Sample records for ic chip stress

  1. Module comprising IC memory stack dedicated to and structurally combined with an IC microprocessor chip

    NASA Technical Reports Server (NTRS)

    Carson, John C. (Inventor); Indin, Ronald J. (Inventor); Shanken, Stuart N. (Inventor)

    1994-01-01

    A computer module is disclosed in which a stack of glued together IC memory chips is structurally integrated with a microprocessor chip. The memory provided by the stack is dedicated to the microprocessor chip. The microprocessor and its memory stack may be connected either by glue and/or by solder bumps. The solder bumps can perform three functions--electrical interconnection, mechanical connection, and heat transfer. The electrical connections in some versions are provided by wire bonding.

  2. Attachment method for stacked integrated circuit (IC) chips

    DOEpatents

    Bernhardt, A.F.; Malba, V.

    1999-08-03

    An attachment method for stacked integrated circuit (IC) chips is disclosed. The method involves connecting stacked chips, such as DRAM memory chips, to each other and/or to a circuit board. Pads on the individual chips are rerouted to form pads on the side of the chip, after which the chips are stacked on top of each other whereby desired interconnections to other chips or a circuit board can be accomplished via the side-located pads. The pads on the side of a chip are connected to metal lines on a flexible plastic tape (flex) by anisotropically conductive adhesive (ACA). Metal lines on the flex are likewise connected to other pads on chips and/or to pads on a circuit board. In the case of a stack of DRAM chips, pads to corresponding address lines on the various chips may be connected to the same metal line on the flex to form an address bus. This method has the advantage of reducing the number of connections required to be made to the circuit board due to bussing; the flex can accommodate dimensional variation in the alignment of chips in the stack; bonding of the ACA is accomplished at low temperature and is otherwise simpler and less expensive than solder bonding; chips can be bonded to the ACA all at once if the sides of the chips are substantially coplanar, as in the case for stacks of identical chips, such as DRAM. 12 figs.

  3. Attachment method for stacked integrated circuit (IC) chips

    DOEpatents

    Bernhardt, Anthony F.; Malba, Vincent

    1999-01-01

    An attachment method for stacked integrated circuit (IC) chips. The method involves connecting stacked chips, such as DRAM memory chips, to each other and/or to a circuit board. Pads on the individual chips are rerouted to form pads on the side of the chip, after which the chips are stacked on top of each other whereby desired interconnections to other chips or a circuit board can be accomplished via the side-located pads. The pads on the side of a chip are connected to metal lines on a flexible plastic tape (flex) by anisotropically conductive adhesive (ACA). Metal lines on the flex are likewise connected to other pads on chips and/or to pads on a circuit board. In the case of a stack of DRAM chips, pads to corresponding address lines on the various chips may be connected to the same metal line on the flex to form an address bus. This method has the advantage of reducing the number of connections required to be made to the circuit board due to bussing; the flex can accommodate dimensional variation in the alignment of chips in the stack; bonding of the ACA is accomplished at low temperature and is otherwise simpler and less expensive than solder bonding; chips can be bonded to the ACA all at once if the sides of the chips are substantially coplanar, as in the case for stacks of identical chips, such as DRAM.

  4. Experimental and theoretical analysis of integrated circuit (IC) chips on flexible substrates subjected to bending

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Yuan, Jianghong; Zhang, Yingchao; Huang, Yonggang; Feng, Xue

    2017-10-01

    The interfacial failure of integrated circuit (IC) chips integrated on flexible substrates under bending deformation has been studied theoretically and experimentally. A compressive buckling test is used to impose the bending deformation onto the interface between the IC chip and the flexible substrate quantitatively, after which the failed interface is investigated using scanning electron microscopy. A theoretical model is established based on the beam theory and a bi-layer interface model, from which an analytical expression of the critical curvature in relation to the interfacial failure is obtained. The relationships between the critical curvature, the material, and the geometric parameters of the device are discussed in detail, providing guidance for future optimization flexible circuits based on IC chips.

  5. Silicon ball grid array chip carrier

    DOEpatents

    Palmer, David W.; Gassman, Richard A.; Chu, Dahwey

    2000-01-01

    A ball-grid-array integrated circuit (IC) chip carrier formed from a silicon substrate is disclosed. The silicon ball-grid-array chip carrier is of particular use with ICs having peripheral bond pads which can be reconfigured to a ball-grid-array. The use of a semiconductor substrate such as silicon for forming the ball-grid-array chip carrier allows the chip carrier to be fabricated on an IC process line with, at least in part, standard IC processes. Additionally, the silicon chip carrier can include components such as transistors, resistors, capacitors, inductors and sensors to form a "smart" chip carrier which can provide added functionality and testability to one or more ICs mounted on the chip carrier. Types of functionality that can be provided on the "smart" chip carrier include boundary-scan cells, built-in test structures, signal conditioning circuitry, power conditioning circuitry, and a reconfiguration capability. The "smart" chip carrier can also be used to form specialized or application-specific ICs (ASICs) from conventional ICs. Types of sensors that can be included on the silicon ball-grid-array chip carrier include temperature sensors, pressure sensors, stress sensors, inertia or acceleration sensors, and/or chemical sensors. These sensors can be fabricated by IC processes and can include microelectromechanical (MEM) devices.

  6. A Single-Chip Solar Energy Harvesting IC Using Integrated Photodiodes for Biomedical Implant Applications.

    PubMed

    Chen, Zhiyuan; Law, Man-Kay; Mak, Pui-In; Martins, Rui P

    2017-02-01

    In this paper, an ultra-compact single-chip solar energy harvesting IC using on-chip solar cell for biomedical implant applications is presented. By employing an on-chip charge pump with parallel connected photodiodes, a 3.5 × efficiency improvement can be achieved when compared with the conventional stacked photodiode approach to boost the harvested voltage while preserving a single-chip solution. A photodiode-assisted dual startup circuit (PDSC) is also proposed to improve the area efficiency and increase the startup speed by 77%. By employing an auxiliary charge pump (AQP) using zero threshold voltage (ZVT) devices in parallel with the main charge pump, a low startup voltage of 0.25 V is obtained while minimizing the reversion loss. A 4 V in gate drive voltage is utilized to reduce the conduction loss. Systematic charge pump and solar cell area optimization is also introduced to improve the energy harvesting efficiency. The proposed system is implemented in a standard 0.18- [Formula: see text] CMOS technology and occupies an active area of 1.54 [Formula: see text]. Measurement results show that the on-chip charge pump can achieve a maximum efficiency of 67%. With an incident power of 1.22 [Formula: see text] from a halogen light source, the proposed energy harvesting IC can deliver an output power of 1.65 [Formula: see text] at 64% charge pump efficiency. The chip prototype is also verified using in-vitro experiment.

  7. SPROC: A multiple-processor DSP IC

    NASA Technical Reports Server (NTRS)

    Davis, R.

    1991-01-01

    A large, single-chip, multiple-processor, digital signal processing (DSP) integrated circuit (IC) fabricated in HP-Cmos34 is presented. The innovative architecture is best suited for analog and real-time systems characterized by both parallel signal data flows and concurrent logic processing. The IC is supported by a powerful development system that transforms graphical signal flow graphs into production-ready systems in minutes. Automatic compiler partitioning of tasks among four on-chip processors gives the IC the signal processing power of several conventional DSP chips.

  8. A proposed holistic approach to on-chip, off-chip, test, and package interconnections

    NASA Astrophysics Data System (ADS)

    Bartelink, Dirk J.

    1998-11-01

    The term interconnection has traditionally implied a `robust' connection from a transistor or a group of transistors in an IC to the outside world, usually a PC board. Optimum system utilization is done from outside the IC. As an alternative, this paper addresses `unimpeded' transistor-to-transistor interconnection aimed at reaching the high circuit densities and computational capabilities of neighboring IC's. In this view, interconnections are not made to some human-centric place outside the IC world requiring robustness—except for system input and output connections. This unimpeded interconnect style is currently available only through intra-chip signal traces in `system-on-a-chip' implementations, as exemplified by embedded DRAMs. Because the traditional off-chip penalty in performance and wiring density is so large, a merging of complex process technologies is the only option today. It is suggested that, for system integration to move forward, the traditional robustness requirement inherited from conventional packaging interconnect and IC manufacturing test must be discarded. Traditional system assembly from vendor parts requires robustness under shipping, inspection and assembly. The trend toward systems on a chip signifies willingness by semiconductor companies to design and fabricate whole systems in house, so that `in-house' chip-to-chip assembly is not beyond reach. In this scenario, bare chips never leave the controlled environment of the IC fabricator while the two major contributors to off-chip signal penalty, ESD protection and the need to source a 50-ohm test head, are avoided. With in-house assembly, ESD protection can be eliminated with the precautions already familiar in plasma etching. Test interconnection impacts the fundamentals of IC manufacturing, particularly with clock speeds approaching 1GHz, and cannot be an afterthought. It should be an integral part of the chip-to-chip interconnection bandwidth optimization, because—as we must

  9. Innovative Teaching of IC Design and Manufacture Using the Superchip Platform

    ERIC Educational Resources Information Center

    Wilson, P. R.; Wilcock, R.; McNally, I.; Swabey, M.

    2010-01-01

    This paper describes how an intelligent chip architecture has allowed a large cohort of undergraduate (UG) students to be given effective practical insight into integrated circuit (IC) design by designing and manufacturing their own ICs. To achieve this, an efficient chip architecture, the "Superchip," was developed, which allows multiple student…

  10. Stress analysis of ultra-thin silicon chip-on-foil electronic assembly under bending

    NASA Astrophysics Data System (ADS)

    Wacker, Nicoleta; Richter, Harald; Hoang, Tu; Gazdzicki, Pawel; Schulze, Mathias; Angelopoulos, Evangelos A.; Hassan, Mahadi-Ul; Burghartz, Joachim N.

    2014-09-01

    In this paper we investigate the bending-induced uniaxial stress at the top of ultra-thin (thickness \\leqslant 20 μm) single-crystal silicon (Si) chips adhesively attached with the aid of an epoxy glue to soft polymeric substrate through combined theoretical and experimental methods. Stress is first determined analytically and numerically using dedicated models. The theoretical results are validated experimentally through piezoresistive measurements performed on complementary metal-oxide-semiconductor (CMOS) transistors built on specially designed chips, and through micro-Raman spectroscopy investigation. Stress analysis of strained ultra-thin chips with CMOS circuitry is crucial, not only for the accurate evaluation of the piezoresistive behavior of the built-in devices and circuits, but also for reliability and deformability analysis. The results reveal an uneven bending-induced stress distribution at the top of the Si-chip that decreases from the central area towards the chip's edges along the bending direction, and increases towards the other edges. Near these edges, stress can reach very high values, facilitating the emergence of cracks causing ultimate chip failure.

  11. The optical design of 3D ICs for smartphone and optro-electronics sensing module

    NASA Astrophysics Data System (ADS)

    Huang, Jiun-Woei

    2018-03-01

    Smartphone require limit space for image system, current lens, used in smartphones are refractive type, the effective focal length is limited the thickness of phone physical size. Other, such as optro-electronics sensing chips, proximity optical sensors, and UV indexer chips are integrated into smart phone with limit space. Due to the requirement of multiple lens in smartphone, proximity optical sensors, UV indexer and other optro-electronics sensing chips in a limited space of CPU board in future smart phone, optro-electronics 3D IC's integrated with optical lens or components may be a key technology for 3 C products. A design for reflective lens is fitted to CMOS, proximity optical sensors, UV indexer and other optro-electronics sensing chips based on 3-D IC. The reflective lens can be threes times of effective focal lens, and be able to resolve small object. The system will be assembled and integrated in one 3-D IC more easily.

  12. Ion Chromatography-on-a-chip for Water Quality Analysis

    NASA Technical Reports Server (NTRS)

    Kidd, R. D.; Noell, A.; Kazarians, G.; Aubrey, A. D.; Scianmarello, N.; Tai, Y.-C.

    2015-01-01

    We report progress towards developing a Micro-Electro-Mechanical Systems (MEMS)- based ion chromatograph (IC) for crewed spacecraft water analysis. This IC-chip is an offshoot of a NASA-funded effort to produce a high performance liquid chromatograph (HPLC)-chip. This HPLC-chip system would require a desalting (i.e. ion chromatography) step. The complete HPLC instrument consists of the Jet Propulsion Labortory's (JPL's) quadrupole ion trap mass spectrometer integrated with a state-of-the-art MEMS liquid chromatograph (LC) system developed by the California Institute of Technology's (Caltech's) Micromachining Laboratory. The IC version of the chip consist of an electrolysis-based injector, a separation column, two electrolysis pumps for gradient generation, mixer, and a built-in conductivity detector. The HPLC version of the chip also includes a nanospray tip. The low instrument mass, coupled with its high analytical capabilities, makes the LC chip ideally suitable for wide range of applications such as trace contaminant, inorganic analytical science and, when coupled to a mass spectrometer, a macromolecular detection system for either crewed space exploration vehicles or robotic planetary missions.

  13. Wireless Interconnects for Intra-chip & Inter-chip Transmission

    NASA Astrophysics Data System (ADS)

    Narde, Rounak Singh

    With the emergence of Internet of Things and information revolution, the demand of high performance computing systems is increasing. The copper interconnects inside the computing chips have evolved into a sophisticated network of interconnects known as Network on Chip (NoC) comprising of routers, switches, repeaters, just like computer networks. When network on chip is implemented on a large scale like in Multicore Multichip (MCMC) systems for High Performance Computing (HPC) systems, length of interconnects increases and so are the problems like power dissipation, interconnect delays, clock synchronization and electrical noise. In this thesis, wireless interconnects are chosen as the substitute for wired copper interconnects. Wireless interconnects offer easy integration with CMOS fabrication and chip packaging. Using wireless interconnects working at unlicensed mm-wave band (57-64GHz), high data rate of Gbps can be achieved. This thesis presents study of transmission between zigzag antennas as wireless interconnects for Multichip multicores (MCMC) systems and 3D IC. For MCMC systems, a four-chips 16-cores model is analyzed with only four wireless interconnects in three configurations with different antenna orientations and locations. Return loss and transmission coefficients are simulated in ANSYS HFSS. Moreover, wireless interconnects are designed, fabricated and tested on a 6'' silicon wafer with resistivity of 55O-cm using a basic standard CMOS process. Wireless interconnect are designed to work at 30GHz using ANSYS HFSS. The fabricated antennas are resonating around 20GHz with a return loss of less than -10dB. The transmission coefficients between antenna pair within a 20mm x 20mm silicon die is found to be varying between -45dB to -55dB. Furthermore, wireless interconnect approach is extended for 3D IC. Wireless interconnects are implemented as zigzag antenna. This thesis extends the work of analyzing the wireless interconnects in 3D IC with different

  14. E3 Ubiquitin Ligase CHIP and NBR1-Mediated Selective Autophagy Protect Additively against Proteotoxicity in Plant Stress Responses

    PubMed Central

    Qi, Jingxia; Chi, Yingjin; Fan, Baofang; Yu, Jing-Quan; Chen, Zhixiang

    2014-01-01

    Plant stress responses require both protective measures that reduce or restore stress-inflicted damage to cellular structures and mechanisms that efficiently remove damaged and toxic macromolecules, such as misfolded and damaged proteins. We have recently reported that NBR1, the first identified plant autophagy adaptor with a ubiquitin-association domain, plays a critical role in plant stress tolerance by targeting stress-induced, ubiquitinated protein aggregates for degradation by autophagy. Here we report a comprehensive genetic analysis of CHIP, a chaperone-associated E3 ubiquitin ligase from Arabidopsis thaliana implicated in mediating degradation of nonnative proteins by 26S proteasomes. We isolated two chip knockout mutants and discovered that they had the same phenotypes as the nbr1 mutants with compromised tolerance to heat, oxidative and salt stresses and increased accumulation of insoluble proteins under heat stress. To determine their functional interactions, we generated chip nbr1 double mutants and found them to be further compromised in stress tolerance and in clearance of stress-induced protein aggregates, indicating additive roles of CHIP and NBR1. Furthermore, stress-induced protein aggregates were still ubiquitinated in the chip mutants. Through proteomic profiling, we systemically identified heat-induced protein aggregates in the chip and nbr1 single and double mutants. These experiments revealed that highly aggregate-prone proteins such as Rubisco activase and catalases preferentially accumulated in the nbr1 mutant while a number of light-harvesting complex proteins accumulated at high levels in the chip mutant after a relatively short period of heat stress. With extended heat stress, aggregates for a large number of intracellular proteins accumulated in both chip and nbr1 mutants and, to a greater extent, in the chip nbr1 double mutant. Based on these results, we propose that CHIP and NBR1 mediate two distinct but complementary anti

  15. Development of Equivalent Material Properties of Microbump for Simulating Chip Stacking Packaging

    PubMed Central

    Lee, Chang-Chun; Tzeng, Tzai-Liang; Huang, Pei-Chen

    2015-01-01

    A three-dimensional integrated circuit (3D-IC) structure with a significant scale mismatch causes difficulty in analytic model construction. This paper proposes a simulation technique to introduce an equivalent material composed of microbumps and their surrounding wafer level underfill (WLUF). The mechanical properties of this equivalent material, including Young’s modulus (E), Poisson’s ratio, shear modulus, and coefficient of thermal expansion (CTE), are directly obtained by applying either a tensile load or a constant displacement, and by increasing the temperature during simulations, respectively. Analytic results indicate that at least eight microbumps at the outermost region of the chip stacking structure need to be considered as an accurate stress/strain contour in the concerned region. In addition, a factorial experimental design with analysis of variance is proposed to optimize chip stacking structure reliability with four factors: chip thickness, substrate thickness, CTE, and E-value. Analytic results show that the most significant factor is CTE of WLUF. This factor affects microbump reliability and structural warpage under a temperature cycling load and high-temperature bonding process. WLUF with low CTE and high E-value are recommended to enhance the assembly reliability of the 3D-IC architecture. PMID:28793495

  16. Low-power chip-level optical interconnects based on bulk-silicon single-chip photonic transceivers

    NASA Astrophysics Data System (ADS)

    Kim, Gyungock; Park, Hyundai; Joo, Jiho; Jang, Ki-Seok; Kwack, Myung-Joon; Kim, Sanghoon; Kim, In Gyoo; Kim, Sun Ae; Oh, Jin Hyuk; Park, Jaegyu; Kim, Sanggi

    2016-03-01

    We present new scheme for chip-level photonic I/Os, based on monolithically integrated vertical photonic devices on bulk silicon, which increases the integration level of PICs to a complete photonic transceiver (TRx) including chip-level light source. A prototype of the single-chip photonic TRx based on a bulk silicon substrate demonstrated 20 Gb/s low power chip-level optical interconnects between fabricated chips, proving that this scheme can offer compact low-cost chip-level I/O solutions and have a significant impact on practical electronic-photonic integration in high performance computers (HPC), cpu-memory interface, 3D-IC, and LAN/SAN/data-center and network applications.

  17. Flexible packaging of solid-state integrated circuit chips with elastomeric microfluidics

    PubMed Central

    Zhang, Bowei; Dong, Quan; Korman, Can E.; Li, Zhenyu; Zaghloul, Mona E.

    2013-01-01

    A flexible technology is proposed to integrate smart electronics and microfluidics all embedded in an elastomer package. The microfluidic channels are used to deliver both liquid samples and liquid metals to the integrated circuits (ICs). The liquid metals are used to realize electrical interconnects to the IC chip. This avoids the traditional IC packaging challenges, such as wire-bonding and flip-chip bonding, which are not compatible with current microfluidic technologies. As a demonstration we integrated a CMOS magnetic sensor chip and associate microfluidic channels on a polydimethylsiloxane (PDMS) substrate that allows precise delivery of small liquid samples to the sensor. Furthermore, the packaged system is fully functional under bending curvature radius of one centimetre and uniaxial strain of 15%. The flexible integration of solid-state ICs with microfluidics enables compact flexible electronic and lab-on-a-chip systems, which hold great potential for wearable health monitoring, point-of-care diagnostics and environmental sensing among many other applications.

  18. Method and apparatus to debug an integrated circuit chip via synchronous clock stop and scan

    DOEpatents

    Bellofatto, Ralph E [Ridgefield, CT; Ellavsky, Matthew R [Rochester, MN; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Gooding, Thomas M [Rochester, MN; Haring, Rudolf A [Cortlandt Manor, NY; Hehenberger, Lance G [Leander, TX; Ohmacht, Martin [Yorktown Heights, NY

    2012-03-20

    An apparatus and method for evaluating a state of an electronic or integrated circuit (IC), each IC including one or more processor elements for controlling operations of IC sub-units, and each the IC supporting multiple frequency clock domains. The method comprises: generating a synchronized set of enable signals in correspondence with one or more IC sub-units for starting operation of one or more IC sub-units according to a determined timing configuration; counting, in response to one signal of the synchronized set of enable signals, a number of main processor IC clock cycles; and, upon attaining a desired clock cycle number, generating a stop signal for each unique frequency clock domain to synchronously stop a functional clock for each respective frequency clock domain; and, upon synchronously stopping all on-chip functional clocks on all frequency clock domains in a deterministic fashion, scanning out data values at a desired IC chip state. The apparatus and methodology enables construction of a cycle-by-cycle view of any part of the state of a running IC chip, using a combination of on-chip circuitry and software.

  19. On-chip dynamic stress control for cancer cell evolution study

    NASA Astrophysics Data System (ADS)

    Liu, Liyu; Austin, Robert

    2010-03-01

    The growth and spreading of cancer in host organisms is an evolutionary process. Cells accumulate mutations that help them adapt to changing environments and to obtain survival fitness. However, all cancer--promoting mutations do not occur at once. Cancer cells face selective environmental pressures that drive their evolution in stages. In traditional cancer studies, environmental stress is usually homogenous in space and difficult to change in time. Here, we propose a microfluidic chip employing embedded dynamic traps to generate dynamic heterogeneous microenvironments for cancer cells in evolution studies. Based on polydimethylsiloxane (PDMS) flexible diaphragms, these traps are able to enclose and shield cancer cells or expose them to external environmental stress. Digital controls for each trap determine the nutrition, antibiotics, CO2/O2 conditions, and temperatures to which trapped cells are subjected. Thus, the stress applied to cells can be varied in intensity and duration in each trap independently. The chip can also output cells from specific traps for sequencing and other biological analysis. Hence our design simultaneously monitors and analyzes cell evolution behaviors under dynamic stresses.

  20. CHIP, a carboxy terminus HSP-70 interacting protein, prevents cell death induced by endoplasmic reticulum stress in the central nervous system.

    PubMed

    Cabral Miranda, Felipe; Adão-Novaes, Juliana; Hauswirth, William W; Linden, Rafael; Petrs-Silva, Hilda; Chiarini, Luciana B

    2014-01-01

    Endoplasmic reticulum (ER) stress and protein misfolding are associated with various neurodegenerative diseases. ER stress activates unfolded protein response (UPR), an adaptative response. However, severe ER stress can induce cell death. Here we show that the E3 ubiquitin ligase and co-chaperone Carboxyl Terminus HSP70/90 Interacting Protein (CHIP) prevents neuron death in the hippocampus induced by severe ER stress. Organotypic hippocampal slice cultures (OHSCs) were exposed to Tunicamycin, a pharmacological ER stress inducer, to trigger cell death. Overexpression of CHIP was achieved with a recombinant adeno-associated viral vector (rAAV) and significantly diminished ER stress-induced cell death, as shown by analysis of propidium iodide (PI) uptake, condensed chromatin, TUNEL and cleaved caspase 3 in the CA1 region of OHSCs. In addition, overexpression of CHIP prevented upregulation of both CHOP and p53 both pro-apoptotic pathways induced by ER stress. We also detected an attenuation of eIF2a phosphorylation promoted by ER stress. However, CHIP did not prevent upregulation of BiP/GRP78 induced by UPR. These data indicate that overexpression of CHIP attenuates ER-stress death response while maintain ER stress adaptative response in the central nervous system. These results indicate a neuroprotective role for CHIP upon UPR signaling. CHIP emerge as a candidate for clinical intervention in neurodegenerative diseases associated with ER stress.

  1. Heat stress during development alters post-harvest sugar contents and chip processing quality of potato tubers

    USDA-ARS?s Scientific Manuscript database

    Environmental stresses that increase tuber contents of the reducing sugars glucose and fructose decrease the value of chipping potatoes because such tubers produce dark-colored chips that are unacceptable to processors and consumers. Stem-end chip defect (SECD), which causes regions of dark color al...

  2. Effect of Mechanical Stresses on Characteristics of Chip Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander A.

    2007-01-01

    The effect of compressive mechanical stresses on chip solid tantalum capacitors is investigated by monitoring characteristics of different part types under axial and hydrostatic stresses. Depending on part types, an exponential increase of leakage currents was observed when stresses exceeded 10 MPa to 40 MPa. For the first time, reversible variations of leakage currents (up to two orders of magnitude) with stress have been demonstrated. Mechanical stresses did not cause significant changes of AC characteristics of the capacitors, whereas breakdown voltages measured during the surge current testing decreased substantially indicating an increased probability of failures of stressed capacitors in low impedance applications. Variations of leakage currents are explained by a combination of two mechanisms: stress-induced scintillations and stress-induced generation of electron traps in the tantalum pentoxide dielectric.

  3. Behavior of stress generated in semiconductor chips with high-temperature joints: Influence of mechanical properties of joint materials

    NASA Astrophysics Data System (ADS)

    Ito, H.; Kuwahara, M.; Ohta, R.; Usui, M.

    2018-04-01

    High-temperature joint materials are indispensable to realizing next-generation power modules with high-output performance. However, crack initiation resulting from stress concentration in semiconductor chips joined with high-temperature joint materials remains a critical problem in high-temperature operation. Therefore, clarifying the quantitative influence of joint materials on the stress generated in chips is essential. This study investigates the stress behavior of chips joined by Ni-Sn solid-liquid interdiffusion (SLID), which results in a high-temperature joint material likely to generate cracks after joining or when under thermal cycling. The results are compared with those fabricated using three types of solders, Pb-10%Sn, Sn-0.7%Cu, and Sn-10%Sb (mass %), which are conventional joint materials with different melting points and mechanical properties. Using Ni-Sn SLID results in the generation of high compressive stress (500 MPa) without stress relaxation after the joining process in contrast to the case of solders in which the compressive stresses are low (<300 MPa) and decrease to still lower levels (<250 MPa). In addition, no stress relaxation occurs during thermal cycling when using Ni-Sn SLID, whereas stress relaxation is clearly observed during heating to 200 °C using solders. Different stress behaviors between Ni-Sn SLID and other joint materials are illustrated by their mechanical strength and resistance against plastic and creep deformation. These results suggest that stress relaxation in a chip is key in suppressing crack initiation in highly reliable modules during high-temperature operation.

  4. Systolic array IC for genetic computation

    NASA Technical Reports Server (NTRS)

    Anderson, D.

    1991-01-01

    Measuring similarities between large sequences of genetic information is a formidable task requiring enormous amounts of computer time. Geneticists claim that nearly two months of CRAY-2 time are required to run a single comparison of the known database against the new bases that will be found this year, and more than a CRAY-2 year for next year's genetic discoveries, and so on. The DNA IC, designed at HP-ICBD in cooperation with the California Institute of Technology and the Jet Propulsion Laboratory, is being implemented in order to move the task of genetic comparison onto workstations and personal computers, while vastly improving performance. The chip is a systolic (pumped) array comprised of 16 processors, control logic, and global RAM, totaling 400,000 FETS. At 12 MHz, each chip performs 2.7 billion 16 bit operations per second. Using 35 of these chips in series on one PC board (performing nearly 100 billion operations per second), a sequence of 560 bases can be compared against the eventual total genome of 3 billion bases, in minutes--on a personal computer. While the designed purpose of the DNA chip is for genetic research, other disciplines requiring similarity measurements between strings of 7 bit encoded data could make use of this chip as well. Cryptography and speech recognition are two examples. A mix of full custom design and standard cells, in CMOS34, were used to achieve these goals. Innovative test methods were developed to enhance controllability and observability in the array. This paper describes these techniques as well as the chip's functionality. This chip was designed in the 1989-90 timeframe.

  5. Self-Patterning of Silica/Epoxy Nanocomposite Underfill by Tailored Hydrophilic-Superhydrophobic Surfaces for 3D Integrated Circuit (IC) Stacking.

    PubMed

    Tuan, Chia-Chi; James, Nathan Pataki; Lin, Ziyin; Chen, Yun; Liu, Yan; Moon, Kyoung-Sik; Li, Zhuo; Wong, C P

    2017-03-15

    As microelectronics are trending toward smaller packages and integrated circuit (IC) stacks nowadays, underfill, the polymer composite filled in between the IC chip and the substrate, becomes increasingly important for interconnection reliability. However, traditional underfills cannot meet the requirements for low-profile and fine pitch in high density IC stacking packages. Post-applied underfills have difficulties in flowing into the small gaps between the chip and the substrate, while pre-applied underfills face filler entrapment at bond pads. In this report, we present a self-patterning underfilling technology that uses selective wetting of underfill on Cu bond pads and Si 3 N 4 passivation via surface energy engineering. This novel process, fully compatible with the conventional underfilling process, eliminates the issue of filler entrapment in typical pre-applied underfilling process, enabling high density and fine pitch IC die bonding.

  6. TDR method for determine IC's parameters

    NASA Astrophysics Data System (ADS)

    Timoshenkov, V.; Rodionov, D.; Khlybov, A.

    2016-12-01

    Frequency domain simulation is a widely used approach for determine integrated circuits parameters. This approach can be found in most of software tools used in IC industry. Time domain simulation approach shows intensive usage last years due to some advantages. In particular it applicable for analysis of nonlinear and nonstationary systems where frequency domain is inapplicable. Resolution of time domain systems allow see heterogeneities on distance 1mm, determine it parameters and properties. Authors used approach based on detecting reflected signals from heterogeneities - time domain reflectometry (TDR). Field effect transistor technology scaling up to 30-60nm gate length and 10nm gate dielectric, heterojunction bi-polar transistors with 10-30nm base width allows fabricate digital IC's with 20GHz clock frequency and RF-IC's with tens GHz bandwidth. Such devices and operation speed suppose transit signal by use microwave lines. There are local heterogeneities can be found inside of the signal path due to connections between different parts of signal lines (stripe line-RF-connector pin, stripe line - IC package pin). These heterogeneities distort signals that cause bandwidth decrease for RF-devices. Time domain research methods of transmission and reflected signals give the opportunities to determine heterogeneities, it properties, parameters and built up equivalent circuits. Experimental results are provided and show possibility for inductance and capacitance measurement up to 25GHz. Measurements contains result of signal path research on IC and printed circuit board (PCB) used for 12GHz RF chips. Also dielectric constant versus frequency was measured up to 35GHz.

  7. High Voltage Dielectrophoretic and Magnetophoretic Hybrid Integrated Circuit / Microfluidic Chip.

    PubMed

    Issadore, David; Franke, Thomas; Brown, Keith A; Hunt, Thomas P; Westervelt, Robert M

    2009-12-01

    A hybrid integrated circuit (IC) / microfluidic chip is presented that independently and simultaneously traps and moves microscopic objects suspended in fluid using both electric and magnetic fields. This hybrid chip controls the location of dielectric objects, such as living cells and drops of fluid, on a 60 × 61 array of pixels that are 30 × 38 μm(2) in size, each of which can be individually addressed with a 50 V peak-to-peak, DC to 10 MHz radio frequency voltage. These high voltage pixels produce electric fields above the chip's surface with a magnitude , resulting in strong dielectrophoresis (DEP) forces . Underneath the array of DEP pixels there is a magnetic matrix that consists of two perpendicular sets of 60 metal wires running across the chip. Each wire can be sourced with 120 mA to trap and move magnetically susceptible objects using magnetophoresis (MP). The DEP pixel array and magnetic matrix can be used simultaneously to apply forces to microscopic objects, such as living cells or lipid vesicles, that are tagged with magnetic nanoparticles. The capabilities of the hybrid IC / microfluidic chip demonstrated in this paper provide important building blocks for a platform for biological and chemical applications.

  8. Thick photosensitive polyimide film side wall angle variability and scum improvement for IC packaging stress control

    NASA Astrophysics Data System (ADS)

    Mehta, Sohan Singh; Yeung, Marco; Mirza, Fahad; Raman, Thiagarajan; Longenbach, Travis; Morgan, Justin; Duggan, Mark; Soedibyo, Rio A.; Reidy, Sean; Rabie, Mohamed; Cho, Jae Kyu; Premachandran, C. S.; Faruqui, Danish

    2018-03-01

    In this paper, we demonstrate photosensitive polyimide (PSPI) profile optimization to effectively reduce stress concentrations and enable PSPI as protection package-induced stress. Through detailed package simulation, we demonstrate 45% reduction in stress as the sidewall angle (SWA) of PSPI is increased from 45 to 80 degrees in Cu pillar package types. Through modulation of coating and develop multi-step baking temperature and time, as well as dose energy and post litho surface treatments, we demonstrate a method for reliably obtaining PSPI sidewall angle >75 degree. Additionally, we experimentally validate the simulation findings that PSPI sidewall angle impacts chip package interaction (CPI). Finally, we conclude this paper with PSPI material and tool qualification requirements for future technology node based on current challenges.

  9. Stress insensitive multilayer chip inductor with ferrite core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vishwas, B.; Madhuri, W., E-mail: madhuriw12@gmail.com; Rao, N. Madhusudan

    2015-06-24

    Mg{sub 0.25}Cu{sub 0.25}Zn{sub 0.5}Fe{sub 2}O{sub 4} is synthesized by sol gel auto combustion technique. The obtained ferrite powder is finally sintered in a microwave furnace at 850°C. Multilayer chip inductor (MLCI) of two layers is prepared by screen printing technique. The sintered ferrite is characterized by X-ray diffraction. The frequency response of dielectric constant is studied in the frequency range of 100Hz to 5MHz. Dielectric polarization is discussed in the light of Maxwell-Wagner interfacial polarization. The prepared MLCI is studied for stress sensitivity in the range of 0 to 8 MPa.

  10. Use of optical technique for inspection of warpage of IC packages

    NASA Astrophysics Data System (ADS)

    Toh, Siew-Lok; Chau, Fook S.; Ong, Sim Heng

    2001-06-01

    The packaging of IC packages has changed over the years, form dual-in-line, wire-bond, and pin-through-hole in printed wiring board technologies in the 1970s to ball grid array, chip scale and surface mount technologies in the 1990s. Reliability has been a big problem for manufacturers for some moisture-sensitive packages. One of the potential problems in plastic IC packages is moisture-induced popcorn effect which can arise during the reflow process. Shearography is a non-destructive inspection technique that may be used to detect the delamination and warpage of IC packages. It is non-contacting and permits a full-field observation of surface displacement derivatives. Another advantage of this technique is that it is able to give the real-time formation of the fringes which indicate flaws in the IC package under real-time simulation condition of Surface Mount Technology (SMT) IR reflow profile. It is extremely fast and convenient to study the true behavior of the packaging deformation during the SMT process. It can be concluded that shearography has the potential for the real- time detection, in situ and non-destructive inspection of IC packages during the surface mount process.

  11. High Voltage Dielectrophoretic and Magnetophoretic Hybrid Integrated Circuit / Microfluidic Chip

    PubMed Central

    Issadore, David; Franke, Thomas; Brown, Keith A.; Hunt, Thomas P.; Westervelt, Robert M.

    2010-01-01

    A hybrid integrated circuit (IC) / microfluidic chip is presented that independently and simultaneously traps and moves microscopic objects suspended in fluid using both electric and magnetic fields. This hybrid chip controls the location of dielectric objects, such as living cells and drops of fluid, on a 60 × 61 array of pixels that are 30 × 38 μm2 in size, each of which can be individually addressed with a 50 V peak-to-peak, DC to 10 MHz radio frequency voltage. These high voltage pixels produce electric fields above the chip’s surface with a magnitude , resulting in strong dielectrophoresis (DEP) forces . Underneath the array of DEP pixels there is a magnetic matrix that consists of two perpendicular sets of 60 metal wires running across the chip. Each wire can be sourced with 120 mA to trap and move magnetically susceptible objects using magnetophoresis (MP). The DEP pixel array and magnetic matrix can be used simultaneously to apply forces to microscopic objects, such as living cells or lipid vesicles, that are tagged with magnetic nanoparticles. The capabilities of the hybrid IC / microfluidic chip demonstrated in this paper provide important building blocks for a platform for biological and chemical applications. PMID:20625468

  12. Correlation of the ionisation response at selected points of IC sensitive regions with SEE sensitivity parameters under pulsed laser irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordienko, A V; Mavritskii, O B; Egorov, A N

    2014-12-31

    The statistics of the ionisation response amplitude measured at selected points and their surroundings within sensitive regions of integrated circuits (ICs) under focused femtosecond laser irradiation is obtained for samples chosen from large batches of two types of ICs. A correlation between these data and the results of full-chip scanning is found for each type. The criteria for express validation of IC single-event effect (SEE) hardness based on ionisation response measurements at selected points are discussed. (laser applications and other topics in quantum electronics)

  13. A microfluidic microprocessor: controlling biomimetic containers and cells using hybrid integrated circuit/microfluidic chips.

    PubMed

    Issadore, David; Franke, Thomas; Brown, Keith A; Westervelt, Robert M

    2010-11-07

    We present an integrated platform for performing biological and chemical experiments on a chip based on standard CMOS technology. We have developed a hybrid integrated circuit (IC)/microfluidic chip that can simultaneously control thousands of living cells and pL volumes of fluid, enabling a wide variety of chemical and biological tasks. Taking inspiration from cellular biology, phospholipid bilayer vesicles are used as robust picolitre containers for reagents on the chip. The hybrid chip can be programmed to trap, move, and porate individual living cells and vesicles and fuse and deform vesicles using electric fields. The IC spatially patterns electric fields in a microfluidic chamber using 128 × 256 (32,768) 11 × 11 μm(2) metal pixels, each of which can be individually driven with a radio frequency (RF) voltage. The chip's basic functions can be combined in series to perform complex biological and chemical tasks and can be performed in parallel on the chip's many pixels for high-throughput operations. The hybrid chip operates in two distinct modes, defined by the frequency of the RF voltage applied to the pixels: Voltages at MHz frequencies are used to trap, move, and deform objects using dielectrophoresis and voltages at frequencies below 1 kHz are used for electroporation and electrofusion. This work represents an important step towards miniaturizing the complex chemical and biological experiments used for diagnostics and research onto automated and inexpensive chips.

  14. A Novel Analog Integrated Circuit Design Course Covering Design, Layout, and Resulting Chip Measurement

    ERIC Educational Resources Information Center

    Lin, Wei-Liang; Cheng, Wang-Chuan; Wu, Chen-Hao; Wu, Hai-Ming; Wu, Chang-Yu; Ho, Kuan-Hsuan; Chan, Chueh-An

    2010-01-01

    This work describes a novel, first-year graduate-level analog integrated circuit (IC) design course. The course teaches students analog circuit design; an external manufacturer then produces their designs in three different silicon chips. The students, working in pairs, then test these chips to verify their success. All work is completed within…

  15. A CMOS IC-based multisite measuring system for stimulation and recording in neural preparations in vitro

    PubMed Central

    Tateno, Takashi; Nishikawa, Jun

    2014-01-01

    In this report, we describe the system integration of a complementary metal oxide semiconductor (CMOS) integrated circuit (IC) chip, capable of both stimulation and recording of neurons or neural tissues, to investigate electrical signal propagation within cellular networks in vitro. The overall system consisted of three major subunits: a 5.0 × 5.0 mm CMOS IC chip, a reconfigurable logic device (field-programmable gate array, FPGA), and a PC. To test the system, microelectrode arrays (MEAs) were used to extracellularly measure the activity of cultured rat cortical neurons and mouse cortical slices. The MEA had 64 bidirectional (stimulation and recording) electrodes. In addition, the CMOS IC chip was equipped with dedicated analog filters, amplification stages, and a stimulation buffer. Signals from the electrodes were sampled at 15.6 kHz with 16-bit resolution. The measured input-referred circuitry noise was 10.1 μ V root mean square (10 Hz to 100 kHz), which allowed reliable detection of neural signals ranging from several millivolts down to approximately 33 μ Vpp. Experiments were performed involving the stimulation of neurons with several spatiotemporal patterns and the recording of the triggered activity. An advantage over current MEAs, as demonstrated by our experiments, includes the ability to stimulate (voltage stimulation, 5-bit resolution) spatiotemporal patterns in arbitrary subsets of electrodes. Furthermore, the fast stimulation reset mechanism allowed us to record neuronal signals from a stimulating electrode around 3 ms after stimulation. We demonstrate that the system can be directly applied to, for example, auditory neural prostheses in conjunction with an acoustic sensor and a sound processing system. PMID:25346683

  16. A CMOS IC-based multisite measuring system for stimulation and recording in neural preparations in vitro.

    PubMed

    Tateno, Takashi; Nishikawa, Jun

    2014-01-01

    In this report, we describe the system integration of a complementary metal oxide semiconductor (CMOS) integrated circuit (IC) chip, capable of both stimulation and recording of neurons or neural tissues, to investigate electrical signal propagation within cellular networks in vitro. The overall system consisted of three major subunits: a 5.0 × 5.0 mm CMOS IC chip, a reconfigurable logic device (field-programmable gate array, FPGA), and a PC. To test the system, microelectrode arrays (MEAs) were used to extracellularly measure the activity of cultured rat cortical neurons and mouse cortical slices. The MEA had 64 bidirectional (stimulation and recording) electrodes. In addition, the CMOS IC chip was equipped with dedicated analog filters, amplification stages, and a stimulation buffer. Signals from the electrodes were sampled at 15.6 kHz with 16-bit resolution. The measured input-referred circuitry noise was 10.1 μ V root mean square (10 Hz to 100 kHz), which allowed reliable detection of neural signals ranging from several millivolts down to approximately 33 μ Vpp. Experiments were performed involving the stimulation of neurons with several spatiotemporal patterns and the recording of the triggered activity. An advantage over current MEAs, as demonstrated by our experiments, includes the ability to stimulate (voltage stimulation, 5-bit resolution) spatiotemporal patterns in arbitrary subsets of electrodes. Furthermore, the fast stimulation reset mechanism allowed us to record neuronal signals from a stimulating electrode around 3 ms after stimulation. We demonstrate that the system can be directly applied to, for example, auditory neural prostheses in conjunction with an acoustic sensor and a sound processing system.

  17. Chip bonding of low-melting eutectic alloys by transmitted laser radiation

    NASA Astrophysics Data System (ADS)

    Hoff, Christian; Venkatesh, Arjun; Schneider, Friedrich; Hermsdorf, Jörg; Bengsch, Sebastian; Wurz, Marc C.; Kaierle, Stefan; Overmeyer, Ludger

    2017-06-01

    Present-day thermode bond systems for the assembly of radio-frequency identification (RFID) chips are mechanically inflexible, difficult to control, and will not meet future manufacturing challenges sufficiently. Chip bonding, one of the key processes in the production of integrated circuits (ICs), has a high potential for optimization with respect to process duration and process flexibility. For this purpose, the technologies used, so far, are supposed to be replaced by a transmission laser-bonding process using low-melting eutectic alloys. In this study, successful bonding investigations of mock silicon chips and of RFID chips on flexible polymer substrates are presented using the low-melting eutectic alloy, 52In48Sn, and a laser with a wavelength of 2 μm.

  18. Anand constitutive model of lead-free solder joints in 3D IC device

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Liu, Zhi-quan; Ji, Yu-tong

    2016-08-01

    Anand constitutive relation of SnAgCu and SnAgCu-nano Al solders were studied under uniaxial tension, and the constitutive model was used in the finite element simulation to analyze the stress-strain response of lead-free solder joints in 3D IC devices. The results showed that the nine parameters of the Anand model can be determined from separated constitutive relations and experimental results. Based on Anand model, the finite element method was selected to calculate the stress-strain response of lead-free solder joints, it was found that in the 3D IC device the maximum stress-strain concentrated in the concern solder joints, the stress-strain of SnAgCu-nano Al solder joints was lower than that of SnAgCu solder joints, which represented that the addition of nano Al particles can enhance the reliability of lead-free solder joints in 3D IC devices.

  19. Preliminary Study for Measurement of Shear Stress and Hemocompatibility Using Commercialized Lab on a Chip.

    PubMed

    Lee, Joshua; Kim, In Gi; Oh, Young Min; Park, Chan-Hee; Kim, Cheol Sang

    2018-02-01

    We have investigated the effect of flow rate on shear stress and in turn thrombus formation on a lab-on-a-chip with a microchannel that is suitable for cell culture and growth. Using a combination of Arduino UNO, Arduino Motor Shield, and a SERVO stepper motor, we created a pump system that closely mimics the in vivo conditions of the human body. With this system, we achieved continuous flow of blood and observed attached platelets at the bottom of the collagen coated microslide, confirming that with shear stress, thrombus formation increases.

  20. An NFC-Enabled CMOS IC for a Wireless Fully Implantable Glucose Sensor.

    PubMed

    DeHennis, Andrew; Getzlaff, Stefan; Grice, David; Mailand, Marko

    2016-01-01

    This paper presents an integrated circuit (IC) that merges integrated optical and temperature transducers, optical interface circuitry, and a near-field communication (NFC)-enabled digital, wireless readout for a fully passive implantable sensor platform to measure glucose in people with diabetes. A flip-chip mounted LED and monolithically integrated photodiodes serve as the transduction front-end to enable fluorescence readout. A wide-range programmable transimpedance amplifier adapts the sensor signals to the input of an 11-bit analog-to-digital converter digitizing the measurements. Measurement readout is enabled by means of wireless backscatter modulation to a remote NFC reader. The system is able to resolve current levels of less than 10 pA with a single fluorescent measurement energy consumption of less than 1 μJ. The wireless IC is fabricated in a 0.6-μm-CMOS process and utilizes a 13.56-MHz-based ISO15693 for passive wireless readout through a NFC interface. The IC is utilized as the core interface to a fluorescent, glucose transducer to enable a fully implantable sensor-based continuous glucose monitoring system.

  1. [An integral chip for the multiphase pulse-duration modulation used for voltage changer in biomedical microprocessor systems].

    PubMed

    Balashov, A M; Selishchev, S V

    2004-01-01

    An integral chip (IC) was designed for controlling the step-down pulse voltage converter, which is based on the multiphase pulse-duration modulation, for use in biomedical microprocessor systems. The CMOS technology was an optimal basis for the IC designing. An additional feedback circuit diminishes the output voltage dispersion at dynamically changing loads.

  2. Detection of solder bump defects on a flip chip using vibration analysis

    NASA Astrophysics Data System (ADS)

    Liu, Junchao; Shi, Tielin; Xia, Qi; Liao, Guanglan

    2012-03-01

    Flip chips are widely used in microelectronics packaging owing to the high demand of integration in IC fabrication. Solder bump defects on flip chips are difficult to detect, because the solder bumps are obscured by the chip and substrate. In this paper a nondestructive detection method combining ultrasonic excitation with vibration analysis is presented for detecting missing solder bumps, which is a typical defect in flip chip packaging. The flip chip analytical model is revised by considering the influence of spring mass on mechanical energy of the system. This revised model is then applied to estimate the flip chip resonance frequencies. We use an integrated signal generator and power amplifier together with an air-coupled ultrasonic transducer to excite the flip chips. The vibrations are measured by a laser scanning vibrometer to detect the resonance frequencies. A sensitivity coefficient is proposed to select the sensitive resonance frequency order for defect detection. Finite element simulation is also implemented for further investigation. The results of analytical computation, experiment, and simulation prove the efficacy of the revised flip chip analytical model and verify the effectiveness of this detection method. Therefore, it may provide a guide for the improvement and innovation of the flip chip on-line inspection systems.

  3. A low-power integrated humidity CMOS sensor by printing-on-chip technology.

    PubMed

    Lee, Chang-Hung; Chuang, Wen-Yu; Cowan, Melissa A; Wu, Wen-Jung; Lin, Chih-Ting

    2014-05-23

    A low-power, wide-dynamic-range integrated humidity sensing chip is implemented using a printable polymer sensing material with an on-chip pulse-width-modulation interface circuit. By using the inkjet printing technique, poly(3,4-ethylene-dioxythiophene)/polystyrene sulfonate that has humidity sensing features can be printed onto the top metal layer of a 0.35 μm CMOS IC. The developed printing-on-chip humidity sensor achieves a heterogeneous three dimensional sensor system-on-chip architecture. The humidity sensing of the implemented printing-on-chip sensor system is experimentally tested. The sensor shows a sensitivity of 0.98% to humidity in the atmosphere. The maximum dynamic range of the readout circuit is 9.8 MΩ, which can be further tuned by the frequency of input signal to fit the requirement of the resistance of printed sensor. The power consumption keeps only 154 μW. This printing-on-chip sensor provides a practical solution to fulfill an ultra-small integrated sensor for the applications in miniaturized sensing systems.

  4. A Low-Power Integrated Humidity CMOS Sensor by Printing-on-Chip Technology

    PubMed Central

    Lee, Chang-Hung; Chuang, Wen-Yu; Cowan, Melissa A.; Wu, Wen-Jung; Lin, Chih-Ting

    2014-01-01

    A low-power, wide-dynamic-range integrated humidity sensing chip is implemented using a printable polymer sensing material with an on-chip pulse-width-modulation interface circuit. By using the inkjet printing technique, poly(3,4-ethylene-dioxythiophene)/polystyrene sulfonate that has humidity sensing features can be printed onto the top metal layer of a 0.35 μm CMOS IC. The developed printing-on-chip humidity sensor achieves a heterogeneous three dimensional sensor system-on-chip architecture. The humidity sensing of the implemented printing-on-chip sensor system is experimentally tested. The sensor shows a sensitivity of 0.98% to humidity in the atmosphere. The maximum dynamic range of the readout circuit is 9.8 MΩ, which can be further tuned by the frequency of input signal to fit the requirement of the resistance of printed sensor. The power consumption keeps only 154 μW. This printing-on-chip sensor provides a practical solution to fulfill an ultra-small integrated sensor for the applications in miniaturized sensing systems. PMID:24859027

  5. An integrated circuit with transmit beamforming flip-chip bonded to a 2-D CMUT array for 3-D ultrasound imaging.

    PubMed

    Wygant, Ira O; Jamal, Nafis S; Lee, Hyunjoo J; Nikoozadeh, Amin; Oralkan, Omer; Karaman, Mustafa; Khuri-Yakub, Butrus T

    2009-10-01

    State-of-the-art 3-D medical ultrasound imaging requires transmitting and receiving ultrasound using a 2-D array of ultrasound transducers with hundreds or thousands of elements. A tight combination of the transducer array with integrated circuitry eliminates bulky cables connecting the elements of the transducer array to a separate system of electronics. Furthermore, preamplifiers located close to the array can lead to improved receive sensitivity. A combined IC and transducer array can lead to a portable, high-performance, and inexpensive 3-D ultrasound imaging system. This paper presents an IC flip-chip bonded to a 16 x 16-element capacitive micromachined ultrasonic transducer (CMUT) array for 3-D ultrasound imaging. The IC includes a transmit beamformer that generates 25-V unipolar pulses with programmable focusing delays to 224 of the 256 transducer elements. One-shot circuits allow adjustment of the pulse widths for different ultrasound transducer center frequencies. For receiving reflected ultrasound signals, the IC uses the 32-elements along the array diagonals. The IC provides each receiving element with a low-noise 25-MHz-bandwidth transimpedance amplifier. Using a field-programmable gate array (FPGA) clocked at 100 MHz to operate the IC, the IC generated properly timed transmit pulses with 5-ns accuracy. With the IC flip-chip bonded to a CMUT array, we show that the IC can produce steered and focused ultrasound beams. We present 2-D and 3-D images of a wire phantom and 2-D orthogonal cross-sectional images (Bscans) of a latex heart phantom.

  6. LDMOS Channel Thermometer Based on a Thermal Resistance Sensor for Balancing Temperature in Monolithic Power ICs.

    PubMed

    Lin, Tingyou; Ho, Yingchieh; Su, Chauchin

    2017-06-15

    This paper presents a method of thermal balancing for monolithic power integrated circuits (ICs). An on-chip temperature monitoring sensor that consists of a poly resistor strip in each of multiple parallel MOSFET banks is developed. A temperature-to-frequency converter (TFC) is proposed to quantize on-chip temperature. A pulse-width-modulation (PWM) methodology is developed to balance the channel temperature based on the quantization. The modulated PWM pulses control the hottest of metal-oxide-semiconductor field-effect transistor (MOSFET) bank to reduce its power dissipation and heat generation. A test chip with eight parallel MOSFET banks is fabricated in TSMC 0.25 μm HV BCD processes, and total area is 900 × 914 μm². The maximal temperature variation among the eight banks can reduce to 2.8 °C by the proposed thermal balancing system from 9.5 °C with 1.5 W dissipation. As a result, our proposed system improves the lifetime of a power MOSFET by 20%.

  7. LDMOS Channel Thermometer Based on a Thermal Resistance Sensor for Balancing Temperature in Monolithic Power ICs

    PubMed Central

    Lin, Tingyou; Ho, Yingchieh; Su, Chauchin

    2017-01-01

    This paper presents a method of thermal balancing for monolithic power integrated circuits (ICs). An on-chip temperature monitoring sensor that consists of a poly resistor strip in each of multiple parallel MOSFET banks is developed. A temperature-to-frequency converter (TFC) is proposed to quantize on-chip temperature. A pulse-width-modulation (PWM) methodology is developed to balance the channel temperature based on the quantization. The modulated PWM pulses control the hottest of metal-oxide-semiconductor field-effect transistor (MOSFET) bank to reduce its power dissipation and heat generation. A test chip with eight parallel MOSFET banks is fabricated in TSMC 0.25 μm HV BCD processes, and total area is 900 × 914 μm2. The maximal temperature variation among the eight banks can reduce to 2.8 °C by the proposed thermal balancing system from 9.5 °C with 1.5 W dissipation. As a result, our proposed system improves the lifetime of a power MOSFET by 20%. PMID:28617346

  8. Mod 1 ICS TI Report: ICS Conversion of a 140% HPGe Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bounds, John Alan

    This report evaluates the Mod 1 ICS, an electrically cooled 140% HPGe detector. It is a custom version of the ORTEC Integrated Cooling System (ICS) modified to make it more practical for us to use in the field. Performance and operating characteristics of the Mod 1 ICS are documented, noting both pros and cons. The Mod 1 ICS is deemed a success. Recommendations for a Mod 2 ICS, a true field prototype, are provided.

  9. System-on-Chip Considerations for Heterogeneous Integration of CMOS and Fluidic Bio-Interfaces.

    PubMed

    Datta-Chaudhuri, Timir; Smela, Elisabeth; Abshire, Pamela A

    2016-12-01

    CMOS chips are increasingly used for direct sensing and interfacing with fluidic and biological systems. While many biosensing systems have successfully combined CMOS chips for readout and signal processing with passive sensing arrays, systems that co-locate sensing with active circuits on a single chip offer significant advantages in size and performance but increase the complexity of multi-domain design and heterogeneous integration. This emerging class of lab-on-CMOS systems also poses distinct and vexing technical challenges that arise from the disparate requirements of biosensors and integrated circuits (ICs). Modeling these systems must address not only circuit design, but also the behavior of biological components on the surface of the IC and any physical structures. Existing tools do not support the cross-domain simulation of heterogeneous lab-on-CMOS systems, so we recommend a two-step modeling approach: using circuit simulation to inform physics-based simulation, and vice versa. We review the primary lab-on-CMOS implementation challenges and discuss practical approaches to overcome them. Issues include new versions of classical challenges in system-on-chip integration, such as thermal effects, floor-planning, and signal coupling, as well as new challenges that are specifically attributable to biological and fluidic domains, such as electrochemical effects, non-standard packaging, surface treatments, sterilization, microfabrication of surface structures, and microfluidic integration. We describe these concerns as they arise in lab-on-CMOS systems and discuss solutions that have been experimentally demonstrated.

  10. Evaluation of Acanthamoeba Myosin-IC as a Potential Therapeutic Target

    PubMed Central

    Lorenzo-Morales, Jacob; López-Arencibia, Atteneri; Reyes-Batlle, María; Piñero, José E.; Valladares, Basilio; Maciver, Sutherland K.

    2014-01-01

    Members of the genus Acanthamoeba are facultative pathogens of humans, causing a sight-threatening keratitis and a fatal encephalitis. We have targeted myosin-IC by using small interfering RNA (siRNA) silencing as a therapeutic approach, since it is known that the function of this protein is vital for the amoeba. In this work, specific siRNAs against the Acanthamoeba myosin-IC gene were developed. Treated and control amoebae were cultured in growth and encystment media to evaluate the induced effects after myosin-IC gene knockdown, as we have anticipated that cyst formation may be impaired. The effects of myosin-IC gene silencing were inhibition of cyst formation, inhibition of completion of cytokinesis, inhibition of osmoregulation under osmotic stress conditions, and death of the amoebae. The finding that myosin-IC silencing caused incompletion of cytokinesis is in agreement with earlier suggestions that the protein plays a role in cell locomotion, which is necessary to pull daughter cells apart after mitosis in a process known as “traction-mediated cytokinesis”. We conclude that myosin-IC is a very promising potential drug target for the development of much-needed antiamoebal drugs and that it should be further exploited for Acanthamoeba therapy. PMID:24468784

  11. Solar cell and I.C. aspects of ingot-to-slice mechanical processing

    NASA Astrophysics Data System (ADS)

    Dyer, L. D.

    1985-08-01

    Intensive efforts have been put into the growth of silicon crystals to suit today's solar cell and integrated circuit requirements. Each step of processing the crystal must also receive concentrated attention to preserve the grown-in perfection and to provide a suitable device-ready wafer at reasonable cost. A comparison is made between solar cell and I.C. requirements on the mechanical processing of silicon from ingot to wafer. Specific defects are described that can ruin the slice or can possibly lead to device degradation. These include grinding cracks, saw exit chips, crow's-foot fractures, edge cracks, and handling scratches.

  12. Solar cell and I.C. aspects of ingot-to-slice mechanical processing

    NASA Technical Reports Server (NTRS)

    Dyer, L. D.

    1985-01-01

    Intensive efforts have been put into the growth of silicon crystals to suit today's solar cell and integrated circuit requirements. Each step of processing the crystal must also receive concentrated attention to preserve the grown-in perfection and to provide a suitable device-ready wafer at reasonable cost. A comparison is made between solar cell and I.C. requirements on the mechanical processing of silicon from ingot to wafer. Specific defects are described that can ruin the slice or can possibly lead to device degradation. These include grinding cracks, saw exit chips, crow's-foot fractures, edge cracks, and handling scratches.

  13. Quality assessment of SPR sensor chips; case study on L1 chips.

    PubMed

    Olaru, Andreea; Gheorghiu, Mihaela; David, Sorin; Polonschii, Cristina; Gheorghiu, Eugen

    2013-07-15

    Surface quality of the Surface Plasmon Resonance (SPR) chips is a major limiting issue in most SPR analyses, even more for supported lipid membranes experiments, where both the organization of the lipid matrix and the subsequent incorporation of the target molecule depend on the surface quality. A novel quantitative method to characterize the quality of SPR sensors chips is described for L1 chips subject to formation of lipid films, injection of membrane disrupting compounds, followed by appropriate regeneration procedures. The method consists in analysis of the SPR reflectivity curves for several standard solutions (e.g. PBS, HEPES or deionized water). This analysis reveals the decline of sensor surface as a function of the number of experimental cycles (consisting in biosensing assay and regeneration step) and enables active control of surface regeneration for enhanced reproducibility. We demonstrate that quantitative evaluation of the changes in reflectivity curves (shape of the SPR dip) and of the slope of the calibration curve provides a rapid and effective procedure for surface quality assessment. Whereas the method was tested on L1 SPR sensors chips, we stress on its amenability to assess the quality of other types of SPR chips, as well. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Apparatus and methods for packaging integrated circuit chips with antenna modules providing closed electromagnetic environment for integrated antennas

    NASA Technical Reports Server (NTRS)

    Gaucher, Brian P. (Inventor); Grzyb, Janusz (Inventor); Liu, Duixian (Inventor); Pfeiffer, Ullrich R. (Inventor)

    2008-01-01

    Apparatus and methods are provided for packaging IC chips together with integrated antenna modules designed to provide a closed EM (electromagnetic) environment for antenna radiators, thereby allowing antennas to be designed independent from the packaging technology.

  15. Microfluidic perfusion culture chip providing different strengths of shear stress for analysis of vascular endothelial function.

    PubMed

    Hattori, Koji; Munehira, Yoichi; Kobayashi, Hideki; Satoh, Taku; Sugiura, Shinji; Kanamori, Toshiyuki

    2014-09-01

    We developed a microfluidic perfusion cell culture chip that provides three different shear stress strengths and a large cell culture area for the analysis of vascular endothelial functions. The microfluidic network was composed of shallow flow-control channels of three different depths and deep cell culture channels. The flow-control channels with high fluidic resistances created shear stress strengths ranging from 1.0 to 10.0 dyn/cm(2) in the cell culture channels. The large surface area of the culture channels enabled cultivation of a large number (approximately 6.0 × 10(5)) of cells. We cultured human umbilical vein endothelial cells (HUVECs) and evaluated the changes in cellular morphology and gene expression in response to applied shear stress. The HUVECs were aligned in the direction of flow when exposed to a shear stress of 10.0 dyn/cm(2). Compared with conditions of no shear stress, endothelial nitric oxide synthase mRNA expression increased by 50% and thrombomodulin mRNA expression increased by 8-fold under a shear stress of 9.5 dyn/cm(2). Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Chip-to-chip optical link by using optical wiring method

    NASA Astrophysics Data System (ADS)

    Cho, In-Kui; Ahn, Seoung Ho; Jeong, Myung-Yung; Rho, Byung Sup; Park, Hyo Hoon

    2008-01-01

    A practical optical link system was prepared with a transmitter (Tx) and receiver (Rx). The optical TRx module consisted of a metal optical bench, a module printed circuit board (PCB), a driver/receiver IC, a VCSEL/PD array, and an optical link block composed of plastic optical fiber (POF). For the optical interconnection between the light-sources and detectors, an optical wiring method has been proposed to enable easy assembly. This paper provides a method for optical interconnection between an optical Tx and an optical Rx, comprising the following steps: (a) forming a light source device, an optical detection device, and an optical transmission unit on a substrate (metal optical bench (MOB)); (b) preparing a flexible optical transmission-connection medium (optical wiring link) to optically connect the light source device formed on the substrate with the optical detection device; and (c) directly connecting one end of the surface-finished optical transmission connection medium with the light source device and the other end with the optical detection device. A chip-to-chip optical link system constructed with TRx modules was fabricated and the optical characteristics were measured. The results clearly demonstrate that the use of an optical wiring method can provide robust and cost-effective assembly for vertical-cavity surface-emitting lasers (VCSELs) and photodiodes (PDs). We successfully achieved a 5 Gb/s data transmission rate with this optical link.

  17. Chip, Chip, Hooray!

    ERIC Educational Resources Information Center

    Kelly, Susan

    2001-01-01

    Presents a science laboratory using different brands of potato chips in which students test their oiliness, size, thickness, saltiness, quality, and cost, then analyze the results to determine the best chip. Gives a brief history of potato chips. (YDS)

  18. Epoxy Chip-in-Carrier Integration and Screen-Printed Metalization for Multichannel Microfluidic Lab-on-CMOS Microsystems.

    PubMed

    Li, Lin; Yin, Heyu; Mason, Andrew J

    2018-04-01

    The integration of biosensors, microfluidics, and CMOS instrumentation provides a compact lab-on-CMOS microsystem well suited for high throughput measurement. This paper describes a new epoxy chip-in-carrier integration process and two planar metalization techniques for lab-on-CMOS that enable on-CMOS electrochemical measurement with multichannel microfluidics. Several design approaches with different fabrication steps and materials were experimentally analyzed to identify an ideal process that can achieve desired capability with high yield and low material and tool cost. On-chip electrochemical measurements of the integrated assembly were performed to verify the functionality of the chip-in-carrier packaging and its capability for microfluidic integration. The newly developed CMOS-compatible epoxy chip-in-carrier process paves the way for full implementation of many lab-on-CMOS applications with CMOS ICs as core electronic instruments.

  19. Silver flip chip interconnect technology and solid state bonding

    NASA Astrophysics Data System (ADS)

    Sha, Chu-Hsuan

    In this dissertation, fluxless transient liquid phase (TLP) bonding and solid state bonding between thermal expansion mismatch materials have been developed using Ag-In binary systems, pure Au, Ag, and Cu-Ag composite. In contrast to the conventional soldering process, fluxless bonding technique eliminates any corrosion and contamination problems caused by flux. Without flux, it is possible to fabricate high quality joints in large bonding areas where the flux is difficult to clean entirely. High quality joints are crucial to bonding thermal expansion mismatch materials since shear stress develops in the bonded pair. Stress concentration at voids in joints could increases breakage probability. In addition, intermetallic compound (IMC) formation between solder and underbump metallurgy (UBM) is essential for interconnect joint formation in conventional soldering process. However, the interface between IMC and solder is shown to be the weak interface that tends to break first during thermal cycling and drop tests. In our solid state bonding technique, there is no IMC involved in the bonding between Au to Au, Ag and Cu, and Ag and Au. All the reliability issues related to IMC or IMC growth is not our concern. To sum up, ductile bonding media, such as Ag or Au, and proper metallic layered structure are utilized in this research to produce high quality joints. The research starts with developing a low temperature fluxless bonding process using electroplated Ag/In/Ag multilayer structures between Si chip and 304 stainless steel (304SS) substrate. Because the outer thin Ag layer effectively protects inner In layer from oxidation, In layer dissolves Ag layer and joints to Ag layer on the to-be-bonded Si chip when temperature reaches the reflow temperature of 166ºC. Joints consist of mainly Ag-rich Ag-In solid solution and Ag2In. Using this fluxless bonding technique, two 304SS substrates can be bonded together as well. From the high magnification SEM images taken at cross

  20. CHIP protects against cardiac pressure overload through regulation of AMPK

    PubMed Central

    Schisler, Jonathan C.; Rubel, Carrie E.; Zhang, Chunlian; Lockyer, Pamela; Cyr, Douglas M.; Patterson, Cam

    2013-01-01

    Protein quality control and metabolic homeostasis are integral to maintaining cardiac function during stress; however, little is known about if or how these systems interact. Here we demonstrate that C terminus of HSC70-interacting protein (CHIP), a regulator of protein quality control, influences the metabolic response to pressure overload by direct regulation of the catalytic α subunit of AMPK. Induction of cardiac pressure overload in Chip–/– mice resulted in robust hypertrophy and decreased cardiac function and energy generation stemming from a failure to activate AMPK. Mechanistically, CHIP promoted LKB1-mediated phosphorylation of AMPK, increased the specific activity of AMPK, and was necessary and sufficient for stress-dependent activation of AMPK. CHIP-dependent effects on AMPK activity were accompanied by conformational changes specific to the α subunit, both in vitro and in vivo, identifying AMPK as the first physiological substrate for CHIP chaperone activity and establishing a link between cardiac proteolytic and metabolic pathways. PMID:23863712

  1. R&D100: IC ID

    ScienceCinema

    Hamlet, Jason; Pierson, Lyndon; Bauer, Todd

    2018-06-25

    Supply chain security to detect, deter, and prevent the counterfeiting of networked and stand-alone integrated circuits (ICs) is critical to cyber security. Sandia National Laboratory researchers have developed IC ID to leverage Physically Unclonable Functions (PUFs) and strong cryptographic authentication to create a unique fingerprint for each integrated circuit. IC ID assures the authenticity of ICs to prevent tampering or malicious substitution.

  2. Low temperature co-fired ceramic packaging of CMOS capacitive sensor chip towards cell viability monitoring.

    PubMed

    Halonen, Niina; Kilpijärvi, Joni; Sobocinski, Maciej; Datta-Chaudhuri, Timir; Hassinen, Antti; Prakash, Someshekar B; Möller, Peter; Abshire, Pamela; Kellokumpu, Sakari; Lloyd Spetz, Anita

    2016-01-01

    Cell viability monitoring is an important part of biosafety evaluation for the detection of toxic effects on cells caused by nanomaterials, preferably by label-free, noninvasive, fast, and cost effective methods. These requirements can be met by monitoring cell viability with a capacitance-sensing integrated circuit (IC) microchip. The capacitance provides a measurement of the surface attachment of adherent cells as an indication of their health status. However, the moist, warm, and corrosive biological environment requires reliable packaging of the sensor chip. In this work, a second generation of low temperature co-fired ceramic (LTCC) technology was combined with flip-chip bonding to provide a durable package compatible with cell culture. The LTCC-packaged sensor chip was integrated with a printed circuit board, data acquisition device, and measurement-controlling software. The packaged sensor chip functioned well in the presence of cell medium and cells, with output voltages depending on the medium above the capacitors. Moreover, the manufacturing of microfluidic channels in the LTCC package was demonstrated.

  3. Single-Chip CMUT-on-CMOS Front-End System for Real-Time Volumetric IVUS and ICE Imaging

    PubMed Central

    Gurun, Gokce; Tekes, Coskun; Zahorian, Jaime; Xu, Toby; Satir, Sarp; Karaman, Mustafa; Hasler, Jennifer; Degertekin, F. Levent

    2014-01-01

    Intravascular ultrasound (IVUS) and intracardiac echography (ICE) catheters with real-time volumetric ultrasound imaging capability can provide unique benefits to many interventional procedures used in the diagnosis and treatment of coronary and structural heart diseases. Integration of CMUT arrays with front-end electronics in single-chip configuration allows for implementation of such catheter probes with reduced interconnect complexity, miniaturization, and high mechanical flexibility. We implemented a single-chip forward-looking (FL) ultrasound imaging system by fabricating a 1.4-mm-diameter dual-ring CMUT array using CMUT-on-CMOS technology on a front-end IC implemented in 0.35-µm CMOS process. The dual-ring array has 56 transmit elements and 48 receive elements on two separate concentric annular rings. The IC incorporates a 25-V pulser for each transmitter and a low-noise capacitive transimpedance amplifier (TIA) for each receiver, along with digital control and smart power management. The final shape of the silicon chip is a 1.5-mm-diameter donut with a 430-µm center hole for a guide wire. The overall front-end system requires only 13 external connections and provides 4 parallel RF outputs while consuming an average power of 20 mW. We measured RF A-scans from the integrated single-chip array which show full functionality at 20.1 MHz with 43% fractional bandwidth. We also tested and demonstrated the image quality of the system on a wire phantom and an ex-vivo chicken heart sample. The measured axial and lateral point resolutions are 92 µm and 251 µm, respectively. We successfully acquired volumetric imaging data from the ex-vivo chicken heart with 60 frames per second without any signal averaging. These demonstrative results indicate that single-chip CMUT-on-CMOS systems have the potential to produce real-time volumetric images with image quality and speed suitable for catheter based clinical applications. PMID:24474131

  4. Sparse matrix-vector multiplication on network-on-chip

    NASA Astrophysics Data System (ADS)

    Sun, C.-C.; Götze, J.; Jheng, H.-Y.; Ruan, S.-J.

    2010-12-01

    In this paper, we present an idea for performing matrix-vector multiplication by using Network-on-Chip (NoC) architecture. In traditional IC design on-chip communications have been designed with dedicated point-to-point interconnections. Therefore, regular local data transfer is the major concept of many parallel implementations. However, when dealing with the parallel implementation of sparse matrix-vector multiplication (SMVM), which is the main step of all iterative algorithms for solving systems of linear equation, the required data transfers depend on the sparsity structure of the matrix and can be extremely irregular. Using the NoC architecture makes it possible to deal with arbitrary structure of the data transfers; i.e. with the irregular structure of the sparse matrices. So far, we have already implemented the proposed SMVM-NoC architecture with the size 4×4 and 5×5 in IEEE 754 single float point precision using FPGA.

  5. Advanced Flip Chips in Extreme Temperature Environments

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni

    2010-01-01

    The use of underfill materials is necessary with flip-chip interconnect technology to redistribute stresses due to mismatching coefficients of thermal expansion (CTEs) between dissimilar materials in the overall assembly. Underfills are formulated using organic polymers and possibly inorganic filler materials. There are a few ways to apply the underfills with flip-chip technology. Traditional capillary-flow underfill materials now possess high flow speed and reduced time to cure, but they still require additional processing steps beyond the typical surface-mount technology (SMT) assembly process. Studies were conducted using underfills in a temperature range of -190 to 85 C, which resulted in an increase of reliability by one to two orders of magnitude. Thermal shock of the flip-chip test articles was designed to induce failures at the interconnect sites (-40 to 100 C). The study on the reliability of flip chips using underfills in the extreme temperature region is of significant value for space applications. This technology is considered as an enabling technology for future space missions. Flip-chip interconnect technology is an advanced electrical interconnection approach where the silicon die or chip is electrically connected, face down, to the substrate by reflowing solder bumps on area-array metallized terminals on the die to matching footprints of solder-wettable pads on the chosen substrate. This advanced flip-chip interconnect technology will significantly improve the performance of high-speed systems, productivity enhancement over manual wire bonding, self-alignment during die joining, low lead inductances, and reduced need for attachment of precious metals. The use of commercially developed no-flow fluxing underfills provides a means of reducing the processing steps employed in the traditional capillary flow methods to enhance SMT compatibility. Reliability of flip chips may be significantly increased by matching/tailoring the CTEs of the substrate

  6. Acute Stress Impairs Inhibitory Control based on Individual Differences in Parasympathetic Nervous System Activity

    PubMed Central

    Roos, Leslie E.; Knight, Erik L.; Beauchamp, Kathryn G.; Berkman, Elliot T.; Faraday, Kelsie; Hyslop, Katie; Fisher, Philip A.

    2017-01-01

    Identifying environmental influences on inhibitory control (IC) may help promote positive behavioral and social adjustment. Although chronic stress is known to predict lower IC, the immediate effects of acute stress are unknown. The parasympathetic nervous system (PNS) may be a mechanism of the stress-IC link, given its psychophysiological regulatory role and connections to prefrontal brain regions critical to IC. We used a focused assessment of IC (the stop-signal task) to test whether an acute social stressor (the Trier Social Stress Test) affected participants’ pre- to post-IC performance (n = 58), compared to a control manipulation (n = 31). High frequency heart-rate variability was used as an index of PNS activity in response to the manipulation. Results indicated that stress impaired IC performance, blocking the practice effects observed in control participants. We also investigated the associations between PNS activity and IC; higher resting PNS activity predicted better pre-manipulation IC, and greater PNS stressor reactivity protected against the negative effects of stress on IC. Together, these results are the first to document the immediate effects of acute stress on IC and a phenotypic marker (PNS reactivity to stressors) of susceptibility to stress-induced IC impairment. This study suggests a new way to identify situations in which individuals are likely to exhibit IC vulnerability and related consequences such as impulsivity and risk taking behavior. Targeting PNS regulation may represent a novel target for IC-focused interventions. PMID:28268165

  7. Hybridization of Environmental Microbial Community Nucleic Acids by GeoChip.

    PubMed

    Van Nostrand, Joy D; Yin, Huaqin; Wu, Liyou; Yuan, Tong; Zhou, Jizhong

    2016-01-01

    Functional gene arrays, like the GeoChip, allow for the study of tens of thousands of genes in a single assay. The GeoChip array (5.0) contains probes for genes involved in geochemical cycling (N, C, S, and P), metal homeostasis, stress response, organic contaminant degradation, antibiotic resistance, secondary metabolism, and virulence factors as well as genes specific for fungi, protists, and viruses. Here, we briefly describe GeoChip design strategies (gene selection and probe design) and discuss minimum quantity and quality requirements for nucleic acids. We then provide detailed protocols for amplification, labeling, and hybridization of samples to the GeoChip.

  8. Area efficient layout design of CMOS circuit for high-density ICs

    NASA Astrophysics Data System (ADS)

    Mishra, Vimal Kumar; Chauhan, R. K.

    2018-01-01

    Efficient layouts have been an active area of research to accommodate the greater number of devices fabricated on a given chip area. In this work a new layout of CMOS circuit is proposed, with an aim to improve its electrical performance and reduce the chip area consumed. The study shows that the design of CMOS circuit and SRAM cells comprising tapered body reduced source fully depleted silicon on insulator (TBRS FD-SOI)-based n- and p-type MOS devices. The proposed TBRS FD-SOI n- and p-MOSFET exhibits lower sub-threshold slope and higher Ion to Ioff ratio when compared with FD-SOI MOSFET and FinFET technology. Other parameters like power dissipation, delay time and signal-to-noise margin of CMOS inverter circuits show improvement when compared with available inverter designs. The above device design is used in 6-T SRAM cell so as to see the effect of proposed layout on high density integrated circuits (ICs). The SNM obtained from the proposed SRAM cell is 565 mV which is much better than any other SRAM cell designed at 50 nm gate length MOS device. The Sentaurus TCAD device simulator is used to design the proposed MOS structure.

  9. Fully Integrated Biopotential Acquisition Analog Front-End IC

    PubMed Central

    Song, Haryong; Park, Yunjong; Kim, Hyungseup; Ko, Hyoungho

    2015-01-01

    A biopotential acquisition analog front-end (AFE) integrated circuit (IC) is presented. The biopotential AFE includes a capacitively coupled chopper instrumentation amplifier (CCIA) to achieve low input referred noise (IRN) and to block unwanted DC potential signals. A DC servo loop (DSL) is designed to minimize the offset voltage in the chopper amplifier and low frequency respiration artifacts. An AC coupled ripple rejection loop (RRL) is employed to reduce ripple due to chopper stabilization. A capacitive impedance boosting loop (CIBL) is designed to enhance the input impedance and common mode rejection ratio (CMRR) without additional power consumption, even under an external electrode mismatch. The AFE IC consists of two-stage CCIA that include three compensation loops (DSL, RRL, and CIBL) at each CCIA stage. The biopotential AFE is fabricated using a 0.18 µm one polysilicon and six metal layers (1P6M) complementary metal oxide semiconductor (CMOS) process. The core chip size of the AFE without input/output (I/O) pads is 10.5 mm2. A fourth-order band-pass filter (BPF) with a pass-band in the band-width from 1 Hz to 100 Hz was integrated to attenuate unwanted signal and noise. The overall gain and band-width are reconfigurable by using programmable capacitors. The IRN is measured to be 0.94 µVRMS in the pass band. The maximum amplifying gain of the pass-band was measured as 71.9 dB. The CIBL enhances the CMRR from 57.9 dB to 67 dB at 60 Hz under electrode mismatch conditions. PMID:26437404

  10. Chip formation and surface integrity in high-speed machining of hardened steel

    NASA Astrophysics Data System (ADS)

    Kishawy, Hossam Eldeen A.

    Increasing demands for high production rates as well as cost reduction have emphasized the potential for the industrial application of hard turning technology during the past few years. Machining instead of grinding hardened steel components reduces the machining sequence, the machining time, and the specific cutting energy. Hard turning Is characterized by the generation of high temperatures, the formation of saw toothed chips, and the high ratio of thrust to tangential cutting force components. Although a large volume of literature exists on hard turning, the change in machined surface physical properties represents a major challenge. Thus, a better understanding of the cutting mechanism in hard turning is still required. In particular, the chip formation process and the surface integrity of the machined surface are important issues which require further research. In this thesis, a mechanistic model for saw toothed chip formation is presented. This model is based on the concept of crack initiation on the free surface of the workpiece. The model presented explains the mechanism of chip formation. In addition, experimental investigation is conducted in order to study the chip morphology. The effect of process parameters, including edge preparation and tool wear on the chip morphology, is studied using Scanning Electron Microscopy (SEM). The dynamics of chip formation are also investigated. The surface integrity of the machined parts is also investigated. This investigation focusses on residual stresses as well as surface and sub-surface deformation. A three dimensional thermo-elasto-plastic finite element model is developed to predict the machining residual stresses. The effect of flank wear is introduced during the analysis. Although residual stresses have complicated origins and are introduced by many factors, in this model only the thermal and mechanical factors are considered. The finite element analysis demonstrates the significant effect of the heat generated

  11. Addressing On-Chip Power Converstion and Dissipation Issues in Many-Core System-on-a-Chip Based on Conventional Silicon and Emerging Nanotechnologies

    NASA Astrophysics Data System (ADS)

    Ashenafi, Emeshaw

    Integrated circuits (ICs) are moving towards system-on-a-chip (SOC) designs. SOC allows various small and large electronic systems to be implemented in a single chip. This approach enables the miniaturization of design blocks that leads to high density transistor integration, faster response time, and lower fabrication costs. To reap the benefits of SOC and uphold the miniaturization of transistors, innovative power delivery and power dissipation management schemes are paramount. This dissertation focuses on on-chip integration of power delivery systems and managing power dissipation to increase the lifetime of energy storage elements. We explore this problem from two different angels: On-chip voltage regulators and power gating techniques. On-chip voltage regulators reduce parasitic effects, and allow faster and efficient power delivery for microprocessors. Power gating techniques, on the other hand, reduce the power loss incurred by circuit blocks during standby mode. Power dissipation (Ptotal = Pstatic and Pdynamic) in a complementary metal-oxide semiconductor (CMOS) circuit comes from two sources: static and dynamic. A quadratic dependency on the dynamic switching power and a more than linear dependency on static power as a form of gate leakage (subthreshold current) exist. To reduce dynamic power loss, the supply power should be reduced. A significant reduction in power dissipation occurs when portions of a microprocessor operate at a lower voltage level. This reduction in supply voltage is achieved via voltage regulators or converters. Voltage regulators are used to provide a stable power supply to the microprocessor. The conventional off-chip switching voltage regulator contains a passive floating inductor, which is difficult to be implemented inside the chip due to excessive power dissipation and parasitic effects. Additionally, the inductor takes a very large chip area while hampering the scaling process. These limitations make passive inductor based on-chip

  12. CHIP as a membrane-shuttling proteostasis sensor

    PubMed Central

    Kopp, Yannick; Martínez-Limón, Adrián; Hofbauer, Harald F; Ernst, Robert; Calloni, Giulia

    2017-01-01

    Cells respond to protein misfolding and aggregation in the cytosol by adjusting gene transcription and a number of post-transcriptional processes. In parallel to functional reactions, cellular structure changes as well; however, the mechanisms underlying the early adaptation of cellular compartments to cytosolic protein misfolding are less clear. Here we show that the mammalian ubiquitin ligase C-terminal Hsp70-interacting protein (CHIP), if freed from chaperones during acute stress, can dock on cellular membranes thus performing a proteostasis sensor function. We reconstituted this process in vitro and found that mainly phosphatidic acid and phosphatidylinositol-4-phosphate enhance association of chaperone-free CHIP with liposomes. HSP70 and membranes compete for mutually exclusive binding to the tetratricopeptide repeat domain of CHIP. At new cellular locations, access to compartment-specific substrates would enable CHIP to participate in the reorganization of the respective organelles, as exemplified by the fragmentation of the Golgi apparatus (effector function). PMID:29091030

  13. Characterization of emission microscopy and liquid crystal thermography in IC fault localization

    NASA Astrophysics Data System (ADS)

    Lau, C. K.; Sim, K. S.

    2013-05-01

    This paper characterizes two fault localization techniques - Emission Microscopy (EMMI) and Liquid Crystal Thermography (LCT) by using integrated circuit (IC) leakage failures. The majority of today's semiconductor failures do not reveal a clear visual defect on the die surface and therefore require fault localization tools to identify the fault location. Among the various fault localization tools, liquid crystal thermography and frontside emission microscopy are commonly used in most semiconductor failure analysis laboratories. Many people misunderstand that both techniques are the same and both are detecting hot spot in chip failing with short or leakage. As a result, analysts tend to use only LCT since this technique involves very simple test setup compared to EMMI. The omission of EMMI as the alternative technique in fault localization always leads to incomplete analysis when LCT fails to localize any hot spot on a failing chip. Therefore, this research was established to characterize and compare both the techniques in terms of their sensitivity in detecting the fault location in common semiconductor failures. A new method was also proposed as an alternative technique i.e. the backside LCT technique. The research observed that both techniques have successfully detected the defect locations resulted from the leakage failures. LCT wass observed more sensitive than EMMI in the frontside analysis approach. On the other hand, EMMI performed better in the backside analysis approach. LCT was more sensitive in localizing ESD defect location and EMMI was more sensitive in detecting non ESD defect location. Backside LCT was proven to work as effectively as the frontside LCT and was ready to serve as an alternative technique to the backside EMMI. The research confirmed that LCT detects heat generation and EMMI detects photon emission (recombination radiation). The analysis results also suggested that both techniques complementing each other in the IC fault localization

  14. Single-chip CMUT-on-CMOS front-end system for real-time volumetric IVUS and ICE imaging.

    PubMed

    Gurun, Gokce; Tekes, Coskun; Zahorian, Jaime; Xu, Toby; Satir, Sarp; Karaman, Mustafa; Hasler, Jennifer; Degertekin, F Levent

    2014-02-01

    Intravascular ultrasound (IVUS) and intracardiac echography (ICE) catheters with real-time volumetric ultrasound imaging capability can provide unique benefits to many interventional procedures used in the diagnosis and treatment of coronary and structural heart diseases. Integration of capacitive micromachined ultrasonic transducer (CMUT) arrays with front-end electronics in single-chip configuration allows for implementation of such catheter probes with reduced interconnect complexity, miniaturization, and high mechanical flexibility. We implemented a single-chip forward-looking (FL) ultrasound imaging system by fabricating a 1.4-mm-diameter dual-ring CMUT array using CMUT-on-CMOS technology on a front-end IC implemented in 0.35-μm CMOS process. The dual-ring array has 56 transmit elements and 48 receive elements on two separate concentric annular rings. The IC incorporates a 25-V pulser for each transmitter and a low-noise capacitive transimpedance amplifier (TIA) for each receiver, along with digital control and smart power management. The final shape of the silicon chip is a 1.5-mm-diameter donut with a 430-μm center hole for a guide wire. The overall front-end system requires only 13 external connections and provides 4 parallel RF outputs while consuming an average power of 20 mW. We measured RF A-scans from the integrated single- chip array which show full functionality at 20.1 MHz with 43% fractional bandwidth. We also tested and demonstrated the image quality of the system on a wire phantom and an ex vivo chicken heart sample. The measured axial and lateral point resolutions are 92 μm and 251 μm, respectively. We successfully acquired volumetric imaging data from the ex vivo chicken heart at 60 frames per second without any signal averaging. These demonstrative results indicate that single-chip CMUT-on-CMOS systems have the potential to produce realtime volumetric images with image quality and speed suitable for catheter-based clinical applications.

  15. Decapsulation Method for Flip Chips with Ceramics in Microelectronic Packaging

    NASA Astrophysics Data System (ADS)

    Shih, T. I.; Duh, J. G.

    2008-06-01

    The decapsulation of flip chips bonded to ceramic substrates is a challenging task in the packaging industry owing to the vulnerability of the chip surface during the process. In conventional methods, such as manual grinding and polishing, the solder bumps are easily damaged during the removal of underfill, and the thin chip may even be crushed due to mechanical stress. An efficient and reliable decapsulation method consisting of thermal and chemical processes was developed in this study. The surface quality of chips after solder removal is satisfactory for the existing solder rework procedure as well as for die-level failure analysis. The innovative processes included heat-sink and ceramic substrate removal, solder bump separation, and solder residue cleaning from the chip surface. In the last stage, particular temperatures were selected for the removal of eutectic Pb-Sn, high-lead, and lead-free solders considering their respective melting points.

  16. Development of brain injury criteria (BrIC).

    PubMed

    Takhounts, Erik G; Craig, Matthew J; Moorhouse, Kevin; McFadden, Joe; Hasija, Vikas

    2013-11-01

    Rotational motion of the head as a mechanism for brain injury was proposed back in the 1940s. Since then a multitude of research studies by various institutions were conducted to confirm/reject this hypothesis. Most of the studies were conducted on animals and concluded that rotational kinematics experienced by the animal's head may cause axonal deformations large enough to induce their functional deficit. Other studies utilized physical and mathematical models of human and animal heads to derive brain injury criteria based on deformation/pressure histories computed from their models. This study differs from the previous research in the following ways: first, it uses two different detailed mathematical models of human head (SIMon and GHBMC), each validated against various human brain response datasets; then establishes physical (strain and stress based) injury criteria for various types of brain injury based on scaled animal injury data; and finally, uses Anthropomorphic Test Devices (ATDs) (Hybrid III 50th Male, Hybrid III 5th Female, THOR 50th Male, ES-2re, SID-IIs, WorldSID 50th Male, and WorldSID 5th Female) test data (NCAP, pendulum, and frontal offset tests) to establish a kinematically based brain injury criterion (BrIC) for all ATDs. Similar procedures were applied to college football data where thousands of head impacts were recorded using a six degrees of freedom (6 DOF) instrumented helmet system. Since animal injury data used in derivation of BrIC were predominantly for diffuse axonal injury (DAI) type, which is currently an AIS 4+ injury, cumulative strain damage measure (CSDM) and maximum principal strain (MPS) were used to derive risk curves for AIS 4+ anatomic brain injuries. The AIS 1+, 2+, 3+, and 5+ risk curves for CSDM and MPS were then computed using the ratios between corresponding risk curves for head injury criterion (HIC) at a 50% risk. The risk curves for BrIC were then obtained from CSDM and MPS risk curves using the linear relationship

  17. Fractographic analysis of anterior bilayered ceramic crowns that failed by veneer chipping.

    PubMed

    Du, Qian; Swain, Michael V; Zhao, Ke

    2014-05-01

    To fractographically analyze the reasons for the chipping of veneering porcelain in clinically failed anterior lithium disilicate glass-ceramic (LDG) and glass-infi ltrated alumina (GIA) crowns. Five anterior bilayered ceramic crowns with clinical veneer chipping failure were retrieved, of which three were LDG crowns and two were GIA crowns. The fractured surfaces of the failed restorations were examined using stereomicroscopy and scanning electron microscopy (SEM). The principles of fractography were used to identify the location and dimensions of the critical crack and to estimate the stress at failure. All five anterior crowns failed by cohesive failure within the veneer on the labial surface. Fractography showed that the critical crack initiated at the incisal contact area and propagated gingivally. The estimated stresses at failure for veneer chipping were lower than the characteristic strength of the veneer materials. Within the limitations of this in-vivo study, the contact damage, fatigue, and processing fl aws within the veneer are important reasons leading to chipping of veneering porcelain in anterior LDG and GIA crowns.

  18. Nanotubes May Break Through "Chip Wall"

    NASA Technical Reports Server (NTRS)

    Laufenberg, Larry

    2003-01-01

    In 1965, just four years after the first planar integrated circuit (IC) was discovered, Cordon Moore observed that the number of transistors per integrated circuit had grown exponentially. He predicted that this would continue, and the media soon began to call his prophesy "Moore's Law" For nearly forty years, Moore's Law has been validated by the technological progress achieved in the semiconductor industry. Now, however, industry experts are warning of a "Red Brick Wall" that may soon block the continued scaling predicted by by Moore's Law. The "red bricks" in the wall are those areas of technical challenge for which no known manufacturable solution exists. One such "brick" is the challenge of finding a new material and processing technology to replace the metals used today to interconnect transistors on a chip.

  19. Study on a Real-Time BEAM System for Diagnosis Assistance Based on a System on Chips Design

    PubMed Central

    Sung, Wen-Tsai; Chen, Jui-Ho; Chang, Kung-Wei

    2013-01-01

    As an innovative as well as an interdisciplinary research project, this study performed an analysis of brain signals so as to establish BrainIC as an auxiliary tool for physician diagnosis. Cognition behavior sciences, embedded technology, system on chips (SOC) design and physiological signal processing are integrated in this work. Moreover, a chip is built for real-time electroencephalography (EEG) processing purposes and a Brain Electrical Activity Mapping (BEAM) system, and a knowledge database is constructed to diagnose psychosis and body challenges in learning various behaviors and signals antithesis by a fuzzy inference engine. This work is completed with a medical support system developed for the mentally disabled or the elderly abled. PMID:23681095

  20. Add-on LABA in a separate inhaler as asthma step-up therapy versus increased dose of ICS or ICS/LABA combination inhaler.

    PubMed

    Price, David B; Colice, Gene; Israel, Elliot; Roche, Nicolas; Postma, Dirkje S; Guilbert, Theresa W; van Aalderen, Willem M C; Grigg, Jonathan; Hillyer, Elizabeth V; Thomas, Victoria; Martin, Richard J

    2016-04-01

    Asthma management guidelines recommend adding a long-acting β 2 -agonist (LABA) or increasing the dose of inhaled corticosteroid (ICS) as step-up therapy for patients with uncontrolled asthma on ICS monotherapy. However, it is uncertain which option works best, which ICS particle size is most effective, and whether LABA should be administered by separate or combination inhalers. This historical, matched cohort study compared asthma-related outcomes for patients (aged 12-80 years) prescribed step-up therapy as a ≥50% extrafine ICS dose increase or add-on LABA, via either a separate inhaler or a fine-particle ICS/LABA fixed-dose combination (FDC) inhaler. Risk-domain asthma control was the primary end-point in comparisons of cohorts matched for asthma severity and control during the baseline year. After 1:2 cohort matching, the increased extrafine ICS versus separate ICS+LABA cohorts included 3232 and 6464 patients, respectively, and the fine-particle ICS/LABA FDC versus separate ICS+LABA cohorts included 7529 and 15 058 patients, respectively (overall mean age 42 years; 61-62% females). Over one outcome year, adjusted OR (95% CI) for achieving asthma control were 1.25 (1.13-1.38) for increased ICS versus separate ICS+LABA and 1.06 (1.05-1.09) for ICS/LABA FDC versus separate ICS+LABA. For patients with asthma, increased dose of extrafine-particle ICS, or add-on LABA via ICS/LABA combination inhaler, is associated with significantly better outcomes than ICS+LABA via separate inhalers.

  1. An Analysis of the Effects of Chip-groove Geometry on Machining Performance Using Finite Element Methods

    NASA Astrophysics Data System (ADS)

    Ee, K. C.; Dillon, O. W.; Jawahir, I. S.

    2004-06-01

    This paper discusses the influence of major chip-groove parameters of a cutting tool on the chip formation process in orthogonal machining using finite element (FE) methods. In the FE formulation, a thermal elastic-viscoplastic material model is used together with a modified Johnson-Cook material law for the flow stress. The chip back-flow angle and the chip up-curl radius are calculated for a range of cutting conditions by varying the chip-groove parameters. The analysis provides greater understanding of the effectiveness of chip-groove configurations and points a way to correlate cutting conditions with tool-wear when machining with a grooved cutting tool.

  2. Near-chip compliant layer for reducing perimeter stress during assembly process

    DOEpatents

    Schultz, Mark D.; Takken, Todd E.; Tian, Shurong; Yao, Yuan

    2018-03-20

    A heat source (single semiconductor chip or group of closely spaced semiconductor chips of similar height) is provided on a first side of a substrate, which substrate has on said first side a support member comprising a compressible material. A heat removal component, oriented at an angle to said heat source, is brought into proximity of said heat source such that said heat removal component contacts said support member prior to contacting said heat source. Said heat removal component is assembled to said heat source such that said support member at least partially absorbs global inequality of force that would otherwise be applied to said heat source, absent said support member comprising said compressible material.

  3. Near-chip compliant layer for reducing perimeter stress during assembly process

    DOEpatents

    Schultz, Mark D.; Takken, Todd E.; Tian, Shurong; Yao, Yuan

    2017-02-14

    A heat source (single semiconductor chip or group of closely spaced semiconductor chips of similar height) is provided on a first side of a substrate, which substrate has on said first side a support member comprising a compressible material. A heat removal component, oriented at an angle to said heat source, is brought into proximity of said heat source such that said heat removal component contacts said support member prior to contacting said heat source. Said heat removal component is assembled to said heat source such that said support member at least partially absorbs global inequality of force that would otherwise be applied to said heat source, absent said support member comprising said compressible material.

  4. Role of insular cortex in visceral hypersensitivity model in rats subjected to chronic stress.

    PubMed

    Yi, LiSha; Sun, HuiHui; Ge, Chao; Chen, Ying; Peng, HaiXia; Jiang, YuanXi; Wu, Ping; Tang, YinHan; Meng, QingWei; Xu, ShuChang

    2014-12-30

    Abnormal processing of visceral sensation at the level of the central nervous system has been proven to be important in the pathophysiologic mechanisms of stress related functional gastrointestinal disorders. However, the specific mechanism is still not clear. The insular cortex (IC) was considered as one important visceral sensory area. Moreover, the IC has been shown to be involved in various neuropsychiatric diseases such as panic disorders and post-traumatic stress disorder. However, whether the IC is important in psychological stress related visceral hypersensitivity has not been studied yet. In our study, through destruction of the bilateral IC, we explored whether the IC played a critical role in the formation of visceral hypersensitivity induced by chronic stress on rats. Chronic partial restraint stress was used to establish viscerally hypersensitive rat model. Bilateral IC lesions were generated by N-methyl-D-day (door) aspartate. After a recovery period of 7 days, 14-day consecutive restraint stress was performed. The visceromotor response to colorectal distension was monitored by recording electromyogram to measure rats׳ visceral sensitivity. We found that bilateral insular cortex lesion could markedly inhibit the formation of visceral hypersensitivity induced by chronic stress. The insular cortex plays a critical role in the pathophysiology of stress-related visceral hypersensitivity.

  5. Fabrication of five-level ultraplanar micromirror arrays by flip-chip assembly

    NASA Astrophysics Data System (ADS)

    Michalicek, M. Adrian; Bright, Victor M.

    2001-10-01

    This paper reports a detailed study of the fabrication of various piston, torsion, and cantilever style micromirror arrays using a novel, simple, and inexpensive flip-chip assembly technique. Several rectangular and polar arrays were commercially prefabricated in the MUMPs process and then flip-chip bonded to form advanced micromirror arrays where adverse effects typically associated with surface micromachining were removed. These arrays were bonded by directly fusing the MUMPs gold layers with no complex preprocessing. The modules were assembled using a computer-controlled, custom-built flip-chip bonding machine. Topographically opposed bond pads were designed to correct for slight misalignment errors during bonding and typically result in less than 2 micrometers of lateral alignment error. Although flip-chip micromirror performance is briefly discussed, the means used to create these arrays is the focus of the paper. A detailed study of flip-chip process yield is presented which describes the primary failure mechanisms for flip-chip bonding. Studies of alignment tolerance, bonding force, stress concentration, module planarity, bonding machine calibration techniques, prefabrication errors, and release procedures are presented in relation to specific observations in process yield. Ultimately, the standard thermo-compression flip-chip assembly process remains a viable technique to develop highly complex prototypes of advanced micromirror arrays.

  6. SEM probe of IC radiation sensitivity

    NASA Technical Reports Server (NTRS)

    Gauthier, M. K.; Stanley, A. G.

    1979-01-01

    Scanning Electron Microscope (SEM) used to irradiate single integrated circuit (IC) subcomponent to test for radiation sensitivity can localize area of IC less than .03 by .03 mm for determination of exact location of radiation sensitive section.

  7. A Single Chip Automotive Control LSI Using SOI Bipolar Complimentary MOS Double-Diffused MOS

    NASA Astrophysics Data System (ADS)

    Kawamoto, Kazunori; Mizuno, Shoji; Abe, Hirofumi; Higuchi, Yasushi; Ishihara, Hideaki; Fukumoto, Harutsugu; Watanabe, Takamoto; Fujino, Seiji; Shirakawa, Isao

    2001-04-01

    Using the example of an air bag controller, a single chip solution for automotive sub-control systems is investigated, by using a technological combination of improved circuits, bipolar complimentary metal oxide silicon double-diffused metal oxide silicon (BiCDMOS) and thick silicon on insulator (SOI). For circuits, an automotive specific reduced instruction set computer (RISC) center processing unit (CPU), and a novel, all integrated system clock generator, dividing digital phase-locked loop (DDPLL) are proposed. For the device technologies, the authors use SOI-BiCDMOS with trench dielectric-isolation (TD) which enables integration of various devices in an integrated circuit (IC) while avoiding parasitic miss operations by ideal isolation. The structures of the SOI layer and TD, are optimized for obtaining desired device characteristics and high electromagnetic interference (EMI) immunity. While performing all the air bag system functions over a wide range of supply voltage, and ambient temperature, the resulting single chip reduces the electronic parts to about a half of those in the conventional air bags. The combination of single chip oriented circuits and thick SOI-BiCDMOS technologies offered in this work is valuable for size reduction and improved reliability of automotive electronic control units (ECUs).

  8. An On-Chip Learning Neuromorphic Autoencoder With Current-Mode Transposable Memory Read and Virtual Lookup Table.

    PubMed

    Cho, Hwasuk; Son, Hyunwoo; Seong, Kihwan; Kim, Byungsub; Park, Hong-June; Sim, Jae-Yoon

    2018-02-01

    This paper presents an IC implementation of on-chip learning neuromorphic autoencoder unit in a form of rate-based spiking neural network. With a current-mode signaling scheme embedded in a 500 × 500 6b SRAM-based memory, the proposed architecture achieves simultaneous processing of multiplications and accumulations. In addition, a transposable memory read for both forward and backward propagations and a virtual lookup table are also proposed to perform an unsupervised learning of restricted Boltzmann machine. The IC is fabricated using 28-nm CMOS process and is verified in a three-layer network of encoder-decoder pair for training and recovery of images with two-dimensional pixels. With a dataset of 50 digits, the IC shows a normalized root mean square error of 0.078. Measured energy efficiencies are 4.46 pJ per synaptic operation for inference and 19.26 pJ per synaptic weight update for learning, respectively. The learning performance is also estimated by simulations if the proposed hardware architecture is extended to apply to a batch training of 60 000 MNIST datasets.

  9. Present, future of automotive hybrid IC applications discussed

    NASA Astrophysics Data System (ADS)

    Matsuda, Nobuyoshi; Fukuoka, Atuhisa

    1987-09-01

    Hybrid ICs are presently utilized in various fields such as commercial televisions, VTRs, and audio devices, industrial usage of communication equipment, computers, terminals, and automobiles. Its applications and environments are various and diverse. The functions required for hybrid ICs vary from simple high density mounting for a system to the realization of high mechanisms with the application of function timing. The functions are properly used depending upon the system with its hybrid ICs and its circuit composition. Considering structure and reliability requirements for automotive hybrid ICs, an application example for hybrid ICs which use the package (COMPACT), will be discussed.

  10. A multi-scale PDMS fabrication strategy to bridge the size mismatch between integrated circuits and microfluidics†

    PubMed Central

    Muluneh, Melaku

    2015-01-01

    In recent years there has been great progress harnessing the small-feature size and programmability of integrated circuits (ICs) for biological applications, by building microfluidics directly on top of ICs. However, a major hurdle to the further development of this technology is the inherent size-mismatch between ICs (~mm) and microfluidic chips (~cm). Increasing the area of the ICs to match the size of the microfluidic chip, as has often been done in previous studies, leads to a waste of valuable space on the IC and an increase in fabrication cost (>100×). To address this challenge, we have developed a three dimensional PDMS chip that can straddle multiple length scales of hybrid IC/microfluidic chips. This approach allows millimeter-scale ICs, with no post-processing, to be integrated into a centimeter-sized PDMS chip. To fabricate this PDMS chip we use a combination of soft-lithography and laser micromachining. Soft lithography was used to define micrometer-scale fluid channels directly on the surface of the IC, allowing fluid to be controlled with high accuracy and brought into close proximity to sensors for highly sensitive measurements. Laser micromachining was used to create ~50 μm vias to connect these molded PDMS channels to a larger PDMS chip, which can connect multiple ICs and house fluid connections to the outside world. To demonstrate the utility of this approach, we built and demonstrated an in-flow magnetic cytometer that consisted of a 5 × 5 cm2 microfluidic chip that incorporated a commercial 565 × 1145 μm2 IC with a GMR sensing circuit. We additionally demonstrated the modularity of this approach by building a chip that incorporated two of these GMR chips connected in series. PMID:25284502

  11. A multi-scale PDMS fabrication strategy to bridge the size mismatch between integrated circuits and microfluidics.

    PubMed

    Muluneh, Melaku; Issadore, David

    2014-12-07

    In recent years there has been great progress harnessing the small-feature size and programmability of integrated circuits (ICs) for biological applications, by building microfluidics directly on top of ICs. However, a major hurdle to the further development of this technology is the inherent size-mismatch between ICs (~mm) and microfluidic chips (~cm). Increasing the area of the ICs to match the size of the microfluidic chip, as has often been done in previous studies, leads to a waste of valuable space on the IC and an increase in fabrication cost (>100×). To address this challenge, we have developed a three dimensional PDMS chip that can straddle multiple length scales of hybrid IC/microfluidic chips. This approach allows millimeter-scale ICs, with no post-processing, to be integrated into a centimeter-sized PDMS chip. To fabricate this PDMS chip we use a combination of soft-lithography and laser micromachining. Soft lithography was used to define micrometer-scale fluid channels directly on the surface of the IC, allowing fluid to be controlled with high accuracy and brought into close proximity to sensors for highly sensitive measurements. Laser micromachining was used to create ~50 μm vias to connect these molded PDMS channels to a larger PDMS chip, which can connect multiple ICs and house fluid connections to the outside world. To demonstrate the utility of this approach, we built and demonstrated an in-flow magnetic cytometer that consisted of a 5 × 5 cm(2) microfluidic chip that incorporated a commercial 565 × 1145 μm(2) IC with a GMR sensing circuit. We additionally demonstrated the modularity of this approach by building a chip that incorporated two of these GMR chips connected in series.

  12. The Magnetics Information Consortium (MagIC)

    NASA Astrophysics Data System (ADS)

    Johnson, C.; Constable, C.; Tauxe, L.; Koppers, A.; Banerjee, S.; Jackson, M.; Solheid, P.

    2003-12-01

    The Magnetics Information Consortium (MagIC) is a multi-user facility to establish and maintain a state-of-the-art relational database and digital archive for rock and paleomagnetic data. The goal of MagIC is to make such data generally available and to provide an information technology infrastructure for these and other research-oriented databases run by the international community. As its name implies, MagIC will not be restricted to paleomagnetic or rock magnetic data only, although MagIC will focus on these kinds of information during its setup phase. MagIC will be hosted under EarthRef.org at http://earthref.org/MAGIC/ where two "integrated" web portals will be developed, one for paleomagnetism (currently functional as a prototype that can be explored via the http://earthref.org/databases/PMAG/ link) and one for rock magnetism. The MagIC database will store all measurements and their derived properties for studies of paleomagnetic directions (inclination, declination) and their intensities, and for rock magnetic experiments (hysteresis, remanence, susceptibility, anisotropy). Ultimately, this database will allow researchers to study "on the internet" and to download important data sets that display paleo-secular variations in the intensity of the Earth's magnetic field over geological time, or that display magnetic data in typical Zijderveld, hysteresis/FORC and various magnetization/remanence diagrams. The MagIC database is completely integrated in the EarthRef.org relational database structure and thus benefits significantly from already-existing common database components, such as the EarthRef Reference Database (ERR) and Address Book (ERAB). The ERR allows researchers to find complete sets of literature resources as used in GERM (Geochemical Earth Reference Model), REM (Reference Earth Model) and MagIC. The ERAB contains addresses for all contributors to the EarthRef.org databases, and also for those who participated in data collection, archiving and

  13. New generation QuIC assays for prion seeding activity.

    PubMed

    Orrù, Christina D; Wilham, Jason M; Vascellari, Sarah; Hughson, Andrew G; Caughey, Byron

    2012-01-01

    The ability of abnormal TSE-associated forms of PrP to seed the formation of amyloid fibrils from recombinant PrP(Sen) has served as the basis for several relatively rapid and highly sensitive tests for prion diseases. These tests include rPrP-PMCA (rPMCA), standard quaking-induced conversion (S-QuIC), amyloid seeding assay (ASA), real-time QuIC (RT-QuIC) and enhanced QuIC (eQuIC). Here, we summarize recent improvements in the RT-QuIC-based assays that enhance the practicality, sensitivity and quantitative attributes of assays QuIC and promote the detection of prion seeding activity in dilute, inhibitor-laden fluids such as blood plasma.

  14. 3D printed high density, reversible, chip-to-chip microfluidic interconnects.

    PubMed

    Gong, Hua; Woolley, Adam T; Nordin, Gregory P

    2018-02-13

    Our latest developments in miniaturizing 3D printed microfluidics [Gong et al., Lab Chip, 2016, 16, 2450; Gong et al., Lab Chip, 2017, 17, 2899] offer the opportunity to fabricate highly integrated chips that measure only a few mm on a side. For such small chips, an interconnection method is needed to provide the necessary world-to-chip reagent and pneumatic connections. In this paper, we introduce simple integrated microgaskets (SIMs) and controlled-compression integrated microgaskets (CCIMs) to connect a small device chip to a larger interface chip that implements world-to-chip connections. SIMs or CCIMs are directly 3D printed as part of the device chip, and therefore no additional materials or components are required to make the connection to the larger 3D printed interface chip. We demonstrate 121 chip-to-chip interconnections in an 11 × 11 array for both SIMs and CCIMs with an areal density of 53 interconnections per mm 2 and show that they withstand fluid pressures of 50 psi. We further demonstrate their reusability by testing the devices 100 times without seal failure. Scaling experiments show that 20 × 20 interconnection arrays are feasible and that the CCIM areal density can be increased to 88 interconnections per mm 2 . We then show the utility of spatially distributed discrete CCIMs by using an interconnection chip with 28 chip-to-world interconnects to test 45 3D printed valves in a 9 × 5 array. Each valve is only 300 μm in diameter (the smallest yet reported for 3D printed valves). Every row of 5 valves is tested to at least 10 000 actuations, with one row tested to 1 000 000 actuations. In all cases, there is no sign of valve failure, and the CCIM interconnections prove an effective means of using a single interface chip to test a series of valve array chips.

  15. Dynamical Competition of IC-Industry Clustering from Taiwan to China

    NASA Astrophysics Data System (ADS)

    Tsai, Bi-Huei; Tsai, Kuo-Hui

    2009-08-01

    Most studies employ qualitative approach to explore the industrial clusters; however, few research has objectively quantified the evolutions of industry clustering. The purpose of this paper is to quantitatively analyze clustering among IC design, IC manufacturing as well as IC packaging and testing industries by using the foreign direct investment (FDI) data. The Lotka-Volterra system equations are first adopted here to capture the competition or cooperation among such three industries, thus explaining their clustering inclinations. The results indicate that the evolution of FDI into China for IC design industry significantly inspire the subsequent FDI of IC manufacturing as well as IC packaging and testing industries. Since IC design industry lie in the upstream stage of IC production, the middle-stream IC manufacturing and downstream IC packing and testing enterprises tend to cluster together with IC design firms, in order to sustain a steady business. Finally, Taiwan IC industry's FDI amount into China is predicted to cumulatively increase, which supports the industrial clustering tendency for Taiwan IC industry. Particularly, the FDI prediction of Lotka-Volterra model performs superior to that of the conventional Bass model after the forecast accuracy of these two models are compared. The prediction ability is dramatically improved as the industrial mutualism among each IC production stage is taken into account.

  16. Experimentally Observed Electrical Durability of 4H-SiC JFET ICs Operating from 500 C to 700 C

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Spry, David J.; Chen, Liangyu; Lukco, Dorothy; Chang, Carl W.; Beheim, Glenn M.

    2016-01-01

    Prolonged 500 degrees Celsius to 700 degrees Celsius electrical testing data from 4H-SiC junction field effect transistor (JFET) integrated circuits (ICs) are combined with post-testing microscopic studies in order to gain more comprehensive understanding of the durability limits of the present version of NASA Glenn's extreme temperature microelectronics technology. The results of this study support the hypothesis that T = 500 degrees Celsius durability-limiting IC failure initiates with thermal-stress-related crack formation where dielectric passivation layers overcoat micron-scale vertical features including patterned metal traces.

  17. Influences of Cutting Speed and Material Mechanical Properties on Chip Deformation and Fracture during High-Speed Cutting of Inconel 718.

    PubMed

    Wang, Bing; Liu, Zhanqiang; Hou, Xin; Zhao, Jinfu

    2018-03-21

    The paper aims to investigate the influences of material constitutive and fracture parameters in addition to cutting speed on chip formation during high-speed cutting of Inconel 718. Finite element analyses for chip formation are conducted with Johnson-Cook constitutive and fracture models. Meanwhile, experiments of high-speed orthogonal cutting are performed to verify the simulation results with cutting speeds ranging from 50 m/min to 7000 m/min. The research indicates that the chip morphology transforms from serrated to fragmented at the cutting speed of 7000 m/min due to embrittlement of the workpiece material under ultra-high cutting speeds. The parameter of shear localization sensitivity is put forward to describe the influences of material mechanical properties on serrated chip formation. The results demonstrate that the effects of initial yield stress and thermal softening coefficient on chip shear localization are much more remarkable than the other constitutive parameters. For the material fracture parameters, the effects of initial fracture strain and exponential factor of stress state on chip shear localization are more much prominent. This paper provides guidance for controlling chip formation through the adjustment of material mechanical properties and the selection of appropriate cutting parameters.

  18. Influences of Cutting Speed and Material Mechanical Properties on Chip Deformation and Fracture during High-Speed Cutting of Inconel 718

    PubMed Central

    Hou, Xin; Zhao, Jinfu

    2018-01-01

    The paper aims to investigate the influences of material constitutive and fracture parameters in addition to cutting speed on chip formation during high-speed cutting of Inconel 718. Finite element analyses for chip formation are conducted with Johnson–Cook constitutive and fracture models. Meanwhile, experiments of high-speed orthogonal cutting are performed to verify the simulation results with cutting speeds ranging from 50 m/min to 7000 m/min. The research indicates that the chip morphology transforms from serrated to fragmented at the cutting speed of 7000 m/min due to embrittlement of the workpiece material under ultra-high cutting speeds. The parameter of shear localization sensitivity is put forward to describe the influences of material mechanical properties on serrated chip formation. The results demonstrate that the effects of initial yield stress and thermal softening coefficient on chip shear localization are much more remarkable than the other constitutive parameters. For the material fracture parameters, the effects of initial fracture strain and exponential factor of stress state on chip shear localization are more much prominent. This paper provides guidance for controlling chip formation through the adjustment of material mechanical properties and the selection of appropriate cutting parameters. PMID:29561770

  19. A new statistical methodology predicting chip failure probability considering electromigration

    NASA Astrophysics Data System (ADS)

    Sun, Ted

    In this research thesis, we present a new approach to analyze chip reliability subject to electromigration (EM) whose fundamental causes and EM phenomenon happened in different materials are presented in this thesis. This new approach utilizes the statistical nature of EM failure in order to assess overall EM risk. It includes within-die temperature variations from the chip's temperature map extracted by an Electronic Design Automation (EDA) tool to estimate the failure probability of a design. Both the power estimation and thermal analysis are performed in the EDA flow. We first used the traditional EM approach to analyze the design with a single temperature across the entire chip that involves 6 metal and 5 via layers. Next, we used the same traditional approach but with a realistic temperature map. The traditional EM analysis approach and that coupled with a temperature map and the comparison between the results of considering and not considering temperature map are presented in in this research. A comparison between these two results confirms that using a temperature map yields a less pessimistic estimation of the chip's EM risk. Finally, we employed the statistical methodology we developed considering a temperature map and different use-condition voltages and frequencies to estimate the overall failure probability of the chip. The statistical model established considers the scaling work with the usage of traditional Black equation and four major conditions. The statistical result comparisons are within our expectations. The results of this statistical analysis confirm that the chip level failure probability is higher i) at higher use-condition frequencies for all use-condition voltages, and ii) when a single temperature instead of a temperature map across the chip is considered. In this thesis, I start with an overall review on current design types, common flows, and necessary verifications and reliability checking steps used in this IC design industry

  20. Capillary-Driven Microfluidic Chips for Miniaturized Immunoassays: Efficient Fabrication and Sealing of Chips Using a "Chip-Olate" Process.

    PubMed

    Temiz, Yuksel; Delamarche, Emmanuel

    2017-01-01

    The fabrication of silicon-based microfluidic chips is invaluable in supporting the development of many microfluidic concepts for research in the life sciences and in vitro diagnostic applications such as the realization of miniaturized immunoassays using capillary-driven chips. While being extremely abundant, the literature covering microfluidic chip fabrication and assay development might not have addressed properly the challenge of fabricating microfluidic chips on a wafer level or the need for dicing wafers to release chips that need then to be further processed, cleaned, rinsed, and dried one by one. Here, we describe the "chip-olate" process wherein microfluidic structures are formed on a silicon wafer, followed by partial dicing, cleaning, and drying steps. Then, integration of reagents (if any) can be done, followed by lamination of a sealing cover. Breaking by hand the partially diced wafer yields individual chips ready for use.

  1. The E3 Ligase CHIP Mediates p21 Degradation to Maintain Radioresistance

    PubMed Central

    Biswas, Kuntal; Sarkar, Sukumar; Du, Kangping; Brautigan, David L.; Abbas, Tarek; Larner, James M.

    2017-01-01

    Lung cancer resists radiation therapy, making it one of the deadliest forms of cancer. Here we show that human lung cancer cell lines can be rendered sensitive to ionizing radiation (IR) by RNAi knockdown of C-terminus of Hsc70-interacting protein (CHIP/STUB1), a U-box-type E3 ubiquitin ligase that targets a number of stress-induced proteins. Mechanistically ubiquitin-dependent degradation of the cyclin-dependent kinase (CDK) inhibitor p21 protein is reduced by CHIP knockdown, leading to enhanced senescence of cells in response to exposure to IR. Cellular senescence and sensitivity to IR is prevented by CRISPR/Cas9-mediated deletion of the p21 gene (CDKN1A) in CHIP knockdown cells. Conversely, over-expression of CHIP potentiates p21 degradation and promotes greater radioresistance of lung cancer cells. In vitro and cell-based assays demonstrate that p21 is a novel and direct ubiquitylation substrate of CHIP that also requires the CHIP-associated chaperone heat shock protein 70 (HSP70). These data reveal that the inhibition of the E3 ubiquitin ligase CHIP promotes radiosensitivity; thus, suggesting a novel strategy for the treatment of lung cancer. Implications The CHIP-HSP70-p21 ubiquitylation/degradation axis identified here could be exploited to enhance the efficacy of radiotherapy in patients with non-small cell lung cancer. PMID:28232384

  2. High performance MPEG-audio decoder IC

    NASA Technical Reports Server (NTRS)

    Thorn, M.; Benbassat, G.; Cyr, K.; Li, S.; Gill, M.; Kam, D.; Walker, K.; Look, P.; Eldridge, C.; Ng, P.

    1993-01-01

    The emerging digital audio and video compression technology brings both an opportunity and a new challenge to IC design. The pervasive application of compression technology to consumer electronics will require high volume, low cost IC's and fast time to market of the prototypes and production units. At the same time, the algorithms used in the compression technology result in complex VLSI IC's. The conflicting challenges of algorithm complexity, low cost, and fast time to market have an impact on device architecture and design methodology. The work presented in this paper is about the design of a dedicated, high precision, Motion Picture Expert Group (MPEG) audio decoder.

  3. NEPP Evaluation of Automotive Grade Tantalum Chip Capacitors

    NASA Technical Reports Server (NTRS)

    Sampson, Mike; Brusse, Jay

    2018-01-01

    Automotive grade tantalum (Ta) chip capacitors are available at lower cost with smaller physical size and higher volumetric efficiency compared to military/space grade capacitors. Designers of high reliability aerospace and military systems would like to take advantage of these attributes while maintaining the high standards for long-term reliable operation they are accustomed to when selecting military-qualified established reliability tantalum chip capacitors (e.g., MIL-PRF-55365). The objective for this evaluation was to assess the long-term performance of off-the-shelf automotive grade Ta chip capacitors (i.e., manufacturer self-qualified per AEC Q-200). Two (2) lots of case size D manganese dioxide (MnO2) cathode Ta chip capacitors from 1 manufacturer were evaluated. The evaluation consisted of construction analysis, basic electrical parameter characterization, extended long-term (2000 hours) life testing and some accelerated stress testing. Tests and acceptance criteria were based upon manufacturer datasheets and the Automotive Electronics Council's AEC Q-200 qualification specification for passive electronic components. As-received a few capacitors were marginally above the specified tolerance for capacitance and ESR. X-ray inspection found that the anodes for some devices may not be properly aligned within the molded encapsulation leaving less than 1 mil thickness of the encapsulation. This evaluation found that the long-term life performance of automotive grade Ta chip capacitors is generally within specification limits suggesting these capacitors may be suitable for some space applications.

  4. Information Commons for Rice (IC4R)

    PubMed Central

    2016-01-01

    Rice is the most important staple food for a large part of the world's human population and also a key model organism for plant research. Here, we present Information Commons for Rice (IC4R; http://ic4r.org), a rice knowledgebase featuring adoption of an extensible and sustainable architecture that integrates multiple omics data through community-contributed modules. Each module is developed and maintained by different committed groups, deals with data collection, processing and visualization, and delivers data on-demand via web services. In the current version, IC4R incorporates a variety of rice data through multiple committed modules, including genome-wide expression profiles derived entirely from RNA-Seq data, resequencing-based genomic variations obtained from re-sequencing data of thousands of rice varieties, plant homologous genes covering multiple diverse plant species, post-translational modifications, rice-related literatures and gene annotations contributed by the rice research community. Unlike extant related databases, IC4R is designed for scalability and sustainability and thus also features collaborative integration of rice data and low costs for database update and maintenance. Future directions of IC4R include incorporation of other omics data and association of multiple omics data with agronomically important traits, dedicating to build IC4R into a valuable knowledgebase for both basic and translational researches in rice. PMID:26519466

  5. On Patarin's Attack against the lIC Scheme

    NASA Astrophysics Data System (ADS)

    Ogura, Naoki; Uchiyama, Shigenori

    In 2007, Ding et al. proposed an attractive scheme, which is called the l-Invertible Cycles (lIC) scheme. lIC is one of the most efficient multivariate public-key cryptosystems (MPKC); these schemes would be suitable for using under limited computational resources. In 2008, an efficient attack against lIC using Gröbner basis algorithms was proposed by Fouque et al. However, they only estimated the complexity of their attack based on their experimental results. On the other hand, Patarin had proposed an efficient attack against some multivariate public-key cryptosystems. We call this attack Patarin's attack. The complexity of Patarin's attack can be estimated by finding relations corresponding to each scheme. In this paper, we propose an another practical attack against the lIC encryption/signature scheme. We estimate the complexity of our attack (not experimentally) by adapting Patarin's attack. The attack can be also applied to the lIC- scheme. Moreover, we show some experimental results of a practical attack against the lIC/lIC- schemes. This is the first implementation of both our proposed attack and an attack based on Gröbner basis algorithm for the even case, that is, a parameter l is even.

  6. On-chip concentration of bacteria using a 3D dielectrophoretic chip and subsequent laser-based DNA extraction in the same chip

    NASA Astrophysics Data System (ADS)

    Cho, Yoon-Kyoung; Kim, Tae-hyeong; Lee, Jeong-Gun

    2010-06-01

    We report the on-chip concentration of bacteria using a dielectrophoretic (DEP) chip with 3D electrodes and subsequent laser-based DNA extraction in the same chip. The DEP chip has a set of interdigitated Au post electrodes with 50 µm height to generate a network of non-uniform electric fields for the efficient trapping by DEP. The metal post array was fabricated by photolithography and subsequent Ni and Au electroplating. Three model bacteria samples (Escherichia coli, Staphylococcus epidermidis, Streptococcus mutans) were tested and over 80-fold concentrations were achieved within 2 min. Subsequently, on-chip DNA extraction from the concentrated bacteria in the 3D DEP chip was performed by laser irradiation using the laser-irradiated magnetic bead system (LIMBS) in the same chip. The extracted DNA was analyzed with silicon chip-based real-time polymerase chain reaction (PCR). The total process of on-chip bacteria concentration and the subsequent DNA extraction can be completed within 10 min including the manual operation time.

  7. The E3 Ligase CHIP Mediates p21 Degradation to Maintain Radioresistance.

    PubMed

    Biswas, Kuntal; Sarkar, Sukumar; Du, Kangping; Brautigan, David L; Abbas, Tarek; Larner, James M

    2017-06-01

    Lung cancer resists radiotherapy, making it one of the deadliest forms of cancer. Here, we show that human lung cancer cell lines can be rendered sensitive to ionizing radiation (IR) by RNAi knockdown of C-terminus of Hsc70-interacting protein (CHIP/STUB1), a U-box-type E3 ubiquitin ligase that targets a number of stress-induced proteins. Mechanistically, ubiquitin-dependent degradation of the cyclin-dependent kinase (CDK) inhibitor, p21 protein, is reduced by CHIP knockdown, leading to enhanced senescence of cells in response to exposure to IR. Cellular senescence and sensitivity to IR is prevented by CRISPR/Cas9-mediated deletion of the p21 gene ( CDKN1A) in CHIP knockdown cells. Conversely, overexpression of CHIP potentiates p21 degradation and promotes greater radioresistance of lung cancer cells. In vitro and cell-based assays demonstrate that p21 is a novel and direct ubiquitylation substrate of CHIP that also requires the CHIP-associated chaperone HSP70. These data reveal that the inhibition of the E3 ubiquitin ligase CHIP promotes radiosensitivity, thus suggesting a novel strategy for the treatment of lung cancer. Implications: The CHIP-HSP70-p21 ubiquitylation/degradation axis identified here could be exploited to enhance the efficacy of radiotherapy in patients with non-small cell lung cancer. Mol Cancer Res; 15(6); 651-9. ©2017 AACR . ©2017 American Association for Cancer Research.

  8. Thermal cycling reliability of Cu/SnAg double-bump flip chip assemblies for 100 μm pitch applications

    NASA Astrophysics Data System (ADS)

    Son, Ho-Young; Kim, Ilho; Lee, Soon-Bok; Jung, Gi-Jo; Park, Byung-Jin; Paik, Kyung-Wook

    2009-01-01

    A thick Cu column based double-bump flip chip structure is one of the promising alternatives for fine pitch flip chip applications. In this study, the thermal cycling (T/C) reliability of Cu/SnAg double-bump flip chip assemblies was investigated, and the failure mechanism was analyzed through the correlation of T/C test and the finite element analysis (FEA) results. After 1000 thermal cycles, T/C failures occurred at some Cu/SnAg bumps located at the edge and corner of chips. Scanning acoustic microscope analysis and scanning electron microscope observations indicated that the failure site was the Cu column/Si chip interface. It was identified by a FEA where the maximum stress concentration was located during T/C. During T/C, the Al pad between the Si chip and a Cu column bump was displaced due to thermomechanical stress. Based on the low cycle fatigue model, the accumulation of equivalent plastic strain resulted in thermal fatigue deformation of the Cu column bumps and ultimately reduced the thermal cycling lifetime. The maximum equivalent plastic strains of some bumps at the chip edge increased with an increased number of thermal cycles. However, equivalent plastic strains of the inner bumps did not increase regardless of the number of thermal cycles. In addition, the z-directional normal plastic strain ɛ22 was determined to be compressive and was a dominant component causing the plastic deformation of Cu/SnAg double bumps. As the number of thermal cycles increased, normal plastic strains in the perpendicular direction to the Si chip and shear strains were accumulated on the Cu column bumps at the chip edge at low temperature region. Thus it was found that the Al pad at the Si chip/Cu column interface underwent thermal fatigue deformation by compressive normal strain and the contact loss by displacement failure of the Al pad, the main T/C failure mode of the Cu/SnAg flip chip assembly, then occurred at the Si chip/Cu column interface shear strain deformation

  9. Prediction of 3D chip formation in the facing cutting with lathe machine using FEM

    NASA Astrophysics Data System (ADS)

    Prasetyo, Yudhi; Tauviqirrahman, Mohamad; Rusnaldy

    2016-04-01

    This paper presents the prediction of the chip formation at the machining process using a lathe machine in a more specific way focusing on facing cutting (face turning). The main purpose is to propose a new approach to predict the chip formation with the variation of the cutting directions i.e., the backward and forward direction. In addition, the interaction between stress analysis and chip formation on cutting process was also investigated. The simulations were conducted using three dimensional (3D) finite element method based on ABAQUS software with aluminum and high speed steel (HSS) as the workpiece and the tool materials, respectively. The simulation result showed that the chip resulted using a backward direction depicts a better formation than that using a conventional (forward) direction.

  10. The open cluster IC 4665

    NASA Technical Reports Server (NTRS)

    Prosser, Charles F.

    1993-01-01

    The results of a combined astrometric, photometric, and spectroscopic program to identify members of the open cluster IC 4665 are presented. Numerous new proper motion/photometric candidate members and at least 23 M dwarfs with H-alpha emission have been identified. A reanalysis of IC 4665 age using different methods yields conflicting results ranging from about 3 X 10 exp 7 yr to the age of the Pleiades. This study provides a list of candidate cluster members in the intermediate and low-mass regime of this cluster. Future spectroscopic observations of these candidates should eventually identify true cluster members.

  11. Smart substrates: Making multi-chip modules smarter

    NASA Astrophysics Data System (ADS)

    Wunsch, T. F.; Treece, R. K.

    1995-05-01

    A novel multi-chip module (MCM) design and manufacturing methodology which utilizes active CMOS circuits in what is normally a passive substrate realizes the 'smart substrate' for use in highly testable, high reliability MCMS. The active devices are used to test the bare substrate, diagnose assembly errors or integrated circuit (IC) failures that require rework, and improve the testability of the final MCM assembly. A static random access memory (SRAM) MCM has been designed and fabricated in Sandia Microelectronics Development Laboratory in order to demonstrate the technical feasibility of this concept and to examine design and manufacturing issues which will ultimately determine the economic viability of this approach. The smart substrate memory MCM represents a first in MCM packaging. At the time the first modules were fabricated, no other company or MCM vendor had incorporated active devices in the substrate to improve manufacturability and testability, and thereby improve MCM reliability and reduce cost.

  12. Semiconductor/High-Tc-Superconductor Hybrid ICs

    NASA Technical Reports Server (NTRS)

    Burns, Michael J.

    1995-01-01

    Hybrid integrated circuits (ICs) containing both Si-based semiconducting and YBa(2)Cu(3)O(7-x) superconducting circuit elements on sapphire substrates developed. Help to prevent diffusion of Cu from superconductors into semiconductors. These hybrid ICs combine superconducting and semiconducting features unavailable in superconducting or semiconducting circuitry alone. For example, complementary metal oxide/semiconductor (CMOS) readout and memory devices integrated with fast-switching Josephson-junction super-conducting logic devices and zero-resistance interconnections.

  13. A Way to End the IC Designer Shortage.

    ERIC Educational Resources Information Center

    Robinson, Arthur L.

    1980-01-01

    Discusses the problem of the shortage of engineers capable of designing advanced integrated circuits (IC) and presents some suggestions for increasing the number of IC designers in universities and semiconductor companies. (HM)

  14. ChIP-chip.

    PubMed

    Kim, Tae Hoon; Dekker, Job

    2018-05-01

    ChIP-chip can be used to analyze protein-DNA interactions in a region-wide and genome-wide manner. DNA microarrays contain PCR products or oligonucleotide probes that are designed to represent genomic sequences. Identification of genomic sites that interact with a specific protein is based on competitive hybridization of the ChIP-enriched DNA and the input DNA to DNA microarrays. The ChIP-chip protocol can be divided into two main sections: Amplification of ChIP DNA and hybridization of ChIP DNA to arrays. A large amount of DNA is required to hybridize to DNA arrays, and hybridization to a set of multiple commercial arrays that represent the entire human genome requires two rounds of PCR amplifications. The relative hybridization intensity of ChIP DNA and that of the input DNA is used to determine whether the probe sequence is a potential site of protein-DNA interaction. Resolution of actual genomic sites bound by the protein is dependent on the size of the chromatin and on the genomic distance between the probes on the array. As with expression profiling using gene chips, ChIP-chip experiments require multiple replicates for reliable statistical measure of protein-DNA interactions. © 2018 Cold Spring Harbor Laboratory Press.

  15. Lab-on a-Chip

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Helen Cole, the project manager for the Lab-on-a-Chip Applications Development program, and Lisa Monaco, the project scientist for the program, insert a lab on a chip into the Caliper 42 which is specialized equipment that controls processes on commercial chips to support development of lab-on-a-chip applications. The system has special microscopes and imaging systems, so scientists can process and study different types of fluid, chemical, and medical tests conducted on chips. For example, researchers have examined fluorescent bacteria as it flows through the chips' fluid channels or microfluidic capillaries. Researchers at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, have been studying how the lab-on-a-chip technology can be used for microbial detection, water quality monitoring, and detecting biosignatures of past or present life on Mars. The Marshall Center team is also collaborating with scientists at other NASA centers and at universities to develop custom chip designs for not only space applications, but for many Earth applications, such as for detecting deadly microbes in heating and air systems. (NASA/MSFC/D.Stoffer)

  16. Oligonucleotide-arrayed TFT photosensor applicable for DNA chip technology.

    PubMed

    Tanaka, Tsuyoshi; Hatakeyama, Keiichi; Sawaguchi, Masahiro; Iwadate, Akihito; Mizutani, Yasushi; Sasaki, Kazuhiro; Tateishi, Naofumi; Takeyama, Haruko; Matsunaga, Tadashi

    2006-09-05

    A thin film transistor (TFT) photosensor fabricated by semiconductor integrated circuit (IC) technology was applied to DNA chip technology. The surface of the TFT photosensor was coated with TiO2 using a vapor deposition technique for the fabrication of optical filters. The immobilization of thiolated oligonucleotide probes onto a TiO2-coated TFT photosensor using gamma-aminopropyltriethoxysilane (APTES) and N-(gamma-maleimidobutyloxy) sulfosuccinimide ester (GMBS) was optimized. The coverage value of immobilized oligonucleotides reached a plateau at 33.7 pmol/cm2, which was similar to a previous analysis using radioisotope-labeled oligonucleotides. The lowest detection limits were 0.05 pmol/cm2 for quantum dot and 2.1 pmol/cm2 for Alexa Fluor 350. Furthermore, single nucleotide polymorphism (SNP) detection was examined using the oligonucleotide-arrayed TFT photosensor. A SNP present in the aldehyde dehydrogenase 2 (ALDH2) gene was used as a target. The SNPs in ALDH2*1 and ALDH2*2 target DNA were detected successfully using the TFT photosensor. DNA hybridization in the presence of both ALDH2*1 and ALDH2*2 target DNA was observed using both ALDH2*1 and ALDH2*2 detection oligonucleotides-arrayed TFT photosensor. Use of the TFT photosensor will allow the development of a disposable photodetecting device for DNA chip systems. (c) 2006 Wiley Periodicals, Inc.

  17. Repairable chip bonding/interconnect process

    DOEpatents

    Bernhardt, Anthony F.; Contolini, Robert J.; Malba, Vincent; Riddle, Robert A.

    1997-01-01

    A repairable, chip-to-board interconnect process which addresses cost and testability issues in the multi-chip modules. This process can be carried out using a chip-on-sacrificial-substrate technique, involving laser processing. This process avoids the curing/solvent evolution problems encountered in prior approaches, as well is resolving prior plating problems and the requirements for fillets. For repairable high speed chip-to-board connection, transmission lines can be formed on the sides of the chip from chip bond pads, ending in a gull wing at the bottom of the chip for subsequent solder.

  18. Graphene/Si CMOS hybrid hall integrated circuits.

    PubMed

    Huang, Le; Xu, Huilong; Zhang, Zhiyong; Chen, Chengying; Jiang, Jianhua; Ma, Xiaomeng; Chen, Bingyan; Li, Zishen; Zhong, Hua; Peng, Lian-Mao

    2014-07-07

    Graphene/silicon CMOS hybrid integrated circuits (ICs) should provide powerful functions which combines the ultra-high carrier mobility of graphene and the sophisticated functions of silicon CMOS ICs. But it is difficult to integrate these two kinds of heterogeneous devices on a single chip. In this work a low temperature process is developed for integrating graphene devices onto silicon CMOS ICs for the first time, and a high performance graphene/CMOS hybrid Hall IC is demonstrated. Signal amplifying/process ICs are manufactured via commercial 0.18 um silicon CMOS technology, and graphene Hall elements (GHEs) are fabricated on top of the passivation layer of the CMOS chip via a low-temperature micro-fabrication process. The sensitivity of the GHE on CMOS chip is further improved by integrating the GHE with the CMOS amplifier on the Si chip. This work not only paves the way to fabricate graphene/Si CMOS Hall ICs with much higher performance than that of conventional Hall ICs, but also provides a general method for scalable integration of graphene devices with silicon CMOS ICs via a low-temperature process.

  19. Circuit Design Approaches for Implementation of a Subtrellis IC for a Reed-Muller Subcode

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Uehara, Gregory T.; Nakamura, Eric B.; Chu, Cecilia W. P.

    1996-01-01

    the system at high speed. Second, we will describe details of the 8-trellis diagram we found to best meet the trade-offs between chip and overall system complexity. The chosen approach implements the trellis for the (64, 40, 8) RM subcode with 32 independent sub-trellises. And third, we will describe results of our feasibility study on the implementation of such an IC chip in CMOS technology to implement one of these subtrellises.

  20. Circuit Design Approaches for Implementation of a Subtrellis IC for a Reed-Muller Subcode

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Uehara, Gregory T.; Nakamura, Eric B.; Chu, Cecilia W. P.

    1996-01-01

    the system at high speed. Second, we will describe details of the 8-trellis diagram we found to best meet the trade-offs between chip and overall system complexity. The chosen approach implements the trellis for the (64, 40, 8) RM subcode with 32 independent sub-trellises. And third, we will describe results of our feasibility study on the implementation of such an IC chip in CMOS technology to implement one of these subtrellises.

  1. A low-power CMOS operational amplifier IC for a heterogeneous paper-based potentiostat

    NASA Astrophysics Data System (ADS)

    Bezuidenhout, P.; Land, K.; Joubert, T.-H.

    2016-02-01

    Electrochemical biosensing is used to detect specific analytes in fluids, such as bacterial and chemical contaminants. A common implementation of an electrochemical readout is a potentiostat, which usually includes potentiometric, amperometric, and impedimetric detection. Recently several researchers have developed small, low-cost, single-chip silicon-based potentiostats. With the advances in heterogeneous integration technology, low-power potentiostats can be implemented on paper and similar low cost substrates. This paper deals with the design of a low-power paper-based amperometric front-end for a low-cost and rapid detection environment. In amperometric detection a voltage signal is provided to a sensor system, while a small current value generated by an electrochemical redox reaction in the system is measured. In order to measure low current values, the noise of the circuit must be minimized, which is accomplished with a pre-amplification front-end stage, typically designed around an operational amplifier core. An appropriate circuit design for a low-power and low-cost amperometric front-end is identified, taking the heterogeneous integration of various components into account. The operational amplifier core is on a bare custom CMOS chip, which will be integrated onto the paper substrate alongside commercial off-the-shelf electronic components. A general-purpose low-power two-stage CMOS amplifier circuit is designed and simulated for the ams 350 nm 5 V process. After the layout design and verification, the IC was submitted for a multi-project wafer manufacturing run. The simulated results are a bandwidth of 2.4 MHz, a common-mode rejection ratio of 70.04 dB, and power dissipation of 0.154 mW, which are comparable with the analytical values.

  2. Repairable chip bonding/interconnect process

    DOEpatents

    Bernhardt, A.F.; Contolini, R.J.; Malba, V.; Riddle, R.A.

    1997-08-05

    A repairable, chip-to-board interconnect process which addresses cost and testability issues in the multi-chip modules is disclosed. This process can be carried out using a chip-on-sacrificial-substrate technique, involving laser processing. This process avoids the curing/solvent evolution problems encountered in prior approaches, as well is resolving prior plating problems and the requirements for fillets. For repairable high speed chip-to-board connection, transmission lines can be formed on the sides of the chip from chip bond pads, ending in a gull wing at the bottom of the chip for subsequent solder. 10 figs.

  3. On-Chip Biomedical Imaging

    PubMed Central

    Göröcs, Zoltán; Ozcan, Aydogan

    2012-01-01

    Lab-on-a-chip systems have been rapidly emerging to pave the way toward ultra-compact, efficient, mass producible and cost-effective biomedical research and diagnostic tools. Although such microfluidic and micro electromechanical systems achieved high levels of integration, and are capable of performing various important tasks on the same chip, such as cell culturing, sorting and staining, they still rely on conventional microscopes for their imaging needs. Recently several alternative on-chip optical imaging techniques have been introduced, which have the potential to substitute conventional microscopes for various lab-on-a-chip applications. Here we present a critical review of these recently emerging on-chip biomedical imaging modalities, including contact shadow imaging, lensfree holographic microscopy, fluorescent on-chip microscopy and lensfree optical tomography. PMID:23558399

  4. Chip-to-Chip Half Duplex Spiking Data Communication over Power Supply Rails

    NASA Astrophysics Data System (ADS)

    Hashida, Takushi; Nagata, Makoto

    Chip-to-chip serial data communication is superposed on power supply over common Vdd/Vss connections through chip, package, and board traces. A power line transceiver demonstrates half duplex spiking communication at more than 100Mbps. A pair of transceivers consumes 1.35mA from 3.3V, at 130Mbps. On-chip power line LC low pass filter attenuates pseudo-differential communication spikes by 30dB, purifying power supply current for internal circuits. Bi-directional spiking communication was successfully examined in a 90-nm CMOS prototype setup of on-chip waveform capturing. A micro controller forwards clock pulses to and receives data streams from a comparator based waveform capturer formed on a different chip, through a single pair of power and ground traces. The bit error rate is small enough not to degrade waveform acquisition capability, maintaining the spurious free dynamic range of higher than 50dB.

  5. Embedded I&C for Extreme Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kisner, Roger A.

    2016-04-01

    This project uses embedded instrumentation and control (I&C) technologies to demonstrate potential performance gains of nuclear power plant components in extreme environments. Extreme environments include high temperature, radiation, high pressure, high vibration, and high EMI conditions. For extreme environments, performance gains arise from moment-to-moment sensing of local variables and immediate application of local feedback control. Planning for embedding I&C during early system design phases contrasts with the traditional, serial design approach that incorporates minimal I&C after mechanical and electrical design is complete. The demonstration application involves the development and control of a novel, proof-of-concept motor/pump design. The motor and pumpmore » combination operate within the fluid environment, eliminating the need for rotating seals. Actively controlled magnetic bearings also replace failure-prone mechanical contact bearings that typically suspend rotating components. Such as design has the potential to significantly enhance the reliability and life of the pumping system and would not be possible without embedded I&C.« less

  6. Molecular Hydrogen Fluorescence in IC 63

    NASA Technical Reports Server (NTRS)

    Andersson, B-G

    2005-01-01

    This grant has supported the acquisition, reduction and analysis of data targeting the structure and excitation of molecular hydrogen in the reflection nebula IC 63 and in particular the fluorescent emission seen in the UV. In addition to manpower for analyzing the FUSE data, the grant supported the (attempted) acquisition of supporting ground-based data. We proposed for and received observing time for two sets of ground based, data; narrow band imaging ([S II], [O III) at KPNO (July 2002; Observer: Burgh) and imaging spectro-photometry of several of the near-infrared rotation-vibration lines of H2 at the IRTF (October 2003; Observer: Andersson). Unfortunately, both of these runs were failures, primarily because of bad weather, and did not result in any useful data. We combined the FUSE observations with rocket borne observations of the star responsible for exciting the H2 fluorescence in IC 63: gamma Cas, and with archival HUT observations of IC 63, covering the long-wavelength part of the molecular hydrogen fluorescence.

  7. Human bone perivascular niche-on-a-chip for studying metastatic colonization.

    PubMed

    Marturano-Kruik, Alessandro; Nava, Michele Maria; Yeager, Keith; Chramiec, Alan; Hao, Luke; Robinson, Samuel; Guo, Edward; Raimondi, Manuela Teresa; Vunjak-Novakovic, Gordana

    2018-02-06

    Eight out of 10 breast cancer patients die within 5 years after the primary tumor has spread to the bones. Tumor cells disseminated from the breast roam the vasculature, colonizing perivascular niches around blood capillaries. Slow flows support the niche maintenance by driving the oxygen, nutrients, and signaling factors from the blood into the interstitial tissue, while extracellular matrix, endothelial cells, and mesenchymal stem cells regulate metastatic homing. Here, we show the feasibility of developing a perfused bone perivascular niche-on-a-chip to investigate the progression and drug resistance of breast cancer cells colonizing the bone. The model is a functional human triculture with stable vascular networks within a 3D native bone matrix cultured on a microfluidic chip. Providing the niche-on-a-chip with controlled flow velocities, shear stresses, and oxygen gradients, we established a long-lasting, self-assembled vascular network without supplementation of angiogenic factors. We further show that human bone marrow-derived mesenchymal stem cells, which have undergone phenotypical transition toward perivascular cell lineages, support the formation of capillary-like structures lining the vascular lumen. Finally, breast cancer cells exposed to interstitial flow within the bone perivascular niche-on-a-chip persist in a slow-proliferative state associated with increased drug resistance. We propose that the bone perivascular niche-on-a-chip with interstitial flow promotes the formation of stable vasculature and mediates cancer cell colonization.

  8. H I debris in the IC 1459 galaxy group

    NASA Astrophysics Data System (ADS)

    Saponara, Juliana; Koribalski, Bärbel S.; Benaglia, Paula; Fernández López, Manuel

    2018-01-01

    We present H I synthesis imaging of the giant elliptical galaxy IC 1459 and its surroundings with the Australia Telescope Compact Array. Our search for extended H I emission revealed a large complex of H I clouds near IC 1459, likely to be the debris from tidal interactions with neighbouring galaxies. The total H I mass (∼109 M⊙) in the detected clouds spans 250 kpc from the north-east of the gas-rich spiral NGC 7418A to the south-east of IC 1459. The extent and mass of the H I debris, which shows rather irregular morphology and kinematics, are similar to those in other nearby groups. Together with H I clouds recently detected near two other IC 1459 group members, namely IC 5270 and NGC 7418, using phased-array feeds on the Australian Square Kilometre Array Pathfinder, the detected debris make up a significant fraction of the group's intergalactic medium.

  9. Cardiovascular Organ-on-a-Chip Platforms for Drug Discovery and Development

    PubMed Central

    Ribas, João; Sadeghi, Hossein; Manbachi, Amir; Leijten, Jeroen; Brinegar, Katelyn; Zhang, Yu Shrike; Ferreira, Lino

    2016-01-01

    Abstract Cardiovascular diseases are prevalent worldwide and are the most frequent causes of death in the United States. Although spending in drug discovery/development has increased, the amount of drug approvals has seen a progressive decline. Particularly, adverse side effects to the heart and general vasculature have become common causes for preclinical project closures, and preclinical models do not fully recapitulate human in vivo dynamics. Recently, organs-on-a-chip technologies have been proposed to mimic the dynamic conditions of the cardiovascular system—in particular, heart and general vasculature. These systems pay particular attention to mimicking structural organization, shear stress, transmural pressure, mechanical stretching, and electrical stimulation. Heart- and vasculature-on-a-chip platforms have been successfully generated to study a variety of physiological phenomena, model diseases, and probe the effects of drugs. Here, we review and discuss recent breakthroughs in the development of cardiovascular organs-on-a-chip platforms, and their current and future applications in the area of drug discovery and development. PMID:28971113

  10. Integrated HIFU Drive System on a Chip for CMUT-Based Catheter Ablation System.

    PubMed

    Farhanieh, Omid; Sahafi, Ali; Bardhan Roy, Rupak; Ergun, Arif Sanli; Bozkurt, Ayhan

    2017-06-01

    Conventional High Intensity Focused Ultrasound (HIFU) is a therapeutic modality which is extracorporeally administered. In applications where a relatively small HIFU lesion is required, an intravascular HIFU probe can be deployed to the ablation site. In this paper, we demonstrate the design and implementation a fully integrated HIFU drive system on a chip to be placed on a 6 Fr catheter probe. An 8-element capacitive micromachined ultrasound transducer (CMUT) ring array of 2 mm diameter has been used as the ultrasound source. The driver chip is fabricated in 0.35 μm AMS high-voltage CMOS technology and comprises eight continuous-wave (CW) high-voltage CMUT drivers (10.9 ns and 9.4 ns rise and fall times at 20 V pp output into a 15 pF), an eight-channel digital beamformer (8-12 MHz output frequency with 11.25 ° phase accuracy) and a phase locked loop with an integrated VCO as a tunable clock source (128-192 MHz). The chip occupies 1.85 × 1.8 mm 2 area including input and output (I/O) pads. When the transducer array is immersed in sunflower oil and driven by the IC with eight 20 V pp CW pulses at 10 MHz, real-time thermal images of the HIFU beam indicate that the focal temperature rises by 16.8  ° C in 11 seconds. Each HV driver consumes around 67 mW of power when driving the CMUT array at 10 MHz, which adds up to 560 mW for the whole chip. FEM based analysis reveals that the outer surface temperature of the catheter is expected to remain below the 42  ° C tissue damage limit during therapy.

  11. Saturn V S-IC (First) Stage

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This cutaway illustration shows the Saturn V S-IC (first) stage with detailed callouts of the components. The S-IC Stage is 138 feet long and 33 feet in diameter, producing 7,500,000 pounds of thrust through five F-1 engines that are powered by liquid oxygen and kerosene. Four of the engines are mounted on an outer ring and gimbal for control purposes. The fifth engine is rigidly mounted in the center. When ignited, the roar produced by the five engines equals the sound of 8,000,000 hi-fi sets.

  12. Graphene/Si CMOS Hybrid Hall Integrated Circuits

    PubMed Central

    Huang, Le; Xu, Huilong; Zhang, Zhiyong; Chen, Chengying; Jiang, Jianhua; Ma, Xiaomeng; Chen, Bingyan; Li, Zishen; Zhong, Hua; Peng, Lian-Mao

    2014-01-01

    Graphene/silicon CMOS hybrid integrated circuits (ICs) should provide powerful functions which combines the ultra-high carrier mobility of graphene and the sophisticated functions of silicon CMOS ICs. But it is difficult to integrate these two kinds of heterogeneous devices on a single chip. In this work a low temperature process is developed for integrating graphene devices onto silicon CMOS ICs for the first time, and a high performance graphene/CMOS hybrid Hall IC is demonstrated. Signal amplifying/process ICs are manufactured via commercial 0.18 um silicon CMOS technology, and graphene Hall elements (GHEs) are fabricated on top of the passivation layer of the CMOS chip via a low-temperature micro-fabrication process. The sensitivity of the GHE on CMOS chip is further improved by integrating the GHE with the CMOS amplifier on the Si chip. This work not only paves the way to fabricate graphene/Si CMOS Hall ICs with much higher performance than that of conventional Hall ICs, but also provides a general method for scalable integration of graphene devices with silicon CMOS ICs via a low-temperature process. PMID:24998222

  13. Chip packaging technique

    NASA Technical Reports Server (NTRS)

    Jayaraj, Kumaraswamy (Inventor); Noll, Thomas E. (Inventor); Lockwood, Harry F. (Inventor)

    2001-01-01

    A hermetically sealed package for at least one semiconductor chip is provided which is formed of a substrate having electrical interconnects thereon to which the semiconductor chips are selectively bonded, and a lid which preferably functions as a heat sink, with a hermetic seal being formed around the chips between the substrate and the heat sink. The substrate is either formed of or includes a layer of a thermoplastic material having low moisture permeability which material is preferably a liquid crystal polymer (LCP) and is a multiaxially oriented LCP material for preferred embodiments. Where the lid is a heat sink, the heat sink is formed of a material having high thermal conductivity and preferably a coefficient of thermal expansion which substantially matches that of the chip. A hermetic bond is formed between the side of each chip opposite that connected to the substrate and the heat sink. The thermal bond between the substrate and the lid/heat sink may be a pinched seal or may be provided, for example by an LCP frame which is hermetically bonded or sealed on one side to the substrate and on the other side to the lid/heat sink. The chips may operate in the RF or microwave bands with suitable interconnects on the substrate and the chips may also include optical components with optical fibers being sealed into the substrate and aligned with corresponding optical components to transmit light in at least one direction. A plurality of packages may be physically and electrically connected together in a stack to form a 3D array.

  14. Compression Debarking of Stored Wood Chips

    Treesearch

    James A. Mattson

    1974-01-01

    Two 750 ft. piles of unbarked chips were stored for 1 year to evaluate the effect of chip storage on the effectiveness of bark-chip separations-segregation methods under study. in processing stored chips suffered more wood loss than fresh chips.

  15. Qualification and Reliability for MEMS and IC Packages

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza

    2004-01-01

    Advanced IC electronic packages are moving toward miniaturization from two key different approaches, front and back-end processes, each with their own challenges. Successful use of more of the back-end process front-end, e.g. microelectromechanical systems (MEMS) Wafer Level Package (WLP), enable reducing size and cost. Use of direct flip chip die is the most efficient approach if and when the issues of know good die and board/assembly are resolved. Wafer level package solve the issue of known good die by enabling package test, but it has its own limitation, e.g., the I/O limitation, additional cost, and reliability. From the back-end approach, system-in-a-package (SIAP/SIP) development is a response to an increasing demand for package and die integration of different functions into one unit to reduce size and cost and improve functionality. MEMS add another challenging dimension to electronic packaging since they include moving mechanical elements. Conventional qualification and reliability need to be modified and expanded in most cases in order to detect new unknown failures. This paper will review four standards that already released or being developed that specifically address the issues on qualification and reliability of assembled packages. Exposures to thermal cycles, monotonic bend test, mechanical shock and drop are covered in these specifications. Finally, mechanical and thermal cycle qualification data generated for MEMS accelerometer will be presented. The MEMS was an element of an inertial measurement unit (IMU) qualified for NASA Mars Exploration Rovers (MERs), Spirit and Opportunity that successfully is currently roaring the Martian surface

  16. On-chip liquid storage and dispensing for lab-on-a-chip applications

    NASA Astrophysics Data System (ADS)

    Bodén, Roger; Lehto, Marcus; Margell, Joakim; Hjort, Klas; Schweitz, Jan-Åke

    2008-07-01

    This work presents novel components for on-chip storage and dispensing inside a lab-on-a-chip (LOC) for applications in immunoassay point-of-care testing (POCT), where incubation and washing steps are essential. It involves easy-to-use on-chip solutions for the sequential thermo-hydraulic actuation of liquids. The novel concept of combining the use of a rubber plug, both as a non-return valve cap and as a liquid injection interface of a sealed reservoir, allows simple filling of a sterilized cavity, as well as the storage and dispensing of reagent and washing buffer liquids. Segmenting the flow with air spacers enables effective rinsing and the use of small volumes of on-chip stored liquids. The chip uses low-resistance resistors as heaters in the paraffin actuator, providing the low-voltage actuation that is preferred for handheld battery driven instruments.

  17. Interband cascade (IC) photovoltaic (PV) architecture for PV devices

    DOEpatents

    Yang, Rui Q.; Tian, Zhaobing; Mishima, Tetsuya D.; Santos, Michael B.; Johnson, Matthew B.; Klem, John F.

    2015-10-20

    A photovoltaic (PV) device, comprising a PV interband cascade (IC) stage, wherein the IC PV stage comprises an absorption region with a band gap, the absorption region configured to absorb photons, an intraband transport region configured to act as a hole barrier, and an interband tunneling region configured to act as an electron barrier. An IC PV architecture for a photovoltaic device, the IC PV architecture comprising an absorption region, an intraband transport region coupled to the absorption region, and an interband tunneling region coupled to the intraband transport region and to the adjacent absorption region, wherein the absorption region, the intraband transport region, and the interband tunneling region are positioned such that electrons will flow from the absorption region to the intraband transport region to the interband tunneling region.

  18. EXTRACTION AND DETECTION OF A NEW ARSINE SULFIDE CONTAINING ARSENOSUGAR IN MOLLUSCS BY IC-ICP-MS AND IC-ESI-MS/MS

    EPA Science Inventory

    Using IC-ICP-MS and IC-ESI-MS/MS, an unknown arsenical compound in mollusks has been identified as a new arsine sulfide containing analog of a known arsenosugar and is referred to as As(498). This species has been observed in four separate shellfish species following a mild metha...

  19. Characterization and Modeling of Fine-Pitch Copper Ball Bonding on a Cu/Low- k Chip

    NASA Astrophysics Data System (ADS)

    Che, F. X.; Wai, L. C.; Zhang, Xiaowu; Chai, T. C.

    2015-02-01

    Cu ball bonding faces more challenges than Au ball bonding, for example, excessive deformation of the bond pad and damage of Cu/low- k structures, because of the much greater hardness of Cu free air balls. In this study, dynamic finite-element analysis (FEA) modeling with displacement control was developed to simulate the ball-bonding process. The three-dimensional (3D) FEA simulation results were confirmed by use of stress-measurement data, obtained by use of stress sensors built into the test chip. Stress comparison between two-dimensional (2D) and 3D FEA models showed the 2D plain strain model to be a reasonable and effective model for simulation of the ball-bonding process without loss of accuracy; it also saves computing resources. The 2D FEA model developed was then used in studies of a Cu/low- k chip to find ways of reducing Al bond pad deformation and stresses of low- k structures. The variables studied included Al pad properties, capillary geometry, bond pad design (Al pad thickness, Al pad coated with Ni layer), and the effect of ultrasonic bonding power.

  20. 30 CFR 57.22102 - Smoking (I-C mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Smoking (I-C mines). 57.22102 Section 57.22102... Methane in Metal and Nonmetal Mines Fire Prevention and Control § 57.22102 Smoking (I-C mines). (a) Persons shall not smoke or carry smoking materials, matches, or lighters underground or within 50 feet of...

  1. 30 CFR 57.22102 - Smoking (I-C mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Smoking (I-C mines). 57.22102 Section 57.22102... Methane in Metal and Nonmetal Mines Fire Prevention and Control § 57.22102 Smoking (I-C mines). (a) Persons shall not smoke or carry smoking materials, matches, or lighters underground or within 50 feet of...

  2. 30 CFR 57.22102 - Smoking (I-C mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Smoking (I-C mines). 57.22102 Section 57.22102... Methane in Metal and Nonmetal Mines Fire Prevention and Control § 57.22102 Smoking (I-C mines). (a) Persons shall not smoke or carry smoking materials, matches, or lighters underground or within 50 feet of...

  3. 30 CFR 57.22102 - Smoking (I-C mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Smoking (I-C mines). 57.22102 Section 57.22102... Methane in Metal and Nonmetal Mines Fire Prevention and Control § 57.22102 Smoking (I-C mines). (a) Persons shall not smoke or carry smoking materials, matches, or lighters underground or within 50 feet of...

  4. A multi-year survey of stem-end chip defect in chipping potatoes (Solanum tuberosum L.)

    USDA-ARS?s Scientific Manuscript database

    One of the most serious tuber quality concerns of US chip potato growers is stem-end chip defect, which is defined as a localized post-fry discoloration in and adjacent to the vasculature on the stem end portion of potato chips. The incidence and severity of stem-end chip defect vary with growing lo...

  5. Fluorimetric urease inhibition assay on a multilayer microfluidic chip with immunoaffinity immobilized enzyme reactors.

    PubMed

    Zhang, Qin; Tang, Xiuwen; Hou, Fenghua; Yang, Jianping; Xie, Zhiyong; Cheng, Zhiyi

    2013-10-01

    We fabricated a three-layer polydimethylsiloxane (PDMS)-based microfluidic chip for realizing urease inhibition assay with sensitive fluorescence detection. Procedures such as sample prehandling, enzyme reaction, reagent mixing, fluorescence derivatization, and detection can be readily carried out. Urease reactors were prepared by adsorption of rabbit immunoglobulin G (IgG) and immunoreaction with urease-conjugated goat anti-rabbit IgG. Acetohydroxamic acid (AHA) as a competitive inhibitor of urease was tested on the chip. Microfluidically generated gradient concentrations of AHA with substrate (urea) were loaded into urease reactors. After incubation, the produced ammonia was transported out of reactors and then reacted with o-phthalaldehyde (OPA) to generate fluorescent products. Urease inhibition was indicated by a decrease in fluorescence signal detected by microplate reader. The IC50 value of AHA was determined and showed good agreement with that obtained in microplate. The presented device combines several steps of the analytical process with advantages of low reagent consumption, reduced analysis time, and ease of manipulation. This microfluidic approach can be extended to the screening of inhibitory compounds in drug discovery. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. A radial velocity survey of the open cluster IC 4665

    NASA Technical Reports Server (NTRS)

    Prosser, Charles F.; Giampapa, Mark S.

    1994-01-01

    A radial velocity survey of the open cluster IC 4665 is reported for a group of candidate members previously identified on the basis of proper motion and photometry. Of those candidates observed, 20 out of 42 have radial velocities consistent with membership; these cluster members populate the F5-K0 dwarf region and represent the first relatively conclusive membership determinations for such solar-type stars in IC 4665. Three new spectroscopic binary members of the cluster have been identified. Rotational velocities have also been derived; the v sin i distribution among IC 4665 members reveals that most apparent G dwarf members of IC 4665 are seen to exhibit substantial rotation (v sin i greater than 10 km/s). When compared to evolutionary isochrones, the current list of intermediate-mass members appears to support earlier suggestions that IC 4665 has an age comparable to the Pleiades.

  7. Steaming Chips Facilitates Bark Removal

    Treesearch

    John R. Erickson

    1976-01-01

    Whole tree chipping is a productive and economical harvesting system. The resultant product, however, is barky chips. THis paper outlines a promising method for removing the bark particles from whole tree chips.

  8. Nuclear factor I-C reciprocally regulates adipocyte and osteoblast differentiation via control of canonical Wnt signaling.

    PubMed

    Zhou, Jie; Wang, Shan; Qi, Qi; Yang, Xiaoyue; Zhu, Endong; Yuan, Hairui; Li, Xuemei; Liu, Ying; Li, Xiaoxia; Wang, Baoli

    2017-05-01

    Nuclear factor I-C (NFIC) has recently been identified as an important player in osteogenesis and bone homeostasis in vivo However, the molecular mechanisms involved have yet to be defined. In the current study, Nfic expression was altered in primary marrow stromal cells and established progenitor lines after adipogenic and osteogenic treatment. Overexpression of Nfic in stromal cells ST2, mesenchymal cells C3H10T1/2, and primary marrow stromal cells inhibited adipogenic differentiation, whereas it promoted osteogenic differentiation. Conversely, silencing of endogenous Nfic in the cell lines enhanced adipogenic differentiation, whereas it blocked osteogenic differentiation. Mechanism investigations revealed that Nfic overexpression promoted nuclear translocation of β-catenin and increased nuclear protein levels of β-catenin and transcription factor 7-like 2 (TCF7L2). Promoter studies and the chromatin immunoprecipitation (ChIP) assay revealed that NFIC directly binds to the promoter of low-density lipoprotein receptor-related protein 5 (Lrp5) and thereafter transactivates the promoter. Finally, inactivation of canonical Wnt signaling in ST2 attenuated the inhibition of adipogenic differentiation and stimulation of osteogenic differentiation by NFIC. Our study suggests that NFIC balances adipogenic and osteogenic differentiation from progenitor cells through controlling canonical Wnt signaling and highlights the potential of NFIC as a target for new therapies to control metabolic disorders like osteoporosis and obesity.-Zhou, J., Wang, S., Qi, Q., Yang, X., Zhu, E., Yuan, H., Li, X., Liu, Y., Li, X., Wang, B. Nuclear factor I-C reciprocally regulates adipocyte and osteoblast differentiation via control of canonical Wnt signaling. © FASEB.

  9. Docking-dependent Ubiquitination of the Interferon Regulatory Factor-1 Tumor Suppressor Protein by the Ubiquitin Ligase CHIP*

    PubMed Central

    Narayan, Vikram; Pion, Emmanuelle; Landré, Vivien; Müller, Petr; Ball, Kathryn L.

    2011-01-01

    Characteristically for a regulatory protein, the IRF-1 tumor suppressor turns over rapidly with a half-life of between 20–40 min. This allows IRF-1 to reach new steady state protein levels swiftly in response to changing environmental conditions. Whereas CHIP (C terminus of Hsc70-interacting protein), appears to chaperone IRF-1 in unstressed cells, formation of a stable IRF-1·CHIP complex is seen under specific stress conditions. Complex formation, in heat- or heavy metal-treated cells, is accompanied by a decrease in IRF-1 steady state levels and an increase in IRF-1 ubiquitination. CHIP binds directly to an intrinsically disordered domain in the central region of IRF-1 (residues 106–140), and this site is sufficient to form a stable complex with CHIP in cells and to compete in trans with full-length IRF-1, leading to a reduction in its ubiquitination. The study reveals a complex relationship between CHIP and IRF-1 and highlights the role that direct binding or “docking” of CHIP to its substrate(s) can play in its mechanism of action as an E3 ligase. PMID:20947504

  10. The impact of CHIP premium increases on insurance outcomes among CHIP eligible children.

    PubMed

    Nikolova, Silviya; Stearns, Sally

    2014-03-03

    Within the United States, public insurance premiums are used both to discourage private health policy holders from dropping coverage and to reduce state budget costs. Prior research suggests that the odds of having private coverage and being uninsured increase with increases in public insurance premiums. The aim of this paper is to test effects of Children's Health Insurance Program (CHIP) premium increases on public insurance, private insurance, and uninsurance rates. The fact that families just below and above a state-specific income cut-off are likely very similar in terms of observable and unobservable characteristics except the premium contribution provides a natural experiment for estimating the effect of premium increases. Using 2003 Medical Expenditure Panel Survey (MEPS) merged with CHIP premiums, we compare health insurance outcomes for CHIP eligible children as of January 2003 in states with a two-tier premium structure using a cross-sectional regression discontinuity methodology. We use difference-in-differences analysis to compare longitudinal insurance outcomes by December 2003. Higher CHIP premiums are associated with higher likelihood of private insurance. Disenrollment from CHIP in response to premium increases over time does not increase the uninsurance rate. When faced with higher CHIP premiums, private health insurance may be a preferable alternative for CHIP eligible families with higher incomes. Therefore, competition in the insurance exchanges being formed under the Affordable Care Act could enhance choice.

  11. Programmable on-chip and off-chip network architecture on demand for flexible optical intra-datacenters.

    PubMed

    Rofoee, Bijan Rahimzadeh; Zervas, Georgios; Yan, Yan; Amaya, Norberto; Qin, Yixuan; Simeonidou, Dimitra

    2013-03-11

    The paper presents a novel network architecture on demand approach using on-chip and-off chip implementations, enabling programmable, highly efficient and transparent networking, well suited for intra-datacenter communications. The implemented FPGA-based adaptable line-card with on-chip design along with an architecture on demand (AoD) based off-chip flexible switching node, deliver single chip dual L2-Packet/L1-time shared optical network (TSON) server Network Interface Cards (NIC) interconnected through transparent AoD based switch. It enables hitless adaptation between Ethernet over wavelength switched network (EoWSON), and TSON based sub-wavelength switching, providing flexible bitrates, while meeting strict bandwidth, QoS requirements. The on and off-chip performance results show high throughput (9.86Ethernet, 8.68Gbps TSON), high QoS, as well as hitless switch-over.

  12. Genome-wide Target Enrichment-aided Chip Design: a 66 K SNP Chip for Cashmere Goat.

    PubMed

    Qiao, Xian; Su, Rui; Wang, Yang; Wang, Ruijun; Yang, Ting; Li, Xiaokai; Chen, Wei; He, Shiyang; Jiang, Yu; Xu, Qiwu; Wan, Wenting; Zhang, Yaolei; Zhang, Wenguang; Chen, Jiang; Liu, Bin; Liu, Xin; Fan, Yixing; Chen, Duoyuan; Jiang, Huaizhi; Fang, Dongming; Liu, Zhihong; Wang, Xiaowen; Zhang, Yanjun; Mao, Danqing; Wang, Zhiying; Di, Ran; Zhao, Qianjun; Zhong, Tao; Yang, Huanming; Wang, Jian; Wang, Wen; Dong, Yang; Chen, Xiaoli; Xu, Xun; Li, Jinquan

    2017-08-17

    Compared with the commercially available single nucleotide polymorphism (SNP) chip based on the Bead Chip technology, the solution hybrid selection (SHS)-based target enrichment SNP chip is not only design-flexible, but also cost-effective for genotype sequencing. In this study, we propose to design an animal SNP chip using the SHS-based target enrichment strategy for the first time. As an update to the international collaboration on goat research, a 66 K SNP chip for cashmere goat was created from the whole-genome sequencing data of 73 individuals. Verification of this 66 K SNP chip with the whole-genome sequencing data of 436 cashmere goats showed that the SNP call rates was between 95.3% and 99.8%. The average sequencing depth for target SNPs were 40X. The capture regions were shown to be 200 bp that flank target SNPs. This chip was further tested in a genome-wide association analysis of cashmere fineness (fiber diameter). Several top hit loci were found marginally associated with signaling pathways involved in hair growth. These results demonstrate that the 66 K SNP chip is a useful tool in the genomic analyses of cashmere goats. The successful chip design shows that the SHS-based target enrichment strategy could be applied to SNP chip design in other species.

  13. UW VLSI chip tester

    NASA Astrophysics Data System (ADS)

    McKenzie, Neil

    1989-12-01

    We present a design for a low-cost, functional VLSI chip tester. It is based on the Apple MacIntosh II personal computer. It tests chips that have up to 128 pins. All pin drivers of the tester are bidirectional; each pin is programmed independently as an input or an output. The tester can test both static and dynamic chips. Rudimentary speed testing is provided. Chips are tested by executing C programs written by the user. A software library is provided for program development. Tests run under both the Mac Operating System and A/UX. The design is implemented using Xilinx Logic Cell Arrays. Price/performance tradeoffs are discussed.

  14. Three dimensional, multi-chip module

    DOEpatents

    Bernhardt, A.F.; Petersen, R.W.

    1993-08-31

    A plurality of multi-chip modules are stacked and bonded around the perimeter by sold-bump bonds to adjacent modules on, for instance, three sides of the perimeter. The fourth side can be used for coolant distribution, for more interconnect structures, or other features, depending on particular design considerations of the chip set. The multi-chip modules comprise a circuit board, having a planarized interconnect structure formed on a first major surface, and integrated circuit chips bonded to the planarized interconnect surface. Around the periphery of each circuit board, long, narrow dummy chips'' are bonded to the finished circuit board to form a perimeter wall. The wall is higher than any of the chips on the circuit board, so that the flat back surface of the board above will only touch the perimeter wall. Module-to-module interconnect is laser-patterned on the sides of the boards and over the perimeter wall in the same way and at the same time that chip to board interconnect may be laser-patterned.

  15. Three dimensional, multi-chip module

    DOEpatents

    Bernhardt, Anthony F.; Petersen, Robert W.

    1993-01-01

    A plurality of multi-chip modules are stacked and bonded around the perimeter by sold-bump bonds to adjacent modules on, for instance, three sides of the perimeter. The fourth side can be used for coolant distribution, for more interconnect structures, or other features, depending on particular design considerations of the chip set. The multi-chip modules comprise a circuit board, having a planarized interconnect structure formed on a first major surface, and integrated circuit chips bonded to the planarized interconnect surface. Around the periphery of each circuit board, long, narrow "dummy chips" are bonded to the finished circuit board to form a perimeter wall. The wall is higher than any of the chips on the circuit board, so that the flat back surface of the board above will only touch the perimeter wall. Module-to-module interconnect is laser-patterned o the sides of the boards and over the perimeter wall in the same way and at the same time that chip to board interconnect may be laser-patterned.

  16. Process for 3D chip stacking

    DOEpatents

    Malba, V.

    1998-11-10

    A manufacturable process for fabricating electrical interconnects which extend from a top surface of an integrated circuit chip to a sidewall of the chip using laser pantography to pattern three dimensional interconnects. The electrical interconnects may be of an L-connect or L-shaped type. The process implements three dimensional (3D) stacking by moving the conventional bond or interface pads on a chip to the sidewall of the chip. Implementation of the process includes: (1) holding individual chips for batch processing, (2) depositing a dielectric passivation layer on the top and sidewalls of the chips, (3) opening vias in the dielectric, (4) forming the interconnects by laser pantography, and (5) removing the chips from the holding means. The process enables low cost manufacturing of chips with bond pads on the sidewalls, which enables stacking for increased performance, reduced space, and higher functional per unit volume. 3 figs.

  17. Process for 3D chip stacking

    DOEpatents

    Malba, Vincent

    1998-01-01

    A manufacturable process for fabricating electrical interconnects which extend from a top surface of an integrated circuit chip to a sidewall of the chip using laser pantography to pattern three dimensional interconnects. The electrical interconnects may be of an L-connect or L-shaped type. The process implements three dimensional (3D) stacking by moving the conventional bond or interface pads on a chip to the sidewall of the chip. Implementation of the process includes: 1) holding individual chips for batch processing, 2) depositing a dielectric passivation layer on the top and sidewalls of the chips, 3) opening vias in the dielectric, 4) forming the interconnects by laser pantography, and 5) removing the chips from the holding means. The process enables low cost manufacturing of chips with bond pads on the sidewalls, which enables stacking for increased performance, reduced space, and higher functional per unit volume.

  18. ICS logging solution for network-based attacks using Gumistix technology

    NASA Astrophysics Data System (ADS)

    Otis, Jeremy R.; Berman, Dustin; Butts, Jonathan; Lopez, Juan

    2013-05-01

    Industrial Control Systems (ICS) monitor and control operations associated with the national critical infrastructure (e.g., electric power grid, oil and gas pipelines and water treatment facilities). These systems rely on technologies and architectures that were designed for system reliability and availability. Security associated with ICS was never an inherent concern, primarily due to the protections afforded by network isolation. However, a trend in ICS operations is to migrate to commercial networks via TCP/IP in order to leverage commodity benefits and cost savings. As a result, system vulnerabilities are now exposed to the online community. Indeed, recent research has demonstrated that many exposed ICS devices are being discovered using readily available applications (e.g., ShodanHQ search engine and Google-esque queries). Due to the lack of security and logging capabilities for ICS, most knowledge about attacks are derived from real world incidents after an attack has already been carried out and the damage has been done. This research provides a method for introducing sensors into the ICS environment that collect information about network-based attacks. The sensors are developed using an inexpensive Gumstix platform that can be deployed and incorporated with production systems. Data obtained from the sensors provide insight into attack tactics (e.g., port scans, Nessus scans, Metasploit modules, and zero-day exploits) and characteristics (e.g., attack origin, frequency, and level of persistence). Findings enable security professionals to draw an accurate, real-time awareness of the threats against ICS devices and help shift the security posture from reactionary to preventative.

  19. Smart vision chips: An overview

    NASA Technical Reports Server (NTRS)

    Koch, Christof

    1994-01-01

    This viewgraph presentation presents four working analog VLSI vision chips: (1) time-derivative retina, (2) zero-crossing chip, (3) resistive fuse, and (4) figure-ground chip; work in progress on computing motion and neuromorphic systems; and conceptual and practical lessons learned.

  20. The impact of CHIP premium increases on insurance outcomes among CHIP eligible children

    PubMed Central

    2014-01-01

    Background Within the United States, public insurance premiums are used both to discourage private health policy holders from dropping coverage and to reduce state budget costs. Prior research suggests that the odds of having private coverage and being uninsured increase with increases in public insurance premiums. The aim of this paper is to test effects of Children’s Health Insurance Program (CHIP) premium increases on public insurance, private insurance, and uninsurance rates. Methods The fact that families just below and above a state-specific income cut-off are likely very similar in terms of observable and unobservable characteristics except the premium contribution provides a natural experiment for estimating the effect of premium increases. Using 2003 Medical Expenditure Panel Survey (MEPS) merged with CHIP premiums, we compare health insurance outcomes for CHIP eligible children as of January 2003 in states with a two-tier premium structure using a cross-sectional regression discontinuity methodology. We use difference-in-differences analysis to compare longitudinal insurance outcomes by December 2003. Results Higher CHIP premiums are associated with higher likelihood of private insurance. Disenrollment from CHIP in response to premium increases over time does not increase the uninsurance rate. Conclusions When faced with higher CHIP premiums, private health insurance may be a preferable alternative for CHIP eligible families with higher incomes. Therefore, competition in the insurance exchanges being formed under the Affordable Care Act could enhance choice. PMID:24589197

  1. IC-Finder: inferring robustly the hierarchical organization of chromatin folding

    PubMed Central

    Haddad, Noelle

    2017-01-01

    Abstract The spatial organization of the genome plays a crucial role in the regulation of gene expression. Recent experimental techniques like Hi-C have emphasized the segmentation of genomes into interaction compartments that constitute conserved functional domains participating in the maintenance of a proper cell identity. Here, we propose a novel method, IC-Finder, to identify interaction compartments (IC) from experimental Hi-C maps. IC-Finder is based on a hierarchical clustering approach that we adapted to account for the polymeric nature of chromatin. Based on a benchmark of realistic in silico Hi-C maps, we show that IC-Finder is one of the best methods in terms of reliability and is the most efficient numerically. IC-Finder proposes two original options: a probabilistic description of the inferred compartments and the possibility to explore the various hierarchies of chromatin organization. Applying the method to experimental data in fly and human, we show how the predicted segmentation may depend on the normalization scheme and how 3D compartmentalization is tightly associated with epigenomic information. IC-Finder provides a robust and generic ‘all-in-one’ tool to uncover the general principles of 3D chromatin folding and their influence on gene regulation. The software is available at http://membres-timc.imag.fr/Daniel.Jost/DJ-TIMC/Software.html. PMID:28130423

  2. Possibilities for mixed mode chip manufacturing in EUROPRACTICE

    NASA Astrophysics Data System (ADS)

    Das, C.

    1997-02-01

    EUROPRACTICE is an EC initiative under the ESPRIT programme which aims to stimulate the wider exploitation of state-of-the-art microelectronics technologies by European industry and to enhance European industrial competitiveness in the global market-place. Through EUROPRACTICE, the EC has created a range of Basic Services that offer users a cost-effective and flexible means of accessing three main microelectronics-based technologies: Application Specific Integrated Circuit (ASICs), Multi-Chip Modules (MCMs) and Microsystems. EUROPRACTICE Basic Services reduce the cost and risk for companies wishing to begin using these technologies. EUROPRACTICE offers a fully supported, low cost route for companies to design and fabricate ASICs for their individual applications. Low cost is achieved by consolidating designs from many users onto a single semiconductor wafer (MPW: Multi Project Wafer). The EUROPRACTICE IC Manufacturing Service (ICMS) offers a broad range of fabrication technologies including CMOS, BiCMOS and GaAs. The Service extends from enabling users to produce prototype ASICs for testing and evaluation, through to low-volume production runs.

  3. Hubble Space Telescope Image: Planetary Nebula IC 4406

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This Hubble Space Telescope image reveals a rainbow of colors in this dying star, called IC 446. Like many other so-called planetary nebulae, IC 4406 exhibits a high degree of symmetry. The nebula's left and right halves are nearly mirror images of the other. If we could fly around IC 446 in a spaceship, we would see that the gas and dust form a vast donut of material streaming outward from the dying star. We do not see the donut shape in this photograph because we are viewing IC 4406 from the Earth-orbiting HST. From this vantage point, we are seeing the side of the donut. This side view allows us to see the intricate tendrils of material that have been compared to the eye's retina. In fact, IC 4406 is dubbed the 'Retina Nebula.' The donut of material confines the intense radiation coming from the remnant of the dying star. Gas on the inside of the donut is ionized by light from the central star and glows. Light from oxygen atoms is rendered blue in this image; hydrogen is shown as green, and nitrogen as red. The range of color in the final image shows the differences in concentration of these three gases in the nebula. This image is a composite of data taken by HST's Wide Field Planetary Camera 2 in June 2001 and in January 2002 by Bob O'Dell (Vanderbilt University) and collaborators, and in January by the Hubble Heritage Team (STScI). Filters used to create this color image show oxygen, hydrogen, and nitrogen gas glowing in this object.

  4. Single chip camera active pixel sensor

    NASA Technical Reports Server (NTRS)

    Shaw, Timothy (Inventor); Pain, Bedabrata (Inventor); Olson, Brita (Inventor); Nixon, Robert H. (Inventor); Fossum, Eric R. (Inventor); Panicacci, Roger A. (Inventor); Mansoorian, Barmak (Inventor)

    2003-01-01

    A totally digital single chip camera includes communications to operate most of its structure in serial communication mode. The digital single chip camera include a D/A converter for converting an input digital word into an analog reference signal. The chip includes all of the necessary circuitry for operating the chip using a single pin.

  5. Delamination study of chip-to-chip bonding for a LIGA-based safety and arming system

    NASA Astrophysics Data System (ADS)

    Subramanian, Gowrishankar; Deeds, Michael; Cochran, Kevin R.; Raghavan, Raghu; Sandborn, Peter A.

    1999-08-01

    The development of a miniature underwater weapon safety and arming system requires reliable chip-to-chip bonding of die that contain microelectromechanical actuators and sensors fabricated using a LIGA MEMS fabrication process. Chip-to- chip bonding is associated for several different bond materials (indium solder, thermoplastic paste, thermoplastic film and epoxy film), and bonding configurations (with an alloy 42 spacer, silicon to ceramic, and silicon to silicon). Metrology using acoustic micro imaging has been developed to determine the fraction of delamination of samples.

  6. Isolation and characterization of isochorismate synthase and cinnamate 4-hydroxylase during salinity stress, wounding, and salicylic acid treatment in Carthamus tinctorius

    PubMed Central

    Sadeghi, Mahnaz; Dehghan, Sara; Fischer, Rainer; Wenzel, Uwe; Vilcinskas, Andreas; Kavousi, Hamid Reza; Rahnamaeian, Mohammad

    2013-01-01

    Salicylic acid (SA) is a prominent signaling molecule during biotic and abiotic stresses in plants biosynthesized via cinnamate and isochorismate pathways. Cinnamate 4-hydroxylase (C4H) and isochorismate synthase (ICS) are the main enzymes in phenylpropanoid and isochorismate pathways, respectively. To investigate the actual roles of these genes in resistance mechanism to environmental stresses, here, the coding sequences of these enzymes in safflower (Carthamus tinctorius), as an oilseed industrial medicinal plant, were partially isolated and their expression profiles during salinity stress, wounding, and salicylic acid treatment were monitored. As a result, safflower ICS (CtICS) and C4H (CtC4H) were induced in early time points after wounding (3–6 h). Upon salinity stress, CtICS and CtC4H were highly expressed for the periods of 6–24 h and 3–6 h after treatment, respectively. It seems evident that ICS expression level is SA concentration dependent as if safflower treatment with 1 mM SA could induce ICS much stronger than that with 0.1 mM, while C4H is less likely to be so. Based on phylogenetic analysis, safflower ICS has maximum similarity to its ortholog in Vitis vinifera up to 69%, while C4H shows the highest similarity to its ortholog in Echinacea angustifolia up to 96%. Overall, the isolated genes of CtICS and CtC4H in safflower could be considered in plant breeding programs for salinity tolerance as well as for pathogen resistance. PMID:24309561

  7. An economic evaluation of a chlorhexidine chip for treating chronic periodontitis: the CHIP (chlorhexidine in periodontitis) study.

    PubMed

    Henke, C J; Villa, K F; Aichelmann-Reidy, M E; Armitage, G C; Eber, R M; Genco, R J; Killoy, W J; Miller, D P; Page, R C; Polson, A M; Ryder, M I; Silva, S J; Somerman, M J; Van Dyke, T E; Wolff, L F; Evans, C J; Finkelman, R D

    2001-11-01

    The authors previously suggested that an adjunctive, controlled-release chlorhexidine, or CHX, chip may reduce periodontal surgical needs at little additional cost. This article presents an economic analysis of the CHX chip in general dental practice. In a one-year prospective clinical trial, 484 chronic periodontitis patients in 52 general practices across the United States were treated with either scaling and root planing, or SRP, plus any therapy prescribed by treating, unblinded dentists; or SRP plus other therapy as above but including the CHX chip. Economic data were collected from bills, case report forms and 12-month treatment recommendations from blinded periodontist evaluators. Total dental charges were higher for SRP + CHX chip patients vs. SRP patients when CHX chip costs were included (P = .027) but lower when CHX chip costs were excluded (P = .012). About one-half of the CHX chip acquisition cost was offset by savings in other charges. SRP + CHX chip patients were about 50 percent less likely to undergo surgical procedures than were SRP patients (P = .021). At the end of the trial, periodontist evaluators recommended similar additional procedures for both groups: SRP, about 46 percent; maintenance, about 37 percent; surgery, 56 percent for SRP alone and 63 percent for SRP + CHX chip. Adjunctive CHX chip use for general-practice patients with periodontitis increased costs but reduced surgeries over one year. At study's end, periodontists recommended similar additional surgical treatment for both groups. In general practice, routine use of the CHX chip suggests that costs will be partially offset by reduced surgery over at least one year.

  8. Optical pumping of deep traps in AlGaN/GaN-on-Si HEMTs using an on-chip Schottky-on-heterojunction light-emitting diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Baikui; Tang, Xi; Chen, Kevin J., E-mail: eekjchen@ust.hk

    2015-03-02

    In this work, by using an on-chip integrated Schottky-on-heterojunction light-emitting diode (SoH-LED) which is seamlessly integrated with the AlGaN/GaN high electron mobility transistor (HEMT), we studied the effect of on-chip light illumination on the de-trapping processes of electrons from both surface and bulk traps. Surface trapping was generated by applying OFF-state drain bias stress, while bulk trapping was generated by applying positive substrate bias stress. The de-trapping processes of surface and/or bulk traps were monitored by measuring the recovery of dynamic on-resistance R{sub on} and/or threshold voltage V{sub th} of the HEMT. The results show that the recovery processes ofmore » both dynamic R{sub on} and threshold voltage V{sub th} of the HEMT can be accelerated by the on-chip SoH-LED light illumination, demonstrating the potentiality of on-chip hybrid opto-HEMTs to minimize the influences of traps during dynamic operation of AlGaN/GaN power HEMTs.« less

  9. Lab-on-a-Chip

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Labs on chips are manufactured in many shapes and sizes and can be used for numerous applications, from medical tests to water quality monitoring to detecting the signatures of life on other planets. The eight holes on this chip are actually ports that can be filled with fluids or chemicals. Tiny valves control the chemical processes by mixing fluids that move in the tiny channels that look like lines, connecting the ports. Scientists at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama designed this chip to grow biological crystals on the International Space Station. Through this research, they discovered that this technology is ideally suited for solving the challenges of the Vision for Space Exploration. For example, thousands of chips the size of dimes could be loaded on a Martian rover looking for biosignatures of past or present life. Other types of chips could be placed in handheld devices used to monitor microbes in water or to quickly conduct medical tests on astronauts. (NASA/MSFC/D.Stoffer)

  10. 30 CFR 57.22104 - Open flames (I-C mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Open flames (I-C mines). 57.22104 Section 57... Standards for Methane in Metal and Nonmetal Mines Fire Prevention and Control § 57.22104 Open flames (I-C mines). (a) Open flames, including cutting and welding, shall not be used underground. (b) Welding and...

  11. 30 CFR 57.22104 - Open flames (I-C mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Open flames (I-C mines). 57.22104 Section 57... Standards for Methane in Metal and Nonmetal Mines Fire Prevention and Control § 57.22104 Open flames (I-C mines). (a) Open flames, including cutting and welding, shall not be used underground. (b) Welding and...

  12. 30 CFR 57.22104 - Open flames (I-C mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Open flames (I-C mines). 57.22104 Section 57... Standards for Methane in Metal and Nonmetal Mines Fire Prevention and Control § 57.22104 Open flames (I-C mines). (a) Open flames, including cutting and welding, shall not be used underground. (b) Welding and...

  13. 30 CFR 57.22104 - Open flames (I-C mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Open flames (I-C mines). 57.22104 Section 57... Standards for Methane in Metal and Nonmetal Mines Fire Prevention and Control § 57.22104 Open flames (I-C mines). (a) Open flames, including cutting and welding, shall not be used underground. (b) Welding and...

  14. Lithium Abundances in the Young Open Cluster IC 2602

    NASA Technical Reports Server (NTRS)

    Randich, S.; Aharpour, N.; Pallavicini, R.; Prosser, C. F.; Stauffer, J. R.

    1997-01-01

    We have obtained high-resolution spectra for 28 candidate late-type stars in the 30 Myr old cluster IC 2602. NLTE Li abundances have been derived from measured equivalent widths. The log n(Li) - T(sub eff) and log n(Li) - mass distributions for our sample stars have been compared with those of the Pleiades and alpha Persei. Our data show that F stars in the three clusters have the same lithium content, which corresponds to the initial content for Pop. I stars. G and early-K IC 2602 stars are, on average, somewhat more Li-rich than their counterparts in the two slightly older clusters. Finally, the latest-type IC 2602 stars are heavily Li depleted, with their Li content being as low as the lowest measured among the Pleiades. As in the Pleiades and alpha Per, a star-to-star scatter in lithium is observed among 30 Myr old late-K/early-K dwarfs in IC 2602, indicating that this spread develops in the pre-main sequence phases.

  15. ASASSN-16fp (SN 2016coi): a transitional supernova between Type Ic and broad-lined Ic

    NASA Astrophysics Data System (ADS)

    Kumar, Brajesh; Singh, A.; Srivastav, S.; Sahu, D. K.; Anupama, G. C.

    2018-01-01

    We present results based on a well-sampled optical (UBVRI) and ultraviolet (Swift/UVOT) imaging, and low-resolution optical spectroscopic follow-up observations of the nearby Type Ic supernova (SN) ASASSN-16fp (SN 2016coi). The SN was monitored during the photospheric phase (-10 to +33 d with respect to the B-band maximum light). The rise to maximum light and early post-maximum decline of the light curves are slow. The peak absolute magnitude (MV = -17.7 ± 0.2 mag) of ASASSN-16fp is comparable with broad-lined Ic SN 2002ap, SN 2012ap and transitional Ic SN 2004aw but considerably fainter than the gamma-ray burst/X-ray flash associated SNe (e.g. SN 1998bw, 2006aj). Similar to the light curve, the spectral evolution is also slow. ASASSN-16fp shows distinct photospheric phase spectral lines along with the C II features. The expansion velocity of the ejecta near maximum light reached ∼16 000 km s-1 and settled to ∼8000 km s-1, ∼1 month post-maximum. Analytical modelling of the quasi-bolometric light curve of ASASSN-16fp suggests that ∼0.1 M⊙ 56Ni mass was synthesized in the explosion, with a kinetic energy of 6.9^{+1.5}_{-1.3} × 1051 erg and total ejected mass of ∼4.5 ± 0.3 M⊙.

  16. The FE-I4 Pixel Readout Chip and the IBL Module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbero, Marlon; Arutinov, David; Backhaus, Malte

    2012-05-01

    FE-I4 is the new ATLAS pixel readout chip for the upgraded ATLAS pixel detector. Designed in a CMOS 130 nm feature size process, the IC is able to withstand higher radiation levels compared to the present generation of ATLAS pixel Front-End FE-I3, and can also cope with higher hit rate. It is thus suitable for intermediate radii pixel detector layers in the High Luminosity LHC environment, but also for the inserted layer at 3.3 cm known as the 'Insertable B-Layer' project (IBL), at a shorter timescale. In this paper, an introduction to the FE-I4 will be given, focusing on testmore » results from the first full size FE-I4A prototype which has been available since fall 2010. The IBL project will be introduced, with particular emphasis on the FE-I4-based module concept.« less

  17. Study on Mine Emergency Mechanism based on TARP and ICS

    NASA Astrophysics Data System (ADS)

    Xi, Jian; Wu, Zongzhi

    2018-01-01

    By analyzing the experiences and practices of mine emergency in China and abroad, especially the United States and Australia, normative principle, risk management principle and adaptability principle of constructing mine emergency mechanism based on Trigger Action Response Plans (TARP) and Incident Command System (ICS) are summarized. Classification method, framework, flow and subject of TARP and ICS which are suitable for the actual situation of domestic mine emergency are proposed. The system dynamics model of TARP and ICS is established. The parameters such as evacuation ratio, response rate, per capita emergency capability and entry rate of rescuers are set up. By simulating the operation process of TARP and ICS, the impact of these parameters on the emergency process are analyzed, which could provide a reference and basis for building emergency capacity, formulating emergency plans and setting up action plans in the emergency process.

  18. Reliability and Characteristics of Wafer-Level Chip-Scale Packages under Current Stress

    NASA Astrophysics Data System (ADS)

    Chen, Po-Ying; Kung, Heng-Yu; Lai, Yi-Shao; Hsiung Tsai, Ming; Yeh, Wen-Kuan

    2008-02-01

    In this work, we present a novel approach and method for elucidating the characteristics of wafer-level chip-scale packages (WLCSPs) for electromigration (EM) tests. The die in WLCSP was directly attached to the substrate via a soldered interconnect. The shrinking of the area of the die that is available for power, and the solder bump also shrinks the volume and increases the density of electrons for interconnect efficiency. The bump current density now approaches to 106 A/cm2, at which point the EM becomes a significant reliability issue. As known, the EM failure depends on numerous factors, including the working temperature and the under bump metallization (UBM) thickness. A new interconnection geometry is adopted extensively with moderate success in overcoming larger mismatches between the displacements of components during current and temperature changes. Both environments and testing parameters for WLCSP are increasingly demanded. Although failure mechanisms are considered to have been eliminated or at least made manageable, new package technologies are again challenging its process, integrity and reliability. WLCSP technology was developed to eliminate the need for encapsulation to ensure compatibility with smart-mount technology (SMT). The package has good handing properties but is now facing serious reliability problems. In this work, we investigated the reliability of a WLCSP subjected to different accelerated current stressing conditions at a fixed ambient temperature of 125 °C. A very strong correlation exists between the mean time to failure (MTTF) of the WLCSP test vehicle and the mean current density that is carried by a solder joint. A series of current densities were applied to the WLCSP architecture; Black's power law was employed in a failure mode simulation. Additionally, scanning electron microscopy (SEM) was adopted to determine the differences existing between high- and low-current-density failure modes.

  19. Droplet-Wall/Film Impact in IC Engine Applications

    DTIC Science & Technology

    2017-08-14

    Report: Droplet-Wall/Film Impact in IC Engine Applications (ARO Topic 1.4.1 under ARO’s Dr. Ralph A. Anthenien) The views, opinions and/or findings...in IC Engine Applications (ARO Topic 1.4.1 under ARO’s Dr. Ralph A. Anthenien) Report Term: 0-Other Email: cklaw@princeton.edu Distribution Statement...associated with spraying in internal combustion engines (ICEs). Fuels sprayed inside engines can impact with the internal surfaces and thus not only

  20. ChIP and ChIP-Related Techniques: Expanding the Fields of Application and Improving ChIP Performance.

    PubMed

    Visa, Neus; Jordán-Pla, Antonio

    2018-01-01

    Protein-DNA interactions in vivo can be detected and quantified by chromatin immunoprecipitation (ChIP). ChIP has been instrumental for the advancement of epigenetics and has set the groundwork for the development of a number of ChIP-related techniques that have provided valuable information about the organization and function of genomes. Here, we provide an introduction to ChIP and discuss the applications of ChIP in different research areas. We also review some of the strategies that have been devised to improve ChIP performance.

  1. CHIP, CHIP, ARRAY! THREE CHIPS FOR POST-GENOMIC RESEARCH

    EPA Science Inventory

    Cambridge Healthtech Institute recently held the 4th installment of their popular "Lab-on-a-Chip" series in Zurich, Switzerland. As usual, it was enthusiastically received and over 225 people attended the 2-1/2 day meeting to see and hear about some of the latest developments an...

  2. Dry chips versus green chips as furnish for medium-density fiberboard

    Treesearch

    Paul H. Short; George E. Woodson; Duane E. Lyon

    1978-01-01

    The fiber characteristics and the physical and mechanical properties of medium-density fiberboard (MDF), manufactured with pressure-refined fiber from green and partially dried raw material, were analyzed to determine if dry wood chips made a better furnish than green wood chips. Pressure-refining dry material produced coarser fiber than those obtained from green...

  3. Dry chips versus green chips as furnish for medium-density fiberboard

    Treesearch

    P.H. Short; G.E. Woodson; D.E. Lyon

    1978-01-01

    The fiber characteristics and the physical and mechanical properties of medium-density fiberboard (MDF), manufactured with pressure-refined fiber from green and partially dried raw material, were analyzed to determine if dry wood chips made a better furnish than green wood chips. Pressure-refined dry material produced coarser fiber than those obtained from green...

  4. Insertion of GaAs MMICs into EW systems

    NASA Astrophysics Data System (ADS)

    Schineller, E. R.; Pospishil, A.; Grzyb, J.

    1989-09-01

    Development activities on a microwave/mm-wave monolithic IC (MIMIC) program are described, as well as the methodology for inserting these GaAs IC chips into several EW systems. The generic EW chip set developed on the MIMIC program consists of 23 broadband chip types, including amplifiers, oscillators, mixers, switches, variable attenuators, power dividers, and power combiners. These chips are being designed for fabrication using the multifunction self-aligned gate process. The benefits from GaAs IC insertion are quantified by a comparison of hardware units fabricated with existing MIC and digital ECL technology and the same units manufactured with monolithic technology. It is found that major improvements in cost, reliability, size, weight, and performance can be realized. Examples illustrating the methodology for technology insertion are presented.

  5. The jet-ISM interactions in IC 5063

    NASA Astrophysics Data System (ADS)

    Mukherjee, Dipanjan; Wagner, Alexander Y.; Bicknell, Geoffrey V.; Morganti, Raffaella; Oosterloo, Tom; Nesvadba, Nicole; Sutherland, Ralph S.

    2018-05-01

    The interstellar medium of the radio galaxy IC 5063 is highly perturbed by an AGN jet expanding in the gaseous disc of the galaxy. We model this interaction with relativistic hydrodynamic simulations and multiphase initial conditions for the interstellar medium and compare the results with recent observations. As the jets flood through the intercloud channels of the disc, they ablate, accelerate, and disperse clouds to velocities exceeding 400 km s-1. Clouds are also destroyed or displaced in bulk from the central regions of the galaxy. Our models with jet powers of 1044 and 1045 erg s-1 are capable of reproducing many of the observed features in the position velocity diagram of IC 5063, and confirm the notion that the jet is responsible for the strongly perturbed gas dynamics seen in the ionized, neutral, and molecular gas phases. In our simulations, we also see strong venting of the jet plasma perpendicular to the disc, which entrains clumps and diffuse filaments into the halo of the galaxy. Our simulations are the first 3D hydrodynamic simulations of the jet and interstellar matter of IC 5063.

  6. The Search for Wolf-Rayet Stars in IC10

    NASA Astrophysics Data System (ADS)

    Tehrani, Katie; Crowther, Paul; Archer, Isabelle

    2017-11-01

    We present a deep imaging and spectroscopic survey of the Local Group starburst galaxy IC10 using Gemini North/GMOS to unveil the global Wolf-Rayet population. It has previously been suggested that for IC10 to follow the WC/WN versus metallicity dependence seen in other Local Group galaxies, a large WN population must remain undiscovered. Our search revealed 3 new WN stars, and 5 candidates awaiting confirmation, providing little evidence to support this claim. We also compute an updated nebular derived metallicity of log(O/H)+12=8.40 +/- 0.04 for the galaxy using the direct method. Inspection of IC10 WR average line luminosities show these stars are more similar to their LMC, rather than SMC counterparts.

  7. Purification, Crystallization And Preliminary X-Ray Analysis of Aminoglycoside-2 ''-Phosphotransferase-Ic [APH(2 '')-Ic] From Enterococcus Gallinarum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrnes, L.J.; /SLAC, SSRL; Badarau, A.

    2009-04-30

    Bacterial resistance to aminoglycoside antibiotics is primarily the result of deactivation of the drugs. Three families of enzymes are responsible for this activity, with one such family being the aminoglycoside phosphotransferases (APHs). The gene encoding one of these enzymes, aminoglycoside-2{double_prime}-phosphotransferase-Ic [APH(2{double_prime})-Ic] from Enterococcus gallinarum, has been cloned and the wild-type protein (comprising 308 amino-acid residues) and three mutants that showed elevated minimum inhibitory concentrations towards gentamicin (F108L, H258L and a double mutant F108L/H258L) were expressed in Escherichia coli and subsequently purified. All APH(2{double_prime})-Ic variants were crystallized in the presence of 14-20%(w/v) PEG 4000, 0.25 M MgCl{sub 2}, 0.1 M Tris-HClmore » pH 8.5 and 1 mM Mg{sub 2}GTP. The crystals belong to the monoclinic space group C2, with one molecule in the asymmetric unit. The approximate unit-cell parameters are a = 82.4, b = 54.2, c = 77.0 {angstrom}, {beta} = 108.8{sup o}. X-ray diffraction data were collected to approximately 2.15 {angstrom} resolution from an F108L crystal at beamline BL9-2 at SSRL, Stanford, California, USA.« less

  8. 75 FR 54940 - Agency Information Collection (IC) Activities; Revision of an Approved IC; Accident Recordkeeping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-09

    ... include the Agency name and the docket number for this Notice. Note that DOT posts all comments received... underlying this IC is 49 CFR 390.15, ``Assistance in investigations and special studies.'' It requires motor... Information Technology. [FR Doc. 2010-22456 Filed 9-8-10; 8:45 am] BILLING CODE 4910-EX-P ...

  9. ICECAP: an integrated, general-purpose, automation-assisted IC50/EC50 assay platform.

    PubMed

    Li, Ming; Chou, Judy; King, Kristopher W; Jing, Jing; Wei, Dong; Yang, Liyu

    2015-02-01

    IC50 and EC50 values are commonly used to evaluate drug potency. Mass spectrometry (MS)-centric bioanalytical and biomarker labs are now conducting IC50/EC50 assays, which, if done manually, are tedious and error-prone. Existing bioanalytical sample preparation automation systems cannot meet IC50/EC50 assay throughput demand. A general-purpose, automation-assisted IC50/EC50 assay platform was developed to automate the calculations of spiking solutions and the matrix solutions preparation scheme, the actual spiking and matrix solutions preparations, as well as the flexible sample extraction procedures after incubation. In addition, the platform also automates the data extraction, nonlinear regression curve fitting, computation of IC50/EC50 values, graphing, and reporting. The automation-assisted IC50/EC50 assay platform can process the whole class of assays of varying assay conditions. In each run, the system can handle up to 32 compounds and up to 10 concentration levels per compound, and it greatly improves IC50/EC50 assay experimental productivity and data processing efficiency. © 2014 Society for Laboratory Automation and Screening.

  10. Wide-Field Structure of Local Group Dwarf Irregular Galaxy IC1613

    NASA Astrophysics Data System (ADS)

    Pucha, Ragadeepika; Carlin, Jeffrey; Willman, Beth; Sand, David J.; Bechtol, Keith

    2018-01-01

    IC1613 is a typical dwarf irregular galaxy in the Local Group. Being an isolated dwarf, as opposed to the dwarfs around the Milky Way, it is likely to be subjected to fewer strong environmental effects. As a result, it serves as a good prototype for the study of the structure and evolution of dwarf galaxies. We present g- and i- band photometry from deep imaging of four fields around IC1613, that resolved stars up to ~ 4 magnitudes fainter than the tip of the RGB. This photometry was obtained using Hyper-Suprime Cam (HSC) on the Subaru Telescope. The large (1.5o) field-of-view of HSC provides us with a unique opportunity to study the wide-field structure of this dwarf galaxy. This project explores the structure of IC1613 to radii of about ~ 25 kpc using different types of stellar tracers. The aim is to search for evidence of a stellar halo or stellar over-densities around IC1613. The relative contributions of the different stellar populations as a function of position in IC1613 are also shown.

  11. The Coronary Health Improvement Projects Impact on Lowering Eating, Sleep, Stress, and Depressive Disorders

    ERIC Educational Resources Information Center

    Merrill, Ray M.; Aldana, Stephen G.; Greenlaw, Roger L.; Diehl, Hans A.

    2008-01-01

    Background: The Coronary Health Improvement Project (CHIP) is designed to lower cardiovascular risk factors among a group of generally healthy individuals through health education. Purpose: This study will evaluate the efficacy of the CHIP intervention at improving eating, sleep, stress, and depressive disorders. Methods: A health education…

  12. Cyclin-dependent kinase 5-mediated phosphorylation of CHIP promotes the tAIF-dependent death pathway in rotenone-treated cortical neurons.

    PubMed

    Kim, Chiho; Lee, Juhyung; Ko, Yeon Uk; Oh, Young J

    2018-01-01

    Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase. Its dysregulation has been implicated in various neurodegenerative diseases. We previously reported that phosphorylation of the C-terminus of the Hsc70-interacting protein (CHIP) by Cdk5 promotes truncated apoptosis-inducing factor (tAIF)-mediated neuronal death induced by oxidative stress. Here, we determined whether this Cdk5-dependent cell death signaling pathway is present in experimental models of Parkinson's disease. First, we showed that rotenone activates Cdk5 in primary cultures of cortical neurons and causes tAIF-dependent neuronal cell death. This event was attenuated by negative regulation of endogenous Cdk5 activity by the pharmacological Cdk5 inhibitor, roscovitine, or by lentiviral knockdown of Cdk5. Cdk5 phosphorylates CHIP at Ser20 in rotenone-treated neurons. Consequently, overexpression of CHIP S20A , but not CHIP WT , attenuates tAIF-induced cell death in rotenone-treated cortical neurons. Taken together, these results indicate that phosphorylation of CHIP at Ser20 by Cdk5 activation inhibits CHIP-mediated tAIF degradation, thereby contributing to tAIF-induced neuronal cell death following rotenone treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. 30 CFR 57.22203 - Main fan operation (I-C mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Main fan operation (I-C mines). 57.22203... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22203 Main fan operation (I-C mines). Main fans shall be operated continuously while ore production is in progress. ...

  14. Simultaneous detection of three lily viruses using Triplex IC-RT-PCR.

    PubMed

    Zhang, Yubao; Wang, Yajun; Xie, Zhongkui; Yang, Guo; Guo, Zhihong; Wang, Le

    2017-11-01

    Viruses commonly infecting lily (Lilium spp.) include: Lily symptomless virus (LSV), Cucumber mosaic virus (CMV) and Lily mottle virus (LMoV). These viruses usually co-infect lilies causing severe economic losses in terms of quantity and quality of flower and bulb production around the world. Reliable and precise detection systems need to be developed for virus identification. We describe the development of a triplex immunocapture (IC) reverse transcription (RT) polymerase chain reaction (PCR) assay for the simultaneous detection of LSV, CMV and LMoV. The triplex IC-RT-PCR was compared with a quadruplex RT-PCR assay. Relative to the quadruplex RT-PCR, the specificity of the triplex IC-RT-PCR system for LSV, CMV and LMoV was 100% for field samples. The sensitivity of the triplex IC-RT-PCR system was 99.4%, 81.4% and 98.7% for LSV, CMV and LMoV, respectively. Agreement (κ) between the results obtained from the two tests was 0.968, 0.844 and 0.984 for LSV, CMV and LMoV, respectively. This is the first report of the simultaneous detection of LSV, CMV and LMoV in a triplex IC-RT-PCR assay. In particular we believe this convenient and reliable triplex IC-RT-PCR method could be used routinely for large-scale field surveys or crop health monitoring of lily. Copyright © 2017. Published by Elsevier B.V.

  15. Noise suppression and crosstalk analysis of on-chip magnetic film-type noise suppressor

    NASA Astrophysics Data System (ADS)

    Ma, Jingyan; Muroga, Sho; Endo, Yasushi; Hashi, Shuichiro; Naoe, Masayuki; Yokoyama, Hiroo; Hayashi, Yoshiaki; Ishiyama, Kazushi

    2018-05-01

    This paper discusses near field, conduction and crosstalk noise suppression of magnetic films with uniaxial anisotropy on transmission lines for a film-type noise suppressor in the GHz frequency range. The electromagnetic noise suppressions of magnetic films with different permeability and resistivity were measured and simulated with simple microstrip lines. The experimental and simulated results of Co-Zr-Nb and CoPd-CaF2 films agreed with each other. The results indicate that the higher permeability leads to a better near field shielding, and in the frequency range of 2-7 GHz, a higher conduction noise suppression. It also suggests that the higher resistivity results in a better crosstalk suppression in the frequency range below 2 GHz. These results can support the design guidelines of the magnetic film-type noise suppressor used in the next generation IC chip.

  16. AVP-IC50 Pred: Multiple machine learning techniques-based prediction of peptide antiviral activity in terms of half maximal inhibitory concentration (IC50).

    PubMed

    Qureshi, Abid; Tandon, Himani; Kumar, Manoj

    2015-11-01

    Peptide-based antiviral therapeutics has gradually paved their way into mainstream drug discovery research. Experimental determination of peptides' antiviral activity as expressed by their IC50 values involves a lot of effort. Therefore, we have developed "AVP-IC50 Pred," a regression-based algorithm to predict the antiviral activity in terms of IC50 values (μM). A total of 759 non-redundant peptides from AVPdb and HIPdb were divided into a training/test set having 683 peptides (T(683)) and a validation set with 76 independent peptides (V(76)) for evaluation. We utilized important peptide sequence features like amino-acid compositions, binary profile of N8-C8 residues, physicochemical properties and their hybrids. Four different machine learning techniques (MLTs) namely Support vector machine, Random Forest, Instance-based classifier, and K-Star were employed. During 10-fold cross validation, we achieved maximum Pearson correlation coefficients (PCCs) of 0.66, 0.64, 0.56, 0.55, respectively, for the above MLTs using the best combination of feature sets. All the predictive models also performed well on the independent validation dataset and achieved maximum PCCs of 0.74, 0.68, 0.59, 0.57, respectively, on the best combination of feature sets. The AVP-IC50 Pred web server is anticipated to assist the researchers working on antiviral therapeutics by enabling them to computationally screen many compounds and focus experimental validation on the most promising set of peptides, thus reducing cost and time efforts. The server is available at http://crdd.osdd.net/servers/ic50avp. © 2015 Wiley Periodicals, Inc.

  17. Assessing the Power of Exome Chips.

    PubMed

    Page, Christian Magnus; Baranzini, Sergio E; Mevik, Bjørn-Helge; Bos, Steffan Daniel; Harbo, Hanne F; Andreassen, Bettina Kulle

    2015-01-01

    Genotyping chips for rare and low-frequent variants have recently gained popularity with the introduction of exome chips, but the utility of these chips remains unclear. These chips were designed using exome sequencing data from mainly American-European individuals, enriched for a narrow set of common diseases. In addition, it is well-known that the statistical power of detecting associations with rare and low-frequent variants is much lower compared to studies exclusively involving common variants. We developed a simulation program adaptable to any exome chip design to empirically evaluate the power of the exome chips. We implemented the main properties of the Illumina HumanExome BeadChip array. The simulated data sets were used to assess the power of exome chip based studies for varying effect sizes and causal variant scenarios. We applied two widely-used statistical approaches for rare and low-frequency variants, which collapse the variants into genetic regions or genes. Under optimal conditions, we found that a sample size between 20,000 to 30,000 individuals were needed in order to detect modest effect sizes (0.5% < PAR > 1%) with 80% power. For small effect sizes (PAR <0.5%), 60,000-100,000 individuals were needed in the presence of non-causal variants. In conclusion, we found that at least tens of thousands of individuals are necessary to detect modest effects under optimal conditions. In addition, when using rare variant chips on cohorts or diseases they were not originally designed for, the identification of associated variants or genes will be even more challenging.

  18. Illuminating the Depths of the MagIC (Magnetics Information Consortium) Database

    NASA Astrophysics Data System (ADS)

    Koppers, A. A. P.; Minnett, R.; Jarboe, N.; Jonestrask, L.; Tauxe, L.; Constable, C.

    2015-12-01

    The Magnetics Information Consortium (http://earthref.org/MagIC/) is a grass-roots cyberinfrastructure effort envisioned by the paleo-, geo-, and rock magnetic scientific community. Its mission is to archive their wealth of peer-reviewed raw data and interpretations from magnetics studies on natural and synthetic samples. Many of these valuable data are legacy datasets that were never published in their entirety, some resided in other databases that are no longer maintained, and others were never digitized from the field notebooks and lab work. Due to the volume of data collected, most studies, modern and legacy, only publish the interpreted results and, occasionally, a subset of the raw data. MagIC is making an extraordinary effort to archive these data in a single data model, including the raw instrument measurements if possible. This facilitates the reproducibility of the interpretations, the re-interpretation of the raw data as the community introduces new techniques, and the compilation of heterogeneous datasets that are otherwise distributed across multiple formats and physical locations. MagIC has developed tools to assist the scientific community in many stages of their workflow. Contributors easily share studies (in a private mode if so desired) in the MagIC Database with colleagues and reviewers prior to publication, publish the data online after the study is peer reviewed, and visualize their data in the context of the rest of the contributions to the MagIC Database. From organizing their data in the MagIC Data Model with an online editable spreadsheet, to validating the integrity of the dataset with automated plots and statistics, MagIC is continually lowering the barriers to transforming dark data into transparent and reproducible datasets. Additionally, this web application generalizes to other databases in MagIC's umbrella website (EarthRef.org) so that the Geochemical Earth Reference Model (http://earthref.org/GERM/) portal, Seamount Biogeosciences

  19. Real-time monitoring of metabolic function in liver-on-chip microdevices tracks the dynamics of mitochondrial dysfunction

    PubMed Central

    Bavli, Danny; Prill, Sebastian; Ezra, Elishai; Levy, Gahl; Cohen, Merav; Vinken, Mathieu; Vanfleteren, Jan; Jaeger, Magnus; Nahmias, Yaakov

    2016-01-01

    Microfluidic organ-on-a-chip technology aims to replace animal toxicity testing, but thus far has demonstrated few advantages over traditional methods. Mitochondrial dysfunction plays a critical role in the development of chemical and pharmaceutical toxicity, as well as pluripotency and disease processes. However, current methods to evaluate mitochondrial activity still rely on end-point assays, resulting in limited kinetic and prognostic information. Here, we present a liver-on-chip device capable of maintaining human tissue for over a month in vitro under physiological conditions. Mitochondrial respiration was monitored in real time using two-frequency phase modulation of tissue-embedded phosphorescent microprobes. A computer-controlled microfluidic switchboard allowed contiguous electrochemical measurements of glucose and lactate, providing real-time analysis of minute shifts from oxidative phosphorylation to anaerobic glycolysis, an early indication of mitochondrial stress. We quantify the dynamics of cellular adaptation to mitochondrial damage and the resulting redistribution of ATP production during rotenone-induced mitochondrial dysfunction and troglitazone (Rezulin)-induced mitochondrial stress. We show troglitazone shifts metabolic fluxes at concentrations previously regarded as safe, suggesting a mechanism for its observed idiosyncratic effect. Our microfluidic platform reveals the dynamics and strategies of cellular adaptation to mitochondrial damage, a unique advantage of organ-on-chip technology. PMID:27044092

  20. Effect of Compressive Stresses on Leakage Currents in Microchip Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2012-01-01

    Microchip tantalum capacitors are manufactured using new technologies that allow for production of small size capacitors (down to EIA case size 0402) with volumetric efficiency much greater than for regular chip capacitors. Due to a small size of the parts and leadless design they might be more sensitive to mechanical stresses that develop after soldering onto printed wiring boards (PWB) compared to standard chip capacitors. In this work, the effect of compressive stresses on leakage currents in capacitors has been investigated in the range of stresses up to 200 MPa. Significant, up to three orders of magnitude, variations of currents were observed after the stress exceeds a certain critical level that varied from 10 MPa to 180 MPa for capacitors used in this study. A stress-induced generation of electron traps in tantalum pentoxide dielectric is suggested to explain reversible variations of leakage currents in tantalum capacitors. Thermo-mechanical characteristics of microchip capacitors have been studied to estimate the level of stresses caused by assembly onto PWB and assess the risk of stress-related degradation and failures. Keywords: tantalum capacitors, leakage current, soldering, reliability, mechanical stress.

  1. Programmable synaptic chip for electronic neural networks

    NASA Technical Reports Server (NTRS)

    Moopenn, A.; Langenbacher, H.; Thakoor, A. P.; Khanna, S. K.

    1988-01-01

    A binary synaptic matrix chip has been developed for electronic neural networks. The matrix chip contains a programmable 32X32 array of 'long channel' NMOSFET binary connection elements implemented in a 3-micron bulk CMOS process. Since the neurons are kept off-chip, the synaptic chip serves as a 'cascadable' building block for a multi-chip synaptic network as large as 512X512 in size. As an alternative to the programmable NMOSFET (long channel) connection elements, tailored thin film resistors are deposited, in series with FET switches, on some CMOS test chips, to obtain the weak synaptic connections. Although deposition and patterning of the resistors require additional processing steps, they promise substantial savings in silicon area. The performance of synaptic chip in a 32-neuron breadboard system in an associative memory test application is discussed.

  2. WAT-on-a-chip: A physiologically relevant microfluidic system incorporating white adipose tissue

    PubMed Central

    Loskill, Peter; Sezhian, Thiagarajan; Tharp, Kevin; Lee-Montiel, Felipe T.; Jeeawoody, Shaheen; Reese, Willie Mae; Zushin, Pete-James H.; Stahl, Andreas; Healy, Kevin E.

    2017-01-01

    Organ-on-a-chip systems possess a promising future as drug screening assays and as testbeds for disease modeling in the context of both single-organ systems and multi-organ-chips. Although it comprises approximately one fourth of the body weight of a healthy human, an organ frequently overlooked in this context is white adipose tissue (WAT). WAT-on-a-chip systems are required to create safety profiles of a large number of drugs due to their interactions with adipose tissue and other organs via paracrine signals, fatty acid release, and drug levels through sequestration. We report a WAT-on-a-chip system with a footprint of less than 1 mm2 consisting of a separate media channel and WAT chamber connected via small micropores. Analogous to the in vivo blood circulation, convective transport is thereby confined to the vasculature-like structures and the tissues protected from shear stresses. Numerical and analytical modeling revealed that the flow rates in the WAT chambers are less than 1/100 of the input flow rate. Using optimized injection parameters, we were able to inject pre-adipocytes, which subsequently formed adipose tissue featuring fully functional lipid metabolism. The physiologically relevant microfluidic environment of the WAT-chip supported long term culture of the functional adipose tissue for more than two weeks. Due to its physiological, highly controlled, and computationally predictable character, the system has the potential to be a powerful tool for the study of adipose tissue associated diseases such as obesity and type 2 diabetes. PMID:28418430

  3. Aflatoxin M1 in Tarhana chips.

    PubMed

    Özçam, Mustafa; Obuz, Ersel; Tosun, Halil

    2014-01-01

    Tarhana chips are a popular traditional fermented food consumed widely in the Kahramanmaraş region of Turkey. Tarhana chips are different from many other types of fermented food in that they are produced in the form of tortilla chips. Cereal and yoghurt are the main ingredients in Tarhana chips. Aflatoxin M1 (AFM1) levels in dairy and dairy-based products are of concern for human health. To investigate AFM1 contamination, a total of 40 samples were collected from Kahramanmaraş region and AFM1 levels were determined by competitive enzyme-linked immunosorbent assay (ELISA). Furthermore, physicochemical characteristics of Tarhana chips were investigated and compared with classic fried chips in terms of nutritional value. Based on data obtained from enzyme-linked immunosorbent assay, 21 (52.5%) out of 40 samples contained AFM1 in the range 0.5-36.6 ng/kg, so AFM1 levels of all samples were below the legal limit.

  4. The beautiful side of IC 335

    NASA Image and Video Library

    2017-12-08

    Hubble sees a galaxy 60 million light-years away This new NASA/ESA Hubble Space Telescope image shows the galaxy IC 335 in front of a backdrop of distant galaxies. IC 335 is part of a galaxy group containing three other galaxies, and located in the Fornax Galaxy Cluster 60 million light-years away. As seen in this image, the disk of IC 335 appears edge-on from the vantage point of Earth. This makes it harder for astronomers to classify it, as most of the characteristics of a galaxy’s morphology — the arms of a spiral or the bar across the center — are only visible on its face. Still, the 45 000 light-year-long galaxy could be classified as an S0 type. These lenticular galaxies are an intermediate state in galaxy morphological classification schemes between true spiral and elliptical galaxies. They have a thin stellar disk and a bulge, like spiral galaxies, but in contrast to typical spiral galaxies they have used up most of the interstellar medium. Only a few new stars can be created out of the material that is left and the star formation rate is very low. Hence, the population of stars in S0 galaxies consists mainly of aging stars, very similar to the star population in elliptical galaxies. As S0 galaxies have only ill-defined spiral arms they are easily mistaken for elliptical galaxies if they are seen inclined face-on or edge-on as IC 335 here. And indeed, despite the morphological differences between S0 and elliptical class galaxies, they share some common characteristics, like typical sizes and spectral features. Both classes are also deemed "early-type" galaxies, because they are evolving passively. However, while elliptical galaxies may be passively evolving when we observe them, they have usually had violent interactions with other galaxies in their past. In contrast, S0 galaxies are either aging and fading spiral galaxies, which never had any interactions with other galaxies, or they are the aging result of a single merger between two spiral galaxies

  5. HPLC-Chip/MS Technology in Proteomic Profiling

    NASA Astrophysics Data System (ADS)

    Vollmer, Martin; van de Goor, Tom

    HPLC-chip/MS is a novel nanoflow analytical technology conducted on a microfabricated chip that allows for highly efficient HPLC separation and superior sensitive MS detection of complex proteomic mixtures. This is possible through on-chip preconcentration and separation with fluidic connection made automatically in a leak-tight fashion. Minimum precolumn and postcolumn peak dispersion and uncompromised ease of use result in compounds eluting in bands of only a few nanoliters. The chip is fabricated out of bio-inert polyimide-containing channels and integrated chip structures, such as an electrospray emitter, columns, and frits manufactured by laser ablation technology. Meanwhile, a variety of HPLC-chips differing in design and stationary phase are commercially available, which provide a comprehensive solution for applications in proteomics, glycomics, biomarker, and pharmaceutical discovery. The HPLC-chip can also be easily integrated into a multidimensional separation workflow where different orthogonal separation techniques are combined to solve a highly complex separation problems. In this chapter, we describe in detail the methodological chip usage and functionality and its application in the elucidation of the protein profile of human nucleoli.

  6. Microchannel cooling of face down bonded chips

    DOEpatents

    Bernhardt, A.F.

    1993-06-08

    Microchannel cooling is applied to flip-chip bonded integrated circuits, in a manner which maintains the advantages of flip-chip bonds, while overcoming the difficulties encountered in cooling the chips. The technique is suited to either multi chip integrated circuit boards in a plane, or to stacks of circuit boards in a three dimensional interconnect structure. Integrated circuit chips are mounted on a circuit board using flip-chip or control collapse bonds. A microchannel structure is essentially permanently coupled with the back of the chip. A coolant delivery manifold delivers coolant to the microchannel structure, and a seal consisting of a compressible elastomer is provided between the coolant delivery manifold and the microchannel structure. The integrated circuit chip and microchannel structure are connected together to form a replaceable integrated circuit module which can be easily decoupled from the coolant delivery manifold and the circuit board. The coolant supply manifolds may be disposed between the circuit boards in a stack and coupled to supplies of coolant through a side of the stack.

  7. International Space Agency CIO Forum Industrial Control System (ICS) and Cyber

    NASA Technical Reports Server (NTRS)

    Powell, Robert

    2017-01-01

    This briefing covers Industrial Control System (ICS) best practices for enhancing cyber protection. The briefing provides a very high-level overview of best practices currently being pursued by NASA as well as by other US government agencies such as NIST and DHS ICS-CERT. All information presented in this slide deck is publicly available and no sensitive information is provided in these slides. These slides will be used to generate discussion around best practices within the international community in the area of ICS cyber protections.

  8. A Single-Chip CMOS Pulse Oximeter with On-Chip Lock-In Detection.

    PubMed

    He, Diwei; Morgan, Stephen P; Trachanis, Dimitrios; van Hese, Jan; Drogoudis, Dimitris; Fummi, Franco; Stefanni, Francesco; Guarnieri, Valerio; Hayes-Gill, Barrie R

    2015-07-14

    Pulse oximetry is a noninvasive and continuous method for monitoring the blood oxygen saturation level. This paper presents the design and testing of a single-chip pulse oximeter fabricated in a 0.35 µm CMOS process. The chip includes photodiode, transimpedance amplifier, analogue band-pass filters, analogue-to-digital converters, digital signal processor and LED timing control. The experimentally measured AC and DC characteristics of individual circuits including the DC output voltage of the transimpedance amplifier, transimpedance gain of the transimpedance amplifier, and the central frequency and bandwidth of the analogue band-pass filters, show a good match (within 1%) with the circuit simulations. With modulated light source and integrated lock-in detection the sensor effectively suppresses the interference from ambient light and 1/f noise. In a breath hold and release experiment the single chip sensor demonstrates consistent and comparable performance to commercial pulse oximetry devices with a mean of 1.2% difference. The single-chip sensor enables a compact and robust design solution that offers a route towards wearable devices for health monitoring.

  9. A Single-Chip CMOS Pulse Oximeter with On-Chip Lock-In Detection

    PubMed Central

    He, Diwei; Morgan, Stephen P.; Trachanis, Dimitrios; van Hese, Jan; Drogoudis, Dimitris; Fummi, Franco; Stefanni, Francesco; Guarnieri, Valerio; Hayes-Gill, Barrie R.

    2015-01-01

    Pulse oximetry is a noninvasive and continuous method for monitoring the blood oxygen saturation level. This paper presents the design and testing of a single-chip pulse oximeter fabricated in a 0.35 µm CMOS process. The chip includes photodiode, transimpedance amplifier, analogue band-pass filters, analogue-to-digital converters, digital signal processor and LED timing control. The experimentally measured AC and DC characteristics of individual circuits including the DC output voltage of the transimpedance amplifier, transimpedance gain of the transimpedance amplifier, and the central frequency and bandwidth of the analogue band-pass filters, show a good match (within 1%) with the circuit simulations. With modulated light source and integrated lock-in detection the sensor effectively suppresses the interference from ambient light and 1/f noise. In a breath hold and release experiment the single chip sensor demonstrates consistent and comparable performance to commercial pulse oximetry devices with a mean of 1.2% difference. The single-chip sensor enables a compact and robust design solution that offers a route towards wearable devices for health monitoring. PMID:26184225

  10. AGB stars as tracers to IC 1613 evolution.

    NASA Astrophysics Data System (ADS)

    Hashemi, S. A.; Javadi, A.; van Loon, J. Th.

    We are going to apply AGB stars to find star formation history for IC 1613 galaxy; this a new and simple method that works well for nearby galaxies. IC 1613 is a Local Group dwarf irregular galaxy that is located at distance of 750 kpc, a gas rich and isolated dwarf galaxy that has a low foreground extinction. We use the long period variable stars (LPVs) that represent the very final stage of evolution of stars with low and intermediate mass at the AGB phase and are very luminous and cool so that they emit maximum brightness in near-infrared bands. Thus near-infrared photometry with using stellar evolutionary models help us to convert brightness to birth mass and age and from this drive star formation history of the galaxy. We will use the luminosity distribution of the LPVs to reconstruct the star formation history-a method we have successfully applied in other Local Group galaxies. Our analysis shows that the IC 1613 has had a nearly constant star formation rate, without any dominant star formation episode.

  11. Student Definitions of Intercultural Competence (IC)--Are They Context-Specific?

    ERIC Educational Resources Information Center

    Binder, Nadine; Odag, Ozen; Leiser, Anne; Ludders, Lisa; Kedzior, Karina Karolina

    2018-01-01

    Higher education institutions increasingly seek to promote students' intercultural competence (IC), yet its conceptualization remains a challenge. The first aim of this study was to explore how a purposive sample of n = 77 domestic, undergraduate students at a public university in Germany define IC. The second aim was to assess to what extent such…

  12. 30 CFR 57.22210 - In-line filters (I-C mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false In-line filters (I-C mines). 57.22210 Section... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22210 In-line filters (I-C mines). Filters or separators shall be installed on air-lift fan systems to prevent explosive concentrations of...

  13. 30 CFR 57.22210 - In-line filters (I-C mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false In-line filters (I-C mines). 57.22210 Section... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22210 In-line filters (I-C mines). Filters or separators shall be installed on air-lift fan systems to prevent explosive concentrations of...

  14. 30 CFR 57.22210 - In-line filters (I-C mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false In-line filters (I-C mines). 57.22210 Section... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22210 In-line filters (I-C mines). Filters or separators shall be installed on air-lift fan systems to prevent explosive concentrations of...

  15. 30 CFR 57.22210 - In-line filters (I-C mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false In-line filters (I-C mines). 57.22210 Section... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22210 In-line filters (I-C mines). Filters or separators shall be installed on air-lift fan systems to prevent explosive concentrations of...

  16. 30 CFR 57.22210 - In-line filters (I-C mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false In-line filters (I-C mines). 57.22210 Section... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22210 In-line filters (I-C mines). Filters or separators shall be installed on air-lift fan systems to prevent explosive concentrations of...

  17. Lab-on a-Chip

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Labs on chips are manufactured in many shapes and sizes and can be used for numerous applications, from medical tests to water quality monitoring to detecting the signatures of life on other planets. The eight holes on this chip are actually ports that can be filled with fluids or chemicals. Tiny valves control the chemical processes by mixing fluids that move in the tiny channels that look like lines, connecting the ports. Scientists at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama designed this chip to grow biological crystals on the International Space Station (ISS). Through this research, they discovered that this technology is ideally suited for solving the challenges of the Vision for Space Exploration. For example, thousands of chips the size of dimes could be loaded on a Martian rover looking for biosignatures of past or present life. Other types of chips could be placed in handheld devices used to monitor microbes in water or to quickly conduct medical tests on astronauts. The portable, handheld Lab-on-a Chip Application Development Portable Test System (LOCAD-PTS) made its debut flight aboard Discovery during the STS-116 mission launched December 9, 2006. The system allowed crew members to monitor their environment for problematic contaminants such as yeast, mold, and even E.coli, and salmonella. Once LOCAD-PTS reached the ISS, the Marshall team continued to manage the experiment, monitoring the study from a console in the Payload Operations Center at MSFC. The results of these studies will help NASA researchers refine the technology for future Moon and Mars missions. (NASA/MSFC/D.Stoffer)

  18. Investigating bone chip formation in craniotomy.

    PubMed

    Huiyu, He; Chengyong, Wang; Yue, Zhang; Yanbin, Zheng; Linlin, Xu; Guoneng, Xie; Danna, Zhao; Bin, Chen; Haoan, Chen

    2017-10-01

    In a craniotomy, the milling cutter is one of the most important cutting tools. The operating performance, tool durability and cutting damage to patients are influenced by the tool's sharpness, intensity and structure, whereas the cutting characteristics rely on interactions between the tool and the skull. In this study, an orthogonal cutting experiment during a craniotomy of fresh pig skulls was performed to investigate chip formation on the side cutting and face cutting of the skull using a high-speed camera. The cutting forces with different combinations of cutting parameters, such as the rake angle, clearance angle, depth of cut and cutting speed, were measured. The skull bone microstructure and cutting damage were observed by scanning electron microscope. Cutting models for different cutting approaches and various depths of cut were constructed and analyzed. The study demonstrated that the effects of shearing, tension and extrusion occur during chip formation. Various chip types, such as unit chips, splintering chips and continuous chips, were generated. Continuous pieces of chips, which are advisable for easy removal from the field of operation, were formed at greater depths of cut and tool rake angles greater than 10°. Cutting damage could be relieved with a faster recovery with clearance angles greater than 20°.

  19. A Cell Programmable Assay (CPA) chip.

    PubMed

    Ju, Jongil; Warrick, Jay; Beebe, David J

    2010-08-21

    This article describes two kinds of "Cell Programmable Assay" (CPA) chips that utilize passive pumping for the culture and autonomous staining of cells to simply common protocols. One is a single timer channel CPA (sCPA) chip that has one timer channel and one main channel containing a cell culture chamber. The sCPA is used to culture and stain cells using Hoechst nuclear staining dye (a 2 step staining process). The other is a dual timer channel CPA (dCPA) chip that has two timer channels and one main channel with a chamber for cell culture. The dCPA is used here to culture, fix, permeablize, and stain cells using DAPI. The additional timer channel of the dCPA chip allows for automation of 3 steps. The CPA chips were successfully evaluated using HEK 293 cells. In addition, we provide a simplified equation for tuning or redesigning CPA chips to meet the needs of a variety of protocols that may require different timings. The equation is easy to use as it only depends upon the dimensions of microchannel and the volume of the reagent drops. The sCPA and dCPA chips can be readily modified to apply to a wide variety of common cell culture methods and procedures.

  20. Industry-Oriented Laboratory Development for Mixed-Signal IC Test Education

    ERIC Educational Resources Information Center

    Hu, J.; Haffner, M.; Yoder, S.; Scott, M.; Reehal, G.; Ismail, M.

    2010-01-01

    The semiconductor industry is lacking qualified integrated circuit (IC) test engineers to serve in the field of mixed-signal electronics. The absence of mixed-signal IC test education at the collegiate level is cited as one of the main sources for this problem. In response to this situation, the Department of Electrical and Computer Engineering at…

  1. 30 CFR 57.22241 - Advance face boreholes (I-C mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Boreholes shall be drilled in such a manner to insure that the advancing face will not accidently break into... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Advance face boreholes (I-C mines). 57.22241... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22241 Advance face boreholes (I-C mines...

  2. 30 CFR 57.22241 - Advance face boreholes (I-C mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Advance face boreholes (I-C mines). 57.22241... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22241 Advance face boreholes (I-C mines). (a) Boreholes shall be drilled at least 25 feet in advance of a face whenever the work place is...

  3. 30 CFR 57.22241 - Advance face boreholes (I-C mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Advance face boreholes (I-C mines). 57.22241... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22241 Advance face boreholes (I-C mines). (a) Boreholes shall be drilled at least 25 feet in advance of a face whenever the work place is...

  4. 30 CFR 57.22241 - Advance face boreholes (I-C mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Advance face boreholes (I-C mines). 57.22241... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22241 Advance face boreholes (I-C mines). (a) Boreholes shall be drilled at least 25 feet in advance of a face whenever the work place is...

  5. 30 CFR 57.22241 - Advance face boreholes (I-C mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Advance face boreholes (I-C mines). 57.22241... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22241 Advance face boreholes (I-C mines). (a) Boreholes shall be drilled at least 25 feet in advance of a face whenever the work place is...

  6. Microfluidic "thin chips" for chemical separations.

    PubMed

    Gaspar, Attila; Salgado, Marisol; Stevens, Schetema; Gomez, Frank A

    2010-08-01

    This paper describes the design, development and application of microfluidic "thin chips" fabricated from PDMS. Thin chips consist of multiple layers of PDMS chemically bonded onto each other. Unlike thicker PDMS chips that suffer from lack of sensitivity due to PDMS absorption in the VIS and UV range, the thinness of these chips allows for the detection of chromophoric species within the microchannel via an external fiber optics detection system. C18-modified reversed-phase silica particles are packed into the microchannel using a temporary taper created by a magnetic valve and separations using both pressure- and electrochromatographic-driven methods are detailed.

  7. Lithographic chip identification: meeting the failure analysis challenge

    NASA Astrophysics Data System (ADS)

    Perkins, Lynn; Riddell, Kevin G.; Flack, Warren W.

    1992-06-01

    This paper describes a novel method using stepper photolithography to uniquely identify individual chips for permanent traceability. A commercially available 1X stepper is used to mark chips with an identifier or `serial number' which can be encoded with relevant information for the integrated circuit manufacturer. The permanent identification of individual chips can improve current methods of quality control, failure analysis, and inventory control. The need for this technology is escalating as manufacturers seek to provide six sigma quality control for their products and trace fabrication problems to their source. This need is especially acute for parts that fail after packaging and are returned to the manufacturer for analysis. Using this novel approach, failure analysis data can be tied back to a particular batch, wafer, or even a position within a wafer. Process control can be enhanced by identifying the root cause of chip failures. Chip identification also addresses manufacturers concerns with increasing incidences of chip theft. Since chips currently carry no identification other than the manufacturer's name and part number, recovery efforts are hampered by the inability to determine the sales history of a specific packaged chip. A definitive identifier or serial number for each chip would address this concern. The results of chip identification (patent pending) are easily viewed through a low power microscope. Batch number, wafer number, exposure step, and chip location within the exposure step can be recorded, as can dates and other items of interest. An explanation of the chip identification procedure and processing requirements are described. Experimental testing and results are presented, and potential applications are discussed.

  8. Men Working on Mock-Up of S-IC Thrust Structure

    NASA Technical Reports Server (NTRS)

    1963-01-01

    This photograph depicts Marshall Space Flight Center employees, James Reagin, machinist (top); Floyd McGinnis, machinist; and Ernest Davis, experimental test mechanic (foreground), working on a mock up of the S-IC thrust structure. The S-IC stage is the first stage, or booster, of the 364-foot long Saturn V rocket that ultimately took astronauts to the Moon. The S-IC stage, burned over 15 tons of propellant per second during its 2.5 minutes of operation to take the vehicle to a height of about 36 miles and to a speed of about 6,000 miles per hour. The stage was 138 feet long and 33 feet in diameter. Operating at maximum power, all five of the engines produced 7,500,000 pounds of thrust.

  9. Optimisation of an oak chips-grape mix maceration process. Influence of chip dose and maceration time.

    PubMed

    Gordillo, Belén; Baca-Bocanegra, Berta; Rodriguez-Pulído, Francisco J; González-Miret, M Lourdes; García Estévez, Ignacio; Quijada-Morín, Natalia; Heredia, Francisco J; Escribano-Bailón, M Teresa

    2016-09-01

    Oak chips-related phenolics are able to modify the composition of red wine and modulate the colour stability. In this study, the effect of two maceration techniques, traditional and oak chips-grape mix process, on the phenolic composition and colour of Syrah red wines from warm climate was studied. Two doses of oak chips (3 and 6g/L) at two maceration times (5 and 10days) during fermentation was considered. Changes on phenolic composition (HPLC-DAD-MS), copigmentation/polymerisation (spectrophotometry), and colour (Tristimulus and Differential Colorimetry) were assessed by multivariate statistical techniques. The addition of oak chips at shorter maceration times enhanced phenolic extraction, colour and its stabilisation in comparison to the traditional maceration. On contrast, increasing chip dose in extended maceration time resulted in wines with lighter and less stable colour. Results open the possibility of optimise alternative technological applications to traditional grape maceration for avoiding the common loss of colour of wines from warm climate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. 2nd International Conference on Rheology and Modeling of Materials (IC-RMM2)

    NASA Astrophysics Data System (ADS)

    2017-01-01

    Understanding the rheological properties of materials and their rheological behaviors during their manufacturing processes and in their applications in many cases can help to increase the efficiency and competitiveness not only of the finished goods and products but the organizations and societies also. The more scientific supported and prepared organizations develop more competitive products with better thermal, mechanical, physical, chemical and biological properties and the leading companies apply more competitive equipment and technology processes. The aims of the 2nd International Conference on Rheology and Modeling of Materials (ic-rmm2) and the parallel organized symposiums of the 1st International Symposium on Powder Injection Molding (is-pim1) and the 1st International Symposium on Rheology and Fracture of Solids (is-rfs1) are the followings: Promote new methods and results of scientific research in the fields of modeling and measurements of rheological properties and behavior of materials under processing and applications; Change information between the theoretical and applied sciences as well as technical and technological implantations. Promote the communication and collaboration between the scientists, researchers and engineers of different disciplines, different nations, countries and continents. The international conference ic-rmm2 and symposiums of is-pim1 and is-rfs1 provide a platform among the leading international scientists, researchers, PhD students and engineers for discussing recent achievements in measurement, modeling and application of rheology in materials technology and materials science of liquids, melts, solids, crystals and amorphous structures. Among thr major fields of interest are the influence of materials structures, mechanical stresses, temperatures, deformation speeds and shear rates on rheological and physical properties, phase transformation of foams, foods, polymers, plastics and other competitive materials like ceramics

  11. Coverage and efficiency in current SNP chips

    PubMed Central

    Ha, Ngoc-Thuy; Freytag, Saskia; Bickeboeller, Heike

    2014-01-01

    To answer the question as to which commercial high-density SNP chip covers most of the human genome given a fixed budget, we compared the performance of 12 chips of different sizes released by Affymetrix and Illumina for the European, Asian, and African populations. These include Affymetrix' relatively new population-optimized arrays, whose SNP sets are each tailored toward a specific ethnicity. Our evaluation of the chips included the use of two measures, efficiency and cost–benefit ratio, which we developed as supplements to genetic coverage. Unlike coverage, these measures factor in the price of a chip or its substitute size (number of SNPs on chip), allowing comparisons to be drawn between differently priced chips. In this fashion, we identified the Affymetrix population-optimized arrays as offering the most cost-effective coverage for the Asian and African population. For the European population, we established the Illumina Human Omni 2.5-8 as the preferred choice. Interestingly, the Affymetrix chip tailored toward an Eastern Asian subpopulation performed well for all three populations investigated. However, our coverage estimates calculated for all chips proved much lower than those advertised by the producers. All our analyses were based on the 1000 Genome Project as reference population. PMID:24448550

  12. Microchannel cooling of face down bonded chips

    DOEpatents

    Bernhardt, Anthony F.

    1993-01-01

    Microchannel cooling is applied to flip-chip bonded integrated circuits, in a manner which maintains the advantages of flip-chip bonds, while overcoming the difficulties encountered in cooling the chips. The technique is suited to either multichip integrated circuit boards in a plane, or to stacks of circuit boards in a three dimensional interconnect structure. Integrated circuit chips are mounted on a circuit board using flip-chip or control collapse bonds. A microchannel structure is essentially permanently coupled with the back of the chip. A coolant delivery manifold delivers coolant to the microchannel structure, and a seal consisting of a compressible elastomer is provided between the coolant delivery manifold and the microchannel structure. The integrated circuit chip and microchannel structure are connected together to form a replaceable integrated circuit module which can be easily decoupled from the coolant delivery manifold and the circuit board. The coolant supply manifolds may be disposed between the circuit boards in a stack and coupled to supplies of coolant through a side of the stack.

  13. Gas Sensor Test Chip

    NASA Technical Reports Server (NTRS)

    Buehler, M.; Ryan, M.

    1995-01-01

    A new test chip is being developed to characterize conducting polymers used in gas sensors. The chip, a seven-layer cofired alumina substrate with gold electrodes, contains 11 comb and U- bend test structures. These structures are designed to measure the sheet resistance, conduction anisotropy, and peripheral conduction of spin-coated films that are not subsequently patterned.

  14. 3D-ICs created using oblique processing

    NASA Astrophysics Data System (ADS)

    Burckel, D. Bruce

    2016-03-01

    This paper demonstrates that another class of three-dimensional integrated circuits (3D-ICs) exists, distinct from through silicon via centric and monolithic 3D-ICs. Furthermore, it is possible to create devices that are 3D at the device level (i.e. with active channels oriented in each of the three coordinate axes), by performing standard CMOS fabrication operations at an angle with respect to the wafer surface into high aspect ratio silicon substrates using membrane projection lithography (MPL). MPL requires only minimal fixturing changes to standard CMOS equipment, and no change to current state-of-the-art lithography. Eliminating the constraint of 2D planar device architecture enables a wide range of new interconnect topologies which could help reduce interconnect resistance/capacitance, and potentially improve performance.

  15. IC [Interior Communications] Electrician 3 and 2: Rate Training Manual. Revised.

    ERIC Educational Resources Information Center

    Naval Education and Training Command, Pensacola, FL.

    The rate training manual provides information related to the tasks assigned to the Interior Communications (IC) Electricians Third and Second Class who operate and maintain the interior communications systems and associated equipment. Chapter one discusses career challenges for the IC Electrician in terms of responsibilities, advancement…

  16. 65-nm full-chip implementation using double dipole lithography

    NASA Astrophysics Data System (ADS)

    Hsu, Stephen D.; Chen, J. Fung; Cororan, Noel; Knose, William T.; Van Den Broeke, Douglas J.; Laidig, Thomas L.; Wampler, Kurt E.; Shi, Xuelong; Hsu, Michael; Eurlings, Mark; Finders, Jo; Chiou, Tsann-Bim; Socha, Robert J.; Conley, Will; Hsieh, Yen W.; Tuan, Steve; Hsieh, Frank

    2003-06-01

    Double Dipole Lithography (DDL) has been demonstrated to be capable of patterning complex 2D patterns. Due to inherently high aerial imaging contrast, especially for dense features, we have found that it has a very good potential to meet manufacturing requirements for the 65nm node using ArF binary chrome masks. For patterning in the k1<0.35 regime without resorting to hard phase-shift masks (PSMs), DDL is one unique Resolution Enhancement Technique (RET) which can achieve an acceptable process window. To utilize DDL for printing actual IC devices, the original design data must be decomposed into "vertical (V)" and "horizontal (H)" masks for the respective X- and Y-dipole exposures. An improved two-pass, model-based, DDL mask data processing methodology has been established. It is capable of simultaneously converting complex logic and memory mask patterns into DDL compatible mask layout. To maximize the overlapped process window area, we have previously shown that the pattern-shielding algorithm must be intelligently applied together with both Scattering Bars (SBs) and model-based OPC (MOPC). Due to double exposures, stray light must be well-controlled to ensure uniform printing across the entire chip. One solution to minimize stray light is to apply large patches of solid chrome in open areas to reduce the background transmission during exposure. Unfortunately, this is not feasible for a typical clear-field poly gate masks to be patterned by a positive resist process. In this work, we report a production-worthy DDL mask pattern decomposition scheme for full-chip application. A new generation of DDL technology reticle set has been developed to verify the printing performance. Shielding is a critical part of the DDL. An innovative shielding scheme has been developed to protect the critical features and minimize the impact of stray light during double exposure.

  17. Establishment of an intermittent cold stress model using Tupaia belangeri and evaluation of compound C737 targeting neuron-restrictive silencer factor

    PubMed Central

    Hai-Ying, Chi; Nagano, Kiori; Ezzikouri, Sayeh; Yamaguchi, Chiho; Kayesh, Mohammad Enamul Hoque; Rebbani, Khadija; Kitab, Bouchra; Nakano, Hirohumi; Kouji, Hiroyuki; Kohara, Michinori; Tsukiyama-Kohara, Kyoko

    2016-01-01

    Previous studies have shown that intermittent cold stress (ICS) induces depression-like behaviors in mammals. Tupaia belangeri (the tree shrew) is the only experimental animal other than the chimpanzee that has been shown to be susceptible to infection by hepatitis B and C viruses. Moreover, full genome sequence analysis has revealed strong homology between host proteins in Tupaia and in humans and other primates. Tupaia neuromodulator receptor proteins are also known to have a high degree of homology with their corresponding primate proteins. Based on these similarities, we hypothesized that induction of ICS in Tupaia would provide a useful animal model of stress responses. We exposed young adult Tupaia to ICS and observed decreases in body temperature and body weight in both female and male Tupaia, suggesting that Tupaia are an appropriate animal model for ICS studies. We further examined the efficacy of a new small-molecule compound, C737, against the effects of ICS. C737 mimics the helical structure of neuron-restrictive silencer factor (NRSF/REST), which regulates a wide range of target genes involved in neuronal function and pain modulation. Treatment with C737 significantly reduced stress-induced weight loss in female Tupaia; these effects were stronger than those elicited by the antidepressant agomelatine. These results suggest that Tupaia represents a useful non-rodent ICS model. Our data also provide new insights into the function of NRSF/REST in stress-induced depression and other disorders with epigenetic influences or those with high prevalence in women. PMID:27041457

  18. Single-chip photonic transceiver based on bulk-silicon, as a chip-level photonic I/O platform for optical interconnects.

    PubMed

    Kim, Gyungock; Park, Hyundai; Joo, Jiho; Jang, Ki-Seok; Kwack, Myung-Joon; Kim, Sanghoon; Kim, In Gyoo; Oh, Jin Hyuk; Kim, Sun Ae; Park, Jaegyu; Kim, Sanggi

    2015-06-10

    When silicon photonic integrated circuits (PICs), defined for transmitting and receiving optical data, are successfully monolithic-integrated into major silicon electronic chips as chip-level optical I/Os (inputs/outputs), it will bring innovative changes in data computing and communications. Here, we propose new photonic integration scheme, a single-chip optical transceiver based on a monolithic-integrated vertical photonic I/O device set including light source on bulk-silicon. This scheme can solve the major issues which impede practical implementation of silicon-based chip-level optical interconnects. We demonstrated a prototype of a single-chip photonic transceiver with monolithic-integrated vertical-illumination type Ge-on-Si photodetectors and VCSELs-on-Si on the same bulk-silicon substrate operating up to 50 Gb/s and 20 Gb/s, respectively. The prototype realized 20 Gb/s low-power chip-level optical interconnects for λ ~ 850 nm between fabricated chips. This approach can have a significant impact on practical electronic-photonic integration in high performance computers (HPC), cpu-memory interface, hybrid memory cube, and LAN, SAN, data center and network applications.

  19. A Portable Parallel Implementation of the U.S. Navy Layered Ocean Model

    DTIC Science & Technology

    1995-01-01

    Wallcraft, PhD (I.C. 1981) Planning Systems Inc. & P. R. Moore, PhD (Camb. 1971) IC Dept. Math. DR Moore 1° Encontro de Metodos Numericos...Kendall Square, Hypercube, D R Moore 1 ° Encontro de Metodos Numericos para Equacöes de Derivadas Parciais A. J. Wallcraft IC Mathematics...chips: Chips Machine DEC Alpha CrayT3D/E SUN Sparc Fujitsu AP1000 Intel 860 Paragon D R Moore 1° Encontro de Metodos Numericos para Equacöes

  20. Chip-package nano-structured copper and nickel interconnections with metallic and polymeric bonding interfaces

    NASA Astrophysics Data System (ADS)

    Aggarwal, Ankur

    developed to address the IC packaging requirements beyond the ITRS projections and to introduce innovative design and fabrication concepts that will further advance the performance of the chip, the package, and the system board. The nano-structured interconnect technology simultaneously packages all the ICs intact in wafer form with quantum jump in the number of interconnections with the lowest electrical parasitics. The intrinsic properties of nano materials also enable several orders of magnitude higher interconnect densities with the best mechanical properties for the highest reliability and yet provide higher current and heat transfer densities. Nano-structured interconnects provides the ability to assemble the packaged parts on the system board without the use of underfill materials and to enable advanced analog/digital testing, reliability testing, and burn-in at wafer level. This thesis investigates the electrical and mechanical performance of nanostructured interconnections through modeling and test vehicle fabrication. The analytical models evaluate the performance improvements over solder and compliant interconnections. Test vehicles with nano-interconnections were fabricated using low cost electro-deposition techniques and assembled with various bonding interfaces. Interconnections were fabricated at 200 micron pitch to compare with the existing solder joints and at 50 micron pitch to demonstrate fabrication processes at fine pitches. Experimental and modeling results show that the proposed nano-interconnections could enhance the reliability and potentially meet all the system performance requirements for the emerging micro/nano-systems.

  1. Numerical simulation of CTE mismatch and thermal-structural stresses in the design of interconnects

    NASA Astrophysics Data System (ADS)

    Peter, Geoffrey John M.

    With the ever-increasing chip complexity, interconnects have to be designed to meet the new challenges. Advances in optical lithography have made chip feature sizes available today at 70 nm dimensions. With advances in Extreme Ultraviolet Lithography, X-ray Lithography, and Ion Projection Lithography it is expected that the line width will further decrease to 20 nm or less. With the decrease in feature size, the number of active devices on the chip increases. With higher levels of circuit integration, the challenge is to dissipate the increased heat flux from the chip surface area. Thermal management considerations include coefficient of thermal expansion (CTE) matching to prevent failure between the chip and the board. This in turn calls for improved system performance and reliability of the electronic structural systems. Experience has shown that in most electronic systems, failures are mostly due to CTE mismatch between the chip, board, and the solder joint (solder interconnect). The resulting high thermal-structural stress and strain due to CTE mismatch produces cracks in the solder joints with eventual failure of the electronic component. In order to reduce the thermal stress between the chip, board, and the solder joint, this dissertation examines the effect of inserting wire bundle (wire interconnect) between the chip and the board. The flexibility of the wires or fibers would reduce the stress at the rigid joints. Numerical simulations of two, and three-dimensional models of the solder and wire interconnects are examined. The numerical simulation is linear in nature and is based on linear isotropic material properties. The effect of different wire material properties is examined. The effect of varying the wire diameter is studied by changing the wire diameter. A major cause of electronic equipment failure is due to fatigue failure caused by thermal cycling, and vibrations. A two-dimensional modal and harmonic analysis was simulated for the wire interconnect

  2. Chip-to-chip SnO2 nanowire network sensors for room temperature H2 detection

    NASA Astrophysics Data System (ADS)

    Köck, A.; Brunet, E.; Mutinati, G. C.; Maier, T.; Steinhauer, S.

    2012-06-01

    The employment of nanowires is a very powerful strategy to improve gas sensor performance. We demonstrate a gas sensor device, which is based on silicon chip-to-chip synthesis of ultralong tin oxide (SnO2) nanowires. The sensor device employs an interconnected SnO2 nanowire network configuration, which exhibits a huge surface-to-volume ratio and provides full access of the target gas to the nanowires. The chip-to-chip SnO2 nanowire device is able to detect a H2 concentration of only 20 ppm in synthetic air with ~ 60% relative humidity at room temperature. At an operating temperature of 300°C a concentration of 50 ppm H2 results in a sensitivity of 5%. At this elevated temperature the sensor shows a linear response in a concentration range between 10 ppm and 100 ppm H2. The SnO2-nanowire fabrication procedure based on spray pyrolysis and subsequent annealing is performed at atmospheric pressure, requires no vacuum and allows upscale of the substrate to a wafer size. 3D-integration with CMOS chips is proposed as viable way for practical realization of smart nanowire based gas sensor devices for the consumer market.

  3. Edwards nXDS15iC Vacuum Scroll Pump Pressure Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sessions, H.; Morgan, G. A.

    2013-07-17

    The SRNL High Pressure Laboratory performed testing on an Edwards Model nXDS15iC Vacuum Scroll Pump on July 10th and 11th of 2013 at 723-A. This testing was done in an attempt to obtain initial compression ratio information for the nXDS15iC pump, with compression ratio defined as discharge pressure of the pump divided by suction pressure. Pressure burst testing was also done on the pump to determine its design pressure for pressure safety reasons. The Edwards nXDS15iC pump is being evaluated by SRNL for use part of the SHINE project being executed by SRNL.

  4. Construction Progress of the S-IC Test Stand Complex Bunker House

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the S-IC stand, additional related facilities were built during this time frame. Built to the east of the S-IC stand, the block house served as the control room. To the south of the blockhouse was a newly constructed pump house used for delivering water to the S-IC stand during testing. North of the massive test stand, the F-1 Engine test stand was built for testing a single F-1 engine. Just southeast of the S-IC stand a concrete bunker house was constructed. The bunker housed

  5. Camera-on-a-Chip

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Jet Propulsion Laboratory's research on a second generation, solid-state image sensor technology has resulted in the Complementary Metal- Oxide Semiconductor Active Pixel Sensor (CMOS), establishing an alternative to the Charged Coupled Device (CCD). Photobit Corporation, the leading supplier of CMOS image sensors, has commercialized two products of their own based on this technology: the PB-100 and PB-300. These devices are cameras on a chip, combining all camera functions. CMOS "active-pixel" digital image sensors offer several advantages over CCDs, a technology used in video and still-camera applications for 30 years. The CMOS sensors draw less energy, they use the same manufacturing platform as most microprocessors and memory chips, and they allow on-chip programming of frame size, exposure, and other parameters.

  6. A novel three-dimensional bone chip organ culture.

    PubMed

    Kuttenberger, Johannes; Polska, Elzbieta; Schaefer, Birgit M

    2013-07-01

    The objective of this study was to develop a 3D bone chip organ culture model. We aimed to collect in vitro evidence of the ability of vital bone chips to promote new bone formation. We developed a 3D in vitro hypoxic bone chip organ culture model. Histology of the bone chips was performed before and after culture and immunohistochemistry after 3-week culture. The 3D culture supernatants were tested for the presence of pro-angiogenic growth factors, TGFβ1, GADPH, bone alkaline phosphatase, osteocalcin, osteonectin, osteopontin, bone sialoprotein and collagen type I. Histology after culture revealed bone chips in a matrix of fibrin remnants and a fibrous-appearing matter. Collagen type I- and IV-positive structures were also identified. Cells could be seen on the surface of the bone chips, with spindle-shaped cells bridging the bone chip particles. Pro-angiogenic growth factors and TGFβ1were detected in the 3D cell culture supernatants. The transcripts for osteocalcin, bone sialoprotein and collagen type I were revealed only via PCR. Our results indicate that bone chips in our 3D organ culture remain vital and may stimulate the growth of a bone-forming matrix. The use of autogenous bone chips for oral and maxillofacial bone augmentation procedures is widespread in clinical practice. The rationale for this is that if bone chips remain vital in vivo, they could provide an environment promoting new bone formation through growth factors and cells. This 3D culture method is an essential tool for investigating the behaviour of bone chips.

  7. Cytometer on a Chip

    NASA Technical Reports Server (NTRS)

    Fernandez, Salvador M.

    2011-01-01

    A cytometer now under development exploits spatial sorting of sampled cells on a microarray chip followed by use of grating-coupled surface-plasmon-resonance imaging (GCSPRI) to detect the sorted cells. This cytometer on a chip is a prototype of contemplated future miniature cytometers that would be suitable for rapidly identifying pathogens and other cells of interest in both field and laboratory applications and that would be attractive as alternatives to conventional flow cytometers. The basic principle of operation of a conventional flow cytometer requires fluorescent labeling of sampled cells, stringent optical alignment of a laser beam with a narrow orifice, and flow of the cells through the orifice, which is subject to clogging. In contrast, the principle of operation of the present cytometer on a chip does not require fluorescent labeling of cells, stringent optical alignment, or flow through a narrow orifice. The basic principle of operation of the cytometer on a chip also reduces the complexity, mass, and power of the associated laser and detection systems, relative to those needed in conventional flow cytometry. Instead of making cells flow in single file through a narrow flow orifice for sequential interrogation as in conventional flow cytometry, a liquid containing suspended sampled cells is made to flow over the front surface of a microarray chip on which there are many capture spots. Each capture spot is coated with a thin (approximately 50-nm) layer of gold that is, in turn, coated with antibodies that bind to cell-surface molecules characteristic of one the cell species of interest. The multiplicity of capture spots makes it possible to perform rapid, massively parallel analysis of a large cell population. The binding of cells to each capture spot gives rise to a minute change in the index of refraction at the surface of the chip. This change in the index of refraction is what is sensed in GCSPRI, as described briefly below. The identities of the

  8. Cytometer on a Chip

    NASA Technical Reports Server (NTRS)

    Fernandez, Salvador M.

    2011-01-01

    A cytometer now under development exploits spatial sorting of sampled cells on a microarray chip followed by use of grating-coupled surface-plasmon-resonance imaging (GCSPRI) to detect the sorted cells. This cytometer on a chip is a prototype of contemplated future miniature cytometers that would be suitable for rapidly identifying pathogens and other cells of interest in both field and laboratory applications and that would be attractive as alternatives to conventional flow cytometers. The basic principle of operation of a conventional flow cytometer requires fluorescent labeling of sampled cells, stringent optical alignment of a laser beam with a narrow orifice, and flow of the cells through the orifice, which is subject to clogging. In contrast, the principle of operation of the present cytometer on a chip does not require fluorescent labeling of cells, stringent optical alignment, or flow through a narrow orifice. The basic principle of operation of the cytometer on a chip also reduces the complexity, mass, and power of the associated laser and detection systems, relative to those needed in conventional flow cytometry. Instead of making cells flow in single file through a narrow flow orifice for sequential interrogation as in conventional flow cytometry, a liquid containing suspended sampled cells is made to flow over the front surface of a microarray chip on which there are many capture spots. Each capture spot is coated with a thin (.50-nm) layer of gold that is, in turn, coated with antibodies that bind to cell-surface molecules characteristic of the cell species of interest. The multiplicity of capture spots makes it possible to perform rapid, massively parallel analysis of a large cell population. The binding of cells to each capture spot gives rise to a minute change in the index of refraction at the surface of the chip. This change in the index of refraction is what is sensed in GCSPRI, as described briefly below. The identities of the various species in

  9. ICS classification system of infected osteosynthesis: Long-term results.

    PubMed

    Romanò, Carlo L; Morelli, Ilaria; Romanò, Delia; Meani, Enzo; Drago, Lorenzo

    2018-03-01

    The best treatment strategy for infected osteosyntheses is still debated. While hardware removal or eventually early device exchange may be necessary in most of the cases, temporary hardware retention until fracture healing can be a valid alternative option in others. Aim of the present study is to report the long-term results of 215 patients with infected osteosyntheses, treated according to the ICS (Infection, Callus, Stability) classification in two Italian hospitals. Patients classified as ICS Type 1 (N = 83) feature callus progression and hardware stability, in spite of the presence of infection; these patients were treated with suppressive antibiotic therapy coupled with local debridement in 18.1% of the cases, and no hardware removal until bone healing. Type 2 patients (N = 75) are characterized by the presence of infection and hardware stability, but no callus progression; these patients were treated as Type 1 patients, but with additional callus stimulation therapies. Type 3 patients (N = 57), showing infection, no callus progression and loss of hardware stability, underwent removal and exchange of the fixation device. Considering only the initial treatment, performed according to the ICS classification, at a minimum 5 years follow up, 89.3% achieved bone healing and 93.5% did not show infection recurrence. The ICS classification appears as a useful and reliable tool to help standardizing the decision-making process in treating infected osteosynthesis with the most conservative approach. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. An Antioxidant Phytotherapy to Rescue Neuronal Oxidative Stress

    PubMed Central

    Lin, Zhihong; Zhu, Danni; Yan, Yongqing; Yu, Boyang; Wang, Qiujuan; Shen, Pingniang; Ruan, Kefeng

    2011-01-01

    Oxidative stress is involved in the pathogenesis of ischemic neuronal injury. A Chinese herbal formula composed of Poria cocos (Chinese name: Fu Ling), Atractylodes macrocephala (Chinese name: Bai Zhu) and Angelica sinensis (Chinese names: Danggui, Dong quai, Donggui; Korean name: Danggwi) (FBD), has been proved to be beneficial in the treatment of cerebral ischemia/reperfusion (I/R).This study was carried out to evaluate the protective effect of FBD against neuronal oxidative stress in vivo and in vitro. Rat I/R were established by middle cerebral artery occlusion (MCAO) for 1 h, followed by 24 h reperfusion. MCAO led to significant depletion in superoxide dismutase and glutathione and rise in lipid peroxidation (LPO) and nitric oxide in brain. The neurological deficit and brain infarction were also significantly elevated by MCAO as compared with sham-operated group. All the brain oxidative stress and damage were significantly attenuated by 7 days pretreatment with the aqueous extract of FBD (250 mg kg−1, p.o.). Moreover, cerebrospinal fluid sampled from FBD-pretreated rats protected PC12 cells against oxidative insult induced by 0.2 mM hydrogen peroxide, in a concentration and time-dependent manner (IC50 10.6%, ET50 1.2 h). However, aqueous extract of FBD just slightly scavenged superoxide anion radical generated in xanthine–xanthine oxidase system (IC50 2.4 mg ml−1) and hydroxyl radical generated in Fenton reaction system (IC50 3.6 mg ml−1). In conclusion, FBD was a distinct antioxidant phytotherapy to rescue neuronal oxidative stress, through blocking LPO, restoring endogenous antioxidant system, but not scavenging free radicals. PMID:18955358

  11. CHIP: A new modulator of human malignant disorders

    PubMed Central

    Shao, Qianqian; Yang, Gang; Zheng, Lianfang; Zhang, Taiping; Zhao, Yupei

    2016-01-01

    Carboxyl terminus of Hsc70-interacting protein (CHIP) is known as a chaperone-associated E3 for a variety of protein substrates. It acts as a link between molecular chaperones and ubiquitin–proteasome system. Involved in the process of protein clearance, CHIP plays a critical role in maintaining protein homeostasis in diverse conditions. Here, we provide a comprehensive review of our current understanding of CHIP and summarize recent advances in CHIP biology, with a focus on CHIP in the setting of malignancies. PMID:27007160

  12. Chip PCR. I. Surface passivation of microfabricated silicon-glass chips for PCR.

    PubMed Central

    Shoffner, M A; Cheng, J; Hvichia, G E; Kricka, L J; Wilding, P

    1996-01-01

    The microreaction volumes of PCR chips (a microfabricated silicon chip bonded to a piece of flat glass to form a PCR reaction chamber) create a relatively high surface to volume ratio that increases the significance of the surface chemistry in the polymerase chain reaction (PCR). We investigated several surface passivations in an attempt to identify 'PCR friendly' surfaces and used those surfaces to obtain amplifications comparable with those obtained in conventional PCR amplification systems using polyethylene tubes. Surface passivations by a silanization procedure followed by a coating of a selected protein or polynucleotide and the deposition of a nitride or oxide layer onto the silicon surface were investigated. Native silicon was found to be an inhibitor of PCR and amplification in an untreated PCR chip (i.e. native slicon) had a high failure rate. A silicon nitride (Si(3)N(4) reaction surface also resulted in consistent inhibition of PCR. Passivating the PCR chip using a silanizing agent followed by a polymer treatment resulted in good amplification. However, amplification yields were inconsistent and were not always comparable with PCR in a conventional tube. An oxidized silicon (SiO(2) surface gave consistent amplifications comparable with reactions performed in a conventional PCR tube. PMID:8628665

  13. Anthropometric, functional capacity, and oxidative stress changes in Brazilian community-living elderly subjects. A longitudinal study.

    PubMed

    Moreira, Priscila Lucelia; Correa, Camila Renata; Corrente, José Eduardo; Martin, Luis Cuadrado; Boas, Paulo Jose Fortes Villas; Ferreira, Ana Lucia Anjos

    2016-01-01

    To examine the changes and relationships among anthropometric, functional and plasma oxidative stress markers in elderly. longitudinal study. measurements in 2008 and 2010. 103 community-dwelling men and women aged 67-92. Anthropometric parameters [waist, hip, arm and calf circumferences; waist-hip ratio, triceps skinfold thickness and others], basic (ADL) and instrumental activities of daily living (IADL)] and plasma oxidative stress markers (α-tocopherol, β-carotene and malondialdehyde) were assessed in 2008 and 2010. ADL, IADL, body weight, skinfold thickness and circumferences of calf and arm decreased and waist and waist-hip ratio increased from 2008 to 2010. α-Tocopherol decreased and malondialdehyde plasma levels increased during the study period. In multiple logistic regression analyses, increased age (OR=1.12; IC: 1.02-1.23; p=0.02), female gender (OR=8.43; IC: 1.23-57.58; p=0.03), hypertension (OR=0.22; IC: 0.06-0.79; p=0.02), arthritis/arthrosis (OR=0.09; IC: 0.009-0.87; p=0.04) and depression (OR=0.20; IC: 0.04-1.03; p=0.05) were independent risk factors for functional decline. Fat reduction, muscle loss, central obesity increase, functional decline and worsening of plasma oxidative stress were observed during 2-year follow-up. Some of the risk factors that were identified could be modified to help prevent functional decline in elderly. The factors deserving attention include hypertension, arthritis/arthrosis and depression. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. ICS-II USA research design and methodology.

    PubMed

    Rana, H; Andersen, R M; Nakazono, T T; Davidson, P L

    1997-05-01

    The purpose of the WHO-sponsored International Collaborative Study of Oral Health Outcomes (ICS-II) was to provide policy-markers and researchers with detailed, reliable, and valid data on the oral health situation in their countries or regions, together with comparative data from other dental care delivery systems. ICS-II used a cross-sectional design with no explicit control groups or experimental interventions. A standardized methodology was developed and tested for collecting and analyzing epidemiological, sociocultural, economic, and delivery system data. Respondent information was obtained by household interviews, and clinical examinations were conducted by calibrated oral epidemiologists. Discussed are the sampling design characteristics for the USA research locations, response rates, samples size for interview and oral examination data, weighting procedures, and statistical methods. SUDAAN was used to adjust variance calculations, since complex sampling designs were used.

  15. Multicolor CCD Photometry of the Open Cluster IC361

    DTIC Science & Technology

    2010-01-01

    journal Volume 19 Numbers 1/2 2010 Contents V. Straizys, A. Kazlauskas. Young stars in the Camelopardalis dust and molecular clouds. VI. YSOs...Vilnius + I system for 7250 stars down to 1= 19.6 mag has been obtained in the 20’ x 26’ field of the open cluster IC 361 in Camelopardalis . The catalog...1= 19.6 mag has been obtained in the 20’ x 26’ field of the open cluster IC 361 in Camelopardalis . The catalog of 1420 stars down to V ~ 18.5 mag

  16. Classification of fMRI independent components using IC-fingerprints and support vector machine classifiers.

    PubMed

    De Martino, Federico; Gentile, Francesco; Esposito, Fabrizio; Balsi, Marco; Di Salle, Francesco; Goebel, Rainer; Formisano, Elia

    2007-01-01

    We present a general method for the classification of independent components (ICs) extracted from functional MRI (fMRI) data sets. The method consists of two steps. In the first step, each fMRI-IC is associated with an IC-fingerprint, i.e., a representation of the component in a multidimensional space of parameters. These parameters are post hoc estimates of global properties of the ICs and are largely independent of a specific experimental design and stimulus timing. In the second step a machine learning algorithm automatically separates the IC-fingerprints into six general classes after preliminary training performed on a small subset of expert-labeled components. We illustrate this approach in a multisubject fMRI study employing visual structure-from-motion stimuli encoding faces and control random shapes. We show that: (1) IC-fingerprints are a valuable tool for the inspection, characterization and selection of fMRI-ICs and (2) automatic classifications of fMRI-ICs in new subjects present a high correspondence with those obtained by expert visual inspection of the components. Importantly, our classification procedure highlights several neurophysiologically interesting processes. The most intriguing of which is reflected, with high intra- and inter-subject reproducibility, in one IC exhibiting a transiently task-related activation in the 'face' region of the primary sensorimotor cortex. This suggests that in addition to or as part of the mirror system, somatotopic regions of the sensorimotor cortex are involved in disambiguating the perception of a moving body part. Finally, we show that the same classification algorithm can be successfully applied, without re-training, to fMRI collected using acquisition parameters, stimulation modality and timing considerably different from those used for training.

  17. Single-chip photonic transceiver based on bulk-silicon, as a chip-level photonic I/O platform for optical interconnects

    PubMed Central

    Kim, Gyungock; Park, Hyundai; Joo, Jiho; Jang, Ki-Seok; Kwack, Myung-Joon; Kim, Sanghoon; Gyoo Kim, In; Hyuk Oh, Jin; Ae Kim, Sun; Park, Jaegyu; Kim, Sanggi

    2015-01-01

    When silicon photonic integrated circuits (PICs), defined for transmitting and receiving optical data, are successfully monolithic-integrated into major silicon electronic chips as chip-level optical I/Os (inputs/outputs), it will bring innovative changes in data computing and communications. Here, we propose new photonic integration scheme, a single-chip optical transceiver based on a monolithic-integrated vertical photonic I/O device set including light source on bulk-silicon. This scheme can solve the major issues which impede practical implementation of silicon-based chip-level optical interconnects. We demonstrated a prototype of a single-chip photonic transceiver with monolithic-integrated vertical-illumination type Ge-on-Si photodetectors and VCSELs-on-Si on the same bulk-silicon substrate operating up to 50 Gb/s and 20 Gb/s, respectively. The prototype realized 20 Gb/s low-power chip-level optical interconnects for λ ~ 850 nm between fabricated chips. This approach can have a significant impact on practical electronic-photonic integration in high performance computers (HPC), cpu-memory interface, hybrid memory cube, and LAN, SAN, data center and network applications. PMID:26061463

  18. Construction Progress of the S-IC Test Stand-Pumps

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo, taken April 4, 1961, shows the S-IC test stand dry once again when workers resumed construction after a 6 month delay due to booster size reconfiguration back in September of 1961. The disturbance of a natural spring during the excavation of the site required water to be pumped from the site continuously. The site was completely flooded after the pumps were shut down during the construction delay.

  19. Galaxy IC 3639 with Obscured Active Galactic Nucleus

    NASA Image and Video Library

    2017-01-07

    IC 3639, a galaxy with an active galactic nucleus, is seen in this image combining data from the Hubble Space Telescope and the European Southern Observatory. This galaxy contains an example of a supermassive black hole hidden by gas and dust. Researchers analyzed NuSTAR data from this object and compared them with previous observations from NASA's Chandra X-Ray Observatory and the Japanese-led Suzaku satellite. The findings from NuSTAR, which is more sensitive to higher energy X-rays than these observatories, confirm the nature of IC 3639 as an active galactic nucleus that is heavily obscured, and intrinsically much brighter than observed. http://photojournal.jpl.nasa.gov/catalog/PIA21087

  20. Identifying the substrate proteins of U-box E3s E4B and CHIP by orthogonal ubiquitin transfer.

    PubMed

    Bhuripanyo, Karan; Wang, Yiyang; Liu, Xianpeng; Zhou, Li; Liu, Ruochuan; Duong, Duc; Zhao, Bo; Bi, Yingtao; Zhou, Han; Chen, Geng; Seyfried, Nicholas T; Chazin, Walter J; Kiyokawa, Hiroaki; Yin, Jun

    2018-01-01

    E3 ubiquitin (UB) ligases E4B and carboxyl terminus of Hsc70-interacting protein (CHIP) use a common U-box motif to transfer UB from E1 and E2 enzymes to their substrate proteins and regulate diverse cellular processes. To profile their ubiquitination targets in the cell, we used phage display to engineer E2-E4B and E2-CHIP pairs that were free of cross-reactivity with the native UB transfer cascades. We then used the engineered E2-E3 pairs to construct "orthogonal UB transfer (OUT)" cascades so that a mutant UB (xUB) could be exclusively used by the engineered E4B or CHIP to label their substrate proteins. Purification of xUB-conjugated proteins followed by proteomics analysis enabled the identification of hundreds of potential substrates of E4B and CHIP in human embryonic kidney 293 cells. Kinase MAPK3 (mitogen-activated protein kinase 3), methyltransferase PRMT1 (protein arginine N -methyltransferase 1), and phosphatase PPP3CA (protein phosphatase 3 catalytic subunit alpha) were identified as the shared substrates of the two E3s. Phosphatase PGAM5 (phosphoglycerate mutase 5) and deubiquitinase OTUB1 (ovarian tumor domain containing ubiquitin aldehyde binding protein 1) were confirmed as E4B substrates, and β-catenin and CDK4 (cyclin-dependent kinase 4) were confirmed as CHIP substrates. On the basis of the CHIP-CDK4 circuit identified by OUT, we revealed that CHIP signals CDK4 degradation in response to endoplasmic reticulum stress.

  1. Identifying the substrate proteins of U-box E3s E4B and CHIP by orthogonal ubiquitin transfer

    PubMed Central

    Bhuripanyo, Karan; Wang, Yiyang; Liu, Xianpeng; Zhou, Li; Liu, Ruochuan; Duong, Duc; Zhao, Bo; Bi, Yingtao; Zhou, Han; Chen, Geng; Seyfried, Nicholas T.; Chazin, Walter J.; Kiyokawa, Hiroaki; Yin, Jun

    2018-01-01

    E3 ubiquitin (UB) ligases E4B and carboxyl terminus of Hsc70-interacting protein (CHIP) use a common U-box motif to transfer UB from E1 and E2 enzymes to their substrate proteins and regulate diverse cellular processes. To profile their ubiquitination targets in the cell, we used phage display to engineer E2-E4B and E2-CHIP pairs that were free of cross-reactivity with the native UB transfer cascades. We then used the engineered E2-E3 pairs to construct “orthogonal UB transfer (OUT)” cascades so that a mutant UB (xUB) could be exclusively used by the engineered E4B or CHIP to label their substrate proteins. Purification of xUB-conjugated proteins followed by proteomics analysis enabled the identification of hundreds of potential substrates of E4B and CHIP in human embryonic kidney 293 cells. Kinase MAPK3 (mitogen-activated protein kinase 3), methyltransferase PRMT1 (protein arginine N-methyltransferase 1), and phosphatase PPP3CA (protein phosphatase 3 catalytic subunit alpha) were identified as the shared substrates of the two E3s. Phosphatase PGAM5 (phosphoglycerate mutase 5) and deubiquitinase OTUB1 (ovarian tumor domain containing ubiquitin aldehyde binding protein 1) were confirmed as E4B substrates, and β-catenin and CDK4 (cyclin-dependent kinase 4) were confirmed as CHIP substrates. On the basis of the CHIP-CDK4 circuit identified by OUT, we revealed that CHIP signals CDK4 degradation in response to endoplasmic reticulum stress. PMID:29326975

  2. Study of endothelial cell apoptosis using fluorescence resonance energy transfer (FRET) biosensor cell line with hemodynamic microfluidic chip system.

    PubMed

    Yu, J Q; Liu, X F; Chin, L K; Liu, A Q; Luo, K Q

    2013-07-21

    To better understand how hyperglycemia induces endothelial cell dysfunction under the diabetic conditions, a hemodynamic microfluidic chip system was developed. The system combines a caspase-3-based fluorescence resonance energy transfer (FRET) biosensor cell line which can detect endothelial cell apoptosis in real-time, post-treatment effect and with a limited cell sample, by using a microfluidic chip which can mimic the physiological pulsatile flow profile in the blood vessel. The caspase-3-based FRET biosensor endothelial cell line (HUVEC-C3) can produce a FRET-based sensor protein capable of probing caspase-3 activation. When the endothelial cells undergo apoptosis, the color of the sensor cells changes from green to blue, thus sensing apoptosis. A double-labeling fluorescent technique (yo pro-1 and propidium iodide) was used to validate the findings revealed by the FRET-based caspase sensor. The results show high rates of apoptosis and necrosis of endothelial cells when high glucose concentration was applied in our hemodynamic microfluidic chip combined with an exhaustive pulsatile flow profile. The two apoptosis detection techniques (fluorescent method and FRET biosensor) are comparable; but FRET biosensor offers more advantages such as real-time observation and a convenient operating process to generate more accurate and reliable data. Furthermore, the activation of the FRET biosensor also confirms the endothelial cell apoptosis induced by the abnormal pulsatile shear stress and high glucose concentration is through caspase-3 pathway. A 12% apoptotic rate (nearly a 4-fold increase compared to the static condition) was observed when the endothelial cells were exposed to a high glucose concentration of 20 mM under 2 h exhaustive pulsatile shear stress of 30 dyne cm(-2) and followed with another 10 h normal pulsatile shear stress of 15 dyne cm(-2). Therefore, the most important finding of this study is to develop a novel endothelial cell apoptosis detection

  3. Autogenous bone chips: influence of a new piezoelectric device (Piezosurgery) on chip morphology, cell viability and differentiation.

    PubMed

    Chiriac, G; Herten, M; Schwarz, F; Rothamel, D; Becker, J

    2005-09-01

    The aim of the present study was to investigate the influence of a new piezoelectric device, designed for harvesting autogenous bone chips from intra-oral sites, on chip morphology, cell viability and differentiation. A total of 69 samples of cortical bone chips were randomly gained by either (1) a piezoelectric device (PS), or (2) conventional rotating drills (RD). Shape and size of the bone chips were compared by means of morphometrical analysis. Outgrowing osteoblasts were identified by means of alkaline phosphatase activity (AP), immunhistochemical staining for osteocalcin (OC) synthesis and reverse transcriptase-polymerase chain reaction phenotyping. In 88.9% of the RD and 87.9% of the PS specimens, an outgrowth of adherent cells nearby the bone chips was observed after 6-19 days. Confluence of cells was reached after 4 weeks. Positive staining for AP and OC identified the cells as osteoblasts. The morphometrical analysis revealed a statistically significant more voluminous size of the particles collected with PS than RD. Within the limits of the present study, it may be concluded that both the harvesting methods are not different from each other concerning their detrimental effect on viability and differentiation of cells growing out of autogenous bone chips derived from intra-oral cortical sites.

  4. Exploring the Limits of Cell Adhesion under Shear Stress within Physiological Conditions and beyond on a Chip.

    PubMed

    Stamp, Melanie E M; Jötten, Anna M; Kudella, Patrick W; Breyer, Dominik; Strobl, Florian G; Geislinger, Thomas M; Wixforth, Achim; Westerhausen, Christoph

    2016-10-21

    Cell adhesion processes are of ubiquitous importance for biomedical applications such as optimization of implant materials. Here, not only physiological conditions such as temperature or pH, but also topographical structures play crucial roles, as inflammatory reactions after surgery can diminish osseointegration. In this study, we systematically investigate cell adhesion under static, dynamic and physiologically relevant conditions employing a lab-on-a-chip system. We screen adhesion of the bone osteosarcoma cell line SaOs-2 on a titanium implant material for pH and temperature values in the physiological range and beyond, to explore the limits of cell adhesion, e.g., for feverish and acidic conditions. A detailed study of different surface roughness R q gives insight into the correlation between the cells' abilities to adhere and withstand shear flow and the topography of the substrates, finding a local optimum at R q = 22 nm. We use shear stress induced by acoustic streaming to determine a measure for the ability of cell adhesion under an external force for various conditions. We find an optimum of cell adhesion for T = 37 °C and pH = 7.4 with decreasing cell adhesion outside the physiological range, especially for high T and low pH. We find constant detachment rates in the physiological regime, but this behavior tends to collapse at the limits of 41 °C and pH 4.

  5. An anisotropic thermal-stress model for through-silicon via

    NASA Astrophysics Data System (ADS)

    Liu, Song; Shan, Guangbao

    2018-02-01

    A two-dimensional thermal-stress model of through-silicon via (TSV) is proposed considering the anisotropic elastic property of the silicon substrate. By using the complex variable approach, the distribution of thermal-stress in the substrate can be characterized more accurately. TCAD 3-D simulations are used to verify the model accuracy and well agree with analytical results (< ±5%). The proposed thermal-stress model can be integrated into stress-driven design flow for 3-D IC , leading to the more accurate timing analysis considering the thermal-stress effect. Project supported by the Aerospace Advanced Manufacturing Technology Research Joint Fund (No. U1537208).

  6. Fabrication and Qualification of Coated Chip-on-Board Technology for Miniaturized Space Systems

    NASA Technical Reports Server (NTRS)

    Maurer, R. H.; Le, B. Q.; Nhan, E.; Lew, A. L.; Darrin, M. Ann Garrison

    1997-01-01

    The results of a study carried out in order to manufacture and verify the quality of chip-on-board (COB) packaging technology are presented. The COB, designed for space applications, was tested under environmental stresses, temperature cycling, and temperature-humidity-bias. Both robustness in space applications and in environmental protection on the ground-complete reliability without hermeticity were searched for. The epoxy-parylene combinations proved to be superior to other materials tested.

  7. On the use of new generation mobile phone (smart phone) for retrospective accident dosimetry

    NASA Astrophysics Data System (ADS)

    Lee, J. I.; Chang, I.; Pradhan, A. S.; Kim, J. L.; Kim, B. H.; Chung, K. S.

    2015-11-01

    Optically stimulated luminescence (OSL) characteristics of resistors, inductors and integrated-circuit (IC) chips, extracted from new generation smart phones, were investigated for the purpose of retrospective accident dosimetry. Inductor samples were found to exhibit OSL sensitivity about 5 times and 40 times higher than that of the resistors and the IC chips, respectively. On post-irradiation storage, the resistors exhibited a much higher OSL fading (about 80 % in 36 h as compared to the value 3 min after irradiation) than IC chips (about 20 % after 36 h) and inductors (about 50 % in 36 h). Higher OSL sensitivity, linear dose response (from 8.7 mGy up to 8.9 Gy) and acceptable fading make inductors more attractive for accident dosimetry than widely studied resistors.

  8. Polydimethylsiloxane SlipChip for mammalian cell culture applications.

    PubMed

    Chang, Chia-Wen; Peng, Chien-Chung; Liao, Wei-Hao; Tung, Yi-Chung

    2015-11-07

    This paper reports a polydimethylsiloxane (PDMS) SlipChip for in vitro cell culture applications, multiple-treatment assays, cell co-cultures, and cytokine detection assays. The PDMS SlipChip is composed of two PDMS layers with microfluidic channels on each surface that are separated by a thin silicone fluid (Si-fluid) layer. The integration of Si-fluid enables the two PDMS layers to be slid to different positions; therefore, the channel patterns can be re-arranged for various applications. The SlipChip design significantly reduces the complexity of sample handling, transportation, and treatment processes. To apply the developed SlipChip for cell culture applications, human lung adenocarcinoma epithelial cells (A549) and lung fibroblasts (MRC-5) were cultured to examine the biocompatibility of the developed PDMS SlipChip. Moreover, embryonic pluripotent stem cells (ES-D3) were also cultured in the device to evaluate the retention of their stemness in the device. The experimental results show that cell morphology, viability and proliferation are not affected when the cells are cultured in the SlipChip, indicating that the device is highly compatible with mammalian cell culture. In addition, the stemness of the ES-D3 cells was highly retained after they were cultured in the device, suggesting the feasibility of using the SlipChip for stem cell research. Various cell experiments, such as simultaneous triple staining of cells and co-culture of MRC-5 with A549 cells, were also performed to demonstrate the functionalities of the PDMS SlipChip. Furthermore, we used a cytokine detection assay to evaluate the effect of endotoxin (lipopolysaccharides, LPS) treatment on the cytokine secretion of A549 cells using the SlipChip. The developed PDMS SlipChip provides a straightforward and effective platform for various on-chip in vitro cell cultures and consequent analysis, which is promising for a number of cell biology studies and biomedical applications.

  9. Purification, crystallization and preliminary X-ray analysis of aminoglycoside-2′′-phosphotransferase-Ic [APH(2′′)-Ic] from Enterococcus gallinarum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrnes, Laura J.; Badarau, Adriana; Vakulenko, Sergei B.

    2008-02-01

    APH(2′′)-Ic is an enzyme that is responsible for high-level gentamicin resistance in E. gallinarum isolates. Crystals of the wild-type enzyme and three mutants have been prepared and a complete X-ray diffraction data set was collected to 2.15 Å resolution from an F108L crystal. Bacterial resistance to aminoglycoside antibiotics is primarily the result of deactivation of the drugs. Three families of enzymes are responsible for this activity, with one such family being the aminoglycoside phosphotransferases (APHs). The gene encoding one of these enzymes, aminoglycoside-2′′-phosphotransferase-Ic [APH(2′′)-Ic] from Enterococcus gallinarum, has been cloned and the wild-type protein (comprising 308 amino-acid residues) and threemore » mutants that showed elevated minimum inhibitory concentrations towards gentamicin (F108L, H258L and a double mutant F108L/H258L) were expressed in Escherichia coli and subsequently purified. All APH(2′′)-Ic variants were crystallized in the presence of 14–20%(w/v) PEG 4000, 0.25 M MgCl{sub 2}, 0.1 M Tris–HCl pH 8.5 and 1 mM Mg{sub 2}GTP. The crystals belong to the monoclinic space group C2, with one molecule in the asymmetric unit. The approximate unit-cell parameters are a = 82.4, b = 54.2, c = 77.0 Å, β = 108.8°. X-ray diffraction data were collected to approximately 2.15 Å resolution from an F108L crystal at beamline BL9-2 at SSRL, Stanford, California, USA.« less

  10. CHIPPING FRACTURE RESISTANCE OF DENTURE TOOTH MATERIALS

    PubMed Central

    Quinn, G. D.; Giuseppetti, A. A.; Hoffman, K. H.

    2014-01-01

    Objective The applicability of the edge chipping method to denture tooth materials was assessed. These are softer materials than those usually tested by edge chipping. The edge chipping fracture resistances of polymethylmethacrylate (PMMA) based and two filled resin composite denture tooth materials were compared. Methods An edge chipping machine was used to chip rectangular blocks and flattened anterior denture teeth. Force versus edge distance data were collected over a broad range of forces and distances. Between 20 and 65 chips were made per condition depending upon the material, the scatter, and the indenter type. Different indenter types were used including Rockwell C, sharp conical 120°, Knoop, and Vickers. The edge toughness, Te, was evaluated for different indenter types. Results The edge chipping data collected on the blocks matched the data collected from flattened teeth. High scatter, particularly at large distances and loads, meant that many tests (up to 64) were necessary to compare the denture tooth materials and to ascertain the appropriate data trends. A linear force – distance trend analysis was adequate for comparing these materials. A power law trend might be more appropriate, but the large scatter obscured the definitive determination of the precise trend. Different indenters produce different linear trends, with the ranking of: sharp conical 120°, Rockwell C, and Knoop, from lowest to highest edge toughness. Vickers indenter data were extremely scattered and a sensible trend could not be obtained. Edge toughness was inversely correlated to hardness. Significance Edge chipping data collected either from simple laboratory scale test blocks or from actual denture teeth may be used to evaluate denture materials. The edge chipping method’s applicability has been extended to another class of restorative materials. PMID:24674342

  11. Comparison of bone healing and outcomes between allogenous bone chip and hydroxyapatite chip grafts in open wedge high tibial osteotomy.

    PubMed

    Lee, O-Sung; Lee, Kyung Jae; Lee, Yong Seuk

    2017-11-03

    Allogenous bone chips and hydroxyapatite (HA) chips have been known as good options for filling an inevitable void after open wedge high tibial osteotomy (OWHTO). However, there are concerns regarding bone healing after the use of these grafts. The purpose of this study was to compare the bone healing represented by the osteoconductivity and absorbability between allogenous bone chips and HA chips in OWHTO. The outcomes of bone healing of 53 patients who received an allogenous bone chip graft and 41 patients who received an HA chip graft were retrospectively evaluated, and the results were compared between the two groups. Osteoconductivity and absorbability were serially evaluated for the assessment of bone healing at 6 weeks, 3 months, 6 months, and 1 year postoperatively. The osteoconductivity of the allogenous bone chips was greater than that of the HA chips at 6 weeks postoperatively (p < 0.05). However, there were no statistically significant differences from 3 months to 1 year postoperatively. The absorbability showed no statistically significant differences 6 weeks and 3 months after OWHTO; however, the allogenous bone chip group showed a greater absorbability at 6 months and 1 year postoperatively (42.8 ± 14.2 vs. 34.6 ± 13.8, p = 0.006 at 6 months postoperatively; 54.6 ± 14.4 vs. 43.0 ± 14.0, p < 0.001 at 1 year postoperatively). However, the two graft materials showed similar results of HKA angle, WBL ratio, posterior tibial slope.

  12. The effect of stress on men's food selection.

    PubMed

    Zellner, Debra A; Saito, Shin; Gonzalez, Johanie

    2007-11-01

    This study investigates the effect of stress on food choice among men. Two groups of men were given either solvable (no-stress) or unsolvable (stress) anagrams to solve. Four bowls of snack foods-two healthy (peanuts and grapes) and two unhealthy (potato chips and M&M chocolate candies)-were available and subjects were invited to snack on them. Men in the no-stress group ate significantly more of the unhealthy foods than did men in the stress group. This finding is quite different from that found with women [Zellner et al. (2006). Food selection changes under stress. Physiology & Behavior, 87, 789-793]. Women tended to eat more grapes when not stressed than when stressed and more M&Ms when stressed than when not stressed. Thus, the effect of stress level on food choice is different for men and women.

  13. Chip-to-chip entanglement of transmon qubits using engineered measurement fields

    NASA Astrophysics Data System (ADS)

    Dickel, C.; Wesdorp, J. J.; Langford, N. K.; Peiter, S.; Sagastizabal, R.; Bruno, A.; Criger, B.; Motzoi, F.; DiCarlo, L.

    2018-02-01

    While the on-chip processing power in circuit QED devices is growing rapidly, an open challenge is to establish high-fidelity quantum links between qubits on different chips. Here, we show entanglement between transmon qubits on different cQED chips with 49 % concurrence and 73 % Bell-state fidelity. We engineer a half-parity measurement by successively reflecting a coherent microwave field off two nearly identical transmon-resonator systems. By ensuring the measured output field does not distinguish |01 > from |10 > , unentangled superposition states are probabilistically projected onto entangled states in the odd-parity subspace. We use in situ tunability and an additional weakly coupled driving field on the second resonator to overcome imperfect matching due to fabrication variations. To demonstrate the flexibility of this approach, we also produce an even-parity entangled state of similar quality, by engineering the matching of outputs for the |00 > and |11 > states. The protocol is characterized over a range of measurement strengths using quantum state tomography showing good agreement with a comprehensive theoretical model.

  14. Tuberculosis vaccine candidate: Characterization of H4-IC31 formulation and H4 antigen conformation.

    PubMed

    Deshmukh, Sasmit S; Magcalas, Federico Webster; Kalbfleisch, Kristen N; Carpick, Bruce W; Kirkitadze, Marina D

    2018-08-05

    Tuberculosis (TB) is one of the leading causes of death worldwide, making the development of effective TB vaccines a global priority. A TB vaccine consisting of a recombinant fusion protein, H4, combined with a novel synthetic cationic adjuvant, IC31 ® , is currently being developed. The H4 fusion protein consists of two immunogenic mycobacterial antigens, Ag85 B and TB10.4, and the IC31 ® adjuvant is a mixture of KLK, a leucine-rich peptide (KLKL5KLK), and the oligodeoxynucleotide ODN1a, a TLR9 ligand. However, efficient and robust methods for assessing these formulated components are lacking. Here, we developed and optimized phase analysis light scattering (PALS), electrical sensing zone (ESZ), and Raman, FTIR, and CD spectroscopy methods to characterize the H4-IC31 vaccine formulation. PALS-measured conductivity and zeta potential values could differentiate between the similarly sized particles of IC31 ® adjuvant and the H4-IC31 vaccine candidate and could thereby serve as a control during vaccine formulation. In addition, zeta potential is indicative of the adjuvant to antigen ratio which is the key in the immunomodulatory response of the vaccine. ESZ was used as an orthogonal method to measure IC31 ® and H4-IC31 particle sizes. Raman, FTIR, and CD spectroscopy revealed structural changes in H4 protein and IC31 ® adjuvant, inducing an increase in both the β-sheet and random coil content as a result of adsorption. Furthermore, nanoDSF showed changes in the tertiary structure of H4 protein as a result of adjuvantation to IC31 ® . Our findings demonstrate the applicability of biophysical methods to characterize vaccine components in the final H4-IC31 drug product without the requirement for desorption. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Multi-Wavelength Views of Protostars in IC 1396

    NASA Image and Video Library

    2003-12-18

    This archival image from 2003 captured by NASA Spitzer Space Telescope captured the Elephant Trunk Nebula, an elongated dark globule within the emission nebula IC 1396 in the constellation of Cepheus.

  16. Validating the Implementation Climate Scale (ICS) in Child Welfare Organizations

    PubMed Central

    Ehrhart, Mark G.; Torres, Elisa M.; Wright, Lisa A.; Martinez, Sandra Y.; Aarons, Gregory A.

    2015-01-01

    There is increasing emphasis on the use of evidence-based practices (EBPs) in child welfare settings and growing recognition of the importance of the organizational environment, and the organization’s climate in particular, for how employees perceive and support EBP implementation. Recently, Ehrhart, Aarons, and Farahnak (2014) reported on the development and validation of a measure of EBP implementation climate, the Implementation Climate Scale (ICS), in a sample of mental health clinicians. The ICS consists of 18 items and measures six critical dimensions of implementation climate: focus on EBP, educational support for EBP, recognition for EBP, rewards for EBP, selection or EBP, and selection for openness. The goal of the current study is to extend this work by providing evidence for the factor structure, reliability, and validity of the ICS in a sample of child welfare service providers. Survey data were collected from 215 child welfare providers across three states, 12 organizations, and 43 teams. Confirmatory factor analysis demonstrated good fit to the six-factor model and the alpha reliabilities for the overall measure and its subscales was acceptable. In addition, there was general support for the invariance of the factor structure across the child welfare and mental health sectors. In conclusion, this study provides evidence for the factor structure, reliability, and validity of the ICS measure for use in child welfare service organizations. PMID:26563643

  17. Validating the Implementation Climate Scale (ICS) in child welfare organizations.

    PubMed

    Ehrhart, Mark G; Torres, Elisa M; Wright, Lisa A; Martinez, Sandra Y; Aarons, Gregory A

    2016-03-01

    There is increasing emphasis on the use of evidence-based practices (EBPs) in child welfare settings and growing recognition of the importance of the organizational environment, and the organization's climate in particular, for how employees perceive and support EBP implementation. Recently, Ehrhart, Aarons, and Farahnak (2014) reported on the development and validation of a measure of EBP implementation climate, the Implementation Climate Scale (ICS), in a sample of mental health clinicians. The ICS consists of 18 items and measures six critical dimensions of implementation climate: focus on EBP, educational support for EBP, recognition for EBP, rewards for EBP, selection or EBP, and selection for openness. The goal of the current study is to extend this work by providing evidence for the factor structure, reliability, and validity of the ICS in a sample of child welfare service providers. Survey data were collected from 215 child welfare providers across three states, 12 organizations, and 43 teams. Confirmatory factor analysis demonstrated good fit to the six-factor model and the alpha reliabilities for the overall measure and its subscales was acceptable. In addition, there was general support for the invariance of the factor structure across the child welfare and mental health sectors. In conclusion, this study provides evidence for the factor structure, reliability, and validity of the ICS measure for use in child welfare service organizations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Bone chip-induced rhinosinusitis.

    PubMed

    Reilly, Brian K; Conley, David B

    2009-12-01

    This case report describes both the pathophysiology and management of chronic rhinosinusitis (CRS). Specifically, we report a case of chronic maxillary rhinosinusitis with a free-floating maxillary sinus calcification (bone chip). After obtaining the computed tomography scan, the patient underwent endoscopic sinus surgery, with removal of the uncinate, enlargement of the diseased natural ostium of the maxillary sinus, and removal of the diseased bone chip. This eliminated the nidus for infection, ultimately restoring mucociliary flow.

  19. Expression and significance of CHIP in canine mammary gland tumors

    PubMed Central

    WANG, Huanan; YANG, Xu; JIN, Yipeng; PEI, Shimin; ZHANG, Di; MA, Wen; HUANG, Jian; QIU, Hengbin; ZHANG, Xinke; JIANG, Qiuyue; SUN, Weidong; ZHANG, Hong; LIN, Degui

    2015-01-01

    CHIP (Carboxy terminus of Hsc70 Interacting Protein) is an E3 ubiquitin ligase that can induce ubiquitination and degradation of several oncogenic proteins. The expression of CHIP is frequently lower in human breast cancer than in normal breast tissue. However, the expression and role of CHIP in the canine mammary gland tumor (CMGT) remain unclear. We investigated the potential correlation between CHIP expression and mammary gland tumor prognosis in female dogs. CHIP expression was measured in 54 dogs by immunohistochemistry and real-time RT-PCR. CHIP protein expression was significantly correlated with the histopathological diagnosis, outcome of disease and tumor classification. The transcriptional level of CHIP was significantly higher in normal tissues (P=0.001) and benign tumors (P=0.009) than it in malignant tumors. CHIP protein expression was significantly correlated with the transcriptional level of CHIP (P=0.0102). The log-rank test survival curves indicated that patients with low expression of CHIP had shorter overall periods of survival than those with higher CHIP protein expression (P=0.050). Our data suggest that CHIP may play an important role in the formation and development of CMGTs and serve as a valuable prognostic marker and potential target for genetic therapy. PMID:26156079

  20. Development of low fat potato chips through microwave processing.

    PubMed

    Joshi, A; Rudra, S G; Sagar, V R; Raigond, P; Dutt, S; Singh, B; Singh, B P

    2016-08-01

    Since snacks high in fats are known to be a significant source of fat and energy intake, these have been put in high dietary restraint category. Therefore, an attempt was made to process potato chips through microwave processing without incorporation of any oil in potato chips. Microwave processing of potato chips was done using microwave power varying from 180 to 600 W using constant sample size. Among eleven different drying models, Parabolic model was found to be the best fit through non-linear regression analysis to illustrate drying kinetics of potato chips. The structural, textural and colour attributes of microwaved potato chips were similar to commercial fried potato chips. It was found that at 600 W after 2.5-3.0 min of processing, potato chips gained the fracturability and crispiness index as that of commercial fried chips. Microwave processing was found suitable for processing of potato chips with low fat content (~3.09 vs 35.5 % in commercial preparation) and with acceptable sensory scores (≥7.6 on 9.0 point on hedonic scale vs 8.0 of control preparation).

  1. IC97 Is a Novel Intermediate Chain of I1 Dynein That Interacts with Tubulin and Regulates Interdoublet Sliding

    PubMed Central

    Wirschell, Maureen; Yang, Chun; Yang, Pinfen; Fox, Laura; Yanagisawa, Haru-aki; Kamiya, Ritsu; Witman, George B.; Porter, Mary E.

    2009-01-01

    Our goal is to understand the assembly and regulation of flagellar dyneins, particularly the Chlamydomonas inner arm dynein called I1 dynein. Here, we focus on the uncharacterized I1-dynein IC IC97. The IC97 gene encodes a novel IC without notable structural domains. IC97 shares homology with the murine lung adenoma susceptibility 1 (Las1) protein—a candidate tumor suppressor gene implicated in lung tumorigenesis. Multiple, independent biochemical assays determined that IC97 interacts with both α- and β-tubulin subunits within the axoneme. I1-dynein assembly mutants suggest that IC97 interacts with both the IC138 and IC140 subunits within the I1-dynein motor complex and that IC97 is part of a regulatory complex that contains IC138. Microtubule sliding assays, using axonemes containing I1 dynein but devoid of IC97, show reduced microtubule sliding velocities that are not rescued by kinase inhibitors, revealing a critical role for IC97 in I1-dynein function and control of dynein-driven motility. PMID:19420136

  2. SN2005da: A Spectroscopic and Photometric Analysis of a Peculiar Type Ic Supernova

    NASA Astrophysics Data System (ADS)

    Williamson, Jacob

    2017-12-01

    Core collapse supernovae are an important class of objects in stellar evolution research as they are the final life stage of high mass stars. Supernovae in general are classified into several spectral types; this paper explores SN 2005da, classified as a Type Ic, meaning it lacks hydrogen and helium lines. The supernova was originally classified as a broad-lined Type Ic (Type Ic-BL), with expansion velocities near maximum light greater than or approximately equal to 15000 km/s. However, some of the elements present in the spectrum, namely carbon and oxygen, have narrower lines (FWHM approximately equal to 2300 km/s) than other elements, indicating an interaction with a previously ejected envelope. The supernova is also found to have a decay time, with a change in magnitude over 15 days following maximum light of about 1.4 magnitudes, that is significantly faster than typical Type Ic or Ic-BL. This is more akin to a rarer object type known as a Type Ibn, although it lacks the characteristic narrow helium lines of this type. Therefore, SN 2005da appears to be unlike known examples of Type Ic supernovae.

  3. A Solder Based Self Assembly Project in an Introductory IC Fabrication Course

    ERIC Educational Resources Information Center

    Rao, Madhav; Lusth, John C.; Burkett, Susan L.

    2015-01-01

    Integrated circuit (IC) fabrication principles is an elective course in a senior undergraduate and early graduate student's curriculum. Over the years, the semiconductor industry relies heavily on students with developed expertise in the area of fabrication techniques, learned in an IC fabrication theory and laboratory course. The theory course…

  4. A CAM-based LZ data compression IC

    NASA Technical Reports Server (NTRS)

    Winters, K.; Bode, R.; Schneider, E.

    1993-01-01

    A custom CMOS processor is introduced that implements the Data Compression Lempel-Ziv (DCLZ) standard, a variation of the LZ2 Algorithm. This component presently achieves a sustained compression and decompression rate of 10 megabytes/second by employing an on-chip content-addressable memory for string table storage.

  5. TIF-IC, a factor involved in both transcription initiation and elongation of RNA polymerase I.

    PubMed

    Schnapp, G; Schnapp, A; Rosenbauer, H; Grummt, I

    1994-09-01

    We have characterized a transcription factor from Ehrlich ascites cells that is required for ribosomal gene transcription by RNA polymerase I (Pol I). This factor, termed TIF-IC, has a native molecular mass of 65 kDa, associates with Pol I, and is required both for the assembly of Sarkosyl-resistant initiation complexes and for the formation of the first internucleotide bonds. In addition to its function in transcription initiation, TIF-IC also plays a role in elongation of nascent RNA chains. At suboptimal levels of TIF-IC, transcripts with heterogeneous 3' ends are formed which are chased into full-length transcripts by the addition of more TIF-IC. Moreover, on a tailed template, which allows initiation in the absence of auxiliary factors, TIF-IC was found to stimulate the overall rate of transcription elongation and suppress pausing of Pol I. Thus TIF-IC appears to serve a function similar to the Pol II-specific factor TFIIF which is required for Pol II transcription initiation and elongation.

  6. Pulsed laser ablation of IC packages for device failure analyses

    NASA Astrophysics Data System (ADS)

    Hong, Ming Hui; Mai, ZhiHong; Chen, G. X.; Thiam, Thomas; Song, Wen D.; Lu, Yongfeng; Soh, Chye E.; Chong, Tow Chong

    2002-06-01

    Pulsed laser ablation of mold compounds for IC packaging in air and with steam assistance is investigated. It is applied to decap IC packages and expose computer CPU dies for the device failure analyses. Compared with chemical decapping, the laser ablation has advantages of being fast speed, non- contact and dry processing. Laser ablation with the steam assistance results in higher ablation rate and wider ablated crater with much smoother surface morphology. It implies that the steam assisted laser ablation can achieve a faster and better quality laser processing. Audible acoustic wave and plasma optical signal diagnostics are also carried out to have a better understanding of the mechanisms behind. Light wavelength and laser fluence applied in the decapping are two important parameters. The 532 nm Nd:YAG laser decapping at a low laser fluence can achieve a large decapping area with a fine ablation profile. IC packages decapped by the laser ablation show good quality for the device failure analyses.

  7. Thermoacoustic chips with carbon nanotube thin yarn arrays.

    PubMed

    Wei, Yang; Lin, Xiaoyang; Jiang, Kaili; Liu, Peng; Li, Qunqing; Fan, Shoushan

    2013-10-09

    Aligned carbon nanotube (CNT) films drawn from CNT arrays have shown the potential as thermoacoustic loudspeakers. CNT thermoacoustic chips with robust structures are proposed to promote the applications. The silicon-based chips can play sound and fascinating rhythms by feeding alternating currents and audio signal to the suspending CNT thin yarn arrays across grooves in them. In additional to the thin yarns, experiments further revealed more essential elements of the chips, the groove depth and the interdigital electrodes. The sound pressure depends on the depth of the grooves, and the thermal wavelength can be introduced to define the influence-free depth. The interdigital fingers can effectively reduce the driving voltage, making the chips safe and easy to use. The chips were successfully assembled into earphones and have been working stably for about one year. The thermoacoustic chips can find many applications in consumer electronics and possibly improve the audiovisual experience.

  8. Microfabrication of human organs-on-chips.

    PubMed

    Huh, Dongeun; Kim, Hyun Jung; Fraser, Jacob P; Shea, Daniel E; Khan, Mohammed; Bahinski, Anthony; Hamilton, Geraldine A; Ingber, Donald E

    2013-11-01

    'Organs-on-chips' are microengineered biomimetic systems containing microfluidic channels lined by living human cells, which replicate key functional units of living organs to reconstitute integrated human organ-level pathophysiology in vitro. These microdevices can be used to test efficacy and toxicity of drugs and chemicals, and to create in vitro models of human disease. Thus, they potentially represent low-cost alternatives to conventional animal models for pharmaceutical, chemical and environmental applications. Here we describe a protocol for the fabrication, microengineering and operation of these microfluidic organ-on-chip systems. First, microengineering is used to fabricate a multilayered microfluidic device that contains two parallel elastomeric microchannels separated by a thin porous flexible membrane, along with two full-height, hollow vacuum chambers on either side; this requires ∼3.5 d to complete. To create a 'breathing' lung-on-a-chip that mimics the mechanically active alveolar-capillary interface of the living human lung, human alveolar epithelial cells and microvascular endothelial cells are cultured in the microdevice with physiological flow and cyclic suction applied to the side chambers to reproduce rhythmic breathing movements. We describe how this protocol can be easily adapted to develop other human organ chips, such as a gut-on-a-chip lined by human intestinal epithelial cells that experiences peristalsis-like motions and trickling fluid flow. Also, we discuss experimental techniques that can be used to analyze the cells in these organ-on-chip devices.

  9. Inhaled corticosteroids (ICS) and risk of mycobacterium in patients with chronic respiratory diseases: a meta-analysis.

    PubMed

    Ni, Songshi; Fu, Zhenxue; Zhao, Jing; Liu, Hua

    2014-07-01

    Studies have indicated that therapy with inhaled corticosteroids (ICS) can be associated with a higher risk of pneumonia. However, it is not known whether ICS increases the risk of mycobacterium. Most of these published studies were small, and the conclusions were inconsistent. A meta-analysis was conducted into whether ICS increases the risk of mycobacterium in patients with chronic respiratory diseases. PubMed, OVID, EMBASE and Cochrane Library databases were searched. Five studies involving 4,851 cases and 28,477 controls were considered in the meta-analysis. From the pooled analyses, there was significant association between ICS and risk of mycobacterium in all patients with chronic respiratory diseases [risk ratio (RR) =1.81; 95% confidence interval (CI), 1.23-2.68; P=0.003]. Among patients with chronic respiratory diseases, the relationship between ICS and risk of tuberculosis (TB) was also significant (RR =1.34; 95% CI, 1.15-1.55; P=0.0001). And meta-analysis of four studies in patients with chronic obstructive pulmonary disease (COPD) (RR =1.42; 95% CI, 1.18-1.72; P=0.0003) or two studies in patients who have prior pulmonary TB (RR =1.61; 95% CI, 1.35-1.92; P<0.00001) or three studies in patients with high-dose ICS (RR =1.60; 95% CI, 1.28-1.99; P<0.0001) showed a relationship between ICS and risk of mycobacterium. Significant relationship has been shown between ICS use and risk of mycobacterium in all patients with chronic respiratory diseases. ICS use also increases the risk of TB among the patients with chronic respiratory diseases. Use of ICS increases the risk of mycobacterium in patients with COPD or patients with prior pulmonary TB or patients inhaling high-dose corticosteroids. Further research is required to establish the potential adverse effect of ICS as a therapy for chronic respiratory diseases.

  10. The German Intelligibility in Context Scale (ICS-G): Reliability and Validity Evidence

    ERIC Educational Resources Information Center

    Neumann, Sandra; Rietz, Christian; Stenneken, Prisca

    2017-01-01

    Background: In 2012 the Intelligibility in Context Scale (ICS) was published as a parent-report screening assessment that considers parents' perceptions of their children's functional intelligibility with a range of communication partners that differ in levels of authority and familiarity in real-life situations. To date, the ICS has been…

  11. Some new results on shock chemistry in IC 443

    NASA Technical Reports Server (NTRS)

    Denoyer, L. K.; Frerking, M. A.

    1981-01-01

    New observations have been made of CO, CO-13, SiO, SO, H2CO, HCO(+), N2H(+), CS, OCS, HCN, and OH in the shocked clouds of IC 443. It is found that at position IC 443 B, (1) the shocked CO is optically thin; (2) the HCO(+)/CO abundance ratio is 4-9 x 10 to the -4 th, representing a tenfold enhancement over that of normal interstellar clouds; (3) there is no enhancement of SO or SIO, as occurs in Orion KL; and (4) there is optically thin preshock OH, confirming a hundredfold enhancement of the OH/CO ratio in the shock.

  12. MagIC: Fluid dynamics in a spherical shell simulator

    NASA Astrophysics Data System (ADS)

    Wicht, J.; Gastine, T.; Barik, A.; Putigny, B.; Yadav, R.; Duarte, L.; Dintrans, B.

    2017-09-01

    MagIC simulates fluid dynamics in a spherical shell. It solves for the Navier-Stokes equation including Coriolis force, optionally coupled with an induction equation for Magneto-Hydro Dynamics (MHD), a temperature (or entropy) equation and an equation for chemical composition under both the anelastic and the Boussinesq approximations. MagIC uses either Chebyshev polynomials or finite differences in the radial direction and spherical harmonic decomposition in the azimuthal and latitudinal directions. The time-stepping scheme relies on a semi-implicit Crank-Nicolson for the linear terms of the MHD equations and a Adams-Bashforth scheme for the non-linear terms and the Coriolis force.

  13. Chip-to-chip interconnects based on 3D stacking of optoelectrical dies on Si

    NASA Astrophysics Data System (ADS)

    Duan, P.; Raz, O.; Smalbrugge, B. E.; Duis, J.; Dorren, H. J. S.

    2012-01-01

    We demonstrate a new approach to increase the optical interconnection bandwidth density by stacking the opto-electrical dies directly on the CMOS driver. The suggested implementation is aiming to provide a wafer scale process which will make the use of wire bonding redundant and will allow for impedance matched metallic wiring between the electronic driving circuit and its opto-electronic counter part. We suggest the use of a thick photoresist ramp between CMOS driver and opto-electrical dies surface as the bridge for supporting co-plannar waveguides (CPW) electrically plated with lithographic accuracy. In this way all three dimensions of the interconnecting metal layer, width, length and thickness can be completely controlled. In this 1st demonstration all processing is done on commercially available devices and products, and is compatible with CMOS processing technology. To test the applicability of CPW instead of wire bonds for interconnecting the CMOS circuit and opto-electronic chips, we have made test samples and tested their performance at speeds up to 10 Gbps. In this demonstration, a silicon substrate was used on which we evaporated gold co-planar waveguides (CPW) to mimic a wire on the driver. An optical link consisting of a VCSEL chip and a photodiode chip has been assembled and fully characterized using optical coupling into and out of a multimode fiber (MMF). A 10 Gb/s 27-1 NRZ PRBS signal transmitted from one chip to another chip was detected error free. A 4 dB receiver sensitivity penalty is measured for the integrated device compared to a commercial link.

  14. Determining the Terminal Velocity of Wood and Bark Chips

    Treesearch

    John A. Sturos

    1972-01-01

    Designing an efficient air flotation segregator to segregate bark chips from wood chips requires that the terminal velocities be determined for various pulpwood species. The technique described here uses forced air in a vertical wind tunnel with the chip initially at rest on a stationary screen; when the terminal air velocity in reached, the chip begins to float. A...

  15. Development of Quantum Chemical Method to Calculate Half Maximal Inhibitory Concentration (IC50 ).

    PubMed

    Bag, Arijit; Ghorai, Pradip Kr

    2016-05-01

    Till date theoretical calculation of the half maximal inhibitory concentration (IC50 ) of a compound is based on different Quantitative Structure Activity Relationship (QSAR) models which are empirical methods. By using the Cheng-Prusoff equation it may be possible to compute IC50 , but this will be computationally very expensive as it requires explicit calculation of binding free energy of an inhibitor with respective protein or enzyme. In this article, for the first time we report an ab initio method to compute IC50 of a compound based only on the inhibitor itself where the effect of the protein is reflected through a proportionality constant. By using basic enzyme inhibition kinetics and thermodynamic relations, we derive an expression of IC50 in terms of hydrophobicity, electric dipole moment (μ) and reactivity descriptor (ω) of an inhibitor. We implement this theory to compute IC50 of 15 HIV-1 capsid inhibitors and compared them with experimental results and available other QASR based empirical results. Calculated values using our method are in very good agreement with the experimental values compared to the values calculated using other methods. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. X-ray Transparent Microfluidic Chip for Mesophase-Based Crystallization of Membrane Proteins and On-Chip Structure Determination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khvostichenko, Daria S.; Schieferstein, Jeremy M.; Pawate, Ashtamurthy S.

    2014-10-01

    Crystallization from lipidic mesophase matrices is a promising route to diffraction-quality crystals and structures of membrane proteins. The microfluidic approach reported here eliminates two bottlenecks of the standard mesophase-based crystallization protocols: (i) manual preparation of viscous mesophases and (ii) manual harvesting of often small and fragile protein crystals. In the approach reported here, protein-loaded mesophases are formulated in an X-ray transparent microfluidic chip using only 60 nL of the protein solution per crystallization trial. The X-ray transparency of the chip enables diffraction data collection from multiple crystals residing in microfluidic wells, eliminating the normally required manual harvesting and mounting ofmore » individual crystals. We validated our approach by on-chip crystallization of photosynthetic reaction center, a membrane protein from Rhodobacter sphaeroides, followed by solving its structure to a resolution of 2.5 Å using X-ray diffraction data collected on-chip under ambient conditions. A moderate conformational change in hydrophilic chains of the protein was observed when comparing the on-chip, room temperature structure with known structures for which data were acquired under cryogenic conditions.« less

  17. X-ray transparent microfluidic chip for mesophase-based crystallization of membrane proteins and on-chip structure determination

    DOE PAGES

    Khvostichenko, Daria S.; Schieferstein, Jeremy M.; Pawate, Ashtamurthy S.; ...

    2014-08-21

    Crystallization from lipidic mesophase matrices is a promising route to diffraction-quality crystals and structures of membrane proteins. The microfluidic approach reported here eliminates two bottlenecks of the standard mesophase-based crystallization protocols: (i) manual preparation of viscous mesophases and (ii) manual harvesting of often small and fragile protein crystals. In the approach reported here, protein-loaded mesophases are formulated in an X-ray transparent microfluidic chip using only 60 nL of the protein solution per crystallization trial. The X-ray transparency of the chip enables diffraction data collection from multiple crystals residing in microfluidic wells, eliminating the normally required manual harvesting and mounting ofmore » individual crystals. In addition, we validated our approach by on-chip crystallization of photosynthetic reaction center, a membrane protein from Rhodobacter sphaeroides, followed by solving its structure to a resolution of 2.5 Å using X-ray diffraction data collected on-chip under ambient conditions. A moderate conformational change in hydrophilic chains of the protein was observed when comparing the on-chip, room temperature structure with known structures for which data were acquired under cryogenic conditions.« less

  18. The defective nature of ice Ic and its implications for atmospheric science

    NASA Astrophysics Data System (ADS)

    Kuhs, W. F.; Hansen, T. C.

    2009-04-01

    The possible atmospheric implication of ice Ic (cubic ice) has already been suggested some time ago in the context of snow crystal formation [1]. New findings from air-borne measurements in cirrus clouds and contrails have put ice Ic into the focus of interest to understand the so-called "supersaturation puzzle" [2,3,4,5]. Our recent microstructural work on ice Ic [6,7] appears to be highly relevant in this context. We have found that ice Ic is characterized by a complex stacking fault pattern, which changes as a function of temperature as well as time. Indeed, from our own [8] and other group's work [9] one knows that (in contrast to earlier believe) ice Ic can form up to temperatures at least as high as 240K - thus in the relevant range for cirrus clouds. We have good preliminary evidence that the "cubicity" (which can be related to stacking fault probabilities) as well as the particle size of ice Ic are the relevant parameters for this correlation. The "cubicity" of stacking faulty ice Ic (established by diffraction) correlates nicely with the increased supersaturation at decreasing temperatures observed in cirrus clouds and contrails, a fact, which may be considered as further evidence for the presence of ice Ic. Moreover, the stacking faults lead to kinks in the outer shapes of the minute ice Ic crystals as seen by cryo scanning electron microscopy (cryo-SEM); these defective sites are likely to play some role in heterogeneous reactions in the atmosphere. The cryo-SEM work suggests that stacking-faulty ice Ic has many more active centres for such reactions than the usually considered thermodynamically stable form, ice Ih. [1] T Kobayashi & T Kuroda (1987) Snow Crystals. In: Morphology of Crystals (ed. I Sunagawa), Terra Scientific Publishing, Tokyo, pp.649-743. [2] DM Murphy (2003) Dehydration in cold clouds is enhanced by a transition from from cubic to hexagonal ice. Geophys.Res.Lett.,30, 2230, doi:10.1029/2003GL018566. [3] RS Gao & 19 other authors (2004

  19. Properties of Protostars in the Elephant Trunk in the Globule IC 1396A

    NASA Astrophysics Data System (ADS)

    Reach, William T.; Faied, Dohy; Rho, Jeonghee; Boogert, Adwin; Tappe, Achim; Jarrett, Thomas H.; Morris, Patrick; Cambrésy, Laurent; Palla, Francesco; Valdettaro, Riccardo

    2009-01-01

    Extremely red objects, identified in the early Spitzer Space Telescope observations of the bright-rimmed globule IC 1396A and photometrically classified as Class I protostars and Class II T Tauri stars based on their mid-infrared (mid-IR) colors, were spectroscopically observed at 5.5-38 μm (Spitzer Infrared Spectrograph), at the 22 GHz water maser frequency (National Radio Astronomy Observatory Green Bank Telescope), and in the optical (Palomar Hale 5 m) to confirm their nature and further elucidate their properties. The sources photometrically identified as Class I, including IC 1396A:α, γ, δ, epsilon, and ζ, are confirmed as objects dominated by accretion luminosity from dense envelopes, with accretion rates 1-10 × 10-6 M sun yr-1 and present stellar masses 0.1-2 M sun. The Class I sources have extremely red continua, still rising at 38 μm, with a deep silicate absorption at 9-11 μm, weaker silicate absorption around 18 μm, and weak ice features including CO2 at 15.2 μm and H2O at 6 μm. The ice/silicate absorption ratio in the envelope is exceptionally low for the IC 1396A protostars, compared to those in nearby star-forming regions, suggesting that the envelope chemistry is altered by the radiation field or globule pressure. Only one 22 GHz water maser was detected in IC 1396A; it is coincident with a faint mid-IR source, offset from near the luminous Class I protostar IC 1396A:γ. The maser source, IC 1396A:γ b , has luminosity less than 0.1 L sun, the first H2O maser from such a low-luminosity object. Two near-infrared (NIR) H2 knots on opposite sides of IC 1396A:γ reveal a jet, with an axis clearly distinct from the H2O maser of IC 1396A:γ b . The objects photometrically classified as Class II, including IC 1396A:β, θ, Two Micron All Sky Survey (2MASS)J 21364964+5722270, 2MASSJ 21362507+5727502, LkHα 349c, Tr 37 11-2146, and Tr 37 11-2037, are confirmed as stars with warm, luminous disks, with a silicate emission feature at 9-11 μm, and

  20. System on a Chip (SoC) Overview

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.

    2010-01-01

    System-on-a-chip or system on chip (SoC or SOC) refers to integrating all components of a computer or other electronic system into a single integrated circuit (chip). It may contain digital, analog, mixed-signal, and often radio-frequency functions all on a single chip substrate. Complexity drives it all: Radiation tolerance and testability are challenges for fault isolation, propagation, and validation. Bigger single silicon die than flown before and technology is scaling below 90nm (new qual methods). Packages have changed and are bigger and more difficult to inspect, test, and understand. Add in embedded passives. Material interfaces are more complex (underfills, processing). New rules for board layouts. Mechanical and thermal designs, etc.

  1. Institutional computing (IC) information session

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, Kenneth R; Lally, Bryan R

    2011-01-19

    The LANL Institutional Computing Program (IC) will host an information session about the current state of unclassified Institutional Computing at Los Alamos, exciting plans for the future, and the current call for proposals for science and engineering projects requiring computing. Program representatives will give short presentations and field questions about the call for proposals and future planned machines, and discuss technical support available to existing and future projects. Los Alamos has started making a serious institutional investment in open computing available to our science projects, and that investment is expected to increase even more.

  2. TIF-IC, a factor involved in both transcription initiation and elongation of RNA polymerase I.

    PubMed Central

    Schnapp, G; Schnapp, A; Rosenbauer, H; Grummt, I

    1994-01-01

    We have characterized a transcription factor from Ehrlich ascites cells that is required for ribosomal gene transcription by RNA polymerase I (Pol I). This factor, termed TIF-IC, has a native molecular mass of 65 kDa, associates with Pol I, and is required both for the assembly of Sarkosyl-resistant initiation complexes and for the formation of the first internucleotide bonds. In addition to its function in transcription initiation, TIF-IC also plays a role in elongation of nascent RNA chains. At suboptimal levels of TIF-IC, transcripts with heterogeneous 3' ends are formed which are chased into full-length transcripts by the addition of more TIF-IC. Moreover, on a tailed template, which allows initiation in the absence of auxiliary factors, TIF-IC was found to stimulate the overall rate of transcription elongation and suppress pausing of Pol I. Thus TIF-IC appears to serve a function similar to the Pol II-specific factor TFIIF which is required for Pol II transcription initiation and elongation. Images PMID:8076598

  3. Spectral Demultiplexing in Holographic and Fluorescent On-chip Microscopy

    NASA Astrophysics Data System (ADS)

    Sencan, Ikbal; Coskun, Ahmet F.; Sikora, Uzair; Ozcan, Aydogan

    2014-01-01

    Lensfree on-chip imaging and sensing platforms provide compact and cost-effective designs for various telemedicine and lab-on-a-chip applications. In this work, we demonstrate computational solutions for some of the challenges associated with (i) the use of broadband, partially-coherent illumination sources for on-chip holographic imaging, and (ii) multicolor detection for lensfree fluorescent on-chip microscopy. Specifically, we introduce spectral demultiplexing approaches that aim to digitally narrow the spectral content of broadband illumination sources (such as wide-band light emitting diodes or even sunlight) to improve spatial resolution in holographic on-chip microscopy. We also demonstrate the application of such spectral demultiplexing approaches for wide-field imaging of multicolor fluorescent objects on a chip. These computational approaches can be used to replace e.g., thin-film interference filters, gratings or other optical components used for spectral multiplexing/demultiplexing, which can form a desirable solution for cost-effective and compact wide-field microscopy and sensing needs on a chip.

  4. A portable pressure pump for microfluidic lab-on-a-chip systems using a porous polydimethylsiloxane (PDMS) sponge.

    PubMed

    Cha, Kyoung Je; Kim, Dong Sung

    2011-10-01

    In this paper, we propose a novel portable and disposable pressure pump using a porous polydimethylsiloxane (PDMS) sponge and demonstrate its application to a microfluidic lab-on-a-chip. The porous PDMS sponge was simply fabricated by a sugar leaching technique based on capillary suction of pre-cured PDMS into lumps of sugar, thereby enabling us to achieve the porous PDMS sponge composed of interconnected micropores. To indicate the characteristics of the porous PDMS sponge and pump, we measured the average porosities of them whose values were 0.64 and 0.34, respectively. A stress-strain relationship of the fabricated portable pressure pump represented a linear behavior in the compressive strain range of 0 to 20%. Within this range, a pumping volume of the pressure pump could be linearly controlled by the compressed strain. Finally, the fabricated porous PDMS pump was successfully demonstrated as a portable pressure pump for a disposable microfluidic lab-on-a-chip for efficient detection of agglutination. The proposed portable pressure pump can be potentially applicable to various disposable microfluidic lab-on-a-chip systems.

  5. 42 CFR 457.206 - Administrative appeals under CHIP.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 4 2012-10-01 2012-10-01 false Administrative appeals under CHIP. 457.206 Section... Claims; Reduction of Federal Medical Payments § 457.206 Administrative appeals under CHIP. Three distinct... provisions of 42 CFR part 430, subpart D of this chapter. (b) FFP in State CHIP expenditures. Disallowances...

  6. 42 CFR 457.206 - Administrative appeals under CHIP.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Administrative appeals under CHIP. 457.206 Section... Claims; Reduction of Federal Medical Payments § 457.206 Administrative appeals under CHIP. Three distinct... provisions of 42 CFR part 430, subpart D of this chapter. (b) FFP in State CHIP expenditures. Disallowances...

  7. 42 CFR 457.206 - Administrative appeals under CHIP.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 4 2013-10-01 2013-10-01 false Administrative appeals under CHIP. 457.206 Section... Claims; Reduction of Federal Medical Payments § 457.206 Administrative appeals under CHIP. Three distinct... provisions of 42 CFR part 430, subpart D of this chapter. (b) FFP in State CHIP expenditures. Disallowances...

  8. 42 CFR 457.206 - Administrative appeals under CHIP.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 4 2011-10-01 2011-10-01 false Administrative appeals under CHIP. 457.206 Section... Claims; Reduction of Federal Medical Payments § 457.206 Administrative appeals under CHIP. Three distinct... provisions of 42 CFR part 430, subpart D of this chapter. (b) FFP in State CHIP expenditures. Disallowances...

  9. 42 CFR 457.206 - Administrative appeals under CHIP.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 4 2014-10-01 2014-10-01 false Administrative appeals under CHIP. 457.206 Section... Claims; Reduction of Federal Medical Payments § 457.206 Administrative appeals under CHIP. Three distinct... provisions of 42 CFR part 430, subpart D of this chapter. (b) FFP in State CHIP expenditures. Disallowances...

  10. Thackeray's Globules in IC 2944

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Strangely glowing dark clouds float serenely in this remarkable and beautiful image taken with NASA's Hubble Space Telescope. These dense, opaque dust clouds - known as 'globules' - are silhouetted against nearby bright stars in the busy star-forming region, IC 2944. These globules were first found in IC 2944 by astronomer A.D. Thackeray in 1950. Although globules like these have been known since Dutch-American astronomer Bart Bok first drew attention to such objects in 1947, little is still known about their origin and nature, except that they are generally associated with areas of star formation, called 'HII regions' due to the presence of hydrogen gas. The largest of the globules in this image is actually two separate clouds that gently overlap along our line of sight. Each cloud is nearly 1.4 light-years (50 arcseconds) along its longest dimension, and collectively, they contain enough material to equal over 15 solar masses. IC 2944, the surrounding HII region, is filled with gas and dust that is illuminated and heated by a loose cluster of O-type stars. These stars are much hotter and much more massive than our Sun. IC 2944 is relatively close by, located only 5900 light-years (1800 parsecs) away in the constellation Centaurus. Thanks to the remarkable resolution offered by the Hubble Space Telescope, astronomers can for the first time study the intricate structure of these globules. The globules appear to be heavily fractured, as if major forces were tearing them apart. When radio astronomers observed the faint hiss of molecules within the globules, they realized that the globules are actually in constant, churning motion, moving supersonically among each other. This may be caused by the powerful ultraviolet radiation from the luminous, massive stars, which also heat up the gas in the HII region, causing it to expand and stream against the globules, leading to their destruction. Despite their serene appearance, the globules may actually be likened to clumps

  11. Modified precision-husky progrind H-3045 for chipping biomass

    Treesearch

    Dana Mitchell; Fernando Seixas; John Klepac

    2008-01-01

    A specific size of whole tree chip was needed to co-mill wood chips with coal. The specifications are stringent because chips must be mixed with coal, as opposed to a co-firing process. In co-firing, two raw products are conveyed separately to a boiler. In co-milling, such as at Alabama Power's Plant Gadsden, the chip and coal mix must pass through a series of...

  12. Programmable Multi-Chip Module

    DOEpatents

    Kautz, David; Morgenstern, Howard; Blazek, Roy J.

    2005-05-24

    A multi-chip module comprising a low-temperature co-fired ceramic substrate having a first side on which are mounted active components and a second side on which are mounted passive components, wherein this segregation of components allows for hermetically sealing the active components with a cover while leaving accessible the passive components, and wherein the passive components are secured using a reflow soldering technique and are removable and replaceable so as to make the multi-chip module substantially programmable with regard to the passive components.

  13. Programmable Multi-Chip Module

    DOEpatents

    Kautz, David; Morgenstern, Howard; Blazek, Roy J.

    2004-11-16

    A multi-chip module comprising a low-temperature co-fired ceramic substrate having a first side on which are mounted active components and a second side on which are mounted passive components, wherein this segregation of components allows for hermetically sealing the active components with a cover while leaving accessible the passive components, and wherein the passive components are secured using a reflow soldering technique and are removable and replaceable so as to make the multi-chip module substantially programmable with regard to the passive components.

  14. Programmable multi-chip module

    DOEpatents

    Kautz, David; Morgenstern, Howard; Blazek, Roy J.

    2004-03-02

    A multi-chip module comprising a low-temperature co-fired ceramic substrate having a first side on which are mounted active components and a second side on which are mounted passive components, wherein this segregation of components allows for hermetically sealing the active components with a cover while leaving accessible the passive components, and wherein the passive components are secured using a reflow soldering technique and are removable and replaceable so as to make the multi-chip module substantially programmable with regard to the passive components.

  15. Smart single-chip gas sensor microsystem

    NASA Astrophysics Data System (ADS)

    Hagleitner, C.; Hierlemann, A.; Lange, D.; Kummer, A.; Kerness, N.; Brand, O.; Baltes, H.

    2001-11-01

    Research activity in chemical gas sensing is currently directed towards the search for highly selective (bio)chemical layer materials, and to the design of arrays consisting of different partially selective sensors that permit subsequent pattern recognition and multi-component analysis. Simultaneous use of various transduction platforms has been demonstrated, and the rapid development of integrated-circuit technology has facilitated the fabrication of planar chemical sensors and sensors based on three-dimensional microelectromechanical systems. Complementary metal-oxide silicon processes have previously been used to develop gas sensors based on metal oxides and acoustic-wave-based sensor devices. Here we combine several of these developments to fabricate a smart single-chip chemical microsensor system that incorporates three different transducers (mass-sensitive, capacitive and calorimetric), all of which rely on sensitive polymeric layers to detect airborne volatile organic compounds. Full integration of the microelectronic and micromechanical components on one chip permits control and monitoring of the sensor functions, and enables on-chip signal amplification and conditioning that notably improves the overall sensor performance. The circuitry also includes analog-to-digital converters, and an on-chip interface to transmit the data to off-chip recording units. We expect that our approach will provide a basis for the further development and optimization of gas microsystems.

  16. Progress in ion torrent semiconductor chip based sequencing.

    PubMed

    Merriman, Barry; Rothberg, Jonathan M

    2012-12-01

    In order for next-generation sequencing to become widely used as a diagnostic in the healthcare industry, sequencing instrumentation will need to be mass produced with a high degree of quality and economy. One way to achieve this is to recast DNA sequencing in a format that fully leverages the manufacturing base created for computer chips, complementary metal-oxide semiconductor chip fabrication, which is the current pinnacle of large scale, high quality, low-cost manufacturing of high technology. To achieve this, ideally the entire sensory apparatus of the sequencer would be embodied in a standard semiconductor chip, manufactured in the same fab facilities used for logic and memory chips. Recently, such a sequencing chip, and the associated sequencing platform, has been developed and commercialized by Ion Torrent, a division of Life Technologies, Inc. Here we provide an overview of this semiconductor chip based sequencing technology, and summarize the progress made since its commercial introduction. We described in detail the progress in chip scaling, sequencing throughput, read length, and accuracy. We also summarize the enhancements in the associated platform, including sample preparation, data processing, and engagement of the broader development community through open source and crowdsourcing initiatives. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Design and qualification of the SEU/TD Radiation Monitor chip

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G.; Blaes, Brent R.; Soli, George A.; Zamani, Nasser; Hicks, Kenneth A.

    1992-01-01

    This report describes the design, fabrication, and testing of the Single-Event Upset/Total Dose (SEU/TD) Radiation Monitor chip. The Radiation Monitor is scheduled to fly on the Mid-Course Space Experiment Satellite (MSX). The Radiation Monitor chip consists of a custom-designed 4-bit SRAM for heavy ion detection and three MOSFET's for monitoring total dose. In addition the Radiation Monitor chip was tested along with three diagnostic chips: the processor monitor and the reliability and fault chips. These chips revealed the quality of the CMOS fabrication process. The SEU/TD Radiation Monitor chip had an initial functional yield of 94.6 percent. Forty-three (43) SEU SRAM's and 14 Total Dose MOSFET's passed the hermeticity and final electrical tests and were delivered to LL.

  18. Bark Separation During Chipping With a Parallel Knife Chipper

    Treesearch

    John R. Erickson

    1968-01-01

    Five winter-cut northern species were chipped in a frozen and unfrozen condition with a parallel knife chipper. The degree of bark separation during chipping and a relative gradation of chip size are reported.

  19. Perspective: Fabrication of integrated organ-on-a-chip via bioprinting.

    PubMed

    Yang, Qingzhen; Lian, Qin; Xu, Feng

    2017-05-01

    Organ-on-a-chip has emerged as a powerful platform with widespread applications in biomedical engineering, such as pathology studies and drug screening. However, the fabrication of organ-on-a-chip is still a challenging task due to its complexity. For an integrated organ-on-a-chip, it may contain four key elements, i.e., a microfluidic chip, live cells/microtissues that are cultured in this chip, components for stimulus loading to mature the microtissues, and sensors for results readout. Recently, bioprinting has been used for fabricating organ-on-a-chip as it enables the printing of multiple materials, including biocompatible materials and even live cells in a programmable manner with a high spatial resolution. Besides, all four elements for organ-on-a-chip could be printed in a single continuous procedure on one printer; in other words, the fabrication process is assembly free. In this paper, we discuss the recent advances of organ-on-a-chip fabrication by bioprinting. Light is shed on the printing strategies, materials, and biocompatibility. In addition, some specific bioprinted organs-on-chips are analyzed in detail. Because the bioprinted organ-on-a-chip is still in its early stage, significant efforts are still needed. Thus, the challenges presented together with possible solutions and future trends are also discussed.

  20. Optical Spectrum of the Compact Planetary Nebula IC 5117

    NASA Technical Reports Server (NTRS)

    Hyung, Siek; Aller, Lawrence H.; Feibelman, Walter A.; Lee, Seong-Jae; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    High resolution spectroscopic data of the very compact planetary nebula IC 5117 are obtained in the optical wavelengths, 3700A - 10050A, with the Hamilton Echelle Spectrograph at Lick Observatory, and which have been analyzed along with the International Ultraviolet Explorer (IUE) UV archive data. Although a diagnostic diagram shows significant density and temperature fluctuations, our analysis indicates that the nebular gas may be represented by a homogeneous shell of extremely high density gas, N(sub epsilon) approx. 90 000 /cu cm. The average electron temperatures, e.g. indicated by the [OIII] diagnostics, are around 12 000 K. We construct a photoionization model to represent most of the observed line intensities, and the physical condition of this compact nebulosity. Based on the semi-empirical ionization correction approach, and model indications, we derived the elemental abundances: He, C, N, O, Ne, and Ar appear to be normal or marginally depleted compared to the average planetary nebula, while the remaining elements, S, Cl, and K appear to be enhanced. IC 5117 is perhaps a very young compact planetary nebula, slightly more evolved than the other well-known compact planetary nebula IC 4997. The central stellar temperature is likely to be around 120 000 K, evolved from a C-rich AGB progenitor.

  1. Utilisation of chip thickness models in grinding

    NASA Astrophysics Data System (ADS)

    Singleton, Roger

    Grinding is now a well established process utilised for both stock removal and finish applications. Although significant research is performed in this field, grinding still experiences problems with burn and high forces which can lead to poor quality components and damage to equipment. This generally occurs in grinding when the process deviates from its safe working conditions. In milling, chip thickness parameters are utilised to predict and maintain process outputs leading to improved control of the process. This thesis looks to further the knowledge of the relationship between chip thickness and the grinding process outputs to provide an increased predictive and maintenance modelling capability. Machining trials were undertaken using different chip thickness parameters to understand how these affect the process outputs. The chip thickness parameters were maintained at different grinding wheel diameters for a constant productivity process to determine the impact of chip thickness at a constant material removal rate.. Additional testing using a modified pin on disc test rig was performed to provide further information on process variables. The different chip thickness parameters provide control of different process outputs in the grinding process. These relationships can be described using contact layer theory and heat flux partitioning. The contact layer is defined as the immediate layer beneath the contact arc at the wheel workpiece interface. The size of the layer governs the force experienced during the process. The rate of contact layer removal directly impacts the net power required from the system. It was also found that the specific grinding energy of a process is more dependent on the productivity of a grinding process

  2. Effect of quasi-hydrostatical radial pressure on Ic of Nb3Sn wires

    NASA Astrophysics Data System (ADS)

    Mondonico, G.; Seeber, B.; Ferreira, A.; Bordini, B.; Oberli, L.; Bottura, L.; Ballarino, A.; Flükiger, R.; Senatore, C.

    2012-11-01

    High-performance Nb3Sn conductors are intended to be used in large-scale magnets like the International Thermonuclear Experimental Reactor (ITER) and in the upgrade of the Large Hadron Collider (LHC). Due to the occurrence of high electromagnetic forces, a detailed knowledge of the response of the critical current to the three-dimensional mechanical loads acting on the wires inside the cables is required. A detailed analysis of transverse stress effects on the critical current for powder-in-tube and bronze route Nb3Sn wires is presented. In an earlier publication, we have described the effect of transverse stress exerted on a Nb3Sn wire by means of two parallel plates. In the present paper, we analyse the effect of transverse stress exerted simultaneously by four walls on a wire being confined in a U-shaped groove. In order to get a more realistic picture of the situation of wires embedded in a Rutherford cable, the compression by four walls was also performed after impregnating the wire with epoxy in the same U-shaped groove. The result is very different from the case of pressing by means of two walls: the effect of pressure on Ic is now strongly reduced, which is attributed to the almost hydrostatic pressure in the U-shaped groove. This is further confirmed by the comparison between the effects of axial and transverse loads on the upper critical field and the pinning force. The present data are also compared against the effects of mechanical load on the critical current of cables in large-scale magnets.

  3. Chip level modeling of LSI devices

    NASA Technical Reports Server (NTRS)

    Armstrong, J. R.

    1984-01-01

    The advent of Very Large Scale Integration (VLSI) technology has rendered the gate level model impractical for many simulation activities critical to the design automation process. As an alternative, an approach to the modeling of VLSI devices at the chip level is described, including the specification of modeling language constructs important to the modeling process. A model structure is presented in which models of the LSI devices are constructed as single entities. The modeling structure is two layered. The functional layer in this structure is used to model the input/output response of the LSI chip. A second layer, the fault mapping layer, is added, if fault simulations are required, in order to map the effects of hardware faults onto the functional layer. Modeling examples for each layer are presented. Fault modeling at the chip level is described. Approaches to realistic functional fault selection and defining fault coverage for functional faults are given. Application of the modeling techniques to single chip and bit slice microprocessors is discussed.

  4. A GRB and Broad-lined Type Ic Supernova from a Single Central Engine

    NASA Astrophysics Data System (ADS)

    Barnes, Jennifer; Duffell, Paul C.; Liu, Yuqian; Modjaz, Maryam; Bianco, Federica B.; Kasen, Daniel; MacFadyen, Andrew I.

    2018-06-01

    Unusually high velocities (≳0.1c) and correspondingly high kinetic energies have been observed in a subset of Type Ic supernovae (so-called “broad-lined Ic” supernovae; SNe Ic-BL), prompting a search for a central engine model capable of generating such energetic explosions. A clue to the explosion mechanism may lie in the fact that all supernovae that accompany long-duration gamma-ray bursts (GRBs) belong to the SN Ic-BL class. Using a combination of two-dimensional relativistic hydrodynamics and radiation transport calculations, we demonstrate that the central engine responsible for long GRBs can also trigger an SN Ic-BL. We find that a reasonable GRB engine injected into a stripped Wolf–Rayet progenitor produces a relativistic jet with energy ∼1051 erg, as well as an SN whose synthetic light curves and spectra are fully consistent with observed SNe Ic-BL during the photospheric phase. As a result of the jet’s asymmetric energy injection, the SN spectra and light curves depend on viewing angle. The impact of viewing angle on the spectrum is particularly pronounced at early times, while the viewing-angle dependence for the light curves (∼10% variation in bolometric luminosity) persists throughout the photospheric phase.

  5. Repeated forced swim stress enhances CFA-evoked thermal hyperalgesia and affects the expressions of pCREB and c-Fos in the insular cortex.

    PubMed

    Imbe, H; Kimura, A; Donishi, T; Kaneoke, Y

    2014-02-14

    Stress affects brain activity and promotes long-term changes in multiple neural systems. Exposure to stressors causes substantial effects on the perception and response to pain. In several animal models, chronic stress produces lasting hyperalgesia. The insular (IC) and anterior cingulate cortices (ACC) are the regions exhibiting most reliable pain-related activity. And the IC and ACC play an important role in pain modulation via the descending pain modulatory system. In the present study we examined the expression of phospho-cAMP response element-binding protein (pCREB) and c-Fos in the IC and ACC after forced swim stress (FS) and complete Freund's adjuvant (CFA) injection to clarify changes in the cerebral cortices that affect the activity of the descending pain modulatory system in the rats with stress-induced hyperalgesia. FS (day 1, 10min; days 2-3, 20min) induced an increase in the expression of pCREB and c-Fos in the anterior IC (AIC). CFA injection into the hindpaw after the FS shows significantly enhanced thermal hyperalgesia and induced a decrease in the expression of c-Fos in the AIC and the posterior IC (PIC). Quantitative image analysis showed that the numbers of c-Fos-immunoreactive neurons in the left AIC and PIC were significantly lower in the FS+CFA group (L AIC, 95.9±6.8; L PIC, 181.9±23.1) than those in the naive group (L AIC, 151.1±19.3, p<0.05; L PIC, 274.2±37.3, p<0.05). These findings suggest a neuroplastic change in the IC after FS, which may be involved in the enhancement of CFA-induced thermal hyperalgesia through dysfunction of the descending pain modulatory system. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Single-chip microprocessor that communicates directly using light

    NASA Astrophysics Data System (ADS)

    Sun, Chen; Wade, Mark T.; Lee, Yunsup; Orcutt, Jason S.; Alloatti, Luca; Georgas, Michael S.; Waterman, Andrew S.; Shainline, Jeffrey M.; Avizienis, Rimas R.; Lin, Sen; Moss, Benjamin R.; Kumar, Rajesh; Pavanello, Fabio; Atabaki, Amir H.; Cook, Henry M.; Ou, Albert J.; Leu, Jonathan C.; Chen, Yu-Hsin; Asanović, Krste; Ram, Rajeev J.; Popović, Miloš A.; Stojanović, Vladimir M.

    2015-12-01

    Data transport across short electrical wires is limited by both bandwidth and power density, which creates a performance bottleneck for semiconductor microchips in modern computer systems—from mobile phones to large-scale data centres. These limitations can be overcome by using optical communications based on chip-scale electronic-photonic systems enabled by silicon-based nanophotonic devices8. However, combining electronics and photonics on the same chip has proved challenging, owing to microchip manufacturing conflicts between electronics and photonics. Consequently, current electronic-photonic chips are limited to niche manufacturing processes and include only a few optical devices alongside simple circuits. Here we report an electronic-photonic system on a single chip integrating over 70 million transistors and 850 photonic components that work together to provide logic, memory, and interconnect functions. This system is a realization of a microprocessor that uses on-chip photonic devices to directly communicate with other chips using light. To integrate electronics and photonics at the scale of a microprocessor chip, we adopt a ‘zero-change’ approach to the integration of photonics. Instead of developing a custom process to enable the fabrication of photonics, which would complicate or eliminate the possibility of integration with state-of-the-art transistors at large scale and at high yield, we design optical devices using a standard microelectronics foundry process that is used for modern microprocessors. This demonstration could represent the beginning of an era of chip-scale electronic-photonic systems with the potential to transform computing system architectures, enabling more powerful computers, from network infrastructure to data centres and supercomputers.

  7. Single-chip microprocessor that communicates directly using light.

    PubMed

    Sun, Chen; Wade, Mark T; Lee, Yunsup; Orcutt, Jason S; Alloatti, Luca; Georgas, Michael S; Waterman, Andrew S; Shainline, Jeffrey M; Avizienis, Rimas R; Lin, Sen; Moss, Benjamin R; Kumar, Rajesh; Pavanello, Fabio; Atabaki, Amir H; Cook, Henry M; Ou, Albert J; Leu, Jonathan C; Chen, Yu-Hsin; Asanović, Krste; Ram, Rajeev J; Popović, Miloš A; Stojanović, Vladimir M

    2015-12-24

    Data transport across short electrical wires is limited by both bandwidth and power density, which creates a performance bottleneck for semiconductor microchips in modern computer systems--from mobile phones to large-scale data centres. These limitations can be overcome by using optical communications based on chip-scale electronic-photonic systems enabled by silicon-based nanophotonic devices. However, combining electronics and photonics on the same chip has proved challenging, owing to microchip manufacturing conflicts between electronics and photonics. Consequently, current electronic-photonic chips are limited to niche manufacturing processes and include only a few optical devices alongside simple circuits. Here we report an electronic-photonic system on a single chip integrating over 70 million transistors and 850 photonic components that work together to provide logic, memory, and interconnect functions. This system is a realization of a microprocessor that uses on-chip photonic devices to directly communicate with other chips using light. To integrate electronics and photonics at the scale of a microprocessor chip, we adopt a 'zero-change' approach to the integration of photonics. Instead of developing a custom process to enable the fabrication of photonics, which would complicate or eliminate the possibility of integration with state-of-the-art transistors at large scale and at high yield, we design optical devices using a standard microelectronics foundry process that is used for modern microprocessors. This demonstration could represent the beginning of an era of chip-scale electronic-photonic systems with the potential to transform computing system architectures, enabling more powerful computers, from network infrastructure to data centres and supercomputers.

  8. Chip connectivity verification program

    NASA Technical Reports Server (NTRS)

    Riley, Josh (Inventor); Patterson, George (Inventor)

    1999-01-01

    A method for testing electrical connectivity between conductive structures on a chip that is preferably layered with conductive and nonconductive layers. The method includes determining the layer on which each structure is located and defining the perimeter of each structure. Conductive layer connections between each of the layers are determined, and, for each structure, the points of intersection between the perimeter of that structure and the perimeter of each other structure on the chip are also determined. Finally, electrical connections between the structures are determined using the points of intersection and the conductive layer connections.

  9. Psychosocial co-morbidities in Interstitial Cystitis/Bladder Pain syndrome (IC/BPS): A systematic review.

    PubMed

    McKernan, Lindsey C; Walsh, Colin G; Reynolds, William S; Crofford, Leslie J; Dmochowski, Roger R; Williams, David A

    2018-03-01

    Psychosocial factors amplify symptoms of Interstitial Cystitis (IC/BPS). While psychosocial self-management is efficacious in other pain conditions, its impact on an IC/BPS population has rarely been studied. The objective of this review is to learn the prevalence and impact of psychosocial factors on IC/BPS, assess baseline psychosocial characteristics, and offer recommendations for assessment and treatment. Following PRISMA guidelines, primary information sources were PubMed including MEDLINE, Embase, CINAHL, and GoogleScholar. Inclusion criteria included: (i) a clearly defined cohort with IC/BPS or with Chronic Pelvic Pain Syndrome provided the IC/BPS cohort was delineated with quantitative results from the main cohort; (ii) all genders and regions; (iii) studies written in English from 1995 to April 14, 2017; (iv) quantitative report of psychosocial factors as outcome measures or at minimum as baseline characteristics. Thirty-four of an initial 642 articles were reviewed. Quantitative analyses demonstrate the magnitude of psychosocial difficulties in IC/BPS, which are worse than average on all measures, and fall into areas of clinical concern for 7 out of 10 measures. Meta-analyses shows mean Mental Component Score of the Short-Form 12 Health Survey (MCS) of 40.80 (SD 6.25, N = 2912), where <36 is consistent with severe psychological impairment. Averaged across studies, the population scored in the range seen in clinical depression (CES-D 19.89, SD 13.12, N = 564) and generalized anxiety disorder (HADS-A 8.15, SD 4.85, N = 465). The psychological impact of IC/BPS is pervasive and severe. Existing evidence of treatment is lacking and suggests self-management intervention may be helpful. © 2017 Wiley Periodicals, Inc.

  10. Characterizing Rat PNS Electrophysiological Response to Electrical Stimulation Using in vitro Chip-Based Human Investigational Platform (iCHIP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khani, Joshua; Prescod, Lindsay; Enright, Heather

    Ex vivo systems and organ-on-a-chip technology offer an unprecedented approach to modeling the inner workings of the human body. The ultimate goal of LLNL’s in vitro Chip-based Human Investigational Platform (iCHIP) is to integrate multiple organ tissue cultures using microfluidic channels, multi-electrode arrays (MEA), and other biosensors in order to effectively simulate and study the responses and interactions of the major organs to chemical and physical stimulation. In this study, we focused on the peripheral nervous system (PNS) component of the iCHIP system. Specifically we sought to expound on prior research investigating the electrophysiological response of rat dorsal root ganglionmore » cells (rDRGs) to chemical exposures, such as capsaicin. Our aim was to establish a protocol for electrical stimulation using the iCHIP device that would reliably elicit a characteristic response in rDRGs. By varying the parameters for both the stimulation properties – amplitude, phase width, phase shape, and stimulation/ return configuration – and the culture conditions – day in vitro and neural cell types - we were able to make several key observations and uncover a potential convention with a minimal number of devices tested. Future work will seek to establish a standard protocol for human DRGs in the iCHIP which will afford a portable, rapid method for determining the effects of toxins and novel therapeutics on the PNS.« less

  11. Reliability and validity of a new scale on internal coherence (ICS) of cancer patients

    PubMed Central

    Kröz, Matthias; Büssing, Arndt; von Laue, Hans Broder; Reif, Marcus; Feder, Gene; Schad, Friedemann; Girke, Matthias; Matthes, Harald

    2009-01-01

    Background Current inventories on quality of life used in oncology mainly focus on functional aspects of patients in the context of disease adaption and treatments (side) effects (EORTC QLQ C30) or generically the status of common functions (Medical Outcome Study SF 36). Beyond circumscribed dimensions of quality of life (i.e., physical, emotional, social, cognitive etc.), there is a lack of inventories which also address other relevant dimensions such as the 'sense of coherence' (SOC) in cancer patients. SOC is important because of its potential prognostic relevance in cancer patients, but the current SOC scale has mainly been validated for psychiatric and psychosomatic patients. Our two-step validation study addresses the internal coherence (ICS) scale, which is based on expert rating, using specific items for oncological patients, with respect to its reliability, validity and sensitivity to chemotherapy. Methods The items were tested on 114 participants (57 cancer patients and a matched control group), alongside questions on autonomic regulation (aR), the Hospital Anxiety and Depression Scale (HADS), self-regulation (SRQ) and Karnofsky the Performance-Index (KPI). A retest of 65 participants was carried out after a median time span of four weeks. In the second part of the study, the ICS was used to assess internal coherence during chemotherapy in 25 patients with colorectal carcinoma (CRC) and 17 breast cancer patients. ICS was recorded before, during and 4 – 8 weeks after treatment. Results The 10-item scale of 'internal coherence' (ICS) shows good to very good reliability: Cronbach-α r = 0.91, retest-reliability r = 0.80. The ICS correlates with r = 0.43 – 0.72 to the convergence criteria (all p < 0.001). We are able to show decreased ICS-values after the third cycle for CRC and breast cancer patients, with a subsequent increase of ICS scores after the end of chemotherapy. Conclusion The ICS has good to very good reliability, validity and sensitivity to

  12. A bimodal dust grain distribution in the IC 434 H ii region

    NASA Astrophysics Data System (ADS)

    Ochsendorf, B. B.; Tielens, A. G. G. M.

    2015-04-01

    Context. Studies of dust evolution and processing in different phases of the interstellar medium (ISM) is essential to understanding the lifecycle of dust in space. Recent results have challenged the capabilities and validity of current dust models, indicating that the properties of interstellar dust evolve as it transits between different phases of the ISM. Aims: We characterize the dust content from the IC 434 H ii region, and present a scenario that results in the large-scale structure of the region seen to date. Methods: We conduct a multi-wavelength study of the dust emission from the ionized gas, and combine this with modeling, from large scales that provide insight into the history of the IC 434/L1630 region, to small scales that allow us to infer quantitative properties of the dust content inside the H ii region. Results: The dust enters the H ii region through momentum transfer with a champagne flow of ionized gas, set up by a chance encounter between the L1630 molecular cloud and the star cluster of σ Ori. We observe two clearly separated dust populations inside the ionized gas, that show different observational properties, as well as contrasting optical properties. Population A is colder (~25 K) than predicted by widely-used dust models, its temperature is insensitive to an increase of the impinging radiation field, it is momentum-coupled to the gas, and efficiently absorbs radiation pressure to form a dust wave at 1.0 pc ahead of σ Ori AB. Population B is characterized by a constant [20/30] flux ratio throughout the H ii region, heats up to ~75 K close to the star, and is less efficient in absorbing radiation pressure, forming a dust wave at 0.1 pc from the star. Conclusions: The dust inside IC 434 is bimodal. The characteristics of population A are remarkable and cannot be explained by current dust models. We argue that large porous grains or fluffy aggregates are potential candidates to explain much of the observational characteristics. Population B

  13. New Failure Mode of Flip-Chip Solder Joints Related to the Metallization of an Organic Substrate

    NASA Astrophysics Data System (ADS)

    Jang, J. W.; Yoo, S. J.; Hwang, H. I.; Yuk, S. Y.; Kim, C. K.; Kim, S. J.; Han, J. S.; An, S. H.

    2015-10-01

    We report a new failure phenomenon during flip-chip die attach. After reflow, flip-chip bumps were separated between the Al and Ti layers on the Si die side. This was mainly observed at the Si die corner. Transmission electron microscopy images revealed corrosion of the Al layer at the edge of the solder bump metallization. The corrosion at the metallization edge exhibited a notch shape with high stress concentration factor. The organic substrate had Cu metallization with an organic solderable preservative (OSP) coating layer, where a small amount of Cl ions were detected. A solder bump separation mechanism is suggested based on the reaction between Al and Cl, related to the flow of soldering flux. During reflow, the flux will dissolve the Cl-containing OSP layer and flow up to the Al layer on the Si die side. Then, the Cl-dissolved flux will actively react with Al, forming AlCl3. During cooling, solder bumps at the Si die corner will separate through the location of Al corrosion. This demonstrated that the chemistry of the substrate metallization can affect the thermomechanical reliability of flip-chip solder joints.

  14. Tests of shock chemistry in IC 443G

    NASA Technical Reports Server (NTRS)

    Turner, B. E.; Chan, Kin-Wing; Green, S.; Lubowich, D. A.

    1992-01-01

    Eight molecular species, in the hot dense clump IC 443G, believed to be impacted by the shock wave from the SNR IC 443, are investigated. The clump consists of two distinct regions, one relatively cool, and one hotter and denser. Region 1 contains CO, HCO(+), HCN, and CN, whose abundances may be explained either by ion-molecule chemistry, or by a D shock of 60-90 km/s, passing through a clump of about 100,000/cu cm. Region 2 gives rise to SiO, CS, SO, and H2CO, and requires an ND shock of 5-15 km/s passing through a region of about 1,000,000/cu cm. Observed fractional abundances fit ND shock models if L is about 6.6 x 10 exp 15 cm. In general, observed line widths vary inversely with derived excitation density, while centroid velocities of all species are essentially identical.

  15. CMOS Image Sensors: Electronic Camera On A Chip

    NASA Technical Reports Server (NTRS)

    Fossum, E. R.

    1995-01-01

    Recent advancements in CMOS image sensor technology are reviewed, including both passive pixel sensors and active pixel sensors. On- chip analog to digital converters and on-chip timing and control circuits permit realization of an electronic camera-on-a-chip. Highly miniaturized imaging systems based on CMOS image sensor technology are emerging as a competitor to charge-coupled devices for low cost uses.

  16. Broad-line Type Ic supernova SN 2014ad

    NASA Astrophysics Data System (ADS)

    Sahu, D. K.; Anupama, G. C.; Chakradhari, N. K.; Srivastav, S.; Tanaka, Masaomi; Maeda, Keiichi; Nomoto, Ken'ichi

    2018-04-01

    We present optical and ultraviolet photometry and low-resolution optical spectroscopy of the broad-line Type Ic supernova SN 2014ad in the galaxy PGC 37625 (Mrk 1309), covering the evolution of the supernova during -5 to +87 d with respect to the date of maximum in the B band. A late-phase spectrum obtained at +340 d is also presented. With an absolute V-band magnitude at peak of MV = -18.86 ± 0.23 mag, SN 2014ad is fainter than supernovae associated with gamma ray bursts (GRBs), and brighter than most of the normal and broad-line Type Ic supernovae without an associated GRB. The spectral evolution indicates that the expansion velocity of the ejecta, as measured using the Si II line, is as high as ˜33 500 km s-1 around maximum, while during the post-maximum phase it settles at ˜15 000 km s-1. The expansion velocity of SN 2014ad is higher than that of all other well-observed broad-line Type Ic supernovae except for the GRB-associated SN 2010bh. The explosion parameters, determined by applying Arnett's analytical light-curve model to the observed bolometric light-curve, indicate that it was an energetic explosion with a kinetic energy of ˜(1 ± 0.3) × 1052 erg and a total ejected mass of ˜(3.3 ± 0.8) M⊙, and that ˜0.24 M⊙ of 56Ni was synthesized in the explosion. The metallicity of the host galaxy near the supernova region is estimated to be ˜0.5 Z⊙.

  17. Estimation of Ksub Ic from slow bend precracked Charpy specimen strength ratios

    NASA Technical Reports Server (NTRS)

    Succop, G.; Brown, W. F., Jr.

    1976-01-01

    Strength ratios are reported which were derived from slow bend tests on 0.25 inch thick precracked Charpy specimens of steels, aluminum alloys, and a titanium alloy for which valid K sub Ic values were established. The strength ratios were used to develop calibration curves typical of those that could be useful in estimating K sub Ic for the purposes of alloy development of quality control.

  18. WFC3/UVIS External CTE Monitor: Single-Chip CTE Measurements

    NASA Astrophysics Data System (ADS)

    Gosmeyer, C. M.; Baggett, S.

    2016-12-01

    We present the first results of single-chip measurements of charge transfer efficiency (CTE) in the UVIS channel of the Hubble Space Telescope Wide Field Camera 3 (HST/WFC3). This test was performed in Cycle 20 in two visits. In the first visit a field in the star cluster NGC 6583 was observed. In a second visit, the telescope returned to the field, but rotated by 180 degrees and with a shift in pointing that allowed the same stars to be imaged, near and far from the amplifiers, on the same chip of the two-chip UVIS field of-view. This dataset enables a measurement of CTE loss on each separate chip. The current CTE monitor measures CTE loss as an average of the two chips because it dithers by a chip-height to obtain observations of the same sources near and far from the amplifiers, instead of the more difficult to-schedule 180-degree rotation. We find that CTE loss is worse on Chip 1 than on Chip 2 across all cases for which we had data: short and long exposures and w! ith and without the pixel-based CTE correction. In the best case, for long exposures with the CTE correction applied, the max difference between the two chip's flux losses is 3%/2048 pixels. This case should apply for most science observations where the background is 12 e-/pixel. In the worst case of low-background short exposures, e.g. those without post-flash, the max difference between the two chips is 17% flux loss/2048 pixels. Uncertainties are <0.01% flux loss/2048 pixels. Because of the two chips' different CTE loss rates, we will consider adding this test as part of the routine yearly monitor and creating a chip-specific CTE correction software.

  19. A primary battery-on-a-chip using monolayer graphene.

    PubMed

    Iost, Rodrigo M; Crespilho, Frank N; Kern, Klaus; Balasubramanian, Kannan

    2016-06-14

    We present here a bottom-up approach for realizing on-chip on-demand batteries starting out with chemical vapor deposition-grown graphene. Single graphene monolayers contacted by electrode lines on a silicon chip serve as electrodes. The anode and cathode are realized by electrodeposition of zinc and copper respectively onto graphene, leading to the realization of a miniature graphene-based Daniell cell on a chip. The electrolyte is housed partly in a gel and partly in liquid form in an on-chip enclosure molded using a 3d printer or made out of poly(dimethylsiloxane). The realized batteries provide a stable voltage (∼1.1 V) for many hours and exhibit capacities as high as 15 μAh, providing enough power to operate a pocket calculator. The realized batteries show promise for deployment as on-chip power sources for autonomous systems in lab-on-a-chip or biomedical applications.

  20. A primary battery-on-a-chip using monolayer graphene

    NASA Astrophysics Data System (ADS)

    Iost, Rodrigo M.; Crespilho, Frank N.; Kern, Klaus; Balasubramanian, Kannan

    2016-07-01

    We present here a bottom-up approach for realizing on-chip on-demand batteries starting out with chemical vapor deposition-grown graphene. Single graphene monolayers contacted by electrode lines on a silicon chip serve as electrodes. The anode and cathode are realized by electrodeposition of zinc and copper respectively onto graphene, leading to the realization of a miniature graphene-based Daniell cell on a chip. The electrolyte is housed partly in a gel and partly in liquid form in an on-chip enclosure molded using a 3d printer or made out of poly(dimethylsiloxane). The realized batteries provide a stable voltage (∼1.1 V) for many hours and exhibit capacities as high as 15 μAh, providing enough power to operate a pocket calculator. The realized batteries show promise for deployment as on-chip power sources for autonomous systems in lab-on-a-chip or biomedical applications.

  1. Mathematical Simulation for Integrated Linear Fresnel Spectrometer Chip

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon; Yoon, Hargoon; Lee, Uhn; King, Glen C.; Choi, Sang H.

    2012-01-01

    A miniaturized solid-state optical spectrometer chip was designed with a linear gradient-gap Fresnel grating which was mounted perpendicularly to a sensor array surface and simulated for its performance and functionality. Unlike common spectrometers which are based on Fraunhoffer diffraction with a regular periodic line grating, the new linear gradient grating Fresnel spectrometer chip can be miniaturized to a much smaller form-factor into the Fresnel regime exceeding the limit of conventional spectrometers. This mathematical calculation shows that building a tiny motionless multi-pixel microspectrometer chip which is smaller than 1 cubic millimter of optical path volume is possible. The new Fresnel spectrometer chip is proportional to the energy scale (hc/lambda), while the conventional spectrometers are proportional to the wavelength scale (lambda). We report the theoretical optical working principle and new data collection algorithm of the new Fresnel spectrometer to build a compact integrated optical chip.

  2. Immunolocalization of aquaporin CHIP in the guinea pig inner ear.

    PubMed

    Stanković, K M; Adams, J C; Brown, D

    1995-12-01

    Aquaporin CHIP (AQP-CHIP) is a water channel protein previously identified in red blood cells and water transporting epithelia. The inner ear is an organ of hearing and balance whose normal function depends critically on maintenance of fluid homeostasis. In this study, AQP-CHIP, or a close homologue, was found in specific cells of the inner ear, as assessed by immunocytochemistry with the use of affinity-purified polyclonal antibodies against AQP-CHIP.AQP-CHIP was predominantly found in fibrocytes in close association with bone, including most of the cells lining the bony labyrinth and in fibrocytes lining the endolymphatic duct and sac. AQP-CHIP-positive cells not directly apposing bone include cells under the basilar membrane, some type III fibrocytes of the spiral ligament, fibrocytes of the spiral limbus, and the trabecular perilymphatic tissue extending from the membranous to the bony labyrinth. AQP-CHIP was also found in the periosteum of the middle ear and cranial bones, as well as in chondrocytes of the oval window and stapes. The distribution of AQP-CHIP in the inner ear suggests that AQP-CHIP may have special significance for maintenance of bone and the basilar membrane, and for function of the spiral ligament.

  3. Publications - IC 35 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS IC 35 Publication Details Title: Alaska's mineral industry 1991: A summary Authors: Bundtzen, T.K ., 1992, Alaska's mineral industry 1991: A summary: Alaska Division of Geological & Geophysical

  4. Publications - IC 36 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS IC 36 Publication Details Title: Alaska's mineral industry 1992: A summary Authors: Swainbank, R.C ., 1993, Alaska's mineral industry 1992: A summary: Alaska Division of Geological & Geophysical

  5. Publications - IC 40 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS IC 40 Publication Details Title: Alaska's mineral industry 1994: A summary Authors: Swainbank, R.C mineral industry 1994: A summary: Alaska Division of Geological & Geophysical Surveys Information

  6. Watching AGN feedback at its birth: HST observations of nascent outflow host IC860

    NASA Astrophysics Data System (ADS)

    Alatalo, Katherine

    2016-10-01

    IC860 is a nearby IR-luminous early-type spiral with a unique set of properties: it is a shocked, poststarburst galaxy that hosts an AGN-driven neutral wind and a compact core of molecular gas. IC860 can serve as a rosetta stone for the early stages of triggering AGN feedback. We propose to use WFC3 on HST to obtain NUV, optical and near-IR imaging of IC860. We will create a spatially-resolved history of star formation quenching through SED-fitting of 7 requested broadband filters, and compare the spatially resolved star formation histories to in different positions within the underlying stellar features (such as spiral structure) that might define a narrative of how star formation is quenching in IC860. These observations will also resolve the super-star cluster sites to trace the most recent star formation. Finally, these observations will trace the mass of the outflow by building an absorption map of the dust. IC860 presents a unique opportunity to study a galaxy at an early stage of transitioning from blue spiral to red early-type galaxy, that also hosts an AGN-driven neutral wind and a compact, turbulent molecular gas core.

  7. A high ratio of IC31® adjuvant to antigen is necessary for H4 TB vaccine immunomodulation

    PubMed Central

    Aboutorabian, Sepideh; Hakimi, Jalil; Boudet, Florence; Montano, Sandrine; Dookie, Annie; Roque, Cristopher; Ausar, Salvador F; Rahman, Nausheen; Brookes, Roger H

    2015-01-01

    A tuberculosis (TB) vaccine consisting of a recombinant fusion protein (H4) and a novel TLR9 adjuvant (IC31) is in clinical development. To better understand the H4-IC31 ratio, we measured the binding capacity of IC31 for H4 protein and immunized mice with formulations that contained limiting to excess ratios of IC31 to H4. An immunomodulated H4-specific IFNγ response was only observed when IC31 was present in excess of H4. Since TLR expression is species-specific and the vaccine is intended to boost BCG-primed immunity, we questioned whether data in mice would translate to humans. To address this question, we used the fresh human Whole Blood (hWB) recovered from BCG-vaccinated subjects to screen H4-IC31 formulations. We found IC31 modulation in hWB to be quite distinct from the TLR4-Adjuvant. Unlike TLR4-Adjuvant, IC31 formulations did not induce the pro-inflammatory cytokine TNFα, but modulated a robust H4-specific IFNγ response after 12 d of culture. We then re-stimulated the fresh hWB of 5 BCG-primed subjects with formulations that had excess or limiting IC31 binding for H4 protein and again found that an immunomodulated H4-specific IFNγ response needed an excess of IC31. Finally, we monitored the zeta (ζ) potential of H4-IC31 formulations and found that the overall charge of H4-IC31 particles changes from negative to positive once IC31 is in greater than 9-fold excess. Using two diverse yet mutually supportive approaches, we confirm the need for an excess of IC31 adjuvant in H4 TB vaccine formulations and suggest surface potential may be an important factor. PMID:25997147

  8. A high ratio of IC31(®) adjuvant to antigen is necessary for H4 TB vaccine immunomodulation.

    PubMed

    Aboutorabian, Sepideh; Hakimi, Jalil; Boudet, Florence; Montano, Sandrine; Dookie, Annie; Roque, Cristopher; Ausar, Salvador F; Rahman, Nausheen; Brookes, Roger H

    2015-01-01

    A tuberculosis (TB) vaccine consisting of a recombinant fusion protein (H4) and a novel TLR9 adjuvant (IC31) is in clinical development. To better understand the H4-IC31 ratio, we measured the binding capacity of IC31 for H4 protein and immunized mice with formulations that contained limiting to excess ratios of IC31 to H4. An immunomodulated H4-specific IFNγ response was only observed when IC31 was present in excess of H4. Since TLR expression is species-specific and the vaccine is intended to boost BCG-primed immunity, we questioned whether data in mice would translate to humans. To address this question, we used the fresh human Whole Blood (hWB) recovered from BCG-vaccinated subjects to screen H4-IC31 formulations. We found IC31 modulation in hWB to be quite distinct from the TLR4-Adjuvant. Unlike TLR4-Adjuvant, IC31 formulations did not induce the pro-inflammatory cytokine TNFα, but modulated a robust H4-specific IFNγ response after 12 d of culture. We then re-stimulated the fresh hWB of 5 BCG-primed subjects with formulations that had excess or limiting IC31 binding for H4 protein and again found that an immunomodulated H4-specific IFNγ response needed an excess of IC31. Finally, we monitored the zeta (ζ) potential of H4-IC31 formulations and found that the overall charge of H4-IC31 particles changes from negative to positive once IC31 is in greater than 9-fold excess. Using two diverse yet mutually supportive approaches, we confirm the need for an excess of IC31 adjuvant in H4 TB vaccine formulations and suggest surface potential may be an important factor.

  9. Young Low-Mass Stars and Brown Dwarfs in IC 348

    NASA Astrophysics Data System (ADS)

    Luhman, K. L.

    1999-11-01

    I present new results from a continuing program to identify and characterize the low-mass stellar and substellar populations in the young cluster IC 348 (0.5-10 Myr). Optical spectroscopy has revealed young objects with spectral types as late as M8.25. The intrinsic J-H and H-K colors of these sources are dwarflike, whereas the R-I and I-J colors appear intermediate between the colors of dwarfs and giants. Furthermore, the spectra from 6500 to 9500 Å are reproduced well with averages of standard dwarf and giant spectra, suggesting that such averages should be used in the classification of young late-type sources. An H-R diagram is constructed for the low-mass population in IC 348 (K6-M8). The presumably coeval components of the young quadruple system GG Tau (White et al.) and the locus of stars in IC 348 are used as empirical isochrones to test the theoretical evolutionary models. The calculations of Burrows et al. do not appear to be consistent with the data at these earliest stages of stellar evolution. There is fair agreement between the data and the model isochrones of D'Antona & Mazzitelli, except near the hydrogen-burning limit. The agreement cannot be improved by changing the conversion between spectral types and effective temperatures. On the other hand, for the models of Baraffe et al., an adjustment of the temperature scale to progressively warmer temperatures at later M types, intermediate between dwarfs and giants, brings all components of GG Tau onto the same model isochrone and gives the population of IC 348 a constant age and age spread as a function of mass. When other observational constraints are considered, such as the dynamical masses of GM Aur, DM Tau, and GG Tau A, the models of Baraffe et al. are the most consistent with observations of young systems. With compatible temperature scales, the models of both D'Antona & Mazzitelli and Baraffe et al. suggest that the hydrogen-burning mass limit occurs near M6 at ages of <~10 Myr. Thus, several

  10. Recent Progresses in Laboratory Astrophysics with Ames’ COSmIC Facility

    NASA Astrophysics Data System (ADS)

    Salama, Farid; Contreras, Cesar; Sciamma-O'Brien, Ella; Bejaoui, Salma

    2016-06-01

    We present and discuss the characteristics and the capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to generate, process and analyze interstellar, circumstellar and planetary analogs in the laboratory [1]. COSmIC stands for “Cosmic Simulation Chamber” and is dedicated to the study of neutral and ionized molecules and nano particles under the low temperature and high vacuum conditions that are required to simulate space environments. COSmIC integrates a variety of state-of-the-art instruments that allow forming, processing and monitoring simulated space conditions for planetary, circumstellar and interstellar materials in the laboratory. COSmIC is composed of a Pulsed Discharge Nozzle (PDN) expansion that generates a plasma in free supersonic jet expansion coupled to two high-sensitivity, complementary in situ diagnostics: a Cavity Ring Down Spectroscopy (CRDS) and laser induced fluorescence (LIF) systems for photonic detection and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection [2].Recent laboratory results that were obtained using COSmIC will be presented, in particular the progress that has been achieved in the domain of the diffuse interstellar bands (DIBs) [3] and in monitoring, in the laboratory, the formation of dust grains and aerosols from their gas-phase molecular precursors in environments as varied as stellar/circumstellar outflows [4] and planetary atmospheres [5]. Plans for future, next generation, laboratory experiments on cosmic molecules and grains in the growing field of laboratory astrophysics will also be addressed as well as the implications of the current studies for astronomy.References: [1] Salama F., In Organic Matter in Space, IAU Symposium 251, Kwok & Sandford Eds.Cambridge University Press, Vol. 4, S251, p. 357 (2008) and references therein.[2] Ricketts C., Contreras C., Walker, R., Salama F., Int. J. Mass Spec, 300, 26 (2011)[3] Salama F., Galazutdinov G., Krelowski J

  11. Quad-Chip Double-Balanced Frequency Tripler

    NASA Technical Reports Server (NTRS)

    Lin, Robert H.; Ward, John S.; Bruneau, Peter J.; Mehdi, Imran; Thomas, Bertrand C.; Maestrini, Alain

    2010-01-01

    Solid-state frequency multipliers are used to produce tunable broadband sources at millimeter and submillimeter wavelengths. The maximum power produced by a single chip is limited by the electrical breakdown of the semiconductor and by the thermal management properties of the chip. The solution is to split the drive power to a frequency tripler using waveguides to divide the power among four chips, then recombine the output power from the four chips back into a single waveguide. To achieve this, a waveguide branchline quadrature hybrid coupler splits a 100-GHz input signal into two paths with a 90 relative phase shift. These two paths are split again by a pair of waveguide Y-junctions. The signals from the four outputs of the Y-junctions are tripled in frequency using balanced Schottky diode frequency triplers before being recombined with another pair of Y-junctions. A final waveguide branchline quadrature hybrid coupler completes the combination. Using four chips instead of one enables using four-times higher power input, and produces a nearly four-fold power output as compared to using a single chip. The phase shifts introduced by the quadrature hybrid couplers provide isolation for the input and output waveguides, effectively eliminating standing waves between it and surrounding components. This is accomplished without introducing the high losses and expense of ferrite isolators. A practical use of this technology is to drive local oscillators as was demonstrated around 300 GHz for a heterodyne spectrometer operating in the 2-3-THz band. Heterodyne spectroscopy in this frequency band is especially valuable for astrophysics due to the presence of a very large number of molecular spectral lines. Besides high-resolution radar and spectrographic screening applications, this technology could also be useful for laboratory spectroscopy.

  12. Biostability of an implantable glucose sensor chip

    NASA Astrophysics Data System (ADS)

    Fröhlich, M.; Birkholz, M.; Ehwald, K. E.; Kulse, P.; Fursenko, O.; Katzer, J.

    2012-12-01

    Surface materials of an implantable microelectronic chip intended for medical applications were evaluated with respect to their long-term stability in bio-environments. The sensor chip shall apply in a glucose monitor by operating as a microviscosimeter according to the principle of affinity viscosimetry. A monolithic integration of a microelectromechanical system (MEMS) into the sensor chip was successfully performed in a combined 0.25 μm CMOS/BiCMOS technology. In order to study material durability and biostability of the surfaces, sensor chips were exposed to various in vitro and in vivo tests. Corrosional damage of SiON, SiO2 and TiN surfaces was investigated by optical microscopy, ellipsometry and AFM. The results served for optimizing the Back-end-of-Line (BEoL) stack, from which the MEMS was prepared. Corrosion of metal lines could significantly be reduced by improving the topmost passivation layer. The experiments revealed no visible damage of the actuator or other functionally important MEMS elements. Sensor chips were also exposed to human body fluid for three month by implantation into the abdomen of a volunteer. Only small effects were observed for layer thickness and Ra roughness after explantation. In particular, TiN as used for the actuator beam showed no degradation by biocorrosion. The highest degradation rate of about 50 nm per month was revealed for the SiON passivation layer. These results suggest that the sensor chip may safely operate in subcutaneous tissue for a period of several months.

  13. Protecting ICS Systems Within the Energy Sector from Cyber Attacks

    NASA Astrophysics Data System (ADS)

    Barnes, Shaquille

    Advance persistent threat (APT) groups are continuing to attack the energy sector through cyberspace, which poses a risk to our society, national security, and economy. Industrial control systems (ICSs) are not designed to handle cyber-attacks, which is why asset owners need to implement the correct proactive and reactive measures to mitigate the risk to their ICS environments. The Industrial Control Systems Cyber Emergency Response Team (ICS-CERT) responded to 290 incidents for fiscal year 2016, where 59 of those incidents came from the Energy Sector. APT groups know how vulnerable energy sector ICS systems are and the destruction they can cause when they go offline such as loss of production, loss of life, and economic impact. Defending against APT groups requires more than just passive controls such as firewalls and antivirus solutions. Asset owners should implement a combination of best practices and active defense in their environment to defend against APT groups. Cyber-attacks against critical infrastructure will become more complex and harder to detect and respond to with traditional security controls. The purpose of this paper was to provide asset owners with the correct security controls and methodologies to help defend against APT groups.

  14. 3D Printing of Organs-On-Chips.

    PubMed

    Yi, Hee-Gyeong; Lee, Hyungseok; Cho, Dong-Woo

    2017-01-25

    Organ-on-a-chip engineering aims to create artificial living organs that mimic the complex and physiological responses of real organs, in order to test drugs by precisely manipulating the cells and their microenvironments. To achieve this, the artificial organs should to be microfabricated with an extracellular matrix (ECM) and various types of cells, and should recapitulate morphogenesis, cell differentiation, and functions according to the native organ. A promising strategy is 3D printing, which precisely controls the spatial distribution and layer-by-layer assembly of cells, ECMs, and other biomaterials. Owing to this unique advantage, integration of 3D printing into organ-on-a-chip engineering can facilitate the creation of micro-organs with heterogeneity, a desired 3D cellular arrangement, tissue-specific functions, or even cyclic movement within a microfluidic device. Moreover, fully 3D-printed organs-on-chips more easily incorporate other mechanical and electrical components with the chips, and can be commercialized via automated massive production. Herein, we discuss the recent advances and the potential of 3D cell-printing technology in engineering organs-on-chips, and provides the future perspectives of this technology to establish the highly reliable and useful drug-screening platforms.

  15. Definition of intercultural competence (IC) in undergraduate students at a private university in the USA: A mixed-methods study

    PubMed Central

    Gierke, Lioba; Binder, Nadine; Heckmann, Mark; Odağ, Özen; Leiser, Anne

    2018-01-01

    Introduction Intercultural competence (IC) is an important skill to be gained from higher education. However, it remains unclear what IC means to students and what factors might influence their definitions of IC. The aim of the current study was to qualitatively assess how students at one higher education institution in the USA define IC and to quantitatively test for relationships among IC components and various demographic characteristics, including intercultural experience and study context. A further aim was to descriptively compare the IC definitions from the US sample with the definitions obtained from another sample of university students in Germany. Materials and methods A purposive sample of n = 93 undergraduate, second semester students at Dickinson College, USA, participated in the study by completing an online questionnaire. The qualitative data were content-analyzed to define the dimensions of IC. The quantitative data were cluster-analyzed to assess the multivariate relationships among the IC components and the demographic characteristics of the sample. Results The most important dimensions of IC were Knowledge, External Outcomes (interaction, communication), and Attitudes (respect, tolerance) according to the US sample. The most frequently chosen dimensions of IC differed between both samples: Knowledge was chosen by the sample in the USA while External Outcomes was chosen by the sample in Germany. Relative to the US sample, significantly more students chose Attitudes, External Outcomes, and Intrapersonal Skills in the sample in Germany. The relationships among IC components and demographic characteristics were only weak in the US sample. A person with IC was rated as Open-minded and Respectful by students who lived predominantly in the USA or Tolerant and Curious by those who lived outside the USA for at least six months. Discussion The current results suggest that students residing in two countries (USA or Germany) define IC using similar

  16. Definition of intercultural competence (IC) in undergraduate students at a private university in the USA: A mixed-methods study.

    PubMed

    Gierke, Lioba; Binder, Nadine; Heckmann, Mark; Odağ, Özen; Leiser, Anne; Kedzior, Karina Karolina

    2018-01-01

    Intercultural competence (IC) is an important skill to be gained from higher education. However, it remains unclear what IC means to students and what factors might influence their definitions of IC. The aim of the current study was to qualitatively assess how students at one higher education institution in the USA define IC and to quantitatively test for relationships among IC components and various demographic characteristics, including intercultural experience and study context. A further aim was to descriptively compare the IC definitions from the US sample with the definitions obtained from another sample of university students in Germany. A purposive sample of n = 93 undergraduate, second semester students at Dickinson College, USA, participated in the study by completing an online questionnaire. The qualitative data were content-analyzed to define the dimensions of IC. The quantitative data were cluster-analyzed to assess the multivariate relationships among the IC components and the demographic characteristics of the sample. The most important dimensions of IC were Knowledge, External Outcomes (interaction, communication), and Attitudes (respect, tolerance) according to the US sample. The most frequently chosen dimensions of IC differed between both samples: Knowledge was chosen by the sample in the USA while External Outcomes was chosen by the sample in Germany. Relative to the US sample, significantly more students chose Attitudes, External Outcomes, and Intrapersonal Skills in the sample in Germany. The relationships among IC components and demographic characteristics were only weak in the US sample. A person with IC was rated as Open-minded and Respectful by students who lived predominantly in the USA or Tolerant and Curious by those who lived outside the USA for at least six months. The current results suggest that students residing in two countries (USA or Germany) define IC using similar dimensions. However, IC definitions may depend on the

  17. Publications - IC 58 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS IC 58 Publication Details Title: Alaska's mineral industry 2008: A summary Authors: Szumigala, D.J summary: Alaska Division of Geological & Geophysical Surveys Information Circular 58, 15 p. http

  18. Flip-chip light emitting diode with resonant optical microcavity

    DOEpatents

    Gee, James M.; Bogart, Katherine H.A.; Fischer, Arthur J.

    2005-11-29

    A flip-chip light emitting diode with enhanced efficiency. The device structure employs a microcavity structure in a flip-chip configuration. The microcavity enhances the light emission in vertical modes, which are readily extracted from the device. Most of the rest of the light is emitted into waveguided lateral modes. Flip-chip configuration is advantageous for light emitting diodes (LEDs) grown on dielectric substrates (e.g., gallium nitride LEDs grown on sapphire substrates) in general due to better thermal dissipation and lower series resistance. Flip-chip configuration is advantageous for microcavity LEDs in particular because (a) one of the reflectors is a high-reflectivity metal ohmic contact that is already part of the flip-chip configuration, and (b) current conduction is only required through a single distributed Bragg reflector. Some of the waveguided lateral modes can also be extracted with angled sidewalls used for the interdigitated contacts in the flip-chip configuration.

  19. Polysaccharides from Cordyceps sinensis mycelium ameliorate exhaustive swimming exercise-induced oxidative stress.

    PubMed

    Yan, Feng; Wang, Beibei; Zhang, Yan

    2014-02-01

    Cordyceps sinensis (Berk.) Sacc. (Clavicipitaceae) is a famous medicinal fungus (mushroom) in Chinese herbal medicine. Polysaccharides from Cordyceps sinensis (CSP) have been identified as active ingredients responsible for its biological activities. Although many pharmacological actions of CSP have received a great deal of attention, research in this area continues. The current study was designed to investigate the effects of CSP on exhaustive exercise-induced oxidative stress. The mice were divided into four groups: control (C), low-dose CSP treated (LC), intermediate-dose CSP treated (IC) and high-dose CSP treated (HC). The treated groups received CSP (100, 200 and 400 mg/kg, ig), while the control group received drinking water for 28 days, followed by being forced to undergo exhaustive swimming exercise, and some biochemical parameters including superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were measured using detection kits according to the manufacturers' instructions. Compared with the C group, exhaustive swimming time was significantly prolonged in the LC, IC and HC groups (p < 0.05); SOD activities in serum, liver and muscle were significantly higher in the IC and HC groups (p < 0.05); GPx activities in serum, liver and muscle were significantly higher in the LC, IC and HC groups (p < 0.05); CAT activities in serum, liver and muscle were significantly higher in the HC groups (p < 0.05); MDA and 8-OHdG levels in serum, liver and muscle were significantly lower in the LC, IC and HC groups (p < 0.05). The results obtained herein indicate that CSP could ameliorate exhaustive exercise-induced oxidative stress.

  20. Chip-based microtrap arrays for cold polar molecules

    NASA Astrophysics Data System (ADS)

    Hou, Shunyong; Wei, Bin; Deng, Lianzhong; Yin, Jianping

    2017-12-01

    Compared to the atomic chip, which has been a powerful platform to perform an astonishing range of applications from rapid Bose-Einstein condensate (BEC) production to the atomic clock, the molecular chip is only in its infant stages. Recently a one-dimensional electric lattice was demonstrated to trap polar molecules on a chip. This excellent work opens up the way to building a molecular chip laboratory. Here we propose a two-dimensional (2D) electric lattice on a chip with concise and robust structure, which is formed by arrays of squared gold wires. Arrays of microtraps that originate in the microsize electrodes offer a steep gradient and thus allow for confining both light and heavy polar molecules. Theoretical analysis and numerical calculations are performed using two types of sample molecules, N D3 and SrF, to justify the possibility of our proposal. The height of the minima of the potential wells is about 10 μm above the surface of the chip and can be easily adjusted in a wide range by changing the voltages applied on the electrodes. These microtraps offer intriguing perspectives for investigating cold molecules in periodic potentials, such as quantum computing science, low-dimensional physics, and some other possible applications amenable to magnetic or optical lattice. The 2D adjustable electric lattice is expected to act as a building block for a future gas-phase molecular chip laboratory.

  1. 30 CFR 57.22102 - Smoking (I-C mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards for Methane in Metal and Nonmetal Mines Fire Prevention and Control § 57.22102 Smoking (I-C mines). (a...

  2. Should whole-tree chips for fuel be dried before storage?

    Treesearch

    E. L. Springer

    1979-01-01

    Whole-tree chips deteriorate more rapidly than do clean, debarked chips and present a greater hazard for spontaneous ignition when stored in outdoor piles. To prevent ignition, the chips can be stored for only short periods of time and the frequent rotation of the storage piles results in high handling costs. Drying the chips prior to storage will prevent deterioration...

  3. Useful Immunochromatographic Assay of Calprotectin in Gingival Crevicular Fluid for Diagnosis of Diseased Sites in Patients with Periodontal Diseases.

    PubMed

    Kido, Jun-Ichi; Murakami, Shinya; Kitamura, Masahiro; Yanagita, Manabu; Tabeta, Koichi; Yamazaki, Kazuhisa; Yoshie, Hiromasa; Watanabe, Hisashi; Izumi, Yuichi; Suda, Reiko; Yamamoto, Matsuo; Shiba, Hideki; Fujita, Tsuyoshi; Kurihara, Hidemi; Mizuno, Mitsuharu; Mishima, Akihiro; Kawahara, Nobumasa; Hashimoto, Kazuhiro; Naruishi, Koji; Nagata, Toshihiko

    2017-09-06

    Calprotectin, an inflammation-related protein, is present in gingival crevicular fluid (GCF) and the determination of calprotectin is useful for diagnosing periodontal diseases. We have recently developed a novel immunochromatographic (IC) chip system (SI-101402) to determine calprotectin levels in GCF. In the present study, the usefulness of this diagnostic system was investigated in patients with periodontal diseases. Thirty-six patients with periodontal diseases participated in this clinical test at multiple centers. Periodontitis sites (n=118) and non-periodontitis (healthy) sites (n=120) were selected after periodontal examination. GCF collection and periodontal examination were performed at baseline, after supragingival and subgingival scaling and root planing. Calprotectin amount in GCF was determined using a novel IC chip system and evaluated as a visual score and an IC reader value. The correlation between GCF calprotectin levels, clinical indicators and changes in calprotectin levels by periodontal treatments were investigated. Receiver operating characteristic (ROC) analysis of IC reader value for GCF calprotectin was performed to predict periodontal diseases. The visual score of GCF calprotectin was highly correlated the IC reader value. IC reader values of GCF calprotectin in periodontitis group were higher than those of healthy group at three dental examination stages and they significantly decreased with periodontal treatments. Visual scores and IC reader values of GCF calprotectin were correlated to the levels of clinical indicators. ROC analysis for GCF calprotectin showed an optimal cutoff value to predict periodontal diseases. Determination of GCF calprotectin using a novel IC chip system is useful for diagnosis of periodontal diseases.

  4. Poly IC therapy in aleutian disease of mink.

    PubMed Central

    Russell, A S; Percy, J S; Cho, H J

    1975-01-01

    Twenty-four virgin female aleutian mink were infected with aleutian disease agent and after 24 hours, 12 of these were treated with a course of polyinosinic acid-polycytidilic acid (Poly IC) injections. After six weeks the gammaglobulin level was significantly lower in the treated group but at 12 weeks this difference was no longer present. Four of the treated mink had normal target organ histology when killed at 20 weeks. The untreated group all showed moderate to marked changes but this difference was not statistically significant. There was a marked increase in the reactive lymphocyte blastogenesis index during the first weeks of infection and the phytohaemagglutinin response was seen to fall progressively. The antiglobulin reaction usually became positive after infection but neither antinuclear nor antierythrocyte antibodies were found. Precipitating antibodies to several polynucleotides were frequently present and were unrelated to infection or to Poly IC treatment. Images Fig. 1. Fig. 2A Fig. 2B. PMID:1095164

  5. Ultrafast VHE Gamma-Ray Flares of IC 310

    NASA Astrophysics Data System (ADS)

    Barkov, Maxim V.; Aharonian, Felix; Khangulyan, Dmitriy V.

    In 2012 November MAGIC detected a bright flare from IC 310. The flare consisted of two sharp peaks with a typical duration of ~ 5 min. The energy released during that event has been estimated to be at the level of 2 × 1044 erg s-1. In this work we derive an upper limit on the possible luminosity of flares generated in black hole (BH) magnetosphere, which depends very weakly on the mass of BH and is determined by disk magnetisation, viewing angle, and pair multiplicity. Since all these parameters are smaller than a unit, the luminosity 2 × 1043 erg s-1 can be taken as a strict upper limit for flare luminosity for several minutes variability time. This upper limit appears to be approximately an order of magnitude below the value measured with MAGIC. Thus, we conclude that it seems very unfeasible that the magnetospheric processes can be indeed behind the bright flaring activity recorded from IC 310.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Menglu; Tu, K. N., E-mail: kntu@ucla.edu; Kim, Dong Wook

    Thermal-crosstalk induced thermomigration failure in un-powered microbumps has been found in 2.5D integrated circuit (IC) circuit. In 2.5D IC, a Si interposer was used between a polymer substrate and a device chip which has transistors. The interposer has no transistors. If transistors are added to the interposer chip, it becomes 3D IC. In our test structure, there are two Si chips placed horizontally on a Si interposer. The vertical connections between the interposer and the Si chips are through microbumps. We powered one daisy chain of the microbumps under one Si chip; however, the un-powered microbumps in the neighboring chipmore » are failed with big holes in the solder layer. We find that Joule heating from the powered microbumps is transferred horizontally to the bottom of the neighboring un-powered microbumps, and creates a large temperature gradient, in the order of 1000 °C/cm, through the un-powered microbumps in the neighboring chip, so the latter failed by thermomigration. In addition, we used synchrotron radiation tomography to compare three sets of microbumps in the test structure: microbumps under electromigration, microbumps under thermomigration, and microbumps under a constant temperature thermal annealing. The results show that the microbumps under thermomigration have the largest damage. Furthermore, simulation of temperature distribution in the test structure supports the finding of thermomigration.« less

  7. VizieR Online Data Catalog: Optical & Spitzer photometry in IC 1805 (Sung+, 2017)

    NASA Astrophysics Data System (ADS)

    Sung, H.; Bessell, M. S.; Chun, M.-Y.; Yi, J.; Naze, Y.; Lim, B.; Karimov, R.; Rauw, G.; Park, B.-G.; Hur, H.

    2017-06-01

    For a study of the IMF and the star-formation history of the young open cluster IC 1805, we obtained deep wide-field VRI and Hα images of IC 1805 using the CFH12K mosaic CCD camera of the CFHT on 2002 January 6 and 7. We also observed several regions in IC 1805, for a study of the reddening and massive star content, using the SITe 2000x800 CCD (Maidanak 2k CCD) and standard UBVRI filters of the AZT-22 1.5m telescope at the Maidanak Astronomical Observatory in Uzbekistan on 2003 August 18 and 2004 december 25,30. Later, we obtained additional images of the central region of IC 1805 with the Fairchild 486 CCD (SNUCam) and UBVI and Hα filters of the AZT-22 telescope on 2007 October 7 and 2009 January 19. The Spitzer mapping observations were performed on 2006 September 20 under program ID 20052 (PI: S. Wolff). For complete photometry of stars in the CFH12K FOV in 3.6 and 4.5um, we also downloaded and reduced the GLIMPSE360 data (AOR: 38753280, 38763264, 38769408, 38799104, 38798592, 38784512, PI: B. A. Whitney). MIPS scans of IC 1805 were obtained on 2005 August 31 and 2005 September 2 (PID 3234, PI: J. S. Greeves). The Chandra X-ray Observatory Observations of IC 1805 (ObsID: 7033, PI: L. Townley) were made on 2006 November 25. The total exposure time was about 79ks. The properties of 647 X-ray sources were published in Townsley+ (2014,J/ApJS/213/1). We searched for the optical and MIR counterparts of these X-ray sources with a matching radius of up to 1.5". (4 data files).

  8. The hardwood chip market in 2005

    Treesearch

    Peter J. Ince

    2005-01-01

    The North American Pulp and Paper industry continues to experience challenges and changes much like most other business sectors of the hardwood industry. Marketing policies and the raw material supply chain of pulpwood and chips are being affected. The issues surrounding supply for pulpwood and chips have a broad reach in affecting timber and log purchases, logging...

  9. Elevated voltage level I{sub DDQ} failure testing of integrated circuits

    DOEpatents

    Righter, A.W.

    1996-05-21

    Burn in testing of static CMOS IC`s is eliminated by I{sub DDQ} testing at elevated voltage levels. These voltage levels are at least 25% higher than the normal operating voltage for the IC but are below voltage levels that would cause damage to the chip. 4 figs.

  10. Fundamentals of Intrinsic Stress during Silicide Formation

    NASA Astrophysics Data System (ADS)

    Özçelik, A.; van Bockstael, C.; Detavernier, C.; Vanmeirhaeghe, R.

    2007-04-01

    Silicides are a very useful group of materials which can be used to make electrical contacts to circuits in electronic devices with an extremely high performance. The stress in thin films is an increasingly important technological issue from the standpoint of reliability and performance in IC processing. Manufacturers of micro electronic devices have to control the stress levels in the contact films to avoid device failures. Phase transitions such as silicidation or even a simple rearrangement of atoms like relaxation in the metal film cause a difference in the volume of the film from its starting value. This volume change produces stress inside the film. In this work we analyzed the stress evolution during the silicidation reaction of some metals such as W and Mo by using a home built in situ stress system at the University of Ghent.

  11. Publications - IC 39 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS IC 39 Publication Details Title: Alaska's mineral industry 1993: A summary Authors: Bundtzen, T.K 1993: A summary: Alaska Division of Geological & Geophysical Surveys Information Circular 39, 11 p

  12. Publications - IC 41 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS IC 41 Publication Details Title: Alaska's mineral industry 1995: A summary Authors: Bundtzen, T.K 1995: A summary: Alaska Division of Geological & Geophysical Surveys Information Circular 41, 12 p

  13. Adjustment of multi-CCD-chip-color-camera heads

    NASA Astrophysics Data System (ADS)

    Guyenot, Volker; Tittelbach, Guenther; Palme, Martin

    1999-09-01

    The principle of beam-splitter-multi-chip cameras consists in splitting an image into differential multiple images of different spectral ranges and in distributing these onto separate black and white CCD-sensors. The resulting electrical signals from the chips are recombined to produce a high quality color picture on the monitor. Because this principle guarantees higher resolution and sensitivity in comparison to conventional single-chip camera heads, the greater effort is acceptable. Furthermore, multi-chip cameras obtain the compete spectral information for each individual object point while single-chip system must rely on interpolation. In a joint project, Fraunhofer IOF and STRACON GmbH and in future COBRA electronic GmbH develop methods for designing the optics and dichroitic mirror system of such prism color beam splitter devices. Additionally, techniques and equipment for the alignment and assembly of color beam splitter-multi-CCD-devices on the basis of gluing with UV-curable adhesives have been developed, too.

  14. Chip seal design and specifications : final report.

    DOT National Transportation Integrated Search

    2016-12-01

    Chip seals or seal coats, are a pavement preservation method constructed using a layer of asphalt binder that is covered by a uniformly graded aggregate. The benefits of chip seal include: sealing surface cracks, keeping water from penetrating the su...

  15. Cascaded VLSI Chips Help Neural Network To Learn

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.; Daud, Taher; Thakoor, Anilkumar P.

    1993-01-01

    Cascading provides 12-bit resolution needed for learning. Using conventional silicon chip fabrication technology of VLSI, fully connected architecture consisting of 32 wide-range, variable gain, sigmoidal neurons along one diagonal and 7-bit resolution, electrically programmable, synaptic 32 x 31 weight matrix implemented on neuron-synapse chip. To increase weight nominally from 7 to 13 bits, synapses on chip individually cascaded with respective synapses on another 32 x 32 matrix chip with 7-bit resolution synapses only (without neurons). Cascade correlation algorithm varies number of layers effectively connected into network; adds hidden layers one at a time during learning process in such way as to optimize overall number of neurons and complexity and configuration of network.

  16. 42 CFR 457.343 - Periodic renewal of CHIP eligibility.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 4 2014-10-01 2014-10-01 false Periodic renewal of CHIP eligibility. 457.343... of CHIP eligibility. The renewal procedures described in § 435.916 of this chapter apply equally to the State in administering a separate CHIP, except that the State shall verify information needed to...

  17. 42 CFR 457.343 - Periodic renewal of CHIP eligibility.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 4 2013-10-01 2013-10-01 false Periodic renewal of CHIP eligibility. 457.343... of CHIP eligibility. The renewal procedures described in § 435.916 of this chapter apply equally to the State in administering a separate CHIP, except that the State shall verify information needed to...

  18. 42 CFR 457.343 - Periodic renewal of CHIP eligibility.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 4 2012-10-01 2012-10-01 false Periodic renewal of CHIP eligibility. 457.343... of CHIP eligibility. The renewal procedures described in § 435.916 of this chapter apply equally to the State in administering a separate CHIP, except that the State shall verify information needed to...

  19. IC 5181: An S0 Galaxy with Ionized Gas on Polar Orbits

    NASA Astrophysics Data System (ADS)

    Pizzella, A.; Morelli, L.; Corsini, E. M.; Dalla Bontá, E.; Cesetti, M.

    2014-05-01

    The nearby S0 galaxy IC 5181 is studied to address the origin of the ionized gas component that orbits the galaxy on polar orbit. We perform detailed photometric and spectroscopic observations measuring the surface brightness distribution of the stars (I band), ionized gas of IC 5181 (Hα narrow band), the ionized-gas and stellar kinematics along both the major and minor axis, and the corresponding line strengths of the Lick indices. We conclude that the galaxy hosts a geometrically and kinematically decoupled component of ionized gas. It is elongated along the galaxy minor axis and in orthogonal rotation with respect to the galaxy disk. The result is suggesting that the gas component is not related to the stars having an external origin. The gas was accreted by IC 5181 on polar orbits from the surrounding environment.

  20. 30 CFR 57.22233 - Actions at 0.5 percent methane (I-C mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Actions at 0.5 percent methane (I-C mines). 57... MINES Safety Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22233 Actions at 0.5 percent methane (I-C mines). If methane reaches 0.5 percent in the mine atmosphere, ventilation changes...

  1. 30 CFR 57.22233 - Actions at 0.5 percent methane (I-C mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Actions at 0.5 percent methane (I-C mines). 57... MINES Safety Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22233 Actions at 0.5 percent methane (I-C mines). If methane reaches 0.5 percent in the mine atmosphere, ventilation changes...

  2. Performance evaluation of chip seals in Idaho.

    DOT National Transportation Integrated Search

    2010-08-01

    The intent of this research project is to identify a wide variety of parameters that influence the performance of pavements treated via chip seals within the State of Idaho. Chip sealing is currently one of the most popular methods of maintenance for...

  3. Pyrolysis of ground pine chip and ground pellet particles

    DOE PAGES

    Rezaei, Hamid; Yazdanpanah, Fahimeh; Lim, C. Jim; ...

    2016-08-04

    In addition to particle size, biomass density influences heat and mass transfer rates during the thermal treatment processes. In this research, thermal behaviour of ground pine chip particles and ground pine pellet particles in the range of 0.25–5 mm was investigated. A single particle from ground pellets was almost 3 to 4 times denser than a single particle from ground chips at a similar size and volume of particle. Temperature was ramped up from room temperature (~25 °C) to 600 °C with heating rates of 10, 20, 30, and 50 °C/min. Pellet particles took 25–88 % longer time to drymore » than the chip particles. Microscopic examination of 3 mm and larger chip particles showed cracks during drying. No cracks were observed for pellet particles. The mass loss due to treatment at temperatures higher than 200 °C was about 80% both for chip and pellet particles. It took 4 min for chip and pellet particles to lose roughly 63% of their dry mass at a heating rate of 50 °C/min. The SEM structural analysis showed enlarged pores and cracks in cell walls of the pyrolyzed wood chips. As a result, these pores were not observed in pyrolyzed pellet particles.« less

  4. BCH codes for large IC random-access memory systems

    NASA Technical Reports Server (NTRS)

    Lin, S.; Costello, D. J., Jr.

    1983-01-01

    In this report some shortened BCH codes for possible applications to large IC random-access memory systems are presented. These codes are given by their parity-check matrices. Encoding and decoding of these codes are discussed.

  5. Publications - IC 54 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS IC 54 Publication Details Title: Alaska's mineral industry 2006: A summary Authors: Szumigala, D.J Bibliographic Reference Szumigala, D.J., and Hughes, R.A., 2007, Alaska's mineral industry 2006: A summary

  6. Improvements to the Magnetics Information Consortium (MagIC) Paleo and Rock Magnetic Database

    NASA Astrophysics Data System (ADS)

    Jarboe, N.; Minnett, R.; Tauxe, L.; Koppers, A. A. P.; Constable, C.; Jonestrask, L.

    2015-12-01

    The Magnetic Information Consortium (MagIC) database (http://earthref.org/MagIC/) continues to improve the ease of data uploading and editing, the creation of complex searches, data visualization, and data downloads for the paleomagnetic, geomagnetic, and rock magnetic communities. Online data editing is now available and the need for proprietary spreadsheet software is therefore entirely negated. The data owner can change values in the database or delete entries through an HTML 5 web interface that resembles typical spreadsheets in behavior and uses. Additive uploading now allows for additions to data sets to be uploaded with a simple drag and drop interface. Searching the database has improved with the addition of more sophisticated search parameters and with the facility to use them in complex combinations. A comprehensive summary view of a search result has been added for increased quick data comprehension while a raw data view is available if one desires to see all data columns as stored in the database. Data visualization plots (ARAI, equal area, demagnetization, Zijderveld, etc.) are presented with the data when appropriate to aid the user in understanding the dataset. MagIC data associated with individual contributions or from online searches may be downloaded in the tab delimited MagIC text file format for susbsequent offline use and analysis. With input from the paleomagnetic, geomagnetic, and rock magnetic communities, the MagIC database will continue to improve as a data warehouse and resource.

  7. FInal Technical Repot of the Project: Design and Implementation of Low-Power 10Gb/s/channel Laser/Silicon Photonics Modulator Drivers with SEU Tolerance for HL-LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gui, Ping

    During the funding period of this award from May 1, 2014 through March 30, 2016, we have accomplished the design, implementation and measurement results of two laser driver chips: LpGBLD10+ which is a low-power single-channel 10Gb/s laser driver IC, and LDQ10P, which is a 4x10Gb/s driver array chip for High Energy Physics (HEP) applications. With new circuit techniques, the driver consumes a record-low power consumption, 31 mW @10Gb/s/channel and occupies a small area of 400 µm × 1750 µm for the single-channel driver IC and 1900umx1700um for the LDQ10P chip. These characteristics allow for both the LpGBLD10+ ICs and LDQ10P suitable candidatemore » for the Versatile Link PLUS (VL+) project, offering flexibility in configuring multiple Transmitters and receivers.« less

  8. Droplet-based micro oscillating-flow PCR chip

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Li, Zhi-Xin; Luo, Rong; Lü, Shu-Hai; Xu, Ai-Dong; Yang, Yong-Jun

    2005-08-01

    Polymerase chain reactions (PCR), thermally activated chemical reactions which are widely used for nucleic acid amplification, have recently received much attention in microelectromechanical systems and micro total analysis systems because a wide variety of DNA/RNA molecules can be enriched by PCR for further analyses. In the present work, a droplet-based micro oscillating-flow PCR chip was designed and fabricated by the silicon microfabrication technique. Three different temperature zones, which were stable at denaturation, extension and annealing temperatures and isolated from each other by a thin-wall linkage, were integrated with a single, simple and straight microchannel to form the chip's basic functional structure. The PCR mixture was injected into the chip as a single droplet and flowed through the three temperature zones in the main microchannel in an oscillating manner to achieve the temperature maintenance and transitions. The chip's thermal performance was theoretically analyzed and numerically simulated. The results indicated that the time needed for the temperature of the droplet to change to the target value is less than 1 s, and the root mean square error of temperature is less than 0.2 °C. A droplet of 1 µl PCR mixture with standard HPV (Human Papilloma Virus)-DNA sample inside was amplified by the present chip and the results were analyzed by slab gel electrophoresis with separation of DNA markers in parallel. The electrophoresis results demonstrated that the micro oscillating-flow PCR chip successfully amplified the HPV-DNA, with a processing time of about 15 min which is significantly reduced compared to that for the conventional PCR instrument.

  9. A New Interface for the Magnetics Information Consortium (MagIC) Paleo and Rock Magnetic Database

    NASA Astrophysics Data System (ADS)

    Jarboe, N.; Minnett, R.; Koppers, A. A. P.; Tauxe, L.; Constable, C.; Shaar, R.; Jonestrask, L.

    2014-12-01

    The Magnetic Information Consortium (MagIC) database (http://earthref.org/MagIC/) continues to improve the ease of uploading data, the creation of complex searches, data visualization, and data downloads for the paleomagnetic, geomagnetic, and rock magnetic communities. Data uploading has been simplified and no longer requires the use of the Excel SmartBook interface. Instead, properly formatted MagIC text files can be dragged-and-dropped onto an HTML 5 web interface. Data can be uploaded one table at a time to facilitate ease of uploading and data error checking is done online on the whole dataset at once instead of incrementally in an Excel Console. Searching the database has improved with the addition of more sophisticated search parameters and with the ability to use them in complex combinations. Searches may also be saved as permanent URLs for easy reference or for use as a citation in a publication. Data visualization plots (ARAI, equal area, demagnetization, Zijderveld, etc.) are presented with the data when appropriate to aid the user in understanding the dataset. Data from the MagIC database may be downloaded from individual contributions or from online searches for offline use and analysis in the tab delimited MagIC text file format. With input from the paleomagnetic, geomagnetic, and rock magnetic communities, the MagIC database will continue to improve as a data warehouse and resource.

  10. Rutger's CAM2000 chip architecture

    NASA Technical Reports Server (NTRS)

    Smith, Donald E.; Hall, J. Storrs; Miyake, Keith

    1993-01-01

    This report describes the architecture and instruction set of the Rutgers CAM2000 memory chip. The CAM2000 combines features of Associative Processing (AP), Content Addressable Memory (CAM), and Dynamic Random Access Memory (DRAM) in a single chip package that is not only DRAM compatible but capable of applying simple massively parallel operations to memory. This document reflects the current status of the CAM2000 architecture and is continually updated to reflect the current state of the architecture and instruction set.

  11. Construction Progress of the S-IC Test Stand-Steel Reinforcements

    NASA Technical Reports Server (NTRS)

    1961-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo, taken September 15, 1961, shows the installation of the reinforcing steel prior to the pouring of the concrete foundation walls.

  12. Metabolism of the tropine indole-3-carboxylate ICS 205-930 by differentiated rat and human hepatoma cells.

    PubMed

    Fischer, V; Baldeck, J P; Wiebel, F J

    The metabolism of the tropine indole-3-carboxylate ICS 205-930 (ICS), a highly potent and selective antagonist of 5-HT3 receptors, was investigated in continuous cell lines derived from rat or human liver and compared to the in vivo metabolism in rat and human. The well-differentiated rat hepatoma line 2sFou extensively metabolized ICS by hydroxylation of the indole moiety and subsequent conjugation to form the corresponding glucuronides and sulfates. The 2sFou cells also oxidized ICS at the tropinyl moiety to form both N-demethyl and N-oxide derivatives. The relative amount of the various metabolites was dependent on the substrate concentration. Pretreatment of the cells with dexamethasone increased the rate of metabolism for all pathways, while benz[a]anthracene caused an increase in hydroxylation at the indole moiety at the expense of N-oxidation. Phenobarbital pretreatment had no effect on ICS metabolism. The pattern of metabolites formed in 2sFou cells was qualitatively similar to that formed in rat urine. The human hepatoma line HepG2 metabolized ICS only to a small extent. The HepG2 cells failed to form detectable amounts of ICS conjugates found in human urine. The N-oxide-ICS was not found in HepG2 cells or in human urine. Virtually no ICS metabolites were found in human lung adenocarcinoma lines NCI-H358 or NCI-H322. The results suggest that continuous cell lines such as the differentiated rat hepatoma cells 2sFou might be used to mimic the metabolism of xenobiotics in rat and to clarify their complex metabolic pathways.

  13. 3D Printing of Organs-On-Chips

    PubMed Central

    Yi, Hee-Gyeong; Lee, Hyungseok; Cho, Dong-Woo

    2017-01-01

    Organ-on-a-chip engineering aims to create artificial living organs that mimic the complex and physiological responses of real organs, in order to test drugs by precisely manipulating the cells and their microenvironments. To achieve this, the artificial organs should to be microfabricated with an extracellular matrix (ECM) and various types of cells, and should recapitulate morphogenesis, cell differentiation, and functions according to the native organ. A promising strategy is 3D printing, which precisely controls the spatial distribution and layer-by-layer assembly of cells, ECMs, and other biomaterials. Owing to this unique advantage, integration of 3D printing into organ-on-a-chip engineering can facilitate the creation of micro-organs with heterogeneity, a desired 3D cellular arrangement, tissue-specific functions, or even cyclic movement within a microfluidic device. Moreover, fully 3D-printed organs-on-chips more easily incorporate other mechanical and electrical components with the chips, and can be commercialized via automated massive production. Herein, we discuss the recent advances and the potential of 3D cell-printing technology in engineering organs-on-chips, and provides the future perspectives of this technology to establish the highly reliable and useful drug-screening platforms. PMID:28952489

  14. [Emission of organic substances from chip-boards].

    PubMed

    Deppe, H J

    1982-01-01

    A relatively small number of investigations on emissions of organic substances from chip-board is available up to now. The emissions known to date are caused by glues or other additives rather than by the wood itself. As concerns aminoplast glues (urea-formaldehyde or melamine-formaldehyde resins) the most important point of public interest has been the off-gassing of formaldehyde from chip-board. Chip-board with phenol-formaldehyde glues has been known in some cases to give off phenol. The formation of diamino diphenyl methane from isocyanate glues is still a matter of discussion. A further source for possible emissions are wood and fire protectives which are added during the manufacturing process. Finally, coating of chip-board may lead to emissions of organic substances. The lack of adequate detection methods has so far delayed the treatment of questions in relation to emissions from chip-board. Even now, there are numerous problems in this field especially when investigating isocyanate glues. Problems in relation to the origin of emissions due to the kind of glue used and the manufacturing process are discussed, and proposals are made how to solve some of these problems. The question of the health risk is dealt with from the view-point of the civil engineer and in an general economic context.

  15. Preliminary Radiation Testing of a State-of-the-Art Commercial 14nm CMOS Processor - System-on-a-Chip

    NASA Technical Reports Server (NTRS)

    Szabo, Carl M., Jr.; Duncan, Adam; LaBel, Kenneth A.; Kay, Matt; Bruner, Pat; Krzesniak, Mike; Dong, Lei

    2015-01-01

    Hardness assurance test results of Intel state-of-the-art 14nm Broadwell U-series processor System-on-a-Chip (SoC) for total dose are presented, along with first-look exploratory results from trials at a medical proton facility. Test method builds upon previous efforts by utilizing commercial laptop motherboards and software stress applications as opposed to more traditional automated test equipment (ATE).

  16. Preliminary Radiation Testing of a State-of-the-Art Commercial 14nm CMOS Processor/System-on-a-Chip

    NASA Technical Reports Server (NTRS)

    Szabo, Carl M., Jr.; Duncan, Adam; LaBel, Kenneth A.; Kay, Matt; Bruner, Pat; Krzesniak, Mike; Dong, Lei

    2015-01-01

    Hardness assurance test results of Intel state-of-the-art 14nm “Broadwell” U-series processor / System-on-a-Chip (SoC) for total ionizing dose (TID) are presented, along with exploratory results from trials at a medical proton facility. Test method builds upon previous efforts [1] by utilizing commercial laptop motherboards and software stress applications as opposed to more traditional automated test equipment (ATE).

  17. Chip-based quantum key distribution

    NASA Astrophysics Data System (ADS)

    Sibson, P.; Erven, C.; Godfrey, M.; Miki, S.; Yamashita, T.; Fujiwara, M.; Sasaki, M.; Terai, H.; Tanner, M. G.; Natarajan, C. M.; Hadfield, R. H.; O'Brien, J. L.; Thompson, M. G.

    2017-02-01

    Improvement in secure transmission of information is an urgent need for governments, corporations and individuals. Quantum key distribution (QKD) promises security based on the laws of physics and has rapidly grown from proof-of-concept to robust demonstrations and deployment of commercial systems. Despite these advances, QKD has not been widely adopted, and large-scale deployment will likely require chip-based devices for improved performance, miniaturization and enhanced functionality. Here we report low error rate, GHz clocked QKD operation of an indium phosphide transmitter chip and a silicon oxynitride receiver chip--monolithically integrated devices using components and manufacturing processes from the telecommunications industry. We use the reconfigurability of these devices to demonstrate three prominent QKD protocols--BB84, Coherent One Way and Differential Phase Shift--with performance comparable to state-of-the-art. These devices, when combined with integrated single photon detectors, pave the way for successfully integrating QKD into future telecommunications networks.

  18. An automatic chip structure optical inspection system for electronic components

    NASA Astrophysics Data System (ADS)

    Song, Zhichao; Xue, Bindang; Liang, Jiyuan; Wang, Ke; Chen, Junzhang; Liu, Yunhe

    2018-01-01

    An automatic chip structure inspection system based on machine vision is presented to ensure the reliability of electronic components. It consists of four major modules, including a metallographic microscope, a Gigabit Ethernet high-resolution camera, a control system and a high performance computer. An auto-focusing technique is presented to solve the problem that the chip surface is not on the same focusing surface under the high magnification of the microscope. A panoramic high-resolution image stitching algorithm is adopted to deal with the contradiction between resolution and field of view, caused by different sizes of electronic components. In addition, we establish a database to storage and callback appropriate parameters to ensure the consistency of chip images of electronic components with the same model. We use image change detection technology to realize the detection of chip images of electronic components. The system can achieve high-resolution imaging for chips of electronic components with various sizes, and clearly imaging for the surface of chip with different horizontal and standardized imaging for ones with the same model, and can recognize chip defects.

  19. Andy Jenkins Builds Applications Development For Lab-on-a-Chip

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Andy Jenkins, an engineer for the Lab on a Chip Applications Development program, helped build the Applications Development Unit (ADU-25), a one-of-a-kind facility for controlling and analyzing processes on chips with extreme accuracy. Pressure is used to cause fluids to travel through network of fluid pathways, or micro-channels, embossed on the chips through a process similar to the one used to print circuits on computer chips. To make customized chips for various applications, NASA has an agreement with the U.S. Army's Micro devices and Micro fabrication Laboratory at Redstone Arsenal in Huntsville, Alabama, where NASA's Marshall Space Flight Center (MSFC) is located. The Marshall Center team is also collaborating with scientists at other NASA centers and at universities to develop custom chip designs for many applications, such as studying how fluidic systems work in spacecraft and identifying microbes in self-contained life support systems. Chips could even be designed for use on Earth, such as for detecting deadly microbes in heating and air systems. (NASA/MSFC/D.Stoffer)

  20. Publications - IC 42 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS IC 42 Publication Details Title: Alaska's mineral industry 1996: A summary Authors: Swainbank, R.C ., Bundtzen, T.K., Clough, A.H., and Henning, M.W., 1997, Alaska's mineral industry 1996: A summary: Alaska

  1. Classification of PSN J12015272-1852183 as a young type Ic SN

    NASA Astrophysics Data System (ADS)

    Harutyunyan, A.; Benetti, S.; Pastorello, A.; Cappellaro, E.; Tomasella, L.; Ochner, P.; Turatto, M.

    2013-06-01

    We report the spectroscopic classification (range 335-785 nm; resolution 1.5 nm) of PSN J12015272-1852183 discovered by the CHASE project on June 22.12 UT. The spectrogram obtained on June 23.88 UT with the TNG Telescope (+Dolores), shows that this is a type-Ic supernova. A good match is found with the type-Ic supernova 1994I (Millard et al 1999, ApJ 527, 746) at about six days before maximum light.

  2. Chip-olate’ and dry-film resists for efficient fabrication, singulation and sealing of microfluidic chips

    NASA Astrophysics Data System (ADS)

    Temiz, Yuksel; Delamarche, Emmanuel

    2014-09-01

    This paper describes a technique for high-throughput fabrication and efficient singulation of chips having closed microfluidic structures and takes advantage of dry-film resists (DFRs) for efficient sealing of capillary systems. The technique is illustrated using 4-inch Si/SiO2 wafers. Wafers carrying open microfluidic structures are partially diced to about half of their thickness. Treatments such as surface cleaning are done at wafer-level, then the structures are sealed using low-temperature (45 °C) lamination of a DFR that is pre-patterned using a craft cutter, and ready-to-use chips are finally separated manually like a chocolate bar by applying a small force (≤ 4 N). We further show that some DFRs have low auto-fluorescence at wavelengths typically used for common fluorescent dyes and that mechanical properties of some DFRs allow for the lamination of 200 μm wide microfluidic structures with negligible sagging (~1 μm). The hydrophilicity (advancing contact angle of ~60°) of the DFR supports autonomous capillary-driven flow without the need for additional surface treatment of the microfluidic chips. Flow rates from 1 to 5 µL min-1 are generated using different geometries of channels and capillary pumps. In addition, the ‘chip-olate’ technique is compatible with the patterning of capture antibodies on DFR for use in immunoassays. We believe this technique to be applicable to the fabrication of a wide range of microfluidic and lab-on-a-chip devices and to offer a viable alternative to many labor-intensive processes that are currently based on wafer bonding techniques or on the molding of poly(dimethylsiloxane) (PDMS) layers.

  3. Chip-based wide field-of-view nanoscopy

    NASA Astrophysics Data System (ADS)

    Diekmann, Robin; Helle, Øystein I.; Øie, Cristina I.; McCourt, Peter; Huser, Thomas R.; Schüttpelz, Mark; Ahluwalia, Balpreet S.

    2017-04-01

    Present optical nanoscopy techniques use a complex microscope for imaging and a simple glass slide to hold the sample. Here, we demonstrate the inverse: the use of a complex, but mass-producible optical chip, which hosts the sample and provides a waveguide for the illumination source, and a standard low-cost microscope to acquire super-resolved images via two different approaches. Waveguides composed of a material with high refractive-index contrast provide a strong evanescent field that is used for single-molecule switching and fluorescence excitation, thus enabling chip-based single-molecule localization microscopy. Additionally, multimode interference patterns induce spatial fluorescence intensity variations that enable fluctuation-based super-resolution imaging. As chip-based nanoscopy separates the illumination and detection light paths, total-internal-reflection fluorescence excitation is possible over a large field of view, with up to 0.5 mm × 0.5 mm being demonstrated. Using multicolour chip-based nanoscopy, we visualize fenestrations in liver sinusoidal endothelial cells.

  4. Digital PCR on a SlipChip.

    PubMed

    Shen, Feng; Du, Wenbin; Kreutz, Jason E; Fok, Alice; Ismagilov, Rustem F

    2010-10-21

    This paper describes a SlipChip to perform digital PCR in a very simple and inexpensive format. The fluidic path for introducing the sample combined with the PCR mixture was formed using elongated wells in the two plates of the SlipChip designed to overlap during sample loading. This fluidic path was broken up by simple slipping of the two plates that removed the overlap among wells and brought each well in contact with a reservoir preloaded with oil to generate 1280 reaction compartments (2.6 nL each) simultaneously. After thermal cycling, end-point fluorescence intensity was used to detect the presence of nucleic acid. Digital PCR on the SlipChip was tested quantitatively by using Staphylococcus aureus genomic DNA. As the concentration of the template DNA in the reaction mixture was diluted, the fraction of positive wells decreased as expected from the statistical analysis. No cross-contamination was observed during the experiments. At the extremes of the dynamic range of digital PCR the standard confidence interval determined using a normal approximation of the binomial distribution is not satisfactory. Therefore, statistical analysis based on the score method was used to establish these confidence intervals. The SlipChip provides a simple strategy to count nucleic acids by using PCR. It may find applications in research applications such as single cell analysis, prenatal diagnostics, and point-of-care diagnostics. SlipChip would become valuable for diagnostics, including applications in resource-limited areas after integration with isothermal nucleic acid amplification technologies and visual readout.

  5. The Iron-Responsive Fur/RyhB Regulatory Cascade Modulates the Shigella Outer Membrane Protease IcsP ▿ †

    PubMed Central

    Africa, Lia A. A.; Murphy, Erin R.; Egan, Nicholas R.; Wigley, Amanda F.; Wing, Helen J.

    2011-01-01

    Actin-based motility is central to the pathogenicity of the intracellular bacterial pathogen Shigella. Two Shigella outer membrane proteins, IcsA and IcsP, are required for efficient actin-based motility in the host cell cytoplasm, and the genes encoding both proteins are carried on the large virulence plasmid. IcsA triggers actin polymerization on the surface of the bacterium, leading to the formation of an actin tail that allows both intra- and intercellular spread. IcsP, an outer membrane protease, modulates the amount and distribution of the IcsA protein on the bacterial surface through proteolytic cleavage of IcsA. Transcription of icsP is increased in the presence of VirB, a DNA-binding protein that positively regulates many genes carried on the large virulence plasmid. In Shigella dysenteriae, the small regulatory RNA RyhB, which is a member of the iron-responsive Fur regulon, suppresses several virulence-associated phenotypes by downregulating levels of virB in response to iron limitation. Here we show that the Fur/RyhB regulatory pathway downregulates IcsP levels in response to low iron concentrations in Shigella flexneri and that this occurs at the level of transcription through the RyhB-dependent regulation of VirB. These observations demonstrate that in Shigella species the Fur/RyhB regulatory pathway provides a mechanism to finely tune the expression of icsP in response to the low concentrations of free iron predicted to be encountered within colonic epithelial cells. PMID:21859852

  6. Quantum Optics in Diamond Nanophotonic Chips

    DTIC Science & Technology

    2014-07-01

    quantum cryptography , quantum teleportation, quantum computation. Springer-Verlag, London, UK, 2000. 8 [3] J. I. Cirac, P. Zoller, H. J. Kimble, and...AFRL-OSR-VA-TR-2014-0188 Quantum Optics in Diamond Nanophotonic Chips Dirk Englund THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK INC...Progress Report Program Manager: Dr. Gernot Pomrenke Quantum Optics in Diamond Nanophotonic Chips AFOSR Directorate: Physics and Electronics Research

  7. Installation of C-6533(XE-2)/ARC ICS in UH-1H helicopter

    NASA Astrophysics Data System (ADS)

    Hnat, J. A.

    1980-07-01

    This report documents the results of the installation of the C-6533(XE-2)/ARC ICS in UH-1H helicopter. Installation was performed at the AEL, Inc., Monmouth County Airport facility. Design of each installation was coordinated and approved by the Government. The mechanical and electrical installation drawings for the helicopter are attached as Appendix A of this report. The new ICS system consisted of new cabling, new intercoms and helmets rewired with new microphones. All four crew stations of the helicopter were reconfigured with the new system. Existing cabling for the standard ICS system remained in the aircraft but was securely stowed for later restoration of the aircraft. The helmets (4) were rewired using separate jacks for headphones and microphone lines. Transmit and receive cables were installed in the aircraft with a minimum separation of one inch between cables. A junction box was fabricated and installed on the aft end of the console to house the fan-out terminal strips. Transmit and receive lines' separation was maintained in the junction box. During the test phase the onboard radios were used with the new ICS system.

  8. Chipped Paint Crater

    NASA Image and Video Library

    2003-04-09

    In the high northern latitudes northwest of Alba Patera, a smooth mantle of material that covers the landscape appears chipped away from the rim of a large crater, as observed in this image from NASA Mars Odyssey spacecraft.

  9. Experiences in flip chip production of radiation detectors

    NASA Astrophysics Data System (ADS)

    Savolainen-Pulli, Satu; Salonen, Jaakko; Salmi, Jorma; Vähänen, Sami

    2006-09-01

    Modern imaging devices often require heterogeneous integration of different materials and technologies. Because of yield considerations, material availability, and various technological limitations, an extremely fine pitch is necessary to realize high-resolution images. Thus, there is a need for a hybridization technology that is able to join together readout amplifiers and pixel detectors at a very fine pitch. This paper describes radiation detector flip chip production at VTT. Our flip chip technology utilizes 25-μm diameter tin-lead solder bumps at a 50-μm pitch and is based on flux-free bonding. When preprocessed wafers are used, as is the case here, the total yield is defined only partly by the flip chip process. Wafer preprocessing done by a third-party silicon foundry and the flip chip process create different process defects. Wafer-level yield maps (based on probing) provided by the customer are used to select good readout chips for assembly. Wafer probing is often done outside of a real clean room environment, resulting in particle contamination and/or scratches on the wafers. Factors affecting the total yield of flip chip bonded detectors are discussed, and some yield numbers of the process are given. Ways to improve yield are considered, and finally guidelines for process planning and device design with respect to yield optimization are given.

  10. Method for protecting chip corners in wet chemical etching of wafers

    DOEpatents

    Hui, Wing C.

    1994-01-01

    The present invention is a corner protection mask design that protects chip corners from undercutting during anisotropic etching of wafers. The corner protection masks abut the chip corner point and extend laterally from segments along one or both corner sides of the corner point, forming lateral extensions. The protection mask then extends from the lateral extensions, parallel to the direction of the corner side of the chip and parallel to scribe lines, thus conserving wafer space. Unmasked bomb regions strategically formed in the protection mask facilitate the break-up of the protection mask during etching. Corner protection masks are useful for chip patterns with deep grooves and either large or small chip mask areas. Auxiliary protection masks form nested concentric frames that etch from the center outward are useful for small chip mask patterns. The protection masks also form self-aligning chip mask areas. The present invention is advantageous for etching wafers with thin film windows, microfine and micromechanical structures, and for forming chip structures more elaborate than presently possible.

  11. Method for protecting chip corners in wet chemical etching of wafers

    DOEpatents

    Hui, W.C.

    1994-02-15

    The present invention is a corner protection mask design that protects chip corners from undercutting during anisotropic etching of wafers. The corner protection masks abut the chip corner point and extend laterally from segments along one or both corner sides of the corner point, forming lateral extensions. The protection mask then extends from the lateral extensions, parallel to the direction of the corner side of the chip and parallel to scribe lines, thus conserving wafer space. Unmasked bomb regions strategically formed in the protection mask facilitate the break-up of the protection mask during etching. Corner protection masks are useful for chip patterns with deep grooves and either large or small chip mask areas. Auxiliary protection masks form nested concentric frames that etch from the center outward are useful for small chip mask patterns. The protection masks also form self-aligning chip mask areas. The present invention is advantageous for etching wafers with thin film windows, microfine and micromechanical structures, and for forming chip structures more elaborate than presently possible. 63 figures.

  12. Chip-Scale Magnetic Source of Cold Atoms

    DTIC Science & Technology

    2013-06-01

    the desert, the roof of the physics building, no air conditioning, shooting stars, coconut and coconuts , hacienda, and margarita. v Acknowledgments I...toner paper was folded around the chip and run through a laminator. The laminator’s heat transferred the toner to the chip. By splashing water on the

  13. Teaching Quality Control with Chocolate Chip Cookies

    ERIC Educational Resources Information Center

    Baker, Ardith

    2014-01-01

    Chocolate chip cookies are used to illustrate the importance and effectiveness of control charts in Statistical Process Control. By counting the number of chocolate chips, creating the spreadsheet, calculating the control limits and graphing the control charts, the student becomes actively engaged in the learning process. In addition, examining…

  14. Dentine chips produced by nickel-titanium rotary instruments.

    PubMed

    Guppy, D R; Curtis, R V; Ford, T R

    2000-12-01

    This study aimed to compare the cross-sectional shape of two nickel-titanium rotary instruments, namely ProFile and Quantec files, both ISO 25, 0.06 taper, and sought to relate this to the chips produced by cutting dentine. A limited comparison was made with stainless steel engine reamers. First, five files of each type were sectioned transversely at 12 mm, 8 mm and 4 mm from the tip and examined by scanning electron microscopy. The cutting angles were assessed by a direct measurement technique which allowed for the inclination of a cutting edge to the root canal. Second, eight samples of cutting debris were collected from instrumentation by each type of nickel-titanium file and four samples from the engine reamers. The major and minor axis, area and roundness of the dentine chips in each sample were measured using computerized particle analysis. The results demonstrated that all files had a negative cutting angle which varied at the different levels (ProFiles range 69.4 degrees to 58.4 degrees and Quantec range 74.8 degrees to 56.8 degrees). The consistency within files of the same type was good as demonstrated by low standard deviations, except for Quantec files at the 4 mm level where higher standard deviations of 4.1 degrees and 5.5 degrees for the two blades were found. The chip analysis showed significant differences between chips produced by ProFile and Quantec files (P < 0.05). The latter were larger and rounder. The chips from the ProFile and the engine reamer chips were similar in dimension (P > 0.05). No simple relationship existed between file geometry and the dentine chips produced during instrumentation.

  15. Comparison of edge chipping resistance of PFM and veneered zirconia specimens

    PubMed Central

    Quinn, Janet B.; Sundar, Veeraraghavan; Parry, Edward E.; Quinn, George D.

    2011-01-01

    Objectives To investigate the chipping resistance of veneered zirconia specimens and compare it to the chipping resistance of porcelain fused to metal (PFM) specimens. Methods Veneered zirconia and PFM bar specimens were prepared in clinically relevant thicknesses. The specimen edges were chipped with different magnitude forces, producing chips of various sizes. The range of sizes included small chips that did not penetrate all the way through the veneers to the substrates, and also chips that were very large and reached the zirconia or metal substrates. The relationship between force magnitude and chip size (edge distance) was graphed. The resulting curves were compared for the veneered zirconia and PFM specimens. Knoop hardness vs. force graphs for the veneers and substrates were also obtained. Results The zirconia and PFM veneer chipping data followed a power law (coefficient of determination, R2 > 0.93) as expected from the literature. The curves overlapped within the combined data scatter, indicating similar resistance to chipping. The chips made in both types of specimens detached and did not penetrate into the substrate when they reached the veneer/substrate intersections. The hardness–load curves for the veneers and substrates all exhibited an indentation size effect (ISE) at low loads. The Knoop hardness values with uncertainties of ±one standard deviation at 4 N loads for the metal, zirconia, and the metal and zirconia veneers are: (2.02 ± 0.08, 12.01 ± 0.39, 4.24 ± 0.16 and 4.36 ± 0.02 GPa), respectively, with no statistically significant difference between the veneers (Tukey pairwise comparison at 0.95 family confidence). Significance This work indicates that a similar resistance to chipping might be expected for veneered zirconia and PFM restorations, in spite of the large difference in substrate hardness. Differences in susceptibility to chip spalling were not detected, but the chips in both specimen types detached off the sides in a similar

  16. Publications - IC 50 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey ic050.pdf (999.0 K) Keywords Aeromagnetic; Aeromagnetic Map; Aeromagnetic Survey; Alaska Peninsula ; Coal; Conductivity Survey; Construction Materials; Copper; Cretaceous; Delta River; Diamonds; Drilling

  17. SN 2017dio: A Type-Ic Supernova Exploding in a Hydrogen-rich Circumstellar Medium

    NASA Astrophysics Data System (ADS)

    Kuncarayakti, Hanindyo; Maeda, Keiichi; Ashall, Christopher J.; Prentice, Simon J.; Mattila, Seppo; Kankare, Erkki; Fransson, Claes; Lundqvist, Peter; Pastorello, Andrea; Leloudas, Giorgos; Anderson, Joseph P.; Benetti, Stefano; Bersten, Melina C.; Cappellaro, Enrico; Cartier, Régis; Denneau, Larry; Della Valle, Massimo; Elias-Rosa, Nancy; Folatelli, Gastón; Fraser, Morgan; Galbany, Lluís; Gall, Christa; Gal-Yam, Avishay; Gutiérrez, Claudia P.; Hamanowicz, Aleksandra; Heinze, Ari; Inserra, Cosimo; Kangas, Tuomas; Mazzali, Paolo; Melandri, Andrea; Pignata, Giuliano; Rest, Armin; Reynolds, Thomas; Roy, Rupak; Smartt, Stephen J.; Smith, Ken W.; Sollerman, Jesper; Somero, Auni; Stalder, Brian; Stritzinger, Maximilian; Taddia, Francesco; Tomasella, Lina; Tonry, John; Weiland, Henry; Young, David R.

    2018-02-01

    SN 2017dio shows both spectral characteristics of a type-Ic supernova (SN) and signs of a hydrogen-rich circumstellar medium (CSM). Prominent, narrow emission lines of H and He are superposed on the continuum. Subsequent evolution revealed that the SN ejecta are interacting with the CSM. The initial SN Ic identification was confirmed by removing the CSM interaction component from the spectrum and comparing with known SNe Ic and, reversely, adding a CSM interaction component to the spectra of known SNe Ic and comparing them to SN 2017dio. Excellent agreement was obtained with both procedures, reinforcing the SN Ic classification. The light curve constrains the pre-interaction SN Ic peak absolute magnitude to be around {M}g=-17.6 mag. No evidence of significant extinction is found, ruling out a brighter luminosity required by an SN Ia classification. These pieces of evidence support the view that SN 2017dio is an SN Ic, and therefore the first firm case of an SN Ic with signatures of hydrogen-rich CSM in the early spectrum. The CSM is unlikely to have been shaped by steady-state stellar winds. The mass loss of the progenitor star must have been intense, \\dot{M}∼ 0.02{({ε }{{H}α }/0.01)}-1 ({v}{wind}/500 km s‑1) ({v}{shock}/10,000 km s‑1)‑3 M ⊙ yr‑1, peaking at a few decades before the SN. Such a high mass-loss rate might have been experienced by the progenitor through eruptions or binary stripping. Based on observations made with the NOT, operated by the Nordic Optical Telescope Scientific Association at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofisica de Canarias. This work is based (in part) on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile as part of PESSTO, (the Public ESO Spectroscopic Survey for Transient Objects Survey) ESO program 188.D-3003, 191.D-0935, 197.D-1075. Based on observations made with the Liverpool Telescope operated on the

  18. Self-powered integrated systems-on-chip (energy chip)

    NASA Astrophysics Data System (ADS)

    Hussain, M. M.; Fahad, H.; Rojas, J.; Hasan, M.; Talukdar, A.; Oommen, J.; Mink, J.

    2010-04-01

    In today's world, consumer driven technology wants more portable electronic gadgets to be developed, and the next big thing in line is self-powered handheld devices. Therefore to reduce the power consumption as well as to supply sufficient power to run those devices, several critical technical challenges need to be overcome: a. Nanofabrication of macro/micro systems which incorporates the direct benefit of light weight (thus portability), low power consumption, faster response, higher sensitivity and batch production (low cost). b. Integration of advanced nano-materials to meet the performance/cost benefit trend. Nano-materials may offer new functionalities that were previously underutilized in the macro/micro dimension. c. Energy efficiency to reduce power consumption and to supply enough power to meet that low power demand. We present a pragmatic perspective on a self-powered integrated System on Chip (SoC). We envision the integrated device will have two objectives: low power consumption/dissipation and on-chip power generation for implementation into handheld or remote technologies for defense, space, harsh environments and medical applications. This paper provides insight on materials choices, intelligent circuit design, and CMOS compatible integration.

  19. Transcriptional effect of an Aframomum angustifolium seed extract on human cutaneous cells using low-density DNA chips.

    PubMed

    Bonnet-Duquennoy, Mathilde; Dumas, Marc; Debacker, Adeline; Lazou, Kristell; Talbourdet, Sylvie; Franchi, Jocelyne; Heusèle, Catherine; André, Patrice; Schnebert, Sylvianne; Bonté, Frédéric; Kurfürst, Robin

    2007-06-01

    Studying photoexposed and photoprotected skin biopsies from young and aged women, it has been found that a specific zone, composed of the basal layers of the epidermis, the dermal epidermal junction, and the superficial dermis, is major target of aging and reactive oxygen species. We showed that this zone is characterized by significant variations at a transcriptional and/or protein levels. Using low-density DNA chip technology, we evaluated the effect of a natural mixture of Aframomum angustifolium seed extract containing labdane diterpenoids on these aging markers. Expression profiles of normal human fibroblasts (NHF) were studied using a customized cDNA macroarray system containing genes covering dermal structure, inflammatory responses, and oxidative stress defense mechanisms. For normal human keratinocyte (NHK) investigations, we chose OLISA technique, a sensitive and quantitative method developed by BioMérieux specifically designed to investigate cell death, proliferation, epidermal structure, differentiation, and oxidative stress defense response. We observed that this extract strongly modified gene expression profiles of treated NHK, but weakly for NHF. This extract regulated antioxidant defenses, dermal-epidermal junction components, and epidermal renewal-related genes. Using low-density DNA chip technology, we identified new potential actions of A. angustifolium seed extract on skin aging.

  20. Recent Progress in Laboratory Astrophysics and Astrochemistry Achieved with the COSmIC Facility

    NASA Technical Reports Server (NTRS)

    Salama, Farid; Sciamma-O'Brien, Ella; Bejaoui, Salma

    2017-01-01

    We describe the characteristics and the capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to generate, process and analyze interstellar, circumstellar and planetary analogs in the laboratory. COSmIC stands for "Cosmic Simulation Chamber" and is dedicated to the study of neutral and ionized molecules and nanoparticles under the low temperature and high vacuum conditions that are required to simulate various space environments such as diffuse interstellar clouds, circumstellar outflows and planetary atmospheres. COSmIC integrates a variety of state-of-the-art instruments that allow recreating simulated space conditions to generate, process and monitor cosmic analogs in the laboratory. The COSmIC experimental setup is composed of a Pulsed Discharge Nozzle (PDN) expansion, that generates a plasma in the stream of a free supersonic jet expansion, coupled to high-sensitivity, complementary in situ diagnostics: cavity ring down spectroscopy (CRDS) and laser induced fluorescence (LIF) systems for photonic detection, and Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection. Recent results obtained using COSmIC will be highlighted. In particular, the progress that has been achieved in the domain of the diffuse interstellar bands (DIBs) and in monitoring, in the laboratory, the formation of circumstellar dust grains and planetary atmosphere aerosols from their gas-phase molecular precursors. Plans for future laboratory experiments on interstellar and planetary molecules and grains will also be addressed, as well as the implications of the studies underway for astronomical observations and past and future space mission data analysis.

  1. 46 CFR 148.325 - Wood chips; wood pellets; wood pulp pellets.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Wood chips; wood pellets; wood pulp pellets. 148.325... § 148.325 Wood chips; wood pellets; wood pulp pellets. (a) This part applies to wood chips and wood pulp... cargo hold. (b) No person may enter a cargo hold containing wood chips, wood pellets, or wood pulp...

  2. 46 CFR 148.325 - Wood chips; wood pellets; wood pulp pellets.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Wood chips; wood pellets; wood pulp pellets. 148.325... § 148.325 Wood chips; wood pellets; wood pulp pellets. (a) This part applies to wood chips and wood pulp... cargo hold. (b) No person may enter a cargo hold containing wood chips, wood pellets, or wood pulp...

  3. 46 CFR 148.325 - Wood chips; wood pellets; wood pulp pellets.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Wood chips; wood pellets; wood pulp pellets. 148.325... § 148.325 Wood chips; wood pellets; wood pulp pellets. (a) This part applies to wood chips and wood pulp... cargo hold. (b) No person may enter a cargo hold containing wood chips, wood pellets, or wood pulp...

  4. 46 CFR 148.325 - Wood chips; wood pellets; wood pulp pellets.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Wood chips; wood pellets; wood pulp pellets. 148.325... § 148.325 Wood chips; wood pellets; wood pulp pellets. (a) This part applies to wood chips and wood pulp... cargo hold. (b) No person may enter a cargo hold containing wood chips, wood pellets, or wood pulp...

  5. High ESD Breakdown-Voltage InP HBT Transimpedance Amplifier IC for Optical Video Distribution Systems

    NASA Astrophysics Data System (ADS)

    Sano, Kimikazu; Nagatani, Munehiko; Mutoh, Miwa; Murata, Koichi

    This paper is a report on a high ESD breakdown-voltage InP HBT transimpedance amplifier IC for optical video distribution systems. To make ESD breakdown-voltage higher, we designed ESD protection circuits integrated in the TIA IC using base-collector/base-emitter diodes of InP HBTs and resistors. These components for ESD protection circuits have already existed in the employed InP HBT IC process, so no process modifications were needed. Furthermore, to meet requirements for use in optical video distribution systems, we studied circuit design techniques to obtain a good input-output linearity and a low-noise characteristic. Fabricated InP HBT TIA IC exhibited high human-body-model ESD breakdown voltages (±1000V for power supply terminals, ±200V for high-speed input/output terminals), good input-output linearity (less than 2.9-% duty-cycle-distortion), and low noise characteristic (10.7pA/√Hz averaged input-referred noise current density) with a -3-dB-down higher frequency of 6.9GHz. To the best of our knowledge, this paper is the first literature describing InP ICs with high ESD-breakdown voltages.

  6. The Ubiquitin Ligase CHIP Prevents SirT6 Degradation through Noncanonical Ubiquitination

    PubMed Central

    Ronnebaum, Sarah M.; Wu, Yaxu; McDonough, Holly

    2013-01-01

    The ubiquitin ligase CHIP (carboxyl terminus of Hsp70-interacting protein) regulates protein quality control, and CHIP deletion accelerates aging and reduces the life span in mice. Here, we reveal a mechanism for CHIP's influence on longevity by demonstrating that CHIP stabilizes the sirtuin family member SirT6, a lysine deacetylase/ADP ribosylase involved in DNA repair, metabolism, and longevity. In CHIP-deficient cells, SirT6 protein half-life is substantially reduced due to increased proteasome-mediated degradation, but CHIP overexpression in these cells increases SirT6 protein expression without affecting SirT6 transcription. CHIP noncanonically ubiquitinates SirT6 at K170, which stabilizes SirT6 and prevents SirT6 canonical ubiquitination by other ubiquitin ligases. In CHIP-depleted cells, SirT6 K170 mutation increases SirT6 half-life and prevents proteasome-mediated degradation. The global decrease in SirT6 expression in the absence of CHIP is associated with decreased SirT6 promoter occupancy, which increases histone acetylation and promotes downstream gene transcription in CHIP-depleted cells. Cells lacking CHIP are hypersensitive to DNA-damaging agents, but DNA repair and cell viability are rescued by enforced expression of SirT6. The discovery of this CHIP-SirT6 interaction represents a novel protein-stabilizing mechanism and defines an intersection between protein quality control and epigenetic regulation to influence pathways that regulate the biology of aging. PMID:24043303

  7. Revealing the nebular properties and Wolf-Rayet population of IC10 with Gemini/GMOS

    NASA Astrophysics Data System (ADS)

    Tehrani, Katie; Crowther, Paul A.; Archer, I.

    2017-12-01

    We present a deep imaging and spectroscopic survey of the Local Group irregular galaxy IC10 using Gemini North and GMOS to unveil its global Wolf-Rayet (WR) population. We obtain a star formation rate (SFR) of 0.045 ± 0.023 M⊙ yr-1, for IC10 from the nebular H α luminosity, which is comparable to the Small Magellanic Cloud. We also present a revised nebular oxygen abundance of log(O/H) + 12 = 8.40 ± 0.04, comparable to the LMC. It has previously been suggested that for IC10 to follow the WR subtype-metallicity dependance seen in other Local Group galaxies, a large WN population awaits discovery. Our search revealed three new WN stars, and six candidates awaiting confirmation, providing little evidence to support this claim. The new global WR star total of 29 stars is consistent with the Large Magellanic Cloud population when scaled to the reduced SFR of IC10. For spectroscopically confirmed WR stars, the WC/WN ratio is lowered to 1.0; however, including all potential candidates, and assuming those unconfirmed to be WN stars, would reduce the ratio to ∼0.7. We attribute the high WC/WN ratio to the high star formation surface density of IC10 relative to the Magellanic Clouds, which enhances the frequency of high-mass stars capable of producing WC stars.

  8. Time of flight system on a chip

    NASA Technical Reports Server (NTRS)

    Paschalidis, Nicholas P. (Inventor)

    2006-01-01

    A CMOS time-of-flight TOF system-on-a-chip SoC for precise time interval measurement with low power consumption and high counting rate has been developed. The analog and digital TOF chip may include two Constant Fraction Discriminators CFDs and a Time-to-Digital Converter TDC. The CFDs can interface to start and stop anodes through two preamplifiers and perform signal processing for time walk compensation (110). The TDC digitizes the time difference with reference to an off-chip precise external clock (114). One TOF output is an 11-bit digital word and a valid event trigger output indicating a valid event on the 11-bit output bus (116).

  9. 275 C Downhole Microcomputer System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chris Hutchens; Hooi Miin Soo

    2008-08-31

    An HC11 controller IC and along with serial SRAM and ROM support ICs chip set were developed to support a data acquisition and control for extreme temperature/harsh environment conditions greater than 275 C. The 68HC11 microprocessor is widely used in well logging tools for control, data acquisition, and signal processing applications and was the logical choice for a downhole controller. This extreme temperature version of the 68HC11 enables new high temperature designs and additionally allows 68HC11-based well logging tools and MWD tools to be upgraded for high temperature operation in deep gas reservoirs, The microcomputer chip consists of the microprocessormore » ALU, a small boot ROM, 4 kbyte data RAM, counter/timer unit, serial peripheral interface (SPI), asynchronous serial interface (SCI), and the A, B, C, and D parallel ports. The chip is code compatible with the single chip mode commercial 68HC11 except for the absence of the analog to digital converter system. To avoid mask programmed internal ROM, a boot program is used to load the microcomputer program from an external mask SPI ROM. A SPI RAM IC completes the chip set and allows data RAM to be added in 4 kbyte increments. The HC11 controller IC chip set is implemented in the Peregrine Semiconductor 0.5 micron Silicon-on-Sapphire (SOS) process using a custom high temperature cell library developed at Oklahoma State University. Yield data is presented for all, the HC11, SPI-RAM and ROM. The lessons learned in this project were extended to the successful development of two high temperature versions of the LEON3 and a companion 8 Kbyte SRAM, a 200 C version for the Navy and a 275 C version for the gas industry.« less

  10. Controlling the type and the form of chip when machining steel

    NASA Astrophysics Data System (ADS)

    Gruby, S. V.; Lasukov, A. A.; Nekrasov, R. Yu; Politsinsky, E. V.; Arkhipova, D. A.

    2016-08-01

    The type of the chip produced in the process of machining influences many factors of production process. Controlling the type of chip when cutting metals is important for producing swarf chips and for easing its utilization as well as for protecting the machined surface, cutting tool and the worker. In the given work we provide the experimental data on machining structural steel with implanted tool. The authors show that it is possible to control the chip formation process to produce the required type of chip by selecting the material for machining the tool surface.

  11. Prototype detection unit for the CHIPS experiment

    NASA Astrophysics Data System (ADS)

    Pfützner, Maciej M.

    2017-09-01

    CHIPS (CHerenkov detectors In mine PitS) is an R&D project aiming to develop novel cost-effective neutrino detectors, focused on measuring the CP-violating neutrino mixing phase (δ CP). A single detector module, containing an enclosed volume of purified water, would be submerged in an existing lake, located in a neutrino beam. A staged approach is proposed with first detectors deployed in a flooded mine pit in Northern Minnesota, 7 mrad off-axis from the existing NuMI beam. A small proof-of-principle model (CHIPS-M) has already been tested and the first stage of a fully functional 10 kt module (CHIPS-10) is planned for 2018. One of the instruments submerged on board of CHIPS-M in autumn 2015 was a prototype detection unit, constructed at Nikhef. The unit contains hardware borrowed from the KM3NeT experiment, including 16 3 inch photomultiplier tubes and readout electronics. In addition to testing the mechanical design and data acquisition, the detector was used to record a large sample of cosmic ray muon events. The collected data is valuable for characterising the cosmic muon background and validating a Monte Carlo simulation used to optimise future designs. This paper introduces the CHIPS project, describes the design of the prototype unit, and presents the results of a preliminary data analysis.

  12. Compression Debarked Chips from a Whole-Tree Chipper

    Treesearch

    Rodger A. Arola

    1973-01-01

    Discusses case study results of debarking whole-tree aspen and red oak chips produced with a whole-tree chipper. The results indicate promise for successful bark removal after chipping and strengthen the argument for continued research.

  13. Fabrication and characterization of SPR chips with the modified bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Chen, Xing; Zhang, Lu-lu; Cui, Da-fu

    2016-03-01

    A facile surface plasmon resonance (SPR) chip is developed for small molecule determination and analysis. The SPR chip was prepared based on a self assembling principle, in which the modified bovine serum albumin (BSA) was directly self-assembled onto the bare gold surface. The surface morphology of the chip with the modified BSA was investigated by atomic force microscopy (AFM) and its optical properties were characterized. The surface binding capacity of the bare facile SPR chip with a uniform morphology is 8 times of that of the bare control SPR chip. Based on the experiments of immune reaction between cortisol antibody and cortisol derivative, the sensitivity of the facile SPR chip with the modified BSA is much higher than that of the control SPR chip with the un-modified BSA. The facile SPR chip has been successfully used to detect small molecules. The lowest detection limit is 5 ng/mL with a linear range of 5—100 ng/mL for cortisol analysis. The novel facile SPR chip can also be applied to detect other small molecules.

  14. A Novel Chip for Cyclic Stretch and Intermittent Hypoxia Cell Exposures Mimicking Obstructive Sleep Apnea.

    PubMed

    Campillo, Noelia; Jorba, Ignasi; Schaedel, Laura; Casals, Blai; Gozal, David; Farré, Ramon; Almendros, Isaac; Navajas, Daniel

    2016-01-01

    Intermittent hypoxia (IH), a hallmark of obstructive sleep apnea (OSA), plays a critical role in the pathogenesis of OSA-associated morbidities, especially in the cardiovascular and respiratory systems. Oxidative stress and inflammation induced by IH are suggested as main contributors of end-organ dysfunction in OSA patients and animal models. Since the molecular mechanisms underlying these in vivo pathological responses remain poorly understood, implementation of experimental in vitro cell-based systems capable of inducing high-frequency IH would be highly desirable. Here, we describe the design, fabrication, and validation of a versatile chip for subjecting cultured cells to fast changes in gas partial pressure and to cyclic stretch. The chip is fabricated with polydimethylsiloxane (PDMS) and consists of a cylindrical well-covered by a thin membrane. Cells cultured on top of the membrane can be subjected to fast changes in oxygen concentration (equilibrium time ~6 s). Moreover, cells can be subjected to cyclic stretch at cardiac or respiratory frequencies independently or simultaneously. Rat bone marrow-derived mesenchymal stem cells (MSCs) exposed to IH mimicking OSA and cyclic stretch at cardiac frequencies revealed that hypoxia-inducible factor 1α (HIF-1α) expression was increased in response to both stimuli. Thus, the chip provides a versatile tool for the study of cellular responses to cyclical hypoxia and stretch.

  15. Chipping of thinning slash on fuel-breaks

    Treesearch

    Harry E. Schimke

    1965-01-01

    A heavy stand of conifer saplings and poles on the Stanislaus National Forest was thinned, piled, and chipped. The study sought to determine the amount of material removed and the cost of chipping. Slash disposal costs were $9.66 per ton for dry material, and $11.81 per ton for green slash.

  16. Detection of kanamycin and gentamicin residues in animal-derived food using IgY antibody based ic-ELISA and FPIA.

    PubMed

    Li, Cui; Zhang, Yaoyao; Eremin, Sergei A; Yakup, Omar; Yao, Gang; Zhang, Xiaoying

    2017-07-15

    Our aim in this study is to show that IgY antibody based immunoassays could be used to detect antibiotic residues in animal-derived food. Briefly, full antigens of gentamicin (Gent) and kanamycin (Kana) were used to immunize the laying chickens to prepare IgY antibodies. Then, these antibodies were evaluated by FPIA and ic-ELISA to detect Gent/Kana in animal-derived samples. The IC 50 of FPIA and ic-ELISA based anti-Gent IgY were 7.70±0.6μg/mL and 0.32±0.06μg/mL, respectively. The IC 50 of FPIA and ic-ELISA based anti-Kana IgY were 7.97±0.9μg/mL and 0.15±0.01μg/mL. The limits of detection (LOD, IC 10 ) for FPIA based anti-Gent/Kana IgY were 0.17 and 0.007μg/mL, respectively. The LOD for ic-ELISA were both 0.001μg/mL. These results indicated that the ic-ELISA might more suitable for antibiotic residues detection than FPIA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Kansas Department of Transportation 2014 chip seal manual.

    DOT National Transportation Integrated Search

    2014-03-01

    A chip seal is a very effective thin surface treatment process used by maintenance managers to : preserve existing asphalt pavements. The Kansas Department of Transportation (KDOT) 2014 Chip Seal : Manual is a guide that provides guidelines, backgrou...

  18. Modernizing the MagIC Paleomagnetic and Rock Magnetic Database Technology Stack to Encourage Code Reuse and Reproducible Science

    NASA Astrophysics Data System (ADS)

    Minnett, R.; Koppers, A. A. P.; Jarboe, N.; Jonestrask, L.; Tauxe, L.; Constable, C.

    2016-12-01

    The Magnetics Information Consortium (https://earthref.org/MagIC/) develops and maintains a database and web application for supporting the paleo-, geo-, and rock magnetic scientific community. Historically, this objective has been met with an Oracle database and a Perl web application at the San Diego Supercomputer Center (SDSC). The Oracle Enterprise Cluster at SDSC, however, was decommissioned in July of 2016 and the cost for MagIC to continue using Oracle became prohibitive. This provided MagIC with a unique opportunity to reexamine the entire technology stack and data model. MagIC has developed an open-source web application using the Meteor (http://meteor.com) framework and a MongoDB database. The simplicity of the open-source full-stack framework that Meteor provides has improved MagIC's development pace and the increased flexibility of the data schema in MongoDB encouraged the reorganization of the MagIC Data Model. As a result of incorporating actively developed open-source projects into the technology stack, MagIC has benefited from their vibrant software development communities. This has translated into a more modern web application that has significantly improved the user experience for the paleo-, geo-, and rock magnetic scientific community.

  19. 42 CFR 457.340 - Application for and enrollment in CHIP.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 4 2014-10-01 2014-10-01 false Application for and enrollment in CHIP. 457.340... and enrollment in CHIP. (a) Application and renewal assistance, availability of program information...) of this chapter apply equally to the State in administering a separate CHIP. (b) Use of Social...

  20. 42 CFR 457.340 - Application for and enrollment in CHIP.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 4 2013-10-01 2013-10-01 false Application for and enrollment in CHIP. 457.340... and enrollment in CHIP. (a) Application and renewal assistance, availability of program information... apply equally to the State in administering a separate CHIP. (b) Use of Social Security number. The...

  1. Flip-chip assembly and reliability using gold/tin solder bumps

    NASA Astrophysics Data System (ADS)

    Oppermann, Hermann; Hutter, Matthias; Klein, Matthias; Reichl, Herbert

    2004-09-01

    Au/Sn solder bumps are commonly used for flip chip assembly of optoelectronic and RF devices. They allow a fluxless assembly which is required to avoid contamination at optical interfaces. Flip chip assembly experiments were carried out using as plated Au/Sn bumps without prior bump reflow. An RF and reliability test vehicles comprise a GaAs chip which was flip chip soldered on a silicon substrate. Temperature cycling tests with and without underfiller were performed and the results are presented. The different failure modes for underfilled and non-underfilled samples were discussed and compared. Additional reliability tests were performed with flip chip bonding by gold thermocompression for comparison. The test results and the failure modes are discussed in detail.

  2. CHIP Regulates Osteoclast Formation through Promoting TRAF6 Protein Degradation

    PubMed Central

    Li, Shan; Shu, Bing; Zhang, Yanquan; Li, Jia; Guo, Junwei; Wang, Yinyin; Ren, Fangli; Xiao, Guozhi; Chang, Zhijie; Chen, Di

    2014-01-01

    Objective Carboxyl terminus of Hsp70-interacting protein (CHIP or STUB1) is an E3 ligase and regulates the stability of several proteins which are involved in tumor growth and metastasis. However, the role of CHIP in bone growth and bone remodeling in vivo has not been reported. The objective of this study is to investigate the role and mechanism of CHIP in regulation of bone mass and bone remodeling. Methods The bone phenotype of Chip−/− mice was examined by histology, histomorphometry and micro-CT analyses. The regulatory mechanism of CHIP on the degradation of TRAF6 and the inhibition of NF-κB signaling was examined by immunoprecipitation (IP), western blotting and luciferase reporter assays. Results In this study, we found that deletion of the Chip gene leads to osteopenic phenotype and increased osteoclast formation. We further found that TRAF6, as a novel substrate of CHIP, is up-regulated in Chip−/− osteoclasts. TRAF6 is critical for RANKL-induced osteoclastogenesis. TRAF6 is an adaptor protein which functions as an E3 ligase to regulate the activation of TAK1 and the I-κB kinase (IKK) and is a key regulator of NF-κB signaling. CHIP interacts with TRAF6 to promote TRAF6 ubiquitination and proteasome degradation. CHIP inhibits p65 nuclear translocation, leading to the repression of the TRAF6-mediated NF-κB transcription. Conclusion CHIP inhibits NF-κB signaling via promoting TRAF6 degradation and plays an important role in osteoclastogenesis and bone remodeling, suggesting that it may be a novel therapeutic target for the treatment of bone loss associated diseases. PMID:24578159

  3. Intraluminal Administration of Poly I:C Causes an Enteropathy That Is Exacerbated by Administration of Oral Dietary Antigen

    PubMed Central

    Araya, Romina E.; Jury, Jennifer; Bondar, Constanza

    2014-01-01

    Systemic administration of polyinosinic:polycytidylic acid (poly I:C), mimics virally-induced activation of TLR3 signalling causing acute small intestine damage, but whether and how mucosal administration of poly I:C causes enteropathy is less clear. Our aim was to investigate the inflammatory pathways elicited after intraluminal administration of poly I:C and determine acute and delayed consequences of this locally induced immune activation. Intraluminal poly I:C induced rapid mucosal immune activation in C57BL/6 mice involving IFNβ and the CXCL10/CXCR3 axis, that may drive inflammation towards a Th1 profile. Intraluminal poly I:C also caused enteropathy and gut dysfunction in gliadin-sensitive NOD-DQ8 mice, and this was prolonged by concomitant oral administration of gliadin. Our results indicate that small intestine pathology can be induced in mice by intraluminal administration of poly I:C and that this is exacerbated by subsequent oral delivery of a relevant dietary antigen. PMID:24915573

  4. Intraluminal administration of poly I:C causes an enteropathy that is exacerbated by administration of oral dietary antigen.

    PubMed

    Araya, Romina E; Jury, Jennifer; Bondar, Constanza; Verdu, Elena F; Chirdo, Fernando G

    2014-01-01

    Systemic administration of polyinosinic:polycytidylic acid (poly I:C), mimics virally-induced activation of TLR3 signalling causing acute small intestine damage, but whether and how mucosal administration of poly I:C causes enteropathy is less clear. Our aim was to investigate the inflammatory pathways elicited after intraluminal administration of poly I:C and determine acute and delayed consequences of this locally induced immune activation. Intraluminal poly I:C induced rapid mucosal immune activation in C57BL/6 mice involving IFNβ and the CXCL10/CXCR3 axis, that may drive inflammation towards a Th1 profile. Intraluminal poly I:C also caused enteropathy and gut dysfunction in gliadin-sensitive NOD-DQ8 mice, and this was prolonged by concomitant oral administration of gliadin. Our results indicate that small intestine pathology can be induced in mice by intraluminal administration of poly I:C and that this is exacerbated by subsequent oral delivery of a relevant dietary antigen.

  5. Modeling and stress analysis of large format InSb focal plane arrays detector under thermal shock

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Wen; Meng, Qing-Duan; Zhang, Xiao-Ling; Yu, Qian; Lv, Yan-Qiu; Si, Jun-Jie

    2013-09-01

    Higher fracture probability, appearing in large format InSb infrared focal plane arrays detector under thermal shock loadings, limits its applicability and suitability for large format equipment, and has been an urgent problem to be solved. In order to understand the fracture mechanism and improve the reliability, three dimensional modeling and stress analysis of large format InSb detector is necessary. However, there are few reports on three dimensional modeling and simulation of large format InSb detector, due to huge meshing numbers and time-consuming operation to solve. To solve the problems, basing on the thermal mismatch displacement formula, an equivalent modeling method is proposed in this paper. With the proposed equivalent modeling method, employing the ANSYS software, three dimensional large format InSb detector is modeled, and the maximum Von Mises stress appearing in InSb chip dependent on array format is researched. According to the maximum Von Mises stress location shift and stress increasing tendency, the adaptability range of the proposed equivalent method is also derived, that is, for 16 × 16, 32 × 32 and 64 × 64 format, its adaptability ranges are not larger than 64 × 64, 256 × 256 and 1024 × 1024 format, respectively. Taking 1024 × 1024 InSb detector as an example, the Von Mises stress distribution appearing in InSb chip, Si readout integrated circuits and indium bump arrays are described, and the causes are discussed in detail. All these will provide a feasible research plan to identify the fracture origins of InSb chip and reduce fracture probability for large format InSb detector.

  6. CHIP involves in non-small cell lung cancer prognosis through VEGF pathway.

    PubMed

    Tingting, Qian; Jiao, Wang; Qingfeng, Wang; Yancheng, Liu; Shijun, Y U; Zhaoqi, Wang; Dongmei, Sun; ShiLong, Wang

    2016-10-01

    CHIP (c-terminal Hsp70-interacting protein) is an E3 ligase playing vital roles in various cancers. The VEGF pathway has become an important therapeutic target in non-small cell lung cancer (NSCLC). However, little is known about the role of CHIP and the relationship between CHIP and VEGF-VEGFR2 (VEGF receptor 2) pathway in NSCLC. In this study we aimed to investigate the clinical function of CHIP in NSCLC and explore the relevant regulatory mechanism. QRT-PCR was performed to detect CHIP expression in NSCLC tissues. The association of CHIP expression and clinical parameters was analyzed using the Chi-square test. Kaplan- Meier and Cox analyses were performed to identify the role of CHIP in the prognosis of NSCLC patients. ELISA test was used to detect the VEGF secretion of NSCLC cells and western blot were used to detected the protein expression of VEGFR2 in NSCLC cells. and the results revealed that CHIP expression was decreased in NSCLC tissues and significantly correlated with clinical stages, lymph node metastasis and distant metastasis (P<0.05). Moreover, Kaplan-Meier and Cox regression analyses showed that patients with negative expression of CHIP had a shorter survival time and CHIP could be an independent prognostic biomarker. In addition, ELISA tests showed that CHIP negatively regulated the secretion level of VEGF. Furthermore, western blot assay indicated that the VEGFR2 protein level was reduced after CHIP over-expression. Taken together, our findings demonstrate for the first time that CHIP may serve as a promising prognostic biomarker for NSCLC patients and it may be involved in NSCLC angiogenesis through regulating VEGF secretion and expression of VEGFR2. Copyright © 2016. Published by Elsevier Masson SAS.

  7. Energy Harvesting Chip and the Chip Based Power Supply Development for a Wireless Sensor Network.

    PubMed

    Lee, Dasheng

    2008-12-02

    In this study, an energy harvesting chip was developed to scavenge energy from artificial light to charge a wireless sensor node. The chip core is a miniature transformer with a nano-ferrofluid magnetic core. The chip embedded transformer can convert harvested energy from its solar cell to variable voltage output for driving multiple loads. This chip system yields a simple, small, and more importantly, a battery-less power supply solution. The sensor node is equipped with multiple sensors that can be enabled by the energy harvesting power supply to collect information about the human body comfort degree. Compared with lab instruments, the nodes with temperature, humidity and photosensors driven by harvested energy had variation coefficient measurement precision of less than 6% deviation under low environmental light of 240 lux. The thermal comfort was affected by the air speed. A flow sensor equipped on the sensor node was used to detect airflow speed. Due to its high power consumption, this sensor node provided 15% less accuracy than the instruments, but it still can meet the requirement of analysis for predicted mean votes (PMV) measurement. The energy harvesting wireless sensor network (WSN) was deployed in a 24-hour convenience store to detect thermal comfort degree from the air conditioning control. During one year operation, the sensor network powered by the energy harvesting chip retained normal functions to collect the PMV index of the store. According to the one month statistics of communication status, the packet loss rate (PLR) is 2.3%, which is as good as the presented results of those WSNs powered by battery. Referring to the electric power records, almost 54% energy can be saved by the feedback control of an energy harvesting sensor network. These results illustrate that, scavenging energy not only creates a reliable power source for electronic devices, such as wireless sensor nodes, but can also be an energy source by building an energy efficient

  8. Energy Harvesting Chip and the Chip Based Power Supply Development for a Wireless Sensor Network

    PubMed Central

    Lee, Dasheng

    2008-01-01

    In this study, an energy harvesting chip was developed to scavenge energy from artificial light to charge a wireless sensor node. The chip core is a miniature transformer with a nano-ferrofluid magnetic core. The chip embedded transformer can convert harvested energy from its solar cell to variable voltage output for driving multiple loads. This chip system yields a simple, small, and more importantly, a battery-less power supply solution. The sensor node is equipped with multiple sensors that can be enabled by the energy harvesting power supply to collect information about the human body comfort degree. Compared with lab instruments, the nodes with temperature, humidity and photosensors driven by harvested energy had variation coefficient measurement precision of less than 6% deviation under low environmental light of 240 lux. The thermal comfort was affected by the air speed. A flow sensor equipped on the sensor node was used to detect airflow speed. Due to its high power consumption, this sensor node provided 15% less accuracy than the instruments, but it still can meet the requirement of analysis for predicted mean votes (PMV) measurement. The energy harvesting wireless sensor network (WSN) was deployed in a 24-hour convenience store to detect thermal comfort degree from the air conditioning control. During one year operation, the sensor network powered by the energy harvesting chip retained normal functions to collect the PMV index of the store. According to the one month statistics of communication status, the packet loss rate (PLR) is 2.3%, which is as good as the presented results of those WSNs powered by battery. Referring to the electric power records, almost 54% energy can be saved by the feedback control of an energy harvesting sensor network. These results illustrate that, scavenging energy not only creates a reliable power source for electronic devices, such as wireless sensor nodes, but can also be an energy source by building an energy efficient

  9. Asphalt cement chip seals in Oregon : construction report

    DOT National Transportation Integrated Search

    2000-06-01

    Most chip seals in Oregon have been constructed using an emulsified asphalt binder. However, chip seals using an asphalt cement (hot oil) binder have been tried in limited situations in Oregon. This report includes a literature review and summarizes ...

  10. Robust and Complex on-Chip Nanophotonics

    DTIC Science & Technology

    2015-04-17

    organization, e.g. BRL-1234; AFWL-TR-85-4017-Vol-21- PT -2. 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES). Enter the name and address of the...metallic on-chip nanophotonic structures, leading to novel devices in ultra-compact wavelength splitters, and nano- lasers and modulators with very low...between optical fiber and on-chip waveguide based on a novel transformation-optics approach. Finally, in Thrust 3, the team has made substantial

  11. Toasted vine-shoot chips as enological additive.

    PubMed

    Cebrián-Tarancón, Cristina; Sánchez-Gómez, Rosario; Salinas, M Rosario; Alonso, Gonzalo L; Oliva, José; Zalacain, Amaya

    2018-10-15

    Different ways of vine-shoots revalorization have been proposed, but not in wine yet, as for example in the same way as oak chips are being used. In this work, vine-shoot samples were submitted to a thermogravimetric analysis to establish the temperature range for its lignin structure decomposition, resulting between 160 and 180 °C. Then, vine-shoot chips from Airén and Cencibel cultivars, with a particle size around 2.5-3.5 cm, were submitted to six toasting conditions: 160 °C and 180 °C for 45, 60 and 75 min. Their volatile composition was very similar to oak chips, being vanillin the most important compound. Moreover, such vine-shoots have an interesting content of prodelphinidins that together with the stilbenes may contribute to wine antioxidant activity. The toasting conditions at 180 °C/45 min were the most suitable one for releasing the mentioned valuable compounds in order to propose vine-shoots as new enological additive similar to oak chips. Copyright © 2018. Published by Elsevier Ltd.

  12. Improved color metrics in solid-state lighting via utilization of on-chip quantum dots

    NASA Astrophysics Data System (ADS)

    Mangum, Benjamin D.; Landes, Tiemo S.; Theobald, Brian R.; Kurtin, Juanita N.

    2017-02-01

    While Quantum Dots (QDs) have found commercial success in display applications, there are currently no widely available solid state lighting products making use of QD nanotechnology. In order to have real-world success in today's lighting market, QDs must be capable of being placed in on-chip configurations, as remote phosphor configurations are typically much more expensive. Here we demonstrate solid-state lighting devices made with on-chip QDs. These devices show robust reliability under both dry and wet high stress conditions. High color quality lighting metrics can easily be achieved using these narrow, tunable QD downconverters: CRI values of Ra > 90 as well as R9 values > 80 are readily available when combining QDs with green phosphors. Furthermore, we show that QDs afford a 15% increase in overall efficiency compared to traditional phosphor downconverted SSL devices. The fundamental limit of QD linewidth is examined through single particle QD emission studies. Using standard Cd-based QD synthesis, it is found that single particle linewidths of 20 nm FWHM represent a lower limit to the narrowness of QD emission in the near term.

  13. The GenoChip: A New Tool for Genetic Anthropology

    PubMed Central

    Elhaik, Eran; Greenspan, Elliott; Staats, Sean; Krahn, Thomas; Tyler-Smith, Chris; Xue, Yali; Tofanelli, Sergio; Francalacci, Paolo; Cucca, Francesco; Pagani, Luca; Jin, Li; Li, Hui; Schurr, Theodore G.; Greenspan, Bennett; Spencer Wells, R.

    2013-01-01

    The Genographic Project is an international effort aimed at charting human migratory history. The project is nonprofit and nonmedical, and, through its Legacy Fund, supports locally led efforts to preserve indigenous and traditional cultures. Although the first phase of the project was focused on uniparentally inherited markers on the Y-chromosome and mitochondrial DNA (mtDNA), the current phase focuses on markers from across the entire genome to obtain a more complete understanding of human genetic variation. Although many commercial arrays exist for genome-wide single-nucleotide polymorphism (SNP) genotyping, they were designed for medical genetic studies and contain medically related markers that are inappropriate for global population genetic studies. GenoChip, the Genographic Project’s new genotyping array, was designed to resolve these issues and enable higher resolution research into outstanding questions in genetic anthropology. The GenoChip includes ancestry informative markers obtained for over 450 human populations, an ancient human (Saqqaq), and two archaic hominins (Neanderthal and Denisovan) and was designed to identify all known Y-chromosome and mtDNA haplogroups. The chip was carefully vetted to avoid inclusion of medically relevant markers. To demonstrate its capabilities, we compared the FST distributions of GenoChip SNPs to those of two commercial arrays. Although all arrays yielded similarly shaped (inverse J) FST distributions, the GenoChip autosomal and X-chromosomal distributions had the highest mean FST, attesting to its ability to discern subpopulations. The chip performances are illustrated in a principal component analysis for 14 worldwide populations. In summary, the GenoChip is a dedicated genotyping platform for genetic anthropology. With an unprecedented number of approximately 12,000 Y-chromosomal and approximately 3,300 mtDNA SNPs and over 130,000 autosomal and X-chromosomal SNPs without any known health, medical, or phenotypic

  14. The GenoChip: a new tool for genetic anthropology.

    PubMed

    Elhaik, Eran; Greenspan, Elliott; Staats, Sean; Krahn, Thomas; Tyler-Smith, Chris; Xue, Yali; Tofanelli, Sergio; Francalacci, Paolo; Cucca, Francesco; Pagani, Luca; Jin, Li; Li, Hui; Schurr, Theodore G; Greenspan, Bennett; Spencer Wells, R

    2013-01-01

    The Genographic Project is an international effort aimed at charting human migratory history. The project is nonprofit and nonmedical, and, through its Legacy Fund, supports locally led efforts to preserve indigenous and traditional cultures. Although the first phase of the project was focused on uniparentally inherited markers on the Y-chromosome and mitochondrial DNA (mtDNA), the current phase focuses on markers from across the entire genome to obtain a more complete understanding of human genetic variation. Although many commercial arrays exist for genome-wide single-nucleotide polymorphism (SNP) genotyping, they were designed for medical genetic studies and contain medically related markers that are inappropriate for global population genetic studies. GenoChip, the Genographic Project's new genotyping array, was designed to resolve these issues and enable higher resolution research into outstanding questions in genetic anthropology. The GenoChip includes ancestry informative markers obtained for over 450 human populations, an ancient human (Saqqaq), and two archaic hominins (Neanderthal and Denisovan) and was designed to identify all known Y-chromosome and mtDNA haplogroups. The chip was carefully vetted to avoid inclusion of medically relevant markers. To demonstrate its capabilities, we compared the FST distributions of GenoChip SNPs to those of two commercial arrays. Although all arrays yielded similarly shaped (inverse J) FST distributions, the GenoChip autosomal and X-chromosomal distributions had the highest mean FST, attesting to its ability to discern subpopulations. The chip performances are illustrated in a principal component analysis for 14 worldwide populations. In summary, the GenoChip is a dedicated genotyping platform for genetic anthropology. With an unprecedented number of approximately 12,000 Y-chromosomal and approximately 3,300 mtDNA SNPs and over 130,000 autosomal and X-chromosomal SNPs without any known health, medical, or phenotypic

  15. Solving the 56Ni Puzzle of Magnetar-powered Broad-lined Type IC Supernovae

    NASA Astrophysics Data System (ADS)

    Wang, Ling-Jun; Han, Yan-Hui; Xu, Dong; Wang, Shan-Qin; Dai, Zi-Gao; Wu, Xue-Feng; Wei, Jian-Yan

    2016-11-01

    Broad-lined Type Ic supernovae (SNe Ic-BL) are of great importance because their association with long-duration gamma-ray bursts (LGRBs) holds the key to deciphering the central engine of LGRBs, which refrains from being unveiled despite decades of investigation. Among the two popularly hypothesized types of central engine, I.e., black holes and strongly magnetized neutron stars (magnetars), there is mounting evidence that the central engine of GRB-associated SNe (GRB-SNe) is rapidly rotating magnetars. Theoretical analysis also suggests that magnetars could be the central engine of SNe Ic-BL. What puzzled the researchers is the fact that light-curve modeling indicates that as much as 0.2{--}0.5 {M}⊙ of 56Ni was synthesized during the explosion of the SNe Ic-BL, which is unfortunately in direct conflict with current state-of-the-art understanding of magnetar-powered 56Ni synthesis. Here we propose a dynamic model of magnetar-powered SNe to take into account the acceleration of the ejecta by the magnetar, as well as the thermalization of the injected energy. Assuming that the SN kinetic energy comes exclusively from the magnetar acceleration, we find that although a major fraction of the rotational energy of the magnetar is to accelerate the SN ejecta, a tiny fraction of this energy deposited as thermal energy of the ejecta is enough to reduce the needed 56Ni to 0.06 M ⊙ for both SN 1997ef and SN 2007ru. We therefore suggest that magnetars could power SNe Ic-BL in aspects both of energetics and of 56Ni synthesis.

  16. CHIP promotes thyroid cancer proliferation via activation of the MAPK and AKT pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Li; Liu, Lianyong; Department of Endocrinology, Shanghai Punan Hospital, Shanghai 200125

    The carboxyl terminus of Hsp70-interacting protein (CHIP) is a U box-type ubiquitin ligase that plays crucial roles in various biological processes, including tumor progression. To date, the functional mechanism of CHIP in thyroid cancer remains unknown. Here, we obtained evidence of upregulation of CHIP in thyroid cancer tissues and cell lines. CHIP overexpression markedly enhanced thyroid cancer cell viability and colony formation in vitro and accelerated tumor growth in vivo. Conversely, CHIP knockdown impaired cell proliferation and tumor growth. Notably, CHIP promoted cell growth through activation of MAPK and AKT pathways, subsequently decreasing p27 and increasing cyclin D1 and p-FOXO3a expression. Ourmore » findings collectively indicate that CHIP functions as an oncogene in thyroid cancer, and is therefore a potential therapeutic target for this disease. - Highlights: • CHIP is significantly upregulated in thyroid cancer cells. • Overexpression of CHIP facilitates proliferation and tumorigenesis of thyroid cancer cells. • Silencing of CHIP inhibits the proliferation and tumorigenesis of thyroid cancer cells. • CHIP promotes thyroid cancer cell proliferation via activating the MAPK and AKT pathways.« less

  17. Accelerator on a Chip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    England, Joel

    2014-06-30

    SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

  18. Accelerator on a Chip

    ScienceCinema

    England, Joel

    2018-01-16

    SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

  19. Method for forming consumable electrodes from metallic chip scraps

    DOEpatents

    Girshov, Vladimir Leonidovich; Podpalkin, Arcady Munjyvich; Treschevskiy, Arnold Nikolayevich; Abramov, Alexey Alexandrovich

    2005-10-11

    The method relates to metallurgical recycling of waste products, preferably titanium alloys chips scrap. Accordingly after crushing and cleaning, the chip scrap is subjected to vacuum-thermal degassing (VTD); the chip scrap is pressed into briquettes; the briquettes are placed into a mould allowing sufficient remaining space for the addition of molten metal alloy; the mould is pre-heated before filling with the molten metal alloy; the mould remaining space is filled with molten metal alloy. After cooling, the electrode is removed from the mould. The method provides a means for 100% use of chip scrap in producing consumable electrodes having increased mechanical strength and reduced interstitial impurities content leading to improved secondary cast alloys.

  20. Research Results Of Stress-Strain State Of Cutting Tool When Aviation Materials Turning

    NASA Astrophysics Data System (ADS)

    Serebrennikova, A. G.; Nikolaeva, E. P.; Savilov, A. V.; Timofeev, S. A.; Pyatykh, A. S.

    2018-01-01

    Titanium alloys and stainless steels are hard-to-machine of all the machining types. Cutting edge state of turning tool after machining titanium and high-strength aluminium alloys and corrosion-resistant high-alloy steel has been studied. Cutting forces and chip contact arears with the rake surface of cutter has been measured. The relationship of cutting forces and residual stresses are shown. Cutting forces and residual stresses vs value of cutting tool rake angle relation were obtained. Measurements of residual stresses were performed by x-ray diffraction.

  1. EDITORIAL: The Eye and The Chip 2008 The Eye and The Chip 2008

    NASA Astrophysics Data System (ADS)

    Rizzo, Joseph F.; O'Malley, Edward R.; Hessburg, Philip C.

    2009-06-01

    Over the course of the past decade, The Eye and The Chip world congress on visual neuro-prosthetic devices has become a premier meeting for those who believe that 'artificial' vision will one day be used to improve the quality of life of visually impaired patients. Although substantial progress has been made, there are numerous unresolved issues, like the preferred methods for wireless communication, placement of devices, and materials and design among others. The Eye and The Chip meeting of 2008, held in Detroit on 12-14 June 2008, provided important new information about these and other important topics, and thus served to advance this field of scientific research. From a research seedling a decade ago to the crowd of superb presentations in Detroit last June, a very real sense of justifiable optimism has developed. The prospects of artificial vision are no longer remote. Many of the researchers expressed confidence that implantable devices will provide the hoped-for level of vision to justify their widespread use in the future. The often dramatic successes of cochlear implants continues to provide credence that artificial stimulation of nerve tissue is a plausible strategy to restore vision. The Eye and The Chip 2008 attracted researchers from four continents (North America, Europe, Asia and Australia). The meeting also benefited from the attendance and presentations by representatives of the FDA, who have been present for all The Eye and The Chip meetings. The 2008 meeting was also enhanced by the inclusion of a new and related scientific field that shares the goal of restoring vision to the blind—the field of molecular restoration of retinal function by insertion of channelrhodopsin. Just as the field of ophthalmology went from Ridley's primitive intraocular lens replacement to implants useful in virtually every cataract patient in one surgeon's clinical lifetime, the field of retinal prostheses seems to be following a very similar trajectory. Likewise, the

  2. Development of apple chips technology

    NASA Astrophysics Data System (ADS)

    Kowalska, Hanna; Marzec, Agata; Kowalska, Jolanta; Samborska, Kinga; Tywonek, Małgorzata; Lenart, Andrzej

    2018-05-01

    For develop of apple chips technology without chemical preservation osmotic dehydration in cherry or apple juice concentrates or fructooligosaccharide solutions and convection drying were used. Studies included the effect of dehydration on the mass transfer in apples and the quality of the final product. The temperature, type of osmotic solution and its concentration were changeable. The fruit were tested on mass transfer indicators, stability (water activity), texture (breaking test) and nutritional value (polyphenol content, acidity). Sensory evaluation was also performed. On this basis, the verification of all options was made and the most acceptable samples were selected. Concentration of osmotic solutions at 25°Brix limited solids gain in apples. Under these conditions, the phenomenon of osmosis caused 8-10 times greater water loss than solids gain. Increasing the concentration of solutions up to 50°Brix had a significantly greater impact on mass exchange in apples, compared to increasing the temperature from 40 to 60 °C. Osmotic dehydration before drying did not significantly affect the water activity but increase of the temperature negatively affected on breaking force of the chips. Chips obtained by osmotic dehydration of apples in a cherry concentrate solution contained significantly more polyphenols, and were characterized by a higher acidity than the variants obtained by dehydration in concentrated apple juice. Furthermore, they were marked by red color which has been thought as part of the attractiveness of the product. The least sensory acceptable chips were prepared using osmotic pre-treatment in cherry concentrated juice solution with the addition of fructooligosaccharide.

  3. 75 FR 51499 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Digital I&C...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-20

    ... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Digital I&C Systems The ACRS Subcommittee on Digital Instrumentation and Controls (I&C) Systems...: Wednesday, September 8, 2010--8:30 a.m. until 12 p.m. The Subcommittee will review Digital I&C Interim Staff...

  4. Arbitrary photonic wave plate operations on chip: Realizing Hadamard, Pauli-X, and rotation gates for polarisation qubits

    PubMed Central

    Heilmann, René; Gräfe, Markus; Nolte, Stefan; Szameit, Alexander

    2014-01-01

    Chip-based photonic quantum computing is an emerging technology that promises much speedup over conventional computers at small integration volumes. Particular interest is thereby given to polarisation-encoded photonic qubits, and many protocols have been developed for this encoding. However, arbitrary wave plate operation on chip are not available so far, preventing from the implementation of integrated universal quantum computing algorithms. In our work we close this gap and present Hadamard, Pauli-X, and rotation gates of high fidelity for photonic polarisation qubits on chip by employing a reorientation of the optical axis of birefringent waveguides. The optical axis of the birefringent waveguide is rotated due to the impact of an artificial stress field created by an additional modification close to the waveguide. By adjusting this length of the defect along the waveguide, the retardation between ordinary and extraordinary field components is precisely tunable including half-wave plate and quarter-wave plate operations. Our approach demonstrates the full range control of orientation and strength of the induced birefringence and thus allows arbitrary wave plate operations without affecting the degree of polarisation or introducing additional losses to the waveguides. The implemented gates are tested with classical and quantum light. PMID:24534893

  5. [Eosinophilic spongiosis and ICS antibodies in a child with strophulus-like dermatosis].

    PubMed

    Klein, G F; Hintner, H; Fristch, P O

    1984-01-01

    Eosinophilic spongiosis associated with in vivo-bound antibodies to the epidermal intercellular space (ICS) were consistently observed in a recurrent strophulus-like eruption in an 11-year-old boy, thus suggesting pemphigus. The clinical course, however, ruled this diagnosis out since neither acantholysis nor the clinical picture of pemphigus developed in a period of 2.5 years. Since in vivo-bound ICS-antibodies have been described in several case reports of bullous impetigo we speculate that immune reactions to bacterial antigens may be involved in producing eruptions mimicking pemphigus vulgaris.

  6. A 1-1/2-level on-chip-decoding bubble memory chip design

    NASA Technical Reports Server (NTRS)

    Chen, T. T.

    1975-01-01

    Design includes multi-channel replicator which can reduce chip-writing requirement, selective annihilating switch which can effectively annihilate bubbles with minimum delay, and modified transfer switch which can be used as selective steering-type decoder.

  7. Spatially Resolved Spectroscopy of the SNR IC443

    NASA Astrophysics Data System (ADS)

    Gorenstein, P.

    1998-07-01

    IC 443 is a supernova remnant of intermediate age, i.e. a few thousand years. It is especially interesting because part of its periphery is expanding into a molecular cloud while other sections are expanding into a typical interstellar medium of much lower density. Since the evolution of a supernova remnant through its various phases is affected by the density of the medium it expands into with the reasonable assumption that the supernova explosion was approximately symmetric we have an opportunity to observe a single object in two phases simultaneously. It was observed by ASCA in April, 1993 for a short period during the PV phase and more thoroughly in a 42 ksec exposure in March, 1994. The latter measurement provides most of the results that have been reported. Most of the analysis took place after the grant ended but is included here for completeness. The data was sent simultaneously to US and Japanese Pls. We worked independently. The software set of FTOOLs was used to construct images and spectra. They were judged to be rather unintuitive and not at all user friendly. I found I was using one FTOOL to read the header to obtain information that would only be provided to another FTOOL. The Japanese investigators were more successful. They analyzed the data and published results more rapidly. The scientific results summarized below are based primarily on their publications. Since IC 443 is an interesting example of a middle aged SNR in which a variety of processes are occurring it is one of a class. IC 443 exhibits shell-like emission in hard X-rays and extended soft X-rays with thin thermal spectra. It resembles SN 1006 in these respects. IC 443 contains hard X-rays in a semi-circular shell surrounding the thermal component. The total hard X-ray flux in the ASCA FOV is only a half of the Ginga hard component; which suggests that the hard X-rays are not confined only in the shell but some are extended larger than the ASCA FOV of eq 1 degree diameter. Japanese

  8. Spatially Resolved Spectroscopy of the SNR IC443

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.

    1998-01-01

    IC 443 is a supernova remnant of intermediate age, i.e. a few thousand years. It is especially interesting because part of its periphery is expanding into a molecular cloud while other sections are expanding into a typical interstellar medium of much lower density. Since the evolution of a supernova remnant through its various phases is affected by the density of the medium it expands into with the reasonable assumption that the supernova explosion was approximately symmetric we have an opportunity to observe a single object in two phases simultaneously. It was observed by ASCA in April, 1993 for a short period during the PV phase and more thoroughly in a 42 ksec exposure in March, 1994. The latter measurement provides most of the results that have been reported. Most of the analysis took place after the grant ended but is included here for completeness. The data was sent simultaneously to US and Japanese Pls. We worked independently. The software set of FTOOLs was used to construct images and spectra. They were judged to be rather unintuitive and not at all user friendly. I found I was using one FTOOL to read the header to obtain information that would only be provided to another FTOOL. The Japanese investigators were more successful. They analyzed the data and published results more rapidly. The scientific results summarized below are based primarily on their publications. Since IC 443 is an interesting example of a middle aged SNR in which a variety of processes are occurring it is one of a class. IC 443 exhibits shell-like emission in hard X-rays and extended soft X-rays with thin thermal spectra. It resembles SN 1006 in these respects. IC 443 contains hard X-rays in a semi-circular shell surrounding the thermal component. The total hard X-ray flux in the ASCA FOV is only a half of the Ginga hard component; which suggests that the hard X-rays are not confined only in the shell but some are extended larger than the ASCA FOV of eq 1 degree diameter. Japanese

  9. Publications - IC 17 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS IC 17 Publication Details Title: Coal resources of Alaska Authors: Alaska Division of Geological Statewide Bibliographic Reference Alaska Division of Geological & Geophysical Surveys, 1983, Coal Alaska Statewide Maps; Coal; Healy; Resource Assessment; Usibelli Mine Top of Page Department of Natural

  10. 30 CFR 57.22104 - Open flames (I-C mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....22104 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards for Methane in Metal and Nonmetal Mines Fire Prevention and Control § 57.22104 Open flames (I-C...

  11. New Risk Curves for NHTSA's Brain Injury Criterion (BrIC): Derivations and Assessments.

    PubMed

    Laituri, Tony R; Henry, Scott; Pline, Kevin; Li, Guosong; Frankstein, Michael; Weerappuli, Para

    2016-11-01

    The National Highway Traffic Safety Administration (NHTSA) recently published a Request for Comments regarding a potential upgrade to the US New Car Assessment Program (US NCAP) - a star-rating program pertaining to vehicle crashworthiness. Therein, NHTSA (a) cited two metrics for assessing head risk: Head Injury Criterion (HIC15) and Brain Injury Criterion (BrIC), and (b) proposed to conduct risk assessment via its risk curves for those metrics, but did not prescribe a specific method for applying them. Recent studies, however, have indicated that the NHTSA risk curves for BrIC significantly overstate field-based head injury rates. Therefore, in the present three-part study, a new set of BrIC-based risk curves was derived, an overarching head risk equation involving risk curves for both BrIC and HIC15 was assessed, and some additional candidatepredictor- variable assessments were conducted. Part 1 pertained to the derivation. Specifically, data were pooled from various sources: Navy volunteers, amateur boxers, professional football players, simple-fall subjects, and racecar drivers. In total, there were 4,501 cases, with brain injury reported in 63. Injury outcomes were approximated on the Abbreviated Injury Scale (AIS). The statistical analysis was conducted subject to ordinal logistic regression analysis (OLR), such that the various levels of brain injury were cast as a function of BrIC. The resulting risk curves, with Goodman Kruksal Gamma=0.83, were significantly different than those from NHTSA. Part 2 pertained to the assessment relative to field data. Two perspectives were considered: "aggregate" (ΔV=0-56 km/h) and "point" (high-speed, regulatory focus). For the aggregate perspective, the new risk curves for BrIC were applied in field models pertaining to belted, mid-size, adult drivers in 11-1 o'clock, full-engagement frontal crashes in the National Automotive Sampling System (NASS, 1993-2014 calendar years). For the point perspective, BrIC data from tests

  12. Deduction and Analysis of the Interacting Stress Response Pathways of Metal/Radionuclide-reducing Bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Jizhong; He, Zhili

    2010-02-28

    Project Title: Deduction and Analysis of the Interacting Stress Response Pathways of Metal/Radionuclide-reducing Bacteria DOE Grant Number: DE-FG02-06ER64205 Principal Investigator: Jizhong (Joe) Zhou (University of Oklahoma) Key members: Zhili He, Aifen Zhou, Christopher Hemme, Joy Van Nostrand, Ye Deng, and Qichao Tu Collaborators: Terry Hazen, Judy Wall, Adam Arkin, Matthew Fields, Aindrila Mukhopadhyay, and David Stahl Summary Three major objectives have been conducted in the Zhou group at the University of Oklahoma (OU): (i) understanding of gene function, regulation, network and evolution of Desulfovibrio vugaris Hildenborough in response to environmental stresses, (ii) development of metagenomics technologies for microbial community analysis,more » and (iii) functional characterization of microbial communities with metagenomic approaches. In the past a few years, we characterized four CRP/FNR regulators, sequenced ancestor and evolved D. vulgaris strains, and functionally analyzed those mutated genes identified in salt-adapted strains. Also, a new version of GeoChip 4.0 has been developed, which also includes stress response genes (StressChip), and a random matrix theory-based conceptual framework for identifying functional molecular ecological networks has been developed with the high throughput functional gene array hybridization data as well as pyrosequencing data from 16S rRNA genes. In addition, GeoChip and sequencing technologies as well as network analysis approaches have been used to analyze microbial communities from different habitats. Those studies provide a comprehensive understanding of gene function, regulation, network, and evolution in D. vulgaris, and microbial community diversity, composition and structure as well as their linkages with environmental factors and ecosystem functioning, which has resulted in more than 60 publications.« less

  13. Rotational Periods and Starspot Activity of Young Solar-Type Dwarfs in the Open Cluster IC 4665

    NASA Technical Reports Server (NTRS)

    Allain, S.; Bouvier, J.; Prosser, C.; Marschall, L. A.; Laaksonen, B. D.

    1995-01-01

    We present the results of a V-band photometric monitoring survey of 15 late-type dwarfs in the young open cluster IC 4665. Low-amplitude periodic light variations are found for 8 stars and ascribed to the modulation by starspots that cover typically a few percent of the stellar disk. Periods range from 0.6 to 3.7 d, translating to equatorial velocities between 13 and 93 km/s. That no period longer than 4 d was detected suggests a relative paucity of extremely slow rotators (V(sub eq) much less than 10 km/s) among late-type dwarfs in IC 4665. The fractional number of slow rotators in IC 4665 is similar to that of Alpha Per cluster, suggesting that IC 4665 is close in age to Alpha Per (approx. 50 Myr).

  14. Biomimetic approaches for engineered organ chips and skin electronics for in vitro diagnostics

    NASA Astrophysics Data System (ADS)

    Suh, Kahp-Yang; Pang, Changhyun; Jang, Kyung-Jin; Kim, Hong Nam; Jiao, Alex; Hwang, Nathaniel S.; Kim, Min Sung; Kang, Do-Hyun; Kim, Deok-Ho

    2012-10-01

    Two kinds of biomimetic systems including engineered organ chip and flexible electronic sensor are presented. First, in vivo, renal tubular epithelial cells are exposed to luminal fluid shear stress (FSS) and a transepithelial osmotic gradient. In this study, we used a simple collecting-duct-on-a-chip to investigate the role of an altered luminal microenvironment in the translocation of aquaporin-2 (AQP2) and the reorganization of actin cytoskeleton (F-actin) in primary cultured inner medullary collecting duct (IMCD) cells of rat kidney. We demonstrate that several factors (i.e., luminal FSS, hormonal stimulation, transepithelial osmotic gradient) collectively exert a profound effect on the AQP2 trafficking in the collecting ducts, which is associated with actin cytoskeletal reorganization. Furthermore, with this kidney-mimicking chip, renal toxicity of cisplatin was tested under static and fluidic conditions, suggesting the physiological relevancy of fluidic environment compared to static culture. Second, we present a simple architecture for a flexible and highly sensitive strain sensor that enables the detection of pressure, shear and torsion. The device is based on two interlocked arrays of high-aspect-ratio Pt-coated polymeric nanofibres that are supported on thin polydimethylsiloxane layers. When different sensing stimuli are applied, the degree of interconnection and the electrical resistance of the sensor changes in a reversible, directional manner with specific, discernible strain-gauge factors. We show that the sensor can be used to monitor signals ranging from human heartbeats to the impact of a bouncing water droplet on a superhydrophobic surface.

  15. The Chip-Scale Atomic Clock - Recent Development Progress

    DTIC Science & Technology

    2004-09-01

    35th Annual Precise Time and Time Interval (PTTI) Meeting 467 THE CHIP-SCALE ATOMIC CLOCK – RECENT DEVELOPMENT PROGRESS R. Lutwak ...1] R. Lutwak , et al., 2003, “The Chip-Scale Atomic Clock – Coherent Population Trapping vs. Conventional Interrogation,” in

  16. Names Chip Placed on InSight Lander Deck

    NASA Image and Video Library

    2015-12-17

    A spacecraft specialist in a clean room at Lockheed Martin Space Systems in Denver affixes a dime-size chip onto the lander deck in November 2015. This chip carries 826,923 names, submitted by the public online from all over the world.

  17. A remarkably large depleted core in the Abell 2029 BCG IC 1101

    NASA Astrophysics Data System (ADS)

    Dullo, Bililign T.; Graham, Alister W.; Knapen, Johan H.

    2017-10-01

    We report the discovery of an extremely large (Rb ˜2.77 arcsec ≈ 4.2 kpc) core in the brightest cluster galaxy, IC 1101, of the rich galaxy cluster Abell 2029. Luminous core-Sérsic galaxies contain depleted cores - with sizes (Rb) typically 20-500 pc - that are thought to be formed by coalescing black hole binaries. We fit a (double nucleus) + (spheroid) + (intermediate-scale component) + (stellar halo) model to the Hubble Space Telescope surface brightness profile of IC 1101, finding the largest core size measured in any galaxy to date. This core is an order of magnitude larger than those typically measured for core-Sérsic galaxies. We find that the spheroid's V-band absolute magnitude (MV) of -23.8 mag (˜25 per cent of the total galaxy light, I.e. including the stellar halo) is faint for the large Rb, such that the observed core is 1.02 dex ≈ 3.4σs (rms scatter) larger than that estimated from the Rb-MV relation. The suspected scouring process has produced a large stellar mass deficit (Mdef) ˜4.9 × 1011 M⊙, I.e. a luminosity deficit ≈28 per cent of the spheroid's luminosity prior to the depletion. Using IC 1101's black hole mass (MBH) estimated from the MBH-σ, MBH-L and MBH-M* relations, we measure an excessive and unrealistically high number of 'dry' major mergers for IC 1101 (I.e. N ≳ 76) as traced by the large Mdef/MBH ratios of 38-101. The large core, high mass deficit and oversized Mdef/MBH ratio of IC 1101 suggest that the depleted core was scoured by overmassive SMBH binaries with a final coalesced mass MBH ˜ (4-10) × 1010 M⊙, I.e. ˜ (1.7-3.2) × σs larger than the black hole masses estimated using the spheroid's σ, L and M*. The large core might be partly due to oscillatory core passages by a gravitational radiation-recoiled black hole.

  18. 7. VIEW OF THE CHIP ROASTER LOCATED IN BUILDING 447. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW OF THE CHIP ROASTER LOCATED IN BUILDING 447. THE CHIP ROASTER BURNED URANIUM CHIPS FROM MACHINING AREAS TO AN OXIDE, A MORE STABLE FORM FOR DISPOSAL. (4/27/55) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO

  19. Chipping whole trees for fuel chips: a production study

    Treesearch

    Dana Mitchell; Tom Gallagher

    2007-01-01

    A time and motion study was conducted to determine the productivity and cost of an in-woods chipping operation when processing whole mall-diameter trees for biomass. The study removed biomass from two overstocked stands and compared the cost of this treatment to existing alternatives. The treatment stands consisted of a 30-year-old longleaf pine stand and a 37-year-old...

  20. Flip-chip bonded optoelectronic integration based on ultrathin silicon (UTSi) CMOS

    NASA Astrophysics Data System (ADS)

    Hong, Sunkwang; Ho, Tawei; Zhang, Liping; Sawchuk, Alexander A.

    2003-06-01

    We describe the design and test of flip-chip bonded optoelectronic CMOS devices based on Peregrine Semiconductor's 0.5 micron Ultra-Thin Silicon on sapphire (UTSi) technology. The UTSi process eliminates the substrate leakage that typically results in crosstalk and reduces parasitic capacitance to the substrate, providing many benefits compared to bulk silicon CMOS. The low-loss synthetic sapphire substrate is optically transparent and has a coefficient of thermal expansion suitable for flip-chip bonding of vertical cavity surface emitting lasers (VCSELs) and detectors. We have designed two different UTSi CMOS chips. One contains a flip-chip bonded 1 x 4 photodiode array, a receiver array, a double edge triggered D-flip flop-based 2047-pattern pseudo random bit stream (PRBS) generator and a quadrature-phase LC-voltage controlled oscillator (VCO). The other chip contains a flip-chip bonded 1 x 4 VCSEL array, a driver array based on high-speed low-voltage differential signals (LVDS) and a full-balanced differential LC-VCO. Each VCSEL driver and receiver has individual input and bias voltage adjustments. Each UTSi chip is mounted on different printed circuit boards (PCBs) which have holes with about 1 mm radius for optical output and input paths through the sapphire substrate. We discuss preliminary testing of these chips.

  1. Multiple functions of the E3 ubiquitin ligase CHIP in immunity.

    PubMed

    Zhan, Shaohua; Wang, Tianxiao; Ge, Wei

    2017-09-03

    The carboxyl terminal of Hsp70-interacting protein (CHIP) is an E3 ubiquitin ligase that plays a pivotal role in the protein quality control system by shifting the balance of the folding-refolding machinery toward the degradative pathway. However, the precise mechanisms by which nonnative proteins are selected for degradation by CHIP either directly or indirectly via chaperone Hsp70 or Hsp90 are still not clear. In this review, we aim to provide a comprehensive model of the mechanism by which CHIP degrades its substrate in a chaperone-dependent or direct manner. In addition, through tight regulation of the protein level of its substrates, CHIP plays important roles in many physiological and pathological conditions, including cancers, neurological disorders, cardiac diseases, bone metabolism, immunity, and so on. Nonetheless, the precise mechanisms underlying the regulation of the immune system by CHIP are still poorly understood despite accumulating developments in our understanding of the regulatory roles of CHIP in both innate and adaptive immune responses. In this review, we also aim to provide a view of CHIP-mediated regulation of immune responses and the signaling pathways involved in the model described. Finally, we discuss the roles of CHIP in immune-related diseases.

  2. 30 CFR 57.22212 - Air flow (I-C, II-A, and V-A mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Air flow (I-C, II-A, and V-A mines). 57.22212 Section 57.22212 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22212 Air flow (I-C, II-A, and V-A mines...

  3. Hsp70 as an indicator of stress in the cells after contact with nanoparticles

    NASA Astrophysics Data System (ADS)

    Hardilová, Šárka; Havrdová, Markéta; Panáček, Aleš; Kvítek, Libor; Zbořil, Radek

    2015-05-01

    In recent years, production of nanoparticles is increased and thus grows our contact with them too. Question of safety is closely related to the issue of use nanoparticles. There are a number of tests that monitor the viability, ROS production, the effect on the DNA and cell cycle, however, rarely encountered studies on stress in the cells after contact with nanoparticles. Heat shock proteins (HSP) are among the substances that can be used for monitoring stress in cells. HSP are structures with a chaperone activity. They are evolutionarily very old, conservative and they are found with a high degree of homology in prokaryotes and eukaryotes including humans. They exist at low concentrations under physiological conditions, while in the denaturing conditions e.g. high or low temperature, radiation, exposure to chemicals, heavy metals, or nanoparticles their expression is changed. HSPs are involved in maintaining homeostasis in the cell that the denatured protein conformations allow recovery to the original stage. One of the most common proteins from HSP family is Hsp70 - protein with a molecular weight of 70 kDa. The level of Hsp70 in a cell after exposure to the stress changes depending on the stress level to which the cell is exposed to and a time period during which lasted stressful conditions. Our research monitors stress levels of cells manifesting by Hsp70 production after contact with silver nanoparticles. Nanoparticles show different toxicity towards different types of target cells, which is reflected in the values of IC50 - concentration that kills 50% tested cells. Concentration of test substance toxic to one cell type may be innocuous to cells of another type. IC50 obtained from the MTT assay provides a suitable default data and if multiples of IC50 values are used, we can compare and generalize. Studies can be used to compare stress levels in cells that show different sensitivity to the tested nanoparticles compared with cells under optimal growth

  4. System-on-chip-centric unattended embedded sensors in homeland security and defense applications

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz; Forrester, Thomas; Degrood, Kevin; Shih, Min-Yi; Walter, Kevin; Lee, Kang; Gans, Eric; Esterkin, Vladimir

    2009-05-01

    System-on-chip (SoC) single-die electronic integrated circuit (IC) integration has recently been attracting a great deal of attention, due to its high modularity, universality, and relatively low fabrication cost. The SoC also has low power consumption and it is naturally suited to being a base for integration of embedded sensors. Such sensors can run unattended, and can be either commercial off-the-shelf (COTS) electronic, COTS microelectromechanical systems (MEMS), or optical-COTS or produced in house (i.e., at Physical Optics Corporation, POC). In the version with the simplest electronic packaging, they can be integrated with low-power wireless RF that can communicate with a central processing unit (CPU) integrated in-house and installed on the specific platform of interest. Such a platform can be a human body (for e-clothing), unmanned aerial vehicle (UAV), unmanned ground vehicle (UGV), or many others. In this paper we discuss SoC-centric embedded unattended sensors in Homeland Security and military applications, including specific application scenarios (or CONOPS). In one specific example, we analyze an embedded polarization optical sensor produced in house, including generalized Lambertian light-emitting diode (LED) sources and secondary nonimaging optics (NIO).

  5. bop5 mutations reveal new roles for the IC138 phosphoprotein in the regulation of flagellar motility and asymmetric waveforms

    PubMed Central

    VanderWaal, Kristyn E.; Yamamoto, Ryosuke; Wakabayashi, Ken-ichi; Fox, Laura; Kamiya, Ritsu; Dutcher, Susan K.; Bayly, Phillip V.; Sale, Winfield S.; Porter, Mary E.

    2011-01-01

    I1 dynein, or dynein f, is a highly conserved inner arm isoform that plays a key role in the regulation of flagellar motility. To understand how the IC138 IC/LC subcomplex modulates I1 activity, we characterized the molecular lesions and motility phenotypes of several bop5 alleles. bop5-3, bop5-4, and bop5-5 are null alleles, whereas bop5-6 is an intron mutation that reduces IC138 expression. I1 dynein assembles into the axoneme, but the IC138 IC/LC subcomplex is missing. bop5 strains, like other I1 mutants, swim forward with reduced swimming velocities and display an impaired reversal response during photoshock. Unlike mutants lacking the entire I1 dynein, however, bop5 strains exhibit normal phototaxis. bop5 defects are rescued by transformation with the wild-type IC138 gene. Analysis of flagellar waveforms reveals that loss of the IC138 subcomplex reduces shear amplitude, sliding velocities, and the speed of bend propagation in vivo, consistent with the reduction in microtubule sliding velocities observed in vitro. The results indicate that the IC138 IC/LC subcomplex is necessary to generate an efficient waveform for optimal motility, but it is not essential for phototaxis. These findings have significant implications for the mechanisms by which IC/LC complexes regulate dynein motor activity independent of effects on cargo binding or complex stability. PMID:21697502

  6. 21 CFR 102.41 - Potato chips made from dried potatoes.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Potato chips made from dried potatoes. 102.41... Specific Nonstandardized Foods § 102.41 Potato chips made from dried potatoes. (a) The common or usual name of the food product that resembles and is of the same composition as potato chips, except that it is...

  7. 21 CFR 102.41 - Potato chips made from dried potatoes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Potato chips made from dried potatoes. 102.41... Specific Nonstandardized Foods § 102.41 Potato chips made from dried potatoes. (a) The common or usual name of the food product that resembles and is of the same composition as potato chips, except that it is...

  8. 21 CFR 102.41 - Potato chips made from dried potatoes.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Potato chips made from dried potatoes. 102.41... Specific Nonstandardized Foods § 102.41 Potato chips made from dried potatoes. (a) The common or usual name of the food product that resembles and is of the same composition as potato chips, except that it is...

  9. 21 CFR 102.41 - Potato chips made from dried potatoes.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Potato chips made from dried potatoes. 102.41... Specific Nonstandardized Foods § 102.41 Potato chips made from dried potatoes. (a) The common or usual name of the food product that resembles and is of the same composition as potato chips, except that it is...

  10. Single-Chip Microcomputer Control Of The PWM Inverter

    NASA Astrophysics Data System (ADS)

    Morimoto, Masayuki; Sato, Shinji; Sumito, Kiyotaka; Oshitani, Katsumi

    1987-10-01

    A single-chip microcomputer-based con-troller for a pulsewidth modulated 1.7 KVA inverter of an airconditioner is presented. The PWM pattern generation and the system control of the airconditioner are achieved by software of the 8-bit single-chip micro-computer. The single-chip microcomputer has the disadvantages of low processing speed and small memory capacity which can be overcome by the magnetic flux control method. The PWM pattern is generated every 90 psec. The memory capacity of the PWM look-up table is less than 2 kbytes. The simple and reliable control is realized by the software-based implementation.

  11. Modeling the spectral energy distribution of the radio galaxy IC310

    NASA Astrophysics Data System (ADS)

    Fraija, N.; Marinelli, A.; Galván-Gámez, A.; Aguilar-Ruiz, E.

    2017-03-01

    The radio galaxy IC310 located in the Perseus Cluster is one of the brightest objects in the radio and X-ray bands, and one of the closest active galactic nuclei observed in very-high energies. In GeV - TeV γ-rays, IC310 was detected in low and high flux states by the MAGIC telescopes from October 2009 to February 2010. Taking into account that the spectral energy distribution (SED) up to a few GeV seems to exhibit a double-peak feature and that a single-zone synchrotron self-Compton (SSC) model can explain all of the multiwavelength emission except for the non-simultaneous MAGIC emission, we interpret, in this work, the multifrequency data set of the radio galaxy IC310 in the context of homogeneous hadronic and leptonic models. In the leptonic framework, we present a multi-zone SSC model with two electron populations to explain the whole SED whereas for the hadronic model, we propose that a single-zone SSC model describes the SED up to a few GeVs and neutral pion decay products resulting from pγ interactions could describe the TeV - GeV γ-ray spectra. These interactions occur when Fermi-accelerated protons interact with the seed photons around the SSC peaks. We show that, in the leptonic model the minimum Lorentz factor of second electron population is exceedingly high γe ∼ 105 disfavoring this model, and in the hadronic model the required proton luminosity is not extremely high ∼1044 erg/s, provided that charge neutrality between the number of electrons and protons is given. Correlating the TeV γ-ray and neutrino spectra through photo-hadronic interactions, we find that the contribution of the emitting region of IC310 to the observed neutrino and ultra-high-energy cosmic ray fluxes are negligible.

  12. Microluminometer chip and method to measure bioluminescence

    DOEpatents

    Simpson, Michael L [Knoxville, TN; Paulus, Michael J [Knoxville, TN; Sayler, Gary S [Blaine, TN; Applegate, Bruce M [West Lafayette, IN; Ripp, Steven A [Knoxville, TN

    2008-05-13

    An integrated microluminometer includes an integrated circuit chip having at least one n-well/p-substrate junction photodetector for converting light received into a photocurrent, and a detector on the chip for processing the photocurrent. A distributed electrode configuration including a plurality of spaced apart electrodes disposed on an active region of the photodetector is preferably used to raise efficiency.

  13. Atom chip microscopy: A novel probe for strongly correlated materials

    NASA Astrophysics Data System (ADS)

    Kasch, Brian; Naides, Matthew; Turner, Richard; Ray, Ushnish; Lev, Benjamin

    2010-03-01

    Atom chip technology---substrates supporting micron-sized current-carrying wires that create magnetic microtraps near surfaces for thermal or degenerate gases of neutral atoms---will enable single-shot, large area detection of magnetic flux below the 10-7 flux quantum level. By harnessing the extreme sensitivity of Bose-Einstein condensates (BECs) to external perturbations, cryogenic atom chips could provide a magnetic flux detection capability that surpasses all other techniques by a factor of 10^2--10^3. We describe the merits of atom chip microscopy, our Rb BEC and atom chip apparatus, and prospects for imaging strongly correlated condensed matter materials.

  14. Sensing systems using chip-based spectrometers

    NASA Astrophysics Data System (ADS)

    Nitkowski, Arthur; Preston, Kyle J.; Sherwood-Droz, Nicolás.; Behr, Bradford B.; Bismilla, Yusuf; Cenko, Andrew T.; DesRoches, Brandon; Meade, Jeffrey T.; Munro, Elizabeth A.; Slaa, Jared; Schmidt, Bradley S.; Hajian, Arsen R.

    2014-06-01

    Tornado Spectral Systems has developed a new chip-based spectrometer called OCTANE, the Optical Coherence Tomography Advanced Nanophotonic Engine, built using a planar lightwave circuit with integrated waveguides fabricated on a silicon wafer. While designed for spectral domain optical coherence tomography (SD-OCT) systems, the same miniaturized technology can be applied to many other spectroscopic applications. The field of integrated optics enables the design of complex optical systems which are monolithically integrated on silicon chips. The form factors of these systems can be significantly smaller, more robust and less expensive than their equivalent free-space counterparts. Fabrication techniques and material systems developed for microelectronics have previously been adapted for integrated optics in the telecom industry, where millions of chip-based components are used to power the optical backbone of the internet. We have further adapted the photonic technology platform for spectroscopy applications, allowing unheard-of economies of scale for these types of optical devices. Instead of changing lenses and aligning systems, these devices are accurately designed programmatically and are easily customized for specific applications. Spectrometers using integrated optics have large advantages in systems where size, robustness and cost matter: field-deployable devices, UAVs, UUVs, satellites, handheld scanning and more. We will discuss the performance characteristics of our chip-based spectrometers and the type of spectral sensing applications enabled by this technology.

  15. How fast can an AGN shut down? XMM-Newton observation of IC 2497

    NASA Astrophysics Data System (ADS)

    Schawinski, Kevin

    2008-10-01

    We propose to observe IC 2497 with XMM-Newton to detect, or rule out, an obscured AGN that might account for the illumination of `Hanny's Voorwerp'. The Voorwerp is a highly ionised cloud of gas extended over 15-25 kpc next to the spiral galaxy IC 2497. There is no source of ionisation within the Voorwerp, implicating a luminous 1E44 erg/s AGN in IC 2497 as the source. Swift XRT observations do not yield a detection, allowing the presence of a highly obscured, sufficiently luminous AGN. With 34 ksec of XMM observations, we could detect an obscured AGN down to 1E42 erg/s. We can thus either locate an obscured AGN, or we can for the first time constrain the shutdown time scale for a powerful AGN, as it drops by a factor of 100 in luminosity in 1E5 years.

  16. Development of voice navigation system for the visually impaired by using IC tags.

    PubMed

    Takatori, Norihiko; Nojima, Kengo; Matsumoto, Masashi; Yanashima, Kenji; Magatani, Kazushige

    2006-01-01

    There are about 300,000 visually impaired persons in Japan. Most of them are old persons and, cannot become skillful in using a white cane, even if they make effort to learn how to use a white cane. Therefore, some guiding system that supports the independent activities of the visually impaired are required. In this paper, we will describe about a developed white cane system that supports the independent walking of the visually impaired in the indoor space. This system is composed of colored navigation lines that include IC tags and an intelligent white cane that has a navigation computer. In our system colored navigation lines that are put on the floor of the target space from the start point to the destination and IC tags that are set at the landmark point are used for indication of the route to the destination. The white cane has a color sensor, an IC tag transceiver and a computer system that includes a voice processor. This white cane senses the navigation line that has target color by a color sensor. When a color sensor finds the target color, the white cane informs a white cane user that he/she is on the navigation line by vibration. So, only following this vibration, the user can reach the destination. However, at some landmark points, guidance is necessary. At these points, an IC tag is set under the navigation line. The cane makes communication with the tag and informs the user about the land mark pint by pre recorded voice. Ten normal subjects who were blindfolded were tested with our developed system. All of them could walk along navigation line. And the IC tag information system worked well. Therefore, we have concluded that our system will be a very valuable one to support activities of the visually impaired.

  17. Fermi Non-detections of Four X-Ray Jet Sources and Implications for the IC/CMB Mechanism

    NASA Astrophysics Data System (ADS)

    Breiding, Peter; Meyer, Eileen T.; Georganopoulos, Markos; Keenan, M. E.; DeNigris, N. S.; Hewitt, Jennifer

    2017-11-01

    Since its launch in 1999, the Chandra X-ray observatory has discovered several dozen X-ray jets associated with powerful quasars. In many cases, the X-ray spectrum is hard and appears to come from a second spectral component. The most popular explanation for the kpc-scale X-ray emission in these cases has been inverse-Compton (IC) scattering of Cosmic Microwave Background (CMB) photons by relativistic electrons in the jet (the IC/CMB model). Requiring the IC/CMB emission to reproduce the observed X-ray flux density inevitably predicts a high level of gamma-ray emission, which should be detectable with the Fermi Large Area Telescope (LAT). In previous work, we found that gamma-ray upper limits from the large-scale jets of 3C 273 and PKS 0637-752 violate the predictions of the IC/CMB model. Here, we present Fermi/LAT flux density upper limits for the X-ray jets of four additional sources: PKS 1136-135, PKS 1229-021, PKS 1354+195, and PKS 2209+080. We show that these limits violate the IC/CMB predictions at a very high significance level. We also present new Hubble Space Telescope observations of the quasar PKS 2209+080 showing a newly detected optical jet, and Atacama Large Millimeter/submillimeter Array band 3 and 6 observations of all four sources, which provide key constraints on the spectral shape that enable us to rule out the IC/CMB model.

  18. BAG2 Interferes with CHIP-Mediated Ubiquitination of HSP72.

    PubMed

    Schönbühler, Bianca; Schmitt, Verena; Huesmann, Heike; Kern, Andreas; Gamerdinger, Martin; Behl, Christian

    2016-12-30

    The maintenance of cellular proteostasis is dependent on molecular chaperones and protein degradation pathways. Chaperones facilitate protein folding, maturation, and degradation, and the particular fate of a misfolded protein is determined by the interaction of chaperones with co-chaperones. The co-factor CHIP (C-terminus of HSP70-inteacting protein, STUB1) ubiquitinates chaperone substrates and directs proteins to the cellular degradation systems. The activity of CHIP is regulated by two co-chaperones, BAG2 and HSPBP1, which are potent inhibitors of the E3 ubiquitin ligase activity. Here, we examined the functional correlation of HSP72, CHIP, and BAG2, employing human primary fibroblasts. We showed that HSP72 is a substrate of CHIP and that BAG2 efficiently prevented the ubiquitination of HSP72 in young cells as well as aged cells. Aging is associated with a decline in proteostasis and we observed increased protein levels of CHIP as well as BAG2 in senescent cells. Interestingly, the ubiquitination of HSP72 was strongly reduced during aging, which revealed that BAG2 functionally counteracted the increased levels of CHIP. Interestingly, HSPBP1 protein levels were down-regulated during aging. The data presented here demonstrates that the co-chaperone BAG2 influences HSP72 protein levels and is an important modulator of the ubiquitination activity of CHIP in young as well as aged cells.

  19. A Twisted Star-Forming Web in the Galaxy IC 342

    NASA Image and Video Library

    2011-07-20

    Looking like a spider web swirled into a spiral, galaxy IC 342 presents its delicate pattern of dust in this infrared light image from NASA Spitzer Space Telescope. The very center glows especially brightly in the infrared.

  20. The gene ICS3 from the yeast Saccharomyces cerevisiae is involved in copper homeostasis dependent on extracellular pH.

    PubMed

    Alesso, C A; Discola, K F; Monteiro, G

    2015-09-01

    In the yeast Saccharomyces cerevisiae, many genes are involved in the uptake, transport, storage and detoxification of copper. Large scale studies have noted that deletion of the gene ICS3 increases sensitivity to copper, Sortin 2 and acid exposure. Here, we report a study on the Δics3 strain, in which ICS3 is related to copper homeostasis, affecting the intracellular accumulation of this metal. This strain is sensitive to hydrogen peroxide and copper exposure, but not to other tested transition metals. At pH 6.0, the Δics3 strain accumulates a larger amount of intracellular copper than the wild-type strain, explaining the sensitivity to oxidants in this condition. Unexpectedly, sensitivity to copper exposure only occurs in acidic conditions. This can be explained by the fact that the exposure of Δics3 cells to high copper concentrations at pH 4.0 results in over-accumulation of copper and iron. Moreover, the expression of ICS3 increases in acidic pH, and this is correlated with CCC2 gene expression, since both genes are regulated by Rim101 from the pH regulon. CCC2 is also upregulated in Δics3 in acidic pH. Together, these data indicate that ICS3 is involved in copper homeostasis and is dependent on extracellular pH. Copyright © 2015 Elsevier Inc. All rights reserved.