Sample records for ic1270-induced systemic resistance

  1. Differential effectiveness of Serratia plymuthica IC1270-induced systemic resistance against hemibiotrophic and necrotrophic leaf pathogens in rice

    PubMed Central

    De Vleesschauwer, David; Chernin, Leonid; Höfte, Monica M

    2009-01-01

    Background Induced resistance is a state of enhanced defensive capacity developed by a plant reacting to specific biotic or chemical stimuli. Over the years, several forms of induced resistance have been characterized, including systemic acquired resistance, which is induced upon localized infection by an avirulent necrotizing pathogen, and induced systemic resistance (ISR), which is elicited by selected strains of nonpathogenic rhizobacteria. However, contrary to the relative wealth of information on inducible defense responses in dicotyledoneous plants, our understanding of the molecular mechanisms underlying induced resistance phenomena in cereal crops is still in its infancy. Using a combined cytomolecular and pharmacological approach, we analyzed the host defense mechanisms associated with the establishment of ISR in rice by the rhizobacterium Serratia plymuthica IC1270. Results In a standardized soil-based assay, root treatment with IC1270 rendered foliar tissues more resistant to the hemibiotrophic pathogen Magnaporthe oryzae, causal agent of the devastating rice blast disease. Analysis of the cytological and biochemical alterations associated with restriction of fungal growth in IC1270-induced plants revealed that IC1270 primes rice for enhanced attacker-induced accumulation of reactive oxygen species (ROS) and autofluorescent phenolic compounds in and near epidermal cells displaying dense cytoplasmic granulation. Similar, yet more abundant, phenotypes of hypersensitively dying cells in the vicinity of fungal hyphae were evident in a gene-for-gene interaction with an avirulent M. oryzae strain, suggesting that IC1270-inducible ISR and R protein conditioned effector-triggered immunity (ETI) target similar defense mechanisms. Yet, this IC1270-inducible ISR response seems to act as a double-edged sword within the rice defense network as induced plants displayed an increased vulnerability to the necrotrophic pathogens Rhizoctonia solani and Cochliobolus

  2. Differential effectiveness of Serratia plymuthica IC1270-induced systemic resistance against hemibiotrophic and necrotrophic leaf pathogens in rice.

    PubMed

    De Vleesschauwer, David; Chernin, Leonid; Höfte, Monica M

    2009-01-22

    Induced resistance is a state of enhanced defensive capacity developed by a plant reacting to specific biotic or chemical stimuli. Over the years, several forms of induced resistance have been characterized, including systemic acquired resistance, which is induced upon localized infection by an avirulent necrotizing pathogen, and induced systemic resistance (ISR), which is elicited by selected strains of nonpathogenic rhizobacteria. However, contrary to the relative wealth of information on inducible defense responses in dicotyledoneous plants, our understanding of the molecular mechanisms underlying induced resistance phenomena in cereal crops is still in its infancy. Using a combined cytomolecular and pharmacological approach, we analyzed the host defense mechanisms associated with the establishment of ISR in rice by the rhizobacterium Serratia plymuthica IC1270. In a standardized soil-based assay, root treatment with IC1270 rendered foliar tissues more resistant to the hemibiotrophic pathogen Magnaporthe oryzae, causal agent of the devastating rice blast disease. Analysis of the cytological and biochemical alterations associated with restriction of fungal growth in IC1270-induced plants revealed that IC1270 primes rice for enhanced attacker-induced accumulation of reactive oxygen species (ROS) and autofluorescent phenolic compounds in and near epidermal cells displaying dense cytoplasmic granulation. Similar, yet more abundant, phenotypes of hypersensitively dying cells in the vicinity of fungal hyphae were evident in a gene-for-gene interaction with an avirulent M. oryzae strain, suggesting that IC1270-inducible ISR and R protein conditioned effector-triggered immunity (ETI) target similar defense mechanisms. Yet, this IC1270-inducible ISR response seems to act as a double-edged sword within the rice defense network as induced plants displayed an increased vulnerability to the necrotrophic pathogens Rhizoctonia solani and Cochliobolus miyabeanus. Artificial

  3. 21 CFR 870.1270 - Intracavitary phonocatheter system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Intracavitary phonocatheter system. 870.1270 Section 870.1270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1270 Intracavitary...

  4. 21 CFR 870.1270 - Intracavitary phonocatheter system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Intracavitary phonocatheter system. 870.1270 Section 870.1270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1270 Intracavitary...

  5. 21 CFR 870.1270 - Intracavitary phonocatheter system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Intracavitary phonocatheter system. 870.1270... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1270 Intracavitary phonocatheter system. (a) Identification. An intracavitary phonocatheter system is a system that includes a...

  6. 21 CFR 870.1270 - Intracavitary phonocatheter system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Intracavitary phonocatheter system. 870.1270... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1270 Intracavitary phonocatheter system. (a) Identification. An intracavitary phonocatheter system is a system that includes a...

  7. 21 CFR 870.1270 - Intracavitary phonocatheter system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Intracavitary phonocatheter system. 870.1270... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1270 Intracavitary phonocatheter system. (a) Identification. An intracavitary phonocatheter system is a system that includes a...

  8. 21 CFR 862.1270 - Estrogens (total, in pregnancy) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Estrogens (total, in pregnancy) test system. 862.1270 Section 862.1270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  9. 21 CFR 862.1270 - Estrogens (total, in pregnancy) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Estrogens (total, in pregnancy) test system. 862.1270 Section 862.1270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  10. 21 CFR 862.1270 - Estrogens (total, in pregnancy) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Estrogens (total, in pregnancy) test system. 862.1270 Section 862.1270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  11. 21 CFR 862.1270 - Estrogens (total, in pregnancy) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Estrogens (total, in pregnancy) test system. 862.1270 Section 862.1270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  12. 40 CFR 60.1270 - What is required for my continuous opacity monitoring system and how are the data used?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... opacity monitoring system and how are the data used? 60.1270 Section 60.1270 Protection of Environment... Continuous Emission Monitoring § 60.1270 What is required for my continuous opacity monitoring system and how... system. (b) Install, evaluate, and operate each continuous opacity monitoring system according to § 60.13...

  13. 21 CFR 862.1270 - Estrogens (total, in pregnancy) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Estrogens (total, in pregnancy) test system. 862... Test Systems § 862.1270 Estrogens (total, in pregnancy) test system. (a) Identification. As estrogens (total, in pregnancy) test system is a device intended to measure total estrogens in plasma, serum, and...

  14. 40 CFR 52.1270 - Identification of plan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Classification System (NAICS) codes 325193 or 312140,” APC-S-5 incorporated by reference from 40 CFR 52.21(b)(1... 40 Protection of Environment 4 2014-07-01 2014-07-01 false Identification of plan. 52.1270 Section 52.1270 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED...

  15. 43 CFR 12.70 - Changes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Changes. 12.70 Section 12.70 Public Lands... State and Local Governments Changes, Property, and Subawards § 12.70 Changes. (a) General. Grantees and... requirements and may make limited program changes to the approved project. However, unless waived by the...

  16. 32 CFR 37.1270 - Data.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Data. 37.1270 Section 37.1270 National Defense... INVESTMENT AGREEMENTS Definitions of Terms Used in This Part § 37.1270 Data. Recorded information, regardless of form or method of recording. The term includes technical data, which are data of a scientific or...

  17. 32 CFR 37.1270 - Data.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 1 2011-07-01 2011-07-01 false Data. 37.1270 Section 37.1270 National Defense... INVESTMENT AGREEMENTS Definitions of Terms Used in This Part § 37.1270 Data. Recorded information, regardless of form or method of recording. The term includes technical data, which are data of a scientific or...

  18. 8 CFR 1270.1 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Definitions. 1270.1 Section 1270.1 Aliens... PENALTIES FOR DOCUMENT FRAUD § 1270.1 Definitions. For the purpose of this part— Document means an instrument on which is recorded, by means of letters, figures, or marks, matters which may be used to fulfill...

  19. 8 CFR 1270.1 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 8 Aliens and Nationality 1 2014-01-01 2014-01-01 false Definitions. 1270.1 Section 1270.1 Aliens... PENALTIES FOR DOCUMENT FRAUD § 1270.1 Definitions. For the purpose of this part— Document means an instrument on which is recorded, by means of letters, figures, or marks, matters which may be used to fulfill...

  20. 8 CFR 1270.1 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 8 Aliens and Nationality 1 2011-01-01 2011-01-01 false Definitions. 1270.1 Section 1270.1 Aliens... PENALTIES FOR DOCUMENT FRAUD § 1270.1 Definitions. For the purpose of this part— Document means an instrument on which is recorded, by means of letters, figures, or marks, matters which may be used to fulfill...

  1. 8 CFR 1270.1 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 8 Aliens and Nationality 1 2012-01-01 2012-01-01 false Definitions. 1270.1 Section 1270.1 Aliens... PENALTIES FOR DOCUMENT FRAUD § 1270.1 Definitions. For the purpose of this part— Document means an instrument on which is recorded, by means of letters, figures, or marks, matters which may be used to fulfill...

  2. 10 CFR 603.1270 - Grant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., rather than to acquire property or services for the Department of Energy's direct benefit or use. (b) In... 10 Energy 4 2010-01-01 2010-01-01 false Grant. 603.1270 Section 603.1270 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Definitions of Terms Used in...

  3. 36 CFR 1270.14 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Definitions. 1270.14 Section 1270.14 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION PRESIDENTIAL... assist the Vice President, in the course of conducting activities which relate to or have an effect upon...

  4. 36 CFR 1270.14 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Definitions. 1270.14 Section 1270.14 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION PRESIDENTIAL... assist the Vice President, in the course of conducting activities which relate to or have an effect upon...

  5. 36 CFR 1270.14 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Definitions. 1270.14 Section 1270.14 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION PRESIDENTIAL... assist the Vice President, in the course of conducting activities which relate to or have an effect upon...

  6. 36 CFR 1270.14 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Definitions. 1270.14 Section 1270.14 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION PRESIDENTIAL... assist the Vice President, in the course of conducting activities which relate to or have an effect upon...

  7. 12 CFR 1270.13 - Law governing other interests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 9 2012-01-01 2012-01-01 false Law governing other interests. 1270.13 Section... Procedure for Consolidated Obligations § 1270.13 Law governing other interests. (a) To the extent not inconsistent with this part 1270, the law (not including the conflict-of-law rules) of a Securities...

  8. 21 CFR 1270.31 - Written procedures.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Written procedures. 1270.31 Section 1270.31 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) REGULATIONS UNDER CERTAIN OTHER ACTS ADMINISTERED BY THE FOOD AND DRUG ADMINISTRATION HUMAN TISSUE INTENDED...

  9. 36 CFR § 1270.14 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Definitions. § 1270.14 Section § 1270.14 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION... assist the Vice President, in the course of conducting activities which relate to or have an effect upon...

  10. 36 CFR 1270.50 - Consultation with law enforcement agencies.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Consultation with law enforcement agencies. 1270.50 Section 1270.50 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION PRESIDENTIAL RECORDS PRESIDENTIAL RECORDS Presidential Records Compiled for Law Enforcement Purposes § 1270.50 Consultation with...

  11. 40 CFR 52.1270 - Identification of plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... incorporated by reference from 40 CFR 52.21(b)(1)(i)(a) and (b)(1(iii)(t) APC-S-5. In addition, this EPA action... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Identification of plan. 52.1270 Section 52.1270 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED...

  12. 40 CFR 52.1270 - Identification of plan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... incorporated by reference from 40 CFR 52.21(b)(1)(i)(a) and (b)(1(iii)(t) APC-S-5. In addition, this EPA action... 40 Protection of Environment 4 2012-07-01 2012-07-01 false Identification of plan. 52.1270 Section 52.1270 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED...

  13. 12 CFR 1270.14 - Creation of Participant's Security Entitlement; security interests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 10 2014-01-01 2014-01-01 false Creation of Participant's Security Entitlement; security interests. 1270.14 Section 1270.14 Banks and Banking FEDERAL HOUSING FINANCE AGENCY FEDERAL HOME LOAN BANKS LIABILITIES Book-Entry Procedure for Consolidated Obligations § 1270.14 Creation of...

  14. 12 CFR 1270.14 - Creation of Participant's Security Entitlement; security interests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 9 2012-01-01 2012-01-01 false Creation of Participant's Security Entitlement; security interests. 1270.14 Section 1270.14 Banks and Banking FEDERAL HOUSING FINANCE AGENCY FEDERAL HOME LOAN BANKS LIABILITIES Book-Entry Procedure for Consolidated Obligations § 1270.14 Creation of...

  15. 12 CFR 1270.14 - Creation of Participant's Security Entitlement; security interests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 9 2013-01-01 2013-01-01 false Creation of Participant's Security Entitlement; security interests. 1270.14 Section 1270.14 Banks and Banking FEDERAL HOUSING FINANCE AGENCY FEDERAL HOME LOAN BANKS LIABILITIES Book-Entry Procedure for Consolidated Obligations § 1270.14 Creation of...

  16. 21 CFR 1270.43 - Retention, recall, and destruction of human tissue.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Retention, recall, and destruction of human tissue. 1270.43 Section 1270.43 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... HUMAN TISSUE INTENDED FOR TRANSPLANTATION Inspection of Tissue Establishments § 1270.43 Retention...

  17. 21 CFR 1270.43 - Retention, recall, and destruction of human tissue.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Retention, recall, and destruction of human tissue. 1270.43 Section 1270.43 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... HUMAN TISSUE INTENDED FOR TRANSPLANTATION Inspection of Tissue Establishments § 1270.43 Retention...

  18. 21 CFR 1270.43 - Retention, recall, and destruction of human tissue.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Retention, recall, and destruction of human tissue. 1270.43 Section 1270.43 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... HUMAN TISSUE INTENDED FOR TRANSPLANTATION Inspection of Tissue Establishments § 1270.43 Retention...

  19. 21 CFR 1270.43 - Retention, recall, and destruction of human tissue.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Retention, recall, and destruction of human tissue. 1270.43 Section 1270.43 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... HUMAN TISSUE INTENDED FOR TRANSPLANTATION Inspection of Tissue Establishments § 1270.43 Retention...

  20. 21 CFR 1270.43 - Retention, recall, and destruction of human tissue.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Retention, recall, and destruction of human tissue. 1270.43 Section 1270.43 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... HUMAN TISSUE INTENDED FOR TRANSPLANTATION Inspection of Tissue Establishments § 1270.43 Retention...

  1. 28 CFR 12.70 - Partial compliance not deemed compliance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Partial compliance not deemed compliance. 12.70 Section 12.70 Judicial Administration DEPARTMENT OF JUSTICE REGISTRATION OF CERTAIN PERSONS HAVING KNOWLEDGE OF FOREIGN ESPIONAGE, COUNTERESPIONAGE, OR SABOTAGE MATTERS UNDER THE ACT OF AUGUST 1...

  2. 28 CFR 12.70 - Partial compliance not deemed compliance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 1 2012-07-01 2012-07-01 false Partial compliance not deemed compliance. 12.70 Section 12.70 Judicial Administration DEPARTMENT OF JUSTICE REGISTRATION OF CERTAIN PERSONS HAVING KNOWLEDGE OF FOREIGN ESPIONAGE, COUNTERESPIONAGE, OR SABOTAGE MATTERS UNDER THE ACT OF AUGUST 1...

  3. 28 CFR 12.70 - Partial compliance not deemed compliance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 1 2014-07-01 2014-07-01 false Partial compliance not deemed compliance. 12.70 Section 12.70 Judicial Administration DEPARTMENT OF JUSTICE REGISTRATION OF CERTAIN PERSONS HAVING KNOWLEDGE OF FOREIGN ESPIONAGE, COUNTERESPIONAGE, OR SABOTAGE MATTERS UNDER THE ACT OF AUGUST 1...

  4. 28 CFR 12.70 - Partial compliance not deemed compliance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 1 2011-07-01 2011-07-01 false Partial compliance not deemed compliance. 12.70 Section 12.70 Judicial Administration DEPARTMENT OF JUSTICE REGISTRATION OF CERTAIN PERSONS HAVING KNOWLEDGE OF FOREIGN ESPIONAGE, COUNTERESPIONAGE, OR SABOTAGE MATTERS UNDER THE ACT OF AUGUST 1...

  5. 28 CFR 12.70 - Partial compliance not deemed compliance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 1 2013-07-01 2013-07-01 false Partial compliance not deemed compliance. 12.70 Section 12.70 Judicial Administration DEPARTMENT OF JUSTICE REGISTRATION OF CERTAIN PERSONS HAVING KNOWLEDGE OF FOREIGN ESPIONAGE, COUNTERESPIONAGE, OR SABOTAGE MATTERS UNDER THE ACT OF AUGUST 1...

  6. ACE as a Mechanosensor to Shear Stress Influences the Control of Its Own Regulation via Phosphorylation of Cytoplasmic Ser1270

    PubMed Central

    Barauna, Valerio Garrone; Campos, Luciene Cristina Gastalho; Miyakawa, Ayumi Aurea; Krieger, Jose Eduardo

    2011-01-01

    Objectives We tested whether angiotensin converting enzyme (ACE) and phosphorylation of Ser1270 are involved in shear-stress (SS)-induced downregulation of the enzyme. Methods and Results Western blotting analysis showed that SS (18 h, 15 dyn/cm2) decreases ACE expression and phosphorylation as well as p-JNK inhibition in human primary endothelial cells (EC). CHO cells expressing wild-type ACE (wt-ACE) also displayed SS-induced decrease in ACE and p-JNK. Moreover, SS decreased ACE promoter activity in wt-ACE, but had no effect in wild type CHO or CHO expressing ACE without either the extra- or the intracellular domains, and decreased less in CHO expressing a mutated ACE at Ser1270 compared to wt-ACE (13 vs. 40%, respectively). The JNK inhibitor (SP600125, 18 h), in absence of SS, also decreased ACE promoter activity in wt-ACE. Finally, SS-induced inhibition of ACE expression and phosphorylation in EC was counteracted by simultaneous exposure to an ACE inhibitor. Conclusions ACE displays a key role on its own downregulation in response to SS. This response requires both the extra- and the intracellular domains and ACE Ser1270, consistent with the idea that the extracellular domain behaves as a mechanosensor while the cytoplasmic domain elicits the downstream intracellular signaling by phosphorylation on Ser1270. PMID:21901117

  7. 21 CFR 1270.42 - Human tissue offered for import.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Human tissue offered for import. 1270.42 Section 1270.42 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) REGULATIONS UNDER CERTAIN OTHER ACTS ADMINISTERED BY THE FOOD AND DRUG ADMINISTRATION HUMAN TISSUE INTENDED...

  8. 21 CFR 1270.42 - Human tissue offered for import.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Human tissue offered for import. 1270.42 Section 1270.42 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) REGULATIONS UNDER CERTAIN OTHER ACTS ADMINISTERED BY THE FOOD AND DRUG ADMINISTRATION HUMAN TISSUE INTENDED...

  9. 21 CFR 1270.42 - Human tissue offered for import.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Human tissue offered for import. 1270.42 Section 1270.42 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) REGULATIONS UNDER CERTAIN OTHER ACTS ADMINISTERED BY THE FOOD AND DRUG ADMINISTRATION HUMAN TISSUE INTENDED...

  10. 21 CFR 1270.42 - Human tissue offered for import.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Human tissue offered for import. 1270.42 Section 1270.42 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) REGULATIONS UNDER CERTAIN OTHER ACTS ADMINISTERED BY THE FOOD AND DRUG ADMINISTRATION HUMAN TISSUE INTENDED...

  11. 21 CFR 1270.42 - Human tissue offered for import.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Human tissue offered for import. 1270.42 Section 1270.42 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) REGULATIONS UNDER CERTAIN OTHER ACTS ADMINISTERED BY THE FOOD AND DRUG ADMINISTRATION HUMAN TISSUE INTENDED...

  12. 32 CFR 37.1270 - Data.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... INVESTMENT AGREEMENTS Definitions of Terms Used in This Part § 37.1270 Data. Recorded information, regardless of form or method of recording. The term includes technical data, which are data of a scientific or...

  13. 32 CFR 37.1270 - Data.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... INVESTMENT AGREEMENTS Definitions of Terms Used in This Part § 37.1270 Data. Recorded information, regardless of form or method of recording. The term includes technical data, which are data of a scientific or...

  14. 32 CFR 37.1270 - Data.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... INVESTMENT AGREEMENTS Definitions of Terms Used in This Part § 37.1270 Data. Recorded information, regardless of form or method of recording. The term includes technical data, which are data of a scientific or...

  15. 33 CFR 334.1270 - Port Townsend, Indian Island, Walan Point; naval restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Port Townsend, Indian Island, Walan Point; naval restricted area. 334.1270 Section 334.1270 Navigation and Navigable Waters CORPS OF....1270 Port Townsend, Indian Island, Walan Point; naval restricted area. (a) The area. The waters of Port...

  16. 33 CFR 334.1270 - Port Townsend, Indian Island, Walan Point; naval restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Port Townsend, Indian Island, Walan Point; naval restricted area. 334.1270 Section 334.1270 Navigation and Navigable Waters CORPS OF....1270 Port Townsend, Indian Island, Walan Point; naval restricted area. (a) The area. The waters of Port...

  17. Crystallographic Studies of Two Bacterial AntibioticResistance Enzymes: Aminoglycoside Phosphotransferase (2')-Ic and GES-1\\beta-lactamase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brynes, Laura; /Rensselaer Poly.

    2007-10-31

    Guiana Extended-Spectrum-1 (GES-1) and Aminoglycoside phosphotransferase (2')-Ic (APH(2')-Ic) are two bacteria-produced enzymes that essentially perform the same task: they provide resistance to an array of antibiotics. Both enzymes are part of a growing resistance problem in the medical world. In order to overcome the ever-growing arsenal of antibiotic-resistance enzymes, it is necessary to understand the molecular basis of their action. Accurate structures of these proteins have become an invaluable tool to do this. Using protein crystallography techniques and X-ray diffraction, the protein structure of GES-1 bound to imipenem (an inhibitor) has been solved. Also, APH(2')-Ic has been successfully crystallized, butmore » its structure was unable to be solved using molecular replacement using APH(2')-Ib as a search model. The structure of GES-1, with bound imipenem was solved to a resolution of 1.89A, and though the inhibitor is bound with only moderate occupancy, the structure shows crucial interactions inside the active site that render the enzyme unable to complete the hydrolysis of the {beta}-lactam ring. The APH(2')-Ic dataset could not be matched to the model, APH(2')-Ib, with which it shares 25% sequence identity. The structural information gained from GES-1, and future studies using isomorphous replacement to solve the APH(2')-Ic structure can aid directly to the creation of novel drugs to combat both of these classes of resistance enzymes.« less

  18. 12 CFR 1270.18 - Additional requirements; notice of attachment for Book-entry consolidated obligations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... for Book-entry consolidated obligations. 1270.18 Section 1270.18 Banks and Banking FEDERAL HOUSING FINANCE AGENCY FEDERAL HOME LOAN BANKS LIABILITIES Book-Entry Procedure for Consolidated Obligations § 1270.18 Additional requirements; notice of attachment for Book-entry consolidated obligations. (a...

  19. 12 CFR 1270.18 - Additional requirements; notice of attachment for Book-entry consolidated obligations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... for Book-entry consolidated obligations. 1270.18 Section 1270.18 Banks and Banking FEDERAL HOUSING FINANCE AGENCY FEDERAL HOME LOAN BANKS LIABILITIES Book-Entry Procedure for Consolidated Obligations § 1270.18 Additional requirements; notice of attachment for Book-entry consolidated obligations. (a...

  20. 12 CFR 1270.18 - Additional requirements; notice of attachment for Book-entry consolidated obligations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... for Book-entry consolidated obligations. 1270.18 Section 1270.18 Banks and Banking FEDERAL HOUSING FINANCE AGENCY FEDERAL HOME LOAN BANKS LIABILITIES Book-Entry Procedure for Consolidated Obligations § 1270.18 Additional requirements; notice of attachment for Book-entry consolidated obligations. (a...

  1. Bacterial Cysteine-Inducible Cysteine Resistance Systems

    PubMed Central

    Takumi, Kazuhiro

    2016-01-01

    ABSTRACT Cysteine donates sulfur to macromolecules and occurs naturally in many proteins. Because low concentrations of cysteine are cytotoxic, its intracellular concentration is stringently controlled. In bacteria, cysteine biosynthesis is regulated by feedback inhibition of the activities of serine acetyltransferase (SAT) and 3-phosphoglycerate dehydrogenase (3-PGDH) and is also regulated at the transcriptional level by inducing the cysteine regulon using the master regulator CysB. Here, we describe two novel cysteine-inducible systems that regulate the cysteine resistance of Pantoea ananatis, a member of the family Enterobacteriaceae that shows great potential for producing substances useful for biotechnological, medical, and industrial purposes. One locus, designated ccdA (formerly PAJ_0331), encodes a novel cysteine-inducible cysteine desulfhydrase (CD) that degrades cysteine, and its expression is controlled by the transcriptional regulator encoded by ccdR (formerly PAJ_0332 or ybaO), located just upstream of ccdA. The other locus, designated cefA (formerly PAJ_3026), encodes a novel cysteine-inducible cysteine efflux pump that is controlled by the transcriptional regulator cefR (formerly PAJ_3027), located just upstream of cefA. To our knowledge, this is the first example where the expression of CD and an efflux pump is regulated in response to cysteine and is directly involved in imparting resistance to excess levels of cysteine. We propose that ccdA and cefA function as safety valves that maintain homeostasis when the intra- or extracellular cysteine concentration fluctuates. Our findings contribute important insights into optimizing the production of cysteine and related biomaterials by P. ananatis. IMPORTANCE Because of its toxicity, the bacterial intracellular cysteine level is stringently regulated at biosynthesis. This work describes the identification and characterization of two novel cysteine-inducible systems that regulate, through degradation and

  2. Polysaccharide of radix pseudostellariae improves chronic fatigue syndrome induced by poly I:C in mice.

    PubMed

    Sheng, Rong; Xu, Xianxiang; Tang, Qin; Bian, Difei; Li, Ying; Qian, Cheng; He, Xin; Gao, Xinghua; Pan, Rong; Wang, Chong; Luo, Yubin; Xia, Yufeng; Dai, Yue

    2011-01-01

    Radix Pseudostellariae is used as a tonic drug in traditional Chinese medicine with immunomodulating and anti-fatigue activities, and the polysaccharide is considered as the main active component. The purpose of this study is to examine the effect of the polysaccharide isolated from Radix Pseudostellariae (PRP) on mouse chronic fatigue syndrome (CFS) induced by intraperitoneal injection of polyriboinosinic:polyribocytidylic acid (poly I:C), a double-stranded synthetic RNA. It has shown that the fatigue symptom of mice lasted at least 1 week as evaluated by forced swimming time. PRP (100, 200, 400 mg kg(-1)), orally administered 3 days before poly I:C injection, showed dose-dependent anti-fatigue effects. In addition, poly I:C led to evident alternations in neuroendocrine and immune systems of mice, such as reduced spontaneous activity and learning ability, declined serum level of corticosterone, increased weight indexes and T lymphocyte numbers in thymuses and spleens, and increased CD4(+)/CD8(+) ratio but decreased proliferation ability of T lymphocytes in spleens. PRP alleviated the abnormalities caused by poly I:C, and restored the function of hosts to normal conditions. The findings suggest that PRP is beneficial to CFS, and the underlying mechanisms of action involve neuroendocrine and immune systems.

  3. 36 CFR 1270.42 - Denial of access to public; right to appeal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; right to appeal. 1270.42 Section 1270.42 Parks, Forests, and Public Property NATIONAL ARCHIVES AND... Denial of access to public; right to appeal. (a) Any person denied access to a Presidential record... library director at the address cited in part 1253 of this chapter. (b) All appeals must be received by...

  4. 12 CFR 1270.15 - Obligations of the Banks and the Office of Finance; no Adverse Claims.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Finance; no Adverse Claims. 1270.15 Section 1270.15 Banks and Banking FEDERAL HOUSING FINANCE AGENCY... Obligations of the Banks and the Office of Finance; no Adverse Claims. (a) Except in the case of a security...), for the purposes of this part 1270, the Banks, the Office of Finance and the Federal Reserve Banks...

  5. 12 CFR 1270.15 - Obligations of the Banks and the Office of Finance; no Adverse Claims.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Finance; no Adverse Claims. 1270.15 Section 1270.15 Banks and Banking FEDERAL HOUSING FINANCE AGENCY... Obligations of the Banks and the Office of Finance; no Adverse Claims. (a) Except in the case of a security...), for the purposes of this part 1270, the Banks, the Office of Finance and the Federal Reserve Banks...

  6. 12 CFR 1270.15 - Obligations of the Banks and the Office of Finance; no Adverse Claims.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Finance; no Adverse Claims. 1270.15 Section 1270.15 Banks and Banking FEDERAL HOUSING FINANCE AGENCY... Obligations of the Banks and the Office of Finance; no Adverse Claims. (a) Except in the case of a security...), for the purposes of this part 1270, the Banks, the Office of Finance and the Federal Reserve Banks...

  7. Oxidative vaporization kinetics of chromium (III) oxide in oxygen from 1270 to 1570 K

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Kohl, F. J.; Fryburg, G. C.

    1974-01-01

    Rates of oxidative vaporization of Cr2O3 on preoxidized resistively heated chromium were determined in flowing oxygen at 0.115 torr for temperatures from 1270 to 1570 K. Reaction controlled rates were obtained from experimental rates by a gold calibration technique. These rates were shown to agree with those predicted by thermochemical analysis. The activation energy obtained for the oxidative vaporation reaction corresponded numerically with the thermochemical enthalpy of the reaction. A theoretical equation is given for calculating the rate from thermodynamic data by using boundary layer theory.

  8. 21 CFR 1270.33 - Records, general requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... FOR TRANSPLANTATION Procedures and Records § 1270.33 Records, general requirements. (a) Records shall... the various entries, and shall be as detailed as necessary to provide a complete history of the work... assure freedom from risk factors for and clinical evidence of HIV infection, hepatitis B, and hepatitis C...

  9. 20 CFR 418.1270 - What modified adjusted gross income evidence will we not accept?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false What modified adjusted gross income evidence will we not accept? 418.1270 Section 418.1270 Employees' Benefits SOCIAL SECURITY ADMINISTRATION... letter from IRS acknowledging the change. We will also not accept illegible or unsigned copies of income...

  10. 12 CFR 1270.17 - Liability of Banks, FHFA, Office of Finance and Federal Reserve Banks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 10 2014-01-01 2014-01-01 false Liability of Banks, FHFA, Office of Finance and Federal Reserve Banks. 1270.17 Section 1270.17 Banks and Banking FEDERAL HOUSING FINANCE AGENCY... of Banks, FHFA, Office of Finance and Federal Reserve Banks. The Banks, FHFA, the Director, the...

  11. 12 CFR 1270.17 - Liability of Banks, FHFA, Office of Finance and Federal Reserve Banks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 9 2013-01-01 2013-01-01 false Liability of Banks, FHFA, Office of Finance and Federal Reserve Banks. 1270.17 Section 1270.17 Banks and Banking FEDERAL HOUSING FINANCE AGENCY FEDERAL... Banks, FHFA, Office of Finance and Federal Reserve Banks. The Banks, FHFA, the Director, the Office of...

  12. 12 CFR 1270.17 - Liability of Banks, FHFA, Office of Finance and Federal Reserve Banks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 9 2012-01-01 2012-01-01 false Liability of Banks, FHFA, Office of Finance and Federal Reserve Banks. 1270.17 Section 1270.17 Banks and Banking FEDERAL HOUSING FINANCE AGENCY FEDERAL... Banks, FHFA, Office of Finance and Federal Reserve Banks. The Banks, FHFA, the Director, the Office of...

  13. Mod 1 ICS TI Report: ICS Conversion of a 140% HPGe Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bounds, John Alan

    This report evaluates the Mod 1 ICS, an electrically cooled 140% HPGe detector. It is a custom version of the ORTEC Integrated Cooling System (ICS) modified to make it more practical for us to use in the field. Performance and operating characteristics of the Mod 1 ICS are documented, noting both pros and cons. The Mod 1 ICS is deemed a success. Recommendations for a Mod 2 ICS, a true field prototype, are provided.

  14. Histone deacetylase inhibitor (HDACI) PCI-24781 enhances chemotherapy induced apoptosis in multidrug resistant sarcoma cell lines

    PubMed Central

    Yang, Cao; Choy, Edwin; Hornicek, Francis J.; Wood, Kirkham B; Schwab, Joseph H; Liu, Xianzhe; Mankin, Henry; Duan, Zhenfeng

    2013-01-01

    The anti-tumor activity of histone deacetylase inhibitors (HDACI) on multi-drug resistant sarcoma cell lines has never been previously described. Four multidrug resistant sarcoma cell lines treated with HDACI PCI-24781 resulted in dose-dependent accumulation of acetylated histones, p21 and PARP cleavage products. Growth of these cell lines was inhibited by PCI-24781 at IC50 of 0.43 to 2.7. When we looked for synergy of PCI-24781 with chemotherapeutic agents, we found that PCI-24781 reverses drug resistance in all four multidrug resistant sarcoma cell lines and synergizes with chemotherapeutic agents to enhance caspase-3/7 activity. Expression of RAD51 (a marker for DNA double-strand break repair) was inhibited and the expression of GADD45α (a marker for growth arrest and DNA-damage) was induced by PCI-24781 in multidrug resistant sarcoma cell lines. In conclusion, HDACI PCI-24781 synergizes with chemotherapeutic drugs to induce apoptosis and reverses drug resistance in multidrug resistant sarcoma cell lines. PMID:21508354

  15. 23 CFR 1270.8 - Procedures affecting States in noncompliance.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Procedures affecting States in noncompliance. 1270.8... States in noncompliance. (a) Each fiscal year, each State determined to be in noncompliance with 23 U.S.C. 154 and this part, based on NHTSA's and FHWA's preliminary review of its certification, will be...

  16. Systemic resistance induced in Arabidopsis thaliana by Trichoderma asperellum SKT-1, a microbial pesticide of seedborne diseases of rice.

    PubMed

    Yoshioka, Yohei; Ichikawa, Haruki; Naznin, Hushna Ara; Kogure, Atsushi; Hyakumachi, Mitsuro

    2012-01-01

    Trichoderma asperellum SKT-1 is a microbial pesticide of seedborne diseases of rice. To investigate the mechanisms of disease suppression in SKT-1, the ability to induce systemic resistance by SKT-1, or its cell-free culture filtrate (CF), was tested using Arabidopsis thaliana Col-0 plants. Both SKT-1 and its CF elicit an induced systemic resistance against the bacterial leaf speck pathogen Pseudomonas syringae pv. tomato DC3000 in Col-0 plants. Involvement of plant hormones in the induced resistance by SKT-1 and CF was assessed using Arabidopsis genotypes such as the jasmonic acid (JA)-resistant mutant jar1, the ethylene (ET)-resistant mutant etr1, the plant impaired in salicylic acid (SA) signalling transgenic NahG and the mutant npr1 impaired in NPR1 activity. In soil experiments using SKT-1, no significant disease suppression effect was observed in NahG transgenic plants or npr1 mutant plants. Expression levels of SA-inducible genes such as PR-1, PR-2 and PR-5 increased substantially in the leaves of Col-0 plants. Expression levels of JA/ET-induced genes such as PDF1.2a, PR-3, PR-4 and AtVsp1 were also induced, but the levels were not as high as for SA-inducible genes. In a hydroponic experiment using CF from SKT-1, all Arabidopsis genotypes showed an induced systemic resistance by CF and increased expression levels of JA/ET- and SA-inducible genes in leaves of CF-treated plants. The SA signalling pathway is important in inducing systemic resistance to colonisation by SKT-1, and both SA and JA/ET signalling pathways combine in the signalling of induced resistance by CF. These results indicate that the response of A. thaliana is different from that found in root treatments with barley grain inoculum and CF from SKT-1. Copyright © 2011 Society of Chemical Industry.

  17. International Space Agency CIO Forum Industrial Control System (ICS) and Cyber

    NASA Technical Reports Server (NTRS)

    Powell, Robert

    2017-01-01

    This briefing covers Industrial Control System (ICS) best practices for enhancing cyber protection. The briefing provides a very high-level overview of best practices currently being pursued by NASA as well as by other US government agencies such as NIST and DHS ICS-CERT. All information presented in this slide deck is publicly available and no sensitive information is provided in these slides. These slides will be used to generate discussion around best practices within the international community in the area of ICS cyber protections.

  18. Intraluminal Administration of Poly I:C Causes an Enteropathy That Is Exacerbated by Administration of Oral Dietary Antigen

    PubMed Central

    Araya, Romina E.; Jury, Jennifer; Bondar, Constanza

    2014-01-01

    Systemic administration of polyinosinic:polycytidylic acid (poly I:C), mimics virally-induced activation of TLR3 signalling causing acute small intestine damage, but whether and how mucosal administration of poly I:C causes enteropathy is less clear. Our aim was to investigate the inflammatory pathways elicited after intraluminal administration of poly I:C and determine acute and delayed consequences of this locally induced immune activation. Intraluminal poly I:C induced rapid mucosal immune activation in C57BL/6 mice involving IFNβ and the CXCL10/CXCR3 axis, that may drive inflammation towards a Th1 profile. Intraluminal poly I:C also caused enteropathy and gut dysfunction in gliadin-sensitive NOD-DQ8 mice, and this was prolonged by concomitant oral administration of gliadin. Our results indicate that small intestine pathology can be induced in mice by intraluminal administration of poly I:C and that this is exacerbated by subsequent oral delivery of a relevant dietary antigen. PMID:24915573

  19. Intraluminal administration of poly I:C causes an enteropathy that is exacerbated by administration of oral dietary antigen.

    PubMed

    Araya, Romina E; Jury, Jennifer; Bondar, Constanza; Verdu, Elena F; Chirdo, Fernando G

    2014-01-01

    Systemic administration of polyinosinic:polycytidylic acid (poly I:C), mimics virally-induced activation of TLR3 signalling causing acute small intestine damage, but whether and how mucosal administration of poly I:C causes enteropathy is less clear. Our aim was to investigate the inflammatory pathways elicited after intraluminal administration of poly I:C and determine acute and delayed consequences of this locally induced immune activation. Intraluminal poly I:C induced rapid mucosal immune activation in C57BL/6 mice involving IFNβ and the CXCL10/CXCR3 axis, that may drive inflammation towards a Th1 profile. Intraluminal poly I:C also caused enteropathy and gut dysfunction in gliadin-sensitive NOD-DQ8 mice, and this was prolonged by concomitant oral administration of gliadin. Our results indicate that small intestine pathology can be induced in mice by intraluminal administration of poly I:C and that this is exacerbated by subsequent oral delivery of a relevant dietary antigen.

  20. Semiconductor/High-Tc-Superconductor Hybrid ICs

    NASA Technical Reports Server (NTRS)

    Burns, Michael J.

    1995-01-01

    Hybrid integrated circuits (ICs) containing both Si-based semiconducting and YBa(2)Cu(3)O(7-x) superconducting circuit elements on sapphire substrates developed. Help to prevent diffusion of Cu from superconductors into semiconductors. These hybrid ICs combine superconducting and semiconducting features unavailable in superconducting or semiconducting circuitry alone. For example, complementary metal oxide/semiconductor (CMOS) readout and memory devices integrated with fast-switching Josephson-junction super-conducting logic devices and zero-resistance interconnections.

  1. Interleukin-6 and lung inflammation: evidence for a causative role in inducing respiratory system resistance increments.

    PubMed

    Rubini, Alessandro

    2013-10-01

    Interleukin-6 is a multifunctional cytokine that has been shown to be increased in some pathological conditions involving the respiratory system such as those experimentally induced in animals or spontaneously occurring in humans. Experimental data demonstrating that interleukin-6 plays a significant role in commonly occurring respiratory system inflammatory diseases are reviewed here. Those diseases, i.e. asthma and chronic obstructive pulmonary disease, are characterised by mechanical derangements of the respiratory system, for the most part due to increased elastance and airway resistance. Recent findings showing that interleukin-6 has a causative role in determining an increase in airway resistance are reviewed. The end-inflation occlusion method was used to study the mechanical properties of the respiratory system before and after interleukin-6 administration. The cytokine was shown to induce significant, dose-dependent increments in both the resistive pressure dissipation due to frictional forces opposing the airflow in the airway (ohmic resistance) and the additional resistive pressure dissipation due to the visco-elastic properties of the system, i.e. stress relaxation (visco-elastic resistance). There were no alterations in respiratory system elastance. Even when administered to healthy mammals, interleukin-6 determines a significant effect on respiratory system resistance causing an increase in the mechanical work of breathing during inspiration. IL-6 hypothetically plays an active role in the pathogenesis of respiratory system diseases and the mechanisms that may be involved are discussed here.

  2. The tuberculosis vaccine H4:IC31 is safe and induces a persistent polyfunctional CD4 T cell response in South African adults: A randomized controlled trial.

    PubMed

    Geldenhuys, Hennie; Mearns, Helen; Miles, David J C; Tameris, Michele; Hokey, David; Shi, Zhongkai; Bennett, Sean; Andersen, Peter; Kromann, Ingrid; Hoff, Søren T; Hanekom, Willem A; Mahomed, Hassan; Hatherill, Mark; Scriba, Thomas J; van Rooyen, Michele; Bruce McClain, J; Ryall, Robert; de Bruyn, Guy

    2015-07-09

    New, more effective vaccines to prevent tuberculosis (TB) disease are needed urgently. H4:IC31 is an investigational vaccine that contains a fusion protein of the immunodominant antigens TB10.4 and Ag85B, formulated in IC31 adjuvant. We assessed the safety and immunogenicity of H4:IC31 in South African adults from a TB endemic setting. In this double blind, placebo controlled, phase I trial, Mycobacterium tuberculosis-uninfected, HIV-uninfected, healthy adults with a history of childhood BCG vaccination were randomly allocated to two intramuscular vaccinations with 5, 15, 50 or 150 μg H4 formulated in 500nmol IC31, two months apart. Vaccinees were followed for six months to assess safety; immunogenicity was measured by ELISpot and intracellular cytokine staining assays. Thirty-two participants received H4:IC31 and 8 received placebo. Injection site adverse events were common but mild; mild fatigue was the most common systemic adverse event. Frequencies of adverse events did not differ between dosage groups. Detectable antigen-specific CD4 T cell responses were induced by all doses of H4:IC31, but doses below 50 μg induced the highest frequencies of CD4 T cells, comprised predominantly of IFN-γ(+)TNF-α(+)IL-2(+) or TNF-α(+)IL-2(+) cells. These memory responses persisted up to the end of follow up, on study day 182. H4:IC31 demonstrated an acceptable safety profile and was immunogenic in South African adults. In this trial, the 15 μg dose appeared to induce the most optimal immune response. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Protecting ICS Systems Within the Energy Sector from Cyber Attacks

    NASA Astrophysics Data System (ADS)

    Barnes, Shaquille

    Advance persistent threat (APT) groups are continuing to attack the energy sector through cyberspace, which poses a risk to our society, national security, and economy. Industrial control systems (ICSs) are not designed to handle cyber-attacks, which is why asset owners need to implement the correct proactive and reactive measures to mitigate the risk to their ICS environments. The Industrial Control Systems Cyber Emergency Response Team (ICS-CERT) responded to 290 incidents for fiscal year 2016, where 59 of those incidents came from the Energy Sector. APT groups know how vulnerable energy sector ICS systems are and the destruction they can cause when they go offline such as loss of production, loss of life, and economic impact. Defending against APT groups requires more than just passive controls such as firewalls and antivirus solutions. Asset owners should implement a combination of best practices and active defense in their environment to defend against APT groups. Cyber-attacks against critical infrastructure will become more complex and harder to detect and respond to with traditional security controls. The purpose of this paper was to provide asset owners with the correct security controls and methodologies to help defend against APT groups.

  4. BCH codes for large IC random-access memory systems

    NASA Technical Reports Server (NTRS)

    Lin, S.; Costello, D. J., Jr.

    1983-01-01

    In this report some shortened BCH codes for possible applications to large IC random-access memory systems are presented. These codes are given by their parity-check matrices. Encoding and decoding of these codes are discussed.

  5. Suppression of ciprofloxacin-induced resistant Pseudomonas aeruginosa in a dynamic kill curve system.

    PubMed

    Wu, Benjamin M; Sabarinath, Sreedharan N; Rand, Kenneth; Johnson, Judith; Derendorf, Hartmut

    2011-06-01

    Current dosing approaches for treating microbial infections ignore resistant subpopulations. A clinical isolate of Pseudomonas aeruginosa was cultured in a dynamic in vitro kill curve system designed to simulate the half-lives of drugs in order to evaluate the drug-microbial response relationship. The first dose of ciprofloxacin (CIP) uses a concentration equivalent to the unbound fraction of a 200mg clinical dose. A second dose of 200mg or 600 mg CIP, or ceftriaxone (CFX) or gentamicin (GEN) was administered at 12h. Dynamics of the minimum inhibitory concentration (MIC) were assessed using Etest strips before and throughout the CIP treatment period. In addition, the microbroth dilution method was used to evaluate drug susceptibility across a wide range of antibiotics using samples from before and after CIP exposure. A significant loss of CIP effects was observed at the second dose. Cross-resistance to many antibiotics (cefoxitin, cefuroxime, cefotetan, ampicillin and ertapenem) was observed. GEN, but not CFX or high-dose CIP, was sufficient to suppress the developed resistant subpopulation following the initial CIP exposure. The CIP MIC increased substantially from 0.13 μg/mL pre dose to 4 μg/mL at 12h after a CIP dose. In addition, aztreonam induced a similar resistance pattern as CIP, indicating that induction of resistance was not limited to fluoroquinolones. In conclusion, the in vitro dynamic kill curve system revealed that aminoglycosides, more than other classes of antibiotics, were effective against the CIP-induced resistant subpopulations. Copyright © 2011 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  6. Coconut Oil Aggravates Pressure Overload-Induced Cardiomyopathy without Inducing Obesity, Systemic Insulin Resistance, or Cardiac Steatosis

    PubMed Central

    Muthuramu, Ilayaraja; Amin, Ruhul; Postnov, Andrey; Mishra, Mudit; Jacobs, Frank; Gheysens, Olivier; Van Veldhoven, Paul P.; De Geest, Bart

    2017-01-01

    Studies evaluating the effects of high-saturated fat diets on cardiac function are most often confounded by diet-induced obesity and by systemic insulin resistance. We evaluated whether coconut oil, containing C12:0 and C14:0 as main fatty acids, aggravates pressure overload-induced cardiomyopathy induced by transverse aortic constriction (TAC) in C57BL/6 mice. Mortality rate after TAC was higher (p < 0.05) in 0.2% cholesterol 10% coconut oil diet-fed mice than in standard chow-fed mice (hazard ratio 2.32, 95% confidence interval 1.16 to 4.64) during eight weeks of follow-up. The effects of coconut oil on cardiac remodeling occurred in the absence of weight gain and of systemic insulin resistance. Wet lung weight was 1.76-fold (p < 0.01) higher in coconut oil mice than in standard chow mice. Myocardial capillary density (p < 0.001) was decreased, interstitial fibrosis was 1.88-fold (p < 0.001) higher, and systolic and diastolic function was worse in coconut oil mice than in standard chow mice. Myocardial glucose uptake was 1.86-fold (p < 0.001) higher in coconut oil mice and was accompanied by higher myocardial pyruvate dehydrogenase levels and higher acetyl-CoA carboxylase levels. The coconut oil diet increased oxidative stress. Myocardial triglycerides and free fatty acids were lower (p < 0.05) in coconut oil mice. In conclusion, coconut oil aggravates pressure overload-induced cardiomyopathy. PMID:28718833

  7. Coconut Oil Aggravates Pressure Overload-Induced Cardiomyopathy without Inducing Obesity, Systemic Insulin Resistance, or Cardiac Steatosis.

    PubMed

    Muthuramu, Ilayaraja; Amin, Ruhul; Postnov, Andrey; Mishra, Mudit; Jacobs, Frank; Gheysens, Olivier; Van Veldhoven, Paul P; De Geest, Bart

    2017-07-18

    Studies evaluating the effects of high-saturated fat diets on cardiac function are most often confounded by diet-induced obesity and by systemic insulin resistance. We evaluated whether coconut oil, containing C12:0 and C14:0 as main fatty acids, aggravates pressure overload-induced cardiomyopathy induced by transverse aortic constriction (TAC) in C57BL/6 mice. Mortality rate after TAC was higher ( p < 0.05) in 0.2% cholesterol 10% coconut oil diet-fed mice than in standard chow-fed mice (hazard ratio 2.32, 95% confidence interval 1.16 to 4.64) during eight weeks of follow-up. The effects of coconut oil on cardiac remodeling occurred in the absence of weight gain and of systemic insulin resistance. Wet lung weight was 1.76-fold ( p < 0.01) higher in coconut oil mice than in standard chow mice. Myocardial capillary density ( p < 0.001) was decreased, interstitial fibrosis was 1.88-fold ( p < 0.001) higher, and systolic and diastolic function was worse in coconut oil mice than in standard chow mice. Myocardial glucose uptake was 1.86-fold ( p < 0.001) higher in coconut oil mice and was accompanied by higher myocardial pyruvate dehydrogenase levels and higher acetyl-CoA carboxylase levels. The coconut oil diet increased oxidative stress. Myocardial triglycerides and free fatty acids were lower ( p < 0.05) in coconut oil mice. In conclusion, coconut oil aggravates pressure overload-induced cardiomyopathy.

  8. Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato

    PubMed Central

    Martínez-Medina, Ainhoa; Fernández, Iván; Sánchez-Guzmán, María J.; Jung, Sabine C.; Pascual, Jose A.; Pozo, María J.

    2013-01-01

    Root colonization by selected Trichoderma isolates can activate in the plant a systemic defense response that is effective against a broad-spectrum of plant pathogens. Diverse plant hormones play pivotal roles in the regulation of the defense signaling network that leads to the induction of systemic resistance triggered by beneficial organisms [induced systemic resistance (ISR)]. Among them, jasmonic acid (JA) and ethylene (ET) signaling pathways are generally essential for ISR. However, Trichoderma ISR (TISR) is believed to involve a wider variety of signaling routes, interconnected in a complex network of cross-communicating hormone pathways. Using tomato as a model, an integrative analysis of the main mechanisms involved in the systemic resistance induced by Trichoderma harzianum against the necrotrophic leaf pathogen Botrytis cinerea was performed. Root colonization by T. harzianum rendered the leaves more resistant to B. cinerea independently of major effects on plant nutrition. The analysis of disease development in shoots of tomato mutant lines impaired in the synthesis of the key defense-related hormones JA, ET, salicylic acid (SA), and abscisic acid (ABA), and the peptide prosystemin (PS) evidenced the requirement of intact JA, SA, and ABA signaling pathways for a functional TISR. Expression analysis of several hormone-related marker genes point to the role of priming for enhanced JA-dependent defense responses upon pathogen infection. Together, our results indicate that although TISR induced in tomato against necrotrophs is mainly based on boosted JA-dependent responses, the pathways regulated by the plant hormones SA- and ABA are also required for successful TISR development. PMID:23805146

  9. Transforming and differentiation-inducing potential of constitutively activated c-kit mutant genes in the IC-2 murine interleukin-3-dependent mast cell line.

    PubMed Central

    Hashimoto, K.; Tsujimura, T.; Moriyama, Y.; Yamatodani, A.; Kimura, M.; Tohya, K.; Morimoto, M.; Kitayama, H.; Kanakura, Y.; Kitamura, Y.

    1996-01-01

    Two mutations of c-kit receptor tyrosine kinase (KIT), valine-559 to glycine (G559) and aspartic acid-814 to valine (V814), resulted in its constitutive activation. To examine the transforming and differentiation-inducing potential of the mutant KIT, we used the murine interleukin-3-dependent IC-2 mast cell line as a transfectant. The IC-2 cells contained few basophilic granules and did not express KIT on the surface. The KITG559 or KITV814 gene was introduced into IC-2 cells using a retroviral vector. KITG559 and KITV814 expressed in IC-2 cells were constitutively phosphorylated on tyrosine and demonstrated kinase activity in the absence of stem cell factor, which is a ligand for KIT. IC-2 cells expressing either KITG559 or KITV814 (IC-2G559 or IC-2V814 cells) showed factor-independent growth in suspension culture and produced tumors in nude athymic mice. In addition, IC-2G559 and IC-2V814 cells showed a more mature phenotype compared with the phenotype of the original IC-2 cells, especially after transplantation into nude mice. The number of basophilic granules and the content of histamine increased remarkably. KITG559 and KITV814 also influenced the transcriptional phenotype of mouse mast cell proteases (MMCP) in IC-2 cells. The expression of MMCP-2, MMCP-4, and MMCP-6 was much greater in IC-2G559 and IC-2V814 cells than in the original IC-2 cells. The results indicated that constitutively activated KIT had not only oncogenic activity but also differentiation-inducing activity in mast cells. Images Figure 1 Figure 4 Figure 5 Figure 6 PMID:8546206

  10. Development of voice navigation system for the visually impaired by using IC tags.

    PubMed

    Takatori, Norihiko; Nojima, Kengo; Matsumoto, Masashi; Yanashima, Kenji; Magatani, Kazushige

    2006-01-01

    There are about 300,000 visually impaired persons in Japan. Most of them are old persons and, cannot become skillful in using a white cane, even if they make effort to learn how to use a white cane. Therefore, some guiding system that supports the independent activities of the visually impaired are required. In this paper, we will describe about a developed white cane system that supports the independent walking of the visually impaired in the indoor space. This system is composed of colored navigation lines that include IC tags and an intelligent white cane that has a navigation computer. In our system colored navigation lines that are put on the floor of the target space from the start point to the destination and IC tags that are set at the landmark point are used for indication of the route to the destination. The white cane has a color sensor, an IC tag transceiver and a computer system that includes a voice processor. This white cane senses the navigation line that has target color by a color sensor. When a color sensor finds the target color, the white cane informs a white cane user that he/she is on the navigation line by vibration. So, only following this vibration, the user can reach the destination. However, at some landmark points, guidance is necessary. At these points, an IC tag is set under the navigation line. The cane makes communication with the tag and informs the user about the land mark pint by pre recorded voice. Ten normal subjects who were blindfolded were tested with our developed system. All of them could walk along navigation line. And the IC tag information system worked well. Therefore, we have concluded that our system will be a very valuable one to support activities of the visually impaired.

  11. New generation QuIC assays for prion seeding activity.

    PubMed

    Orrù, Christina D; Wilham, Jason M; Vascellari, Sarah; Hughson, Andrew G; Caughey, Byron

    2012-01-01

    The ability of abnormal TSE-associated forms of PrP to seed the formation of amyloid fibrils from recombinant PrP(Sen) has served as the basis for several relatively rapid and highly sensitive tests for prion diseases. These tests include rPrP-PMCA (rPMCA), standard quaking-induced conversion (S-QuIC), amyloid seeding assay (ASA), real-time QuIC (RT-QuIC) and enhanced QuIC (eQuIC). Here, we summarize recent improvements in the RT-QuIC-based assays that enhance the practicality, sensitivity and quantitative attributes of assays QuIC and promote the detection of prion seeding activity in dilute, inhibitor-laden fluids such as blood plasma.

  12. Neonicotinoid insecticides induce salicylate-associated plant defense responses

    PubMed Central

    Ford, Kevin A.; Casida, John E.; Chandran, Divya; Gulevich, Alexander G.; Okrent, Rachel A.; Durkin, Kathleen A.; Sarpong, Richmond; Bunnelle, Eric M.; Wildermuth, Mary C.

    2010-01-01

    Neonicotinoid insecticides control crop pests based on their action as agonists at the insect nicotinic acetylcholine receptor, which accepts chloropyridinyl- and chlorothiazolyl-analogs almost equally well. In some cases, these compounds have also been reported to enhance plant vigor and (a)biotic stress tolerance, independent of their insecticidal function. However, this mode of action has not been defined. Using Arabidopsis thaliana, we show that the neonicotinoid compounds, imidacloprid (IMI) and clothianidin (CLO), via their 6-chloropyridinyl-3-carboxylic acid and 2-chlorothiazolyl-5-carboxylic acid metabolites, respectively, induce salicylic acid (SA)-associated plant responses. SA is a phytohormone best known for its role in plant defense against pathogens and as an inducer of systemic acquired resistance; however, it can also modulate abiotic stress responses. These neonicotinoids effect a similar global transcriptional response to that of SA, including genes involved in (a)biotic stress response. Furthermore, similar to SA, IMI and CLO induce systemic acquired resistance, resulting in reduced growth of a powdery mildew pathogen. The action of CLO induces the endogenous synthesis of SA via the SA biosynthetic enzyme ICS1, with ICS1 required for CLO-induced accumulation of SA, expression of the SA marker PR1, and fully enhanced resistance to powdery mildew. In contrast, the action of IMI does not induce endogenous synthesis of SA. Instead, IMI is further bioactivated to 6-chloro-2-hydroxypyridinyl-3-carboxylic acid, which is shown here to be a potent inducer of PR1 and inhibitor of SA-sensitive enzymes. Thus, via different mechanisms, these chloropyridinyl- and chlorothiazolyl-neonicotinoids induce SA responses associated with enhanced stress tolerance. PMID:20876120

  13. Development of disease-resistant rice using regulatory components of induced disease resistance

    PubMed Central

    Takatsuji, Hiroshi

    2014-01-01

    Infectious diseases cause huge crop losses annually. In response to pathogen attacks, plants activate defense systems that are mediated through various signaling pathways. The salicylic acid (SA) signaling pathway is the most powerful of these pathways. Several regulatory components of the SA signaling pathway have been identified, and are potential targets for genetic manipulation of plants’ disease resistance. However, the resistance associated with these regulatory components is often accompanied by fitness costs; that is, negative effects on plant growth and crop yield. Chemical defense inducers, such as benzothiadiazole and probenazole, act on the SA pathway and induce strong resistance to various pathogens without major fitness costs, owing to their ‘priming effect.’ Studies on how benzothiadiazole induces disease resistance in rice have identified WRKY45, a key transcription factor in the branched SA pathway, and OsNPR1/NH1. Rice plants overexpressing WRKY45 were extremely resistant to rice blast disease caused by the fungus Magnaporthe oryzae and bacterial leaf blight disease caused by Xanthomonas oryzae pv. oryzae (Xoo), the two major rice diseases. Disease resistance is often accompanied by fitness costs; however, WRKY45 overexpression imposed relatively small fitness costs on rice because of its priming effect. This priming effect was similar to that of chemical defense inducers, although the fitness costs were amplified by some environmental factors. WRKY45 is degraded by the ubiquitin–proteasome system, and the dual role of this degradation partly explains the priming effect. The synergistic interaction between SA and cytokinin signaling that activates WRKY45 also likely contributes to the priming effect. With a main focus on these studies, I review the current knowledge of SA-pathway-dependent defense in rice by comparing it with that in Arabidopsis, and discuss potential strategies to develop disease-resistant rice using signaling components

  14. SPROC: A multiple-processor DSP IC

    NASA Technical Reports Server (NTRS)

    Davis, R.

    1991-01-01

    A large, single-chip, multiple-processor, digital signal processing (DSP) integrated circuit (IC) fabricated in HP-Cmos34 is presented. The innovative architecture is best suited for analog and real-time systems characterized by both parallel signal data flows and concurrent logic processing. The IC is supported by a powerful development system that transforms graphical signal flow graphs into production-ready systems in minutes. Automatic compiler partitioning of tasks among four on-chip processors gives the IC the signal processing power of several conventional DSP chips.

  15. Effect of volatile compounds produced by Ralstonia solanacearum on plant growth promoting and systemic resistance inducing potential of Bacillus volatiles.

    PubMed

    Tahir, Hafiz Abdul Samad; Gu, Qin; Wu, Huijun; Raza, Waseem; Safdar, Asma; Huang, Ziyang; Rajer, Faheem Uddin; Gao, Xuewen

    2017-08-02

    Microbial volatiles play an expedient role in the agricultural ecological system by enhancing plant growth and inducing systemic resistance against plant pathogens, without causing hazardous effects on the environment. To explore the effects of VOCs of Ralstonia solanacearum TBBS1 (Rs) on tobacco plant growth and on plant growth promoting efficiency of VOCs produced by Bacillus subtilis SYST2, experiments were conducted both in vitro and in planta. The VOCs produced by SYST2 significantly enhanced the plant growth and induced the systemic resistance (ISR) against wilt pathogen Rs in all experiments. The SYST2-VOCs significantly increased PPO and PAL activity and over-expressed the genes relating to expansin, wilt resistance, and plant defense while repressed the genes relating to ethylene production. More interestingly, VOCs produced by pathogen, Rs had no significant effect on plant growth; however, Rs-VOCs decreased the growth promoting potential of SYST2-VOCs when plants were exposed to VOCs produced by both SYST2 and Rs. The co-culture of SYST2 and Rs revealed that they inhibited the growth of each other; however, the inhibition of Rs by SYST2-VOCs appeared to be greater than that of SYST2 by Rs-VOCs. Our findings provide new insights regarding the interaction among SYST2-VOCs, Rs-VOCs and plant, resulting in growth promotion and induced systemic resistance against the bacterial wilt pathogen Rs. This is the first report of the effect of VOCs produced by pathogenic microorganism on plant growth and on plant growth-promoting and systemic resistance-inducing potential of PGPR strain SYST2.

  16. Anesthesia with propofol induces insulin resistance systemically in skeletal and cardiac muscles and liver of rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasuda, Yoshikazu; Fukushima, Yuji; Kaneki, Masao

    Highlights: ► Propofol, as a model anesthetic drug, induced whole body insulin resistance. ► Propofol anesthesia decreased glucose infusion rate to maintain euglycemia. ► Propofol decreased insulin-mediated glucose uptake in skeletal and cardiac muscles. ► Propofol increased hepatic glucose output confirming hepatic insulin resistance. -- Abstract: Hyperglycemia together with hepatic and muscle insulin resistance are common features in critically ill patients, and these changes are associated with enhanced inflammatory response, increased susceptibility to infection, muscle wasting, and worsened prognosis. Tight blood glucose control by intensive insulin treatment may reduce the morbidity and mortality in intensive care units. Although some anestheticsmore » have been shown to cause insulin resistance, it remains unknown how and in which tissues insulin resistance is induced by anesthetics. Moreover, the effects of propofol, a clinically relevant intravenous anesthetic, also used in the intensive care unit for sedation, on insulin sensitivity have not yet been investigated. Euglycemic hyperinsulinemic clamp study was performed in rats anesthetized with propofol and conscious unrestrained rats. To evaluate glucose uptake in tissues and hepatic glucose output [{sup 3}H]glucose and 2-deoxy[{sup 14}C]glucose were infused during the clamp study. Anesthesia with propofol induced a marked whole-body insulin resistance compared with conscious rats, as reflected by significantly decreased glucose infusion rate to maintain euglycemia. Insulin-stimulated tissue glucose uptake was decreased in skeletal muscle and heart, and hepatic glucose output was increased in propofol anesthetized rats. Anesthesia with propofol induces systemic insulin resistance along with decreases in insulin-stimulated glucose uptake in skeletal and heart muscle and attenuation of the insulin-mediated suppression of hepatic glucose output in rats.« less

  17. Exploring physical and chemical factors influencing the properties of recombinant prion protein and the real-time quaking-induced conversion (RT-QuIC) assay.

    PubMed

    Cheng, Keding; Sloan, Angela; Avery, Kristen M; Coulthart, Michael; Carpenter, Michael; Knox, J David

    2014-01-01

    Real-time quaking-induced conversion (RT-QuIC), a highly specific and sensitive assay able to detect low levels of the disease-inducing isoform of the prion protein (PrP(d)) in brain tissue biopsies and cerebral spinal fluid, has great potential to become a method for diagnosing prion disease ante mortem. In order to standardize the assay method for routine analysis, an understanding of how physical and chemical factors affect the stability of the recombinant prion protein (rPrP) substrate and the RT-QuIC assay's sensitivity, specificity, and reproducibility is required. In this study, using sporadic Creutzfeldt-Jakob Disease brain homogenate to seed the reactions and an in vitro-expressed recombinant prion protein, hamster rPrP, as the substrate, the following factors affecting the RT-QuIC assay were examined: salt and substrate concentrations, substrate storage, and pH. Results demonstrated that both the generation of the quality and quantities of rPrP substrate critical to the reaction, as well as the RT-QuIC reaction itself required strict adherence to specific physical and chemical conditions. Once optimized, the RT-QuIC assay was confirmed to be a very specific and sensitive assay method for sCJD detection. Findings in this study indicate that further optimization and standardization of RT-QuIC assay is required before it can be adopted as a routine diagnostic test.

  18. Zoledronic acid induces dose-dependent increase of antigen-specific CD8 T-cell responses in combination with peptide/poly-IC vaccine.

    PubMed

    Park, Hye-Mi; Cho, Hyun-Il; Shin, Chang-Ae; Shon, Hyun-Jung; Kim, Tai-Gyu

    2016-03-04

    Zoledronic acid (ZA) is used for treating osteoporosis and for preventing skeletal fractures in cancer patients suffering from myeloma and prostate cancer. It is also reported to directly induce cancer cell apoptosis and indirectly modulate T-cell immune response as an antitumor agent. In this study, the effect of ZA following peptide/polyinosinic-polycytidylic acid (poly-IC) vaccination was investigated in a murine tumor model. The combination of ZA with peptide/poly-IC vaccine showed a synergistic effect on the induction of antigen-specific CD8 T-cell response. Three consecutive intravenous administrations of ZA was defined to induce the highest CD8 T-cell response. Further, total splenocyte counts and antigen-specific CD8 T-cell response gradually increased depending on the dose of ZA. In tumor-bearing mice, ZA showed a dose-dependent decrease of growth and prolonged survival. Treatment with ZA only decreased the number of CD11b(+)Gr1(+) myeloid cells in blood. Our results demonstrate that the use of ZA could improve antitumor immune responses induced by the peptide/poly-IC vaccine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Analog/digital pH meter system I.C.

    NASA Technical Reports Server (NTRS)

    Vincent, Paul; Park, Jea

    1992-01-01

    The project utilizes design automation software tools to design, simulate, and fabricate a pH meter integrated circuit (IC) system including a successive approximation type seven-bit analog to digital converter circuits using a 1.25 micron N-Well CMOS MOSIS process. The input voltage ranges from 0.5 to 1.0 V derived from a special type pH sensor, and the output is a three-digit decimal number display of pH with one decimal point.

  20. 40 CFR 80.1270 - Who may generate benzene credits under the ABT program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Who may generate benzene credits under... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1270 Who may generate benzene credits under the ABT program? (a...

  1. 40 CFR 80.1270 - Who may generate benzene credits under the ABT program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Who may generate benzene credits under... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1270 Who may generate benzene credits under the ABT program? (a...

  2. 40 CFR 80.1270 - Who may generate benzene credits under the ABT program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Who may generate benzene credits under... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1270 Who may generate benzene credits under the ABT program? (a...

  3. 40 CFR 80.1270 - Who may generate benzene credits under the ABT program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Who may generate benzene credits under... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1270 Who may generate benzene credits under the ABT program? (a...

  4. 40 CFR 80.1270 - Who may generate benzene credits under the ABT program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Who may generate benzene credits under... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1270 Who may generate benzene credits under the ABT program? (a...

  5. Present, future of automotive hybrid IC applications discussed

    NASA Astrophysics Data System (ADS)

    Matsuda, Nobuyoshi; Fukuoka, Atuhisa

    1987-09-01

    Hybrid ICs are presently utilized in various fields such as commercial televisions, VTRs, and audio devices, industrial usage of communication equipment, computers, terminals, and automobiles. Its applications and environments are various and diverse. The functions required for hybrid ICs vary from simple high density mounting for a system to the realization of high mechanisms with the application of function timing. The functions are properly used depending upon the system with its hybrid ICs and its circuit composition. Considering structure and reliability requirements for automotive hybrid ICs, an application example for hybrid ICs which use the package (COMPACT), will be discussed.

  6. High ESD Breakdown-Voltage InP HBT Transimpedance Amplifier IC for Optical Video Distribution Systems

    NASA Astrophysics Data System (ADS)

    Sano, Kimikazu; Nagatani, Munehiko; Mutoh, Miwa; Murata, Koichi

    This paper is a report on a high ESD breakdown-voltage InP HBT transimpedance amplifier IC for optical video distribution systems. To make ESD breakdown-voltage higher, we designed ESD protection circuits integrated in the TIA IC using base-collector/base-emitter diodes of InP HBTs and resistors. These components for ESD protection circuits have already existed in the employed InP HBT IC process, so no process modifications were needed. Furthermore, to meet requirements for use in optical video distribution systems, we studied circuit design techniques to obtain a good input-output linearity and a low-noise characteristic. Fabricated InP HBT TIA IC exhibited high human-body-model ESD breakdown voltages (±1000V for power supply terminals, ±200V for high-speed input/output terminals), good input-output linearity (less than 2.9-% duty-cycle-distortion), and low noise characteristic (10.7pA/√Hz averaged input-referred noise current density) with a -3-dB-down higher frequency of 6.9GHz. To the best of our knowledge, this paper is the first literature describing InP ICs with high ESD-breakdown voltages.

  7. Temperature induced complementary switching in titanium oxide resistive random access memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panda, D., E-mail: dpanda@nist.edu; Department of Electronics Engineering and Institute of Electronics, National Chiao Tung University, Hsinchu 30010, Taiwan; Simanjuntak, F. M.

    2016-07-15

    On the way towards high memory density and computer performance, a considerable development in energy efficiency represents the foremost aspiration in future information technology. Complementary resistive switch consists of two antiserial resistive switching memory (RRAM) elements and allows for the construction of large passive crossbar arrays by solving the sneak path problem in combination with a drastic reduction of the power consumption. Here we present a titanium oxide based complementary RRAM (CRRAM) device with Pt top and TiN bottom electrode. A subsequent post metal annealing at 400°C induces CRRAM. Forming voltage of 4.3 V is required for this device tomore » initiate switching process. The same device also exhibiting bipolar switching at lower compliance current, Ic <50 μA. The CRRAM device have high reliabilities. Formation of intermediate titanium oxi-nitride layer is confirmed from the cross-sectional HRTEM analysis. The origin of complementary switching mechanism have been discussed with AES, HRTEM analysis and schematic diagram. This paper provides valuable data along with analysis on the origin of CRRAM for the application in nanoscale devices.« less

  8. The next generation in optical transport semiconductors: IC solutions at the system level

    NASA Astrophysics Data System (ADS)

    Gomatam, Badri N.

    2005-02-01

    In this tutorial overview, we survey some of the challenging problems facing Optical Transport and their solutions using new semiconductor-based technologies. Advances in 0.13um CMOS, SiGe/HBT and InP/HBT IC process technologies and mixed-signal design strategies are the fundamental breakthroughs that have made these solutions possible. In combination with innovative packaging and transponder/transceiver architectures IC approaches have clearly demonstrated enhanced optical link budgets with simultaneously lower (perhaps the lowest to date) cost and manufacturability tradeoffs. This paper will describe: *Electronic Dispersion Compensation broadly viewed as the overcoming of dispersion based limits to OC-192 links and extending link budgets, *Error Control/Coding also known as Forward Error Correction (FEC), *Adaptive Receivers for signal quality monitoring for real-time estimation of Q/OSNR, eye-pattern, signal BER and related temporal statistics (such as jitter). We will discuss the theoretical underpinnings of these receiver and transmitter architectures, provide examples of system performance and conclude with general market trends. These Physical layer IC solutions represent a fundamental new toolbox of options for equipment designers in addressing systems level problems. With unmatched cost and yield/performance tradeoffs, it is expected that IC approaches will provide significant flexibility in turn, for carriers and service providers who must ultimately manage the network and assure acceptable quality of service under stringent cost constraints.

  9. Development of brain injury criteria (BrIC).

    PubMed

    Takhounts, Erik G; Craig, Matthew J; Moorhouse, Kevin; McFadden, Joe; Hasija, Vikas

    2013-11-01

    Rotational motion of the head as a mechanism for brain injury was proposed back in the 1940s. Since then a multitude of research studies by various institutions were conducted to confirm/reject this hypothesis. Most of the studies were conducted on animals and concluded that rotational kinematics experienced by the animal's head may cause axonal deformations large enough to induce their functional deficit. Other studies utilized physical and mathematical models of human and animal heads to derive brain injury criteria based on deformation/pressure histories computed from their models. This study differs from the previous research in the following ways: first, it uses two different detailed mathematical models of human head (SIMon and GHBMC), each validated against various human brain response datasets; then establishes physical (strain and stress based) injury criteria for various types of brain injury based on scaled animal injury data; and finally, uses Anthropomorphic Test Devices (ATDs) (Hybrid III 50th Male, Hybrid III 5th Female, THOR 50th Male, ES-2re, SID-IIs, WorldSID 50th Male, and WorldSID 5th Female) test data (NCAP, pendulum, and frontal offset tests) to establish a kinematically based brain injury criterion (BrIC) for all ATDs. Similar procedures were applied to college football data where thousands of head impacts were recorded using a six degrees of freedom (6 DOF) instrumented helmet system. Since animal injury data used in derivation of BrIC were predominantly for diffuse axonal injury (DAI) type, which is currently an AIS 4+ injury, cumulative strain damage measure (CSDM) and maximum principal strain (MPS) were used to derive risk curves for AIS 4+ anatomic brain injuries. The AIS 1+, 2+, 3+, and 5+ risk curves for CSDM and MPS were then computed using the ratios between corresponding risk curves for head injury criterion (HIC) at a 50% risk. The risk curves for BrIC were then obtained from CSDM and MPS risk curves using the linear relationship

  10. Insulin treatment promotes tyrosine phosphorylation of PKR and inhibits polyIC induced PKR threonine phosphorylation.

    PubMed

    Swetha, Medchalmi; Ramaiah, Kolluru V A

    2015-11-01

    Tyrosine phosphorylation of insulin receptor beta (IRβ) in insulin treated HepG2 cells is inversely correlated to ser(51) phosphorylation in the alpha-subunit of eukaryotic initiation factor 2 (eIF2α) that regulates protein synthesis. Insulin stimulates interaction between IRβ and PKR, double stranded RNA-dependent protein kinase, also known as EIF2AK2, and phosphorylation of tyrosine residues in PKR, as analyzed by immunoprecipitation and pull down assays using anti-IRβ and anti-phosphotyrosine antibodies, recombinant IRβ and immunopurified PKR. Further polyIC or synthetic double stranded RNA-induced threonine phosphorylation or activation of immunopurified and cellular PKR is suppressed in the presence of insulin treated purified IRβ and cell extracts. Acute, but not chronic, insulin treatment enhances tyrosine phosphorylation of IRβ, its interaction with PKR and tyrosine phosphorylation of PKR. In contrast, lipopolysaccharide that stimulates threonine phosphorylation of PKR and eIF2α phosphorylation and AG 1024, an inhibitor of the tyrosine kinase activity of IRβ, reduces PKR association with the receptor, IRβ in HepG2 cells. These findings therefore may suggest that tyrosine phosphorylated PKR plays a role in the regulation of insulin induced protein synthesis and in maintaining insulin sensitivity, whereas, suppression of polyIC-mediated threonine phosphorylation of PKR by insulin compromises its ability to fight against virus infection in host cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Developing a Decision Support System for Flood Response: NIMS/ICS Fundamentals

    NASA Astrophysics Data System (ADS)

    Gutenson, J. L.; Zhang, X.; Ernest, A. N. S.; Oubeidillah, A.; Zhu, L.

    2015-12-01

    Effective response to regional disasters such as floods requires a multipronged, non-linear approach to reduce loss of life, property and harm to the environment. These coordinated response actions are typically undertaken by multiple jurisdictions, levels of government, functional agencies and other responsible entities. A successful response is highly dependent on the effectiveness and efficiency of each coordinated response action undertaken across a broad spectrum of organizations and activities. In order to provide a unified framework for those responding to incidents or planned events, FEMA provides a common and flexible approach for managing incidents, regardless of cause, size, location or complexity, referred to as the National Incident Management System (NIMS). Integral to NIMS is the Incident Command System (ICS), which establishes a common, pre-defined organizational structure to ensure coordination and management of procedures, resources and communications, for efficient incident management. While being both efficient and rigorous, NIMS, and ICS to a lesser extent, is an inherently complex framework that requires significant amount of training for planners, responders and managers to master, especially considering the wide array of incident types that Local Emergency Planning Committees (LEPCs) must be prepared to respond to. The existing Water-Wizard Decision Support System (DSS), developed to support water distribution system recovery operations for Decontamination (Decon), Operational Optimization (WDS), and Economic Consequence Assessment (Econ), is being evolved to integrate incident response functions. Water-Wizard runs on both mobile and desktop devices, and is being extended to utilize smartphone and mobile device specific data streams (e.g GPS location) to augment its fact-base in real-time for situational-aware DSS recommendations. In addition, the structured NIMS and ICS frameworks for incident management and response are being incorporated

  12. Simultaneous effects of food limitation and inducible resistance on herbivore population dynamics.

    PubMed

    Abbott, Karen C; Morris, William F; Gross, Kevin

    2008-02-01

    Many herbivore populations fluctuate temporally, but the causes of those fluctuations remain unclear. Plant inducible resistance can theoretically cause herbivore population fluctuations, because herbivory may induce plant changes that reduce the survival or reproduction of later-feeding herbivores. Herbivory can also simply reduce the quantity of food available for later feeders and this, too, can cause population fluctuations. Inducible resistance and food limitation often occur simultaneously, yet whether they jointly facilitate or suppress herbivore fluctuations remains largely unexplored. We present models that suggest that food limitation and inducible resistance may have synergistic effects on herbivore population dynamics. The population-level response of the food plant to herbivory and the details of how inducible resistance affects herbivore performance both influence the resulting herbivore dynamics. Our results identify some biological properties of plant-herbivore systems that might determine whether or not cycles occur, and suggest that future empirical and theoretical population dynamics studies should account for the effects of both food limitation and inducible resistance.

  13. Poly (I:C) enhances the anti-tumor activity of canine parvovirus NS1 protein by inducing a potent anti-tumor immune response.

    PubMed

    Gupta, Shishir Kumar; Yadav, Pavan Kumar; Tiwari, A K; Gandham, Ravi Kumar; Sahoo, A P

    2016-09-01

    The canine parvovirus NS1 (CPV2.NS1) protein selectively induces apoptosis in the malignant cells. However, for an effective in vivo tumor treatment strategy, an oncolytic agent also needs to induce a potent anti-tumor immune response. In the present study, we used poly (I:C), a TLR3 ligand, as an adjuvant along with CPV2.NS1 to find out if the combination can enhance the oncolytic activity by inducing a potent anti-tumor immune response. The 4T1 mammary carcinoma cells were used to induce mammary tumor in Balb/c mice. The results suggested that poly (I:C), when given along with CPV2.NS1, not only significantly reduced the tumor growth but also augmented the immune response against tumor antigen(s) as indicated by the increase in blood CD4+ and CD8+ counts and infiltration of immune cells in the tumor tissue. Further, blood serum analysis of the cytokines revealed that Th1 cytokines (IFN-γ and IL-2) were significantly upregulated in the treatment group indicating activation of cell-mediated immune response. The present study reports the efficacy of CPV2.NS1 along with poly (I:C) not only in inhibiting the mammary tumor growth but also in generating an active anti-tumor immune response without any visible toxicity. The results of our study may help in developing CPV2.NS1 and poly (I: C) combination as a cancer therapeutic regime to treat various malignancies.

  14. Lipopolysaccharides of Rhizobium etli strain G12 act in potato roots as an inducing agent of systemic resistance to infection by the cyst nematode Globodera pallida.

    PubMed

    Reitz, M; Rudolph, K; Schröder, I; Hoffmann-Hergarten, S; Hallmann, J; Sikora, R A

    2000-08-01

    Recent studies have shown that living and heat-killed cells of the rhizobacterium Rhizobium etli strain G12 induce in potato roots systemic resistance to infection by the potato cyst nematode Globodera pallida. To better understand the mechanisms of induced resistance, we focused on identifying the inducing agent. Since heat-stable bacterial surface carbohydrates such as exopolysaccharides (EPS) and lipopolysaccharides (LPS) are essential for recognition in the symbiotic interaction between Rhizobium and legumes, their role in the R. etli-potato interaction was studied. EPS and LPS were extracted from bacterial cultures, applied to potato roots, and tested for activity as an inducer of plant resistance to the plant-parasitic nematode. Whereas EPS did not affect G. pallida infection, LPS reduced nematode infection significantly in concentrations as low as 1 and 0.1 mg ml(-1). Split-root experiments, guaranteeing a spatial separation of inducing agent and challenging pathogen, showed that soil treatments of one half of the root system with LPS resulted in a highly significant (up to 37%) systemic induced reduction of G. pallida infection of potato roots in the other half. The results clearly showed that LPS of R. etli G12 act as the inducing agent of systemic resistance in potato roots.

  15. Virulence of Meloidogyne spp. and Induced Resistance in Grape Rootstocks.

    PubMed

    McKenry, Michael V; Anwar, Safdar A

    2007-03-01

    Harmony grape rootstock displays resistance to several Meloidogyne spp. but that resistance is not durable in commercial vineyard settings. A 2-year experiment in a microplot setting revealed host specificities of two virulent populations of Meloidogyne arenaria and an avirulent population of Meloidogyne incognita. In a subsequent split-root experiment, the avirulent nematode population was demonstrated to induce resistance to the virulent nematode population. To quantify the level of resistance, reproduction of the virulent nematode population was determined 63 days after being challenged by an avirulent nematode population using a range of inoculum densities and timeframes. Induction of resistance became apparent when the virulent nematode population was inoculated 7 days after the avirulent nematode population and increased thereafter. The level of induced resistance increased with increased inoculum levels of the avirulent nematode population. Root systems of perennial crops are commonly fed upon simultaneously by multiple nematode species. These two studies indicate that field populations can become preferentially virulent upon one or multiple rootstocks and that co-inhabiting populations may induce existing resistance mechanisms. In perennial crops, it is common for numerous nematode species besides Meloidogyne spp. to be present, including some that feed without causing apparent damage.

  16. Root-expressed maize lipoxygenase 3 negatively regulates induced systemic resistance to Colletotrichum graminicola in shoots

    PubMed Central

    Constantino, Nasie N.; Mastouri, Fatemeh; Damarwinasis, Ramadhika; Borrego, Eli J.; Moran-Diez, Maria E.; Kenerley, Charley M.; Gao, Xiquan; Kolomiets, Michael V.

    2013-01-01

    We have previously reported that disruption of a maize root-expressed 9-lipoxygenase (9-LOX) gene, ZmLOX3, results in dramatic increase in resistance to diverse leaf and stalk pathogens. Despite evident economic significance of these findings, the mechanism behind this increased resistance remained elusive. In this study, we found that increased resistance of the lox3-4 mutants is due to constitutive activation of induced systemic resistance (ISR) signaling. We showed that ZmLOX3 lacked expression in leaves in response to anthracnose leaf blight pathogen Colletotrichum graminicola, but was expressed constitutively in the roots, thus, prompting our hypothesis: the roots of lox3-4 mutants are the source of increased resistance in leaves. Supporting this hypothesis, treatment of wild-type plants (WT) with xylem sap of lox3-4 mutant induced resistance to C. graminicola to the levels comparable to those observed in lox3-4 mutant. Moreover, treating mutants with the sap collected from WT plants partially restored the susceptibility to C. graminicola. lox3-4 mutants showed primed defense responses upon infection, which included earlier and greater induction of defense-related PAL and GST genes compared to WT. In addition to the greater expression of the octadecanoid pathway genes, lox3-4 mutant responded earlier and with a greater accumulation of H2O2 in response to C. graminicola infection or treatment with alamethicin. These findings suggest that lox3-4 mutants display constitutive ISR-like signaling. In support of this idea, root colonization by Trichoderma virens strain GV29-8 induced the same level of disease resistance in WT as the treatment with the mutant sap, but had no additional resistance effect in lox3-4 mutant. While treatment with T. virens GV29 strongly and rapidly suppressed ZmLOX3 expression in hydroponically grown WT roots, T. virens Δsml mutant, which is deficient in ISR induction, was unable to suppress expression of ZmLOX3, thus, providing genetic

  17. Purification, crystallization and preliminary X-ray analysis of aminoglycoside-2′′-phosphotransferase-Ic [APH(2′′)-Ic] from Enterococcus gallinarum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrnes, Laura J.; Badarau, Adriana; Vakulenko, Sergei B.

    2008-02-01

    APH(2′′)-Ic is an enzyme that is responsible for high-level gentamicin resistance in E. gallinarum isolates. Crystals of the wild-type enzyme and three mutants have been prepared and a complete X-ray diffraction data set was collected to 2.15 Å resolution from an F108L crystal. Bacterial resistance to aminoglycoside antibiotics is primarily the result of deactivation of the drugs. Three families of enzymes are responsible for this activity, with one such family being the aminoglycoside phosphotransferases (APHs). The gene encoding one of these enzymes, aminoglycoside-2′′-phosphotransferase-Ic [APH(2′′)-Ic] from Enterococcus gallinarum, has been cloned and the wild-type protein (comprising 308 amino-acid residues) and threemore » mutants that showed elevated minimum inhibitory concentrations towards gentamicin (F108L, H258L and a double mutant F108L/H258L) were expressed in Escherichia coli and subsequently purified. All APH(2′′)-Ic variants were crystallized in the presence of 14–20%(w/v) PEG 4000, 0.25 M MgCl{sub 2}, 0.1 M Tris–HCl pH 8.5 and 1 mM Mg{sub 2}GTP. The crystals belong to the monoclinic space group C2, with one molecule in the asymmetric unit. The approximate unit-cell parameters are a = 82.4, b = 54.2, c = 77.0 Å, β = 108.8°. X-ray diffraction data were collected to approximately 2.15 Å resolution from an F108L crystal at beamline BL9-2 at SSRL, Stanford, California, USA.« less

  18. Large 3D resistivity and induced polarization acquisition using the Fullwaver system: towards an adapted processing methodology

    NASA Astrophysics Data System (ADS)

    Leite, Orlando; Gance, Julien; Texier, Benoît; Bernard, Jean; Truffert, Catherine

    2017-04-01

    Driven by needs in the mineral exploration market for ever faster and ever easier set-up of large 3D resistivity and induced polarization, autonomous and cableless recorded systems come to the forefront. Opposite to the traditional centralized acquisition, this new system permits a complete random distribution of receivers on the survey area allowing to obtain a real 3D imaging. This work presents the results of a 3 km2 large experiment up to 600m of depth performed with a new type of autonomous distributed receivers: the I&V-Fullwaver. With such system, all usual drawbacks induced by long cable set up over large 3D areas - time consuming, lack of accessibility, heavy weight, electromagnetic induction, etc. - disappear. The V-Fullwavers record the entire time series of voltage on two perpendicular axes, for a good determination of the data quality although I-Fullwaver records injected current simultaneously. For this survey, despite good assessment of each individual signal quality, on each channel of the set of Fullwaver systems, a significant number of negative apparent resistivity and chargeability remains present in the dataset (around 15%). These values are commonly not taken into account in the inversion software although they may be due to complex geological structure of interest (e.g. linked to the presence of sulfides in the earth). Taking into account that such distributed recording system aims to restitute the best 3D resistivity and IP tomography, how can 3D inversion be improved? In this work, we present the dataset, the processing chain and quality control of a large 3D survey. We show that the quality of the data selected is good enough to include it into the inversion processing. We propose a second way of processing based on the modulus of the apparent resistivity that stabilizes the inversion. We then discuss the results of both processing. We conclude that an effort could be made on the inclusion of negative apparent resistivity in the inversion

  19. Detecting the Hormonal Pathways in Oilseed Rape behind Induced Systemic Resistance by Trichoderma harzianum TH12 to Sclerotinia sclerotiorum.

    PubMed

    Alkooranee, Jawadayn Talib; Aledan, Tamarah Raad; Ali, Ali Kadhim; Lu, Guangyuan; Zhang, Xuekun; Wu, Jiangsheng; Fu, Chunhua; Li, Maoteng

    2017-01-01

    Plants have the ability to resist pathogen attack after infection or treatment with biotic and abiotic elicitors. In oilseed rape plant Brassica napus AACC and in the artificially synthesized Raphanus alboglabra RRCC, the root-colonizing Trichoderma harzianum TH12 fungus triggers induced systemic resistance (ISR), and its culture filtrate (CF) triggers a systemic acquired resistance (SAR) response against infection by the Sclerotinia sclerotiorum. Salicylic acid (SA) and jasmonic acid/ethylene (JA/ET) are plant hormone signals that play important roles in the regulation of ISR and SAR. In this study, at six different time points (1, 2, 4, 6, 8 and 10 days post-infection [dpi]), six resistance genes were used as markers of signaling pathways: JA/ET signaling used AOC3, PDF1.2 and ERF2 genes, while PR-1, TGA5 and TGA6 genes were used as markers of SA signaling. The results of quantitative real-time polymerase chain reaction (qRT-PCR) showed that AOC3, PDF1.2 and ERF2 expression levels in infected leaves of AACC and RRCC increase at 1 and 2 dpi with S. sclerotiorum or inoculation with TH12. PR-1, TGA5 and TGA6 expression levels increased at 8 and 10 dpi in infected leaves. PR-1, TGA5 and TGA6 expression levels increased early in plants treated with CF in both of the healthy genotypes. Furthermore, induction of SA- and JA/ET-dependent defense decreased disease symptoms in infected leaves at different times. The results suggest that the RRCC genotype exhibits resistance to disease and that the ability of TH12 and its CF to induce systemic resistance in susceptible and resistant oilseed rape genotypes exists. In addition, the results indicate for the first time that in RRCC the SA signaling pathway is involved in resistance to necrotrophic pathogens.

  20. 3D-ICs created using oblique processing

    NASA Astrophysics Data System (ADS)

    Burckel, D. Bruce

    2016-03-01

    This paper demonstrates that another class of three-dimensional integrated circuits (3D-ICs) exists, distinct from through silicon via centric and monolithic 3D-ICs. Furthermore, it is possible to create devices that are 3D at the device level (i.e. with active channels oriented in each of the three coordinate axes), by performing standard CMOS fabrication operations at an angle with respect to the wafer surface into high aspect ratio silicon substrates using membrane projection lithography (MPL). MPL requires only minimal fixturing changes to standard CMOS equipment, and no change to current state-of-the-art lithography. Eliminating the constraint of 2D planar device architecture enables a wide range of new interconnect topologies which could help reduce interconnect resistance/capacitance, and potentially improve performance.

  1. Chronic ethanol increases systemic TLR3 agonist-induced neuroinflammation and neurodegeneration

    PubMed Central

    2012-01-01

    Background Increasing evidence links systemic inflammation to neuroinflammation and neurodegeneration. We previously found that systemic endotoxin, a TLR4 agonist or TNFα, increased blood TNFα that entered the brain activating microglia and persistent neuroinflammation. Further, we found that models of ethanol binge drinking sensitized blood and brain proinflammatory responses. We hypothesized that blood cytokines contribute to the magnitude of neuroinflammation and that ethanol primes proinflammatory responses. Here, we investigate the effects of chronic ethanol on neuroinflammation and neurodegeneration triggered by toll-like receptor 3 (TLR3) agonist poly I:C. Methods Polyinosine-polycytidylic acid (poly I:C) was used to induce inflammatory responses when sensitized with D-galactosamine (D-GalN). Male C57BL/6 mice were treated with water or ethanol (5 g/kg/day, i.g., 10 days) or poly I:C (250 μg/kg, i.p.) alone or sequentially 24 hours after ethanol exposure. Cytokines, chemokines, microglial morphology, NADPH oxidase (NOX), reactive oxygen species (ROS), high-mobility group box 1 (HMGB1), TLR3 and cell death markers were examined using real-time PCR, ELISA, immunohistochemistry and hydroethidine histochemistry. Results Poly I:C increased blood and brain TNFα that peaked at three hours. Blood levels returned within one day, whereas brain levels remained elevated for at least three days. Escalating blood and brain proinflammatory responses were found with ethanol, poly I:C, and ethanol-poly I:C treatment. Ethanol pretreatment potentiated poly I:C-induced brain TNFα (345%), IL-1β (331%), IL-6 (255%), and MCP-1(190%). Increased levels of brain cytokines coincided with increased microglial activation, NOX gp91phox, superoxide and markers of neurodegeneration (activated caspase-3 and Fluoro-Jade B). Ethanol potentiation of poly I:C was associated with ethanol-increased expression of TLR3 and endogenous agonist HMGB1 in the brain. Minocycline and

  2. A critical role for Arabidopsis MILDEW RESISTANCE LOCUS O2 in systemic acquired resistance.

    PubMed

    Gruner, Katrin; Zeier, Tatyana; Aretz, Christina; Zeier, Jürgen

    2018-04-16

    Members of the MILDEW RESISTANCE LOCUS O (MLO) gene family confer susceptibility to powdery mildews in different plant species, and their existence therefore seems to be disadvantageous for the plant. We recognized that expression of the Arabidopsis MLO2 gene is induced after inoculation with the bacterial pathogen Pseudomonas syringae, promoted by salicylic acid (SA) signaling, and systemically enhanced in the foliage of plants exhibiting systemic acquired resistance (SAR). Importantly, distinct mlo2 mutant lines were unable to systemically increase resistance to bacterial infection after inoculation with P. syringae, indicating that the function of MLO2 is necessary for biologically induced SAR in Arabidopsis. Our data also suggest that the close homolog MLO6 has a supportive but less critical role in SAR. In contrast to SAR, basal resistance to bacterial infection was not affected in mlo2. Remarkably, SAR-defective mlo2 mutants were still competent in systemically increasing the levels of the SAR-activating metabolites pipecolic acid (Pip) and SA after inoculation, and to enhance SAR-related gene expression in distal plant parts. Furthermore, although MLO2 was not required for SA- or Pip-inducible defense gene expression, it was essential for the proper induction of disease resistance by both SAR signals. We conclude that MLO2 acts as a critical downstream component in the execution of SAR to bacterial infection, being required for the translation of elevated defense responses into disease resistance. Moreover, our data suggest a function for MLO2 in the activation of plant defense priming during challenge by P. syringae. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  3. [Involvement of the global regulators GrrS, RpoS, and SplIR in formation of biofilms in Serratia plymuthica].

    PubMed

    Zaĭtseva, Iu V; Voloshina, P V; Liu, X; Ovadis, M I; Berg, G; Chernin, L S; Khmel', I A

    2010-05-01

    Most bacteria exist in the natural environment as biofilms, multicellular communities attached to hard surfaces. Biofilms have a characteristic architecture and are enclosed in the exopolymer matrix. Bacterial cells in biofilms are extremely resistant to antibacterial factors. It was shown in this work that the GrrA/GrrS system of global regulators of gene expression and the sigma S subunit of RNA polymerase (RpoS) play a significant role in positive regulation of biofilm formation in the rhizospheric bacterium Serratia plymuthica IC1270. Inactivation of grrS and rpoS genes resulted in an up to six-to-sevenfold and four-to-fivefold reduction in biofilm formation, respectively. Mutations in the grrS gene decreased the capacity of the bacterium for swarming motility. The splIR Quorum Sensing (QS) system was shown to negatively influence the biofilm formation. Transfer of the recombinant plasmid containing cloned genes splI/splR of S. plymuthica HRO-C48 into S. plymuthica IC1270 cells led to a twofold decrease of their ability to form biofilms. Inactivation of the splI gene coding for the synthase of N-acyl-homoserine lactones in S. plymuthica HRO-C48 resulted in a 2-2.5-fold increase in the level of biofilm formation, whereas the inclusion of plasmid carrying the cloned splI/splR genes into these mutant cells restored the biofilm formation to the normal level. The results obtained demonstrate that the formation of biofilms in S. plymuthica is positively regulated by the GrrA/GrrS and RpoS global regulators and is negatively regulated by the SplIR QS system.

  4. ICS classification system of infected osteosynthesis: Long-term results.

    PubMed

    Romanò, Carlo L; Morelli, Ilaria; Romanò, Delia; Meani, Enzo; Drago, Lorenzo

    2018-03-01

    The best treatment strategy for infected osteosyntheses is still debated. While hardware removal or eventually early device exchange may be necessary in most of the cases, temporary hardware retention until fracture healing can be a valid alternative option in others. Aim of the present study is to report the long-term results of 215 patients with infected osteosyntheses, treated according to the ICS (Infection, Callus, Stability) classification in two Italian hospitals. Patients classified as ICS Type 1 (N = 83) feature callus progression and hardware stability, in spite of the presence of infection; these patients were treated with suppressive antibiotic therapy coupled with local debridement in 18.1% of the cases, and no hardware removal until bone healing. Type 2 patients (N = 75) are characterized by the presence of infection and hardware stability, but no callus progression; these patients were treated as Type 1 patients, but with additional callus stimulation therapies. Type 3 patients (N = 57), showing infection, no callus progression and loss of hardware stability, underwent removal and exchange of the fixation device. Considering only the initial treatment, performed according to the ICS classification, at a minimum 5 years follow up, 89.3% achieved bone healing and 93.5% did not show infection recurrence. The ICS classification appears as a useful and reliable tool to help standardizing the decision-making process in treating infected osteosynthesis with the most conservative approach. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Bank Vole Prion Protein As an Apparently Universal Substrate for RT-QuIC-Based Detection and Discrimination of Prion Strains.

    PubMed

    Orrú, Christina D; Groveman, Bradley R; Raymond, Lynne D; Hughson, Andrew G; Nonno, Romolo; Zou, Wenquan; Ghetti, Bernardino; Gambetti, Pierluigi; Caughey, Byron

    2015-06-01

    Prions propagate as multiple strains in a wide variety of mammalian species. The detection of all such strains by a single ultrasensitive assay such as Real Time Quaking-induced Conversion (RT-QuIC) would facilitate prion disease diagnosis, surveillance and research. Previous studies have shown that bank voles, and transgenic mice expressing bank vole prion protein, are susceptible to most, if not all, types of prions. Here we show that bacterially expressed recombinant bank vole prion protein (residues 23-230) is an effective substrate for the sensitive RT-QuIC detection of all of the different prion types that we have tested so far--a total of 28 from humans, cattle, sheep, cervids and rodents, including several that have previously been undetectable by RT-QuIC or Protein Misfolding Cyclic Amplification. Furthermore, comparison of the relative abilities of different prions to seed positive RT-QuIC reactions with bank vole and not other recombinant prion proteins allowed discrimination of prion strains such as classical and atypical L-type bovine spongiform encephalopathy, classical and atypical Nor98 scrapie in sheep, and sporadic and variant Creutzfeldt-Jakob disease in humans. Comparison of protease-resistant RT-QuIC conversion products also aided strain discrimination and suggested the existence of several distinct classes of prion templates among the many strains tested.

  6. Purification, Crystallization And Preliminary X-Ray Analysis of Aminoglycoside-2 ''-Phosphotransferase-Ic [APH(2 '')-Ic] From Enterococcus Gallinarum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrnes, L.J.; /SLAC, SSRL; Badarau, A.

    2009-04-30

    Bacterial resistance to aminoglycoside antibiotics is primarily the result of deactivation of the drugs. Three families of enzymes are responsible for this activity, with one such family being the aminoglycoside phosphotransferases (APHs). The gene encoding one of these enzymes, aminoglycoside-2{double_prime}-phosphotransferase-Ic [APH(2{double_prime})-Ic] from Enterococcus gallinarum, has been cloned and the wild-type protein (comprising 308 amino-acid residues) and three mutants that showed elevated minimum inhibitory concentrations towards gentamicin (F108L, H258L and a double mutant F108L/H258L) were expressed in Escherichia coli and subsequently purified. All APH(2{double_prime})-Ic variants were crystallized in the presence of 14-20%(w/v) PEG 4000, 0.25 M MgCl{sub 2}, 0.1 M Tris-HClmore » pH 8.5 and 1 mM Mg{sub 2}GTP. The crystals belong to the monoclinic space group C2, with one molecule in the asymmetric unit. The approximate unit-cell parameters are a = 82.4, b = 54.2, c = 77.0 {angstrom}, {beta} = 108.8{sup o}. X-ray diffraction data were collected to approximately 2.15 {angstrom} resolution from an F108L crystal at beamline BL9-2 at SSRL, Stanford, California, USA.« less

  7. Acute resistance exercise induces antinociception by activation of the endocannabinoid system in rats.

    PubMed

    Galdino, Giovane; Romero, Thiago; Silva, José Felippe Pinho da; Aguiar, Daniele; Paula, Ana Maria de; Cruz, Jader; Parrella, Cosimo; Piscitelli, Fabiana; Duarte, Igor; Di Marzo, Vincenzo; Perez, Andrea

    2014-09-01

    Resistance exercise (RE) is also known as strength training, and it is performed to increase the strength and mass of muscles, bone strength, and metabolism. RE has been increasingly prescribed for pain relief. However, the endogenous mechanisms underlying this antinociceptive effect are still largely unexplored. Thus, we investigated the involvement of the endocannabinoid system in RE-induced antinociception. Male Wistar rats were submitted to acute RE in a weight-lifting model. The nociceptive threshold was measured by a mechanical nociceptive test (paw pressure) before and after exercise. To investigate the involvement of cannabinoid receptors and endocannabinoids in RE-induced antinociception, cannabinoid receptor inverse agonists, endocannabinoid metabolizing enzyme inhibitors, and an anandamide reuptake inhibitor were injected before RE. After RE, CB1 cannabinoid receptors were quantified in rat brain tissue by Western blot and immunofluorescence. In addition, endocannabinoid plasma levels were measured by isotope dilution-liquid chromatography mass spectrometry. RE-induced antinociception was prevented by preinjection with CB1 and CB2 cannabinoid receptor inverse agonists. By contrast, preadministration of metabolizing enzyme inhibitors and the anandamide reuptake inhibitor prolonged and enhanced this effect. RE also produced an increase in the expression and activation of CB1 cannabinoid receptors in rat brain tissue and in the dorsolateral and ventrolateral periaqueductal regions and an increase in endocannabinoid plasma levels. The present study suggests that a single session of RE activates the endocannabinoid system to induce antinociception.

  8. Acute Resistance Exercise Induces Antinociception by Activation of the Endocannabinoid System in Rats

    PubMed Central

    Galdino, Giovane; Romero, Thiago; da Silva, José Felippe Pinho; Aguiar, Daniele; de Paula, Ana Maria; Cruz, Jader; Parrella, Cosimo; Piscitelli, Fabiana; Duarte, Igor; Di Marzo, Vincenzo; Perez, Andrea

    2014-01-01

    Background Resistance exercise (RE) is also known as strength training, and it is performed to increase the strength and mass of muscles, bone strength and metabolism. RE has been increasingly prescribed for pain relief. However, the endogenous mechanisms underlying this antinociceptive effect are still largely unexplored. Thus, we investigated the involvement of the endocannabinoid system in RE-induced antinociception. Methods Male Wistar rats were submitted to acute RE in a weight-lifting model. The nociceptive threshold was measured by a mechanical nociceptive test (paw pressure) before and after exercise. To investigate the involvement of cannabinoid receptors and endocannabinoids in RE-induced antinociception, cannabinoid receptor inverse agonists, endocannabinoid metabolizing enzyme inhibitors and an anandamide reuptake inhibitor were injected before RE. After RE, CB1 cannabinoid receptors were quantified in rat brain tissue by Western blot and immunofluorescence. In addition, endocannabinoid plasma levels were measured by isotope dilution-liquid chromatography mass spectrometry. Results RE-induced antinociception was prevented by preinjection with CB1 and CB2 cannabinoid receptor inverse agonists. By contrast, preadministration of metabolizing enzyme inhibitors and the anandamide reuptake inhibitor prolonged and enhanced this effect. RE also produced an increase in the expression and activation of CB1 cannabinoid receptors in rat brain tissue and in the dorsolateral and ventrolateral periaqueductal regions and an increase of endocannabinoid plasma levels. Conclusion The present study suggests that a single session of RE activates the endocannabinoid system to induce antinociception. PMID:24977916

  9. Mechanics based model for predicting structure-induced rolling resistance (SRR) of the tire-pavement system

    NASA Astrophysics Data System (ADS)

    Shakiba, Maryam; Ozer, Hasan; Ziyadi, Mojtaba; Al-Qadi, Imad L.

    2016-11-01

    The structure-induced rolling resistance of pavements, and its impact on vehicle fuel consumption, is investigated in this study. The structural response of pavement causes additional rolling resistance and fuel consumption of vehicles through deformation of pavement and various dissipation mechanisms associated with inelastic material properties and damping. Accurate and computationally efficient models are required to capture these mechanisms and obtain realistic estimates of changes in vehicle fuel consumption. Two mechanistic-based approaches are currently used to calculate vehicle fuel consumption as related to structural rolling resistance: dissipation-induced and deflection-induced methods. The deflection-induced approach is adopted in this study, and realistic representation of pavement-vehicle interactions (PVIs) is incorporated. In addition to considering viscoelastic behavior of asphalt concrete layers, the realistic representation of PVIs in this study includes non-uniform three-dimensional tire contact stresses and dynamic analysis in pavement simulations. The effects of analysis type, tire contact stresses, pavement viscoelastic properties, pavement damping coefficients, vehicle speed, and pavement temperature are then investigated.

  10. Embedded I&C for Extreme Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kisner, Roger A.

    2016-04-01

    This project uses embedded instrumentation and control (I&C) technologies to demonstrate potential performance gains of nuclear power plant components in extreme environments. Extreme environments include high temperature, radiation, high pressure, high vibration, and high EMI conditions. For extreme environments, performance gains arise from moment-to-moment sensing of local variables and immediate application of local feedback control. Planning for embedding I&C during early system design phases contrasts with the traditional, serial design approach that incorporates minimal I&C after mechanical and electrical design is complete. The demonstration application involves the development and control of a novel, proof-of-concept motor/pump design. The motor and pumpmore » combination operate within the fluid environment, eliminating the need for rotating seals. Actively controlled magnetic bearings also replace failure-prone mechanical contact bearings that typically suspend rotating components. Such as design has the potential to significantly enhance the reliability and life of the pumping system and would not be possible without embedded I&C.« less

  11. The evolution of resistance genes in multi-protein plant resistance systems.

    PubMed

    Friedman, Aaron R; Baker, Barbara J

    2007-12-01

    The genomic perspective aids in integrating the analysis of single resistance (R-) genes into a higher order model of complex plant resistance systems. The majority of R-genes encode a class of proteins with nucleotide binding (NB) and leucine-rich repeat (LRR) domains. Several R-proteins act in multi-protein R-complexes that mediate interaction with pathogen effectors to induce resistance signaling. The complexity of these systems seems to have resulted from multiple rounds of plant-pathogen co-evolution. R-gene evolution is thought to be facilitated by the formation of R-gene clusters, which permit sequence exchanges via recombinatorial mispairing and generate high haplotypic diversity. This pattern of evolution may also generate diversity at other loci that contribute to the R-complex. The rate of recombination at R-clusters is not necessarily homogeneous or consistent over evolutionary time: recent evidence suggests that recombination at R-clusters is increased following pathogen infection, suggesting a mechanism that induces temporary genome instability in response to extreme stress. DNA methylation and chromatin modifications may allow this instability to be conditionally regulated and targeted to specific genome regions. Knowledge of natural R-gene evolution may contribute to strategies for artificial evolution of novel resistance specificities.

  12. TDR method for determine IC's parameters

    NASA Astrophysics Data System (ADS)

    Timoshenkov, V.; Rodionov, D.; Khlybov, A.

    2016-12-01

    Frequency domain simulation is a widely used approach for determine integrated circuits parameters. This approach can be found in most of software tools used in IC industry. Time domain simulation approach shows intensive usage last years due to some advantages. In particular it applicable for analysis of nonlinear and nonstationary systems where frequency domain is inapplicable. Resolution of time domain systems allow see heterogeneities on distance 1mm, determine it parameters and properties. Authors used approach based on detecting reflected signals from heterogeneities - time domain reflectometry (TDR). Field effect transistor technology scaling up to 30-60nm gate length and 10nm gate dielectric, heterojunction bi-polar transistors with 10-30nm base width allows fabricate digital IC's with 20GHz clock frequency and RF-IC's with tens GHz bandwidth. Such devices and operation speed suppose transit signal by use microwave lines. There are local heterogeneities can be found inside of the signal path due to connections between different parts of signal lines (stripe line-RF-connector pin, stripe line - IC package pin). These heterogeneities distort signals that cause bandwidth decrease for RF-devices. Time domain research methods of transmission and reflected signals give the opportunities to determine heterogeneities, it properties, parameters and built up equivalent circuits. Experimental results are provided and show possibility for inductance and capacitance measurement up to 25GHz. Measurements contains result of signal path research on IC and printed circuit board (PCB) used for 12GHz RF chips. Also dielectric constant versus frequency was measured up to 35GHz.

  13. ICS logging solution for network-based attacks using Gumistix technology

    NASA Astrophysics Data System (ADS)

    Otis, Jeremy R.; Berman, Dustin; Butts, Jonathan; Lopez, Juan

    2013-05-01

    Industrial Control Systems (ICS) monitor and control operations associated with the national critical infrastructure (e.g., electric power grid, oil and gas pipelines and water treatment facilities). These systems rely on technologies and architectures that were designed for system reliability and availability. Security associated with ICS was never an inherent concern, primarily due to the protections afforded by network isolation. However, a trend in ICS operations is to migrate to commercial networks via TCP/IP in order to leverage commodity benefits and cost savings. As a result, system vulnerabilities are now exposed to the online community. Indeed, recent research has demonstrated that many exposed ICS devices are being discovered using readily available applications (e.g., ShodanHQ search engine and Google-esque queries). Due to the lack of security and logging capabilities for ICS, most knowledge about attacks are derived from real world incidents after an attack has already been carried out and the damage has been done. This research provides a method for introducing sensors into the ICS environment that collect information about network-based attacks. The sensors are developed using an inexpensive Gumstix platform that can be deployed and incorporated with production systems. Data obtained from the sensors provide insight into attack tactics (e.g., port scans, Nessus scans, Metasploit modules, and zero-day exploits) and characteristics (e.g., attack origin, frequency, and level of persistence). Findings enable security professionals to draw an accurate, real-time awareness of the threats against ICS devices and help shift the security posture from reactionary to preventative.

  14. Biocontrol agent Bacillus amyloliquefaciens LJ02 induces systemic resistance against cucurbits powdery mildew.

    PubMed

    Li, Yunlong; Gu, Yilin; Li, Juan; Xu, Mingzhu; Wei, Qing; Wang, Yuanhong

    2015-01-01

    Powdery mildew is a fungal disease found in a wide range of plants and can significantly reduce crop yields. Bacterial strain LJ02 is a biocontrol agent (BCA) isolated from a greenhouse in Tianjin, China. In combination of morphological, physiological, biochemical and phylogenetic analyses, strain LJ02 was classified as a new member of Bacillus amyloliquefaciens. Greenhouse trials showed that LJ02 fermentation broth (LJ02FB) can effectively diminish the occurrence of cucurbits powdery mildew. When treated with LJ02FB, cucumber seedlings produced significantly elevated production of superoxide dismutase, peroxidase, polyphenol oxidase and phenylalanine ammonia lyase as compared to that of the control. We further confirmed that the production of free salicylic acid (SA) and expression of one pathogenesis-related (PR) gene PR-1 in cucumber leaves were markedly elevated after treating with LJ02FB, suggesting that SA-mediated defense response was stimulated. Moreover, LJ02FB-treated cucumber leaves could secrete resistance-related substances into rhizosphere that inhibit the germination of fungi spores and the growth of pathogens. Finally, we separated bacterium and its fermented substances to test their respective effects and found that both components have SA-inducing activity and bacterium plays major roles. Altogether, we identified a BCA against powdery mildew and its mode of action by inducing systemic resistance such as SA signaling pathway.

  15. PSMA-targeted polyinosine/polycytosine vector induces prostate tumor regression and invokes an antitumor immune response in mice.

    PubMed

    Langut, Yael; Talhami, Alaa; Mamidi, Samarasimhareddy; Shir, Alexei; Zigler, Maya; Joubran, Salim; Sagalov, Anna; Flashner-Abramson, Efrat; Edinger, Nufar; Klein, Shoshana; Levitzki, Alexander

    2017-12-26

    There is an urgent need for an effective treatment for metastatic prostate cancer (PC). Prostate tumors invariably overexpress prostate surface membrane antigen (PSMA). We designed a nonviral vector, PEI-PEG-DUPA (PPD), comprising polyethylenimine-polyethyleneglycol (PEI-PEG) tethered to the PSMA ligand, 2-[3-(1, 3-dicarboxy propyl)ureido] pentanedioic acid (DUPA), to treat PC. The purpose of PEI is to bind polyinosinic/polycytosinic acid (polyIC) and allow endosomal release, while DUPA targets PC cells. PolyIC activates multiple pathways that lead to tumor cell death and to the activation of bystander effects that harness the immune system against the tumor, attacking nontargeted neighboring tumor cells and reducing the probability of acquired resistance and disease recurrence. Targeting polyIC directly to tumor cells avoids the toxicity associated with systemic delivery. PPD selectively delivered polyIC into PSMA-overexpressing PC cells, inducing apoptosis, cytokine secretion, and the recruitment of human peripheral blood mononuclear cells (PBMCs). PSMA-overexpressing tumors in nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice with partially reconstituted immune systems were significantly shrunken following PPD/polyIC treatment, in all cases. Half of the tumors showed complete regression. PPD/polyIC invokes antitumor immunity, but unlike many immunotherapies does not need to be personalized for each patient. The potent antitumor effects of PPD/polyIC should spur its development for clinical use.

  16. PSMA-targeted polyinosine/polycytosine vector induces prostate tumor regression and invokes an antitumor immune response in mice

    PubMed Central

    Langut, Yael; Talhami, Alaa; Mamidi, Samarasimhareddy; Shir, Alexei; Zigler, Maya; Joubran, Salim; Sagalov, Anna; Flashner-Abramson, Efrat; Edinger, Nufar; Klein, Shoshana; Levitzki, Alexander

    2017-01-01

    There is an urgent need for an effective treatment for metastatic prostate cancer (PC). Prostate tumors invariably overexpress prostate surface membrane antigen (PSMA). We designed a nonviral vector, PEI-PEG-DUPA (PPD), comprising polyethylenimine–polyethyleneglycol (PEI–PEG) tethered to the PSMA ligand, 2-[3-(1, 3-dicarboxy propyl)ureido] pentanedioic acid (DUPA), to treat PC. The purpose of PEI is to bind polyinosinic/polycytosinic acid (polyIC) and allow endosomal release, while DUPA targets PC cells. PolyIC activates multiple pathways that lead to tumor cell death and to the activation of bystander effects that harness the immune system against the tumor, attacking nontargeted neighboring tumor cells and reducing the probability of acquired resistance and disease recurrence. Targeting polyIC directly to tumor cells avoids the toxicity associated with systemic delivery. PPD selectively delivered polyIC into PSMA-overexpressing PC cells, inducing apoptosis, cytokine secretion, and the recruitment of human peripheral blood mononuclear cells (PBMCs). PSMA-overexpressing tumors in nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice with partially reconstituted immune systems were significantly shrunken following PPD/polyIC treatment, in all cases. Half of the tumors showed complete regression. PPD/polyIC invokes antitumor immunity, but unlike many immunotherapies does not need to be personalized for each patient. The potent antitumor effects of PPD/polyIC should spur its development for clinical use. PMID:29229829

  17. Dynamical Competition of IC-Industry Clustering from Taiwan to China

    NASA Astrophysics Data System (ADS)

    Tsai, Bi-Huei; Tsai, Kuo-Hui

    2009-08-01

    Most studies employ qualitative approach to explore the industrial clusters; however, few research has objectively quantified the evolutions of industry clustering. The purpose of this paper is to quantitatively analyze clustering among IC design, IC manufacturing as well as IC packaging and testing industries by using the foreign direct investment (FDI) data. The Lotka-Volterra system equations are first adopted here to capture the competition or cooperation among such three industries, thus explaining their clustering inclinations. The results indicate that the evolution of FDI into China for IC design industry significantly inspire the subsequent FDI of IC manufacturing as well as IC packaging and testing industries. Since IC design industry lie in the upstream stage of IC production, the middle-stream IC manufacturing and downstream IC packing and testing enterprises tend to cluster together with IC design firms, in order to sustain a steady business. Finally, Taiwan IC industry's FDI amount into China is predicted to cumulatively increase, which supports the industrial clustering tendency for Taiwan IC industry. Particularly, the FDI prediction of Lotka-Volterra model performs superior to that of the conventional Bass model after the forecast accuracy of these two models are compared. The prediction ability is dramatically improved as the industrial mutualism among each IC production stage is taken into account.

  18. Evaluation of Acanthamoeba Myosin-IC as a Potential Therapeutic Target

    PubMed Central

    Lorenzo-Morales, Jacob; López-Arencibia, Atteneri; Reyes-Batlle, María; Piñero, José E.; Valladares, Basilio; Maciver, Sutherland K.

    2014-01-01

    Members of the genus Acanthamoeba are facultative pathogens of humans, causing a sight-threatening keratitis and a fatal encephalitis. We have targeted myosin-IC by using small interfering RNA (siRNA) silencing as a therapeutic approach, since it is known that the function of this protein is vital for the amoeba. In this work, specific siRNAs against the Acanthamoeba myosin-IC gene were developed. Treated and control amoebae were cultured in growth and encystment media to evaluate the induced effects after myosin-IC gene knockdown, as we have anticipated that cyst formation may be impaired. The effects of myosin-IC gene silencing were inhibition of cyst formation, inhibition of completion of cytokinesis, inhibition of osmoregulation under osmotic stress conditions, and death of the amoebae. The finding that myosin-IC silencing caused incompletion of cytokinesis is in agreement with earlier suggestions that the protein plays a role in cell locomotion, which is necessary to pull daughter cells apart after mitosis in a process known as “traction-mediated cytokinesis”. We conclude that myosin-IC is a very promising potential drug target for the development of much-needed antiamoebal drugs and that it should be further exploited for Acanthamoeba therapy. PMID:24468784

  19. Xylitol prevents NEFA-induced insulin resistance in rats

    PubMed Central

    Kishore, P.; Kehlenbrink, S.; Hu, M.; Zhang, K.; Gutierrez-Juarez, R.; Koppaka, S.; El-Maghrabi, M. R.

    2013-01-01

    Aims/hypothesis Increased NEFA levels, characteristic of type 2 diabetes mellitus, contribute to skeletal muscle insulin resistance. While NEFA-induced insulin resistance was formerly attributed to decreased glycolysis, it is likely that glucose transport is the rate-limiting defect. Recently, the plant-derived sugar alcohol xylitol has been shown to have favourable metabolic effects in various animal models. Furthermore, its derivative xylulose 5-phosphate may prevent NEFA-induced suppression of glycolysis. We therefore examined whether and how xylitol might prevent NEFA-induced insulin resistance. Methods We examined the ability of xylitol to prevent NEFA-induced insulin resistance. Sustained ~1.5-fold elevations in NEFA levels were induced with Intralipid/heparin infusions during 5 h euglycaemic–hyperinsulinaemic clamp studies in 24 conscious non-diabetic Sprague-Dawley rats, with or without infusion of xylitol. Results Intralipid infusion reduced peripheral glucose uptake by ~25%, predominantly through suppression of glycogen synthesis. Co-infusion of xylitol prevented the NEFA-induced decreases in both glucose uptake and glycogen synthesis. Although glycolysis was increased by xylitol infusion alone, there was minimal NEFA-induced suppression of glycolysis, which was not affected by co-infusion of xylitol. Conclusions/interpretation We conclude that xylitol prevented NEFA-induced insulin resistance, with favourable effects on glycogen synthesis accompanying the improved insulin-mediated glucose uptake. This suggests that this pentose sweetener has beneficial insulin-sensitising effects. PMID:22460760

  20. An ultra low-power front-end IC for wearable health monitoring system.

    PubMed

    Yu-Pin Hsu; Zemin Liu; Hella, Mona M

    2016-08-01

    This paper presents a low-power front-end IC for wearable health monitoring systems. The IC, designed in a standard 0.13μm CMOS technology, fully integrates a low-noise analog front-end (AFE) to process the weak bio-signals, followed by an analog-to-digital converter (ADC) to digitize the extracted signals. An AC-coupled driving buffer, that interfaces between the AFE and the ADC is introduced to scale down the power supply of the ADC. The power consumption decreases by 50% compared to the case without power supply scaling. The AFE passes signals from 0.5Hz to 280Hz and from 0.7Hz to 160Hz with a simulated input referred noise of 1.6μVrms and achieves a maximum gain of 35dB/41dB respectively, with a noise-efficiency factor (NEF) of the AFE is 1. The 8-bit ADC achieves a simulated 7.96-bit resolution at 10KS/s sampling rate under 0.5V supply voltage. The overall system consumes only 0.86μW at dual supply voltages of 1V (AFE) and 0.5 V (ADC).

  1. Abiotic stresses affect Trichoderma harzianum T39-induced resistance to downy mildew in grapevine.

    PubMed

    Roatti, Benedetta; Perazzolli, Michele; Gessler, Cesare; Pertot, Ilaria

    2013-12-01

    Enhancement of plant defense through the application of resistance inducers seems a promising alternative to chemical fungicides for controlling crop diseases but the efficacy can be affected by abiotic factors in the field. Plants respond to abiotic stresses with hormonal signals that may interfere with the mechanisms of induced systemic resistance (ISR) to pathogens. In this study, we exposed grapevines to heat, drought, or both to investigate the effects of abiotic stresses on grapevine resistance induced by Trichoderma harzianum T39 (T39) to downy mildew. Whereas the efficacy of T39-induced resistance was not affected by exposure to heat or drought, it was significantly reduced by combined abiotic stresses. Decrease of leaf water potential and upregulation of heat-stress markers confirmed that plants reacted to abiotic stresses. Basal expression of defense-related genes and their upregulation during T39-induced resistance were attenuated by abiotic stresses, in agreement with the reduced efficacy of T39. The evidence reported here suggests that exposure of crops to abiotic stress should be carefully considered to optimize the use of resistance inducers, especially in view of future global climate changes. Expression analysis of ISR marker genes could be helpful to identify when plants are responding to abiotic stresses, in order to optimize treatments with resistance inducers in field.

  2. Network security system for health and medical information using smart IC card

    NASA Astrophysics Data System (ADS)

    Kanai, Yoichi; Yachida, Masuyoshi; Yoshikawa, Hiroharu; Yamaguchi, Masahiro; Ohyama, Nagaaki

    1998-07-01

    A new network security protocol that uses smart IC cards has been designed to assure the integrity and privacy of medical information in communication over a non-secure network. Secure communication software has been implemented as a library based on this protocol, which is called the Integrated Secure Communication Layer (ISCL), and has been incorporated into information systems of the National Cancer Center Hospitals and the Health Service Center of the Tokyo Institute of Technology. Both systems have succeeded in communicating digital medical information securely.

  3. TIF-IC, a factor involved in both transcription initiation and elongation of RNA polymerase I.

    PubMed

    Schnapp, G; Schnapp, A; Rosenbauer, H; Grummt, I

    1994-09-01

    We have characterized a transcription factor from Ehrlich ascites cells that is required for ribosomal gene transcription by RNA polymerase I (Pol I). This factor, termed TIF-IC, has a native molecular mass of 65 kDa, associates with Pol I, and is required both for the assembly of Sarkosyl-resistant initiation complexes and for the formation of the first internucleotide bonds. In addition to its function in transcription initiation, TIF-IC also plays a role in elongation of nascent RNA chains. At suboptimal levels of TIF-IC, transcripts with heterogeneous 3' ends are formed which are chased into full-length transcripts by the addition of more TIF-IC. Moreover, on a tailed template, which allows initiation in the absence of auxiliary factors, TIF-IC was found to stimulate the overall rate of transcription elongation and suppress pausing of Pol I. Thus TIF-IC appears to serve a function similar to the Pol II-specific factor TFIIF which is required for Pol II transcription initiation and elongation.

  4. JAK kinases are required for the bacterial RNA and poly I:C induced tyrosine phosphorylation of PKR

    PubMed Central

    Bleiblo, Farag; Michael, Paul; Brabant, Danielle; Ramana, Chilakamarti V; Tai, TC; Saleh, Mazen; Parrillo, Joseph E; Kumar, Anand; Kumar, Aseem

    2013-01-01

    Discriminating the molecular patterns associated with RNA is central to innate immunity. The protein kinase PKR is a cytosolic sensor involved in the recognition of viral dsRNA and triggering interferon-induced signaling. Here, we identified bacterial RNA as a novel distinct pattern recognized by PKR. We show that the tyrosine phosphorylation of PKR induced by either bacterial RNA or poly I:C is impaired in mutant cells lacking TYK2, JAK1, or JAK2 kinases. PKR was found to be a direct substrate for the activated JAKs. Our results indicated that the double-stranded structures of bacterial RNA are required to fully activate PKR. These results suggest that bacterial RNA signaling is analogous in some respects to that of viral RNA and interferons and may have implications in bacterial immunity. PMID:23236554

  5. The epiphytic fungus Pseudozyma aphidis induces jasmonic acid- and salicylic acid/nonexpressor of PR1-independent local and systemic resistance.

    PubMed

    Buxdorf, Kobi; Rahat, Ido; Gafni, Aviva; Levy, Maggie

    2013-04-01

    Pseudozyma spp. are yeast-like fungi, classified in the Ustilaginales, which are mostly epiphytic or saprophytic and are not pathogenic to plants. Several Pseudozyma species have been reported to exhibit biological activity against powdery mildews. However, previous studies have reported that Pseudozyma aphidis, which can colonize plant surfaces, is not associated with the collapse of powdery mildew colonies. In this report, we describe a novel P. aphidis strain and study its interactions with its plant host and the plant pathogen Botrytis cinerea. This isolate was found to secrete extracellular metabolites that inhibit various fungal pathogens in vitro and significantly reduce B. cinerea infection in vivo. Moreover, P. aphidis sensitized Arabidopsis (Arabidopsis thaliana) plants' defense machinery via local and systemic induction of pathogenesis-related1 (PR1) and plant defensin1.2 (PDF1.2) expression. P. aphidis also reduced B. cinerea infection, locally and systemically, in Arabidopsis mutants impaired in jasmonic acid (JA) or salicylic acid (SA) signaling. Thus, in addition to direct inhibition, P. aphidis may inhibit B. cinerea infection via induced resistance in a manner independent of SA, JA, and Nonexpressor of PR1 (NPR1). P. aphidis primed the plant defense machinery and induced stronger activation of PDF1.2 after B. cinerea infection. Finally, P. aphidis fully or partially reconstituted PR1 and PDF1.2 expression in npr1-1 mutant and in plants with the SA hydroxylase NahG transgene, but not in a jasmonate resistant1-1 mutant, after B. cinerea infection, suggesting that P. aphidis can bypass the SA/NPR1, but not JA, pathway to activate PR genes. Thus, either partial gene activation is sufficient to induce resistance, or the resistance is not directed solely through PR1 and PDF1.2 but probably through other pathogen-resistance genes or pathways as well.

  6. Trichoderma harzianum T-22 Induces Systemic Resistance in Tomato Infected by Cucumber mosaic virus

    PubMed Central

    Vitti, Antonella; Pellegrini, Elisa; Nali, Cristina; Lovelli, Stella; Sofo, Adriano; Valerio, Maria; Scopa, Antonio; Nuzzaci, Maria

    2016-01-01

    Understanding the induction of plant defenses against viruses using biocontrol agents is essential for developing new strategies against these pathogens, given the ineffectiveness of chemical treatments. The ability of Trichoderma harzianum, strain T-22 (T22) to control Cucumber mosaic virus (CMV) in Solanum lycopersicum var. cerasiforme plants and the changes in the physiology of tomato treated/infected with T22/CMV were examined. Plant growth-promoting effects, photosynthetic performance, reactive oxygen species scavenging enzymes, and phytohormones were investigated. T22 improved tomato growth in terms of plant height and improved photosynthesis, total chlorophyll content and plant gas exchange. In contrast, CMV induced a negative effect on dry matter accumulation and inhibited the photosynthetic capacity. The analysis of plant hormones demonstrated that treating with T22 before or simultaneously to CMV infection, led to a systemic resistance by jasmonic acid/ethylene and salicylic acid signaling pathways. Conversely, systemic resistance was abscissic acid-dependent when T22 treatment was administered after the CMV infection. In conclusion, the data reported here indicate that the T22-based strategy may be the most effective measure against CMV. PMID:27777581

  7. An acute bout of localized resistance exercise can rapidly improve inhibitory control

    PubMed Central

    Tsukamoto, Hayato; Suga, Tadashi; Takenaka, Saki; Takeuchi, Tatsuya; Tanaka, Daichi; Hamaoka, Takafumi; Hashimoto, Takeshi; Isaka, Tadao

    2017-01-01

    The positive effect of acute resistance exercise on executive function, such as inhibitory control (IC), is poorly understood. Several previous studies have demonstrated this effect using whole-body resistance exercise. However, it remains unclear whether localized resistance exercise performed using only limited muscle groups could also acutely improve IC. Thus, the present study examined the effect of an acute bout of localized resistance exercise on IC. Twelve healthy men performed a color-word Stroop task (CWST) before and immediately after the experimental conditions, which consisted of 2 resistance exercises and a resting control (CON). Bilateral knee extension was used to create 2 resistance exercise conditions: light-intensity resistance exercise (LRE) and high-intensity resistance exercise (HRE) conditions, which were 40% and 80% of one-repetition maximum, respectively. The resistance exercise session was programmed for 6 sets with 10 repetitions per set. The CWST-measured IC was significantly improved immediately after both LRE and HRE, but it did not improve immediately after CON. However, the improved IC was significantly greater in HRE than in LRE. The present findings showed that IC could be rapidly improved by an acute bout of localized resistance exercise, especially with high-intensity. Therefore, we suggest that in addition to whole-body resistance exercise, localized resistance exercise performed using limited muscle groups may be sufficient for improving IC. PMID:28877232

  8. Soybean (Glycine max L. Merr.) Sprouts Germinated under Red Light Irradiation Induce Disease Resistance against Bacterial Rotting Disease

    PubMed Central

    Dhakal, Radhika; Park, Euiho; Lee, Se-Weon; Baek, Kwang-Hyun

    2015-01-01

    Specific wavelengths of light can exert various physiological changes in plants, including effects on responses to disease incidence. To determine whether specific light wavelength had effects on rotting disease caused by Pseudomonas putida 229, soybean sprouts were germinated under a narrow range of wavelengths from light emitting diodes (LEDs), including red (650–660), far red (720–730) and blue (440–450 nm) or broad range of wavelength from daylight fluorescence bulbs. The controls were composed of soybean sprouts germinated in darkness. After germination under different conditions for 5 days, the soybean sprouts were inoculated with P. putida 229 and the disease incidence was observed for 5 days. The sprouts exposed to red light showed increased resistance against P. putida 229 relative to those grown under other conditions. Soybean sprouts germinated under red light accumulated high levels of salicylic acid (SA) accompanied with up-regulation of the biosynthetic gene ICS and the pathogenesis- related (PR) gene PR-1, indicating that the resistance was induced by the action of SA via de novo synthesis of SA in the soybean sprouts by red light irradiation. Taken together, these data suggest that only the narrow range of red light can induce disease resistance in soybean sprouts, regulated by the SA-dependent pathway via the de novo synthesis of SA and up-regulation of PR genes. PMID:25679808

  9. R&D100: IC ID

    ScienceCinema

    Hamlet, Jason; Pierson, Lyndon; Bauer, Todd

    2018-06-25

    Supply chain security to detect, deter, and prevent the counterfeiting of networked and stand-alone integrated circuits (ICs) is critical to cyber security. Sandia National Laboratory researchers have developed IC ID to leverage Physically Unclonable Functions (PUFs) and strong cryptographic authentication to create a unique fingerprint for each integrated circuit. IC ID assures the authenticity of ICs to prevent tampering or malicious substitution.

  10. Antiviral Innate Immune Activation in HIV-Infected Adults Negatively Affects H1/IC31-Induced Vaccine-Specific Memory CD4+ T Cells

    PubMed Central

    Schindler, Tobias; Kagina, Benjamin M.; Zhang, Jitao David; Lukindo, Tedson; Mpina, Maxmillian; Bang, Peter; Kromann, Ingrid; Hoff, Søren T.; Andersen, Peter; Reither, Klaus; Churchyard, Gavin J.; Certa, Ulrich

    2015-01-01

    Tuberculosis (TB) remains a global health problem, with vaccination being a necessary strategy for disease containment and elimination. A TB vaccine should be safe and immunogenic as well as efficacious in all affected populations, including HIV-infected individuals. We investigated the induction and maintenance of vaccine-induced memory CD4+ T cells following vaccination with the subunit vaccine H1/IC31. H1/IC31 was inoculated twice on study days 0 and 56 among HIV-infected adults with CD4+ lymphocyte counts of >350 cells/mm3. Whole venous blood stimulation was conducted with the H1 protein, and memory CD4+ T cells were analyzed using intracellular cytokine staining and polychromatic flow cytometry. We identified high responders, intermediate responders, and nonresponders based on detection of interleukin-2 (IL-2), tumor necrosis factor alpha (TNF-α), and gamma interferon (IFN-γ) expressing central (TCM) and effector memory CD4+ T cells (TEM) 182 days after the first immunization. Amplicon-based transcript quantification using next-generation sequencing was performed to identify differentially expressed genes that correlated with vaccine-induced immune responses. Genes implicated in resolution of inflammation discriminated the responders from the nonresponders 3 days after the first inoculation. The volunteers with higher expression levels of genes involved in antiviral innate immunity at baseline showed impaired H1-specific TCM and TEM maintenance 6 months after vaccination. Our study showed that in HIV-infected volunteers, expression levels of genes involved in the antiviral innate immune response affected long-term maintenance of H1/IC31 vaccine-induced cellular immunity. (The clinical trial was registered in the Pan African Clinical Trials Registry [PACTR] with the identifier PACTR201105000289276.) PMID:25924764

  11. Latitudinal Gradients in Induced and Constitutive Resistance against Herbivores.

    PubMed

    Anstett, Daniel N; Chen, Wen; Johnson, Marc T J

    2016-08-01

    Plants are hypothesized to evolve increased defense against herbivores at lower latitudes, but an increasing number of studies report evidence that contradicts this hypothesis. Few studies have examined the evolution of constitutive and induced resistance along latitudinal gradients. When induction is not considered, underlying patterns of latitudinal clines in resistance can be obscured because plant resistance represents a combination of induced and constitutive resistance, which may show contrasting patterns with latitude. Here, we asked if there are latitudinal gradients in constitutive versus induced resistance by using genotypes of Oenothera biennis (Onagraceae) sampled along an 18° latitudinal gradient. We conducted two bioassay experiments to compare the resistance of plant genotypes against one generalist (Spodoptera exigua) and one specialist (Acanthoscelidius acephalus) herbivore. These insects were assayed on: i) undamaged control plants, ii) plants that had been induced with jasmonic acid, and iii) plants induced with herbivore damage. Additionally, we examined latitudinal gradients of constitutive and induced chemical resistance by measuring the concentrations of total phenolics, the concentration of oxidized phenolics, and the percentage of phenolics that were oxidized. Spodoptera exigua showed lower performance on plants from lower latitudes, whereas A. acephalus showed no latitudinal pattern. Constitutive total phenolics were greater in plants from lower latitudes, but induced plants showed higher total phenolics at higher latitudes. Oxidative activity was greatest at higher latitudes regardless of induction. Overall, both latitude and induction have an impact on different metrics of plant resistance to herbivory. Further studies should consider the effect of induction and herbivore specialization more explicitly, which may help to resolve the controversy in latitudinal gradients in herbivory and defense.

  12. Free radicals mediate systemic acquired resistance.

    PubMed

    Wang, Caixia; El-Shetehy, Mohamed; Shine, M B; Yu, Keshun; Navarre, Duroy; Wendehenne, David; Kachroo, Aardra; Kachroo, Pradeep

    2014-04-24

    Systemic acquired resistance (SAR) is a form of resistance that protects plants against a broad spectrum of secondary infections. However, exploiting SAR for the protection of agriculturally important plants warrants a thorough investigation of the mutual interrelationships among the various signals that mediate SAR. Here, we show that nitric oxide (NO) and reactive oxygen species (ROS) serve as inducers of SAR in a concentration-dependent manner. Thus, genetic mutations that either inhibit NO/ROS production or increase NO accumulation (e.g., a mutation in S-nitrosoglutathione reductase [GSNOR]) abrogate SAR. Different ROS function additively to generate the fatty-acid-derived azelaic acid (AzA), which in turn induces production of the SAR inducer glycerol-3-phosphate (G3P). Notably, this NO/ROS→AzA→G3P-induced signaling functions in parallel with salicylic acid-derived signaling. We propose that the parallel operation of NO/ROS and SA pathways facilitates coordinated regulation in order to ensure optimal induction of SAR. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Inducible Clindamycin Resistance among Staphylococci Isolated from Burn Patients

    PubMed Central

    Zorgani, A; Shawerf, O; Tawil, K; El-Turki, E; Ghenghesh, KS

    2009-01-01

    Clindamycin has been used successfully to treat pneumonia and soft-tissue infections caused by methicillin-resistant Staphylococcus aureus. However, inducible clindamycin resistance has been described as a cause of treatment failure of such infections. A total of 159 staphylococcal isolates from different clinical specimens from burn patients in Tripoli Burn Center were tested for inducible clindamycin resistance by the disk-diffusion induction test. Inducible clindamycin resistance was detected in 66.2% of 65 methicillin-resistant S. aureus isolates and in none of 55 methicillin-sensitive S. aureus, 10 methicillin-resistant coagulase negative staphylococci and 29 methicllin-sensitive coagulase negative staphylococci isolates. In our setting, clindamycin can be used for the treatment of infections due to staphylococci, but we recommend that staphylococci isolates, particularly methicillin-resistant S. aureus, are tested by the D-test before treatment. PMID:21483523

  14. Temperature-Induced Viral Resistance in Emiliania huxleyi (Prymnesiophyceae)

    PubMed Central

    Kendrick, B. Jacob; DiTullio, Giacomo R.; Cyronak, Tyler J.; Fulton, James M.; Van Mooy, Benjamin A. S.; Bidle, Kay D.

    2014-01-01

    Annual Emiliania huxleyi blooms (along with other coccolithophorid species) play important roles in the global carbon and sulfur cycles. E. huxleyi blooms are routinely terminated by large, host-specific dsDNA viruses, (Emiliania huxleyi Viruses; EhVs), making these host-virus interactions a driving force behind their potential impact on global biogeochemical cycles. Given projected increases in sea surface temperature due to climate change, it is imperative to understand the effects of temperature on E. huxleyi’s susceptibility to viral infection and its production of climatically active dimethylated sulfur species (DSS). Here we demonstrate that a 3°C increase in temperature induces EhV-resistant phenotypes in three E. huxleyi strains and that successful virus infection impacts DSS pool sizes. We also examined cellular polar lipids, given their documented roles in regulating host-virus interactions in this system, and propose that alterations to membrane-bound surface receptors are responsible for the observed temperature-induced resistance. Our findings have potential implications for global biogeochemical cycles in a warming climate and for deciphering the particular mechanism(s) by which some E. huxleyi strains exhibit viral resistance. PMID:25405345

  15. Temperature-induced viral resistance in Emiliania huxleyi (Prymnesiophyceae).

    PubMed

    Kendrick, B Jacob; DiTullio, Giacomo R; Cyronak, Tyler J; Fulton, James M; Van Mooy, Benjamin A S; Bidle, Kay D

    2014-01-01

    Annual Emiliania huxleyi blooms (along with other coccolithophorid species) play important roles in the global carbon and sulfur cycles. E. huxleyi blooms are routinely terminated by large, host-specific dsDNA viruses, (Emiliania huxleyi Viruses; EhVs), making these host-virus interactions a driving force behind their potential impact on global biogeochemical cycles. Given projected increases in sea surface temperature due to climate change, it is imperative to understand the effects of temperature on E. huxleyi's susceptibility to viral infection and its production of climatically active dimethylated sulfur species (DSS). Here we demonstrate that a 3°C increase in temperature induces EhV-resistant phenotypes in three E. huxleyi strains and that successful virus infection impacts DSS pool sizes. We also examined cellular polar lipids, given their documented roles in regulating host-virus interactions in this system, and propose that alterations to membrane-bound surface receptors are responsible for the observed temperature-induced resistance. Our findings have potential implications for global biogeochemical cycles in a warming climate and for deciphering the particular mechanism(s) by which some E. huxleyi strains exhibit viral resistance.

  16. Nonantibiotic macrolides prevent human neutrophil elastase-induced mucus stasis and airway surface liquid volume depletion

    PubMed Central

    Sabater, Juan R.; Clarke, Tainya C.; Tan, Chong D.; Davies, Catrin M.; Liu, Jia; Yeung, Arthur; Garland, Alaina L.; Stutts, M. Jackson; Abraham, William M.; Phillips, Gary; Baker, William R.; Wright, Clifford D.; Wilbert, Sibylle

    2013-01-01

    Mucus clearance is an important component of the lung's innate defense system. A failure of this system brought on by mucus dehydration is common to both cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). Mucus clearance rates are regulated by the volume of airway surface liquid (ASL) and by ciliary beat frequency (CBF). Chronic treatment with macrolide antibiotics is known to be beneficial to both CF and COPD patients. However, chronic macrolide usage may induce bacterial resistance. We have developed a novel macrolide, 2′-desoxy-9-(S)-erythromycylamine (GS-459755), that has significantly diminished antibiotic activity against Staphylococcus aureus, Streptococcus pneumonia, Moraxella catarrhalis, and Haemophilus influenzae. Since neutrophilia frequently occurs in chronic lung disease and human neutrophil elastase (HNE) induces mucus stasis by activating the epithelial sodium channel (ENaC), we tested the ability of GS-459755 to protect against HNE-induced mucus stasis. GS-459755 had no effect on HNE activity. However, GS-459755 pretreatment protected against HNE-induced ASL volume depletion in human bronchial epithelial cells (HBECs). The effect of GS-459755 on ASL volume was dose dependent (IC50 ∼3.9 μM) and comparable to the antibacterial macrolide azithromycin (IC50 ∼2.4 μM). Macrolides had no significant effect on CBF or on transepithelial water permeability. However, the amiloride-sensitive transepithelial voltage, a marker of ENaC activity, was diminished by macrolide pretreatment. We conclude that GS-459755 may limit HNE-induced activation of ENaC and may be useful for the treatment of mucus dehydration in CF and COPD without inducing bacterial resistance. PMID:23542952

  17. TIF-IC, a factor involved in both transcription initiation and elongation of RNA polymerase I.

    PubMed Central

    Schnapp, G; Schnapp, A; Rosenbauer, H; Grummt, I

    1994-01-01

    We have characterized a transcription factor from Ehrlich ascites cells that is required for ribosomal gene transcription by RNA polymerase I (Pol I). This factor, termed TIF-IC, has a native molecular mass of 65 kDa, associates with Pol I, and is required both for the assembly of Sarkosyl-resistant initiation complexes and for the formation of the first internucleotide bonds. In addition to its function in transcription initiation, TIF-IC also plays a role in elongation of nascent RNA chains. At suboptimal levels of TIF-IC, transcripts with heterogeneous 3' ends are formed which are chased into full-length transcripts by the addition of more TIF-IC. Moreover, on a tailed template, which allows initiation in the absence of auxiliary factors, TIF-IC was found to stimulate the overall rate of transcription elongation and suppress pausing of Pol I. Thus TIF-IC appears to serve a function similar to the Pol II-specific factor TFIIF which is required for Pol II transcription initiation and elongation. Images PMID:8076598

  18. Recent Progress in Laboratory Astrophysics and Astrochemistry Achieved with the COSmIC Facility

    NASA Technical Reports Server (NTRS)

    Salama, Farid; Sciamma-O'Brien, Ella; Bejaoui, Salma

    2017-01-01

    We describe the characteristics and the capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to generate, process and analyze interstellar, circumstellar and planetary analogs in the laboratory. COSmIC stands for "Cosmic Simulation Chamber" and is dedicated to the study of neutral and ionized molecules and nanoparticles under the low temperature and high vacuum conditions that are required to simulate various space environments such as diffuse interstellar clouds, circumstellar outflows and planetary atmospheres. COSmIC integrates a variety of state-of-the-art instruments that allow recreating simulated space conditions to generate, process and monitor cosmic analogs in the laboratory. The COSmIC experimental setup is composed of a Pulsed Discharge Nozzle (PDN) expansion, that generates a plasma in the stream of a free supersonic jet expansion, coupled to high-sensitivity, complementary in situ diagnostics: cavity ring down spectroscopy (CRDS) and laser induced fluorescence (LIF) systems for photonic detection, and Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection. Recent results obtained using COSmIC will be highlighted. In particular, the progress that has been achieved in the domain of the diffuse interstellar bands (DIBs) and in monitoring, in the laboratory, the formation of circumstellar dust grains and planetary atmosphere aerosols from their gas-phase molecular precursors. Plans for future laboratory experiments on interstellar and planetary molecules and grains will also be addressed, as well as the implications of the studies underway for astronomical observations and past and future space mission data analysis.

  19. Dragon (RGMb) induces oxaliplatin resistance in colon cancer cells.

    PubMed

    Shi, Ying; Huang, Xiao-Xiao; Chen, Guo-Bin; Wang, Ying; Zhi, Qiang; Liu, Yuan-Sheng; Wu, Xiao-Ling; Wang, Li-Fen; Yang, Bing; Xiao, Chuan-Xing; Xing, Hui-Qin; Ren, Jian-Lin; Xia, Yin; Guleng, Bayasi

    2016-07-26

    Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and a major cause of cancer mortality. Chemotherapy resistance remains a major challenge for treating advanced CRC. Therefore, the identification of targets that induce drug resistance is a priority for the development of novel agents to overcome resistance. Dragon (also known as RGMb) is a member of the repulsive guidance molecule (RGM) family. We previously showed that Dragon expression increases with CRC progression in human patients. In the present study, we found that Dragon inhibited apoptosis and increased viability of CMT93 and HCT116 cells in the presence of oxaliplatin. Dragon induced resistance of xenograft tumor to oxaliplatinin treatment in mice. Mechanistically, Dragon inhibited oxaliplatin-induced JNK and p38 MAPK activation, and caspase-3 and PARP cleavages. Our results indicate that Dragon may be a novel target that induces drug resistance in CRC.

  20. Dragon (RGMb) induces oxaliplatin resistance in colon cancer cells

    PubMed Central

    Wang, Ying; Zhi, Qiang; Liu, Yuan-Sheng; Wu, Xiao-Ling; Wang, Li-Fen; Yang, Bing; Xiao, Chuan-Xing; Xing, Hui-Qin; Ren, Jian-Lin; Xia, Yin; Guleng, Bayasi

    2016-01-01

    Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and a major cause of cancer mortality. Chemotherapy resistance remains a major challenge for treating advanced CRC. Therefore, the identification of targets that induce drug resistance is a priority for the development of novel agents to overcome resistance. Dragon (also known as RGMb) is a member of the repulsive guidance molecule (RGM) family. We previously showed that Dragon expression increases with CRC progression in human patients. In the present study, we found that Dragon inhibited apoptosis and increased viability of CMT93 and HCT116 cells in the presence of oxaliplatin. Dragon induced resistance of xenograft tumor to oxaliplatinin treatment in mice. Mechanistically, Dragon inhibited oxaliplatin-induced JNK and p38 MAPK activation, and caspase-3 and PARP cleavages. Our results indicate that Dragon may be a novel target that induces drug resistance in CRC. PMID:27384995

  1. Anomalous Hall Resistance in Bilayer Electron Systems

    NASA Astrophysics Data System (ADS)

    Ezawa, Z. F.; Suzuki, S.; Tsitsishvili, G.

    2007-04-01

    Interlayer phase coherence has revealed various novel features in bilayer quantum Hall (QH) systems. It is shown to make the QH resistance vanish instead of developing a Hall plateau in a bilayer counterflow geometry. It also induces another anomalous QH resistance discovered in a drag experiment. These theoretical results explain recent experimental data due to Kellogg et al. [PRL 93 (2004) 036801;PRL 88 (2002) 126804] and Tutuc et al.[PRL 93 (2004) 036802].

  2. Momordin Ic couples apoptosis with autophagy in human hepatoblastoma cancer cells by reactive oxygen species (ROS)-mediated PI3K/Akt and MAPK signaling pathways.

    PubMed

    Mi, Yashi; Xiao, Chunxia; Du, Qingwei; Wu, Wanqiang; Qi, Guoyuan; Liu, Xuebo

    2016-01-01

    Momordin Ic is a principal saponin constituent of Fructus Kochiae, which acts as an edible and pharmaceutical product more than 2000 years in China. Our previous research found momordin Ic induced apoptosis by PI3K/Akt and MAPK signaling pathways in HepG2 cells. While the role of autophagy in momordin Ic induced cell death has not been discussed, and the connection between the apoptosis and autophagy is not clear yet. In this work, we reported momordin Ic promoted the formation of autophagic vacuole and expression of Beclin 1 and LC-3 in a dose- and time-dependent manner. Compared with momordin Ic treatment alone, the autophagy inhibitor 3-methyladenine (3-MA) also can inhibit apoptosis, while autophagy activator rapamycin (RAP) has the opposite effect, and the apoptosis inhibitor ZVAD-fmk also inhibited autophagy induced by momordin Ic. Momordin Ic simultaneously induces autophagy and apoptosis by suppressing the ROS-mediated PI3K/Akt and activating the ROS-related JNK and P38 pathways. Additionally, momordin Ic induces apoptosis by suppressing PI3K/Akt-dependent NF-κB pathways and promotes autophagy by ROS-mediated Erk signaling pathway. Those results suggest that momordin Ic has great potential as a nutritional preventive strategy in cancer therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Study on Mine Emergency Mechanism based on TARP and ICS

    NASA Astrophysics Data System (ADS)

    Xi, Jian; Wu, Zongzhi

    2018-01-01

    By analyzing the experiences and practices of mine emergency in China and abroad, especially the United States and Australia, normative principle, risk management principle and adaptability principle of constructing mine emergency mechanism based on Trigger Action Response Plans (TARP) and Incident Command System (ICS) are summarized. Classification method, framework, flow and subject of TARP and ICS which are suitable for the actual situation of domestic mine emergency are proposed. The system dynamics model of TARP and ICS is established. The parameters such as evacuation ratio, response rate, per capita emergency capability and entry rate of rescuers are set up. By simulating the operation process of TARP and ICS, the impact of these parameters on the emergency process are analyzed, which could provide a reference and basis for building emergency capacity, formulating emergency plans and setting up action plans in the emergency process.

  4. Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants.

    PubMed

    Planchamp, Chantal; Glauser, Gaetan; Mauch-Mani, Brigitte

    2014-01-01

    Pseudomonas putida KT2440 (KT2440) rhizobacteria colonize a wide range of plants. They have been extensively studied for their capacity to adhere to maize seeds, to tolerate toxic secondary metabolites produced by maize roots and to be attracted by maize roots. However, the response of maize plants to KT2440 colonization has not been investigated yet. Maize roots were inoculated with KT2440 and the local (roots) and systemic (leaves) early plant responses were investigated. The colonization behavior of KT2440 following application to maize seedlings was investigated and transcriptional analysis of stress- and defense-related genes as well as metabolite profiling of local and systemic maize tissues of KT2440-inoculated were performed. The local and systemic responses differed and more pronounced changes were observed in roots compared to leaves. Early in the interaction roots responded via jasmonic acid- and abscisic acid-dependent signaling. Interestingly, during later steps, the salicylic acid pathway was suppressed. Metabolite profiling revealed the importance of plant phospholipids in KT2440-maize interactions. An additional important maize secondary metabolite, a form of benzoxazinone, was also found to be differently abundant in roots 3 days after KT2440 inoculation. However, the transcriptional and metabolic changes observed in bacterized plants early during the interaction were minor and became even less pronounced with time, indicating an accommodation state of the plant to the presence of KT2440. Since the maize plants reacted to the presence of KT2440 in the rhizosphere, we also investigated the ability of these bacteria to trigger induced systemic resistance (ISR) against the maize anthracnose fungus Colletotrichum graminicola. The observed resistance was expressed as strongly reduced leaf necrosis and fungal growth in infected bacterized plants compared to non-bacterized controls, showing the potential of KT2440 to act as resistance inducers.

  5. Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants

    PubMed Central

    Planchamp, Chantal; Glauser, Gaetan; Mauch-Mani, Brigitte

    2014-01-01

    Pseudomonas putida KT2440 (KT2440) rhizobacteria colonize a wide range of plants. They have been extensively studied for their capacity to adhere to maize seeds, to tolerate toxic secondary metabolites produced by maize roots and to be attracted by maize roots. However, the response of maize plants to KT2440 colonization has not been investigated yet. Maize roots were inoculated with KT2440 and the local (roots) and systemic (leaves) early plant responses were investigated. The colonization behavior of KT2440 following application to maize seedlings was investigated and transcriptional analysis of stress- and defense-related genes as well as metabolite profiling of local and systemic maize tissues of KT2440-inoculated were performed. The local and systemic responses differed and more pronounced changes were observed in roots compared to leaves. Early in the interaction roots responded via jasmonic acid- and abscisic acid-dependent signaling. Interestingly, during later steps, the salicylic acid pathway was suppressed. Metabolite profiling revealed the importance of plant phospholipids in KT2440-maize interactions. An additional important maize secondary metabolite, a form of benzoxazinone, was also found to be differently abundant in roots 3 days after KT2440 inoculation. However, the transcriptional and metabolic changes observed in bacterized plants early during the interaction were minor and became even less pronounced with time, indicating an accommodation state of the plant to the presence of KT2440. Since the maize plants reacted to the presence of KT2440 in the rhizosphere, we also investigated the ability of these bacteria to trigger induced systemic resistance (ISR) against the maize anthracnose fungus Colletotrichum graminicola. The observed resistance was expressed as strongly reduced leaf necrosis and fungal growth in infected bacterized plants compared to non-bacterized controls, showing the potential of KT2440 to act as resistance inducers. PMID

  6. Use of optical technique for inspection of warpage of IC packages

    NASA Astrophysics Data System (ADS)

    Toh, Siew-Lok; Chau, Fook S.; Ong, Sim Heng

    2001-06-01

    The packaging of IC packages has changed over the years, form dual-in-line, wire-bond, and pin-through-hole in printed wiring board technologies in the 1970s to ball grid array, chip scale and surface mount technologies in the 1990s. Reliability has been a big problem for manufacturers for some moisture-sensitive packages. One of the potential problems in plastic IC packages is moisture-induced popcorn effect which can arise during the reflow process. Shearography is a non-destructive inspection technique that may be used to detect the delamination and warpage of IC packages. It is non-contacting and permits a full-field observation of surface displacement derivatives. Another advantage of this technique is that it is able to give the real-time formation of the fringes which indicate flaws in the IC package under real-time simulation condition of Surface Mount Technology (SMT) IR reflow profile. It is extremely fast and convenient to study the true behavior of the packaging deformation during the SMT process. It can be concluded that shearography has the potential for the real- time detection, in situ and non-destructive inspection of IC packages during the surface mount process.

  7. NK cells link obesity-induced adipose stress to inflammation and insulin resistance.

    PubMed

    Wensveen, Felix M; Jelenčić, Vedrana; Valentić, Sonja; Šestan, Marko; Wensveen, Tamara Turk; Theurich, Sebastian; Glasner, Ariella; Mendrila, Davor; Štimac, Davor; Wunderlich, F Thomas; Brüning, Jens C; Mandelboim, Ofer; Polić, Bojan

    2015-04-01

    An important cause of obesity-induced insulin resistance is chronic systemic inflammation originating in visceral adipose tissue (VAT). VAT inflammation is associated with the accumulation of proinflammatory macrophages in adipose tissue, but the immunological signals that trigger their accumulation remain unknown. We found that a phenotypically distinct population of tissue-resident natural killer (NK) cells represented a crucial link between obesity-induced adipose stress and VAT inflammation. Obesity drove the upregulation of ligands of the NK cell-activating receptor NCR1 on adipocytes; this stimulated NK cell proliferation and interferon-γ (IFN-γ) production, which in turn triggered the differentiation of proinflammatory macrophages and promoted insulin resistance. Deficiency of NK cells, NCR1 or IFN-γ prevented the accumulation of proinflammatory macrophages in VAT and greatly ameliorated insulin sensitivity. Thus NK cells are key regulators of macrophage polarization and insulin resistance in response to obesity-induced adipocyte stress.

  8. A low-power CMOS readout IC design for bolometer applications

    NASA Astrophysics Data System (ADS)

    Galioglu, Arman; Abbasi, Shahbaz; Shafique, Atia; Ceylan, Ömer; Yazici, Melik; Kaynak, Mehmet; Durmaz, Emre C.; Arsoy, Elif Gul; Gurbuz, Yasar

    2017-02-01

    A prototype of a readout IC (ROIC) designed for use in high temperature coefficient of resistance (TCR) SiGe microbolometers is presented. The prototype ROIC architecture implemented is based on a bridge with active and blind bolometer pixels with a capacitive transimpedance amplifier (CTIA) input stage and column parallel integration with serial readout. The ROIC is designed for use in high (>= 4 %/K) TCR and high detector resistance Si/SiGe microbolometers with 17x17 μm2 pixel sizes in development. The prototype has been designed and fabricated in 0.25- μm SiGe:C BiCMOS process.

  9. Monoterpenes Support Systemic Acquired Resistance within and between Plants

    PubMed Central

    Ghirardo, Andrea; Knappe, Claudia; Koch, Kerstin; Dey, Sanjukta; Parker, Jane E.

    2017-01-01

    This study investigates the role of volatile organic compounds in systemic acquired resistance (SAR), a salicylic acid (SA)-associated, broad-spectrum immune response in systemic, healthy tissues of locally infected plants. Gas chromatography coupled to mass spectrometry analyses of SAR-related emissions of wild-type and non-SAR-signal-producing mutant plants associated SAR with monoterpene emissions. Headspace exposure of Arabidopsis thaliana to a mixture of the bicyclic monoterpenes α-pinene and β-pinene induced defense, accumulation of reactive oxygen species, and expression of SA- and SAR-related genes, including the SAR regulatory AZELAIC ACID INDUCED1 (AZI1) gene and three of its paralogs. Pinene-induced resistance was dependent on SA biosynthesis and signaling and on AZI1. Arabidopsis geranylgeranyl reductase1 mutants with reduced monoterpene biosynthesis were SAR-defective but mounted normal local resistance and methyl salicylate-induced defense responses, suggesting that monoterpenes act in parallel with SA. The volatile emissions from SAR signal-emitting plants induced defense in neighboring plants, and this was associated with the presence of α-pinene, β-pinene, and camphene in the emissions of the “sender” plants. Our data suggest that monoterpenes, particularly pinenes, promote SAR, acting through ROS and AZI1, and likely function as infochemicals in plant-to-plant signaling, thus allowing defense signal propagation between neighboring plants. PMID:28536145

  10. Monoterpenes Support Systemic Acquired Resistance within and between Plants.

    PubMed

    Riedlmeier, Marlies; Ghirardo, Andrea; Wenig, Marion; Knappe, Claudia; Koch, Kerstin; Georgii, Elisabeth; Dey, Sanjukta; Parker, Jane E; Schnitzler, Jörg-Peter; Vlot, A Corina

    2017-06-01

    This study investigates the role of volatile organic compounds in systemic acquired resistance (SAR), a salicylic acid (SA)-associated, broad-spectrum immune response in systemic, healthy tissues of locally infected plants. Gas chromatography coupled to mass spectrometry analyses of SAR-related emissions of wild-type and non-SAR-signal-producing mutant plants associated SAR with monoterpene emissions. Headspace exposure of Arabidopsis thaliana to a mixture of the bicyclic monoterpenes α-pinene and β-pinene induced defense, accumulation of reactive oxygen species, and expression of SA- and SAR-related genes, including the SAR regulatory AZELAIC ACID INDUCED1 ( AZI1 ) gene and three of its paralogs. Pinene-induced resistance was dependent on SA biosynthesis and signaling and on AZI1 Arabidopsis geranylgeranyl reductase1 mutants with reduced monoterpene biosynthesis were SAR-defective but mounted normal local resistance and methyl salicylate-induced defense responses, suggesting that monoterpenes act in parallel with SA The volatile emissions from SAR signal-emitting plants induced defense in neighboring plants, and this was associated with the presence of α-pinene, β-pinene, and camphene in the emissions of the "sender" plants. Our data suggest that monoterpenes, particularly pinenes, promote SAR, acting through ROS and AZI1 , and likely function as infochemicals in plant-to-plant signaling, thus allowing defense signal propagation between neighboring plants. © 2017 American Society of Plant Biologists. All rights reserved.

  11. 12 CFR 1270.12 - Law governing rights and obligations of Banks, FHFA, Office of Finance, United States and Federal...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Consolidated Obligations § 1270.12 Law governing rights and obligations of Banks, FHFA, Office of Finance... 12 Banks and Banking 9 2012-01-01 2012-01-01 false Law governing rights and obligations of Banks, FHFA, Office of Finance, United States and Federal Reserve Banks; rights of any Person against Banks...

  12. 12 CFR 1270.12 - Law governing rights and obligations of Banks, FHFA, Office of Finance, United States and Federal...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Consolidated Obligations § 1270.12 Law governing rights and obligations of Banks, FHFA, Office of Finance... 12 Banks and Banking 10 2014-01-01 2014-01-01 false Law governing rights and obligations of Banks, FHFA, Office of Finance, United States and Federal Reserve Banks; rights of any Person against Banks...

  13. 12 CFR 1270.12 - Law governing rights and obligations of Banks, FHFA, Office of Finance, United States and Federal...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Consolidated Obligations § 1270.12 Law governing rights and obligations of Banks, FHFA, Office of Finance... 12 Banks and Banking 9 2013-01-01 2013-01-01 false Law governing rights and obligations of Banks, FHFA, Office of Finance, United States and Federal Reserve Banks; rights of any Person against Banks...

  14. Thermally-induced voltage alteration for integrated circuit analysis

    DOEpatents

    Cole, Jr., Edward I.

    2000-01-01

    A thermally-induced voltage alteration (TIVA) apparatus and method are disclosed for analyzing an integrated circuit (IC) either from a device side of the IC or through the IC substrate to locate any open-circuit or short-circuit defects therein. The TIVA apparatus uses constant-current biasing of the IC while scanning a focused laser beam over electrical conductors (i.e. a patterned metallization) in the IC to produce localized heating of the conductors. This localized heating produces a thermoelectric potential due to the Seebeck effect in any conductors with open-circuit defects and a resistance change in any conductors with short-circuit defects, both of which alter the power demand by the IC and thereby change the voltage of a source or power supply providing the constant-current biasing. By measuring the change in the supply voltage and the position of the focused and scanned laser beam over time, any open-circuit or short-circuit defects in the IC can be located and imaged. The TIVA apparatus can be formed in part from a scanning optical microscope, and has applications for qualification testing or failure analysis of ICs.

  15. A CMOS IC-based multisite measuring system for stimulation and recording in neural preparations in vitro

    PubMed Central

    Tateno, Takashi; Nishikawa, Jun

    2014-01-01

    In this report, we describe the system integration of a complementary metal oxide semiconductor (CMOS) integrated circuit (IC) chip, capable of both stimulation and recording of neurons or neural tissues, to investigate electrical signal propagation within cellular networks in vitro. The overall system consisted of three major subunits: a 5.0 × 5.0 mm CMOS IC chip, a reconfigurable logic device (field-programmable gate array, FPGA), and a PC. To test the system, microelectrode arrays (MEAs) were used to extracellularly measure the activity of cultured rat cortical neurons and mouse cortical slices. The MEA had 64 bidirectional (stimulation and recording) electrodes. In addition, the CMOS IC chip was equipped with dedicated analog filters, amplification stages, and a stimulation buffer. Signals from the electrodes were sampled at 15.6 kHz with 16-bit resolution. The measured input-referred circuitry noise was 10.1 μ V root mean square (10 Hz to 100 kHz), which allowed reliable detection of neural signals ranging from several millivolts down to approximately 33 μ Vpp. Experiments were performed involving the stimulation of neurons with several spatiotemporal patterns and the recording of the triggered activity. An advantage over current MEAs, as demonstrated by our experiments, includes the ability to stimulate (voltage stimulation, 5-bit resolution) spatiotemporal patterns in arbitrary subsets of electrodes. Furthermore, the fast stimulation reset mechanism allowed us to record neuronal signals from a stimulating electrode around 3 ms after stimulation. We demonstrate that the system can be directly applied to, for example, auditory neural prostheses in conjunction with an acoustic sensor and a sound processing system. PMID:25346683

  16. A CMOS IC-based multisite measuring system for stimulation and recording in neural preparations in vitro.

    PubMed

    Tateno, Takashi; Nishikawa, Jun

    2014-01-01

    In this report, we describe the system integration of a complementary metal oxide semiconductor (CMOS) integrated circuit (IC) chip, capable of both stimulation and recording of neurons or neural tissues, to investigate electrical signal propagation within cellular networks in vitro. The overall system consisted of three major subunits: a 5.0 × 5.0 mm CMOS IC chip, a reconfigurable logic device (field-programmable gate array, FPGA), and a PC. To test the system, microelectrode arrays (MEAs) were used to extracellularly measure the activity of cultured rat cortical neurons and mouse cortical slices. The MEA had 64 bidirectional (stimulation and recording) electrodes. In addition, the CMOS IC chip was equipped with dedicated analog filters, amplification stages, and a stimulation buffer. Signals from the electrodes were sampled at 15.6 kHz with 16-bit resolution. The measured input-referred circuitry noise was 10.1 μ V root mean square (10 Hz to 100 kHz), which allowed reliable detection of neural signals ranging from several millivolts down to approximately 33 μ Vpp. Experiments were performed involving the stimulation of neurons with several spatiotemporal patterns and the recording of the triggered activity. An advantage over current MEAs, as demonstrated by our experiments, includes the ability to stimulate (voltage stimulation, 5-bit resolution) spatiotemporal patterns in arbitrary subsets of electrodes. Furthermore, the fast stimulation reset mechanism allowed us to record neuronal signals from a stimulating electrode around 3 ms after stimulation. We demonstrate that the system can be directly applied to, for example, auditory neural prostheses in conjunction with an acoustic sensor and a sound processing system.

  17. Induced resistance to the antimicrobial peptide lactoferricin B in Staphylococcus aureus.

    PubMed

    Samuelsen, Orjan; Haukland, Hanne H; Jenssen, Håvard; Krämer, Manuela; Sandvik, Kjersti; Ulvatne, Hilde; Vorland, Lars H

    2005-06-20

    This study was designed to investigate inducible intrinsic resistance against lactoferricin B in Staphylococcus aureus. Serial passage of seven S. aureus strains in medium with increasing concentrations of peptide resulted in an induced resistance at various levels in all strains. The induced resistance was unstable and decreased relatively rapidly during passages in peptide free medium but the minimum inhibitory concentration remained elevated after thirty passages. Cross-resistance to penicillin G and low-level cross-resistance to the antimicrobial peptides indolicidin and Ala(8,13,18)-magainin-II amide [corrected] was observed. No cross-resistance was observed to the human cathelicidin LL-37. In conclusion, this study shows that S. aureus has intrinsic resistance mechanisms against antimicrobial peptides that can be induced upon exposure, and that this may confer low-level cross-resistance to other antimicrobial peptides.

  18. Simultaneous detection of three lily viruses using Triplex IC-RT-PCR.

    PubMed

    Zhang, Yubao; Wang, Yajun; Xie, Zhongkui; Yang, Guo; Guo, Zhihong; Wang, Le

    2017-11-01

    Viruses commonly infecting lily (Lilium spp.) include: Lily symptomless virus (LSV), Cucumber mosaic virus (CMV) and Lily mottle virus (LMoV). These viruses usually co-infect lilies causing severe economic losses in terms of quantity and quality of flower and bulb production around the world. Reliable and precise detection systems need to be developed for virus identification. We describe the development of a triplex immunocapture (IC) reverse transcription (RT) polymerase chain reaction (PCR) assay for the simultaneous detection of LSV, CMV and LMoV. The triplex IC-RT-PCR was compared with a quadruplex RT-PCR assay. Relative to the quadruplex RT-PCR, the specificity of the triplex IC-RT-PCR system for LSV, CMV and LMoV was 100% for field samples. The sensitivity of the triplex IC-RT-PCR system was 99.4%, 81.4% and 98.7% for LSV, CMV and LMoV, respectively. Agreement (κ) between the results obtained from the two tests was 0.968, 0.844 and 0.984 for LSV, CMV and LMoV, respectively. This is the first report of the simultaneous detection of LSV, CMV and LMoV in a triplex IC-RT-PCR assay. In particular we believe this convenient and reliable triplex IC-RT-PCR method could be used routinely for large-scale field surveys or crop health monitoring of lily. Copyright © 2017. Published by Elsevier B.V.

  19. Systemic resistance in citrus to Tetranychus urticae induced by conspecifics is transmitted by grafting and mediated by mobile amino acids.

    PubMed

    Agut, Blas; Gamir, Jordi; Jaques, Josep A; Flors, Victor

    2016-10-01

    Recent research suggests that systemic signalling and communication between roots and leaves plays an important role in plant defence against herbivores. In the present study, we show that the oviposition of the two-spotted spider mite Tetranychus urticae in the systemic leaves of citrus rootstock Citrus aurantium (sour orange) was reduced by 50% when a lower leaf was previously infested with conspecifics. Metabolomic and gene expression analysis of the root efflux revealed a strong accumulation of glutamic acid (Glu) that triggered the expression of the citrus putative glutamate receptor (GRL) in the shoots. Additionally, uninfested sour orange systemic leaves showed increased expression of glutamate receptors and higher amounts of jasmonic acid (JA) and 12-oxo-phytodienoic acid in plants that were previously infested. Glu perception in the shoots induced the JA pathway, which primed LOX-2 gene expression when citrus plants were exposed to a second infestation. The spider mite-susceptible citrus rootstock Cleopatra mandarin (C. unshiu) also expressed systemic resistance, although the resistance was less effective than the resistance in sour orange. Surprisingly, the mobile signal in Cleopatra mandarin was not Glu, which suggests a strong genotype-dependency for systemic signalling in citrus. When the cultivar Clemenules (C. clementina) was grafted onto sour orange, there was a reduction in symptomatic leaves and T. urticae populations compared to the same cultivar grafted onto Cleopatra mandarin. Thus, systemic resistance is transmitted from the roots to the shoots in citrus and is dependent on rootstock resistance. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  20. Induced resistance enzymes in wild plants-do 'early birds' escape from pathogen attack?

    PubMed

    Heil, Martin; Ploss, Kerstin

    2006-09-01

    Systemic acquired resistance (SAR) of plants to pathogens is a well-defined phenomenon. The underlying signalling pathways and its application in crop protection are intensively studied. However, most studies are conducted on crop plants or on Arabidopsis as a model plant. The taxonomic distribution of this phenomenon and its dependence on life history are thus largely unknown. We quantified activities of three classes of resistance-related enzymes in 18 plant species to investigate whether plants with varying life histories differ in their investment in disease resistance. Enzyme activities were quantified in untreated plants, and in plants induced with BION, a chemical resistance elicitor. All species showed constitutive activities of chitinase, peroxidase, or glucanase. However, constitutive chitinase activities varied by 30 times, and peroxidase by 50 times, among species. Several species did not respond to the induction treatment, while enzyme activities in other species increased more than threefold after BION application. Plant species differ dramatically in the presence and inducibility of resistance enzymes. This variation could be related to life history: While all resistance enzymes were significantly induced in larger perennial plants that flower during summer, spring geophytes hardly showed inducible resistance. These plants grow in an environment that is characterised by a low-pathogen pressure, and thus may simply 'escape' from infection. Our study presents the first comparative data set on resistance-related enzymes in noncultivated plants. The current view on SAR-narrowed by the concentration on cultivated crops-is not sufficient to understand the ecological and evolutionary relevance of this widespread plant trait.

  1. Carboxylesterase-mediated insecticide resistance: Quantitative increase induces broader metabolic resistance than qualitative change.

    PubMed

    Cui, Feng; Li, Mei-Xia; Chang, Hai-Jing; Mao, Yun; Zhang, Han-Ying; Lu, Li-Xia; Yan, Shuai-Guo; Lang, Ming-Lin; Liu, Li; Qiao, Chuan-Ling

    2015-06-01

    Carboxylesterases are mainly involved in the mediation of metabolic resistance of many insects to organophosphate (OP) insecticides. Carboxylesterases underwent two divergent evolutionary events: (1) quantitative mechanism characterized by the overproduction of carboxylesterase protein; and (2) qualitative mechanism caused by changes in enzymatic properties because of mutation from glycine/alanine to aspartate at the 151 site (G/A151D) or from tryptophan to leucine at the 271 site (W271L), following the numbering of Drosophila melanogaster AChE. Qualitative mechanism has been observed in few species. However, whether this carboxylesterase mutation mechanism is prevalent in insects remains unclear. In this study, wild-type, G/A151D and W271L mutant carboxylesterases from Culex pipiens and Aphis gossypii were subjected to germline transformation and then transferred to D. melanogaster. These germlines were ubiquitously expressed as induced by tub-Gal4. In carboxylesterase activity assay, the introduced mutant carboxylesterase did not enhance the overall carboxylesterase activity of flies. This result indicated that G/A151D or W271L mutation disrupted the original activities of the enzyme. Less than 1.5-fold OP resistance was only observed in flies expressing A. gossypii mutant carboxylesterases compared with those expressing A. gossypii wild-type carboxylesterase. However, transgenic flies universally showed low resistance to OP insecticides compared with non-transgenic flies. The flies expressing A. gossypii W271L mutant esterase exhibited 1.5-fold resistance to deltamethrin, a pyrethroid insecticide compared with non-transgenic flies. The present transgenic Drosophila system potentially showed that a quantitative increase in carboxylesterases induced broader resistance of insects to insecticides than a qualitative change. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Mice chronically infected with chimeric HIV resist peripheral and brain superinfection: a model of protective immunity to HIV.

    PubMed

    Kelschenbach, Jennifer L; Saini, Manisha; Hadas, Eran; Gu, Chao-Jiang; Chao, Wei; Bentsman, Galina; Hong, Jessie P; Hanke, Tomas; Sharer, Leroy R; Potash, Mary Jane; Volsky, David J

    2012-06-01

    Infection by some viruses induces immunity to reinfection, providing a means to identify protective epitopes. To investigate resistance to reinfection in an animal model of HIV disease and its control, we employed infection of mice with chimeric HIV, EcoHIV. When immunocompetent mice were infected by intraperitoneal (IP) injection of EcoHIV, they resisted subsequent secondary infection by IP injection, consistent with a systemic antiviral immune response. To investigate the potential role of these responses in restricting neurotropic HIV infection, we established a protocol for efficient EcoHIV expression in the brain following intracranial (IC) inoculation of virus. When mice were inoculated by IP injection and secondarily by IC injection, they also controlled EcoHIV replication in the brain. To investigate their role in EcoHIV antiviral responses, CD8+ T lymphocytes were isolated from spleens of EcoHIV infected and uninfected mice and adoptively transferred to isogenic recipients. Recipients of EcoHIV primed CD8+ cells resisted subsequent EcoHIV infection compared to recipients of cells from uninfected donors. CD8+ spleen cells from EcoHIV-infected mice also mounted modest but significant interferon-γ responses to two HIV Gag peptide pools. These findings suggest EcoHIV-infected mice may serve as a useful system to investigate the induction of anti-HIV protective immunity for eventual translation to human beings.

  3. ICECAP: an integrated, general-purpose, automation-assisted IC50/EC50 assay platform.

    PubMed

    Li, Ming; Chou, Judy; King, Kristopher W; Jing, Jing; Wei, Dong; Yang, Liyu

    2015-02-01

    IC50 and EC50 values are commonly used to evaluate drug potency. Mass spectrometry (MS)-centric bioanalytical and biomarker labs are now conducting IC50/EC50 assays, which, if done manually, are tedious and error-prone. Existing bioanalytical sample preparation automation systems cannot meet IC50/EC50 assay throughput demand. A general-purpose, automation-assisted IC50/EC50 assay platform was developed to automate the calculations of spiking solutions and the matrix solutions preparation scheme, the actual spiking and matrix solutions preparations, as well as the flexible sample extraction procedures after incubation. In addition, the platform also automates the data extraction, nonlinear regression curve fitting, computation of IC50/EC50 values, graphing, and reporting. The automation-assisted IC50/EC50 assay platform can process the whole class of assays of varying assay conditions. In each run, the system can handle up to 32 compounds and up to 10 concentration levels per compound, and it greatly improves IC50/EC50 assay experimental productivity and data processing efficiency. © 2014 Society for Laboratory Automation and Screening.

  4. Cardiovascular Adaptations Induced by Resistance Training in Animal Models.

    PubMed

    Melo, S F S; da Silva Júnior, N D; Barauna, V G; Oliveira, E M

    2018-01-01

    In the last 10 years the number of studies showing the benefits of resistance training (RT) to the cardiovascular system, have grown. In comparison to aerobic training, RT-induced favorable adaptations to the cardiovascular system have been ignored for many years, thus the mechanisms of the RT-induced cardiovascular adaptations are still uncovered. The lack of animal models with comparable protocols to the RT performed by humans hampers the knowledge. We have used squat-exercise model, which is widely used by many others laboratories. However, to a lesser extent, other models are also employed to investigate the cardiovascular adaptations. In the subsequent sections we will review the information regarding cardiac morphological adaptations, signaling pathway of the cardiac cell, cardiac function and the vascular adaptation induced by RT using this animal model developed by Tamaki et al. in 1992. Furthermore, we also describe cardiovascular findings observed using other animal models of RT.

  5. Recent Progresses in Laboratory Astrophysics with Ames’ COSmIC Facility

    NASA Astrophysics Data System (ADS)

    Salama, Farid; Contreras, Cesar; Sciamma-O'Brien, Ella; Bejaoui, Salma

    2016-06-01

    We present and discuss the characteristics and the capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to generate, process and analyze interstellar, circumstellar and planetary analogs in the laboratory [1]. COSmIC stands for “Cosmic Simulation Chamber” and is dedicated to the study of neutral and ionized molecules and nano particles under the low temperature and high vacuum conditions that are required to simulate space environments. COSmIC integrates a variety of state-of-the-art instruments that allow forming, processing and monitoring simulated space conditions for planetary, circumstellar and interstellar materials in the laboratory. COSmIC is composed of a Pulsed Discharge Nozzle (PDN) expansion that generates a plasma in free supersonic jet expansion coupled to two high-sensitivity, complementary in situ diagnostics: a Cavity Ring Down Spectroscopy (CRDS) and laser induced fluorescence (LIF) systems for photonic detection and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection [2].Recent laboratory results that were obtained using COSmIC will be presented, in particular the progress that has been achieved in the domain of the diffuse interstellar bands (DIBs) [3] and in monitoring, in the laboratory, the formation of dust grains and aerosols from their gas-phase molecular precursors in environments as varied as stellar/circumstellar outflows [4] and planetary atmospheres [5]. Plans for future, next generation, laboratory experiments on cosmic molecules and grains in the growing field of laboratory astrophysics will also be addressed as well as the implications of the current studies for astronomy.References: [1] Salama F., In Organic Matter in Space, IAU Symposium 251, Kwok & Sandford Eds.Cambridge University Press, Vol. 4, S251, p. 357 (2008) and references therein.[2] Ricketts C., Contreras C., Walker, R., Salama F., Int. J. Mass Spec, 300, 26 (2011)[3] Salama F., Galazutdinov G., Krelowski J

  6. RIPK3 expression in cervical cancer cells is required for PolyIC-induced necroptosis, IL-1α release, and efficient paracrine dendritic cell activation.

    PubMed

    Schmidt, Susanne V; Seibert, Stefanie; Walch-Rückheim, Barbara; Vicinus, Benjamin; Kamionka, Eva-Maria; Pahne-Zeppenfeld, Jennifer; Solomayer, Erich-Franz; Kim, Yoo-Jin; Bohle, Rainer M; Smola, Sigrun

    2015-04-20

    Previous studies have shown that cervical cancer cells only release low levels of pro-inflammatory cytokines owing to infection with human papillomaviruses. This results in low immunogenicity of the cancer cells. The viral dsRNA analog PolyIC has been suggested as a promising adjuvant for cervical cancer immunotherapy. However, little is known about the molecular requirements resulting in successful immune activation. Here, we demonstrate that stimulation of cervical cancer cells with PolyIC induced necroptotic cell death, which was strictly dependent on the expression of the receptor-interacting protein kinase RIPK3. Necroptotic cancer cells released interleukin-1α (IL-1α), which was required for powerful activation of dendritic cells (DC) to produce IL-12, a cytokine critical for anti-tumor responses. Again both, IL-1α release and DC activation, were strictly dependent on RIPK3 expression in the tumor cells. Of note, our in situ analyses revealed heterogeneous RIPK3 expression patterns in cervical squamous cell carcinomas and adenocarcinomas. In summary, our study identified a novel RIPK3-dependent mechanism that explains how PolyIC-treatment of cervical cancer cells leads to potent DC activation. Our findings suggest that the RIPK3 expression status in cervical cancer cells might critically influence the outcome of PolyIC-based immunotherapeutic approaches and should therefore be assessed prior to immunotherapy.

  7. Fracture resistance of the implant-abutment connection in implants with internal hex and internal conical connections under oblique compressive loading: an in vitro study.

    PubMed

    Coppedê, Abílio Ricciardi; Bersani, Edmilson; de Mattos, Maria da Gloria Chiarello; Rodrigues, Renata Cristina Silveira; Sartori, Ivete Aparecida de Mattias; Ribeiro, Ricardo Faria

    2009-01-01

    The objective of this study was to verify if differences in the design of internal hex (IH) and internal conical (IC) connection implant systems influence fracture resistance under oblique compressive forces. Twenty implant-abutment assemblies were utilized: 10 with IH connections and 10 with IC connections. Maximum deformation force for IC implants (90.58 +/- 6.72 kgf) was statistically higher than that for IH implants (83.73 +/- 4.94 kgf) (P = .0182). Fracture force for the IH implants was 79.86 +/- 4.77 kgf. None of the IC implants fractured. The friction-locking mechanics and the solid design of the IC abutments provided greater resistance to deformation and fracture under oblique compressive loading when compared to the IH abutments.

  8. 30 CFR 57.22210 - In-line filters (I-C mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false In-line filters (I-C mines). 57.22210 Section... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22210 In-line filters (I-C mines). Filters or separators shall be installed on air-lift fan systems to prevent explosive concentrations of...

  9. 30 CFR 57.22210 - In-line filters (I-C mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false In-line filters (I-C mines). 57.22210 Section... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22210 In-line filters (I-C mines). Filters or separators shall be installed on air-lift fan systems to prevent explosive concentrations of...

  10. 30 CFR 57.22210 - In-line filters (I-C mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false In-line filters (I-C mines). 57.22210 Section... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22210 In-line filters (I-C mines). Filters or separators shall be installed on air-lift fan systems to prevent explosive concentrations of...

  11. 30 CFR 57.22210 - In-line filters (I-C mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false In-line filters (I-C mines). 57.22210 Section... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22210 In-line filters (I-C mines). Filters or separators shall be installed on air-lift fan systems to prevent explosive concentrations of...

  12. 30 CFR 57.22210 - In-line filters (I-C mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false In-line filters (I-C mines). 57.22210 Section... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22210 In-line filters (I-C mines). Filters or separators shall be installed on air-lift fan systems to prevent explosive concentrations of...

  13. The Epiphytic Fungus Pseudozyma aphidis Induces Jasmonic Acid- and Salicylic Acid/Nonexpressor of PR1-Independent Local and Systemic Resistance1[C][W

    PubMed Central

    Buxdorf, Kobi; Rahat, Ido; Gafni, Aviva; Levy, Maggie

    2013-01-01

    Pseudozyma spp. are yeast-like fungi, classified in the Ustilaginales, which are mostly epiphytic or saprophytic and are not pathogenic to plants. Several Pseudozyma species have been reported to exhibit biological activity against powdery mildews. However, previous studies have reported that Pseudozyma aphidis, which can colonize plant surfaces, is not associated with the ‎‎collapse of powdery ‎mildew colonies. In this report, we describe a novel P. aphidis strain and study its interactions with its plant host and the plant pathogen Botrytis cinerea. This isolate was found to secrete extracellular metabolites that inhibit various fungal pathogens in vitro and significantly reduce B. cinerea infection in vivo. Moreover, P. aphidis sensitized Arabidopsis (Arabidopsis thaliana) plants’ defense machinery via local and systemic induction of PATHOGENESIS-RELATED1 (PR1) and PLANT DEFENSIN1.2 (PDF1.2) expression. P. aphidis also reduced B. cinerea infection, locally and systemically, in Arabidopsis mutants impaired in jasmonic acid (JA) or salicylic acid (SA) signaling. Thus, in addition to direct inhibition, P. aphidis may inhibit B. cinerea infection via induced resistance in a manner independent of SA, JA, and Nonexpressor of PR1 (NPR1). P. aphidis primed the plant defense machinery and induced stronger activation of PDF1.2 after B. cinerea infection. Finally, P. aphidis fully or partially reconstituted PR1 and PDF1.2 expression in npr1-1 mutant and in plants with the SA hydroxylase NahG transgene, but not in a jasmonate resistant1-1 mutant, after B. cinerea infection, suggesting that P. aphidis can bypass the SA/NPR1, but not JA, pathway to activate PR genes. Thus, either partial gene activation is sufficient to induce resistance, or the resistance is not directed solely through PR1 and PDF1.2 but probably through other pathogen-resistance genes or pathways as well. PMID:23388119

  14. PEDF-induced alteration of metabolism leading to insulin resistance.

    PubMed

    Carnagarin, Revathy; Dharmarajan, Arunasalam M; Dass, Crispin R

    2015-02-05

    Pigment epithelium-derived factor (PEDF) is an anti-angiogenic, immunomodulatory, and neurotrophic serine protease inhibitor protein. PEDF is evolving as a novel metabolic regulatory protein that plays a causal role in insulin resistance. Insulin resistance is the central pathogenesis of metabolic disorders such as obesity, type 2 diabetes mellitus, polycystic ovarian disease, and metabolic syndrome, and PEDF is associated with them. The current evidence suggests that PEDF administration to animals induces insulin resistance, whereas neutralisation improves insulin sensitivity. Inflammation, lipolytic free fatty acid mobilisation, and mitochondrial dysfunction are the proposed mechanism of PEDF-mediated insulin resistance. This review summarises the probable mechanisms adopted by PEDF to induce insulin resistance, and identifies PEDF as a potential therapeutic target in ameliorating insulin resistance. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Advances in Interstellar and Planetary Laboratory Astrophysics with Ames’ COSmIC Facility

    NASA Astrophysics Data System (ADS)

    Salama, Farid; Sciamma-O'Brien, Ella; Bejaoui, Salma

    2017-06-01

    The COSmIC facility was developed at NASA Ames to study interstellar, circumstellar and planetary analogs in the laboratory [1]. COSmIC stands for “Cosmic Simulation Chamber” and is dedicated to the study of neutral and ionized molecules and nanoparticles under the low temperature and high vacuum conditions that are required to simulate space environments. COSmIC integrates a variety of instruments that allow forming, processing and monitoring simulated space conditions in the laboratory. It is composed of a Pulsed Discharge Nozzle (PDN) expansion that generates a plasma in a free supersonic jet expansion coupled to high-sensitivity, complementary in situ diagnostics tools, used for the detection and characterization of the species present in the expansion: a Cavity Ring Down Spectroscopy (CRDS) and fluorescence spectroscopy systems for photonic detection and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection [2].Recent advances achieved in laboratory astrophysics using COSmIC will be presented, in particular the advances that have been achieved in the domain of the diffuse interstellar bands (DIBs) [3] and in monitoring, in the laboratory, the formation of dust grains and aerosols from their gas-phase molecular precursors in environments as varied as circumstellar outflows [4] and planetary atmospheres [5, 6]. Plans for future laboratory experiments on cosmic molecules and grains in the growing field of laboratory astrophysics (NIR-MIR CRDS, Laser Induced Fluorescence spectra of cosmic molecule analogs and the laser induced incandescence spectra of cosmic grain analogs will also be addressed as well as the implications of the on-going studies for astronomy.References: [1] Salama F., In Organic Matter in Space, IAU S251, Kwok & Sandford eds.CUP, 4, 357 (2008).[2] Ricketts C., Contreras C., Walker, R., Salama F., Int. J. Mass Spec, 300, 26 (2011)[3] Salama F., Galazutdinov G., Krelowski J., Biennier L., Beletsky Y., In-Ok Song, The

  16. The Elicitor Protein AsES Induces a Systemic Acquired Resistance Response Accompanied by Systemic Microbursts and Micro-Hypersensitive Responses in Fragaria ananassa.

    PubMed

    Hael-Conrad, Verónica; Perato, Silvia Marisa; Arias, Marta Eugenia; Martínez-Zamora, Martín Gustavo; Di Peto, Pía de Los Ángeles; Martos, Gustavo Gabriel; Castagnaro, Atilio Pedro; Díaz-Ricci, Juan Carlos; Chalfoun, Nadia Regina

    2018-01-01

    The elicitor AsES (Acremonium strictum elicitor subtilisin) is a 34-kDa subtilisin-like protein secreted by the opportunistic fungus Acremonium strictum. AsES activates innate immunity and confers resistance against anthracnose and gray mold diseases in strawberry plants (Fragaria × ananassa Duch.) and the last disease also in Arabidopsis. In the present work, we show that, upon AsES recognition, a cascade of defense responses is activated, including: calcium influx, biphasic oxidative burst (O 2 ⋅- and H 2 O 2 ), hypersensitive cell-death response (HR), accumulation of autofluorescent compounds, cell-wall reinforcement with callose and lignin deposition, salicylic acid accumulation, and expression of defense-related genes, such as FaPR1, FaPG1, FaMYB30, FaRBOH-D, FaRBOH-F, FaCHI23, and FaFLS. All these responses occurred following a spatial and temporal program, first induced in infiltrated leaflets (local acquired resistance), spreading out to untreated lateral leaflets, and later, to distal leaves (systemic acquired resistance). After AsES treatment, macro-HR and macro-oxidative bursts were localized in infiltrated leaflets, while micro-HRs and microbursts occurred later in untreated leaves, being confined to a single cell or a cluster of a few epidermal cells that differentiated from the surrounding ones. The differentiated cells initiated a time-dependent series of physiological and anatomical changes, evolving to idioblasts accumulating H 2 O 2 and autofluorescent compounds that blast, delivering its content into surrounding cells. This kind of systemic cell-death process in plants is described for the first time in response to a single elicitor. All data presented in this study suggest that AsES has the potential to activate a wide spectrum of biochemical and molecular defense responses in F. ananassa that may explain the induced protection toward pathogens of opposite lifestyle, like hemibiotrophic and necrotrophic fungi.

  17. Lifestyle-induced metabolic inflexibility and accelerated ageing syndrome: insulin resistance, friend or foe?

    PubMed Central

    Nunn, Alistair VW; Bell, Jimmy D; Guy, Geoffrey W

    2009-01-01

    The metabolic syndrome may have its origins in thriftiness, insulin resistance and one of the most ancient of all signalling systems, redox. Thriftiness results from an evolutionarily-driven propensity to minimise energy expenditure. This has to be balanced with the need to resist the oxidative stress from cellular signalling and pathogen resistance, giving rise to something we call 'redox-thriftiness'. This is based on the notion that mitochondria may be able to both amplify membrane-derived redox growth signals as well as negatively regulate them, resulting in an increased ATP/ROS ratio. We suggest that 'redox-thriftiness' leads to insulin resistance, which has the effect of both protecting the individual cell from excessive growth/inflammatory stress, while ensuring energy is channelled to the brain, the immune system, and for storage. We also suggest that fine tuning of redox-thriftiness is achieved by hormetic (mild stress) signals that stimulate mitochondrial biogenesis and resistance to oxidative stress, which improves metabolic flexibility. However, in a non-hormetic environment with excessive calories, the protective nature of this system may lead to escalating insulin resistance and rising oxidative stress due to metabolic inflexibility and mitochondrial overload. Thus, the mitochondrially-associated resistance to oxidative stress (and metabolic flexibility) may determine insulin resistance. Genetically and environmentally determined mitochondrial function may define a 'tipping point' where protective insulin resistance tips over to inflammatory insulin resistance. Many hormetic factors may induce mild mitochondrial stress and biogenesis, including exercise, fasting, temperature extremes, unsaturated fats, polyphenols, alcohol, and even metformin and statins. Without hormesis, a proposed redox-thriftiness tipping point might lead to a feed forward insulin resistance cycle in the presence of excess calories. We therefore suggest that as oxidative stress

  18. Bacterial antagonists of fungal pathogens also control root-knot nematodes by induced systemic resistance of tomato plants.

    PubMed

    Adam, Mohamed; Heuer, Holger; Hallmann, Johannes

    2014-01-01

    The potential of bacterial antagonists of fungal pathogens to control the root-knot nematode Meloidogyne incognita was investigated under greenhouse conditions. Treatment of tomato seeds with several strains significantly reduced the numbers of galls and egg masses compared with the untreated control. Best performed Bacillus subtilis isolates Sb4-23, Mc5-Re2, and Mc2-Re2, which were further studied for their mode of action with regard to direct effects by bacterial metabolites or repellents, and plant mediated effects. Drenching of soil with culture supernatants significantly reduced the number of egg masses produced by M. incognita on tomato by up to 62% compared to the control without culture supernatant. Repellence of juveniles by the antagonists was shown in a linked twin-pot set-up, where a majority of juveniles penetrated roots on the side without inoculated antagonists. All tested biocontrol strains induced systemic resistance against M. incognita in tomato, as revealed in a split-root system where the bacteria and the nematodes were inoculated at spatially separated roots of the same plant. This reduced the production of egg masses by up to 51%, while inoculation of bacteria and nematodes in the same pot had only a minor additive effect on suppression of M. incognita compared to induced systemic resistance alone. Therefore, the plant mediated effect was the major reason for antagonism rather than direct mechanisms. In conclusion, the bacteria known for their antagonistic potential against fungal pathogens also suppressed M. incognita. Such "multi-purpose" bacteria might provide new options for control strategies, especially with respect to nematode-fungus disease complexes that cause synergistic yield losses.

  19. IC [Interior Communications] Electrician 3 and 2: Rate Training Manual. Revised.

    ERIC Educational Resources Information Center

    Naval Education and Training Command, Pensacola, FL.

    The rate training manual provides information related to the tasks assigned to the Interior Communications (IC) Electricians Third and Second Class who operate and maintain the interior communications systems and associated equipment. Chapter one discusses career challenges for the IC Electrician in terms of responsibilities, advancement…

  20. The myth of lesbian impunity: capital laws from 1270 to 1791.

    PubMed

    Crompton, L

    The standard history of antihomosexual legislation states that lesbian acts were not punished by medieval or later laws. This essay challenges this view by documenting capital laws since 1270 in Europe and America. A major influence was Paul's condemnation in Romans I, 26. By 1400, the lex foedissimam, an edict of the Emperors Diocletian and Maximianus, issued in 287, was interpreted to justify the death penalty. Executions took place in Germany, France, Italy, Switzerland, and Spain. A brief survey of presently known male deaths in Europe and the Americas, which number about 400, also is included. This study draws on canon law and the commentaries of such jurists as Cino da Pistoia, Saliceto, López, Gómez, Farinacio, Cotton, Carpzow, Sinistrari, de Vouglans, and Jousse. It also discusses the records of a German trial of 1721, published elsewhere in this issue, that also led to the execution of a woman.

  1. ICS-II USA research design and methodology.

    PubMed

    Rana, H; Andersen, R M; Nakazono, T T; Davidson, P L

    1997-05-01

    The purpose of the WHO-sponsored International Collaborative Study of Oral Health Outcomes (ICS-II) was to provide policy-markers and researchers with detailed, reliable, and valid data on the oral health situation in their countries or regions, together with comparative data from other dental care delivery systems. ICS-II used a cross-sectional design with no explicit control groups or experimental interventions. A standardized methodology was developed and tested for collecting and analyzing epidemiological, sociocultural, economic, and delivery system data. Respondent information was obtained by household interviews, and clinical examinations were conducted by calibrated oral epidemiologists. Discussed are the sampling design characteristics for the USA research locations, response rates, samples size for interview and oral examination data, weighting procedures, and statistical methods. SUDAAN was used to adjust variance calculations, since complex sampling designs were used.

  2. NASA Ames’ COSmIC Laboratory Astrophysics Facility: Recent Results and Progress

    NASA Astrophysics Data System (ADS)

    Salama, Farid; Sciamma-O'Brien, Ella; Bejaoui, Salma

    2018-06-01

    The COSmIC facility was developed at NASA Ames to study interstellar, circumstellar and planetary analogs in the laboratory [1, 2]. COSmIC stands for “Cosmic Simulation Chamber” and is dedicated to the study of molecules, ions and nanoparticles under the low temperature and high vacuum conditions that are required to simulate space environments. COSmIC integrates a variety of instruments that allow generating; processing and monitoring simulated space conditions in the laboratory. It is composed of a Pulsed Discharge Nozzle expansion that generates a plasma in a free supersonic jet expansion coupled to high-sensitivity, complementary in situ diagnostic tools, used for the detection and characterization of the species present in the expansion: a Cavity Ring Down Spectroscopy (CRDS) and fluorescence spectroscopy systems for photonic detection, and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection [3, 4].Recent advances achieved in laboratory astrophysics using COSmIC will be presented, in particular in the domain of the diffuse interstellar bands (DIBs) [5, 6] and the monitoring, in the laboratory, of the formation of dust grains and aerosols from their gas-phase molecular precursors in environments as varied as circumstellar outflows [7] and planetary atmospheres [8, 9, 10]. Plans for future laboratory experiments on cosmic molecules and grains in the growing field of laboratory astrophysics (NIR-MIR CRDS, Laser Induced Fluorescence spectra of cosmic molecule analogs and the laser induced incandescence spectra of cosmic grain analogs) will also be addressed as well as the implications for astronomy.References: [1] Salama F., Proceed. IAU S251, Kwok & Sandford eds. CUP, 4, 357 (2008).[2] Salama F., et al., Proceed. IAU S332, Y. Aikawa, M. Cunningham, T. Millar, eds., CUP (2018)[3] Biennier L., et al., J. Chem. Phys., 118, 7863 (2003)[4] Ricketts C. et al. IJMS, 300, 26 (2011)[5] Salama F., et al., ApJ., 728, 154 (2011)[6] EDIBLES

  3. β-Cell Hyperplasia Induced by Hepatic Insulin Resistance

    PubMed Central

    Escribano, Oscar; Guillén, Carlos; Nevado, Carmen; Gómez-Hernández, Almudena; Kahn, C. Ronald; Benito, Manuel

    2009-01-01

    OBJECTIVE Type 2 diabetes results from a combination of insulin resistance and impaired insulin secretion. To directly address the effects of hepatic insulin resistance in adult animals, we developed an inducible liver-specific insulin receptor knockout mouse (iLIRKO). RESEARCH DESIGN AND METHODS Using this approach, we were able to induce variable insulin receptor (IR) deficiency in a tissue-specific manner (liver mosaicism). RESULTS iLIRKO mice presented progressive hepatic and extrahepatic insulin resistance without liver dysfunction. Initially, iLIRKO mice displayed hyperinsulinemia and increased β-cell mass, the extent of which was proportional to the deletion of hepatic IR. Our studies of iLIRKO suggest a cause-and-effect relationship between progressive insulin resistance and the fold increase of plasma insulin levels and β-cell mass. Ultimately, the β-cells failed to secrete sufficient insulin, leading to uncontrolled diabetes. We observed that hepatic IGF-1 expression was enhanced in iLIRKO mice, resulting in an increase of circulating IGF-1. Concurrently, the IR-A isoform was upregulated in hyperplastic β-cells of iLIRKO mice and IGF-1–induced proliferation was higher than in the controls. In mouse β-cell lines, IR-A, but not IR-B, conferred a proliferative capacity in response to insulin or IGF-1, providing a potential explanation for the β-cell hyperplasia induced by liver insulin resistance in iLIRKO mice. CONCLUSIONS Our studies of iLIRKO mice suggest a liver-pancreas endocrine axis in which IGF-1 functions as a liver-derived growth factor to promote compensatory pancreatic islet hyperplasia through IR-A. PMID:19136656

  4. Genetic modification of alternative respiration in Nicotiana benthamiana affects basal and salicylic acid-induced resistance to potato virus X

    PubMed Central

    2011-01-01

    Background Salicylic acid (SA) regulates multiple anti-viral mechanisms, including mechanism(s) that may be negatively regulated by the mitochondrial enzyme, alternative oxidase (AOX), the sole component of the alternative respiratory pathway. However, studies of this mechanism can be confounded by SA-mediated induction of RNA-dependent RNA polymerase 1, a component of the antiviral RNA silencing pathway. We made transgenic Nicotiana benthamiana plants in which alternative respiratory pathway capacity was either increased by constitutive expression of AOX, or decreased by expression of a dominant-negative mutant protein (AOX-E). N. benthamiana was used because it is a natural mutant that does not express a functional RNA-dependent RNA polymerase 1. Results Antimycin A (an alternative respiratory pathway inducer and also an inducer of resistance to viruses) and SA triggered resistance to tobacco mosaic virus (TMV). Resistance to TMV induced by antimycin A, but not by SA, was inhibited in Aox transgenic plants while SA-induced resistance to this virus appeared to be stronger in Aox-E transgenic plants. These effects, which were limited to directly inoculated leaves, were not affected by the presence or absence of a transgene constitutively expressing a functional RNA-dependent RNA polymerase (MtRDR1). Unexpectedly, Aox-transgenic plants infected with potato virus X (PVX) showed markedly increased susceptibility to systemic disease induction and virus accumulation in inoculated and systemically infected leaves. SA-induced resistance to PVX was compromised in Aox-transgenic plants but plants expressing AOX-E exhibited enhanced SA-induced resistance to this virus. Conclusions We conclude that AOX-regulated mechanisms not only play a role in SA-induced resistance but also make an important contribution to basal resistance against certain viruses such as PVX. PMID:21356081

  5. Cross-Resistance and Resistance Longevity as Induced by Bean Leaf Beetle, Cerotoma trifurcata and Soybean Looper, Pseudoplusia includens herbivory on Soybean

    PubMed Central

    Srinivas, P.; Danielson, Stephen D.; Smith, C. Michael; Foster, John E.

    2001-01-01

    Cross-resistance, and longevity of resistance, induced by the bean leaf beetle, Cerotoma trifurcata, was studied IN the soybean PI 227687 that exhibited induced response in earlier studies. Bean leaf beetle adults and soybean looper, Pseudoplusia includens, larvae were used to induce resistance and to determine beetle feeding preference. Beetles were collected from soybean fields 2 to 5 days prior to the feeding preference test. The level of cross-resistance induced by soybean looper herbivory to subsequent bean leaf beetle feeding was higher when compared to cross-resistance induced by bean leaf beetle herbivory against subsequent feeding by soybean looper. Further, herbivory by the bean leaf beetle also induced resistance against soybean looper feeding. In the longevity study, leaflets from treated plants were collected 5, 10, 12, 14, 16, 20 and 25 days after initiation of feeding. Pairwise comparisons of leaflets from plants treated by bean leaf beetle herbivory with untreated plants revealed that induced responses were highest 14 and lowest 25 days after initiation of feeding. On other sampling days, levels of induced response varied with the sampling day. PMID:15455065

  6. Trend of Autonomous Decentralized System Technologies and Their Application in IC Card Ticket System

    NASA Astrophysics Data System (ADS)

    Mori, Kinji; Shiibashi, Akio

    The advancement of technology is ensured by step-by-step innovation and its implementation into society. Autonomous Decentralized Systems (ADSs) have been growing since first proposed in 1977. Since then, the ADS technologies and their implementations have interacted with the evolving markets, sciences, and technologies. The ADS concept is proposed on biological analogy, and its technologies have been advanced according to changing and expanding requirements. These technologies are now categorized into six generations on the basis of requirements and system structures, but the ADS concept and its system architecture have not changed. The requirements for the system can be divided in operation-oriented, mass service-oriented, and personal service-oriented categories. Moreover, these technologies have been realized in homogeneous system structure and, as the next step, in heterogeneous system structure. These technologies have been widely applied in manufacturing, telecommunications, information provision/utilization, data centers, transportation, and so on. They have been operating successfully throughout the world. In particular, ADS technologies have been applied in Suica, the IC card ticket system (ICCTS) for fare collection and e-commerce. This system is not only expanding in size and functionality but also its components are being modified almost every day without stopping its operation. This system and its technologies are shown here. Finally, the future direction of ADS is discussed, and one of its technologies is presented.

  7. Variability in P-Glycoprotein Inhibitory Potency (IC50) Using Various in Vitro Experimental Systems: Implications for Universal Digoxin Drug-Drug Interaction Risk Assessment Decision Criteria

    PubMed Central

    Bentz, Joe; O’Connor, Michael P.; Bednarczyk, Dallas; Coleman, JoAnn; Lee, Caroline; Palm, Johan; Pak, Y. Anne; Perloff, Elke S.; Reyner, Eric; Balimane, Praveen; Brännström, Marie; Chu, Xiaoyan; Funk, Christoph; Guo, Ailan; Hanna, Imad; Herédi-Szabó, Krisztina; Hillgren, Kate; Li, Libin; Hollnack-Pusch, Evelyn; Jamei, Masoud; Lin, Xuena; Mason, Andrew K.; Neuhoff, Sibylle; Patel, Aarti; Podila, Lalitha; Plise, Emile; Rajaraman, Ganesh; Salphati, Laurent; Sands, Eric; Taub, Mitchell E.; Taur, Jan-Shiang; Weitz, Dietmar; Wortelboer, Heleen M.; Xia, Cindy Q.; Xiao, Guangqing; Yabut, Jocelyn; Yamagata, Tetsuo; Zhang, Lei

    2013-01-01

    A P-glycoprotein (P-gp) IC50 working group was established with 23 participating pharmaceutical and contract research laboratories and one academic institution to assess interlaboratory variability in P-gp IC50 determinations. Each laboratory followed its in-house protocol to determine in vitro IC50 values for 16 inhibitors using four different test systems: human colon adenocarcinoma cells (Caco-2; eleven laboratories), Madin-Darby canine kidney cells transfected with MDR1 cDNA (MDCKII-MDR1; six laboratories), and Lilly Laboratories Cells—Porcine Kidney Nr. 1 cells transfected with MDR1 cDNA (LLC-PK1-MDR1; four laboratories), and membrane vesicles containing human P-glycoprotein (P-gp; five laboratories). For cell models, various equations to calculate remaining transport activity (e.g., efflux ratio, unidirectional flux, net-secretory-flux) were also evaluated. The difference in IC50 values for each of the inhibitors across all test systems and equations ranged from a minimum of 20- and 24-fold between lowest and highest IC50 values for sertraline and isradipine, to a maximum of 407- and 796-fold for telmisartan and verapamil, respectively. For telmisartan and verapamil, variability was greatly influenced by data from one laboratory in each case. Excluding these two data sets brings the range in IC50 values for telmisartan and verapamil down to 69- and 159-fold. The efflux ratio-based equation generally resulted in severalfold lower IC50 values compared with unidirectional or net-secretory-flux equations. Statistical analysis indicated that variability in IC50 values was mainly due to interlaboratory variability, rather than an implicit systematic difference between test systems. Potential reasons for variability are discussed and the simplest, most robust experimental design for P-gp IC50 determination proposed. The impact of these findings on drug-drug interaction risk assessment is discussed in the companion article (Ellens et al., 2013) and recommendations

  8. Selective decontamination of the digestive tract ameliorates severe burn-induced insulin resistance in rats.

    PubMed

    Li, Jun; Zhu, Liang; Xu, Ming; Han, Juntao; Bai, Xiaozhi; Yang, Xuekang; Zhu, Huayu; Xu, Jie; Zhang, Xing; Gong, Yangfan; Hu, Dahai; Gao, Feng

    2015-08-01

    Severe burns often initiate the prevalence of hyperglycemia and insulin resistance, significantly contributing to adverse clinical outcomes. However, there are limited treatment options. This study was designed to investigate the role and the underlying mechanisms of oral antibiotics to selectively decontaminate the digestive tract (SDD) on burn-induced insulin resistance. Rats were subjected to 40% of total body surface area full-thickness burn or sham operation with or without SDD treatment. Translocation of FITC-labeled LPS was measured at 4h after burn. Furthermore, the effect of SDD on post-burn quantity of gram-negative bacteria in gut was investigated. Serum or muscle LPS and proinflammatory cytokines were measured. Intraperitoneal glucose tolerance test and insulin tolerance test were used to determine the status of systemic insulin resistance. Furthermore, intracellular insulin signaling (IRS-1 and Akt) and proinflammatory related kinases (JNK and IKKβ) were assessed by western blot. Burn increased the translocation of LPS from gut 4h after injury. SDD treatment effectively inhibited post-burn overgrowth of gram-negative enteric bacilli in gut. In addition, severe burns caused significant increases in the LPS and proinflammatory cytokines levels, activation of proinflammatory related kinases, and systemic insulin resistance as well. But SDD treatment could significantly attenuate burn-induced insulin resistance and improve the whole-body responsiveness to insulin, which was associated with the inhibition of gut-derived LPS, cytokines, proinflammatory related kinases JNK and IKKβ, as well as activation of IRS-1 and Akt. SDD appeared to have an effect on proinflammatory signaling cascades and further reduced severe burn-induced insulin resistance. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  9. Non-antibiotic antimicrobial triclosan induces multiple antibiotic resistance through genetic mutation.

    PubMed

    Lu, Ji; Jin, Min; Nguyen, Son Hoang; Mao, Likai; Li, Jie; Coin, Lachlan J M; Yuan, Zhiguo; Guo, Jianhua

    2018-06-11

    Antibiotic resistance poses a major threat to public health. Overuse and misuse of antibiotics are generally recognized as the key factors contributing to antibiotic resistance. However, whether non-antibiotic, anti-microbial (NAAM) chemicals can directly induce antibiotic resistance is unclear. We aim to investigate whether the exposure to a NAAM chemical triclosan (TCS) has an impact on inducing antibiotic resistance on Escherichia coli. Here, we report that at a concentration of 0.2 mg/L TCS induces multi-drug resistance in wild-type Escherichia coli after 30-day TCS exposure. The oxidative stress induced by TCS caused genetic mutations in genes such as fabI, frdD, marR, acrR and soxR, and subsequent up-regulation of the transcription of genes encoding beta-lactamases and multi-drug efflux pumps, together with down-regulation of genes related to membrane permeability. The findings advance our understanding of the potential role of NAAM chemicals in the dissemination of antibiotic resistance in microbes, and highlight the need for controlling biocide applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Diet-Induced Obesity and the Mechanism of Leptin Resistance.

    PubMed

    Engin, Atilla

    2017-01-01

    Leptin signaling blockade by chronic overstimulation of the leptin receptor or hypothalamic pro-inflammatory responses due to elevated levels of saturated fatty acid can induce leptin resistance by activating negative feedback pathways. Although, long form leptin receptor (Ob-Rb) initiates leptin signaling through more than seven different signal transduction pathways, excessive suppressor of cytokine signaling-3 (SOCS-3) activity is a potential mechanism for the leptin resistance that characterizes human obesity. Because the leptin-responsive metabolic pathways broadly integrate with other neurons to control energy balance, the methods used to counteract the leptin resistance has extremely limited effect. In this chapter, besides the impairment of central and peripheral leptin signaling pathways, limited access of leptin to central nervous system (CNS) through blood-brain barrier, mismatch between high leptin and the amount of leptin receptor expression, contradictory effects of cellular and circulating molecules on leptin signaling, the connection between leptin signaling and endoplasmic reticulum (ER) stress and self-regulation of leptin signaling has been discussed in terms of leptin resistance.

  11. Genome analysis of urease positive Serratia marcescens, co-producing SRT-2 and AAC(6')-Ic with multidrug efflux pumps for antimicrobial resistance.

    PubMed

    Srinivasan, Vijaya Bharathi; Rajamohan, Govindan

    2018-04-05

    In this study, we present the genome sequence of Serratia marcescens SM03, recovered from a human gut in India. The final assembly consists of 26 scaffolds (4620 coding DNA sequences, 5.08 Mb, 59.6% G + C ratio) and 79 tRNA genes. Analysis identified novel genes associated with lactose utilization, virulence, P-loop GTPases involved in urease production, CFA/I fimbriae apparatus and Yersinia - type CRISPR proteins. Antibiotic susceptibility testing indicated drug tolerant phenotype and inhibition assays demonstrated involvement of extrusion in resistance. Presence of enzymes SRT-2, AAC(6')-Ic, with additional Ybh transporter and EamA-like efflux pumps signifies the genetic plasticity observed in S. marcescens SM03. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Evaluation of TER-SYSTEM resist for 193-nm imaging

    NASA Astrophysics Data System (ADS)

    Johnson, Donald W.; Egbe, Matthew I.; Chen, Cindy X.; Lin, Lin; Liao, Yihua; Bukasa, Ngalula C.; Suzuki, Yasuhiro

    1997-07-01

    Exposures leading to 0.18 micrometer or better resolution are now being demanded by IC development. Photolithography using 193 nm exposure tools is the leading technology for the development of these next generation of devices. We are reporting on our development efforts on the TER resist system, which is a single layer resist designed for image evaluation applications at 193 nm exposure wavelengths. The TER-system has been developed to allow equipment manufacturers to evaluate their equipment, to provide R&D lithographers with materials to qualify their 193 nm equipment and to determine process control parameters. The TER-system is a chemically amplified methacrylate resist terpolymer. It is composed of methyl methacrylate (MMA), methacrylic acid (MAA) and an acid labile acrylic ester. We have evaluated different leaving groups as the acid labile component and we report on the initial results of several. We also examined different onium salts as the PAG component. One such example is di(t- butylphenyl)-iodonium p-toluenesulfonate and we report on other examples which were used. We evaluated the thermal stability of the resins and thermal analysis showed they start to decompose at about 125 degrees Celsius when tetrahydropyranyl methacrylate is used. Other more thermally stable systems were also evaluated. Post apply bake (PAB) temperatures of 100 - 125 degrees Celsius were preferably used with the tetrahydropyranyl ester. Other more thermally stable esters, such as tetrahydro-4-methyl-2-oxo-2H-pyran-4-yl methacrylate (mevalonic lactone), ethoxy-ethyl methacrylate and 3-oxo-cyclohexyl methacrylate, also are described. Exposures in the range of 5 - 50 mJ/cm2 were typical and varied depending on the ester, the PAG, and other processing parameters. The acid catalyzed reaction rates after exposure were observed to be rapid. In all cases, post exposure bake (PEB) was typically carried out at 10 degrees Celsius or lower. Initial exposure evaluations at 193 nm and 248 nm

  13. A single-electrode electrochemical system for multiplex electrochemiluminescence analysis based on a resistance induced potential difference.

    PubMed

    Gao, Wenyue; Muzyka, Kateryna; Ma, Xiangui; Lou, Baohua; Xu, Guobao

    2018-04-28

    Developing low-cost and simple electrochemical systems is becoming increasingly important but still challenged for multiplex experiments. Here we report a single-electrode electrochemical system (SEES) using only one electrode not only for a single experiment but also for multiplex experiments based on a resistance induced potential difference. SEESs for a single experiment and multiplex experiments are fabricated by attaching a self-adhesive label with a hole and multiple holes onto an ITO electrode, respectively. This enables multiplex electrochemiluminescence analysis with high sensitivity at a very low safe voltage using a smartphone as a detector. For the multiplex analysis, the SEES using a single electrode is much simpler, cheaper and more user-friendly than conventional electrochemical systems and bipolar electrochemical systems using electrode arrays. Moreover, SEESs are free from the electrochemiluminescent background problem from driving electrodes in bipolar electrochemical systems. Since numerous electrodes and cover materials can be used to fabricate SEESs readily and electrochemistry is being extensively used, SEESs are very promising for broad applications, such as drug screening and high throughput analysis.

  14. Poly I:C adjuvanted inactivated swine influenza vaccine induces heterologous protective immunity in pigs.

    PubMed

    Thomas, Milton; Wang, Zhao; Sreenivasan, Chithra C; Hause, Ben M; Gourapura J Renukaradhya; Li, Feng; Francis, David H; Kaushik, Radhey S; Khatri, Mahesh

    2015-01-15

    Swine influenza is widely prevalent in swine herds in North America and Europe causing enormous economic losses and a public health threat. Pigs can be infected by both avian and mammalian influenza viruses and are sources of generation of reassortant influenza viruses capable of causing pandemics in humans. Current commercial vaccines provide satisfactory immunity against homologous viruses; however, protection against heterologous viruses is not adequate. In this study, we evaluated the protective efficacy of an intranasal Poly I:C adjuvanted UV inactivated bivalent swine influenza vaccine consisting of Swine/OH/24366/07 H1N1 and Swine/CO/99 H3N2, referred as PAV, in maternal antibody positive pigs against an antigenic variant and a heterologous swine influenza virus challenge. Groups of three-week-old commercial-grade pigs were immunized intranasally with PAV or a commercial vaccine (CV) twice at 2 weeks intervals. Three weeks after the second immunization, pigs were challenged with the antigenic variant Swine/MN/08 H1N1 (MN08) and the heterologous Swine/NC/10 H1N2 (NC10) influenza virus. Antibodies in serum and respiratory tract, lung lesions, virus shedding in nasal secretions and virus load in lungs were assessed. Intranasal administration of PAV induced challenge viruses specific-hemagglutination inhibition- and IgG antibodies in the serum and IgA and IgG antibodies in the respiratory tract. Importantly, intranasal administration of PAV provided protection against the antigenic variant MN08 and the heterologous NC10 swine influenza viruses as evidenced by significant reductions in lung virus load, gross lung lesions and significantly reduced shedding of challenge viruses in nasal secretions. These results indicate that Poly I:C or its homologues may be effective as vaccine adjuvants capable of generating cross-protective immunity against antigenic variants/heterologous swine influenza viruses in pigs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. The Imipridone ONC201 Induces Apoptosis and Overcomes Chemotherapy Resistance by Up-Regulation of Bim in Multiple Myeloma.

    PubMed

    Tu, Yong-Sheng; He, Jin; Liu, Huan; Lee, Hans C; Wang, Hua; Ishizawa, Jo; Allen, Joshua E; Andreeff, Michael; Orlowski, Robert Z; Davis, Richard E; Yang, Jing

    2017-10-01

    In multiple myeloma, despite recent improvements offered by new therapies, disease relapse and drug resistance still occur in the majority of patients. Therefore, there is an urgent need for new drugs that can overcome drug resistance and prolong patient survival after failure of standard therapies. The imipridone ONC201 causes downstream inactivation of ERK1/2 signaling and has tumoricidal activity against a variety of tumor types, while its efficacy in preclinical models of myeloma remains unclear. In this study, we treated human myeloma cell lines and patient-derived tumor cells with ONC201. Treatment decreased cellular viability and induced apoptosis in myeloma cell lines, with IC50 values of 1 to 1.5 μM, even in those with high risk features or TP53 loss. ONC201 increased levels of the pro-apoptotic protein Bim in myeloma cells, resulting from decreased phosphorylation of degradation-promoting Bim Ser69 by ERK1/2. In addition, myeloma cell lines made resistant to several standard-of-care agents (by chronic exposure) were equally sensitive to ONC201 as their drug-naïve counterparts, and combinations of ONC201 with proteasome inhibitors had synergistic anti-myeloma activity. Overall, these findings demonstrate that ONC201 kills myeloma cells regardless of resistance to standard-of-care therapies, making it promising for clinical testing in relapsed/refractory myeloma. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Add-on LABA in a separate inhaler as asthma step-up therapy versus increased dose of ICS or ICS/LABA combination inhaler.

    PubMed

    Price, David B; Colice, Gene; Israel, Elliot; Roche, Nicolas; Postma, Dirkje S; Guilbert, Theresa W; van Aalderen, Willem M C; Grigg, Jonathan; Hillyer, Elizabeth V; Thomas, Victoria; Martin, Richard J

    2016-04-01

    Asthma management guidelines recommend adding a long-acting β 2 -agonist (LABA) or increasing the dose of inhaled corticosteroid (ICS) as step-up therapy for patients with uncontrolled asthma on ICS monotherapy. However, it is uncertain which option works best, which ICS particle size is most effective, and whether LABA should be administered by separate or combination inhalers. This historical, matched cohort study compared asthma-related outcomes for patients (aged 12-80 years) prescribed step-up therapy as a ≥50% extrafine ICS dose increase or add-on LABA, via either a separate inhaler or a fine-particle ICS/LABA fixed-dose combination (FDC) inhaler. Risk-domain asthma control was the primary end-point in comparisons of cohorts matched for asthma severity and control during the baseline year. After 1:2 cohort matching, the increased extrafine ICS versus separate ICS+LABA cohorts included 3232 and 6464 patients, respectively, and the fine-particle ICS/LABA FDC versus separate ICS+LABA cohorts included 7529 and 15 058 patients, respectively (overall mean age 42 years; 61-62% females). Over one outcome year, adjusted OR (95% CI) for achieving asthma control were 1.25 (1.13-1.38) for increased ICS versus separate ICS+LABA and 1.06 (1.05-1.09) for ICS/LABA FDC versus separate ICS+LABA. For patients with asthma, increased dose of extrafine-particle ICS, or add-on LABA via ICS/LABA combination inhaler, is associated with significantly better outcomes than ICS+LABA via separate inhalers.

  17. Natural genetic and induced plant resistance, as a control strategy to plant-parasitic nematodes alternative to pesticides.

    PubMed

    Molinari, Sergio

    2011-03-01

    Plant-parasitic nematodes are pests of a wide range of economically important crops, causing severe losses to agriculture. Natural genetic resistance of plants is expected to be a valid solution of the many problems nematodes cause all over the world. Progress in resistance applications is particularly important for the less-developed countries of tropical and subtropical regions, since use of resistant cultivars may be the only possible and economically feasible control strategy in those farming systems. Resistance is being considered of particular importance also in modern high-input production systems of developed countries, as the customary reliance on chemical nematicides has been restricted or has come to an end. This review briefly describes the genetic bases of resistance to nematodes in plants and focuses on the chances and problems of its exploitation as a key element in an integrated management program. Much space is dedicated to the major problem of resistance durability, in that the intensive use of resistant cultivars is likely to increasingly induce the selection of virulent populations able to "break" the resistance. Protocols of pest-host suitability are described, as bioassays are being used to evaluate local nematode populations in their potential to be selected on resistant germplasm and endanger resistant crops. The recent progress in using robust and durable resistances against nematodes as an efficient method for growers in vegetable cropping systems is reported, as well as the possible use of chemicals that do not show any unfavorable impact on environment, to induce in plants resistance against plant-parasitic nematodes.

  18. Next-generation systemic acquired resistance.

    PubMed

    Luna, Estrella; Bruce, Toby J A; Roberts, Michael R; Flors, Victor; Ton, Jurriaan

    2012-02-01

    Systemic acquired resistance (SAR) is a plant immune response to pathogen attack. Recent evidence suggests that plant immunity involves regulation by chromatin remodeling and DNA methylation. We investigated whether SAR can be inherited epigenetically following disease pressure by Pseudomonas syringae pv tomato DC3000 (PstDC3000). Compared to progeny from control-treated Arabidopsis (Arabidopsis thaliana; C(1)), progeny from PstDC3000-inoculated Arabidopsis (P(1)) were primed to activate salicylic acid (SA)-inducible defense genes and were more resistant to the (hemi)biotrophic pathogens Hyaloperonospora arabidopsidis and PstDC3000. This transgenerational SAR was sustained over one stress-free generation, indicating an epigenetic basis of the phenomenon. Furthermore, P(1) progeny displayed reduced responsiveness of jasmonic acid (JA)-inducible genes and enhanced susceptibility to the necrotrophic fungus Alternaria brassicicola. This shift in SA- and JA-dependent gene responsiveness was not associated with changes in corresponding hormone levels. Instead, chromatin immunoprecipitation analyses revealed that SA-inducible promoters of PATHOGENESIS-RELATED GENE1, WRKY6, and WRKY53 in P(1) plants are enriched with acetylated histone H3 at lysine 9, a chromatin mark associated with a permissive state of transcription. Conversely, the JA-inducible promoter of PLANT DEFENSIN1.2 showed increased H3 triple methylation at lysine 27, a mark related to repressed gene transcription. P(1) progeny from the defense regulatory mutant non expressor of PR1 (npr1)-1 failed to develop transgenerational defense phenotypes, demonstrating a critical role for NPR1 in expression of transgenerational SAR. Furthermore, the drm1drm2cmt3 mutant that is affected in non-CpG DNA methylation mimicked the transgenerational SAR phenotype. Since PstDC3000 induces DNA hypomethylation in Arabidopsis, our results suggest that transgenerational SAR is transmitted by hypomethylated genes that direct priming

  19. Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice.

    PubMed

    Holland, William L; Bikman, Benjamin T; Wang, Li-Ping; Yuguang, Guan; Sargent, Katherine M; Bulchand, Sarada; Knotts, Trina A; Shui, Guanghou; Clegg, Deborah J; Wenk, Markus R; Pagliassotti, Michael J; Scherer, Philipp E; Summers, Scott A

    2011-05-01

    Obesity is associated with an enhanced inflammatory response that exacerbates insulin resistance and contributes to diabetes, atherosclerosis, and cardiovascular disease. One mechanism accounting for the increased inflammation associated with obesity is activation of the innate immune signaling pathway triggered by TLR4 recognition of saturated fatty acids, an event that is essential for lipid-induced insulin resistance. Using in vitro and in vivo systems to model lipid induction of TLR4-dependent inflammatory events in rodents, we show here that TLR4 is an upstream signaling component required for saturated fatty acid-induced ceramide biosynthesis. This increase in ceramide production was associated with the upregulation of genes driving ceramide biosynthesis, an event dependent of the activity of the proinflammatory kinase IKKβ. Importantly, increased ceramide production was not required for TLR4-dependent induction of inflammatory cytokines, but it was essential for TLR4-dependent insulin resistance. These findings suggest that sphingolipids such as ceramide might be key components of the signaling networks that link lipid-induced inflammatory pathways to the antagonism of insulin action that contributes to diabetes.

  20. Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid–induced ceramide biosynthesis in mice

    PubMed Central

    Holland, William L.; Bikman, Benjamin T.; Wang, Li-Ping; Yuguang, Guan; Sargent, Katherine M.; Bulchand, Sarada; Knotts, Trina A.; Shui, Guanghou; Clegg, Deborah J.; Wenk, Markus R.; Pagliassotti, Michael J.; Scherer, Philipp E.; Summers, Scott A.

    2011-01-01

    Obesity is associated with an enhanced inflammatory response that exacerbates insulin resistance and contributes to diabetes, atherosclerosis, and cardiovascular disease. One mechanism accounting for the increased inflammation associated with obesity is activation of the innate immune signaling pathway triggered by TLR4 recognition of saturated fatty acids, an event that is essential for lipid-induced insulin resistance. Using in vitro and in vivo systems to model lipid induction of TLR4-dependent inflammatory events in rodents, we show here that TLR4 is an upstream signaling component required for saturated fatty acid–induced ceramide biosynthesis. This increase in ceramide production was associated with the upregulation of genes driving ceramide biosynthesis, an event dependent of the activity of the proinflammatory kinase IKKβ. Importantly, increased ceramide production was not required for TLR4-dependent induction of inflammatory cytokines, but it was essential for TLR4-dependent insulin resistance. These findings suggest that sphingolipids such as ceramide might be key components of the signaling networks that link lipid-induced inflammatory pathways to the antagonism of insulin action that contributes to diabetes. PMID:21490391

  1. Diclofop-methyl affects microbial rhizosphere community and induces systemic acquired resistance in rice.

    PubMed

    Chen, Si; Li, Xingxing; Lavoie, Michel; Jin, Yujian; Xu, Jiahui; Fu, Zhengwei; Qian, Haifeng

    2017-01-01

    Diclofop-methyl (DM), a widely used herbicide in food crops, may partly contaminate the soil surface of natural ecosystems in agricultural area and exert toxic effects at low dose to nontarget plants. Even though rhizosphere microorganisms strongly interact with root cells, little is known regarding their potential modulating effect on herbicide toxicity in plants. Here we exposed rice seedlings (Xiushui 63) to 100μg/L DM for 2 to 8days and studied the effects of DM on rice rhizosphere microorganisms, rice systemic acquired resistance (SAR) and rice-microorganisms interactions. The results of metagenomic 16S rDNA Illumina tags show that DM increases bacterial biomass and affects their community structure in the rice rhizosphere. After DM treatment, the relative abundance of the bacterium genera Massilia and Anderseniella increased the most relative to the control. In parallel, malate and oxalate exudation by rice roots increased, potentially acting as a carbon source for several rhizosphere bacteria. Transcriptomic analyses suggest that DM induced SAR in rice seedlings through the salicylic acid (but not the jasmonic acid) signal pathway. This response to DM stress conferred resistance to infection by a pathogenic bacterium, but was not influenced by the presence of bacteria in the rhizosphere since SAR transcripts did not change significantly in xenic and axenic plant roots exposed to DM. The present study provides new insights on the response of rice and its associated microorganisms to DM stress. Copyright © 2016. Published by Elsevier B.V.

  2. Validation and Clinical Utility of the hERG IC50:Cmax Ratio to Determine the Risk of Drug-Induced Torsades de Pointes: A Meta-Analysis.

    PubMed

    Lehmann, David F; Eggleston, William D; Wang, Dongliang

    2018-03-01

    Use of the QT interval corrected for heart rate (QTc) on the electrocardiogram (ECG) to predict torsades de pointes (TdP) risk from culprit drugs is neither sensitive nor specific. The ratio of the half-maximum inhibitory concentration of the hERG channel (hERG IC50) to the peak serum concentration of unbound drug (C max ) is used during drug development to screen out chemical entities likely to cause TdP. To validate the use of the hERG IC50:C max ratio to predict TdP risk from a culprit drug by its correlation with TdP incidence. Medline (between 1966 and March 2017) was accessed for hERG IC50 and C max values from the antihistamine, fluoroquinolone, and antipsychotic classes to identify cases of drug-induced TdP. Exposure to a culprit drug was estimated from annual revenues reported by the manufacturer. Inclusion criteria for TdP cases were provision of an ECG tracing that demonstrated QTc prolongation with TdP and normal serum values of potassium, calcium, and magnesium. Cases reported in patients with a prior rhythm disturbance and those involving a drug interaction were excluded. The Meta-Analysis of Observational Studies in Epidemiology checklist was used for epidemiological data extraction by two authors. Negligible risk drugs were defined by an hERG IC50:C max ratio that correlated with less than a 5% chance of one TdP event for every 100 million exposures (relative risk [RR] 1.0). The hERG IC50:C max ratio correlated with TdP risk (0.312; 95% confidence interval 0.205-0.476, p<0.0001), a ratio of 80 (RR 1.0). The RR from olanzapine is on par with loratadine; ziprasidone is comparable with ciprofloxacin. Drugs with an RR greater than 50 include astemizole, risperidone, haloperidol, and thioridazine. The hERG IC50:C max ratio was correlated with TdP incidence for culprit drugs. This validation provides support for the potential use of the hERG IC50:C max ratio for clinical decision making in instances of drug selection where TdP risk is a concern. © 2018

  3. Incidence of Foscarnet Resistance and Cidofovir Resistance in Patients Treated for Cytomegalovirus Retinitis

    PubMed Central

    Jabs, Douglas A.; Enger, Cheryl; Forman, Michael; Dunn, J. P.; Retinitis, for The Cytomegalovirus; Group, Viral Resistance Study

    1998-01-01

    Cytomegalovirus (CMV) retinitis is a common opportunistic infection in patients with AIDS. With long-term therapy for CMV retinitis, resistant CMV may develop. In a prospective study of 122 patients with CMV retinitis, 2.4 and 0.8% of patients had foscarnet-resistant blood culture isolates (50% inhibitory concentration [IC50], >400 μM) and urine culture isolates, respectively, at diagnosis of CMV retinitis prior to treatment, whereas 4.1 and 6.6% had cidofovir-resistant (IC50, >2 μM) blood and urine culture isolates, respectively. Patients were treated according to best medical judgement. Of 44 foscarnet-treated patients, 26% had a resistant blood or urine culture isolate by 6 months of treatment and 37% had a resistant isolate by 9 months; of 13 cidofovir-treated patients, 29% had a resistant blood or urine culture isolate by 3 months of therapy. The probabilities of developing foscarnet resistance while on foscarnet and developing cidofovir resistance while on cidofovir were not significantly different from that for developing ganciclovir resistance while on ganciclovir (odds ratios, 1.87 [P = 0.19] and 2.28 [P = 0.15], respectively). PMID:9736542

  4. Aging per se Increases the Susceptibility to Free Fatty Acid–Induced Insulin Resistance

    PubMed Central

    Huffman, Derek M.; Fishman, Sigal; Jerschow, Elina; Heo, Hye J.; Atzmon, Gil; Schechter, Clyde; Muzumdar, Radhika H.

    2010-01-01

    Elevations in systemic free fatty acids (FFA) contribute to insulin resistance. To determine the effects of an acute elevation in FFA on insulin action with aging, we infused saline or intralipid (IL) during a hyperinsulinemic–euglycemic clamp in three groups of rats: young ad libitum–fed (YAL), old ad libitum–fed (OAL), and old on lifelong calorie restriction (OCR). The OCR group was included to distinguish between aging per se and age-related changes in body fat distribution. IL induced marked insulin resistance in both YAL and OCR, but the onset of insulin resistance was approximately two to three times more rapid in OCR as compared with YAL. In response to IL infusion, plasminogen-activating inhibitor-1 (PAI-1) expression was increased in subcutaneous fat from OAL animals. In visceral fat, a marked increase in PAI-1 and interleukin-6 expression was observed in OAL and OCR rats, but not YAL, in response to IL treatment. Thus, aging per se increases the inflammatory response to excess nutrients and vulnerability to FFA-induced insulin resistance with aging. PMID:20504893

  5. LDMOS Channel Thermometer Based on a Thermal Resistance Sensor for Balancing Temperature in Monolithic Power ICs.

    PubMed

    Lin, Tingyou; Ho, Yingchieh; Su, Chauchin

    2017-06-15

    This paper presents a method of thermal balancing for monolithic power integrated circuits (ICs). An on-chip temperature monitoring sensor that consists of a poly resistor strip in each of multiple parallel MOSFET banks is developed. A temperature-to-frequency converter (TFC) is proposed to quantize on-chip temperature. A pulse-width-modulation (PWM) methodology is developed to balance the channel temperature based on the quantization. The modulated PWM pulses control the hottest of metal-oxide-semiconductor field-effect transistor (MOSFET) bank to reduce its power dissipation and heat generation. A test chip with eight parallel MOSFET banks is fabricated in TSMC 0.25 μm HV BCD processes, and total area is 900 × 914 μm². The maximal temperature variation among the eight banks can reduce to 2.8 °C by the proposed thermal balancing system from 9.5 °C with 1.5 W dissipation. As a result, our proposed system improves the lifetime of a power MOSFET by 20%.

  6. LDMOS Channel Thermometer Based on a Thermal Resistance Sensor for Balancing Temperature in Monolithic Power ICs

    PubMed Central

    Lin, Tingyou; Ho, Yingchieh; Su, Chauchin

    2017-01-01

    This paper presents a method of thermal balancing for monolithic power integrated circuits (ICs). An on-chip temperature monitoring sensor that consists of a poly resistor strip in each of multiple parallel MOSFET banks is developed. A temperature-to-frequency converter (TFC) is proposed to quantize on-chip temperature. A pulse-width-modulation (PWM) methodology is developed to balance the channel temperature based on the quantization. The modulated PWM pulses control the hottest of metal-oxide-semiconductor field-effect transistor (MOSFET) bank to reduce its power dissipation and heat generation. A test chip with eight parallel MOSFET banks is fabricated in TSMC 0.25 μm HV BCD processes, and total area is 900 × 914 μm2. The maximal temperature variation among the eight banks can reduce to 2.8 °C by the proposed thermal balancing system from 9.5 °C with 1.5 W dissipation. As a result, our proposed system improves the lifetime of a power MOSFET by 20%. PMID:28617346

  7. Pyrogenicity of interferon and its inducer in rabbits.

    PubMed

    Won, S J; Lin, M T

    1988-03-01

    The effects of intracerebral administration of interferon (IFN) or its inducer polyriboinosinic acid-polyribocytidylic acid (poly I:C) on thermoregulatory responses were assessed in conscious rabbits. Administration of IFN (10(2)-10(6) IU) or poly I:C (0.012-12 micrograms) into the preoptic anterior hypothalamus or the third cerebral ventricle caused a dose-dependent fever in rabbits at three ambient temperatures (Ta) tested. In the cold (Ta = 8 degrees C), the fever was due to increased metabolism, whereas in the heat (Ta = 32 degrees C) the fever was due to a reduction in respiratory evaporative heat loss and ear skin blood flow. At the moderate environmental temperature (Ta = 22 degrees C), the fever was due to increased metabolism and cutaneous vasoconstriction. Compared with the febrile responses induced by cerebroventricular route injection of IFN or poly I:C, the hypothalamic route of injection required a much lower dose of IFN or poly I:C to produce a similar fever. Furthermore, the fever induced by intrahypothalamic injection of IFN or poly I:C was reduced by pretreatment of animals with a systemic dose of indomethacin (an inhibitor of all prostaglandins formation) or cycloheximide (an inhibitor of protein synthesis). The data indicate that IFN or its inducer may act through the endogenous release of a prostaglandin or a protein factor of an unknown chemical nature in the preoptic anterior hypothalamic region to induce fever in rabbits. The fever induced by IFN or its inducer is brought about by a decrease in heat loss and/or an increase in heat production in rabbits.

  8. Vitamin C deficiency aggravates tumor necrosis factor α-induced insulin resistance.

    PubMed

    Qing, Zhou; Xiao-Hui, Wu; Xi-Mei, Wu; Chao-Chun, Zou

    2018-06-15

    Chronic low-grade inflammation plays a major role in the development of insulin resistance. The potential role and underlying mechanism of vitamin C, an antioxidant and anti-inflammatory agent, was investigated in tumor necrosis factor-α (TNF-α)-induced insulin resistance. Gulonolactone oxidase knockout (Gulo -/- ) mice genetically unable to synthesize vitamin C were used to induce insulin resistance by continuously pumping small doses of TNF-α for seven days, and human liver hepatocellular carcinoma cells (HepG2 cells) were used to induce insulin resistance by treatment with TNF-α. Vitamin C deficiency aggravated TNF-α-induced insulin resistance in Gulo -/- mice, resulting in worse glucose tolerance test (GTT) results, higher fasting plasma insulin level, and the inactivation of the protein kinase B (AKT)/glycogen synthase kinase-3β (GSK3β) pathway in the liver. Vitamin C deficiency also worsened liver lipid accumulation and inflammation in TNF-α-treated Gulo -/- mice. In HepG2 cells, vitamin C reversed the TNF-α-induced reduction of glucose uptake and glycogen synthesis, which were mediated by increasing GLUT2 levels and the activation of the insulin receptor substrate (IRS-1)/AKT/GSK3β pathway. Furthermore, vitamin C inhibited the TNF-α-induced activation of not only the mitogen-activated protein kinase (MAPKs), but also nuclear factor-kappa B (NF-κB) signaling. Taken together, vitamin C is essential for preventing and improving insulin resistance, and the supplementing with vitamin C may be an effective therapeutic intervention for metabolic disorders. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Methods of the pharmacological imaging of the cannabinoid system (PhICS) study: towards understanding the role of the brain endocannabinoid system in human cognition.

    PubMed

    van Hell, Hendrika H; Bossong, Matthijs G; Jager, Gerry; Kahn, René S; Ramsey, Nick F

    2011-03-01

    Various lines of (pre)clinical research indicate that cannabinoid agents carry the potential for therapeutic application to reduce symptoms in several psychiatric disorders. However, direct testing of the involvement of cannabinoid brain systems in psychiatric syndromes is essential for further development. In the Pharmacological Imaging of the Cannabinoid System (PhICS) study, the involvement of the endocannabinoid system in cognitive brain function is assessed by comparing acute effects of the cannabinoid agonist Δ9-tetrahydrocannabinol (THC) on brain function between healthy controls and groups of psychiatric patients showing cognitive dysfunction. This article describes the objectives and methods of the PhICS study and presents preliminary results of the administration procedure on subjective and neurophysiological parameters. Core elements in the methodology of PhICS are the administration method (THC is administered by inhalation using a vaporizing device) and a comprehensive use of pharmacological magnetic resonance imaging (phMRI) combining several types of MRI scans including functional MRI (fMRI), Arterial Spin Labeling (ASL) to measure brain perfusion, and resting-state fMRI. Additional methods like neuropsychological testing further specify the exact role of the endocannabinoid system in regulating cognition. Preliminary results presented in this paper indicate robust behavioral and subjective effects of THC. In addition, fMRI paradigms demonstrate activation of expected networks of brain regions in the cognitive domains of interest. The presented administration and assessment protocol provides a basis for further research on the involvement of the endocannabionoid systems in behavior and in psychopathology, which in turn may lead to development of therapeutic opportunities of cannabinoid ligands. Copyright © 2011 John Wiley & Sons, Ltd.

  10. Multicolor CCD Photometry of the Open Cluster IC361

    DTIC Science & Technology

    2010-01-01

    journal Volume 19 Numbers 1/2 2010 Contents V. Straizys, A. Kazlauskas. Young stars in the Camelopardalis dust and molecular clouds. VI. YSOs...Vilnius + I system for 7250 stars down to 1= 19.6 mag has been obtained in the 20’ x 26’ field of the open cluster IC 361 in Camelopardalis . The catalog...1= 19.6 mag has been obtained in the 20’ x 26’ field of the open cluster IC 361 in Camelopardalis . The catalog of 1420 stars down to V ~ 18.5 mag

  11. Tuberculosis vaccine candidate: Characterization of H4-IC31 formulation and H4 antigen conformation.

    PubMed

    Deshmukh, Sasmit S; Magcalas, Federico Webster; Kalbfleisch, Kristen N; Carpick, Bruce W; Kirkitadze, Marina D

    2018-08-05

    Tuberculosis (TB) is one of the leading causes of death worldwide, making the development of effective TB vaccines a global priority. A TB vaccine consisting of a recombinant fusion protein, H4, combined with a novel synthetic cationic adjuvant, IC31 ® , is currently being developed. The H4 fusion protein consists of two immunogenic mycobacterial antigens, Ag85 B and TB10.4, and the IC31 ® adjuvant is a mixture of KLK, a leucine-rich peptide (KLKL5KLK), and the oligodeoxynucleotide ODN1a, a TLR9 ligand. However, efficient and robust methods for assessing these formulated components are lacking. Here, we developed and optimized phase analysis light scattering (PALS), electrical sensing zone (ESZ), and Raman, FTIR, and CD spectroscopy methods to characterize the H4-IC31 vaccine formulation. PALS-measured conductivity and zeta potential values could differentiate between the similarly sized particles of IC31 ® adjuvant and the H4-IC31 vaccine candidate and could thereby serve as a control during vaccine formulation. In addition, zeta potential is indicative of the adjuvant to antigen ratio which is the key in the immunomodulatory response of the vaccine. ESZ was used as an orthogonal method to measure IC31 ® and H4-IC31 particle sizes. Raman, FTIR, and CD spectroscopy revealed structural changes in H4 protein and IC31 ® adjuvant, inducing an increase in both the β-sheet and random coil content as a result of adsorption. Furthermore, nanoDSF showed changes in the tertiary structure of H4 protein as a result of adjuvantation to IC31 ® . Our findings demonstrate the applicability of biophysical methods to characterize vaccine components in the final H4-IC31 drug product without the requirement for desorption. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Installation of C-6533(XE-2)/ARC ICS in UH-1H helicopter

    NASA Astrophysics Data System (ADS)

    Hnat, J. A.

    1980-07-01

    This report documents the results of the installation of the C-6533(XE-2)/ARC ICS in UH-1H helicopter. Installation was performed at the AEL, Inc., Monmouth County Airport facility. Design of each installation was coordinated and approved by the Government. The mechanical and electrical installation drawings for the helicopter are attached as Appendix A of this report. The new ICS system consisted of new cabling, new intercoms and helmets rewired with new microphones. All four crew stations of the helicopter were reconfigured with the new system. Existing cabling for the standard ICS system remained in the aircraft but was securely stowed for later restoration of the aircraft. The helmets (4) were rewired using separate jacks for headphones and microphone lines. Transmit and receive cables were installed in the aircraft with a minimum separation of one inch between cables. A junction box was fabricated and installed on the aft end of the console to house the fan-out terminal strips. Transmit and receive lines' separation was maintained in the junction box. During the test phase the onboard radios were used with the new ICS system.

  13. Differential Costs of Two Distinct Resistance Mechanisms Induced by Different Herbivore Species in Arabidopsis1

    PubMed Central

    Reichelt, Michael; van Doorn, Arjen; Schuurink, Robert C.

    2016-01-01

    Plants respond to herbivory with the induction of resistance, mediated by distinct phytohormonal signaling pathways and their interactions. Phloem feeders are known to induce plant resistance via the salicylic acid pathway, whereas biting-chewing herbivores induce plant resistance mainly via the jasmonate pathway. Here, we show that a specialist caterpillar (biting-chewing herbivore) and a specialist aphid (phloem feeder) differentially induce resistance against Pieris brassicae caterpillars in Arabidopsis (Arabidopsis thaliana) plants. Caterpillar feeding induces resistance through the jasmonate signaling pathway that is associated with the induction of kaempferol 3,7-dirhamnoside, whereas aphid feeding induces resistance via a novel mechanism involving sinapoyl malate. The role of sinapoyl malate is confirmed through the use of a mutant compromised in the biosynthesis of this compound. Caterpillar-induced resistance is associated with a lower cost in terms of plant growth reduction than aphid-induced resistance. A strong constitutive resistance against P. brassicae caterpillars in combination with a strong growth attenuation in plants of a transfer DNA (T-DNA) insertion mutant of WRKY70 (wrky70) suggest that the WRKY70 transcription factor, a regulator of downstream responses mediated by jasmonate-salicylic acid signaling cross talk, is involved in the negative regulation of caterpillar resistance and in the tradeoff between growth and defense. In conclusion, different mechanisms of herbivore-induced resistance come with different costs, and a functional WRKY70 transcription factor is required for the induction of low-cost resistance. PMID:26603653

  14. Forced Hepatic Overexpression of CEACAM1 Curtails Diet-Induced Insulin Resistance

    PubMed Central

    Al-Share, Qusai Y.; DeAngelis, Anthony M.; Lester, Sumona Ghosh; Bowman, Thomas A.; Ramakrishnan, Sadeesh K.; Abdallah, Simon L.; Russo, Lucia; Patel, Payal R.; Kaw, Meenakshi K.; Raphael, Christian K.; Kim, Andrea Jung; Heinrich, Garrett; Lee, Abraham D.; Kim, Jason K.; Kulkarni, Rohit N.; Philbrick, William M.

    2015-01-01

    Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) regulates insulin sensitivity by promoting hepatic insulin clearance. Liver-specific inactivation or global null-mutation of Ceacam1 impairs hepatic insulin extraction to cause chronic hyperinsulinemia, resulting in insulin resistance and visceral obesity. In this study we investigated whether diet-induced insulin resistance implicates changes in hepatic CEACAM1. We report that feeding C57/BL6J mice a high-fat diet reduced hepatic CEACAM1 levels by >50% beginning at 21 days, causing hyperinsulinemia, insulin resistance, and elevation in hepatic triacylglycerol content. Conversely, liver-specific inducible CEACAM1 expression prevented hyperinsulinemia and markedly limited insulin resistance and hepatic lipid accumulation that were induced by prolonged high-fat intake. This was partly mediated by increased hepatic β-fatty acid oxidation and energy expenditure. The data demonstrate that the high-fat diet reduced hepatic CEACAM1 expression and that overexpressing CEACAM1 in liver curtailed diet-induced metabolic abnormalities by protecting hepatic insulin clearance. PMID:25972571

  15. Dysfunction of serotoninergic and dopaminergic neuronal systems in the antidepressant-resistant impairment of social behaviors induced by social defeat stress exposure as juveniles.

    PubMed

    Hasegawa, Sho; Miyake, Yuriko; Yoshimi, Akira; Mouri, Akihiro; Hida, Hirotake; Yamada, Kiyofumi; Ozaki, Norio; Nabeshima, Toshitaka; Noda, Yukihiro

    2018-03-29

    Extensive studies have been performed on the role of monoaminergic neuronal systems in rodents exposed to social defeat stress as adults. In the present study, we investigated the role of monoaminergic neuronal systems in the impairment of social behaviors induced by social defeat stress exposure as juveniles. Juvenile, male C57BL/6J mice were exposed to social defeat stress for 10 consecutive days. From 1 day after the last stress exposure, desipramine, sertraline, and aripiprazole, were administered for 15 days. Social behaviors were assessed at 1 and 15 days after the last stress exposure. Monoamine turnover was determined in specific regions of the brain in the mice exposed to the stress. Stress exposure as juveniles induced the impairment of social behaviors in adolescent mice. In mice that showed the impairment of social behaviors, turnover of the serotonin and dopamine, but not noradrenaline was decreased in specific brain regions. Acute and repeated administration of desipramine, sertraline, and aripiprazole failed to attenuate the impairment of social behaviors, whereas repeated administration of a combination of sertraline and aripiprazole showed additive attenuating effects. These findings suggest that social defeat stress exposure as juveniles induces the treatment-resistant impairment of social behaviors in adolescents through dysfunction in the serotoninergic and dopaminergic neuronal systems. The combination of sertraline and aripiprazole may be used as a new treatment strategy for treatment-resistant stress-related psychiatric disorders in adolescents with adverse juvenile experiences.

  16. Identifying clinically relevant drug resistance genes in drug-induced resistant cancer cell lines and post-chemotherapy tissues.

    PubMed

    Tong, Mengsha; Zheng, Weicheng; Lu, Xingrong; Ao, Lu; Li, Xiangyu; Guan, Qingzhou; Cai, Hao; Li, Mengyao; Yan, Haidan; Guo, You; Chi, Pan; Guo, Zheng

    2015-12-01

    Until recently, few molecular signatures of drug resistance identified in drug-induced resistant cancer cell models can be translated into clinical practice. Here, we defined differentially expressed genes (DEGs) between pre-chemotherapy colorectal cancer (CRC) tissue samples of non-responders and responders for 5-fluorouracil and oxaliplatin-based therapy as clinically relevant drug resistance genes (CRG5-FU/L-OHP). Taking CRG5-FU/L-OHP as reference, we evaluated the clinical relevance of several types of genes derived from HCT116 CRC cells with resistance to 5-fluorouracil and oxaliplatin, respectively. The results revealed that DEGs between parental and resistant cells, when both were treated with the corresponding drug for a certain time, were significantly consistent with the CRG5-FU/L-OHP as well as the DEGs between the post-chemotherapy CRC specimens of responders and non-responders. This study suggests a novel strategy to extract clinically relevant drug resistance genes from both drug-induced resistant cell models and post-chemotherapy cancer tissue specimens.

  17. Extracellular DNA Acidifies Biofilms and Induces Aminoglycoside Resistance in Pseudomonas aeruginosa.

    PubMed

    Wilton, Mike; Charron-Mazenod, Laetitia; Moore, Richard; Lewenza, Shawn

    2016-01-01

    Biofilms consist of surface-adhered bacterial communities encased in an extracellular matrix composed of DNA, exopolysaccharides, and proteins. Extracellular DNA (eDNA) has a structural role in the formation of biofilms, can bind and shield biofilms from aminoglycosides, and induces antimicrobial peptide resistance mechanisms. Here, we provide evidence that eDNA is responsible for the acidification of Pseudomonas aeruginosa planktonic cultures and biofilms. Further, we show that acidic pH and acidification via eDNA constitute a signal that is perceived by P. aeruginosa to induce the expression of genes regulated by the PhoPQ and PmrAB two-component regulatory systems. Planktonic P. aeruginosa cultured in exogenous 0.2% DNA or under acidic conditions demonstrates a 2- to 8-fold increase in aminoglycoside resistance. This resistance phenotype requires the aminoarabinose modification of lipid A and the production of spermidine on the bacterial outer membrane, which likely reduce the entry of aminoglycosides. Interestingly, the additions of the basic amino acid L-arginine and sodium bicarbonate neutralize the pH and restore P. aeruginosa susceptibility to aminoglycosides, even in the presence of eDNA. These data illustrate that the accumulation of eDNA in biofilms and infection sites can acidify the local environment and that acidic pH promotes the P. aeruginosa antibiotic resistance phenotype. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Interdependent and independent roles of type I interferons and IL-6 in innate immune, neuroinflammatory and sickness behaviour responses to systemic poly I:C

    PubMed Central

    Murray, Carol; Griffin, Éadaoin W.; O’Loughlin, Elaine; Lyons, Aoife; Sherwin, Eoin; Ahmed, Suaad; Stevenson, Nigel J; Harkin, Andrew; Cunningham, Colm

    2015-01-01

    Type I interferons (IFN-I) are expressed in the brain during many inflammatory and neurodegenerative conditions and have multiple effects on CNS function. IFN-I is readily induced in the brain by systemic administration of the viral mimetic, poly I:C (synthetic double-stranded RNA). We hypothesised that IFN-I contributes to systemically administered poly I:C-induced sickness behaviour, metabolic and neuroinflammatory changes. IFN-I receptor 1 deficient mice (IFNAR1−/−) displayed significantly attenuated poly I:C-induced hypothermia, hypoactivity and weight loss compared to WT C57BL/6 mice. This amelioration of sickness was associated with equivalent IL-1β and TNF-α responses but much reduced IL-6 responses in plasma, hypothalamus and hippocampus of IFNAR1−/− mice. IFN-β injection induced trivial IL-6 production and limited behavioural change and the poly I:C-induced IFN-β response did not preceed, and would not appear to mediate, IL-6 induction. Rather, IFNAR1−/− mice lack basal IFN-I activity, have lower STAT1 levels and show significantly lower levels of several inflammatory transcripts, including stat1. Basal IFN-I activity appears to play a facilitatory role in the full expression of the IL-6 response and activation of the tryptophan-kynurenine metabolism pathway. The deficient IL-6 response in IFNAR1−/− mice partially explains the observed incomplete sickness behaviour response. Reconstitution of circulating IL-6 revealed that the role of IFNAR in burrowing activity is mediated via IL-6, while IFN-I and IL-6 have additive effects on hypoactivity, but the role of IFN-I in anorexia is independent of IL-6. Hence, we have demonstrated both interdependent and independent roles for IFN-I and IL-6 in systemic inflammation-induced changes in brain function. PMID:25900439

  19. Interdependent and independent roles of type I interferons and IL-6 in innate immune, neuroinflammatory and sickness behaviour responses to systemic poly I:C.

    PubMed

    Murray, Carol; Griffin, Éadaoin W; O'Loughlin, Elaine; Lyons, Aoife; Sherwin, Eoin; Ahmed, Suaad; Stevenson, Nigel J; Harkin, Andrew; Cunningham, Colm

    2015-08-01

    Type I interferons (IFN-I) are expressed in the brain during many inflammatory and neurodegenerative conditions and have multiple effects on CNS function. IFN-I is readily induced in the brain by systemic administration of the viral mimetic, poly I:C (synthetic double-stranded RNA). We hypothesised that IFN-I contributes to systemically administered poly I:C-induced sickness behaviour, metabolic and neuroinflammatory changes. IFN-I receptor 1 deficient mice (IFNAR1(-/-)) displayed significantly attenuated poly I:C-induced hypothermia, hypoactivity and weight loss compared to WT C57BL/6 mice. This amelioration of sickness was associated with equivalent IL-1β and TNF-α responses but much reduced IL-6 responses in plasma, hypothalamus and hippocampus of IFNAR1(-/-) mice. IFN-β injection induced trivial IL-6 production and limited behavioural change and the poly I:C-induced IFN-β response did not preceed, and would not appear to mediate, IL-6 induction. Rather, IFNAR1(-/-) mice lack basal IFN-I activity, have lower STAT1 levels and show significantly lower levels of several inflammatory transcripts, including stat1. Basal IFN-I activity appears to play a facilitatory role in the full expression of the IL-6 response and activation of the tryptophan-kynurenine metabolism pathway. The deficient IL-6 response in IFNAR1(-/-) mice partially explains the observed incomplete sickness behaviour response. Reconstitution of circulating IL-6 revealed that the role of IFNAR in burrowing activity is mediated via IL-6, while IFN-I and IL-6 have additive effects on hypoactivity, but the role of IFN-I in anorexia is independent of IL-6. Hence, we have demonstrated both interdependent and independent roles for IFN-I and IL-6 in systemic inflammation-induced changes in brain function. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  20. 75 FR 51499 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Digital I&C...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-20

    ... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Digital I&C Systems The ACRS Subcommittee on Digital Instrumentation and Controls (I&C) Systems...: Wednesday, September 8, 2010--8:30 a.m. until 12 p.m. The Subcommittee will review Digital I&C Interim Staff...

  1. SEM probe of IC radiation sensitivity

    NASA Technical Reports Server (NTRS)

    Gauthier, M. K.; Stanley, A. G.

    1979-01-01

    Scanning Electron Microscope (SEM) used to irradiate single integrated circuit (IC) subcomponent to test for radiation sensitivity can localize area of IC less than .03 by .03 mm for determination of exact location of radiation sensitive section.

  2. Informed herbivore movement and interplant communication determine the effects of induced resistance in an individual-based model.

    PubMed

    Rubin, Ilan N; Ellner, Stephen P; Kessler, André; Morrell, Kimberly A

    2015-09-01

    1. Plant induced resistance to herbivory affects the spatial distribution of herbivores, as well as their performance. In recent years, theories regarding the benefit to plants of induced resistance have shifted from ideas of optimal resource allocation towards a more eclectic set of theories that consider spatial and temporal plant variability and the spatial distribution of herbivores among plants. However, consensus is lacking on whether induced resistance causes increased herbivore aggregation or increased evenness, as both trends have been experimentally documented. 2. We created a spatial individual-based model that can describe many plant-herbivore systems with induced resistance, in order to analyse how different aspects of induced resistance might affect herbivore distribution, and the total damage to a plant population, during a growing season. 3. We analyse the specific effects on herbivore aggregation of informed herbivore movement (preferential movement to less-damaged plants) and of information transfer between plants about herbivore attacks, in order to identify mechanisms driving both aggregation and evenness. We also investigate how the resulting herbivore distributions affect the total damage to plants and aggregation of damage. 4. Even, random and aggregated herbivore distributions can all occur in our model with induced resistance. Highest levels of aggregation occurred in the models with informed herbivore movement, and the most even distributions occurred when the average number of herbivores per plant was low. With constitutive resistance, only random distributions occur. Damage to plants was spatially correlated, unless plants recover very quickly from damage; herbivore spatial autocorrelation was always weak. 5. Our model and results provide a simple explanation for the apparent conflict between experimental results, indicating that both increased aggregation and increased evenness of herbivores can result from induced resistance. We

  3. Curcumin attenuates insulin resistance in hepatocytes by inducing Nrf2 nuclear translocation.

    PubMed

    Zhao, Shu-Guang; Li, Qiang; Liu, Zhen-Xiong; Wang, Jing-Jie; Wang, Xv-Xia; Qin, Ming; Wen, Qin-Sheng

    2011-01-01

    NF-E2-Related Factor-2 (Nrf2) is a transcription factor that plays a crucial role in the cellular protection against oxidative stress. Curcumin has been reported to induce Nrf2 nuclear translocation and upregulate the expression of numerous reactive oxygen species (ROS) detoxifying and antioxidant genes in hepatocytes. This study was designed to investigate whether curcumin-induced Nrf2 nuclear translocation could reduce ROS-mediated insulin resistance in cultured LO2 hepatocytes. Human LO2 hepatocytes were incubated with curcumine and glucose oxidase (GO) in the presence/absence of wortmannin (a phosphatidyinositol 3-kinase (PI3K) inhibitor), oxidative stress, cellular damage, Nrf2 nuclear translocation and insulin resistance were measured. GO exposure significantly increased intracellular ROS, glutathione (GSH) depletion, malondialdehyde (MDA) formation, and increased activities of cellular lactate dehydrogenase (LDH) and aspartate amino transferase (AST), as well as causing insulin resistance. Curcumin pretreatment significantly attenuated these disturbances in intracellular ROS, liver enzyme activity and significantly antagonized the lipid peroxidation, GSH depletion and insulin resistance induced by GO in LO2 hepatocytes. These effects paralleled Nrf2 nuclear translocation induced by curcumin. Wortmannin partially blocked curcumin-induced Nrf2 nuclear translocation. In addition, wortmannin prevented curcumin-induced improvements in intracellular ROS, MDA formation, GSH depletion, liver enzyme activity and insulin resistance in cultured LO2 hepatocytes. These findings suggest that curcumin could reduce ROS-mediated insulin resistance in hepatocytes, at least in part through nuclear translocation of Nrf2.

  4. The use of the multiple-gradient array for geoelectrical resistivity and induced polarization imaging

    NASA Astrophysics Data System (ADS)

    Aizebeokhai, Ahzegbobor P.; Oyeyemi, Kehinde D.

    2014-12-01

    The use of most conventional electrode configurations in electrical resistivity survey is often time consuming and labour intensive, especially when using manual data acquisition systems. Often, data acquisition teams tend to reduce data density so as to speed up field operation thereby reducing the survey cost; but this could significantly degrade the quality and resolution of the inverse models. In the present work, the potential of using the multiple-gradient array, a non-conventional electrode configuration, for practical cost effective and rapid subsurface resistivity and induced polarization mapping was evaluated. The array was used to conduct 2D resistivity and time-domain induced polarization imaging along two traverses in a study site at Ota, southwestern Nigeria. The subsurface was characterised and the main aquifer delineated using the inverse resistivity and chargeability images obtained. The performance of the multiple-gradient array was evaluated by correlating the 2D resistivity and chargeability images with those of the conventional Wenner array as well as the result of some soundings conducted along the same traverses using Schlumberger array. The multiple-gradient array has been found to have the advantage of measurement logistics and improved image resolution over the Wenner array.

  5. Extracellular DNA-induced antimicrobial peptide resistance mechanisms in Pseudomonas aeruginosa

    PubMed Central

    Lewenza, Shawn

    2013-01-01

    Extracellular DNA (eDNA) is in the environment, bodily fluids, in the matrix of biofilms, and accumulates at infection sites. eDNA can function as a nutrient source, a universal biofilm matrix component, and an innate immune effector in eDNA traps. In biofilms, eDNA is required for attachment, aggregation, and stabilization of microcolonies. We have recently shown that eDNA can sequester divalent metal cations, which has interesting implications on antibiotic resistance. eDNA binds metal cations and thus activates the Mg2+-responsive PhoPQ and PmrAB two-component systems. In Pseudomonas aeruginosa and many other Gram-negative bacteria, the PhoPQ/PmrAB systems control various genes required for virulence and resisting killing by antimicrobial peptides (APs), including the pmr genes (PA3552–PA3559) that are responsible for the addition of aminoarabinose to lipid A. The PA4773–PA4775 genes are a second DNA-induced cluster and are required for the production of spermidine on the outer surface, which protects the outer membrane from AP treatment. Both modifications mask the negative surface charges and limit membrane damage by APs. DNA-enriched biofilms or planktonic cultures have increased antibiotic resistance phenotypes to APs and aminoglycosides. These dual antibiotic resistance and immune evasion strategies may be expressed in DNA-rich environments and contribute to long-term survival. PMID:23419933

  6. The Magnetics Information Consortium (MagIC)

    NASA Astrophysics Data System (ADS)

    Johnson, C.; Constable, C.; Tauxe, L.; Koppers, A.; Banerjee, S.; Jackson, M.; Solheid, P.

    2003-12-01

    The Magnetics Information Consortium (MagIC) is a multi-user facility to establish and maintain a state-of-the-art relational database and digital archive for rock and paleomagnetic data. The goal of MagIC is to make such data generally available and to provide an information technology infrastructure for these and other research-oriented databases run by the international community. As its name implies, MagIC will not be restricted to paleomagnetic or rock magnetic data only, although MagIC will focus on these kinds of information during its setup phase. MagIC will be hosted under EarthRef.org at http://earthref.org/MAGIC/ where two "integrated" web portals will be developed, one for paleomagnetism (currently functional as a prototype that can be explored via the http://earthref.org/databases/PMAG/ link) and one for rock magnetism. The MagIC database will store all measurements and their derived properties for studies of paleomagnetic directions (inclination, declination) and their intensities, and for rock magnetic experiments (hysteresis, remanence, susceptibility, anisotropy). Ultimately, this database will allow researchers to study "on the internet" and to download important data sets that display paleo-secular variations in the intensity of the Earth's magnetic field over geological time, or that display magnetic data in typical Zijderveld, hysteresis/FORC and various magnetization/remanence diagrams. The MagIC database is completely integrated in the EarthRef.org relational database structure and thus benefits significantly from already-existing common database components, such as the EarthRef Reference Database (ERR) and Address Book (ERAB). The ERR allows researchers to find complete sets of literature resources as used in GERM (Geochemical Earth Reference Model), REM (Reference Earth Model) and MagIC. The ERAB contains addresses for all contributors to the EarthRef.org databases, and also for those who participated in data collection, archiving and

  7. Sirolimus induces apoptosis and reverses multidrug resistance in human osteosarcoma cells in vitro via increasing microRNA-34b expression.

    PubMed

    Zhou, Yan; Zhao, Rui-hua; Tseng, Kuo-fu; Li, Kun-peng; Lu, Zhi-gang; Liu, Yuan; Han, Kun; Gan, Zhi-hua; Lin, Shu-chen; Hu, Hai-yan; Min, Da-liu

    2016-04-01

    Multi-drug resistance poses a critical bottleneck in chemotherapy. Given the up-regulation of mTOR pathway in many chemoresistant cancers, we examined whether sirolimus (rapamycin), a first generation mTOR inhibitor, might induce human osteosarcoma (OS) cell apoptosis and increase the sensitivity of OS cells to anticancer drugs in vitro. Human OS cell line MG63/ADM was treated with sirolimus alone or in combination with doxorubicin (ADM), gemcitabine (GEM) or methotrexate (MTX). Cell proliferation and apoptosis were detected using CCK-8 assay and flow cytometry, respectively. MiRNAs in the cells were analyzed with miRNA microarray. The targets of miR-34b were determined based on TargetScan analysis and luciferase reporter assays. The expression of relevant mRNA and proteins was measured using qRT-PCR and Western blotting. MiR-34, PAK1 and ABCB1 levels in 40 tissue samples of OS patients were analyzed using qRT-PCR and in situ hybridization assays. Sirolimus (1-100 nmol/L) dose-dependently suppressed the cell proliferation (IC50=23.97 nmol/L) and induced apoptosis. Sirolimus (10 nmol/L) significantly sensitized the cells to anticancer drugs, leading to decreased IC50 values of ADM, GEM and MTX (from 25.48, 621.41 and 21.72 μmol/L to 4.93, 73.92 and 6.77 μmol/L, respectively). Treatment of with sirolimus increased miR-34b levels by a factor of 7.5 in the cells. Upregulation of miR-34b also induced apoptosis and increased the sensitivity of the cells to the anticancer drugs, whereas transfection with miR-34b-AMO, an inhibitor of miR-34b, reversed the anti-proliferation effect of sirolimus. Two key regulators of cell cycle, apoptosis and multiple drug resistance, PAK1 and ABCB1, were demonstrated to be the direct targets of miR-34b. In 40 tissue samples of OS patients, significantly higher miR-34 ISH score and lower PAK5 and ABCB1 scores were detected in the chemo-sensitive group. Sirolimus increases the sensitivity of human OS cells to anticancer drugs in vitro by

  8. Induced Resistance to Meloidogyne hapla by other Meloidogyne species on Tomato and Pyrethrum Plants

    PubMed Central

    Ogallo, J. L.; McClure, M. A.

    1995-01-01

    Advance inoculation of the tomato cv. Celebrity or the pyrethrum clone 223 with host-incompatible Meloidogyne incognita or M. javanica elicited induced resistance to host-compatible M. hapla in pot and field experiments. Induced resistance increased with the length of the time between inoculations and with the population density of the induction inoculum. Optimum interval before challenge inoculation, or population density of inoculum for inducing resistance, was 10 days, or 5,000 infective nematodes per 500-cm³ pot. The induced resistance suppressed population increase of M. hapla by 84% on potted tomato, 72% on potted pyrethrum, and 55% on field-grown pyrethrum seedlings, relative to unprotected treatments. Pyrethrum seedlings inoculated with M. javanica 10 days before infection with M. hapla were not stunted, whereas those that did not receive the advance inoculum were stunted 33% in pots and 36% in field plots. The results indicated that advance infection of plants with incompatible or mildly virulent nematode species induced resistance to normally compatible nematodes and that the induced resistance response may have potential as a biological control method for plant nematodes. PMID:19277310

  9. Reversal of diet-induced obesity and insulin resistance by inducible genetic ablation of GRK2

    PubMed Central

    Vila-Bedmar, Rocio; Cruces-Sande, Marta; Lucas, Elisa; Willemen, Hanneke L.D.M.; Heijnen, Cobi J.; Kavelaars, Annemieke; Mayor, Federico; Murga, Cristina

    2015-01-01

    Insulin resistance is a common feature of obesity and predisposes individuals to various prevalent pathological conditions. G protein-coupled receptor kinase 2 (GRK2) integrates several signal transduction pathways and is emerging as a physiologically relevant inhibitor of insulin signaling. GRK2 abundanceis increased in humans with metabolic syndrome and in different murine models of insulin resistance. To support GRK2 as a potential drug target in type 2 diabetes and obesity, we investigated whether lowering GRK2 abundance reversed an ongoing systemic insulin-resistant phenotype, using a mouse model of tamoxifen-induced GRK2 ablation after high fat diet-dependent obesity and insulin resistance. Tamoxifen-triggered GRK2 deletion impeded further body weight gain, normalized fa sting glycemia, improved glucose tolerance and was associated with preserved insulin sensitivity in skeletal muscle and liver, thereby maintaining whole body glucose homeostasis. Moreover, when continued to be fed a high fat diet, these animals displayed reduced fat mass and smaller adipocytes, were resistant to the development of liver steatosis, and showed reduced expression of pro-inflammatory markers in the liver. Our results indicate that GRK2 acts as a hub to control metabolic functions in different tissues, which is key to controlling insulin resistance development in vivo. These data suggest that inhibiting GRK2 could reverse an established insulin-resistant and obese phenotype, thereby putting forward this enzyme as a potential therapeutic target linking glucose homeostasis and regulation of adiposity. PMID:26198359

  10. O(6)-methylguanine DNA-methyltransferase (MGMT) overexpression in melanoma cells induces resistance to nitrosoureas and temozolomide but sensitizes to mitomycin C.

    PubMed

    Passagne, Isabelle; Evrard, Alexandre; Depeille, Philippe; Cuq, Pierre; Cupissol, Didier; Vian, Laurence

    2006-03-01

    Alkylating agents play an important role in the chemotherapy of malignant melanomas. The activity of alkylating agents depends on their capacity to form alkyl adducts with DNA, in some cases causing cross-linking of DNA strands. However, the use of these agents is limited by cellular resistance induced by the DNA repair enzyme O(6)-methylguanine DNA-methyltransferase (MGMT) which removes alkyl groups from alkylated DNA strands. To determine to what extent the expression of MGMT in melanoma cells induces resistance to alkylating agents, the human cell line CAL77 Mer- (i.e., MGMT deficient) were transfected with pcMGMT vector containing human MGMT cDNA. Several clones expressing MGMT at a high level were selected to determine their sensitivity to chemotherapeutic drugs. Melanoma-transfected cells were found to be significantly less sensitive to nitrosoureas (carmustine, fotemustine, streptozotocin) and temozolomide with an increase of IC(50) values between 3 and 14 when compared to parent cells. No difference in cell survival rates between MGMT-proficient and -deficient cells was observed for melphalan, chlorambucil, busulphan, thiotepa and cisplatin which preferentially induce N(7) guanine lesions. Surprisingly, MGMT overexpression increased the sensitivity of CAL77 cells to mitomycin C by approximately 10-fold. Treatment of clonal cell lines with buthionine-[S,R]-sulfoximine (BSO), an inhibitor of gamma-glutamylcysteine synthetase which depletes cellular glutathione, completely reversed this unexpected increase in sensitivity to mitomycin C. This observation suggests that glutathione is involved in the sensitivity of MGMT-transfected cells to mitomycin C and may act synergistically with MGMT via an unknown mechanism.

  11. Downy mildew resistance induced by Trichoderma harzianum T39 in susceptible grapevines partially mimics transcriptional changes of resistant genotypes

    PubMed Central

    2012-01-01

    Background Downy mildew, caused by Plasmopara viticola, is one of the most severe diseases of grapevine and is commonly controlled by fungicide treatments. The beneficial microorganism Trichoderma harzianum T39 (T39) can induce resistance to downy mildew, although the molecular events associated with this process have not yet been elucidated in grapevine. A next generation RNA sequencing (RNA-Seq) approach was used to study global transcriptional changes associated with resistance induced by T39 in Vitis vinifera Pinot Noir leaves. The long-term aim was to develop strategies to optimize the use of this agent for downy mildew control. Results More than 14.8 million paired-end reads were obtained for each biological replicate of T39-treated and control leaf samples collected before and 24 h after P. viticola inoculation. RNA-Seq analysis resulted in the identification of 7,024 differentially expressed genes, highlighting the complex transcriptional reprogramming of grapevine leaves during resistance induction and in response to pathogen inoculation. Our data show that T39 has a dual effect: it directly modulates genes related to the microbial recognition machinery, and it enhances the expression of defence-related processes after pathogen inoculation. Whereas several genes were commonly affected by P. viticola in control and T39-treated plants, opposing modulation of genes related to responses to stress and protein metabolism was found. T39-induced resistance partially inhibited some disease-related processes and specifically activated defence responses after P. viticola inoculation, causing a significant reduction of downy mildew symptoms. Conclusions The global transcriptional analysis revealed that defence processes known to be implicated in the reaction of resistant genotypes to downy mildew were partially activated by T39-induced resistance in susceptible grapevines. Genes identified in this work are an important source of markers for selecting novel

  12. Identifying clinically relevant drug resistance genes in drug-induced resistant cancer cell lines and post- chemotherapy tissues

    PubMed Central

    Tong, Mengsha; Zheng, Weicheng; Lu, Xingrong; Ao, Lu; Li, Xiangyu; Guan, Qingzhou; Cai, Hao; Li, Mengyao; Yan, Haidan; Guo, You; Chi, Pan; Guo, Zheng

    2015-01-01

    Until recently, few molecular signatures of drug resistance identified in drug-induced resistant cancer cell models can be translated into clinical practice. Here, we defined differentially expressed genes (DEGs) between pre-chemotherapy colorectal cancer (CRC) tissue samples of non-responders and responders for 5-fluorouracil and oxaliplatin-based therapy as clinically relevant drug resistance genes (CRG5-FU/L-OHP). Taking CRG5-FU/L-OHP as reference, we evaluated the clinical relevance of several types of genes derived from HCT116 CRC cells with resistance to 5-fluorouracil and oxaliplatin, respectively. The results revealed that DEGs between parental and resistant cells, when both were treated with the corresponding drug for a certain time, were significantly consistent with the CRG5-FU/L-OHP as well as the DEGs between the post-chemotherapy CRC specimens of responders and non-responders. This study suggests a novel strategy to extract clinically relevant drug resistance genes from both drug-induced resistant cell models and post-chemotherapy cancer tissue specimens. PMID:26515599

  13. RNA-Seq identification of candidate defense genes targeted by endophytic Bacillus cereus-mediated induced systemic resistance against Meloidogyne incognita in tomato.

    PubMed

    Hu, Haijing; Wang, Cong; Li, Xia; Tang, Yunyun; Wang, Yufang; Chen, Shuanglin; Yan, Shuzhen

    2018-05-08

    The endophytic bacteria Bacillus cereus BCM2 has shown great potential as a defense against the parasitic nematode Meloidogyne incognita. Here, we studied the endophytic bacteria-mediated plant defense against M. incognita and searched for defense-related candidate genes using RNA-Seq. The induced systemic resistance of BCM2 against M. incognita was tested using the split-root method. Pre-inoculated BCM2 on the inducer side was associated with a dramatic reduction in galls and egg masses at the responder side, but inoculated BCM2 alone did not produce the same effect. In order to investigate which plant defense-related genes are specifically activated by BCM2, four RNA samples from tomato roots were sequenced, and four high quality total clean bases were obtained, ranging from 6.64 to 6.75 Gb, with an average of 21558 total genes. The 34 candidate defense-related genes were identified by pair-wise comparison among libraries, representing the targets for BCM2 priming resistance against M. incognita. Functional characterization revealed that the plant-pathogen interaction pathway (ID: ko04626) was significantly enriched for BCM2-mediated M. incognita resistance. This study demonstrates that B. cereus BCM2 maintains a harmonious host-microbe relationship with tomato, but appeared to prime the plant, resulting in more vigorous defense response toward the infection nematode. This article is protected by copyright. All rights reserved.

  14. Azathioprine-Induced Warfarin Resistance

    PubMed Central

    Vazquez, Sara R; Rondina, Matthew T; Pendleton, Robert C

    2011-01-01

    OBJECTIVE To describe a case of azathioprine-induced warfarin resistance, present a literature review on warfarin–azathioprine interactions, and provide recommendations on appropriate management of this clinically significant interaction. CASE SUMMARY A 29-year-old female with Cogan’s syndrome experienced thrombosis of the left internal carotid artery. She was treated with an average weekly warfarin dose of 39 mg (5.5 mg daily) prior to beginning azathioprine therapy. Three weeks following initiation of azathioprine 150 mg daily, the international normalized ratio (INR) decreased from 1.9 (prior to the medication change) to 1.0 without any change in the warfarin dose or other relevant factors. Over several weeks, the patient’s warfarin dose was titrated up to 112 mg weekly (16 mg daily) to achieve an INR of 2.5 (a 188%, or 2.9-fold dose increase). Because of elevated liver enzyme levels, the azathioprine dosage was decreased to 100 mg daily. Within 2 weeks following that decrease, warfarin requirements decreased to 105 mg weekly (15 mg daily). DISCUSSION Azathioprine was the probable causative agent of warfarin resistance according to the Naranjo probability scale, and a possible causative agent according to the Drug Interaction Probability Scale. A literature search (PubMed, 1966–December 2007) revealed 8 case reports of this drug interaction and 2 cases involving a similar effect with 6-mercaptopurine, the active metabolite of azathioprine. The exact mechanism of the interaction remains unknown. Previously published case reports point to a rapid onset and offset of the warfarin–azathioprine interaction and a dose-dependent increase of at least 2.5-fold in warfarin dose requirement with the initiation of azathioprine 75–200 mg daily. CONCLUSIONS This case report and several others point toward azathioprine as a clinically significant inducer of warfarin resistance. Providers should anticipate the need for higher warfarin doses, warfarin dose adjustment

  15. The Arabidopsis Elongator complex is required for nonhost resistance against the bacterial pathogens Xanthomonas citri subsp. citri and Pseudomonas syringae pv. phaseolicola NPS3121.

    PubMed

    An, Chuanfu; Wang, Chenggang; Mou, Zhonglin

    2017-05-01

    Although in recent years nonhost resistance has attracted considerable attention for its broad spectrum and durability, the genetic and mechanistic components of nonhost resistance have not been fully understood. We used molecular and histochemical approaches including quantitative PCR, chromatin immunoprecipitation, and 3,3'-diaminobenzidine and aniline blue staining. The evolutionarily conserved histone acetyltransferase complex Elongator was identified as a major component of nonhost resistance against Xanthomonas citri subsp. citri (Xcc) and Pseudomonas syringae pv. phaseolicola (Psp) NPS3121. Mutations in Elongator genes inhibit Xcc-, Psp NPS3121- and/or flg22-induced defense responses including defense gene expression, callose deposition, and reactive oxygen species (ROS) and salicylic acid (SA) accumulation. Mutations in Elongator also attenuate the ROS-SA amplification loop. We show that suppressed ROS and SA accumulation in Elongator mutants is correlated with reduced expression of the Arabidopsis respiratory burst oxidase homologue AtrbohD and the SA biosynthesis gene ISOCHORISMATE SYNTHASE1 (ICS1). Furthermore, we found that the Elongator subunit ELP2 is associated with the chromatin of AtrbohD and ICS1 and is required for maintaining basal histone H3 acetylation levels in these key defense genes. As both AtrbohD and ICS1 contribute to nonhost resistance against Xcc, our results reveal an epigenetic mechanism by which Elongator regulates nonhost resistance in Arabidopsis. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  16. Glial Reactivity in Resistance to Methamphetamine-Induced Neurotoxicity

    PubMed Central

    Friend, Danielle M.; Keefe, Kristen A.

    2013-01-01

    Neurotoxic regimens of methamphetamine (METH) result in reactive microglia and astrocytes in striatum. Prior data indicate that rats with partial dopamine (DA) loss resulting from prior exposure to METH are resistant to further decreases in striatal DA when re-exposed to METH 30 days later. Such resistant animals also do not show an activated microglia phenotype, suggesting a relation between microglial activation and METH-induced neurotoxicity. To date, the astrocyte response in such resistance has not been examined. Thus, this study examined glial-fibrillary acidic protein (GFAP) and CD11b protein expression in striata of animals administered saline or a neurotoxic regimen of METH on postnatal days 60 and/or 90 (Saline:Saline, Saline:METH, METH:Saline, METH:METH). Consistent with previous work, animals experiencing acute toxicity (Saline:METH) showed both activated microglia and astocytes, whereas those resistant to the acute toxicity (METH:METH) did not show activated microglia. Interestingly, GFAP expression remained elevated in rats exposed to METH at PND60 (METH:Saline), and was not elevated further in resistant rats treated for the second time with METH (METH:METH). These data suggest that astrocytes remain reactive up to 30 days post-METH exposure. Additionally, these data indicate that astrocyte reactivity does not reflect acute, METH-induced DA terminal toxicity, whereas microglial reactivity does. PMID:23414433

  17. Health-care workers' perspectives on workplace safety, infection control, and drug-resistant tuberculosis in a high-burden HIV setting.

    PubMed

    Zelnick, Jennifer R; Gibbs, Andrew; Loveday, Marian; Padayatchi, Nesri; O'Donnell, Max R

    2013-08-01

    Drug-resistant tuberculosis (TB) is an occupational hazard for health-care workers (HCWs) in South Africa. We undertook this qualitative study to contextualize epidemiological findings suggesting that HCWs' elevated risk of drug-resistant TB is related to workplace exposure. A total of 55 HCWs and 7 hospital managers participated in focus groups and interviews about infection control (IC). Participants discussed caring for patients with drug-resistant TB, IC measures, occupational health programs, also stigma and support in the workplace. Key themes included: (i) lack of resources that hinders IC, (ii) distrust of IC efforts among HCWs, and (iii) disproportionate focus on individual-level personal protections, particularly N95 masks. IC programs should be evaluated, and the impact of new policies to rapidly diagnose drug-resistant TB and decentralize treatment should be assessed as part of the effort to control drug-resistant TB and create a safe workplace.

  18. Nasal and skin delivery of IC31(®)-adjuvanted recombinant HSV-2 gD protein confers protection against genital herpes.

    PubMed

    Wizel, Benjamin; Persson, Josefine; Thörn, Karolina; Nagy, Eszter; Harandi, Ali M

    2012-06-19

    Genital herpes caused by herpes simplex virus type 2 (HSV-2) remains the leading cause of genital ulcers worldwide. Given the disappointing results of the recent genital herpes vaccine trials in humans, development of novel vaccine strategies capable of eliciting protective mucosal and systemic immune responses to HSV-2 is urgently required. Here we tested the ability of the adjuvant IC31(®) in combination with HSV-2 glycoprotein D (gD) used through intranasal (i.n.), intradermal (i.d.), or subcutaneous (s.c.) immunization routes for induction of protective immunity against genital herpes infection in C57BL/6 mice. Immunization with gD plus IC31(®) through all three routes of immunization developed elevated gD-specific serum antibody responses with HSV-2 neutralizing activity. Whereas the skin routes promoted the induction of a mixed IgG2c/IgG1 isotype profile, the i.n. route only elicited IgG1 antibodies. All immunization routes were able to induce gD-specific IgG antibody responses in the vaginas of mice immunized with IC31(®)-adjuvanted gD. Although specific lymphoproliferative responses were observed in splenocytes from mice of most groups vaccinated with IC31(®)-adjuvanted gD, only i.d. immunization resulted in a significant splenic IFN-γ response. Further, immunization with gD plus IC31(®) conferred 80-100% protection against an otherwise lethal vaginal HSV-2 challenge with amelioration of viral replication and disease severity in the vagina. These results warrant further exploration of IC31(®) for induction of protective immunity against genital herpes and other sexually transmitted infections. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Lipid-induced insulin resistance does not impair insulin access to skeletal muscle

    PubMed Central

    Richey, Joyce M.; Castro, Ana Valeria B.; Broussard, Josiane L.; Ionut, Viorica; Bergman, Richard N.

    2015-01-01

    Elevated plasma free fatty acids (FFA) induce insulin resistance in skeletal muscle. Previously, we have shown that experimental insulin resistance induced by lipid infusion prevents the dispersion of insulin through the muscle, and we hypothesized that this would lead to an impairment of insulin moving from the plasma to the muscle interstitium. Thus, we infused lipid into our anesthetized canine model and measured the appearance of insulin in the lymph as a means to sample muscle interstitium under hyperinsulinemic euglycemic clamp conditions. Although lipid infusion lowered the glucose infusion rate and induced both peripheral and hepatic insulin resistance, we were unable to detect an impairment of insulin access to the lymph. Interestingly, despite a significant, 10-fold increase in plasma FFA, we detected little to no increase in free fatty acids or triglycerides in the lymph after lipid infusion. Thus, we conclude that experimental insulin resistance induced by lipid infusion does not reduce insulin access to skeletal muscle under clamp conditions. This would suggest that the peripheral insulin resistance is likely due to reduced cellular sensitivity to insulin in this model, and yet we did not detect a change in the tissue microenvironment that could contribute to cellular insulin resistance. PMID:25852002

  20. Integration of the incident command system (ICS) protocol for effective coordination of multi-agency response to traffic incidents : final report.

    DOT National Transportation Integrated Search

    2017-06-13

    In recent years, there has been an increased focus on Traffic Incident Management (TIM) and : incorporation of the Incident Command System (ICS) to reduce traffic congestion on the nation's : Interstates. In fact, studies show that for every minute a...

  1. Metformin ameliorates high uric acid-induced insulin resistance in skeletal muscle cells.

    PubMed

    Yuan, Huier; Hu, Yaqiu; Zhu, Yuzhang; Zhang, Yongneng; Luo, Chaohuan; Li, Zhi; Wen, Tengfei; Zhuang, Wanling; Zou, Jinfang; Hong, Liangli; Zhang, Xin; Hisatome, Ichiro; Yamamoto, Tetsuya; Cheng, Jidong

    2017-03-05

    Hyperuricemia occurs together with abnormal glucose metabolism and insulin resistance. Skeletal muscle is an important organ of glucose uptake, disposal, and storage. Metformin activates adenosine monophosphate-activated protein kinase (AMPK) to regulate insulin signaling and promote the translocation of glucose transporter type 4 (GLUT4), thereby stimulating glucose uptake to maintain energy balance. Our previous study showed that high uric acid (HUA) induced insulin resistance in skeletal muscle tissue. However, the mechanism of metformin ameliorating UA-induced insulin resistance in muscle cells is unknown and we aimed to determine it. In this study, differentiated C2C12 cells were exposed to UA (15 mg/dl), then reactive oxygen species (ROS) was detected with DCFH-DA and glucose uptake with 2-NBDG. The levels of phospho-insulin receptor substrate 1 (IRS1; Ser307), phospho-AKT (Ser473) and membrane GLUT4 were examined by western blot analysis. The impact of metformin on UA-induced insulin resistance was monitored by adding Compound C, an AMPK inhibitor, and LY294002, a PI3K/AKT inhibitor. Our data indicate that UA can increase ROS production, inhibit IRS1-AKT signaling and insulin-stimulated glucose uptake, and induce insulin resistance in C2C12 cells. Metformin can reverse this process by increasing intracellular glucose uptake and ameliorating UA-induced insulin resistance. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  2. Terpenes increase the lipid dynamics in the Leishmania plasma membrane at concentrations similar to their IC50 values.

    PubMed

    Camargos, Heverton Silva; Moreira, Rodrigo Alves; Mendanha, Sebastião Antonio; Fernandes, Kelly Souza; Dorta, Miriam Leandro; Alonso, Antonio

    2014-01-01

    Although many terpenes have shown antitumor, antibacterial, antifungal, and antiparasitic activity, the mechanism of action is not well established. Electron paramagnetic resonance (EPR) spectroscopy of the spin-labeled 5-doxyl stearic acid revealed remarkable fluidity increases in the plasma membrane of terpene-treated Leishmania amazonensis promastigotes. For an antiproliferative activity assay using 5×10(6) parasites/mL, the sesquiterpene nerolidol and the monoterpenes (+)-limonene, α-terpineol and 1,8-cineole inhibited the growth of the parasites with IC50 values of 0.008, 0.549, 0.678 and 4.697 mM, respectively. The IC50 values of these terpenes increased as the parasite concentration used in the cytotoxicity assay increased, and this behavior was examined using a theoretical treatment of the experimental data. Cytotoxicity tests with the same parasite concentration as in the EPR experiments revealed a correlation between the IC50 values of the terpenes and the concentrations at which they altered the membrane fluidity. In addition, the terpenes induced small amounts of cell lysis (4-9%) at their respective IC50 values. For assays with high cell concentrations (2×10(9) parasites/mL), the incorporation of terpene into the cell membrane was very fast, and the IC50 values observed for 24 h and 5 min-incubation periods were not significantly different. Taken together, these results suggest that terpene cytotoxicity is associated with the attack on the plasma membrane of the parasite. The in vitro cytotoxicity of nerolidol was similar to that of miltefosine, and nerolidol has high hydrophobicity; thus, nerolidol might be used in drug delivery systems, such as lipid nanoparticles to treat leishmaniasis.

  3. Terpenes Increase the Lipid Dynamics in the Leishmania Plasma Membrane at Concentrations Similar to Their IC50 Values

    PubMed Central

    Camargos, Heverton Silva; Moreira, Rodrigo Alves; Mendanha, Sebastião Antonio; Fernandes, Kelly Souza; Dorta, Miriam Leandro; Alonso, Antonio

    2014-01-01

    Although many terpenes have shown antitumor, antibacterial, antifungal, and antiparasitic activity, the mechanism of action is not well established. Electron paramagnetic resonance (EPR) spectroscopy of the spin-labeled 5-doxyl stearic acid revealed remarkable fluidity increases in the plasma membrane of terpene-treated Leishmania amazonensis promastigotes. For an antiproliferative activity assay using 5×106 parasites/mL, the sesquiterpene nerolidol and the monoterpenes (+)-limonene, α-terpineol and 1,8-cineole inhibited the growth of the parasites with IC50 values of 0.008, 0.549, 0.678 and 4.697 mM, respectively. The IC50 values of these terpenes increased as the parasite concentration used in the cytotoxicity assay increased, and this behavior was examined using a theoretical treatment of the experimental data. Cytotoxicity tests with the same parasite concentration as in the EPR experiments revealed a correlation between the IC50 values of the terpenes and the concentrations at which they altered the membrane fluidity. In addition, the terpenes induced small amounts of cell lysis (4–9%) at their respective IC50 values. For assays with high cell concentrations (2×109 parasites/mL), the incorporation of terpene into the cell membrane was very fast, and the IC50 values observed for 24 h and 5 min-incubation periods were not significantly different. Taken together, these results suggest that terpene cytotoxicity is associated with the attack on the plasma membrane of the parasite. The in vitro cytotoxicity of nerolidol was similar to that of miltefosine, and nerolidol has high hydrophobicity; thus, nerolidol might be used in drug delivery systems, such as lipid nanoparticles to treat leishmaniasis. PMID:25101672

  4. Effect of Glucocorticoid-Induced Insulin Resistance on Follicle Development and Ovulation1

    PubMed Central

    Hackbart, Katherine S.; Cunha, Pauline M.; Meyer, Rudelle K.; Wiltbank, Milo C.

    2013-01-01

    ABSTRACT Polycystic ovarian syndrome (PCOS) is characterized by hyperandrogenemia, polycystic ovaries, and menstrual disturbance and a clear association with insulin resistance. This research evaluated whether induction of insulin resistance, using dexamethasone (DEX), in a monovular animal model, the cow, could produce an ovarian phenotype similar to PCOS. In all of these experiments, DEX induced insulin resistance in cows as shown by increased glucose, insulin, and HOMA-IR (homeostasis model assessment of insulin resistance). Experiment 1: DEX induced anovulation (zero of five DEX vs. four of four control cows ovulated) and decreased circulating estradiol (E2). Experiment 2: Gonadotropin-releasing hormone (GnRH) was administered to determine pituitary and follicular responses during insulin resistance. GnRH induced a luteinizing hormone (LH) surge and ovulation in both DEX (seven of seven) and control (seven of seven) cows. Experiment 3: E2 was administered to determine hypothalamic responsiveness after induction of an E2 surge in DEX (eight of eight) and control (eight of eight) cows. An LH surge was induced in control (eight of eight) but not DEX (zero of eight) cows. All control (eight of eight) but only two of eight DEX cows ovulated within 60 h of E2 administration. Experiment 4: Short-term DEX was initiated 24 h after induced luteal regression to determine if DEX could acutely block ovulation before peak insulin resistance was induced, similar to progesterone (P4). All control (five of five), no P4-treated (zero of six), and 50% of DEX-treated (three of six) cows ovulated by 96 h after luteal regression. All anovular cows had reduced circulating E2. These data are consistent with DEX creating a lesion in hypothalamic positive feedback to E2 without altering pituitary responsiveness to GnRH or ovulatory responsiveness of follicles to LH. It remains to be determined if the considerable insulin resistance and the reduced follicular E2 production induced by DEX

  5. Salicylic acid and jasmonic acid are essential for systemic resistance against tobacco mosaic virus in Nicotiana benthamiana.

    PubMed

    Zhu, Feng; Xi, De-Hui; Yuan, Shu; Xu, Fei; Zhang, Da-Wei; Lin, Hong-Hui

    2014-06-01

    Systemic resistance is induced by pathogens and confers protection against a broad range of pathogens. Recent studies have indicated that salicylic acid (SA) derivative methyl salicylate (MeSA) serves as a long-distance phloem-mobile systemic resistance signal in tobacco, Arabidopsis, and potato. However, other experiments indicate that jasmonic acid (JA) is a critical mobile signal. Here, we present evidence suggesting both MeSA and methyl jasmonate (MeJA) are essential for systemic resistance against Tobacco mosaic virus (TMV), possibly acting as the initiating signals for systemic resistance. Foliar application of JA followed by SA triggered the strongest systemic resistance against TMV. Furthermore, we use a virus-induced gene-silencing-based genetics approach to investigate the function of JA and SA biosynthesis or signaling genes in systemic response against TMV infection. Silencing of SA or JA biosynthetic and signaling genes in Nicotiana benthamiana plants increased susceptibility to TMV. Genetic experiments also proved the irreplaceable roles of MeSA and MeJA in systemic resistance response. Systemic resistance was compromised when SA methyl transferase or JA carboxyl methyltransferase, which are required for MeSA and MeJA formation, respectively, were silenced. Moreover, high-performance liquid chromatography-mass spectrometry analysis indicated that JA and MeJA accumulated in phloem exudates of leaves at early stages and SA and MeSA accumulated at later stages, after TMV infection. Our data also indicated that JA and MeJA could regulate MeSA and SA production. Taken together, our results demonstrate that (Me)JA and (Me)SA are required for systemic resistance response against TMV.

  6. Hepatocyte growth factor induces resistance to anti-epidermal growth factor receptor antibody in lung cancer.

    PubMed

    Yamada, Tadaaki; Takeuchi, Shinji; Kita, Kenji; Bando, Hideaki; Nakamura, Takahiro; Matsumoto, Kunio; Yano, Seiji

    2012-02-01

    Epidermal growth factor receptor (EGFR) is an attractive drug target in lung cancer, with several anti-EGFR antibodies and small-molecule inhibitors showing efficacy in lung cancer patients. Patients, however, may develop resistance to EGFR inhibitors. We demonstrated previously that hepatocyte growth factor (HGF) induced resistance to EGFR tyrosine kinase inhibitors in lung cancers harboring EGFR mutations. We therefore determined whether HGF could induce resistance to the anti-EGFR antibody (EGFR Ab) cetuximab in lung cancer cells, regardless of EGFR gene status. Cetuximab sensitivity and signal transduction in lung cancer cells were examined in the presence or absence of HGF, HGF-producing fibroblasts, and cells tranfected with the HGF gene in vitro and in vivo. HGF induced resistance to cetuximab in H292 (EGFR wild) and Ma-1(EGFR mutant) cells. Western blotting showed that HGF-induced resistance was mediated by the Met/Gab1/Akt signaling pathway. Resistance of H292 and Ma-1 cells to cetuximab was also induced by coculture with lung fibroblasts producing high levels of HGF and by cells stably transfected with the HGF gene. This resistance was abrogated by treatment with anti-HGF neutralizing antibody. HGF-mediated resistance is a novel mechanism of resistance to EGFR Ab in lung cancers, with fibroblast-derived HGF inducing cetuximab resistance in H292 tumors in vivo. The involvement of HGF-Met-mediated signaling should be assessed in acquired resistance to EGFR Ab in lung cancer, regardless of EGFR gene status.

  7. High performance MPEG-audio decoder IC

    NASA Technical Reports Server (NTRS)

    Thorn, M.; Benbassat, G.; Cyr, K.; Li, S.; Gill, M.; Kam, D.; Walker, K.; Look, P.; Eldridge, C.; Ng, P.

    1993-01-01

    The emerging digital audio and video compression technology brings both an opportunity and a new challenge to IC design. The pervasive application of compression technology to consumer electronics will require high volume, low cost IC's and fast time to market of the prototypes and production units. At the same time, the algorithms used in the compression technology result in complex VLSI IC's. The conflicting challenges of algorithm complexity, low cost, and fast time to market have an impact on device architecture and design methodology. The work presented in this paper is about the design of a dedicated, high precision, Motion Picture Expert Group (MPEG) audio decoder.

  8. Cytotoxicity of compounds from Xylopia aethiopica towards multi-factorial drug-resistant cancer cells.

    PubMed

    Kuete, Victor; Sandjo, Louis P; Mbaveng, Armelle T; Zeino, Maen; Efferth, Thomas

    2015-12-15

    Multidrug resistance (MDR) in cancer represent a major hurdle in chemotherapy. Previously, the methanol extract of the medicinal spice Xylopia aethiopica displayed considerable cytotoxicity against multidrug resistant (MDR) cancer cell lines. The present study was designed to assess the cytotoxicity of compounds, 16α-hydroxy-ent-kauran-19-oic acid (2), 3,4',5-trihydroxy-6″,6″-dimethylpyrano[2,3-g]flavone (3), isotetrandrine (5) and trans-tiliroside (6) derived from the methanol crude extract of Xylopia aethiopica against 9 drug-sensitive and -resistant cancer cell lines. The resazurin reduction assay was used to evaluate the cytotoxicity of these compounds, whilst caspase-Glo assay was used to detect caspase activation. Cell cycle, mitochondrial membrane potential (MMP) and levels of reactive oxygen species (ROS) were all analyzed via flow cytometry. Flavonoid 3 and alkaloid 5 also displayed IC50 values ranging from 2.61 µM (towards leukemia CCRF-CEM cells) to 18.60 µM (towards gliobastoma multiforme U87MG.ΔEGFR cells) and from 1.45 µM (towards HepG2 cells) to 7.28 µM (towards MDA-MB-231-pcDNA cells), respectively. IC50 values ranged from 0.20 µM (against CCRF-CEM cells) to 195.12 µM (against CEM/ADR5000 cells) for doxorubicin. Compound 3 induced apoptosis in leukemia CCRF-CEM cells mediated by the disruption of the MMP, whilst 5 induced apoptosis mediated by ROS production. Compounds 2 and 5 represent potential cytotoxic phytochemicals that deserve more investigations to develop novel antineoplastic drugs against multifactorial drug-resistant cancers. Copyright © 2015 Elsevier GmbH. All rights reserved.

  9. A high ratio of IC31® adjuvant to antigen is necessary for H4 TB vaccine immunomodulation

    PubMed Central

    Aboutorabian, Sepideh; Hakimi, Jalil; Boudet, Florence; Montano, Sandrine; Dookie, Annie; Roque, Cristopher; Ausar, Salvador F; Rahman, Nausheen; Brookes, Roger H

    2015-01-01

    A tuberculosis (TB) vaccine consisting of a recombinant fusion protein (H4) and a novel TLR9 adjuvant (IC31) is in clinical development. To better understand the H4-IC31 ratio, we measured the binding capacity of IC31 for H4 protein and immunized mice with formulations that contained limiting to excess ratios of IC31 to H4. An immunomodulated H4-specific IFNγ response was only observed when IC31 was present in excess of H4. Since TLR expression is species-specific and the vaccine is intended to boost BCG-primed immunity, we questioned whether data in mice would translate to humans. To address this question, we used the fresh human Whole Blood (hWB) recovered from BCG-vaccinated subjects to screen H4-IC31 formulations. We found IC31 modulation in hWB to be quite distinct from the TLR4-Adjuvant. Unlike TLR4-Adjuvant, IC31 formulations did not induce the pro-inflammatory cytokine TNFα, but modulated a robust H4-specific IFNγ response after 12 d of culture. We then re-stimulated the fresh hWB of 5 BCG-primed subjects with formulations that had excess or limiting IC31 binding for H4 protein and again found that an immunomodulated H4-specific IFNγ response needed an excess of IC31. Finally, we monitored the zeta (ζ) potential of H4-IC31 formulations and found that the overall charge of H4-IC31 particles changes from negative to positive once IC31 is in greater than 9-fold excess. Using two diverse yet mutually supportive approaches, we confirm the need for an excess of IC31 adjuvant in H4 TB vaccine formulations and suggest surface potential may be an important factor. PMID:25997147

  10. A high ratio of IC31(®) adjuvant to antigen is necessary for H4 TB vaccine immunomodulation.

    PubMed

    Aboutorabian, Sepideh; Hakimi, Jalil; Boudet, Florence; Montano, Sandrine; Dookie, Annie; Roque, Cristopher; Ausar, Salvador F; Rahman, Nausheen; Brookes, Roger H

    2015-01-01

    A tuberculosis (TB) vaccine consisting of a recombinant fusion protein (H4) and a novel TLR9 adjuvant (IC31) is in clinical development. To better understand the H4-IC31 ratio, we measured the binding capacity of IC31 for H4 protein and immunized mice with formulations that contained limiting to excess ratios of IC31 to H4. An immunomodulated H4-specific IFNγ response was only observed when IC31 was present in excess of H4. Since TLR expression is species-specific and the vaccine is intended to boost BCG-primed immunity, we questioned whether data in mice would translate to humans. To address this question, we used the fresh human Whole Blood (hWB) recovered from BCG-vaccinated subjects to screen H4-IC31 formulations. We found IC31 modulation in hWB to be quite distinct from the TLR4-Adjuvant. Unlike TLR4-Adjuvant, IC31 formulations did not induce the pro-inflammatory cytokine TNFα, but modulated a robust H4-specific IFNγ response after 12 d of culture. We then re-stimulated the fresh hWB of 5 BCG-primed subjects with formulations that had excess or limiting IC31 binding for H4 protein and again found that an immunomodulated H4-specific IFNγ response needed an excess of IC31. Finally, we monitored the zeta (ζ) potential of H4-IC31 formulations and found that the overall charge of H4-IC31 particles changes from negative to positive once IC31 is in greater than 9-fold excess. Using two diverse yet mutually supportive approaches, we confirm the need for an excess of IC31 adjuvant in H4 TB vaccine formulations and suggest surface potential may be an important factor.

  11. Suppression of Ghrelin Exacerbates HFCS-Induced Adiposity and Insulin Resistance

    PubMed Central

    Ma, Xiaojun; Lin, Ligen; Yue, Jing; Wu, Chia-Shan; Guo, Cathy A.; Wang, Ruitao; Yu, Kai-Jiang; Devaraj, Sridevi; Murano, Peter; Chen, Zheng; Sun, Yuxiang

    2017-01-01

    High fructose corn syrup (HFCS) is widely used as sweetener in processed foods and soft drinks in the United States, largely substituting sucrose (SUC). The orexigenic hormone ghrelin promotes obesity and insulin resistance; ghrelin responds differently to HFCS and SUC ingestion. Here we investigated the roles of ghrelin in HFCS- and SUC-induced adiposity and insulin resistance. To mimic soft drinks, 10-week-old male wild-type (WT) and ghrelin knockout (Ghrelin−/−) mice were subjected to ad lib. regular chow diet supplemented with either water (RD), 8% HFCS (HFCS), or 10% sucrose (SUC). We found that SUC-feeding induced more robust increases in body weight and body fat than HFCS-feeding. Comparing to SUC-fed mice, HFCS-fed mice showed lower body weight but higher circulating glucose and insulin levels. Interestingly, we also found that ghrelin deletion exacerbates HFCS-induced adiposity and inflammation in adipose tissues, as well as whole-body insulin resistance. Our findings suggest that HFCS and SUC have differential effects on lipid metabolism: while sucrose promotes obesogenesis, HFCS primarily enhances inflammation and insulin resistance, and ghrelin confers protective effects for these metabolic dysfunctions. PMID:28629187

  12. Suppression of Ghrelin Exacerbates HFCS-Induced Adiposity and Insulin Resistance.

    PubMed

    Ma, Xiaojun; Lin, Ligen; Yue, Jing; Wu, Chia-Shan; Guo, Cathy A; Wang, Ruitao; Yu, Kai-Jiang; Devaraj, Sridevi; Murano, Peter; Chen, Zheng; Sun, Yuxiang

    2017-06-19

    High fructose corn syrup (HFCS) is widely used as sweetener in processed foods and soft drinks in the United States, largely substituting sucrose (SUC). The orexigenic hormone ghrelin promotes obesity and insulin resistance; ghrelin responds differently to HFCS and SUC ingestion. Here we investigated the roles of ghrelin in HFCS- and SUC-induced adiposity and insulin resistance. To mimic soft drinks, 10-week-old male wild-type (WT) and ghrelin knockout ( Ghrelin -/- ) mice were subjected to ad lib. regular chow diet supplemented with either water (RD), 8% HFCS (HFCS), or 10% sucrose (SUC). We found that SUC-feeding induced more robust increases in body weight and body fat than HFCS-feeding. Comparing to SUC-fed mice, HFCS-fed mice showed lower body weight but higher circulating glucose and insulin levels. Interestingly, we also found that ghrelin deletion exacerbates HFCS-induced adiposity and inflammation in adipose tissues, as well as whole-body insulin resistance. Our findings suggest that HFCS and SUC have differential effects on lipid metabolism: while sucrose promotes obesogenesis, HFCS primarily enhances inflammation and insulin resistance, and ghrelin confers protective effects for these metabolic dysfunctions.

  13. Generation and characterization of tribenuron-methyl herbicide-resistant rapeseed (Brasscia napus) for hybrid seed production using chemically induced male sterility.

    PubMed

    Li, Haitao; Li, Juanjuan; Zhao, Bo; Wang, Jing; Yi, Licong; Liu, Chao; Wu, Jiangsheng; King, Graham J; Liu, Kede

    2015-01-01

    Identification and molecular analysis of four tribenuron-methyl resistant mutants in Brassica napus , which would be very useful in hybrid production using a Chemically induced male sterility system. Chemically induced male sterility (CIMS) systems dependent on chemical hybridization agents (CHAs) like tribenuron-methyl (TBM) represent an important approach for practical utilization of heterosis in rapeseed. However, when spraying the female parents with TBM to induce male sterility the male parents must be protected with a shield to avoid injury to the stamens, which would otherwise complicate the seed production protocol and increase the cost of hybrid seed production. Here we report the first proposed application of a herbicide-resistant cultivar in hybrid production, using a CIMS system based on identifying four TBM-resistant mutants in Brassica napus. Genetic analysis indicated that the TBM resistance was controlled by a single dominant nuclear gene. An in vitro enzyme activity assay for acetohydroxyacid synthase (AHAS) suggested that the herbicide resistance is caused by a gain-of-function mutation in a copy of AHAS genes. Comparative sequencing of the mutants and wild type BnaA.AHAS.a coding sequences identified a C-to-T transition at either position 535 or 536 from the translation start site, which resulted in a substitution of proline with serine or leucine at position 197 according to the Arabidopsis thaliana protein sequence. An allele-specific dCAPS marker developed from the C536T variation co-segregated with the herbicide resistance. Transgenic A. thaliana plants expressing BnaA.ahas3.a conferred herbicide resistance, which confirmed that the P197 substitution in BnaA.AHAS.a was responsible for the herbicide resistance. Moreover, the TBM-resistant lines maintain normal male fertility under TBM treatment and can be of practical value in hybrid seed production using CIMS.

  14. Improving wettability of photo-resistive film surface with plasma surface modification for coplanar copper pillar plating of IC substrates

    NASA Astrophysics Data System (ADS)

    Xiang, Jing; Wang, Chong; Chen, Yuanming; Wang, Shouxu; Hong, Yan; Zhang, Huaiwu; Gong, Lijun; He, Wei

    2017-07-01

    The wettability of the photo-resistive film (PF) surfaces undergoing different pretreatments including the O2sbnd CF4 low-pressure plasma (OCLP) and air plasma (AP), is investigated by water contact angle measurement instrument (WCAMI) before the bottom-up copper pillar plating. Chemical groups analysis performed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectra (XPS) shows that after the OCLP and wash treatment, the wettability of PF surface is attenuated, because embedded fluorine and decreased oxygen content both enhance hydrophobicity. Compared with OCLP treatment, the PF surface treatment by non-toxic air plasma displays features of Csbnd O, Osbnd Cdbnd O, Cdbnd O and sbnd NO2 by AIR-FTIR and XPS, and a promoted wettability by WCAM. Under the identical electroplating condition, the surface with a better wettability allows electrolyte to spontaneously soak all the places of vias, resulting in improved copper pillar uniformity. Statistical analysis of metallographic data shows that more coplanar and flat copper pillars are achieved with the PF treatment of air plasma. Such modified copper-pillar-plating technology meets the requirement of accurate impedance, the high density interconnection for IC substrates.

  15. Information Commons for Rice (IC4R)

    PubMed Central

    2016-01-01

    Rice is the most important staple food for a large part of the world's human population and also a key model organism for plant research. Here, we present Information Commons for Rice (IC4R; http://ic4r.org), a rice knowledgebase featuring adoption of an extensible and sustainable architecture that integrates multiple omics data through community-contributed modules. Each module is developed and maintained by different committed groups, deals with data collection, processing and visualization, and delivers data on-demand via web services. In the current version, IC4R incorporates a variety of rice data through multiple committed modules, including genome-wide expression profiles derived entirely from RNA-Seq data, resequencing-based genomic variations obtained from re-sequencing data of thousands of rice varieties, plant homologous genes covering multiple diverse plant species, post-translational modifications, rice-related literatures and gene annotations contributed by the rice research community. Unlike extant related databases, IC4R is designed for scalability and sustainability and thus also features collaborative integration of rice data and low costs for database update and maintenance. Future directions of IC4R include incorporation of other omics data and association of multiple omics data with agronomically important traits, dedicating to build IC4R into a valuable knowledgebase for both basic and translational researches in rice. PMID:26519466

  16. On Patarin's Attack against the lIC Scheme

    NASA Astrophysics Data System (ADS)

    Ogura, Naoki; Uchiyama, Shigenori

    In 2007, Ding et al. proposed an attractive scheme, which is called the l-Invertible Cycles (lIC) scheme. lIC is one of the most efficient multivariate public-key cryptosystems (MPKC); these schemes would be suitable for using under limited computational resources. In 2008, an efficient attack against lIC using Gröbner basis algorithms was proposed by Fouque et al. However, they only estimated the complexity of their attack based on their experimental results. On the other hand, Patarin had proposed an efficient attack against some multivariate public-key cryptosystems. We call this attack Patarin's attack. The complexity of Patarin's attack can be estimated by finding relations corresponding to each scheme. In this paper, we propose an another practical attack against the lIC encryption/signature scheme. We estimate the complexity of our attack (not experimentally) by adapting Patarin's attack. The attack can be also applied to the lIC- scheme. Moreover, we show some experimental results of a practical attack against the lIC/lIC- schemes. This is the first implementation of both our proposed attack and an attack based on Gröbner basis algorithm for the even case, that is, a parameter l is even.

  17. Mesoporous silica nanoparticles loading doxorubicin reverse multidrug resistance: performance and mechanism

    NASA Astrophysics Data System (ADS)

    Shen, Jianan; He, Qianjun; Gao, Yu; Shi, Jianlin; Li, Yaping

    2011-10-01

    Multidrug resistance (MDR) is one of the major obstacles for successful chemotherapy in cancer. One of the effective approaches to overcome MDR is to use nanoparticle-mediated drug delivery to increase drug accumulation in drug resistant cancer cells. In this work, we first report that the performance and mechanism of an inorganic engineered delivery system based on mesoporous silica nanoparticles (MSNs) loading doxorubicin (DMNs) to overcome the MDR of MCF-7/ADR (a DOX-resistant and P-glycoprotein (P-gp) over-expression cancer cell line). The experimental results showed that DMNs could enhance the cellular uptake of doxorubicin (DOX) and increase the cell proliferation suppression effect of DOX against MCF-7/ADR cells. The IC50 of DMNs against MCF-7/ADR cells was 8-fold lower than that of free DOX. However, an improved effect of DOX in DMNs against MCF-7 cells (a DOX-sensitive cancer cell line) was not found. The increased cellular uptake and nuclear accumulation of DOX delivered by DMNs in MCF-7/ADR cells was confirmed by confocal laser scanning microscopy, and could result from the down-regulation of P-gp and bypassing the efflux action by MSNs themselves. The cellular uptake mechanism of DMNs indicated that the macropinocytosis was one of the pathways for the uptake of DMNs by MCF-7/ADR cells. The in vivo biodistribution showed that DMNs induced a higher accumulation of DOX in drug resistant tumors than free DOX. These results suggested that MSNs could be an effective delivery system to overcome multidrug resistance.

  18. FAP positive fibroblasts induce immune checkpoint blockade resistance in colorectal cancer via promoting immunosuppression.

    PubMed

    Chen, Lingling; Qiu, Xiangting; Wang, Xinhua; He, Jian

    2017-05-20

    Immune checkpoint blockades that significantly prolonged survival of melanoma patients have been less effective on colorectal cancer (CRC) patients. Growing evidence suggested that fibroblast activation protein-alpha (FAP) on cancer associate fibroblasts (CAFs) has critical roles in regulating antitumor immune response by inducing tumor-promoting inflammation. In this study, we explored the roles of FAP in regulating the tumor immunity and immune checkpoint blockades resistance in CRC experimental systems. We found that CAFs with high FAP expression could induce immune checkpoint blockade resistance in CRC mouse model. Mechanistically, CAFs with high FAP expression promoted immunosuppression in the CRC tumor immune microenvironment by up-regulating CCL2 secretion, recruiting myeloid cells, and decreasing T-cell activity. In human CRC samples, FAP expression was proportional to myeloid cells number, but inversely related to T-cell number. High FAP expression also predicted poor survival of CRC patients. Taken together, our study suggested that high FAP expression in CAFs is one reason leading to immune checkpoint blockades resistance in CRC patients and FAP is an optional target for reversing immune checkpoint blockades resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Thermoresponsive Supramolecular Chemotherapy by "V"-Shaped Armed β-Cyclodextrin Star Polymer to Overcome Drug Resistance.

    PubMed

    Fan, Xiaoshan; Cheng, Hongwei; Wang, Xiaoyuan; Ye, Enyi; Loh, Xian Jun; Wu, Yun-Long; Li, Zibiao

    2018-04-01

    Pump mediated drug efflux is the key reason to result in the failure of chemotherapy. Herein, a novel star polymer β-CD-v-(PEG-β-PNIPAAm) 7 consisting of a β-CD core, grafted with thermo-responsive poly(N-isopropylacrylamide) (PNIPAAm) and biocompatible poly(ethylene glycol) (PEG) in the multiple "V"-shaped arms is designed and further fabricated into supramolecular nanocarriers for drug resistant cancer therapy. The star polymer could encapsulate chemotherapeutics between β-cyclodextrin and anti-cancer drug via inclusion complex (IC). Furthermore, the temperature induced chain association of PNIPAAm segments facilitated the IC to form supramolecular nanoparticles at 37 °C, whereas the presence of PEG impart great stability to the self-assemblies. When incubated with MDR-1 membrane pump regulated drug resistant tumor cells, much higher and faster cellular uptake of the supramolecular nanoparticles were detected, and the enhanced intracellular retention of drugs could lead to significant inhibition of cell growth. Further in vivo evaluation showed high therapeutic efficacy in suppressing drug resistant tumor growth without a significant impact on the normal functions of main organs. This work signifies thermo-responsive supramolecular chemotherapy is promising in combating pump mediated drug resistance in both in vitro and in vivo models, which may be encouraging for the advanced drug delivery platform design to overcome drug resistant cancer. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Zero-resistance states induced by electromagnetic-wave excitation in GaAs/AlGaAs heterostructures.

    PubMed

    Mani, Ramesh G; Smet, Jürgen H; von Klitzing, Klaus; Narayanamurti, Venkatesh; Johnson, William B; Umansky, Vladimir

    2002-12-12

    The observation of vanishing electrical resistance in condensed matter has led to the discovery of new phenomena such as, for example, superconductivity, where a zero-resistance state can be detected in a metal below a transition temperature T(c) (ref. 1). More recently, quantum Hall effects were discovered from investigations of zero-resistance states at low temperatures and high magnetic fields in two-dimensional electron systems (2DESs). In quantum Hall systems and superconductors, zero-resistance states often coincide with the appearance of a gap in the energy spectrum. Here we report the observation of zero-resistance states and energy gaps in a surprising setting: ultrahigh-mobility GaAs/AlGaAs heterostructures that contain a 2DES exhibit vanishing diagonal resistance without Hall resistance quantization at low temperatures and low magnetic fields when the specimen is subjected to electromagnetic wave excitation. Zero-resistance-states occur about magnetic fields B = 4/5 Bf and B = 4/9 Bf, where Bf = 2pifm*/e,m* is the electron mass, e is the electron charge, and f is the electromagnetic-wave frequency. Activated transport measurements on the resistance minima also indicate an energy gap at the Fermi level. The results suggest an unexpected radiation-induced, electronic-state-transition in the GaAs/AlGaAs 2DES.

  1. Silibinin sensitizes chemo-resistant breast cancer cells to chemotherapy.

    PubMed

    Molavi, Ommoleila; Narimani, Farzaneh; Asiaee, Farshid; Sharifi, Simin; Tarhriz, Vahideh; Shayanfar, Ali; Hejazi, Mohammadsaied; Lai, Raymond

    2017-12-01

    Multiple drug resistance is the major obstacle to conventional chemotherapy. Silibinin, a nontoxic naturally occurring compound, has anticancer activity and can increase the cytotoxic effects of chemotherapy in various cancer models. To evaluate the effects of silibinin on enhancing the sensitivity of chemo-resistant human breast cell lines to doxorubicin (DOX) and paclitaxel (PAC). The cells were treated with silibinin (at 50 to 600 μM concentrations) and/or chemo drugs for 24 and 48 h, then cell viability and changes in oncogenic proteins were determined by MTT assay and Western blotting/RT-PCR, respectively. Flow cytometry was used to study apoptosis in the cells receiving different treatments. The antitumorigenic effects of silibinin (at 200 to 400 μM concentration) were evaluated by mammosphere assay. Silibinin exerted significant growth inhibitory effects with IC 50 ranging from 200 to 570 μM in different cell lines. Treatment of DOX-resistant MDA-MB-435 cells with silibinin at 200 μM reduced DOX IC 50 from 71 to 10 μg/mL and significantly suppressed the key oncogenic pathways including STAT3, AKT, and ERK in these cells. Interestingly treatment of DOX-resistant MDA-MB-435 cells with silibinin at 400 μM concentration for 48 h induced a 50% decrease in the numbers of colonies as compared with DMSO-treated cells. Treatment of PAC-resistant MCF-7 cells with silibinin at 400 μM concentration generated synergistic effects when it was used in combination with PAC at 250 nM concentration (CI = 0.81). Silibinin sensitizes chemo-resistant cells to chemotherapeutic agents and can be useful in treating breast cancers.

  2. Immunogenicity and safety of different injection routes and schedules of IC41, a Hepatitis C virus (HCV) peptide vaccine.

    PubMed

    Firbas, Christa; Boehm, Thomas; Buerger, Vera; Schuller, Elisabeth; Sabarth, Nicolas; Jilma, Bernd; Klade, Christoph S

    2010-03-11

    An effective vaccine would be a significant progress in the management of chronic HCV infections. This study was designed to examine whether different application schedules and injection routes may enhance the immunogenicity of the HCV peptide vaccine IC41. In this randomized trial 54 healthy subjects received either subcutaneous (s.c.) or intradermal (i.d.) vaccinations weekly (16 injections) or every other week (8 injections). One group additionally received imiquimod, an activator of the toll-like receptor (TLR) 7. The T cell epitope-specific immune response to IC41 was assessed using [(3)H]-thymidine CD4+ T cell proliferation, interferon-gamma (IFN-gamma) CD8+ and CD4+ ELIspot and HLA-A*0201 fluorescence-activated cell sorting (FACS) tetramer-binding assays. More than 60% of vaccinees responded in the CD4+ T cell proliferation assay in all groups. An HLA-A*0201 FACS tetramer-binding assay and IFN-gamma CD8+ ELIspot class I response of more than 70% was induced in four and three groups, respectively. IC41 induced significant immunological responses in all groups with responder rates of up to 100%. Interestingly, topical imiquimod was not able to enhance immunogenicity but was associated with a lower immune response. Local injection site reactions were mostly transient. Intradermal injections caused more pronounced reactions compared to s.c., especially erythema and edema. Compared to a previous study intensified dosing and/or i.d. injections enhanced the response rates to the vaccine IC41 in three assays measuring T cell function. Immunization with IC41 was generally safe in this study. These results justify testing IC41 in further clinical trials with HCV-infected individuals.

  3. Advanced Cyber Industrial Control System Tactics, Techniques, and Procedures (ACI TTP) for Department of Defense (DOD) Industrial Control Systems (ICS)

    DTIC Science & Technology

    2016-08-10

    enable JCS managers to detect advanced cyber attacks, mitigate the effects of those attacks, and recover their networks following an attack. It also... managers of ICS networks to Detect, Mitigate, and Recover from nation-state-level cyber attacks (strategic, deliberate, well-trained, and funded...Successful Detection of cyber anomalies is best achieved when IT and ICS managers remain in close coordination. The Integrity Checks Table

  4. Field Trials of the Multi-Source Approach for Resistivity and Induced Polarization Data Acquisition

    NASA Astrophysics Data System (ADS)

    LaBrecque, D. J.; Morelli, G.; Fischanger, F.; Lamoureux, P.; Brigham, R.

    2013-12-01

    Implementing systems of distributed receivers and transmitters for resistivity and induced polarization data is an almost inevitable result of the availability of wireless data communication modules and GPS modules offering precise timing and instrument locations. Such systems have a number of advantages; for example, they can be deployed around obstacles such as rivers, canyons, or mountains which would be difficult with traditional 'hard-wired' systems. However, deploying a system of identical, small, battery powered, transceivers, each capable of injecting a known current and measuring the induced potential has an additional and less obvious advantage in that multiple units can inject current simultaneously. The original purpose for using multiple simultaneous current sources (multi-source) was to increase signal levels. In traditional systems, to double the received signal you inject twice the current which requires you to apply twice the voltage and thus four times the power. Alternatively, one approach to increasing signal levels for large-scale surveys collected using small, battery powered transceivers is it to allow multiple units to transmit in parallel. In theory, using four 400 watt transmitters on separate, parallel dipoles yields roughly the same signal as a single 6400 watt transmitter. Furthermore, implementing the multi-source approach creates the opportunity to apply more complex current flow patterns than simple, parallel dipoles. For a perfect, noise-free system, multi-sources adds no new information to a data set that contains a comprehensive set of data collected using single sources. However, for realistic, noisy systems, it appears that multi-source data can substantially impact survey results. In preliminary model studies, the multi-source data produced such startling improvements in subsurface images that even the authors questioned their veracity. Between December of 2012 and July of 2013, we completed multi-source surveys at five sites

  5. A novel elicitor protein from Phytophthora parasitica induces plant basal immunity and systemic acquired resistance.

    PubMed

    Chang, Yi-Hsuan; Yan, Hao-Zhi; Liou, Ruey-Fen

    2015-02-01

    The interaction between Phytophthora pathogens and host plants involves the exchange of complex molecular signals from both sides. Recent studies of Phytophthora have led to the identification of various apoplastic elicitors known to trigger plant immunity. Here, we provide evidence that the protein encoded by OPEL of Phytophthora parasitica is a novel elicitor. Homologues of OPEL were identified only in oomycetes, but not in fungi and other organisms. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) revealed that OPEL is expressed throughout the development of P. parasitica and is especially highly induced after plant infection. Infiltration of OPEL recombinant protein from Escherichia coli into leaves of Nicotiana tabacum (cv. Samsun NN) resulted in cell death, callose deposition, the production of reactive oxygen species and induced expression of pathogen-associated molecular pattern (PAMP)-triggered immunity markers and salicylic acid-responsive defence genes. Moreover, the infiltration conferred systemic resistance against a broad spectrum of pathogens, including Tobacco mosaic virus, the bacteria wilt pathogen Ralstonia solanacearum and P. parasitica. In addition to the signal peptide, OPEL contains three conserved domains: a thaumatin-like domain, a glycine-rich protein domain and a glycosyl hydrolase (GH) domain. Intriguingly, mutation of a putative laminarinase active site motif in the predicted GH domain abolished its elicitor activity, which suggests enzymatic activity of OPEL in triggering the defence response. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  6. Comparative uptake, retention and action of vincristine, vinblastine and vindesine on murine leukaemic lymphoblasts sensitive and resistant to vincristine.

    PubMed Central

    Rivera-Fillat, M. P.; Pallarés-Trujillo, J.; Domènech, C.; Grau-Oliete, M. R.

    1988-01-01

    1. The uptake and retention of vincristine (VCR), vinblastine (VBL) and vindesine (VDS) were evaluated comparatively with respect to their cytotoxic action on a murine lymphoblastic leukaemia (L5178Y). 2. The same parameters were measured on a derived subline of cells resistant to VCR (L5178Y/r) in order to determine whether the different degree of resistance to each alkaloid correlates with the amount of drug associated with the cells. 3. VCR was the most active on L5178Y cells (IC50 = 5.8 x 10(-9) M) while the activity of VBL and that of VDS were similar (IC50 4.4 x 10(-8) M and 3.5 x 10(-8) M, respectively). Nevertheless, a considerably larger amount of VBL was taken up by the cells compared to VDS, although there were no significant differences in their cytotoxic action. 4. The VCR resistant cell line also expressed resistance to VDS, whose IC50 was increased by a factor of 11.4, but not to VBL. However, the uptake and retention of the three alkaloids were similarly reduced in L5178Y/r cells regardless of the degree of resistance expressed. 5. Although a decreased drug uptake and/or retention by the cells provides an explanation for the resistance to vinca alkaloids, they do not seem to be the only factors accounting for the resistance shown by the cell line which we have isolated. 6. The results seem to indicate that part of the VBL taken up by the cells is not used to induce the cytotoxic effect, but is diverted to some cellular compartment(s) or rate controlling process(es) which are different from the target that mediates its cytotoxic action. PMID:3390658

  7. Pseudomonas fluorescens WCS374r-Induced Systemic Resistance in Rice against Magnaporthe oryzae Is Based on Pseudobactin-Mediated Priming for a Salicylic Acid-Repressible Multifaceted Defense Response1[C][OA

    PubMed Central

    De Vleesschauwer, David; Djavaheri, Mohammad; Bakker, Peter A.H.M.; Höfte, Monica

    2008-01-01

    Selected strains of nonpathogenic rhizobacteria can reduce disease in foliar tissues through the induction of a defense state known as induced systemic resistance (ISR). Compared with the large body of information on ISR in dicotyledonous plants, little is known about the mechanisms underlying rhizobacteria-induced resistance in cereal crops. Here, we demonstrate the ability of Pseudomonas fluorescens WCS374r to trigger ISR in rice (Oryza sativa) against the leaf blast pathogen Magnaporthe oryzae. Using salicylic acid (SA)-nonaccumulating NahG rice, an ethylene-insensitive OsEIN2 antisense line, and the jasmonate-deficient mutant hebiba, we show that this WCS374r-induced resistance is regulated by an SA-independent but jasmonic acid/ethylene-modulated signal transduction pathway. Bacterial mutant analysis uncovered a pseudobactin-type siderophore as the crucial determinant responsible for ISR elicitation. Root application of WCS374r-derived pseudobactin (Psb374) primed naive leaves for accelerated expression of a pronounced multifaceted defense response, consisting of rapid recruitment of phenolic compounds at sites of pathogen entry, concerted expression of a diverse set of structural defenses, and a timely hyperinduction of hydrogen peroxide formation putatively driving cell wall fortification. Exogenous SA application alleviated this Psb374-modulated defense priming, while Psb374 pretreatment antagonized infection-induced transcription of SA-responsive PR genes, suggesting that the Psb374- and SA-modulated signaling pathways are mutually antagonistic. Interestingly, in sharp contrast to WCS374r-mediated ISR, chemical induction of blast resistance by the SA analog benzothiadiazole was independent of jasmonic acid/ethylene signaling and involved the potentiation of SA-responsive gene expression. Together, these results offer novel insights into the signaling circuitry governing induced resistance against M. oryzae and suggest that rice is endowed with multiple

  8. Cultured hypothalamic neurons are resistant to inflammation and insulin resistance induced by saturated fatty acids.

    PubMed

    Choi, Sun Ju; Kim, Francis; Schwartz, Michael W; Wisse, Brent E

    2010-06-01

    Hypothalamic inflammation induced by high-fat feeding causes insulin and leptin resistance and contributes to the pathogenesis of obesity. Since in vitro exposure to saturated fatty acids causes inflammation and insulin resistance in many cultured cell types, we determined how cultured hypothalamic neurons respond to this stimulus. Two murine hypothalamic neuronal cell cultures, N43/5 and GT1-7, were exposed to escalating concentrations of saturated fatty acids for up to 24 h. Harvested cells were evaluated for activation of inflammation by gene expression and protein content. Insulin-treated cells were evaluated for induction of markers of insulin receptor signaling (p-IRS, p-Akt). In both hypothalamic cell lines, inflammation was induced by prototypical inflammatory mediators LPS and TNFalpha, as judged by induction of IkappaBalpha (3- to 5-fold) and IL-6 (3- to 7-fold) mRNA and p-IkappaBalpha protein, and TNFalpha pretreatment reduced insulin-mediated p-Akt activation by 30% (P < 0.05). By comparison, neither mixed saturated fatty acid (100, 250, or 500 microM for resistance in cultured hypothalamic neurons, whereas they did in control muscle and endothelial cell lines. Despite the lack of evidence of inflammatory signaling, saturated fatty acid exposure in cultured hypothalamic neurons causes endoplasmic reticulum stress, induces mitogen-activated protein kinase, and causes apoptotic cell death with prolonged exposure. We conclude that saturated fatty acid exposure does not induce inflammatory signaling or insulin resistance in cultured hypothalamic neurons. Therefore, hypothalamic neuronal inflammation in the setting of DIO may involve an indirect mechanism mediated by saturated fatty acids on nonneuronal cells.

  9. Interferon Induced Transfer of Viral Resistance

    DTIC Science & Technology

    1981-02-01

    necseeary and Identify by block number) - Interferon, Cell Communication, Resistance Transfer, Viruses , Antibody Production, Polypeptide Hormones...lymphocytes and the foreign cells, but not mycoplasmas or endogenous viruses , appears to be required for induction. The kinetics of production of leukocyte...interferon by nonsensitized lymphocytes in response to foreign cells is similar to that induced by viruses . We have shown that a component probably of Vie

  10. Treating methamphetamine-induced resistant psychosis with clozapine.

    PubMed

    Seddigh, Ruohollah; Keshavarz-Akhlaghi, Amir-Abbas; Shariati, Behnam

    2014-01-01

    Background. Methamphetamine-induced psychosis (MIP) in Iran has turned into a serious issue in terms of health and treatment, lacking any obvious treatment methods for its resistant cases. Aims of Case Report. In the present study, a number of two cases of treatment of MIP with clozapine, which were resistant to the treatment with other antipsychotics, have been reported. Both cases completely responded to the treatment in only 2 weeks and no signs of psychosis relapse were seen in an 8-9 follow-up. Conclusion. Because of its particular pharmacologic features, clozapine may be effective in treating MIP.

  11. Development of a hybrid paclitaxel-loaded arsenite nanoparticle (HPAN) delivery system for synergistic combined therapy of paclitaxel-resistant cancer

    NASA Astrophysics Data System (ADS)

    Chen, Fei-yan; Zhang, Yu; Chen, Xiang-yu; Li, Jia-qian; Xiao, Xiao-ping; Yu, Lu-lu; Tang, Qun

    2017-04-01

    Multidrug resistance (MDR) is a major reason for failure of chemotherapy in a variety of human tumors. For instance, paclitaxel (PTX) has been widely used as a first-line anticancer drug, but resistance to PTX is becoming increasingly serious. Herein, we propose a strategy of combined therapy to overcome MDR of PTX by introducing a hybrid paclitaxel-loaded gadolinium arsenite nanoparticle (HPAN), where PTX was conjugated with rod-shaped gadolinium arsenite (GdAsOx) nanoparticle (NP). Triggered by endogenous inorganic phosphate (Pi), the hybrid nanoparticles readily collapse, thereby releasing PTX and arsenic trioxide (ATO). An MTT assay indicated IC50 values for HPAN one order of magnitude lower than for a simple equivalent mixture of PTX and ATO against PTX-resistant human colon cancer cells (HCT 166), indicating remarkable synergistic effect. Species type-dependent cellular uptake, induced apoptosis, and cell cycle modulation were also evaluated. Cellular uptake tests indicate that the HPAN presents higher PTX intracellular loading for the PTX-resistant cells and longer intracellular retention time, displaying resistance to drug efflux from the cancer cell than pristine PTX or the equivalent mixture of PTX and ATO. Cell cycle and apoptosis tests consistently proved that addition of HPAN resulted in higher G2/M and apoptosis in PTX-resistant cells. In vivo anticancer experiments evidenced that HPAN had better therapeutic effect on the resistant tumor in the murine xenograft model than pristine PTX or a mixture of PTX and ATO. Our results suggest that HPAN might enhance the therapeutic index and overcome PTX resistance and also demonstrate that the combined therapy is not only related to the species of combined agents but also their physiochemical states.

  12. A Proteinaceous Elicitor Sm1 from the Beneficial Fungus Trichoderma virens Is Required for Induced Systemic Resistance in Maize1[W

    PubMed Central

    Djonović, Slavica; Vargas, Walter A.; Kolomiets, Michael V.; Horndeski, Michelle; Wiest, Aric; Kenerley, Charles M.

    2007-01-01

    We have previously shown that the beneficial filamentous fungus Trichoderma virens secretes the highly effective hydrophobin-like elicitor Sm1 that induces systemic disease resistance in the dicot cotton (Gossypium hirsutum). In this study we tested whether colonization of roots by T. virens can induce systemic protection against a foliar pathogen in the monocot maize (Zea mays), and we further demonstrated the importance of Sm1 during maize-fungal interactions using a functional genomics approach. Maize seedlings were inoculated with T. virens Gv29-8 wild type and transformants in which SM1 was disrupted or constitutively overexpressed in a hydroponic system or in soil-grown maize seedlings challenged with the pathogen Colletotrichum graminicola. We show that similar to dicot plants, colonization of maize roots by T. virens induces systemic protection of the leaves inoculated with C. graminicola. This protection was associated with notable induction of jasmonic acid- and green leaf volatile-biosynthetic genes. Neither deletion nor overexpression of SM1 affected normal growth or development of T. virens, conidial germination, production of gliotoxin, hyphal coiling, hydrophobicity, or the ability to colonize maize roots. Plant bioassays showed that maize grown with SM1-deletion strains exhibited the same levels of systemic protection as non-Trichoderma-treated plants. Moreover, deletion and overexpression of SM1 resulted in significantly reduced and enhanced levels of disease protection, respectively, compared to the wild type. These data together indicate that T. virens is able to effectively activate systemic disease protection in maize and that the functional Sm1 elicitor is required for this activity. PMID:17885089

  13. Assessment of Mycosphaerella graminicola resistance to azoxystrobin.

    PubMed

    Siah, A; Deweer, C; Morand, E; Reignault, Ph; Halama, P

    2008-01-01

    Azoxystrobin resistance levels of twenty two strains sampled from ten French locations and two reference isolates (IPO323 and IPO94269) of the wheat pathogen Mycosphaerella graminicola were investigated in vitro. French strains assayed were selected from twenty two genetic groups determined from three hundred sixty three strains previously characterised using microsatellites, actine and beta-tubuline markers. For the first time, the evaluation was carried out using four distinct methods: spotting on PDA medium, spore germination on PDA medium and using microtitre plates with and without Alamar blue, a growth indicator. From dose-response curve, half maximal inhibitory concentration (IC50) was determined for each strain. The results obtained using microtitre plates with the addition of Alamar blue displayed high standard deviations from the growth averages observed. Therefore, we suggest that this method is inadequate to assess M. graminicolo resistance to fungicides. However, a good correlation was observed between the rankings of strains according to their IC50 values with the three other methods used. The two reference isolates, as expected, were inhibited by low azoxystrobin concentrations. On the other hand, the IC50 values obtained showed presence of a threshold between sensitive and resistant strains that corroborates the disruptive resistance of M. graminicola against strobilurin fungicides. In addition, the strains showing resistance were those sampled mainly from northern France, where a high frequency of strobilurin resistant isolates among M. graminicola populations was reported by several studies.

  14. Mechanisms involved in oleamide-induced vasorelaxation in rat mesenteric resistance arteries.

    PubMed

    Sudhahar, Varadarajan; Shaw, Sean; Imig, John D

    2009-04-01

    Fatty acid amides are a new class of signaling lipids that have been implicated in diverse physiological and pathological conditions. Oleamide is a fatty acid amide that induces vasorelaxation. Here, we investigated the mechanisms behind the vasorelaxation effect of oleamide in rat mesenteric resistance arteries. Oleamide-induced concentration dependent (0.01 microM-10 microM) vasorelaxation in mesenteric resistance arteries. This relaxation was unaffected by the presence of the fatty acid amide hydrolase (FAAH) inhibitors. The cannabinoid type 1 (CB1) receptor antagonist, AM251 and the non-CB1/CB2 cannabinoid receptor antagonist, O-1918, attenuated the oleamide vasodilatory response, however the cannabinoid CB2 receptor antagonist, AM630, did not affect the vascular response. Moreover, inhibition of the transient receptor potential vanilloid (TRPV) 1 receptor with capsazepine shifted the oleamide-induced vasorelaxation response to the right. In agreement with the vascular functional data, the cannabinoid CB1 and TRPV1 receptor proteins were expressed in mesenteric resistance arteries but cannabinoid CB2 receptors and the FAAH enzyme were not. In endothelium-denuded arteries, the oleamide-mediated vasorelaxation was attenuated and cannabinoid CB1 or non-CB1/CB2 cannabinoid receptor blockade did not further reduce the dilatory response whereas TRPV1 antagonism further decreased the response. These findings indicate that cannabinoid receptors on the endothelium and endothelium-independent TRPV1 receptors contribute to the oleamide vasodilatory response. Taken together, these results demonstrate that the oleamide-induced vasorelaxation is mediated, in part, by cannabinoid CB1 receptors, non-CB1/CB2 cannabinoid receptors, and TRPV1 receptors in rat mesenteric resistance arteries. These mechanisms are overlapping in respect to oleamide-induced mesenteric resistance artery dilation.

  15. Mechanisms involved in oleamide-induced vasorelaxation in rat mesenteric resistance arteries

    PubMed Central

    Sudhahar, Varadarajan; Shaw, Sean; Imig, John D.

    2009-01-01

    Fatty acid amides are a new class of signaling lipids that have been implicated in diverse physiological and pathological conditions. Oleamide is a fatty acid amide that induces vasorelaxation. Here, we investigated the mechanisms behind the vasorelaxation effect of oleamide in rat mesenteric resistance arteries. Oleamide-induced concentration dependent (0.01 μM–10μM) vasorelaxation in mesenteric resistance arteries. This relaxation was unaffected by the presence of the fatty acid amide hydrolase (FAAH) inhibitors. The cannabinoid type 1 (CB1) receptor antagonist, AM251 and the non-CB1/CB2 cannabinoid receptor antagonist, O-1918, attenuated the oleamide vasodilatory response, however the cannabinoid CB2 receptor antagonist, AM630, did not affect the vascular response. Moreover, inhibition of the transient receptor potential vanilloid (TRPV) 1 receptor with capsazepine shifted the oleamide-induced vasorelaxation response to the right. In agreement with the vascular functional data, the cannabinoid CB1 and TRPV1 receptor proteins were expressed in mesenteric resistance arteries but cannabinoid CB2 receptors and the FAAH enzyme were not. In endothelium-denuded arteries, the oleamide-mediated vasorelaxation was attenuated and cannabinoid CB1 or non-CB1/CB2 cannabinoid receptor blockade did not further reduce the dilatory response whereas TRPV1 antagonism further decreased the response. These findings indicate that cannabinoid receptors on the endothelium and endothelium-independent TRPV1 receptors contribute to the oleamide vasodilatory response. Taken together, these results demonstrate that the oleamide-induced vasorelaxation is mediated, in part, by cannabinoid CB1 receptors, non-CB1/CB2 cannabinoid receptors, and TRPV1 receptors in rat mesenteric resistance arteries. These mechanisms are overlapping in respect to oleamide-induced mesenteric resistance artery dilation. PMID:19326479

  16. Two squalene synthase inhibitors, E5700 and ER-119884, interfere with cellular proliferation and induce ultrastructural and lipid profile alterations in a Candida tropicalis strain resistant to fluconazole, itraconazole, and amphotericin B.

    PubMed

    Ishida, Kelly; Visbal, Gonzalo; Rodrigues, Juliany Cola Fernandes; Urbina, Julio A; de Souza, Wanderley; Rozental, Sonia

    2011-08-01

    Three quinuclidine-based squalene synthase (SQS) inhibitors (BPQ-OH, E5700, and ER-119884) were evaluated against five Candida tropicalis strains with different susceptibility profiles to fluconazole (FLC), itraconazole (ITC), terbinafine (TRB), and amphotericin B (AMB). Although the quinuclidine derivatives were inactive against most C. tropicalis strains tested at concentrations up to 16 μg/ml, E5700 and ER-119884 showed antifungal activity against C. tropicalis ATCC 28707, a strain resistant to FLC, ITC, and AMB, with IC(50) and IC(90) values (i.e., the minimum inhibitory concentrations of the drugs determined as the lowest drug concentrations leading to a 50 and 90% of reduction in turbidity at 492 nm, respectively, after 48 h of incubation) of 1 and 4 μg/ml, respectively. Analysis of free sterols showed that non-treated C. tropicalis ATCC 28707 cells contained only 14-methylated sterols and that treatment with E5700 or ER-119884 led to a marked reduction of squalene content and the complete disappearance of the endogenous sterols. The fatty acid and phospholipid profiles in C. tropicalis ATCC 28707 cells grown in the presence of E5700 and ER-119884 were also markedly altered, with a large increase in the content of linolenic acid (C18:3), associated with a reduction in the content of linoleic (C18:2) and oleic (C18:1) acids. Treatment of C. tropicalis ATCC 28707 with E5700 or ER-119884 IC(50) values induced several ultrastructural alterations, including a marked increase in the thickness of the cell wall and the appearance of a large number of electron-dense vacuoles. In conclusion, our results indicated that E5700 and ER-119884 inhibited the growth and altered the lipid prolife and the ultrastructure of a multiple drug-resistant C. tropicalis strain. Therefore, such compounds could act as leads for the development of new treatment options against multidrug resistant Candida species.

  17. Constitutive and inducible resistance to Atherigona soccata (Diptera: Muscidae) in Sorghum bicolor.

    PubMed

    Chamarthi, Siva K; Vijay, Peter M; Sharma, Hari C; Narasu, Lakshmi M

    2012-06-01

    Host plant resistance is one of the important components for minimizing the losses because of sorghum shoot fly, Atherigona soccata (Diptera: Muscidae) attack. Therefore, we studied the constitutive and inducible biochemical mechanisms of resistance to A. soccata in a diverse array of sorghum genotypes to identify lines with diverse mechanisms of resistance to this insect. Fifteen sorghum genotypes with different levels of resistance to A. soccata were evaluated. Methanol extracts of 10-d old damaged and undamaged sorghum seedlings were subjected to high-performance liquid chromatography analysis. Association between peak areas of the identified and unidentified compounds with parameters measuring A. soccata resistance was determined through correlation analysis. Amounts of p-hydroxy benzaldehyde and the unidentified compounds at RTs 24.38 and 3.70 min were associated with susceptibility to A. soccata. Genotypes exhibiting resistance to A. soccata were placed in four groups, and the lines showing constitutive and/or induced resistance to A. soccata with different combinations of biochemical factors potentially could be used for increasing the levels of resistance to A. soccata in sorghum.

  18. A small amount of dietary carbohydrate can promote the HFD-induced insulin resistance to a maximal level.

    PubMed

    Mei, Shuang; Yang, Xuefeng; Guo, Huailan; Gu, Haihua; Zha, Longying; Cai, Junwei; Li, Xuefeng; Liu, Zhenqi; Bennett, Brian J; He, Ling; Cao, Wenhong

    2014-01-01

    Both dietary fat and carbohydrates (Carbs) may play important roles in the development of insulin resistance. The main goal of this study was to further define the roles for fat and dietary carbs in insulin resistance. C57BL/6 mice were fed normal chow diet (CD) or HFD containing 0.1-25.5% carbs for 5 weeks, followed by evaluations of calorie consumption, body weight and fat gains, insulin sensitivity, intratissue insulin signaling, ectopic fat, and oxidative stress in liver and skeletal muscle. The role of hepatic gluconeogenesis in the HFD-induced insulin resistance was determined in mice. The role of fat in insulin resistance was also examined in cultured cells. HFD with little carbs (0.1%) induced severe insulin resistance. Addition of 5% carbs to HFD dramatically elevated insulin resistance and 10% carbs in HFD was sufficient to induce a maximal level of insulin resistance. HFD with little carbs induced ectopic fat accumulation and oxidative stress in liver and skeletal muscle and addition of carbs to HFD dramatically enhanced ectopic fat and oxidative stress. HFD increased hepatic expression of key gluconeogenic genes and the increase was most dramatic by HFD with little carbs, and inhibition of hepatic gluconeogenesis prevented the HFD-induced insulin resistance. In cultured cells, development of insulin resistance induced by a pathological level of insulin was prevented in the absence of fat. Together, fat is essential for development of insulin resistance and dietary carb is not necessary for HFD-induced insulin resistance due to the presence of hepatic gluconeogenesis but a very small amount of it can promote HFD-induced insulin resistance to a maximal level.

  19. A Small Amount of Dietary Carbohydrate Can Promote the HFD-Induced Insulin Resistance to a Maximal Level

    PubMed Central

    Guo, Huailan; Gu, Haihua; Zha, Longying; Cai, Junwei; Li, Xuefeng; Liu, Zhenqi; Bennett, Brian J.; He, Ling; Cao, Wenhong

    2014-01-01

    Both dietary fat and carbohydrates (Carbs) may play important roles in the development of insulin resistance. The main goal of this study was to further define the roles for fat and dietary carbs in insulin resistance. C57BL/6 mice were fed normal chow diet (CD) or HFD containing 0.1–25.5% carbs for 5 weeks, followed by evaluations of calorie consumption, body weight and fat gains, insulin sensitivity, intratissue insulin signaling, ectopic fat, and oxidative stress in liver and skeletal muscle. The role of hepatic gluconeogenesis in the HFD-induced insulin resistance was determined in mice. The role of fat in insulin resistance was also examined in cultured cells. HFD with little carbs (0.1%) induced severe insulin resistance. Addition of 5% carbs to HFD dramatically elevated insulin resistance and 10% carbs in HFD was sufficient to induce a maximal level of insulin resistance. HFD with little carbs induced ectopic fat accumulation and oxidative stress in liver and skeletal muscle and addition of carbs to HFD dramatically enhanced ectopic fat and oxidative stress. HFD increased hepatic expression of key gluconeogenic genes and the increase was most dramatic by HFD with little carbs, and inhibition of hepatic gluconeogenesis prevented the HFD-induced insulin resistance. In cultured cells, development of insulin resistance induced by a pathological level of insulin was prevented in the absence of fat. Together, fat is essential for development of insulin resistance and dietary carb is not necessary for HFD-induced insulin resistance due to the presence of hepatic gluconeogenesis but a very small amount of it can promote HFD-induced insulin resistance to a maximal level. PMID:25055153

  20. Unmanipulated Haploidentical Hematopoietic Stem Cell Transplantation in First Complete Remission Can Abrogate the Poor Outcomes of Children with Acute Myeloid Leukemia Resistant to the First Course of Induction Chemotherapy.

    PubMed

    Mo, Xiao-Dong; Zhang, Xiao-Hui; Xu, Lan-Ping; Wang, Yu; Yan, Chen-Hua; Chen, Huan; Chen, Yu-Hong; Han, Wei; Wang, Feng-Rong; Wang, Jing-Zhi; Liu, Kai-Yan; Huang, Xiao-Jun

    2016-12-01

    Allogeneic hematopoietic stem cell transplantation (HSCT) is an important therapy option for children with acute myeloid leukemia (AML) resistant to the first course of induction chemotherapy (IC 1st ). We aimed to identify the efficacy of unmanipulated haploidentical HSCT (haplo-HSCT) in children with AML in the first complete remission and whether children resistant (IC 1st -resistant; n = 38) or sensitive (IC 1st -sensitive; n = 59) to the IC 1st can achieve comparable outcomes. The cumulative incidence of grades III to IV acute graft-versus-host disease (GVHD) and severe chronic GVHD was .0% versus 20.1% (P = .038) and 21.7% versus 13.2% (P = .238), respectively, for the IC 1st -resistant and IC 1st -sensitive groups. The 3-year cumulative incidence of relapse and nonrelapse mortality was 22.2% versus 7.6% (P = .061) and 5.3% versus 10.8% (P = .364), respectively, for the IC 1st -resistant and IC 1st -sensitive groups. The 3-year probability of overall survival and disease-free survival was 76.3% versus 83.0% (P = .657) and 72.5% versus 81.6% (P = .396), respectively, for the IC 1st -resistant and IC 1st -sensitive groups. Multivariate analysis failed to show significant differences in survival rates between the groups. Thus, our results show that unmanipulated haplo-HSCT may overcome the poor prognostic significance of IC 1st -resistance in children with AML, and it is valid as a postremission treatment for children with IC 1st -resistant AML lacking an HLA-matched donor. Copyright © 2016 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  1. Effects of systemic hypoxia on human muscular adaptations to resistance exercise training

    PubMed Central

    Kon, Michihiro; Ohiwa, Nao; Honda, Akiko; Matsubayashi, Takeo; Ikeda, Tatsuaki; Akimoto, Takayuki; Suzuki, Yasuhiro; Hirano, Yuichi; Russell, Aaron P.

    2014-01-01

    Abstract Hypoxia is an important modulator of endurance exercise‐induced oxidative adaptations in skeletal muscle. However, whether hypoxia affects resistance exercise‐induced muscle adaptations remains unknown. Here, we determined the effect of resistance exercise training under systemic hypoxia on muscular adaptations known to occur following both resistance and endurance exercise training, including muscle cross‐sectional area (CSA), one‐repetition maximum (1RM), muscular endurance, and makers of mitochondrial biogenesis and angiogenesis, such as peroxisome proliferator‐activated receptor‐γ coactivator‐1α (PGC‐1α), citrate synthase (CS) activity, nitric oxide synthase (NOS), vascular endothelial growth factor (VEGF), hypoxia‐inducible factor‐1 (HIF‐1), and capillary‐to‐fiber ratio. Sixteen healthy male subjects were randomly assigned to either a normoxic resistance training group (NRT, n =7) or a hypoxic (14.4% oxygen) resistance training group (HRT, n =9) and performed 8 weeks of resistance training. Blood and muscle biopsy samples were obtained before and after training. After training muscle CSA of the femoral region, 1RM for bench‐press and leg‐press, muscular endurance, and skeletal muscle VEGF protein levels significantly increased in both groups. The increase in muscular endurance was significantly higher in the HRT group. Plasma VEGF concentration and skeletal muscle capillary‐to‐fiber ratio were significantly higher in the HRT group than the NRT group following training. Our results suggest that, in addition to increases in muscle size and strength, HRT may also lead to increased muscular endurance and the promotion of angiogenesis in skeletal muscle. PMID:24907297

  2. Flaxseed Oil Alleviates Chronic HFD-Induced Insulin Resistance through Remodeling Lipid Homeostasis in Obese Adipose Tissue.

    PubMed

    Yu, Xiao; Tang, Yuhan; Liu, Peiyi; Xiao, Lin; Liu, Liegang; Shen, Ruiling; Deng, Qianchun; Yao, Ping

    2017-11-08

    Emerging evidence suggests that higher circulating long-chain n-3 polyunsaturated fatty acids (n-3PUFA) levels were intimately associated with lower prevalence of obesity and insulin resistance. However, the understanding of bioactivity and potential mechanism of α-linolenic acid-rich flaxseed oil (ALA-FO) against insulin resistance was still limited. This study evaluated the effect of FO on high-fat diet (HFD)-induced insulin resistance in C57BL/6J mice focused on adipose tissue lipolysis. Mice after HFD feeding for 16 weeks (60% fat-derived calories) exhibited systemic insulin resistance, which was greatly attenuated by medium dose of FO (M-FO), paralleling with differential accumulation of ALA and its n-3 derivatives across serum lipid fractions. Moreover, M-FO was sufficient to effectively block the metabolic activation of adipose tissue macrophages (ATMs), thereby improving adipose tissue insulin signaling. Importantly, suppression of hypoxia-inducible factors HIF-1α and HIF-2α were involved in FO-mediated modulation of adipose tissue lipolysis, accompanied by specific reconstitution of n-3PUFA within adipose tissue lipid fractions.

  3. Long-distance communication and signal amplification in systemic acquired resistance

    PubMed Central

    Shah, Jyoti; Zeier, Jürgen

    2013-01-01

    Systemic acquired resistance (SAR) is an inducible defense mechanism in plants that confers enhanced resistance against a variety of pathogens. SAR is activated in the uninfected systemic (distal) organs in response to a prior (primary) infection elsewhere in the plant. SAR is associated with the activation of salicylic acid (SA) signaling and the priming of defense responses for robust activation in response to subsequent infections. The activation of SAR requires communication by the primary infected tissues with the distal organs. The vasculature functions as a conduit for the translocation of factors that facilitate long-distance intra-plant communication. In recent years, several metabolites putatively involved in long-distance signaling have been identified. These include the methyl ester of SA (MeSA), the abietane diterpenoid dehydroabietinal (DA), the dicarboxylic acid azelaic acid (AzA), and a glycerol-3-phosphate (G3P)-dependent factor. Long-distance signaling by some of these metabolites also requires the lipid-transfer protein DIR1 (DEFECTIVE IN INDUCED RESISTANCE 1). The relative contribution of these factors in long-distance signaling is likely influenced by environmental conditions, for example light. In the systemic leaves, the AGD2-LIKE DEFENSE RESPONSE PROTEIN1 (ALD1)-dependent production of the lysine catabolite pipecolic acid (Pip), FLAVIN-DEPENDENT MONOOXYGENASE1 (FMO1) signaling, as well as SA synthesis and downstream signaling are required for the activation of SAR. This review summarizes the involvement and interaction between long-distance SAR signals and details the recently discovered role of Pip in defense amplification and priming that allows plants to acquire immunity at the systemic level. Recent advances in SA signaling and perception are also highlighted. PMID:23440336

  4. Classification of fMRI independent components using IC-fingerprints and support vector machine classifiers.

    PubMed

    De Martino, Federico; Gentile, Francesco; Esposito, Fabrizio; Balsi, Marco; Di Salle, Francesco; Goebel, Rainer; Formisano, Elia

    2007-01-01

    We present a general method for the classification of independent components (ICs) extracted from functional MRI (fMRI) data sets. The method consists of two steps. In the first step, each fMRI-IC is associated with an IC-fingerprint, i.e., a representation of the component in a multidimensional space of parameters. These parameters are post hoc estimates of global properties of the ICs and are largely independent of a specific experimental design and stimulus timing. In the second step a machine learning algorithm automatically separates the IC-fingerprints into six general classes after preliminary training performed on a small subset of expert-labeled components. We illustrate this approach in a multisubject fMRI study employing visual structure-from-motion stimuli encoding faces and control random shapes. We show that: (1) IC-fingerprints are a valuable tool for the inspection, characterization and selection of fMRI-ICs and (2) automatic classifications of fMRI-ICs in new subjects present a high correspondence with those obtained by expert visual inspection of the components. Importantly, our classification procedure highlights several neurophysiologically interesting processes. The most intriguing of which is reflected, with high intra- and inter-subject reproducibility, in one IC exhibiting a transiently task-related activation in the 'face' region of the primary sensorimotor cortex. This suggests that in addition to or as part of the mirror system, somatotopic regions of the sensorimotor cortex are involved in disambiguating the perception of a moving body part. Finally, we show that the same classification algorithm can be successfully applied, without re-training, to fMRI collected using acquisition parameters, stimulation modality and timing considerably different from those used for training.

  5. Design and performance of clock-recovery GaAs ICs for high-speed optical communication systems

    NASA Astrophysics Data System (ADS)

    Imai, Yuhki; Sano, Eiichi; Nakamura, Makoto; Ishihara, Noboru; Kikuchi, Hiroyuki; Ono, Takashi

    1993-05-01

    Design and performance of clock-recovery GaAs ICs are presented. Four kinds of ICs were developed: a limiting amplifier, a tuning amplifier, a rectifier, and a differentiator. The cascaded limiting amplifier together with a tuning amplifier achieved a 58-dB gain and a 10-degree phase deviation with 20-dB input dynamic range at 10 GHz. A clock-recovery circuit successfully extracts a low-jitter 10-GHz clock signal of 1-dBm constant power from 10-Gb/s NRZ pseudorandom bit streams using a pulse pattern generator.

  6. An NFC-Enabled CMOS IC for a Wireless Fully Implantable Glucose Sensor.

    PubMed

    DeHennis, Andrew; Getzlaff, Stefan; Grice, David; Mailand, Marko

    2016-01-01

    This paper presents an integrated circuit (IC) that merges integrated optical and temperature transducers, optical interface circuitry, and a near-field communication (NFC)-enabled digital, wireless readout for a fully passive implantable sensor platform to measure glucose in people with diabetes. A flip-chip mounted LED and monolithically integrated photodiodes serve as the transduction front-end to enable fluorescence readout. A wide-range programmable transimpedance amplifier adapts the sensor signals to the input of an 11-bit analog-to-digital converter digitizing the measurements. Measurement readout is enabled by means of wireless backscatter modulation to a remote NFC reader. The system is able to resolve current levels of less than 10 pA with a single fluorescent measurement energy consumption of less than 1 μJ. The wireless IC is fabricated in a 0.6-μm-CMOS process and utilizes a 13.56-MHz-based ISO15693 for passive wireless readout through a NFC interface. The IC is utilized as the core interface to a fluorescent, glucose transducer to enable a fully implantable sensor-based continuous glucose monitoring system.

  7. The open cluster IC 4665

    NASA Technical Reports Server (NTRS)

    Prosser, Charles F.

    1993-01-01

    The results of a combined astrometric, photometric, and spectroscopic program to identify members of the open cluster IC 4665 are presented. Numerous new proper motion/photometric candidate members and at least 23 M dwarfs with H-alpha emission have been identified. A reanalysis of IC 4665 age using different methods yields conflicting results ranging from about 3 X 10 exp 7 yr to the age of the Pleiades. This study provides a list of candidate cluster members in the intermediate and low-mass regime of this cluster. Future spectroscopic observations of these candidates should eventually identify true cluster members.

  8. Downregulation of lipin-1 induces insulin resistance by increasing intracellular ceramide accumulation in C2C12 myotubes

    PubMed Central

    Huang, Shujuan; Huang, Suling; Wang, Xi; Zhang, Qingli; Liu, Jia; Leng, Ying

    2017-01-01

    Dysregulation of lipid metabolism in skeletal muscle is involved in the development of insulin resistance. Mutations in lipin-1, a key lipid metabolism regulator leads to significant systemic insulin resistance in fld mice. However, the function of lipin-1 on lipid metabolism and insulin sensitivity in skeletal muscle is still unclear. Herein we demonstrated that downregulation of lipin-1 in C2C12 myotubes by siRNA transfection suppressed insulin action, characterized by reduced insulin stimulated Akt phosphorylation and glucose uptake. Correspondingly, decreased lipin-1 expression was observed in palmitate-induced insulin resistance in C2C12 myotubes, suggested that lipin-1 might play a role in the etiology of insulin resistance in skeletal muscle. The insulin resistance induced by lipin-1 downregulation was related to the disturbance of lipid homeostasis. Lipin-1 silencing reduced intracellular DAG and TAG levels, but elevated ceramide accumulation in C2C12 myotubes. Moreover, the impaired insulin stimulated Akt phosphorylation and glucose uptake caused by lipin-1 silencing could be blocked by the pretreatment with SPT inhibitor myriocin, ceramide synthase inhibitor FB1, or PP2A inhibitor okadaic acid, suggested that the increased ceramide accumulation might be responsible for the development of insulin resistance induced by lipin-1 silencing in C2C12 myotubes. Meanwhile, decreased lipin-1 expression also impaired mitochondrial function in C2C12 myotubes. Therefore, our study suggests that lipin-1 plays an important role in lipid metabolism and downregulation of lipin-1 induces insulin resistance by increasing intracellular ceramide accumulation in C2C12 myotubes. These results offer a molecular insight into the role of lipin-1 in the development of insulin resistance in skeletal muscle. PMID:28123341

  9. Downregulation of lipin-1 induces insulin resistance by increasing intracellular ceramide accumulation in C2C12 myotubes.

    PubMed

    Huang, Shujuan; Huang, Suling; Wang, Xi; Zhang, Qingli; Liu, Jia; Leng, Ying

    2017-01-01

    Dysregulation of lipid metabolism in skeletal muscle is involved in the development of insulin resistance. Mutations in lipin-1, a key lipid metabolism regulator leads to significant systemic insulin resistance in fld mice. However, the function of lipin-1 on lipid metabolism and insulin sensitivity in skeletal muscle is still unclear. Herein we demonstrated that downregulation of lipin-1 in C2C12 myotubes by siRNA transfection suppressed insulin action, characterized by reduced insulin stimulated Akt phosphorylation and glucose uptake. Correspondingly, decreased lipin-1 expression was observed in palmitate-induced insulin resistance in C2C12 myotubes, suggested that lipin-1 might play a role in the etiology of insulin resistance in skeletal muscle. The insulin resistance induced by lipin-1 downregulation was related to the disturbance of lipid homeostasis. Lipin-1 silencing reduced intracellular DAG and TAG levels, but elevated ceramide accumulation in C2C12 myotubes. Moreover, the impaired insulin stimulated Akt phosphorylation and glucose uptake caused by lipin-1 silencing could be blocked by the pretreatment with SPT inhibitor myriocin, ceramide synthase inhibitor FB1, or PP2A inhibitor okadaic acid, suggested that the increased ceramide accumulation might be responsible for the development of insulin resistance induced by lipin-1 silencing in C2C12 myotubes. Meanwhile, decreased lipin-1 expression also impaired mitochondrial function in C2C12 myotubes. Therefore, our study suggests that lipin-1 plays an important role in lipid metabolism and downregulation of lipin-1 induces insulin resistance by increasing intracellular ceramide accumulation in C2C12 myotubes. These results offer a molecular insight into the role of lipin-1 in the development of insulin resistance in skeletal muscle.

  10. Induced Resistance to Ixodid Tick Infestation: Analysis and Isolation of Antigens

    DTIC Science & Technology

    1988-01-01

    female Ixodes ricinus. This resistance could be in- hibited by daily treatment with mepyramine, a type-1 histamine receptor antagonist. Bagnall (1975...attempted to mimic naturally acquired resistance . This approach caused no reaction at attachment sites. Immunization with midgut antigens resulted in the...particulate and soluble components prepared from midgut induced resistance . This agrees with immunization results using 27,000 x g supernatant

  11. Anomalous Hall resistance in bilayer quantum Hall systems

    NASA Astrophysics Data System (ADS)

    Ezawa, Z. F.; Suzuki, S.; Tsitsishvili, G.

    2007-07-01

    We present a microscopic theory of the Hall current in the bilayer quantum Hall system on the basis of noncommutative geometry. By analyzing the Heisenberg equation of motion and the continuity equation of charge, we demonstrate the emergence of the phase current in a system where the interlayer phase coherence develops spontaneously. The phase current arranges itself to minimize the total energy of the system, as it induces certain anomalous behaviors in the Hall current in the counterflow geometry and also in the drag experiment. They explain the recent experimental data for anomalous Hall resistances due to Kellogg [Phys. Rev. Lett. 88, 126804 (2002); 93, 036801 (2004)] and Tutuc [Phys. Rev. Lett. 93, 036802 (2004)] at ν=1 .

  12. Health Education and Symptom Flare Management Using a Video-Based m-Health System for Caring Women with IC/BPS.

    PubMed

    Lee, Ming-Huei; Wu, Huei-Ching; Tseng, Chien-Ming; Ko, Tsung-Liang; Weng, Tang-Jun; Chen, Yung-Fu

    2018-06-10

    To assess effectiveness of the video-based m-health system providing videos dictated by physicians for health education and symptom self-management for patients with IC/BPS. An m-health system was designed to provide videos for weekly health education and symptom flare self-management. O'Leary-Sant index and VAS scale as well as SF-36 health survey were administrated to evaluate the disease severity and quality of life (QoL), respectively. A total of 60 IC/BPS patients were recruited and randomly assigned to either control group (30 patients) or study group (30 patients) in sequence depending on their orders to visit our urological clinic. Patients in both control and study groups received regular treatments, while those in the study group received additional video-based intervention. Statistical analyses were conducted to compare the outcomes between baseline and post-intervention for both groups. The outcomes of video-based intervention were also compared with the text-based intervention conducted in our previous study. After video-based intervention, patients in the study group exhibited significant effect manifested in all disease severity and QoL assessments except the VAS pain scale, while no significance was found in the control group. Moreover, the study group exhibited more significant net improvements than the control group in 7 SF-36 constructs, except the mental health. The limitations include short intervention duration (8 weeks) and different study periods between text-based and video-based interventions. Video-based intervention is effective in improving the QoL of IC/BPS patients and outperforms the text-based intervention even in a short period of intervention. Copyright © 2018. Published by Elsevier Inc.

  13. A Way to End the IC Designer Shortage.

    ERIC Educational Resources Information Center

    Robinson, Arthur L.

    1980-01-01

    Discusses the problem of the shortage of engineers capable of designing advanced integrated circuits (IC) and presents some suggestions for increasing the number of IC designers in universities and semiconductor companies. (HM)

  14. Go-6976 Reverses Hyperglycemia-Induced Insulin Resistance Independently of cPKC Inhibition in Adipocytes

    PubMed Central

    Robinson, Katherine A.; Hegyi, Krisztina; Hannun, Yusuf A.; Buse, Maria G.; Sethi, Jaswinder K.

    2014-01-01

    Chronic hyperglycemia induces insulin resistance by mechanisms that are incompletely understood. One model of hyperglycemia-induced insulin resistance involves chronic preincubation of adipocytes in the presence of high glucose and low insulin concentrations. We have previously shown that the mTOR complex 1 (mTORC1) plays a partial role in the development of insulin resistance in this model. Here, we demonstrate that treatment with Go-6976, a widely used “specific” inhibitor of cPKCs, alleviates hyperglycemia-induced insulin resistance. However, the effects of mTOR inhibitor, rapamycin and Go-6976 were not additive and only rapamycin restored impaired insulin-stimulated AKT activation. Although, PKCα, (but not –β) was abundantly expressed in these adipocytes, our studies indicate cPKCs do not play a major role in causing insulin-resistance in this model. There was no evidence of changes in the expression or phosphorylation of PKCα, and PKCα knock-down did not prevent the reduction of insulin-stimulated glucose transport. This was also consistent with lack of IRS-1 phosphorylation on Ser-24 in hyperglycemia-induced insulin-resistant adipocytes. Treatment with Go-6976 did inhibit a component of the mTORC1 pathway, as evidenced by decreased phosphorylation of S6 ribosomal protein. Raptor knock-down enhanced the effect of insulin on glucose transport in insulin resistant adipocytes. Go-6976 had the same effect in control cells, but was ineffective in cells with Raptor knock-down. Taken together these findings suggest that Go-6976 exerts its effect in alleviating hyperglycemia-induced insulin-resistance independently of cPKC inhibition and may target components of the mTORC1 signaling pathway. PMID:25330241

  15. Sensitivity Analysis of Digital I&C Modules in Protection and Safety Systems

    NASA Astrophysics Data System (ADS)

    Khalil Ur, Rahman; Zubair, M.; Heo, G.

    2013-12-01

    This research is performed to examine the sensitivity of digital Instrumentation and Control (I&C) components and modules used in regulating and protection systems architectures of nuclear industry. Fault Tree Analysis (FTA) was performed for four configurations of RPS channel architecture. The channel unavailability has been calculated by using AIMS-PSA, which comes out 4.517E-03, 2.551E-03, 2.246E-03 and 2.7613-04 for architecture configuration I, II, III and IV respectively. It is observed that unavailability decreases by 43.5 % & 50.4% by inserting partial redundancy whereas maximum reduction of 93.9 % in unavailability happens when double redundancy is inserted in architecture. Coincidence module output failure and bi-stable output failures are identified as sensitive failures by Risk Reduction Worth (RRW) and Fussell-Vesely (FV) importance. RRW highlights that risk from coincidence processor output failure can reduced by 48.83 folds and FV indicates that BP output is sensitive by 0.9796 (on a scale of 1).

  16. Young Low-Mass Stars and Brown Dwarfs in IC 348

    NASA Astrophysics Data System (ADS)

    Luhman, K. L.

    1999-11-01

    I present new results from a continuing program to identify and characterize the low-mass stellar and substellar populations in the young cluster IC 348 (0.5-10 Myr). Optical spectroscopy has revealed young objects with spectral types as late as M8.25. The intrinsic J-H and H-K colors of these sources are dwarflike, whereas the R-I and I-J colors appear intermediate between the colors of dwarfs and giants. Furthermore, the spectra from 6500 to 9500 Å are reproduced well with averages of standard dwarf and giant spectra, suggesting that such averages should be used in the classification of young late-type sources. An H-R diagram is constructed for the low-mass population in IC 348 (K6-M8). The presumably coeval components of the young quadruple system GG Tau (White et al.) and the locus of stars in IC 348 are used as empirical isochrones to test the theoretical evolutionary models. The calculations of Burrows et al. do not appear to be consistent with the data at these earliest stages of stellar evolution. There is fair agreement between the data and the model isochrones of D'Antona & Mazzitelli, except near the hydrogen-burning limit. The agreement cannot be improved by changing the conversion between spectral types and effective temperatures. On the other hand, for the models of Baraffe et al., an adjustment of the temperature scale to progressively warmer temperatures at later M types, intermediate between dwarfs and giants, brings all components of GG Tau onto the same model isochrone and gives the population of IC 348 a constant age and age spread as a function of mass. When other observational constraints are considered, such as the dynamical masses of GM Aur, DM Tau, and GG Tau A, the models of Baraffe et al. are the most consistent with observations of young systems. With compatible temperature scales, the models of both D'Antona & Mazzitelli and Baraffe et al. suggest that the hydrogen-burning mass limit occurs near M6 at ages of <~10 Myr. Thus, several

  17. B-periodic oscillations in the Hall-resistance induced by a dc-current-bias under combined microwave-excitation and dc-current bias in the GaAs/AlGaAs 2D system.

    PubMed

    Liu, Han-Chun; Reichl, C; Wegscheider, W; Mani, R G

    2018-05-18

    We report the observation of dc-current-bias-induced B-periodic Hall resistance oscillations and Hall plateaus in the GaAs/AlGaAs 2D system under combined microwave radiation- and dc bias excitation at liquid helium temperatures. The Hall resistance oscillations and plateaus appear together with concomitant oscillations also in the diagonal magnetoresistance. The periods of Hall and diagonal resistance oscillations are nearly identical, and source power (P) dependent measurements demonstrate sub-linear relationship of the oscillation amplitude with P over the span 0 < P ≤ 20 mW.

  18. Inflammation-induced microvascular insulin resistance is an early event in diet-induced obesity.

    PubMed

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W; Barrett, Eugene J; Cao, Wenhong; Liu, Zhenqi

    2015-12-01

    Endothelial dysfunction and vascular insulin resistance usually coexist and chronic inflammation engenders both. In the present study, we investigate the temporal relationship between vascular insulin resistance and metabolic insulin resistance. We assessed insulin responses in all arterial segments, including aorta, distal saphenous artery and the microvasculature, as well as the metabolic insulin responses in muscle in rats fed on a high-fat diet (HFD) for various durations ranging from 3 days to 4 weeks with or without sodium salicylate treatment. Compared with controls, HFD feeding significantly blunted insulin-mediated Akt (protein kinase B) and eNOS [endothelial nitric oxide (NO) synthase] phosphorylation in aorta in 1 week, blunted vasodilatory response in small resistance vessel in 4 weeks and microvascular recruitment in as early as 3 days. Insulin-stimulated whole body glucose disposal did not begin to progressively decrease until after 1 week. Salicylate treatment fully inhibited vascular inflammation, prevented microvascular insulin resistance and significantly improved muscle metabolic responses to insulin. We conclude that microvascular insulin resistance is an early event in diet-induced obesity and insulin resistance and inflammation plays an essential role in this process. Our data suggest microvascular insulin resistance contributes to the development of metabolic insulin resistance in muscle and muscle microvasculature is a potential therapeutic target in the prevention and treatment of diabetes and its related complications. © 2015 Authors; published by Portland Press Limited.

  19. Inflammation-induced microvascular insulin resistance is an early event in diet-induced obesity

    PubMed Central

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W.; Barrett, Eugene J.; Cao, Wenhong

    2015-01-01

    Endothelial dysfunction and vascular insulin resistance usually coexist and chronic inflammation engenders both. In the present study, we investigate the temporal relationship between vascular insulin resistance and metabolic insulin resistance. We assessed insulin responses in all arterial segments, including aorta, distal saphenous artery and the microvasculature, as well as the metabolic insulin responses in muscle in rats fed on a high-fat diet (HFD) for various durations ranging from 3 days to 4 weeks with or without sodium salicylate treatment. Compared with controls, HFD feeding significantly blunted insulin-mediated Akt (protein kinase B) and eNOS [endothelial nitric oxide (NO) synthase] phosphorylation in aorta in 1 week, blunted vasodilatory response in small resistance vessel in 4 weeks and microvascular recruitment in as early as 3 days. Insulin-stimulated whole body glucose disposal did not begin to progressively decrease until after 1 week. Salicylate treatment fully inhibited vascular inflammation, prevented microvascular insulin resistance and significantly improved muscle metabolic responses to insulin. We conclude that microvascular insulin resistance is an early event in diet-induced obesity and insulin resistance and inflammation plays an essential role in this process. Our data suggest microvascular insulin resistance contributes to the development of metabolic insulin resistance in muscle and muscle microvasculature is a potential therapeutic target in the prevention and treatment of diabetes and its related complications. PMID:26265791

  20. The interferon-inducible p47 (IRG) GTPases in vertebrates: loss of the cell autonomous resistance mechanism in the human lineage

    PubMed Central

    Bekpen, Cemalettin; Hunn, Julia P; Rohde, Christoph; Parvanova, Iana; Guethlein, Libby; Dunn, Diane M; Glowalla, Eva; Leptin, Maria; Howard, Jonathan C

    2005-01-01

    Background Members of the p47 (immunity-related GTPases (IRG) family) GTPases are essential, interferon-inducible resistance factors in mice that are active against a broad spectrum of important intracellular pathogens. Surprisingly, there are no reports of p47 function in humans. Results Here we show that the p47 GTPases are represented by 23 genes in the mouse, whereas humans have only a single full-length p47 GTPase and an expressed, truncated presumed pseudo-gene. The human full-length gene is orthologous to an isolated mouse p47 GTPase that carries no interferon-inducible elements in the promoter of either species and is expressed constitutively in the mature testis of both species. Thus, there is no evidence for a p47 GTPase-based resistance system in humans. Dogs have several interferon-inducible p47s, and so the primate lineage that led to humans appears to have lost an ancient function. Multiple p47 GTPases are also present in the zebrafish, but there is only a tandem p47 gene pair in pufferfish. Conclusion Mice and humans must deploy their immune resources against vacuolar pathogens in radically different ways. This carries significant implications for the use of the mouse as a model of human infectious disease. The absence of the p47 resistance system in humans suggests that possession of this resistance system carries significant costs that, in the primate lineage that led to humans, are not outweighed by the benefits. The origin of the vertebrate p47 system is obscure. PMID:16277747

  1. Regulation of diet-induced adipose tissue and systemic inflammation by salicylates and pioglitazone.

    PubMed

    Kim, Myung-Sunny; Yamamoto, Yasuhiko; Kim, Kyungjin; Kamei, Nozomu; Shimada, Takeshi; Liu, Libin; Moore, Kristin; Woo, Ju Rang; Shoelson, Steven E; Lee, Jongsoon

    2013-01-01

    It is increasingly accepted that chronic inflammation participates in obesity-induced insulin resistance and type 2 diabetes (T2D). Salicylates and thiazolidinediones (TZDs) both have anti-inflammatory and anti-hyperglycemic properties. The present study compared the effects of these drugs on obesity-induced inflammation in adipose tissue (AT) and AT macrophages (ATMs), as well as the metabolic and immunological phenotypes of the animal models. Both drugs improved high fat diet (HFD)-induced insulin resistance. However, salicylates did not affect AT and ATM inflammation, whereas Pioglitazone improved these parameters. Interestingly, HFD and the drug treatments all modulated systemic inflammation as assessed by changes in circulating immune cell numbers and activation states. HFD increased the numbers of circulating white blood cells, neutrophils, and a pro-inflammatory monocyte subpopulation (Ly6C(hi)), whereas salicylates and Pioglitazone normalized these cell numbers. The drug treatments also decreased circulating lymphocyte numbers. These data suggest that obesity induces systemic inflammation by regulating circulating immune cell phenotypes and that anti-diabetic interventions suppress systemic inflammation by normalizing circulating immune phenotypes.

  2. BABA and Phytophthora nicotianae Induce Resistance to Phytophthora capsici in Chile Pepper (Capsicum annuum)

    PubMed Central

    Stamler, Rio A.; Holguin, Omar; Dungan, Barry; Schaub, Tanner; Sanogo, Soumaila; Goldberg, Natalie; Randall, Jennifer J.

    2015-01-01

    Induced resistance in plants is a systemic response to certain microorganisms or chemicals that enhances basal defense responses during subsequent plant infection by pathogens. Inoculation of chile pepper with zoospores of non-host Phytophthora nicotianae or the chemical elicitor beta-aminobutyric acid (BABA) significantly inhibited foliar blight caused by Phytophthora capsici. Tissue extract analyses by GC/MS identified conserved change in certain metabolite concentrations following P. nicotianae or BABA treatment. Induced chile pepper plants had reduced concentrations of sucrose and TCA cycle intermediates and increased concentrations of specific hexose-phosphates, hexose-disaccharides and amino acids. Galactose, which increased significantly in induced chile pepper plants, was shown to inhibit growth of P. capsici in a plate assay. PMID:26020237

  3. BABA and Phytophthora nicotianae Induce Resistance to Phytophthora capsici in Chile Pepper (Capsicum annuum).

    PubMed

    Stamler, Rio A; Holguin, Omar; Dungan, Barry; Schaub, Tanner; Sanogo, Soumaila; Goldberg, Natalie; Randall, Jennifer J

    2015-01-01

    Induced resistance in plants is a systemic response to certain microorganisms or chemicals that enhances basal defense responses during subsequent plant infection by pathogens. Inoculation of chile pepper with zoospores of non-host Phytophthora nicotianae or the chemical elicitor beta-aminobutyric acid (BABA) significantly inhibited foliar blight caused by Phytophthora capsici. Tissue extract analyses by GC/MS identified conserved change in certain metabolite concentrations following P. nicotianae or BABA treatment. Induced chile pepper plants had reduced concentrations of sucrose and TCA cycle intermediates and increased concentrations of specific hexose-phosphates, hexose-disaccharides and amino acids. Galactose, which increased significantly in induced chile pepper plants, was shown to inhibit growth of P. capsici in a plate assay.

  4. Transcriptome Profiling Revealed Stress-Induced and Disease Resistance Genes Up-Regulated in PRSV Resistant Transgenic Papaya

    PubMed Central

    Fang, Jingping; Lin, Aiting; Qiu, Weijing; Cai, Hanyang; Umar, Muhammad; Chen, Rukai; Ming, Ray

    2016-01-01

    Papaya is a productive and nutritious tropical fruit. Papaya Ringspot Virus (PRSV) is the most devastating pathogen threatening papaya production worldwide. Development of transgenic resistant varieties is the most effective strategy to control this disease. However, little is known about the genome-wide functional changes induced by particle bombardment transformation. We conducted transcriptome sequencing of PRSV resistant transgenic papaya SunUp and its PRSV susceptible progenitor Sunset to compare the transcriptional changes in young healthy leaves prior to infection with PRSV. In total, 20,700 transcripts were identified, and 842 differentially expressed genes (DEGs) randomly distributed among papaya chromosomes. Gene ontology (GO) category analysis revealed that microtubule-related categories were highly enriched among these DEGs. Numerous DEGs related to various transcription factors, transporters and hormone biosynthesis showed clear differences between the two cultivars, and most were up-regulated in transgenic papaya. Many known and novel stress-induced and disease-resistance genes were most highly expressed in SunUp, including MYB, WRKY, ERF, NAC, nitrate and zinc transporters, and genes involved in the abscisic acid, salicylic acid, and ethylene signaling pathways. We also identified 67,686 alternative splicing (AS) events in Sunset and 68,455 AS events in SunUp, mapping to 10,994 and 10,995 papaya annotated genes, respectively. GO enrichment for the genes displaying AS events exclusively in Sunset was significantly different from those in SunUp. Transcriptomes in Sunset and transgenic SunUp are very similar with noteworthy differences, which increased PRSV-resistance in transgenic papaya. No detrimental pathways and allergenic or toxic proteins were induced on a genome-wide scale in transgenic SunUp. Our results provide a foundation for unraveling the mechanism of PRSV resistance in transgenic papaya. PMID:27379138

  5. Phylogenetic Distribution of CRISPR-Cas Systems in Antibiotic-Resistant Pseudomonas aeruginosa

    PubMed Central

    van Belkum, Alex; Soriaga, Leah B.; LaFave, Matthew C.; Akella, Srividya; Veyrieras, Jean-Baptiste; Barbu, E. Magda; Shortridge, Dee; Blanc, Bernadette; Hannum, Gregory; Zambardi, Gilles; Miller, Kristofer; Enright, Mark C.; Mugnier, Nathalie; Brami, Daniel; Schicklin, Stéphane; Felderman, Martina; Schwartz, Ariel S.; Richardson, Toby H.; Peterson, Todd C.; Hubby, Bolyn

    2015-01-01

    ABSTRACT Pseudomonas aeruginosa is an antibiotic-refractory pathogen with a large genome and extensive genotypic diversity. Historically, P. aeruginosa has been a major model system for understanding the molecular mechanisms underlying type I clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated protein (CRISPR-Cas)-based bacterial immune system function. However, little information on the phylogenetic distribution and potential role of these CRISPR-Cas systems in molding the P. aeruginosa accessory genome and antibiotic resistance elements is known. Computational approaches were used to identify and characterize CRISPR-Cas systems within 672 genomes, and in the process, we identified a previously unreported and putatively mobile type I-C P. aeruginosa CRISPR-Cas system. Furthermore, genomes harboring noninhibited type I-F and I-E CRISPR-Cas systems were on average ~300 kb smaller than those without a CRISPR-Cas system. In silico analysis demonstrated that the accessory genome (n = 22,036 genes) harbored the majority of identified CRISPR-Cas targets. We also assembled a global spacer library that aided the identification of difficult-to-characterize mobile genetic elements within next-generation sequencing (NGS) data and allowed CRISPR typing of a majority of P. aeruginosa strains. In summary, our analysis demonstrated that CRISPR-Cas systems play an important role in shaping the accessory genomes of globally distributed P. aeruginosa isolates. PMID:26604259

  6. Applications of biological control in resistant host-pathogen systems.

    PubMed

    White, Steven M; White, K A Jane

    2005-09-01

    Insect pest species can have devastating effects on crops. Control of these insect pests is usually achieved by using chemical insecticides. However, there has been much cause for concern with their overuse. Consequently, research has been carried out into alternative forms of control, in particular biological control methods. Recent laboratory studies have indicated that these natural forms of control can induce resistant strains of insect pest. In this paper we present a discrete-time host-pathogen model to describe the interaction between a host (insect species) that can develop a resistant strain and a pathogen (biological control) that can be externally applied to the system. For this model we use a single-state variable for the host population. We show that the proportion of resistance in the population impacts on the viability of the host population. Moreover, when the host population does persist, we explore the interaction between host susceptibility and host population levels. The different scenarios which arise are explained ecologically in terms of trade-offs in intrinsic growth rates, disease susceptibility and intraspecific host competition for the resistant subclass.

  7. Linking Cancer Cachexia-Induced Anabolic Resistance to Skeletal Muscle Oxidative Metabolism

    PubMed Central

    Montalvo, Ryan N.

    2017-01-01

    Cancer cachexia, a wasting syndrome characterized by skeletal muscle depletion, contributes to increased patient morbidity and mortality. While the intricate balance between protein synthesis and breakdown regulates skeletal muscle mass, the suppression of basal protein synthesis may not account for the severe wasting induced by cancer. Therefore, recent research has shifted to the regulation of “anabolic resistance,” which is the impaired ability of nutrition and exercise to stimulate protein synthesis. Emerging evidence suggests that oxidative metabolism can regulate both basal and induced muscle protein synthesis. While disrupted protein turnover and oxidative metabolism in cachectic muscle have been examined independently, evidence suggests a linkage between these processes for the regulation of cancer-induced wasting. The primary objective of this review is to highlight the connection between dysfunctional oxidative metabolism and cancer-induced anabolic resistance in skeletal muscle. First, we review oxidative metabolism regulation of muscle protein synthesis. Second, we describe cancer-induced alterations in the response to an anabolic stimulus. Finally, we review a role for exercise to inhibit cancer-induced anabolic suppression and mitochondrial dysfunction. PMID:29375734

  8. Innate immune activation by the viral PAMP poly I:C potentiates pulmonary graft-versus-host disease after allogeneic hematopoietic cell transplant.

    PubMed

    Kinnier, Christine V; Martinu, Tereza; Gowdy, Kymberly M; Nugent, Julia L; Kelly, Francine L; Palmer, Scott M

    2011-01-15

    Respiratory viral infections cause significant morbidity and increase the risk for chronic pulmonary graft-versus-host disease (GVHD) after hematopoietic cell transplantation (HCT). Our overall hypothesis is that local innate immune activation potentiates adaptive alloimmunity. In this study, we hypothesized that a viral pathogen-associated molecular pattern (PAMP) alone can potentiate pulmonary GVHD after allogeneic HCT. We, therefore, examined the effect of pulmonary exposure to polyinosinic:polycytidylic acid (poly I:C), a viral mimetic that activates innate immunity, in an established murine HCT model. Poly I:C-induced a marked pulmonary T cell response in allogeneic HCT mice as compared to syngeneic HCT, with increased CD4+ cells in the lung fluid and tissue. This lymphocytic inflammation persisted at 2 weeks post poly I:C exposure in allogeneic mice and was associated with CD3+ cell infiltration into the bronchiolar epithelium and features of epithelial injury. In vitro, poly I:C enhanced allospecific proliferation in a mixed lymphocyte reaction. In vivo, poly I:C exposure was associated with an early increase in pulmonary monocyte recruitment and activation as well as a decrease in CD4+FOXP3+ regulatory T cells in allogeneic mice as compared to syngeneic. In contrast, intrapulmonary poly I:C did not alter the extent of systemic GVHD in either syngeneic or allogeneic mice. Collectively, our results suggest that local activation of pulmonary innate immunity by a viral molecular pattern represents a novel pathway that contributes to pulmonary GVHD after allogeneic HCT, through a mechanism that includes increased recruitment and maturation of intrapulmonary monocytes. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Simvastatin may induce insulin resistance through a novel fatty acid mediated cholesterol independent mechanism

    PubMed Central

    Kain, Vasundhara; Kapadia, Bandish; Misra, Parimal; Saxena, Uday

    2015-01-01

    Statins are a class of oral drugs that are widely used for treatment of hypercholesterolemia. Recent clinical data suggest that chronic use of these drugs increases the frequency of new onset diabetes. Studies to define the risks of statin-induced diabetes and its underlying mechanisms are clearly necessary. We explored the possible mechanism of statin induced insulin resistance using a well-established cell based model and simvastatin as a prototype statin. Our data show that simvastatin induces insulin resistance in a cholesterol biosynthesis inhibition independent fashion but does so by a fatty acid mediated effect on insulin signaling pathway. These data may help design strategies for prevention of statin induced insulin resistance and diabetes in patients with hypercholesterolemia. PMID:26345110

  10. Cytidine deamination induced HIV-1 drug resistance

    PubMed Central

    Mulder, Lubbertus C. F.; Harari, Ariana; Simon, Viviana

    2008-01-01

    The HIV-1 Vif protein is essential for overcoming the antiviral activity of DNA-editing apolipoprotein B mRNA editing enzyme, catalytic polypeptide 3 (APOBEC3) cytidine deaminases. We show that naturally occurring HIV-1 Vif point mutants with suboptimal anti-APOBEC3G activity induce the appearance of proviruses with lamivudine (3TC) drug resistance-associated mutations before any drug exposure. These mutations, ensuing from cytidine deamination events, were detected in >40% of proviruses with partially defective Vif mutants. Transfer of drug resistance from hypermutated proviruses via recombination allowed for 3TC escape under culture conditions prohibitive for any WT viral growth. These results demonstrate that defective hypermutated genomes can shape the phenotype of the circulating viral population. Partially active Vif alleles resulting in incomplete neutralization of cytoplasmic APOBEC3 molecules are directly responsible for the generation of a highly diverse, yet G-to-A biased, proviral reservoir, which can be exploited by HIV-1 to generate viable and drug-resistant progenies. PMID:18391217

  11. ABCB1 as predominant resistance mechanism in cells with acquired SNS-032 resistance

    PubMed Central

    Rothweiler, Florian; Voges, Yvonne; Balónová, Barbora; Blight, Barry A.; Cinatl, Jindrich

    2016-01-01

    The CDK inhibitor SNS-032 had previously exerted promising anti-neuroblastoma activity via CDK7 and 9 inhibition. ABCB1 expression was identified as major determinant of SNS-032 resistance. Here, we investigated the role of ABCB1 in acquired SNS-032 resistance. In contrast to ABCB1-expressing UKF-NB-3 sub-lines resistant to other ABCB1 substrates, SNS-032-adapted UKF-NB-3 (UKF-NB-3rSNS- 032300nM) cells remained sensitive to the non-ABCB1 substrate cisplatin and were completely re-sensitized to cytotoxic ABCB1 substrates by ABCB1 inhibition. Moreover, UKF-NB-3rSNS-032300nM cells remained similarly sensitive to CDK7 and 9 inhibition as UKF-NB-3 cells. In contrast, SHEPrSNS-0322000nM, the SNS-032-resistant sub-line of the neuroblastoma cell line SHEP, displayed low level SNS-032 resistance also when ABCB1 was inhibited. This discrepancy may be explained by the higher SNS-032 concentrations that were used to establish SHEPrSNS-0322000nM cells, since SHEP cells intrinsically express ABCB1 and are less sensitive to SNS-032 (IC50 912 nM) than UKF-NB-3 cells (IC50 153 nM). In conclusion, we show that ABCB1 expression represents the primary (sometimes exclusive) resistance mechanism in neuroblastoma cells with acquired resistance to SNS-032. Thus, ABCB1 inhibitors may increase the SNS-032 efficacy in ABCB1-expressing cells and prolong or avoid resistance formation. PMID:27517323

  12. RADIATION-INDUCED MUTATIONS FOR STEM RUST RESISTANCE IN OATS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konzak, C.F.

    1959-01-01

    Stem rust rcsistant viriants from earlier experiments on the induction or resistance in oats by radiation were found to result from natural field hybridization. Recent controlled experiments did, however, yield new variants at a low frequency in one instance. and no variants in another. Both experiments included over 3,000 lines from irradiated seeds. One previously unknown type of rust resistance reaction was obtained in a mutant plant. This mutant shows a temperature sensitive response for resistance to race 7A of Puccinia graminis avenae. It was suggested that some, as yet unknown, mcdifying factors mav limit the development of induced changesmore » into mutations. (auth)« less

  13. Remodeling of the malaria parasite and host human red cell by vesicle amplification that induces artemisinin resistance

    PubMed Central

    Coppens, Isabelle; Mbengue, Alassane; Suresh, Niraja; Ghorbal, Mehdi; Slouka, Zdenek; Safeukui, Innocent; Tang, Hsin-Yao; Speicher, David W.; Stahelin, Robert V.; Mohandas, Narla

    2018-01-01

    Artemisinin resistance threatens worldwide malaria control and elimination. Elevation of phosphatidylinositol-3-phosphate (PI3P) can induce resistance in blood stages of Plasmodium falciparum. The parasite unfolded protein response (UPR) has also been implicated as a proteostatic mechanism that may diminish artemisinin-induced toxic proteopathy. How PI3P acts and its connection to the UPR remain unknown, although both are conferred by mutation in P falciparum Kelch13 (K13), the marker of artemisinin resistance. Here we used cryoimmunoelectron microscopy to show that K13 concentrates at PI3P tubules/vesicles of the parasite’s endoplasmic reticulum (ER) in infected red cells. K13 colocalizes and copurifies with the major virulence adhesin PfEMP1. The PfEMP1-K13 proteome is comprehensively enriched in multiple proteostasis systems of protein export, quality control, and folding in the ER and cytoplasm and UPR. Synthetic elevation of PI3P that induces resistance in absence of K13 mutation also yields signatures of proteostasis and clinical resistance. These findings imply a key role for PI3P-vesicle amplification as a mechanism of resistance of infected red cells. As validation, the major resistance mutation K13C580Y quantitatively increased PI3P tubules/vesicles, exporting them throughout the parasite and the red cell. Chemical inhibitors and fluorescence microscopy showed that alterations in PfEMP1 export to the red cell and cytoadherence of infected cells to a host endothelial receptor are features of multiple K13 mutants. Together these data suggest that amplified PI3P vesicles disseminate widespread proteostatic capacity that may neutralize artemisinins toxic proteopathy and implicate a role for the host red cell in artemisinin resistance. The mechanistic insights generated will have an impact on malaria drug development. PMID:29363540

  14. A human model of dietary saturated fatty acid induced insulin resistance.

    PubMed

    Koska, Juraj; Ozias, Marlies K; Deer, James; Kurtz, Julie; Salbe, Arline D; Harman, S Mitchell; Reaven, Peter D

    2016-11-01

    Increased consumption of high-fat diets is associated with the development of insulin resistance and type 2 diabetes. Current models to study the mechanisms of high-fat diet-induced IR in humans are limited by their long duration or low efficacy. In the present study we developed and characterized an acute dietary model of saturated fatty acid-enriched diet induced insulin resistance. High caloric diets enriched with saturated fatty acids (SFA) or carbohydrates (CARB) were evaluated in subjects with normal and impaired glucose tolerance (NGT or IGT). Both diets were compared to a standard eucaloric American Heart Association (AHA) control diet in a series of crossover studies. Whole body insulin resistance was estimated as steady state plasma glucose (SSPG) concentrations during the last 30min of a 3-h insulin suppression test. SSPG was increased after a 24-h SFA diet (by 83±74% vs. control, n=38) in the entire cohort, which was comprised of participants with NGT (92±82%, n=22) or IGT (65±55%, n=16) (all p<0.001). SSPG was also increased after a single SFA breakfast (55±32%, p=0.008, n=7). The increase in SSPG was less pronounced after an overnight fast following a daylong SFA diet (24±31%, p=0.04, n=10), and further attenuated 24h after returning to the control diet (19±35%, p=0.09, n=11). SSPG was not increased after a 24-h CARB diet (26±50%, p=0.11, n=12). A short-term SFA-enriched diet induced whole body insulin resistance in both NGT and IGT subjects. Insulin resistance persisted overnight after the last SFA meal and was attenuated by one day of a healthy diet. This model offers opportunities for identifying early mechanisms and potential treatments of dietary saturated fat induced insulin resistance. Published by Elsevier Inc.

  15. Migration to Current Open Source Technologies by MagIC Enables a More Responsive Website, Quicker Development Times, and Increased Community Engagement

    NASA Astrophysics Data System (ADS)

    Jarboe, N.; Minnett, R.; Koppers, A.; Constable, C.; Tauxe, L.; Jonestrask, L.

    2017-12-01

    The Magnetics Information Consortium (MagIC) supports an online database for the paleo, geo, and rock magnetic communities ( https://earthref.org/MagIC ). Researchers can upload data into the archive and download data as selected with a sophisticated search system. MagIC has completed the transition from an Oracle backed, Perl based, server oriented website to an ElasticSearch backed, Meteor based thick client website technology stack. Using JavaScript on both the sever and the client enables increased code reuse and allows easy offloading many computational operations to the client for faster response. On-the-fly data validation, column header suggestion, and spreadsheet online editing are some new features available with the new system. The 3.0 data model, method codes, and vocabulary lists can be browsed via the MagIC website and more easily updated. Source code for MagIC is publicly available on GitHub ( https://github.com/earthref/MagIC ). The MagIC file format is natively compatible with the PmagPy ( https://github.com/PmagPy/PmagPy) paleomagnetic analysis software. MagIC files can now be downloaded from the database and viewed and interpreted in the PmagPy GUI based tool, pmag_gui. Changes or interpretations of the data can then be saved by pmag_gui in the MagIC 3.0 data format and easily uploaded to the MagIC database. The rate of new contributions to the database has been increasing with many labs contributing measurement level data for the first time in the last year. Over a dozen file format conversion scripts are available for translating non-MagIC measurement data files into the MagIC format for easy uploading. We will continue to work with more labs until the whole community has a manageable workflow for contributing their measurement level data. MagIC will continue to provide a global repository for archiving and retrieving paleomagnetic and rock magnetic data and, with the new system in place, be able to more quickly respond to the community

  16. Molecular Hydrogen Fluorescence in IC 63

    NASA Technical Reports Server (NTRS)

    Andersson, B-G

    2005-01-01

    This grant has supported the acquisition, reduction and analysis of data targeting the structure and excitation of molecular hydrogen in the reflection nebula IC 63 and in particular the fluorescent emission seen in the UV. In addition to manpower for analyzing the FUSE data, the grant supported the (attempted) acquisition of supporting ground-based data. We proposed for and received observing time for two sets of ground based, data; narrow band imaging ([S II], [O III) at KPNO (July 2002; Observer: Burgh) and imaging spectro-photometry of several of the near-infrared rotation-vibration lines of H2 at the IRTF (October 2003; Observer: Andersson). Unfortunately, both of these runs were failures, primarily because of bad weather, and did not result in any useful data. We combined the FUSE observations with rocket borne observations of the star responsible for exciting the H2 fluorescence in IC 63: gamma Cas, and with archival HUT observations of IC 63, covering the long-wavelength part of the molecular hydrogen fluorescence.

  17. Altered Landscapes and Groundwater Sustainability — Exploring Impacts with Induced Polarization, DC Resistivity, and Thermal Tracing

    NASA Astrophysics Data System (ADS)

    Eddy-Miller, C.; Caldwell, R.; Wheeler, J.; McCarthy, P.; Binley, A. M.; Constantz, J. E.; Stonestrom, D. A.

    2009-12-01

    Anthropogenically impacted landscapes constitute rising proportions of the Earth’s surface that are characterized by generally elevated nutrient and sediment loadings concurrent with increased consumptive water withdrawals. In recent years a growing number of hydraulically engineered riparian habitat restoration projects have attempted to ameliorate negative impacts of land use on groundwater-surface water systems resulting, e.g., from agricultural practices and urban development. Often the nature of groundwater-surface water interactions in pre- and minimally altered systems is poorly known, making it difficult to assess the impacts of land use and restoration projects on groundwater sustainability. Traditional assessments of surface water parameters (flow, temperature, dissolved oxygen, biotic composition, etc.) can be complemented by hydraulic and thermal measurements to better understand the important role played by groundwater-surface water interactions. Hydraulic and thermal measurements are usually limited to point samples, however, making non-invasive and spatially extensive geophysical characterizations an attractive additional tool. Groundwater-surface water interactions along the Smith River, a tributary to the Missouri River in Montana, and Fish Creek and Flat Creek, tributaries to the Snake River in Wyoming, are being examined using a combination of hydraulic measurements, thermal tracing, and electrical-property imaging. Ninety-two direct-current (DC) resistivity and induced polarization cross sections were obtained at stream transects covering a wide variety of hydrogeologic settings ranging from shallow bedrock to thick alluvial sequences, nature of groundwater-surface water interactions (always gaining, always losing, or seasonally varying) and anthropogenic impacts (minimal low-intensity agriculture to major landscape engineering, including channel reconstruction). DC resistivity and induced polarization delineated mutually distinct features

  18. Signalling requirements for Erwinia amylovora-induced disease resistance, callose deposition and cell growth in the non-host Arabidopsis thaliana.

    PubMed

    Hamdoun, Safae; Gao, Min; Gill, Manroop; Kwon, Ashley; Norelli, John L; Lu, Hua

    2018-05-01

    Erwinia amylovora is the causal agent of the fire blight disease in some plants of the Rosaceae family. The non-host plant Arabidopsis serves as a powerful system for the dissection of mechanisms of resistance to E. amylovora. Although not yet known to mount gene-for-gene resistance to E. amylovora, we found that Arabidopsis activated strong defence signalling mediated by salicylic acid (SA), with kinetics and amplitude similar to that induced by the recognition of the bacterial effector avrRpm1 by the resistance protein RPM1. Genetic analysis further revealed that SA signalling, but not signalling mediated by ethylene (ET) and jasmonic acid (JA), is required for E. amylovora resistance. Erwinia amylovora induces massive callose deposition on infected leaves, which is independent of SA, ET and JA signalling and is necessary for E. amylovora resistance in Arabidopsis. We also observed tumour-like growths on E. amylovora-infected Arabidopsis leaves, which contain enlarged mesophyll cells with increased DNA content and are probably a result of endoreplication. The formation of such growths is largely independent of SA signalling and some E. amylovora effectors. Together, our data reveal signalling requirements for E. amylovora-induced disease resistance, callose deposition and cell fate change in the non-host plant Arabidopsis. Knowledge from this study could facilitate a better understanding of the mechanisms of host defence against E. amylovora and eventually improve host resistance to the pathogen. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  19. Mechanisms of methicillin-resistant Staphylococcus aureus pneumonia-induced intestinal epithelial apoptosis.

    PubMed

    Perrone, Erin E; Jung, Enjae; Breed, Elise; Dominguez, Jessica A; Liang, Zhe; Clark, Andrew T; Dunne, W Michael; Burd, Eileen M; Coopersmith, Craig M

    2012-07-01

    Methicillin-resistant Staphylococcus aureus (MRSA) pneumonia-induced sepsis is a common cause of morbidity in the intensive care unit. Although pneumonia is initiated in the lungs, extrapulmonary manifestations occur commonly. In light of the key role the intestine plays in the pathophysiology of sepsis, we sought to determine whether MRSA pneumonia induces intestinal injury. FVB/N mice were subjected to MRSA or sham pneumonia and killed 24 h later. Septic animals had a marked increase in intestinal epithelial apoptosis by both hematoxylin-eosin and active caspase 3 staining. Methicillin-resistant S. aureus-induced intestinal apoptosis was associated with an increase in the expression of the proapoptotic proteins Bid and Bax and the antiapoptotic protein Bcl-xL in the mitochondrial pathway. In the receptor-mediated pathway, MRSA pneumonia induced an increase in Fas ligand but decreased protein levels of Fas, FADD, pFADD, TNF-R1, and TRADD. To assess the functional significance of these changes, MRSA pneumonia was induced in mice with genetic manipulations in proteins in either the mitochondrial or receptor-mediated pathways. Both Bid-/- mice and animals with intestine-specific overexpression of Bcl-2 had decreased intestinal apoptosis compared with wild-type animals. In contrast, Fas ligand-/- mice had no alterations in apoptosis. To determine if these findings were organism-specific, similar experiments were performed in mice subjected to Pseudomonas aeruginosa pneumonia. Pseudomonas aeruginosa induced gut apoptosis, but unlike MRSA, this was associated with increased Bcl-2 and TNF-R1 and decreased Fas. Methicillin-resistant S. aureus pneumonia thus induces organism-specific changes in intestinal apoptosis via changes in both the mitochondrial and receptor-mediated pathways, although the former may be more functionally significant.

  20. Role of PTEN in TNF Induced Insulin Resistance

    PubMed Central

    Bulger, David A; Conley, Jermaine; Conner, Spencer H; Majumdar, Gipsy; Solomon, Solomon S

    2015-01-01

    Aims/hypothesis PTEN may play a reversible role in TNFα induced insulin resistance, which has been linked to obesity-associated insulin resistance (IR). Methods Western blots for PTEN and p-Akt were performed on H-411E liver cells incubated with insulin, TNFα, and in selected experiments VO-OHpic vanadium complex in the presence and absence of PTEN siRNA. Total PTEN was compared to β-actin loading control and p-Akt was compared to total Akt. Results Western blot and Real Time RT-PCR experiments showed increased PTEN after TNFα treatment (p = 0.04); slightly decreased PTEN after insulin treatment; and slightly increased PTEN after insulin + TNFα treatment. PTEN siRNA markedly inhibited the TNFα-induced increase in PTEN (p < 0.01) without significantly changing the p-Akt levels. The vanadium complex, exhibiting insulin-like effects, also significantly prevented the TNFα-induced increase in PTEN. Combining insulin and VO-OHpic was additive, providing both proof of concept and insight into mechanism. Discussion The PTEN increase due to TNFα treatment was reversible by both PTEN siRNA knockdown and VO-OHpic treatment. Thus, PTEN is identified as a potential new therapeutic target for reducing IR in Type 2 DM. PMID:25918024

  1. Systemic candidiasis in mice. II.--Main role of polymorphonuclear leukocytes in resistance to infection.

    PubMed

    Hurtrel, B; Lagrange, P H; Michel, J C

    1980-01-01

    Cyclophosphamide (CY) increased whereas the talc embedded in a calcium phosphate gel (TCP) decreased the susceptibility of mice to systemic candidiasis estimated by measuring mean survival time and "renal infectivity" 12 h after challenge. Transfers of plasma from CY- and TCP-treated mice did not modify cnadidiasis susceptibility of recipient mice. Granulopenia and granulocytosis induced respectively by CY and TCP were significantly correlated with susceptibility or resistance to candidiasis. Nevertheless, TCP produced significant reticuloendothelial stimulation which could be also correlated with TCP protection. Reticuloendothelial stimulation with associated granulopenia in TCP-CY-treated mice gave protection against Listeria monocytogenes challenge but not against Candida albicans. Thus, blood polymorphonuclear leukocytes seem to play the main role in natural resistance of mice to candidiasis. This was corroborated after injection of immunostimulants; a good correlation was found between C. albicans resistance and the induced granulocytosis.

  2. H I debris in the IC 1459 galaxy group

    NASA Astrophysics Data System (ADS)

    Saponara, Juliana; Koribalski, Bärbel S.; Benaglia, Paula; Fernández López, Manuel

    2018-01-01

    We present H I synthesis imaging of the giant elliptical galaxy IC 1459 and its surroundings with the Australia Telescope Compact Array. Our search for extended H I emission revealed a large complex of H I clouds near IC 1459, likely to be the debris from tidal interactions with neighbouring galaxies. The total H I mass (∼109 M⊙) in the detected clouds spans 250 kpc from the north-east of the gas-rich spiral NGC 7418A to the south-east of IC 1459. The extent and mass of the H I debris, which shows rather irregular morphology and kinematics, are similar to those in other nearby groups. Together with H I clouds recently detected near two other IC 1459 group members, namely IC 5270 and NGC 7418, using phased-array feeds on the Australian Square Kilometre Array Pathfinder, the detected debris make up a significant fraction of the group's intergalactic medium.

  3. Ameliorating effect of an interferon inducer polyinosinic-polycytidylic acid on bleomycin-induced lung fibrosis in hamsters. Morphologic and biochemical evidence.

    PubMed Central

    Giri, S. N.; Hyde, D. M.

    1988-01-01

    The effects of polyinosinic-polycytidylic acid (Poly I:C), an inducer of interferons, on bleomycin (Bleo)-induced lung fibrosis was studied in hamsters. Poly I:C (10 mg/kg intraperitoneally) was administered for two days and immediately before intratracheal instillation of bleomycin (7.5 U/kg) or an equivalent volume of saline and thereafter daily for 13 days. The lung hydroxyproline in control, Poly I:C, Bleo, and Bleo + Poly I:C groups averaged 791, 752, 1177, and 766 micrograms/lung. As compared to control, the prolyl hydroxylase activity in the Bleo group was increased by 83% whereas in Bleo + Poly I:C group, the activity was increased by 42%. Protein in the bronchoalveolar lavage supernatant in Poly I:C, Bleo and Bleo + Poly I:C groups were 72, 286, and 206% of the control, respectively. There was no difference in total leukocyte counts between Bleo + Poly I:C and Bleo groups, but the differential cell counts were changed. The numbers of neutrophils, monocytes, lymphocytes, and eosinophils were 50, 84, 91, and 10% of Bleo group, respectively. Morphometric estimates of the volume of parenchymal lesion within the lung showed that hamsters in Bleo + Poly I:C group had significantly less volume of lesion (1.0 cucm) than the Bleo group (1.6 cucm). In addition, the fibrotic lesions in Bleo + Poly I:C group were multifocal and primarily proximal acinar in location, had fewer extracellular fibers, neutrophils and monocytes. Poly I:C treatment ameliorated bleomycin-induced lung collagen accumulation. Images Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 PMID:2462354

  4. The optical design of 3D ICs for smartphone and optro-electronics sensing module

    NASA Astrophysics Data System (ADS)

    Huang, Jiun-Woei

    2018-03-01

    Smartphone require limit space for image system, current lens, used in smartphones are refractive type, the effective focal length is limited the thickness of phone physical size. Other, such as optro-electronics sensing chips, proximity optical sensors, and UV indexer chips are integrated into smart phone with limit space. Due to the requirement of multiple lens in smartphone, proximity optical sensors, UV indexer and other optro-electronics sensing chips in a limited space of CPU board in future smart phone, optro-electronics 3D IC's integrated with optical lens or components may be a key technology for 3 C products. A design for reflective lens is fitted to CMOS, proximity optical sensors, UV indexer and other optro-electronics sensing chips based on 3-D IC. The reflective lens can be threes times of effective focal lens, and be able to resolve small object. The system will be assembled and integrated in one 3-D IC more easily.

  5. Ghrelin receptor regulates HFCS-induced adipose inflammation and insulin resistance

    PubMed Central

    Ma, X; Lin, L; Yue, J; Pradhan, G; Qin, G; Minze, L J; Wu, H; Sheikh-Hamad, D; Smith, C W; Sun, Y

    2013-01-01

    Background and Objectives: High fructose corn syrup (HFCS) is the most commonly used sweetener in the United States. Some studies show that HFCS consumption correlates with obesity and insulin resistance, while other studies are in disagreement. Owing to conflicting and insufficient scientific evidence, the safety of HFCS consumption remains controversial. Subjects/Methods: We investigated the metabolic consequences of mice fed a (a) regular diet, (b) ‘Western' high-fat diet or (c) regular diet supplemented with 8% HFCS in drinking water (to mimic soft drinks) for 10 months. Adipose tissue macrophages (ATMs) have emerged as a major pathogenic factor for obesity and insulin resistance. ATMs consist of proinflammatory F4/80+CD11c+ macrophages and anti-inflammatory F4/80+CD11c− macrophages. In this study, we assessed the effects of HFCS on ATMs in intra-abdominal fat. Results: We found that HFCS feeding in mice induced more severe adipose inflammation and insulin resistance than even the higher-calorie-containing ‘Western' high-fat diet, and these HFCS-induced deleterious effects were independent of calorie intake or body fat content. We showed that similar to ‘Western' high-fat diet, HFCS triggered a robust increase of both proinflammatory ATMs and anti-inflammatory ATMs in intra-abdominal fat. Remarkably, however, the anti-inflammatory ATMs were much less abundant in HFCS-fed mice than in high-fat-fed mice. Furthermore, we showed that deletion of the ghrelin receptor (growth hormone secretagogue receptor, GHS-R) ameliorates HFCS-induced adipose inflammation and insulin resistance. HFCS-fed GHS-R-null mice exhibit decreased proinflammatory ATMs in intra-abdominal fat, reduced adipose inflammation and attenuated liver steatosis. Conclusion: Our studies demonstrate that HFCS has detrimental effects on metabolism, suggesting that dietary guidelines on HFCS consumption for Americans may need to be revisited. GHS-R deletion mitigates the effects of HFCS on adipose

  6. Ghrelin receptor regulates HFCS-induced adipose inflammation and insulin resistance.

    PubMed

    Ma, X; Lin, L; Yue, J; Pradhan, G; Qin, G; Minze, L J; Wu, H; Sheikh-Hamad, D; Smith, C W; Sun, Y

    2013-12-23

    High fructose corn syrup (HFCS) is the most commonly used sweetener in the United States. Some studies show that HFCS consumption correlates with obesity and insulin resistance, while other studies are in disagreement. Owing to conflicting and insufficient scientific evidence, the safety of HFCS consumption remains controversial. We investigated the metabolic consequences of mice fed a (a) regular diet, (b) 'Western' high-fat diet or (c) regular diet supplemented with 8% HFCS in drinking water (to mimic soft drinks) for 10 months. Adipose tissue macrophages (ATMs) have emerged as a major pathogenic factor for obesity and insulin resistance. ATMs consist of proinflammatory F4/80(+)CD11c(+) macrophages and anti-inflammatory F4/80(+)CD11c(-) macrophages. In this study, we assessed the effects of HFCS on ATMs in intra-abdominal fat. We found that HFCS feeding in mice induced more severe adipose inflammation and insulin resistance than even the higher-calorie-containing 'Western' high-fat diet, and these HFCS-induced deleterious effects were independent of calorie intake or body fat content. We showed that similar to 'Western' high-fat diet, HFCS triggered a robust increase of both proinflammatory ATMs and anti-inflammatory ATMs in intra-abdominal fat. Remarkably, however, the anti-inflammatory ATMs were much less abundant in HFCS-fed mice than in high-fat-fed mice. Furthermore, we showed that deletion of the ghrelin receptor (growth hormone secretagogue receptor, GHS-R) ameliorates HFCS-induced adipose inflammation and insulin resistance. HFCS-fed GHS-R-null mice exhibit decreased proinflammatory ATMs in intra-abdominal fat, reduced adipose inflammation and attenuated liver steatosis. Our studies demonstrate that HFCS has detrimental effects on metabolism, suggesting that dietary guidelines on HFCS consumption for Americans may need to be revisited. GHS-R deletion mitigates the effects of HFCS on adipose inflammation and insulin resistance, suggesting that GHS

  7. Nonspecific Resistance Induced by an Immunopharmacologic Agent Derived from Bordetella pertussis

    DTIC Science & Technology

    1987-02-02

    inv-,st i ation of 3 cell. T cell , NK cell , and 1rohq 3 i’_- ’o4Jp fii’lod to dre’oýnst" rate any stt-king mechanism "hat mini)ht accrunt for ant...addition, the EP-LPS induced antiviral state may decay more rapidly than BPV induced resistance. Table 2.3.1. Kinetics of Resistance to Virus Challenge... chloramine -T. Unincorporated label was removed by passage of the label proteins over a G-25 Sephadex column. Mice were inoculated i.p. with 1.2 x 10

  8. HUNTING FOR YOUNG DISPERSING STAR CLUSTERS IN IC 2574

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pellerin, Anne; Meyer, Martin M.; Calzetti, Daniella

    2012-12-01

    Dissolving stellar groups are very difficult to detect using traditional surface photometry techniques. We have developed a method to find and characterize non-compact stellar systems in galaxies where the young stellar population can be spatially resolved. By carrying out photometry on individual stars, we are able to separate the luminous blue stellar population from the star field background. The locations of these stars are used to identify groups by applying the HOP algorithm, which are then characterized using color-magnitude and stellar density radial profiles to estimate age, size, density, and shape. We test the method on Hubble Space Telescope Advancedmore » Camera for Surveys archival images of IC 2574 and find 75 dispersed stellar groups. Of these, 20 highly dispersed groups are good candidates for dissolving systems. We find few compact systems with evidence of dissolution, potentially indicating that star formation in this galaxy occurs mostly in unbound clusters or groups. These systems indicate that the dispersion rate of groups and clusters in IC 2574 is at most 0.45 pc Myr{sup -1}. The location of the groups found with HOP correlate well with H I contour map features. However, they do not coincide with H I holes, suggesting that those holes were not created by star-forming regions.« less

  9. 2, 3-Butanediol activated disease-resistance of creeping bentgrass by inducing phytohormone and antioxidant responses.

    PubMed

    Shi, Yi; Liu, Xinju; Fang, Yuanyuan; Tian, Qing; Jiang, Hanyu; Ma, Huiling

    2018-06-12

    Brown patch, caused by Rhizoctonia solani, is a serious disease in Agrostis stolonifera. 2, 3-butanediol (2, 3-BD) is the major component of volatile organic compounds and was found to initiate induced systemic resistance (ISR). To investigate the induced resistance mechanism of 2, 3-BD, we examined the effects of resistance by area affected, along with changes in the content of phytohormones (Zeatin (ZT), Abscisic Acid (ABA) and Indole-3-Acetic Acid (IAA)), the activities of three phenylpropanoid metabolic enzymes (Phenylalaninammo-Nialyase (PAL), Chalcone Isomerase (CHI) and 4-Coumarate:Coenzyme A Ligase (4CL)) and the level of secondary metabolites (total phenols, flavonoid and lignin). The result showed that 2, 3-BD treatment at 250 μmoL/L had the best induction effect with the area affected decreased from 95% of the control to 55%. Compared to the controls, treatment with 250 μmoL/L 2, 3-BD induced higher levels of PAL, CHI and 4CL activity and increased total phenols, flavonoid and lignin levels. While 2, 3-BD treatment decreased the content of ZT and ABA but increased the content of IAA compared to controls. This study provides a basis for elucidating the mechanism of 2, 3-BD as a new plant disease control agent. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  10. Saturn V S-IC (First) Stage

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This cutaway illustration shows the Saturn V S-IC (first) stage with detailed callouts of the components. The S-IC Stage is 138 feet long and 33 feet in diameter, producing 7,500,000 pounds of thrust through five F-1 engines that are powered by liquid oxygen and kerosene. Four of the engines are mounted on an outer ring and gimbal for control purposes. The fifth engine is rigidly mounted in the center. When ignited, the roar produced by the five engines equals the sound of 8,000,000 hi-fi sets.

  11. Autolytic activity and molecular characteristics of Staphylococcus haemolyticus strains with induced vancomycin resistance.

    PubMed

    Kim, Jung Wook; Chung, Gyung Tae; Yoo, Jung Sik; Lee, Yeong Seon; Yoo, Jae Il

    2012-10-01

    The aim of this study was to investigate the molecular characteristics of induced vancomycin resistance in Staphylococcus haemolyticus. Autolytic properties and phenotypic characteristics of passage-selected vancomycin-resistant S. haemolyticus strains were examined. In addition, expression of autolysis-related genes (atl, lrgAB, sarA and lytS) was investigated using the RNase protection assay (RPA). The RPA results indicated that only the expression of the atl gene was significantly upregulated (2.5- to 6-fold increase) in vancomycin-intermediate and vancomycin-resistant strains. The vancomycin-resistant strains exhibited lower expression of murein hydrolase proteins and reduced autolytic activity compared with the parent strain. In addition, a reduced growth rate, cell wall thickening and higher survival rate in the presence of lysostaphin were observed in vancomycin-intermediate and vancomycin-resistant induced strains compared with the parent strain. In conclusion, altered autolytic properties, in particular upregulation of the atl gene, may contribute to vancomycin resistance in S. haemolyticus.

  12. Induction of Systemic Resistance against Insect Herbivores in Plants by Beneficial Soil Microbes

    PubMed Central

    Rashid, Md. Harun-Or; Chung, Young R.

    2017-01-01

    Soil microorganisms with growth-promoting activities in plants, including rhizobacteria and rhizofungi, can improve plant health in a variety of different ways. These beneficial microbes may confer broad-spectrum resistance to insect herbivores. Here, we provide evidence that beneficial microbes modulate plant defenses against insect herbivores. Beneficial soil microorganisms can regulate hormone signaling including the jasmonic acid, ethylene and salicylic acid pathways, thereby leading to gene expression, biosynthesis of secondary metabolites, plant defensive proteins and different enzymes and volatile compounds, that may induce defenses against leaf-chewing as well as phloem-feeding insects. In this review, we discuss how beneficial microbes trigger induced systemic resistance against insects by promoting plant growth and highlight changes in plant molecular mechanisms and biochemical profiles. PMID:29104585

  13. A novel botanical formula prevents diabetes by improving insulin resistance.

    PubMed

    Kan, Juntao; Velliquette, Rodney A; Grann, Kerry; Burns, Charlie R; Scholten, Jeff; Tian, Feng; Zhang, Qi; Gui, Min

    2017-07-05

    Type 2 diabetes mellitus (T2DM) is a major risk factor for cardiovascular disease, and the prevalence has increased significantly in recent decades to epidemic proportions in China. Individually, fenugreek (Trigonella foenum graecum) seed, mulberry (Morus alba L.) leaf and American ginseng (Panax quinquefolius) root can improve glycemia in various animal models and humans with impaired glucose metabolism and T2DM. The aim of this study was to design an optimized botanical formula containing these herbal extracts as a nutritional strategy for the prevention of insulin resistance and T2DM. Cell-free α-amylase and α-glucosidase enzyme assays were used to determine inhibitory potential of extracts. Glucose uptake was examined in differentiated human adipocytes using radiolabeled 2-deoxyglucose. Male Sprague Dawley rats were divided and glycemia balanced into 5 groups: two controls (naïve and model) and three doses of the botanical test formula containing standardized fenugreek seed, mulberry leaf and American ginseng extracts (42.33, 84.66 and 169.33 mg/kg BW). Insulin resistance and T2DM was induced by feeding animals a high fat diet and with an alloxan injection. Glucose tolerance was examined by measuring serum glucose levels following an oral glucose load. Fenugreek seed and mulberry leaf dose dependently inhibited α-amylase (IC50 = 73.2 μg/mL) and α-glucosidase (IC50 = 111.8 ng/mL), respectively. All three botanical extracts improved insulin sensitivity and glucose uptake in human adipocytes, which lead to the design of an optimized botanical test formula. In a rat model of insulin resistance and T2DM, the optimized botanical test formula improved fasting serum glucose levels, fasting insulin resistance and the development of impaired glucose tolerance. The reduction in epididymal adipose tissue GLUT4 and PDK1 expression induced by high fat diet and alloxan was blunted by the botanical test formula. A novel botanical formula containing standardized

  14. Recent Advances in Obesity-Induced Inflammation and Insulin Resistance

    PubMed Central

    Tateya, Sanshiro; Kim, Francis; Tamori, Yoshikazu

    2013-01-01

    It has been demonstrated in rodents and humans that chronic inflammation characterized by macrophage infiltration occurs mainly in adipose tissue or liver during obesity, in which activation of immune cells is closely associated with insulin sensitivity. Macrophages can be classified as classically activated (M1) macrophages that support microbicidal activity or alternatively activated (M2) macrophages that support allergic and antiparasitic responses. In the context of insulin action, M2 macrophages sustain insulin sensitivity by secreting IL-4 and IL-10, while M1 macrophages induce insulin resistance through the secretion of proinflammatory cytokines, such as TNFα. Polarization of M1/M2 is controlled by various dynamic functions of other immune cells. It has been demonstrated that, in a lean state, TH2 cells, Treg cells, natural killer T cells, or eosinophils contribute to the M2 activation of macrophages by secreting IL-4 or IL-10. In contrast, obesity causes alteration of the constituent immune cells, in which TH1 cells, B cells, neutrophils, or mast cells induce M1 activation of macrophages by the elevated secretion of TNFα and IFNγ. Increased secretion of TNFα and free fatty acids from hypertrophied adipocytes also contributes to the M1 activation of macrophages. Since obesity-induced insulin resistance is established by macrophage infiltration and the activation of immune cells inside tissues, identification of the factors that regulate accumulation and the intracellular signaling cascades that define polarization of M1/M2 would be indispensable. Regulation of these factors would lead to the pharmacological inhibition of obesity-induced insulin resistance. In this review, we introduce molecular mechanisms relevant to the pathophysiology and review the most recent studies of clinical applications targeting chronic inflammation. PMID:23964268

  15. Pre-existing differences and diet-induced alterations in striatal dopamine systems of obesity-prone rats.

    PubMed

    Vollbrecht, Peter J; Mabrouk, Omar S; Nelson, Andrew D; Kennedy, Robert T; Ferrario, Carrie R

    2016-03-01

    Interactions between pre-existing differences in mesolimbic function and neuroadaptations induced by consumption of fatty, sugary foods are thought to contribute to human obesity. This study examined basal and cocaine-induced changes in striatal neurotransmitter levels without diet manipulation and D2 /D3 dopamine receptor-mediated transmission prior to and after consumption of "junk-foods" in obesity-prone and obesity-resistant rats. Microdialysis and liquid chromatography-mass spectrometry were used to determine basal and cocaine-induced changes in neurotransmitter levels in real time with cocaine-induced locomotor activity. Sensitivity to the D2 /D3 dopamine receptor agonist quinpirole was examined before and after restricted junk-food exposure. Selectively bred obesity-prone and obesity-resistant rats were used. Cocaine-induced locomotion was greater in obesity-prone rats versus obesity-resistant rats prior to diet manipulation. Basal and cocaine-induced increases in dopamine and serotonin levels did not differ. Obesity-prone rats were more sensitive to the D2 receptor-mediated effects of quinpirole, and junk-food produced modest alterations in quinpirole sensitivity in obesity-resistant rats. These data show that mesolimbic systems differ prior to diet manipulation in susceptible versus resistant rats, and that consumption of fatty, sugary foods produce different neuroadaptations in these populations. These differences may contribute to enhanced food craving and an inability to limit food intake in susceptible individuals. © 2016 The Obesity Society.

  16. Resistance to sunitinib in renal clear cell carcinoma results from sequestration in lysosomes and inhibition of the autophagic flux

    PubMed Central

    Giuliano, Sandy; Cormerais, Yann; Dufies, Maeva; Grépin, Renaud; Colosetti, Pascal; Belaid, Amine; Parola, Julien; Martin, Anthony; Lacas-Gervais, Sandra; Mazure, Nathalie M; Benhida, Rachid; Auberger, Patrick; Mograbi, Baharia; Pagès, Gilles

    2015-01-01

    Metastatic renal cell carcinomas (mRCC) are highly vascularized tumors that are a paradigm for the treatment with antiangiogenesis drugs targeting the vascular endothelial growth factor (VEGF) pathway. The available drugs increase the time to progression but are not curative and the patients eventually relapse. In this study we have focused our attention on the molecular mechanisms leading to resistance to sunitinib, the first line treatment of mRCC. Because of the anarchic vascularization of tumors the core of mRCC tumors receives only suboptimal concentrations of the drug. To mimic this in vivo situation, which is encountered in a neoadjuvant setting, we exposed sunitinib-sensitive mRCC cells to concentrations of sunitinib below the concentration of the drug that gives 50% inhibition of cell proliferation (IC50). At these concentrations, sunitinib accumulated in lysosomes, which downregulated the activity of the lysosomal protease CTSB (cathepsin B) and led to incomplete autophagic flux. Amino acid deprivation initiates autophagy enhanced sunitinib resistance through the amplification of autolysosome formation. Sunitinib stimulated the expression of ABCB1 (ATP-binding cassette, sub-family B [MDR/TAP], member 1), which participates in the accumulation of the drug in autolysosomes and favor its cellular efflux. Inhibition of this transporter by elacridar or the permeabilization of lysosome membranes with Leu-Leu-O-methyl (LLOM) resensitized mRCC cells that were resistant to concentrations of sunitinib superior to the IC50. Proteasome inhibitors also induced the death of resistant cells suggesting that the ubiquitin-proteasome system compensates inhibition of autophagy to maintain a cellular homeostasis. Based on our results we propose a new therapeutic approach combining sunitinib with molecules that prevent lysosomal accumulation or inhibit the proteasome. PMID:26312386

  17. Activation of Pathogenesis-related Genes by the Rhizobacterium, Bacillus sp. JS, Which Induces Systemic Resistance in Tobacco Plants.

    PubMed

    Kim, Ji-Seong; Lee, Jeongeun; Lee, Chan-Hui; Woo, Su Young; Kang, Hoduck; Seo, Sang-Gyu; Kim, Sun-Hyung

    2015-06-01

    Plant growth promoting rhizobacteria (PGPR) are known to confer disease resistance to plants. Bacillus sp. JS demonstrated antifungal activities against five fungal pathogens in in vitro assays. To verify whether the volatiles of Bacillus sp. JS confer disease resistance, tobacco leaves pre-treated with the volatiles were damaged by the fungal pathogen, Rhizoctonia solani and oomycete Phytophthora nicotianae. Pre-treated tobacco leaves had smaller lesion than the control plant leaves. In pathogenesis-related (PR) gene expression analysis, volatiles of Bacillus sp. JS caused the up-regulation of PR-2 encoding β-1,3-glucanase and acidic PR-3 encoding chitinase. Expression of acidic PR-4 encoding chitinase and acidic PR-9 encoding peroxidase increased gradually after exposure of the volatiles to Bacillus sp. JS. Basic PR-14 encoding lipid transfer protein was also increased. However, PR-1 genes, as markers of salicylic acid (SA) induced resistance, were not expressed. These results suggested that the volatiles of Bacillus sp. JS confer disease resistance against fungal and oomycete pathogens through PR genes expression.

  18. Voigt deconvolution method and its applications to pure oxygen absorption spectrum at 1270 nm band.

    PubMed

    Al-Jalali, Muhammad A; Aljghami, Issam F; Mahzia, Yahia M

    2016-03-15

    Experimental spectral lines of pure oxygen at 1270 nm band were analyzed by Voigt deconvolution method. The method gave a total Voigt profile, which arises from two overlapping bands. Deconvolution of total Voigt profile leads to two Voigt profiles, the first as a result of O2 dimol at 1264 nm band envelope, and the second from O2 monomer at 1268 nm band envelope. In addition, Voigt profile itself is the convolution of Lorentzian and Gaussian distributions. Competition between thermal and collisional effects was clearly observed through competition between Gaussian and Lorentzian width for each band envelope. Voigt full width at half-maximum height (Voigt FWHM) for each line, and the width ratio between Lorentzian and Gaussian width (ΓLΓG(-1)) have been investigated. The following applied pressures were at 1, 2, 3, 4, 5, and 8 bar, while the temperatures were at 298 K, 323 K, 348 K, and 373 K range. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Role of PTEN in TNFα induced insulin resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulger, David A.; Medicine and Research Services, Veterans Association Medical Center, Memphis, TN 38104; Wellcome Trust Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ

    Aims/hypothesis: PTEN may play a reversible role in TNFα induced insulin resistance, which has been linked to obesity-associated insulin resistance (IR). Methods: Western blots for PTEN and p-Akt were performed on H-411E liver cells incubated with insulin, TNFα, and in selected experiments VO-OHpic vanadium complex in the presence and absence of PTEN siRNA. Total PTEN was compared to β-actin loading control and p-Akt was compared to total Akt. Results: Western blot and Real Time RT-PCR experiments showed increased PTEN after TNFα treatment (p = 0.04); slightly decreased PTEN after insulin treatment; and slightly increased PTEN after insulin + TNFα treatment. PTEN siRNA markedly inhibitedmore » the TNFα-induced increase in PTEN (p < 0.01) without significantly changing the p-Akt levels. The vanadium complex, exhibiting insulin-like effects, also significantly prevented the TNFα-induced increase in PTEN. Combining insulin and VO-OHpic was additive, providing both proof of concept and insight into mechanism. Discussion: The PTEN increase due to TNFα treatment was reversible by both PTEN siRNA knockdown and VO-OHpic treatment. Thus, PTEN is identified as a potential new therapeutic target for reducing IR in Type 2 DM. - Highlights: • TNFα treatment induced a significant increase in PTEN in H-411E liver cells. • PTEN siRNA knockdown prevented this effect. • VO-OHpic (vanadium complex) treatment, like insulin, decreased PTEN protein levels. • Thus, PTEN is identified as a potential therapeutic target in DM Type 2.« less

  20. The platelet-activating factor acetylhydrolase gene derived from Trichoderma harzianum induces maize resistance to Curvularia lunata through the jasmonic acid signaling pathway.

    PubMed

    Yu, Chuanjin; Fan, Lili; Gao, Jinxin; Wang, Meng; Wu, Qiong; Tang, Jun; Li, Yaqian; Chen, Jie

    2015-01-01

    Platelet-activating factor acetylhydrolase (PAF-AH) derived from Trichoderma harzianum was upregulated by the interaction of T. harzianum with maize roots or the foliar pathogen Curvularia lunata. PAF-AH was associated with chitinase and cellulase expressions, but especially with chitinase, because its activity in the KO40 transformant (PAF-AH disruption transformant) was lower, compared with the wild-type strain T28. The result demonstrated that the colonization of maize roots by T. harzianum induced systemic protection of leaves inoculated with C. lunata. Such protection was associated with the expression of inducible jasmonic acid pathway-related genes. Moreover, the data from liquid chromatography-mass spectrometry confirmed that the concentration of jasmonic acid in maize leaves was associated with the expression level of defense-related genes, suggesting that PAF-AH induced resistance to the foliar pathogen. Our findings showed that PAF-AH had an important function in inducing systemic resistance to maize leaf spot pathogen.

  1. Modulation of hepatocyte growth factor secretion in human female reproductive tract stromal fibroblasts by poly (I:C) and estradiol.

    PubMed

    Coleman, Kimberly D; Ghosh, Mimi; Crist, Sarah G; Wright, Jacqueline A; Rossoll, Richard M; Wira, Charles R; Fahey, John V

    2012-01-01

    Hepatocyte Growth Factor (HGF) secretion facilitates epithelial cell growth and development in the female reproductive tract (FRT) and may contribute to pathological conditions such as cancer and endometriosis. We hypothesized that estradiol and poly (I:C), a synthetic RNA mimic, may have a regulatory effect on HGF secretion by stromal fibroblasts from FRT tissues. Following hysterectomies, normal tissue from the uterus, endocervix, and ectocervix were dispersed into stromal cell fractions by enzymatic digestion and differential filtering. Stromal fibroblasts were cultured and treated with estradiol and/or poly (I:C), and conditioned media were analyzed for HGF via enzyme-linked immunosorbent assay. Treating uterine fibroblasts with estradiol or poly (I:C) significantly increased HGF secretion. When uterine fibroblasts were co-treated with estradiol and poly (I:C), the effect on HGF secretion was additive. In contrast, stromal fibroblasts from endo- and ecto-cervix were unresponsive to estradiol, but were stimulated to secrete HGF by poly (I:C). HGF secretion is uniquely regulated in the uterus, but not in ecto- and endo-cervix, by estradiol. Moreover, potential viral pathogens further induce HGF. These findings have potential applications in understanding both hormonal regulation of normal tissue as well as the role of HGF in tumorogenesis, endometriosis, and human immunodeficiency virus infection. © 2011 John Wiley & Sons A/S.

  2. Induced Pluripotent Stem Cell-Derived Endothelial Cells in Insulin Resistance and Metabolic Syndrome.

    PubMed

    Carcamo-Orive, Ivan; Huang, Ngan F; Quertermous, Thomas; Knowles, Joshua W

    2017-11-01

    Insulin resistance leads to a number of metabolic and cellular abnormalities including endothelial dysfunction that increase the risk of vascular disease. Although it has been particularly challenging to study the genetic determinants that predispose to abnormal function of the endothelium in insulin-resistant states, the possibility of deriving endothelial cells from induced pluripotent stem cells generated from individuals with detailed clinical phenotyping, including accurate measurements of insulin resistance accompanied by multilevel omic data (eg, genetic and genomic characterization), has opened new avenues to study this relationship. Unfortunately, several technical barriers have hampered these efforts. In the present review, we summarize the current status of induced pluripotent stem cell-derived endothelial cells for modeling endothelial dysfunction associated with insulin resistance and discuss the challenges to overcoming these limitations. © 2017 American Heart Association, Inc.

  3. Plasmodium falciparum and Plasmodium vivax Demonstrate Contrasting Chloroquine Resistance Reversal Phenotypes.

    PubMed

    Wirjanata, Grennady; Handayuni, Irene; Prayoga, Pak; Leonardo, Leo; Apriyanti, Dwi; Trianty, Leily; Wandosa, Ruland; Gobay, Basbak; Kenangalem, Enny; Poespoprodjo, Jeanne Rini; Noviyanti, Rintis; Kyle, Dennis E; Cheng, Qin; Price, Ric N; Marfurt, Jutta

    2017-08-01

    High-grade chloroquine (CQ) resistance has emerged in both Plasmodium falciparum and P. vivax The aim of the present study was to investigate the phenotypic differences of CQ resistance in both of these species and the ability of known CQ resistance reversal agents (CQRRAs) to alter CQ susceptibility. Between April 2015 and April 2016, the potential of verapamil (VP), mibefradil (MF), L703,606 (L7), and primaquine (PQ) to reverse CQ resistance was assessed in 46 P. falciparum and 34 P. vivax clinical isolates in Papua, Indonesia, where CQ resistance is present in both species, using a modified schizont maturation assay. In P. falciparum , CQ 50% inhibitory concentrations (IC 50 s) were reduced when CQ was combined with VP (1.4-fold), MF (1.2-fold), L7 (4.2-fold), or PQ (1.8-fold). The degree of CQ resistance reversal in P. falciparum was highly correlated with CQ susceptibility for all CQRRAs ( R 2 = 0.951, 0.852, 0.962, and 0.901 for VP, MF, L7, and PQ, respectively), in line with observations in P. falciparum laboratory strains. In contrast, no reduction in the CQ IC 50 s was observed with any of the CQRRAs in P. vivax , even in those isolates with high chloroquine IC 50 s. The differential effect of CQRRAs in P. falciparum and P. vivax suggests significant differences in CQ kinetics and, potentially, the likely mechanism of CQ resistance between these two species. © Crown copyright 2017.

  4. Interband cascade (IC) photovoltaic (PV) architecture for PV devices

    DOEpatents

    Yang, Rui Q.; Tian, Zhaobing; Mishima, Tetsuya D.; Santos, Michael B.; Johnson, Matthew B.; Klem, John F.

    2015-10-20

    A photovoltaic (PV) device, comprising a PV interband cascade (IC) stage, wherein the IC PV stage comprises an absorption region with a band gap, the absorption region configured to absorb photons, an intraband transport region configured to act as a hole barrier, and an interband tunneling region configured to act as an electron barrier. An IC PV architecture for a photovoltaic device, the IC PV architecture comprising an absorption region, an intraband transport region coupled to the absorption region, and an interband tunneling region coupled to the intraband transport region and to the adjacent absorption region, wherein the absorption region, the intraband transport region, and the interband tunneling region are positioned such that electrons will flow from the absorption region to the intraband transport region to the interband tunneling region.

  5. EXTRACTION AND DETECTION OF A NEW ARSINE SULFIDE CONTAINING ARSENOSUGAR IN MOLLUSCS BY IC-ICP-MS AND IC-ESI-MS/MS

    EPA Science Inventory

    Using IC-ICP-MS and IC-ESI-MS/MS, an unknown arsenical compound in mollusks has been identified as a new arsine sulfide containing analog of a known arsenosugar and is referred to as As(498). This species has been observed in four separate shellfish species following a mild metha...

  6. Development of resistance to serotonin-induced itch in bile duct ligated mice.

    PubMed

    Ostadhadi, Sattar; Haddadi, Nazgol-Sadat; Foroutan, Arash; Azimi, Ehsan; Elmariah, Sarina; Dehpour, Ahmad-Reza

    2017-06-01

    Cholestatic itch can be severe and significantly impair the quality of life of patients. The serotonin system is implicated in cholestatic itch; however, the pruritogenic properties of serotonin have not been evaluated in cholestatic mice. Here, we investigated the serotonin-induced itch in cholestatic mice which was induced by bile duct ligation (BDL). Serotonin, sertraline or saline were administered intradermally to the rostral back area in BDL and sham operated (SHAM) mice, and the scratching behaviour was videotaped for 1 hour. Bile duct ligated mice had significantly increased scratching responses to saline injection on the seventh day after surgery. Additionally, serotonin or sertraline significantly induced scratching behaviour in BDL mice compared to saline at day 7 after surgery, while it did not induce itch at day 5. The scratching behaviour induced by serotonin or sertraline was significantly less in BDL mice compared to SHAM mice. Likewise, the locomotor activity of BDL or SHAM mice was not significantly different from unoperated (UNOP) mice on the fifth and seventh day, suggesting that the scratching behaviour was not affected by motor dysfunctions. Our data suggest that despite the potentiation of evoked itch, a resistance to serotonin-induced itch is developed in cholestatic mice. © 2017 John Wiley & Sons Australia, Ltd.

  7. Sonographic assessment of changes in diaphragmatic kinetics induced by inspiratory resistive loading.

    PubMed

    Soilemezi, Eleni; Tsagourias, Matthew; Talias, Michael A; Soteriades, Elpidoforos S; Makrakis, Vasilios; Zakynthinos, Epaminondas; Matamis, Dimitrios

    2013-04-01

    Diaphragmatic breathing patterns under resistive loading remain poorly documented. To our knowledge, this is the first study assessing diaphragmatic motion under conditions of inspiratory resistive loading with the use of sonography. We assessed diaphragmatic motion during inspiratory resistive loading in 40 healthy volunteers using M-mode sonography. In phase I of the study, sonography was performed during normal quiet breathing without respiratory loading. In phase II, sonography was performed after application of a nose clip and connection of the subjects to a pneumotachograph through a mouth piece. In phase III, the participants were assessed while subjected to inspiratory resistive loading of 50 cm H(2)O/L/s. Compared with baseline, the application of a mouth piece and nose clip induced a significant increase in diaphragmatic excursion (from 1.7 to 2.3 cm, P < 0.001) and a decrease in respiratory rate (from 13.4 to 12.2, P < 0.01). Inspiratory resistive loading induced a further decrease in respiratory rate (from 12.2 to 8.0, P < 0.01) and a decrease in diaphragmatic velocity contraction (from 1.2 to 0.8 cm/s, P < 0.01), and also an increase in tidal volume (from 795 to 904 mL, P < 0.01); diaphragmatic excursion, however, did not change significantly. Inspiratory resistive loading induced significant changes in diaphragmatic contraction pattern, which mainly consisted of decreased velocity of diaphragmatic displacement with no change in diaphragmatic excursion. Tidal volume, increased significantly; the increase in tidal volume, along with the unchanged diaphragmatic excursion, provides sonographic evidence of increased recruitment of extradiaphragmatic muscles under inspiratory resistive loading. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.

  8. Combined antitumor effects of bee venom and cisplatin on human cervical and laryngeal carcinoma cells and their drug resistant sublines.

    PubMed

    Gajski, Goran; Čimbora-Zovko, Tamara; Rak, Sanjica; Rožman, Marko; Osmak, Maja; Garaj-Vrhovac, Vera

    2014-12-01

    In the present study, we investigated the possible combined anticancer ability of bee venom (BV) and cisplatin towards two pairs of tumour cell lines: parental cervical carcinoma HeLa cells and their cisplatin-resistant HeLa CK subline,as well as laryngeal carcinoma HEp-2 cells and their cisplatin-resistant CK2 subline. Additionally, we identified several peptides of BV in the BV sample used in the course of the study and determined the exact concentration of MEL. BV applied alone in concentrations of 30 to 60 μg ml(–1) displayed dose-dependent cytotoxicity against all cell lines tested. Cisplatin-resistant cervical carcinoma cells were more sensitive to BV than their parental cell lines (IC(50) values were 52.50 μg ml(–1) for HeLa vs.47.64 μg ml(–1) for HeLa CK cells), whereas opposite results were obtained for cisplatin-resistant laryngeal carcinoma cells (IC(50) values were 51.98 μg ml(–1) for HEp-2 vs. > 60.00 μg ml(–1) for CK2 cells). Treatment with BV alone induced a necrotic type of cell death, as shown by characteristic morphological features, fast staining with ethidium-bromide and a lack of cleavage of apoptotic marker poly (ADP-ribose) polymerase (PARP) on Western blot. Combined treatment of BV and cisplatin induced an additive and/or weak synergistic effect towards tested cell lines, suggesting that BV could enhance the killing effect of selected cells when combined with cisplatin. Therefore, a greater anticancer effect could be triggered if BV was used in the course of chemotherapy. Our results suggest that combined treatment with BV could be useful from the point of minimizing the cisplatin concentration during chemotherapy, consequently reducing and/or postponing the development of cisplatin resistance.

  9. Light-induced voltage alteration for integrated circuit analysis

    DOEpatents

    Cole, Jr., Edward I.; Soden, Jerry M.

    1995-01-01

    An apparatus and method are described for analyzing an integrated circuit (IC), The invention uses a focused light beam that is scanned over a surface of the IC to generate a light-induced voltage alteration (LIVA) signal for analysis of the IC, The LIVA signal may be used to generate an image of the IC showing the location of any defects in the IC; and it may be further used to image and control the logic states of the IC. The invention has uses for IC failure analysis, for the development of ICs, for production-line inspection of ICs, and for qualification of ICs.

  10. Light-induced voltage alteration for integrated circuit analysis

    DOEpatents

    Cole, E.I. Jr.; Soden, J.M.

    1995-07-04

    An apparatus and method are described for analyzing an integrated circuit (IC). The invention uses a focused light beam that is scanned over a surface of the IC to generate a light-induced voltage alteration (LIVA) signal for analysis of the IC. The LIVA signal may be used to generate an image of the IC showing the location of any defects in the IC; and it may be further used to image and control the logic states of the IC. The invention has uses for IC failure analysis, for the development of ICs, for production-line inspection of ICs, and for qualification of ICs. 18 figs.

  11. High-fat diet-induced obesity leads to resistance to leptin-induced cardiomyocyte contractile response.

    PubMed

    Ren, Jun; Zhu, Bang-Hao; Relling, David P; Esberg, Lucy B; Ceylan-Isik, Asli F

    2008-11-01

    Levels of the obese gene product leptin are often elevated in obesity and may contribute to obesity-induced cardiovascular complications. However, the role of leptin in obesity-associated cardiac abnormalities has not been clearly defined. This study was designed to determine the influence of high-fat diet-induced obesity on cardiac contractile response of leptin. Mechanical and intracellular Ca(2+) properties were evaluated using an IonOptix system in cardiomyocytes from adult rats fed low- and high-fat diets for 12 weeks. Cardiomyocyte contractile and intracellular Ca(2+) properties were examined including peak shortening, duration and maximal velocity of shortening/relengthening (TPS/TR(90), +/-dl/dt), Fura-2-fluorescence intensity change (DeltaFFI), and intracellular Ca(2+) decay rate (tau). Expression of the leptin receptor (Ob-R) was evaluated by western blot analysis. High-fat diet increased systolic blood pressure and plasma leptin levels. PS and +/-dl/dt were depressed whereas TPS and TR(90) were prolonged after high-fat diet feeding. Leptin elicited a concentration-dependent (0-1,000 nmol/l) inhibition of PS, +/-dl/dt, and DeltaFFI in low-fat but not high-fat diet-fed rat cardiomyocytes without affecting TPS and TR(90). The Janus kinase 2 (JAK2) inhibitor AG490, the mitogen-activated protein kinase (MAPK) inhibitor SB203580, and the nitric oxide synthase (NOS) inhibitor L-NAME abrogated leptin-induced cardiomyocyte contractile response in low-fat diet group without affecting the high-fat diet group. High-fat diet significantly downregulated cardiac expression of Ob-R. Elevation of extracellular Ca(2+) concentration nullified obesity-induced cardiomyocyte mechanical dysfunction and leptin-induced depression in PS. These data indicate presence of cardiac leptin resistance in diet-induced obesity possibly associated with impaired leptin receptor signaling.

  12. Miniature hybrid microwave IC's using a novel thin-film technology

    NASA Astrophysics Data System (ADS)

    Eda, Kazuo; Miwa, Tetsuji; Taguchi, Yutaka; Uwano, Tomoki

    1990-12-01

    A novel thin-film technology for miniature hybrid microwave ICs is presented. All passive components, such as resistors and capacitors, are fully integrated on ordinary alumina ceramic substrates using the thin-film technology with very high yield. The numbers of parts and wiring processes were significantly reduced. This technology was applied to the fabrication of Ku-band solid-state power amplifiers. This thin-film technology offers the following advantages: (1) a very high yield fabrication process of thin-film capacitor having excellent electrical characteristics in the gigahertz range (Q = 230 at 12 GHz) and reliability: (2) two kinds of thin-film resistors having different temperature coefficients of resistivity and a lift-off process to integrate them with thin-film capacitors; and (3) a matching method using the thin-film capacitor.

  13. Amplified Detection of Prions and Other Amyloids by RT-QuIC in Diagnostics and the Evaluation of Therapeutics and Disinfectants.

    PubMed

    Caughey, Byron; Orru, Christina D; Groveman, Bradley R; Hughson, Andrew G; Manca, Matteo; Raymond, Lynne D; Raymond, Gregory J; Race, Brent; Saijo, Eri; Kraus, Allison

    2017-01-01

    Among the most sensitive, specific and practical of methods for detecting prions are the real-time quaking-induced conversion (RT-QuIC) assays. These assays exploit the fundamental self-propagating activity of prions to amplify the presence of prion seeds by as much as a trillion-fold. The reactions can detect most of the known mammalian prion diseases, often with sensitivities greater than those of animal bioassays. RT-QuIC assays are performed in multiwell plates with fluorescence detection and have now reached the sensitivity and practicality required for routine prion disease diagnostics. Some key strains of prions within particular host species, e.g., humans, cattle, and sheep, can be discriminated by comparison of RT-QuIC responses with different recombinant prion protein substrates. The most thoroughly validated diagnostic application of RT-QuIC is in the diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD) using cerebrospinal fluid. Diagnostic sensitivities as high as 96% can be achieved in less than 24h with specificities of 98%-100%. The ability, if needed, to also test nasal swab samples can increase the RT-QuIC sensitivity for sCJD to virtually 100%. In addition to diagnostic applications, RT-QuIC has also been used in the testing of prion disinfectants and potential therapeutics. Mechanistically related assays are also now being developed for other protein misfolding diseases. © 2017 Elsevier Inc. All rights reserved.

  14. Protein-Tyrosine Phosphatase-1B Mediates Sleep Fragmentation-Induced Insulin Resistance and Visceral Adipose Tissue Inflammation in Mice.

    PubMed

    Gozal, David; Khalyfa, Abdelnaby; Qiao, Zhuanghong; Akbarpour, Mahzad; Maccari, Rosanna; Ottanà, Rosaria

    2017-09-01

    Sleep fragmentation (SF) is highly prevalent and has emerged as an important contributing factor to obesity and metabolic syndrome. We hypothesized that SF-induced increases in protein tyrosine phosphatase-1B (PTP-1B) expression and activity underlie increased food intake, inflammation, and leptin and insulin resistance. Wild-type (WT) and ObR-PTP-1b-/- mice (Tg) were exposed to SF and control sleep (SC), and food intake was monitored. WT mice received a PTP-1B inhibitor (RO-7d; Tx) or vehicle (Veh). Upon completion of exposures, systemic insulin and leptin sensitivity tests were performed as well as assessment of visceral white adipose tissue (vWAT) insulin receptor sensitivity and macrophages (ATM) polarity. SF increased food intake in either untreated or Veh-treated WT mice. Leptin-induced hypothalamic STAT3 phosphorylation was decreased, PTP-1B activity was increased, and reduced insulin sensitivity emerged both systemic and in vWAT, with the latter displaying proinflammatory ATM polarity changes. All of the SF-induced effects were abrogated following PTP-1B inhibitor treatment and in Tg mice. SF induces increased food intake, reduced leptin signaling in hypothalamus, systemic insulin resistance, and reduced vWAT insulin sensitivity and inflammation that are mediated by increased PTP-1B activity. Thus, PTP-1B may represent a viable therapeutic target in the context of SF-induced weight gain and metabolic dysfunction. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  15. 30 CFR 57.22102 - Smoking (I-C mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Smoking (I-C mines). 57.22102 Section 57.22102... Methane in Metal and Nonmetal Mines Fire Prevention and Control § 57.22102 Smoking (I-C mines). (a) Persons shall not smoke or carry smoking materials, matches, or lighters underground or within 50 feet of...

  16. 30 CFR 57.22102 - Smoking (I-C mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Smoking (I-C mines). 57.22102 Section 57.22102... Methane in Metal and Nonmetal Mines Fire Prevention and Control § 57.22102 Smoking (I-C mines). (a) Persons shall not smoke or carry smoking materials, matches, or lighters underground or within 50 feet of...

  17. 30 CFR 57.22102 - Smoking (I-C mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Smoking (I-C mines). 57.22102 Section 57.22102... Methane in Metal and Nonmetal Mines Fire Prevention and Control § 57.22102 Smoking (I-C mines). (a) Persons shall not smoke or carry smoking materials, matches, or lighters underground or within 50 feet of...

  18. 30 CFR 57.22102 - Smoking (I-C mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Smoking (I-C mines). 57.22102 Section 57.22102... Methane in Metal and Nonmetal Mines Fire Prevention and Control § 57.22102 Smoking (I-C mines). (a) Persons shall not smoke or carry smoking materials, matches, or lighters underground or within 50 feet of...

  19. Nonspecific Resistance Induced by an Immunopharmacologic Agent Derived from Bordetella pertussis

    DTIC Science & Technology

    1985-12-17

    resistance to mouse adenovirus infection. Subcellular fractions of B . pertussis are capable of inducing resistance also. Boivin antigen, a...of B . ptrftaiss vaccine protected approximately 50% of the test population. Vaccines prepared fromt several different strains of B . pertussis were...provided by Connaught Laboratories, i~erved when an extract of B . pertussis was administered by SifwtrPaadasdjtetoprxmtly40g the subcutaneous

  20. IC-tagged proteins are able to interact with each other and perform complex reactions when integrated into muNS-derived inclusions.

    PubMed

    Brandariz-Nuñez, Alberto; Otero-Romero, Iria; Benavente, Javier; Martinez-Costas, Jose M

    2011-09-20

    We have recently developed a versatile tagging system (IC-tagging) that causes relocation of the tagged proteins to ARV muNS-derived intracellular globular inclusions. In the present study we demonstrate (i) that the IC-tag can be successfully fused either to the amino or carboxyl terminus of the protein to be tagged and (ii) that IC-tagged proteins are able to interact between them and perform complex reactions that require such interactions while integrated into muNS inclusions, increasing the versatility of the IC-tagging system. Also, our studies with the DsRed protein add some light on the structure/function relationship of the evolution of DsRed chromophore. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Hepatocyte Toll-like receptor 4 regulates obesity-induced inflammation and insulin resistance

    USDA-ARS?s Scientific Manuscript database

    Chronic low-grade inflammation is a hallmark of obesity and thought to contribute to the development of obesity-related insulin resistance. Toll-like receptor 4 (Tlr4) is a key mediator of pro-inflammatory responses. Mice lacking Tlr4s are protected from diet-induced insulin resistance and inflammat...

  2. A radial velocity survey of the open cluster IC 4665

    NASA Technical Reports Server (NTRS)

    Prosser, Charles F.; Giampapa, Mark S.

    1994-01-01

    A radial velocity survey of the open cluster IC 4665 is reported for a group of candidate members previously identified on the basis of proper motion and photometry. Of those candidates observed, 20 out of 42 have radial velocities consistent with membership; these cluster members populate the F5-K0 dwarf region and represent the first relatively conclusive membership determinations for such solar-type stars in IC 4665. Three new spectroscopic binary members of the cluster have been identified. Rotational velocities have also been derived; the v sin i distribution among IC 4665 members reveals that most apparent G dwarf members of IC 4665 are seen to exhibit substantial rotation (v sin i greater than 10 km/s). When compared to evolutionary isochrones, the current list of intermediate-mass members appears to support earlier suggestions that IC 4665 has an age comparable to the Pleiades.

  3. Skeletal Muscle TRIB3 Mediates Glucose Toxicity in Diabetes and High- Fat Diet–Induced Insulin Resistance

    PubMed Central

    Wu, Mengrui; Kim, Teayoun; Jariwala, Ravi H.; Garvey, W. John; Luo, Nanlan; Kang, Minsung; Ma, Elizabeth; Tian, Ling; Steverson, Dennis; Yang, Qinglin; Fu, Yuchang

    2016-01-01

    In the current study, we used muscle-specific TRIB3 overexpressing (MOE) and knockout (MKO) mice to determine whether TRIB3 mediates glucose-induced insulin resistance in diabetes and whether alterations in TRIB3 expression as a function of nutrient availability have a regulatory role in metabolism. In streptozotocin diabetic mice, TRIB3 MOE exacerbated, whereas MKO prevented, glucose-induced insulin resistance and impaired glucose oxidation and defects in insulin signal transduction compared with wild-type (WT) mice, indicating that glucose-induced insulin resistance was dependent on TRIB3. In response to a high-fat diet, TRIB3 MOE mice exhibited greater weight gain and worse insulin resistance in vivo compared with WT mice, coupled with decreased AKT phosphorylation, increased inflammation and oxidative stress, and upregulation of lipid metabolic genes coupled with downregulation of glucose metabolic genes in skeletal muscle. These effects were prevented in the TRIB3 MKO mice relative to WT mice. In conclusion, TRIB3 has a pathophysiological role in diabetes and a physiological role in metabolism. Glucose-induced insulin resistance and insulin resistance due to diet-induced obesity both depend on muscle TRIB3. Under physiological conditions, muscle TRIB3 also influences energy expenditure and substrate metabolism, indicating that the decrease and increase in muscle TRIB3 under fasting and nutrient excess, respectively, are critical for metabolic homeostasis. PMID:27207527

  4. Periodontitis induced by Porphyromonas gingivalis drives periodontal microbiota dysbiosis and insulin resistance via an impaired adaptive immune response

    PubMed Central

    Blasco-Baque, Vincent; Garidou, Lucile; Pomié, Céline; Escoula, Quentin; Loubieres, Pascale; Le Gall-David, Sandrine; Lemaitre, Mathieu; Nicolas, Simon; Klopp, Pascale; Waget, Aurélie; Azalbert, Vincent; Colom, André; Bonnaure-Mallet, Martine; Kemoun, Philippe; Serino, Matteo; Burcelin, Rémy

    2017-01-01

    Objective To identify a causal mechanism responsible for the enhancement of insulin resistance and hyperglycaemia following periodontitis in mice fed a fat-enriched diet. Design We set-up a unique animal model of periodontitis in C57Bl/6 female mice by infecting the periodontal tissue with specific and alive pathogens like Porphyromonas gingivalis (Pg), Fusobacterium nucleatum and Prevotella intermedia. The mice were then fed with a diabetogenic/non-obesogenic fat-enriched diet for up to 3 months. Alveolar bone loss, periodontal microbiota dysbiosis and features of glucose metabolism were quantified. Eventually, adoptive transfer of cervical (regional) and systemic immune cells was performed to demonstrate the causal role of the cervical immune system. Results Periodontitis induced a periodontal microbiota dysbiosis without mainly affecting gut microbiota. The disease concomitantly impacted on the regional and systemic immune response impairing glucose metabolism. The transfer of cervical lymph-node cells from infected mice to naive recipients guarded against periodontitis-aggravated metabolic disease. A treatment with inactivated Pg prior to the periodontal infection induced specific antibodies against Pg and protected the mouse from periodontitis-induced dysmetabolism. Finally, a 1-month subcutaneous chronic infusion of low rates of lipopolysaccharides from Pg mimicked the impact of periodontitis on immune and metabolic parameters. Conclusions We identified that insulin resistance in the high-fat fed mouse is enhanced by pathogen-induced periodontitis. This is caused by an adaptive immune response specifically directed against pathogens and associated with a periodontal dysbiosis. PMID:26838600

  5. Nicotine Induces Resistance to Chemotherapy by Modulating Mitochondrial Signaling in Lung Cancer

    PubMed Central

    Zhang, Jingmei; Kamdar, Opal; Le, Wei; Rosen, Glenn D.; Upadhyay, Daya

    2009-01-01

    Continued smoking causes tumor progression and resistance to therapy in lung cancer. Carcinogens possess the ability to block apoptosis, and thus may induce development of cancers and resistance to therapy. Tobacco carcinogens have been studied widely; however, little is known about the agents that inhibit apoptosis, such as nicotine. We determine whether mitochondrial signaling mediates antiapoptotic effects of nicotine in lung cancer. A549 cells were exposed to nicotine (1 μM) followed by cisplatin (35 μM) plus etoposide (20 μM) for 24 hours. We found that nicotine prevented chemotherapy-induced apoptosis, improved cell survival, and caused modest increases in DNA synthesis. Inhibition of mitogen-activated protein kinase (MAPK) and Akt prevented the antiapoptotic effects of nicotine and decreased chemotherapy-induced apoptosis. Small interfering RNA MAPK kinase-1 blocked antiapoptotic effects of nicotine, whereas small interfering RNA MAPK kinase-2 blocked chemotherapy-induced apoptosis. Nicotine prevented chemotherapy-induced reduction in mitochondrial membrane potential and caspase-9 activation. Antiapoptotic effects of nicotine were blocked by mitochondrial anion channel inhibitor, 4,4′diisothiocyanatostilbene-2,2′disulfonic acid. Chemotherapy enhanced translocation of proapoptotic Bax to the mitochondria, whereas nicotine blocked these effects. Nicotine up-regulated Akt-mediated antiapoptotic X-linked inhibitor of apoptosis protein and phosphorylated proapoptotic Bcl2-antagonist of cell death. The A549-ρ0 cells, which lack mitochondrial DNA, demonstrated partial resistance to chemotherapy-induced apoptosis, but blocked the antiapoptotic effects of nicotine. Accordingly, we provide evidence that nicotine modulates mitochondrial signaling and inhibits chemotherapy-induced apoptosis in lung cancer. The mitochondrial regulation of nicotine imposes an important mechanism that can critically impair the treatment of lung cancer, because many cancer

  6. Nicotine induces resistance to chemotherapy by modulating mitochondrial signaling in lung cancer.

    PubMed

    Zhang, Jingmei; Kamdar, Opal; Le, Wei; Rosen, Glenn D; Upadhyay, Daya

    2009-02-01

    Continued smoking causes tumor progression and resistance to therapy in lung cancer. Carcinogens possess the ability to block apoptosis, and thus may induce development of cancers and resistance to therapy. Tobacco carcinogens have been studied widely; however, little is known about the agents that inhibit apoptosis, such as nicotine. We determine whether mitochondrial signaling mediates antiapoptotic effects of nicotine in lung cancer. A549 cells were exposed to nicotine (1 muM) followed by cisplatin (35 muM) plus etoposide (20 muM) for 24 hours. We found that nicotine prevented chemotherapy-induced apoptosis, improved cell survival, and caused modest increases in DNA synthesis. Inhibition of mitogen-activated protein kinase (MAPK) and Akt prevented the antiapoptotic effects of nicotine and decreased chemotherapy-induced apoptosis. Small interfering RNA MAPK kinase-1 blocked antiapoptotic effects of nicotine, whereas small interfering RNA MAPK kinase-2 blocked chemotherapy-induced apoptosis. Nicotine prevented chemotherapy-induced reduction in mitochondrial membrane potential and caspase-9 activation. Antiapoptotic effects of nicotine were blocked by mitochondrial anion channel inhibitor, 4,4'diisothiocyanatostilbene-2,2'disulfonic acid. Chemotherapy enhanced translocation of proapoptotic Bax to the mitochondria, whereas nicotine blocked these effects. Nicotine up-regulated Akt-mediated antiapoptotic X-linked inhibitor of apoptosis protein and phosphorylated proapoptotic Bcl2-antagonist of cell death. The A549-rho0 cells, which lack mitochondrial DNA, demonstrated partial resistance to chemotherapy-induced apoptosis, but blocked the antiapoptotic effects of nicotine. Accordingly, we provide evidence that nicotine modulates mitochondrial signaling and inhibits chemotherapy-induced apoptosis in lung cancer. The mitochondrial regulation of nicotine imposes an important mechanism that can critically impair the treatment of lung cancer, because many cancer

  7. Integrated proteomics identified novel activation of dynein IC2-GR-COX-1 signaling in neurofibromatosis type I (NF1) disease model cells.

    PubMed

    Hirayama, Mio; Kobayashi, Daiki; Mizuguchi, Souhei; Morikawa, Takashi; Nagayama, Megumi; Midorikawa, Uichi; Wilson, Masayo M; Nambu, Akiko N; Yoshizawa, Akiyasu C; Kawano, Shin; Araki, Norie

    2013-05-01

    Neurofibromatosis type 1 (NF1) tumor suppressor gene product, neurofibromin, functions in part as a Ras-GAP, and though its loss is implicated in the neuronal abnormality of NF1 patients, its precise cellular function remains unclear. To study the molecular mechanism of NF1 pathogenesis, we prepared NF1 gene knockdown (KD) PC12 cells, as a NF1 disease model, and analyzed their molecular (gene and protein) expression profiles with a unique integrated proteomics approach, comprising iTRAQ, 2D-DIGE, and DNA microarrays, using an integrated protein and gene expression analysis chart (iPEACH). In NF1-KD PC12 cells showing abnormal neuronal differentiation after NGF treatment, of 3198 molecules quantitatively identified and listed in iPEACH, 97 molecules continuously up- or down-regulated over time were extracted. Pathway and network analysis further revealed overrepresentation of calcium signaling and transcriptional regulation by glucocorticoid receptor (GR) in the up-regulated protein set, whereas nerve system development was overrepresented in the down-regulated protein set. The novel up-regulated network we discovered, "dynein IC2-GR-COX-1 signaling," was then examined in NF1-KD cells. Validation studies confirmed that NF1 knockdown induces altered splicing and phosphorylation patterns of dynein IC2 isomers, up-regulation and accumulation of nuclear GR, and increased COX-1 expression in NGF-treated cells. Moreover, the neurite retraction phenotype observed in NF1-KD cells was significantly recovered by knockdown of the dynein IC2-C isoform and COX-1. In addition, dynein IC2 siRNA significantly inhibited nuclear translocation and accumulation of GR and up-regulation of COX-1 expression. These results suggest that dynein IC2 up-regulates GR nuclear translocation and accumulation, and subsequently causes increased COX-1 expression, in this NF1 disease model. Our integrated proteomics strategy, which combines multiple approaches, demonstrates that NF1-related neural

  8. TRIM25 is associated with cisplatin resistance in non-small-cell lung carcinoma A549 cell line via downregulation of 14-3-3σ.

    PubMed

    Qin, Xia; Qiu, Feng; Zou, Zhen

    2017-11-04

    Lung cancer, in particular, non-small cell lung cancer (NSCLC), is the leading cause of cancer-related mortality. Cis-Diamminedichloroplatinum (cisplatin, CDDP) as first-line chemotherapy for NSCLC, but resistance occurs frequently. We previously reported that Tripartite motif protein 25 (TRIM25) was highly expressed in cisplatin-resistant human lung adenocarcinoma A549 cells (A549/CDDP) in comparison with its parental A549 cells. Herein, we take a further step to demonstrate the association of TRIM25 and cisplatin resistance and also the underlying mechanisms. Knockdown of TRIM25 by RNA interference in A549/CDDP cells decreased half maximal inhibitory concentration (IC 50 ) values and promoted apoptosis in response to cisplatin, whereas overexpression of TRIM25 had opposite effects. More importantly, we found that concomitant knockdown of 14-3-3σ and TRIM25 absolutely reversed the decreased MDM2, increased p53, increased cleaved-Capsese3 and decreased IC 50 value induced by knockdown of TRIM25 individually, suggesting that TRIM25 mediated cisplatin resistance primarily through downregulation of 14-3-3σ. Our results indicate that TRIM25 is associated with cisplatin resistance and 14-3-3σ-MDM2-p53 signaling pathway is involved in this process, suggesting targeting TRIM25 may be a potential strategy for the reversal of cisplatin resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Transient, heat-induced thermal resistance in the small intestine of mouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hume, S.P.; Marigold, J.C.L.

    Heat-induced thermal resistance has been investigated in mouse jejunum by assaying crypt survival 24 h after treatment. Hyperthermia was achieved by immersing an exteriorized loop of intestine in a bath of Krebs-Ringer solution. Two approaches have been used. In the first, thermal survival curves were obtained following single hyperthermal treatments at temperatures in the range 42 to 44/sup 0/C. Transient thermal resistance, inducted by a plateau in the crypt survival curve, developed during heating at temperatures around 42.5/sup 0/C after 60 to 80 min. In the second series of experiments, a priming heat treatment (40.0, 41.0, 41.5, or 42.0/sup 0/Cmore » for 60 min) was followed at varying intervals by a test treatment at 43.0/sup 0/C. A transient resistance to the second treatment was induced, the extent and time of development being dependent upon the priming treatment. Crypt survival curves for thermally resistant intestine showed an increase in thermal D/sub 0/ and a decrease in n compared with curves from previously unheated intestine.« less

  10. The role of autophagy in THP-1 macrophages resistance to HIV- vpr-induced apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Hua-ying, E-mail: zhouhuaying_2004@126.com; Zheng, Yu-huang; He, Yan

    Macrophages are resistant to cell death and are one of HIV reservoirs. HIV viral protein Vpr has the potential to promote infection of and survival of macrophages, which could be a highly significant factor in the development and/or maintenance of macrophage viral reservoirs. However, the impact of vpr on macrophages resistance to apoptosis is yet to be comprehended. Autophagy is a cell survival mechanism under stress state. In this study, we investigated whether autophagy is involved in macrophages resistant to vpr-induced apoptosis. Using the THP1 macrophages, we studied the interconnection between macrophages resistance to apoptosis and autophagy. We found thatmore » vpr is able to trigger autophagy in transfected THP-1 macrophages confirmed by electron microscopy (EM) and western blot analysis, and inhibition of autophagy with 3MA increased vpr-induced apoptosis. The results indicate that autophagy may be responsible for maintenance of macrophage HIV reservoirs. - Highlights: • HIV Vpr is able to trigger autophagy in transfected THP-1 macrophages. • Autophagy inhibition increases vpr-transfected THP1-macrophages apoptosis. • Autophagy is involved in THP-1 macrophages resistant to vpr-induced apoptosis.« less

  11. TNFα-Induced Mucin 4 Expression Elicits Trastuzumab Resistance in HER2-Positive Breast Cancer.

    PubMed

    Mercogliano, María F; De Martino, Mara; Venturutti, Leandro; Rivas, Martín A; Proietti, Cecilia J; Inurrigarro, Gloria; Frahm, Isabel; Allemand, Daniel H; Deza, Ernesto Gil; Ares, Sandra; Gercovich, Felipe G; Guzmán, Pablo; Roa, Juan C; Elizalde, Patricia V; Schillaci, Roxana

    2017-02-01

    Although trastuzumab administration improved the outcome of HER2-positive breast cancer patients, resistance events hamper its clinical benefits. We demonstrated that TNFα stimulation in vitro induces trastuzumab resistance in HER2-positive breast cancer cell lines. Here, we explored the mechanism of TNFα-induced trastuzumab resistance and the therapeutic strategies to overcome it. Trastuzumab-sensitive breast cancer cells, genetically engineered to stably overexpress TNFα, and de novo trastuzumab-resistant tumors, were used to evaluate trastuzumab response and TNFα-blocking antibodies effectiveness respectively. Immunohistochemistry and antibody-dependent cell cytotoxicity (ADCC), together with siRNA strategy, were used to explore TNFα influence on the expression and function of its downstream target, mucin 4 (MUC4). The clinical relevance of MUC4 expression was studied in a cohort of 78 HER2-positive breast cancer patients treated with adjuvant trastuzumab. TNFα overexpression turned trastuzumab-sensitive cells and tumors into resistant ones. Histopathologic findings revealed mucin foci in TNFα-producing tumors. TNFα induced upregulation of MUC4 that reduced trastuzumab binding to its epitope and impaired ADCC. Silencing MUC4 enhanced trastuzumab binding, increased ADCC, and overcame trastuzumab and trastuzumab-emtansine antiproliferative effects in TNFα-overexpressing cells. Accordingly, administration of TNFα-blocking antibodies downregulated MUC4 and sensitized de novo trastuzumab-resistant breast cancer cells and tumors to trastuzumab. In HER2-positive breast cancer samples, MUC4 expression was found to be an independent predictor of poor disease-free survival (P = 0.008). We identified TNFα-induced MUC4 expression as a novel trastuzumab resistance mechanism. We propose MUC4 expression as a predictive biomarker of trastuzumab efficacy and a guide to combination therapy of TNFα-blocking antibodies with trastuzumab. Clin Cancer Res; 23(3); 636-48.

  12. Induction of Systemic Resistance against Aphids by Endophytic Bacillus velezensis YC7010 via Expressing PHYTOALEXIN DEFICIENT4 in Arabidopsis

    PubMed Central

    Rashid, Md. Harun-Or-; Khan, Ajmal; Hossain, Mohammad T.; Chung, Young R.

    2017-01-01

    Aphids are the most destructive insect pests. They suck the sap and transmit plant viruses, causing widespread yield loss of many crops. A multifunctional endophytic bacterial strain Bacillus velezensis YC7010 has been found to induce systemic resistance against bacterial and fungal pathogens of rice. However, its activity against insects attack and underlying cellular and molecular defense mechanisms are not elucidated yet. Here, we show that root drenching of Arabidopsis seedlings with B. velezensis YC7010 can induce systemic resistance against green peach aphid (GPA), Myzus persicae. Treatment of bacterial suspension of B. velezensis YC7010 at 2 × 107 CFU/ml to Arabidopsis rhizosphere induced higher accumulation of hydrogen peroxide, cell death, and callose deposition in leaves compared to untreated plants at 6 days after infestation of GPA. Salicylic acid, jasmonic acid, ethylene, and abscisic acid were not required to confer defense against GPA in Arabidopsis plants treated by B. velezensis YC7010. Bacterial treatment with B. velezensis YC7010 significantly reduced settling, feeding and reproduction of GPA on Arabidopsis leaves via strongly expressing senescence-promoting gene PHYTOALEXIN DEFICIENT4 (PAD4) while suppressing BOTRYTIS-INDUCED KINASE1 (BIK1). These results indicate that B. velezensis YC7010-induced systemic resistance to the GPA is a hypersensitive response mainly dependent on higher expression of PAD4 with suppression of BIK1, resulting in more accumulation of hydrogen peroxide, cell death, and callose deposition in Arabidopsis. PMID:28261260

  13. Phylogenetic Distribution of CRISPR-Cas Systems in Antibiotic-Resistant Pseudomonas aeruginosa.

    PubMed

    van Belkum, Alex; Soriaga, Leah B; LaFave, Matthew C; Akella, Srividya; Veyrieras, Jean-Baptiste; Barbu, E Magda; Shortridge, Dee; Blanc, Bernadette; Hannum, Gregory; Zambardi, Gilles; Miller, Kristofer; Enright, Mark C; Mugnier, Nathalie; Brami, Daniel; Schicklin, Stéphane; Felderman, Martina; Schwartz, Ariel S; Richardson, Toby H; Peterson, Todd C; Hubby, Bolyn; Cady, Kyle C

    2015-11-24

    Pseudomonas aeruginosa is an antibiotic-refractory pathogen with a large genome and extensive genotypic diversity. Historically, P. aeruginosa has been a major model system for understanding the molecular mechanisms underlying type I clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated protein (CRISPR-Cas)-based bacterial immune system function. However, little information on the phylogenetic distribution and potential role of these CRISPR-Cas systems in molding the P. aeruginosa accessory genome and antibiotic resistance elements is known. Computational approaches were used to identify and characterize CRISPR-Cas systems within 672 genomes, and in the process, we identified a previously unreported and putatively mobile type I-C P. aeruginosa CRISPR-Cas system. Furthermore, genomes harboring noninhibited type I-F and I-E CRISPR-Cas systems were on average ~300 kb smaller than those without a CRISPR-Cas system. In silico analysis demonstrated that the accessory genome (n = 22,036 genes) harbored the majority of identified CRISPR-Cas targets. We also assembled a global spacer library that aided the identification of difficult-to-characterize mobile genetic elements within next-generation sequencing (NGS) data and allowed CRISPR typing of a majority of P. aeruginosa strains. In summary, our analysis demonstrated that CRISPR-Cas systems play an important role in shaping the accessory genomes of globally distributed P. aeruginosa isolates. P. aeruginosa is both an antibiotic-refractory pathogen and an important model system for type I CRISPR-Cas bacterial immune systems. By combining the genome sequences of 672 newly and previously sequenced genomes, we were able to provide a global view of the phylogenetic distribution, conservation, and potential targets of these systems. This analysis identified a new and putatively mobile P. aeruginosa CRISPR-Cas subtype, characterized the diverse distribution of known CRISPR-inhibiting genes, and

  14. The effect of synthetic homopolymer poly I:C on the synthesis of nucleic acids, protein and interferon in spleen cells normally and with radiation

    NASA Technical Reports Server (NTRS)

    Antropova, Y. N.; Konstantinova, I. V.; Fuks, B. B.; Talosh, M. Y.; Veysfeyler, Y. K.

    1974-01-01

    A comparative study is reported of the effect of the synthetic homopolymer poly I:C and Newcastle Disease virus on the synthesis of RNA, DNA, total protein and interferon in the spleen of nonradiated and radiated mice. In radiated animals, poly I:C and NDV had no stimulating effect on the synthesis of RNA; administration of both inducers to radiated mice did not significantly affect the content of lymphoid cellular elements in the spleen. However, while reduction of RNA synthesis, caused by radiation, also increases slightly under the effect of poly I:C and the virus, the synthesis of interferon in spleen cells and in the entire body is activated.

  15. The effect of spin induced magnetization on Jeans instability of viscous and resistive quantum plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Prerana, E-mail: preranaiitd@rediffmail.com; Chhajlani, R. K.

    2014-03-15

    The effect of spin induced magnetization and electrical resistivity incorporating the viscosity of the medium is examined on the Jeans instability of quantum magnetoplasma. Formulation of the system is done by using the quantum magnetohydrodynamic model. The analysis of the problem is carried out by normal mode analysis theory. The general dispersion relation is derived from set of perturbed equations to analyse the growth rate and condition of self-gravitational Jeans instability. To discuss the influence of resistivity, magnetization, and viscosity parameters on Jeans instability, the general dispersion relation is reduced for both transverse and longitudinal mode of propagations. In themore » case of transverse propagation, the gravitating mode is found to be affected by the viscosity, magnetization, resistivity, and magnetic field strength whereas Jeans criterion of instability is modified by the magnetization and quantum parameter. In the longitudinal mode of propagation, the gravitating mode is found to be modified due to the viscosity and quantum correction in which the Jeans condition of instability is influenced only by quantum parameter. The other non-gravitating Alfven mode in this direction is affected by finite electrical resistivity, spin induced magnetization, and viscosity. The numerical study for the growth rate of Jeans instability is carried out for both in the transverse and longitudinal direction of propagation to the magnetic field. The effect of various parameters on the growth rate of Jeans instability in quantum plasma is analysed.« less

  16. Surmounting the resistance against EGFR inhibitors through the development of thieno[2,3-d]pyrimidine-based dual EGFR/HER2 inhibitors.

    PubMed

    Milik, Sandra N; Abdel-Aziz, Amal Kamal; Lasheen, Deena S; Serya, Rabah A T; Minucci, Saverio; Abouzid, Khaled A M

    2018-06-06

    In light of the emergence of resistance against the currently available EGFR inhibitors, our study focuses on tackling this problem through the development of dual EGFR/HER2 inhibitors with improved enzymatic affinities. Guided by the binding mode of the marketed dual EGFR/HER2 inhibitor, Lapatinib, we proposed the design of dual EGFR/HER2 inhibitors based on the 6-phenylthieno[2,3-d]pyrimidine as a core scaffold and hinge binder. After two cycles of screening aiming to identify the optimum aniline headgroup and solubilizing group, we eventually identified 27b as a dual EGFR/HER2 inhibitor with IC 50 values of 91.7 nM and 1.2 μM, respectively. Notably, 27b dramatically reduced the viability of various patient-derived cancer cells preferentially overexpressing EGFR/HER2 (A431, MDA-MBA-361 and SKBr3 with IC 50 values of 1.45, 3.5 and 4.83 μM, respectively). Additionally, 27b efficiently thwarted the proliferation of lapatinib-resistant human non-small lung carcinoma (NCI-H1975) cells, harboring T790 M mutation, with IC 50 of 4.2 μM. Consistently, 27b significantly blocked EGF-induced EGFR activation and inactivated its downstream AKT/mTOR/S6 signalling pathway triggering apoptotic cell death in NCI-H1975 cells. The present study presents a promising candidate for further design and development of novel EGFR/HER2 inhibitors capable of overcoming EGFR TKIs resistance. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  17. PREFACE: IC-MSQUARE 2012: International Conference on Mathematical Modelling in Physical Sciences

    NASA Astrophysics Data System (ADS)

    Kosmas, Theocharis; Vagenas, Elias; Vlachos, Dimitrios

    2013-02-01

    The first International Conference on Mathematical Modelling in Physical Sciences (IC-MSQUARE) took place in Budapest, Hungary, from Monday 3 to Friday 7 September 2012. The conference was attended by more than 130 participants, and hosted about 290 oral, poster and virtual papers by more than 460 pre-registered authors. The first IC-MSQUARE consisted of different and diverging workshops and thus covered various research fields in which mathematical modelling is used, such as theoretical/mathematical physics, neutrino physics, non-integrable systems, dynamical systems, computational nanoscience, biological physics, computational biomechanics, complex networks, stochastic modelling, fractional statistics, DNA dynamics, and macroeconomics. The scientific program was rather heavy since after the Keynote and Invited Talks in the morning, two parallel sessions ran every day. However, according to all attendees, the program was excellent with a high level of talks and the scientific environment was fruitful; thus all attendees had a creative time. The mounting question is whether this occurred accidentally, or whether IC-MSQUARE is a necessity in the field of physical and mathematical modelling. For all of us working in the field, the existing and established conferences in this particular field suffer from two distinguished and recognized drawbacks: the first is the increasing orientation, while the second refers to the extreme specialization of the meetings. Therefore, a conference which aims to promote the knowledge and development of high-quality research in mathematical fields concerned with applications of other scientific fields as well as modern technological trends in physics, chemistry, biology, medicine, economics, sociology, environmental sciences etc., appears to be a necessity. This is the key role that IC-MSQUARE will play. We would like to thank the Keynote Speaker and the Invited Speakers for their significant contributions to IC-MSQUARE. We would also

  18. Designer TAL effectors induce disease susceptibility and resistance to Xanthomonas oryzae pv. oryzae in rice.

    PubMed

    Li, Ting; Huang, Sheng; Zhou, Junhui; Yang, Bing

    2013-05-01

    TAL (transcription activator-like) effectors from Xanthomonas bacteria activate the cognate host genes, leading to disease susceptibility or resistance dependent on the genetic context of host target genes. The modular nature and DNA recognition code of TAL effectors enable custom-engineering of designer TAL effectors (dTALE) for gene activation. However, the feasibility of dTALEs as transcription activators for gene functional analysis has not been demonstrated. Here, we report the use of dTALEs, as expressed and delivered by the pathogenic Xanthomonas oryzae pv. oryzae (Xoo), in revealing the new function of two previously identified disease-related genes and the potential of one developmental gene for disease susceptibility in rice/Xoo interactions. The dTALE gene dTALE-xa27, designed to target the susceptible allele of the resistance gene Xa27, elicited a resistant reaction in the otherwise susceptible rice cultivar IR24. Four dTALE genes were made to induce the four annotated Xa27 homologous genes in rice cultivar Nipponbare, but none of the four induced Xa27-like genes conferred resistance to the dTALE-containing Xoo strains. A dTALE gene was also generated to activate the recessive resistance gene xa13, an allele of the disease-susceptibility gene Os8N3 (also named Xa13 or OsSWEET11, a member of sucrose efflux transporter SWEET gene family). The induction of xa13 by the dTALE rendered the resistant rice IRBB13 (xa13/xa13) susceptible to Xoo. Finally, OsSWEET12, an as-yet uncharacterized SWEET gene with no corresponding naturally occurring TAL effector identified, conferred susceptibility to the Xoo strains expressing the corresponding dTALE genes. Our results demonstrate that dTALEs can be delivered through the bacterial secretion system to activate genes of interest for functional analysis in plants.

  19. Systemic inflammation induces anxiety disorder through CXCL12/CXCR4 pathway.

    PubMed

    Yang, L; Wang, M; Guo, Y Y; Sun, T; Li, Y J; Yang, Q; Zhang, K; Liu, S B; Zhao, M G; Wu, Y M

    2016-08-01

    It is evidenced that inflammation is involved in the pathogenesis of anxiety disorder, as well as the dysfunction of glutamate neurotransmission in the central nervous system (CNS). Chemokine CXCL12 has been reported taking part in the regulation of neurotransmitter release, however, the roles of CXCL12 in the development of anxiety are still unclear. In this study, we found that intraperitoneal (i.p) injection of lipopolysaccharide (LPS) induced anxiety-like behaviors in adult mice as measured by elevated plus-maze test (EPM) and open field test (OFT). Astrocytes were responsible for CXCL12 induction upon LPS challenge in hippocampus and amygdala, and microinjection of CXCL12 into amygdala induced mice anxiety-like behaviors. AMD3100, which is an antagonist for CXCL12 receptor CXCR4, prevented the anxiety behaviors induced by microinjection of CXCL12 into amygdala as well as injection i.p of LPS. Knockdown of CXCR4 expression in neurons using short hairpin RNAs (shRNAs) significantly blocked anxiety behaviors mediated by CXCL12 i.c injection. Furthermore, AMD3100 or shCXCR4 prevented the impairment of nesting ability induced by CXCL12 in mice. Whole-cell patch-clamp recordings in the neurons of basolateral amygdala (BLA) revealed that CXCL12 enhanced glutamatergic transmission by increasing sEPSC frequency in the amygdala. AMD3100 inhibited the excitatory glutamatergic neural transmission and involved in the development of anxiety through CXCR4. These findings provide direct evidence that alterations of CXCL12 in BLA play critical roles in the development of anxiety induced by systemic inflammation and that CXCR4 may be a potential therapeutic target for inflammation-induced anxiety. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Heat-inducible hygromycin resistance in transgenic tobacco.

    PubMed

    Severin, K; Schöffl, F

    1990-12-01

    We have constructed a chimaeric gene consisting of the promoter of the soybean heat shock (hs) gene Gmhsp17, 6-L, the coding region of a hygromycin phosphotransferase (hpt) gene, and the termination sequence of the nopaline synthase (nos) gene. This gene fusion was introduced into tobacco by Agrobacterium-mediated gene transfer. Heat-inducible synthesis of mRNA was shown by northern hybridization, and translation of this RNA into a functional protein was indicated by plant growth on hygromycin-containing media in a temperature-dependent fashion. One hour incubation at 40 degrees C per day, applied for several weeks, was sufficient to express the resistant phenotype in transgenic plants containing the chimaeric hs-hpt gene. These data suggest that the hygromycin resistance gene is functional and faithfully controlled by the soybean hs promoter. The suitability of these transgenic plants for selection of mutations that alter the hs response is discussed.

  1. Ruthenium(II) Complexes with 2-Phenylimidazo[4,5-f][1,10]phenanthroline Derivatives that Strongly Combat Cisplatin-Resistant Tumor Cells

    NASA Astrophysics Data System (ADS)

    Zeng, Leli; Chen, Yu; Liu, Jiangping; Huang, Huaiyi; Guan, Ruilin; Ji, Liangnian; Chao, Hui

    2016-01-01

    Cisplatin was the first metal-based therapeutic agent approved for the treatment of human cancers, but its clinical activity is greatly limited by tumor drug resistance. This work utilized the parent complex [Ru(phen)2(PIP)]2+ (1) to develop three Ru(II) complexes (2-4) with different positional modifications. These compounds exhibited similar or superior cytotoxicities compared to cisplatin in HeLa, A549 and multidrug-resistant (A549R) tumor cell lines. Complex 4, the most potent member of the series, was highly active against A549R cancer cells (IC50 = 0.8 μM). This complex exhibited 178-fold better activity than cisplatin (IC50 = 142.5 μM) in A549R cells. 3D multicellular A549R tumor spheroids were also used to confirm the high proliferative and cytotoxic activity of complex 4. Complex 4 had the greatest cellular uptake and had a tendency to accumulate in the mitochondria of A549R cells. Further mechanistic studies showed that complex 4 induced A549R cell apoptosis via inhibition of thioredoxin reductase (TrxR), elevated intracellular ROS levels, mitochondrial dysfunction and cell cycle arrest, making it an outstanding candidate for overcoming cisplatin resistance.

  2. The elicitation of a systemic resistance by Pseudomonas putida BTP1 in tomato involves the stimulation of two lipoxygenase isoforms

    PubMed Central

    2011-01-01

    Background Some non-pathogenic rhizobacteria called Plant Growth Promoting Rhizobacteria (PGPR) possess the capacity to induce in plant defense mechanisms effective against pathogens. Precedent studies showed the ability of Pseudomonas putida BTP1 to induce PGPR-mediated resistance, termed ISR (Induced Systemic Resistance), in different plant species. Despite extensive works, molecular defense mechanisms involved in ISR are less well understood that in the case of pathogen induced systemic acquired resistance. Results We analyzed the activities of phenylalanine ammonia-lyase (PAL) and lipoxygenase (LOX), key enzymes of the phenylpropanoid and oxylipin pathways respectively, in tomato treated or not with P. putida BTP1. The bacterial treatment did not stimulate PAL activity and linoleate-consuming LOX activities. Linolenate-consuming LOX activity, on the contrary, was significantly stimulated in P. putida BTP1-inoculated plants before and two days after infection by B. cinerea. This stimulation is due to the increase of transcription level of two isoforms of LOX: TomLoxD and TomLoxF, a newly identified LOX gene. We showed that recombinant TomLOXF preferentially consumes linolenic acid and produces 13-derivative of fatty acids. After challenging with B. cinerea, the increase of transcription of these two LOX genes and higher linolenic acid-consuming LOX activity were associated with a more rapid accumulation of free 13-hydroperoxy-octadecatrienoic and 13-hydroxy-octadecatrienoic acids, two antifungal oxylipins, in bacterized plants. Conclusion In addition to the discovery of a new LOX gene in tomato, this work is the first to show differential induction of LOX isozymes and a more rapid accumulation of 13-hydroperoxy-octadecatrienoic and 13-hydroxy-octadecatrienoic acids in rhizobacteria mediated-induced systemic resistance. PMID:21294872

  3. Tomato progeny inherit resistance to the nematode Meloidogyne javanica linked to plant growth induced by the biocontrol fungus Trichoderma atroviride.

    PubMed

    Medeiros, Hugo Agripino de; Araújo Filho, Jerônimo Vieira de; Freitas, Leandro Grassi de; Castillo, Pablo; Rubio, María Belén; Hermosa, Rosa; Monte, Enrique

    2017-01-10

    Root-knot nematodes (RKN) are major crop pathogens worldwide. Trichoderma genus fungi are recognized biocontrol agents and a direct activity of Trichoderma atroviride (Ta) against the RKN Meloidogyne javanica (Mj), in terms of 42% reduction of number of galls (NG), 60% of number of egg masses and 90% of number of adult nematodes inside the roots, has been observed in tomato grown under greenhouse conditions. An in vivo split-root designed experiment served to demonstrate that Ta induces systemic resistance towards Mj, without the need for the organisms to be in direct contact, and significantly reduces NG (20%) and adult nematodes inside tomato roots (87%). The first generation (F1) of Ta-primed tomato plants inherited resistance to RKN; although, the induction of defenses occurred through different mechanisms, and in varying degrees, depending on the Ta-Mj interaction. Plant growth promotion induced by Ta was inherited without compromising the level of resistance to Mj, as the progeny of Ta-primed plants displayed increased size and resistance to Mj without fitness costs. Gene expression results from the defense inductions in the offspring of Ta-primed plants, suggested that an auxin-induced reactive oxygen species production promoted by Ta may act as a major defense strategy during plant growth.

  4. A new methodology to assess antimicrobial resistance of bacteria in coastal waters; pilot study in a Mediterranean hydrosystem

    NASA Astrophysics Data System (ADS)

    Almakki, Ayad; Estèves, Kevin; Vanhove, Audrey S.; Mosser, Thomas; Aujoulat, Fabien; Marchandin, Hélène; Toubiana, Mylène; Monfort, Patrick; Jumas-Bilak, Estelle; Licznar-Fajardo, Patricia

    2017-10-01

    The global resistome of coastal waters has been less studied than that of other waters, including marine ones. Here we develop an original method for characterizing the antimicrobial resistance of bacterial communities in coastal waters. The method combines the determination of a new parameter, the community Inhibitory Concentration (c-IC) of antibiotics (ATBs), and the description of the taxonomic richness of the resistant bacteria. We test the method in a Mediterranean hydrosystem, in the Montpellier region, France. Three types of waters are analyzed: near coastal river waters (Lez), lagoon brackish waters (Mauguio), and lake freshwaters (Salagou). Bacterial communities are grown in vitro in various conditions of temperature, salinity, and ATB concentrations. From these experiments, we determine the concentrations of ATB that decrease the bacterial community abundance by 50% (c-IC50) and by 90% (c-IC90). In parallel, we determine the taxonomic repertory of the resistant growing bacteria communities (repertory of Operational Taxonomic Units [OTU]). Temperature and salinity influence the abundance of the cultivable bacteria in presence of ATBs and hence the c-ICs. Very low ATB concentrations can decrease the bacterial abundance significantly. Beside a few ubiquitous genera (Bacillus, Pseudomonas, Shewanella, Vibrio), most resistant OTUs are specific of a type of water. In brackish water, resistant OTUs are more diverse and their community structure less vulnerable to ATBs than those in freshwater. We anticipate that c-IC measurement combined with taxonomic description can be applied to any littoral region to characterize the resistant bacterial communities in the coastal waters. This would help us to evaluate the vulnerability of aquatic ecosystems to antimicrobial pressure.

  5. IC-Finder: inferring robustly the hierarchical organization of chromatin folding

    PubMed Central

    Haddad, Noelle

    2017-01-01

    Abstract The spatial organization of the genome plays a crucial role in the regulation of gene expression. Recent experimental techniques like Hi-C have emphasized the segmentation of genomes into interaction compartments that constitute conserved functional domains participating in the maintenance of a proper cell identity. Here, we propose a novel method, IC-Finder, to identify interaction compartments (IC) from experimental Hi-C maps. IC-Finder is based on a hierarchical clustering approach that we adapted to account for the polymeric nature of chromatin. Based on a benchmark of realistic in silico Hi-C maps, we show that IC-Finder is one of the best methods in terms of reliability and is the most efficient numerically. IC-Finder proposes two original options: a probabilistic description of the inferred compartments and the possibility to explore the various hierarchies of chromatin organization. Applying the method to experimental data in fly and human, we show how the predicted segmentation may depend on the normalization scheme and how 3D compartmentalization is tightly associated with epigenomic information. IC-Finder provides a robust and generic ‘all-in-one’ tool to uncover the general principles of 3D chromatin folding and their influence on gene regulation. The software is available at http://membres-timc.imag.fr/Daniel.Jost/DJ-TIMC/Software.html. PMID:28130423

  6. A dual resistance gene system prevents infection by three distinct pathogens.

    PubMed

    Narusaka, Mari; Kubo, Yasuyuki; Shiraishi, Tomonori; Iwabuchi, Masaki; Narusaka, Yoshihiro

    2009-10-01

    Colletotrichum higginsianum causes typical anthracnose lesions on the leaves, petioles, and stems of cruciferous plants. Inoculation of Arabidopsis thaliana ecotype Columbia leaves with C. higginsianum results in fungal growth and disease symptoms reminiscent of those induced in other cruciferous plants. We performed map-based cloning and natural variation analysis of 19 A. thaliana ecotypes to identify a dominant resistance locus against C. higginsianum. We found that the A. thaliana RCH2 (for recognition of C. higginsianum) locus encodes two NB-LRR proteins, both of which are required for resistance to C. higginsianum in the A. thaliana ecotype Ws-0. Both proteins are well-characterized R proteins involved in resistance against bacterial pathogens; RRS1 (resistance to Ralstonia solanacearum 1) confers resistance to strain Rs1000 of R. solanacearum and RPS4 to Pseudomonas syringae pv. tomato strain DC3000 expressing avrRps4 (Pst-avrRps4). Furthermore, we found that both RRS1-Ws and RPS4-Ws genes are required for resistance to Pst-avrRps4 and to Rs1002 R. solanacearum. We therefore demonstrate that a pair of neighboring genes, RRS1-Ws and RPS4-Ws, function cooperatively as a dual R-gene system against at least three distinct pathogens.

  7. PREFACE: 3rd International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE 2014)

    NASA Astrophysics Data System (ADS)

    2015-01-01

    The third International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE) took place at Madrid, Spain, from Thursday 28 to Sunday 31 August 2014. The Conference was attended by more than 200 participants and hosted about 350 oral, poster, and virtual presentations. More than 600 pre-registered authors were also counted. The third IC-MSQUARE consisted of different and diverging workshops and thus covered various research fields where Mathematical Modeling is used, such as Theoretical/Mathematical Physics, Neutrino Physics, Non-Integrable Systems, Dynamical Systems, Computational Nanoscience, Biological Physics, Computational Biomechanics, Complex Networks, Stochastic Modeling, Fractional Statistics, DNA Dynamics, Macroeconomics etc. The scientific program was rather heavy since after the Keynote and Invited Talks in the morning, three parallel oral sessions and one poster session were running every day. However, according to all attendees, the program was excellent with high level of talks and the scientific environment was fruitful, thus all attendees had a creative time. We would like to thank the Keynote Speaker and the Invited Speakers for their significant contribution to IC-MSQUARE. We also would like to thank the Members of the International Advisory and Scientific Committees as well as the Members of the Organizing Committee.

  8. Edible Bird's Nest Prevents High Fat Diet-Induced Insulin Resistance in Rats

    PubMed Central

    Yida, Zhang; Imam, Mustapha Umar; Ismail, Maznah; Ooi, Der-Jiun; Sarega, Nadarajan; Chan, Kim Wei; Hou, Zhiping; Yusuf, Norhayati Binti

    2015-01-01

    Edible bird's nest (EBN) is used traditionally in many parts of Asia to improve wellbeing, but there are limited studies on its efficacy. We explored the potential use of EBN for prevention of high fat diet- (HFD-) induced insulin resistance in rats. HFD was given to rats with or without simvastatin or EBN for 12 weeks. During the intervention period, weight measurements were recorded weekly. Blood samples were collected at the end of the intervention and oral glucose tolerance test conducted, after which the rats were sacrificed and their liver and adipose tissues collected for further studies. Serum adiponectin, leptin, F2-isoprostane, insulin, and lipid profile were estimated, and homeostatic model assessment of insulin resistance computed. Effects of the different interventions on transcriptional regulation of insulin signaling genes were also evaluated. The results showed that HFD worsened metabolic indices and induced insulin resistance partly through transcriptional regulation of the insulin signaling genes. Additionally, simvastatin was able to prevent hypercholesterolemia but promoted insulin resistance similar to HFD. EBN, on the other hand, prevented the worsening of metabolic indices and transcriptional changes in insulin signaling genes due to HFD. The results suggest that EBN may be used as functional food to prevent insulin resistance. PMID:26273674

  9. Genipin-induced inhibition of uncoupling protein-2 sensitizes drug-resistant cancer cells to cytotoxic agents.

    PubMed

    Mailloux, Ryan J; Adjeitey, Cyril Nii-Klu; Harper, Mary-Ellen

    2010-10-13

    Uncoupling protein-2 (UCP2) is known to suppress mitochondrial reactive oxygen species (ROS) production and is employed by drug-resistant cancer cells to mitigate oxidative stress. Using the drug-sensitive HL-60 cells and the drug-resistant MX2 subline as model systems, we show that genipin, a UCP2 inhibitor, sensitizes drug-resistant cells to cytotoxic agents. Increased MX2 cell death was observed upon co-treatment with genipin and different doses of menadione, doxorubicin, and epirubicin. DCFH-DA fluorimetry revealed that the increase in MX2 cell death was accompanied by enhanced cellular ROS levels. The drug-induced increase in ROS was linked to genipin-mediated inhibition of mitochondrial proton leak. State 4 and resting cellular respiratory rates were higher in the MX2 cells in comparison to the HL-60 cells, and the increased respiration was readily suppressed by genipin in the MX2 cells. UCP2 accounted for a remarkable 37% of the resting cellular oxygen consumption indicating that the MX2 cells are functionally reliant on this protein. Higher amounts of UCP2 protein were detected in the MX2 versus the HL-60 mitochondria. The observed effects of genipin were absent in the HL-60 cells pointing to the selectivity of this natural product for drug-resistant cells. The specificity of genipin for UCP2 was confirmed using CHO cells stably expressing UCP2 in which genipin induced an ∼22% decrease in state 4 respiration. These effects were absent in empty vector CHO cells expressing no UCP2. Thus, the chemical inhibition of UCP2 with genipin sensitizes multidrug-resistant cancer cells to cytotoxic agents.

  10. Fatty acid 16:4(n-3) stimulates a GPR120-induced signaling cascade in splenic macrophages to promote chemotherapy resistance

    PubMed Central

    Houthuijzen, Julia M.; Oosterom, Ilse; Hudson, Brian D.; Hirasawa, Akira; Daenen, Laura G. M.; McLean, Chelsea M.; Hansen, Steffen V. F.; van Jaarsveld, Marijn T. M.; Peeper, Daniel S.; Jafari Sadatmand, Sahar; Roodhart, Jeanine M. L.; van de Lest, Chris H. A.; Ulven, Trond; Ishihara, Kenji; Milligan, Graeme; Voest, Emile E.

    2017-01-01

    Although chemotherapy is designed to eradicate tumor cells, it also has significant effects on normal tissues. The platinum-induced fatty acid 16:4(n-3) (hexadeca-4,7,10,13-tetraenoic acid) induces systemic resistance to a broad range of DNA-damaging chemotherapeutics. We show that 16:4(n-3) exerts its effect by activating splenic F4/80+/CD11blow macrophages, which results in production of chemoprotective lysophosphatidylcholines (LPCs). Pharmacologic studies, together with analysis of expression patterns, identified GPR120 on F4/80+/CD11blow macrophages as the relevant receptor for 16:4(n-3). Studies that used splenocytes from GPR120-deficient mice have confirmed this conclusion. Activation of the 16:4(n-3)-GPR120 axis led to enhanced cPLA2 activity in these splenic macrophages and secretion of the resistance-inducing lipid mediator, lysophosphatidylcholine(24:1). These studies identify a novel and unexpected function for GPR120 and suggest that antagonists of this receptor might be effective agents to limit development of chemotherapy resistance.—Houthuijzen, J. M., Oosterom, I., Hudson, B. D., Hirasawa, A., Daenen, L. G. M., McLean, C. M., Hansen, S. V. F., van Jaarsveld, M. T. M., Peeper, D. S., Jafari Sadatmand, S., Roodhart, J. M. L., van de Lest, C. H. A., Ulven, T., Ishihara, K., Milligan, G., Voest, E. E. Fatty acid 16:4(n-3) stimulates a GPR120-induced signaling cascade in splenic macrophages to promote chemotherapy resistance. PMID:28183801

  11. Resistance to herbicides caused by single amino acid mutations in acetyl-CoA carboxylase in resistant populations of grassy weeds.

    PubMed

    Jang, SoRi; Marjanovic, Jasmina; Gornicki, Piotr

    2013-03-01

    Eleven spontaneous mutations of acetyl-CoA carboxylase have been identified in many herbicide-resistant populations of 42 species of grassy weeds, hampering application of aryloxyphenoxypropionate, cyclohexadione and phenylpyrazoline herbicides in agriculture. IC(50) shifts (resistance indices) caused by herbicide-resistant mutations were determined using a recombinant yeast system that allows comparison of the effects of single amino acid mutations in the same biochemical background, avoiding the complexity inherent in the in planta experiments. The effect of six mutations on the sensitivity of acetyl-CoA carboxylase to nine herbicides representing the three chemical classes was studied. A combination of partially overlapping binding sites of the three classes of herbicides and the structure of their variable parts explains cross-resistance among and between the three classes of inhibitors, as well as differences in their specificity. Some degree of resistance was detected for 51 of 54 herbicide/mutation combinations. Introduction of new herbicides targeting acetyl-CoA carboxylase will depend on their ability to overcome the high degree of cross-resistance already existing in weed populations. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  12. Hubble Space Telescope Image: Planetary Nebula IC 4406

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This Hubble Space Telescope image reveals a rainbow of colors in this dying star, called IC 446. Like many other so-called planetary nebulae, IC 4406 exhibits a high degree of symmetry. The nebula's left and right halves are nearly mirror images of the other. If we could fly around IC 446 in a spaceship, we would see that the gas and dust form a vast donut of material streaming outward from the dying star. We do not see the donut shape in this photograph because we are viewing IC 4406 from the Earth-orbiting HST. From this vantage point, we are seeing the side of the donut. This side view allows us to see the intricate tendrils of material that have been compared to the eye's retina. In fact, IC 4406 is dubbed the 'Retina Nebula.' The donut of material confines the intense radiation coming from the remnant of the dying star. Gas on the inside of the donut is ionized by light from the central star and glows. Light from oxygen atoms is rendered blue in this image; hydrogen is shown as green, and nitrogen as red. The range of color in the final image shows the differences in concentration of these three gases in the nebula. This image is a composite of data taken by HST's Wide Field Planetary Camera 2 in June 2001 and in January 2002 by Bob O'Dell (Vanderbilt University) and collaborators, and in January by the Hubble Heritage Team (STScI). Filters used to create this color image show oxygen, hydrogen, and nitrogen gas glowing in this object.

  13. Compensation and resistance to herbivory in seagrasses: induced responses to simulated consumption by fish.

    PubMed

    Vergés, Adriana; Pérez, Marta; Alcoverro, Teresa; Romero, Javier

    2008-04-01

    Herbivory can induce changes in plant traits that may involve both tolerance mechanisms that compensate for biomass loss and resistance traits that reduce herbivore preference. Seagrasses are marine vascular plants that possess many attributes that may favour tolerance and compensatory growth, and they are also defended with mechanisms of resistance such as toughness and secondary metabolites. We quantified phenotypic changes induced by herbivore damage on the temperate seagrass Posidonia oceanica in order to identify specific compensatory and resistance mechanisms in this plant, and to assess any potential trade-offs between these two strategies of defence. We simulated three natural levels of fish herbivory by repeatedly clipping seagrass leaves during the summer period of maximum herbivory. Compensatory responses were determined by measuring shoot-specific growth, photosynthetic rate, and the concentration of nitrogen and carbon resources in leaves and rhizomes. Induced resistance was determined by measuring the concentration of phenolic secondary metabolites and by assessing the long-term effects of continued clipping on herbivore feeding preferences using bioassays. Plants showed a significant ability to compensate for low and moderate losses of leaf biomass by increasing aboveground growth of damaged shoots, but this was not supported by an increase in photosynthetic capacity. Low levels of herbivory induced compensatory growth without any measurable effects on stored resources. In contrast, nitrogen reserves in the rhizomes played a crucial role in the plant's ability to compensate and survive herbivore damage under moderate and high levels of herbivory, respectively. We found no evidence of inducibility of long-term resistance traits in response to herbivory. The concentration of phenolics decreased with increasing compensatory growth despite all treatments having similar carbon leaf content, suggesting reallocation of these compounds towards primary

  14. Piper aduncum against Haemonchus contortus isolates: cross resistance and the research of natural bioactive compounds.

    PubMed

    Gaínza, Yousmel Alemán; Fantatto, Rafaela Regina; Chaves, Francisco Celio Maia; Bizzo, Humberto Ribeiro; Esteves, Sérgio Novita; Chagas, Ana Carolina de Souza

    2016-01-01

    The anthelminthic activity of the essential oil (EO) of Piper aduncum L. was tested in vitro on eggs and larvae of resistant (Embrapa2010) and susceptible (McMaster) isolates of Haemonchus contortus. The EO was obtained by steam distillation and its components identified by chromatography. EO concentrations of 12.5 to 0.02 mg/mL were used in the egg hatch test (EHT) and concentrations of 3.12 to 0.01 mg/mL in the larval development test (LDT). Inhibition concentrations (IC) were determined by the SAS Probit procedure, and significant differences assessed by ANOVA followed by Tukey's test. In the EHT, the IC50 for the susceptible isolate was 5.72 mg/mL. In the LDT, the IC50 and IC90 were, respectively, 0.10 mg/mL and 0.34 mg/mL for the susceptible isolate, and 0.22 mg/mL and 0.51 mg/mL for the resistant isolate. The EO (dillapiole 76.2%) was highly efficacious on phase L1. Due to the higher ICs obtained for the resistant isolate, it was raised the hypothesis that dillapiole may have a mechanism of action that resembles those of other anthelmintic compounds. We further review and discuss studies, especially those conducted in Brazil, that quantified the major constituents of P. aduncum-derived EO.

  15. Targeted Overexpression of Inducible 6-Phosphofructo-2-kinase in Adipose Tissue Increases Fat Deposition but Protects against Diet-induced Insulin Resistance and Inflammatory Responses*

    PubMed Central

    Huo, Yuqing; Guo, Xin; Li, Honggui; Xu, Hang; Halim, Vera; Zhang, Weiyu; Wang, Huan; Fan, Yang-Yi; Ong, Kuok Teong; Woo, Shih-Lung; Chapkin, Robert S.; Mashek, Douglas G.; Chen, Yanming; Dong, Hui; Lu, Fuer; Wei, Lai; Wu, Chaodong

    2012-01-01

    Increasing evidence demonstrates the dissociation of fat deposition, the inflammatory response, and insulin resistance in the development of obesity-related metabolic diseases. As a regulatory enzyme of glycolysis, inducible 6-phosphofructo-2-kinase (iPFK2, encoded by PFKFB3) protects against diet-induced adipose tissue inflammatory response and systemic insulin resistance independently of adiposity. Using aP2-PFKFB3 transgenic (Tg) mice, we explored the ability of targeted adipocyte PFKFB3/iPFK2 overexpression to modulate diet-induced inflammatory responses and insulin resistance arising from fat deposition in both adipose and liver tissues. Compared with wild-type littermates (controls) on a high fat diet (HFD), Tg mice exhibited increased adiposity, decreased adipose inflammatory response, and improved insulin sensitivity. In a parallel pattern, HFD-fed Tg mice showed increased hepatic steatosis, decreased liver inflammatory response, and improved liver insulin sensitivity compared with controls. In both adipose and liver tissues, increased fat deposition was associated with lipid profile alterations characterized by an increase in palmitoleate. Additionally, plasma lipid profiles also displayed an increase in palmitoleate in HFD-Tg mice compared with controls. In cultured 3T3-L1 adipocytes, overexpression of PFKFB3/iPFK2 recapitulated metabolic and inflammatory changes observed in adipose tissue of Tg mice. Upon treatment with conditioned medium from iPFK2-overexpressing adipocytes, mouse primary hepatocytes displayed metabolic and inflammatory responses that were similar to those observed in livers of Tg mice. Together, these data demonstrate a unique role for PFKFB3/iPFK2 in adipocytes with regard to diet-induced inflammatory responses in both adipose and liver tissues. PMID:22556414

  16. The role of Her2-Nrf2 axis in induction of oxaliplatin resistance in colon cancer cells.

    PubMed

    Pirpour Tazehkand, Abbas; Akbarzadeh, Maryam; Velaie, Kobra; Sadeghi, Mohammad Reza; Samadi, Nasser

    2018-04-20

    Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a pivotal role in promoting chemoresistance by regulation of antioxidants and detoxification enzymes. Her2 is a member of tyrosine kinase receptor family with a key function in resistance of cancer cells to chemotherapeutics. The aim of this study was to investigate the possible cross talk between Nrf2 and Her2 mediated signaling pathways in development of oxaliplatin resistance in colon cancer cells. We first generated oxaliplatin-resistant LS174T and SW480 colon cancer cells with different Her2 expression levels by employing IC50 concentrations followed by a resting period. We evaluated the viability and apoptosis of the cells by MTT and flow cytometry assays, respectively. Nrf2 and Her2 gene expression levels were examined by qRT-PCR. The morphology analysis and combination index calculation were performed using the ImagJ and CompuSyn softwares, respectively. Development of resistant cells revealed a marked increase in half maximal inhibitory concentration (IC50) value from 3.95 ± 0.92 μM to 29.27 ± 3.13 μM in SW480 cells and 377 ± 46 nM to 9.59 ± 0.76 μM in LS174T cells with a significant change in morphology of the cells from elongated to small round shape (p < 0.05). Her2 expression level was increased in both types of resistant cells, but the Nrf2 expression was increased in LS174T resistant (LS174T/Res) cells and decreased in SW480/Res cells which were consistent with the level of resistance in these cells (25 fold increase in IC50 value in LS174T/Res cells versus 7 fold increase in this value in SW480/Res cells). Inhibition of either Nrf2 or Her2 alone and in combination caused a significant increase in oxaliplatin-induced cytotoxicity and apoptosis with maximum effects in SW480/Res cells with low Her2 and Nrf2 expression levels. Altogether, our results suggest that inhibition of Nrf2 signaling in colon cancer patients with Her2 overexpression can be considered as

  17. High throughput atmospheric pressure plasma-induced graft polymerization for identifying protein-resistant surfaces.

    PubMed

    Gu, Minghao; Kilduff, James E; Belfort, Georges

    2012-02-01

    Three critical aspects of searching for and understanding how to find highly resistant surfaces to protein adhesion are addressed here with specific application to synthetic membrane filtration. They include the (i) discovery of a series of previously unreported monomers from a large library of monomers with high protein resistance and subsequent low fouling characteristics for membrane ultrafiltration of protein-containing fluids, (ii) development of a new approach to investigate protein-resistant mechanisms from structure-property relationships, and (iii) adaptation of a new surface modification method, called atmospheric pressure plasma-induced graft polymerization (APP), together with a high throughput platform (HTP), for low cost vacuum-free synthesis of anti-fouling membranes. Several new high-performing chemistries comprising two polyethylene glycol (PEG), two amines and one zwitterionic monomers were identified from a library (44 commercial monomers) of five different classes of monomers as strong protein-resistant monomers. Combining our analysis here, using the Hansen solubility parameters (HSP) approach, and data from the literature, we conclude that strong interactions with water (hydrogen bonding) and surface flexibility are necessary for producing the highest protein resistance. Superior protein-resistant surfaces and subsequent anti-fouling performance was obtained with the HTP-APP as compared with our earlier HTP-photo graft-induced polymerization (PGP). Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Resistance Inducers Modulate Pseudomonas syringae pv. Tomato Strain DC3000 Response in Tomato Plants

    PubMed Central

    Scalschi, Loredana; Camañes, Gemma; Llorens, Eugenio; Fernández-Crespo, Emma; López, María M.; García-Agustín, Pilar; Vicedo, Begonya

    2014-01-01

    The efficacy of hexanoic acid (Hx) as an inducer of resistance in tomato plants against Pseudomonas syringae pv. tomato DC3000 was previously demonstrated, and the plant response was characterized. Because little is known about the reaction of the pathogen to this effect, the goal of the present work was to determine whether the changes in the plant defence system affect the pathogen behaviour. This work provides the first demonstration of the response of the pathogen to the changes observed in plants after Hx application in terms of not only the population size but also the transcriptional levels of genes involved in quorum sensing establishment and pathogenesis. Therefore, it is possible that Hx treatment attenuates the virulence and survival of bacteria by preventing or diminishing the appearance of symptoms and controlling the growth of the bacteria in the mesophyll. It is interesting to note that the gene transcriptional changes in the bacteria from the treated plants occur at the same time as the changes in the plants. Hx is able to alter bacteria pathogenesis and survival only when it is applied as a resistance inducer because the changes that it promotes in plants affect the bacteria. PMID:25244125

  19. Glucocorticoid inhibition of leptin- and lipopolysaccharide-induced interleukin-6 production in obesity.

    PubMed

    Huang, Chun-Jung; Acevedo, Edmund O; Mari, David C; Randazzo, Christopher; Shibata, Yoshimi

    2014-01-01

    Obesity is considered a chronic inflammatory condition that enhances the risk of numerous inflammatory diseases, including diabetes and cardiovascular disease. Glucocorticoids (GCs) and synthetic therapeutic GCs are anti-inflammatory agents, but the exact functions of GCs in obesity-related inflammation are unknown. Therefore, the objective of this study was to examine the inhibitory effect of an exogenous GC (dexamethasone, DEX) on leptin- and lipopolysaccharide (LPS)-induced IL-6 production by peripheral blood mononuclear cells (PBMCs) ex vivo in obese subjects compared to normal-weight subjects. Blood samples were drawn from 14 obese (BMI>30 kg/m(2)) and 14 normal-weight (BMI<25 kg/m(2)) subjects. Plasma cortisol, TNF-α and IL-6 levels, and insulin resistance (HOMA-IR) were quantified. Subjects' PBMCs (1×10(6) cells/mL) were isolated and cultured with leptin (18.75 and 250 ng/mL) or LPS (10ng/mL) in the presence of DEX (0, 10(-8), 10(-7), and 10(-6) M), a synthetic GC, for 24 h; IL-6 levels and GC sensitivity (IC50) were assessed in the cultured supernatants. No differences in the plasma cortisol levels were found between the two groups. We found that obese subjects showed greater leptin- and LPS-induced IL-6 production compared to normal-weight subjects. The suppressive effect of DEX on leptin- and LPS-induced IL-6 production (IC50) was not different between the two groups. However, the IC50 of DEX for LPS-induced was correlated with BMI, waist circumference, and hip circumference. These findings suggest that reduced GC sensitivity may be an important mechanism in the up-regulation of selected obese inflammation. Published by Elsevier Inc.

  20. 30 CFR 57.22104 - Open flames (I-C mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Open flames (I-C mines). 57.22104 Section 57... Standards for Methane in Metal and Nonmetal Mines Fire Prevention and Control § 57.22104 Open flames (I-C mines). (a) Open flames, including cutting and welding, shall not be used underground. (b) Welding and...

  1. 30 CFR 57.22104 - Open flames (I-C mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Open flames (I-C mines). 57.22104 Section 57... Standards for Methane in Metal and Nonmetal Mines Fire Prevention and Control § 57.22104 Open flames (I-C mines). (a) Open flames, including cutting and welding, shall not be used underground. (b) Welding and...

  2. 30 CFR 57.22104 - Open flames (I-C mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Open flames (I-C mines). 57.22104 Section 57... Standards for Methane in Metal and Nonmetal Mines Fire Prevention and Control § 57.22104 Open flames (I-C mines). (a) Open flames, including cutting and welding, shall not be used underground. (b) Welding and...

  3. 30 CFR 57.22104 - Open flames (I-C mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Open flames (I-C mines). 57.22104 Section 57... Standards for Methane in Metal and Nonmetal Mines Fire Prevention and Control § 57.22104 Open flames (I-C mines). (a) Open flames, including cutting and welding, shall not be used underground. (b) Welding and...

  4. Evaluating the Role of Multidrug Resistance Protein 3 (MDR3) Inhibition in Predicting Drug-Induced Liver Injury Using 125 Pharmaceuticals.

    PubMed

    Aleo, Michael D; Shah, Falgun; He, Kan; Bonin, Paul D; Rodrigues, A David

    2017-05-15

    The role of bile salt export protein (BSEP) inhibition in drug-induced liver injury (DILI) has been investigated widely, while inhibition of the canalicular multidrug resistant protein 3 (MDR3) has received less attention. This transporter plays a pivotal role in secretion of phospholipids into bile and functions coordinately with BSEP to mediate the formation of bile acid-containing biliary micelles. Therefore, inhibition of MDR3 in human hepatocytes was examined across 125 drugs (70 of Most-DILI-concern and 55 of No-DILI-concern). Of these tested, 41% of Most-DILI-concern and 47% of No-DILI-concern drugs had MDR3 IC 50 values of <50 μM. A better distinction across DILI classifications occurred when systemic exposure was considered where safety margins of 50-fold had low sensitivity (0.29), but high specificity (0.96). Analysis of physical chemical property space showed that basic compounds were twice as likely to be MDR3 inhibitors as acids, neutrals, and zwitterions and that inhibitors were more likely to have polar surface area (PSA) values of <100 Å 2 and cPFLogD values between 1.5 and 5. These descriptors, with different cutoffs, also highlighted a group of compounds that shared dual potency as MDR3 and BSEP inhibitors. Nine drugs classified as Most-DILI-concern compounds (four withdrawn, four boxed warning, and one liver injury warning in their approved label) had intrinsic potency features of <20 μM in both assays, thereby reinforcing the notion that multiple inhibitory mechanisms governing bile formation (bile acid and phospholipid efflux) may confer additional risk factors that play into more severe forms of DILI as shown by others for BSEP inhibitors combined with multidrug resistance-associated protein (MRP2, MRP3, MRP4) inhibitory properties. Avoiding physical property descriptors that highlight dual BSEP and MDR3 inhibition or testing drug candidates for inhibition of multiple efflux transporters (e.g., BSEP, MDR3, and MRPs) may be an effective

  5. Lithium Abundances in the Young Open Cluster IC 2602

    NASA Technical Reports Server (NTRS)

    Randich, S.; Aharpour, N.; Pallavicini, R.; Prosser, C. F.; Stauffer, J. R.

    1997-01-01

    We have obtained high-resolution spectra for 28 candidate late-type stars in the 30 Myr old cluster IC 2602. NLTE Li abundances have been derived from measured equivalent widths. The log n(Li) - T(sub eff) and log n(Li) - mass distributions for our sample stars have been compared with those of the Pleiades and alpha Persei. Our data show that F stars in the three clusters have the same lithium content, which corresponds to the initial content for Pop. I stars. G and early-K IC 2602 stars are, on average, somewhat more Li-rich than their counterparts in the two slightly older clusters. Finally, the latest-type IC 2602 stars are heavily Li depleted, with their Li content being as low as the lowest measured among the Pleiades. As in the Pleiades and alpha Per, a star-to-star scatter in lithium is observed among 30 Myr old late-K/early-K dwarfs in IC 2602, indicating that this spread develops in the pre-main sequence phases.

  6. Antibiotic resistance ofKlebsiella pneumoniae through β-arrestin recruitment-induced β-lactamase signaling pathway.

    PubMed

    Wei, Jiang; Wenjie, Yang; Ping, Liu; Na, Wang; Haixia, Ren; Xuequn, Zhao

    2018-03-01

    Overuse and misuse of antibiotics leads to rapid evolution of antibiotic-resistant bacteria and antibiotic resistance genes. Klebsiella pneumoniae has become the most common pathogenic bacterium accountable for nosocomial infections due to its high virulence factor and general occurrence of resistance to most antibiotics. The β-lactamase signaling pathway has been suggested to be involved in antibiotic resistance against β-lactams in Klebsiella pneumoniae . In the present study, the molecular mechanism of the antibiotic resistance of Klebsiella pneumoniae was investigated and the results indicated involvement of the β-arrestin recruitment-induced β-lactamase signaling pathway. Antimicrobial susceptibility of Klebsiella pneumoniae was assessed using automated systems and extended-spectrum β-lactamase (ESBL) and β-arrestin expression levels in Klebsiella pneumoniae were analyzed by reverse-transcription quantitative PCR. β-lactam resistance in Klebsiella pneumoniae was determined using β-lactam agar screening plates. The results demonstrated that β-arrestin recruitment was increased in Klebsiella pneumoniae with antibiotic resistance (AR- K.P .) compared with that in the native Klebsiella pneumoniae strain (NB- K.P .). Increased production of ESBL was observed in AR- K.P . after treatment with the β-lactam penicillin. Of note, inhibition of β-arrestin recruitment significantly suppressed ESBL expression in AR- K.P . and in addition, genes encoding β-arrestin and ESBL were upregulated in Klebsiella pneumoniae . Restoration of endogenous β-arrestin markedly increased antibiotic resistance of Klebsiella pneumoniae to β-lactam. Knockdown of endogenous β-arrestin downregulated antibiotic resistance genes and promoted the inhibitory effects of β-lactam antibiotic treatment on Klebsiella pneumoniae growth. In conclusion, the present study identified that β-arrestin recruitment was associated with growth and resistance to β-lactams, which suggested that

  7. ASASSN-16fp (SN 2016coi): a transitional supernova between Type Ic and broad-lined Ic

    NASA Astrophysics Data System (ADS)

    Kumar, Brajesh; Singh, A.; Srivastav, S.; Sahu, D. K.; Anupama, G. C.

    2018-01-01

    We present results based on a well-sampled optical (UBVRI) and ultraviolet (Swift/UVOT) imaging, and low-resolution optical spectroscopic follow-up observations of the nearby Type Ic supernova (SN) ASASSN-16fp (SN 2016coi). The SN was monitored during the photospheric phase (-10 to +33 d with respect to the B-band maximum light). The rise to maximum light and early post-maximum decline of the light curves are slow. The peak absolute magnitude (MV = -17.7 ± 0.2 mag) of ASASSN-16fp is comparable with broad-lined Ic SN 2002ap, SN 2012ap and transitional Ic SN 2004aw but considerably fainter than the gamma-ray burst/X-ray flash associated SNe (e.g. SN 1998bw, 2006aj). Similar to the light curve, the spectral evolution is also slow. ASASSN-16fp shows distinct photospheric phase spectral lines along with the C II features. The expansion velocity of the ejecta near maximum light reached ∼16 000 km s-1 and settled to ∼8000 km s-1, ∼1 month post-maximum. Analytical modelling of the quasi-bolometric light curve of ASASSN-16fp suggests that ∼0.1 M⊙ 56Ni mass was synthesized in the explosion, with a kinetic energy of 6.9^{+1.5}_{-1.3} × 1051 erg and total ejected mass of ∼4.5 ± 0.3 M⊙.

  8. Systemic mesenchymal stem cells reduce growth rate of cisplatin-resistant ovarian cancer.

    PubMed

    Zhu, Pengfei; Chen, Mo; Wang, Li; Ning, Yanxia; Liang, Jie; Zhang, Hao; Xu, Congjian; Chen, Sifeng; Yao, Liangqing

    2013-01-01

    Epithelial ovarian cancer is one of the most malignant cancers in women and resistant to chemotherapy is the major obstacle for the five-year survival rate. Cisplatin is one of the effective anticancer drug used in the ovarian cancer. To find a good strategy to cure the tumors which is resistant to cisplatin, the cisplatin-resistant 3SKOV3 cells were selected from SKOV-3 ovarian cancer cells. Furthermore, the isolated mesenchymal stem cells were infused systemically to try to cure the transplanted tumor induced by 3SKOV3 cells in nude mice. The morphology and cell membrane CD44 expression were investigated by microscope and flow cytometry. The biological behaviors of resistant 3SKOV3 and its parental SKOV3 cells, including proliferation, adhesion, and cell cycle were determined by CCK8, absorbance assay and FCM methods. The transplanted tumors were set up in nude mice with 3SKOV3 cells injection. The growth rate of transplanted tumors was detected following with MSCs injection. The 3SKOV3 cells have different morphologic manifestation and expressed high level of CD44 molecule. At the same time, 3SKOV3 cells have less adhesion ability and less S-phase ratio. The isolated MSCs from bone marrow could inhibit the growth of transplanted tumor via systemic injection. The cisplatin-resistant 3SKOV3 cells have the different biological behaviors as its parental SKOV3 cells. The present study indicated that systemic MSCs have the therapeutic role on ovarian cancer. However, further investigations are in progress to elucidate the underlying mechanism.

  9. EDTA a novel inducer of pisatin, a phytoalexin indicator of the non-host resistance in peas.

    PubMed

    Hadwiger, Lee A; Tanaka, Kiwamu

    2014-12-23

    Pea pod endocarp suppresses the growth of an inappropriate fungus or non-pathogen by generating a "non-host resistance response" that completely suppresses growth of the challenging fungus within 6 h. Most of the components of this resistance response including pisatin production can be elicited by an extensive number of both biotic and abiotic inducers. Thus this phytoalexin serves as an indicator to be used in evaluating the chemical properties of inducers that can initiate the resistance response. Many of the pisatin inducers are reported to interact with DNA and potentially cause DNA damage. Here we propose that EDTA (ethylenediaminetetraacetic acid) is an elicitor to evoke non-host resistance in plants. EDTA is manufactured as a chelating agent, however at low concentration it is a strong elicitor, inducing the phytoalexin pisatin, cellular DNA damage and defense-responsive genes. It is capable of activating complete resistance in peas against a pea pathogen. Since there is also an accompanying fragmentation of pea DNA and alteration in the size of pea nuclei, the potential biochemical insult as a metal chelator may not be its primary action. The potential effects of EDTA on the structure of DNA within pea chromatin may assist the transcription of plant defense genes.

  10. Isolation of Mycorrhizal Rhizoctonia as resistance inducer of Dendrobium macrophyllum to drought

    NASA Astrophysics Data System (ADS)

    Soelistijono, R.; Daryanti; Handayani, M. T.

    2018-03-01

    One of the obstacles encountered in the cultivation of orchids Dendrobium macrophyllum is difficult to cultivate in areas with high drought due to the slow absorption of nutrients. Based on previous research, the mycorrhizal binucleate Rhizoctonia (BNR) has the ability to increase the resistance of vanilla (Vanilla planifolia Andrews) to drought, but it has never been tried on orchid Dendrobium macrophyllum. The objectives of this study was to isolate resistance inducer organisms by induced resistance techniques on orchids against drought. It is expected that the administration of mycorrhizal Rhizoctonia can increase the absorption of nutrients in D. macrophyllum which is exposed to high water stress. Each treatment consisted of 3 replications of 3 potted plants. The characterization of mycorrhizal Rhizoctonia isolate from D. macrophyllum root from Surakarta, Kopeng, Magelang, and Yogyakarta did not different morphologically. Character equations are in colony color, cell length and number of cores, while character differences are present in cell width and all isolates are capable of forming a peloton structure.

  11. RBE4 cells are highly resistant to paraquat-induced cytotoxicity: studies on uptake and efflux mechanisms.

    PubMed

    Vilas-Boas, V; Silva, R; Guedes-de-Pinho, P; Carvalho, F; Bastos, M L; Remião, F

    2014-09-01

    Paraquat (PQ) is a widely used, highly toxic and non-selective contact herbicide, which has been associated with central neurotoxic effects, namely the development of Parkinson's disease, but whose effects to the blood-brain barrier (BBB) itself have rarely been studied. This work studied the mechanisms of PQ uptake and efflux in a rat's BBB cell model, the RBE4 cells. PQ is believed to enter cells using the basic or neutral amino acid or polyamine transport systems or through the choline-uptake system. In contrast, PQ efflux from cells is reported to be mediated by P-glycoprotein. Therefore, we evaluated PQ-induced cytotoxicity and the effect of some substrates/blockers of these transporters (such as arginine, L-valine, putrescine, hemicholinium-3 and GF120918) on such cytotoxicity. RBE4 cells were shown to be extremely resistant to PQ after 24 h of exposure; even at concentrations as high as 50 mM approximately 45% of the cells remained viable. Prolonging exposure until 48 h elicited significant cytotoxicity only for PQ concentrations above 5 mM. Although hemicholinium-3, a choline-uptake system inhibitor, significantly protected cells against PQ-induced toxicity, none of the effects were observed for arginine, L-valine or putrescine. Meanwhile, inhibiting the efflux pump P-glycoprotein using GF120918 significantly enhanced PQ-induced cytotoxicity. In conclusion, PQ used the choline-uptake system, instead of the transporters for the basic or neutral amino acids or for the polyamines, to enter RBE4 cells. P-glycoprotein extrudes PQ back to the extracellular medium. However, this efflux mechanism only partially explains the observed RBE4 resistance to PQ. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent.

    PubMed

    Elad, Yigal; David, Dalia Rav; Harel, Yael Meller; Borenshtein, Menahem; Kalifa, Hananel Ben; Silber, Avner; Graber, Ellen R

    2010-09-01

    Biochar is the solid coproduct of biomass pyrolysis, a technique used for carbon-negative production of second-generation biofuels. The biochar can be applied as a soil amendment, where it permanently sequesters carbon from the atmosphere as well as improves soil tilth, nutrient retention, and crop productivity. In addition to its other benefits in soil, we found that soil-applied biochar induces systemic resistance to the foliar fungal pathogens Botrytis cinerea (gray mold) and Leveillula taurica (powdery mildew) on pepper and tomato and to the broad mite pest (Polyphagotarsonemus latus Banks) on pepper. Levels of 1 to 5% biochar in a soil and a coconut fiber-tuff potting medium were found to be significantly effective at suppressing both diseases in leaves of different ages. In long-term tests (105 days), pepper powdery mildew was significantly less severe in the biochar-treated plants than in the plants from the unamended controls although, during the final 25 days, the rate of disease development in the treatments and controls was similar. Possible biochar-related elicitors of systemic induced resistance are discussed.

  13. Guanylyl cyclase activation reverses resistive breathing-induced lung injury and inflammation.

    PubMed

    Glynos, Constantinos; Toumpanakis, Dimitris; Loverdos, Konstantinos; Karavana, Vassiliki; Zhou, Zongmin; Magkou, Christina; Dettoraki, Maria; Perlikos, Fotis; Pavlidou, Athanasia; Kotsikoris, Vasilis; Topouzis, Stavros; Theocharis, Stamatios E; Brouckaert, Peter; Giannis, Athanassios; Papapetropoulos, Andreas; Vassilakopoulos, Theodoros

    2015-06-01

    Inspiratory resistive breathing (RB), encountered in obstructive lung diseases, induces lung injury. The soluble guanylyl cyclase (sGC)/cyclic guanosine monophosphate (cGMP) pathway is down-regulated in chronic and acute animal models of RB, such as asthma, chronic obstructive pulmonary disease, and in endotoxin-induced acute lung injury. Our objectives were to: (1) characterize the effects of increased concurrent inspiratory and expiratory resistance in mice via tracheal banding; and (2) investigate the contribution of the sGC/cGMP pathway in RB-induced lung injury. Anesthetized C57BL/6 mice underwent RB achieved by restricting tracheal surface area to 50% (tracheal banding). RB for 24 hours resulted in increased bronchoalveolar lavage fluid cellularity and protein content, marked leukocyte infiltration in the lungs, and perturbed respiratory mechanics (increased tissue resistance and elasticity, shifted static pressure-volume curve right and downwards, decreased static compliance), consistent with the presence of acute lung injury. RB down-regulated sGC expression in the lung. All manifestations of lung injury caused by RB were exacerbated by the administration of the sGC inhibitor, 1H-[1,2,4]oxodiazolo[4,3-]quinoxalin-l-one, or when RB was performed using sGCα1 knockout mice. Conversely, restoration of sGC signaling by prior administration of the sGC activator BAY 58-2667 (Bayer, Leverkusen, Germany) prevented RB-induced lung injury. Strikingly, direct pharmacological activation of sGC with BAY 58-2667 24 hours after RB reversed, within 6 hours, the established lung injury. These findings raise the possibility that pharmacological targeting of the sGC-cGMP axis could be used to ameliorate lung dysfunction in obstructive lung diseases.

  14. Droplet-Wall/Film Impact in IC Engine Applications

    DTIC Science & Technology

    2017-08-14

    Report: Droplet-Wall/Film Impact in IC Engine Applications (ARO Topic 1.4.1 under ARO’s Dr. Ralph A. Anthenien) The views, opinions and/or findings...in IC Engine Applications (ARO Topic 1.4.1 under ARO’s Dr. Ralph A. Anthenien) Report Term: 0-Other Email: cklaw@princeton.edu Distribution Statement...associated with spraying in internal combustion engines (ICEs). Fuels sprayed inside engines can impact with the internal surfaces and thus not only

  15. The pharmacological modulation of thrombin-induced cerebral thromboembolism in the rabbit.

    PubMed Central

    May, G. R.; Paul, W.; Crook, P.; Butler, K. D.; Page, C. P.

    1992-01-01

    1. Intracarotid (i.c.) administration of thrombin induced a marked accumulation of 111indium-labelled platelets and 125I-labelled fibrinogen within the cranial vasculature of anaesthetized rabbits. 2. Thrombin (100 iu kg-1, i.c.) - induced platelet accumulation was completely abolished by pretreatment with desulphatohirudin (CGP 39393; 1 mg kg-1 i.c., 1 min prior to thrombin). Administration of CGP 39393 1 or 20 min after thrombin produced a significant reduction in platelet accumulation. 3. Intravenous (i.v.) administration of the platelet activating factor (PAF) receptor antagonist BN 52021 (10 mg kg-1) 5 min prior to thrombin (100 iu kg-1, i.c.) had no effect on platelet accumulation. 4. An inhibitor of NO biosynthesis, L-NG-nitro arginine methyl ester (L-NAME; 100 mg kg-1, i.c.), had no significant effect on the cranial platelet accumulation response to thrombin (10 iu kg-1, i.c.) when administered 5 min prior to thrombin. 5. Defibrotide (32 or 64 mg kg-1 bolus i.c. followed by 32 or 64 mg kg-1 h-1, i.c., infusion for 45 min) treatment begun 20 min after thrombin (100 iu kg-1, i.c.) did not significantly modify the cranial platelet accumulation response. 6. Cranial platelet accumulation induced by thrombin (100 iu kg-1, i.c.) was significantly reversed by the fibrinolytic drugs urokinase (20 iu kg-1, i.c., infusion for 45 min), anisoylated plasminogen streptokinase activator complex (APSAC) (200 micrograms kg-1, i.v. bolus) or recombinant tissue plasminogen activator (rt-PA; 100 micrograms kg-1, i.c. bolus followed by 20 micrograms kg-1 min-1, i.c., infusion for 45 min) administered 20 min after thrombin.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1504722

  16. Whole-Genome Sequencing Analysis Accurately Predicts Antimicrobial Resistance Phenotypes in Campylobacter spp.

    PubMed Central

    Tyson, G. H.; Chen, Y.; Li, C.; Mukherjee, S.; Young, S.; Lam, C.; Folster, J. P.; Whichard, J. M.; McDermott, P. F.

    2015-01-01

    The objectives of this study were to identify antimicrobial resistance genotypes for Campylobacter and to evaluate the correlation between resistance phenotypes and genotypes using in vitro antimicrobial susceptibility testing and whole-genome sequencing (WGS). A total of 114 Campylobacter species isolates (82 C. coli and 32 C. jejuni) obtained from 2000 to 2013 from humans, retail meats, and cecal samples from food production animals in the United States as part of the National Antimicrobial Resistance Monitoring System were selected for study. Resistance phenotypes were determined using broth microdilution of nine antimicrobials. Genomic DNA was sequenced using the Illumina MiSeq platform, and resistance genotypes were identified using assembled WGS sequences through blastx analysis. Eighteen resistance genes, including tet(O), blaOXA-61, catA, lnu(C), aph(2″)-Ib, aph(2″)-Ic, aph(2′)-If, aph(2″)-Ig, aph(2″)-Ih, aac(6′)-Ie-aph(2″)-Ia, aac(6′)-Ie-aph(2″)-If, aac(6′)-Im, aadE, sat4, ant(6′), aad9, aph(3′)-Ic, and aph(3′)-IIIa, and mutations in two housekeeping genes (gyrA and 23S rRNA) were identified. There was a high degree of correlation between phenotypic resistance to a given drug and the presence of one or more corresponding resistance genes. Phenotypic and genotypic correlation was 100% for tetracycline, ciprofloxacin/nalidixic acid, and erythromycin, and correlations ranged from 95.4% to 98.7% for gentamicin, azithromycin, clindamycin, and telithromycin. All isolates were susceptible to florfenicol, and no genes associated with florfenicol resistance were detected. There was a strong correlation (99.2%) between resistance genotypes and phenotypes, suggesting that WGS is a reliable indicator of resistance to the nine antimicrobial agents assayed in this study. WGS has the potential to be a powerful tool for antimicrobial resistance surveillance programs. PMID:26519386

  17. Whole-Genome Sequencing Analysis Accurately Predicts Antimicrobial Resistance Phenotypes in Campylobacter spp.

    PubMed

    Zhao, S; Tyson, G H; Chen, Y; Li, C; Mukherjee, S; Young, S; Lam, C; Folster, J P; Whichard, J M; McDermott, P F

    2016-01-15

    The objectives of this study were to identify antimicrobial resistance genotypes for Campylobacter and to evaluate the correlation between resistance phenotypes and genotypes using in vitro antimicrobial susceptibility testing and whole-genome sequencing (WGS). A total of 114 Campylobacter species isolates (82 C. coli and 32 C. jejuni) obtained from 2000 to 2013 from humans, retail meats, and cecal samples from food production animals in the United States as part of the National Antimicrobial Resistance Monitoring System were selected for study. Resistance phenotypes were determined using broth microdilution of nine antimicrobials. Genomic DNA was sequenced using the Illumina MiSeq platform, and resistance genotypes were identified using assembled WGS sequences through blastx analysis. Eighteen resistance genes, including tet(O), blaOXA-61, catA, lnu(C), aph(2″)-Ib, aph(2″)-Ic, aph(2')-If, aph(2″)-Ig, aph(2″)-Ih, aac(6')-Ie-aph(2″)-Ia, aac(6')-Ie-aph(2″)-If, aac(6')-Im, aadE, sat4, ant(6'), aad9, aph(3')-Ic, and aph(3')-IIIa, and mutations in two housekeeping genes (gyrA and 23S rRNA) were identified. There was a high degree of correlation between phenotypic resistance to a given drug and the presence of one or more corresponding resistance genes. Phenotypic and genotypic correlation was 100% for tetracycline, ciprofloxacin/nalidixic acid, and erythromycin, and correlations ranged from 95.4% to 98.7% for gentamicin, azithromycin, clindamycin, and telithromycin. All isolates were susceptible to florfenicol, and no genes associated with florfenicol resistance were detected. There was a strong correlation (99.2%) between resistance genotypes and phenotypes, suggesting that WGS is a reliable indicator of resistance to the nine antimicrobial agents assayed in this study. WGS has the potential to be a powerful tool for antimicrobial resistance surveillance programs. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. 2-deoxy-D-glucose-induced metabolic stress enhances resistance to Listeria monocytogenes infection in mice

    NASA Technical Reports Server (NTRS)

    Miller, E. S.; Bates, R. A.; Koebel, D. A.; Fuchs, B. B.; Sonnenfeld, G.

    1998-01-01

    Exposure to different forms of psychological and physiological stress can elicit a host stress response, which alters normal parameters of neuroendocrine homeostasis. The present study evaluated the influence of the metabolic stressor 2-deoxy-D-glucose (2-DG; a glucose analog, which when administered to rodents, induces acute periods of metabolic stress) on the capacity of mice to resist infection with the facultative intracellular bacterial pathogen Listeria monocytogenes. Female BDF1 mice were injected with 2-DG (500 mg/kg b. wt.) once every 48 h prior to, concurrent with, or after the onset of a sublethal dose of virulent L. monocytogenes. Kinetics of bacterial growth in mice were not altered if 2-DG was applied concurrently or after the start of the infection. In contrast, mice exposed to 2-DG prior to infection demonstrated an enhanced resistance to the listeria challenge. The enhanced bacterial clearance in vivo could not be explained by 2-DG exerting a toxic effect on the listeria, based on the results of two experiments. First, 2-DG did not inhibit listeria replication in trypticase soy broth. Second, replication of L. monocytogenes was not inhibited in bone marrow-derived macrophage cultures exposed to 2-DG. Production of neopterin and lysozyme, indicators of macrophage activation, were enhanced following exposure to 2-DG, which correlated with the increased resistance to L. monocytogenes. These results support the contention that the host response to 2-DG-induced metabolic stress can influence the capacity of the immune system to resist infection by certain classes of microbial pathogens.

  19. Adipose tissue macrophages in the Development of Obesity-induced Inflammation, Insulin Resistance and Type 2 Diabetes

    PubMed Central

    Lee, Jongsoon

    2014-01-01

    It has been increasingly accepted that chronic subacute inflammation plays an important role in the development of insulin resistance and Type 2 Diabetes in animals and humans. Particularly supporting this is that suppression of systemic inflammation in Type 2 Diabetes improves glycemic control; this also points to a new potential therapeutic target for the treatment of Type 2 Diabetes. Recent studies strongly suggest that obesity-induced inflammation is mainly mediated by tissue resident immune cells, with particular attention being focused on adipose tissue macrophages (ATMs). This review delineates the current progress made in understanding obesity-induced inflammation and the roles ATMs play in this process. PMID:23397293

  20. Hypoxia-induced resistance to doxorubicin and methotrexate in human melanoma cell lines in vitro.

    PubMed

    Sanna, K; Rofstad, E K

    1994-07-15

    Rodent cell lines can develop resistance to doxorubicin and methotrexate during hypoxic stress. This has so far not been observed in human tumor cell lines. The purpose of our communication is to show that doxorubicin and methotrexate resistance can also develop in human melanoma cells during exposure to hypoxia. Four cell lines (BEX-c, COX-c, SAX-c, WIX-c) have been studied. Cells were exposed to hypoxia (O2 concentration < 10 ppm) for 24 hr prior to reoxygenation. Doxorubicin and methotrexate cell survival curves were determined immediately after as well as 18 and 42 hr after reoxygenation. The 4 cell lines were relatively sensitive to doxorubicin without hypoxia pre-treatment, and all developed resistance during exposure to hypoxia. Hypoxic stress also induced methotrexate resistance in BEX-c and SAX-c but not in COX-c and WIX-c. BEX-c and SAX-c were sensitive to methotrexate without hypoxia pre-treatment, whereas COX-c and WIX-c were resistant initially. Hypoxia-induced drug resistance was present immediately after reoxygenation and tended to decrease with time but remained statistically significant even 42 hr after reoxygenation.

  1. Resistance to antitumor chemotherapy due to bounded-noise-induced transitions

    NASA Astrophysics Data System (ADS)

    D'Onofrio, Alberto; Gandolfi, Alberto

    2010-12-01

    Tumor angiogenesis is a landmark of solid tumor development, but it is also directly relevant to chemotherapy. Indeed, the density and quality of neovessels may influence the effectiveness of therapies based on blood-born agents. In this paper, first we define a deterministic model of antiproliferative chemotherapy in which the drug efficacy is a unimodal function of vessel density, and then we show that under constant continuous infusion therapy the tumor-vessel system may be multistable. However, the actual drug concentration profiles are affected by bounded even if possibly large fluctuations. Through numerical simulations, we show that the tumor volume may undergo transitions to the higher equilibrium value induced by the bounded noise. In case of periodically delivered boli-based chemotherapy, we model the fluctuations due to time variability of both the drug clearance rate and the distribution volume, as well as those due to irregularities in drug delivery. We observed noise-induced transitions also in case of periodic delivering. By applying a time dense scheduling with constant average delivered drug (metronomic scheduling), we observed an easier suppression of the transitions. Finally, we propose to interpret the above phenomena as an unexpected non-genetic kind of resistance to chemotherapy.

  2. Phytohormone Signaling of the Resistance to Plum pox virus (PPV, Sharka Disease) Induced by Almond (Prunus dulcis (Miller) Webb) Grafting to Peach (P. persica L. Batsch).

    PubMed

    Dehkordi, Azam Nikbakht; Rubio, Manuel; Babaeian, Nadali; Albacete, Alfonso; Martínez-Gómez, Pedro

    2018-05-03

    Plum pox virus (PPV, sharka) is a limiting factor for peach production, and no natural sources of resistance have been described. Recent studies, however, have demonstrated that grafting the almond cultivar "Garrigues" onto the "GF305" peach infected with Dideron-type (PPV-D) isolates progressively reduces disease symptoms and virus accumulation. Furthermore, grafting "Garrigues" onto "GF305" prior to PPV-D inoculation has been found to completely prevent virus infection, showing that resistance is constitutive and not induced by the virus. To unravel the phytohormone signaling of this mechanism, we analyzed the following phytohormones belonging to the principal hormone classes: the growth-related phytohormones cytokinin trans-zeatin (tZ) and the gibberellins GA₃ and GA₄; and the stress-related phytohormones ethylene acid precursor 1-aminocyclopropane-1-carboxylic acid (ACC), abscisic acid (ABA), salicylic acid (SA), and jasmonic acid (JA). PPV inoculation produced a significant increase in GA₃ and ABA in peach, and these imbalances were related to the presence of chlorosis symptoms. However, grafting "Garrigues" almond onto the PPV-inoculated "GF305" peach produced the opposite effect, reducing GA₃ and ABA contents in parallel to the elimination of symptoms. Our results showed the significant implication of SA in this induced resistance in peach with an additional effect on tZ and JA concentrations. This SA-induced resistance based in the decrease in symptoms seems to be different from Systemic Acquired Resistance (SAR) and Induced Systemic Resistance (ISR), which are based in other reactions producing necrosis. Further studies are necessary, however, to validate these results against PPV-D isolates in the more aggressive Marcus-type (PPV-M) isolates.

  3. TRANSFER OF DRUG RESISTANCE BETWEEN ENTERIC BACTERIA INDUCED IN THE MOUSE INTESTINE

    PubMed Central

    Kasuya, Morimasa

    1964-01-01

    Kasuya, Morimasa (Nagoya University School of Medicine, Nagoya, Japan). Transfer of drug resistance between enteric bacteria induced in the mouse intestine. J. Bacteriol. 88:322–328. 1964.—Transfer of multiple drug resistance in the intestines of germ-free and conventional mice was studied with strains of Shigella, Escherichia, and Klebsiella. The transfer experiment was carried out under antibiotic-free conditions to eliminate the production of drug-resistant bacteria by antibiotics. All resistance factors (chloramphenicol, streptomycin, tetracycline, and sulfathiazole) were transferred with ease in the intestinal tracts of mice, when donors and recipients multiplied freely, and acquired resistance was further transferred to other sensitive enteric bacteria in the intestinal tract. Bacteria to which resistance factors were transferred showed, in most of the experiments, exactly the same level and pattern of resistance as the donors. Based on the above, a hypothesis that the same process may possibly occur in the human intestine is presented. PMID:14203347

  4. The jet-ISM interactions in IC 5063

    NASA Astrophysics Data System (ADS)

    Mukherjee, Dipanjan; Wagner, Alexander Y.; Bicknell, Geoffrey V.; Morganti, Raffaella; Oosterloo, Tom; Nesvadba, Nicole; Sutherland, Ralph S.

    2018-05-01

    The interstellar medium of the radio galaxy IC 5063 is highly perturbed by an AGN jet expanding in the gaseous disc of the galaxy. We model this interaction with relativistic hydrodynamic simulations and multiphase initial conditions for the interstellar medium and compare the results with recent observations. As the jets flood through the intercloud channels of the disc, they ablate, accelerate, and disperse clouds to velocities exceeding 400 km s-1. Clouds are also destroyed or displaced in bulk from the central regions of the galaxy. Our models with jet powers of 1044 and 1045 erg s-1 are capable of reproducing many of the observed features in the position velocity diagram of IC 5063, and confirm the notion that the jet is responsible for the strongly perturbed gas dynamics seen in the ionized, neutral, and molecular gas phases. In our simulations, we also see strong venting of the jet plasma perpendicular to the disc, which entrains clumps and diffuse filaments into the halo of the galaxy. Our simulations are the first 3D hydrodynamic simulations of the jet and interstellar matter of IC 5063.

  5. Resistance to etoposide-induced apoptosis in a Burkitt's lymphoma cell line.

    PubMed

    Zhao, E G; Song, Q; Cross, S; Misko, I; Lees-Miller, S P; Lavin, M F

    1998-08-31

    Burkitt's lymphoma cells that vary in their phenotypic characteristics show significantly different degrees of susceptibility to radiation-induced apoptosis. Propensity to undergo apoptosis is reflected in the degradation of substrates such as DNA-dependent protein kinase but the status of bcl-2, c-myc and p53 has been uninformative. In this study, we have focused on 2 Epstein-Barr virus (EBV)-associated Burkitt's cell lines, one (WW2) susceptible and the other (BL29) resistant to etoposide-induced apoptosis. Differences in expression of BHRF1, an EBV gene that is homologous to the Bcl-2 proto-oncogene and known to inhibit apoptosis, or changes in apoptosis inhibitory proteins (IAPs), did not appear to account for the difference in susceptibility in the 2 cell lines. Cytoplasmic extracts from etoposide-treated WW2 cells caused apoptotic changes in nuclei isolated from either BL29 or WW2 cells, whereas extracts from BL29 cells failed to do so. In addition, extracts from etoposide-treated WW2 cells degraded the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), an important indicator of apoptosis, but this protein was resistant to degradation by BL29 extracts. It appears likely that caspase 3 (CPP32) is involved in this degradation since it was activated only in the apoptosis susceptible cells and the pattern of cleavage of DNA-PKcs was similar to that reported previously with recombinant caspase 3. As observed previously, addition of caspase 3 to nuclei failed to induce morphological changes indicative of apoptosis, but addition of caspase 3 to nuclei in the presence of extract from the resistant cells led to apoptotic changes. We conclude that resistance to apoptosis in BL29 cells is due to a failure of etoposide to activate upstream effectors of caspase activity.

  6. Finite-dimensional modeling of network-induced delays for real-time control systems

    NASA Technical Reports Server (NTRS)

    Ray, Asok; Halevi, Yoram

    1988-01-01

    In integrated control systems (ICS), a feedback loop is closed by the common communication channel, which multiplexes digital data from the sensor to the controller and from the controller to the actuator along with the data traffic from other control loops and management functions. Due to asynchronous time-division multiplexing in the network access protocols, time-varying delays are introduced in the control loop, which degrade the system dynamic performance and are a potential source of instability. The delayed control system is represented by a finite-dimensional, time-varying, discrete-time model which is less complex than the existing continuous-time models for time-varying delays; this approach allows for simpler schemes for analysis and simulation of the ICS.

  7. The Search for Wolf-Rayet Stars in IC10

    NASA Astrophysics Data System (ADS)

    Tehrani, Katie; Crowther, Paul; Archer, Isabelle

    2017-11-01

    We present a deep imaging and spectroscopic survey of the Local Group starburst galaxy IC10 using Gemini North/GMOS to unveil the global Wolf-Rayet population. It has previously been suggested that for IC10 to follow the WC/WN versus metallicity dependence seen in other Local Group galaxies, a large WN population must remain undiscovered. Our search revealed 3 new WN stars, and 5 candidates awaiting confirmation, providing little evidence to support this claim. We also compute an updated nebular derived metallicity of log(O/H)+12=8.40 +/- 0.04 for the galaxy using the direct method. Inspection of IC10 WR average line luminosities show these stars are more similar to their LMC, rather than SMC counterparts.

  8. X-ray Irradiation Induced Reversible Resistance Change in Pt/TiO 2 /Pt Cells

    DOE PAGES

    Chang, Seo Hyoung; Kim, Jungho; Phatak, Charudatta; ...

    2014-02-25

    The interaction between X-rays and matter is an intriguing topic for both fundamental science and possible applications. In particular, synchrotron-based brilliant X-ray beams have been used as a powerful diagnostic tool to unveil nanoscale phenomena in functional materials. But, it has not been widely investigated how functional materials respond to the brilliant X-rays. Here, we report the X-ray-induced reversible resistance change in 40-nm-thick TiO 2 films sandwiched by Pt top and bottom electrodes, and propose the physical mechanism behind the emergent phenomenon. Our findings indicate that there exists a photovoltaic-like effect, which modulates the resistance reversibly by a few ordersmore » of magnitude, depending on the intensity of impinging X-rays. Furthermore, we found that this effect, combined with the X-ray irradiation induced phase transition confirmed by transmission electron microscopy, triggers a nonvolatile reversible resistance change. In understanding X-ray-controlled reversible resistance changes we can provide possibilities to control initial resistance states of functional materials, which could be useful for future information and energy storage devices.« less

  9. X-ray irradiation induced reversible resistance change in Pt/TiO2/Pt cells.

    PubMed

    Chang, Seo Hyoung; Kim, Jungho; Phatak, Charudatta; D'Aquila, Kenneth; Kim, Seong Keun; Kim, Jiyoon; Song, Seul Ji; Hwang, Cheol Seong; Eastman, Jeffrey A; Freeland, John W; Hong, Seungbum

    2014-02-25

    The interaction between X-rays and matter is an intriguing topic for both fundamental science and possible applications. In particular, synchrotron-based brilliant X-ray beams have been used as a powerful diagnostic tool to unveil nanoscale phenomena in functional materials. However, it has not been widely investigated how functional materials respond to the brilliant X-rays. Here, we report the X-ray-induced reversible resistance change in 40-nm-thick TiO2 films sandwiched by Pt top and bottom electrodes, and propose the physical mechanism behind the emergent phenomenon. Our findings indicate that there exists a photovoltaic-like effect, which modulates the resistance reversibly by a few orders of magnitude, depending on the intensity of impinging X-rays. We found that this effect, combined with the X-ray irradiation induced phase transition confirmed by transmission electron microscopy, triggers a nonvolatile reversible resistance change. Understanding X-ray-controlled reversible resistance changes can provide possibilities to control initial resistance states of functional materials, which could be useful for future information and energy storage devices.

  10. Nonspecific Resistance Induced by an Immunopharmacologic Agent Derived from Bordetella pertussis.

    DTIC Science & Technology

    1985-01-31

    NONSPECIFIC RESISTANCE INDUCED BY AN IMM1JNOPHAL’-ACOLOGIC AGENT DERIVED FROM a u’seeOG EoTwwE BORDE2’ELLA PERTUSSIS * OTATO RN UU~e AU THOR(*) B OTATO RN...antibodies 20. A 9STRPACT (Con tnue an revwre side It necessary and fdontitlP Ip 5149k IeebffJ LJ..JTreatment of mice with Bordetella pertueeis vaccine...resulted in * resistance to mouse adenovirus infection. Antiviral activity was associated with surface components of B. pertussie . Acellular fractions with

  11. Periodontitis induced by Porphyromonas gingivalis drives periodontal microbiota dysbiosis and insulin resistance via an impaired adaptive immune response.

    PubMed

    Blasco-Baque, Vincent; Garidou, Lucile; Pomié, Céline; Escoula, Quentin; Loubieres, Pascale; Le Gall-David, Sandrine; Lemaitre, Mathieu; Nicolas, Simon; Klopp, Pascale; Waget, Aurélie; Azalbert, Vincent; Colom, André; Bonnaure-Mallet, Martine; Kemoun, Philippe; Serino, Matteo; Burcelin, Rémy

    2017-05-01

    To identify a causal mechanism responsible for the enhancement of insulin resistance and hyperglycaemia following periodontitis in mice fed a fat-enriched diet. We set-up a unique animal model of periodontitis in C57Bl/6 female mice by infecting the periodontal tissue with specific and alive pathogens like Porphyromonas gingivalis ( Pg ), Fusobacterium nucleatum and Prevotella intermedia . The mice were then fed with a diabetogenic/non-obesogenic fat-enriched diet for up to 3 months. Alveolar bone loss, periodontal microbiota dysbiosis and features of glucose metabolism were quantified. Eventually, adoptive transfer of cervical (regional) and systemic immune cells was performed to demonstrate the causal role of the cervical immune system. Periodontitis induced a periodontal microbiota dysbiosis without mainly affecting gut microbiota. The disease concomitantly impacted on the regional and systemic immune response impairing glucose metabolism. The transfer of cervical lymph-node cells from infected mice to naive recipients guarded against periodontitis-aggravated metabolic disease. A treatment with inactivated Pg prior to the periodontal infection induced specific antibodies against Pg and protected the mouse from periodontitis-induced dysmetabolism. Finally, a 1-month subcutaneous chronic infusion of low rates of lipopolysaccharides from Pg mimicked the impact of periodontitis on immune and metabolic parameters. We identified that insulin resistance in the high-fat fed mouse is enhanced by pathogen-induced periodontitis. This is caused by an adaptive immune response specifically directed against pathogens and associated with a periodontal dysbiosis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  12. The Star Cluster System in the Local Group Starburst Galaxy IC 10

    NASA Astrophysics Data System (ADS)

    Lim, Sungsoon; Lee, Myung Gyoon

    2015-05-01

    We present a survey of star clusters in the halo of IC 10, a starburst galaxy in the Local Group, based on Subaru R-band images and NOAO Local Group Survey UBVRI images. We find five new star clusters. All of these star clusters are located far from the center of IC 10, while previously known star clusters are mostly located in the main body. Interestingly, the distribution of these star clusters shows an asymmetrical structure elongated along the east and southwest directions. We derive UBVRI photometry of 66 star clusters, including these new star clusters, as well as previously known star clusters. Ages of the star clusters are estimated from a comparison of their UBVRI spectral energy distribution with the simple stellar population models. We find that the star clusters in the halo are all older than 1 Gyr, while those in the main body have various ages, from very young (several Myr) to old (\\gt 1 Gyr). The young clusters (\\lt 10 Myr) are mostly located in the Hα emission regions and are concentrated on a small region at 2\\prime\\prime in the southeast direction from the galaxy center, while the old clusters are distributed in a wider area than the disk. Intermediate-age clusters (∼100 Myr) are found in two groups. One is close to the location of the young clusters and the other is at ∼ 4\\prime\\prime from the location of the young clusters. The latter may be related to past mergers or tidal interaction.

  13. PREFACE: 4th International Conference on Mathematical Modeling in Physical Sciences (IC-MSquare2015)

    NASA Astrophysics Data System (ADS)

    Vlachos, Dimitrios; Vagenas, Elias C.

    2015-09-01

    The 4th International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE) took place in Mykonos, Greece, from Friday 5th June to Monday 8th June 2015. The Conference was attended by more than 150 participants and hosted about 200 oral, poster, and virtual presentations. There were more than 600 pre-registered authors. The 4th IC-MSQUARE consisted of different and diverging workshops and thus covered various research fields where Mathematical Modeling is used, such as Theoretical/Mathematical Physics, Neutrino Physics, Non-Integrable Systems, Dynamical Systems, Computational Nanoscience, Biological Physics, Computational Biomechanics, Complex Networks, Stochastic Modeling, Fractional Statistics, DNA Dynamics, Macroeconomics etc. The scientific program was rather intense as after the Keynote and Invited Talks in the morning, three parallel oral and one poster session were running every day. However, according to all attendees, the program was excellent with a high quality of talks creating an innovative and productive scientific environment for all attendees. We would like to thank the Keynote Speaker and the Invited Speakers for their significant contribution to IC-MSQUARE. We also would like to thank the Members of the International Advisory and Scientific Committees as well as the Members of the Organizing Committee.

  14. Strain-induced negative differential resistance in ultrasmall carbon nanotube

    NASA Astrophysics Data System (ADS)

    Fang, Hui; Zhang, Fei-Peng; Ruan, Xing-Xiang; Huang, Can-Sheng; Jiang, Zhi-Nian; Peng, Jin-Yun; Wang, Ru-Zhi

    2017-08-01

    The transport properties in ultrasmall single-wall carbon nanotubes (SWCNTs) under tensile strain have been theoretically investigated. The regular negative differential resistance (NDR) induced by the strain undergoes a process from enhancement to weakening in the zigzag (3,0) SWCNT. The NDR achieves maximum with applying 4% tensile strain. Compared to the case of (3,0) SWCNT, that NDR cannot be manipulated by applying strain clearly in (4,0) and (5,0) ultrasmall SWCNTs with tensile strain lower than 10%. It proposes this strain-induced NDR effect to demonstrate the possibility of finding potential applications in SWCNT-based NDR nanodevices such as in memory devices, oscillators and fast switching devices.

  15. Cranberry Proanthocyanidins are Cytotoxic to Human Cancer Cells and Sensitize Platinum-Resistant Ovarian Cancer Cells to Paraplatin

    PubMed Central

    Singh, Ajay P.; Singh, Rakesh K.; Kim, Kyu Kwang; Satyan, K. S.; Nussbaum, Roger; Torres, Monica; Brard, Laurent; Vorsa, Nicholi

    2010-01-01

    Polyphenolic extracts of the principal flavonoid classes present in cranberry were screened in vitro for cytotoxicity against solid tumor cells lines, identifying two fractions composed principally of proanthocyanidins (PACs) with potential anticancer activity. Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF-MS) analysis of the proanthocyanidins (PACs) fractions indicated the presence of A-type PACs with 1–4 linkages containing between 2–8 epicatechin units with a maximum of 1 epigallocatechin unit. PACs exhibited in vitro cytotoxicity against platinum-resistant human ovarian, neuroblastoma and prostate cancer cell lines (IC50 = 79–479 μg/mL) but were non-cytotoxic to lung fibroblast cells (IC50 > 1000 μg/ml). SKOV-3 ovarian cancer cells treated with PACs exhibited classic apoptotic changes. PACs acted synergistically with paraplatin in SKOV-3 cells. Pretreatment of SKOV-3 cells with PACs (106 μg/ ml) resulted in a significant reduction of the paraplatin IC50 value. Similarly, in a BrdU incorporation assay, co-treatment of SKOV-3 cells with PACs and paraplatin revealed reduced cell proliferation at lower concentrations than with either individually. In SKOV-3 cell cultures co-treated with PAC-1 and paraplatin, an HPLC analysis indicated differential quantitative presence of various PAC oligomers such as DP-8, -9, -11 and -14 indicating either selective binding or uptake. Cranberry proanthocyanidins exhibit cell-line specific cytotoxicity, induce apoptotic markers and augment cytotoxicity of paraplatin in platinum-resistant SKOV-3 ovarian cancer cells. PMID:19172579

  16. Isoliquiritigenin, a strong nod gene- and glyceollin resistance-inducing flavonoid from soybean root exudate.

    PubMed

    Kape, R; Parniske, M; Brandt, S; Werner, D

    1992-05-01

    Isoflavonoid signal molecules from soybean (Glycine max (L.) Merr.) seed and root exudate induce the transcription of nodulation (nod) genes in Bradyrhizobium japonicum. In this study, a new compound with symbiotic activity was isolated from soybean root exudate. The isolated 2',4',4-trihydroxychalcone (isoliquiritigenin) is characterized by its strong inducing activity for the nod genes of B. japonicum. These genes are already induced at concentrations 1 order of magnitude below those required of the previously described isoflavonoid inducers genistein and daidzein. Isoliquiritigenin is also a potent inducer of glyceollin resistance in B. japonicum, which renders this bacterium insensitive to potentially bactericidal concentrations of glyceollin, the phytoalexin of G. max. No chemotactic effect of isoliquiritigenin was observed. The highly efficient induction of nod genes and glyceollin resistance by isoliquiritigenin suggests the ecological significance of this compound, although it is not a major flavonoid constituent of the soybean root exudate in quantitative terms.

  17. ICS security in maritime transportation : a white paper examining the security and resiliency of critical transportation infrastructure

    DOT National Transportation Integrated Search

    2013-07-29

    The John A. Volpe National Transportation Systems Center was asked by the Office of Security of the Maritime Administration to examine the issue of industrial control systems (ICS) security in the Maritime Transportation System (MTS), and to develop ...

  18. Environmental Levels of the Antiviral Oseltamivir Induce Development of Resistance Mutation H274Y in Influenza A/H1N1 Virus in Mallards

    PubMed Central

    Järhult, Josef D.; Söderström, Hanna; Orozovic, Goran; Gunnarsson, Gunnar; Bröjer, Caroline; Latorre-Margalef, Neus; Fick, Jerker; Grabic, Roman; Lennerstrand, Johan; Waldenström, Jonas; Lundkvist, Åke; Olsen, Björn

    2011-01-01

    Oseltamivir (Tamiflu®) is the most widely used drug against influenza infections and is extensively stockpiled worldwide as part of pandemic preparedness plans. However, resistance is a growing problem and in 2008–2009, seasonal human influenza A/H1N1 virus strains in most parts of the world carried the mutation H274Y in the neuraminidase gene which causes resistance to the drug. The active metabolite of oseltamivir, oseltamivir carboxylate (OC), is poorly degraded in sewage treatment plants and surface water and has been detected in aquatic environments where the natural influenza reservoir, dabbling ducks, can be exposed to the substance. To assess if resistance can develop under these circumstances, we infected mallards with influenza A/H1N1 virus and exposed the birds to 80 ng/L, 1 µg/L and 80 µg/L of OC through their sole water source. By sequencing the neuraminidase gene from fecal samples, we found that H274Y occurred at 1 µg/L of OC and rapidly dominated the viral population at 80 µg/L. IC50 for OC was increased from 2–4 nM in wild-type viruses to 400–700 nM in H274Y mutants as measured by a neuraminidase inhibition assay. This is consistent with the decrease in sensitivity to OC that has been noted among human clinical isolates carrying H274Y. Environmental OC levels have been measured to 58–293 ng/L during seasonal outbreaks and are expected to reach µg/L-levels during pandemics. Thus, resistance could be induced in influenza viruses circulating among wild ducks. As influenza viruses can cross species barriers, oseltamivir resistance could spread to human-adapted strains with pandemic potential disabling oseltamivir, a cornerstone in pandemic preparedness planning. We propose surveillance in wild birds as a measure to understand the resistance situation in nature and to monitor it over time. Strategies to lower environmental levels of OC include improved sewage treatment and, more importantly, a prudent use of antivirals. PMID:21931841

  19. Establishment of hydrochloric acid/lipopolysaccharide-induced pelvic inflammatory disease model.

    PubMed

    Oh, Yeonsu; Lee, Jaehun; Kim, Hyeon-Cheol; Hahn, Tae-Wook; Yoon, Byung-Il; Han, Jeong-Hee; Kwon, Yong-Soo; Park, Joung Jun; Koo, Deog-Bon; Rhee, Ki-Jong; Jung, Bae Dong

    2016-09-30

    Pelvic inflammatory disease (PID), which is one of the most problematic complications experienced by women with sexually transmitted diseases, frequently causes secondary infections after reproductive abnormalities in veterinary animals. Although the uterus is self-protective, it becomes fragile during periods or pregnancy. To investigate PID, bacteria or lipopolysaccharide (LPS) extracted from gram negative bacteria has been used to induce the disease in several animal models. However, when LPS is applied to the peritoneum, it often causes systemic sepsis leading to death and the PID was not consistently demonstrated. Hydrochloric acid (HCl) has been used to induce inflammation in the lungs and stomach but not tested for reproductive organs. In this study, we developed a PID model in mice by HCl and LPS sequential intracervical (i.c.) administration. The proinflammatory cytokines, interleukin (IL)-1β, IL-6 and tumor necrosis factor-α, were detected in the mouse uterus by western blot analysis and cytokine enzyme-linked immunosorbent assay after HCl (25 mg/kg) administration i.c. followed by four LPS (50 mg/kg) treatments. Moreover, mice exhibited increased infiltration of neutrophils in the endometrium and epithelial layer. These results suggest that ic co-administration of HCl and LPS induces PID in mice. This new model may provide a consistent and reproducible PID model for future research.

  20. Interobserver variability when employing the IUGA/ICS classification system for complications related to prostheses and grafts in female pelvic floor surgery.

    PubMed

    Gowda, Meghana; Kit, Laura Chang; Stuart Reynolds, W; Wang, Li; Dmochowski, Roger R; Kaufman, Melissa R

    2013-10-01

    To unify and organize reporting, an International Urogynecological Association (IUGA)/International Continence Society (ICS) expert consortium published terminology guidelines with a classification system for complications related to implants used in female pelvic surgery. We hypothesize that the complexity of the codification system may be a hindrance to precision, especially with decreasing levels of postgraduate expertise. Residents, fellows, and attending physicians were asked to code seven test cases taken from published literature. Category, timing, and site components of the classification system were assessed independently and according to the level of training. Interobserver reliability was calculated as percent agreement and Fleiss' kappa statistic. A total of 24 participants (6 attending physicians, 3 fellows, and 15 residents) were tested. The percent agreement showed significant variation when classified by level of training. In all categories, attending physicians had the greatest percentage agreement and largest kappa. The most agreement was seen when attending physicians classified mesh complications by time, 71% agreement with kappa 0.73 [95% confidence interval (CI) 0.58-0.88]. For the same task, the percentage agreement for fellows was 57%, kappa 0.55 (95% CI 0.23-0.87) and with residents 57%, kappa 0.71([95% CI 0.64-0.78). Interestingly, the site component of the classification system had the least overall agreement and lowest kappa [0%, kappa 0.29 (95% CI 0.26-0.32)] followed by the category component [14%, kappa 0.48 (95% CI 0.46-0.5)]. The IUGA/ICS mesh complication classification system has poor interobserver reliability. This trended downward with decreasing postgraduate level; however, we did not have sufficient statistical power to show an association when stratifying by all training levels. This highlights the complex nature of the classification system in its current form and its limitation for widespread clinical and research

  1. 75 FR 54940 - Agency Information Collection (IC) Activities; Revision of an Approved IC; Accident Recordkeeping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-09

    ... include the Agency name and the docket number for this Notice. Note that DOT posts all comments received... underlying this IC is 49 CFR 390.15, ``Assistance in investigations and special studies.'' It requires motor... Information Technology. [FR Doc. 2010-22456 Filed 9-8-10; 8:45 am] BILLING CODE 4910-EX-P ...

  2. Acute and long-term administration of palmitoylcarnitine induces muscle-specific insulin resistance in mice.

    PubMed

    Liepinsh, Edgars; Makrecka-Kuka, Marina; Makarova, Elina; Volska, Kristine; Vilks, Karlis; Sevostjanovs, Eduards; Antone, Unigunde; Kuka, Janis; Vilskersts, Reinis; Lola, Daina; Loza, Einars; Grinberga, Solveiga; Dambrova, Maija

    2017-09-10

    Acylcarnitine accumulation has been linked to perturbations in energy metabolism pathways. In this study, we demonstrate that long-chain (LC) acylcarnitines are active metabolites involved in the regulation of glucose metabolism in vivo. Single-dose administration of palmitoylcarnitine (PC) in fed mice induced marked insulin insensitivity, decreased glucose uptake in muscles, and elevated blood glucose levels. Increase in the content of LC acylcarnitine induced insulin resistance by impairing Akt phosphorylation at Ser473. The long-term administration of PC using slow-release osmotic minipumps induced marked hyperinsulinemia, insulin resistance, and glucose intolerance, suggesting that the permanent accumulation of LC acylcarnitines can accelerate the progression of insulin resistance. The decrease of acylcarnitine content significantly improved glucose tolerance in a mouse model of diet-induced glucose intolerance. In conclusion, we show that the physiological increase in content of acylcarnitines ensures the transition from a fed to fasted state in order to limit glucose metabolism in the fasted state. In the fed state, the inability of insulin to inhibit LC acylcarnitine production induces disturbances in glucose uptake and metabolism. The reduction of acylcarnitine content could be an effective strategy to improve insulin sensitivity. © 2017 BioFactors, 43(5):718-730, 2017. © 2017 The Authors BioFactors published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology.

  3. Effectiveness and safety of imipenem/clavulanate and linezolid to treat multidrug and extensively drug-resistant tuberculosis at a referral hospital in Brazil.

    PubMed

    Arbex, M A; Bonini, E H; Kawakame Pirolla, G; D'Ambrosio, L; Centis, R; Migliori, G B

    Evidence on effectiveness, safety, and tolerability of imipenem/clavulanate (IC) and linezolid containing regimens to treat multidrug-resistant (MDR-) and extensively drug-resistant tuberculosis (XDR-TB) is scarce. The aim of this observational study is to evaluate the therapeutic contribution of IC and linezolid to manage MDR/XDR-TB cases at the reference centre of São Paulo state, Brazil. Twelve patients (9 males, 1 HIV positive in antiretroviral treatment, 4 MDR, 8 XDR) were treated with IC, 11 of them within linezolid-containing regimens. They all were previously treated with treatment failure, for a median (IQR, interquartile range) of 4.5 (2-6.5) times, having a severe resistance pattern (median number of resistances: 7 (5-8)) and being sputum smear and culture positive. IC and linezolid were prescribed at the dose of 1000mg/day and 600mg/day, respectively. The overall exposure was (median (IQR)) 419 (375.5-658) days for IC and 678 (392-720) days for linezolid. All of them converted their sputum (time to sputum conversion; 60 (37.5-90) days) and culture (75 (60-135) days), and 7 were cured while 5 are still on treatment with a gradually improving clinical picture. While no adverse events were reported for IC, 2 minor side effects, only, were attributed to linezolid (17%); in both cases the drug was re-started without further problems. Our study suggests that IC and linezolid-containing regimens can be used safely and with satisfactory outcomes in reference centres to treat MDR/XDR-TB patients. Copyright © 2016 Sociedade Portuguesa de Pneumologia. Published by Elsevier España, S.L.U. All rights reserved.

  4. When a Plant Resistance Inducer Leaves the Lab for the Field: Integrating ASM into Routine Apple Protection Practices.

    PubMed

    Marolleau, Brice; Gaucher, Matthieu; Heintz, Christelle; Degrave, Alexandre; Warneys, Romain; Orain, Gilles; Lemarquand, Arnaud; Brisset, Marie-Noëlle

    2017-01-01

    Plant resistance inducers, also called elicitors, could be useful to reduce the use of pesticides. However, their performance in controlling diseases in the field remains unsatisfactory due to lack of specific knowledge of how they can integrate crop protection practices. In this work, we focused on apple crop and acibenzolar- S -methyl (ASM), a well-known SAR (systemic acquired resistance) inducer of numerous plant species. We provide a protocol for orchard-effective control of apple scab due to the ascomycete fungus Venturia inaequalis , by applying ASM in combination with a light integrated pest management program. Besides we pave the way for future optimization levers by demonstrating in controlled conditions (i) the high influence of apple genotypes, (ii) the ability of ASM to prime defenses in newly formed leaves, (iii) the positive effect of repeated elicitor applications, (iv) the additive effect of a thinning fruit agent.

  5. When a Plant Resistance Inducer Leaves the Lab for the Field: Integrating ASM into Routine Apple Protection Practices

    PubMed Central

    Marolleau, Brice; Gaucher, Matthieu; Heintz, Christelle; Degrave, Alexandre; Warneys, Romain; Orain, Gilles; Lemarquand, Arnaud; Brisset, Marie-Noëlle

    2017-01-01

    Plant resistance inducers, also called elicitors, could be useful to reduce the use of pesticides. However, their performance in controlling diseases in the field remains unsatisfactory due to lack of specific knowledge of how they can integrate crop protection practices. In this work, we focused on apple crop and acibenzolar-S-methyl (ASM), a well-known SAR (systemic acquired resistance) inducer of numerous plant species. We provide a protocol for orchard-effective control of apple scab due to the ascomycete fungus Venturia inaequalis, by applying ASM in combination with a light integrated pest management program. Besides we pave the way for future optimization levers by demonstrating in controlled conditions (i) the high influence of apple genotypes, (ii) the ability of ASM to prime defenses in newly formed leaves, (iii) the positive effect of repeated elicitor applications, (iv) the additive effect of a thinning fruit agent. PMID:29255473

  6. PGRN is a key adipokine mediating high fat diet-induced insulin resistance and obesity through IL-6 in adipose tissue.

    PubMed

    Matsubara, Toshiya; Mita, Ayako; Minami, Kohtaro; Hosooka, Tetsuya; Kitazawa, Sohei; Takahashi, Kenichi; Tamori, Yoshikazu; Yokoi, Norihide; Watanabe, Makoto; Matsuo, Ei-Ichi; Nishimura, Osamu; Seino, Susumu

    2012-01-04

    Adipose tissue secretes adipokines that mediate insulin resistance, a characteristic feature of obesity and type 2 diabetes. By differential proteome analysis of cellular models of insulin resistance, we identified progranulin (PGRN) as an adipokine induced by TNF-α and dexamethasone. PGRN in blood and adipose tissues was markedly increased in obese mouse models and was normalized with treatment of pioglitazone, an insulin-sensitizing agent. Ablation of PGRN (Grn(-/-)) prevented mice from high fat diet (HFD)-induced insulin resistance, adipocyte hypertrophy, and obesity. Grn deficiency blocked elevation of IL-6, an inflammatory cytokine, induced by HFD in blood and adipose tissues. Insulin resistance induced by chronic administration of PGRN was suppressed by neutralizing IL-6 in vivo. Thus, PGRN is a key adipokine that mediates HFD-induced insulin resistance and obesity through production of IL-6 in adipose tissue, and may be a promising therapeutic target for obesity. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Protective immunity against rock bream iridovirus (RBIV) infection and TLR3-mediated type I interferon signaling pathway in rock bream (Oplegnathus fasciatus) following poly (I:C) administration.

    PubMed

    Jung, Myung-Hwa; Jung, Sung-Ju

    2017-08-01

    In this study, we evaluated the potential of poly (I:C) to induce antiviral status for protecting rock bream from RBIV infection. Rock bream injected with poly (I:C) at 2 days before infection (1.1 × 10 4 ) at 20 °C had significantly higher protection with RPS 13.4% and 33.4% at 100 and 200 μg/fish, respectively, through 100 days post infection (dpi). The addition of boost immunization with poly (I:C) at before/post infection at 20 °C clearly enhanced the level of protection showing 33.4% and 60.0% at 100 and 200 μg/fish, respectively. To investigate the development of a protective immune response, rock bream were re-infected with RBIV (1.1 × 10 7 ) at 200 dpi. While 100% of the previously unexposed fish died, 100% of the previously infected fish survived. Poly (I:C) induced TLR3 and Mx responses were observed at several sampling time points in the spleen, kidney and blood. Moreover, significantly high expression levels of IRF3 (2.9- and 3.1-fold at 1 d and 2 days post administration (dpa), respectively), ISG15 and PKR expression (5.4- and 10.2-fold at 2 dpa, respectively) were observed in the blood, but the expression levels were low in the spleen and kidney after poly (I:C) administration. Our results showed the induction of antiviral immune responses and indicate the possibility of developing long term preventive measures against RBIV using poly (I:C). Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Silymarin Induces Insulin Resistance through an Increase of Phosphatase and Tensin Homolog in Wistar Rats

    PubMed Central

    Cheng, Kai-Chun; Asakawa, Akihiro; Li, Ying-Xiao; Chung, Hsien-Hui; Amitani, Haruka; Ueki, Takatoshi; Cheng, Juei-Tang; Inui, Akio

    2014-01-01

    Background and aims Phosphatase and tensin homolog (PTEN) is a phosphoinositide phosphatase that regulates crucial cellular functions, including insulin signaling, lipid and glucose metabolism, as well as survival and apoptosis. Silymarin is the active ingredient in milk thistle and exerts numerous effects through the activation of PTEN. However, the effect of silymarin on the development of insulin resistance remains unknown. Methods Wistar rats fed fructose-rich chow or normal chow were administered oral silymarin to identify the development of insulin resistance using the homeostasis model assessment of insulin resistance and hyperinsulinemic- euglycemic clamping. Changes in PTEN expression in skeletal muscle and liver were compared using western blotting analysis. Further investigation was performed in L6 cells to check the expression of PTEN and insulin-related signals. PTEN deletion in L6 cells was achieved by small interfering ribonucleic acid transfection. Results Oral administration of silymarin at a dose of 200 mg/kg once daily induced insulin resistance in normal rats and enhanced insulin resistance in fructose-rich chow-fed rats. An increase of PTEN expression was observed in the skeletal muscle and liver of rats with insulin resistance. A decrease in the phosphorylation of Akt in L6 myotube cells, which was maintained in a high-glucose condition, was also observed. Treatment with silymarin aggravated high-glucose-induced insulin resistance. Deletion of PTEN in L6 cells reversed silymarin-induced impaired insulin signaling and glucose uptake. Conclusions Silymarin has the ability to disrupt insulin signaling through increased PTEN expression. Therefore, silymarin should be used carefully in type-2 diabetic patients. PMID:24404172

  9. Costs and possible benefits of a two-tier infection control management strategy consisting of active screening for multidrug-resistant organisms and tailored control measures.

    PubMed

    Mutters, N T; Günther, F; Frank, U; Mischnik, A

    2016-06-01

    Multidrug-resistant organisms (MDROs) are an economic burden, and infection control (IC) measures are cost- and labour-intensive. A two-tier IC management strategy was developed, including active screening, in order to achieve effective use of limited resources. Briefly, high-risk patients were differentiated from other patients, distinguished according to type of MDRO, and IC measures were implemented accordingly. To evaluate costs and benefits of this IC management strategy. The study period comprised 2.5 years. All high-risk patients underwent microbiological screening. Gram-negative bacteria (GNB) were classified as multidrug-resistant (MDR) and extensively drug-resistant (XDR). Expenses consisted of costs for staff, materials, laboratory, increased workload and occupational costs. In total, 39,551 patients were screened, accounting for 24.5% of all admissions. Of all screened patients, 7.8% (N=3,104) were MDRO positive; these patients were mainly colonized with vancomycin-resistant enterococci (37.3%), followed by meticillin-resistant Staphylococcus aureus (30.3%) and MDR-GNB (28.3%). The median length of stay (LOS) for all patients was 10 days (interquartile range 3-20); LOS was twice as long in colonized patients (P<0.001). Screening costs totalled 255,093.82€, IC measures cost 97,701.36€, and opportunity costs were 599,225.52€. The savings of this IC management strategy totalled 500,941.84€. Possible transmissions by undetected carriers would have caused additional costs of 613,648.90-4,974,939.26€ (i.e. approximately 600,000-5 million €). Although the costs of a two-tier IC management strategy including active microbiological screening are not trivial, these data indicate that the approach is cost-effective when prevented transmissions are included in the cost estimate. Copyright © 2016 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  10. Effect of Iron Availability on Induction of Systemic Resistance to Fusarium Wilt of Chickpea by Pseudomonas spp.

    PubMed

    Saikia, Ratul; Srivastava, Alok K; Singh, Kiran; Arora, Dilip K; Lee, Min-Woong

    2005-03-01

    Selected isolates of Pseudomonas fluorescens (Pf4-92 and PfRsC5) and P. aeruginosa (PaRsG18 and PaRsG27) were examined for growth promotion and induced systemic resistance against Fusarium wilt of chickpea. Significant increase in plant height was observed in Pseudomonas treated plants. However, plant growth was inhibited when isolates of Pseudomonas were used in combination with Fusarium oxysporum f. sp. ciceri (FocRs1). It was also observed that the Pseudomonas spp. was colonized in root of chickpea and significantly suppressed the disease in greenhouse condition. Rock wool bioassay technique was used to study the effect of iron availability on the induction of systemic resistance to Fusarium wilt of chickpea mediated by the Pseudomonas spp. All the isolates of Pseudomonas spp. showed greater disease control in the induced systemic resistance (ISR) bioassay when iron availability in the nutrient solution was low. High performance liquid chromatography (HPLC) analysis indicated that all the bacterial isolates produced more salicylic acid (SA) at low iron (10µM EDDHA) than high iron availability (10µFe(3+) EDDHA). Except PaRsG27, all the three isolates produced more pseudobactin at low iron than high iron availability.

  11. Effect of Iron Availability on Induction of Systemic Resistance to Fusarium Wilt of Chickpea by Pseudomonas spp.

    PubMed Central

    Saikia, Ratul; Srivastava, Alok K.; Singh, Kiran; Lee, Min-Woong

    2005-01-01

    Selected isolates of Pseudomonas fluorescens (Pf4-92 and PfRsC5) and P. aeruginosa (PaRsG18 and PaRsG27) were examined for growth promotion and induced systemic resistance against Fusarium wilt of chickpea. Significant increase in plant height was observed in Pseudomonas treated plants. However, plant growth was inhibited when isolates of Pseudomonas were used in combination with Fusarium oxysporum f. sp. ciceri (FocRs1). It was also observed that the Pseudomonas spp. was colonized in root of chickpea and significantly suppressed the disease in greenhouse condition. Rock wool bioassay technique was used to study the effect of iron availability on the induction of systemic resistance to Fusarium wilt of chickpea mediated by the Pseudomonas spp. All the isolates of Pseudomonas spp. showed greater disease control in the induced systemic resistance (ISR) bioassay when iron availability in the nutrient solution was low. High performance liquid chromatography (HPLC) analysis indicated that all the bacterial isolates produced more salicylic acid (SA) at low iron (10µM EDDHA) than high iron availability (10µFe3+ EDDHA). Except PaRsG27, all the three isolates produced more pseudobactin at low iron than high iron availability. PMID:24049472

  12. [Activity induced by androsterone and hemisuccinate of androsterone on perfusion pressure and vascular resistance].

    PubMed

    Figueroa, Lauro; Díaz, Francisco; Camacho, Abelardo; Díaz, Eliseo; Marvin, Rolando

    2009-12-01

    Few data exist with respect to the effects of androsterone and their derivatives at cardiovascular level. In addition, the molecular mechanisms and cellular site of action of these androgens are still unclear. An evaluation was conducted on the effects induced by androsterone and hemisuccinate of androsterone on perfusion pressure and vascular resistance. The effects of both androsterone and hemisuccinate of androsterone on the perfusion pressure and vascular resistance in isolated rat hearts (Langendorff model) were evaluated. The results showed that: (1) the hemisuccinate of androsterone [10(-9) M] increases the perfusion pressure and vascular resistance in comparison with the androsterone [10(-9) M]; (2) the effect of androsterone-derivative [10(-9) M-10(-5) M] on perfusion pressure not was inhibited by indometacin [10(-6) M]; (3) nifedipine [10(-6) M] blocks the effects exerted by hemisuccinate of androsterone [10(-9) M-10(-5) M] on perfusion pressure; and (4) the effect of androsterone-derivative [10(-9) M-10(-5) M] on perfusion pressure in presence of flutamide [10(-6) M] was inhibited. The effects induced by androsterone and hemisuccinate of androsterone on the perfusion pressure and resistance vascular probably involve the interaction of steroid-receptor androgenic and, indirectly, activation of the calcium channel to induce variations in the perfusion pressure.

  13. Bias voltage induced resistance switching effect in single-molecule magnets' tunneling junction.

    PubMed

    Zhang, Zhengzhong; Jiang, Liang

    2014-09-12

    An electric-pulse-induced reversible resistance change effect in a molecular magnetic tunneling junction, consisting of a single-molecule magnet (SMM) sandwiched in one nonmagnetic and one ferromagnetic electrode, is theoretically investigated. By applying a time-varying bias voltage, the SMM's spin orientation can be manipulated with large bias voltage pulses. Moreover, the different magnetic configuration at high-resistance/low-resistance states can be 'read out' by utilizing relative low bias voltage. This device scheme can be implemented with current technologies (Khajetoorians et al 2013 Science 339 55) and has potential application in molecular spintronics and high-density nonvolatile memory devices.

  14. Relative resistance of HIV-1 founder viruses to control by interferon-alpha

    PubMed Central

    2013-01-01

    Background Following mucosal human immunodeficiency virus type 1 (HIV-1) transmission, type 1 interferons (IFNs) are rapidly induced at sites of initial virus replication in the mucosa and draining lymph nodes. However, the role played by IFN-stimulated antiviral activity in restricting HIV-1 replication during the initial stages of infection is not clear. We hypothesized that if type 1 IFNs exert selective pressure on HIV-1 replication in the earliest stages of infection, the founder viruses that succeed in establishing systemic infection would be more IFN-resistant than viruses replicating during chronic infection, when type 1 IFNs are produced at much lower levels. To address this hypothesis, the relative resistance of virus isolates derived from HIV-1-infected individuals during acute and chronic infection to control by type 1 IFNs was analysed. Results The replication of plasma virus isolates generated from subjects acutely infected with HIV-1 and molecularly cloned founder HIV-1 strains could be reduced but not fully suppressed by type 1 IFNs in vitro. The mean IC50 value for IFNα2 (22 U/ml) was lower than that for IFNβ (346 U/ml), although at maximally-inhibitory concentrations both IFN subtypes inhibited virus replication to similar extents. Individual virus isolates exhibited differential susceptibility to inhibition by IFNα2 and IFNβ, likely reflecting variation in resistance to differentially up-regulated IFN-stimulated genes. Virus isolates from subjects acutely infected with HIV-1 were significantly more resistant to in vitro control by IFNα than virus isolates generated from the same individuals during chronic, asymptomatic infection. Viral IFN resistance declined rapidly after the acute phase of infection: in five subjects, viruses derived from six-month consensus molecular clones were significantly more sensitive to the antiviral effects of IFNs than the corresponding founder viruses. Conclusions The establishment of systemic HIV-1 infection by

  15. Wide-Field Structure of Local Group Dwarf Irregular Galaxy IC1613

    NASA Astrophysics Data System (ADS)

    Pucha, Ragadeepika; Carlin, Jeffrey; Willman, Beth; Sand, David J.; Bechtol, Keith

    2018-01-01

    IC1613 is a typical dwarf irregular galaxy in the Local Group. Being an isolated dwarf, as opposed to the dwarfs around the Milky Way, it is likely to be subjected to fewer strong environmental effects. As a result, it serves as a good prototype for the study of the structure and evolution of dwarf galaxies. We present g- and i- band photometry from deep imaging of four fields around IC1613, that resolved stars up to ~ 4 magnitudes fainter than the tip of the RGB. This photometry was obtained using Hyper-Suprime Cam (HSC) on the Subaru Telescope. The large (1.5o) field-of-view of HSC provides us with a unique opportunity to study the wide-field structure of this dwarf galaxy. This project explores the structure of IC1613 to radii of about ~ 25 kpc using different types of stellar tracers. The aim is to search for evidence of a stellar halo or stellar over-densities around IC1613. The relative contributions of the different stellar populations as a function of position in IC1613 are also shown.

  16. Beneficial rhizobacteria from rice rhizosphere confers high protection against biotic and abiotic stress inducing systemic resistance in rice seedlings.

    PubMed

    Lucas, Jose Antonio; García-Cristobal, Jorge; Bonilla, Alfonso; Ramos, Beatriz; Gutierrez-Mañero, Javier

    2014-09-01

    The present study reports a screening for PGPR in a highly selective environment, the rhizosphere of rice plants, in southwestern of Spain. Among the 900 isolates, only 38% were positive for at least one of the biochemical activities to detect putative PGPR. The best 80 isolates were selected and identified by 16S rRNA partial sequencing. Among these, 13 strains were selected for growth promotion assays. Only one strain (BaC1-38) was able to significantly increase height, while nine strains significantly inhibited it. Five strains significantly increased dry weight, and only BaC1-21 significantly decreased it. Based on significant modifications in growth, three bacteria (BaC1-13, BaC1-21 and BaC1-38) were tested for systemic induction of resistance against stress challenge (salt and Xanthomonas campestris infection). Protection against salt stress and pathogen infection was similar; BaC1-38 protected by 80%, BaC1-13 by 50% and BaC1-21 only by 20%. Toxicity of salt stress to the plants was evaluated by photosynthetic efficiency of seedlings. Fv/Fm only decreased significantly in plants inoculated with BaC1-13. ΦPSII also decreased significantly in plants inoculated with BaC1-21, but increased significantly with BaC1-38. NPQ decreased significantly in plants inoculated with BaC1-21. The two strains able to induce systemic resistance against Xanthomonas campestris seem to work by different pathways. BaC1-13 primed enzymes related with the detoxification of reactive oxygen species (ROS). However, BaC1-38 primed pathogenesis-related proteins (PRs), and this pathway was more effective, both improved chlorophyll index confirming the priming state of the plant. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. A specialist root herbivore reduces plant resistance and uses an induced plant volatile to aggregate in a density dependent manner

    USDA-ARS?s Scientific Manuscript database

    1. Leaf-herbivore attack often triggers induced resistance in plants. However, certain specialist herbivores can also take advantage of the induced metabolic changes. In some cases, they even manipulate plant resistance, leading to a phenomenon called induced susceptibility. Compared to above-ground...

  18. Adaptive response of rat pancreatic β-cells to insulin resistance induced by monocrotophos: Biochemical evidence.

    PubMed

    Nagaraju, Raju; Rajini, Padmanabhan Sharda

    2016-11-01

    Our previous findings clearly suggested the role of duration of exposure to monocrotophos (MCP) in the development of insulin resistance. Rats exposed chronically to MCP developed insulin resistance with hyperinsulinemia without overt diabetes. In continuation of this vital observation, we sought to delineate the biochemical mechanisms that mediate heightened pancreatic β-cell response in the wake of MCP-induced insulin resistance in rats. Adult rats were orally administered (0.9 and 1.8mg/kgb.w/d) MCP for 180days. Terminally, MCP-treated rats exhibited glucose intolerance, hyperinsulinemia, and potentiation of glucose-induced insulin secretion along with elevated levels of circulating IGF1, free fatty acids, corticosterone, and paraoxonase activity. Biochemical analysis of islet extracts revealed increased levels of insulin, malate, pyruvate and ATP with a concomitant increase in activities of cytosolic and mitochondrial enzymes that are known to facilitate insulin secretion and enhanced shuttle activities. Interestingly, islets from MCP-treated rats exhibited increased insulin secretory potential ex vivo compared to those isolated from control rats. Further, MCP-induced islet hypertrophy was associated with increased insulin-positive cells. Our study demonstrates the impact of the biological interaction between MCP and components of metabolic homeostasis on pancreatic beta cell function/s. We speculate that the heightened pancreatic beta cell function evidenced may be mediated by increased IGF1 and paraoxonase activity, which effectively counters insulin resistance induced by chronic exposure to MCP. Our findings emphasize the need for focused research to understand the confounding environmental risk factors which may modulate heightened beta cell functions in the case of organophosphorus insecticide-induced insulin resistance. Such an approach may help us to explain the sharp increase in the prevalence of type II diabetes worldwide. Copyright © 2016 Elsevier

  19. Carcinogen-induced mdr overexpression is associated with xenobiotic resistance in rat preneoplastic liver nodules and hepatocellular carcinomas.

    PubMed

    Fairchild, C R; Ivy, S P; Rushmore, T; Lee, G; Koo, P; Goldsmith, M E; Myers, C E; Farber, E; Cowan, K H

    1987-11-01

    We have previously reported the isolation of a human breast cancer cell line resistant to doxorubicin (adriamycin; AdrR MCF-7 cells) that has also developed the phenotype of multidrug resistance (MDR). MDR in this cell line is associated with increased expression of mdr (P glycoprotein) gene sequences. The development of MDR in AdrR MCF-7 cells is also associated with changes in the expression of several phase I and phase II drug-detoxifying enzymes. These changes are remarkably similar to those associated with development of xenobiotic resistance in rat hyperplastic liver nodules, a well-studied model system of chemical carcinogenesis. Using an mdr-encoded cDNA sequence isolated from AdrR MCF-7 cells, we have examined the expression of mdr sequences in rat livers under a variety of experimental conditions. The expression of mdr increased 3-fold in regenerating liver. It was also elevated (3- to 12-fold) in several different samples of rat hyperplastic nodules and in four of five hepatomas that developed in this system. This suggests that overexpression of mdr, a gene previously associated with resistance to antineoplastic agents, may also be involved in the development of resistance to xenobiotics in rat hyperplastic nodules. In addition, although the acute administration of 2-acetylaminofluorene induced an 8-fold increase in hepatic mdr-encoded RNA, performance of a partial hepatectomy either before or after administration of 2-acetylaminofluorene resulted in a greater than 80-fold increase in mdr gene expression over that in normal untreated livers. This represents an important in vivo model system in which to study the acute regulation of this drug resistance gene.

  20. 30 CFR 57.22203 - Main fan operation (I-C mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Main fan operation (I-C mines). 57.22203... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22203 Main fan operation (I-C mines). Main fans shall be operated continuously while ore production is in progress. ...

  1. Host-induced gene silencing of cytochrome P450 lanosterol C14α-demethylase–encoding genes confers strong resistance to Fusarium species

    PubMed Central

    Koch, Aline; Kumar, Neelendra; Weber, Lennart; Keller, Harald; Imani, Jafargholi; Kogel, Karl-Heinz

    2013-01-01

    Head blight, which is caused by mycotoxin-producing fungi of the genus Fusarium, is an economically important crop disease. We assessed the potential of host-induced gene silencing targeting the fungal cytochrome P450 lanosterol C-14α-demethylase (CYP51) genes, which are essential for ergosterol biosynthesis, to restrict fungal infection. In axenic cultures of Fusarium graminearum, in vitro feeding of CYP3RNA, a 791-nt double-stranded (ds)RNA complementary to CYP51A, CYP51B, and CYP51C, resulted in growth inhibition [half-maximum growth inhibition (IC50) = 1.2 nM] as well as altered fungal morphology, similar to that observed after treatment with the azole fungicide tebuconazole, for which the CYP51 enzyme is a target. Expression of the same dsRNA in Arabidopsis and barley rendered susceptible plants highly resistant to fungal infection. Microscopic analysis revealed that mycelium formation on CYP3RNA-expressing leaves was restricted to the inoculation sites, and that inoculated barley caryopses were virtually free of fungal hyphae. This inhibition of fungal growth correlated with in planta production of siRNAs corresponding to the targeted CYP51 sequences, as well as highly efficient silencing of the fungal CYP51 genes. The high efficiency of fungal inhibition suggests that host-induced gene-silencing targeting of the CYP51 genes is an alternative to chemical treatments for the control of devastating fungal diseases. PMID:24218613

  2. AVP-IC50 Pred: Multiple machine learning techniques-based prediction of peptide antiviral activity in terms of half maximal inhibitory concentration (IC50).

    PubMed

    Qureshi, Abid; Tandon, Himani; Kumar, Manoj

    2015-11-01

    Peptide-based antiviral therapeutics has gradually paved their way into mainstream drug discovery research. Experimental determination of peptides' antiviral activity as expressed by their IC50 values involves a lot of effort. Therefore, we have developed "AVP-IC50 Pred," a regression-based algorithm to predict the antiviral activity in terms of IC50 values (μM). A total of 759 non-redundant peptides from AVPdb and HIPdb were divided into a training/test set having 683 peptides (T(683)) and a validation set with 76 independent peptides (V(76)) for evaluation. We utilized important peptide sequence features like amino-acid compositions, binary profile of N8-C8 residues, physicochemical properties and their hybrids. Four different machine learning techniques (MLTs) namely Support vector machine, Random Forest, Instance-based classifier, and K-Star were employed. During 10-fold cross validation, we achieved maximum Pearson correlation coefficients (PCCs) of 0.66, 0.64, 0.56, 0.55, respectively, for the above MLTs using the best combination of feature sets. All the predictive models also performed well on the independent validation dataset and achieved maximum PCCs of 0.74, 0.68, 0.59, 0.57, respectively, on the best combination of feature sets. The AVP-IC50 Pred web server is anticipated to assist the researchers working on antiviral therapeutics by enabling them to computationally screen many compounds and focus experimental validation on the most promising set of peptides, thus reducing cost and time efforts. The server is available at http://crdd.osdd.net/servers/ic50avp. © 2015 Wiley Periodicals, Inc.

  3. Identifying Read/Write Speeds for Field-Induced Interfacial Resistive Switching.

    NASA Astrophysics Data System (ADS)

    Tsui, Stephen; Das, Nilanjan; Wang, Yaqi; Xue, Yuyi; Chu, C. W.

    2007-03-01

    Efforts continue to explore new phenomena that may allow for next generation nonvolatile memory technology. Much attention has been drawn to the field-induced resistive switch occurring at the interface between a metal electrode and perovskite oxide. The switch between high (off) and low (on) resistance states is controlled by the polarity of applied voltage pulsing. Characterization of Ag-Pr0.7Ca0.3MnO3 interfaces via impedance spectroscopy shows that the resistances above 10^6 Hz are the same at the on and off states, which limits the reading speed to far slower than the applied switching pulses, or device write speed at the order of 10^7 Hz. We deduce that the switching interface is percolative in nature and that small local rearrangement of defect structures may play a major role.

  4. A Copper-Activated Two-Component System Interacts with Zinc and Imipenem Resistance in Pseudomonas aeruginosa▿

    PubMed Central

    Caille, Olivier; Rossier, Claude; Perron, Karl

    2007-01-01

    The effects of copper (Cu) on trace metal and antibiotic resistance of Pseudomonas aeruginosa have been investigated. Cu treatments induced resistance not only to this metal but also, surprisingly, to zinc (Zn). Quantitative reverse transcription-PCR (qRT-PCR) revealed that after Cu treatment the transcription of the czcRS two-component system (TCS) operon was enhanced as well as that of the czcCBA operon encoding an efflux pump specific for zinc, cadmium, and cobalt. Cu treatments at the same time caused a decrease in the production of OprD porin, resulting in resistance to the carbapenem antibiotic imipenem. The CzcR regulator was known to repress oprD. However, Cu was still able to decrease the production of OprD and induce imipenem resistance in a czcRS knockout mutant. This strongly suggested that another Cu-dependent regulatory system was acting negatively on oprD expression. TCS regulator genes copR-copS have been shown to be involved in Cu tolerance in P. aeruginosa. qRT-PCR showed that overproduction of the CopR or of the CzcR regulator resulted in increased transcription of the czcC gene as well as in a decrease in oprD gene transcription, either in the wild-type strain or in the czcRS knockout mutant. Overproduction experiments suggest that a metal-dependent mechanism operates at the posttranscriptional level to control the production of the CzcCBA efflux pump. This study shows that CopR is a new negative regulator of OprD porin and that it links Zn, Cu, and imipenem resistances by interacting with the CzcRS TCS. PMID:17449606

  5. Antidiabetogenic Effects of Chromium Mitigate Hyperinsulinemia-Induced Cellular Insulin Resistance via Correction of Plasma Membrane Cholesterol Imbalance

    PubMed Central

    Horvath, Emily M.; Tackett, Lixuan; McCarthy, Alicia M.; Raman, Priya; Brozinick, Joseph T.; Elmendorf, Jeffrey S.

    2008-01-01

    Previously, we found that a loss of plasma membrane (PM) phosphatidylinositol 4,5-bisphosphate (PIP2)-regulated filamentous actin (F-actin) structure contributes to insulin-induced insulin resistance. Interestingly, we also demonstrated that chromium picolinate (CrPic), a dietary supplement thought to improve glycemic status in insulin-resistant individuals, augments insulin-regulated glucose transport in insulin-sensitive 3T3-L1 adipocytes by lowering PM cholesterol. Here, to gain mechanistic understanding of these separate observations, we tested the prediction that CrPic would protect against insulin-induced insulin resistance by improving PM features important in cytoskeletal structure and insulin sensitivity. We found that insulin-induced insulin-resistant adipocytes display elevated PM cholesterol with a reciprocal decrease in PM PIP2. This lipid imbalance and insulin resistance was corrected by the cholesterol-lowering action of CrPic. The PM lipid imbalance did not impair insulin signaling, nor did CrPic amplify insulin signal transduction. In contrast, PM analyses corroborated cholesterol and PIP2 interactions influencing cytoskeletal structure. Because extensive in vitro study documents an essential role for cytoskeletal capacity in insulin-regulated glucose transport, we next evaluated intact skeletal muscle from obese, insulin-resistant Zucker (fa/fa) rats. Because insulin resistance in these animals likely involves multiple mechanisms, findings that cholesterol-lowering restored F-actin cytoskeletal structure and insulin sensitivity to that witnessed in lean control muscle were striking. Also, experiments using methyl-β-cyclodextrin to shuttle cholesterol into or out of membranes respectively recapitulated the insulin-induced insulin-resistance and protective effects of CrPic on membrane/cytoskeletal interactions and insulin sensitivity. These data predict a PM cholesterol basis for hyperinsulinemia-associated insulin resistance and importantly

  6. Development and evaluation of a phenotypic assay monitoring resistance formation to protease inhibitors in HIV-1-infected patients.

    PubMed

    Gehringer, Heike; Von der Helm, Klaus; Seelmeir, Sigrid; Weissbrich, Benedikt; Eberle, Josef; Nitschko, Hans

    2003-05-01

    A novel phenotypic assay, based on recombinant expression of the HIV-1-protease was developed and evaluated; it monitors the formation of resistance to protease inhibitors. The HIV-1 protease-encoding region from the blood sample of patients was amplified, ligated into the expression vector pBD2, and recombinantly expressed in Escherichia coli TG1 cells. The resulting recombinant enzyme was purified by a newly developed one-step acid extraction protocol. The protease activity was determined in presence of five selected HIV protease inhibitors and the 50% inhibitory concentration (IC(50)) to the respective protease inhibitors determined. The degree of resistance was expressed in terms of x-fold increase in IC(50) compared to the IC(50) value of an HIV-1 wild type protease preparation. The established test system showed a reproducible recombinant expression of each individual patients' HIV-1 protease population. Samples of nine clinically well characterised HIV-1-infected patients with varying degrees of resistance were analysed. There was a good correlation between clinical parameters and the results obtained by this phenotypic assay. For the majority of patients a blind genotypic analysis of the patients' protease domain revealed a fair correlation to the results of the phenotypic assay. In a minority of patients our phenotypic results diverged from the genotypic ones. This novel phenotypic assay can be carried out within 8-10 days, and offers a significant advantage in time to the current employed phenotypic tests.

  7. Illuminating the Depths of the MagIC (Magnetics Information Consortium) Database

    NASA Astrophysics Data System (ADS)

    Koppers, A. A. P.; Minnett, R.; Jarboe, N.; Jonestrask, L.; Tauxe, L.; Constable, C.

    2015-12-01

    The Magnetics Information Consortium (http://earthref.org/MagIC/) is a grass-roots cyberinfrastructure effort envisioned by the paleo-, geo-, and rock magnetic scientific community. Its mission is to archive their wealth of peer-reviewed raw data and interpretations from magnetics studies on natural and synthetic samples. Many of these valuable data are legacy datasets that were never published in their entirety, some resided in other databases that are no longer maintained, and others were never digitized from the field notebooks and lab work. Due to the volume of data collected, most studies, modern and legacy, only publish the interpreted results and, occasionally, a subset of the raw data. MagIC is making an extraordinary effort to archive these data in a single data model, including the raw instrument measurements if possible. This facilitates the reproducibility of the interpretations, the re-interpretation of the raw data as the community introduces new techniques, and the compilation of heterogeneous datasets that are otherwise distributed across multiple formats and physical locations. MagIC has developed tools to assist the scientific community in many stages of their workflow. Contributors easily share studies (in a private mode if so desired) in the MagIC Database with colleagues and reviewers prior to publication, publish the data online after the study is peer reviewed, and visualize their data in the context of the rest of the contributions to the MagIC Database. From organizing their data in the MagIC Data Model with an online editable spreadsheet, to validating the integrity of the dataset with automated plots and statistics, MagIC is continually lowering the barriers to transforming dark data into transparent and reproducible datasets. Additionally, this web application generalizes to other databases in MagIC's umbrella website (EarthRef.org) so that the Geochemical Earth Reference Model (http://earthref.org/GERM/) portal, Seamount Biogeosciences

  8. Multi-nucleated cells use ROS to induce breast cancer chemo-resistance in vitro and in vivo.

    PubMed

    Parekh, Aditya; Das, Subhayan; Parida, Sheetal; Das, Chandan Kanta; Dutta, Debabrata; Mallick, Sanjaya K; Wu, Pei-Hsun; Kumar, B N Prashanth; Bharti, Rashmi; Dey, Goutam; Banerjee, Kacoli; Rajput, Shashi; Bharadwaj, Deblina; Pal, Ipsita; Dey, Kaushik Kumar; Rajesh, Yetirajam; Jena, Bikash Chandra; Biswas, Angana; Banik, Payel; Pradhan, Anjan K; Das, Swadesh K; Das, Amit Kumar; Dhara, Santanu; Fisher, Paul B; Wirtz, Denis; Mills, Gordon B; Mandal, Mahitosh

    2018-05-10

    Although there is a strong correlation between multinucleated cells (MNCs) and cancer chemo-resistance in variety of cancers, our understanding of how multinucleated cells modulate the tumor micro-environment is limited. We captured multinucleated cells from triple-negative chemo-resistant breast cancers cells in a time frame, where they do not proliferate but rather significantly regulate their micro-environment. We show that oxidatively stressed MNCs induce chemo-resistance in vitro and in vivo by secreting VEGF and MIF. These factors act through the RAS/MAPK pathway to induce chemo-resistance by upregulating anti-apoptotic proteins. In MNCs, elevated reactive oxygen species (ROS) stabilizes HIF-1α contributing to increase production of VEGF and MIF. Together the data indicate, that the ROS-HIF-1α signaling axis is very crucial in regulation of chemo-resistance by MNCs. Targeting ROS-HIF-1α in future may help to abrogate drug resistance in breast cancer.

  9. Unveiling the AGN in IC 883: discovery of a parsec-scale radio jet

    NASA Astrophysics Data System (ADS)

    Romero-Cañizales, C.; Alberdi, A.; Ricci, C.; Arévalo, P.; Pérez-Torres, M. Á.; Conway, J. E.; Beswick, R. J.; Bondi, M.; Muxlow, T. W. B.; Argo, M. K.; Bauer, F. E.; Efstathiou, A.; Herrero-Illana, R.; Mattila, S.; Ryder, S. D.

    2017-05-01

    IC 883 is a luminous infrared galaxy (LIRG) classified as a starburst-active galactic nucleus (AGN) composite. In a previous study, we detected a low-luminosity AGN (LLAGN) radio candidate. Here, we report on our radio follow-up at three frequencies that provides direct and unequivocal evidence of the AGN activity in IC 883. Our analysis of archival X-ray data, together with the detection of a transient radio source with luminosity typical of bright supernovae, gives further evidence of the ongoing star formation activity, which dominates the energetics of the system. At sub-parsec scales, the radio nucleus has a core-jet morphology with the jet being a newly ejected component showing a subluminal proper motion of 0.6-1 c. The AGN contributes less than 2 per cent of the total IR luminosity of the system. The corresponding Eddington factor is ˜10-3, suggesting this is a low-accretion rate engine, as often found in LLAGNs. However, its high bolometric luminosity (˜1044 erg s-1) agrees better with a normal AGN. This apparent discrepancy may just be an indication of the transition nature of the nucleus from a system dominated by star formation, to an AGN-dominated system. The nucleus has a strongly inverted spectrum and a turnover at ˜4.4 GHz, thus qualifying as a candidate for the least luminous (L5.0 GHz ˜ 6.3 × 1028 erg s-1 Hz-1) and one of the youngest (˜3 × 103 yr) gigahertz-peaked spectrum (GPS) sources. If the GPS origin for the IC 883 nucleus is confirmed, then advanced mergers in the LIRG category are potentially key environments to unveil the evolution of GPS sources into more powerful radio galaxies.

  10. Hepatocyte-specific deletion of LASS2 protects against diet-induced hepatic steatosis and insulin resistance.

    PubMed

    Fan, Shaohua; Wang, Yanyan; Wang, Cun; Jin, Haojie; Wu, Zheng; Lu, Jun; Zhang, Zifeng; Sun, Chunhui; Shan, Qun; Wu, Dongmei; Zhuang, Juan; Sheng, Ning; Xie, Ying; Li, Mengqiu; Hu, Bin; Fang, Jingyuan; Zheng, Yuanlin; Qin, Wenxin

    2018-05-20

    Homo sapienslongevity assurance homolog 2 of yeast LAG1 (LASS2) is expressed mostly in human liver. Here, we explored roles of LASS2 in pathogenesis of hepatic steatosis. Hepatocyte-specific LASS2 knockout (LASS2 -/- ) mice were generated using Cre-LoxP system. LASS2 -/- and wild-type (WT) mice were fed with chow or high-fat diet (HFD). We found LASS2 -/- mice were resistant to HFD-induced hepatic steatosis and insulin resistance. In HFD-fed mice, LASS2 deficiency significantly inhibited p38 MAPK and ERK1/ERK2 signaling in mouse liver. This effect was mediated by a significant increase of V-ATPase activity and a decrease of ROS level. We also observed that elevated expression of LASS2 in mouse hepatocyte cell line AML12 obviously decreased V-ATPase activity and increased ROS level by activation of p38 MAPK and ERK1/ERK2 signaling. Our findings indicate that LASS2 plays an important role in the pathogenesis of diet-induced hepatic steatosis and is a potential novel target for prevention and intervention of liver diseases. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Tribbles 3 Mediates Endoplasmic Reticulum Stress-Induced Insulin Resistance in Skeletal Muscle

    PubMed Central

    Koh, Ho-Jin; Toyoda, Taro; Didesch, Michelle M.; Lee, Min-Young; Sleeman, Mark W.; Kulkarni, Rohit N.; Musi, Nicolas; Hirshman, Michael F.; Goodyear, Laurie J.

    2013-01-01

    Endoplasmic Reticulum (ER) stress has been linked to insulin resistance in multiple tissues but the role of ER stress in skeletal muscle has not been explored. ER stress has also been reported to increase tribbles 3 (TRB3) expression in multiple cell lines. Here, we report that high fat feeding in mice, and obesity and type 2 diabetes in humans significantly increases TRB3 and ER stress markers in skeletal muscle. Overexpression of TRB3 in C2C12 myotubes and mouse tibialis anterior muscles significantly impairs insulin signaling. Incubation of C2C12 cells and mouse skeletal muscle with ER stressors thapsigargin and tunicamycin increases TRB3 and impairs insulin signaling and glucose uptake, effects reversed in cells overexpressing RNAi for TRB3 and in muscles from TRB3 knockout mice. Furthermore, TRB3 knockout mice are protected from high fat diet-induced insulin resistance in skeletal muscle. These data demonstrate that TRB3 mediates ER stress-induced insulin resistance in skeletal muscle. PMID:23695665

  12. A new-generation 5-nitroimidazole can induce highly metronidazole-resistant Giardia lamblia in vitro

    PubMed Central

    Dunn, Linda A.; Burgess, Anita G.; Krauer, Kenia G.; Eckmann, Lars; Vanelle, Patrice; Crozet, Maxime D.; Gillin, Frances D.; Upcroft, Peter; Upcroft, Jacqueline A.

    2010-01-01

    The 5-nitroimidazole (NI) compound C17, with a side chain carrying a remote phenyl group in the 2-position of the imidazole ring, is at least 14-fold more active against the gut protozoan parasite Giardia lamblia than the 5-NI drug metronidazole (MTR), with a side chain in the 1-position of the imidazole ring, which is the primary drug for the treatment of giardiasis. Over 10 months, lines resistant to C17 were induced in vitro and were at least 12-fold more resistant to C17 than the parent strains. However, these lines had ID90 values (concentration of drug at which 10% of control parasite ATP levels are detected) for MTR of >200 μM, whilst lines induced to be highly resistant to MTR in vitro have maximum ID90 values around 100 μM (MTR-susceptible isolates typically have an ID90 of 5–12.8 μM). The mechanism of MTR activation in Giardia apparently involves reduction to toxic radicals by the activity of pyruvate:ferredoxin oxidoreductase (PFOR) and the electron acceptor ferredoxin. MTR-resistant Giardia have decreased PFOR activity, which is consistent with decreased activation of MTR in these lines, but C17-resistant lines have normal levels of PFOR. Therefore, an alternative mechanism of resistance in Giardia must account for these super-MTR-resistant cells. PMID:20456926

  13. Urea-induced ROS generation causes insulin resistance in mice with chronic renal failure

    PubMed Central

    D’Apolito, Maria; Du, Xueliang; Zong, Haihong; Catucci, Alessandra; Maiuri, Luigi; Trivisano, Tiziana; Pettoello-Mantovani, Massimo; Campanozzi, Angelo; Raia, Valeria; Pessin, Jeffrey E.; Brownlee, Michael; Giardino, Ida

    2009-01-01

    Although supraphysiological concentrations of urea are known to increase oxidative stress in cultured cells, it is generally thought that the elevated levels of urea in chronic renal failure patients have negligible toxicity. We previously demonstrated that ROS increase intracellular protein modification by O-linked β-N-acetylglucosamine (O-GlcNAc), and others showed that increased modification of insulin signaling molecules by O-GlcNAc reduces insulin signal transduction. Because both oxidative stress and insulin resistance have been observed in patients with end-stage renal disease, we sought to determine the role of urea in these phenotypes. Treatment of 3T3-L1 adipocytes with urea at disease-relevant concentrations induced ROS production, caused insulin resistance, increased expression of adipokines retinol binding protein 4 (RBP4) and resistin, and increased O-GlcNAc–modified insulin signaling molecules. Investigation of a mouse model of surgically induced renal failure (uremic mice) revealed increased ROS production, modification of insulin signaling molecules by O-GlcNAc, and increased expression of RBP4 and resistin in visceral adipose tissue. Uremic mice also displayed insulin resistance and glucose intolerance, and treatment with an antioxidant SOD/catalase mimetic normalized these defects. The SOD/catalase mimetic treatment also prevented the development of insulin resistance in normal mice after urea infusion. These data suggest that therapeutic targeting of urea-induced ROS may help reduce the high morbidity and mortality caused by end-stage renal disease. PMID:19955654

  14. Genomic Insight into Mechanisms of Reversion of Antibiotic Resistance in Multidrug Resistant Mycobacterium tuberculosis Induced by a Nanomolecular Iodine-Containing Complex FS-1.

    PubMed

    Ilin, Aleksandr I; Kulmanov, Murat E; Korotetskiy, Ilya S; Islamov, Rinat A; Akhmetova, Gulshara K; Lankina, Marina V; Reva, Oleg N

    2017-01-01

    Drug induced reversion of antibiotic resistance is a promising way to combat multidrug resistant infections. However, lacking knowledge of mechanisms of drug resistance reversion impedes employing this approach in medicinal therapies. Induction of antibiotic resistance reversion by a new anti-tuberculosis drug FS-1 has been reported. FS-1 was used in this work in combination with standard anti-tuberculosis antibiotics in an experiment on laboratory guinea pigs infected with an extensively drug resistant (XDR) strain Mycobacterium tuberculosis SCAID 187.0. During the experimental trial, genetic changes in the population were analyzed by sequencing of M. tuberculosis isolates followed by variant calling. In total 11 isolates obtained from different groups of infected animals at different stages of disease development and treatment were sequenced. It was found that despite the selective pressure of antibiotics, FS-1 caused a counter-selection of drug resistant variants that speeded up the recovery of the infected animals from XDR tuberculosis. Drug resistance mutations reported in the genome of the initial strain remained intact in more sensitive isolates obtained in this experiment. Variant calling in the sequenced genomes revealed that the drug resistance reversion could be associated with a general increase in genetic heterogeneity of the population of M. tuberculosis . Accumulation of mutations in PpsA and PpsE subunits of phenolpthiocerol polyketide synthase was observed in the isolates treated with FS-1 that may indicate an increase of persisting variants in the population. It was hypothesized that FS-1 caused an active counter-selection of drug resistant variants from the population by aggravating the cumulated fitness cost of the drug resistance mutations. Action of FS-1 on drug resistant bacteria exemplified the theoretically predicted induced synergy mechanism of drug resistance reversion. An experimental model to study the drug resistance reversion

  15. Synthetic organotelluride compounds induce the reversal of Pdr5p mediated fluconazole resistance in Saccharomyces cerevisiae.

    PubMed

    Reis de Sá, Leandro Figueira; Toledo, Fabiano Travanca; de Sousa, Bruno Artur; Gonçalves, Augusto César; Tessis, Ana Claudia; Wendler, Edison P; Comasseto, João V; Dos Santos, Alcindo A; Ferreira-Pereira, Antonio

    2014-07-26

    Resistance to fluconazole, a commonly used azole antifungal, is a challenge for the treatment of fungal infections. Resistance can be mediated by overexpression of ABC transporters, which promote drug efflux that requires ATP hydrolysis. The Pdr5p ABC transporter of Saccharomyces cerevisiae is a well-known model used to study this mechanism of antifungal resistance. The present study investigated the effects of 13 synthetic compounds on Pdr5p. Among the tested compounds, four contained a tellurium-butane group and shared structural similarities that were absent in the other tested compounds: a lateral hydrocarbon chain and an amide group. These four compounds were capable of inhibiting Pdr5p ATPase activity by more than 90%, they demonstrated IC50 values less than 2 μM and had an uncompetitive pattern of Pdr5p ATPase activity inhibition. These organotellurides did not demonstrate cytotoxicity against human erythrocytes or S. cerevisiae mutant strains (a strain that overexpress Pdr5p and a null mutant strain) even in concentrations above 100 μM. When tested at 100 μM, they could reverse the fluconazole resistance expressed by both the S. cerevisiae mutant strain that overexpress Pdr5p and a clinical isolate of Candida albicans. We have identified four organotellurides that are promising candidates for the reversal of drug resistance mediated by drug efflux pumps. These molecules will act as scaffolds for the development of more efficient and effective efflux pump inhibitors that can be used in combination therapy with available antifungals.

  16. Synthetic organotelluride compounds induce the reversal of Pdr5p mediated fluconazole resistance in Saccharomyces cerevisiae

    PubMed Central

    2014-01-01

    Background Resistance to fluconazole, a commonly used azole antifungal, is a challenge for the treatment of fungal infections. Resistance can be mediated by overexpression of ABC transporters, which promote drug efflux that requires ATP hydrolysis. The Pdr5p ABC transporter of Saccharomyces cerevisiae is a well-known model used to study this mechanism of antifungal resistance. The present study investigated the effects of 13 synthetic compounds on Pdr5p. Results Among the tested compounds, four contained a tellurium-butane group and shared structural similarities that were absent in the other tested compounds: a lateral hydrocarbon chain and an amide group. These four compounds were capable of inhibiting Pdr5p ATPase activity by more than 90%, they demonstrated IC50 values less than 2 μM and had an uncompetitive pattern of Pdr5p ATPase activity inhibition. These organotellurides did not demonstrate cytotoxicity against human erythrocytes or S. cerevisiae mutant strains (a strain that overexpress Pdr5p and a null mutant strain) even in concentrations above 100 μM. When tested at 100 μM, they could reverse the fluconazole resistance expressed by both the S. cerevisiae mutant strain that overexpress Pdr5p and a clinical isolate of Candida albicans. Conclusions We have identified four organotellurides that are promising candidates for the reversal of drug resistance mediated by drug efflux pumps. These molecules will act as scaffolds for the development of more efficient and effective efflux pump inhibitors that can be used in combination therapy with available antifungals. PMID:25062749

  17. A new NIR-triggered doxorubicin and photosensitizer indocyanine green co-delivery system for enhanced multidrug resistant cancer treatment through simultaneous chemo/photothermal/photodynamic therapy.

    PubMed

    Yu, Yanna; Zhang, Zhipeng; Wang, Yun; Zhu, Hao; Li, Fangzhou; Shen, Yuanyuan; Guo, Shengrong

    2017-09-01

    It is a great challenge to combat multidrug resistant (MDR) cancer effectively. To address this issue, we developed a new near-infrared (NIR) triggered chemotherapeutic agent doxorubicin (DOX) and photosensitizer indocyanine green (ICG) co-release system by aid of NIR induced photothermal effect of gold nanocages (AuNCs) and temperature sensitive phase-change property of 1-tetradecanol at its melting point of 39°C, which could simultaneously exerted chemo/photothermal/photodynamic treatment on MDR human breast cancer MCF-7/ADR cells. This nano-sized system was constructed by filling the interior of AuNCs with DOX, ICG and 1-tetradecanol, and modifying the surface with biotinylated poly (ethylene glycol) via Au-S bonds, termed as DOX/ICG@biotin-PEG-AuNC-PCM. The DOX and ICG co-release from DOX/ICG@biotin-PEG-AuNC-PCM was much faster in PBS at 40°C or under 808nm NIR irradiation at 2.5W/cm 2 than at 37°C (e.g. 67.27% or 80.31% vs. 5.57% of DOX, 76.08% vs. 3.83% of ICG for 20min). The flow cytometry and confocal laser scanning microscopy (CLSM) results showed, the AuNCs were taken up by MCF-7/ADR cells via endocytosis, thus enhancing DOX uptake; the biotin on AuNCs facilitated this endocytosis; NIR irradiation caused the heating of the AuNCs, triggering the DOX and ICG co-release and enhancing the distribution of DOX in nuclei, the released ICG generated ROS to take photodynamic therapy. Due to the above unique properties, DOX/ICG@biotin-PEG-AuNC-PCM exerted excellent anti-tumor effects under NIR irradiation, its IC 50 against MCF-7/ADR cells was very low, only 0.48µg/mL, much smaller than that of free DOX (74.51μg/mL). A new near-infrared (NIR) triggered chemotherapeutic agent doxorubicin (DOX) and photosensitizer indocyanine green (ICG) co-release system by aid of NIR induced photothermal effect of gold nanocages (AuNCs) and temperature sensitive phase-change property of 1-tetradecanol at its melting point of 39°C, was prepared, termed as DOX

  18. Chlorhexidine Induces VanA-Type Vancomycin Resistance Genes in Enterococci

    PubMed Central

    Bhardwaj, Pooja; Ziegler, Elizabeth

    2016-01-01

    Chlorhexidine is a bisbiguanide antiseptic used for infection control. Vancomycin-resistant E. faecium (VREfm) is among the leading causes of hospital-acquired infections. VREfm may be exposed to chlorhexidine at supra- and subinhibitory concentrations as a result of chlorhexidine bathing and chlorhexidine-impregnated central venous catheter use. We used RNA sequencing to investigate how VREfm responds to chlorhexidine gluconate exposure. Among the 35 genes upregulated ≥10-fold after 15 min of exposure to the MIC of chlorhexidine gluconate were those encoding VanA-type vancomycin resistance (vanHAX) and those associated with reduced daptomycin susceptibility (liaXYZ). We confirmed that vanA upregulation was not strain or species specific by querying other VanA-type VRE. VanB-type genes were not induced. The vanH promoter was found to be responsive to subinhibitory chlorhexidine gluconate in VREfm, as was production of the VanX protein. Using vanH reporter experiments with Bacillus subtilis and deletion analysis in VREfm, we found that this phenomenon is VanR dependent. Deletion of vanR did not result in increased chlorhexidine susceptibility, demonstrating that vanHAX induction is not protective against chlorhexidine. As expected, VanA-type VRE is more susceptible to ceftriaxone in the presence of sub-MIC chlorhexidine. Unexpectedly, VREfm is also more susceptible to vancomycin in the presence of subinhibitory chlorhexidine, suggesting that chlorhexidine-induced gene expression changes lead to additional alterations in cell wall synthesis. We conclude that chlorhexidine induces expression of VanA-type vancomycin resistance genes and genes associated with daptomycin nonsusceptibility. Overall, our results indicate that the impacts of subinhibitory chlorhexidine exposure on hospital-associated pathogens should be further investigated in laboratory studies. PMID:26810654

  19. Social isolation induces autophagy in the mouse mammary gland: link to increased mammary cancer risk

    PubMed Central

    Sumis, Allison; Cook, Katherine L; Andrade, Fabia O; Hu, Rong; Kidney, Emma; Zhang, Xiyuan; Kim, Dominic; Carney, Elissa; Nguyen, Nguyen; Yu, Wei; Bouker, Kerrie B; Cruz, Idalia; Clarke, Robert; Hilakivi-Clarke, Leena

    2018-01-01

    Social isolation is a strong predictor of early all-cause mortality and consistently increases breast cancer risk in both women and animal models. Because social isolation increases body weight, we compared its effects to those caused by a consumption of obesity-inducing diet (OID) in C57BL/6 mice. Social isolation and OID impaired insulin and glucose sensitivity. In socially isolated, OID-fed mice (I-OID), insulin resistance was linked to reduced Pparg expression and increased neuropeptide Y levels, but in group-housed OID fed mice (G-OID), it was linked to increased leptin and reduced adiponectin levels, indicating that the pathways leading to insulin resistance are different. Carcinogen-induced mammary tumorigenesis was significantly higher in I-OID mice than in the other groups, but cancer risk was also increased in socially isolated, control diet-fed mice (I-C) and G-OID mice compared with that in controls. Unfolded protein response (UPR) signaling (GRP78; IRE1) was upregulated in the mammary glands of OID-fed mice, but not in control diet-fed, socially isolated I-C mice. In contrast, expression of BECLIN1, ATG7 and LC3II were increased, and p62 was downregulated by social isolation, indicating increased autophagy. In the mammary glands of socially isolated mice, but not in G-OID mice, mRNA expressions of p53 and the p53-regulated autophagy inducer Dram1 were upregulated, and nuclear p53 staining was strong. Our findings further indicated that autophagy and tumorigenesis were not increased in Atg7+/− mice kept in social isolation and fed OID. Thus, social isolation may increase breast cancer risk by inducing autophagy, independent of changes in body weight. PMID:27550962

  20. Social isolation induces autophagy in the mouse mammary gland: link to increased mammary cancer risk.

    PubMed

    Sumis, Allison; Cook, Katherine L; Andrade, Fabia O; Hu, Rong; Kidney, Emma; Zhang, Xiyuan; Kim, Dominic; Carney, Elissa; Nguyen, Nguyen; Yu, Wei; Bouker, Kerrie B; Cruz, Idalia; Clarke, Robert; Hilakivi-Clarke, Leena

    2016-10-01

    Social isolation is a strong predictor of early all-cause mortality and consistently increases breast cancer risk in both women and animal models. Because social isolation increases body weight, we compared its effects to those caused by a consumption of obesity-inducing diet (OID) in C57BL/6 mice. Social isolation and OID impaired insulin and glucose sensitivity. In socially isolated, OID-fed mice (I-OID), insulin resistance was linked to reduced Pparg expression and increased neuropeptide Y levels, but in group-housed OID fed mice (G-OID), it was linked to increased leptin and reduced adiponectin levels, indicating that the pathways leading to insulin resistance are different. Carcinogen-induced mammary tumorigenesis was significantly higher in I-OID mice than in the other groups, but cancer risk was also increased in socially isolated, control diet-fed mice (I-C) and G-OID mice compared with that in controls. Unfolded protein response (UPR) signaling (GRP78; IRE1) was upregulated in the mammary glands of OID-fed mice, but not in control diet-fed, socially isolated I-C mice. In contrast, expression of BECLIN1, ATG7 and LC3II were increased, and p62 was downregulated by social isolation, indicating increased autophagy. In the mammary glands of socially isolated mice, but not in G-OID mice, mRNA expressions of p53 and the p53-regulated autophagy inducer Dram1 were upregulated, and nuclear p53 staining was strong. Our findings further indicated that autophagy and tumorigenesis were not increased in Atg7(+/-) mice kept in social isolation and fed OID. Thus, social isolation may increase breast cancer risk by inducing autophagy, independent of changes in body weight. © 2016 Society for Endocrinology.