protein degradation (ERAD) of a particular subset of proteins. Although it is generally accepted that Derlin-1 mediates the export of ERAD substrates from the ER to the cytosol, little is known about how Derlin-1 interacts with these substrates. Human cytomegalovirus (HCMV) US11 exploits Derlin-1-dependent ERAD to degrade major histocompatibility complex class I (MHC-I) molecules and evade immune surveillance. US11 requires the cytosolic tail of the MHC-I heavy chain to divert MHC-I molecules into the ERAD pathway for degradation; however, the underlying mechanisms remain unknown. Here, we show that the cytosolic tail of the MHC-I heavy chain, although not required for interaction with US11, is required for tight binding to Derlin-1 and thus for US11-induced dislocation of the MHC-I heavy chain to the cytosol for proteasomal degradation. Surprisingly, deletion of a single C-terminal amino acid from the cytosolic tail disrupted the interaction between MHC-I molecules and Derlin-1, rendering mutant MHC-I molecules resistant to US11-induced degradation. Consistently, deleting the C-terminal cytosolic region of Derlin-1 prevented it from binding to MHC-I molecules. Taken together, these results suggest that the cytosolic region of Derlin-1 is involved in ERAD substrate binding and that this interaction is critical for the Derlin-1-mediated dislocation of the MHC-I heavy chain to the cytosol during US11-induced MHC-I degradation. PMID:23951315

  13. The C-terminal amino acid of the MHC-I heavy chain is critical for binding to Derlin-1 in human cytomegalovirus US11-induced MHC-I degradation.

    PubMed

    Cho, Sunglim; Kim, Bo Young; Ahn, Kwangseog; Jun, Youngsoo

    2013-01-01

    Derlin-1 plays a critical role in endoplasmic reticulum-associated protein degradation (ERAD) of a particular subset of proteins. Although it is generally accepted that Derlin-1 mediates the export of ERAD substrates from the ER to the cytosol, little is known about how Derlin-1 interacts with these substrates. Human cytomegalovirus (HCMV) US11 exploits Derlin-1-dependent ERAD to degrade major histocompatibility complex class I (MHC-I) molecules and evade immune surveillance. US11 requires the cytosolic tail of the MHC-I heavy chain to divert MHC-I molecules into the ERAD pathway for degradation; however, the underlying mechanisms remain unknown. Here, we show that the cytosolic tail of the MHC-I heavy chain, although not required for interaction with US11, is required for tight binding to Derlin-1 and thus for US11-induced dislocation of the MHC-I heavy chain to the cytosol for proteasomal degradation. Surprisingly, deletion of a single C-terminal amino acid from the cytosolic tail disrupted the interaction between MHC-I molecules and Derlin-1, rendering mutant MHC-I molecules resistant to US11-induced degradation. Consistently, deleting the C-terminal cytosolic region of Derlin-1 prevented it from binding to MHC-I molecules. Taken together, these results suggest that the cytosolic region of Derlin-1 is involved in ERAD substrate binding and that this interaction is critical for the Derlin-1-mediated dislocation of the MHC-I heavy chain to the cytosol during US11-induced MHC-I degradation.

  14. Ibuprofen for the treatment of patent ductus arteriosus in preterm or low birth weight (or both) infants.

    PubMed

    Ohlsson, Arne; Walia, Rajneesh; Shah, Sachin S

    2015-02-18

    Indomethacin is used as standard therapy to close a patent ductus arteriosus (PDA) but is associated with reduced blood flow to several organs. Ibuprofen, another cyclo-oxygenase inhibitor, may be as effective as indomethacin with fewer adverse effects. To determine the effectiveness and safety of ibuprofen compared with indomethacin, other cyclo-oxygenase inhibitor, placebo or no intervention for closing a patent ductus arteriosus in preterm, low birth weight, or preterm and low birth weight infants. We searched The Cochrane Library, MEDLINE, EMBASE, Clincialtrials.gov, Controlled-trials.com, and www.abstracts2view.com/pas in May 2014. Randomised or quasi-randomised controlled trials of ibuprofen for the treatment of a PDA in newborn infants. Data collection and analysis conformed to the methods of the Cochrane Neonatal Review Group. We included 33 studies enrolling 2190 infants.Two studies compared intravenous (iv) ibuprofen versus placebo (270 infants). In one study (134 infants) ibuprofen reduced the incidence of failure to close a PDA (risk ratio (RR) 0.71, 95% confidence interval (CI) 0.51 to 0.99; risk difference (RD) -0.18, 95% CI -0.35 to -0.01; number needed to treat for an additional beneficial outcome (NNTB) 6, 95% CI 3 to 100). In one study (136 infants), ibuprofen reduced the composite outcome of infant mortality, infants who dropped out, or infants who required rescue treatment (RR 0.58, 95% CI 0.38 to 0.89; RD -0.22, 95% CI -0.38 to -0.06; NNTB 5, 95% CI 3 to 17). One study (64 infants) compared oral ibuprofen with placebo and noted a significant reduction in failure to close a PDA (RR 0.26, 95% CI 0.11 to 0.62; RD -0.44, 95% CI -0.65 to -0.23; NNTB 2, 95% CI 2 to 4).Twenty-one studies (1102 infants) reported failure rates for PDA closure with ibuprofen (oral or iv) compared with indomethacin (oral or iv). There was no significant difference between the groups (typical RR 1.00, 95% CI 0.84 to 1.20; I(2) = 0%; typical RD 0.00, 95% CI -0.05 to 0.05; I

  15. Phytoextraction, phytotransformation and rhizodegradation of ibuprofen associated with Typha angustifolia in a horizontal subsurface flow constructed wetland.

    PubMed

    Li, Yifei; Zhang, Jiefeng; Zhu, Guibing; Liu, Yu; Wu, Bing; Ng, Wun Jern; Appan, Adhityan; Tan, Soon Keat

    2016-10-01

    Widespread occurrence of trace pharmaceutical residues in aquatic environments is of great concerns due to the potential chronic toxicity of certain pharmaceuticals including ibuprofen on aquatic organisms even at environmental levels. In this study, the phytoextraction, phytotransformation and rhizodegradation of ibuprofen associated with Typha angustifolia were investigated in a horizontal subsurface flow constructed wetland system. The experimental wetland system consisted of a planted bed with Typha angustifolia and an unplanted bed (control) to treat ibuprofen-loaded wastewater (∼107.2 μg L(-1)). Over a period of 342 days, ibuprofen was accumulated in leaf sheath and lamina tissues at a mean concentration of 160.7 ng g(-1), indicating the occurrence of the phytoextraction of ibuprofen. Root-uptake ibuprofen was partially transformed to ibuprofen carboxylic acid, 2-hydroxy ibuprofen and 1-hydroxy ibuprofen which were found to be 1374.9, 235.6 and 301.5 ng g(-1) in the sheath, respectively, while they were 1051.1, 693.6 and 178.7 ng g(-1) in the lamina. The findings from pyrosequencing analysis of the rhizosphere bacteria suggest that the Dechloromonas sp., the Clostridium sp. (e.g. Clostridium saccharobutylicum), the order Sphingobacteriales, and the Cytophaga sp. in the order Cytophagales were most probably responsible for the rhizodegradation of ibuprofen. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Evaporation Behavior and Characterization of Eutectic Solvent and Ibuprofen Eutectic Solution.

    PubMed

    Phaechamud, Thawatchai; Tuntarawongsa, Sarun; Charoensuksai, Purin

    2016-10-01

    Liquid eutectic system of menthol and camphor has been reported as solvent and co-solvent for some drug delivery systems. However, surprisingly, the phase diagram of menthol-camphor eutectic has not been reported previously. The evaporation behavior, physicochemical, and thermal properties of this liquid eutectic and ibuprofen eutectic solution were characterized in this study. Differential scanning calorimetry (DSC) analysis indicated that a eutectic point of this system was near to 1:1 menthol/camphor and its eutectic temperature was -1°C. The solubility of ibuprofen in this eutectic was 282.11 ± 6.67 mg mL(-1) and increased the drug aqueous solubility fourfold. The shift of wave number from Fourier transform infrared spectroscopy (FTIR) indicated the hydrogen bonding of each compound in eutectic mixture. The weight loss from thermogravimetric analysis of menthol and camphor related to the evaporation and sublimation, respectively. Menthol demonstrated a lower apparent sublimation rate than camphor, and the evaporation rate of eutectic solvent was lower than the sublimation rate of camphor but higher than the evaporation of menthol. The evaporation rate of the ibuprofen eutectic solution was lower than that of the eutectic solvent because ibuprofen did not sublimate. This eutectic solvent prolonged the ibuprofen release with diffusion control. Thus, the beneficial information for thermal behavior and related properties of eutectic solvent comprising menthol-camphor and ibuprofen eutectic solution was attained successfully. The rather low evaporation of eutectic mixture will be beneficial for investigation and tracking the mechanism of transformation from nanoemulsion into nanosuspension in the further study using eutectic as oil phase.

  17. Effects of ibuprofen on cognition and NMDA receptor subunit expression across aging.

    PubMed

    Márquez Loza, Alejandra; Elias, Valerie; Wong, Carmen P; Ho, Emily; Bermudez, Michelle; Magnusson, Kathy R

    2017-03-06

    Age-related declines in long- and short-term memory show relationships to decreases in N-methyl-d-aspartate (NMDA) receptor expression, which may involve inflammation. This study was designed to determine effects of an anti-inflammatory drug, ibuprofen, on cognitive function and NMDA receptor expression across aging. Male C57BL/6 mice (ages 5, 14, 20, and 26months) were fed ibuprofen (375ppm) in NIH31 diet or diet alone for 6weeks prior to testing. Behavioral testing using the Morris water maze showed that older mice performed significantly worse than younger in spatial long-term memory, reversal, and short-term memory tasks. Ibuprofen enhanced overall performance in the short-term memory task, but this appeared to be more related to improved executive function than memory. Ibuprofen induced significant decreases over all ages in the mRNA densities for GluN2B subunit, all GluN1 splice variants, and GluN1-1 splice forms in the frontal cortex and in protein expression of GluN2A, GluN2B and GluN1 C2' cassettes in the hippocampus. GluN1-3 splice form mRNA and C2' cassette protein were significantly increased across ages in frontal lobes of ibuprofen-treated mice. Ibuprofen did not alter expression of pro-inflammatory cytokines IL-1β and TNFα, but did reduce the area of reactive astrocyte immunostaining in frontal cortex of aged mice. Enhancement in executive function showed a relationship to increased GluN1-3 mRNA and decreased gliosis. These findings suggest that inflammation may play a role in executive function declines in aged animals, but other effects of ibuprofen on NMDA receptors appeared to be unrelated to aging or inflammation. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Effects of Ibuprofen on Cognition and NMDA Receptor Subunit Expression Across Aging

    PubMed Central

    Loza, Alejandra Márquez; Elias, Valerie; Wong, Carmen P.; Ho, Emily; Bermudez, Michelle; Magnusson, Kathy R.

    2017-01-01

    Age-related declines in long- and short-term memory show relationships to decreases in N-methyl-D-aspartate (NMDA) receptor expression, which may involve inflammation. This study was designed to determine effects of an anti-inflammatory drug, ibuprofen, on cognitive function and NMDA receptor expression across aging. Male C57BL/6 mice (ages 5, 14, 20, and 26 months) were fed ibuprofen (375 ppm) in NIH31 diet or diet alone for 6 weeks prior to testing. Behavioral testing using the Morris water maze showed that older mice performed significantly worse than younger in spatial long-term memory, reversal, and short-term memory tasks. Ibuprofen enhanced overall performance in the short-term memory task, but this appeared to be more related to improved executive function than memory. Ibuprofen induced significant decreases over all ages in the mRNA densities for GluN2B subunit, all GluN1 splice variants, and GluN1-1 splice forms in the frontal cortex and in protein expression of GluN2A, GluN2B and GluN1 C2′ cassettes in the hippocampus. GluN1-3 splice form mRNA and C2′ cassette protein were significantly increased across ages in frontal lobes of ibuprofen-treated mice. Ibuprofen did not alter expression of pro-inflammatory cytokines IL-1β and TNFα, but did reduce the area of reactive astrocyte immunostaining in frontal cortex of aged mice. Enhancement in executive function showed a relationship to increased GluN1-3 mRNA and decreased gliosis. These findings suggest that inflammation may play a role in executive function declines in aged animals, but other effects of ibuprofen on NMDA receptors appeared to be unrelated to aging or inflammation. PMID:28057539

  19. Pilot monitoring study of ibuprofen in surface waters of north of Portugal.

    PubMed

    Paíga, Paula; Santos, Lúcia H M L M; Amorim, Célia G; Araújo, Alberto N; Montenegro, M Conceição B S M; Pena, Angelina; Delerue-Matos, Cristina

    2013-04-01

    Ibuprofen is amongst the most worldwide consumed pharmaceuticals. The present work presents the first data in the occurrence of ibuprofen in Portuguese surface waters, focusing in the north area of the country, which is one of the most densely populated areas of Portugal. Analysis of ibuprofen is based on pre-concentration of the analyte with solid phase extraction and subsequent determination with liquid chromatography coupled to fluorescence detection. A total of 42 water samples, including surface waters, landfill leachates, Wastewater Treatment Plant (WWTP), and hospital effluents, were analyzed in order to evaluate the occurrence of ibuprofen in the north of Portugal. In general, the highest concentrations were found in the river mouths and in the estuarine zone. The maximum concentrations found were 48,720 ng L(-1) in the landfill leachate, 3,868 ng L(-1) in hospital effluent, 616 ng L(-1) in WWTP effluent, and 723 ng L(-1) in surface waters (Lima river). Environmental risk assessment was evaluated and at the measured concentrations only landfill leachates reveal potential ecotoxicological risk for aquatic organisms. Owing to a high consumption rate of ibuprofen among Portuguese population, as prescribed and non-prescribed medicine, the importance of hospitals, WWTPs, and landfills as sources of entrance of pharmaceuticals in the environment was pointed out. Landfill leachates showed the highest contribution for ibuprofen mass loading into surface waters. On the basis of our findings, more studies are needed as an attempt to assess more vulnerable areas.

  20. Ibuprofen for the treatment of patent ductus arteriosus in preterm and/or low birth weight infants.

    PubMed

    Ohlsson, A; Walia, R; Shah, S

    2008-01-23

    A patent ductus arteriosus (PDA) complicates the clinical course of preterm infants, increasing their risks of developing chronic lung disease (CLD), necrotizing enterocolitis (NEC), and intraventricular hemorrhage (IVH). Indomethacin is used as standard therapy to close a PDA, but is associated with reduced blood flow to the brain, kidneys and gastrointestinal tract. Ibuprofen, another cyclo-oxygenase inhibitor, may be as effective as indomethacin, with fewer side effects. To determine the effectiveness and safety of ibuprofen compared to placebo or no intervention for closing a PDA in preterm and/or low birth weight infants. To determine the effectiveness and safety of ibuprofen compared to other cyclo-oxygenase inhibitors (including indomethacin, mefenamic acid) for closing a PDA in preterm and/or low birth weight infants. Randomized or quasi-randomized controlled trials (RCTs) comparing ibuprofen to placebo or indomethacin or mefenamic acid for therapy of PDA were identified by searching the Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library, Issue 3, 2007), MEDLINE (1996 - August 2007), CINAHL (1982 - August 2007), EMBASE (1980 - August 2007), reference lists of published RCTs and abstracts from the Pediatric Academic Societies and the European Society for Pediatric Research meetings published in Pediatric Research (1991 - April 2005) or on their website (to August 2007). No language restrictions were applied. 1) DESIGN: Randomized or quasi-randomized controlled trials2) POPULATION: Preterm (< 37 weeks gestational age) or low birth weight infants (< 2500 g) with a clinically or echocardiographically diagnosed PDA3) INTERVENTION: Administration of ibuprofen (orally or intravenously) for the closure of PDA4) OUTCOMES: At least one of the following outcomes were reported: failure to close a PDA, mortality, surgical ductal ligation, intraventricular haemorrhage (IVH), periventricular leukomalacia (PVL), NEC, decreased urine output

  1. Ibuprofen for acute treatment of episodic tension-type headache in adults.

    PubMed

    Derry, Sheena; Wiffen, Philip J; Moore, R Andrew; Bendtsen, Lars

    2015-07-31

    Tension-type headache (TTH) affects about one person in five worldwide. It is divided into infrequent episodic TTH (fewer than one headache per month), frequent episodic TTH (1 to 14 headaches per month), and chronic TTH (15 headaches a month or more). Ibuprofen is one of a number of analgesics suggested for acute treatment of headaches in frequent episodic TTH. To assess the efficacy and safety of oral ibuprofen for treatment of acute episodic TTH in adults. We searched CENTRAL (The Cochrane Library), MEDLINE, EMBASE, and our own in-house database to January 2015. We sought unpublished studies by asking personal contacts and searching on-line clinical trial registers and manufacturers' websites. We included randomised, placebo-controlled studies (parallel-group or cross-over) using oral ibuprofen for symptomatic relief of an acute episode of TTH. Studies had to be prospective and include at least 10 participants per treatment arm. Two review authors independently assessed studies for inclusion, and extracted data. Numbers of participants achieving each outcome were used to calculate risk ratio (RR) and number needed to treat for an additional beneficial outcome (NNT) or number needed to treat for an additional harmful outcome (NNH) of oral ibuprofen compared to placebo for a range of outcomes, predominantly those recommended by the International Headache Society (IHS). We included 12 studies, all of which enrolled adult participants with frequent episodic TTH. Nine used the IHS diagnostic criteria, but two used the older classification of the Ad Hoc Committee, and one did not describe diagnostic criteria but excluded participants with migraines. While 3094 people with TTH participated in these studies, the numbers available for any form of analysis were lower than this; placebo was taken by 733, standard ibuprofen 200 mg by 127, standard ibuprofen 400 mg by 892, and fast-acting ibuprofen 400 mg by 230. Participants had moderate or severe pain at the start of

  2. MHC class I loci of the Bar-Headed goose (Anser indicus)

    PubMed Central

    2010-01-01

    MHC class I proteins mediate functions in anti-pathogen defense. MHC diversity has already been investigated by many studies in model avian species, but here we chose the bar-headed goose, a worldwide migrant bird, as a non-model avian species. Sequences from exons encoding the peptide-binding region (PBR) of MHC class I molecules were isolated from liver genomic DNA, to investigate variation in these genes. These are the first MHC class I partial sequences of the bar-headed goose to be reported. A preliminary analysis suggests the presence of at least four MHC class I genes, which share great similarity with those of the goose and duck. A phylogenetic analysis of bar-headed goose, goose and duck MHC class I sequences using the NJ method supports the idea that they all cluster within the anseriforms clade. PMID:21637434

  3. Safety profile: fifteen years of clinical experience with ibuprofen.

    PubMed

    Royer, G L; Seckman, C E; Welshman, I R

    1984-07-13

    Since its introduction in the United States in 1974, ibuprofen (Motrin, Upjohn) has been shown to be safe and effective for the treatment of pain, dysmenorrhea, inflammation, and fever. A careful review of pre-registration and postmarketing data from both patients and normal subjects clearly indicates ibuprofen's remarkable safety profile compared with that of aspirin and other commonly prescribed nonsteroidal anti-inflammatory agents. Continued safety can be anticipated on the basis of the past 15 years of review experience.

  4. Effect of Aspirin Coadministration on the Safety of Celecoxib, Naproxen, or Ibuprofen.

    PubMed

    Reed, Grant W; Abdallah, Mouin S; Shao, Mingyuan; Wolski, Kathy; Wisniewski, Lisa; Yeomans, Neville; Lüscher, Thomas F; Borer, Jeffrey S; Graham, David Y; Husni, M Elaine; Solomon, Daniel H; Libby, Peter; Menon, Venu; Lincoff, A Michael; Nissen, Steven E

    2018-04-24

    The safety of nonsteroidal anti-inflammatory drug (NSAID) and aspirin coadministration is uncertain. The aim of this study was to compare the safety of combining NSAIDs with low-dose aspirin. This analysis of the PRECISION (Prospective Randomized Evaluation of Celecoxib Integrated Safety Versus Ibuprofen or Naproxen) trial included 23,953 patients with osteoarthritis or rheumatoid arthritis at increased cardiovascular risk randomized to celecoxib, ibuprofen, or naproxen. The on-treatment population was used for this study. Outcomes included composite major adverse cardiovascular events, noncardiovascular death, gastrointestinal or renal events, and components of the composite. Cox proportional hazards models compared outcomes among NSAIDs stratified by aspirin use following propensity score adjustment. Kaplan-Meier analysis was used to compare the cumulative probability of events. When taken without aspirin, naproxen or ibuprofen had greater risk for the primary composite endpoint compared with celecoxib (hazard ratio [HR]: 1.52; 95% confidence interval [CI]: 1.22 to 1.90, p <0.001; and HR: 1.81; 95% CI: 1.46 to 2.26; p <0.001, respectively). Compared with celecoxib, ibuprofen had more major adverse cardiovascular events (p < 0.05), and both ibuprofen and naproxen had more gastrointestinal (p < 0.001) and renal (p < 0.05) events. Taken with aspirin, ibuprofen had greater risk for the primary composite endpoint compared with celecoxib (HR: 1.27; 95% CI: 1.06 to 1.51; p < 0.01); this was not significantly higher with naproxen (HR: 1.18; 95% CI: 0.98 to 1.41; p = 0.08). Among patients on aspirin, major adverse cardiovascular events were similar among NSAIDs, and compared with celecoxib, ibuprofen had more gastrointestinal and renal events (p < 0.05), while naproxen had more gastrointestinal events (p < 0.05), without a difference in renal events. Similar results were seen on adjusted Kaplan-Meier analysis. Celecoxib has a more favorable overall safety

  5. Enhancement of transdermal delivery of ibuprofen using microemulsion vehicle

    PubMed Central

    Hu, Liandong; Hu, Qiaofeng; Yang, Jianxue

    2014-01-01

    Objective(s): The objective of this study was to find a stable microemulsion vehicle for transdermal delivery of ibuprofen to improve the skin permeability. Materials and Methods: Microemulsion was prepared using different sorts of oils, surfactants and co-surfactants. Pseudo-ternary phase diagrams were used to evaluate the microemulsion domain. The effects of oleic acid and surfactant mixture on skin permeation of ibuprofen were evaluated with excised skins. Results: The optimum formulation F3 consisting of 6% oleic acid, 30% Cremophor RH40/Transcutol P (2:1, w/w) and 59% water phase, showed a high permeation rate of 42.98 µg/cm2/hr. The mean droplet size of microemulsion was about 43 nm and no skin irritation signs were observed on the skin of rabbits. Conclusion: These results indicated that this novel microemulsion is a useful formulation for the transdermal delivery of ibuprofen. PMID:25729544

  6. Impregnation of Ibuprofen into Polycaprolactone using supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Yoganathan, Roshan; Mammucari, Raffaella; Foster, Neil R.

    2010-03-01

    Polycaprolactone (PCL) is a Food and Drug Administration (FDA) approved biodegradable polyester used in tissue engineering applications. Ibuprofen is an anti-inflammatory drug which has good solubility in supercritical CO2 (SCCO2). The solubility of CO2 in PCL allows for the impregnation of CO2-soluble therapeutic agents into the polymer via a supercritical fluid (SCF) process. Polymers impregnated with bio-active compounds are highly desired for medical implants and controlled drug delivery. In this study, the use of CO2 to impregnate PCL with ibuprofen was investigated. The effect of operating conditions on the impregnation of ibuprofen into PCL was investigated over two pressure and two temperature levels, 150bar and 200bar, 35°C and 40 °C, respectively. Polycaprolactone with drug-loadings as high as 27% w/w were obtained. Impregnated samples exhibited controlled drug release profiles over several days.

  7. IFNγ producing CD8+ T cells modified to resist major immune checkpoints induce regression of MHC class I-deficient melanomas

    PubMed Central

    Buferne, Michel; Chasson, Lionel; Grange, Magali; Mas, Amandine; Arnoux, Fanny; Bertuzzi, Mélanie; Naquet, Philippe; Leserman, Lee; Schmitt-Verhulst, Anne-Marie; Auphan-Anezin, Nathalie

    2015-01-01

    Tumors with reduced expression of MHC class I (MHC-I) molecules may be unrecognized by tumor antigen-specific CD8+ T cells and thus constitute a challenge for cancer immunotherapy. Here we monitored development of autochthonous melanomas in TiRP mice that develop tumors expressing a known tumor antigen as well as a red fluorescent protein (RFP) reporter knock in gene. The latter permits non-invasive monitoring of tumor growth by biofluorescence. One developing melanoma was deficient in cell surface expression of MHC-I, but MHC-I expression could be rescued by exposure of these cells to IFNγ. We show that CD8+ T cells specific for tumor antigen/MHC-I were efficient at inducing regression of the MHC-I-deficient melanoma, provided that the T cells were endowed with properties permitting their migration into the tumor and their efficient production of IFNγ. This was the case for CD8+ T cells transfected to express an active form of STAT5 (STAT5CA). The amount of IFNγ produced ex vivo from T cells present in tumors after adoptive transfer of the CD8+ T cells was correlated with an increase in surface expression of MHC-I molecules by the tumor cells. We also show that these CD8+ T cells expressed PD-1 and upregulated its ligand PDL-1 on melanoma cells within the tumor. Despite upregulation of this immunosuppressive pathway, efficient IFNγ production in the melanoma microenvironment was found associated with resistance of STAT5CA-expressing CD8+ T cells to inhibition both by PD-1/PDL-1 engagement and by TGFβ1, two main immune regulatory mechanisms hampering the efficiency of immunotherapy in patients. PMID:25949872

  8. Polyphosphate present in DNA preparations from fungal species of Collectotrichum inhibits restriction endonucleases and other enzymes

    USGS Publications Warehouse

    Rodriguez, R.J.

    1993-01-01

    During the development of a procedure for the isolation of total genomic DNA from filamentous fungi (Rodriguez, R. J., and Yoder, 0. C., Exp. Mycol. 15, 232-242, 1991) a cell fraction was isolated which inhibited the digestion of DNA by restriction enzymes. After elimination of DNA, RNA, proteins, and lipids, the active compound was purified by gel filtration to yield a single fraction capable of complete inhibition of restriction enzyme activity. The inhibitor did not absorb uv light above 220 nm, and was resistant to alkali and acid at 25°C and to temperatures as high as 100°C. More extensive analyses demonstrated that the inhibitor was also capable of inhibiting T4 DNA ligase and TaqI DNA polymerase, but not DNase or RNase. Chemical analyses indicated that the inhibitor was devoid of carbohydrates, proteins, lipids, and nucleic acids but rich in phosphorus. A combination of nuclear magnetic resonance, metachromatic shift of toluidine blue, and gel filtration indicated that the inhibitor was a polyphosphate (polyP) containing approximately 60 phosphate molecules. The mechanism of inhibition appeared to involve complexing of polyP to the enzymatic proteins. All species of Colletotrichum analyzed produced polyP equivalent in chain length and concentration. A modification to the original DNA extraction procedure is described which eliminates polyP and reduces the time necessary to obtain DNA of sufficient purity for restriction enzyme digestion and TaqI polymerase amplification.

  9. The WT hemochromatosis protein HFE inhibits CD8⁺ T-lymphocyte activation.

    PubMed

    Reuben, Alexandre; Phénix, Mikaël; Santos, Manuela M; Lapointe, Réjean

    2014-06-01

    MHC class I (MHC I) antigen presentation is a ubiquitous process by which cells present endogenous proteins to CD8(+) T lymphocytes during immune surveillance and response. Hereditary hemochromatosis protein, HFE, is involved in cellular iron uptake but, while structurally homologous to MHC I, is unable to bind peptides. However, increasing evidence suggests a role for HFE in the immune system. Here, we investigated the impact of HFE on CD8(+) T-lymphocyte activation. Using transient HFE transfection assays in a model of APCs, we show that WT HFE (HFEWT ), but not C282Y-mutated HFE, inhibits secretion of MIP-1β from antigen-specific CD8(+) T lymphocytes. HFEWT expression also resulted in major decreases in CD8(+) T-lymphocyte activation as measured by 4-1BB expression. We further demonstrate that inhibition of CD8(+) T-lymphocyte activation was independent of MHC I surface levels, β2-m competition, HFE interaction with transferrin receptor, antigen origin, or epitope affinity. Finally, we identified the α1-2 domains of HFEWT as being responsible for inhibiting CD8(+) T-lymphocyte activation. Our data imply a new role for HFEWT in altering CD8(+) T-lymphocyte reactivity, which could modulate antigen immunogenicity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A Pharmacokinetic Study of an Ibuprofen Topical Patch in Healthy Male and Female Adult Volunteers.

    PubMed

    Lewis, Fraser; Connolly, Mark P; Bhatt, Aomesh

    2018-01-11

    The pharmacokinetics of a novel locally applied ibuprofen topical patch was evaluated. Healthy subjects (n = 28) were administered a 200-mg ibuprofen patch every 24 hours for 5 days, and steady-state pharmacokinetics was determined. The amount of ibuprofen remaining in the patch following each patch removal was also assessed. The maximum steady-state drug concentration and area under the concentration curve from time 0 on day 5 (t = 0) to the 24-hours sample on day 6 were 514 ng/mL (95% CI 439 to 603 ng/mL) and 9.78 kg·h/mL (95% CI 8.43 to 11.4 kg·h/mL), respectively. Maximum ibuprofen concentration on day 5 occurred at 20 hours post-patch application. No evidence of drug accumulation was observed, and steady state was achieved between days 2 and 5. Ibuprofen levels attenuated rapidly to baseline within 24 hours after treatment discontinuation. The amount of ibuprofen remaining in the patch was high (≥80%). Treatment-emergent adverse events were generally mild, with the most prevalent being headache (n = 6; 21.4%). Only 4 TEAEs were considered related to the ibuprofen patch: paresthesia (n = 1), headache (n = 2), and pruritic rash (n = 1). The study found that the systematic absorption of ibuprofen from a 200-mg patch was low and that the levels of ibuprofen leaving the patch over a 24-hour period are consistent with levels required for therapeutic relief as shown in other studies. © 2018, The American College of Clinical Pharmacology.

  11. In vitro inhibition of human UGT isoforms by ritonavir and cobicistat.

    PubMed

    Algeelani, Sara; Alam, Novera; Hossain, Md Amin; Mikus, Gerd; Greenblatt, David J

    2018-08-01

    1. Ritonavir and cobicistat are pharmacokinetic boosting agents used to increase systemic exposure to other antiretroviral therapies. The manufacturer's data suggests that cobicistat is a more selective CYP3A4 inhibitor than ritonavir. However, the inhibitory effect of ritonavir and cobicistat on human UDP glucuronosyltransferase (UGT) enzymes in Phase II metabolism is not established. This study evaluated the inhibition of human UGT isoforms by ritonavir versus cobicistat. 2. Acetaminophen and ibuprofen were used as substrates to evaluate the metabolic activity of the principal human UGTs. Metabolite formation rates were determined by HPLC analysis of incubates following in vitro incubation of index substrates with human liver microsomes (HLMs) at different concentrations of ritonavir or cobicistat. Probenecid and estradiol served as positive control inhibitors. 3. The 50% inhibitory concentrations (IC 50 ) of cobicistat and ritonavir were at least 50 µM, which substantially exceeds usual clinical plasma concentrations. Probenecid inhibited the glucuronidation of acetaminophen (IC 50 0.7 mM), but not glucuronidation of ibuprofen. At relatively high concentrations, estradiol inhibited ibuprofen glucuronidation (IC 50 17 µM). 4. Ritonavir and cobicistat are unlikely to produce clinically important drug interactions involving drugs metabolized to glucuronide conjugates by UGT1A1, 1A3, 1A6, 1A9, 2B4 and 2B7.

  12. Fine-mapping analysis of the MHC region for vitiligo based on a new Han-MHC reference panel.

    PubMed

    Yang, Chao; Wu, Juan; Zhang, Xuelei; Wen, Leilei; Sun, Jingying; Cheng, Yuyan; Tang, Xianfa; Liang, Bo; Chen, Gang; Zhou, Fusheng; Cui, Yong; Zhang, Anping; Zhang, Xuejun; Zheng, Xiaodong; Yang, Sen; Sun, Liangdan

    2018-03-30

    Vitiligo is an immune-related disease with patchy depigmentation of skin and hair caused by selective destruction of melanocytes. In recent decades, many studies have shown the association between vitiligo and HLA genes; however, the results of Han Chinese are scarce. In this study, we performed a fine-mapping analysis of the MHC region in 2818 Han Chinese subjects through a widely used HLA imputation method with a newly built large-scale Han-MHC reference panel. Three new four-digit HLA alleles (HLA-DQB1 ∗ 02:02, HLA-DQA1 ∗ 02:01 and HLA-DPB1 ∗ 17:01) were identified to be associated with the risk of vitiligo, and four previously reported alleles were confirmed. Further conditional analysis revealed that two important variants, HLA-DQβ1 amino acid position 135 (OR = 1.79, P = 1.87 × 10 -11 ) and HLA-B amino acid positions 45-46 (OR = 1.44, P = 5.61 × 10 -11 ), conferred most of the MHC associations. Three-dimension ribbon models showed that the former is located within the β2 domain of the HLA-DQβ1 molecule, and the latter lies in the α1 domain of the HLA-B molecule, while both are involved in specific antigen presenting process. Finally, we summarized all significant signals in the MHC region to clarify their complex relationships, and 8.60% of phenotypic variance could be explained based on all reported variants in Han Chinese so far. Our findings highlight the complex genetic architecture of the MHC region for vitiligo in Han Chinese population and expand our understanding of the roles of HLA coding variants in the etiology of vitiligo. Copyright © 2018. Published by Elsevier B.V.

  13. Prevention of peritendinous adhesions with electrospun ibuprofen-loaded poly(L-lactic acid)-polyethylene glycol fibrous membranes.

    PubMed

    Liu, Shen; Hu, Changmin; Li, Fengfeng; Li, Xu-jun; Cui, Wenguo; Fan, Cunyi

    2013-02-01

    Physical barriers are commonly used to reduce peritendinous adhesion after injury. However, the inflammatory response to surgery cannot be prevented. This study was designed to evaluate the ability of ibuprofen-loaded poly(l-lactic acid)-polyethylene glycol (PELA) diblock copolymer fibrous membranes in preventing adhesion formation and reduce inflammation. Electrospun PELA fibrous membranes underwent mechanical testing and were characterized by morphology, surface wettability, drug release, and degradation. Results of an in vitro drug release study showed that a burst release was followed by sustained release from fibrous membranes with high initial ibuprofen content. Fewer L929 mouse fibroblasts adhered to and proliferated on the ibuprofen-loaded PELA fibrous membrane compared with tissue culture plates or PELA fibrous membrane without ibuprofen. In a chicken model of flexor digitorum profundus tendon surgery, the ibuprofen-loaded PELA fibrous membranes prevented tissue adhesion and significantly reduced inflammation. Taken together, these results demonstrate that ibuprofen-loaded PELA fibrous membranes prevent peritendinous adhesion formation better than membranes that do not contain ibuprofen, through anti-adhesion and anti-inflammatory actions.

  14. Functional Macroautophagy Induction by Influenza A Virus without a Contribution to Major Histocompatibility Complex Class II-Restricted Presentation▿†

    PubMed Central

    Comber, Joseph D.; Robinson, Tara M.; Siciliano, Nicholas A.; Snook, Adam E.; Eisenlohr, Laurence C.

    2011-01-01

    Major histocompatibility complex (MHC) class II-presented peptides can be derived from both exogenous (extracellular) and endogenous (biosynthesized) sources of antigen. Although several endogenous antigen-processing pathways have been reported, little is known about their relative contributions to global CD4+ T cell responses against complex antigens. Using influenza virus for this purpose, we assessed the role of macroautophagy, a process in which cytosolic proteins are delivered to the lysosome by de novo vesicle formation and membrane fusion. Influenza infection triggered productive macroautophagy, and autophagy-dependent presentation was readily observed with model antigens that naturally traffic to the autophagosome. Furthermore, treatments that enhance or inhibit macroautophagy modulated the level of presentation from these model antigens. However, validated enzyme-linked immunospot (ELISpot) assays of influenza-specific CD4+ T cells from infected mice using a variety of antigen-presenting cells, including primary dendritic cells, revealed no detectable macroautophagy-dependent component. In contrast, the contribution of proteasome-dependent endogenous antigen processing to the global influenza CD4+ response was readily appreciated. The contribution of macroautophagy to the MHC class II-restricted response may vary depending upon the pathogen. PMID:21525345

  15. CD4+ T cell-mediated rejection of MHC class II-positive tumor cells is dependent on antigen secretion and indirect presentation on host APCs.

    PubMed

    Haabeth, Ole Audun Werner; Fauskanger, Marte; Manzke, Melanie; Lundin, Katrin U; Corthay, Alexandre; Bogen, Bjarne; Tveita, Anders Aune

    2018-05-11

    Tumor-specific CD4+ T cells have been shown to mediate efficient anti-tumor immune responses against cancer. Such responses can occur through direct binding to MHC class II (MHC II)-expressing tumor cells or indirectly via activation of professional antigen-presenting cells (APC) that take up and present the tumor antigen. We have previously shown that CD4+ T cells reactive against an epitope within the Ig light chain variable region of a murine B cell lymphoma can reject established tumors. Given the presence of MHC II molecules at the surface of lymphoma cells, we investigated whether MHC II-restricted antigen presentation on tumor cells alone was required for rejection. Variants of the A20 B lymphoma cell line that either secreted or intracellularly retained different versions of the tumor-specific antigen revealed that antigen secretion by the MHC II-expressing tumor cells was essential both for the priming and effector phase of CD4+ T cell-driven anti-tumor immune responses. Consistent with this, genetic ablation of MHC II in tumor cells, both in the case of B lymphoma and B16 melanoma, did not preclude rejection of tumors by tumor antigen-specific CD4+ T cells in vivo. These findings demonstrate that MHC class II expression on tumor cells themselves is not required for CD4+ T cell-mediated rejection, and that indirect display on host APC is sufficient for effective tumor elimination. These results support the importance of tumor-infiltrating APC as mediators of tumor cell killing by CD4+ T cells. Copyright ©2018, American Association for Cancer Research.

  16. Ibuprofen does not affect serum electrolyte concentrations after an ultradistance run

    PubMed Central

    Dumke, Charles L; Nieman, David C; Oley, Kevin; Lind, Robert H

    2007-01-01

    Objective To determine the effects of ibuprofen on serum electrolyte concentrations after a 160 km running race. Methods Twenty nine subjects (mean (SD) age 47.9 (7.4) years) ingested 600 mg ibuprofen the day before, and 1200 mg ibuprofen during, a 160 km competitive trail running race (approximately every 4 h in 200 mg doses). Twenty five control subjects (mean (SD) age 46.8 (10.3) years) avoided ingestion of ibuprofen before or during the race. Blood was drawn on the day before the race and immediately after the race. Serum biochemical profiles were analysed by a clinical laboratory. Significant effects of treatment and time were determined with a general linear model with repeated measures. Results Subjects in the two groups did not differ by age, training volume, race experience, body mass index, body fat, or finishing time (25.8 (3.3) vs 25.6 (3.9) h). Body weight did not change significantly over the race (measured before, mid‐race (90 km), and after). Ibuprofen ingestion did not significantly affect any of the serum markers including creatine kinase (p = 0.16). A significant decrease in serum sodium (p = 0.006), potassium (p = 0.001), chloride (p<0.001), calcium (p<0.001), albumin (p<0.001) and globulin (p<0.001) was observed after the race. Increases were seen in creatine kinase (p<0.001), creatinine (p<0.001), blood urea nitrogen (p<0.001), uric acid (p<0.001) and glucose (p<0.001) as the result of the race. Conclusions These data suggest that the non‐specific cyclo‐oxygenase inhibitor, ibuprofen, does not alter serum electrolyte concentrations during ultradistance running. However, the stress of ultradistance running appears to be related to significant changes in certain serum markers. PMID:17331976

  17. Expression, Purification and Characterization of Ricin vectors used for exogenous antigen delivery into the MHC Class I presentation pathway

    PubMed Central

    Marsden, Catherine J.; Lord, J. Michael; Roberts, Lynne M.

    2003-01-01

    Disarmed versions of the cytotoxin ricin can deliver fused peptides into target cells leading to MHC class I-restricted antigen presentation [Smith et al. J Immunol 2002; 169:99-107]. The ricin delivery vector must contain an attenuated catalytic domain to prevent target cell death, and the fused peptide epitope must remain intact for delivery and functional loading to MHC class I molecules. Expression in E. coli and purification by cation exchange chromatography of the fusion protein is described. Before used for delivery, the activity of the vector must be characterized in vitro, via an N-glycosidase assay, and in vivo, by a cytotoxicity assay. The presence of an intact epitope must be confirmed using mass spectrometry by comparing the actual mass with the predicted mass. PMID:12734560

  18. Microbial Removal of the Pharmaceutical Compounds Ibuprofen and Diclofenac from Wastewater

    PubMed Central

    Inderfurth, Nadia; Schraa, Gosse; Kujawa-Roeleveld, Katarzyna; Rijnaarts, Huub

    2013-01-01

    Studies on the occurrence of pharmaceuticals show that the widely used pharmaceuticals ibuprofen and diclofenac are present in relevant concentrations in the environment. A pilot plant treating hospital wastewater with relevant concentrations of these pharmaceuticals was evaluated for its performance to reduce the concentration of the pharmaceuticals. Ibuprofen was completely removed, whereas diclofenac yielded a residual concentration, showing the necessity of posttreatment to remove diclofenac, for example, activated carbon. Successively, detailed laboratory experiments with activated sludge from the same wastewater treatment plant showed bioremediation potential in the treatment plant. The biological degradation pathway was studied and showed a mineralisation of ibuprofen and degradation of diclofenac. The present microbes were further studied in laboratory experiments, and DGGE analyses showed the enrichment and isolation of highly purified cultures that degraded either ibuprofen or diclofenac. This research illuminates the importance of the involved bacteria for the effectiveness of the removal of pharmaceuticals in a wastewater treatment plant. A complete removal of pharmaceuticals from wastewater will stimulate water reuse, addressing the worldwide increasing demand for clean and safe fresh water. PMID:24350260

  19. Single dose oral ibuprofen plus caffeine for acute postoperative pain in adults.

    PubMed

    Derry, Sheena; Wiffen, Philip J; Moore, R Andrew

    2015-07-14

    There is good evidence that combining two different analgesics in fixed doses in a single tablet can provide better pain relief in acute pain and headache than either drug alone, and that the drug-specific benefits are essentially additive. This appears to be broadly true in postoperative pain and migraine headache across a range of different drug combinations, and when tested in the same and different trials. Adding caffeine to analgesics also increases the number of people obtaining good pain relief. Combinations of ibuprofen and caffeine are available without prescription in some parts of the world. To assess the analgesic efficacy and adverse effects of a single oral dose of ibuprofen plus caffeine for moderate to severe postoperative pain, using methods that permit comparison with other analgesics evaluated in standardised trials using almost identical methods and outcomes. We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, the Oxford Pain Relief Database, two clinical trial registries, and the reference lists of articles. The date of the most recent search was 1 February 2015. Randomised, double-blind, placebo- or active-controlled clinical trials of single dose oral ibuprofen plus caffeine for acute postoperative pain in adults. Two review authors independently considered trials for inclusion in the review, assessed risk of bias, and extracted data. We used the area under the pain relief versus time curve to derive the proportion of participants with at least 50% pain relief over six hours prescribed either ibuprofen plus caffeine or placebo. We calculated the risk ratio (RR) and number needed to treat to benefit (NNT). We used information on the use of rescue medication to calculate the proportion of participants requiring rescue medication and the weighted mean of the median time to use. We also collected information on adverse effects. We identified five randomised, double-blind studies with 1501 participants, but

  20. Effects of acetaminophen and ibuprofen in children with migraine receiving preventive treatment with magnesium.

    PubMed

    Gallelli, Luca; Avenoso, Tiziana; Falcone, Daniela; Palleria, Caterina; Peltrone, Francesco; Esposito, Maria; De Sarro, Giovambattista; Carotenuto, Marco; Guidetti, Vincenzo

    2014-02-01

    The purpose of this study was to evaluate both the effects of ibuprofen and/or acetaminophen for the acute treatment of primary migraine in children in or out prophylactic treatment with magnesium. Children ranging from the ages of 5 to 16 years with at least 4 attack/month of primary migraine were eligible for participation the study. A visual analog scale was used to evaluate pain intensity at the moment of admission to the study (start of the study) and every month up to 18 months later (end of the study). One hundred sixty children of both sexes aged 5-16 years were enrolled and assigned in 4 groups to receive a treatment with acetaminophen or ibuprofen without or with magnesium. Migraine pain endurance and monthly frequency were similar in the 4 groups. Both acetaminophen and ibuprofen induced a significant decrease in pain intensity (P < .01), without a time-dependent correlation, but did not modify its frequency. Magnesium pretreatment induced a significant decrease in pain intensity (P < .01) without a time-dependent correlation in both acetaminophen- and ibuprofen-treated children and also significantly reduced (P < .01) the pain relief timing during acetaminophen but not during ibuprofen treatment (P < .01). In both acetaminophen and ibuprofen groups, magnesium pretreatment significantly reduced the pain frequency (P < .01). Magnesium increased the efficacy of ibuprofen and acetaminophen with not age-related effects. © 2013 American Headache Society.

  1. Ibuprofen and/or paracetamol (acetaminophen) for pain relief after surgical removal of lower wisdom teeth.

    PubMed

    Bailey, Edmund; Worthington, Helen V; van Wijk, Arjen; Yates, Julian M; Coulthard, Paul; Afzal, Zahid

    2013-12-12

    Both paracetamol and ibuprofen are commonly used analgesics for the relief of pain following the surgical removal of lower wisdom teeth (third molars). In 2010, a novel analgesic (marketed as Nuromol) containing both paracetamol and ibuprofen in the same tablet was launched in the United Kingdom, this drug has shown promising results to date and we have chosen to also compare the combined drug with the single drugs using this model. In this review we investigated the optimal doses of both paracetamol and ibuprofen via comparison of both and via comparison with the novel combined drug. We have taken into account the side effect profile of the study drugs. This review will help oral surgeons to decide on which analgesic to prescribe following wisdom tooth removal. To compare the beneficial and harmful effects of paracetamol, ibuprofen and the novel combination of both in a single tablet for pain relief following the surgical removal of lower wisdom teeth, at different doses and administered postoperatively. We searched the Cochrane Oral Health Group'sTrials Register (to 20 May 2013); the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2013, Issue 4); MEDLINE via OVID (1946 to 20 May 2013); EMBASE via OVID (1980 to 20 May 2013) and the metaRegister of Controlled Trials (to 20 May 2013). We checked the bibliographies of relevant clinical trials and review articles for further studies. We wrote to authors of the identified randomised controlled trials (RCTs), and searched personal references in an attempt to identify unpublished or ongoing RCTs. No language restriction was applied to the searches of the electronic databases. Only randomised controlled double-blinded clinical trials were included. Cross-over studies were included provided there was a wash out period of at least 14 days. There had to be a direct comparison in the trial of two or more of the trial drugs at any dosage. All trials used the third molar pain model. All trials

  2. Immunochip Analyses of Epistasis in Rheumatoid Arthritis Confirm Multiple Interactions within MHC and Suggest Novel Non-MHC Epistatic Signals.

    PubMed

    Wei, Wen-Hua; Loh, Chia-Yin; Worthington, Jane; Eyre, Stephen

    2016-05-01

    Studying statistical gene-gene interactions (epistasis) has been limited by the difficulties in performance, both statistically and computationally, in large enough sample numbers to gain sufficient power. Three large Immunochip datasets from cohort samples recruited in the United Kingdom, United States, and Sweden with European ancestry were used to examine epistasis in rheumatoid arthritis (RA). A full pairwise search was conducted in the UK cohort using a high-throughput tool and the resultant significant epistatic signals were tested for replication in the United States and Swedish cohorts. A forward selection approach was applied to remove redundant signals, while conditioning on the preidentified additive effects. We detected abundant genome-wide significant (p < 1.0e-13) epistatic signals, all within the MHC region. These signals were reduced substantially, but a proportion remained significant (p < 1.0e-03) in conditional tests. We identified 11 independent epistatic interactions across the entire MHC, each explaining on average 0.12% of the phenotypic variance, nearly all replicated in both replication cohorts. We also identified non-MHC epistatic interactions between RA susceptible loci LOC100506023 and IRF5 with Immunochip-wide significance (p < 1.1e-08) and between 2 neighboring single-nucleotide polymorphism near PTPN22 that were in low linkage disequilibrium with independent interaction (p < 1.0e-05). Both non-MHC epistatic interactions were statistically replicated with a similar interaction pattern in the US cohort only. There are multiple but relatively weak interactions independent of the additive effects in RA and a larger sample number is required to confidently assign additional non-MHC epistasis.

  3. Cheetah paradigm revisited: MHC diversity in the world's largest free-ranging population.

    PubMed

    Castro-Prieto, Aines; Wachter, Bettina; Sommer, Simone

    2011-04-01

    For more than two decades, the cheetah (Acinonyx jubatus) has been considered a paradigm of disease vulnerability associated with low genetic diversity, particularly at the immune genes of the major histocompatibility complex (MHC). Cheetahs have been used as a classic example in numerous conservation genetics textbooks as well as in many related scientific publications. However, earlier studies used methods with low resolution to quantify MHC diversity and/or small sample sizes. Furthermore, high disease susceptibility was reported only for captive cheetahs, whereas free-ranging cheetahs show no signs of infectious diseases and a good general health status. We examined whether the diversity at MHC class I and class II-DRB loci in 149 Namibian cheetahs was higher than previously reported using single-strand conformation polymorphism analysis, cloning, and sequencing. MHC genes were examined at the genomic and transcriptomic levels. We detected ten MHC class I and four class II-DRB alleles, of which nine MHC class I and all class II-DRB alleles were expressed. Phylogenetic analyses and individual genotypes suggested that the alleles belong to four MHC class I and three class II-DRB putative loci. Evidence of positive selection was detected in both MHC loci. Our study indicated that the low number of MHC class I alleles previously observed in cheetahs was due to a smaller sample size examined. On the other hand, the low number of MHC class II-DRB alleles previously observed in cheetahs was further confirmed. Compared with other mammalian species including felids, cheetahs showed low levels of MHC diversity, but this does not seem to influence the immunocompetence of free-ranging cheetahs in Namibia and contradicts the previous conclusion that the cheetah is a paradigm species of disease vulnerability.

  4. Limited MHC class I intron 2 repertoire variation in bonobos.

    PubMed

    de Groot, Natasja G; Heijmans, Corrine M C; Helsen, Philippe; Otting, Nel; Pereboom, Zjef; Stevens, Jeroen M G; Bontrop, Ronald E

    2017-10-01

    Common chimpanzees (Pan troglodytes) experienced a selective sweep, probably caused by a SIV-like virus, which targeted their MHC class I repertoire. Based on MHC class I intron 2 data analyses, this selective sweep took place about 2-3 million years ago. As a consequence, common chimpanzees have a skewed MHC class I repertoire that is enriched for allotypes that are able to recognise conserved regions of the SIV proteome. The bonobo (Pan paniscus) shared an ancestor with common chimpanzees approximately 1.5 to 2 million years ago. To investigate whether the signature of this selective sweep is also detectable in bonobos, the MHC class I gene repertoire of two bonobo panels comprising in total 29 animals was investigated by Sanger sequencing. We identified 14 Papa-A, 20 Papa-B and 11 Papa-C alleles, of which eight, five and eight alleles, respectively, have not been reported previously. Within this pool of MHC class I variation, we recovered only 2 Papa-A, 3 Papa-B and 6 Papa-C intron 2 sequences. As compared to humans, bonobos appear to have an even more diminished MHC class I intron 2 lineage repertoire than common chimpanzees. This supports the notion that the selective sweep may have predated the speciation of common chimpanzees and bonobos. The further reduction of the MHC class I intron 2 lineage repertoire observed in bonobos as compared to the common chimpanzee may be explained by a founding effect or other subsequent selective processes.

  5. Gastroprotective effects of several H2RAs on ibuprofen-induced gastric ulcer in rats.

    PubMed

    Liu, Jing; Sun, Dan; He, Jinfeng; Yang, Chengli; Hu, Tingting; Zhang, Lijing; Cao, Hua; Tong, Ai-Ping; Song, Xiangrong; Xie, Yongmei; He, Gu; Guo, Gang; Luo, Youfu; Cheng, Ping; Zheng, Yu

    2016-03-15

    Ibuprofen is the first line of treatment for osteoarthritis and arthritis. The main side effects of ibuprofen especially in long-term treatment include gastric ulcer, duodenal ulcer and indigestion etc. Therefore, screening drugs with effective gastric protective effects and low toxicity for combination therapy with ibuprofen is necessary. The mechanism of gastric damage induced by ibuprofen is still unclear, however, cell damage caused by reactive oxygen species (ROS) is considered as the main reason. Preliminary screening of literature with the criteria of low toxicity led to four histamine-2 receptor antagonists (H2RAs): nizatidine, famotidine, lafutidine, and roxatidine acetate, which were selected for further investigation. These drugs were evaluated systemically by examining the gastric ulcer index, lipid peroxidation (LPO), membrane permeability, toxicity to main organs, and the influence on the activity of antioxidant enzymes, and myeloperoxidase (MPO). Nizatidine was found to be the best gastric protective agent. It exhibited excellent protective effect by increasing antioxidant enzyme activity, decreasing MPO activity, reducing LPO, and membrane permeability. Combination treatment with nizatidine and ibuprofen did not show any significant toxicity. Nizatidine was considered as a good option for combination therapy with ibuprofen especially for diseases that require long-term treatment such as arthritis and osteoarthritis. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. A Peptide Filtering Relation Quantifies MHC Class I Peptide Optimization

    PubMed Central

    Goldstein, Leonard D.; Howarth, Mark; Cardelli, Luca; Emmott, Stephen; Elliott, Tim; Werner, Joern M.

    2011-01-01

    Major Histocompatibility Complex (MHC) class I molecules enable cytotoxic T lymphocytes to destroy virus-infected or cancerous cells, thereby preventing disease progression. MHC class I molecules provide a snapshot of the contents of a cell by binding to protein fragments arising from intracellular protein turnover and presenting these fragments at the cell surface. Competing fragments (peptides) are selected for cell-surface presentation on the basis of their ability to form a stable complex with MHC class I, by a process known as peptide optimization. A better understanding of the optimization process is important for our understanding of immunodominance, the predominance of some T lymphocyte specificities over others, which can determine the efficacy of an immune response, the danger of immune evasion, and the success of vaccination strategies. In this paper we present a dynamical systems model of peptide optimization by MHC class I. We incorporate the chaperone molecule tapasin, which has been shown to enhance peptide optimization to different extents for different MHC class I alleles. Using a combination of published and novel experimental data to parameterize the model, we arrive at a relation of peptide filtering, which quantifies peptide optimization as a function of peptide supply and peptide unbinding rates. From this relation, we find that tapasin enhances peptide unbinding to improve peptide optimization without significantly delaying the transit of MHC to the cell surface, and differences in peptide optimization across MHC class I alleles can be explained by allele-specific differences in peptide binding. Importantly, our filtering relation may be used to dynamically predict the cell surface abundance of any number of competing peptides by MHC class I alleles, providing a quantitative basis to investigate viral infection or disease at the cellular level. We exemplify this by simulating optimization of the distribution of peptides derived from Human

  7. Characteristics and clinical implications of the pharmacokinetic profile of ibuprofen in patients with knee osteoarthritis.

    PubMed

    Gallelli, L; Galasso, O; Urzino, A; Saccà, S; Falcone, D; Palleria, C; Longo, P; Corigliano, A; Terracciano, R; Savino, R; Gasparini, G; De Sarro, G; Southworth, S R

    2012-12-01

    Ibuprofen is a non-selective cyclo-oxygenase (COX)-1/COX-2 inhibitor used to treat pain conditions and inflammation. Limited data have been published concerning the pharmacokinetic profile and clinical effects of ibuprofen in patients with osteoarthritis (OA). In this paper we compared the pharmacokinetic and clinical profile of ibuprofen (at a dosage of from 800 mg/day to 1800 mg/day) administered in patients affected by severe knee OA. Ibuprofen was administered for 7 days to patients who were scheduled to undergo knee arthroplasty due to OA. After 7 days, the ibuprofen concentration in plasma and synovial fluid was measured through both high-performance liquid chromatography (HPLC)-UV and gas chromatography-mass spectroscopy (GC/MS), while clinical effects were evaluated through both visual analogue scale (VAS) and Western Ontario and McMaster Universities (WOMAC) scores. The Naranjo scale and the WHO causality assessment scale were used for estimating the probability of adverse drug reactions (ADRs). The severity of ADRs was assessed by the modified Hartwig and Siegel scale. Ibuprofen showed a dose-dependent diffusion in both plasma and synovial fluid, which was related to the reduction of pain intensity and improvement of health status, without the development of ADRs. Ibuprofen at higher dosages can be expected to provide better control of OA symptoms as a result of higher tissue distribution.

  8. Selector function of MHC I molecules is determined by protein plasticity

    NASA Astrophysics Data System (ADS)

    Bailey, Alistair; Dalchau, Neil; Carter, Rachel; Emmott, Stephen; Phillips, Andrew; Werner, Jörn M.; Elliott, Tim

    2015-10-01

    The selection of peptides for presentation at the surface of most nucleated cells by major histocompatibility complex class I molecules (MHC I) is crucial to the immune response in vertebrates. However, the mechanisms of the rapid selection of high affinity peptides by MHC I from amongst thousands of mostly low affinity peptides are not well understood. We developed computational systems models encoding distinct mechanistic hypotheses for two molecules, HLA-B*44:02 (B*4402) and HLA-B*44:05 (B*4405), which differ by a single residue yet lie at opposite ends of the spectrum in their intrinsic ability to select high affinity peptides. We used in vivo biochemical data to infer that a conformational intermediate of MHC I is significant for peptide selection. We used molecular dynamics simulations to show that peptide selector function correlates with protein plasticity, and confirmed this experimentally by altering the plasticity of MHC I with a single point mutation, which altered in vivo selector function in a predictable way. Finally, we investigated the mechanisms by which the co-factor tapasin influences MHC I plasticity. We propose that tapasin modulates MHC I plasticity by dynamically coupling the peptide binding region and α3 domain of MHC I allosterically, resulting in enhanced peptide selector function.

  9. Semi-empirical quantum evaluation of peptide - MHC class II binding

    NASA Astrophysics Data System (ADS)

    González, Ronald; Suárez, Carlos F.; Bohórquez, Hugo J.; Patarroyo, Manuel A.; Patarroyo, Manuel E.

    2017-01-01

    Peptide presentation by the major histocompatibility complex (MHC) is a key process for triggering a specific immune response. Studying peptide-MHC (pMHC) binding from a structural-based approach has potential for reducing the costs of investigation into vaccine development. This study involved using two semi-empirical quantum chemistry methods (PM7 and FMO-DFTB) for computing the binding energies of peptides bonded to HLA-DR1 and HLA-DR2. We found that key stabilising water molecules involved in the peptide binding mechanism were required for finding high correlation with IC50 experimental values. Our proposal is computationally non-intensive, and is a reliable alternative for studying pMHC binding interactions.

  10. [Characterization of microstructure of ibuprofen-hydroxypropyl-beta-cyclodextrin and ibuprofen-beta-cyclodextrin by atomic force microscope].

    PubMed

    Wang, Li-juan; Zhu, Zhao-jing; Che, Ke-ke; Ju, Feng-ge

    2008-09-01

    The microstructures of ibuprofen-hydroxypropyl-bets-cyclodextrin (IBU-HP-beta-CyD) and ibuprofen-beta-cyclodextrin (IBU-beta-CyD) were observed by atomic force microscope (AFM). The high resolving capability of AFM has the tungsten filament probe with the spring constant of 0.06 N x m(-1). Samples were observed in a small scale scanning area of 10.5 nm x 10.5 nm and 800 x 800 pixels. The original scanning images were gained by tapping mode at room temperature. Their three-dimensional reconstruction of microstructure was performed by G3DR software. The outer diameters of HP-beta-CyD and beta-CyD are 1.53 nm. The benzene diameter of IBU is 0.62 nm, fitting to the inner diameters of HP-beta-CyD and beta-CyD. The benzene and hydrophobic chain of IBU enter into the hole of cyclodextrin at 1:1 ratio. The results were evidenced by IR, X-ray diffraction and the phase solubility.

  11. MHC class II+ (HLA-DP-like) cells in the cow reproductive tract: II. Immunolocalization of MHC class II+ cells in oviduct and vagina.

    PubMed

    Eren, U; Kum, S; Sandikçi, M; Eren, V; Ilhan, F

    2009-08-01

    The aim of this study was to determine and examine the distribution of major frequency MHC II+ cells in the oviduct and vagina of cows during the oestrous and dioestrus phases. Right oviduct (ampulla, isthmus) and vaginal samples taken from a total of twenty seven multiparous cows were used. Tissue samples were processed to obtain both cryostat and paraffin sections. Sections were stained immunocytochemically using StreptABC method using a specific monoclonal antibody to MHC II+ cell population. Intra-epithelial and subepithelial areas along with lamina propria, muscularis mucosae and serosa of both ampulla and isthmus and intra-epithelial/subepithelial areas and mucosae of vagina were examined for the presence of MHC II+ cells. The density of immune positive cells was determined using a subjective scoring system. MHC II+ cells were demonstrated in all areas examined in both oestrus and dioestrus. In oestrus, the density of MHC II+ cells decreased in subepithelial areas (in between the epithelial cells and the basal membrane) of isthmus, whereas the density of immune positive cells was increased in muscularis mucosae of isthmus (P < 0.05), lamina propria and muscularis mucosae of ampulla (P < 0.05) as well as in the mucosae of vagina (P MHC II+ cells observed in the oviduct and vagina increases in the majority of areas examined due to the effect of oestrogen.

  12. Cyclooxygenase inhibition targets neurons to prevent early behavioural decline in Alzheimer’s disease model mice

    PubMed Central

    Woodling, Nathaniel S.; Colas, Damien; Wang, Qian; Minhas, Paras; Panchal, Maharshi; Liang, Xibin; Mhatre, Siddhita D.; Brown, Holden; Ko, Novie; Zagol-Ikapitte, Irene; van der Hart, Marieke; Khroyan, Taline V.; Chuluun, Bayarsaikhan; Priyam, Prachi G.; Milne, Ginger L.; Rassoulpour, Arash; Boutaud, Olivier; Manning-Boğ, Amy B.; Heller, H. Craig

    2016-01-01

    Abstract Identifying preventive targets for Alzheimer’s disease is a central challenge of modern medicine. Non-steroidal anti-inflammatory drugs, which inhibit the cyclooxygenase enzymes COX-1 and COX-2, reduce the risk of developing Alzheimer’s disease in normal ageing populations. This preventive effect coincides with an extended preclinical phase that spans years to decades before onset of cognitive decline. In the brain, COX-2 is induced in neurons in response to excitatory synaptic activity and in glial cells in response to inflammation. To identify mechanisms underlying prevention of cognitive decline by anti-inflammatory drugs, we first identified an early object memory deficit in APP Swe -PS1 ΔE9 mice that preceded previously identified spatial memory deficits in this model. We modelled prevention of this memory deficit with ibuprofen, and found that ibuprofen prevented memory impairment without producing any measurable changes in amyloid-β accumulation or glial inflammation. Instead, ibuprofen modulated hippocampal gene expression in pathways involved in neuronal plasticity and increased levels of norepinephrine and dopamine. The gene most highly downregulated by ibuprofen was neuronal tryptophan 2,3-dioxygenase ( Tdo2 ), which encodes an enzyme that metabolizes tryptophan to kynurenine. TDO2 expression was increased by neuronal COX-2 activity, and overexpression of hippocampal TDO2 produced behavioural deficits. Moreover, pharmacological TDO2 inhibition prevented behavioural deficits in APP Swe -PS1 ΔE9 mice. Taken together, these data demonstrate broad effects of cyclooxygenase inhibition on multiple neuronal pathways that counteract the neurotoxic effects of early accumulating amyloid-β oligomers. PMID:27190010

  13. Efficacy and safety of rectal ibuprofen for patent ductus arteriosus closure in very low birth weight preterm infants.

    PubMed

    Demir, Nihat; Peker, Erdal; Ece, İbrahim; Balahoroğlu, Ragıp; Tuncer, Oğuz

    2017-09-01

    To compare rectal ibuprofen with oral ibuprofen for the closure of hemodynamically significant patent ductus arteriosus (hsPDA) in very low birth weight (VLBW) preterm infants. In a prospective, randomized study, 72 VLBW infants who had hsPDA received either rectal or oral ibuprofen. The plasma concentration of ibuprofen and renal functions were determined in both groups by the high-performance liquid chromatography (HPLC) method and cystatin-C (cys-C), respectively. The hsPDA closure rate of the group that received rectal ibuprofen was similar to oral ibuprofen (86.1% versus 83.3%) after the first course of the treatment (p = 0.745). A statistically significant difference was identified between the mean plasma cys-C levels before and after treatment in both the rectal and oral ibuprofen groups (p = 0.004 and p< 0.001, respectively). The mean plasma ibuprofen concentration was similar in both groups after the first dose (rectal 44.06 ± 12.4; oral, 48.28 ± 22.8) and the third dose (rectal, 45.34 ± 24.3; oral, 48.94 ± 24.8) (p > 0.05 for all values). Rectal ibuprofen is as effective as oral ibuprofen for hsPDA closure in VLBW infants. The rise in the cys-C level with rectal and oral treatment shows that patients with borderline renal function should be evaluated and followed closely.

  14. An examination of the thermodynamics of fusion, vaporization, and sublimation of ibuprofen and naproxen by correlation gas chromatography.

    PubMed

    Maxwell, Rachel; Chickos, James

    2012-02-01

    The vaporization enthalpies of (S)-ibuprofen and (S)-naproxen measured by correlation gas chromatography at T = 298.15 K are reported and compared with literature values. Adjustment of the fusion enthalpies of (RS)- and (S)-ibuprofen and (S)-naproxen to T = 298.15 K and combined with the vaporization enthalpy of the (S)-enantiomer of both ibuprofen and naproxen also at T = 298.15 K resulted in the sublimation enthalpies of both (S)-enantiomers. On the assumption that the vaporization enthalpy of the racemic form of ibuprofen is within the experimental uncertainty of the chiral form, the sublimation enthalpy of racemic ibuprofen was also evaluated. The vaporization and sublimation enthalpies compare favorably to the most of the literature values for the racemic form of ibuprofen but differ from the value reported for chiral ibuprofen. The literature values of (S)-naproxen are somewhat smaller than the values measured in this work. The following vaporization enthalpies were measured for (S)-ibuprofen and (S)-naproxen, respectively: ΔH(vap) (298.15 K), 106.0 ± 5.5, 132.2 ± 5.0 kJ·mol(-1) . Sublimation enthalpies of 122.7 ± 5.6 and 155.2 ± 7.1 kJ·mol(-1) were calculated for the (S)-enantiomers of ibuprofen and naproxen and a value of 128.9 ± 5.8 kJ·mol(-1) was estimated for the racemic form of ibuprofen. Copyright © 2011 Wiley Periodicals, Inc.

  15. Interaction of TAPBPR, a tapasin homolog, with MHC-I molecules promotes peptide editing.

    PubMed

    Morozov, Giora I; Zhao, Huaying; Mage, Michael G; Boyd, Lisa F; Jiang, Jiansheng; Dolan, Michael A; Venna, Ramesh; Norcross, Michael A; McMurtrey, Curtis P; Hildebrand, William; Schuck, Peter; Natarajan, Kannan; Margulies, David H

    2016-02-23

    Peptide loading of major histocompatibility complex class I (MHC-I) molecules is central to antigen presentation, self-tolerance, and CD8(+) T-cell activation. TAP binding protein, related (TAPBPR), a widely expressed tapasin homolog, is not part of the classical MHC-I peptide-loading complex (PLC). Using recombinant MHC-I molecules, we show that TAPBPR binds HLA-A*02:01 and several other MHC-I molecules that are either peptide-free or loaded with low-affinity peptides. Fluorescence polarization experiments establish that TAPBPR augments peptide binding by MHC-I. The TAPBPR/MHC-I interaction is reversed by specific peptides, related to their affinity. Mutational and small-angle X-ray scattering (SAXS) studies confirm the structural similarities of TAPBPR with tapasin. These results support a role of TAPBPR in stabilizing peptide-receptive conformation(s) of MHC-I, permitting peptide editing.

  16. Polymorphism at Expressed DQ and DR Loci in Five Common Equine MHC Haplotypes

    PubMed Central

    Miller, Donald; Tallmadge, Rebecca L.; Binns, Matthew; Zhu, Baoli; Mohamoud, Yasmin Ali; Ahmed, Ayeda; Brooks, Samantha A.; Antczak, Douglas F.

    2016-01-01

    The polymorphism of Major Histocompatibility Complex (MHC) class II DQ and DR genes in five common Equine Leukocyte Antigen (ELA) haplotypes was determined through sequencing of mRNA transcripts isolated from lymphocytes of eight ELA homozygous horses. Ten expressed MHC class II genes were detected in horses of the ELA-A3 haplotype carried by the donor horses of the equine Bacterial Artificial Chromosome (BAC) library and the reference genome sequence: four DR genes and six DQ genes. The other four ELA haplotypes contained at least eight expressed polymorphic MHC class II loci. Next Generation Sequencing (NGS) of genomic DNA of these four MHC haplotypes revealed stop codons in the DQA3 gene in the ELA-A2, ELA-A5, and ELA-A9 haplotypes. Few NGS reads were obtained for the other MHC class II genes that were not amplified in these horses. The amino acid sequences across haplotypes contained locus-specific residues, and the locus clusters produced by phylogenetic analysis were well supported. The MHC class II alleles within the five tested haplotypes were largely non-overlapping between haplotypes. The complement of equine MHC class II DQ and DR genes appears to be well conserved between haplotypes, in contrast to the recently described variation in class I gene loci between equine MHC haplotypes. The identification of allelic series of equine MHC class II loci will aid comparative studies of mammalian MHC conservation and evolution and may also help to interpret associations between the equine MHC class II region and diseases of the horse. PMID:27889800

  17. MHC-disassortative mate choice and inbreeding avoidance in a solitary primate.

    PubMed

    Huchard, Elise; Baniel, Alice; Schliehe-Diecks, Susanne; Kappeler, Peter M

    2013-08-01

    Sexual selection theory suggests that choice for partners carrying dissimilar genes at the major histocompatibility complex (MHC) may play a role in maintaining genetic variation in animal populations by limiting inbreeding or improving the immunity of future offspring. However, it is often difficult to establish whether the observed MHC dissimilarity among mates drives mate choice or represents a by-product of inbreeding avoidance based on MHC-independent cues. Here, we used 454-sequencing and a 10-year study of wild grey mouse lemurs (Microcebus murinus), small, solitary primates from western Madagascar, to compare the relative importance on the mate choice of two MHC class II genes, DRB and DQB, that are equally variable but display contrasting patterns of selection at the molecular level, with DRB under stronger diversifying selection. We further assessed the effect of the genetic relatedness and of the spatial distance among candidate mates on the detection of MHC-dependent mate choice. Our results reveal inbreeding avoidance, along with disassortative mate choice at DRB, but not at DQB. DRB-disassortative mate choice remains detectable after excluding all related dyads (characterized by a relatedness coefficient r > 0), but varies slightly with the spatial distance among candidate mates. These findings suggest that the observed deviations from random mate choice at MHC are driven by functionally important MHC genes (like DRB) rather than passively resulting from inbreeding avoidance and further emphasize the need for taking into account the spatial and genetic structure of the population in correlative tests of MHC-dependent mate choice. © 2013 John Wiley & Sons Ltd.

  18. Acetaminophen versus Ibuprofen in Young Children with Mild Persistent Asthma.

    PubMed

    Sheehan, William J; Mauger, David T; Paul, Ian M; Moy, James N; Boehmer, Susan J; Szefler, Stanley J; Fitzpatrick, Anne M; Jackson, Daniel J; Bacharier, Leonard B; Cabana, Michael D; Covar, Ronina; Holguin, Fernando; Lemanske, Robert F; Martinez, Fernando D; Pongracic, Jacqueline A; Beigelman, Avraham; Baxi, Sachin N; Benson, Mindy; Blake, Kathryn; Chmiel, James F; Daines, Cori L; Daines, Michael O; Gaffin, Jonathan M; Gentile, Deborah A; Gower, W Adam; Israel, Elliot; Kumar, Harsha V; Lang, Jason E; Lazarus, Stephen C; Lima, John J; Ly, Ngoc; Marbin, Jyothi; Morgan, Wayne J; Myers, Ross E; Olin, J Tod; Peters, Stephen P; Raissy, Hengameh H; Robison, Rachel G; Ross, Kristie; Sorkness, Christine A; Thyne, Shannon M; Wechsler, Michael E; Phipatanakul, Wanda

    2016-08-18

    Studies have suggested an association between frequent acetaminophen use and asthma-related complications among children, leading some physicians to recommend that acetaminophen be avoided in children with asthma; however, appropriately designed trials evaluating this association in children are lacking. In a multicenter, prospective, randomized, double-blind, parallel-group trial, we enrolled 300 children (age range, 12 to 59 months) with mild persistent asthma and assigned them to receive either acetaminophen or ibuprofen when needed for the alleviation of fever or pain over the course of 48 weeks. The primary outcome was the number of asthma exacerbations that led to treatment with systemic glucocorticoids. Children in both groups received standardized asthma-controller therapies that were used in a simultaneous, factorially linked trial. Participants received a median of 5.5 doses (interquartile range, 1.0 to 15.0) of trial medication; there was no significant between-group difference in the median number of doses received (P=0.47). The number of asthma exacerbations did not differ significantly between the two groups, with a mean of 0.81 per participant with acetaminophen and 0.87 per participant with ibuprofen over 46 weeks of follow-up (relative rate of asthma exacerbations in the acetaminophen group vs. the ibuprofen group, 0.94; 95% confidence interval, 0.69 to 1.28; P=0.67). In the acetaminophen group, 49% of participants had at least one asthma exacerbation and 21% had at least two, as compared with 47% and 24%, respectively, in the ibuprofen group. Similarly, no significant differences were detected between acetaminophen and ibuprofen with respect to the percentage of asthma-control days (85.8% and 86.8%, respectively; P=0.50), use of an albuterol rescue inhaler (2.8 and 3.0 inhalations per week, respectively; P=0.69), unscheduled health care utilization for asthma (0.75 and 0.76 episodes per participant, respectively; P=0.94), or adverse events. Among

  19. MHC2NNZ: A novel peptide binding prediction approach for HLA DQ molecules

    NASA Astrophysics Data System (ADS)

    Xie, Jiang; Zeng, Xu; Lu, Dongfang; Liu, Zhixiang; Wang, Jiao

    2017-07-01

    The major histocompatibility complex class II (MHC-II) molecule plays a crucial role in immunology. Computational prediction of MHC-II binding peptides can help researchers understand the mechanism of immune systems and design vaccines. Most of the prediction algorithms for MHC-II to date have made large efforts in human leukocyte antigen (HLA, the name of MHC in Human) molecules encoded in the DR locus. However, HLA DQ molecules are equally important and have only been made less progress because it is more difficult to handle them experimentally. In this study, we propose an artificial neural network-based approach called MHC2NNZ to predict peptides binding to HLA DQ molecules. Unlike previous artificial neural network-based methods, MHC2NNZ not only considers sequence similarity features but also captures the chemical and physical properties, and a novel method incorporating these properties is proposed to represent peptide flanking regions (PFR). Furthermore, MHC2NNZ improves the prediction accuracy by combining with amino acid preference at more specific positions of the peptides binding core. By evaluating on 3549 peptides binding to six most frequent HLA DQ molecules, MHC2NNZ is demonstrated to outperform other state-of-the-art MHC-II prediction methods.

  20. Using milk fat to reduce the irritation and bitter taste of ibuprofen

    PubMed Central

    Bennett, Samantha M.; Zhou, Lisa; Hayes, John E.

    2012-01-01

    Bitterness and irritation elicited by pharmaceutically active molecules remain problematic for pediatric medications, fortified foods and dietary supplements. Few effective methods exist for reducing these unpalatable sensations, negatively impacting medication compliance and intake of beneficial phytonutrients. A physicochemical approach to masking these sensations may be the most successful approach for generalizability to a wide range of structurally and functionally unique compounds. Here, solutions of the non-steroidal anti- inflammatory drug, ibuprofen, were prepared in milk products with varying fat content. Our hypothesis, based on other reports of similar phenomena, was that increasing the fat content would cause ibuprofen to selectively partition into the fat phase, thereby reducing interaction with sensory receptors and decreasing adversive sensations. Quantification of the aqueous concentration of ibuprofen was performed using an isocratic HPLC method coupled with an external standard curve. Sensory testing showed a modest but significant decrease (~20%) in irritation ratings between the skim milk (0% fat) and the half-and-half (11% fat) samples, indicating that increased fat may contribute to a reduced sensory response. Bitterness was not reduced, remaining constant over all fat levels. The HPLC results indicate a constant amount of ibuprofen remained in the aqueous phase regardless of fat level, so a simple partitioning hypothesis cannot explain the reduced irritancy ratings. Association of ionized ibuprofen with continuous phase solutes such as unabsorbed protein should be explored in future work. PMID:23527314

  1. Interaction of TAPBPR, a tapasin homolog, with MHC-I molecules promotes peptide editing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morozov, Giora I.; Zhao, Huaying; Mage, Michael G.

    Peptide loading of major histocompatibility complex class I (MHC-I) molecules is central to antigen presentation, self-tolerance, and CD8 + T-cell activation. TAP binding protein, related (TAPBPR), a widely expressed tapasin homolog, is not part of the classical MHC-I peptide-loading complex (PLC). Using recombinant MHC-I molecules, we show that TAPBPR binds HLA-A*02:01 and several other MHC-I molecules that are either peptide-free or loaded with low-affinity peptides. Fluorescence polarization experiments establish that TAPBPR augments peptide binding by MHC-I. The TAPBPR/MHC-I interaction is reversed by specific peptides, related to their affinity. Mutational and small-angle X-ray scattering (SAXS) studies confirm the structural similarities ofmore » TAPBPR with tapasin. These results support a role of TAPBPR in stabilizing peptide-receptive conformation(s) of MHC-I, permitting peptide editing.« less

  2. Interaction of TAPBPR, a tapasin homolog, with MHC-I molecules promotes peptide editing

    DOE PAGES

    Morozov, Giora I.; Zhao, Huaying; Mage, Michael G.; ...

    2016-02-11

    Peptide loading of major histocompatibility complex class I (MHC-I) molecules is central to antigen presentation, self-tolerance, and CD8 + T-cell activation. TAP binding protein, related (TAPBPR), a widely expressed tapasin homolog, is not part of the classical MHC-I peptide-loading complex (PLC). Using recombinant MHC-I molecules, we show that TAPBPR binds HLA-A*02:01 and several other MHC-I molecules that are either peptide-free or loaded with low-affinity peptides. Fluorescence polarization experiments establish that TAPBPR augments peptide binding by MHC-I. The TAPBPR/MHC-I interaction is reversed by specific peptides, related to their affinity. Mutational and small-angle X-ray scattering (SAXS) studies confirm the structural similarities ofmore » TAPBPR with tapasin. These results support a role of TAPBPR in stabilizing peptide-receptive conformation(s) of MHC-I, permitting peptide editing.« less

  3. MHC variation sculpts individualized microbial communities that control susceptibility to enteric infection

    PubMed Central

    Kubinak, Jason L.; Stephens, W. Zac; Soto, Ray; Petersen, Charisse; Chiaro, Tyson; Gogokhia, Lasha; Bell, Rickesha; Ajami, Nadim J.; Petrosino, Joseph F.; Morrison, Linda; Potts, Wayne K.; Jensen, Peter E.; O'Connell, Ryan M.; Round, June L.

    2015-01-01

    The presentation of protein antigens on the cell surface by major histocompatibility complex (MHC) molecules coordinates vertebrate adaptive immune responses, thereby mediating susceptibility to a variety of autoimmune and infectious diseases. The composition of symbiotic microbial communities (the microbiota) is influenced by host immunity and can have a profound impact on host physiology. Here we use an MHC congenic mouse model to test the hypothesis that genetic variation at MHC genes among individuals mediates susceptibility to disease by controlling microbiota composition. We find that MHC genotype significantly influences antibody responses against commensals in the gut, and that these responses are correlated with the establishment of unique microbial communities. Transplantation experiments in germfree mice indicate that MHC-mediated differences in microbiota composition are sufficient to explain susceptibility to enteric infection. Our findings indicate that MHC polymorphisms contribute to defining an individual's unique microbial fingerprint that influences health. PMID:26494419

  4. New microbes as causative agents of Ibuprofen degradation capabilities in the hyporheic zone of a lowland stream

    NASA Astrophysics Data System (ADS)

    Njeru, Cyrus; Posselt, Malte; Horn, Marcus A.

    2017-04-01

    Ibuprofen is a non-steroidal anti-inflammatory pain reliever and among pharmaceutical residues detected in aquatic environments. Widespread use of the drug and incomplete removal during waste water treatment results in its persistence in effluents and receiving waters. Potential total removal by microbial activity in the hyporheic zone (HZ) of rivers downstream of wastewater treatment plant discharge sites has been hypothesized. Ibuprofen degradation associated microbial communities in are essentially unknown. To address this hypothesis, two sets of oxic HZ sediment microcosms spiked with ibuprofen only (5, 40, 200 and 400 µM), or ibuprofen and 1 mM acetate were set up under laboratory conditions. Ibuprofen degradation in non-sterile relative to autoclaved sediments indicated removal by microbial degradation. Ibuprofen was completely consumed in the absence and presence of supplemental acetate after approximately 11 and 16 days, respectively. Refeeding of ibuprofen and acetate after the first depletion resulted in complete degradation within 24 hours in all treatments. Metabolites of ibuprofen included 1-, 2-, 3-hydroxy- and carboxyibuprofen. Quantitative real-time PCR revealed no pronounced differences in copy numbers of 16S rRNA gene or transcripts between non-spiked controls and treatments. Time resolved triplicate amplicon Illumina MiSeq sequencing targeting the 16S rRNA genes and transcripts revealed increased relative abundances of Proteobacteria, Acidobacteria, Actinobacteria and Firmicutes in treatments with compared to those without ibuprofen. Alpha-, Beta- and Deltaproteobacteria were most active as indicated by RNA based analyses. Enrichment and isolation yielded new Alphaproteobacteria utilizing ibuprofen as sole carbon and energy source. The collective results indicated that (i) HZ sediments sustain efficient biotic (micro-)pollutant removal and (ii) are a reservoir of hitherto unknown microbial diversity associated with such ecosystem services

  5. MHC class II molecules control murine B cell responsiveness to lipopolysaccharide stimulation.

    PubMed

    Rodo, Joana; Gonçalves, Lígia A; Demengeot, Jocelyne; Coutinho, António; Penha-Gonçalves, Carlos

    2006-10-01

    LPS is a strong stimulator of the innate immune system and inducer of B lymphocyte activation. Two TLRs, TLR4 and RP105 (CD180), have been identified as mediators of LPS signaling in murine B cells, but little is known about genetic factors that are able to control LPS-induced cell activation. We performed a mouse genome-wide screen that aside from identifying a controlling locus mapping in the TLR4 region (logarithm of odds score, 2.77), also revealed that a locus closely linked to the MHC region (logarithm of odds score, 3.4) governed B cell responsiveness to LPS stimulation. Using purified B cells obtained from MHC congenic strains, we demonstrated that the MHC(b) haplotype is accountable for higher cell activation, cell proliferation, and IgM secretion, after LPS stimulation, when compared with the MHC(d) haplotype. Furthermore, B cells from MHC class II(-/-) mice displayed enhanced activation and proliferation in response to LPS. In addition, we showed that the MHC haplotype partially controls expression of RP105 (a LPS receptor molecule), following a pattern that resembles the LPS responsiveness phenotype. Together, our results strongly suggest that murine MHC class II molecules play a role in constraining the B cell response to LPS and that genetic variation at the MHC locus is an important component in controlling B cell responsiveness to LPS stimulation. This work raises the possibility that constraining of B cell responsiveness by MHC class II molecules may represent a functional interaction between adaptive and innate immune systems.

  6. Non-Invasive Monitoring of CNS MHC-I Molecules in Ischemic Stroke Mice.

    PubMed

    Xia, Jing; Zhang, Ying; Zhao, Huanhuan; Wang, Jie; Gao, Xueren; Chen, Jinpeng; Fu, Bo; Shen, Yuqing; Miao, Fengqin; Zhang, Jianqiong; Teng, Gaojun

    2017-01-01

    Ischemic stroke is one of the leading causes of morbidity and mortality worldwide. The expression of major histocompatibility complex class I (MHC-I) molecules in the central nervous system, which are silenced under normal physiological conditions, have been reported to be induced by injury stimulation. The purpose of this study was to determine whether MHC-I molecules could serve as molecular targets for the acute phase of ischemic stroke and to assess whether a high-affinity peptide specific for MHC-I molecules could be applied in the near-infrared imaging of cerebral ischemic mice. Quantitative real-time PCR and Western blotting were used to detect the expression of MHC-I molecules in two mouse models of cerebral ischemic stroke and an in vitro model of ischemia. The NetMHC 4.0 server was used to screen a high-affinity peptide specific for mouse MHC-I molecules. The Rosetta program was used to identify the specificity and affinity of the screened peptide (histocompatibility-2 binding peptide, H2BP). The results demonstrated that MHC-I molecules could serve as molecular targets for the acute phase of ischemic stroke. Cy5.5-H2BP molecular probes could be applied in the near-infrared imaging of cerebral ischemic mice. Research on the expression of MHC-I molecules in the acute phase after ischemia and MHC-I-targeted imaging may not only be helpful for understanding the mechanism of ischemic and hypoxic brain injury and repair but also has potential application value in the imaging of ischemic stroke.

  7. IBUPROFEN DOES NOT INCREASE BLEEDING RISK IN PLASTIC SURGERY: A SYSTEMATIC REVIEW AND META-ANALYSIS

    PubMed Central

    Kelley, Brian P.; Bennett, Katelyn G.; Chung, Kevin C.; Kozlow, Jeffrey H.

    2016-01-01

    Background Non-steroidal anti-inflammatory drugs (NSAIDs) like ibuprofen are common medications with multiple useful effects including pain relief and reduction of inflammation. However, surgeons commonly hold all NSAIDs peri-operatively because of bleeding concerns. However, not all NSAIDs irreversibly block platelet function. We hypothesized that the use of ibuprofen would have no effect on postoperative bleeding in plastic surgery patients. Methods A literature review was performed using Medline (PubMed), EMBASE, and the Cochrane Collaboration Library for primary research articles on ibuprofen and bleeding. Inclusion criteria were primary journal articles examining treatment of acute postoperative based on any modality. Data related to pain assessment, postoperative recovery, and complications were extracted. Bias assessment and meta-analysis were performed. Results A total of 881 publications were reviewed. Four primary randomized controlled trials were selected for full analysis. Articles were of high quality by bias assessment. No significant difference was noted regarding bleeding events (p = 0.32) and pain control was noted to be equivalent. Conclusion Ibuprofen is a useful medication in the setting of surgery with multiple beneficial effects. This meta-analysis represents a small set of high quality studies that suggests ibuprofen provides equivalent pain control to narcotics. Importantly, ibuprofen was not associated with an increased risk of bleeding. Further large studies will be necessary to elucidate this issue further, but ibuprofen is a safe postoperative analgesic in patients undergoing common plastic surgery soft tissue procedures. PMID:27018685

  8. Scrutinizing human MHC polymorphism: Supertype analysis using Poisson-Boltzmann electrostatics and clustering.

    PubMed

    Mumtaz, Shahzad; Nabney, Ian T; Flower, Darren R

    2017-10-01

    Peptide-binding MHC proteins are thought the most variable across the human population; the extreme MHC polymorphism observed is functionally important and results from constrained divergent evolution. MHCs have vital functions in immunology and homeostasis: cell surface MHC class I molecules report cell status to CD8+ T cells, NKT cells and NK cells, thus playing key roles in pathogen defence, as well as mediating smell recognition, mate choice, Adverse Drug Reactions, and transplantation rejection. MHC peptide specificity falls into several supertypes exhibiting commonality of binding. It seems likely that other supertypes exist relevant to other functions. Since comprehensive experimental characterization is intractable, structure-based bioinformatics is the only viable solution. We modelled functional MHC proteins by homology and used calculated Poisson-Boltzmann electrostatics projected from the top surface of the MHC as multi-dimensional descriptors, analysing them using state-of-the-art dimensionality reduction techniques and clustering algorithms. We were able to recover the 3 MHC loci as separate clusters and identify clear sub-groups within them, vindicating unequivocally our choice of both data representation and clustering strategy. We expect this approach to make a profound contribution to the study of MHC polymorphism and its functional consequences, and, by extension, other burgeoning structural systems, such as GPCRs. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Intrahaplotypic Variants Differentiate Complex Linkage Disequilibrium within Human MHC Haplotypes

    PubMed Central

    Lam, Tze Hau; Tay, Matthew Zirui; Wang, Bei; Xiao, Ziwei; Ren, Ee Chee

    2015-01-01

    Distinct regions of long-range genetic fixation in the human MHC region, known as conserved extended haplotypes (CEHs), possess unique genomic characteristics and are strongly associated with numerous diseases. While CEHs appear to be homogeneous by SNP analysis, the nature of fine variations within their genomic structure is unknown. Using multiple, MHC-homozygous cell lines, we demonstrate extensive sequence conservation in two common Asian MHC haplotypes: A33-B58-DR3 and A2-B46-DR9. However, characterization of phase-resolved MHC haplotypes revealed unique intra-CEH patterns of variation and uncovered 127 single nucleotide variants (SNVs) which are missing from public databases. We further show that the strong linkage disequilibrium structure within the human MHC that typically confounds precise identification of genetic features can be resolved using intra-CEH variants, as evidenced by rs3129063 and rs448489, which affect expression of ZFP57, a gene important in methylation and epigenetic regulation. This study demonstrates an improved strategy that can be used towards genetic dissection of diseases. PMID:26593880

  10. Human cytomegalovirus inhibits antigen presentation by a sequential multistep process.

    PubMed Central

    Ahn, K; Angulo, A; Ghazal, P; Peterson, P A; Yang, Y; Früh, K

    1996-01-01

    The human cytomegalovirus (HCMV) genomic unique short (US) region encodes a family of homologous genes essential for the inhibition of major histocompatibility complex (MHC) class I-mediated antigen presentation during viral infection. Here we show that US3, the only immediate early (IE) gene within the US region, encodes an endoplasmic reticulum-resident glycoprotein that prevents intracellular transport of MHC class I molecules. In contrast to the rapid degradation of newly synthesized MHC class I heavy chains mediated by the early gene product US11, we found that US3 retains stable MHC class I heterodimers in the endoplasmic reticulum that are loaded with peptides while retained in the ER. Consistent with the expression pattern of US3 and US11, MHC class I molecules are retained but not degraded during the IE period of infection. Our data identify the first nonregulatory role of an IE protein of HCMV and suggest that HCMV uses different T-cell escape strategies at different times during the infectious cycle. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8855296

  11. Antiviral CD8+ T Cells Restricted by Human Leukocyte Antigen Class II Exist during Natural HIV Infection and Exhibit Clonal Expansion.

    PubMed

    Ranasinghe, Srinika; Lamothe, Pedro A; Soghoian, Damien Z; Kazer, Samuel W; Cole, Michael B; Shalek, Alex K; Yosef, Nir; Jones, R Brad; Donaghey, Faith; Nwonu, Chioma; Jani, Priya; Clayton, Gina M; Crawford, Frances; White, Janice; Montoya, Alana; Power, Karen; Allen, Todd M; Streeck, Hendrik; Kaufmann, Daniel E; Picker, Louis J; Kappler, John W; Walker, Bruce D

    2016-10-18

    CD8 + T cell recognition of virus-infected cells is characteristically restricted by major histocompatibility complex (MHC) class I, although rare examples of MHC class II restriction have been reported in Cd4-deficient mice and a macaque SIV vaccine trial using a recombinant cytomegalovirus vector. Here, we demonstrate the presence of human leukocyte antigen (HLA) class II-restricted CD8 + T cell responses with antiviral properties in a small subset of HIV-infected individuals. In these individuals, T cell receptor β (TCRβ) analysis revealed that class II-restricted CD8 + T cells underwent clonal expansion and mediated killing of HIV-infected cells. In one case, these cells comprised 12% of circulating CD8 + T cells, and TCRα analysis revealed two distinct co-expressed TCRα chains, with only one contributing to binding of the class II HLA-peptide complex. These data indicate that class II-restricted CD8 + T cell responses can exist in a chronic human viral infection, and may contribute to immune control. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Enantioselective analysis of ibuprofen in human plasma by anionic cyclodextrin-modified electrokinetic chromatography.

    PubMed

    Jabor, Valquíria A P; Lanchote, Vera L; Bonato, Pierina S

    2002-09-01

    This paper reports the development of a rapid method for the enantioselective analysis of the nonsteroidal anti-inflammatory drug ibuprofen in human plasma by capillary electrophoresis employing the anionic cyclodextrin-modified electrokinetic chromatography mode. Sample cleanup was carried out by acidification with HCl followed by liquid-liquid extraction with hexane:isopropanol (99:1 v/v). The complete enantioselective analysis was performed within 10 min, using 100 mmol L(-1) phosphoric acid/triethanolamine buffer, pH 2.6, containing 2.0% w/v sulfated beta-cyclodextrin as chiral selector; fenoprofen, another nonsteroidal anti-inflammatory drug, was used as internal standard. The calibration curves were linear over the concentration range of 0.25-125.0 microg mL(-1) for each enantiomer of ibuprofen. The mean recoveries for ibuprofen enantiomers were up to 85%. The enantiomers studied could be quantified at three different concentrations (0.5, 5.0 and 50.0 microg mL(-1)) with a coefficient of variation and relative error not higher than 15%. The quantitation limit was 0.2 microg mL(-1) for (+)-(S)- and (-)-(R)-ibuprofen using 1 mL of human plasma. The plasma endogenous compounds and other drugs did not interfere with the present assay. The analysis of real plasma samples obtained from a healthy volunteer after administration of 600 mg of racemic ibuprofen showed a maximum plasma level of 29.6 and 39.9 microg mL(-1) of (-)-(R)- and (+)-(S)-ibuprofen, respectively, and the area under plasma concentration-time curve AUC(0-infinity) (+)-(S)/AUC(0-infinity) (-)-(R) ratio was 1.87.

  13. Large-scale detection of antigen-specific T cells using peptide-MHC-I multimers labeled with DNA barcodes.

    PubMed

    Bentzen, Amalie Kai; Marquard, Andrea Marion; Lyngaa, Rikke; Saini, Sunil Kumar; Ramskov, Sofie; Donia, Marco; Such, Lina; Furness, Andrew J S; McGranahan, Nicholas; Rosenthal, Rachel; Straten, Per Thor; Szallasi, Zoltan; Svane, Inge Marie; Swanton, Charles; Quezada, Sergio A; Jakobsen, Søren Nyboe; Eklund, Aron Charles; Hadrup, Sine Reker

    2016-10-01

    Identification of the peptides recognized by individual T cells is important for understanding and treating immune-related diseases. Current cytometry-based approaches are limited to the simultaneous screening of 10-100 distinct T-cell specificities in one sample. Here we use peptide-major histocompatibility complex (MHC) multimers labeled with individual DNA barcodes to screen >1,000 peptide specificities in a single sample, and detect low-frequency CD8 T cells specific for virus- or cancer-restricted antigens. When analyzing T-cell recognition of shared melanoma antigens before and after adoptive cell therapy in melanoma patients, we observe a greater number of melanoma-specific T-cell populations compared with cytometry-based approaches. Furthermore, we detect neoepitope-specific T cells in tumor-infiltrating lymphocytes and peripheral blood from patients with non-small cell lung cancer. Barcode-labeled pMHC multimers enable the combination of functional T-cell analysis with large-scale epitope recognition profiling for the characterization of T-cell recognition in various diseases, including in small clinical samples.

  14. Associations between malaria and MHC genes in a migratory songbird

    PubMed Central

    Westerdahl, Helena; Waldenström, Jonas; Hansson, Bengt; Hasselquist, Dennis; von Schantz, Torbjörn; Bensch, Staffan

    2005-01-01

    Malaria parasites are a widespread and species-rich group infecting many wild populations of mammals, birds and reptiles. Studies on humans have demonstrated that genetic factors play a key role in the susceptibility and outcome of malaria infections. Until the present study, it has not been examined whether genetic variation in hosts is important for the outcome of malaria infections in natural avian populations. We investigated associations between major histocompatibility complex (MHC) genes and prevalence of three different avian malaria parasites (Haemoproteus payevskyi (GRW1), Plasmodium sp. (GRW2) and Plasmodium sp. (GRW4)) in a long-term study of great reed warblers Acrocephalus arundinaceus. We hypothesized that the MHC genes could either give full protection against a malaria infection, or confer protection against lethal malaria and direct the infection towards being milder. We found a positive association between numbers of MHC class I alleles (a measure of level of heterozygosity) and prevalence of the GRW2 parasite, suggesting the latter scenario. There was also a positive association between a specific MHC allele (B4b), previously shown to be under frequency-dependent selection in the study population, and prevalence of GRW2. These associations suggest that individuals carrying either a large number of MHC alleles or a specific MHC allele are protected against lethal malaria infections. PMID:16011927

  15. Associations between malaria and MHC genes in a migratory songbird.

    PubMed

    Westerdahl, Helena; Waldenström, Jonas; Hansson, Bengt; Hasselquist, Dennis; von Schantz, Torbjörn; Bensch, Staffan

    2005-07-22

    Malaria parasites are a widespread and species-rich group infecting many wild populations of mammals, birds and reptiles. Studies on humans have demonstrated that genetic factors play a key role in the susceptibility and outcome of malaria infections. Until the present study, it has not been examined whether genetic variation in hosts is important for the outcome of malaria infections in natural avian populations. We investigated associations between major histocompatibility complex (MHC) genes and prevalence of three different avian malaria parasites (Haemoproteus payevskyi (GRW1), Plasmodium sp. (GRW2) and Plasmodium sp. (GRW4)) in a long-term study of great reed warblers Acrocephalus arundinaceus. We hypothesized that the MHC genes could either give full protection against a malaria infection, or confer protection against lethal malaria and direct the infection towards being milder. We found a positive association between numbers of MHC class I alleles (a measure of level of heterozygosity) and prevalence of the GRW2 parasite, suggesting the latter scenario. There was also a positive association between a specific MHC allele (B4b), previously shown to be under frequency-dependent selection in the study population, and prevalence of GRW2. These associations suggest that individuals carrying either a large number of MHC alleles or a specific MHC allele are protected against lethal malaria infections.

  16. Ibuprofen alters human testicular physiology to produce a state of compensated hypogonadism.

    PubMed

    Kristensen, David Møbjerg; Desdoits-Lethimonier, Christèle; Mackey, Abigail L; Dalgaard, Marlene Danner; De Masi, Federico; Munkbøl, Cecilie Hurup; Styrishave, Bjarne; Antignac, Jean-Philippe; Le Bizec, Bruno; Platel, Christian; Hay-Schmidt, Anders; Jensen, Tina Kold; Lesné, Laurianne; Mazaud-Guittot, Séverine; Kristiansen, Karsten; Brunak, Søren; Kjaer, Michael; Juul, Anders; Jégou, Bernard

    2018-01-23

    Concern has been raised over increased male reproductive disorders in the Western world, and the disruption of male endocrinology has been suggested to play a central role. Several studies have shown that mild analgesics exposure during fetal life is associated with antiandrogenic effects and congenital malformations, but the effects on the adult man remain largely unknown. Through a clinical trial with young men exposed to ibuprofen, we show that the analgesic resulted in the clinical condition named "compensated hypogonadism," a condition prevalent among elderly men and associated with reproductive and physical disorders. In the men, luteinizing hormone (LH) and ibuprofen plasma levels were positively correlated, and the testosterone/LH ratio decreased. Using adult testis explants exposed or not exposed to ibuprofen, we demonstrate that the endocrine capabilities from testicular Leydig and Sertoli cells, including testosterone production, were suppressed through transcriptional repression. This effect was also observed in a human steroidogenic cell line. Our data demonstrate that ibuprofen alters the endocrine system via selective transcriptional repression in the human testes, thereby inducing compensated hypogonadism. Copyright © 2018 the Author(s). Published by PNAS.

  17. An MHC class I immune evasion gene of Marek׳s disease virus.

    PubMed

    Hearn, Cari; Preeyanon, Likit; Hunt, Henry D; York, Ian A

    2015-01-15

    Marek׳s disease virus (MDV) is a widespread α-herpesvirus of chickens that causes T cell tumors. Acute, but not latent, MDV infection has previously been shown to lead to downregulation of cell-surface MHC class I (Virology 282:198-205 (2001)), but the gene(s) involved have not been identified. Here we demonstrate that an MDV gene, MDV012, is capable of reducing surface expression of MHC class I on chicken cells. Co-expression of an MHC class I-binding peptide targeted to the endoplasmic reticulum (bypassing the requirement for the TAP peptide transporter) partially rescued MHC class I expression in the presence of MDV012, suggesting that MDV012 is a TAP-blocking MHC class I immune evasion protein. This is the first unique non-mammalian MHC class I immune evasion gene identified, and suggests that α-herpesviruses have conserved this function for at least 100 million years. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Bioconcentration of ibuprofen in fathead minnow (Pimephales promelas) and channel catfish (Ictalurus punctatus).

    PubMed

    Nallani, Gopinath C; Paulos, Peter M; Constantine, Lisa A; Venables, Barney J; Huggett, Duane B

    2011-09-01

    Pharmaceutical products and their metabolites are being widely detected in aquatic environments and there is a growing interest in assessing potential risks of these substances to fish and other non-target species. Ibuprofen is one of the most commonly used analgesic drugs and no peer-reviewed laboratory studies have evaluated the tissue specific bioconcentration of ibuprofen in fish. In the current study, fathead minnow (Pimephales promelas) were exposed to 250 μg L(-1) ibuprofen for 28 d followed by a 14 d depuration phase. In a minimized bioconcentration test design, channel catfish (Ictalurus punctatus) were exposed to 250 μg L(-1) for a week and allowed to depurate for 7 d. Tissues were collected during uptake and depuration phases of each test and the corresponding proportional and kinetic bioconcentration factors (BCFs) were estimated. The results indicated that the BCF levels were very low (0.08-1.4) implying the lack of bioconcentration potential for ibuprofen in the two species. The highest accumulation of ibuprofen was observed in the catfish plasma as opposed to individual tissues. The minimized test design yielded similar bioconcentration results as those of the standard test and has potential for its use in screening approaches for pharmaceuticals and other classes of chemicals. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Co-evolution of MHC class I and variable NK cell receptors in placental mammals.

    PubMed

    Guethlein, Lisbeth A; Norman, Paul J; Hilton, Hugo G; Parham, Peter

    2015-09-01

    Shaping natural killer (NK) cell functions in human immunity and reproduction are diverse killer cell immunoglobulin-like receptors (KIRs) that recognize polymorphic MHC class I determinants. A survey of placental mammals suggests that KIRs serve as variable NK cell receptors only in certain primates and artiodactyls. Divergence of the functional and variable KIRs in primates and artiodactyls predates placental reproduction. Among artiodactyls, cattle but not pigs have diverse KIRs. Catarrhine (humans, apes, and Old World monkeys) and platyrrhine (New World monkeys) primates, but not prosimians, have diverse KIRs. Platyrrhine and catarrhine systems of KIR and MHC class I are highly diverged, but within the catarrhines, a stepwise co-evolution of MHC class I and KIR is discerned. In Old World monkeys, diversification focuses on MHC-A and MHC-B and their cognate lineage II KIR. With evolution of C1-bearing MHC-C from MHC-B, as informed by orangutan, the focus changes to MHC-C and its cognate lineage III KIR. Evolution of C2 from C1 and fixation of MHC-C drove further elaboration of MHC-C-specific KIR, as exemplified by chimpanzee. In humans, the evolutionary trajectory changes again. Emerging from reorganization of the KIR locus and selective attenuation of KIR avidity for MHC class I are the functionally distinctive KIR A and KIR B haplotypes. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. MHC-mediated sexual selection on birdsong: Generic polymorphism, particular alleles and acoustic signals.

    PubMed

    Garamszegi, László Zsolt; Zagalska-Neubauer, Magdalena; Canal, David; Blázi, György; Laczi, Miklós; Nagy, Gergely; Szöllősi, Eszter; Vaskuti, Éva; Török, János; Zsebők, Sándor

    2018-06-01

    Several hypotheses predict that the major histocompatibility complex (MHC) drives mating preference in females. Olfactory, colour or morphological traits are often found as reliable signals of the MHC profile, but the role of avian song mediating MHC-based female choice remains largely unexplored. We investigated the relationship between several MHC and acoustic features in the collared flycatcher (Ficedula albicollis), a European passerine with complex songs. We screened a fragment of the class IIB second exon of the MHC molecule, of which individuals harbour 4-15 alleles, while considerable sequence diversity is maintained at the population level. To make statistical inferences from a large number of comparisons, we adopted both null-hypothesis testing and effect size framework in combination with randomization procedures. After controlling for potential confounding factors, neither MHC allelic diversity nor the presence of particular alleles was associated remarkably with the investigated qualitative and quantitative song traits. Furthermore, genetic similarity among males based on MHC sequences was not reflected by the similarity in their song based on syllable content. Overall, these results suggest that the relationship between features of song and the allelic composition and diversity of MHC is not strong in the studied species. However, a biologically motivated analysis revealed that individuals that harbour an MHC allele that impairs survival perform songs with broader frequency range. This finding suggests that certain aspects of the song may bear reliable information concerning the MHC profile of the individuals, which can be used by females to optimize mate choice. © 2018 John Wiley & Sons Ltd.

  1. Potential of Essential Oils as Penetration Enhancers for Transdermal Administration of Ibuprofen to Treat Dysmenorrhoea.

    PubMed

    Chen, Jun; Jiang, Qiu-Dong; Wu, Ye-Ming; Liu, Pei; Yao, Jun-Hong; Lu, Qing; Zhang, Hui; Duan, Jin-Ao

    2015-10-07

    The present study was conducted to evaluate and compare five essential oils (EOs) as penetration enhancers (PEs) to improve the transdermal drug delivery (TDD) of ibuprofen to treat dysmenorrhoea. The EOs were prepared using the steam distillation method and their chemical compositions were identified by GC-MS. The corresponding cytotoxicities were evaluated in epidermal keartinocyte HaCaT cell lines by an MTT assay. Furthermore, the percutaneous permeation studies were carried out to compare the permeation enhancement effect of EOs. Then the therapeutic efficacy of ibuprofen with EOs was evaluated using dysmenorrheal model mice. The data supports a decreasing trend of skin cell viability in which Clove oil >Angelica oil > Chuanxiong oil > Cyperus oil > Cinnamon oil > Azone. Chuanxiong oil and Angelica oil had been proved to possess a significant permeation enhancement for TDD of ibuprofen. More importantly, the pain inhibitory intensity of ibuprofen hydrogel was demonstrated to be greater with Chuanxiong oil when compared to ibuprofen without EOs (p < 0.05). The contents of calcium ion and nitric oxide (NO) were also significantly changed after the addition of Chuanxiong oil (p < 0.05). In summary, we suggest that Chuanxiong oil should be viewed as the best PE for TDD of ibuprofen to treat dysmenorrhea.

  2. Patterns of MHC-dependent mate selection in humans and nonhuman primates: a meta-analysis.

    PubMed

    Winternitz, J; Abbate, J L; Huchard, E; Havlíček, J; Garamszegi, L Z

    2017-01-01

    Genes of the major histocompatibility complex (MHC) in vertebrates are integral for effective adaptive immune response and are associated with sexual selection. Evidence from a range of vertebrates supports MHC-based preference for diverse and dissimilar mating partners, but evidence from human mate choice studies has been disparate and controversial. Methodologies and sampling peculiarities specific to human studies make it difficult to know whether wide discrepancies in results among human populations are real or artefact. To better understand what processes may affect MHC-mediated mate choice across humans and nonhuman primates, we performed phylogenetically controlled meta-analyses using 58 effect sizes from 30 studies across seven primate species. Primates showed a general trend favouring more MHC-diverse mates, which was statistically significant for humans. In contrast, there was no tendency for MHC-dissimilar mate choice, and for humans, we observed effect sizes indicating selection of both MHC-dissimilar and MHC-similar mates. Focusing on MHC-similar effect sizes only, we found evidence that preference for MHC similarity was an artefact of population ethnic heterogeneity in observational studies but not among experimental studies with more control over sociocultural biases. This suggests that human assortative mating biases may be responsible for some patterns of MHC-based mate choice. Additionally, the overall effect sizes of primate MHC-based mating preferences are relatively weak (Fisher's Z correlation coefficient for dissimilarity Zr = 0.044, diversity Zr = 0.153), calling for careful sampling design in future studies. Overall, our results indicate that preference for more MHC-diverse mates is significant for humans and likely conserved across primates. © 2016 John Wiley & Sons Ltd.

  3. Biowaiver monographs for immediate release solid oral dosage forms: ibuprofen.

    PubMed

    Potthast, H; Dressman, J B; Junginger, H E; Midha, K K; Oeser, H; Shah, V P; Vogelpoel, H; Barends, D M

    2005-10-01

    Literature data are reviewed on the properties of ibuprofen related to the biopharmaceutics classification system (BCS). Ibuprofen was assessed to be a BCS class II drug. Differences in composition and/or manufacturing procedures were reported to have an effect on the rate, but not the extent of absorption; such differences are likely to be detectable by comparative in vitro dissolution tests. Also in view of its therapeutic use, its wide therapeutic index and uncomplicated pharmacokinetic properties, a biowaiver for immediate release (IR) ibuprofen solid oral drug products is scientifically justified, provided that the test product contains only those excipients reported in this paper in their usual amounts, the dosage form is rapidly dissolving (85% in 30 min or less) in buffer pH 6.8 and the test product also exhibits similar dissolution profiles to the reference product in buffer pH 1.2, 4.5, and 6.8. Copyright (c) 2005 Wiley-Liss, Inc. and the American Pharmacists Association

  4. Combined use of crystalline sodium salt and polymeric precipitation inhibitors to improve pharmacokinetic profile of ibuprofen through supersaturation.

    PubMed

    Terebetski, Jenna L; Cummings, John J; Fauty, Scott E; Michniak-Kohn, Bozena

    2014-10-01

    To maximize the pharmacological effect of a pain reliever such as ibuprofen, early onset of action is critical. Unfortunately, the acidic nature of ibuprofen minimizes the amount of drug that can be solubilized under gastric conditions and would be available for immediate absorption upon entry into the intestine. Although the sodium salt of ibuprofen has higher solubility, rapid conversion from the salt to the poorly soluble free acid phase occurs under gastric conditions. Therefore, the combination of the highly soluble sodium salt form of ibuprofen with polymers was evaluated as an approach to prolong supersaturation of ibuprofen during the disproportionation of the salt. Binary combinations of ibuprofen sodium with polymers resulted in the identification of several formulations that demonstrated high degrees and extended durations of supersaturation during in vitro dissolution experiments. These formulations included HPMC, polyvinyl pyrrolidone-vinyl acetate copolymer (PVP-VA64), methylcellulose (MC), and hydroxypropyl cellulose (HPC). The in vitro supersaturation observed with these ibuprofen-polymer formulations translated to an increase in Cmax and an earlier Tmax for the PVP-VA64, MC, and HPC formulations relative to ibuprofen only controls when administered orally to rats under fasted conditions. Based on these observations, combining ibuprofen sodium with polymers such as PVP-VA64, MC, or HPC is a viable formulation approach to prolong supersaturation in the stomach and enable an optimized pharmacokinetic profile in vivo where rapid onset of action is desired.

  5. Comparative effectiveness and safety of indomethacin versus ibuprofen for the treatment of patent ductus arteriosus

    PubMed Central

    Gulack, Brian C.; Laughon, Matthew M.; Clark, Reese H.; Sankar, Meera N.; Hornik, Christoph P.; Smith, P. Brian

    2015-01-01

    Background Patent ductus arteriosus (PDA) is common in extremely premature infants and associated with increased morbidity and mortality. Medical management of PDA uses either indomethacin or ibuprofen. Despite numerous studies, uncertainty exists as to which drug is safer or more effective; we sought to fill this knowledge gap. Methods We identified infants <28 weeks gestational age discharged from neonatal intensive care units included in the Pediatrix Medical Group Clinical Data Warehouse between 2006 and 2012 who were treated with indomethacin or ibuprofen between postnatal day 2 and 14. Infants treated with both drugs or infants with a congenital malformation were excluded. We used multivariable logistic regression to determine the association of indomethacin versus ibuprofen on clinical outcomes. Results Of 6349 patients who met study criteria, 1177 (19%) received ibuprofen and 5172 (81%) received indomethacin. The median gestational age was 25 weeks (interquartile range 24–26), and 2894 (46%) infants were <750 g at birth. On unadjusted analysis, infants who received ibuprofen had significantly higher incidences of death prior to discharge, surgical ligation of the PDA prior to discharge, death or spontaneous intestinal perforation within 7 days of therapy, death or surgical ligation of the PDA prior to discharge, and an elevated creatinine within 7 days of treatment. However, on multivariable analysis, no significant differences in outcomes were observed (odds ratio for death/PDA ligation for ibuprofen vs. indomethacin = 1.12 [95% CI 0.91–1.39]). Conclusions We observed similar effectiveness and safety profiles for indomethacin and ibuprofen in the medical management of PDA in premature infants. PMID:26386610

  6. High-Dose Oral Ibuprofen in Treatment of Patent Ductus Arteriosus in Full-Term Neonates.

    PubMed

    Pourarian, Shahnaz; Rezaie, Mehrdad; Amoozgar, Hamid; Shakiba, Ali-Mohammad; Edraki, Mohammad-Reza; Mehdizadegan, Nima

    2015-08-01

    Patent ductus arteriosus (PDA) is an important risk for heart failure due to left to right shunt in term neonates. In this study, we evaluated the effect of high dose ibuprofen in closure of PDA in term neonates. We used double dose ibuprofen (20 mg/kg, 10 mg/kg, and 10 mg/kg) for 3 - 30 day old term neonates with PDA who were admitted in the neonatal wards of Shiraz University of Medical Sciences. The results of this study were compared to the data of the previous study in our center which used the low dose of ibuprofen (10 mg/kg, 5 mg/kg, and 5 mg/kg). 29 full term neonates received high-dose ibuprofen, in 18 neonates, PDA was closed after 4 days (62.1% versus 43.3% for the standard dose and 4.7% for the control group in the previous study) (P = 0.001). The results showed no significant correlation between the closure rate and gestational age, postnatal age, sex, and weight. In the 4(th) day of treatment, size of the pulmonic end of ductus arteriosus decreased from 2.09 mm to 0.77 mm compared to 1.68 mm to 0.81 mm in the standard dose of oral ibuprofen and 2.1 mm to 1.4 mm in the control group (P = 0.046). This study indicated that high-dose oral ibuprofen was more effective in closing or decreasing the size of PDA.

  7. Solubilization of ibuprofen with β-cyclodextrin derivatives: energetic and structural studies.

    PubMed

    di Cagno, Massimiliano; Stein, Paul C; Skalko-Basnet, Nataša; Brandl, Martin; Bauer-Brandl, Annette

    2011-06-01

    The aim of this work was to investigate the complexation of ibuprofen as model drug with various β-cyclodextrins (native β-cyclodextrin, hydroxypropyl-β-cyclodextrin with two different molar degrees of substitution, and methyl-β-cyclodextrin). Solutions of the commercially available β-cyclodextrins were prepared in phosphate buffer (73mM). The pH value was adjusted to 7.4 and the solutions were isotonized with NaCl. A solution of ibuprofen was prepared in the same way. A thermal activity monitor was used for isothermal titration calorimetry (ITC). (1)H NMR analysis was employed to investigate the structures of the complexes. ITC analysis showed that each type of β-cyclodextrin had its characteristic values of both enthalpy and mass equilibrium constant for the complexation processes with the drug molecules. (1)H NMR spectroscopy of the complexes showed through significant differences in chemical shifts that the physical interaction between the cyclodextrins and ibuprofen molecules were also different, probably due to different three-dimensional arrangements of ibuprofen in the cyclodextrin cavity, induced by the different substituents bonded to the glucose rings. These differences were connected to the thermodynamic parameters of the complexes. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Multiple-dose safety study of ibuprofen/codeine and aspirin/codeine combinations.

    PubMed

    Friedman, H; Seckman, C; Stubbs, C; Oster, H; Royer, G

    1990-01-01

    This multiple-dose, double-blind, placebo-controlled, randomized, normal volunteer study compared formulations of ibuprofen/codeine and aspirin/codeine for systemic safety. Vital signs, hematologic, biochemical and urinary parameters, side effects, mood and mental alertness, were monitored. The placebo group had less gastrointestinal side effects and more frequent stools than the active treatment groups. There was statistical evidence for greater adverse effects of aspirin/codeine on mood and mental alertness in comparison to ibuprofen/codeine and placebo. Ibuprofen/codeine had a more favorable adverse effect profile than aspirin/codeine. A mild respiratory and cardiac depressant effect attributable to codeine was evident in all active treatment groups after 7 days of frequent therapy. More work needs to be done to elucidate the factors regulating the development of tolerance to the respiratory and cardiovascular depressant effects of opiates in general, and for codeine in particular.

  9. Efficacy and safety of oral versus intravenous ibuprofen in very low birth weight preterm infants with patent ductus arteriosus.

    PubMed

    Gokmen, Tulin; Erdeve, Omer; Altug, Nahide; Oguz, Serife Suna; Uras, Nurdan; Dilmen, Ugur

    2011-04-01

    To compare oral ibuprofen with intravenous ibuprofen for closure of patent ductus arteriosus in very low birth weight (VLBW) preterm infants. In a prospective, randomized study, 102 VLBW preterm infants with patent ductus arteriosus received either intravenous or oral ibuprofen at an initial dose of 10 mg/kg, followed by 5 mg/kg at 24 and 48 hours. The success rate and evaluation of renal tolerance using cystatin-C were the major outcomes. Patent ductus arteriosus closure rate was significantly higher with oral ibuprofen (84.6% versus 62%) after the first course of the treatment (P = .011). The cystatin-C level increased significantly after treatment in the oral group (P = .001), but did not change with intravenous ibuprofen (P = .4). Oral ibuprofen is more effective than intravenous ibuprofen for ductal closure in VLBW infants. The increase in the cystatin-C level with oral treatment suggests that patients with borderline renal function should be evaluated and followed closely. Copyright © 2011 Mosby, Inc. All rights reserved.

  10. Ibuprofen-in-cyclodextrin-in-W/O/W emulsion - Improving the initial and long-term encapsulation efficiency of a model active ingredient.

    PubMed

    Hattrem, Magnus N; Kristiansen, Kåre A; Aachmann, Finn L; Dille, Morten J; Draget, Kurt I

    2015-06-20

    A challenge in formulating water-in-oil-in-water (W/O/W) emulsions is the uncontrolled release of the encapsulated compound prior to application. Pharmaceuticals and nutraceuticals usually have amphipathic nature, which may contribute to leakage of the active ingredient. In the present study, cyclodextrins (CyDs) were used to impart a change in the relative polarity and size of a model compound (ibuprofen) by the formation of inclusion complexes. Various inclusion complexes (2-hydroxypropyl (HP)-β-CyD-, α-CyD- and γ-CyD-ibuprofen) were prepared and presented within W/O/W emulsions, and the initial and long-term encapsulation efficiency was investigated. HP-β-CyD-ibuprofen provided the highest encapsulation of ibuprofen in comparison to a W/O/W emulsion with unassociated ibuprofen confined within the inner water phase, with a four-fold increase in the encapsulation efficiency. An improved, although lower, encapsulation efficiency was obtained for the inclusion complex γ-CyD-ibuprofen in comparison to HP-β-CyD-ibuprofen, whereas α-CyD-ibuprofen had a similar encapsulation efficiency to that of unassociated ibuprofen. The lower encapsulation efficiency of ibuprofen in combination with α-CyD and γ-CyD was attributed to a lower association constant for the γ-CyD-ibuprofen inclusion complex and the ability of α-CyD to form inclusion complexes with fatty acids. For the W/O/W emulsion prepared with HP-β-CyD-ibuprofen, the highest encapsulation of ibuprofen was obtained at hyper- and iso-osmotic conditions and by using an excess molar ratio of CyD to ibuprofen. In the last part of the study, it was suggested that the chemical modification of the HP-β-CyD molecule did not influence the encapsulation of ibuprofen, as a similar encapsulation efficiency was obtained for an inclusion complex prepared with mono-1-glucose-β-CyD. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Contrasting patterns of selection between MHC I and II across populations of Humboldt and Magellanic penguins.

    PubMed

    Sallaberry-Pincheira, Nicole; González-Acuña, Daniel; Padilla, Pamela; Dantas, Gisele P M; Luna-Jorquera, Guillermo; Frere, Esteban; Valdés-Velásquez, Armando; Vianna, Juliana A

    2016-10-01

    The evolutionary and adaptive potential of populations or species facing an emerging infectious disease depends on their genetic diversity in genes, such as the major histocompatibility complex (MHC). In birds, MHC class I deals predominantly with intracellular infections (e.g., viruses) and MHC class II with extracellular infections (e.g., bacteria). Therefore, patterns of MHC I and II diversity may differ between species and across populations of species depending on the relative effect of local and global environmental selective pressures, genetic drift, and gene flow. We hypothesize that high gene flow among populations of Humboldt and Magellanic penguins limits local adaptation in MHC I and MHC II, and signatures of selection differ between markers, locations, and species. We evaluated the MHC I and II diversity using 454 next-generation sequencing of 100 Humboldt and 75 Magellanic penguins from seven different breeding colonies. Higher genetic diversity was observed in MHC I than MHC II for both species, explained by more than one MHC I loci identified. Large population sizes, high gene flow, and/or similar selection pressures maintain diversity but limit local adaptation in MHC I. A pattern of isolation by distance was observed for MHC II for Humboldt penguin suggesting local adaptation, mainly on the northernmost studied locality. Furthermore, trans-species alleles were found due to a recent speciation for the genus or convergent evolution. High MHC I and MHC II gene diversity described is extremely advantageous for the long-term survival of the species.

  12. Osteoarthritis of the knee and hip. Part II: therapy with ibuprofen and a review of clinical trials.

    PubMed

    Adatia, Aleem; Rainsford, K D; Kean, Walter F

    2012-05-01

    We review the pharmacological properties and clinical evidence pertaining to the efficacy of ibuprofen as a first-line treatment in hip and knee osteoarthritis (OA). In the context of our previous paper's exploration of the aetiology and pathogenesis of OA as a basis for pharmacotherapy, we discuss the pharmacokinetics (PK) and clinical pharmacodynamics (PD) of ibuprofen relevant to OA. Although widely used, the benefits and risks of ibuprofen, especially compared with other non-steroidal anti-inflammatory drugs (NSAIDs) and placebo, have only recently been evaluated in OA of the hip and knee in randomized-controlled clinical trials (RCT). The efficacy and occurrence of adverse reactions from ibuprofen was compared with placebo in a structural review of the literature and systematic review of RCTs in large-scale clinical trials. Ibuprofen has been found to result in approximately 50-60% improvement over placebo in WOMAC scores, including those reflecting inflammatory joint pain in knee and hip OA or other indices of pain, disability and impaired function. Mega-trials performed in comparison with the newer NSAIDs, the coxibs, have shown that ibuprofen has comparable therapeutic benefits and although serious gastrointestinal conditions are sometimes more frequent after short-term treatment, longer-term (several months) therapy in OA reduces the advantages of the coxibs over other NSAIDs including ibuprofen. Cardiovascular risk, though present with coxibs and some NSAIDs in OA, is lower or slightly so with ibuprofen compared with coxibs. Ibuprofen is effective and relatively safe (especially at low over-the-counter doses and in the short term) for mild-to-moderate OA of the knee and hip. The PK properties of ibuprofen in OA (short plasma t½) confer advantages of this drug for OA, while evidence for clinically relevant PD benefits in joints of patients with OA, though limited, is suggestive of local anti-inflammatory activity. © 2012 The Authors. JPP © 2012 Royal

  13. Cattle NK Cell Heterogeneity and the Influence of MHC Class I

    PubMed Central

    Allan, Alasdair J.; Sanderson, Nicholas D.; Gubbins, Simon; Ellis, Shirley A.

    2015-01-01

    Primate and rodent NK cells form highly heterogeneous lymphocyte populations owing to the differential expression of germline-encoded receptors. Many of these receptors are polymorphic and recognize equally polymorphic determinants of MHC class I. This diversity can lead to individuals carrying NK cells with different specificities. Cattle have an unusually diverse repertoire of NK cell receptor genes predicted to encode receptors that recognize MHC class I. To begin to examine whether this genetic diversity leads to a diverse NK cell population, we isolated peripheral NK cells from cattle with different MHC homozygous genotypes. Cytokine stimulation differentially influenced the transcription of five receptors at the cell population level. Using dilution cultures, we found that a further seven receptors were differentially transcribed, including five predicted to recognize MHC class I. Moreover, there was a statistically significant reduction in killer cell lectin-like receptor mRNA expression between cultures with different CD2 phenotypes and from animals with different MHC class I haplotypes. This finding confirms that cattle NK cells are a heterogeneous population and reveals that the receptors creating this diversity are influenced by the MHC. The importance of this heterogeneity will become clear as we learn more about the role of NK cells in cattle disease resistance and vaccination. PMID:26216890

  14. Low genetic variation in the MHC class II DRB gene and MHC-linked microsatellites in endangered island populations of the leopard cat (Prionailurus bengalensis) in Japan.

    PubMed

    Saka, Toshinori; Nishita, Yoshinori; Masuda, Ryuichi

    2018-02-01

    Isolated populations of the leopard cat (Prionailurus bengalensis) on Tsushima and Iriomote islands in Japan are classified as subspecies P. b. euptilurus and P. b. iriomotensis, respectively. Because both populations have decreased to roughly 100, an understanding of their genetic diversity is essential for conservation. We genotyped MHC class II DRB exon 2 and MHC-linked microsatellite loci to evaluate the diversity of MHC genes in the Tsushima and Iriomote cat populations. We detected ten and four DRB alleles in these populations, respectively. A phylogenetic analysis showed DRB alleles from both populations to be closely related to those in other felid DRB lineages, indicating trans-species polymorphism. The MHC-linked microsatellites were more polymorphic in the Tsushima than in the Iriomote population. The MHC diversity of both leopard cat populations is much lower than in the domestic cat populations on these islands, probably due to inbreeding associated with founder effects, geographical isolation, or genetic drift. Our results predict low resistance of the two endangered populations to new pathogens introduced to the islands.

  15. Cocrystal Screening of Ibuprofen with Oxalic Acid and Citric Acid via Grinding Method

    NASA Astrophysics Data System (ADS)

    Othman, M. F.; Anuar, N.; Rahman, S. Ad; Taifuddin, N. A. Ahmad

    2018-05-01

    Ibuprofen is a Class II Biological Safety Class (BSC) drugs used for relief of arthritis, as an analgesic and possesses the effect of antiplatelet. The major problem involves in ibuprofen is it has a low solubility and high permeability thus causes an unsatisfactory therapeutic effect to humans. Thus, in this work, alteration of ibuprofen’s physicochemical properties is conducted by means of cocrystallization technique. Co-crystallizations of ibuprofen were prepared with selected coformers using dry grinding and liquid assisted grinding (LAG) techniques in different molar ratios while ethanol and propanol were used as a solvent. The new crystalline forms were identified and characterized by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and fourier transform infrared spectroscopy (FTIR). Analysis for Ibuprofen-Citric acid (IBP-CA) system, co-crystal was successfully formed in 1:2, 1:3, 2:1 and 3:1 molar ratios for neat grinding method although the co-crystal produced is unstable. Meanwhile, for Ibuprofen-Oxalic acid (IBP-OA) system, the co-crystal formation was identified only in 1:1, 1:2 and 1:3 molar ratios for the neat grinding method. LAG method shows that co-crystal formation was unsuccessful in both solvents for IBP-CA, while IBP-OA co-crystal was formed in the molar ratio 1:1, 2:1 and 3:1 in ethanol, and 2:1 and 3:1 in propanol.

  16. Study of particle rearrangement, compression behavior and dissolution properties after melt dispersion of ibuprofen, Avicel and Aerosil

    PubMed Central

    Mallick, Subrata; Kumar Pradhan, Saroj; Chandran, Muronia; Acharya, Manoj; Digdarsini, Tanmayee; Mohapatra, Rajaram

    2011-01-01

    Particle rearrangements, compaction under pressure and in vitro dissolution have been evaluated after melt dispersion of ibuprofen, Avicel and Aerosil. The Cooper–Eaton and Kuno equations were utilized for the determination of particle rearrangement and compression behavior from tap density and compact data. Particle rearrangement could be divided into two stages as primary and secondary rearrangement. Transitional tapping between the stages was found to be 20–25 taps in ibuprofen crystalline powder, which was increased up to 45 taps with all formulated powders. Compaction in the rearrangement stages was increased in all the formulations with respect to pure ibuprofen. Significantly increased compaction of ibuprofen under pressure can be achieved using Avicel by melt dispersion technique, which could be beneficial in ibuprofen tablet manufacturing by direct compression. SEM, FTIR and DSC have been utilized for physicochemical characterization of the melt dispersion powder materials. Dissolution of ibuprofen from compacted tablet of physical mixture and melt dispersion particles has also been improved greatly in the following order: Ibc

  17. Isolation of a complementary DNA clone for the human complement protein C2 and its use in the identification of a restriction fragment length polymorphism.

    PubMed Central

    Woods, D E; Edge, M D; Colten, H R

    1984-01-01

    Complementary DNA (cDNA) clones corresponding to the major histocompatibility (MHC) class III antigen, complement protein C2, have been isolated from human liver cDNA libraries with the use of a complex mixture of synthetic oligonucleotides (17 mer) that contains 576 different oligonucleotide sequences. The C2 cDNA were used to identify a DNA restriction enzyme fragment length polymorphism that provides a genetic marker within the MHC that was not detectable at the protein level. An extensive search for genomic polymorphisms using a cDNA clone for another MHC class III gene, factor B, failed to reveal any DNA variants. The genomic variants detected with the C2 cDNA probe provide an additional genetic marker for analysis of MHC-linked diseases. Images PMID:6086718

  18. Social pairing of Seychelles warblers under reduced constraints: MHC, neutral heterozygosity, and age.

    PubMed

    Wright, David J; Brouwer, Lyanne; Mannarelli, Maria-Elena; Burke, Terry; Komdeur, Jan; Richardson, David S

    2016-01-01

    The prevalence and significance of precopulatory mate choice remains keenly debated. The major histocompatibility complex (MHC) plays a key role in vertebrate adaptive immunity, and variation at the MHC influences individual survival. Although MHC-dependent mate choice has been documented in certain species, many other studies find no such pattern. This may be, at least in part, because in natural systems constraints may reduce the choices available to individuals and prevent full expression of underlying preferences. We used translocations to previously unoccupied islands to experimentally reduce constraints on female social mate choice in the Seychelles warbler ( Acrocephalus sechellensis ), a species in which patterns of MHC-dependent extrapair paternity (EPP), but not social mate choice, have been observed. We find no evidence of MHC-dependent social mate choice in the new populations. Instead, we find that older males and males with more microsatellite heterozygosity are more likely to have successfully paired. Our data cannot resolve whether these patterns in pairing were due to male-male competition or female choice. However, our research does suggest that female Seychelles warblers do not choose social mates using MHC class I to increase fitness. It may also indicate that the MHC-dependent EPP observed in the source population is probably due to mechanisms other than female precopulatory mate choice based on MHC cues.

  19. Social pairing of Seychelles warblers under reduced constraints: MHC, neutral heterozygosity, and age

    PubMed Central

    Wright, David J.; Brouwer, Lyanne; Mannarelli, Maria-Elena; Burke, Terry; Komdeur, Jan

    2016-01-01

    The prevalence and significance of precopulatory mate choice remains keenly debated. The major histocompatibility complex (MHC) plays a key role in vertebrate adaptive immunity, and variation at the MHC influences individual survival. Although MHC-dependent mate choice has been documented in certain species, many other studies find no such pattern. This may be, at least in part, because in natural systems constraints may reduce the choices available to individuals and prevent full expression of underlying preferences. We used translocations to previously unoccupied islands to experimentally reduce constraints on female social mate choice in the Seychelles warbler (Acrocephalus sechellensis), a species in which patterns of MHC-dependent extrapair paternity (EPP), but not social mate choice, have been observed. We find no evidence of MHC-dependent social mate choice in the new populations. Instead, we find that older males and males with more microsatellite heterozygosity are more likely to have successfully paired. Our data cannot resolve whether these patterns in pairing were due to male–male competition or female choice. However, our research does suggest that female Seychelles warblers do not choose social mates using MHC class I to increase fitness. It may also indicate that the MHC-dependent EPP observed in the source population is probably due to mechanisms other than female precopulatory mate choice based on MHC cues. PMID:26792973

  20. Rho-Kinase Inhibition During Early Cardiac Development Causes Arrhythmogenic Right Ventricular Cardiomyopathy in Mice.

    PubMed

    Ellawindy, Alia; Satoh, Kimio; Sunamura, Shinichiro; Kikuchi, Nobuhiro; Suzuki, Kota; Minami, Tatsuro; Ikeda, Shohei; Tanaka, Shinichi; Shimizu, Toru; Enkhjargal, Budbazar; Miyata, Satoshi; Taguchi, Yuhto; Handoh, Tetsuya; Kobayashi, Kenta; Kobayashi, Kazuto; Nakayama, Keiko; Miura, Masahito; Shimokawa, Hiroaki

    2015-10-01

    Arrhythmogenic right ventricular cardiomyopathy (ARVC) is characterized by fibrofatty changes of the right ventricle, ventricular arrhythmias, and sudden death. Though ARVC is currently regarded as a disease of the desmosome, desmosomal gene mutations have been identified only in half of ARVC patients, suggesting the involvement of other associated mechanisms. Rho-kinase signaling is involved in the regulation of intracellular transport and organizes cytoskeletal filaments, which supports desmosomal protein complex at the myocardial cell-cell junctions. Here, we explored whether inhibition of Rho-kinase signaling is involved in the pathogenesis of ARVC. Using 2 novel mouse models with SM22α- or αMHC-restricted overexpression of dominant-negative Rho-kinase, we show that mice with Rho-kinase inhibition in the developing heart (SM22α-restricted) spontaneously develop cardiac dilatation and dysfunction, myocardial fibrofatty changes, and ventricular arrhythmias, resulting in premature sudden death, phenotypes fulfilling the criteria of ARVC in humans. Rho-kinase inhibition in the developing heart results in the development of ARVC phenotypes in dominant-negative Rho-kinase mice through 3 mechanisms: (1) reduction of cardiac cell proliferation and ventricular wall thickness, (2) stimulation of the expression of the proadipogenic noncanonical Wnt ligand, Wnt5b, and the major adipogenic transcription factor, PPARγ (peroxisome proliferator activated receptor-γ), and inhibition of Wnt/β-catenin signaling, and (3) development of desmosomal abnormalities. These mechanisms lead to the development of cardiac dilatation and dysfunction, myocardial fibrofatty changes, and ventricular arrhythmias, ultimately resulting in sudden premature death in this ARVC mouse model. This study demonstrates a novel crucial role of Rho-kinase inhibition during cardiac development in the pathogenesis of ARVC in mice. © 2015 American Heart Association, Inc.

  1. Choosy Wolves? Heterozygote Advantage But No Evidence of MHC-Based Disassortative Mating.

    PubMed

    Galaverni, Marco; Caniglia, Romolo; Milanesi, Pietro; Lapalombella, Silvana; Fabbri, Elena; Randi, Ettore

    2016-03-01

    A variety of nonrandom mate choice strategies, including disassortative mating, are used by vertebrate species to avoid inbreeding, maintain heterozygosity and increase fitness. Disassortative mating may be mediated by the major histocompatibility complex (MHC), an important gene cluster controlling immune responses to pathogens. We investigated the patterns of mate choice in 26 wild-living breeding pairs of gray wolf (Canis lupus) that were identified through noninvasive genetic methods and genotyped at 3 MHC class II and 12 autosomal microsatellite (STR) loci. We tested for deviations from random mating and evaluated the covariance of genetic variables at functional and STR markers with fitness proxies deduced from pedigree reconstructions. Results did not show evidences of MHC-based disassortative mating. Rather we found a higher peptide similarity between mates at MHC loci as compared with random expectations. Fitness values were positively correlated with heterozygosity of the breeders at both MHC and STR loci, whereas they decreased with relatedness at STRs. These findings may indicate fitness advantages for breeders that, while avoiding highly related mates, are more similar at the MHC and have high levels of heterozygosity overall. Such a pattern of MHC-assortative mating may reflect local coadaptation of the breeders, while a reduction in genetic diversity may be balanced by heterozygote advantages. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Regulation of calreticulin–major histocompatibility complex (MHC) class I interactions by ATP

    PubMed Central

    Wijeyesakere, Sanjeeva Joseph; Gagnon, Jessica K.; Arora, Karunesh; Brooks, Charles L.; Raghavan, Malini

    2015-01-01

    The MHC class I peptide loading complex (PLC) facilitates the assembly of MHC class I molecules with peptides, but factors that regulate the stability and dynamics of the assembly complex are largely uncharacterized. Based on initial findings that ATP, in addition to MHC class I-specific peptide, is able to induce MHC class I dissociation from the PLC, we investigated the interaction of ATP with the chaperone calreticulin, an endoplasmic reticulum (ER) luminal, calcium-binding component of the PLC that is known to bind ATP. We combined computational and experimental measurements to identify residues within the globular domain of calreticulin, in proximity to the high-affinity calcium-binding site, that are important for high-affinity ATP binding and for ATPase activity. High-affinity calcium binding by calreticulin is required for optimal nucleotide binding, but both ATP and ADP destabilize enthalpy-driven high-affinity calcium binding to calreticulin. ATP also selectively destabilizes the interaction of calreticulin with cellular substrates, including MHC class I molecules. Calreticulin mutants that affect ATP or high-affinity calcium binding display prolonged associations with monoglucosylated forms of cellular MHC class I, delaying MHC class I dissociation from the PLC and their transit through the secretory pathway. These studies reveal central roles for ATP and calcium binding as regulators of calreticulin–substrate interactions and as key determinants of PLC dynamics. PMID:26420867

  3. Effects of upper respiratory tract illnesses, ibuprofen and caffeine on reaction time and alertness.

    PubMed

    Smith, Andrew P; Nutt, David J

    2014-05-01

    Compared with healthy individuals, those with upper respiratory tract illnesses (URTIs) report reduced alertness and have slower reaction times. It is important to evaluate medication that can remove this behavioural malaise. The aim of this study was to compare the effects of a combination of ibuprofen plus caffeine with ibuprofen and caffeine alone, and placebo on malaise associated with URTIs, as measured by psychomotor performance and mood testing. Volunteers were randomly assigned to one of four medication conditions as follows: 200 mg ibuprofen and 100 mg caffeine; 200 mg ibuprofen; 100 mg caffeine; placebo. A single oral dose was given and testing followed for 3 h. Efficacy variables were based on the volunteers' performance, measured by psychomotor performance and mood. The pre-drug results confirmed that those with an URTI had a more negative mood and impaired performance. Results from the simple reaction time task, at both 55- and 110-min post-dosing, showed that a single-dose of caffeinated products (I200/C100 and CAF100) led to significantly faster reaction times than IBU200 and placebo. These effects were generally confirmed with the other performance tasks. Subjective measures showed that the combination of ibuprofen and caffeine was superior to the other conditions. There were no serious adverse events reported, and study medication was well tolerated. The results from the post-drug assessments suggest that a combination of ibuprofen and caffeine was the optimum treatment for malaise associated with URTIs in that it had significant effects on objective performance and subjective measures.

  4. Spectrofluorimetric study of host-guest complexation of ibuprofen with β-cyclodextrin and its analytical application

    NASA Astrophysics Data System (ADS)

    Manzoori, Jamshid L.; Amjadi, Mohammad

    2003-03-01

    The characteristics of host-guest complexation between β-cyclodextrin (β-CD) and two forms of ibuprofen (protonated and deprotonated) were investigated by fluorescence spectrometry. 1:1 stoichiometries for both complexes were established and their association constants at different temperatures were calculated by applying a non-linear regression method to the change in the fluorescence of ibuprofen that brought about by the presence of β-CD. The thermodynamic parameters (Δ H, Δ S and Δ G) associated with the inclusion process were also determined. Based on the obtained results, a sensitive spectrofluorimetric method for the determination of ibuprofen was developed with a linear range of 0.1-2 μg ml -1 and a detection limit of 0.03 μg ml -1. The method was applied satisfactorily to the determination of ibuprofen in pharmaceutical preparations.

  5. Evolution by selection, recombination, and gene duplication in MHC class I genes of two Rhacophoridae species

    PubMed Central

    2013-01-01

    Background Comparison of major histocompatibility complex (MHC) genes across vertebrate species can reveal molecular mechanisms underlying the evolution of adaptive immunity-related proteins. As the first terrestrial tetrapods, amphibians deserve special attention because of their exposure to probably increased spectrum of microorganisms compared with ancestral aquatic fishes. Knowledge regarding the evolutionary patterns and mechanisms associated with amphibian MHC genes remains limited. The goal of the present study was to isolate MHC class I genes from two Rhacophoridae species (Rhacophorus omeimontis and Polypedates megacephalus) and examine their evolution. Results We identified 27 MHC class I alleles spanning the region from exon 2 to 4 in 38 tree frogs. The available evidence suggests that these 27 sequences all belong to classical MHC class I (MHC Ia) genes. Although several anuran species only display one MHC class Ia locus, at least two or three loci were observed in P. megacephalus and R. omeimontis, indicating that the number of MHC class Ia loci varies among anuran species. Recombination events, which mainly involve the entire exons, played an important role in shaping the genetic diversity of the 27 MHC class Ia alleles. In addition, signals of positive selection were found in Rhacophoridae MHC class Ia genes. Amino acid sites strongly suggested by program to be under positive selection basically accorded with the putative antigen binding sites deduced from crystal structure of human HLA. Phylogenetic relationships among MHC class I alleles revealed the presence of trans-species polymorphisms. Conclusions In the two Rhacophoridae species (1) there are two or three MHC class Ia loci; (2) recombination mainly occurs between the entire exons of MHC class Ia genes; (3) balancing selection, gene duplication and recombination all contribute to the diversity of MHC class Ia genes. These findings broaden our knowledge on the evolution of amphibian MHC systems

  6. Peptide and Peptide-Dependent Motions in MHC Proteins: Immunological Implications and Biophysical Underpinnings

    PubMed Central

    Ayres, Cory M.; Corcelli, Steven A.; Baker, Brian M.

    2017-01-01

    Structural biology of peptides presented by class I and class II MHC proteins has transformed immunology, impacting our understanding of fundamental immune mechanisms and allowing researchers to rationalize immunogenicity and design novel vaccines. However, proteins are not static structures as often inferred from crystallographic structures. Their components move and breathe individually and collectively over a range of timescales. Peptides bound within MHC peptide-binding grooves are no exception and their motions have been shown to impact recognition by T cell and other receptors in ways that influence function. Furthermore, peptides tune the motions of MHC proteins themselves, which impacts recognition of peptide/MHC complexes by other proteins. Here, we review the motional properties of peptides in MHC binding grooves and discuss how peptide properties can influence MHC motions. We briefly review theoretical concepts about protein motion and highlight key data that illustrate immunological consequences. We focus primarily on class I systems due to greater availability of data, but segue into class II systems as the concepts and consequences overlap. We suggest that characterization of the dynamic “energy landscapes” of peptide/MHC complexes and the resulting functional consequences is one of the next frontiers in structural immunology. PMID:28824655

  7. Peptide and Peptide-Dependent Motions in MHC Proteins: Immunological Implications and Biophysical Underpinnings.

    PubMed

    Ayres, Cory M; Corcelli, Steven A; Baker, Brian M

    2017-01-01

    Structural biology of peptides presented by class I and class II MHC proteins has transformed immunology, impacting our understanding of fundamental immune mechanisms and allowing researchers to rationalize immunogenicity and design novel vaccines. However, proteins are not static structures as often inferred from crystallographic structures. Their components move and breathe individually and collectively over a range of timescales. Peptides bound within MHC peptide-binding grooves are no exception and their motions have been shown to impact recognition by T cell and other receptors in ways that influence function. Furthermore, peptides tune the motions of MHC proteins themselves, which impacts recognition of peptide/MHC complexes by other proteins. Here, we review the motional properties of peptides in MHC binding grooves and discuss how peptide properties can influence MHC motions. We briefly review theoretical concepts about protein motion and highlight key data that illustrate immunological consequences. We focus primarily on class I systems due to greater availability of data, but segue into class II systems as the concepts and consequences overlap. We suggest that characterization of the dynamic "energy landscapes" of peptide/MHC complexes and the resulting functional consequences is one of the next frontiers in structural immunology.

  8. Utilization of supercritical carbon dioxide for complex formation of ibuprofen and methyl-beta-cyclodextrin.

    PubMed

    Charoenchaitrakool, M; Dehghani, F; Foster, N R

    2002-06-04

    The dissolution rate of a drug into the biological environment can be enhanced by forming complexes with cyclodextrins and their derivatives. In this study, ibuprofen-methyl-beta-cyclodextrin complexes were prepared successfully by passing ibuprofen-laden CO(2) through a methyl-beta-cyclodextrin packed bed. The maximum drug loading obtained in this work was 10.8 wt.%, which was comparable to that of a 1:1 complex (13.6 wt.% of ibuprofen). The complex exhibited instantaneous dissolution profiles in water solution. The enhanced dissolution rate was attributed to the amorphous character and improved wettability of the product.

  9. Enantioselective CE method for pharmacokinetic studies on ibuprofen and its chiral metabolites with reference to genetic polymorphism.

    PubMed

    Główka, Franciszek; Karaźniewicz, Marta

    2007-08-01

    A stereospecific CE method was elaborated for the quantification of ibuprofen enantiomers and their major phase I metabolites: 2'-hydroxy-ibuprofen and 2'-carboxy-ibuprofen in plasma and urine. Optimal temperature and pH of BGE were established to obtain complete separation of eight ibuprofen chiral compounds and (+)-S indobufen, applied as an internal standard, during one analytical run. After isolation from biological matrices using SPE on an octadecyl stationary phase, the analytes were separated and resolved up to 10 min in a silica capillary filled with BGE, consisting of heptakis 2,3,6-tri-O-methyl-beta-CD in triethanolamine-phosphate buffer, pH 5.0. Complete enantioseparation of the all analytes confirmed specificity of the method. The calibration curves were linear in the range of 0.1-25.0 mg/L for IBP enantiomers and their chiral metabolites in 0.5 mL of plasma and 1.0-200.0 mg/L in 0.05 mL of urine. Following SPE procedure, recovery of the chiral analytes from the two media was in the ranges of 82-87%, 90-95% and 70-76% for ibuprofen, 2'-hydroxy-ibuprofen and 2'-carboxy-ibuprofen enantiomers, respectively. The validated method was successfully applied in pharmacokinetic investigations of IBP enantiomers as well as free chiral metabolites in reference to the genetic polymorphism of CYP450 2C isoenzymes.

  10. Ibuprofen versus acetaminophen as a post-partum analgesic for women with severe pre-eclampsia: randomized clinical study.

    PubMed

    Vigil-De Gracia, Paulino; Solis, Valentin; Ortega, Nelson

    2017-06-01

    To compare differences in blood pressure levels between patients with severe post-partum pre-eclampsia using ibuprofen or acetaminophen. A randomized controlled trial was made in women with severe pre-eclampsia or superimposed pre-eclampsia after vaginal birth. The patient was randomly selected to receive either 400 mg of ibuprofen every 8 h or 1 g of acetaminophen every 6 h during the post-partum. The primary variable was systolic hypertension ≥150 mmHg and/or diastolic hypertension ≥100 mmHg after the first 24 h post-partum. Secondary variables were the arterial blood pressure readings at 24, 48, 72, and 96 h post-partum and maternal complications. A total of 113 patients were studied: 56 in the acetaminophen group and 57 in the ibuprofen group. With regard to the primary outcome, more cases were significantly hypertensive in the ibuprofen group (36/57; 63.1%) than in the acetaminophen group (16/56; 28.6%). Severe hypertension (≥160/110 mmHg) was not significantly different between the groups, 14.5% (acetaminophen) and 24.5% (ibuprofen). The levels of arterial blood pressure show a hammock-shaped curve independent of the drug used, however, is more noticeable with ibuprofen. This study shows that ibuprofen significantly elevates blood pressure in women with severe pre-eclampsia during the post-partum period.

  11. Ibuprofen transport into and through skin from topical formulations: in vitro-in vivo comparison.

    PubMed

    Herkenne, Christophe; Naik, Aarti; Kalia, Yogeshvar N; Hadgraft, Jonathan; Guy, Richard H

    2007-01-01

    The goal was to compare ibuprofen transport into and through skin in vivo in man and in vitro (across silicone membranes and freshly excised pig skin) from four marketed formulations. Ibuprofen gels were administered in vivo for 30 minutes. The stratum corneum (SC) at the application site was then tape-stripped, quantified gravimetrically, and extracted for drug analysis. Together with concomitant transepidermal water loss measurements, SC drug concentration-depth profiles were reproducibly determined and fitted mathematically to obtain a partition coefficient, a first-order rate constant related to ibuprofen diffusivity, and the total drug amount in the SC at the end of the application. All derived parameters were consistent across formulations. Ibuprofen permeation data through both silicone membrane and pig ear skin were also fitted to yield partitioning and diffusion parameters. The former revealed that ibuprofen partitioned differently from the gels into this model barrier. Across pig skin, however, better correlation with in vivo results was found. The dermatopharmacokinetic approach, using SC tape-stripping, offers a valid method to assess equivalency between topical drug formulations. In vitro experiments must be extrapolated cautiously to the clinic, especially when complex interactions between real formulations, which deliver both drug and excipients, and the skin occur.

  12. Differing disintegration and dissolution rates, pharmacokinetic profiles and gastrointestinal tolerability of over the counter ibuprofen formulations.

    PubMed

    Bjarnason, Ingvar; Sancak, Ozgur; Crossley, Anne; Penrose, Andrew; Lanas, Angel

    2018-02-01

    Formulations of over the counter (OTC) NSAIDs differ substantially, but information is lacking on whether this alters their gastrointestinal profiles. To assess disintegration and dissolution rates and pharmacokinetics of four preparations of OTC ibuprofen and relate these with spontaneously reported gastrointestinal adverse events. Disintegration and dissolution rates of ibuprofen tablets as (a) acid, (b) sodium salt, (c) lysine salt, and (d) as a liquid gelatine capsule were assessed. Pharmacokinetic data gastrointestinal and spontaneously reported adverse events arising from global sales were obtained from files from Reckitt Benckiser. Disintegration at low pH was progressively shorter for the preparations from a-to-d with formation of correspondingly smaller ibuprofen crystals, while dissolution was consistently poor. Dissolution at a neutral pH was least rapid for the liquid gelatine capsule. Pharmacokinetic data showed a shorter t max and a higher C max for preparations b-d as compared with ibuprofen acid. Spontaneously reported abdominal symptoms were rare with the liquid gelatine preparation. The formulations of OTC ibuprofen differ in their disintegration and dissolution properties, pharmacokinetic profiles and apparent gastrointestinal tolerability. Spontaneously reported abdominal symptoms were five times lower with the liquid gelatine capsule as compared with ibuprofen acid despite a 30% increase in C max . © 2017 Royal Pharmaceutical Society.

  13. Profiling MHC II immunopeptidome of blood-stage malaria reveals that cDC1 control the functionality of parasite-specific CD4 T cells.

    PubMed

    Draheim, Marion; Wlodarczyk, Myriam F; Crozat, Karine; Saliou, Jean-Michel; Alayi, Tchilabalo Dilezitoko; Tomavo, Stanislas; Hassan, Ali; Salvioni, Anna; Demarta-Gatsi, Claudia; Sidney, John; Sette, Alessandro; Dalod, Marc; Berry, Antoine; Silvie, Olivier; Blanchard, Nicolas

    2017-11-01

    In malaria, CD4 Th1 and T follicular helper (T FH ) cells are important for controlling parasite growth, but Th1 cells also contribute to immunopathology. Moreover, various regulatory CD4 T-cell subsets are critical to hamper pathology. Yet the antigen-presenting cells controlling Th functionality, as well as the antigens recognized by CD4 T cells, are largely unknown. Here, we characterize the MHC II immunopeptidome presented by DC during blood-stage malaria in mice. We establish the immunodominance hierarchy of 14 MHC II ligands derived from conserved parasite proteins. Immunodominance is shaped differently whether blood stage is preceded or not by liver stage, but the same ETRAMP-specific dominant response develops in both contexts. In naïve mice and at the onset of cerebral malaria, CD8α + dendritic cells (cDC1) are superior to other DC subsets for MHC II presentation of the ETRAMP epitope. Using in vivo depletion of cDC1, we show that cDC1 promote parasite-specific Th1 cells and inhibit the development of IL-10 + CD4 T cells. This work profiles the P. berghei blood-stage MHC II immunopeptidome, highlights the potency of cDC1 to present malaria antigens on MHC II, and reveals a major role for cDC1 in regulating malaria-specific CD4 T-cell responses. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  14. Analysis of MHC class I folding: novel insights into intermediate forms

    PubMed Central

    Simone, Laura C.; Tuli, Amit; Simone, Peter D.; Wang, Xiaojian; Solheim, Joyce C.

    2012-01-01

    Folding around a peptide ligand is integral to the antigen presentation function of major histocompatibility complex (MHC) class I molecules. Several lines of evidence indicate that the broadly cross-reactive 34-1-2 antibody is sensitive to folding of the MHC class I peptide-binding groove. Here, we show that peptide-loading complex proteins associated with the murine MHC class I molecule Kd are found primarily in association with the 34-1-2+ form. This led us to hypothesize that the 34-1-2 antibody may recognize intermediately, as well as fully, folded MHC class I molecules. In order to further characterize the form(s) of MHC class I molecules recognized by 34-1-2, we took advantage of its cross-reactivity with Ld. Recognition of the open and folded forms of Ld by the 64-3-7 and 30-5-7 antibodies, respectively, has been extensively characterized, providing us with parameters against which to compare 34-1-2 reactivity. We found that the 34-1-2+ Ld molecules displayed characteristics indicative of incomplete folding, including increased tapasin association, endoplasmic reticulum retention, and instability at the cell surface. Moreover, we demonstrate that an Ld-specific peptide induced folding of the 34-1-2+ Ld intermediate. Altogether, these results yield novel insights into the nature of MHC class I molecules recognized by the 34-1-2 antibody. PMID:22329842

  15. Characterization of MHC class I in a long distance migratory wader, the Icelandic black-tailed godwit.

    PubMed

    Pardal, Sara; Drews, Anna; Alves, José A; Ramos, Jaime A; Westerdahl, Helena

    2017-07-01

    The major histocompatibility complex (MHC) encodes proteins that are central for antigen presentation and pathogen elimination. MHC class I (MHC-I) genes have attracted a great deal of interest among researchers in ecology and evolution and have been partly characterized in a wide range of bird species. So far, the main focus has been on species within the bird orders Galliformes and Passeriformes, while Charadriiformes remain vastly underrepresented with only two species studied to date. These two Charadriiformes species exhibit striking differences in MHC-I characteristics and MHC-I diversity. We therefore set out to study a third species within Charadriiformes, the Icelandic subspecies of black-tailed godwits (Limosa limosa islandica). This subspecies is normally confined to parasite-poor environments, and we hence expected low MHC diversity. MHC-I was partially characterized first using Sanger sequencing and then using high-throughput sequencing (MiSeq) in 84 individuals. We verified 47 nucleotide alleles in open reading frame with classical MHC-I characteristics, and each individual godwit had two to seven putatively classical MHC alleles. However, in contrast to previous MHC-I data within Charadriiformes, we did not find any evidence of alleles with low sequence diversity, believed to represent non-classical MHC genes. The diversity and divergence of the godwits MHC-I genes to a large extent fell between the previous estimates within Charadriiformes. However, the MHC genes of the migratory godwits had few sites subject to positive selection, and one possible explanation could be a low exposure to pathogens.

  16. Ibuprofen-induced patent ductus arteriosus closure: physiologic, histologic, and biochemical effects on the premature lung.

    PubMed

    McCurnin, Donald; Seidner, Steven; Chang, Ling-Yi; Waleh, Nahid; Ikegami, Machiko; Petershack, Jean; Yoder, Brad; Giavedoni, Luis; Albertine, Kurt H; Dahl, Mar Janna; Wang, Zheng-ming; Clyman, Ronald I

    2008-05-01

    The goal was to study the pulmonary, biochemical, and morphologic effects of a persistent patent ductus arteriosus in a preterm baboon model of bronchopulmonary dysplasia. Preterm baboons (treated prenatally with glucocorticoids) were delivered at 125 days of gestation (term: 185 days), given surfactant, and ventilated for 14 days. Twenty-four hours after birth, newborns were randomly assigned to receive either ibuprofen (to close the patent ductus arteriosus; n = 8) or no drug (control; n = 13). After treatment was started, the ibuprofen group had significantly lower pulmonary/systemic flow ratio, higher systemic blood pressure, and lower left ventricular end diastolic diameter, compared with the control group. There were no differences in cardiac performance indices between the groups. Ventilation index and dynamic compliance were significantly improved with ibuprofen. The improved pulmonary mechanics in ibuprofen-treated newborns were not attributable to changes in levels of surfactant protein B, C, or D, saturated phosphatidylcholine, or surfactant inhibitory proteins. There were no differences in tracheal concentrations of cytokines commonly associated with the development of bronchopulmonary dysplasia. The groups had similar messenger RNA expression of genes that regulate inflammation and remodeling in the lung. Lungs from ibuprofen-treated newborns were significantly drier (lower wet/dry ratio) and expressed 2.5 times more epithelial sodium channel protein than did control lungs. By 14 days after delivery, control newborns had morphologic features of arrested alveolar development (decreased alveolar surface area and complexity), compared with age-matched fetuses. In contrast, there was no evidence of alveolar arrest in the ibuprofen-treated newborns. Ibuprofen-induced patent ductus arteriosus closure improved pulmonary mechanics, decreased total lung water, increased epithelial sodium channel expression, and decreased the detrimental effects of preterm birth

  17. Failure of Ibuprofen to prevent progressive dermal ischemia after burning in guinea pigs.

    PubMed

    Tan, Qian; Lin, Zihao; Ma, Wenxi; Chen, Huairen; Wang, Lei; Ning, Guansen; Zhou, Xu

    2002-08-01

    It is controversial whether the use of prostaglandin inhibitors could prevent progressive dermal ischemia in the postburn stasis zone. This study evaluated the effect of Ibuprofen on preventing postburn dermal ischemia using an animal model of India ink perfusion and skin transparent preparation techniques. The closely clipped backs of the guinea pigs were bathed in 75 degrees C water for 10s. Ibuprofen-treated groups were fed intragastrically with Ibuprofen (12.5mg/kg) every 6h. All animals were perfused with 70% India ink via a cervical artery cannula at 16 kPa constant pressure at 0, 8, 16, 24h postburn. Skin transparent preparations were made, and 6-keto-PGF(1 alpha) and T x B(2) levels in skin tissue were assessed. India ink filling rates in skin capillary plexuses decreased gradually with postburn time elapsing (P<0.01). 6-keto-PGF(1 alpha) and T x B(2) levels in two groups increased. The increase of T x B(2) was dominant, which was related to postburn dermal ischemia (r=0.742, P<0.01). Though levels of 6-keto-PGF(1 alpha) and T x B(2) decreased in Ibuprofen-treated groups, India ink filling rates showed no significant difference between controls and experimental groups (P>0.05). The results were also confirmed by observation of skin transparent preparations. This study suggests that Ibuprofen has no preventive effect on progressive dermal ischemia after burning.

  18. Spectrofluorimetric study of host-guest complexation of ibuprofen with beta-cyclodextrin and its analytical application.

    PubMed

    Manzoori, Jamshid L; Amjadi, Mohammad

    2003-03-15

    The characteristics of host-guest complexation between beta-cyclodextrin (beta-CD) and two forms of ibuprofen (protonated and deprotonated) were investigated by fluorescence spectrometry. 1:1 stoichiometries for both complexes were established and their association constants at different temperatures were calculated by applying a non-linear regression method to the change in the fluorescence of ibuprofen that brought about by the presence of beta-CD. The thermodynamic parameters (deltaH, deltaS and deltaG) associated with the inclusion process were also determined. Based on the obtained results, a sensitive spectrofluorimetric method for the determination of ibuprofen was developed with a linear range of 0.1-2 microg ml(-1) and a detection limit of 0.03 microg ml(-1). The method was applied satisfactorily to the determination of ibuprofen in pharmaceutical preparations. Copyright 2002 Elsevier Science B.V.

  19. Dimeric MHC-peptides inserted into an immunoglobulin scaffold as new immunotherapeutic agents

    PubMed Central

    Goldberg, Burt; Bona, Constantin

    2011-01-01

    Abstract The interactions of the T cell receptor (TCR) with cognate MHC-peptide and co-stimulatory molecules expressed at surface of antigen presenting cells (APC) leads to activation or tolerance of T cells. The development of molecular biological tools allowed for the preparation of soluble MHC-peptide molecules as surrogate for the APC. A decade ago a monomeric class II MHC molecule in which the peptide was covalently linked to β-chain of class II molecule was generated. This type of molecule had a low-binding affinity and did not cause the multimerization of TCR. The requirement of multimerization of TCR led to development of a new class of reagents, chimeric peptides covalently linked to MHC that was dimerized via Fc fragment of an immunoglobulin and linked to 3′ end of the β-chain of MHC class II molecule. These soluble dimerized MHC-peptide chimeric molecules display high affinity for the TCR and caused multimerization of TCR without processing by an APC. Because dimeric molecules are devoid of co-stimulatory molecules interacting with CD28, a second signal, they induce anergy rather the activation of T cells. In this review, we compare the human and murine dimerized MHC class II-peptides and their effect on CD4+ T cells, particularly the generation of T regulatory cells, which make these chimeric molecules an appealing approach for the treatment of autoimmune diseases. PMID:21435177

  20. Structure of a Pheromone Receptor-Associated Mhc Molecule With An Open And Empty Groove

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, R.; Huey-Tubman, K.E.; Dulac, C.

    2006-10-06

    Neurons in the murine vomeronasal organ (VNO) express a family of class Ib major histocompatibility complex (MHC) proteins (M10s) that interact with the V2R class of VNO receptors. This interaction may play a direct role in the detection of pheromonal cues that initiate reproductive and territorial behaviors. The crystal structure of M10.5, an M10 family member, is similar to that of classical MHC molecules. However, the M10.5 counterpart of the MHC peptide-binding groove is open and unoccupied, revealing the first structure of an empty class I MHC molecule. Similar to empty MHC molecules, but unlike peptide-filled MHC proteins and non-peptide-bindingmore » MHC homologs, M10.5 is thermally unstable, suggesting that its groove is normally occupied. However, M10.5 does not bind endogenous peptides when expressed in mammalian cells or when offered a mixture of class I-binding peptides. The F pocket side of the M10.5 groove is open, suggesting that ligands larger than 8-10-mer class I-binding peptides could fit by extending out of the groove. Moreover, variable residues point up from the groove helices, rather than toward the groove as in classical MHC structures. These data suggest that M10s are unlikely to provide specific recognition of class I MHC-binding peptides, but are consistent with binding to other ligands, including proteins such as the V2Rs.« less

  1. Unfinished Business: Evolution of the MHC and the Adaptive Immune System of Jawed Vertebrates.

    PubMed

    Kaufman, Jim

    2018-04-26

    The major histocompatibility complex (MHC) is a large genetic region with many genes, including the highly polymorphic classical class I and II genes that play crucial roles in adaptive as well as innate immune responses. The organization of the MHC varies enormously among jawed vertebrates, but class I and II genes have not been found in other animals. How did the MHC arise, and are there underlying principles that can help us to understand the evolution of the MHC? This review considers what it means to be an MHC and the potential importance of genome-wide duplication, gene linkage, and gene coevolution for the emergence and evolution of an adaptive immune system. Then it considers what the original antigen-specific receptor and MHC molecule might have looked like, how peptide binding might have evolved, and finally the importance of adaptive immunity in general.

  2. Association of Acetaminophen and Ibuprofen Use With Wheezing in Children With Acute Febrile Illness.

    PubMed

    Matok, Ilan; Elizur, Arnon; Perlman, Amichai; Ganor, Shani; Levine, Hagai; Kozer, Eran

    2017-03-01

    Many infants and children receive acetaminophen and/or ibuprofen during febrile illness. Previously, some studies have linked acetaminophen and ibuprofen use to wheezing and exacerbation of asthma symptoms in infants and children. To assess whether acetaminophen or ibuprofen use are associated with wheezing in children presenting to the emergency department (ED) with febrile illness. This was a cross-sectional study of children who presented with fever to the pediatric ED between 2009 and 2013. The data were collected from questionnaires and from the children's medical files. Patients with wheezing in the ED were compared with nonwheezing patients. Associations between medication use and wheezing were assessed using univariate and multivariate analyses. The multivariate analysis adjusted for potential confounding variables (ie, age, atopic dermatitis, allergies, smoking, antibiotics use, etc) via propensity scores. During the study period, 534 children admitted to the ED met our inclusion criteria, of whom 347 (65%) were included in the study. The use of acetaminophen was similar in children diagnosed with wheezing compared with those without wheezing (n = 39, 81.3%, vs n = 229, 82.7%, respectively). Ibuprofen use was significantly lower in children diagnosed with wheezing (n = 22, 52.4%, vs n = 168, 69.4%, respectively). In multivariate analysis, acetaminophen was not associated with a higher rate of wheezing during acute febrile illness (adjusted odds ratio [OR] = 0.76, 95% CI = 0.24- 2.39), whereas ibuprofen was associated with a lower risk of wheezing (adjusted OR = 0.36, 95% CI = 0.13-0.96). Our study suggests that acetaminophen and ibuprofen are not associated with increased risk for wheezing during acute febrile illness.

  3. Coevolution of MHC genes (LMP/TAP/class Ia; NKT-class Ib; NKp30-B7H6): Lessons from cold-blooded vertebrates

    PubMed Central

    Ohta, Yuko; Flajnik, Martin F.

    2015-01-01

    Summary Comparative immunology provides the long view of what is conserved across all vertebrate taxa versus what is specific to particular organisms or group of organisms. Regarding the major histocompatibility complex (MHC) and coevolution, three striking cases have been revealed in cold-blooded vertebrates: lineages of class Ia antigen-processing and -presenting genes, evolutionary conservation of NKT-class Ib recognition, and the ancient emergence of the natural cytotoxicity receptor NKp30 and its ligand B7H6. While coevolution of transporter associated with antigen processing (TAP) and class Ia has been documented in endothermic birds and two mammals, lineages of LMP7 are restricted to ectotherms. The unambiguous discovery of natural killer T (NKT) cells in Xenopus demonstrated that NKT cells are not restricted to mammals and are likely to have emerged at the same time in evolution as classical α/β and γ/δ T cells. NK cell receptors evolve at a rapid rate, and orthologues are nearly impossible to identify in different vertebrate classes. By contrast, we have detected NKp30 in all gnathostomes, except in species where it was lost. The recently discovered ligand of NKp30, B7H6, shows strong signs of coevolution with NKp30 throughout evolution, i.e. coincident loss or expansion of both genes in some species. NKp30 also offers an attractive IgSF candidate for the invasion of the RAG transposon, which is believed to have initiated T-cell receptor/immunoglobulin adaptive immunity. Besides reviewing these intriguing features of MHC evolution and coevolution, we offer suggestions for future studies and propose a model for the primordial or proto MHC. PMID:26284468

  4. Solubility of (+/-)-ibuprofen and S (+)-ibuprofen in the presence of cosolvents and cyclodextrins.

    PubMed

    Nerurkar, Jayanti; Beach, J W; Park, M O; Jun, H W

    2005-01-01

    Aqueous solubility is an important parameter for the development of liquid formulations and in the determination of bioavailability of oral dosage forms. Ibuprofen (IB), a nonsteroidal anti-inflammatory drug, is a chiral molecule and is currently used clinically as a racemate (racIB). However, the S form of ibuprofen or S(+)-ibuprofen (SIB) is the biologically active isomer and is primarily responsible for the antiinflammatory activity. Phase solubility studies were carried out to compare the saturation solubilities of racIB and SIB in the presence of common pharmaceutical solvents such as glycerol, sorbitol solution, propylene glycol (PG), and polyethylene glycol (PEG 300) over the range of 20% to 80% v/v in aqueous based systems. The solubilities of the two compounds were also compared in the presence of cyclodextrins such as beta cyclodextrin (CD), hydroxypropyl beta cyclodextrin (HPCD), and beta cyclodextrin sulfobutyl ether sodium salt (CDSB) over the range of 5% to 25% w/v. Solubility determinations were carried at 25 degrees C and 37 degrees C. Cosolvents exponentially increased the solubility of both SIB and racIB, especially in the presence of PG and PEG 300. Glycerol was not very effective in increasing the aqueous solubilities of both compounds, whereas sorbitol solution had a minimal effect on their solubility. PG and PEG 300 increased the solubility of SIB by 400-fold and 1500-fold, respectively, whereas the rise in solubility for racIB was 193-fold and 700-fold, respectively, at 25 degrees C for the highest concentration of the cosolvents used (80% v/v). Of the two compounds studied, higher equilibrium solubilities were observed for SIB as compared with racIB. The derivatized cyclodextrins increased the aqueous solubility of racIB and SIB in a concentration-dependent manner giving AL type of phase diagrams. The phase solubility diagrams indicated the formation of soluble inclusion complexes between the drugs and HPCD and CDSB, which was of 1

  5. Optimisation of cosolvent concentration for topical drug delivery III--influence of lipophilic vehicles on ibuprofen permeation.

    PubMed

    Watkinson, R M; Guy, R H; Oliveira, G; Hadgraft, J; Lane, M E

    2011-01-01

    Previously, we have reported the effects of water, ethanol, propylene glycol and various binary and ternary mixtures of these solvents on the permeation of ibuprofen in model membranes and in skin. The present study investigates the influence of lipophilic vehicles on the transport of ibuprofen in silicone membrane and in human skin. The permeation of ibuprofen was measured from mineral oil (MO), Miglyol® 812 (MG) and binary mixtures of MO and MG. The solubility of ibuprofen was 5-fold higher in MG than in MO, however, the permeation of ibuprofen from the pure vehicles and combinations of both was comparable in silicone membrane. Additionally, there were no significant differences in skin permeation for MO and MG vehicles. When the permeation of various hydrophilic and lipophilic vehicles is considered, a trend between flux values for the model membrane and skin is evident (r(2) = 0.71). The findings suggest that silicone membrane may provide information on qualitative trends in skin permeation for vehicles of diverse solubility and partition characteristics. Copyright © 2010 S. Karger AG, Basel.

  6. The carboxypeptidase angiotensin converting enzyme (ACE) shapes the MHC class I peptide repertoire

    PubMed Central

    Shen, Xiao Z.; Billet, Sandrine; Lin, Chentao; Okwan-Duodu, Derick; Chen, Xu; Lukacher, Aron E.; Bernstein, Kenneth E.

    2011-01-01

    The surface presentation of peptides by major histocompatibility complex (MHC) class I molecules is critical to CD8+ T cell mediated adaptive immune responses. Aminopeptidases are implicated in the editing of peptides for MHC class I loading, but C-terminal editing is thought due to proteasome cleavage. By comparing genetically deficient, wild-type and over-expressing mice, we now identify the dipeptidase angiotensin-converting enzyme (ACE) as playing a physiologic role in peptide processing for MHC class I. ACE edits the C-termini of proteasome-produced class I peptides. The lack of ACE exposes novel antigens but also abrogates some self-antigens. ACE has major effects on surface MHC class I expression in a haplotype-dependent manner. We propose a revised model of MHC class I peptide processing by introducing carboxypeptidase activity. PMID:21964607

  7. The Photodegradation of Ibuprofen and Dissolved Organic Matter in Lake Superior and St. Louis River Water

    PubMed Central

    Moynan, Angela B.

    2012-01-01

    Abstract Ibuprofen can enter bodies of water via waste water treatment. The question was what effect does photodegradation have on ibuprofen and dissolved organic matter (DOM) in Lake Superior (oligiotrophic) and St. Louis (tannic stained) River water? Ibuprofen concentrations of 15,000, 30,000, and 60,000 μg/L were made from lake, river, and distilled water, as well as additional distilled concentrations of 7,500 and 120,000 μg/L. Half of the eighty-four trial cups were placed in an ultraviolet light cabinet and half of the set were placed in a dark cabinet for three days. After the exposure period, a UV-Vis was performed to measure change in molar mass and the summed absorbance of colored dissolved organic matter (CDOM). It appears that ibuprofen decreases in molar mass after exposure to light in distilled and lake water with 15,000 μg/L of ibuprofen. Surprisingly, the molar mass of DOM in river water increases after UV exposure. Possibly, this occurred because the river water has such a high molar mass of DOM and was not filtered. Microbial biomass could also have contributed to this increase. Ibuprofen entering bodies of water via the waste water treatment system appears to be affected by UV light exposure, but in different ways. PMID:23244688

  8. Overview review: Comparative efficacy of oral ibuprofen and paracetamol (acetaminophen) across acute and chronic pain conditions.

    PubMed

    Moore, R A; Derry, S; Wiffen, P J; Straube, S; Aldington, D J

    2015-10-01

    Ibuprofen and paracetamol have long been used as analgesics in a range of acute, intermittent and chronic pain conditions. Paracetamol is often the first line analgesic recommended, without consensus about which is the better analgesic. An overview review of systematic reviews and meta-analyses directly compares ibuprofen and paracetamol at standard doses in particular painful conditions, or uses indirect comparisons against placebo. Electronic searches for systematic reviews were sought published since 1995 using outcomes approximating to ≥50% pain intensity reduction. Painful conditions were acute post-operative pain, dysmenorrhoea, tension-type headache (TTH), migraine, osteoarthritis and rheumatoid arthritis, back pain, cancer and paediatric pain. There was no systematic assessment of harm. Sixteen systematic reviews and four individual patient data meta-analyses were included. Ibuprofen was consistently superior to paracetamol at conventional doses in a range of painful conditions. Two direct comparisons favoured ibuprofen (acute pain, osteoarthritis). Three of four indirect comparisons favoured ibuprofen (acute pain, migraine, osteoarthritis); one showed no difference (TTH), although there were methodological problems. In five pain conditions (dysmenorrhoea, paediatric pain, cancer pain, back pain and rheumatoid arthritis), there were limited data on paracetamol and ibuprofen. At standard doses in different painful conditions, ibuprofen was usually superior producing more patients with the degree of pain relief that patients feel worthwhile. Neither of the drugs will be effective for everyone, and both are needed. This overview questions the practice of routinely using paracetamol as a first line analgesic because there is no good evidence for efficacy of paracetamol in many pain conditions. © 2014 The Authors. European Journal of Pain published by John Wiley & Sons Ltd on behalf of European Pain Federation - EFICC®.

  9. Plasmodium relictum infection and MHC diversity in the house sparrow (Passer domesticus)

    PubMed Central

    Loiseau, Claire; Zoorob, Rima; Robert, Alexandre; Chastel, Olivier; Julliard, Romain; Sorci, Gabriele

    2011-01-01

    Antagonistic coevolution between hosts and parasites has been proposed as a mechanism maintaining genetic diversity in both host and parasite populations. In particular, the high level of genetic diversity usually observed at the major histocompatibility complex (MHC) is generally thought to be maintained by parasite-driven selection. Among the possible ways through which parasites can maintain MHC diversity, diversifying selection has received relatively less attention. This hypothesis is based on the idea that parasites exert spatially variable selection pressures because of heterogeneity in parasite genetic structure, abundance or virulence. Variable selection pressures should select for different host allelic lineages resulting in population-specific associations between MHC alleles and risk of infection. In this study, we took advantage of a large survey of avian malaria in 13 populations of the house sparrow (Passer domesticus) to test this hypothesis. We found that (i) several MHC alleles were either associated with increased or decreased risk to be infected with Plasmodium relictum, (ii) the effects were population specific, and (iii) some alleles had antagonistic effects across populations. Overall, these results support the hypothesis that diversifying selection in space can maintain MHC variation and suggest a pattern of local adaptation where MHC alleles are selected at the local host population level. PMID:20943698

  10. Effects of Ibuprofen and Resistance Training on Bone and Muscle: A Randomized Controlled Trial in Older Women.

    PubMed

    Duff, Whitney R D; Chilibeck, Philip D; Candow, Darren G; Gordon, Julianne J; Mason, Riley S; Taylor-Gjevre, Regina; Nair, Bindu; Szafron, Michael; Baxter-Jones, Adam; Zello, Gordon A; Kontulainen, Saija A

    2017-04-01

    Resistance training with ibuprofen supplementation may improve musculoskeletal health in postmenopausal women. The study purpose was to determine the efficacy of resistance training and ibuprofen supplementation on bone and muscle properties in postmenopausal women. Participants (n = 90, 65.3 ± 4.9 yr) were randomly assigned to: supervised resistance training or stretching (placebo-exercise) with postexercise ibuprofen (400 mg) or placebo supplementation for 3 d·wk (9 months). Baseline and postintervention measurements included distal and shaft scans of the forearm and lower leg using peripheral quantitative computed tomography. Distal site outcomes included cross-sectional area, content, and density for total and trabecular bone, as well as estimated bone strength in compression. Shaft site outcomes included total bone area; cortical bone area, content, and density; estimated bone strength in torsion; and muscle area and density. Exercise-supplement-time interactions for total bone content at the distal radius (P = 0.009) and cortical density at the radius shaft (P = 0.038) were significant. Resistance training with ibuprofen decreased total bone content (-1.5%) at the distal radius in comparison to the resistance training (0.6%; P = 0.032) and ibuprofen alone (0.5%; P = 0.050). Change in cortical density at the radius shaft differed between the stretching with placebo and ibuprofen supplementation groups (-1.8% vs 1.1%; P = 0.050). Resistance training preserved muscle density in the lower leg more so than stretching (-3.1% vs -5.4%; P = 0.015). Ibuprofen consumed immediately after resistance training had a deleterious effect on bone mineral content at the distal radius, whereas resistance training or ibuprofen supplementation individually prevented bone loss. Resistance training prevented muscle density decline in the lower leg.

  11. No prolongation of skin allograft survival by immunoproteasome inhibition in mice.

    PubMed

    Mundt, Sarah; Basler, Michael; Sawitzki, Birgit; Groettrup, Marcus

    2017-08-01

    The immunoproteasome, a distinct class of proteasomes, which is inducible under inflammatory conditions and constitutively expressed in monocytes and lymphocytes, is known to shape the antigenic repertoire presented on major histocompatibility complex (MHC) class I molecules. Moreover, inhibition of the immunoproteasome subunit LMP7 ameliorates clinical symptoms of autoimmune diseases in vivo and was shown to suppress the development of T helper cell (Th) 1 and Th17 cells and to promote regulatory T-cell (Treg) generation independently of its function in antigen processing. Since Th1 and Th17 cells are detrimental and Treg cells are critical for transplant acceptance, we investigated the influence of the LMP7-selective inhibitor ONX 0914 in a mixed lymphocyte reaction (MLR) in vitro as well as on allograft rejection in a MHC-disparate (C57BL/6 to BALB/c) and a multiple minor histocompatibility antigen (miHA)-disparate (B10.Br to C3H) model of skin transplantation in vivo. Although we observed reduced allo-specific IL-17 production of T cells in vitro, we found that selective inhibition of LMP7 had neither an influence on allograft survival in an MHC-mismatch model nor in a multiple minor mismatch skin transplantation model. We conclude that inhibition of the immunoproteasome is not effective in prolonging skin allograft survival in skin allotransplantation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Gene transfer preferentially selects MHC class I positive tumour cells and enhances tumour immunogenicity.

    PubMed

    Hacker, Ulrich T; Schildhauer, Ines; Barroso, Margarita Céspedes; Kofler, David M; Gerner, Franz M; Mysliwietz, Josef; Buening, Hildegard; Hallek, Michael; King, Susan B S

    2006-05-01

    The modulated expression of MHC class I on tumour tissue is well documented. Although the effect of MHC class I expression on the tumorigenicity and immunogenicity of MHC class I negative tumour cell lines has been rigorously studied, less is known about the validity of gene transfer and selection in cell lines with a mixed MHC class I phenotype. To address this issue we identified a C26 cell subline that consists of distinct populations of MHC class I (H-2D/K) positive and negative cells. Transient transfection experiments using liposome-based transfer showed a lower transgene expression in MHC class I negative cells. In addition, MHC class I negative cells were more sensitive to antibiotic selection. This led to the generation of fully MHC class I positive cell lines. In contrast to C26 cells, all transfectants were rejected in vivo and induced protection against the parental tumour cells in rechallenge experiments. Tumour cell specificity of the immune response was demonstrated in in vitro cytokine secretion and cytotoxicity assays. Transfectants expressing CD40 ligand and hygromycin phosphotransferase were not more immunogenic than cells expressing hygromycin resistance alone. We suggest that the MHC class I positive phenotype of the C26 transfectants had a bearing on their immunogenicity, because selected MHC class I positive cells were more immunogenic than parental C26 cells and could induce specific anti-tumour immune responses. These data demonstrate that the generation of tumour cell transfectants can lead to the selection of subpopulations that show an altered phenotype compared to the parental cell line and display altered immunogenicity independent of selection marker genes or other immune modulatory genes. Our results show the importance of monitoring gene transfer in the whole tumour cell population, especially for the evaluation of in vivo therapies targeted to heterogeneous tumour cell populations.

  13. Low MHC variation in the endangered Galápagos penguin (Spheniscus mendiculus).

    PubMed

    Bollmer, Jennifer L; Vargas, F Hernán; Parker, Patricia G

    2007-07-01

    The major histocompatibility complex (MHC) is one of the most polymorphic regions of the genome, likely due to balancing selection acting to maintain alleles over time. Lack of MHC variability has been attributed to factors such as genetic drift in small populations and relaxed selection pressure. The Galápagos penguin (Spheniscus mendiculus), endemic to the Galápagos Islands, is the only penguin that occurs on the equator. It relies upon cold, nutrient-rich upwellings and experiences severe population declines when ocean temperatures rise during El Niño events. These bottlenecks, occurring in an already small population, have likely resulted in reduced genetic diversity in this species. In this study, we used MHC class II exon 2 sequence data from a DRB1-like gene to characterize the amount of genetic variation at the MHC in 30 Galápagos penguins, as well as one Magellanic penguin (S. magellanicus) and two king penguins (Aptenodytes patagonicus), and compared it to that in five other penguin species for which published data exist. We found that the Galápagos penguin had the lowest MHC diversity (as measured by number of polymorphic sites and average divergence among alleles) of the eight penguin species studied. A phylogenetic analysis showed that Galápagos penguin MHC sequences are most closely related to Humboldt penguin (Spheniscus humboldti) sequences, its putative sister species based on other loci. An excess of non-synonymous mutations and a pattern of trans-specific evolution in the neighbor-joining tree suggest that selection is acting on the penguin MHC.

  14. NLRC5/MHC class I transactivator is a target for immune evasion in cancer

    PubMed Central

    Yoshihama, Sayuri; Roszik, Jason; Downs, Isaac; Meissner, Torsten B.; Vijayan, Saptha; Chapuy, Bjoern; Sidiq, Tabasum; Shipp, Margaret A.; Lizee, Gregory A.; Kobayashi, Koichi S.

    2016-01-01

    Cancer cells develop under immune surveillance, thus necessitating immune escape for successful growth. Loss of MHC class I expression provides a key immune evasion strategy in many cancers, although the molecular mechanisms remain elusive. MHC class I transactivator (CITA), known as “NLRC5” [NOD-like receptor (NLR) family, caspase recruitment (CARD) domain containing 5], has recently been identified as a critical transcriptional coactivator of MHC class I gene expression. Here we show that the MHC class I transactivation pathway mediated by CITA/NLRC5 constitutes a target for cancer immune evasion. In all the 21 tumor types we examined, NLRC5 expression was highly correlated with the expression of MHC class I, with cytotoxic T-cell markers, and with genes in the MHC class I antigen-presentation pathway, including LMP2/LMP7, TAP1, and β2-microglobulin. Epigenetic and genetic alterations in cancers, including promoter methylation, copy number loss, and somatic mutations, were most prevalent in NLRC5 among all MHC class I-related genes and were associated with the impaired expression of components of the MHC class I pathway. Strikingly, NLRC5 expression was significantly associated with the activation of CD8+ cytotoxic T cells and patient survival in multiple cancer types. Thus, NLRC5 constitutes a novel prognostic biomarker and potential therapeutic target of cancers. PMID:27162338

  15. NLRC5/MHC class I transactivator is a target for immune evasion in cancer.

    PubMed

    Yoshihama, Sayuri; Roszik, Jason; Downs, Isaac; Meissner, Torsten B; Vijayan, Saptha; Chapuy, Bjoern; Sidiq, Tabasum; Shipp, Margaret A; Lizee, Gregory A; Kobayashi, Koichi S

    2016-05-24

    Cancer cells develop under immune surveillance, thus necessitating immune escape for successful growth. Loss of MHC class I expression provides a key immune evasion strategy in many cancers, although the molecular mechanisms remain elusive. MHC class I transactivator (CITA), known as "NLRC5" [NOD-like receptor (NLR) family, caspase recruitment (CARD) domain containing 5], has recently been identified as a critical transcriptional coactivator of MHC class I gene expression. Here we show that the MHC class I transactivation pathway mediated by CITA/NLRC5 constitutes a target for cancer immune evasion. In all the 21 tumor types we examined, NLRC5 expression was highly correlated with the expression of MHC class I, with cytotoxic T-cell markers, and with genes in the MHC class I antigen-presentation pathway, including LMP2/LMP7, TAP1, and β2-microglobulin. Epigenetic and genetic alterations in cancers, including promoter methylation, copy number loss, and somatic mutations, were most prevalent in NLRC5 among all MHC class I-related genes and were associated with the impaired expression of components of the MHC class I pathway. Strikingly, NLRC5 expression was significantly associated with the activation of CD8(+) cytotoxic T cells and patient survival in multiple cancer types. Thus, NLRC5 constitutes a novel prognostic biomarker and potential therapeutic target of cancers.

  16. Pain-mediated altered absorption and metabolism of ibuprofen: an explanation for decreased serum enantiomer concentration after dental surgery

    PubMed Central

    Jamali, Fakhreddin; Kunz-Dober, Cornelia M

    1999-01-01

    Aims Rapid onset of analgesia is essential in the treatment of acute pain. There is evidence that conditions of stress cause delayed and decreased pain relief from oral analgesic products through impaired absorption. The aim was to determine the effect of surgery for removal of wisdom teeth on the plasma concentration-time profile of ibuprofen enantiomers. Methods Racemic ibuprofen, 200 mg in one group (n=7) and 600 mg in another group (n=7) was administered 1 week before (control) and again after (test) surgical removal of wisdom teeth. Serum concentrations of ibuprofen enantiomers were measured for 6 h. Results During the control phase, S- and R-ibuprofen concentrations were within the suggested therapeutic range. Surgery resulted in a 2 h delay in the mean time to peak concentration, significant decreases in serum ibuprofen concentration following both doses, and a fall to sub-optimal serum concentrations following the 200 mg dose. During the first 2 h after the 200 mg dose, dental extraction resulted in a significant reduction of the area under serum drug concentration (AUC (0, 2 h) mg l−1 h) from 5.6±2.9 to 1.6±1.8 (P<0.01) and from 5.5±3.0 to 2.1±2.0 (P<0.05) for S and R-ibuprofen, respectively. Similar observations were made following the 600 mg dose for AUC (0, 2 h) of S-ibuprofen (from 14.2±6.1 to 7.2±5.5 mg l−1 h, P<0.05) with no significant difference for R-ibuprofen (from 14.4±9.5 to 5.8±7.1). AUC (0, 6 h) was also significantly reduced by surgery. The pattern of stereoselectivity in serum ibuprofen concentration was reversed by surgery such that the S enantiomer was predominant in the control phase but not in the post-surgery phase, which is suggestive of reduced metabolic chiral inversion. Conclusions Surgery for wisdom tooth removal resulted in substantial decreases in the serum concentration of ibuprofen enantiomers and a prolongation in the time to peak concentration. Reduced absorption and altered metabolism are the likely cause of

  17. MHC odours are not required or sufficient for recognition of individual scent owners

    PubMed Central

    Hurst, Jane L; Thom, Michael D; Nevison, Charlotte M; Humphries, Richard E; Beynon, Robert J

    2005-01-01

    To provide information about specific depositors, scent marks need to encode a stable signal of individual ownership. The highly polymorphic major histocompatibility complex (MHC) influences scents and contributes to the recognition of close kin and avoidance of inbreeding when MHC haplotypes are shared. MHC diversity between individuals has also been proposed as a primary source of scents used in individual recognition. We tested this in the context of scent owner recognition among male mice, which scent mark their territories and countermark scents from other males. We examined responses towards urine scent according to the scent owner's genetic difference to the territory owner (MHC, genetic background, both and neither) or genetic match to a familiar neighbour. While urine of a different genetic background from the subject always stimulated greater scent marking than own, regardless of familiarity, MHC-associated odours were neither necessary nor sufficient for scent owner recognition and failed to stimulate countermarking. Urine of a different MHC type to the subject stimulated increased investigation only when this matched both the MHC and genetic background of a familiar neighbour. We propose an associative model of scent owner recognition in which volatile scent profiles, contributed by both fixed genetic and varying non-genetic factors, are learnt in association with a stable involatile ownership signal provided by other highly polymorphic urine components. PMID:15906464

  18. Ibuprofen, paracetamol, and steam for patients with respiratory tract infections in primary care: pragmatic randomised factorial trial.

    PubMed

    Little, Paul; Moore, Michael; Kelly, Joanne; Williamson, Ian; Leydon, Geraldine; McDermott, Lisa; Mullee, Mark; Stuart, Beth

    2013-10-25

    To assess strategies for advice on analgesia and steam inhalation for respiratory tract infections. Open pragmatic parallel group factorial randomised controlled trial. Primary care in United Kingdom. Patients aged ≥ 3 with acute respiratory tract infections. 889 patients were randomised with computer generated random numbers in pre-prepared sealed numbered envelopes to components of advice or comparator advice: advice on analgesia (take paracetamol, ibuprofen, or both), dosing of analgesia (take as required v regularly), and steam inhalation (no inhalation v steam inhalation). Primary: mean symptom severity on days 2-4; symptoms rated 0 (no problem) to 7 (as bad as it can be). Secondary: temperature, antibiotic use, reconsultations. Neither advice on dosing nor on steam inhalation was significantly associated with changes in outcomes. Compared with paracetamol, symptom severity was little different with ibuprofen (adjusted difference 0.04, 95% confidence interval -0.11 to 0.19) or the combination of ibuprofen and paracetamol (0.11, -0.04 to 0.26). There was no evidence for selective benefit with ibuprofen among most subgroups defined before analysis (presence of otalgia; previous duration of symptoms; temperature >37.5 °C; severe symptoms), but there was evidence of reduced symptoms severity benefit in the subgroup with chest infections (ibuprofen -0.40, -0.78 to -0.01; combination -0.47; -0.84 to -0.10), equivalent to almost one in two symptoms rated as a slight rather than a moderately bad problem. Children might also benefit from treatment with ibuprofen (ibuprofen: -0.47, -0.76 to -0.18; combination: -0.04, -0.31 to 0.23). Reconsultations with new/unresolved symptoms or complications were documented in 12% of those advised to take paracetamol, 20% of those advised to take ibuprofen (adjusted risk ratio 1.67, 1.12 to 2.38), and 17% of those advised to take the combination (1.49, 0.98 to 2.18). Mild thermal injury with steam was documented for four patients

  19. Scrutinizing MHC-I binding peptides and their limits of variation.

    PubMed

    Koch, Christian P; Perna, Anna M; Pillong, Max; Todoroff, Nickolay K; Wrede, Paul; Folkers, Gerd; Hiss, Jan A; Schneider, Gisbert

    2013-01-01

    Designed peptides that bind to major histocompatibility protein I (MHC-I) allomorphs bear the promise of representing epitopes that stimulate a desired immune response. A rigorous bioinformatical exploration of sequence patterns hidden in peptides that bind to the mouse MHC-I allomorph H-2K(b) is presented. We exemplify and validate these motif findings by systematically dissecting the epitope SIINFEKL and analyzing the resulting fragments for their binding potential to H-2K(b) in a thermal denaturation assay. The results demonstrate that only fragments exclusively retaining the carboxy- or amino-terminus of the reference peptide exhibit significant binding potential, with the N-terminal pentapeptide SIINF as shortest ligand. This study demonstrates that sophisticated machine-learning algorithms excel at extracting fine-grained patterns from peptide sequence data and predicting MHC-I binding peptides, thereby considerably extending existing linear prediction models and providing a fresh view on the computer-based molecular design of future synthetic vaccines. The server for prediction is available at http://modlab-cadd.ethz.ch (SLiDER tool, MHC-I version 2012).

  20. Exosomal cancer immunotherapy is independent of MHC molecules on exosomes.

    PubMed

    Hiltbrunner, Stefanie; Larssen, Pia; Eldh, Maria; Martinez-Bravo, Maria-Jose; Wagner, Arnika K; Karlsson, Mikael C I; Gabrielsson, Susanne

    2016-06-21

    Peptide-loaded exosomes are promising cancer treatment vehicles; however, moderate T cell responses in human clinical trials indicate a need to further understand exosome-induced immunity. We previously demonstrated that antigen-loaded exosomes carry whole protein antigens and require B cells for inducing antigen-specific T cells. Therefore, we investigated the relative importance of exosomal major histocompatibility complex (MHC) class I for the induction of antigen-specific T cell responses and tumour protection. We show that ovalbumin-loaded dendritic cell-derived exosomes from MHCI-/- mice induce antigen-specific T cells at the same magnitude as wild type exosomes. Furthermore, exosomes lacking MHC class I, as well as exosomes with both MHC class I and II mismatch, induced tumour infiltrating T cells and increased overall survival to the same extent as syngeneic exosomes in B16 melanoma. In conclusion, T cell responses are independent of exosomal MHC/peptide complexes if whole antigen is present. This establishes the prospective of using impersonalised exosomes, and will greatly increase the feasibility of designing exosome-based vaccines or therapeutic approaches in humans.

  1. Development and optimization of the synthesis of new thiazolidin-4-one derivatives of ibuprofen.

    PubMed

    Vasincu, Ioana; Apotrosoaei, Maria; Panzariu, Andreea; Buron, F; Routier, S; Profire, Lenuta

    2014-01-01

    Ibuprofen, an important nonsteroidal anti-inflammatory agent, is one of the most prescribed drugs for the treatment of pain and inflammation from various rheumatic diseases, but some side effects can occur on long-term use. The method for synthesis optimization of new derivatives of Ibuprofen with thiazolidin-4-one moiety, with improved pharmacological and toxicological profile. To optimize the derivatization method of free carboxyl group of Ibuprofen (2-(4-isobutylphenyl)propionic acid) the reaction conditions were varied (reagent ratio, catalyst, reaction medium). The most favorable method was proved to be the reaction between ibuprofen hydrazone and mercaptoacetic acid, in excess, at 80-85 degrees C, for 6 h with 96% conversion rate. The synthesis of 2-phenyl-3-[2-(4-(isobutyl)phenyl)-2-methyl]acetamido-thiazolidin-4-one derivative was optimized in view of applying it as a general procedure for the synthesis of other derivatives with related structure. The chemical structure and molecular weight of the synthesized compound were confirmed by spectral methods (IR, 1H NMR, 13C NMR, HR-MS).

  2. Enteral feeding during indomethacin and ibuprofen treatment of a patent ductus arteriosus

    PubMed Central

    Clyman, Ronald; Wickremasinghe, Andrea; Jhaveri, Nami; Hassinger, Denise C.; Attridge, Joshua T.; Sanocka, Ulana; Polin, Richard; Gillam-Krakauer, Maria; Reese, Jeff; Mammel, Mark; Couser, Robert; Mulrooney, Neil; Yanowitz, Toby D.; Derrick, Matthew; Jegatheesan, Priya; Walsh, Michele; Fujii, Alan; Porta, Nicolas; Carey, William A.; Swanson, Jonathan R.

    2013-01-01

    Objective To test the hypothesis that infants who are just being introduced to enteral feedings will advance to full enteral nutrition at a faster rate if they receive “trophic” (15 ml/kg/day) enteral feedings while receiving indomethacin or ibuprofen treatment for patent ductus arteriosus (PDA). Study design Infants were eligible for the study if they were 231/7 – 306/7 weeks gestation, weighed 401–1250 g at birth, received maximum enteral volumes ≤60 ml/kg/day and were about to be treated with indomethacin or ibuprofen. A standardized “feeding advance regimen” and guidelines for managing feeding intolerance were followed at each site (n=13). Results Infants (n=177; 26.3±1.9 wks (±SD) gestation) were randomized at 6.5±3.9 days to receive “trophic” feeds (“feeding” group, n=81: indomethacin=80%, ibuprofen=20%) or no feeds (“fasting (npo)” group, n=96: indomethacin=75%, ibuprofen=25%) during the drug administration period. Maximum daily enteral volumes prior to study entry were 14±15 ml/kg/day. After drug treatment, infants randomized to the “feeding” arm required fewer days to reach the study’s feeding volume endpoint (120 ml/kg/day). Although the enteral feeding endpoint was reached at an earlier postnatal age, the age at which central venous lines were removed did not differ between the two groups. There were no differences between the two groups in the incidence of infection, necrotizing enterocolitis, spontaneous intestinal perforation or other neonatal morbidities. Conclusion Infants required less time to reach the feeding volume endpoint if they were given “trophic” enteral feedings when they received indomethacin or ibuprofen treatments. PMID:23472765

  3. Genetic variation of the MHC class II DRB genes in the Japanese weasel, Mustela itatsi, endemic to Japan, compared with the Siberian weasel, Mustela sibirica.

    PubMed

    Nishita, Y; Abramov, A V; Kosintsev, P A; Lin, L-K; Watanabe, S; Yamazaki, K; Kaneko, Y; Masuda, R

    2015-12-01

    Major histocompatibility complex (MHC) genes encode proteins that play a critical role in vertebrate immune system and are highly polymorphic. To further understand the molecular evolution of the MHC genes, we compared MHC class II DRB genes between the Japanese weasel (Mustela itatsi), a species endemic to Japan, and the Siberian weasel (Mustela sibirica), a closely related species on the continent. We sequenced a 242-bp region of DRB exon 2, which encodes antigen-binding sites (ABS), and found 24 alleles from 31 M. itatsi individuals and 17 alleles from 21 M. sibirica individuals, including broadly distributed, species-specific and/or geographically restricted alleles. Our results suggest that pathogen-driven balancing selection have acted to maintain the diversity in the DRB genes. For predicted ABS, nonsynonymous substitutions exceeded synonymous substitutions, also indicating positive selection, which was not seen at non-ABS. In a Bayesian phylogenetic tree, two M. sibirica DRB alleles were basal to the rest of the sequences from mustelid species and may represent ancestral alleles. Trans-species polymorphism was evident between many mustelid DRB alleles, especially between M. itatsi and M. sibirica. These two Mustela species divided about 1.7 million years ago, but still share many MHC alleles, indicative of their close phylogenetic relationship. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Hidden MHC genetic diversity in the Iberian ibex (Capra pyrenaica).

    PubMed

    Angelone, Samer; Jowers, Michael J; Molinar Min, Anna Rita; Fandos, Paulino; Prieto, Paloma; Pasquetti, Mario; Cano-Manuel, Francisco Javier; Mentaberre, Gregorio; Olvera, Jorge Ramón López; Ráez-Bravo, Arián; Espinosa, José; Pérez, Jesús M; Soriguer, Ramón C; Rossi, Luca; Granados, José Enrique

    2018-05-08

    Defining hidden genetic diversity within species is of great significance when attempting to maintain the evolutionary potential of natural populations and conduct appropriate management. Our hypothesis is that isolated (and eventually small) wild animal populations hide unexpected genetic diversity due to their maintenance of ancient polymorphisms or introgressions. We tested this hypothesis using the Iberian ibex (Capra pyrenaica) as an example. Previous studies based on large sample sizes taken from its principal populations have revealed that the Iberian ibex has a remarkably small MHC DRB1 diversity (only six remnant alleles) as a result of recent population bottlenecks and a marked demographic decline that has led to the extinction of two recognized subspecies. Extending on the geographic range to include non-studied isolated Iberian ibex populations, we sequenced a new MHC DRB1 in what seemed three small isolated populations in Southern Spain (n = 132). The findings indicate a higher genetic diversity than previously reported in this important gene. The newly discovered allele, MHC DRB1*7, is identical to one reported in the domestic goat C. aegagrus hircus. Whether or not this is the result of ancient polymorphisms maintained by balancing selection or, alternatively, introgressions from domestic goats through hybridization needs to be clarified in future studies. However, hybridization between Iberian ibex and domestic goats has been reported in Spain and the fact that the newly discovered allele is only present in one of the small isolated populations and not in the others suggests introgression. The new discovered allele is not expected to increase fitness in C. pyrenaica since it generates the same protein as the existing MHC DRB1*6. Analysis of a microsatellite locus (OLADRB1) near the new MHC DRB1*7 gene reveals a linkage disequilibrium between these two loci. The allele OLADRB1, 187 bp in length, was unambiguously linked to the MHC DRB1*7 allele

  5. Effects of ibuprofen, diclofenac and paracetamol on hatch and motor behavior in developing zebrafish (Danio rerio).

    PubMed

    Xia, Liang; Zheng, Liang; Zhou, Jun Liang

    2017-09-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) which are widely used as pain relief medicines are causing increasing environmental concern due to their incomplete removal in wastewater treatment plant and potential toxicity on endocrine, kidney and reproduction in teleost fish. This study focused on the effects of widely used ibuprofen, diclofenac and paracetamol on the hatch and motor ability of early-stage zebrafish, by exposing embryos to the target chemicals at 5, 50 and 500 μg/L starting from 6 h postfertilization (hpf). A significant reduction in hatch rate at 55 hpf was caused by both ibuprofen (-63%) and diclofenac (-58%) at 500 μg/L. Exposure to high concentration of ibuprofen significantly decreased the spontaneous movement by 25%, and reduced the free swimming distance, duration and speed under dark condition by 41%, 29% and 30%, respectively. High concentration of diclofenac also caused 23% decrease in spontaneous movement, and reduced the swimming distance as well as active duration by 17% and 13% under light stimulation. In comparison, the exposure to paracetamol did not cause any notable effect. Among neuron related genes tested, the expression of neurog1 was down-regulated from ibuprofen and diclofenac exposure by 19% and 26%, while the expression of neurod1 was up-regulated only by ibuprofen (31%). These findings indicated that ibuprofen and diclofenac significantly affected embryo locomotivity and were potentially neurotoxic, thus posing threats to zebrafish development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. [Preparation of ibuprofen/EC-PVP sustained-release composite particles by supercritical CO2 anti-solvent technology].

    PubMed

    Cai, Jin-Yuan; Huang, De-Chun; Wang, Zhi-Xiang; Dang, Bei-Lei; Wang, Qiu-Ling; Su, Xin-Guang

    2012-06-01

    Ibuprofen/ethyl-cellulose (EC)-polyvinylpyrrolidone (PVP) sustained-release composite particles were prepared by using supercritical CO2 anti-solvent technology. With drug loading as the main evaluation index, orthogonal experimental design was used to optimize the preparation process of EC-PVP/ibuprofen composite particles. The experiments such as encapsulation efficiency, particle size distribution, electron microscope analysis, infrared spectrum (IR), differential scanning calorimetry (DSC) and in vitro dissolution were used to analyze the optimal process combination. The orthogonal experimental optimization process conditions were set as follows: crystallization temperature 40 degrees C, crystallization pressure 12 MPa, PVP concentration 4 mgmL(-1), and CO2 velocity 3.5 Lmin(-1). Under the optimal conditions, the drug loading and encapsulation efficiency of ibuprofen/EC-PVP composite particles were 12.14% and 52.21%, and the average particle size of the particles was 27.621 microm. IR and DSC analysis showed that PVP might complex with EC. The experiments of in vitro dissolution showed that ibuprofen/EC-PVP composite particles had good sustained-release effect. Experiment results showed that, ibuprofen/EC-PVP sustained-release composite particles can be prepared by supercritical CO2 anti-solvent technology.

  7. Predicted MHC peptide binding promiscuity explains MHC class I 'hotspots' of antigen presentation defined by mass spectrometry eluted ligand data.

    PubMed

    Jappe, Emma Christine; Kringelum, Jens; Trolle, Thomas; Nielsen, Morten

    2018-02-15

    Peptides that bind to and are presented by MHC class I and class II molecules collectively make up the immunopeptidome. In the context of vaccine development, an understanding of the immunopeptidome is essential, and much effort has been dedicated to its accurate and cost-effective identification. Current state-of-the-art methods mainly comprise in silico tools for predicting MHC binding, which is strongly correlated with peptide immunogenicity. However, only a small proportion of the peptides that bind to MHC molecules are, in fact, immunogenic, and substantial work has been dedicated to uncovering additional determinants of peptide immunogenicity. In this context, and in light of recent advancements in mass spectrometry (MS), the existence of immunological hotspots has been given new life, inciting the hypothesis that hotspots are associated with MHC class I peptide immunogenicity. We here introduce a precise terminology for defining these hotspots and carry out a systematic analysis of MS and in silico predicted hotspots. We find that hotspots defined from MS data are largely captured by peptide binding predictions, enabling their replication in silico. This leads us to conclude that hotspots, to a great degree, are simply a result of promiscuous HLA binding, which disproves the hypothesis that the identification of hotspots provides novel information in the context of immunogenic peptide prediction. Furthermore, our analyses demonstrate that the signal of ligand processing, although present in the MS data, has very low predictive power to discriminate between MS and in silico defined hotspots. © 2018 John Wiley & Sons Ltd.

  8. Effect of ibuprofen on menstrual blood prostaglandin levels in dysmenorrheic women.

    PubMed

    Pulkkinen, M O; Csapo, A I

    1979-07-01

    In a randomized crossover study 15 dysmenorrheic women were treated during two consecutive menstrual period, once with the potent prostaglandin-synthesis inhibitor: ibuprofen and once with an identical looking placebo. Each patient was medicated for 12 hours during the first day of her menstrual flow and was subsequently fitted with a cervical cup for the collection of menstrual blood during three hours. In these samples the concentrations of prostaglandin (PG)F and PGE were measured by radioimmunoassay. The patients receiving placebo had high PGF levels 135 +/- 27 ng/ml (Mean +/- S.E.) which were significnatly reduced by Ibuprofen to 24 +/- 5 ng/ml (P less than 0.001). The PGE concentrations decreased from 5 +/- 1 ng/ml to 2 +/- 1 ng/ml (P less than 0.05). Ibuprofen also reduced the menstrual pain significantly (P less than 0.001). These results substantiate the earlier conclusion that a causal relationship exists between effective treatment with PG-synthesis inhibitors and decrease in menstrual blood PG levels, intrauterine pressure and dysmenorrheic pain.

  9. Luteolin restricts dengue virus replication through inhibition of the proprotein convertase furin.

    PubMed

    Peng, Minhua; Watanabe, Satoru; Chan, Kitti Wing Ki; He, Qiuyan; Zhao, Ya; Zhang, Zhongde; Lai, Xiaoping; Luo, Dahai; Vasudevan, Subhash G; Li, Geng

    2017-07-01

    In many countries afflicted with dengue fever, traditional medicines are widely used as panaceas for illness, and here we describe the systematic evaluation of a widely known natural product, luteolin, originating from the "heat clearing" class of herbs. We show that luteolin inhibits the replication of all four serotypes of dengue virus, but the selectivity of the inhibition was weak. In addition, ADE-mediated dengue virus infection of human cell lines and primary PBMCs was inhibited. In a time-of-drug-addition study, luteolin was found to reduce infectious virus particle formation, but not viral RNA synthesis, in Huh-7 cells. During the virus life cycle, the host protease furin cleaves the pr moiety from prM protein of immature virus particles in the trans-Golgi network to produce mature virions. Analysis of virus particles from luteolin-treated cells revealed that prM was not cleaved efficiently. Biochemical interrogation of human furin showed that luteolin inhibited the enzyme activity in an uncompetitive manner, with Ki value of 58.6 μM, suggesting that treatment may restrict the virion maturation process. Luteolin also exhibited in vivo antiviral activity in mice infected with DENV, causing reduced viremia. Given the mode of action of luteolin and its widespread source, it is possible that it can be tested in combination with other dengue virus inhibitors. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Controlled Electrostatic Self-Assembly of Ibuprofen-Cationic Dextran Nanoconjugates Prepared by low Energy Green Process - a Novel Delivery Tool for Poorly Soluble Drugs.

    PubMed

    Abioye, Amos Olusegun; Kola-Mustapha, Adeola

    2015-06-01

    The direct effect of electrostatic interaction between ibuprofen and cationic dextran on the system-specific physicochemical parameters and intrinsic dissolution characteristics of ibuprofen was evaluated in order to develop drug-polymer nanoconjugate as a delivery strategy for poorly soluble drugs. Amorphous ibuprofen-DEAE dextran (Ddex) nanoconjugate was prepared using a low energy, controlled amphiphile-polyelectrolyte electrostatic self-assembly technique optimized by ibuprofen critical solubility and Ddex charge screening. Physicochemical characteristics of the nanoconjugates were evaluated using FTIR, DSC, TGA, NMR and SEM relative to pure ibuprofen. The in vitro release profiles and mechanism of ibuprofen release were determined using mathematical models including zero and first order kinetics; Higuchi; Hixson-Crowell and Korsmeyer-Peppas. Electrostatic interaction between ibuprofen and Ddex was confirmed with FT-IR, (1)H NMR and (13)C NMR spectroscopy. The broad and diffused DSC peaks of the nanoconjugate as well as the disappearance of ibuprofen melting peak provided evidence for their highly amorphous state. Low concentrations of Ddex up to 1.0 × 10(-6) g/dm(3) enhanced dissolution of ibuprofen to a maximum of 81.32% beyond which retardation occurred steadily. Multiple release mechanisms including diffusion; discrete drug dissolution; anomalous transport and super case II transport were noted. Controlled assembly of ibuprofen and Ddex produced a novel formulation with potential extended drug release dictated by Ddex concentration.

  11. Accelerating the design of molecularly imprinted nanocomposite membranes modified by Au@polyaniline for selective enrichment and separation of ibuprofen

    NASA Astrophysics Data System (ADS)

    Wu, Xiuling; Wu, Yilin; Dong, Hongjun; Zhao, Juan; Wang, Chen; Zhou, Shi; Lu, Jian; Yan, Yongsheng; Li, He

    2018-01-01

    A novel system for harvesting molecularly imprinted nanocomposite membranes (MINcMs) with Au-modified polyaniline (Au@polyaniline) nanocomposite structure was developed for selective enrichment and separation of ibuprofen. This unique nanocomposite structure obviously enhanced the adsorption capacity, perm-selectivity performance, and regeneration ability of MINcMs. The as-prepared MINcMs showed outstanding adsorption capacity (22.02 mg g-1) of ibuprofen, which was four times higher than that of non-imprinted nanocomposite membranes (NINcMs). Furthermore, the selectivity factor of MINcMs for ibuprofen reached up to 4.67 and the perm-selectivity factor β was about 8.74, which indicated MINcMs had a good selective separation performance of ibuprofen. We envision that this novel synthesis method will open a new direction to manipulation of molecularly imprinted membrane materials and provide a simple yet convenient way to selective separation of ibuprofen.

  12. No evidence of an MHC-based female mating preference in great reed warblers.

    PubMed

    Westerdahl, Helena

    2004-08-01

    Female mate-choice based on genetic compatibility is an area of growing interest. The major histocompatibility complex (MHC) genes are likely candidates for such mate-choice since these highly polymorphic genes may both increase offspring viability and also provide direct cues for mate-choice. In great reed warblers, females actively choose a breeding partner out of a handful of males that they visit and evaluate; thus, female preference for compatible or heterozygous MHC genes could have evolved. Here, I investigate whether great reed warbler females preferentially mate with males with dissimilar MHC class I alleles or with males that are heterozygous at MHC class I. Despite favourable conditions, a thorough screening method and a large sample size, there was no evidence of an MHC-based female mating preference based on either genetic compatibility or heterozygosity in this population. Power analyses of the data sets revealed that relatively small differences (15% and 8%, respectively) between true and random pairs should have been detected. Copyright 2004 Blackwell Publishing Ltd

  13. Ibuprofen, paracetamol, and steam for patients with respiratory tract infections in primary care: pragmatic randomised factorial trial

    PubMed Central

    Moore, Michael; Kelly, Joanne; Williamson, Ian; Leydon, Geraldine; McDermott, Lisa; Mullee, Mark; Stuart, Beth

    2013-01-01

    Objective To assess strategies for advice on analgesia and steam inhalation for respiratory tract infections. Design Open pragmatic parallel group factorial randomised controlled trial. Setting Primary care in United Kingdom. Participants Patients aged ≥3 with acute respiratory tract infections. Intervention 889 patients were randomised with computer generated random numbers in pre-prepared sealed numbered envelopes to components of advice or comparator advice: advice on analgesia (take paracetamol, ibuprofen, or both), dosing of analgesia (take as required v regularly), and steam inhalation (no inhalation v steam inhalation). Outcomes Primary: mean symptom severity on days 2-4; symptoms rated 0 (no problem) to 7 (as bad as it can be). Secondary: temperature, antibiotic use, reconsultations. Results Neither advice on dosing nor on steam inhalation was significantly associated with changes in outcomes. Compared with paracetamol, symptom severity was little different with ibuprofen (adjusted difference 0.04, 95% confidence interval −0.11 to 0.19) or the combination of ibuprofen and paracetamol (0.11, −0.04 to 0.26). There was no evidence for selective benefit with ibuprofen among most subgroups defined before analysis (presence of otalgia; previous duration of symptoms; temperature >37.5°C; severe symptoms), but there was evidence of reduced symptoms severity benefit in the subgroup with chest infections (ibuprofen −0.40, −0.78 to −0.01; combination −0.47; −0.84 to −0.10), equivalent to almost one in two symptoms rated as a slight rather than a moderately bad problem. Children might also benefit from treatment with ibuprofen (ibuprofen: −0.47, −0.76 to −0.18; combination: −0.04, −0.31 to 0.23). Reconsultations with new/unresolved symptoms or complications were documented in 12% of those advised to take paracetamol, 20% of those advised to take ibuprofen (adjusted risk ratio 1.67, 1.12 to 2.38), and 17% of those advised to take the

  14. The importance of immune gene variability (MHC) in evolutionary ecology and conservation

    PubMed Central

    Sommer, Simone

    2005-01-01

    Genetic studies have typically inferred the effects of human impact by documenting patterns of genetic differentiation and levels of genetic diversity among potentially isolated populations using selective neutral markers such as mitochondrial control region sequences, microsatellites or single nucleotide polymorphism (SNPs). However, evolutionary relevant and adaptive processes within and between populations can only be reflected by coding genes. In vertebrates, growing evidence suggests that genetic diversity is particularly important at the level of the major histocompatibility complex (MHC). MHC variants influence many important biological traits, including immune recognition, susceptibility to infectious and autoimmune diseases, individual odours, mating preferences, kin recognition, cooperation and pregnancy outcome. These diverse functions and characteristics place genes of the MHC among the best candidates for studies of mechanisms and significance of molecular adaptation in vertebrates. MHC variability is believed to be maintained by pathogen-driven selection, mediated either through heterozygote advantage or frequency-dependent selection. Up to now, most of our knowledge has derived from studies in humans or from model organisms under experimental, laboratory conditions. Empirical support for selective mechanisms in free-ranging animal populations in their natural environment is rare. In this review, I first introduce general information about the structure and function of MHC genes, as well as current hypotheses and concepts concerning the role of selection in the maintenance of MHC polymorphism. The evolutionary forces acting on the genetic diversity in coding and non-coding markers are compared. Then, I summarise empirical support for the functional importance of MHC variability in parasite resistance with emphasis on the evidence derived from free-ranging animal populations investigated in their natural habitat. Finally, I discuss the importance of

  15. ERp57 interacts with conserved cysteine residues in the MHC class I peptide-binding groove.

    PubMed

    Antoniou, Antony N; Santos, Susana G; Campbell, Elaine C; Lynch, Sarah; Arosa, Fernando A; Powis, Simon J

    2007-05-15

    The oxidoreductase ERp57 is a component of the major histocompatibility complex (MHC) class I peptide-loading complex. ERp57 can interact directly with MHC class I molecules, however, little is known about which of the cysteine residues within the MHC class I molecule are relevant to this interaction. MHC class I molecules possess conserved disulfide bonds between cysteines 101-164, and 203-259 in the peptide-binding and alpha3 domain, respectively. By studying a series of mutants of these conserved residues, we demonstrate that ERp57 predominantly associates with cysteine residues in the peptide-binding domain, thus indicating ERp57 has direct access to the peptide-binding groove of MHC class I molecules during assembly.

  16. Cardiac stem cell genetic engineering using the alphaMHC promoter.

    PubMed

    Bailey, Brandi; Izarra, Alberto; Alvarez, Roberto; Fischer, Kimberlee M; Cottage, Christopher T; Quijada, Pearl; Díez-Juan, Antonio; Sussman, Mark A

    2009-11-01

    Cardiac stem cells (CSCs) show potential as a cellular therapeutic approach to blunt tissue damage and facilitate reparative and regenerative processes after myocardial infarction. Despite multiple published reports of improvement, functional benefits remain modest using normal stem cells delivered by adoptive transfer into damaged myocardium. The goal of this study is to enhance survival and proliferation of CSCs that have undergone lineage commitment in early phases as evidenced by expression of proteins driven by the alpha-myosin heavy chain (alphaMHC) promoter. The early increased expression of survival kinases augments expansion of the cardiogenic CSC pool and subsequent daughter progeny. Normal CSCs engineered with fluorescent reporter protein constructs under control of the alphaMHC promoter show transgene protein expression, confirming activity of the promoter in CSCs. Cultured CSCs from both nontransgenic and cardiac-specific transgenic mice expressing survival kinases driven by the alphaMHC promoter were analyzed to characterize transgene expression following treatments to promote differentiation in culture. Therapeutic genes controlled by the alphaMHC promoter can be engineered into and expressed in CSCs and cardiomyocyte progeny with the goal of improving the efficacy of cardiac stem cell therapy.

  17. Impact of a cystic fibrosis transmembrane conductance regulator (CFTR) modulator on high-dose ibuprofen therapy in pediatric cystic fibrosis patients.

    PubMed

    Bruch, Brittany A; Singh, Sachinkumar B; Ramsey, Laura J; Starner, Timothy D

    2018-05-01

    This study was undertaken to determine if a clinically relevant drug-drug interaction occurred between ibuprofen and lumacaftor/ivacaftor. Peak ibuprofen plasma concentrations were measured prior to and after lumacaftor/ivacaftor initiation. A Wilcoxon signed rank sum test was used to compare the values. Nine patients were included in the final analysis. Peak ibuprofen plasma concentrations decreased an average of 36.4 mcg/mL after initiation of lumacaftor/ivacaftor with a relative reduction of 41.7%. The average peak plasma concentration was 84.2 mcg/mL (SD = 10.9) prior to lumacaftor/ivacaftor initiation and 47.9 mcg/mL (SD = 16.4) following initiation (P = 0.0039). Peak concentrations occurred at an average of 100 min (SD = 30) and 107 min (SD = 40) prior to and following lumacaftor/ivacaftor initiation, respectively. We suggest a clinically relevant drug-drug interaction exists between ibuprofen and lumacaftor/ivacaftor. Lumacaftor may cause subtherapeutic ibuprofen plasma concentrations due to the induction of CYP enzymes and increased metabolism of ibuprofen. Based on this analysis, we have modified our use of ibuprofen in several patients after evaluation of this drug-drug interaction. © 2018 Wiley Periodicals, Inc.

  18. Characterization of MHC class I and II genes in a subantarctic seabird, the blue petrel, Halobaena caerulea (Procellariiformes).

    PubMed

    Strandh, Maria; Lannefors, Mimi; Bonadonna, Francesco; Westerdahl, Helena

    2011-10-01

    The great polymorphism observed in the major histocompatibility complex (MHC) genes is thought to be maintained by pathogen-mediated selection possibly combined with MHC-disassortative mating, guided by MHC-determined olfactory cues. Here, we partly characterize the MHC class I and II B of the blue petrel, Halobaena caerulea (Procellariiformes), a bird with significant olfactory abilities that lives under presumably low pathogen burdens in Subantarctica. Blue petrels are long-lived, monogamous birds which suggest the necessity of an accurate mate choice process. The species is ancestral to songbirds (Passeriformes; many MHC loci), although not to gamefowls (Galliformes; few MHC loci). Considering the phylogenetic relationships and the low subantarctic pathogen burden, we expected few rather than many MHC loci in the blue petrel. However, when we analysed partial MHC class I and class II B cDNA and gDNA sequences we found evidence for as many as at least eight MHC class I loci and at least two class II B loci. These class I and II B sequences showed classical MHC characteristics, e.g. high nucleotide diversity, especially in putative peptide-binding regions where signatures of positive selection was detected. Trans-species polymorphism was found between MHC class II B sequences of the blue petrel and those of thin-billed prion, Pachyptila belcheri, two species that diverged ∼25 MYA. The observed MHC allele richness in the blue petrel may well serve as a basis for mate choice, especially since olfactory discrimination of MHC types may be possible in this species.

  19. High frequencies of circulating IFN-gamma-secreting CD8 cytotoxic T cells specific for a novel MHC class I-restricted Mycobacterium tuberculosis epitope in M. tuberculosis-infected subjects without disease.

    PubMed

    Pathan, A A; Wilkinson, K A; Wilkinson, R J; Latif, M; McShane, H; Pasvol, G; Hill, A V; Lalvani, A

    2000-09-01

    MHC class I-restricted CD8 cytotoxic T lymphocytes (CTL) are essential for protective immunity to Mycobacterium tuberculosis in animal models but their role in humans remains unclear. We therefore studied subjects who had successfully contained M. tuberculosis infection in vivo, i.e. exposed healthy household contacts and individuals with inactive self-healed pulmonary tuberculosis. Using the ELISPOT assay for IFN-gamma, we screened peptides from ESAT-6, a secreted antigen that is highly specific for M. tuberculosis. We identified a novel nonamer epitope: unstimulated peripheral blood-derived CD8 T cells displayed peptide-specific IFN-gamma release ex vivo while CD8 T cell lines and clones exhibited HLA-A68.02-restricted cytolytic activity and recognized endogenously processed antigen. The frequency of CD8 CTL specific for this single M. tuberculosis epitope, 1/2500 peripheral blood lymphocytes, was equivalent to the combined frequency of all IFN-gamma-secreting purified protein derivative-reactive T cells ex vivo. This highly focused CTL response was maintained in an asymptomatic contact over 2 years and is the most potent antigen-specific antimycobacterial CD8 CTL response hitherto described. Thus, human M. tuberculosis-specific CD8 CTL are not necessarily associated with active disease per se. Rather, our results are consistent with a protective role for these ESAT-6-specific CD8 T cells in the long-term control of M. tuberculosis in vivo in humans.

  20. Comparison of oral and intravenous Ibuprofen for medical closure of patent ductus arteriosus: which one is better?

    PubMed

    Olukman, Ozgur; Calkavur, Sebnem; Ercan, Gulten; Atlihan, Fusun; Oner, Taliha; Tavli, Vedide; Kultursay, Nilgun

    2012-01-01

    Intravenous ibuprofen is an expensive drug that is being used currently for treating and preventing patent ductus arteriosus. Although oral ibuprofen is much cheaper, there is limited data published about its safety and efficacy. The aim of this study was to compare two forms of ibuprofen in terms of safety and efficacy in closure of patent ductus arteriosus. This is a single-center retrospective study. Data were collected from patients' files of preterm infants who were hospitalized at the Neonatal Intensive Care Unit of Dr. Behcet Uz Children's Hospital between April 2009 and June 2010. Six hundred sixty infants were evaluated by echocardiography between 24 and 48 postnatal hours. Clinically and hemodynamically significant ductus arteriosus was defined in 66 infants with gestational age less than 32 weeks and birth weight less than 1500 g. Oral or intravenous ibuprofen (loading dose: 10 mg/kg on day 1, followed by maintenance dose: 5 mg/kg on days 2 and 3) was administered. Treatment success was defined as a completely closed duct without reopening on follow-up. Drug-associated renal, gastrointestinal, cerebral, hematological, and metabolic side effects were monitored and compared between treatment groups. Ductal closure rates were 100% and 97.6%, respectively, in the oral and intravenous groups. Hypernatremia was the remarkable side effect in the intravenous group, whereas bronchopulmonary dysplasia and septicemia were prominent in the oral group. No statistically significant difference could be demonstrated between the groups in terms of mortality rates. Oral ibuprofen therapy is as efficacious as intravenous ibuprofen with some concerns about increased sepsis and bronchopulmonary dysplasia incidence. However, comprehensive and large-scale pharmacokinetic studies are required in order to prove this efficacy. On the other hand, intravenous ibuprofen still remains to be the drug of choice for patent ductus arteriosus but only with meticulous control of serum

  1. The pharmacokinetic profile of a novel fixed-dose combination tablet of ibuprofen and paracetamol

    PubMed Central

    2010-01-01

    Background Ibuprofen and paracetamol differ in their mode of action and related therapeutic effects, suggesting that combined administration may offer improved analgesia. Reported here are the results of two studies on the pharmacokinetic properties of a novel ibuprofen (200 mg) and paracetamol (500 mg) fixed-dose combination tablet. Methods Both studies were open-label, randomised studies in healthy volunteers: Study 1 was a four-way crossover, single-dose study; Study 2 was a two-way cross-over, repeat-dose study. Results Pharmacokinetic parameters for ibuprofen and paracetamol were similar for the combination and monotherapy tablets (values falling within the 80% to 125% acceptable bioequivalence range) except for the rate of absorption of paracetamol from the combination (tmax), which was significantly faster compared with monotherapy (median difference 10 minutes; p < 0.05). Mean plasma concentrations of both drugs were higher, earlier, following administration of the combination tablet compared with monotherapy. Mean plasma levels at 10 and 20 minutes were 6.64 μg.mL-1 and 16.81 μg.mL-1, respectively, for ibuprofen from the combination, compared with 0.58 μg.mL-1 and 9.00 μg.mL-1, respectively, for monotherapy. For paracetamol, mean plasma levels at 10 and 20 minutes were 5.43 μg.mL-1 and 14.54 μg.mL-1, respectively, for the combination compared with 0.33 μg.mL-1 and 9.19 μg.mL-1, respectively, for monotherapy. The rate of absorption of both ibuprofen and paracetamol was significantly delayed when the combination tablet was administered in the fed versus fasted state; median delay was 25 minutes for ibuprofen (p > 0.05) and 55 minutes for paracetamol (p < 0.001). The pharmacokinetic parameters were comparable irrespective of whether the combination tablet was given twice or three times daily; systemic exposure was, however, approximately 1.4 times greater for both drugs when given three times daily. Conclusions Administration of ibuprofen and

  2. Definition of Proteasomal Peptide Splicing Rules for High-Efficiency Spliced Peptide Presentation by MHC Class I Molecules

    PubMed Central

    Berkers, Celia R.; de Jong, Annemieke; Schuurman, Karianne G.; Linnemann, Carsten; Meiring, Hugo D.; Janssen, Lennert; Neefjes, Jacques J.; Schumacher, Ton N. M.; Rodenko, Boris

    2015-01-01

    Peptide splicing, in which two distant parts of a protein are excised and then ligated to form a novel peptide, can generate unique MHC class I–restricted responses. Because these peptides are not genetically encoded and the rules behind proteasomal splicing are unknown, it is difficult to predict these spliced Ags. In the current study, small libraries of short peptides were used to identify amino acid sequences that affect the efficiency of this transpeptidation process. We observed that splicing does not occur at random, neither in terms of the amino acid sequences nor through random splicing of peptides from different sources. In contrast, splicing followed distinct rules that we deduced and validated both in vitro and in cells. Peptide ligation was quantified using a model peptide and demonstrated to occur with up to 30% ligation efficiency in vitro, provided that optimal structural requirements for ligation were met by both ligating partners. In addition, many splicing products could be formed from a single protein. Our splicing rules will facilitate prediction and detection of new spliced Ags to expand the peptidome presented by MHC class I Ags. PMID:26401003

  3. Structure and content of the major histocompatibility complex (MHC) class I regions of the great anthropoid apes.

    PubMed

    Venditti, C P; Lawlor, D A; Sharma, P; Chorney, M J

    1996-09-01

    The origins of the functional class I genes predated human speciation, a phenomenon known as trans-speciation. The retention of class Ia orthologues within the great apes, however, has not been paralleled by studies designed to examine the pseudogene content, organization, and structure of their class I regions. Therefore, we have begun the systematic characterization of the Old World primate MHCs. The numbers and sizes of fragments harboring class I sequences were similar among the chimpanzee, gorilla, and human genomes tested. Both of the gorillas included in our study possessed genomic fragments carrying orthologues of the recently evolved HLA-H pseudogene identical to those found in the human. The overall megabase restriction fragment patterns of humans and chimpanzees appeared slightly more similar to each other, although the HLA-A subregional megabase variants may have been generated following the emergence of Homo sapiens. Based on the results of this initial study, it is difficult to generate a firm species tree and to determine human's closest evolutionary neighbor. Nevertheless, an analysis of MHC subregional similarities and differences in the hominoid apes may ultimately aid in localizing and identifying MHC haplotype-associated disease genes such as idiopathic hemochromatosis.

  4. Multiple-dose pharmacokinetics and safety of an ibuprofen-pseudoephedrine cold suspension in children.

    PubMed

    Gelotte, Cathy K; Prior, Mary Jane; Pendley, Charles; Zimmerman, Brenda; Lavins, Bernard J

    2010-07-01

    Two studies were conducted to characterize multiple-dose pharmacokinetics and potential drug interactions of ibuprofen and pseudoephedrine combined in a suspension and to evaluate safety of this combination in children with common cold, flu, or sinusitis. In the pharmacokinetic study, 24 healthy children aged 4-11 years were administered ibuprofen -pseudoephedrine suspension at 7.5 and 1.125 mg/kg, respectively, every 6 hours for 5 doses. Serial blood samples were drawn over 6 hours after final dose for assessment of steady-state pharmacokinetics. In the open-label, multicenter safety study, more than 100 children aged 2-11 years experiencing symptomatic rhinitis were enrolled. Ibuprofen -pseudoephedrine suspension was administered as needed at similar mg/kg doses every 6-8 hours for up to 3 days. Subjects enrolled in the pharmacokinetic study showed no accumulation of either drug; their weight-adjusted clearances were independent of age, and results were comparable with those from previous single-ingredient studies. For ibuprofen, oral clearance (Cl/F) was 77.5 + or - 16.4 mL/kg/h and volume of distribution (Vd/F) was 0.147 + or - 0.037 L/kg. For pseudoephedrine, Cl/F was 12.3 + or - 2.2 mL/kg/min and Vd/F was 2.52 + or - 0.47 L/kg. In the safety study, adverse events were reported for 18.4% of subjects; most were mild to moderate intensity. There was little difference in incidence of adverse events among different age and weight groups. In conclusion, administration of combined ibuprofen and pseudoephedrine in children demonstrated similar pharmacokinetics when compared with reports of the pharmacokinetics for the single-ingredient products, consistent with no apparent drug interactions. The combination suspension was generally well tolerated.

  5. CD1d expression by hepatocytes is a main restriction element for intrahepatic T-cell recognition.

    PubMed

    Agrati, C; Martini, F; Nisii, C; Oliva, A; D'Offizi, G; Narciso, P; Nardacci, R; Piacentini, M; Dieli, F; Pucillo, L P; Poccia, F

    2005-01-01

    The liver has specific mechanisms to protect itself from infectious agents and to avoid autoimmunity, indicating an important role of the hepatic tissues in antigen presentation and tolerance induction. Since intrahepatic lymphocytes may contribute to the innate immunity and to the liver pathology, it is of interest to analyze the expression of antigen presenting molecules and of the related T cell recognition in liver, and how these change in relation to different diseases. We analyzed the expression of MHC class I, and of CD1-a, -b, -c, and -d proteins on liver tissues from patients with different hepatic diseases. Moreover, in the same patients we studied the intrahepatic and peripheral NKT cell recognition of alpha-galactosyl ceramide antigen in the context of CD1d. Unlike in other tissues, classical MHC class I molecules were poorly expressed in the hepatic compartment, suggesting that inflamed hepatocytes may trigger weak MHC-restricted T cell responses. Nevertheless, we observed a prevalent expression of HLA class I-like CD1d isoform on the hepatocyte surface, indicating that CD1d is the main restriction element in the liver. In patients with viral hepatitis, the intrahepatic CD1d expression parallels the recruitment of CD56+Valpha24Vbeta11+ NKT cells in the liver which recognize CD1d presenting glycolipids such as alpha-galactosyl ceramide, suggesting that the intrahepatic T cell immunity may focus on glycolipid antigens.

  6. NF-Y and the immune response: Dissecting the complex regulation of MHC genes.

    PubMed

    Sachini, Nikoleta; Papamatheakis, Joseph

    2017-05-01

    Nuclear Factor Y (NF-Y) was first described as one of the CCAAT binding factors. Although CCAAT motifs were found to be present in various genes, NF-Y attracted a lot of interest early on, due to its role in Major Histocompatibility Complex (MHC) gene regulation. MHC genes are crucial in immune response and show peculiar expression patterns. Among other conserved elements on MHC promoters, an NF-Y binding CCAAT box was found to contribute to MHC transcriptional regulation. NF-Y along with other DNA binding factors assembles in a stereospecific manner to form a multiprotein scaffold, the MHC enhanceosome, which is necessary but not sufficient to drive transcription. Transcriptional activation is achieved by the recruitment of yet another factor, the class II transcriptional activator (CIITA). In this review, we briefly discuss basic findings on MHCII transcription regulation and we highlight NF-Y different modes of function in MHCII gene activation. This article is part of a Special Issue entitled: Nuclear Factor Y in Development and Disease, edited by Prof. Roberto Mantovani. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Cryopreservation of MHC multimers: Recommendations for quality assurance in detection of antigen specific T cells.

    PubMed

    Hadrup, Sine Reker; Maurer, Dominik; Laske, Karoline; Frøsig, Thomas Mørch; Andersen, Sofie Ramskov; Britten, Cedrik M; van der Burg, Sjoerd H; Walter, Steffen; Gouttefangeas, Cécile

    2015-01-01

    Fluorescence-labeled peptide-MHC class I multimers serve as ideal tools for the detection of antigen-specific T cells by flow cytometry, enabling functional and phenotypical characterization of specific T cells at the single cell level. While this technique offers a number of unique advantages, MHC multimer reagents can be difficult to handle in terms of stability and quality assurance. The stability of a given fluorescence-labeled MHC multimer complex depends on both the stability of the peptide-MHC complex itself and the stability of the fluorochrome. Consequently, stability is difficult to predict and long-term storage is generally not recommended. We investigated here the possibility of cryopreserving MHC multimers, both in-house produced and commercially available, using a wide range of peptide-MHC class I multimers comprising virus and cancer-associated epitopes of different affinities presented by various HLA-class I molecules. Cryopreservation of MHC multimers was feasible for at least 6 months, when they were dissolved in buffer containing 5-16% glycerol (v/v) and 0.5% serum albumin (w/v). The addition of cryoprotectants was tolerated across three different T-cell staining protocols for all fluorescence labels tested (PE, APC, PE-Cy7 and Quantum dots). We propose cryopreservation as an easily implementable method for stable storage of MHC multimers and recommend the use of cryopreservation in long-term immunomonitoring projects, thereby eliminating the variability introduced by different batches and inconsistent stability. © 2014 International Society for Advancement of Cytometry.

  8. Cryopreservation of MHC Multimers: Recommendations for Quality Assurance in Detection of Antigen Specific T Cells

    PubMed Central

    Hadrup, Sine Reker; Maurer, Dominik; Laske, Karoline; Frøsig, Thomas Mørch; Andersen, Sofie Ramskov; Britten, Cedrik M; van der Burg, Sjoerd H; Walter, Steffen; Gouttefangeas, Cécile

    2015-01-01

    Fluorescence-labeled peptide-MHC class I multimers serve as ideal tools for the detection of antigen-specific T cells by flow cytometry, enabling functional and phenotypical characterization of specific T cells at the single cell level. While this technique offers a number of unique advantages, MHC multimer reagents can be difficult to handle in terms of stability and quality assurance. The stability of a given fluorescence-labeled MHC multimer complex depends on both the stability of the peptide-MHC complex itself and the stability of the fluorochrome. Consequently, stability is difficult to predict and long-term storage is generally not recommended. We investigated here the possibility of cryopreserving MHC multimers, both in-house produced and commercially available, using a wide range of peptide-MHC class I multimers comprising virus and cancer-associated epitopes of different affinities presented by various HLA-class I molecules. Cryopreservation of MHC multimers was feasible for at least 6 months, when they were dissolved in buffer containing 5–16% glycerol (v/v) and 0.5% serum albumin (w/v). The addition of cryoprotectants was tolerated across three different T-cell staining protocols for all fluorescence labels tested (PE, APC, PE-Cy7 and Quantum dots). We propose cryopreservation as an easily implementable method for stable storage of MHC multimers and recommend the use of cryopreservation in long-term immunomonitoring projects, thereby eliminating the variability introduced by different batches and inconsistent stability. © 2014 International Society for Advancement of Cytometry PMID:25297339

  9. A cell-based MHC stabilization assay for the detection of peptide binding to the canine classical class I molecule, DLA-88.

    PubMed

    Ross, Peter; Holmes, Jennifer C; Gojanovich, Gregory S; Hess, Paul R

    2012-12-15

    Identifying immunodominant CTL epitopes is essential for studying CD8+ T-cell responses in populations, but remains difficult, as peptides within antigens typically are too numerous for all to be synthesized and screened. Instead, to facilitate discovery, in silico scanning of proteins for sequences that match the motif, or binding preferences, of the restricting MHC class I allele - the largest determinant of immunodominance - can be used to predict likely candidates. The high false positive rate with this analysis ideally requires binding confirmation, which is obtained routinely by an assay using cell lines such as RMA-S that have defective transporter associated with antigen processing (TAP) machinery, and consequently, few surface class I molecules. The stabilization and resultant increased life-span of peptide-MHC complexes on the cell surface by the addition of true binders validates their identity. To determine whether a similar assay could be developed for dogs, we transfected a prevalent class I allele, DLA-88*50801, into RMA-S. In the BARC3 clone, the recombinant heavy chain was associated with murine β2-microglobulin, and importantly, could differentiate motif-matched and -mismatched peptides by surface MHC stabilization. This work demonstrates the potential to use RMA-S cells transfected with canine alleles as a tool for CTL epitope discovery in this species. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Mhc supertypes confer both qualitative and quantitative resistance to avian malaria infections in a wild bird population

    PubMed Central

    Sepil, Irem; Lachish, Shelly; Hinks, Amy E.; Sheldon, Ben C.

    2013-01-01

    Major histocompatibility complex (Mhc) genes are believed to play a key role in the genetic basis of disease control. Although numerous studies have sought links between Mhc and disease prevalence, many have ignored the ecological and epidemiological aspects of the host–parasite interaction. Consequently, interpreting associations between prevalence and Mhc has been difficult, whereas discriminating alleles for qualitative resistance, quantitative resistance and susceptibility remains challenging. Moreover, most studies to date have quantified associations between genotypes and disease status, overlooking the complex relationship between genotype and the properties of the Mhc molecule that interacts with parasites. Here, we address these problems and demonstrate avian malaria (Plasmodium) parasite species-specific associations with functional properties of Mhc molecules (Mhc supertypes) in a wild great tit (Parus major) population. We further show that correctly interpreting these associations depends crucially on understanding the spatial variation in risk of infection and the fitness effects of infection. We report that a single Mhc supertype confers qualitative resistance to Plasmodium relictum, whereas a different Mhc supertype confers quantitative resistance to Plasmodium circumflexum infections. Furthermore, we demonstrate common functional properties of Plasmodium-resistance alleles in passerine birds, suggesting this is a model system for parasite–Mhc associations in the wild. PMID:23516242

  11. Variable NK cell receptors and their MHC class I ligands in immunity, reproduction and human evolution.

    PubMed

    Parham, Peter; Moffett, Ashley

    2013-02-01

    Natural killer (NK) cells have roles in immunity and reproduction that are controlled by variable receptors that recognize MHC class I molecules. The variable NK cell receptors found in humans are specific to simian primates, in which they have progressively co-evolved with MHC class I molecules. The emergence of the MHC-C gene in hominids drove the evolution of a system of NK cell receptors for MHC-C molecules that is most elaborate in chimpanzees. By contrast, the human system of MHC-C receptors seems to have been subject to different selection pressures that have acted in competition on the immunological and reproductive functions of MHC class I molecules. We suggest that this compromise facilitated the development of the bigger brains that enabled archaic and modern humans to migrate out of Africa and populate other continents.

  12. Evaluation of the major histocompatibility complex (Mhc) in cranes: applications to conservation efforts

    USGS Publications Warehouse

    Jarvi, S.I.; Miller, M.M.; Goto, R.M.; Gee, G.F.; Briles, W.E.

    2001-01-01

    Although there have been heated discussions concerning the relative importance of using Mhc diversity as a basis for selecting breeders in conservation projects, most parties agree that the genetic variability residual in an endangered species should be maintained through genetic management, if at all possible. Substantial evidence exists (particularly in birds) documenting the influences of specific Mhc haplotypes on disease outcome and also that those individuals which are heterozygous for Mhc alleles appear to have an advantage for survival over those that are homozygous. Thus, conservation of genetic variability of the Mhc is likely important for the preservation of fitness, especially in small breeding populations. More than half of the world's crane species are listed as endangered. Members of all 15 known species are represented among breeding animals for captive propagation at the International Crane Foundation (Wisconsin) and the USGS Patuxent Wildlife Research Center (Maryland). Collaborative multi-organization efforts and the availability of extensive pedigree records have allowed the study of Mhc variability in several species of cranes. We have found, for example, that Mhc diversity in the captive Florida sandhill crane (Grus canadensis pratensis) population appears high, whereas in the captive whooping crane (Grus americana), which has undergone a severe 'genetic bottleneck,? both the number of alleles and the levels of heterozygosity appear to be substantially reduced.

  13. Crystal structure of a TAPBPR–MHC I complex reveals the mechanism of peptide editing in antigen presentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Jiansheng; Natarajan, Kannan; Boyd, Lisa F.

    Central to CD8+ T cell–mediated immunity is the recognition of peptide–major histocompatibility complex class I (p–MHC I) proteins displayed by antigen-presenting cells. Chaperone-mediated loading of high-affinity peptides onto MHC I is a key step in the MHC I antigen presentation pathway. However, the structure of MHC I with a chaperone that facilitates peptide loading has not been determined. We report the crystal structure of MHC I in complex with the peptide editor TAPBPR (TAP-binding protein–related), a tapasin homolog. TAPBPR remodels the peptide-binding groove of MHC I, resulting in the release of low-affinity peptide. Changes include groove relaxation, modifications of keymore » binding pockets, and domain adjustments. This structure captures a peptide-receptive state of MHC I and provides insights into the mechanism of peptide editing by TAPBPR and, by analogy, tapasin.« less

  14. Identification of SIV Nef CD8(+) T cell epitopes restricted by a MHC class I haplotype associated with lower viral loads in a macaque AIDS model.

    PubMed

    Nomura, Takushi; Yamamoto, Hiroyuki; Takahashi, Naofumi; Naruse, Taeko K; Kimura, Akinori; Matano, Tetsuro

    2014-07-25

    Virus-specific CD8(+) T-cell responses are crucial for the control of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication. Multiple studies on HIV-infected individuals and SIV-infected macaques have indicated association of several major histocompatibility complex class I (MHC-I) genotypes with lower viral loads and delayed AIDS progression. Understanding of the viral control mechanism associated with these MHC-I genotypes would contribute to the development of intervention strategy for HIV control. We have previously reported a rhesus MHC-I haplotype, 90-120-Ia, associated with lower viral loads after SIVmac239 infection. Gag206-216 and Gag241-249 epitope-specific CD8(+) T-cell responses have been shown to play a central role in the reduction of viral loads, whereas the effect of Nef-specific CD8(+) T-cell responses induced in all the 90-120-Ia(+) macaques on SIV replication remains unknown. Here, we identified three CD8(+) T-cell epitopes, Nef9-19, Nef89-97, and Nef193-203, associated with 90-120-Ia. Nef9-19 and Nef193-203 epitope-specific CD8(+) T-cell responses frequently selected for mutations resulting in viral escape from recognition by these CD8(+) T cells, indicating that these CD8(+) T cells exert strong suppressive pressure on SIV replication. Results would be useful for elucidation of the viral control mechanism associated with 90-120-Ia. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Genomic Porosity between Invasive Chondrostoma nasus and Endangered Endemic Parachondrostoma toxostoma (Cyprinidae): The Evolution of MHC IIB Genes

    PubMed Central

    Šimková, Andrea; Civáňová, Kristína; Gettová, Lenka; Gilles, André

    2013-01-01

    Two cyprinid species, Parachondrostoma toxostoma, an endemic threatened species, and Chondrostoma nasus, an invasive species, live in sympatry in southern France and form two sympatric zones where the presence of intergeneric hybrids is reported. To estimate the potential threat to endemic species linked to the introduction of invasive species, we focused on the DAB genes (functional MHC IIB genes) because of their adaptive significance and role in parasite resistance. More specifically, we investigated (1) the variability of MHC IIB genes, (2) the selection pattern shaping MHC polymorphism, and (3) the extent to which trans-species evolution and intergeneric hybridization affect MHC polymorphism. In sympatric areas, the native species has more diversified MHC IIB genes when compared to the invasive species, probably resulting from the different origins and dispersal of both species. A similar level of MHC polymorphism was found at population level in both species, suggesting similar mechanisms generating MHC diversity. In contrast, a higher number of DAB-like alleles per specimen were found in invasive species. Invasive species tended to express the alleles of two DAB lineages, whilst native species tended to express the alleles of only the DAB3 lineage. Hybrids have a pattern of MHC expression intermediate between both species. Whilst positive selection acting on peptide binding sites (PBS) was demonstrated in both species, a slightly higher number of positively selected sites were identified in C. nasus, which could result from parasite-mediated selection. Bayesian clustering analysis revealed a similar pattern of structuring for the genetic variation when using microsatellites or the MHC approach. We confirmed the importance of trans-species evolution for MHC polymorphism. In addition, we demonstrated bidirectional gene flow for MHC IIB genes in sympatric areas. The positive significant correlation between MHC and microsatellites suggests that demographic

  16. Comparison of intravenous ibuprofen and acetaminophen for postoperative multimodal pain management in bariatric surgery: A randomized controlled trial.

    PubMed

    Erdogan Kayhan, Gulay; Sanli, Mukadder; Ozgul, Ulku; Kirteke, Ramazan; Yologlu, Saim

    2018-06-20

    Multimodal analgesic strategies are recommended to decrease opioid requirements and opioid-induced respiratory complications in patients undergoing laparoscopic bariatric surgery. Recent studies have demonstrated that intravenous ibuprofen decreases opioid consumption compared with placebo. The primary aim of this study was to compare the effect of intravenous ibuprofen and intravenous acetaminophen on opioid consumption. We also aimed to compare postoperative pain levels and side effects of the drugs. Randomized, double-blinded study. University hospital. Eighty patients, aged 18-65 years, (ASA physical status II-III) undergoing laparoscopic sleeve gastrectomy or laparoscopic Roux-en-Y gastric bypass surgery were included in this study. Patients were randomized to receive 800 mg ibuprofen or 1 g acetaminophen intravenously every 6 h for the first 24 h following surgery; in addition, patient-controlled analgesia with morphine was administered. Postoperative morphine consumption in the first 24 h, visual analog scale (VAS) pain scores at rest and with movement, and opioid related side effects were assessed. In addition, time to passage of flatus, surgical complications, lengths of intensive care unit and hospital stay, and laboratory parameters were recorded. The mean morphine consumption was 23.94 ± 13.89 mg in iv ibuprofen group and 30.23 ± 13.76 mg in the acetaminophen group [mean difference: -6.28 (95% CI, -12.70, 0.12); P = 0.055]. The use of intravenous ibuprofen was associated with reduction in pain at rest (AUC, 1- to 24-h, P < 0.001 and 12- to 24-h, P = 0.021) and pain with movement (AUC, 1-24, 6-24, and 12-24 h, P < 0.001). Intravenous ibuprofen was well tolerated with no serious side effects except dizziness. Intravenous ibuprofen did not significantly reduce opioid consumption compared to intravenous acetaminophen; however, it reduced the severity of pain. Intravenous ibuprofen may be a good alternative to

  17. Displacement chromatography on cyclodextrin silicas. IV. Separation of the enantiomers of ibuprofen.

    PubMed

    Farkas, G; Irgens, L H; Quintero, G; Beeson, M D; al-Saeed, A; Vigh, G

    1993-08-13

    A displacement chromatographic method has been developed for the preparative separation of the enantiomers of ibuprofen using a beta-cyclodextrin silica stationary phase. The retention behavior of ibuprofen was studied in detail: the log k' vs. polar organic modifier concentration, the log k' vs. pH, the log k' vs. buffer concentration and the log k' vs. 1/T relationships; also, the alpha vs. polar organic modifier concentration, the alpha vs. pH, the alpha vs. buffer concentration and the log alpha vs. 1/T relationships have been determined in order to find the carrier solution composition which results in maximum chiral selectivity and sufficient, but not excessive solute retention (1 < k' < 30). 4-tert.-Butylcyclohexanol, a structurally similar but more retained compound than ibuprofen, was selected as displacer for the separation. Even with an alpha value as small as 1.08, good preparative chiral separations were observed both in the displacement mode and in the overloaded elution mode, up to a sample load of 0.5 mg.

  18. Crystal engineering of ibuprofen compounds: From molecule to crystal structure to morphology prediction by computational simulation and experimental study

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Liang, Zuozhong; Wu, Fei; Chen, Jian-Feng; Xue, Chunyu; Zhao, Hong

    2017-06-01

    We selected the crystal structures of ibuprofen with seven common space groups (Cc, P21/c, P212121, P21, Pbca, Pna21, and Pbcn), which was generated from ibuprofen molecule by molecular simulation. The predicted crystal structures of ibuprofen with space group P21/c has the lowest total energy and the largest density, which is nearly indistinguishable with experimental result. In addition, the XRD patterns for predicted crystal structure are highly consistent with recrystallization from solvent of ibuprofen. That indicates that the simulation can accurately predict the crystal structure of ibuprofen from the molecule. Furthermore, based on this crystal structure, we predicted the crystal habit in vacuum using the attachment energy (AE) method and considered solvent effects in a systematic way using the modified attachment energy (MAE) model. The simulation can accurately construct a complete process from molecule to crystal structure to morphology prediction. Experimentally, we observed crystal morphologies in four different polarity solvents compounds (ethanol, acetonitrile, ethyl acetate, and toluene). We found that the aspect ratio decreases of crystal habits in this ibuprofen system were found to vary with increasing solvent relative polarity. Besides, the modified crystal morphologies are in good agreement with the observed experimental morphologies. Finally, this work may guide computer-aided design of the desirable crystal morphology.

  19. Strong Selection at MHC in Mexicans since Admixture

    PubMed Central

    Zhou, Quan; Zhao, Liang; Guan, Yongtao

    2016-01-01

    Mexicans are a recent admixture of Amerindians, Europeans, and Africans. We performed local ancestry analysis of Mexican samples from two genome-wide association studies obtained from dbGaP, and discovered that at the MHC region Mexicans have excessive African ancestral alleles compared to the rest of the genome, which is the hallmark of recent selection for admixed samples. The estimated selection coefficients are 0.05 and 0.07 for two datasets, which put our finding among the strongest known selections observed in humans, namely, lactase selection in northern Europeans and sickle-cell trait in Africans. Using inaccurate Amerindian training samples was a major concern for the credibility of previously reported selection signals in Latinos. Taking advantage of the flexibility of our statistical model, we devised a model fitting technique that can learn Amerindian ancestral haplotype from the admixed samples, which allows us to infer local ancestries for Mexicans using only European and African training samples. The strong selection signal at the MHC remains without Amerindian training samples. Finally, we note that medical history studies suggest such a strong selection at MHC is plausible in Mexicans. PMID:26863142

  20. MHC Class II haplotypes of Colombian Amerindian tribes

    PubMed Central

    Yunis, Juan J.; Yunis, Edmond J.; Yunis, Emilio

    2013-01-01

    We analyzed 1041 individuals belonging to 17 Amerindian tribes of Colombia, Chimila, Bari and Tunebo (Chibcha linguistic family), Embera, Waunana (Choco linguistic family), Puinave and Nukak (Maku-Puinave linguistic families), Cubeo, Guanano, Tucano, Desano and Piratapuyo (Tukano linguistic family), Guahibo and Guayabero (Guayabero Linguistic Family), Curripaco and Piapoco (Arawak linguistic family) and Yucpa (Karib linguistic family). for MHC class II haplotypes (HLA-DRB1, DQA1, DQB1). Approximately 90% of the MHC class II haplotypes found among these tribes are haplotypes frequently encountered in other Amerindian tribes. Nonetheless, striking differences were observed among Chibcha and non-Chibcha speaking tribes. The DRB1*04:04, DRB1*04:11, DRB1*09:01 carrying haplotypes were frequently found among non-Chibcha speaking tribes, while the DRB1*04:07 haplotype showed significant frequencies among Chibcha speaking tribes, and only marginal frequencies among non-Chibcha speaking tribes. Our results suggest that the differences in MHC class II haplotype frequency found among Chibcha and non-Chibcha speaking tribes could be due to genetic differentiation in Mesoamerica of the ancestral Amerindian population into Chibcha and non-Chibcha speaking populations before they entered into South America. PMID:23885196

  1. Characterization of 47 MHC class I sequences in Filipino cynomolgus macaques

    PubMed Central

    Campbell, Kevin J.; Detmer, Ann M.; Karl, Julie A.; Wiseman, Roger W.; Blasky, Alex J.; Hughes, Austin L.; Bimber, Benjamin N.; O’Connor, Shelby L.; O’Connor, David H.

    2009-01-01

    Cynomolgus macaques (Macaca fascicularis) provide increasingly common models for infectious disease research. Several geographically distinct populations of these macaques from Southeast Asia and the Indian Ocean island of Mauritius are available for pathogenesis studies. Though host genetics may profoundly impact results of such studies, similarities and differences between populations are often overlooked. In this study we identified 47 full-length MHC class I nucleotide sequences in 16 cynomolgus macaques of Filipino origin. The majority of MHC class I sequences characterized (39 of 47) were unique to this regional population. However, we discovered eight sequences with perfect identity and six sequences with close similarity to previously defined MHC class I sequences from other macaque populations. We identified two ancestral MHC haplotypes that appear to be shared between Filipino and Mauritian cynomolgus macaques, notably a Mafa-B haplotype that has previously been shown to protect Mauritian cynomolgus macaques against challenge with a simian/human immunodeficiency virus, SHIV89.6P. We also identified a Filipino cynomolgus macaque MHC class I sequence for which the predicted protein sequence differs from Mamu-B*17 by a single amino acid. This is important because Mamu-B*17 is strongly associated with protection against simian immunodeficiency virus (SIV) challenge in Indian rhesus macaques. These findings have implications for the evolutionary history of Filipino cynomolgus macaques as well as for the use of this model in SIV/SHIV research protocols. PMID:19107381

  2. Enhanced photoelectrochemical degradation of Ibuprofen and generation of hydrogen via BiOI-deposited TiO2 nanotube arrays.

    PubMed

    Chen, Hanlin; Peng, Yen-Ping; Chen, Ting-Yu; Chen, Ku-Fan; Chang, Ken-Lin; Dang, Zhi; Lu, Gui-Ning; He, Hongping

    2018-08-15

    This study employed BiOI-deposited TiO 2 nanotube arrays (BiOI-TNTAs) electrode in a photoelectrochemical (PEC) system to oxidize Ibuprofen and generate hydrogen in the anodic and cathodic chamber, respectively. FESEM results revealed the diameter of TiO 2 nanotubes was 90-110nm. According to the XRD analysis, the BiOI-TNTAs were dominated by the anatase phase and tetragonal structure of BiOI. XPS results confirmed the coexistence of BiOI in the BiOI-TNTAs associated with Bi (33.76%) and I (8.81%). UV-vis absorption spectra illustrated BiOI-TNTAs exhibit strong absorptions in the visible light region. The PEC method showed the best degradation efficiency for Ibuprofen is a rate constant of 3.21×10 -2 min -1 . The results of the Nyquist plot revealed the recombination of photogenerated electron-hole pairs was inhibited as the bias potential was applied. Furthermore, the Bode plot demonstrated the lifetime (τ el ) of photoexcited electrons of BiOI-TNTAs was 1.8 and 4.1 times longer than that of BiOI-Ti and TNTAs, respectively. In the cathodic chamber, the amount of hydrogen generation reached 219.94μM/cm 2 after 3h of reaction time. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Enhanced Detection of Antigen-Specific CD4+ T Cells Using Altered Peptide Flanking Residue Peptide–MHC Class II Multimers

    PubMed Central

    Holland, Christopher J.; Dolton, Garry; Scurr, Martin; Ladell, Kristin; Schauenburg, Andrea J.; Miners, Kelly; Madura, Florian; Sewell, Andrew K.; Price, David A.

    2015-01-01

    Fluorochrome-conjugated peptide–MHC (pMHC) class I multimers are staple components of the immunologist’s toolbox, enabling reliable quantification and analysis of Ag-specific CD8+ T cells irrespective of functional outputs. In contrast, widespread use of the equivalent pMHC class II (pMHC-II) reagents has been hindered by intrinsically weaker TCR affinities for pMHC-II, a lack of cooperative binding between the TCR and CD4 coreceptor, and a low frequency of Ag-specific CD4+ T cell populations in the peripheral blood. In this study, we show that peptide flanking regions, extending beyond the central nonamer core of MHC-II–bound peptides, can enhance TCR–pMHC-II binding and T cell activation without loss of specificity. Consistent with these findings, pMHC-II multimers incorporating peptide flanking residue modifications proved superior for the ex vivo detection, characterization, and manipulation of Ag-specific CD4+ T cells, highlighting an unappreciated feature of TCR–pMHC-II interactions. PMID:26553072

  4. Celecoxib versus ibuprofen in the prevention of heterotopic ossification following total hip replacement: a prospective randomised trial.

    PubMed

    Saudan, M; Saudan, P; Perneger, T; Riand, N; Keller, A; Hoffmeyer, P

    2007-02-01

    We examined whether a selective cyclooxygenase-2 (COX-2) inhibitor (celecoxib) was as effective as a non-selective inhibitor (ibuprofen) for the prevention of heterotopic ossification following total hip replacement. A total of 250 patients were randomised to receive celecoxib (200 mg b/d) or ibuprofen (400 mg t.d.s) for ten days after surgery. Anteroposterior radiographs of the pelvis were examined for heterotopic ossification three months after surgery. Of the 250 patients, 240 were available for assessment. Heterotopic ossification was more common in the ibuprofen group (none 40.7% (50), Brooker class I 46.3% (57), classes II and III 13.0% (16)) than in the celecoxib group (none 59.0% (69), Brooker class I 35.9% (42), classes II and III 5.1% (6), p=0.002). Celecoxib was more effective than ibuprofen in preventing heterotopic bone formation after total hip replacement.

  5. No evidence for the effect of MHC on male mating success in the brown bear.

    PubMed

    Kuduk, Katarzyna; Babik, Wieslaw; Bellemain, Eva; Valentini, Alice; Zedrosser, Andreas; Taberlet, Pierre; Kindberg, Jonas; Swenson, Jon E; Radwan, Jacek

    2014-01-01

    Mate choice is thought to contribute to the maintenance of the spectacularly high polymorphism of the Major Histocompatibility Complex (MHC) genes, along with balancing selection from parasites, but the relative contribution of the former mechanism is debated. Here, we investigated the association between male MHC genotype and mating success in the brown bear. We analysed fragments of sequences coding for the peptide-binding region of the highly polymorphic MHC class I and class II DRB genes, while controlling for genome-wide effects using a panel of 18 microsatellite markers. Male mating success did not depend on the number of alleles shared with the female or amino-acid distance between potential mates at either locus. Furthermore, we found no indication of female mating preferences for MHC similarity being contingent on the number of alleles the females carried. Finally, we found no significant association between the number of MHC alleles a male carried and his mating success. Thus, our results provided no support for the role of mate choice in shaping MHC polymorphism in the brown bear.

  6. Synthesis and Pharmacological Evaluation of New Chemical Entities from Ibuprofen as Novel Analgesic Candidates.

    PubMed

    Ahmadi, A; Naderi, N; Daniali, M; Kazemi, S; Aazami, S; Alizadeh, N; Nahri-Niknafs, B

    2015-09-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are the first choice of drugs that are normally used for the treatment of pain and inflammation. Ibuprofen (I) and its analogues as the most widely used NSAIDs have been synthesized in recent years. In an effort to establish new candidates with improved analgesic properties, derivatives (II-VII) with substituted aromatic as well as aliphatic moieties were synthesized in this experiment and evaluated in formalin test with rats. The results were compared to ibuprofen and control groups. Findings indicated that derivatives with new alkylphenyl rings (VI and VII) had some similar or more analgesic activities relative to the control and ibuprofen groups, respectively; which could be justified as to more alkyl and phenyl groups instead of p-isobutylphenyl moiety in I. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Major histocompatibility complex (MHC) heterozygote superiority to natural multi-parasite infections in the water vole (Arvicola terrestris)

    PubMed Central

    Oliver, M.K.; Telfer, S.; Piertney, S.B.

    2008-01-01

    The fundamental role of the major histocompatibility complex (MHC) in immune recognition has led to a general consensus that the characteristically high levels of functional polymorphism at MHC genes is maintained by balancing selection operating through host–parasite coevolution. However, the actual mechanism by which selection operates is unclear. Two hypotheses have been proposed: overdominance (or heterozygote superiority) and negative frequency-dependent selection. Evidence for these hypotheses was evaluated by examining MHC–parasite relationships in an island population of water voles (Arvicola terrestris). Generalized linear mixed models were used to examine whether individual variation at an MHC class II DRB locus explained variation in the individual burdens of five different parasites. MHC genotype explained a significant amount of variation in the burden of gamasid mites, fleas (Megabothris walkeri) and nymphs of sheep ticks (Ixodes ricinus). Additionally, MHC heterozygotes were simultaneously co-infected by fewer parasite types than homozygotes. In each case where an MHC-dependent effect on parasite burden was resolved, the heterozygote genotype was associated with fewer parasites, and the heterozygote outperformed each homozygote in two of three cases, suggesting an overall superiority against parasitism for MHC heterozygote genotypes. This is the first demonstration of MHC heterozygote superiority against multiple parasites in a natural population, a mechanism that could help maintain high levels of functional MHC genetic diversity in natural populations. PMID:19129114

  8. The role of Ia molecules in the activation of T lymphocytes. I. The activation of an IL 1-dependent IL 2-producing T cell hybridoma by Con A requires an interaction, which is not H-2-restricted, with an Ia-bearing accessory cell.

    PubMed

    Rock, K L

    1982-10-01

    A model of accessory cell-dependent lectin-mediated T cell activation was investigated by utilizing a mitogen-inducible T cell hybridoma. A continuous MHC-restricted antigen-specific T cell line was fused with the azaguanine-resistant AKR thymoma BW5147. A hybrid, RF1.16B, was identified that is minimally inducible by Con A stimulation alone but is stimulated by Con A in the presence of T cell-depleted accessory cells to produce interleukin 2. The accessory cell function can be replaced by the monokine interleukin 1. Thus the lectin is a sufficient trigger for the hybrid in the absence of MHC restriction elements. The accessory cell function from splenocytes is provided by a non-B, non-T, predominantly Ia-bearing radioresistant cell. The interaction between the RF1.16B hybrid and the accessory cell population is not H-2-restricted. Control experiments, including the use of a cloned source of accessory cells, ruled out contaminating T cells or direct lectin effects as an explanation for the lack of H-2 restriction. The finding that an Ia-bearing cell is required for activation in an MHC-nonrestricted manner is discussed, and a hypothesis is raised that Ia antigens may play a role in addition to that of being a restriction element.

  9. 75 FR 28685 - Colonial Bankshares, MHC, Vineland, NJ; Approval of Conversion Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ... DEPARTMENT OF THE TREASURY Office of Thrift Supervision [AC-41: OTS Nos. 04983, H-3879, and H-4714] Colonial Bankshares, MHC, Vineland, NJ; Approval of Conversion Application Notice is hereby given that on May 14, 2010, the Office of Thrift Supervision approved the application of Colonial Bankshares, MHC...

  10. The overlooked "nonclassical" functions of major histocompatibility complex (MHC) class II antigens in immune and nonimmune cells.

    PubMed

    Altomonte, M; Pucillo, C; Maio, M

    1999-06-01

    Besides their "classical" antigenic peptide-presenting activity, major histocompatibility complex (MHC) class II antigens can activate different cellular functions in immune and nonimmune cells. However, this "nonclassical" role and its functional consequences are still substantially overlooked. In this review, we will focus on these alternative functional properties of MHC class II antigens, to reawaken attention to their present and foreseeable immunobiologic and pathogenetic implications. The main issues that will be addressed concern 1) the role of MHC class II molecules as basic components of exchangeable oligomeric protein complexes with intracellular signaling ability; 2) the nonclassical functions of MHC class II antigens in immune cells; 3) the pathogenetic role of MHC class II antigens in inflammatory/autoimmune and infectious disease; and 4) the functional role of MHC class II antigens in solid malignancies.

  11. Thermodynamics of T cell receptor – peptide/MHC interactions: progress and opportunities

    PubMed Central

    Armstrong, Kathryn M.; Insaidoo, Francis K.; Baker, Brian M.

    2013-01-01

    αβ T cell receptors (TCR) recognize peptide antigens presented by class I or class II major histocompatibility complex molecules (pMHC). Here we review the use of thermodynamic measurements in the study of TCR-pMHC interactions, with attention to the diversity in binding thermodynamics and how this is related to the variation in TCR-pMHC interfaces. We show that there is no enthalpic or entropic signature for TCR binding; rather, enthalpy and entropy changes vary in a compensatory manner that reflects a narrow free energy window for the interactions that have been characterized. Binding enthalpy and entropy changes do not correlate with structural features such as buried surface area or the number of hydrogen bonds within TCR-pMHC interfaces, possibly reflecting the myriad of contributors to binding thermodynamics, but likely also reflecting a reliance on van’t Hoff over calorimetric measurements and the unaccounted influence of equilibria linked to binding. TCR-pMHC binding heat capacity changes likewise vary considerably. In some cases the heat capacity changes are consistent with conformational differences between bound and free receptors, but there is little data indicating these conformational differences represent the need to organize commonly disordered CDR loops. In this regard, we discuss how thermodynamics may provide additional insight into conformational changes occurring upon TCR binding. Finally, we highlight opportunities for the further use of thermodynamic measurements in the study of TCR-pMHC interactions, not only for understanding TCR binding in general, but for understanding specifics of individual interactions and the engineering of T cell receptors with desired molecular recognition properties. PMID:18496839

  12. Natural selection of the major histocompatibility complex (Mhc) in Hawaiian honeycreepers (Drepanidinae)

    USGS Publications Warehouse

    Jarvi, S.I.; Tarr, C.L.; Mcintosh, C.E.; Atkinson, C.T.; Fleischer, R.C.

    2004-01-01

    The native Hawaiian honeycreepers represent a classic example of adaptive radiation and speciation, but currently face one the highest extinction rates in the world. Although multiple factors have likely influenced the fate of Hawaiian birds, the relatively recent introduction of avian malaria is thought to be a major factor limiting honeycreeper distribution and abundance. We have initiated genetic analyses of class II ?? chain Mhc genes in four species of honeycreepers using methods that eliminate the possibility of sequencing mosaic variants formed by cloning heteroduplexed polymerase chain reaction products. Phylogenetic analyses group the honeycreeper Mhc sequences into two distinct clusters. Variation within one cluster is high, with dN > d S and levels of diversity similar to other studies of Mhc (B system) genes in birds. The second cluster is nearly invariant and includes sequences from honeycreepers (Fringillidae), a sparrow (Emberizidae) and a blackbird (Emberizidae). This highly conserved cluster appears reminiscent of the independently segregating Rfp-Y system of genes defined in chickens. The notion that balancing selection operates at the Mhc in the honeycreepers is supported by transpecies polymorphism and strikingly high dN/dS ratios at codons putatively involved in peptide interaction. Mitochondrial DNA control region sequences were invariant in the i'iwi, but were highly variable in the 'amakihi. By contrast, levels of variability of class II ?? chain Mhc sequence codons that are hypothesized to be directly involved in peptide interactions appear comparable between i'iwi and 'amakihi. In the i'iwi, natural selection may have maintained variation within the Mhc, even in the face of what appears to a genetic bottleneck.

  13. A new polymorphic and multicopy MHC gene family related to nonmammalian class I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leelayuwat, C.; Degli-Esposti, M.A.; Abraham, L.J.

    1994-12-31

    The authors have used genomic analysis to characterize a region of the central major histocompatibility complex (MHC) spanning {approximately} 300 kilobases (kb) between TNF and HLA-B. This region has been suggested to carry genetic factors relevant to the development of autoimmune diseases such as myasthenia gravis (MG) and insulin dependent diabetes mellitus (IDDM). Genomic sequence was analyzed for coding potential, using two neural network programs, GRAIL and GeneParser. A genomic probe, JAB, containing putative coding sequences (PERB11) located 60 kb centromeric of HLA-B, was used for northern analysis of human tissues. Multiple transcripts were detected. Southern analysis of genomic DNAmore » and overlapping YAC clones, covering the region from BAT1 to HLA-F, indicated that there are at least five copies of PERB11, four of which are located within this region of the MHC. The partial cDNA sequence of PERB11 was obtained from poly-A RNA derived from skeletal muscle. The putative amino acid sequence of PERB11 shares {approximately} 30% identity to MHC class I molecules from various species, including reptiles, chickens, and frogs, as well as to other MHC class I-like molecules, such as the IgG FcR of the mouse and rat and the human Zn-{alpha}2-glycoprotein. From direct comparison of amino acid sequences, it is concluded that PERB11 is a distinct molecule more closely related to nonmammalian than known mammalian MHC class I molecules. Genomic sequence analysis of PERB11 from five MHC ancestral haplotypes (AH) indicated that the gene is polymorphic at both DNA and protein level. The results suggest that the authors have identified a novel polymorphic gene family with multiple copies within the MHC. 48 refs., 10 figs., 2 tabs.« less

  14. Synthesis of Ibuprofen in the Introductory Organic Laboratory

    ERIC Educational Resources Information Center

    Kjonaas, Richard A.; Williams, Peggy E.; Counce, David A.; Crawley, Lindsey R.

    2011-01-01

    A method for the synthesis of ibuprofen in introductory organic chemistry laboratory courses is reported. This experiment requires two 3-h lab sessions. All of the reactions and techniques are a standard part of any introductory organic chemistry course. In the first lab session, students reduce p-isobutylacetophenone to an alcohol and then…

  15. The effects and safety of dexibuprofen compared with ibuprofen in febrile children caused by upper respiratory tract infection

    PubMed Central

    Yoon, Jong Seo; Jeong, Dae-Chul; Oh, Jae-Won; Lee, Keun Young; Lee, Hyun Seung; Koh, Young Yull; Kim, Jin Tack; Kang, Jin Han; Lee, Joon Sung

    2008-01-01

    WHAT IS ALREADY KNOWN ABOUT THIS SUBJECTThe analgesic and anti-inflammatory efficacy of dexibuprofen compared with ibuprofen in adults with osteoarthritis, rheumatoid arthritis and dental pain. WHAT THIS STUDY ADDSDexibuprofen is as effective and tolerable as ibuprofen, and a dose of 5 mg kg−1 of dexibuprofen would be sufficient to control fever caused by upper respiratory tract infection in children. AIM To evaluate the antipyretic efficacy and tolerability of dexibuprofen compared with ibuprofen in children with fever caused by upper respiratory tract infection (URTI). METHODS The study population consisted of children aged 6 months to 14 years. At the time of visit to the hospital, the children had fever; the cause of fever was determined to be URTI by a paediatrician based on history taking and physical examination. The study was a multicentre, randomized, double-blind, controlled parallel group, comparative, Phase 3 clinical trial, conducted at three hospitals. By using a computer-based random assignment program, the subjects were allocated to the following three groups: 5 mg kg−1 dexibuprofen group, 7 mg kg−1 dexibuprofen group, and 10 mg kg−1 ibuprofen group. RESULTS In the clinical trial of the antipyretic action of dexibuprofen in patients with fever caused by URTI, there was no statistically significant difference in maximal decrease of temperature and mean time to become apyrexial among the 5 mg kg−1 dexibuprofen, 7 mg kg−1 dexibuprofen and 10 mg kg−1 ibuprofen groups (P > 0.05). There also was no significant difference in adverse drug reaction (P > 0.05). CONCLUSIONS Dexibuprofen is as effective and tolerable as ibuprofen. A dose of 5 mg kg−1 and 7 mg kg−1 dexibuprofen in place of 10 mg kg−1 ibuprofen would be sufficient to control fever caused by URTI in children. PMID:19032727

  16. High MHC diversity maintained by balancing selection in an otherwise genetically monomorphic mammal

    PubMed Central

    Aguilar, Andres; Roemer, Gary; Debenham, Sally; Binns, Matthew; Garcelon, David; Wayne, Robert K.

    2004-01-01

    The San Nicolas Island fox (Urocyon littoralis dickeyi) is genetically the most monomorphic sexually reproducing animal population yet reported and has no variation in hypervariable genetic markers. Such low levels of variation imply lower resistance to pathogens, reduced fitness, and problems in distinguishing kin from non-kin. In vertebrates, the MHC contains genes that influence disease resistance and kin recognition and may be under intense balancing selection in some populations. Hence, genetic variation at the MHC might persist despite the extreme monomorphism shown by neutral markers. We examine variation of five loci within the MHC of San Nicolas Island foxes and find remarkably high levels of variation. Further, we show by simulation that genetic monomorphism at neutral loci and high MHC variation could arise only through an extreme population bottleneck of <10 individuals, ≈10–20 generations ago, accompanied by unprecedented selection coefficients of >0.5 on MHC loci. These results support the importance of balancing selection as a mechanism to maintain variation in natural populations and expose the difficulty of using neutral markers as surrogates for variation in fitness-related loci. PMID:14990802

  17. Ibuprofen with acetaminophen for postoperative pain control following tonsillectomy does not increase emergency department utilization.

    PubMed

    Bedwell, Joshua R; Pierce, Matthew; Levy, Michelle; Shah, Rahul K

    2014-12-01

    To compare the performance of ibuprofen vs codeine for postoperative pain management after tonsillectomy as measured by need for emergency department (ED) treatment for pain and/or dehydration. Retrospective case series with chart review. Tertiary children's hospital. Consecutive series of patients who underwent tonsillectomy with or without adenoidectomy at a tertiary children's hospital. Patients were categorized based on the type of postoperative pain management (acetaminophen with codeine vs acetaminophen and ibuprofen). The main outcome measure was the proportion of patients requiring ED visits or inpatient admissions for inadequate pain control or dehydration. Secondary measures included antibiotic use, postoperative hemorrhage, need for return to the operating room, vomiting, and oral diet tolerance. Patients in the ibuprofen/acetaminophen group were younger than those in the codeine/acetaminophen group (6.2 vs 8.1 years, P < .05). Patients in the codeine/acetaminophen group were more likely to use antibiotics in the postoperative period (50.3% vs 5.9%, P < .05). The proportion of patients requiring ED visits or inpatient admission for dehydration was not significantly different between the groups (5.1% for codeine, 2.7% for ibuprofen, P = .12). Multivariable analysis controlling for age and antibiotic use showed no difference in ED visits or admission for dehydration (P = .09). There was no difference between the groups for any of the secondary measures. Ibuprofen with acetaminophen represents a safe and acceptable analgesic alternative to codeine and acetaminophen in patients undergoing pediatric tonsillectomy. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.

  18. [Use of over-the-counter drugs containing ibuprofen in self-medication].

    PubMed

    Macesková, B

    2001-05-01

    Ibuprofen (MO1AE01) is a suitable means for self-medication with regard to its relatively wide spectrum of indication, good tolerance, and safety. In the Czech Republic, OTC preparations containing ibuprofen represent frequently used medicaments. The paper examines solid divided dosage forms for oral administration. A survey based on questionnaires reveals in what indications and according to what dosing schemes the purchased preparations are used, and the paper evaluates possible risks. Strengthening of the role of the pharmacist as the provider of information on drugs, keeping patients' drug records in pharmacies, and deepening of the mutual cooperation of the physician and pharmacist would contribute to increase the safety of the use of the preparations under study.

  19. Immunological Functions of the Membrane Proximal Region of MHC Class II Molecules

    PubMed Central

    Harton, Jonathan; Jin, Lei; Hahn, Amy; Drake, Jim

    2016-01-01

    Major histocompatibility complex (MHC) class II molecules present exogenously derived antigen peptides to CD4 T cells, driving activation of naïve T cells and supporting CD4-driven immune functions. However, MHC class II molecules are not inert protein pedestals that simply bind and present peptides. These molecules also serve as multi-functional signaling molecules delivering activation, differentiation, or death signals (or a combination of these) to B cells, macrophages, as well as MHC class II-expressing T cells and tumor cells. Although multiple proteins are known to associate with MHC class II, interaction with STING (stimulator of interferon genes) and CD79 is essential for signaling. In addition, alternative transmembrane domain pairing between class II α and β chains influences association with membrane lipid sub-domains, impacting both signaling and antigen presentation. In contrast to the membrane-distal region of the class II molecule responsible for peptide binding and T-cell receptor engagement, the membrane-proximal region (composed of the connecting peptide, transmembrane domain, and cytoplasmic tail) mediates these “non-traditional” class II functions. Here, we review the literature on the function of the membrane-proximal region of the MHC class II molecule and discuss the impact of this aspect of class II immunobiology on immune regulation and human disease. PMID:27006762

  20. Efficacy of preoperative ibuprofen and meloxicam on the success rate of inferior alveolar nerve block for teeth with irreversible pulpitis.

    PubMed

    Shantiaee, Yazdan; Javaheri, Sahar; Movahhedian, Amir; Eslami, Sarah; Dianat, Omid

    2017-04-01

    The purpose of this study was to determine whether premedication with ibuprofen or meloxicam increases the success rate of anaesthesia in teeth with irreversible pulpitis. In this parallel, double-blind clinical trial, 92 patients diagnosed with irreversible pulpitis were randomly divided into four groups of 23 patients. The first group (the no-premedication group) received no premedication, the second group (the meloxicam group) received 7.5 mg of meloxicam, the third group (the ibuprofen group) received 600 mg of ibuprofen, and the fourth group (the placebo group) received placebo 1 hour before intervention. Before taking the medication, electrical pulp testing (EPT) and the Heft-Parker visual analogue scale (VAS) were used to evaluate sensitivity and pain at baseline. Then, local anaesthesia was injected, and after 15 minutes, EPT was used again to evaluate tooth sensitivity. The pain during access preparation was also recorded using the Heft-Parker VAS. Ninety-two patients were analysed. The success rates of local anaesthesia were 21.7%, 34.8%, 78.3% and 73.9% in the no-premedication, placebo, ibuprofen and meloxicam groups, respectively, according to the EPT values. Considering the Heft-Parker VAS values, no premedication gave a 21.7% success rate, placebo gave a 34.8% success rate, ibuprofen gave an 82.6% success rate and meloxicam gave a 65.2% success rate. The ibuprofen and meloxicam groups showed significantly better results than the placebo and no-premedication groups (P < 0.001). However, the difference between meloxicam and ibuprofen groups was not significant. Premedication with meloxicam and ibuprofen significantly increased the success rates of inferior alveolar nerve block anaesthesia for teeth with irreversible pulpitis; however, neither drug provided profound anaesthesia. © 2016 FDI World Dental Federation.

  1. Impact of inhalational exposure to ethanol fuel on the pharmacokinetics of verapamil, ibuprofen and fluoxetine as in vivo probe drugs for CYP3A, CYP2C and CYP2D in rats.

    PubMed

    Cardoso, Juciane Lauren Cavalcanti; Lanchote, Vera Lucia; Pereira, Maria Paula Marques; Capela, Jorge Manuel Vieira; de Moraes, Natália Valadares; Lepera, José Salvador

    2015-10-01

    Occupational toxicology and clinical pharmacology integration will be useful to understand potential exposure-drug interaction and to shape risk assessment strategies in order to improve occupational health. The aim of the present study was to evaluate the effect of exposure to ethanol fuel on in vivo activities of cytochrome P450 (CYP) isoenzymes CYP3A, CYP2C and CYP2D by the oral administration of the probe drugs verapamil, ibuprofen and fluoxetine. Male Wistar rats exposed to filtered air or to 2000 ppm ethanol in a nose-only inhalation chamber during (6 h/day, 5 days/week, 6 weeks) received single oral doses of 10 mg/kg verapamil or 25 mg/kg ibuprofen or 10 mg/kg fluoxetine. The enantiomers of verapamil, norverapamil, ibuprofen and fluoxetine in plasma were analyzed by LC-MS/MS. The area under the curve plasma concentration versus time extrapolated to infinity (AUC(0-∞)) was calculated using the Gauss-Laguerre quadrature. Inhalation exposure to ethanol reduces the AUC of both verapamil (approximately 2.7 fold) and norverapamil enantiomers (>2.5 fold), reduces the AUC(0-∞) of (+)-(S)-IBU (approximately 2 fold) and inhibits preferentially the metabolism of (-)-(R)-FLU. In conclusion, inhalation exposure of ethanol at a concentration of 2 TLV-STEL (6 h/day for 6 weeks) induces CYP3A and CYP2C but inhibits CYP2D in rats. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. MHC standing genetic variation and pathogen resistance in wild Atlantic salmon

    PubMed Central

    Dionne, Mélanie; Miller, Kristina M.; Dodson, Julian J.; Bernatchez, Louis

    2009-01-01

    Pathogens are increasingly emerging in human-altered environments as a serious threat to biodiversity. In this context of rapid environmental changes, improving our knowledge on the interaction between ecology and evolution is critical. The objective of this study was to evaluate the influence of an immunocompetence gene, the major histocompatibility complex (MHC) class IIβ, on the pathogen infection levels in wild Atlantic salmon populations, Salmo salar, and identify selective agents involved in contemporary coevolution. MHC variability and bacterial infection rate were determined throughout the summer in juvenile salmon from six rivers belonging to different genetic and ecological regions in Québec, Canada. A total of 13 different pathogens were identified in kidney by DNA sequence analysis, including a predominant myxozoa, most probably recently introduced in North America. Infection rates were the highest in southern rivers at the beginning of the summer (average 47.6±6.3% infected fish). One MHC allele conferred a 2.9 times greater chance of being resistant to myxozoa, while another allele increased susceptibility by 3.4 times. The decrease in frequency of the susceptibility allele but not other MHC or microsatellite alleles during summer was suggestive of a mortality event from myxozoa infection. These results supported the hypothesis of pathogen-driven selection in the wild by means of frequency-dependent selection or change in selection through time and space rather than heterozygous advantage, and underline the importance of MHC standing genetic variation for facing pathogens in a changing environment. PMID:19414470

  3. Evolution of Mhc-DRB introns: implications for the origin of primates.

    PubMed

    Kupfermann, H; Satta, Y; Takahata, N; Tichy, H; Klein, J

    1999-06-01

    Introns are generally believed to evolve too rapidly and too erratically to be of much use in phylogenetic reconstructions. Few phylogenetically informative intron sequences are available, however, to ascertain the validity of this supposition. In the present study the supposition was tested on the example of the mammalian class II major histocompatibility complex (Mhc) genes of the DRB family. Since the Mhc genes evolve under balancing selection and are believed to recombine or rearrange frequently, the evolution of their introns could be expected to be particularly rapid and subject to scrambling. Sequences of intron 4 and 5 DRB genes were obtained from polymerase chain reaction-amplified fragments of genomic DNA from representatives of six eutherian orders-Primates, Scandentia, Chiroptera, Dermoptera, Lagomorpha, and Insectivora. Although short stretches of the introns have indeed proved to be unalignable, the bulk of the intron sequences from all six orders, spanning >85 million years (my) of evolution, could be aligned and used in a study of the tempo and mode of intron evolution. The analysis has revealed the Mhc introns to evolve at a rate similar to that of other genes and of synonymous sites of non-Mhc genes. No evidence of homogenization or large-scale scrambling of the intron sequences could be found. The Mhc introns apparently evolve largely by point mutations and insertions/deletions. The phylogenetic signals contained in the intron sequences could be used to identify Scandentia as the sister group of Primates, to support the existence of the Archonta superorder, and to confirm the monophyly of the Chiroptera.

  4. Controlled release of ibuprofen by meso-macroporous silica

    NASA Astrophysics Data System (ADS)

    Santamaría, E.; Maestro, A.; Porras, M.; Gutiérrez, J. M.; González, C.

    2014-02-01

    Structured meso-macroporous silica was successfully synthesized from an O/W emulsion using decane as a dispersed phase. Sodium silicate solution, which acts as a silica source and a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (EO19PO39EO19) denoted as P84 was used in order to stabilize the emulsion and as a mesopore template. The materials obtained were characterized through transmission electron microscopy (TEM), scanning electron microscopy (SEM), small-angle X-ray diffraction scattering (SAXS) and nitrogen adsorption-desorption isotherms. Ibuprofen (IBU) was selected as the model drug and loaded into ordered meso-macroporous materials. The effect of the materials’ properties on IBU drug loading and release was studied. The results showed that the loading of IBU increases as the macropore presence in the material is increased. The IBU adsorption process followed the Langmuir adsorption isotherm. A two-step release process, consisting of an initial fast release and then a slower release was observed. Macropores enhanced the adsorption capacity of the material; this was probably due to the fact that they allowed the drug to access internal pores. When only mesopores were present, ibuprofen was probably adsorbed on the mesopores close to the surface. Moreover, the more macropore present in the material, the slower the release behaviour observed, as the ibuprofen adsorbed in the internal pores had to diffuse along the macropore channels up to the surface of the material. The material obtained from a highly concentrated emulsion was functionalized with amino groups using two methods, the post-grafting mechanism and the co-condensation mechanism. Both routes improve IBU adsorption in the material and show good behaviour as a controlled drug delivery system.

  5. Comparative Effect of Cinnamon and Ibuprofen for Treatment of Primary Dysmenorrhea: A Randomized Double-Blind Clinical Trial

    PubMed Central

    Jaafarpour, Molouk; Hatefi, Masoud; Khajavikhan, Javaher

    2015-01-01

    Background and Aims Primary dysmenorrheal has a negative impact on women's quality of life. The purpose of this study was to compare the effect of Cinnamon and Ibuprofen for treatment of primary dysmenorrheal in a sample of Iranian female college students from Ilam University of Medical Sciences (western Iran). Materials and Methods In a randomized, double-blind trial, out of 114, control group received placebo (empty capsules contain starch, TDS, n= 38) a test group received Ibuprofen (capsule containing 400mg Ibuprofen, TDS, n=38), or another test group received Cinnamon (capsule containing 420 mg Cinnamon, TDS, n= 38) in 24 h. To determine severity of pain, we used the VAS scale. Pain intensity and duration of pain were monitored in the group during first 72 h of cycle. Results The mean pain severity score and mean duration of pain in Ibuprofen and Cinnamon were less than placebo group respectively (p< 0.001). Of 4 hours after the intervention there were no statistically significant differences between the Cinnamon and placebo group (p> 0.05). Of eight hours after the intervention, the mean pain severity in the cinnamon group was significantly lower than placebo group (p< 0.001). At various time intervals the mean pain severity in the Ibuprofen group were significantly less than Cinnamon and placebo groups (p< 0.001). Conclusion Cinnamon compared with placebo significantly reduced the severity and duration of pain during menstruation, but this effect was lower compared with Ibuprofen. Cinnamon can be regarded as a safe and effective treatment for primary dysmenorrhea. More researches are recommended to study the efficacy of Cinnamon on reducing menstrual bleeding. PMID:26023601

  6. Human inflammatory and resolving lipid mediator responses to resistance exercise and ibuprofen treatment

    PubMed Central

    Markworth, James F.; Vella, Luke; Lingard, Benjamin S.; Tull, Dedreia L.; Rupasinghe, Thusitha W.; Sinclair, Andrew J.; Maddipati, Krishna Rao

    2013-01-01

    Classical proinflammatory eicosanoids, and more recently discovered lipid mediators with anti-inflammatory and proresolving bioactivity, exert a complex role in the initiation, control, and resolution of inflammation. Using a targeted lipidomics approach, we investigated circulating lipid mediator responses to resistance exercise and treatment with the NSAID ibuprofen. Human subjects undertook a single bout of unaccustomed resistance exercise (80% of one repetition maximum) following oral ingestion of ibuprofen (400 mg) or placebo control. Venous blood was collected during early recovery (0–3 h and 24 h postexercise), and serum lipid mediator composition was analyzed by LC-MS-based targeted lipidomics. Postexercise recovery was characterized by elevated levels of cyclooxygenase (COX)-1 and 2-derived prostanoids (TXB2, PGE2, PGD2, PGF2α, and PGI2), lipooxygenase (5-LOX, 12-LOX, and 15-LOX)-derived hydroxyeicosatetraenoic acids (HETEs), and leukotrienes (e.g., LTB4), and epoxygenase (CYP)-derived epoxy/dihydroxy eicosatrienoic acids (EpETrEs/DiHETrEs). Additionally, we detected elevated levels of bioactive lipid mediators with anti-inflammatory and proresolving properties, including arachidonic acid-derived lipoxins (LXA4 and LXB4), and the EPA (E-series) and DHA (D-series)-derived resolvins (RvD1 and RvE1), and protectins (PD1 isomer 10S, 17S-diHDoHE). Ibuprofen treatment blocked exercise-induced increases in COX-1 and COX-2-derived prostanoids but also resulted in off-target reductions in leukotriene biosynthesis, and a diminished proresolving lipid mediator response. CYP pathway product metabolism was also altered by ibuprofen treatment, as indicated by elevated postexercise serum 5,6-DiHETrE and 8,9-DiHETrE only in those receiving ibuprofen. These findings characterize the blood inflammatory lipid mediator response to unaccustomed resistance exercise in humans and show that acute proinflammatory signals are mechanistically linked to the induction of a

  7. Synthesis and hydrolytic behaviour of glycerol-1,2-diibuprofenate-3-nitrate, a putative pro-drug of ibuprofen and glycerol-1-nitrate.

    PubMed

    Ingram, M J; Moynihan, H A; Powell, M W; Rostron, C

    2001-03-01

    Nitroxylated derivatives of non-steroidal anti-inflammatory drugs appear to offer protection against the gastrotoxicity normally associated with non-steroidal anti-inflammatory drugs, ostensibly via local production of nitric oxide. A diester of ibuprofen and glycerol-1-mononitrate has been prepared via the condensation of ibuprofen with 3-bromopropan-1,2-diol, followed by silver-(I)-nitrate-mediated nitroxylation. The release of ibuprofen from this diester has been studied in a simulated gastric fluid model with direct analysis by reverse-phase HPLC, using an acetonitrile-water (80%:20%) mobile phase containing trifluoroacetic acid (0.005%). n-Propyl ibuprofen was found to undergo pH-dependent hydrolysis, ranging from negligible hydrolysis at pH 5 to 52% hydrolysis at pH 3, over a 2-h period in this model. The ibuprofen-glycerol mononitrate diester was subjected to the most vigorous model hydrolytic conditions and was found to undergo 50 % hydrolysis during the study period. This study shows that pro-drugs of ibuprofen and glycerol mononitrate can be obtained, and can undergo degradation to the parent drugs under conditions simulating those likely to be encountered in the stomach.

  8. Formulation and Evaluation of a Novel Matrix-Type Orally Disintegrating Ibuprofen Tablet

    PubMed Central

    Tayebi, Hoda; Mortazavi, Seyed Alireza

    2011-01-01

    Orally disintegrating tablets (ODTs) are capable of turning quickly into a liquid dosage form in contact with the saliva, thus possessing the advantages of both the solid dosage forms particularly stability and liquid dosage forms specially ease of swallowing and pre-gastric absorption of drug. The aim of this study was to prepare a novel matrix-type buccal fast disintegrating ibuprofen tablet formulation using special polymers, water soluble excipients, super-disintegrants and quickly soluble granules. For this purpose different tablet formulations of ibuprofen were prepared. The amount of ibuprofen in each formulation was 100 mg. Eight groups of formulation were prepared (A-H series), accounting for a total number of 45 formulations. Formulations prepared were examined in terms of different physicochemical tests including powder/granule flowability, appearance, thickness, uniformity of weight, hardness, friability and disintegration time. Results of formulation F22a (in series F), was found to be acceptable, making it the chosen formulation for further studies. Then, by adding various flavorants and sweeteners to this formulation, complementary series of formulations, named G and H, were prepared. Following the comparison of their taste with each other through asking 10 volunteers, the most suitable formulation regarding the taste, being formulation F22s, was chosen as the ultimate formulation. This formulation had PVP, ibuprofen and croscarmellose as the intra-granular components and xylitol and saccharin as the extra-granular ingredients. Formulation F22s was found to be acceptable in terms of physicochemical tests conducted, showing quick disintegration within the buccal cavity, appropriate hardness and rather low friability. Hence formulation F22s was selected as the final formulation. PMID:24250378

  9. Improved methods for predicting peptide binding affinity to MHC class II molecules.

    PubMed

    Jensen, Kamilla Kjaergaard; Andreatta, Massimo; Marcatili, Paolo; Buus, Søren; Greenbaum, Jason A; Yan, Zhen; Sette, Alessandro; Peters, Bjoern; Nielsen, Morten

    2018-07-01

    Major histocompatibility complex class II (MHC-II) molecules are expressed on the surface of professional antigen-presenting cells where they display peptides to T helper cells, which orchestrate the onset and outcome of many host immune responses. Understanding which peptides will be presented by the MHC-II molecule is therefore important for understanding the activation of T helper cells and can be used to identify T-cell epitopes. We here present updated versions of two MHC-II-peptide binding affinity prediction methods, NetMHCII and NetMHCIIpan. These were constructed using an extended data set of quantitative MHC-peptide binding affinity data obtained from the Immune Epitope Database covering HLA-DR, HLA-DQ, HLA-DP and H-2 mouse molecules. We show that training with this extended data set improved the performance for peptide binding predictions for both methods. Both methods are publicly available at www.cbs.dtu.dk/services/NetMHCII-2.3 and www.cbs.dtu.dk/services/NetMHCIIpan-3.2. © 2018 John Wiley & Sons Ltd.

  10. High-throughput identification and dendritic cell-based functional validation of MHC class I-restricted Mycobacterium tuberculosis epitopes

    PubMed Central

    Nair, Smita K.; Tomaras, Georgia D.; Sales, Ana Paula; Boczkowski, David; Chan, Cliburn; Plonk, Kelly; Cai, Yongting; Dannull, Jens; Kepler, Thomas B.; Pruitt, Scott K.; Weinhold, Kent J.

    2014-01-01

    Emergence of drug-resistant strains of the pathogen Mycobacterium tuberculosis (Mtb) and the ineffectiveness of BCG in curtailing Mtb infection makes vaccine development for tuberculosis an important objective. Identifying immunogenic CD8+ T cell peptide epitopes is necessary for peptide-based vaccine strategies. We present a three-tiered strategy for identifying and validating immunogenic peptides: first, identify peptides that form stable complexes with class I MHC molecules; second, determine whether cytotoxic T lymphocytes (CTLs) raised against the whole protein antigen recognize and lyse target cells pulsed with peptides that passed step 1; third, determine whether peptides that passed step 2, when administered in vivo as a vaccine in HLA-A2 transgenic mice, elicit CTLs that lyse target cells expressing the whole protein antigen. Our innovative approach uses dendritic cells transfected with Mtb antigen-encoding mRNA to drive antigen expression. Using this strategy, we have identified five novel peptide epitopes from the Mtb proteins Apa, Mtb8.4 and Mtb19. PMID:24755960

  11. In vivo assessment of parenteral formulations of oligo(3-hydroxybutyric Acid) conjugates with the model compound Ibuprofen.

    PubMed

    Stasiak, Pawel; Sznitowska, Malgorzata; Ehrhardt, Carsten; Luczyk-Juzwa, Maria; Grieb, Pawel

    2010-12-01

    Polymer-drug conjugates have gained significant attention as pro-drugs releasing an active substance as a result of enzymatic hydrolysis in physiological environment. In this study, a conjugate of 3-hydroxybutyric acid oligomers with a carboxylic acid group-bearing model drug (ibuprofen) was evaluated in vivo as a potential pro-drug for parenteral administration. Two different formulations, an oily solution and an o/w emulsion were prepared and administered intramuscularly (IM) to rabbits in a dose corresponding to 40 mg of ibuprofen/kilogramme. The concentration of ibuprofen in blood plasma was analysed by HPLC, following solid-phase extraction and using indometacin as internal standard (detection limit, 0.05 microg/ml). No significant differences in the pharmacokinetic parameters (C (max), T (max), AUC) were observed between the two tested formulations of the 3-hydroxybutyric acid conjugate. In comparison to the non-conjugated drug in oily solution, the relative bioavailability of ibuprofen conjugates from oily solution, and o/w emulsion was reduced to 17% and 10%, respectively. The 3-hydroxybutyric acid formulations released the active substance over a significantly extended period of time with ibuprofen still being detectable 24 h post-injection, whereas the free compound was almost completely eliminated as early as 6 h after administration. The conjugates remained in a muscle tissue for a prolonged time and can hence be considered as sustained release systems for carboxylic acid derivatives.

  12. Quantifying the importance of pMHC valency, total pMHC dose and frequency on nanoparticle therapeutic efficacy.

    PubMed

    Sugarman, Jordan; Tsai, Sue; Santamaria, Pere; Khadra, Anmar

    2013-05-01

    Nanoparticles (NPs) coated with β-cell-specific peptide major histocompatibility complex (pMHC) class I molecules can effectively restore normoglycemia in spontaneously diabetic nonobese diabetic mice. They do so by expanding pools of cognate memory autoreactive regulatory CD8+ T cells that arise from naive low-avidity T-cell precursors to therapeutic levels. Here we develop our previously constructed mathematical model to explore the effects of compound design parameters (NP dose and pMHC valency) on therapeutic efficacy with the underlying hypothesis that the functional correlates of the therapeutic response (expansion of autoregulatory T cells and deletion of autoantigen-loaded antigen-presenting cells by these T cells) are biphasic. We show, using bifurcation analysis, that the model exhibits a 'resonance'-like behavior for a given range of NP dose in which bistability between the healthy state (possessing zero level of effector T-cell population) and autoimmune state (possessing elevated level of the same population) disappears. A heterogeneous population of model mice subjected to several treatment protocols under these new conditions is conducted to quantify both the average percentage of autoregulatory T cells in responsive and nonresponsive model mice, and the average valency-dependent minimal optimal dose needed for effective therapy. Our results reveal that a moderate increase (≥1.6-fold) in the NP-dependent expansion rate of autoregulatory T-cell population leads to a significant increase in the efficacy and the area corresponding to the effective treatment regimen, provided that NP dose ≥8 μg. We expect the model developed here to generalize to other autoimmune diseases and serve as a computational tool to understand and optimize pMHC-NP-based therapies.

  13. Formulation and delivery strategies of ibuprofen: challenges and opportunities.

    PubMed

    Irvine, Jake; Afrose, Afrina; Islam, Nazrul

    2018-02-01

    Ibuprofen, a non-steroidal anti-inflammatory drug (NSAID), is mostly administered orally and topically to relieve acute pain and fever. Due to its mode of action this drug may be useful in the treatment regimens of other, more chronic conditions, like cystic fibrosis. This drug is poorly soluble in aqueous media and thus the rate of dissolution from the currently available solid dosage forms is limited. This leads to poor bioavailability at high doses after oral administration, thereby increasing the risk of unwanted adverse effects. The poor solubility is a problem for developing injectable solution dosage forms. Because of its poor skin permeability, it is difficult to obtain an effective therapeutic concentration from topical preparations. This review aims to give a brief insight into the status of ibuprofen dosage forms and their limitations, particle/crystallization technologies for improving formulation strategies as well as suggesting its incorporation into the pulmonary drug delivery systems for achieving better therapeutic action at low dose.

  14. The Ia.2 Epitope Defines a Subset of Lipid Raft Resident MHC Class II Molecules Crucial to Effective Antigen Presentation1

    PubMed Central

    Busman-Sahay, Kathleen; Sargent, Elizabeth; Harton, Jonathan A.; Drake, James R.

    2016-01-01

    Previous work has established that binding of the 11-5.2 anti-I-Ak mAb, which recognizes the Ia.2 epitope on I-Ak class II molecules, elicits MHC class II signaling, whereas binding of two other anti-I-Ak mAb that recognize the Ia.17 epitope fail to elicit signaling. Using a biochemical approach, we establish that the Ia.2 epitope recognized by the widely used 11-5.2 mAb defines a subset of cell surface I-Ak molecules predominantly found within membrane lipid rafts. Functional studies demonstrate that the Ia.2 bearing subset of I-Ak class II molecules is critically necessary for effective B cell–T cell interactions especially at low antigen doses, a finding consistent with published studies on the role of raft-resident class II molecules in CD4 T cell activation. Interestingly, B cells expressing recombinant I-Ak class II molecules possessing a β chain-tethered HEL peptide lack the Ia.2 epitope and fail to partition into lipid rafts. Moreover, cells expressing Ia.2 negative tethered peptide-class II molecules are severely impaired in their ability to present both tethered peptide or peptide derived from exogenous antigen to CD4 T cells. These results establish the Ia.2 epitope as defining a lipid raft-resident MHC class II confomer vital to the initiation of MHC class II restricted B cell–T cell interactions. PMID:21543648

  15. Ibuprofen Potentiates the In Vivo Antifungal Activity of Fluconazole against Candida albicans Murine Infection

    PubMed Central

    Miranda, Isabel M.; Silva-Dias, Ana; Silva, Ana P.; Rodrigues, Acácio G.; Pina-Vaz, Cidália

    2015-01-01

    Candida albicans is the most prevalent cause of fungemia worldwide. Its ability to develop resistance in patients receiving azole antifungal therapy is well documented. In a murine model of systemic infection, we show that ibuprofen potentiates fluconazole antifungal activity against a fluconazole-resistant strain, drastically reducing the fungal burden and morbidity. The therapeutic combination of fluconazole with ibuprofen may constitute a new approach for the management of antifungal therapeutics to reverse the resistance conferred by efflux pump overexpression. PMID:25845879

  16. No evidence for MHC class II-based non-random mating at the gametic haplotype in Atlantic salmon.

    PubMed

    Promerová, M; Alavioon, G; Tusso, S; Burri, R; Immler, S

    2017-06-01

    Genes of the major histocompatibility complex (MHC) are a likely target of mate choice because of their role in inbreeding avoidance and potential benefits for offspring immunocompetence. Evidence for female choice for complementary MHC alleles among competing males exists both for the pre- and the postmating stages. However, it remains unclear whether the latter may involve non-random fusion of gametes depending on gametic haplotypes resulting in transmission ratio distortion or non-random sequence divergence among fused gametes. We tested whether non-random gametic fusion of MHC-II haplotypes occurs in Atlantic salmon Salmo salar. We performed in vitro fertilizations that excluded interindividual sperm competition using a split family design with large clutch sample sizes to test for a possible role of the gametic haplotype in mate choice. We sequenced two MHC-II loci in 50 embryos per clutch to assess allelic frequencies and sequence divergence. We found no evidence for transmission ratio distortion at two linked MHC-II loci, nor for non-random gamete fusion with respect to MHC-II alleles. Our findings suggest that the gametic MHC-II haplotypes play no role in gamete association in Atlantic salmon and that earlier findings of MHC-based mate choice most likely reflect choice among diploid genotypes. We discuss possible explanations for these findings and how they differ from findings in mammals.

  17. Ibuprofen and paracetamol for pain relief during medical abortion: a double-blind randomized controlled study.

    PubMed

    Livshits, Anna; Machtinger, Ronit; David, Liat Ben; Spira, Maya; Moshe-Zahav, Aliza; Seidman, Daniel S

    2009-05-01

    To determine the efficacy of a nonsteroidal anti-inflammatory drug vs. paracetamol in pain relief during medical abortion and to evaluate whether nonsteroidal anti-inflammatory drugs interfere with the action of misoprostol. A prospective double-blind controlled study. University-affiliated tertiary hospital. One hundred twenty women who underwent first-trimester termination of pregnancy. Patients received 600 mg mifepristone orally, followed by 400 microg of oral misoprostol 2 days later. They were randomized to receive ibuprofen or paracetamol when pain relief was necessary. Patients completed a questionnaire about side effects and pain score and returned for an ultrasound follow-up examination 10-14 days after medical abortion. Success rates, as defined by no surgical intervention, and pain scores were assessed. Ibuprofen was found to be statistically significantly more effective for pain relief after medical abortion compared with paracetamol. There was no difference in the failure rate of medical abortion, and the frequency of surgical intervention was slightly higher in the group that received paracetamol (16.3% vs. 8.5%). Ibuprofen was found to be more effective than paracetamol for pain reduction during medical abortion. A history of surgical or medical abortion was predictive for high pain scores. Despite its anti-prostaglandin effects, ibuprofen use did not interfere with the action of misoprostol.

  18. Local infiltration of the surgical wound with levobupivacaine, ibuprofen, and epinephrine in postoperative pain: An experimental study.

    PubMed

    Korat, Prashant S; Kapupara, Pankaj P

    2017-12-01

    The body areas from where sutures are removed later, where wound healing is delayed. Epidural analgesia is the most effective method but could not be used for postoperative pain. Peripheral nerve blockers also provided excellent analgesia but are not effective in postoperative pain. Infiltration of the surgical wound with local anesthetics is decreased postoperative pain by inhibiting transmission of noxious impulses at the site. The objective of the study was to explore the effect of the local infiltration of the surgical wounds with low-dose of levobupivacaine, ibuprofen, and epinephrine over the sutured muscle wound in postoperative pain. Laparotomy was performed in adult rats under isoflurane anesthesia. During surgery, the surgical wounds were infiltrated with 50μL solution containing 0.3% w/v levobupivacaine, 2mg/mL ibuprofen, and 8mg/mL epinephrine (treatment group) and compared to infiltration of that of water for injection (vehicle group) over the sutured muscle wound before skin closing. Postoperative pain was assessed by rodent grimace scales scoring. The study also carried out for measurement for histopathological examinations and the tensile strength of wound. The one-way ANOVA following the Dunnett Multiple comparisons test was used to show significant differences between parameters at 95% level of confidence. The fall in pain started with three-hour post-surgery in the treatment group. At 24h after the end of the successful infiltration, the treatment group had significant reduction of a pain than vehicle group (p=0.048; q=3.527). After three weeks of the wound were closed, a significant improvement of angiogenesis process (p=0.021) and the tensile strength (p=0.019) for the treatment group as compared to baseline. The experimental study was reported that local infiltration of the surgical wound with levobupivacaine, ibuprofen, and epinephrine combination was effective in the postoperative pain and healing of the surgical wounds. Copyright © 2017

  19. Design and evaluation of mucoadhesive microemulsion for neuroprotective effect of ibuprofen following intranasal route in the MPTP mice model.

    PubMed

    Mandal, Surjyanarayan; Mandal, Snigdha Das; Chuttani, Krishna; Sawant, Krutika K; Subudhi, Bharat Bhushan

    2016-08-01

    The present study is to investigate the neuroprotective effect of ibuprofen by intranasal administration of mucoadhesive microemulsion (MMEI) against inflammation-mediated by dopaminergic neurodegeneration in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of Parkinson's disease (PD). Ibuprofen-loaded polycarbophil-based MMEI was developed by using response surface methodology (RSM). Ibuprofen with dose of 2.86 mg/kg/day was administered intranasally to male C57BL/6 mice for two consecutive weeks which were pre-treated with four intraperitoneal injections of MPTP (20 mg/kg of body weight) at 2 h intervals. Immunohistochemistry was performed. Optimal MMEI was stable and non-ciliotoxic with 66.29 ± 4.15 nm as average globule size and -20.9 ± 3.98 mV as zeta potential. PDI value and transmission electron microscopy result showed the narrow globule size distribution of MMEI. The result showed that all three independent variables had a significant effect (p < 0.05) on the responses. Rota-rod and open-field test findings revealed the significant improvement in motor performance and gross behavioral activity of the mice. The results from in vivo study and immunohistochemistry showed that nasal administration of Ibuprofen significantly reduced the MPTP-mediated dopamine depletion. Furthermore TH neurons count in the substantia nigra and the density of striatal dopaminergic nerve terminals were found to be significant higher for ibuprofen treated groups. Findings of the investigation revealed that Ibuprofen through developed MMEI was shown to protect neurons against MPTP-induced injury in the Substantia nigra pars compacta (SNpc) and striatum and hence, could be a promising approach for brain targeting of Ibuprofen through intranasal route to treat PD.

  20. Genetic dissection of MHC-associated susceptibility to Lepeophtheirus salmonis in Atlantic salmon

    PubMed Central

    Gharbi, Karim; Glover, Kevin A; Stone, Louise C; MacDonald, Elizabeth S; Matthews, Louise; Grimholt, Unni; Stear, Michael J

    2009-01-01

    Background Genetic variation has been shown to play a significant role in determining susceptibility to the salmon louse, Lepeophtheirus salmonis. However, the mechanisms involved in differential response to infection remain poorly understood. Recent findings in Atlantic salmon (Salmo salar) have provided evidence for a potential link between marker variation at the major histocompatibility complex (MHC) and differences in lice abundance among infected siblings, suggesting that MHC genes can modulate susceptibility to the parasite. In this study, we used quantitative trait locus (QTL) analysis to test the effect of genomic regions linked to MHC class I and II on linkage groups (LG) 15 and 6, respectively. Results Significant QTL effects were detected on both LG 6 and LG 15 in sire-based analysis but the QTL regions remained unresolved due to a lack of recombination between markers. In dam-based analysis, a significant QTL was identified on LG 6, which accounted for 12.9% of within-family variance in lice abundance. However, the QTL was located at the opposite end of DAA, with no significant overlap with the MHC class II region. Interestingly, QTL modelling also revealed evidence of sex-linked differences in lice abundance, indicating that males and females may have different susceptibility to infection. Conclusion Overall, QTL analysis provided relatively weak support for a proximal effect of classical MHC regions on lice abundance, which can partly be explained by linkage to other genes controlling susceptibility to L. salmonis on the same chromosome. PMID:19397823

  1. 76 FR 3165 - Proposed Exemptions From Certain Prohibited Transaction Restrictions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-19

    ...This document contains notices of pendency before the Department of Labor (the Department) of proposed exemptions from certain of the prohibited transaction restrictions of the Employee Retirement Income Security Act of 1974 (ERISA or the Act) and/or the Internal Revenue Code of 1986 (the Code). This notice includes the following proposed exemptions: D-11580, Robert W. Baird & Co. Incorporated and its Current and Future Affiliates and subsidiaries (collectively, Baird); and D-11611, Security Benefit Mutual Holding Company (MHC) Benefit Life Insurance Company (SBL, and together with the Applicants), et al.

  2. Tolerance to MHC class II disparate allografts through genetic modification of bone marrow

    PubMed Central

    Jindra, Peter T.; Tripathi, Sudipta; Tian, Chaorui; Iacomini, John; Bagley, Jessamyn

    2012-01-01

    Induction of molecular chimerism through genetic modification of bone marrow is a powerful tool for the induction of tolerance. Here we demonstrate for the first time that expression of an allogeneic MHC class II gene in autologous bone marrow cells, resulting in a state of molecular chimerism, induces tolerance to MHC class II mismatched skin grafts, a stringent test of transplant tolerance. Reconstitution of recipients with syngeneic bone marrow transduced with retrovirus encoding H-2I-Ab (I-Ab) resulted the long-term expression of the retroviral gene product on the surface of MHC class II-expressing bone marrow derived cell types. Mechanistically, tolerance was maintained by the presence of regulatory T cells, which prevented proliferation and cytokine production by alloreactive host T cells. Thus, the introduction of MHC class II genes into bone marrow derived cells through genetic engineering results in tolerance. These results have the potential to extend the clinical applicability of molecular chimerism for tolerance induction. PMID:22833118

  3. The Resolution of Ibuprofen, 2-(4'-Isobutylphenyl) Propionic Acid

    ERIC Educational Resources Information Center

    McCullagh, James V.

    2008-01-01

    In this experiment the over-the-counter pain reliever ibuprofen is resolved using (S)-(-)-[alpha]-phenethylamine as the resolving agent. This procedure has several key advantages over previous resolution experiments. First, it involves the resolution of a well-known medicinal compound of commercial importance. Second, the resolution process is…

  4. Use of decimal assay for additivity to demonstrate synergy in pair combinations of econazole, nikkomycin Z, and ibuprofen against Candida albicans in vitro.

    PubMed Central

    Tariq, V N; Scott, E M; McCain, N E

    1995-01-01

    Interactions between six compounds (econazole, miconazole, amphotericin B, nystatin, nikkomycin Z, and ibuprofen) were investigated for their antifungal activities against Candida albicans by using pair combinations in an in vitro decimal assay for additivity based on disk diffusion. Additive interactions were observed between miconazole and econazole, amphotericin B and nystatin, and amphotericin B and ibuprofen, while an antagonistic interaction was observed between econazole and amphotericin B. Synergistic interactions were recorded for the combinations of econazole and ibuprofen, econazole and nikkomycin Z, and ibuprofen and nikkomycin Z. PMID:8592989

  5. [Recurrent aseptic meningitis secondary to taking ibuprofen and ketorolac].

    PubMed

    Cano Vargas-Machuca, E; Mondéjar-Marín, B; Navarro-Muñoz, S; Pérez-Molina, I; Garrido-Robres, J A; Alvarez-Tejerina, A

    Aseptic meningitis is a process that is characterised by an inflammatory reaction of the meninges that is not due to any infectious agent. Its aetiology is varied and is most frequently caused by rheumatologic and/or autoimmune processes, chemical or medication-induced meningitis, the most notable drugs involved being antibiotics and non-steroidal anti-inflammatory drugs (NSAI). We report the case of a 70-year-old male, with no relevant history, who was admitted to hospital five times over a period of 16 months because of acute meningitis with polymorphonuclear pleocytosis, high protein levels in cerebrospinal fluid and normal glucose in cerebrospinal fluid. No evidence of an infectious causation, chemical meningitis, carcinomatosis or autoimmune disease was found and the patient was diagnosed with recurrent aseptic meningitis. It was found that the patient had taken ibuprofen or ketorolac on several occasions, a few hours before the appearance of symptoms. These episodes were quickly resolved after withdrawal of this medication. A number of NSAI have been reported as inducers of aseptic meningitis, one of the most notable being ibuprofen. We report the case of a patient who, as a consequence of taking ibuprofen and ketorolac, presented episodes of recurrent aseptic meningitis. To our knowledge this side effect of ketorolac has not been reported before. Its clinical features are impossible to differentiate from those of infectious meningitis. Diagnosis is reached by exclusion and a careful pharmacological study, including over-the-counter drugs like some of the NSAI, must be performed in patients with this condition, since it is a problem that can easily be solved by withdrawing the drug that causes it.

  6. Transcriptional profiling of MHC class I genes in rainbow trout infected with infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Landis, E.D.; Purcell, M.K.; Thorgaard, G.H.; Wheeler, P.A.; Hansen, J.D.

    2008-01-01

    Major histocompatibility complex (MHC) molecules are important mediators of cell-mediated immunity in vertebrates. MHC class IA molecules are important for host anti-viral immunity as they present intracellular antigens and regulate natural killer cell (NK) activity. MHC class Ib molecules on the other hand are less understood and have demonstrated diverse immune and non-immune functions in mammals. Rainbow trout possess a single classical MHC IA locus (Onmy-UBA) that is believed to function similar to that of mammalian MHC class Ia. Numerous MHC class Ib genes with undetermined functions have also been described in trout. Here we utilize quantitative reverse transcriptase PCR (qRT-PCR) techniques to survey the levels of basal and inducible transcription for selected trout MHC class Ib genes, sIgM and sentinels of IFN induction in response to viral infection. Basal transcription of all the class Ib genes examined in this study was lower than Onmy-UBA in nai??ve fish. UBA, along with all of the non-classical genes were induced in fish infected with virus but not in control fish. Our results support a non-classical designation for the majority of the class IB genes surveyed in this study based upon expression levels while also indicating that they may play an important role in anti-viral immunity in trout.

  7. Crystal structure of a complete ternary complex of T-cell receptor, peptide-MHC, and CD4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Yiyuan; Wang, Xin Xiang; Mariuzza, Roy A

    2012-07-11

    Adaptive immunity depends on specific recognition by a T-cell receptor (TCR) of an antigenic peptide bound to a major histocompatibility complex (pMHC) molecule on an antigen-presenting cell (APC). In addition, T-cell activation generally requires binding of this same pMHC to a CD4 or CD8 coreceptor. Here, we report the structure of a complete TCR-pMHC-CD4 ternary complex involving a human autoimmune TCR, a myelin-derived self-peptide bound to HLA-DR4, and CD4. The complex resembles a pointed arch in which TCR and CD4 are each tilted ~65° relative to the T-cell membrane. By precluding direct contacts between TCR and CD4, the structure explainsmore » how TCR and CD4 on the T cell can simultaneously, yet independently, engage the same pMHC on the APC. The structure, in conjunction with previous mutagenesis data, places TCR-associated CD3εγ and CD3εδ subunits, which transmit activation signals to the T cell, inside the TCR-pMHC-CD4 arch, facing CD4. By establishing anchor points for TCR and CD4 on the T-cell membrane, the complex provides a basis for understanding how the CD4 coreceptor focuses TCR on MHC to guide TCR docking on pMHC during thymic T-cell selection.« less

  8. Transcriptional profiling of MHC class I genes in rainbow trout infected with infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Landis, Eric D.; Purcell, Maureen K.; Thorgaard, Gary H.; Wheeler , Paul A.; Hansen, John D.

    2008-01-01

    Major histocompatibility complex (MHC) molecules are important mediators of cell-mediated immunity in vertebrates. MHC class IA molecules are important for host anti-viral immunity as they present intracellular antigens and regulate natural killer cell (NK) activity. MHC class Ib molecules on the other hand are less understood and have demonstrated diverse immune and non-immune functions in mammals. Rainbow trout possess a single classical MHC IA locus (Onmy-UBA) that is believed to function similar to that of mammalian MHC class Ia. Numerous MHC class Ib genes with undetermined functions have also been described in trout. Here we utilize quantitative reverse transcriptase PCR (qRT-PCR) techniques to survey the levels of basal and inducible transcription for selected trout MHC class Ib genes, sIgM and sentinels of IFN induction in response to viral infection. Basal transcription of all the class Ib genes examined in this study was lower than Onmy-UBA in naïve fish. UBA, along with all of the non-classical genes were induced in fish infected with virus but not in control fish. Our results support a non-classical designation for the majority of the class IB genes surveyed in this study based upon expression levels while also indicating that they may play an important role in anti-viral immunity in trout.

  9. Reduced MHC and neutral variation in the Galápagos hawk, an island endemic

    PubMed Central

    2011-01-01

    Background Genes at the major histocompatibility complex (MHC) are known for high levels of polymorphism maintained by balancing selection. In small or bottlenecked populations, however, genetic drift may be strong enough to overwhelm the effect of balancing selection, resulting in reduced MHC variability. In this study we investigated MHC evolution in two recently diverged bird species: the endemic Galápagos hawk (Buteo galapagoensis), which occurs in small, isolated island populations, and its widespread mainland relative, the Swainson's hawk (B. swainsoni). Results We amplified at least two MHC class II B gene copies in each species. We recovered only three different sequences from 32 Galápagos hawks, while we amplified 20 unique sequences in 20 Swainson's hawks. Most of the sequences clustered into two groups in a phylogenetic network, with one group likely representing pseudogenes or nonclassical loci. Neutral genetic diversity at 17 microsatellite loci was also reduced in the Galápagos hawk compared to the Swainson's hawk. Conclusions The corresponding loss in neutral diversity suggests that the reduced variability present at Galápagos hawk MHC class II B genes compared to the Swainson's hawk is primarily due to a founder event followed by ongoing genetic drift in small populations. However, purifying selection could also explain the low number of MHC alleles present. This lack of variation at genes involved in the adaptive immune response could be cause for concern should novel diseases reach the archipelago. PMID:21612651

  10. Association Analysis of the Extended MHC Region in Celiac Disease Implicates Multiple Independent Susceptibility Loci

    PubMed Central

    Ahn, Richard; Ding, Yuan Chun; Murray, Joseph; Fasano, Alessio; Green, Peter H. R.; Neuhausen, Susan L.; Garner, Chad

    2012-01-01

    Celiac disease is a common autoimmune disease caused by sensitivity to the dietary protein gluten. Forty loci have been implicated in the disease. All disease loci have been characterized as low-penetrance, with the exception of the high-risk genotypes in the HLA-DQA1 and HLA-DQB1 genes, which are necessary but not sufficient to cause the disease. The very strong effects from the known HLA loci and the genetically complex nature of the major histocompatibility complex (MHC) have precluded a thorough investigation of the region. The purpose of this study was to test the hypothesis that additional celiac disease loci exist within the extended MHC (xMHC). A set of 1898 SNPs was analyzed for association across the 7.6 Mb xMHC region in 1668 confirmed celiac disease cases and 517 unaffected controls. Conditional recursive partitioning was used to create an informative indicator of the known HLA-DQA1 and HLA-DQB1 high-risk genotypes that was included in the association analysis to account for their effects. A linkage disequilibrium-based grouping procedure was utilized to estimate the number of independent celiac disease loci present in the xMHC after accounting for the known effects. There was significant statistical evidence for four new independent celiac disease loci within the classic MHC region. This study is the first comprehensive association analysis of the xMHC in celiac disease that specifically accounts for the known HLA disease genotypes and the genetic complexity of the region. PMID:22615847

  11. Extensive shared polymorphism at non-MHC immune genes in recently diverged North American prairie grouse

    USGS Publications Warehouse

    Minias, Piotr; Bateson, Zachary W.; Whittingham, Linda A.; Johnson, Jeff A.; Oyler-McCance, Sara J.; Dunn, Peter O.

    2018-01-01

    Gene polymorphisms shared between recently diverged species are thought to be widespread and most commonly reflect introgression from hybridization or retention of ancestral polymorphism through incomplete lineage sorting. Shared genetic diversity resulting from incomplete lineage sorting is usually maintained for a relatively short period of time, but under strong balancing selection it may persist for millions of years beyond species divergence (balanced trans-species polymorphism), as in the case of the major histocompatibility complex (MHC) genes. However, balancing selection is much less likely to act on non-MHC immune genes. The aim of this study was to investigate the patterns of shared polymorphism and selection at non-MHC immune genes in five grouse species from Centrocercus and Tympanuchus genera. For this purpose, we genotyped five non-MHC immune genes that do not interact directly with pathogens, but are involved in signaling and regulate immune cell growth. In contrast to previous studies with MHC, we found no evidence for balancing selection or balanced trans-species polymorphism among the non-MHC immune genes. No haplotypes were shared between genera and in most cases more similar allelic variants sorted by genus. Between species within genera, however, we found extensive shared polymorphism, which was most likely attributable to introgression or incomplete lineage sorting following recent divergence and large ancestral effective population size (i.e., weak genetic drift). Our study suggests that North American prairie grouse may have attained relatively low degree of reciprocal monophyly at nuclear loci and reinforces the rarity of balancing selection in non-MHC immune genes.

  12. IFITM3 Restricts Human Metapneumovirus Infection.

    PubMed

    McMichael, Temet M; Zhang, Yu; Kenney, Adam D; Zhang, Lizhi; Zani, Ashley; Lu, Mijia; Chemudupati, Mahesh; Li, Jianrong; Yount, Jacob S

    2018-06-15

    Human metapneumovirus (hMPV) utilizes a bifurcated cellular entry strategy, fusing either with the plasma membrane or, after endocytosis, with the endosome membrane. Whether cellular factors restrict or enhance either entry pathway is largely unknown. We found that the interferon-induced transmembrane protein 3 (IFITM3) inhibits hMPV infection to an extent similar to endocytosis-inhibiting drugs, and an IFITM3 variant that accumulates at the plasma membrane in addition to its endosome localization provided increased virus restriction. Mechanistically, IFITM3 blocks hMPV F protein-mediated membrane fusion, and inhibition of infection was reversed by the membrane destabilizing drug amphotericin B. Conversely, we found that infection by some hMPV strains is enhanced by the endosomal protein Toll-like receptor 7 (TLR7), and that IFITM3 retains the ability to restrict hMPV infection even in cells expressing TLR7. Overall, our results identify IFITM3 as an endosomal restriction factor that limits hMPV infection of cells.

  13. The Missing Link in Epstein-Barr Virus Immune Evasion: the BDLF3 Gene Induces Ubiquitination and Downregulation of Major Histocompatibility Complex Class I (MHC-I) and MHC-II

    PubMed Central

    Quinn, Laura L.; Williams, Luke R.; White, Claire; Forrest, Calum; Rowe, Martin

    2015-01-01

    ABSTRACT The ability of Epstein-Barr virus (EBV) to spread and persist in human populations relies on a balance between host immune responses and EBV immune evasion. CD8+ cells specific for EBV late lytic cycle antigens show poor recognition of target cells compared to immediate early and early antigen-specific CD8+ cells. This phenomenon is due in part to the early EBV protein BILF1, whose immunosuppressive activity increases with lytic cycle progression. However, published data suggest the existence of a hitherto unidentified immune evasion protein further enhancing protection against late EBV antigen-specific CD8+ cells. We have now identified the late lytic BDLF3 gene as the missing link accounting for efficient evasion during the late lytic cycle. Interestingly, BDLF3 also contributes to evasion of CD4+ cell responses to EBV. We report that BDLF3 downregulates expression of surface major histocompatibility complex (MHC) class I and class II molecules in the absence of any effect upon other surface molecules screened, including CD54 (ICAM-1) and CD71 (transferrin receptor). BDLF3 both enhanced internalization of surface MHC molecules and reduced the rate of their appearance at the cell surface. The reduced expression of surface MHC molecules correlated with functional protection against CD8+ and CD4+ T cell recognition. The molecular mechanism was identified as BDLF3-induced ubiquitination of MHC molecules and their subsequent downregulation in a proteasome-dependent manner. IMPORTANCE Immune evasion is a necessary feature of viruses that establish lifelong persistent infections in the face of strong immune responses. EBV is an important human pathogen whose immune evasion mechanisms are only partly understood. Of the EBV immune evasion mechanisms identified to date, none could explain why CD8+ T cell responses to late lytic cycle genes are so infrequent and, when present, recognize lytically infected target cells so poorly relative to CD8+ T cells specific for

  14. Inhibition of WEE1 kinase and cell cycle checkpoint activation sensitizes head and neck cancers to natural killer cell therapies.

    PubMed

    Friedman, Jay; Morisada, Megan; Sun, Lillian; Moore, Ellen C; Padget, Michelle; Hodge, James W; Schlom, Jeffrey; Gameiro, Sofia R; Allen, Clint T

    2018-06-21

    Natural killer (NK) cells recognize and lyse target tumor cells in an MHC-unrestricted fashion and complement antigen- and MHC-restricted killing by T-lymphocytes. NK cells and T-lymphocytes mediate early killing of targets through a common granzyme B-dependent mechanism. Tumor cell resistance to granzyme B and how this alters NK cell killing is not clearly defined. Tumor cell sensitivity to cultured murine KIL and human high affinity NK (haNK) cells in the presence or absence of AZD1775, a small molecule inhibitor of WEE1 kinase, was assessed via real time impedance analysis. Mechanisms of enhanced sensitivity to NK lysis were determined and in vivo validation via adoptive transfer of KIL cells into syngeneic mice was performed. Cultured murine KIL cells lyse murine oral cancer 2 (MOC2) cell targets more efficiently than freshly isolated peripheral murine NK cells. MOC2 sensitivity to granzyme B-dependent KIL cell lysis was enhanced by inhibition of WEE1 kinase, reversing G2/M cell cycle checkpoint activation and resulting in enhanced DNA damage and apoptosis. Treatment of MOC2 tumor-bearing wild-type C57BL/6 mice with AZD1775 and adoptively transferred KIL cells resulted in enhanced tumor growth control and survival over controls or either treatment alone. Validating these findings in human models, WEE1 kinase inhibition sensitized two human head and neck cancer cell lines to direct lysis by haNK cells. Further, WEE1 kinase inhibition sensitized these cell lines to antibody-dependent cell-mediated cytotoxicity when combined with the anti-PD-L1 IgG1 mAb Avelumab. Tumor cell resistance to granzyme B-induced cell death can be reversed through inhibition of WEE1 kinase as AZD1775 sensitized both murine and human head and neck cancer cells to NK lysis. These data provide the pre-clinical rationale for the combination of small molecules that reverse cell cycle checkpoint activation and NK cellular therapies.

  15. Effect of Secondary Equilibria on the Adsorption of Ibuprofen Enantiomers on a Chiral Stationary Phase with a Grafted Antibiotic Eremomycin

    NASA Astrophysics Data System (ADS)

    Reshetova, E. N.; Asnin, L. D.; Kachmarsky, K.

    2018-02-01

    The chromatographic separation of ibuprofen enantiomers on a Nautilus-E chiral stationary phase with a grafted eremomycin antibiotic at high column loading is accompanied by distortion of the shape of chromatographic peaks. A model is proposed to explain this phenomenon. A number of factors are considered in the model: the ionization of ibuprofen in the mobile phase, the pH change in the mass transfer zone caused by ionization, and competitive adsorption involving buffer components. Simulations performed using this model within the theory of nonequilibrium chromatography allow the shape of chromatograms for large amounts of S- and R-ibuprofen samples to be predicted. The adsorption mechanism is found to be mainly ion-exchange. The contribution from the molecular adsorption of ibuprofen to the total retention is shown to be several percent.

  16. Involvement of I-A-restricted B-B cell interaction in the polyclonal B cell differentiation induced by lipopolysaccharide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahama, Y.; Ono, S.; Ishihara, K.

    1990-01-01

    The present study has examined a functional role of Ia molecules expressed on murine B cells in polyclonal B cell differentiation induced by lipopolysaccharide (LPS). Reverse, IgM PFC responses of unprimed B cells induced by LPS in the apparent absence of T cells and adherent accessory cells were markedly inhibited in a haplotype-specific manner by Fab monomer fragment of anti-class II (Ia) but not anti-class I MHC monoclonal antibody (mAb). However, the degree of inhibition of LPS responses of H-2-heterozygous F1 B cells expressing both parental I-A products by either one of anti-I-A mAb was at best half that ofmore » the parental B cells. Interestingly, when (B10 x B10.-BR)F1 (H-2b/k) B cells were fractionated into adherent and nonadherent populations by their ability to bind to parental B10 B cell monolayers, LPS responses of F1 B cells adherent to and nonadherent to the B10 B cell monolayers were selectively inhibited by anti-I-Ab and anti-I-Ak mAb, respectively. These results suggest that LPS-responsive F1 B cells comprise at least two separate populations with restriction specificity for only one of the parental I-A products expressed on B cells. In addition, it was demonstrated that the I-A-restriction specificity of LPS-responsive B cells is plastic and determined by H-2-genotype of bone marrow cells present during B cell ontogeny but not by that of radiation-resistant host elements. Namely, the LPS responses of B10-derived B cells from (B10 + B10.BR) (H-2b x H - 2k)F1 radiation bone marrow chimeras but not from B10 (H-2b x H-2k)F1 chimeras became sensitive to the inhibition of anti-I-Ak mAb in the presence of mitomycin C-treated I-Ak-positive B cells, supporting a notion of receptor-Ia molecules interactions rather than like-like interactions.« less

  17. Variation in MHC genotypes in two populations of house sparrow (Passer domesticus) with different population histories.

    PubMed

    Borg, Asa Alexandra; Pedersen, Sindre Andre; Jensen, Henrik; Westerdahl, Helena

    2011-10-01

    Small populations are likely to have a low genetic ability for disease resistance due to loss of genetic variation through inbreeding and genetic drift. In vertebrates, the highest genetic diversity of the immune system is located at genes within the major histocompatibility complex (MHC). Interestingly, parasite-mediated selection is thought to potentially maintain variation at MHC loci even in populations that are monomorphic at other loci. Therefore, general loss of genetic variation in the genome may not necessarily be associated with low variation at MHC loci. We evaluated inter- and intrapopulation variation in MHC genotypes between an inbred (Aldra) and a relatively outbred population (Hestmannøy) of house sparrows (Passer domesticus) in a metapopulation at Helgeland, Norway. Genomic (gDNA) and transcribed (cDNA) alleles of functional MHC class I and IIB loci, along with neutral noncoding microsatellite markers, were analyzed to obtain relevant estimates of genetic variation. We found lower allelic richness in microsatellites in the inbred population, but high genetic variation in MHC class I and IIB loci in both populations. This suggests that also the inbred population could be under balancing selection to maintain genetic variation for pathogen resistance.

  18. Variation in MHC genotypes in two populations of house sparrow (Passer domesticus) with different population histories

    PubMed Central

    Borg, Åsa Alexandra; Pedersen, Sindre Andre; Jensen, Henrik; Westerdahl, Helena

    2011-01-01

    Small populations are likely to have a low genetic ability for disease resistance due to loss of genetic variation through inbreeding and genetic drift. In vertebrates, the highest genetic diversity of the immune system is located at genes within the major histocompatibility complex (MHC). Interestingly, parasite-mediated selection is thought to potentially maintain variation at MHC loci even in populations that are monomorphic at other loci. Therefore, general loss of genetic variation in the genome may not necessarily be associated with low variation at MHC loci. We evaluated inter- and intrapopulation variation in MHC genotypes between an inbred (Aldra) and a relatively outbred population (Hestmannøy) of house sparrows (Passer domesticus) in a metapopulation at Helgeland, Norway. Genomic (gDNA) and transcribed (cDNA) alleles of functional MHC class I and IIB loci, along with neutral noncoding microsatellite markers, were analyzed to obtain relevant estimates of genetic variation. We found lower allelic richness in microsatellites in the inbred population, but high genetic variation in MHC class I and IIB loci in both populations. This suggests that also the inbred population could be under balancing selection to maintain genetic variation for pathogen resistance. PMID:22393491

  19. Regulation of MHC class I expression by Foxp3 and its effect on Treg cell function

    PubMed Central

    Mu, Jie; Tai, Xuguang; Iyer, Shankar S.; Weissman, Jocelyn D.; Singer, Alfred; Singer, Dinah S.

    2014-01-01

    Expression of MHC class I molecules, which provide immune surveillance against intracellular pathogens, is higher on lymphoid cells than on any other cell types. In T cells, this is a result of activation of class I transcription by the T cell enhanceosome consisting of Runx1, CBFβ and LEF1. We now report that MHC class I transcription in T cells also is enhanced by Foxp3, resulting in higher levels of class I in CD4+CD25+ T regulatory cells than in conventional CD4+CD25− T cells. Interestingly, the effect of Foxp3 regulation of MHC class I transcription is cell-type specific: Foxp3 increases MHC class I expression in T cells but represses it in epithelial tumor cells. In both cell types, Foxp3 targets the upstream IRE and downstream core promoter of the class I gene. Importantly, expression of MHC class I contributes to the function of CD4+CD25+ T regulatory cells by enhancing immune suppression, both in in vitro and in vivo. These findings identify MHC class I genes as direct targets of Foxp3 whose expression augments regulatory T cell function. PMID:24523508

  20. The shortened infusion time of intravenous ibuprofen, part 2: a multicenter, open-label, surgical surveillance trial to evaluate safety.

    PubMed

    Gan, Tong J; Candiotti, Keith; Turan, Alparslan; Buvanendran, Asokumar; Philip, Beverly K; Viscusi, Eugene R; Soghomonyan, Suren; Bergese, Sergio D

    2015-02-01

    The literature and clinical data support the use of intravenous (IV) infusions of ibuprofen to control pain and reduce the opioid requirements associated with surgical pain. According to current guidelines, IV ibuprofen can be administered via a slow IV infusion performed during a 30-minute period. Although recent studies indicate that more rapid infusions may yield additional benefits for patients, the safety of such an approach needs further evaluation. The main purpose of this study was to determine the safety of single and multiple doses of IV ibuprofen (800 mg) administered over 5 to 10 minutes at the induction of anesthesia and after the surgical procedure for the treatment of postoperative pain. This was a Phase IV, multicenter, open-label, clinical surveillance study. It was conducted at 21 hospitals in the United States, and 300 adult hospitalized patients undergoing surgery were enrolled. The exclusion criteria for the study were: inadequate IV access; hypersensitivity to any component of IV ibuprofen, aspirin, or related products; and any active, clinically significant bleeding. Also excluded were patients who had taken NSAIDs <6 hours before administration of IV ibuprofen; pregnant or breastfeeding female patients; and patients in the perioperative period of coronary artery bypass graft surgery. Patients received 800 mg of IV ibuprofen administered over 5 to 10 minutes preoperatively. Vital signs, adverse events, and pain scores were assessed. Approximately 22% (65 of 300) of patients reported adverse events (serious and nonserious). The most common adverse event was infusion site pain (34 of 300 [11%]). No deaths were reported. Nine subjects reported serious adverse events, 8 of which occurred during the first 6 hours. All serious events reported were judged unrelated to ibuprofen. Of the 300 total patients, 2 (0.67%) discontinued the study drug due to an adverse event (1 patient discontinued the study because of infusion site pain, and 1 patient

  1. TLR4-HMGB1 signaling pathway affects the inflammatory reaction of autoimmune myositis by regulating MHC-I.

    PubMed

    Wan, Zemin; Zhang, Xiujuan; Peng, Anping; He, Min; Lei, Zhenhua; Wang, Yunxiu

    2016-12-01

    To analyze the effects of TLR4 on the expression of the HMGB1, MHC-I and downstream cytokines IL-6 and TNF-α, and to investigate the biological role of the TLR4-HMGB1 signaling pathway in the development of the autoimmune myositis. We built mice models with experimental autoimmune myositis (EAM) and used the inverted screen experiment to measure their muscle endurance; we also examined inflammatory infiltration of muscle tissues after HE staining; and we assessed the expression of MHC-I using immunohistochemistry. In addition, peripheral blood mononuclear cells (PBMC) were extracted and flow cytometry was utilized to detect the effect of IFN-γ on the expression of MHC-I. Furthermore, PBMCs were treated with IFN-γ, anti-TLR4, anti-HMGB1 and anti-MHC-I. Real-time PCR and western blotting were employed to examine the expressions of TLR4, HMGB1 and MHC-I in different groups. The ELISA method was also utilized to detect the expression of the downstream cytokines TNF-α and IL-6. The expressions of TLR4, HMGB1 and MHC-I in muscle tissues from mice with EAM were significantly higher than those in the control group (all P<0.05). After IFN-γ treatment, the expressions of TLR4, HMGB1, MHC-I, TNF-α and IL-6 in PBMCs significantly increased (all P<0.05). The treatment of anti-TLR4, anti-HMGB1 and anti-MHC-I could significantly downregulate the expression of MHC-I (all P<0.05). In addition, anti-TLR4 and anti-HMGB1 significantly reduced the expression of TNF-α and IL-6 (all P<0.05). The TLR4-HMGB1 signaling pathway affects the process of autoimmune myositis inflammation by regulating the expression of MHC-I and other pro-inflammatory cytokines. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Body odour preferences in men and women: do they aim for specific MHC combinations or simply heterozygosity?

    PubMed Central

    Wedekind, C; Füri, S

    1997-01-01

    The major histocompatibility complex (MHC) is an immunologically important group of genes that appears to be under natural as well as sexual selection. Several hypotheses suggest that certain MHC-allele combinations (usually heterozygous ones) are superior under selective pressure by pathogens. This could influence mate choice in a way that preferences function to create MHC-heterozygous offspring, or that they function to create specific allele combinations that are beneficial under the current environmental conditions through their complementary or epistatic effects. To test these hypotheses, we asked 121 men and women to score the odours of six T-shirts, worn by two women and four men. Their scorings of pleasantness correlated negatively with the degree of MHC similarity between smeller and T-shirt-wearer in men and women who were not using the contraceptive pill (but not in Pill-users). Depending on the T-shirt-wearer, the amount of variance in the scorings of odour pleasantness that was explained by the degree of MHC similarity (r2) varied between nearly 0 and 23%. There was no apparent effect of gender in this correlation: the highest r2 was actually reached with one of the male odours sniffed by male smellers. Men and women who were reminded of their own mate/ex-mate when sniffing a T-shirt had significantly fewer MHC-alleles in common with this T-shirt-wearer than expected by chance. This suggests that the MHC or linked genes influence human mate choice. We found no significant effect when we tested for an influence of the MHC on odour preferences after the degree of similarity between T-shirt-wearer and smeller was statistically controlled for. This suggests that in our study populations the MHC influences body odour preferences mainly, if not exclusively, by the degree of similarity or dissimilarity. The observed preferences would increase heterozygosity in the progeny. They do not seem to aim for more specific MHC combinations. PMID:9364787

  3. INF-gamma rearranges membrane topography of MHC-I and ICAM-1 in colon carcinoma cells.

    PubMed

    Bacsó, Zsolt; Bene, László; Damjanovich, László; Damjanovich, Sándor

    2002-01-18

    Flow-cytometric fluorescence energy transfer (FCET) measurements between fluorescently labeled cell surface MHC-I and ICAM-1 molecules indicated similar receptor patterns in the plasma membrane of interferon-gamma (INF-gamma)-treated colon carcinoma cells as those observed earlier at the surface of lymphoid cells. INF-gamma activation significantly increased the density of MHC-I and ICAM-1 proteins in the membrane. This increase in receptor density was accompanied by decreased proximity level of the homo-associated MHC-I receptors. Hetero-association of MHC-I and ICAM-1 molecules was increased by INF-gamma treatment. INF-gamma changed neither hetero- nor homo-association of transferrin receptors. By staining the sphingomyelin/cholesterol-enriched lipid microdomains with fluorescently labeled cholera toxin B subunit, we found an increase in the amount of lipid-raft associated G(M1)-gangliosides due to INF-gamma treatment. Confocal microscopic results and FCET measurements show that MHC-I and ICAM-1 are components of G(M1)-ganglioside containing lipid-rafts and also support an increase in the size of these lipid-rafts upon INF-gamma treatment.

  4. Epigenetic Mechanisms Regulate MHC and Antigen Processing Molecules in Human Embryonic and Induced Pluripotent Stem Cells

    PubMed Central

    Suárez-Álvarez, Beatriz; Rodriguez, Ramón M.; Calvanese, Vincenzo; Blanco-Gelaz, Miguel A.; Suhr, Steve T.; Ortega, Francisco; Otero, Jesus; Cibelli, Jose B.; Moore, Harry; Fraga, Mario F.; López-Larrea, Carlos

    2010-01-01

    Background Human embryonic stem cells (hESCs) are an attractive resource for new therapeutic approaches that involve tissue regeneration. hESCs have exhibited low immunogenicity due to low levels of Mayor Histocompatibility Complex (MHC) class-I and absence of MHC class-II expression. Nevertheless, the mechanisms regulating MHC expression in hESCs had not been explored. Methodology/Principal Findings We analyzed the expression levels of classical and non-classical MHC class-I, MHC class-II molecules, antigen-processing machinery (APM) components and NKG2D ligands (NKG2D-L) in hESCs, induced pluripotent stem cells (iPSCs) and NTera2 (NT2) teratocarcinoma cell line. Epigenetic mechanisms involved in the regulation of these genes were investigated by bisulfite sequencing and chromatin immunoprecipitation (ChIP) assays. We showed that low levels of MHC class-I molecules were associated with absent or reduced expression of the transporter associated with antigen processing 1 (TAP-1) and tapasin (TPN) components in hESCs and iPSCs, which are involved in the transport and load of peptides. Furthermore, lack of β2-microglobulin (β2m) light chain in these cells limited the expression of MHC class I trimeric molecule on the cell surface. NKG2D ligands (MICA, MICB) were observed in all pluripotent stem cells lines. Epigenetic analysis showed that H3K9me3 repressed the TPN gene in undifferentiated cells whilst HLA-B and β2m acquired the H3K4me3 modification during the differentiation to embryoid bodies (EBs). Absence of HLA-DR and HLA-G expression was regulated by DNA methylation. Conclusions/Significance Our data provide fundamental evidence for the epigenetic control of MHC in hESCs and iPSCs. Reduced MHC class I and class II expression in hESCs and iPSCs can limit their recognition by the immune response against these cells. The knowledge of these mechanisms will further allow the development of strategies to induce tolerance and improve stem cell allograft acceptance

  5. Antipyretic effect of ibuprofen in Gabonese children with uncomplicated falciparum malaria: a randomized, double-blind, placebo-controlled trial

    PubMed Central

    Matsiégui, Pierre-Blaise; Missinou, Michel A; Necek, Magdalena; Mavoungou, Elie; Issifou, Saadou; Lell, Bertrand; Kremsner, Peter G

    2008-01-01

    Background Antipyretic drugs are widely used in children with fever, though there is a controversy about the benefit of reducing fever in children with malaria. In order to assess the effect of ibuprofen on fever compared to placebo in children with uncomplicated Plasmodium falciparum malaria in Gabon, a randomized double blind placebo controlled trial, was designed. Methods Fifty children between two and seven years of age with uncomplicated malaria were included in the study. For the treatment of fever, all patients "received" mechanical treatment when the temperature rose above 37.5°C. In addition to the mechanical treatment, continuous fanning and cooling blanket, patients were assigned randomly to receive ibuprofen (7 mg/kg body weight, every eight hours) or placebo. Results The fever clearance time using a fever threshold of 37.5°C was similar in children receiving ibuprofen compared to those receiving placebo. The difference was also not statistically significant using a fever threshold of 37.8°C or 38.0°C. However, the fever time and the area under the fever curve were significantly smaller in the ibuprofen group compared to the placebo group. Conclusion Ibuprofen is effective in reducing the time with fever. The effect on fever clearance is less obvious and depends on definition of the fever threshold. Trial registration The trial registration number is: NCT00167713 PMID:18503714

  6. Mate choice for neutral and MHC genetic characteristics in Alpine marmots: different targets in different contexts?

    PubMed

    Ferrandiz-Rovira, Mariona; Allainé, Dominique; Callait-Cardinal, Marie-Pierre; Cohas, Aurélie

    2016-07-01

    Sexual selection through female mate choice for genetic characteristics has been suggested to be an important evolutionary force maintaining genetic variation in animal populations. However, the genetic targets of female mate choice are not clearly identified and whether female mate choice is based on neutral genetic characteristics or on particular functional loci remains an open question. Here, we investigated the genetic targets of female mate choice in Alpine marmots (Marmota marmota), a socially monogamous mammal where extra-pair paternity (EPP) occurs. We used 16 microsatellites to describe neutral genetic characteristics and two MHC loci belonging to MHC class I and II as functional genetic characteristics. Our results reveal that (1) neutral and MHC genetic characteristics convey different information in this species, (2) social pairs show a higher MHC class II dissimilarity than expected under random mate choice, and (3) the occurrence of EPP increases when social pairs present a high neutral genetic similarity or dissimilarity but also when they present low MHC class II dissimilarity. Thus, female mate choice is based on both neutral and MHC genetic characteristics, and the genetic characteristics targeted seem to be context dependent (i.e., the genes involved in social mate choice and genetic mate choice differ). We emphasize the need for empirical studies of mate choice in the wild using both neutral and MHC genetic characteristics because whether neutral and functional genetic characteristics convey similar information is not universal.

  7. NetMHCstab – predicting stability of peptide–MHC-I complexes; impacts for cytotoxic T lymphocyte epitope discovery

    PubMed Central

    Jørgensen, Kasper W; Rasmussen, Michael; Buus, Søren; Nielsen, Morten

    2014-01-01

    Major histocompatibility complex class I (MHC-I) molecules play an essential role in the cellular immune response, presenting peptides to cytotoxic T lymphocytes (CTLs) allowing the immune system to scrutinize ongoing intracellular production of proteins. In the early 1990s, immunogenicity and stability of the peptide–MHC-I (pMHC-I) complex were shown to be correlated. At that time, measuring stability was cumbersome and time consuming and only small data sets were analysed. Here, we investigate this fairly unexplored area on a large scale compared with earlier studies. A recent small-scale study demonstrated that pMHC-I complex stability was a better correlate of CTL immunogenicity than peptide–MHC-I affinity. We here extended this study and analysed a total of 5509 distinct peptide stability measurements covering 10 different HLA class I molecules. Artificial neural networks were used to construct stability predictors capable of predicting the half-life of the pMHC-I complex. These predictors were shown to predict T-cell epitopes and MHC ligands from SYFPEITHI and IEDB to form significantly more stable MHC-I complexes compared with affinity-matched non-epitopes. Combining the stability predictions with a state-of-the-art affinity predictions NetMHCcons significantly improved the performance for identification of T-cell epitopes and ligands. For the HLA alleles included in the study, we could identify distinct sub-motifs that differentiate between stable and unstable peptide binders and demonstrate that anchor positions in the N-terminal of the binding motif (primarily P2 and P3) play a critical role for the formation of stable pMHC-I complexes. A webserver implementing the method is available at http://www.cbs.dtu.dk/services/NetMHCstab. PMID:23927693

  8. Comparative study of the efficacy and safety of paracetamol, ibuprofen, and indomethacin in closure of patent ductus arteriosus in preterm neonates.

    PubMed

    El-Mashad, Abd El-Rahman; El-Mahdy, Heba; El Amrousy, Doaa; Elgendy, Marwa

    2017-02-01

    In this prospective study, we compared the efficacy and side effects of indomethacin, ibuprofen, and paracetamol in patent ductus arteriosus (PDA) closure in preterm neonates. Three hundred preterm neonates with hemodynamically significant PDA (hs-PDA) admitted at our neonatal intensive care unit were enrolled in the study. They were randomized into three groups. Group I (paracetamol group) received 15 mg/kg/6 h IV paracetamol infusion for 3 days. Group II (ibuprofen group) received 10 mg/kg IV ibuprofen infusion followed by 5 mg/kg/day for 2 days. Group III (indomethacin group) received 0.2 mg/kg/12 h indomethacin IV infusion for three doses. Laboratory investigations such as renal function test, liver function test, complete blood count, and blood gases were conducted in addition to echocardiographic examinations. All investigations were done before and 3 days after treatment. There was no significant difference between all groups regarding efficacy of PDA closure (P = 0.868). There was a significant increase in serum creatinine levels and serum blood urea nitrogen (BUN) in the ibuprofen and indomethacin groups (P < 0.001). There was a significant reduction in platelet count and urine output (UOP) in both ibuprofen and indomethacin groups (P < 0.001). There was a significant increase in bilirubin levels in only the ibuprofen group (P = 0.003). No significant difference of hemoglobin (HB) level or liver enzymes in all groups (P > 0.05). Ventilatory settings improved significantly in patients with successful closure of PDA than those with failed PDA closure (P < 0.001). Paracetamol is as effective as indomethacin and ibuprofen in closure of PDA in preterm neonates and has less side effects mainly on renal function, platelet count, and GIT bleeding. What is Known: • Hemodynamically significant patent ductus arteriosus has many complications for preterm and low birth weight neonates and better to be closed. Many drugs were used for medical

  9. Formulation of Novel Layered Sodium Carboxymethylcellulose Film Wound Dressings with Ibuprofen for Alleviating Wound Pain

    PubMed Central

    Vinklárková, Lenka; Vetchý, David; Bernatonienė, Jurga

    2015-01-01

    Effective assessment and management of wound pain can facilitate both improvements in healing rates and overall quality of life. From a pharmacological perspective, topical application of nonsteroidal anti-inflammatory drugs in the form of film wound dressings may be a good choice. Thus, the aim of this work was to develop novel layered film wound dressings containing ibuprofen based on partially substituted fibrous sodium carboxymethylcellulose (nonwoven textile Hcel NaT). To this end, an innovative solvent casting method using a sequential coating technique has been applied. The concentration of ibuprofen which was incorporated as an acetone solution or as a suspension in a sodium carboxymethylcellulose dispersion was 0.5 mg/cm2 and 1.0 mg/cm2 of film. Results showed that developed films had adequate mechanical and swelling properties and an advantageous acidic surface pH for wound application. An in vitro drug release study implied that layered films retained the drug for a longer period of time and thus could minimize the frequency of changing the dressing. Films with suspended ibuprofen demonstrated higher drug content uniformity and superior in vitro drug release characteristics in comparison with ibuprofen incorporation as an acetone solution. Prepared films could be potential wound dressings for the effective treatment of wound pain in low exuding wounds. PMID:26090454

  10. Separation of the enantiomers of ibuprofen and its major phase I metabolites in urine using capillary electrophoresis.

    PubMed

    Bjørnsdottir, I; Kepp, D R; Tjørnelund, J; Hansen, S H

    1998-03-01

    A capillary electrophoresis method for determination of the enantiomers of ibuprofen and its major phase I metabolites: 2'-hydroxyibuprofen and 2'-carboxyibuprofen in urine samples have been developed. Cyclodextrins and linear dextrins have been investigated as chiral selectors. Simultaneous chiral separation of the enantiomers of ibuprofen, 2'-hydroxyibuprofen and 2'-carboxyibuprofen was obtained using a mixture of dextrin 10 and heptakis (2,3,6-tri-O-methyl)-beta-cyclodextrin in a 2-[N-morpholino]ethanesulphonic acid buffer, pH 5.26. The electroosmotic flow was reversed using hexadimethrine bromide as a buffer additive. The method can be used for the determination of the free enantiomers of ibuprofen, 2'-hydroxyibuprofen and 2'-carboxyibuprofen as well as for the indirect determination of their glucuronic acid conjugates in urine samples.

  11. Current status and future challenges in T-cell receptor/peptide/MHC molecular dynamics simulations.

    PubMed

    Knapp, Bernhard; Demharter, Samuel; Esmaielbeiki, Reyhaneh; Deane, Charlotte M

    2015-11-01

    The interaction between T-cell receptors (TCRs) and major histocompatibility complex (MHC)-bound epitopes is one of the most important processes in the adaptive human immune response. Several hypotheses on TCR triggering have been proposed. Many of them involve structural and dynamical adjustments in the TCR/peptide/MHC interface. Molecular Dynamics (MD) simulations are a computational technique that is used to investigate structural dynamics at atomic resolution. Such simulations are used to improve understanding of signalling on a structural level. Here we review how MD simulations of the TCR/peptide/MHC complex have given insight into immune system reactions not achievable with current experimental methods. Firstly, we summarize methods of TCR/peptide/MHC complex modelling and TCR/peptide/MHC MD trajectory analysis methods. Then we classify recently published simulations into categories and give an overview of approaches and results. We show that current studies do not come to the same conclusions about TCR/peptide/MHC interactions. This discrepancy might be caused by too small sample sizes or intrinsic differences between each interaction process. As computational power increases future studies will be able to and should have larger sample sizes, longer runtimes and additional parts of the immunological synapse included. © The Author 2015. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

  12. Treatment with acetaminophen/paracetamol or ibuprofen alleviates post-dose symptoms related to intravenous infusion with zoledronic acid 5 mg.

    PubMed

    Wark, J D; Bensen, W; Recknor, C; Ryabitseva, O; Chiodo, J; Mesenbrink, P; de Villiers, T J

    2012-02-01

    Patients treated with intravenous zoledronic acid 5 mg for osteoporosis may experience post-dose influenza-like symptoms. Oral acetaminophen/paracetamol or ibuprofen administered 4 h post-infusion reduced the proportion of patients with increased oral temperature and worsening post-infusion symptom scores vs. placebo, thus providing an effective strategy for the treatment of such symptoms. Once-yearly intravenous zoledronic acid 5 mg is a safe and effective treatment for postmenopausal osteoporosis. This study assessed whether transient influenza-like post-dose symptoms associated with intravenous infusion of zoledronic acid can be reduced by post-dose administration of acetaminophen/paracetamol or ibuprofen. In an international, multicenter, randomized, double-blind, double-dummy parallel-group study, bisphosphonate-naïve postmenopausal women with osteopenia (n = 481) were randomized to receive zoledronic acid 5 mg + acetaminophen/paracetamol (n = 135), ibuprofen (n = 137) or placebo (n = 137), or placebo + placebo (n = 72). Acetaminophen/paracetamol and ibuprofen were administered every 6 h for 3 days beginning 4 h post-infusion. The proportion of patients with increased oral temperature (≥1°C above 37.5°C) and with worsening post-infusion symptom scores over 3 days was significantly lower in patients receiving ibuprofen (36.8% and 48.5%) or acetaminophen/paracetamol (37.3% and 46.3%) vs. those receiving placebo (63.5% and 75.9%, respectively; all p < 0.0001) compared with background rates of 11.1% and 16.7%, respectively, in the absence of any active treatment. Overall incidence of adverse events was comparable for patients receiving acetaminophen/paracetamol or ibuprofen. Oral acetaminophen/paracetamol or ibuprofen effectively managed the transient influenza-like symptoms associated with zoledronic acid 5 mg.

  13. Comparative genomic analysis of the MHC: the evolution of class I duplication blocks, diversity and complexity from shark to man.

    PubMed

    Kulski, Jerzy K; Shiina, Takashi; Anzai, Tatsuya; Kohara, Sakae; Inoko, Hidetoshi

    2002-12-01

    The major histocompatibility complex (MHC) genomic region is composed of a group of linked genes involved functionally with the adaptive and innate immune systems. The class I and class II genes are intrinsic features of the MHC and have been found in all the jawed vertebrates studied so far. The MHC genomic regions of the human and the chicken (B locus) have been fully sequenced and mapped, and the mouse MHC sequence is almost finished. Information on the MHC genomic structures (size, complexity, genic and intergenic composition and organization, gene order and number) of other vertebrates is largely limited or nonexistent. Therefore, we are mapping, sequencing and analyzing the MHC genomic regions of different human haplotypes and at least eight nonhuman species. Here, we review our progress with these sequences and compare the human MHC structure with that of the nonhuman primates (chimpanzee and rhesus macaque), other mammals (pigs, mice and rats) and nonmammalian vertebrates such as birds (chicken and quail), bony fish (medaka, pufferfish and zebrafish) and cartilaginous fish (nurse shark). This comparison reveals a complex MHC structure for mammals and a relatively simpler design for nonmammalian animals with a hypothetical prototypic structure for the shark. In the mammalian MHC, there are two to five different class I duplication blocks embedded within a framework of conserved nonclass I and/or nonclass II genes. With a few exceptions, the class I framework genes are absent from the MHC of birds, bony fish and sharks. Comparative genomics of the MHC reveal a highly plastic region with major structural differences between the mammalian and nonmammalian vertebrates. Additional genomic data are needed on animals of the reptilia, crocodilia and marsupial classes to find the origins of the class I framework genes and examples of structures that may be intermediate between the simple and complex MHC organizations of birds and mammals, respectively.

  14. Spectrofluorimetric assessment of chlorzoxazone and ibuprofen in pharmaceutical formulations by using Eu-tetracycline HCl optical sensor doped in sol-gel matrix.

    PubMed

    Attia, M S; Ramsis, M N; Khalil, L H; Hashem, S G

    2012-03-01

    A novel, simple, sensitive and selective spectrofluorimetric method was developed for the determination of trace amounts of chlorzoxazone and Ibuprofen in pharmaceutical tablets using optical sensor Eu-Tetracycline HCl doped in sol-gel matrix. The chlorzoxazone or Ibuprofen can remarkably enhance the luminescence intensity of Eu-Tetracycline HCl complex doped in a sol-gel matrix in dimethylformamide (DMF) at pH 9.7 and 6.3, respectively, λ(ex) = 400 nm. The enhancing of luminescence intensity peak of Eu-Tetracycline HCl complex at 617 nm is proportional to the concentration of chlorzoxazone or Ibuprofen a result that suggested profitable application as a simple optical sensor for chlorzoxazone or Ibuprofen assessment. The dynamic ranges found for the determination of chlorzoxazone and Ibuprofen concentration are 5 × 10(-9)-1 × 10(-4) and 1 × 10(-8)-7 × 10(-5) mol L(-1), and the limit of detection (LOD) and quantitation limit of detection (LOQ) are 3.1 × 10(-10), 9.6 × 10(-10) and 5.6 × 10(-10), 1.7 × 10(-9) mol L(-1), respectively.

  15. Early SIV and HIV infection promotes the LILRB2/MHC-I inhibitory axis in cDCs.

    PubMed

    Alaoui, Lamine; Palomino, Gustavo; Zurawski, Sandy; Zurawski, Gerard; Coindre, Sixtine; Dereuddre-Bosquet, Nathalie; Lecuroux, Camille; Goujard, Cecile; Vaslin, Bruno; Bourgeois, Christine; Roques, Pierre; Le Grand, Roger; Lambotte, Olivier; Favier, Benoit

    2018-05-01

    Classical dendritic cells (cDCs) play a pivotal role in the early events that tip the immune response toward persistence or viral control. In vitro studies indicate that HIV infection induces the dysregulation of cDCs through binding of the LILRB2 inhibitory receptor to its MHC-I ligands and the strength of this interaction was proposed to drive disease progression. However, the dynamics of the LILRB2/MHC-I inhibitory axis in cDCs during early immune responses against HIV are yet unknown. Here, we show that early HIV-1 infection induces a strong and simultaneous increase of LILRB2 and MHC-I expression on the surface of blood cDCs. We further characterized the early dynamics of LILRB2 and MHC-I expression by showing that SIVmac251 infection of macaques promotes coordinated up-regulation of LILRB2 and MHC-I on cDCs and monocytes/macrophages, from blood and lymph nodes. Orientation towards the LILRB2/MHC-I inhibitory axis starts from the first days of infection and is transiently induced in the entire cDC population in acute phase. Analysis of the factors involved indicates that HIV-1 replication, TLR7/8 triggering, and treatment by IL-10 or type I IFNs increase LILRB2 expression. Finally, enhancement of the LILRB2/MHC-I inhibitory axis is specific to HIV-1 and SIVmac251 infections, as expression of LILRB2 on cDCs decreased in naturally controlled chikungunya virus infection of macaques. Altogether, our data reveal a unique up-regulation of LILRB2 and its MHC-I ligands on cDCs in the early phase of SIV/HIV infection, which may account for immune dysregulation at a critical stage of the anti-viral response.

  16. Automated benchmarking of peptide-MHC class I binding predictions.

    PubMed

    Trolle, Thomas; Metushi, Imir G; Greenbaum, Jason A; Kim, Yohan; Sidney, John; Lund, Ole; Sette, Alessandro; Peters, Bjoern; Nielsen, Morten

    2015-07-01

    Numerous in silico methods predicting peptide binding to major histocompatibility complex (MHC) class I molecules have been developed over the last decades. However, the multitude of available prediction tools makes it non-trivial for the end-user to select which tool to use for a given task. To provide a solid basis on which to compare different prediction tools, we here describe a framework for the automated benchmarking of peptide-MHC class I binding prediction tools. The framework runs weekly benchmarks on data that are newly entered into the Immune Epitope Database (IEDB), giving the public access to frequent, up-to-date performance evaluations of all participating tools. To overcome potential selection bias in the data included in the IEDB, a strategy was implemented that suggests a set of peptides for which different prediction methods give divergent predictions as to their binding capability. Upon experimental binding validation, these peptides entered the benchmark study. The benchmark has run for 15 weeks and includes evaluation of 44 datasets covering 17 MHC alleles and more than 4000 peptide-MHC binding measurements. Inspection of the results allows the end-user to make educated selections between participating tools. Of the four participating servers, NetMHCpan performed the best, followed by ANN, SMM and finally ARB. Up-to-date performance evaluations of each server can be found online at http://tools.iedb.org/auto_bench/mhci/weekly. All prediction tool developers are invited to participate in the benchmark. Sign-up instructions are available at http://tools.iedb.org/auto_bench/mhci/join. mniel@cbs.dtu.dk or bpeters@liai.org Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Automated benchmarking of peptide-MHC class I binding predictions

    PubMed Central

    Trolle, Thomas; Metushi, Imir G.; Greenbaum, Jason A.; Kim, Yohan; Sidney, John; Lund, Ole; Sette, Alessandro; Peters, Bjoern; Nielsen, Morten

    2015-01-01

    Motivation: Numerous in silico methods predicting peptide binding to major histocompatibility complex (MHC) class I molecules have been developed over the last decades. However, the multitude of available prediction tools makes it non-trivial for the end-user to select which tool to use for a given task. To provide a solid basis on which to compare different prediction tools, we here describe a framework for the automated benchmarking of peptide-MHC class I binding prediction tools. The framework runs weekly benchmarks on data that are newly entered into the Immune Epitope Database (IEDB), giving the public access to frequent, up-to-date performance evaluations of all participating tools. To overcome potential selection bias in the data included in the IEDB, a strategy was implemented that suggests a set of peptides for which different prediction methods give divergent predictions as to their binding capability. Upon experimental binding validation, these peptides entered the benchmark study. Results: The benchmark has run for 15 weeks and includes evaluation of 44 datasets covering 17 MHC alleles and more than 4000 peptide-MHC binding measurements. Inspection of the results allows the end-user to make educated selections between participating tools. Of the four participating servers, NetMHCpan performed the best, followed by ANN, SMM and finally ARB. Availability and implementation: Up-to-date performance evaluations of each server can be found online at http://tools.iedb.org/auto_bench/mhci/weekly. All prediction tool developers are invited to participate in the benchmark. Sign-up instructions are available at http://tools.iedb.org/auto_bench/mhci/join. Contact: mniel@cbs.dtu.dk or bpeters@liai.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25717196

  18. Intravenous ibuprofen: the first injectable product for the treatment of pain and fever

    PubMed Central

    Bookstaver, P Brandon; Miller, April D; Rudisill, Celeste N; Norris, LeAnn B

    2010-01-01

    This paper reviews the current data on the use of the first approved intravenous ibuprofen product for the management of post-operative pain and fever in the United States. The management of acute and post-operative pain and fever with nonsteroidal anti-inflammatory agents (NSAIDs) is well documented. A search in Medline and International Pharmaceutical Abstracts of articles until the end of November 2009 and references of all citations were conducted. Available manufacturer data on file were also analyzed for this report. Several randomized controlled studies have demonstrated the opioid-sparing and analgesic effects of 400 and 800 mg doses of intravenous ibuprofen in a series of post-operative patient populations. Two recent studies have also noted the improvement in fever curves in critically ill and burn patients. These data, along with pharmacokinetic and pharmacologic properties, are explored in this review, which addresses the clinical utility of a parenteral NSAID in a hospitalized patient for post-operative pain management and fever reduction. Further data on intravenous ibuprofen are needed to define long-term utilization, management of acute pain, and use in special populations. PMID:21197311

  19. Efficacy of nano- and microemulsion-based topical gels in delivery of ibuprofen: an in vivo study.

    PubMed

    Azizi, Mosayeb; Esmaeili, Fariba; Partoazar, Alireza; Ejtemaei Mehr, Shahram; Amani, Amir

    2017-03-01

    Nanoemulsion has shown many advantages in drug delivery systems. In this study, for the first time, analgesic and anti-inflammatory properties of a nanomelusion of almond oil with and without ibuprofen was compared with corresponding microemulsion and commercial topical gel of the drug using formalin and carrageenan tests, respectively. Almond oil (oil phase) was mixed with Tween 80 and Span 80 (surfactants), and ethanol (co-surfactant) and them distilled water (aqueous phase) was then added to the mixture at once. Prepared nanoemulsions were pre-emulsified into a 100 ml beaker using magnet/stirrer (1000 rpm). Then, using a probe ultrasonicator (Hielscher UP400s, Hielscher, Ringwood, NJ) the nanoemulsions were formed. The optimised nanoemulsion formulation containing 2.5% ibuprofen, showed improved analgesic and anti-inflammatory effects compared with commercial product and corresponding microemulsion product containing 5% ibuprofen (i.e. twice the content of ibuprofen in the nanoemulsion) in vivo. The nanoemulsion preparation showed superior analgesic activities during chronic phase. Also, it decreased the inflammation from the first hour, while the microemulsion and the commercial product started to show their anti-inflammatory effects after 2 and 3 h, respectively. Our finding suggests that the size of the emulsion particles must be considered as an important factor in topical drug delivery systems.

  20. A sarcoidosis clinician's perspective of MHC functional elements outside the antigen binding site.

    PubMed

    Judson, Marc A

    2018-05-30

    Sarcoidosis is a multisystem granulomatous disease of unknown cause. Evidence supports an integral role for interactions at the MHC binding site in the development of sarcoidosis. However, despite this evidence, there are clinical data that suggest that additional mechanisms are involved in the immunopathogenesis of this disease. This manuscript provides a brief clinical description of sarcoidosis, and a clinician's perspective of the immunopathogenesis of sarcoidosis in terms of the MHC binding site, MHC functional elements beyond the binding site, and other possible alternative mechanisms. Input from clinicians will be essential in establishing the immunologic cause of sarcoidosis as a detailed phenotypic characterization of disease will be required. Copyright © 2018. Published by Elsevier Inc.

  1. Randomised clinical trial: gastrointestinal events in arthritis patients treated with celecoxib, ibuprofen or naproxen in the PRECISION trial.

    PubMed

    Yeomans, N D; Graham, D Y; Husni, M E; Solomon, D H; Stevens, T; Vargo, J; Wang, Q; Wisniewski, L M; Wolski, K E; Borer, J S; Libby, P; Lincoff, A M; Lüscher, T F; Bao, W; Walker, C; Nissen, S E

    2018-06-01

    To evaluate GI safety of celecoxib compared with 2 nonselective (ns) NSAIDs, as a secondary objective of a large trial examining multiorgan safety. This randomised, double-blind controlled trial analysed 24 081 patients. Osteoarthritis or rheumatoid arthritis patients, needing ongoing NSAID treatment, were randomised to receive celecoxib 100-200 mg b.d., ibuprofen 600-800 mg t.d.s. or naproxen 375-500 mg b.d. plus esomeprazole, and low-dose aspirin or corticosteroids if already prescribed. Clinically significant GI events (CSGIE-bleeding, obstruction, perforation events from stomach downwards or symptomatic ulcers) and iron deficiency anaemia (IDA) were adjudicated blindly. Mean treatment and follow-up durations were 20.3 and 34.1 months. While on treatment or 30 days after, CSGIE occurred in 0.34%, 0.74% and 0.66% taking celecoxib, ibuprofen and naproxen. Hazard ratios (HR) were 0.43 (95% CI 0.27-0.68, P = 0.0003) celecoxib vs ibuprofen and 0.51 (0.32-0.81, P = 0.004) vs naproxen. There was also less IDA on celecoxib: HR 0.43 (0.27-0.68, P = 0.0003) vs ibuprofen; 0.40 (0.25-0.62, P < 0.0001) vs naproxen. Even taken with low-dose aspirin, fewer CSGIE occurred on celecoxib than ibuprofen (HR 0.52 [0.29-0.94], P = 0.03), and less IDA vs naproxen (0.42 [0.23-0.77, P = 0.005]). Corticosteroid use increased total GI events and CSGIE. H. pylori serological status had no influence. Arthritis patients taking NSAIDs plus esomeprazole have infrequent clinically significant gastrointestinal events. Co-prescribed with esomeprazole, celecoxib has better overall GI safety than ibuprofen or naproxen at these doses, despite treatment with low-dose aspirin or corticosteroids. © 2018 John Wiley & Sons Ltd.

  2. [Has the use of antipyretics been modified after the introduction of different concentrations of ibuprofen into the market?].

    PubMed

    García Blanes, C P; Rodríguez-Cantón Pascual, P; Morales-Carpi, C; Morales-Olivas, F J

    2014-12-01

    Due to the emergence of new pharmaceutical presentations of ibuprofen (40 mg/ml), an analysis was made on the use of antipyretics in pediatric outpatient in Spain. A cross-sectional, observational, descriptive study was carried out on a sample of children under 14 years old with treated febrile syndrome, seen in the Emergency Room of the Hospital General Universitario de Valencia from November 2012 to January 2013. Of the 217 children included, 144 were treated with paracetamol or ibuprofen, 69 received both drugs, and one received paracetamol and metamizol. There were 58.7% of exposures to paracetamol and 40.9% to ibuprofen. The parents decided the use of antipyretics in 63.2% of cases. In 98 exposures the dose was different from that authorized in the labeling of the drug (off-label use). Ibuprofen was used off-label in 40.2% of cases, mostly by underdosing (35.9%). Paracetamol was used off-label in 29.8% of cases, predominantly overdose (26.8%), with the difference being statistically significant. No significant differences were observed in the off-label use in either monotherapy or combined use. There were also no differences when antipyretics prescribed by doctors or given directly by parents were evaluated separately. The majority of children with treated febrile syndrome seen in the Emergency Room were receiving antipyretic drugs after a parental decision. Paracetamol is the most commonly used drug and one in three children received it simultaneously with ibuprofen. The antipyretics were used off label in one-third of the cases. Off label use of ibuprofen is increasing, and is probably due to the existence of different pharmaceutical presentations. Copyright © 2013 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  3. Equine bone marrow-derived mesenchymal stromal cells are heterogeneous in MHC class II expression and capable of inciting an immune response in vitro

    PubMed Central

    2014-01-01

    Introduction The horse is a valuable species to assess the effect of allogeneic mesenchymal stromal cells (MSCs) in regenerative treatments. No studies to date have examined recipient response to major histocompatibility complex (MHC)-mismatched equine MSCs. The purposes of this study were to immunophenotype MSCs from horses of known MHC haplotype and to compare the immunogenicity of MSCs with differing MHC class II expression. Methods MSCs and peripheral blood leukocytes (PBLs) were obtained from Thoroughbred horses (n = 10) of known MHC haplotype (ELA-A2, -A3, and -A9 homozygotes). MSCs were cultured through P8; cells from each passage (P2 to P8) were cryopreserved until used. Immunophenotyping of MHC class I and II, CD44, CD29, CD90, LFA-1, and CD45RB was performed by using flow cytometry. Tri-lineage differentiation assays were performed to confirm MSC multipotency. Recombinant equine IFN-γ was used to stimulate MHC class II negative MSCs in culture, after which expression of MHC class II was re-examined. To assess the ability of MHC class II negative or positive MSCs to stimulate an immune response, modified one-way mixed leukocyte reactions (MLRs) were performed by using MHC-matched and mismatched responder PBLs and stimulator PBLs or MSCs. Proliferation of gated CFSE-labeled CD3+ responder T cells was evaluated via CFSE attenuation by using flow cytometry and reported as the number of cells in the proliferating T-cell gate. Results MSCs varied widely in MHC class II expression despite being homogenous in terms of “stemness” marker expression and ability to undergo trilineage differentiation. Stimulation of MHC class II negative MSCs with IFN-γ resulted in markedly increased expression of MHC class II. MLR results revealed that MHC-mismatched MHC class II-positive MSCs caused significantly increased responder T-cell proliferation compared with MHC-mismatched MHC class II-negative and MHC-matched MSCs, and equivalent to that of the positive control of

  4. MHC class II DQB diversity in the Japanese black bear, Ursus thibetanus japonicus

    PubMed Central

    2012-01-01

    Background The major histocompatibility complex (MHC) genes are one of the most important genetic systems in the vertebrate immune response. The diversity of MHC genes may directly influence the survival of individuals against infectious disease. However, there has been no investigation of MHC diversity in the Asiatic black bear (Ursus thibetanus). Here, we analyzed 270-bp nucleotide sequences of the entire exon 2 region of the MHC DQB gene by using 188 samples from the Japanese black bear (Ursus thibetanus japonicus) from 12 local populations. Results Among 185 of 188 samples, we identified 44 MHC variants that encoded 31 different amino acid sequences (allotypes) and one putative pseudogene. The phylogenetic analysis suggests that MHC variants detected from the Japanese black bear are derived from the DQB locus. One of the 31 DQB allotypes, Urth-DQB*01, was found to be common to all local populations. Moreover, this allotype was shared between the black bear on the Asian continent and the Japanese black bear, suggesting that Urth-DQB*01 might have been maintained in the ancestral black bear population for at least 300,000 years. Our findings, from calculating the ratio of non-synonymous to synonymous substitutions, indicate that balancing selection has maintained genetic variation of peptide-binding residues at the DQB locus of the Japanese black bear. From examination of genotype frequencies among local populations, we observed a considerably lower level of observed heterozygosity than expected. Conclusions The low level of observed heterozygosity suggests that genetic drift reduced DQB diversity in the Japanese black bear due to a bottleneck event at the population or species level. The decline of DQB diversity might have been accelerated by the loss of rare variants that have been maintained by negative frequency-dependent selection. Nevertheless, DQB diversity of the black bear appears to be relatively high compared with some other endangered mammalian

  5. MHC class II DQB diversity in the Japanese black bear, Ursus thibetanus japonicus.

    PubMed

    Yasukochi, Yoshiki; Kurosaki, Toshifumi; Yoneda, Masaaki; Koike, Hiroko; Satta, Yoko

    2012-11-29

    The major histocompatibility complex (MHC) genes are one of the most important genetic systems in the vertebrate immune response. The diversity of MHC genes may directly influence the survival of individuals against infectious disease. However, there has been no investigation of MHC diversity in the Asiatic black bear (Ursus thibetanus). Here, we analyzed 270-bp nucleotide sequences of the entire exon 2 region of the MHC DQB gene by using 188 samples from the Japanese black bear (Ursus thibetanus japonicus) from 12 local populations. Among 185 of 188 samples, we identified 44 MHC variants that encoded 31 different amino acid sequences (allotypes) and one putative pseudogene. The phylogenetic analysis suggests that MHC variants detected from the Japanese black bear are derived from the DQB locus. One of the 31 DQB allotypes, Urth-DQB*01, was found to be common to all local populations. Moreover, this allotype was shared between the black bear on the Asian continent and the Japanese black bear, suggesting that Urth-DQB*01 might have been maintained in the ancestral black bear population for at least 300,000 years. Our findings, from calculating the ratio of non-synonymous to synonymous substitutions, indicate that balancing selection has maintained genetic variation of peptide-binding residues at the DQB locus of the Japanese black bear. From examination of genotype frequencies among local populations, we observed a considerably lower level of observed heterozygosity than expected. The low level of observed heterozygosity suggests that genetic drift reduced DQB diversity in the Japanese black bear due to a bottleneck event at the population or species level. The decline of DQB diversity might have been accelerated by the loss of rare variants that have been maintained by negative frequency-dependent selection. Nevertheless, DQB diversity of the black bear appears to be relatively high compared with some other endangered mammalian species. This result suggests that

  6. Horse cDNA clones encoding two MHC class I genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbis, D.P.; Maher, J.K.; Stanek, J.

    1994-12-31

    Two full-length clones encoding MHC class I genes were isolated by screening a horse cDNA library, using a probe encoding in human HLA-A2.2Y allele. The library was made in the pcDNA1 vector (Invitrogen, San Diego, CA), using mRNA from peripheral blood lymphocytes obtained from a Thoroughbred stallion (No. 0834) homozygous for a common horse MHC haplotype (ELA-A2, -B2, -D2; Antczak et al. 1984; Donaldson et al. 1988). The clones were sequenced, using SP6 and T7 universal primers and horse-specific oligonucleotides designed to extend previously determined sequences.

  7. Kidney-induced cardiac allograft tolerance in miniature swine is dependent on MHC-matching of donor cardiac and renal parenchyma.

    PubMed

    Madariaga, M L; Michel, S G; La Muraglia, G M; Sekijima, M; Villani, V; Leonard, D A; Powell, H J; Kurtz, J M; Farkash, E A; Colvin, R B; Allan, J S; Cetrulo, C L; Huang, C A; Sachs, D H; Yamada, K; Madsen, J C

    2015-06-01

    Kidney allografts possess the ability to enable a short course of immunosuppression to induce tolerance of themselves and of cardiac allografts across a full-MHC barrier in miniature swine. However, the renal element(s) responsible for kidney-induced cardiac allograft tolerance (KICAT) are unknown. Here we investigated whether MHC disparities between parenchyma versus hematopoietic-derived "passenger" cells of the heart and kidney allografts affected KICAT. Heart and kidney allografts were co-transplanted into MHC-mismatched recipients treated with high-dose tacrolimus for 12 days. Group 1 animals (n = 3) received kidney and heart allografts fully MHC-mismatched to each other and to the recipient. Group 2 animals (n = 3) received kidney and heart allografts MHC-matched to each other but MHC-mismatched to the recipient. Group 3 animals (n = 3) received chimeric kidney allografts whose parenchyma was MHC-mismatched to the donor heart. Group 4 animals (n = 3) received chimeric kidney allografts whose passenger leukocytes were MHC-mismatched to the donor heart. Five of six heart allografts in Groups 1 and 3 rejected <40 days. In contrast, heart allografts in Groups 2 and 4 survived >150 days without rejection (p < 0.05). These data demonstrate that KICAT requires MHC-matching between kidney allograft parenchyma and heart allografts, suggesting that cells intrinsic to the kidney enable cardiac allograft tolerance. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  8. Long-term moderate calorie restriction inhibits inflammation without impairing cell-mediated immunity: a randomized controlled trial in non obese humans

    USDA-ARS?s Scientific Manuscript database

    Calorie restriction (CR) inhibits inflammation and slows aging in many animal species, but in rodents housed in pathogen-free facilities, CR impairs immunity against certain pathogens. However, little is known about the effects of long-term moderate CR on immune function in humans. In this multi-cen...

  9. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method

    PubMed Central

    Nielsen, Morten; Lundegaard, Claus; Lund, Ole

    2007-01-01

    Background Antigen presenting cells (APCs) sample the extra cellular space and present peptides from here to T helper cells, which can be activated if the peptides are of foreign origin. The peptides are presented on the surface of the cells in complex with major histocompatibility class II (MHC II) molecules. Identification of peptides that bind MHC II molecules is thus a key step in rational vaccine design and developing methods for accurate prediction of the peptide:MHC interactions play a central role in epitope discovery. The MHC class II binding groove is open at both ends making the correct alignment of a peptide in the binding groove a crucial part of identifying the core of an MHC class II binding motif. Here, we present a novel stabilization matrix alignment method, SMM-align, that allows for direct prediction of peptide:MHC binding affinities. The predictive performance of the method is validated on a large MHC class II benchmark data set covering 14 HLA-DR (human MHC) and three mouse H2-IA alleles. Results The predictive performance of the SMM-align method was demonstrated to be superior to that of the Gibbs sampler, TEPITOPE, SVRMHC, and MHCpred methods. Cross validation between peptide data set obtained from different sources demonstrated that direct incorporation of peptide length potentially results in over-fitting of the binding prediction method. Focusing on amino terminal peptide flanking residues (PFR), we demonstrate a consistent gain in predictive performance by favoring binding registers with a minimum PFR length of two amino acids. Visualizing the binding motif as obtained by the SMM-align and TEPITOPE methods highlights a series of fundamental discrepancies between the two predicted motifs. For the DRB1*1302 allele for instance, the TEPITOPE method favors basic amino acids at most anchor positions, whereas the SMM-align method identifies a preference for hydrophobic or neutral amino acids at the anchors. Conclusion The SMM-align method was

  10. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method.

    PubMed

    Nielsen, Morten; Lundegaard, Claus; Lund, Ole

    2007-07-04

    Antigen presenting cells (APCs) sample the extra cellular space and present peptides from here to T helper cells, which can be activated if the peptides are of foreign origin. The peptides are presented on the surface of the cells in complex with major histocompatibility class II (MHC II) molecules. Identification of peptides that bind MHC II molecules is thus a key step in rational vaccine design and developing methods for accurate prediction of the peptide:MHC interactions play a central role in epitope discovery. The MHC class II binding groove is open at both ends making the correct alignment of a peptide in the binding groove a crucial part of identifying the core of an MHC class II binding motif. Here, we present a novel stabilization matrix alignment method, SMM-align, that allows for direct prediction of peptide:MHC binding affinities. The predictive performance of the method is validated on a large MHC class II benchmark data set covering 14 HLA-DR (human MHC) and three mouse H2-IA alleles. The predictive performance of the SMM-align method was demonstrated to be superior to that of the Gibbs sampler, TEPITOPE, SVRMHC, and MHCpred methods. Cross validation between peptide data set obtained from different sources demonstrated that direct incorporation of peptide length potentially results in over-fitting of the binding prediction method. Focusing on amino terminal peptide flanking residues (PFR), we demonstrate a consistent gain in predictive performance by favoring binding registers with a minimum PFR length of two amino acids. Visualizing the binding motif as obtained by the SMM-align and TEPITOPE methods highlights a series of fundamental discrepancies between the two predicted motifs. For the DRB1*1302 allele for instance, the TEPITOPE method favors basic amino acids at most anchor positions, whereas the SMM-align method identifies a preference for hydrophobic or neutral amino acids at the anchors. The SMM-align method was shown to outperform other

  11. Early and late effects of Ibuprofen on mouse sperm parameters, chromatin condensation, and DNA integrity in mice.

    PubMed

    Roodbari, Fatemeh; Abedi, Nahid; Talebi, Ali Reza

    2015-11-01

    There are few studies indicating the detrimental effects of ibuprofen on sperm fertility potential and DNA integrity. To determine the effects of Ibuprofen on sperm parameters, chromatin condensation and DNA integrity of mice. In this experimental study, 36 adult male mice with average weight 37 gr were divided into three groups, including control (group I, n=12), normal dosage of ibuprofen (group II, n=12) and high dosage (group III, n=12). Ibuprofen with different doses was dissolved in daily water of animals. After 35, 70 and 105 days, the cauda epididymis of mice were cut and incubated in Ham's F10 media. Sperm samples were analyzed for parameters (motility, morphology and count), DNA integrity (SCD test) and chromatin condensation (chromomycin A3 and Aniline blue staining). After 35 days, in addition to above mentioned sperm parameters, all of the treated mice showed statistically significant increase in spermatozoa with immature chromatin (P<0.05). However, after 70 days, the rate of sperm DNA fragmentation assessed by SCD was increased in group II (66.5±0.7) and the percentage of immature spermatozoa (AB(+) and CMA3(+)) was higher in group III (77.5±0.7 and 49.5±6.3 respectively) than other groups. After 105 days, the AB(+) spermatozoa were increased in both normal dose and high dose groups. Ibuprofen may cause a significant reduction in sperm parameters and sperm chromatin/DNA integrity in mice. It should be noted that these deleterious effects are dose-dependent and can be seen in early and late stage of drug treatments.

  12. The Missing Link in Epstein-Barr Virus Immune Evasion: the BDLF3 Gene Induces Ubiquitination and Downregulation of Major Histocompatibility Complex Class I (MHC-I) and MHC-II.

    PubMed

    Quinn, Laura L; Williams, Luke R; White, Claire; Forrest, Calum; Zuo, Jianmin; Rowe, Martin

    2016-01-01

    The ability of Epstein-Barr virus (EBV) to spread and persist in human populations relies on a balance between host immune responses and EBV immune evasion. CD8(+) cells specific for EBV late lytic cycle antigens show poor recognition of target cells compared to immediate early and early antigen-specific CD8(+) cells. This phenomenon is due in part to the early EBV protein BILF1, whose immunosuppressive activity increases with lytic cycle progression. However, published data suggest the existence of a hitherto unidentified immune evasion protein further enhancing protection against late EBV antigen-specific CD8(+) cells. We have now identified the late lytic BDLF3 gene as the missing link accounting for efficient evasion during the late lytic cycle. Interestingly, BDLF3 also contributes to evasion of CD4(+) cell responses to EBV. We report that BDLF3 downregulates expression of surface major histocompatibility complex (MHC) class I and class II molecules in the absence of any effect upon other surface molecules screened, including CD54 (ICAM-1) and CD71 (transferrin receptor). BDLF3 both enhanced internalization of surface MHC molecules and reduced the rate of their appearance at the cell surface. The reduced expression of surface MHC molecules correlated with functional protection against CD8(+) and CD4(+) T cell recognition. The molecular mechanism was identified as BDLF3-induced ubiquitination of MHC molecules and their subsequent downregulation in a proteasome-dependent manner. Immune evasion is a necessary feature of viruses that establish lifelong persistent infections in the face of strong immune responses. EBV is an important human pathogen whose immune evasion mechanisms are only partly understood. Of the EBV immune evasion mechanisms identified to date, none could explain why CD8(+) T cell responses to late lytic cycle genes are so infrequent and, when present, recognize lytically infected target cells so poorly relative to CD8(+) T cells specific for

  13. Administration of the non-steroidal anti-inflammatory drug ibuprofen increases macrophage concentrations but reduces necrosis during modified muscle use

    NASA Technical Reports Server (NTRS)

    Cheung, E. V.; Tidball, J. G.

    2003-01-01

    OBJECTIVE: To test the hypothesis that ibuprofen administration during modified muscle use reduces muscle necrosis and invasion by select myeloid cell populations. METHODS: Rats were subjected to hindlimb unloading for 10 days, after which they experienced muscle reloading by normal weight-bearing to induce muscle inflammation and necrosis. Some animals received ibuprofen by intraperitoneal injection 8 h prior to the onset of muscle reloading, and then again at 8 and 16 h following the onset of reloading. Other animals received buffer injection at 8 h prior to reloading and then ibuprofen at 8 and 16 h following the onset of reloading. Control animals received buffer only at each time point. Quantitative immunohistochemical analysis was used to assess the presence of necrotic muscle fibers, total inflammatory infiltrate, neutrophils, ED1+ macrophages and ED2+ macrophages at 24 h following the onset of reloading. RESULT: Administration of ibuprofen beginning 8 h prior to reloading caused significant reduction in the concentration of necrotic fibers, but increased the concentration of inflammatory cells in muscle. The increase in inflammatory cells was attributable to a 2.6-fold increase in the concentration of ED2+ macrophages. Animals treated with ibuprofen 8 h following the onset of reloading showed no decrease in muscle necrosis or increase in ED2+ macrophage concentrations. CONCLUSION: Administration of ibuprofen prior to increased muscle loading reduces muscle damage, but increases the concentration of macrophages that express the ED2 antigen. The increase in ED2+ macrophage concentration and decrease in necrosis may be mechanistically related because ED2+ macrophages have been associated with muscle regeneration and repair.

  14. Intravenous Ibuprofen for Treatment of Post-Operative Pain: A Multicenter, Double Blind, Placebo-Controlled, Randomized Clinical Trial

    PubMed Central

    Escontrela Rodriguez, Blanca; Planas Roca, Antonio; Martínez Ruiz, Alberto

    2016-01-01

    Background Non-steroidal anti-inflammatory drugs are often used as components of multimodal therapy for postoperative pain management, but their use is currently limited by its side effects. The specific objective of this study was to evaluate the efficacy and safety of a new formulation of intravenous (IV) ibuprofen for the management of postoperative pain in a European population. Methods and Findings A total of 206 patients from both abdominal and orthopedic surgery, were randomly assigned in 1:1 ratio to receive 800 mg IV-ibuprofen or placebo every 6 hours; all patients had morphine access through a patient controlled analgesia pump. The primary outcome measure was median morphine consumption within the first 24 hours following surgery. The mean±SEM of morphine requirements was reduced from 29,8±5,25 mg to 14,22±3,23 mg (p = 0,015) and resulted in a decrease in pain at rest (p = 0,02) measured by Visual Analog Scale (VAS) from mean±SEM 3.34±0,35 to 0.86±0.24, and also in pain during movement (p = 0,02) from 4.32±0,36 to 1.90±0,30 in the ibuprofen treatment arm; while in the placebo group VAS score at rest ranged from 4.68±0,40 to 2.12±0,42 and during movement from 5.66±0,42 to 3.38±0,44. Similar treatment-emergent adverse events occurred across both study groups and there was no difference in the overall incidence of these events. Conclusions Perioperative administration of IV-Ibuprofen 800 mg every 6 hours in abdominal surgery patient’s decreases morphine requirements and pain score. Furthermore IV-Ibuprofen was safe and well tolerate. Consequently we consider appropriate that protocols for management of postoperative pain include IV-Ibuprofen 800 mg every 6 hours as an option to offer patients an analgesic benefit while reducing the potentially risks associated with morphine consumption. Trial Registration EU Clinical Trials Register 2011-005007-33 PMID:27152748

  15. Attractors in Sequence Space: Agent-Based Exploration of MHC I Binding Peptides.

    PubMed

    Jäger, Natalie; Wisniewska, Joanna M; Hiss, Jan A; Freier, Anja; Losch, Florian O; Walden, Peter; Wrede, Paul; Schneider, Gisbert

    2010-01-12

    Ant Colony Optimization (ACO) is a meta-heuristic that utilizes a computational analogue of ant trail pheromones to solve combinatorial optimization problems. The size of the ant colony and the representation of the ants' pheromone trails is unique referring to the given optimization problem. In the present study, we employed ACO to generate novel peptides that stabilize MHC I protein on the plasma membrane of a murine lymphoma cell line. A jury of feedforward neural network classifiers served as fitness function for peptide design by ACO. Bioactive murine MHC I H-2K(b) stabilizing as well as nonstabilizing octapeptides were designed, synthesized and tested. These peptides reveal residue motifs that are relevant for MHC I receptor binding. We demonstrate how the performance of the implemented ACO algorithm depends on the colony size and the size of the search space. The actual peptide design process by ACO constitutes a search path in sequence space that can be visualized as trajectories on a self-organizing map (SOM). By projecting the sequence space on a SOM we visualize the convergence of the different solutions that emerge during the optimization process in sequence space. The SOM representation reveals attractors in sequence space for MHC I binding peptides. The combination of ACO and SOM enables systematic peptide optimization. This technique allows for the rational design of various types of bioactive peptides with minimal experimental effort. Here, we demonstrate its successful application to the design of MHC-I binding and nonbinding peptides which exhibit substantial bioactivity in a cell-based assay. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Allogeneic lymphocytes persist and traffic in feral MHC-matched mauritian cynomolgus macaques.

    PubMed

    Greene, Justin M; Burwitz, Benjamin J; Blasky, Alex J; Mattila, Teresa L; Hong, Jung Joo; Rakasz, Eva G; Wiseman, Roger W; Hasenkrug, Kim J; Skinner, Pamela J; O'Connor, Shelby L; O'Connor, David H

    2008-06-11

    Thus far, live attenuated SIV has been the most successful method for vaccinating macaques against pathogenic SIV challenge; however, it is not clear what mechanisms are responsible for this protection. Adoptive transfer studies in mice have been integral to understanding live attenuated vaccine protection in models like Friend virus. Previous adoptive transfers in primates have failed as transferred cells are typically cleared within hours after transfer. Here we describe adoptive transfer studies in Mauritian origin cynomolgus macaques (MCM), a non-human primate model with limited MHC diversity. Cells transferred between unrelated MHC-matched macaques persist for at least fourteen days but are rejected within 36 hours in MHC-mismatched macaques. Cells trafficked from the blood to peripheral lymphoid tissues within 12 hours of transfer. MHC-matched MCM provide the first viable primate model for adoptive transfer studies. Because macaques infected with SIV are the best model for HIV/AIDS pathogenesis, we can now directly study the correlates of protective immune responses to AIDS viruses. For example, plasma viral loads following pathogenic SIV challenge are reduced by several orders of magnitude in macaques previously immunized with attenuated SIV. Adoptive transfer of lymphocyte subpopulations from vaccinated donors into SIV-naïve animals may define the immune mechanisms responsible for protection and guide future vaccine development.

  17. Accurate structure prediction of peptide–MHC complexes for identifying highly immunogenic antigens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Min-Sun; Park, Sung Yong; Miller, Keith R.

    2013-11-01

    Designing an optimal HIV-1 vaccine faces the challenge of identifying antigens that induce a broad immune capacity. One factor to control the breadth of T cell responses is the surface morphology of a peptide–MHC complex. Here, we present an in silico protocol for predicting peptide–MHC structure. A robust signature of a conformational transition was identified during all-atom molecular dynamics, which results in a model with high accuracy. A large test set was used in constructing our protocol and we went another step further using a blind test with a wild-type peptide and two highly immunogenic mutants, which predicted substantial conformationalmore » changes in both mutants. The center residues at position five of the analogs were configured to be accessible to solvent, forming a prominent surface, while the residue of the wild-type peptide was to point laterally toward the side of the binding cleft. We then experimentally determined the structures of the blind test set, using high resolution of X-ray crystallography, which verified predicted conformational changes. Our observation strongly supports a positive association of the surface morphology of a peptide–MHC complex to its immunogenicity. Our study offers the prospect of enhancing immunogenicity of vaccines by identifying MHC binding immunogens.« less

  18. Application of the ratio difference spectrophotometry to the determination of ibuprofen and famotidine in their combined dosage form: comparison with previously published spectrophotometric methods.

    PubMed

    Zaazaa, Hala E; Elzanfaly, Eman S; Soudi, Aya T; Salem, Maissa Y

    2015-05-15

    Ratio difference spectrophotometric method was developed for the determination of ibuprofen and famotidine in their mixture form. Ibuprofen and famotidine were determined in the presence of each other by the ratio difference spectrophotometric (RD) method where linearity was obtained from 50 to 600μg/mL and 2.5 to 25μg/mL for ibuprofen and famotidine, respectively. The suggested method was validated according to ICH guidelines and successfully applied for the analysis of ibuprofen and famotidine in their pharmaceutical dosage forms without interference from any additives or excipients. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. MHC class II transcription is associated with inflammatory responses in a wild marine mammal.

    PubMed

    Montano-Frías, Jorge E; Vera-Massieu, Camila; Álvarez-Martínez, Roberto; Flores-Morán, Adriana; Acevedo-Whitehouse, Karina

    2016-08-01

    Inflammation is one of the most important non-specific and rapid responses that a vertebrate can elicit in response to damage or a foreign insult. To date, despite increasing evidence that the innate and adaptive branches of immunity are more intricately related than previously thought, few have examined interactions between the Major Histocompatibility Complex (MHC, a polymorphic region of the vertebrate genome that is involved with antigen presentation) and inflammation, and even less is known about these interactions in an eco-immunological context. Here, we examined the effect of MHC class II DRB gene multiplicity and transcription on phytohemagglutinin (PHA)-induced inflammation during the early stages of development of California sea lions. Neither constitutive nor expressed ZacaDRB diversity was found to be associated with pup responses to PHA at any of the stages of pup development. However, for two-month-old pups, those with a specific MHC-DRB locus (ZacaDRB-A) tended to have less efficient responsive inflammation. Transcription of distinct MHC-DRB loci was also linked to PHA-induced inflammation, with patterns that varied markedly between ages, and that suggested that ongoing infectious processes could limit the capacity to respond to a secondary challenge. Life history constraints and physiological processes associated with development of California sea lions, in conjunction with their changing pathogenic environment could explain the observed effects of MHC class II transcription on PHA-induced inflammation. To our knowledge, ours is the first study to examine the importance of expressed vs. constitutive MHC loci on inflammation in a natural population. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Genetic variation and selection of MHC class I loci differ in two congeneric frogs.

    PubMed

    Kiemnec-Tyburczy, Karen M; Tracy, Karen E; Lips, Karen R; Zamudio, Kelly R

    2018-04-01

    Major histocompatibility complex (MHC) genes encode proteins in the acquired immune response pathway that often show distinctive selection-driven patterns in wild vertebrate populations. We examined genetic variation and signatures of selection in the MHC class I alpha 1 (A1)- and alpha 2 (A2)-domain encoding exons of two frog congeners [Agalychnis callidryas (n = 20) and A. lemur (n = 20)] from a single locality in Panama. We also investigated how historical demographic processes may have impacted MHC genetic diversity by analyzing a neutral mitochondrial marker. We found that both MHC domains were highly variable in both species, with both species likely expressing three loci. Our analyses revealed different signatures of selection between the two species, most notably that the A. callidryas A2 domain had experienced positive selection while the A2 domain of A. lemur had not. Diversifying selection acted on the same number of A1 and A2 allelic lineages, but on a higher percentage of A1 sites compared to A2 sites. Neutrality tests of mitochondrial haplotypes predominately indicated that the two species were at genetic equilibrium when the samples were collected. In addition, two historical tests of demography indicated both species have had relatively stable population sizes over the past 100,000 years; thus large population size changes are unlikely to have greatly influenced MHC diversity in either species during this time period. In conclusion, our results suggest that the impact of selection on MHC diversity varied between these two closely related species, likely due to a combination of distinct ecological conditions and past pathogenic pressures.

  1. Curcumin inhibits interferon-γ signaling in colonic epithelial cells

    PubMed Central

    Midura-Kiela, Monica T.; Radhakrishnan, Vijayababu M.; Larmonier, Claire B.; Laubitz, Daniel; Ghishan, Fayez K.

    2012-01-01

    Curcumin (diferulolylmethane) is an anti-inflammatory phenolic compound found effective in preclinical models of inflammatory bowel diseases (IBD) and in ulcerative colitis patients. Pharmacokinetics of curcumin and its poor systemic bioavailability suggest that it targets preferentially intestinal epithelial cells. The intestinal epithelium, an essential component of the gut innate defense mechanisms, is profoundly affected by IFN-γ, which can disrupt the epithelial barrier function, prevent epithelial cell migration and wound healing, and prime epithelial cells to express major histocompatibility complex class II (MHC-II) molecules and to serve as nonprofessional antigen-presenting cells. In this report we demonstrate that curcumin inhibits IFN-γ signaling in human and mouse colonocytes. Curcumin inhibited IFN-γ-induced gene transcription, including CII-TA, MHC-II genes (HLA-DRα, HLA-DPα1, HLA-DRβ1), and T cell chemokines (CXCL9, 10, and 11). Acutely, curcumin inhibited Stat1 binding to the GAS cis-element, prevented Stat1 nuclear translocation, and reduced Jak1 phosphorylation and phosphorylation of Stat1 at Tyr701. Longer exposure to curcumin led to endocytic internalization of IFNγRα followed by lysosomal fusion and degradation. In summary, curcumin acts as an IFN-γ signaling inhibitor in colonocytes with biphasic mechanisms of action, a phenomenon that may partially account for the beneficial effects of curcumin in experimental colitis and in human IBD. PMID:22038826

  2. Efficacy and safety of oral paracetamol versus oral ibuprofen for closure of patent ductus arteriosus in preterm infants: a randomized controlled trial.

    PubMed

    El-Farrash, Rania A; El Shimy, Mohammed S; El-Sakka, Abeer S; Ahmed, Manal G; Abdel-Moez, Dina G

    2018-05-09

    The objective of this study is to evaluate the efficacy and safety of oral paracetamol versus oral ibuprofen in the treatment of hemodynamically significant patent ductus arteriosus (hsPDA) in preterm infants. An interventional randomized case-control study, registered in ClinicalTrials.gov (NCT03265782), was conducted on 60 preterm infants with gestational age ≤34 weeks, postnatal age of 2-7 d and color Doppler echocardiographic evidence of hsPDA. Neonates were randomly assigned to two groups: 30 received oral ibuprofen and 30 received oral paracetamol. With failure of ductal closure, a second course of ibuprofen or paracetamol was given. The included newborns were subjected to detailed history, clinical examination, laboratory investigations that included complete blood count, renal, and liver function tests and echocardiographic evaluation. Oral paracetamol was as effective as ibuprofen for the closure of patent ductus arteriosus (PDA) with one course of treatment (p > .05). Moreover, oral paracetamol was superior to ibuprofen among neonates who needed second course of treatment with significant decrease in end diastolic flow velocity in the left pulmonary artery (0.35 ± 0.09 versus 0.19 ± 0.06, p = .014), right ventricular systolic pressure (40.50 ± 12.91 versus 20.50 ± 0.58, p = .016) and left atrium to aortic root ratio (1.23 ± 0.14 versus 1.07 ± 0.04, p = .046) when compared to ibuprofen group. Furthermore, the mean difference between pre- and post-treatment PDA size was significantly higher in the paracetamol group compared with ibuprofen group after the second course of treatment (1.07 ± 0.32 versus 0.73 ± 0.38, p = .024). Oral paracetamol was comparable with ibuprofen in terms of the rate of non-surgical ductal closure [28 (93.3%) versus 24 (80%), p = .591]. In addition, oral paracetamol was as safe as oral ibuprofen in terms of gastrointestinal perforation or bleeding, necrotizing

  3. The digital code driven autonomous synthesis of ibuprofen automated in a 3D-printer-based robot.

    PubMed

    Kitson, Philip J; Glatzel, Stefan; Cronin, Leroy

    2016-01-01

    An automated synthesis robot was constructed by modifying an open source 3D printing platform. The resulting automated system was used to 3D print reaction vessels (reactionware) of differing internal volumes using polypropylene feedstock via a fused deposition modeling 3D printing approach and subsequently make use of these fabricated vessels to synthesize the nonsteroidal anti-inflammatory drug ibuprofen via a consecutive one-pot three-step approach. The synthesis of ibuprofen could be achieved on different scales simply by adjusting the parameters in the robot control software. The software for controlling the synthesis robot was written in the python programming language and hard-coded for the synthesis of ibuprofen by the method described, opening possibilities for the sharing of validated synthetic 'programs' which can run on similar low cost, user-constructed robotic platforms towards an 'open-source' regime in the area of chemical synthesis.

  4. The digital code driven autonomous synthesis of ibuprofen automated in a 3D-printer-based robot

    PubMed Central

    Kitson, Philip J; Glatzel, Stefan

    2016-01-01

    An automated synthesis robot was constructed by modifying an open source 3D printing platform. The resulting automated system was used to 3D print reaction vessels (reactionware) of differing internal volumes using polypropylene feedstock via a fused deposition modeling 3D printing approach and subsequently make use of these fabricated vessels to synthesize the nonsteroidal anti-inflammatory drug ibuprofen via a consecutive one-pot three-step approach. The synthesis of ibuprofen could be achieved on different scales simply by adjusting the parameters in the robot control software. The software for controlling the synthesis robot was written in the python programming language and hard-coded for the synthesis of ibuprofen by the method described, opening possibilities for the sharing of validated synthetic ‘programs’ which can run on similar low cost, user-constructed robotic platforms towards an ‘open-source’ regime in the area of chemical synthesis. PMID:28144350

  5. Crystal structure of Urtica dioica agglutinin, a superantigen presented by MHC molecules of class I and class II.

    PubMed

    Saul, F A; Rovira, P; Boulot, G; Damme, E J; Peumans, W J; Truffa-Bachi, P; Bentley, G A

    2000-06-15

    Urtica dioica agglutinin (UDA), a monomeric lectin extracted from stinging nettle rhizomes, is specific for saccharides containing N-acetylglucosamine (GlcNAc). The lectin behaves as a superantigen for murine T cells, inducing the exclusive proliferation of Vbeta8.3(+) lymphocytes. UDA is unique among known T cell superantigens because it can be presented by major histocompatibility complex (MHC) molecules of both class I and II. The crystal structure of UDA has been determined in the ligand-free state, and in complex with tri-acetylchitotriose and tetra-acetylchitotetraose at 1.66 A, 1.90 A and 1.40 A resolution, respectively. UDA comprises two hevein-like domains, each with a saccharide-binding site. A serine and three aromatic residues at each site form the principal contacts with the ligand. The N-terminal domain binding site can centre on any residue of a chito-oligosaccharide, whereas that of the C-terminal domain is specific for residues at the nonreducing terminus of the ligand. We have shown previously that oligomers of GlcNAc inhibit the superantigenic activity of UDA and that the lectin binds to glycans on the MHC molecule. We show that UDA also binds to glycans on the T cell receptor (TCR). The presence of two saccharide-binding sites observed in the structure of UDA suggests that its superantigenic properties arise from the simultaneous fixation of glycans on the TCR and MHC molecules of the T cell and antigen-presenting cell, respectively. The well defined spacing between the two binding sites of UDA is probably a key factor in determining the specificity for Vbeta8.3(+) lymphocytes.

  6. The oxidoreductase ERp57 efficiently reduces partially folded in preference to fully folded MHC class I molecules

    PubMed Central

    Antoniou, Antony N.; Ford, Stuart; Alphey, Magnus; Osborne, Andrew; Elliott, Tim; Powis, Simon J.

    2002-01-01

    The oxidoreductase ERp57 is an integral component of the peptide loading complex of major histocompatibility complex (MHC) class I molecules, formed during their chaperone-assisted assembly in the endoplasmic reticulum. Misfolded MHC class I molecules or those denied suitable peptides are retrotranslocated and degraded in the cytosol. The presence of ERp57 during class I assembly suggests it may be involved in the reduction of intrachain disulfides prior to retrotranslocation. We have studied the ability of ERp57 to reduce MHC class I molecules in vitro. Recombinant ERp57 specifically reduced partially folded MHC class I molecules, whereas it had little or no effect on folded and peptide-loaded MHC class I molecules. Reductase activity was associated with cysteines at positions 56 and 405 of ERp57, the N-terminal residues of the active CXXC motifs. Our data suggest that the reductase activity of ERp57 may be involved during the unfolding of MHC class I molecules, leading to targeting for degradation. PMID:12032078

  7. Prediction of the binding affinities of peptides to class II MHC using a regularized thermodynamic model

    PubMed Central

    2010-01-01

    Background The binding of peptide fragments of extracellular peptides to class II MHC is a crucial event in the adaptive immune response. Each MHC allotype generally binds a distinct subset of peptides and the enormous number of possible peptide epitopes prevents their complete experimental characterization. Computational methods can utilize the limited experimental data to predict the binding affinities of peptides to class II MHC. Results We have developed the Regularized Thermodynamic Average, or RTA, method for predicting the affinities of peptides binding to class II MHC. RTA accounts for all possible peptide binding conformations using a thermodynamic average and includes a parameter constraint for regularization to improve accuracy on novel data. RTA was shown to achieve higher accuracy, as measured by AUC, than SMM-align on the same data for all 17 MHC allotypes examined. RTA also gave the highest accuracy on all but three allotypes when compared with results from 9 different prediction methods applied to the same data. In addition, the method correctly predicted the peptide binding register of 17 out of 18 peptide-MHC complexes. Finally, we found that suboptimal peptide binding registers, which are often ignored in other prediction methods, made significant contributions of at least 50% of the total binding energy for approximately 20% of the peptides. Conclusions The RTA method accurately predicts peptide binding affinities to class II MHC and accounts for multiple peptide binding registers while reducing overfitting through regularization. The method has potential applications in vaccine design and in understanding autoimmune disorders. A web server implementing the RTA prediction method is available at http://bordnerlab.org/RTA/. PMID:20089173

  8. Comparison of two dose regimens of ibuprofen for the closure of patent ductus arteriosus in preterm newborns.

    PubMed

    Dornelles, Laura Vargas; Corso, Andréa Lúcia; Silveira, Rita de Cássia; Procianoy, Renato Soibelmann

    2016-01-01

    To compare the efficacy of intravenous ibuprofen at high (20-10-10mg/kg/dose) and low doses (10-5-5mg/kg/dose) the closure of patent ductus arteriosus in preterm newborns. A cohort study with historical control of newborns that received high- and low-dose intravenous ibuprofen, from 2010 to 2013 in a neonatal intensive care unit, for closure of the patent ductus arteriosus, documented by echocardiography. Secondary outcomes included the number of ibuprofen cycles, incidence of bronchopulmonary dysplasia, necrotizing enterocolitis, changes in renal function, and death. Seventy-seven patients received three doses of ibuprofen for the treatment of patent ductus arteriosus, with 33 receiving high-dose and 44 low-dose therapy. The ductus closed after the first cycle in 25 (56.8%) low-dose patients and in 17 (51.5%) high-dose patients (p>0.99). Sixteen patients received a second cycle of ibuprofen, and the ductus closed in 50% after low-dose and in 60% after high-dose therapy (p>0.99). Seven patients required surgery for ductus closure, 13.6% in the low-dose group and 3% in the high-dose group (p=0.22). Thirty-nine patients developed bronchopulmonary dysplasia, 50% in the low-dose group and 51.5% in the high-dose group (p>0.99). Twenty-two (50%) low-dose patients died vs. 15 (45.5%) high-dose patients (p=0.86). There was no difference in closure of the ductus arteriosus or occurrence of adverse effects between the two dose regimens. Copyright © 2016 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  9. Distinct enantiomeric signals of ibuprofen and naproxen in treated wastewater and sewer overflow.

    PubMed

    Khan, Stuart J; Wang, Lili; Hashim, Nor H; McDonald, James A

    2014-11-01

    Ibuprofen and naproxen are commonly used members of a class of pharmaceuticals known as 2-arylpropionic acids (2-APAs). Both are chiral chemicals and can exist as either of two (R)- and (S)-enantiomers. Enantioselective analyses of effluents from municipal wastewater treatment plants (WWTPs) and from untreated sewage overflow reveal distinctly different enantiomeric fractions for both pharmaceuticals. The (S)-enantiomers of both were dominant in untreated sewage overflow, but the relative proportions of the (R)-enantiomers were shown to be increased in WWTP effluents. (R)-naproxen was below method detection limits (<1 ng.L(-1)) in sewage overflow, but measurable at higher concentrations in WWTP effluents. Accordingly, enantiomeric fractions (EF) for naproxen were consistently 1.0 in sewage overflow, but ranged from 0.7–0.9 in WWTP effluents. Ibuprofen EF ranged from 0.6–0.8 in sewage overflow and receiving waters, and was 0.5 in two WWTP effluents. Strong evidence is provided to indicate that chiral inversion of (S)-2-APAs to produce (R)-2-APAs may occur during wastewater treatment processes. It is concluded that this characterization of the enantiomeric fractions for ibuprofen and naproxen in particular effluents could facilitate the distinction of treated and untreated sources of pharmaceutical contamination in surface waters.

  10. The functional importance of sequence versus expression variability of MHC alleles in parasite resistance.

    PubMed

    Axtner, Jan; Sommer, Simone

    2012-12-01

    Understanding selection processes driving the pronounced allelic polymorphism of the major histocompatibility complex (MHC) genes and its functional associations to parasite load have been the focus of many recent wildlife studies. Two main selection scenarios are currently debated which explain the susceptibility or resistance to parasite infections either by the effects of (1) specific MHC alleles which are selected frequency-dependent in space and time or (2) a heterozygote or divergent allele advantage. So far, most studies have focused only on structural variance in co-evolutionary processes although this might not be the only trait subject to natural selection. In the present study, we analysed structural variance stretching from exon1 through exon3 of MHC class II DRB genes as well as genotypic expression variance in relation to the gastrointestinal helminth prevalence and infection intensity in wild yellow-necked mice (Apodemus flavicollis). We found support for the functional importance of specific alleles both on the sequence and expression level. By resampling a previously investigated study population we identified specific MHC alleles affected by temporal shifts in parasite pressure and recorded associated changes in allele frequencies. The allele Apfl-DRB*23 was associated with resistance to infections by the oxyurid nematode Syphacia stroma and at the same time with susceptibility to cestode infection intensity. In line with our expectation, MHC mRNA transcript levels tended to be higher in cestode-infected animals carrying the allele Apfl-DRB*23. However, no support for a heterozygote or divergent allele advantage on the sequence or expression level was detected. The individual amino acid distance of genotypes did not explain individual differences in parasite loads and the genetic distance had no effect on MHC genotype expression. For ongoing studies on the functional importance of expression variance in parasite resistance, allele

  11. Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction.

    PubMed

    Han, Youngmahn; Kim, Dongsup

    2017-12-28

    Computational scanning of peptide candidates that bind to a specific major histocompatibility complex (MHC) can speed up the peptide-based vaccine development process and therefore various methods are being actively developed. Recently, machine-learning-based methods have generated successful results by training large amounts of experimental data. However, many machine learning-based methods are generally less sensitive in recognizing locally-clustered interactions, which can synergistically stabilize peptide binding. Deep convolutional neural network (DCNN) is a deep learning method inspired by visual recognition process of animal brain and it is known to be able to capture meaningful local patterns from 2D images. Once the peptide-MHC interactions can be encoded into image-like array(ILA) data, DCNN can be employed to build a predictive model for peptide-MHC binding prediction. In this study, we demonstrated that DCNN is able to not only reliably predict peptide-MHC binding, but also sensitively detect locally-clustered interactions. Nonapeptide-HLA-A and -B binding data were encoded into ILA data. A DCNN, as a pan-specific prediction model, was trained on the ILA data. The DCNN showed higher performance than other prediction tools for the latest benchmark datasets, which consist of 43 datasets for 15 HLA-A alleles and 25 datasets for 10 HLA-B alleles. In particular, the DCNN outperformed other tools for alleles belonging to the HLA-A3 supertype. The F1 scores of the DCNN were 0.86, 0.94, and 0.67 for HLA-A*31:01, HLA-A*03:01, and HLA-A*68:01 alleles, respectively, which were significantly higher than those of other tools. We found that the DCNN was able to recognize locally-clustered interactions that could synergistically stabilize peptide binding. We developed ConvMHC, a web server to provide user-friendly web interfaces for peptide-MHC class I binding predictions using the DCNN. ConvMHC web server can be accessible via http://jumong.kaist.ac.kr:8080/convmhc

  12. Ibuprofen versus placebo effect on acute kidney injury in ultramarathons: a randomised controlled trial.

    PubMed

    Lipman, Grant S; Shea, Kate; Christensen, Mark; Phillips, Caleb; Burns, Patrick; Higbee, Rebecca; Koskenoja, Viktoria; Eifling, Kurt; Krabak, Brian J

    2017-10-01

    Despite concerns that non-steroidal anti-inflammatory drugs (NSAIDs) contribute to acute kidney injury (AKI), up to 75% of ultramarathon runners ingest these during competition. The effect of NSAID on AKI incidence in ultramarathon runners is unclear. Multisite randomised double-blind placebo-controlled trial in the Gobi, Atacama, Ecuador and Sri Lankan deserts to determine whether ibuprofen (400 mg every 4 hours) would be non-inferior to placebo during a 50-mile (80 km) foot race. The primary outcome was incidence of AKI defined as severity categories of 'risk' of injury of 1.5× baseline creatinine (Cr) or 'injury' as 2× Cr, combined to calculate total incidence at the finish line. Non-inferiority margin for difference in AKI rates was defined as 15%. Eighty-nine participants (47% ibuprofen and 53% placebo) were enrolled with similar demographics between groups. The overall incidence of AKI was 44%. Intent-to-treat analysis found 22 (52%) ibuprofen versus 16 (34%) placebo users developed AKI (18% difference, 95% CI -4% to 41%; OR 2.1, 95% CI 0.9 to 5.1) with a number needed to harm of 5.5. Greater severity of AKI was seen with ibuprofen compared with placebo (risk=38% vs 26%; 95% CI -9% to 34%; injury=14% vs 9%; 95% CI -10% to 21%). Slower finishers were less likely to encounter AKI (OR 0.67, 95% CI 0.47 to 0.98) and greater weight loss (-1.3%) increased AKI (OR 1.24, 95% CI 1.00 to 1.63). There were increased rates of AKI in those who took ibuprofen, and although not statistically inferior to placebo by a small margin, there was a number needed to harm of 5.5 people to cause 1 case of AKI. Consideration should therefore be taken before ingesting NSAID during endurance running as it could exacerbate renal injury. NCT02272725. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  13. IPD-MHC 2.0: an improved inter-species database for the study of the major histocompatibility complex

    PubMed Central

    Maccari, Giuseppe; Robinson, James; Ballingall, Keith; Guethlein, Lisbeth A.; Grimholt, Unni; Kaufman, Jim; Ho, Chak-Sum; de Groot, Natasja G.; Flicek, Paul; Bontrop, Ronald E.; Hammond, John A.; Marsh, Steven G. E.

    2017-01-01

    The IPD-MHC Database project (http://www.ebi.ac.uk/ipd/mhc/) collects and expertly curates sequences of the major histocompatibility complex from non-human species and provides the infrastructure and tools to enable accurate analysis. Since the first release of the database in 2003, IPD-MHC has grown and currently hosts a number of specific sections, with more than 7000 alleles from 70 species, including non-human primates, canines, felines, equids, ovids, suids, bovins, salmonids and murids. These sequences are expertly curated and made publicly available through an open access website. The IPD-MHC Database is a key resource in its field, and this has led to an average of 1500 unique visitors and more than 5000 viewed pages per month. As the database has grown in size and complexity, it has created a number of challenges in maintaining and organizing information, particularly the need to standardize nomenclature and taxonomic classification, while incorporating new allele submissions. Here, we describe the latest database release, the IPD-MHC 2.0 and discuss planned developments. This release incorporates sequence updates and new tools that enhance database queries and improve the submission procedure by utilizing common tools that are able to handle the varied requirements of each MHC-group. PMID:27899604

  14. Comparative effects of cyclo-oxygenase and nitric oxide synthase inhibition on the development and reversal of spinal opioid tolerance

    PubMed Central

    Powell, Kelly J; Hosokawa, Akiko; Bell, Andrew; Sutak, Maaja; Milne, Brian; Quirion, Remi; Jhamandas, Khem

    1999-01-01

    This study examined the effects of the COX inhibitors, ketorolac and ibuprofen, and the NOS inhibitor L-NAME for their potential to both inhibit the development and reverse tolerance to the antinociceptive action of morphine. Repeated administration of intrathecal morphine (15 μg), once daily, resulted in a progressive decline of antinociceptive effect and an increase in the ED50 value in the tailflick and paw pressure tests. Co-administration of ketorolac (30 and 45 μg) or S(+) ibuprofen (10 μg) with morphine (15 μg) prevented the decline of antinociceptive effect and increase in ED50 value. Similar treatment with L-NAME (100 μg) exerted weaker effects. Administration of S(+) but not R(−) ibuprofen (10 mg kg−1) had similar effects on systemic administration of morphine (15 mg kg−1). Intrathecal or systemic administration of the COX or NOS inhibitors did not alter the baseline responses in either tests. Acute keterolac or S(+) ibuprofen also did not potentiate the acute actions of spinal or systemic morphine, but chronic intrathecal administration of these agents increased the potency of acute morphine. In animals already tolerant to intrathecal morphine, subsequent administration of ketorolac (30 μg) with morphine (15 μg) partially restored the antinociceptive effect and ED50 value of acute morphine, reflecting the reversal of tolerance. Intrathecal L-NAME (100 μg) exerted a weaker effect. These data suggest that spinal COX activity, and to a lesser extent NOS activity, contributes to the development and expression of opioid tolerance. Inhibition of COX may represent a useful approach for the prevention as well as reversal of opioid tolerance. PMID:10401553

  15. New data from basal Australian songbird lineages show that complex structure of MHC class II β genes has early evolutionary origins within passerines.

    PubMed

    Balasubramaniam, Shandiya; Bray, Rebecca D; Mulder, Raoul A; Sunnucks, Paul; Pavlova, Alexandra; Melville, Jane

    2016-05-21

    The major histocompatibility complex (MHC) plays a crucial role in the adaptive immune system and has been extensively studied across vertebrate taxa. Although the function of MHC genes appears to be conserved across taxa, there is great variation in the number and organisation of these genes. Among avian species, for instance, there are notable differences in MHC structure between passerine and non-passerine lineages: passerines typically have a high number of highly polymorphic MHC paralogs whereas non-passerines have fewer loci and lower levels of polymorphism. Although the occurrence of highly polymorphic MHC paralogs in passerines is well documented, their evolutionary origins are relatively unexplored. The majority of studies have focussed on the more derived passerine lineages and there is very little empirical information on the diversity of the MHC in basal passerine lineages. We undertook a study of MHC diversity and evolutionary relationships across seven species from four families (Climacteridae, Maluridae, Pardalotidae, Meliphagidae) that comprise a prominent component of the basal passerine lineages. We aimed to determine if highly polymorphic MHC paralogs have an early evolutionary origin within passerines or are a more derived feature of the infraorder Passerida. We identified 177 alleles of the MHC class II β exon 2 in seven basal passerine species, with variation in numbers of alleles across individuals and species. Overall, we found evidence of multiple gene loci, pseudoalleles, trans-species polymorphism and high allelic diversity in these basal lineages. Phylogenetic reconstruction of avian lineages based on MHC class II β exon 2 sequences strongly supported the monophyletic grouping of basal and derived passerine species. Our study provides evidence of a large number of highly polymorphic MHC paralogs in seven basal passerine species, with strong similarities to the MHC described in more derived passerine lineages rather than the simpler MHC

  16. Organic micropollutants paracetamol and ibuprofen-toxicity, biodegradation, and genetic background of their utilization by bacteria.

    PubMed

    Żur, Joanna; Piński, Artur; Marchlewicz, Ariel; Hupert-Kocurek, Katarzyna; Wojcieszyńska, Danuta; Guzik, Urszula

    2018-06-19

    Currently, analgesics and nonsteroidal anti-inflammatory drugs (NSAIDs) are classified as one of the most emerging group of xenobiotics and have been detected in various natural matrices. Among them, monocyclic paracetamol and ibuprofen, widely used to treat mild and moderate pain are the most popular. Since long-term adverse effects of these xenobiotics and their biological and pharmacokinetic activity especially at environmentally relevant concentrations are better understood, degradation of such contaminants has become a major concern. Moreover, to date, conventional wastewater treatment plants (WWTPs) are not fully adapted to remove that kind of micropollutants. Bioremediation processes, which utilize bacterial strains with increased degradation abilities, seem to be a promising alternative to the chemical methods used so far. Nevertheless, despite the wide prevalence of paracetamol and ibuprofen in the environment, toxicity and mechanism of their microbial degradation as well as genetic background of these processes remain not fully characterized. In this review, we described the current state of knowledge about toxicity and biodegradation mechanisms of paracetamol and ibuprofen and provided bioinformatics analysis concerning the genetic bases of these xenobiotics decomposition.

  17. Designing of interferon-gamma inducing MHC class-II binders

    PubMed Central

    2013-01-01

    Background The generation of interferon-gamma (IFN-γ) by MHC class II activated CD4+ T helper cells play a substantial contribution in the control of infections such as caused by Mycobacterium tuberculosis. In the past, numerous methods have been developed for predicting MHC class II binders that can activate T-helper cells. Best of author’s knowledge, no method has been developed so far that can predict the type of cytokine will be secreted by these MHC Class II binders or T-helper epitopes. In this study, an attempt has been made to predict the IFN-γ inducing peptides. The main dataset used in this study contains 3705 IFN-γ inducing and 6728 non-IFN-γ inducing MHC class II binders. Another dataset called IFNgOnly contains 4483 IFN-γ inducing epitopes and 2160 epitopes that induce other cytokine except IFN-γ. In addition we have alternate dataset that contains IFN-γ inducing and equal number of random peptides. Results It was observed that the peptide length, positional conservation of residues and amino acid composition affects IFN-γ inducing capabilities of these peptides. We identified the motifs in IFN-γ inducing binders/peptides using MERCI software. Our analysis indicates that IFN-γ inducing and non-inducing peptides can be discriminated using above features. We developed models for predicting IFN-γ inducing peptides using various approaches like machine learning technique, motifs-based search, and hybrid approach. Our best model based on the hybrid approach achieved maximum prediction accuracy of 82.10% with MCC of 0.62 on main dataset. We also developed hybrid model on IFNgOnly dataset and achieved maximum accuracy of 81.39% with 0.57 MCC. Conclusion Based on this study, we have developed a webserver for predicting i) IFN-γ inducing peptides, ii) virtual screening of peptide libraries and iii) identification of IFN-γ inducing regions in antigen (http://crdd.osdd.net/raghava/ifnepitope/). Reviewers This article was reviewed by Prof Kurt

  18. Inhibition of microtubules and dynein rescues human immunodeficiency virus type 1 from owl monkey TRIMCyp-mediated restriction in a cellular context-specific fashion.

    PubMed

    Pawlica, Paulina; Dufour, Caroline; Berthoux, Lionel

    2015-04-01

    IFN-induced restriction factors can significantly affect the replicative capacity of retroviruses in mammals. TRIM5α (tripartite motif protein 5, isoform α) is a restriction factor that acts at early stages of the virus life cycle by intercepting and destabilizing incoming retroviral cores. Sensitivity to TRIM5α maps to the N-terminal domain of the retroviral capsid proteins. In several New World and Old World monkey species, independent events of retrotransposon-mediated insertion of the cyclophilin A (CypA)-coding sequence in the trim5 gene have given rise to TRIMCyp (also called TRIM5-CypA), a hybrid protein that is active against some lentiviruses in a species-specific fashion. In particular, TRIMCyp from the owl monkey (omkTRIMCyp) very efficiently inhibits human immunodeficiency virus type 1 (HIV-1). Previously, we showed that disrupting the integrity of microtubules (MTs) and of cytoplasmic dynein complexes partially rescued replication of retroviruses, including HIV-1, from restriction mediated by TRIM5α. Here, we showed that efficient restriction of HIV-1 by omkTRIMCyp was similarly dependent on the MT network and on dynein complexes, but in a context-dependent fashion. When omkTRIMCyp was expressed in human HeLa cells, restriction was partially counteracted by pharmacological agents targeting MTs or by small interfering RNA-mediated inhibition of dynein. The same drugs (nocodazole and paclitaxel) also rescued HIV-1 from restriction in cat CRFK cells, although to a lesser extent. Strikingly, neither nocodazole, paclitaxel nor depletion of the dynein heavy chain had a significant effect on the restriction of HIV-1 in an owl monkey cell line. These results suggested the existence of cell-specific functional interactions between MTs/dynein and TRIMCyp. © 2015 The Authors.

  19. Effects of acetyl salycilic acid and ibuprofen in chronic liver damage induced by CCl4.

    PubMed

    Chávez, Enrique; Castro-Sánchez, Luis; Shibayama, Mineko; Tsutsumi, Victor; Pérez Salazar, Eduardo; Moreno, Mario G; Muriel, Pablo

    2012-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are drugs used primarily to treat inflammation, pain and fever. Their main mechanism of action is cyclooxygenase (COX) inhibition, and this enzyme has been linked to hepatotoxicity. The association of COX and liver injury has been, in part, due to the presence of COX-2 isoform in damaged liver and the possible induction of this enzyme by profibrotic molecules like Transforming Growth Factor-β (TGF-β). The aim of this work was to evaluate the effects of two of the most used NSAIDs, acetyl salicylic acid (ASA) and ibuprofen (IBP), on experimental liver fibrosis. We formed experimental groups of rats including vehicle and drug controls, damage induced by chronic CCl4 (0.4 g kg(-1) , i.p., three times per week, for 8 weeks) administration, and CCl4 plus ASA (100 mg kg(-1) , p.o., daily) or IBP (30 mg kg(-1) , p.o., daily). Both drugs showed important antifibrotic properties. They inhibited COX-2 activity, prevented oxidative stress measured as lipid peroxidation and glutathione content, and ASA inhibited partially and IBP totally increased TGF-β expression and collagen content. ASA and IBP prevented translocation of NFκB to the nucleus and, interestingly, ASA induced MMP-2 and MMP-13 whereas IBP induced MMP-2, MMP-9 and MMP-13. As a whole, these effects explain the beneficial effects of ASA and IBP on experimental liver fibrosis. Copyright © 2011 John Wiley & Sons, Ltd.

  20. MHC-mismatched mixed chimerism restores peripheral tolerance of noncross-reactive autoreactive T cells in NOD mice

    PubMed Central

    Zhang, Mingfeng; Racine, Jeremy J.; Lin, Qing; Liu, Yuqing; Tang, Shanshan; Qin, Qi; Qi, Tong; Riggs, Arthur D.; Zeng, Defu

    2018-01-01

    Autoimmune type 1 diabetes (T1D) and other autoimmune diseases are associated with particular MHC haplotypes and expansion of autoreactive T cells. Induction of MHC-mismatched but not -matched mixed chimerism by hematopoietic cell transplantation effectively reverses autoimmunity in diabetic nonobese diabetic (NOD) mice, even those with established diabetes. As expected, MHC-mismatched mixed chimerism mediates deletion in the thymus of host-type autoreactive T cells that have T-cell receptor (TCR) recognizing (cross-reacting with) donor-type antigen presenting cells (APCs), which have come to reside in the thymus. However, how MHC-mismatched mixed chimerism tolerizes host autoreactive T cells that recognize only self-MHC–peptide complexes remains unknown. Here, using NOD.Rag1−/−.BDC2.5 or NOD.Rag1−/−.BDC12-4.1 mice that have only noncross-reactive transgenic autoreactive T cells, we show that induction of MHC-mismatched but not -matched mixed chimerism restores immune tolerance of peripheral noncross-reactive autoreactive T cells. MHC-mismatched mixed chimerism results in increased percentages of both donor- and host-type Foxp3+ Treg cells and up-regulated expression of programmed death-ligand 1 (PD-L1) by host-type plasmacytoid dendritic cells (pDCs). Furthermore, adoptive transfer experiments showed that engraftment of donor-type dendritic cells (DCs) and expansion of donor-type Treg cells are required for tolerizing the noncross-reactive autoreactive T cells in the periphery, which are in association with up-regulation of host-type DC expression of PD-L1 and increased percentage of host-type Treg cells. Thus, induction of MHC-mismatched mixed chimerism may establish a peripheral tolerogenic DC and Treg network that actively tolerizes autoreactive T cells, even those with no TCR recognition of the donor APCs. PMID:29463744