Sample records for icam-1-independent cd18-dependent adhesion

  1. Involvement of adhesion molecules (CD11a-ICAM-1) in vascular endothelial cell injury elicited by PMA-stimulated neutrophils.

    PubMed

    Fujita, H; Morita, I; Murota, S

    1991-06-14

    Protective effect of anti-CD11a and anti-ICAM-1 antibodies on the cytotoxicity induced by PMA-stimulated neutrophils was studied using cultured endothelial cells isolated from bovine carotid artery. Anti-CD11a antibody and anti-ICAM-1 antibody inhibited the endothelial cell injury induced by the activated neutrophils in a dose dependent manner. On the other hand, both antibodies themselves had no effect on either the luminol chemiluminescence released out of the activated neutrophils or the adhesion of the neutrophils to the endothelial cell monolayer. These data suggest that these adhesion molecules play some important roles in the vascular endothelial cell injury elicited by activated neutrophils.

  2. ICAM-3 influences human immunodeficiency virus type 1 replication in CD4+ T-cells independent of DC-SIGN-mediated transmission

    PubMed Central

    Biggins, Julia E.; Biesinger, Tasha; Yu Kimata, Monica T.; Arora, Reetakshi; Kimata, Jason T.

    2007-01-01

    We investigated the role of ICAM-3 in DC-SIGN-mediated human immunodeficiency virus (HIV) infection of CD4+ T cells. Our results demonstrate that ICAM-3 does not appear to play a role in DC-SIGN-mediated infection of CD4+ T cells as virus is transmitted equally to ICAM-3+ or ICAM-3− Jurkat T cells. However, HIV-1 replication is enhanced in ICAM-3− cells, suggesting that ICAM-3 may limit HIV-1 replication. Similar results were obtained when SIV replication was examined in ICAM-3+ and ICAM-3− CEMx174 cells. Furthermore, while ICAM-3 has been proposed to play a co-stimulatory role in T cell activation, DC-SIGN expression on antigen presenting cells did not enhance antigen-dependent activation of T cells. Together, these data indicate that while ICAM-3 may influence HIV-1 replication, it does so independent of DC-SIGN mediated virus transmission or activation of CD4+ T cells. PMID:17434553

  3. Cell-contact-dependent activation of CD4+ T cells by adhesion molecules on synovial fibroblasts.

    PubMed

    Mori, Masato; Hashimoto, Motomu; Matsuo, Takashi; Fujii, Takao; Furu, Moritoshi; Ito, Hiromu; Yoshitomi, Hiroyuki; Hirose, Jun; Ito, Yoshinaga; Akizuki, Shuji; Nakashima, Ran; Imura, Yoshitaka; Yukawa, Naoichiro; Yoshifuji, Hajime; Ohmura, Koichiro; Mimori, Tsuneyo

    2017-05-01

    To determine how cell-cell contact with synovial fibroblasts (SF) influence on the proliferation and cytokine production of CD4 +  T cells. Naïve CD4 +  T cells were cultured with SF from rheumatoid arthritis patients, stimulated by anti-CD3/28 antibody, and CD4 +  T cell proliferation and IFN-γ/IL-17 production were analyzed. To study the role of adhesion molecules, cell contact was blocked by transwell plate or anti-intracellular adhesion molecule-1 (ICAM-1)/vascular cell adhesion molecule-1(VCAM-1) antibody. To study the direct role of adhesion molecules for CD4 +  T cells, CD161 +  or CD161 - naïve CD4 +  T cells were stimulated on plastic plates coated by recombinant ICAM-1 or VCAM-1, and the source of IFN-γ/IL-17 were analyzed. SF enhanced naïve CD4 +  T cell proliferation and IFN-γ/IL-17 production in cell-contact and in part ICAM-1-/VCAM-1-dependent manner. Plate-coated ICAM-1 and VCAM-1 enhanced naïve CD4 +  T cell proliferation and IFN-γ production, while VCAM-1 efficiently promoting IL-17 production. CD161 +  naïve T cells upregulating LFA-1 and VLA-4 were the major source of IFN-γ/IL-17 upon interaction with ICAM-1/VCAM-1. CD4 +  T cells rapidly expand and secrete IFN-γ/IL-17 upon cell-contact with SF via adhesion molecules. Interfering with ICAM-1-/VCAM-1 may be beneficial for inhibiting RA synovitis.

  4. CD18 activation epitopes induced by leukocyte activation.

    PubMed

    Beals, C R; Edwards, A C; Gottschalk, R J; Kuijpers, T W; Staunton, D E

    2001-12-01

    The cell surface adhesion molecule LFA-1 coordinates leukocyte trafficking and is a costimulatory molecule for T cell activation. We developed a panel of mAbs that recognize activation epitopes on the CD18 subunit, and show that stimulation of T lymphocytes appears to be accompanied by a conformational change in a subpopulation of LFA-1 that does not require ligand binding. Activation epitope up-regulation requires divalent cations, is sensitive to cellular signal transduction events, and correlates with cell adhesion. In addition, the stimulated appearance of these activation epitopes is absent in cell lines from patients with leukocyte adhesion deficiency-1/variant that has previously been shown to be defective in LFA-1 activation. Thus, these activation epitope Abs can be used to dissect signal transmission to CD18. Evidence suggests that these CD18 activation epitopes are induced early in cellular activation and are independent of actin rearrangement necessary for avid adhesion. We have also determined that function-blocking CD18 Abs inhibit the induction of activation epitopes. One activation epitope Ab binds to a site on CD18 distinct from that of the blocking Abs, indicating that the blocking Abs suppress a conformational change in LFA-1. We also find that these neoepitopes are present on rLFA-1 with high affinity for ICAM-1 and their binding is modulated in parallel with the affinity of LFA-1 for ICAM-1. Collectively, these neoepitope Abs identify a subpopulation of LFA-1 most likely with high affinity for ICAM-1 and necessary for LFA-1 function.

  5. Indomethacin induced gastropathy in CD18, intercellular adhesion molecule 1, or P-selectin deficient mice

    PubMed Central

    Morise, Z; Granger, D; Fuseler, J; Anderson, D; Grisham, M

    1999-01-01

    BACKGROUND—Neutrophil-endothelial cell interactions are thought to play a critical role in the pathophysiology of non-steroidal anti-inflammatory drug (NSAID) induced gastropathy.
AIMS—To optimise a mouse model of NSAID induced gastropathy and to evaluate the importance of adhesion molecules using adhesion molecule deficient mice.
METHODS—Gastropathy was induced in C57BL/6 mice or their adhesion molecule deficient counterparts via oral administration of indomethacin (20 mg/kg). Lesion scores, mucosal permeability, and histopathology were used to assess gastric mucosal injury.
RESULTS—Intragastric administration of indomethacin induced linear haemorrhagic mucosal lesions, primarily in the corpus of the stomach that were first observed at six hours. These lesions continued to develop over the next six hours with maximal lesion scores and mucosal permeabilities at 12 hours. When indomethacin was administered to mice deficient in CD18, intercellular adhesion molecule 1 (ICAM-1), or P-selectin, there were significant decreases in lesion scores compared with their C57BL/6 controls. In addition, mucosal permeabilities were found to be significantly lower in CD18 or ICAM-1 deficient mice observed at 12 hours.
CONCLUSION—Certain leucocyte and endothelial cell adhesion molecules are important determinants for full expression of indomethacin induced gastropathy. It is proposed that this modification of the mouse model may be useful for the investigation of other pathophysiological mechanisms of NSAID induced gastropathy.


Keywords: indomethacin; gastropathy; cyclooxygenase; intercellular adhesion molecule; VCAM; vascular cell adhesion molecule; P-selectin PMID:10486359

  6. Skeletal muscle cells express ICAM-1 after muscle overload and ICAM-1 contributes to the ensuing hypertrophic response.

    PubMed

    Dearth, Christopher L; Goh, Qingnian; Marino, Joseph S; Cicinelli, Peter A; Torres-Palsa, Maria J; Pierre, Philippe; Worth, Randall G; Pizza, Francis X

    2013-01-01

    We previously reported that leukocyte specific β2 integrins contribute to hypertrophy after muscle overload in mice. Because intercellular adhesion molecule-1 (ICAM-1) is an important ligand for β2 integrins, we examined ICAM-1 expression by murine skeletal muscle cells after muscle overload and its contribution to the ensuing hypertrophic response. Myofibers in control muscles of wild type mice and cultures of skeletal muscle cells (primary and C2C12) did not express ICAM-1. Overload of wild type plantaris muscles caused myofibers and satellite cells/myoblasts to express ICAM-1. Increased expression of ICAM-1 after muscle overload occurred via a β2 integrin independent mechanism as indicated by similar gene and protein expression of ICAM-1 between wild type and β2 integrin deficient (CD18-/-) mice. ICAM-1 contributed to muscle hypertrophy as demonstrated by greater (p<0.05) overload-induced elevations in muscle protein synthesis, mass, total protein, and myofiber size in wild type compared to ICAM-1-/- mice. Furthermore, expression of ICAM-1 altered (p<0.05) the temporal pattern of Pax7 expression, a marker of satellite cells/myoblasts, and regenerating myofiber formation in overloaded muscles. In conclusion, ICAM-1 expression by myofibers and satellite cells/myoblasts after muscle overload could serve as a mechanism by which ICAM-1 promotes hypertrophy by providing a means for cell-to-cell communication with β2 integrin expressing myeloid cells.

  7. Skeletal Muscle Cells Express ICAM-1 after Muscle Overload and ICAM-1 Contributes to the Ensuing Hypertrophic Response

    PubMed Central

    Dearth, Christopher L.; Goh, Qingnian; Marino, Joseph S.; Cicinelli, Peter A.; Torres-Palsa, Maria J.; Pierre, Philippe; Worth, Randall G.; Pizza, Francis X.

    2013-01-01

    We previously reported that leukocyte specific β2 integrins contribute to hypertrophy after muscle overload in mice. Because intercellular adhesion molecule-1 (ICAM-1) is an important ligand for β2 integrins, we examined ICAM-1 expression by murine skeletal muscle cells after muscle overload and its contribution to the ensuing hypertrophic response. Myofibers in control muscles of wild type mice and cultures of skeletal muscle cells (primary and C2C12) did not express ICAM-1. Overload of wild type plantaris muscles caused myofibers and satellite cells/myoblasts to express ICAM-1. Increased expression of ICAM-1 after muscle overload occurred via a β2 integrin independent mechanism as indicated by similar gene and protein expression of ICAM-1 between wild type and β2 integrin deficient (CD18-/-) mice. ICAM-1 contributed to muscle hypertrophy as demonstrated by greater (p<0.05) overload-induced elevations in muscle protein synthesis, mass, total protein, and myofiber size in wild type compared to ICAM-1-/- mice. Furthermore, expression of ICAM-1 altered (p<0.05) the temporal pattern of Pax7 expression, a marker of satellite cells/myoblasts, and regenerating myofiber formation in overloaded muscles. In conclusion, ICAM-1 expression by myofibers and satellite cells/myoblasts after muscle overload could serve as a mechanism by which ICAM-1 promotes hypertrophy by providing a means for cell-to-cell communication with β2 integrin expressing myeloid cells. PMID:23505517

  8. The Lymphocyte Function–associated Antigen 1 I Domain Is a Transient Binding Module for Intercellular Adhesion Molecule (ICAM)-1 and ICAM-3 in Hydrodynamic Flow

    PubMed Central

    Knorr, Ruth; Dustin, Michael L.

    1997-01-01

    The I domain of lymphocyte function–associated antigen (LFA)-1 contains an intercellular adhesion molecule (ICAM)-1 and ICAM-3 binding site, but the relationship of this site to regulated adhesion is unknown. To study the adhesive properties of the LFA-1 I domain, we stably expressed a GPI-anchored form of this I domain (I-GPI) on the surface of baby hamster kidney cells. I-GPI cells bound soluble ICAM-1 (sICAM-1) with a low avidity and affinity. Flow cell experiments demonstrated a specific rolling interaction of I-GPI cells on bilayers containing purified full length ICAM-1 or ICAM-3. The LFA-1 activating antibody MEM-83, or its Fab fragment, decreased the rolling velocity of I-GPI cells on ICAM-1–containing membranes. In contrast, the interaction of I-GPI cells with ICAM-3 was blocked by MEM-83. Rolling of I-GPI cells was dependent on the presence of Mg2+. Mn2+ only partially substituted for Mg2+, giving rise to a small fraction of rolling cells and increased rolling velocity. This suggests that the I domain acts as a transient, Mg2+-dependent binding module that cooperates with another Mn2+-stimulated site in LFA-1 to give rise to the stable interaction of intact LFA-1 with ICAM-1. PMID:9271587

  9. High plasma levels of soluble intercellular adhesion molecule (ICAM)-1 are associated with cerebral malaria.

    PubMed

    Adukpo, Selorme; Kusi, Kwadwo A; Ofori, Michael F; Tetteh, John K A; Amoako-Sakyi, Daniel; Goka, Bamenla Q; Adjei, George O; Edoh, Dominic A; Akanmori, Bartholomew D; Gyan, Ben A; Dodoo, Daniel

    2013-01-01

    Cerebral malaria (CM) is responsible for most of the malaria-related deaths in children in sub-Saharan Africa. Although, not well understood, the pathogenesis of CM involves parasite and host factors which contribute to parasite sequestration through cytoadherence to the vascular endothelium. Cytoadherence to brain microvasculature is believed to involve host endothelial receptor, CD54 or intercellular adhesion molecule (ICAM)-1, while other receptors such as CD36 are generally involved in cytoadherence of parasites in other organs. We therefore investigated the contributions of host ICAM-1 expression and levels of antibodies against ICAM-1 binding variant surface antigen (VSA) on parasites to the development of CM. Paediatric malaria patients, 0.5 to 13 years were recruited and grouped into CM and uncomplicated malaria (UM) patients, based on well defined criteria. Standardized ELISA protocol was used to measure soluble ICAM-1 (sICAM-1) levels from acute plasma samples. Levels of IgG to CD36- or ICAM-1-binding VSA were measured by flow cytometry during acute and convalescent states. Wilcoxon sign rank-test analysis to compare groups revealed association between sICAM-1 levels and CM (p<0.0037). Median levels of antibodies to CD36-binding VSA were comparable in the two groups at the time of admission and 7 days after treatment was initiated (p>0.05). Median levels of antibodies to CD36-binding VSAs were also comparable between acute and convalescent samples within any patient group. Median levels of antibodies to ICAM-1-binding VSAs were however significantly lower at admission time than during recovery in both groups. High levels of sICAM-1 were associated with CM, and the sICAM-1 levels may reflect expression levels of the membrane bound form. Anti-VSA antibody levels to ICAM-binding parasites was more strongly associated with both UM and CM than antibodies to CD36 binding parasites. Thus, increasing host sICAM-1 levels were associated with CM whilst antibodies

  10. Increased ICAM-1 Expression in Transformed Human Oral Epithelial Cells: Molecular Mechanism and Functional Role in Peripheral Blood Mononuclear Cell Adhesion and Lymphokine-Activated-Killer Cell Cytotoxicity

    PubMed Central

    Huang, George T.-J.; Zhang, Xinli; Park, No-Hee

    2012-01-01

    The intercellular adhesion molecule-1 (ICAM-1, CD54) serves as a counter-receptor for the β2-integrins, LFA-1 and Mac-1, which are expressed on leukocytes. Although expression of ICAM-1 on tumor cells has a role in tumor progression and development, information on ICAM-1 expression and its role in oral cancer has not been established. Normal human oral keratinocytes (NHOK), human papilloma virus (HPV)-immortalized human oral keratinocyte lines (HOK-16B, HOK-18A, and HOK-18C), and six human oral neoplastic cell lines (HOK-16B-BaP-T1, SCC-4, SCC-9, HEp-2, Tu-177 and 1483) were used to study ICAM-1 expression and its functional role in vitro. Our results demonstrated that NHOK express negligible levels of ICAM-1, whereas immortalized human oral keratinocytes and cancer cells express significantly higher levels of ICAM-1, except for HOK-16B-BaP-T1 and HEp-2. Altered mRNA half-lives did not fully account for the increased accumulation of ICAM-1 mRNA. Adhesion of peripheral blood mononuclear cells (PBMC) to epithelial cells correlated with cell surface ICAM-1 expression levels. This adhesion was inhibited by antibodies specific for either ICAM-1 or LFA-1/Mac-1, suggesting a role for these molecules in adhesion. In contrast, lymphokine-activated-killer (LAK) cell cytotoxic killing of epithelial cells did not correlate with ICAM-1 levels or with adhesion. Nonetheless, within each cell line, blocking of ICAM-1 or LFA-1/Mac-1 reduced LAK cells killing, suggesting that ICAM-1 is involved in mediating this killing. PMID:10938387

  11. The ICAM-3/LFA-1 interaction is critical for epidermal Langerhans cell alloantigen presentation to CD4+ T cells.

    PubMed

    Griffiths, C E; Railan, D; Gallatin, W M; Cooper, K D

    1995-12-01

    Intercellular adhesion molecule (ICAM)-3 is a recently described member of the immunoglobulin superfamily and, as such, is closely related to ICAM-1 and ICAM-2. All three ICAMS are cognate for the counter-receptor lymphocyte function associated antigen-1 (LFA-1, CD11a/CD18). Unlike ICAM-1 and ICAM-2, ICAM-3 is constitutively expressed at high levels on resting leucocytes. We investigated the expression and function of ICAM-3 in normal skin (n = 5), as well as its expression in psoriasis (n = 4), atopic eczema (n = 4), allergic (rhus) contact dermatitis (n = 3), and cutaneous T-cell lymphoma (CTCL, n = 2). Five-micrometre cryostat sections of skin were stained using monoclonal antibodies to ICAM-3 and a well characterized immunoperoxidase technique. In normal skin, ICAM-3 was expressed by all cutaneous leucocytes but most striking was the strong expression of ICAM-3 by Langerhans cells within both epidermis and dermis. This observation was confirmed by double-labelling with CD1a and negative staining with an IgG1 isotype control. In psoriasis, atopic eczema, allergic contact dermatitis, and CTCL, ICAM-3 was co-expressed on all CD1a+ cells, although, in psoriasis, the intensity of ICAM-3 expression was reduced. Functional blocking experiments were performed to determine whether the observed ICAM-3 expression on Langerhans cells was functionally important in antigen presentation. CD4+ T cells were prepared from peripheral blood and 10(5) CD4+ T cells combined with 10(5) epidermal cells harvested from keratome biopsies of normal skin of an individual allogeneic to the T-cell donor. Addition of 50 micrograms anti-ICAM-3 to the co-culture resulted in a consistent (50%) reduction in degree of alloantigen presentation by Langerhans cells to T cells. Inhibition was 77% of that produced by the addition of anti-LFA-1. These data indicate that ICAM-3 is constitutively expressed by Langerhans cells and is a major ligand for LFA-1 on CD4+ T cells during their response to

  12. Lysosomal enzyme delivery by ICAM-1-targeted nanocarriers bypassing glycosylation- and clathrin-dependent endocytosis.

    PubMed

    Muro, Silvia; Schuchman, Edward H; Muzykantov, Vladimir R

    2006-01-01

    Enzyme replacement therapy, a state-of-the-art treatment for many lysosomal storage disorders, relies on carbohydrate-mediated binding of recombinant enzymes to receptors that mediate lysosomal delivery via clathrin-dependent endocytosis. Suboptimal glycosylation of recombinant enzymes and deficiency of clathrin-mediated endocytosis in some lysosomal enzyme-deficient cells limit delivery and efficacy of enzyme replacement therapy for lysosomal disorders. We explored a novel delivery strategy utilizing nanocarriers targeted to a glycosylation- and clathrin-independent receptor, intercellular adhesion molecule (ICAM)-1, a glycoprotein expressed on diverse cell types, up-regulated and functionally involved in inflammation, a hallmark of many lysosomal disorders. We targeted recombinant human acid sphingomyelinase (ASM), deficient in types A and B Niemann-Pick disease, to ICAM-1 by loading this enzyme to nanocarriers coated with anti-ICAM. Anti-ICAM/ASM nanocarriers, but not control ASM or ASM nanocarriers, bound to ICAM-1-positive cells (activated endothelial cells and Niemann-Pick disease patient fibroblasts) via ICAM-1, in a glycosylation-independent manner. Anti-ICAM/ASM nanocarriers entered cells via CAM-mediated endocytosis, bypassing the clathrin-dependent pathway, and trafficked to lysosomes, where delivered ASM displayed stable activity and alleviated lysosomal lipid accumulation. Therefore, lysosomal enzyme targeting using nanocarriers targeted to ICAM-1 bypasses defunct pathways and may improve the efficacy of enzyme replacement therapy for lysosomal disorders, such as Niemann-Pick disease.

  13. Pirfenidone induces intercellular adhesion molecule-1 (ICAM-1) down-regulation on cultured human synovial fibroblasts

    PubMed Central

    Kaneko, M; Inoue, H; Nakazawa, R; Azuma, N; Suzuki, M; Yamauchi, S; Margolin, S B; Tsubota, K; Saito, I

    1998-01-01

    Pirfenidone has been shown to modify some cytokine regulatory actions and inhibit fibroblast biochemical reactions resulting in inhibition of proliferation and collagen matrix synthesis by fibroblast. We have investigated the effect of pirfenidone on the expression of cell adhesion molecules. The synovial fibroblasts were treated with IL-1α in the presence or absence of pirfenidone (range 0–1000 μm), and assayed for the expression of adhesion molecules such as ICAM-1 and endothelial-leucocyte adhesion molecule-1 (E-selectin) by cell ELISA. Pirfenidone significantly down-regulated the expression of ICAM-1 on cultured synovial fibroblasts in a dose-dependent manner. In contrast, expression of E-selectin was not affected. Furthermore, we examined whether pirfenidone affects the cellular binding between cultured lymphocytes and IL-1α-stimulated synovial fibroblasts by in vitro binding assay and found their mutual binding was significantly suppressed in a dose-dependent manner by pirfenidone. It is speculated that down-regulation of ICAM-1 might be one of the novel mechanisms of action of pirfenidone. These data indicate a novel mechanism of action for pirfenidone to reduce the activation of synovial fibroblasts. PMID:9697986

  14. Characterization of four CD18 mutants in leucocyte adhesion deficient (LAD) patients with differential capacities to support expression and function of the CD11/CD18 integrins LFA-1, Mac-1 and p150,95

    PubMed Central

    Shaw, J M; Al-Shamkhani, A; Boxer, L A; Buckley, C D; Dodds, A W; Klein, N; Nolan, S M; Roberts, I; Roos, D; Scarth, S L; Simmons, D L; Tan, S M; Law, S K A

    2001-01-01

    Leucocyte adhesion deficiency (LAD) is a hereditary disorder caused by mutations in the CD18 (β2 integrin) gene. Four missense mutations have been identified in three patients. CD18(A270V) supports, at a diminished level, CD11b/CD18 (Mac-1, αMβ2 integrin) and CD11c/CD18 (p150,95, αXβ2 integrin) expression and function but not CD11a/CD18 (LFA-1, αLβ2 integrin) expression. Conversely, CD18(A341P) supports a limited level of expression and function of CD11a/CD18, but not of the other two CD11/CD18 antigens. CD18(C590R) and CD18(R593C) show a decreasing capacity to associate with the CD11a, CD11c and CD11b subunits. Transfectants expressing the CD11a/CD18 with the C590R and R593C mutations are more adhesive than transfectants expressing wild-type LFA-1, and express the reporter epitope of the monoclonal antibody 24 constitutively. Thus, the four mutations affect CD18 differently in its capacities to support CD11/CD18 expression and adhesion. These results not only provide a biochemical account for the clinical diversity of patients with leucocyte adhesion deficiency, but also offer novel insights into the structural basis of interaction between the α and β subunits, which is an integral component in our understanding of integrin-mediated adhesion and its regulation. PMID:11703376

  15. Circulating soluble adhesion molecules in patients with giant cell arteritis. Correlation between soluble intercellular adhesion molecule-1 (sICAM-1) concentrations and disease activity

    PubMed Central

    Coll-Vinent, B.; Vilardell, C.; Font, C.; Oristrell, J.; Hernandez-Rodrigu..., J.; Yague, J.; Urbano-Marquez, A.; Grau, J.; Cid, M.

    1999-01-01

    OBJECTIVE—To evaluate whether changes in concentrations of circulating adhesion molecules are related to disease activity in patients with giant cell arteritis (GCA).
METHODS—A sandwich ELISA was used to measure soluble intercellular adhesion molecule-1 (sICAM-1), sICAM-3, vascular cell adhesion molecule-1 (sVCAM-1), E-selectin (sE-selectin), and L-selectin (sL-selectin) in serum and plasma samples from patients with GCA. A cross sectional study was performed on 64 GCA patients at different activity stages and on 35 age and sex matched healthy donors. Thirteen of these patients were evaluated at the time of diagnosis and serially during follow up.
RESULTS—At the time of diagnosis, sICAM-1 concentrations were significantly higher in active GCA patients than in controls (mean (SD) 360.55 (129.78) ng/ml versus 243.25 (47.43) ng/ml, p<0.001). In contrast, sICAM-3, sVCAM-1, sE-selectin, and sL-selectin values did not differ from those obtained in normal donors. With corticosteroid administration, a decrease in sICAM-1 concentrations was observed, reaching normal values when clinical remission was achieved (263.18 (92.7) ng/ml globally, 293.59 (108.39) ng/ml in the group of patients in recent remission, and 236.83 (70.02) ng/ml in those in long term remission). In the 13 patients followed up longitudinally, sICAM-1 values also normalised with clinical remission (225.87 (64.25) ng/ml in patients in recent remission, and 256.29 (75.15) ng/ml in those in long term remission).
CONCLUSIONS—Circulating sICAM-1 concentrations clearly correlate with clinically apparent disease activity in GCA patients. Differences with results previously found in patients with other vasculitides may indicate that different pathogenic mechanisms contribute to vascular inflammation in different disorders.

 Keywords: adhesion molecules; giant cell arteritis; inflammation PMID:10364919

  16. Erythrocyte plasma membrane-bound ERK1/2 activation promotes ICAM-4-mediated sickle red cell adhesion to endothelium.

    PubMed

    Zennadi, Rahima; Whalen, Erin J; Soderblom, Erik J; Alexander, Susan C; Thompson, J Will; Dubois, Laura G; Moseley, M Arthur; Telen, Marilyn J

    2012-02-02

    The core pathology of sickle cell disease (SCD) starts with the erythrocyte (RBC). Aberration in MAPK/ERK1/2 signaling, which can regulate cell adhesion, occurs in diverse pathologies. Because RBCs contain abundant ERK1/2, we predicted that ERK1/2 is functional in sickle (SS) RBCs and promotes adherence, a hallmark of SCD. ERK1/2 remained active in SS but not normal RBCs. β(2)-adrenergic receptor stimulation by epinephrine can enhance ERK1/2 activity only in SS RBCs via PKA- and tyrosine kinase p72(syk)-dependent pathways. ERK signaling is implicated in RBC ICAM-4 phosphorylation, promoting SS RBC adhesion to the endothelium. SS RBC adhesion and phosphorylation of both ERK and ICAM-4 all decreased with continued cell exposure to epinephrine, implying that activation of ICAM-4-mediated SS RBC adhesion is temporally associated with ERK1/2 activation. Furthermore, recombinant ERK2 phosphorylated α- and β-adducins and dematin at the ERK consensus motif. Cytoskeletal protein 4.1 also showed dynamic phosphorylation but not at the ERK consensus motif. These results demonstrate that ERK activation induces phosphorylation of cytoskeletal proteins and the adhesion molecule ICAM-4, promoting SS RBC adhesion to the endothelium. Thus, blocking RBC ERK1/2 activation, such as that promoted by catecholamine stress hormones, could ameliorate SCD pathophysiology.

  17. Melanoma upregulates ICAM-1 expression on endothelial cells through engagement of tumor CD44 with endothelial E-selectin and activation of a PKCα–p38–SP-1 pathway

    PubMed Central

    Zhang, Pu; Goodrich, Chris; Fu, Changliang; Dong, Cheng

    2014-01-01

    Cancer metastasis involves multistep adhesive interactions between tumor cells (TCs) and endothelial cells (ECs), but the molecular mechanisms of intercellular communication in the tumor microenvironment remain elusive. Using static and flow coculture systems in conjunction with flow cytometry, we discovered that certain receptors on the ECs are upregulated on melanoma cell adhesion. Direct contact but not separate coculture between human umbilical endothelial cells (HUVECs) and a human melanoma cell line (Lu1205) increased intercellular adhesion molecule 1 (ICAM-1) and E-selectin expression on HUVECs by 3- and 1.5-fold, respectively, compared with HUVECs alone. The nonmetastatic cell line WM35 failed to promote ICAM-1 expression changes in HUVECs on contact. Enzyme-linked immunosorbent assay (ELISA) revealed that EC–TC contact has a synergistic effect on the expression of the cytokines interleukin (IL)-8, IL-6, and growth-related oncogene α (Gro-α). By using E-selectin cross-linking and beads coated with CD44 immunopurified from Lu1205 cells, we showed that CD44/selectin ligation was responsible for the ICAM-1 up-regulation on HUVECs. Protein kinase Cα (PKC-α) activation was found to be the downstream target of the CD44/selectin-initiated signaling, as ICAM-1 elevation was inhibited by siRNA targeting PKCα or a dominant negative form of PKCα (PKCα DN). Western blot analysis and electrophoretic mobility shift assays (EMSAs) showed that TC–EC contact mediated p38 phosphorylation and binding of the transcription factor SP-1 to its regulation site. In conclusion, CD44/selectin binding signals ICAM-1 up-regulation on the EC surface through a PKCα–p38–SP-1 pathway, which further enhances melanoma cell adhesion to ECs during metastasis.—Zhang, P., Goodrich, C., Fu, C., Dong, C. Melanoma upregulates ICAM-1 expression on ECs through engagement of tumor CD44 with endothelial E-selectin and activation of a PKCα–p38–SP-1 pathway. PMID:25138157

  18. MHC class I, MHC class II and intercellular adhesion molecule-1 (ICAM-1) expression in inflammatory myopathies.

    PubMed

    Bartoccioni, E; Gallucci, S; Scuderi, F; Ricci, E; Servidei, S; Broccolini, A; Tonali, P

    1994-01-01

    We investigated the relationship between the MHC-I, MHC-II and intercellular adhesion molecule-1 (ICAM-1) expression on myofibres and the presence of inflammatory cells in muscle specimens of 18 patients with inflammatory myopathies (nine polymyositis, seven dermatomyositis, two inclusion body myositis). We observed MHC-I expression in muscle fibres, infiltrating mononuclear cells and endothelial cells in every specimen. In seven patients, some muscle fibres were MHC-II-positive for the DR antigen, while the DP and DQ antigens were absent. ICAM-1 expression, detected in seven patients, was found in clusters of myofibres, associated with a marked MHC-I positivity and a widespread mononuclear infiltration. Most of the ICAM-1-positive fibres were regenerating fibres. Furthermore, some fibres expressed both ICAM-1 and DR antigens near infiltrating cells. This finding could support the hypothesis that myofibres may themselves be the site of autosensitization.

  19. Topical corticosteroids do not revert the activated phenotype of eosinophils in eosinophilic esophagitis but decrease surface levels of CD18 resulting in diminished adherence to ICAM-1, ICAM-2, and endothelial cells.

    PubMed

    Lingblom, Christine; Bergquist, Henrik; Johnsson, Marianne; Sundström, Patrik; Quiding-Järbrink, Marianne; Bove, Mogens; Wennerås, Christine

    2014-12-01

    Swallowed topical corticosteroids are the standard therapy for eosinophilic esophagitis (EoE) in adults. Eosinophils in the blood of untreated EoE patients have an activated phenotype. Our aim was to determine if corticosteroids restore the phenotype of eosinophils to a healthy phenotype and if certain cell-surface molecules on blood eosinophils correlate with eosinophilic infiltration of the esophagus. Levels of eight surface markers on eosinophils from treated and untreated EoE patients were determined by flow cytometry and analyzed using multivariate methods of pattern recognition. Corticosteroid-treated EoE patients' eosinophils had decreased levels of CD18 compared to both untreated patients and healthy controls, but maintained their activated phenotype. CD18 expression correlated positively with eosinophil numbers in the esophagus and promoted the adherence of eosinophils to ICAM-1, ICAM-2, and to endothelial cells. The diminished expression of CD18 may be one mechanism behind the reduced entry of eosinophils into the esophagus in corticosteroid-treated EoE patients.

  20. Endothelial cell SHP-2 negatively regulates neutrophil adhesion and promotes transmigration by enhancing ICAM-1-VE-cadherin interaction.

    PubMed

    Yan, Meiping; Zhang, Xinhua; Chen, Ao; Gu, Wei; Liu, Jie; Ren, Xiaojiao; Zhang, Jianping; Wu, Xiaoxiong; Place, Aaron T; Minshall, Richard D; Liu, Guoquan

    2017-11-01

    Intercellular adhesion molecule-1 (ICAM-1) mediates the firm adhesion of leukocytes to endothelial cells and initiates subsequent signaling that promotes their transendothelial migration (TEM). Vascular endothelial (VE)-cadherin plays a critical role in endothelial cell-cell adhesion, thereby controlling endothelial permeability and leukocyte transmigration. This study aimed to determine the molecular signaling events that originate from the ICAM-1-mediated firm adhesion of neutrophils that regulate VE-cadherin's role as a negative regulator of leukocyte transmigration. We observed that ICAM-1 interacts with Src homology domain 2-containing phosphatase-2 (SHP-2), and SHP-2 down-regulation via silencing of small interfering RNA in endothelial cells enhanced neutrophil adhesion to endothelial cells but inhibited neutrophil transmigration. We also found that VE-cadherin associated with the ICAM-1-SHP-2 complex. Moreover, whereas the activation of ICAM-1 leads to VE-cadherin dissociation from ICAM-1 and VE-cadherin association with actin, SHP-2 down-regulation prevented ICAM-1-VE-cadherin association and promoted VE-cadherin-actin association. Furthermore, SHP-2 down-regulation in vivo promoted LPS-induced neutrophil recruitment in mouse lung but delayed neutrophil extravasation. These results suggest that SHP-2- via association with ICAM-1-mediates ICAM-1-induced Src activation and modulates VE-cadherin switching association with ICAM-1 or actin, thereby negatively regulating neutrophil adhesion to endothelial cells and enhancing their TEM.-Yan, M., Zhang, X., Chen, A., Gu, W., Liu, J., Ren, X., Zhang, J., Wu, X., Place, A. T., Minshall, R. D., Liu, G. Endothelial cell SHP-2 negatively regulates neutrophil adhesion and promotes transmigration by enhancing ICAM-1-VE-cadherin interaction. © FASEB.

  1. Intercellular adhesion molecules (ICAMs) and spermatogenesis

    PubMed Central

    Xiao, Xiang; Mruk, Dolores D.; Cheng, C. Yan

    2013-01-01

    BACKGROUND During the seminiferous epithelial cycle, restructuring takes places at the Sertoli–Sertoli and Sertoli–germ cell interface to accommodate spermatogonia/spermatogonial stem cell renewal via mitosis, cell cycle progression and meiosis, spermiogenesis and spermiation since developing germ cells, in particular spermatids, move ‘up and down’ the seminiferous epithelium. Furthermore, preleptotene spermatocytes differentiated from type B spermatogonia residing at the basal compartment must traverse the blood–testis barrier (BTB) to enter the adluminal compartment to prepare for meiosis at Stage VIII of the epithelial cycle, a process also accompanied by the release of sperm at spermiation. These cellular events that take place at the opposite ends of the epithelium are co-ordinated by a functional axis designated the apical ectoplasmic specialization (ES)—BTB—basement membrane. However, the regulatory molecules that co-ordinate cellular events in this axis are not known. METHODS Literature was searched at http://www.pubmed.org and http://scholar.google.com to identify published findings regarding intercellular adhesion molecules (ICAMs) and the regulation of this axis. RESULTS Members of the ICAM family, namely ICAM-1 and ICAM-2, and the biologically active soluble ICAM-1 (sICAM-1) are the likely regulatory molecules that co-ordinate these events. sICAM-1 and ICAM-1 have antagonistic effects on the Sertoli cell tight junction-permeability barrier, involved in Sertoli cell BTB restructuring, whereas ICAM-2 is restricted to the apical ES, regulating spermatid adhesion during the epithelial cycle. Studies in other epithelia/endothelia on the role of the ICAM family in regulating cell movement are discussed and this information has been evaluated and integrated into studies of these proteins in the testis to create a hypothetical model, depicting how ICAMs regulate junction restructuring events during spermatogenesis. CONCLUSIONS ICAMs are crucial

  2. MHC class I, MHC class II and intercellular adhesion molecule-1 (ICAM-1) expression in inflammatory myopathies.

    PubMed Central

    Bartoccioni, E; Gallucci, S; Scuderi, F; Ricci, E; Servidei, S; Broccolini, A; Tonali, P

    1994-01-01

    We investigated the relationship between the MHC-I, MHC-II and intercellular adhesion molecule-1 (ICAM-1) expression on myofibres and the presence of inflammatory cells in muscle specimens of 18 patients with inflammatory myopathies (nine polymyositis, seven dermatomyositis, two inclusion body myositis). We observed MHC-I expression in muscle fibres, infiltrating mononuclear cells and endothelial cells in every specimen. In seven patients, some muscle fibres were MHC-II-positive for the DR antigen, while the DP and DQ antigens were absent. ICAM-1 expression, detected in seven patients, was found in clusters of myofibres, associated with a marked MHC-I positivity and a widespread mononuclear infiltration. Most of the ICAM-1-positive fibres were regenerating fibres. Furthermore, some fibres expressed both ICAM-1 and DR antigens near infiltrating cells. This finding could support the hypothesis that myofibres may themselves be the site of autosensitization. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7507012

  3. Human severe sepsis cytokine mixture increases β2-integrin-dependent polymorphonuclear leukocyte adhesion to cerebral microvascular endothelial cells in vitro.

    PubMed

    Blom, Chris; Deller, Brittany L; Fraser, Douglas D; Patterson, Eric K; Martin, Claudio M; Young, Bryan; Liaw, Patricia C; Yazdan-Ashoori, Payam; Ortiz, Angelica; Webb, Brian; Kilmer, Greg; Carter, David E; Cepinskas, Gediminas

    2015-04-07

    Sepsis-associated encephalopathy (SAE) is a state of acute brain dysfunction in response to a systemic infection. We propose that systemic inflammation during sepsis causes increased adhesion of leukocytes to the brain microvasculature, resulting in blood-brain barrier dysfunction. Thus, our objectives were to measure inflammatory analytes in plasma of severe sepsis patients to create an experimental cytokine mixture (CM), and to use this CM to investigate the activation and interactions of polymorphonuclear leukocytes (PMN) and human cerebrovascular endothelial cells (hCMEC/D3) in vitro. The concentrations of 41 inflammatory analytes were quantified in plasma obtained from 20 severe sepsis patients and 20 age- and sex-matched healthy controls employing an antibody microarray. Two CMs were prepared to mimic severe sepsis (SSCM) and control (CCM), and these CMs were then used for PMN and hCMEC/D3 stimulation in vitro. PMN adhesion to hCMEC/D3 was assessed under conditions of flow (shear stress 0.7 dyn/cm(2)). Eight inflammatory analytes elevated in plasma obtained from severe sepsis patients were used to prepare SSCM and CCM. Stimulation of PMN with SSCM led to a marked increase in PMN adhesion to hCMEC/D3, as compared to CCM. PMN adhesion was abolished with neutralizing antibodies to either β2 (CD18), αL/β2 (CD11α/CD18; LFA-1) or αM/β2 (CD11β/CD18; Mac-1) integrins. In addition, immune-neutralization of the endothelial (hCMEC/D3) cell adhesion molecule, ICAM-1 (CD54) also suppressed PMN adhesion. Human SSCM up-regulates PMN pro-adhesive phenotype and promotes PMN adhesion to cerebrovascular endothelial cells through a β2-integrin-ICAM-1-dependent mechanism. PMN adhesion to the brain microvasculature may contribute to SAE.

  4. Extracellular Membrane-proximal Domain of HAb18G/CD147 Binds to Metal Ion-dependent Adhesion Site (MIDAS) Motif of Integrin β1 to Modulate Malignant Properties of Hepatoma Cells*

    PubMed Central

    Li, Yong; Wu, Jiao; Song, Fei; Tang, Juan; Wang, Shi-Jie; Yu, Xiao-Ling; Chen, Zhi-Nan; Jiang, Jian-Li

    2012-01-01

    Several lines of evidence suggest that HAb18G/CD147 interacts with the integrin variants α3β1 and α6β1. However, the mechanism of the interaction remains largely unknown. In this study, mammalian protein-protein interaction trap (MAPPIT), a mammalian two-hybrid method, was used to study the CD147-integrin β1 subunit interaction. CD147 in human hepatocellular carcinoma (HCC) cells was interfered with by small hairpin RNA. Nude mouse xenograft model and metastatic model of HCC were used to detect the role of CD147 in carcinogenesis and metastasis. We found that the extracellular membrane-proximal domain of HAb18G/CD147 (I-type domain) binds at the metal ion-dependent adhesion site in the βA domain of the integrin β1 subunit, and Asp179 in the I-type domain of HAb18G/CD147 plays an important role in the interaction. The levels of the proteins that act downstream of integrin, including focal adhesion kinase (FAK) and phospho-FAK, were decreased, and the cytoskeletal structures of HCC cells were rearranged bearing the HAb18G/CD147 deletion. Simultaneously, the migration and invasion capacities, secretion of matrix metalloproteinases, colony formation rate in vitro, and tumor growth and metastatic potential in vivo were decreased. These results indicate that the interaction of HAb18G/CD147 extracellular I-type domain with the integrin β1 metal ion-dependent adhesion site motif activates the downstream FAK signaling pathway, subsequently enhancing the malignant properties of HCC cells. PMID:22130661

  5. Hydrodynamic shear shows distinct roles for LFA-1 and Mac-1 in neutrophil adhesion to intercellular adhesion molecule-1.

    PubMed

    Neelamegham, S; Taylor, A D; Burns, A R; Smith, C W; Simon, S I

    1998-09-01

    The binding of neutrophil beta2 integrin to intercellular adhesion molecule-1 (ICAM-1) expressed on the inflamed endothelium is critical for neutrophil arrest at sites of tissue inflammation. To quantify the strength and kinetics of this interaction, we measured the adhesion between chemotactically stimulated neutrophils and ICAM-1-transfected mouse cells (E3-ICAM) in suspension in a cone-plate viscometer at shear rates typical of venular blood flow (100 s-1 to 500 s-1). The kinetics of aggregation were fit with a mathematical model based on two-body collision theory. This enabled estimation of adhesion efficiency, defined as the probability with which collisions between cells resulted in firm adhesion. The efficiency of beta2-integrin-dependent adhesion was highest ( approximately 0.2) at 100 s-1 and it decreased to approximately zero at 400 s-1. Both LFA-1 and Mac-1 contributed equally to adhesion efficiency over the initial 30 seconds of stimulation, but adhesion was entirely Mac-1-dependent by 120 seconds. Two hydrodynamic parameters were observed to influence integrin-dependent adhesion efficiency: the level of shear stress and the intercellular contact duration. Below a critical shear stress (<2 dyn/cm2), contact duration predominantly limited adhesion efficiency. The estimated minimum contact duration for beta2-integrin binding was approximately 6.5 ms. Above the critical shear stress (>2 dyn/cm2), the efficiency of neutrophil adhesion to E3-ICAM was limited by both the contact duration and the tensile stress. We conclude that at low shear, neutrophil adhesion is modulated independently through either LFA-1 or Mac-1, which initially contribute with equal efficiency, but differ over the duration of chemotactic stimulation. Copyright 1998 by The American Society of Hematology.

  6. Endothelial microparticles reduce ICAM-1 expression in a microRNA-222-dependent mechanism

    PubMed Central

    Jansen, Felix; Yang, Xiaoyan; Baumann, Katharina; Przybilla, David; Schmitz, Theresa; Flender, Anna; Paul, Kathrin; Alhusseiny, Adil; Nickenig, Georg; Werner, Nikos

    2015-01-01

    Endothelial microparticles (EMP) are released from activated or apoptotic endothelial cells (ECs) and can be taken up by adjacent ECs, but their effect on vascular inflammation after engulfment is largely unknown. We sought to determine the role of EMP in EC inflammation. In vitro, EMP treatment significantly reduced tumour necrosis factor-α-induced endothelial intercellular adhesion molecule (ICAM)-1 expression on mRNA and protein level, whereas there was no effect on vascular cell adhesion molecule-1 expression. Reduced ICAM-1 expression after EMP treatment resulted in diminished monocyte adhesion in vitro. In vivo, systemic treatment of ApoE−/− mice with EMP significantly reduced murine endothelial ICAM-1 expression. To explore the underlying mechanisms, Taqman microRNA array was performed and microRNA (miR)-222 was identified as the strongest regulated miR between EMP and ECs. Following experiments demonstrated that miR-222 was transported into recipient ECs by EMP and functionally regulated expression of its target protein ICAM-1 in vitro and in vivo. After simulating diabetic conditions, EMP derived from glucose-treated ECs contained significantly lower amounts of miR-222 and showed reduced anti-inflammatory capacity in vitro and in vivo. Finally, circulating miR-222 level was diminished in patients with coronary artery disease (CAD) compared to patients without CAD. EMPs promote anti-inflammatory effects in vitro and in vivo by reducing endothelial ICAM-1 expression via the transfer of functional miR-222 into recipient cells. In pathological hyperglycaemic conditions, EMP-mediated miR-222-dependent anti-inflammatory effects are reduced. PMID:26081516

  7. A novel leukocyte adhesion deficiency caused by expressed but nonfunctional β2 integrins Mac-1 and LFA-1

    PubMed Central

    Hogg, Nancy; Stewart, Mairi P.; Scarth, Sarah L.; Newton, Rebecca; Shaw, Jacqueline M.; Law, S.K. Alex; Klein, Nigel

    1999-01-01

    In the leukocyte adhesion deficiency (LAD)-1 syndrome, there is diminished expression of β2(CD18) integrins. This is caused by lesions in the β2-subunit gene and gives rise to recurrent bacterial infections, impaired pus formation, and poor wound healing. We describe a patient with clinical features compatible with a moderately severe phenotype of LAD-1 but who expresses the β2 integrins lymphocyte function– associated molecule (LFA)-1 and Mac-1 at 40%–60% of normal levels. This level of expression should be adequate for normal integrin function, but both the patient's Mac-1 on neutrophils and LFA-1 on T cells failed to bind ligands such as fibrinogen and intercellular adhesion molecule (ICAM)-1, respectively, or to display a β2-integrin activation epitope after adhesion-inducing stimuli. Unexpectedly, divalent cation treatment induced the patient's T cells to bind to ICAM-2 and ICAM-3. Sequencing of the patient's two CD18 alleles revealed the mutations S138P and G273R. Both mutations are in the β2-subunit conserved domain, with S138P a putative divalent cation coordinating residue in the metal ion–dependent adhesion site (MIDAS) motif. After K562 cell transfection with α subunits, the mutated S138P β subunit was coexpressed but did not support function, whereas the G273R mutant was not expressed. In summary, the patient described here exhibits failure of the β2 integrins to function despite adequate levels of cell-surface expression. PMID:9884339

  8. The CD44-initiated pathway of T-cell extravasation uses VLA-4 but not LFA-1 for firm adhesion

    PubMed Central

    Siegelman, Mark H.; Stanescu, Diana; Estess, Pila

    2000-01-01

    Leukocytes extravasate from the blood in response to physiologic or pathologic demands by means of complementary ligand interactions between leukocytes and endothelial cells. The multistep model of leukocyte extravasation involves an initial transient interaction (“rolling” adhesion), followed by secondary (firm) adhesion. We recently showed that binding of CD44 on activated T lymphocytes to endothelial hyaluronan (HA) mediates a primary adhesive interaction under shear stress, permitting extravasation at sites of inflammation. The mechanism for subsequent firm adhesion has not been elucidated. Here we demonstrate that the integrin VLA-4 is used in secondary adhesion after CD44-mediated primary adhesion of human and mouse T cells in vitro, and by mouse T cells in an in vivo model. We show that clonal cell lines and polyclonally activated normal T cells roll under physiologic shear forces on hyaluronate and require VCAM-1, but not ICAM-1, as ligand for subsequent firm adhesion. This firm adhesion is also VLA-4 dependent, as shown by antibody inhibition. Moreover, in vivo short-term homing experiments in a model dependent on CD44 and HA demonstrate that superantigen-activated T cells require VLA-4, but not LFA-1, for entry into an inflamed peritoneal site. Thus, extravasation of activated T cells initiated by CD44 binding to HA depends upon VLA-4–mediated firm adhesion, which may explain the frequent association of these adhesion receptors with diverse chronic inflammatory processes. PMID:10712440

  9. Endothelial microparticles reduce ICAM-1 expression in a microRNA-222-dependent mechanism.

    PubMed

    Jansen, Felix; Yang, Xiaoyan; Baumann, Katharina; Przybilla, David; Schmitz, Theresa; Flender, Anna; Paul, Kathrin; Alhusseiny, Adil; Nickenig, Georg; Werner, Nikos

    2015-09-01

    Endothelial microparticles (EMP) are released from activated or apoptotic endothelial cells (ECs) and can be taken up by adjacent ECs, but their effect on vascular inflammation after engulfment is largely unknown. We sought to determine the role of EMP in EC inflammation. In vitro, EMP treatment significantly reduced tumour necrosis factor-α-induced endothelial intercellular adhesion molecule (ICAM)-1 expression on mRNA and protein level, whereas there was no effect on vascular cell adhesion molecule-1 expression. Reduced ICAM-1 expression after EMP treatment resulted in diminished monocyte adhesion in vitro. In vivo, systemic treatment of ApoE-/- mice with EMP significantly reduced murine endothelial ICAM-1 expression. To explore the underlying mechanisms, Taqman microRNA array was performed and microRNA (miR)-222 was identified as the strongest regulated miR between EMP and ECs. Following experiments demonstrated that miR-222 was transported into recipient ECs by EMP and functionally regulated expression of its target protein ICAM-1 in vitro and in vivo. After simulating diabetic conditions, EMP derived from glucose-treated ECs contained significantly lower amounts of miR-222 and showed reduced anti-inflammatory capacity in vitro and in vivo. Finally, circulating miR-222 level was diminished in patients with coronary artery disease (CAD) compared to patients without CAD. EMPs promote anti-inflammatory effects in vitro and in vivo by reducing endothelial ICAM-1 expression via the transfer of functional miR-222 into recipient cells. In pathological hyperglycaemic conditions, EMP-mediated miR-222-dependent anti-inflammatory effects are reduced. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  10. I-domain of lymphocyte function-associated antigen-1 mediates rolling of polystyrene particles on ICAM-1 under flow.

    PubMed

    Eniola, A Omolola; Krasik, Ellen F; Smith, Lee A; Song, Gang; Hammer, Daniel A

    2005-11-01

    In their active state, beta(2)-integrins, such as LFA-1, mediate the firm arrest of leukocytes by binding intercellular adhesion molecules (ICAMs) expressed on endothelium. Although the primary function of LFA-1 is assumed to be the ability to mediate firm adhesion, recent work has shown that LFA-1 can contribute to cell tethering and rolling under hydrodynamic flow, a role previously largely attributed to the selectins. The inserted (I) domain of LFA-1 has recently been crystallized in the wild-type (wt) and locked-open conformations and has been shown to, respectively, support rolling and firm adhesion under flow when expressed in alpha(L)beta(2) heterodimers or as isolated domains on cells. Here, we report results from cell-free adhesion assays where wt I-domain-coated polystyrene particles were allowed to interact with ICAM-1-coated surfaces in shear flow. We show that wt I-domain can independently mediate the capture of particles from flow and support their rolling on ICAM-1 surfaces in a manner similar to how carbohydrate-selectin interactions mediate rolling. Adhesion is specific and blocked by appropriate antibodies. We also show that the rolling velocity of I-domain-coated particles depends on the wall shear stress in flow chamber, I-domain site density on microsphere surfaces, and ICAM-1 site density on substrate surfaces. Furthermore, we show that rolling is less sensitive to wall shear stress and ICAM-1 substrate density at high density of I-domain on the microsphere surface. Computer simulations using adhesive dynamics can recreate bead rolling dynamics and show that the mechanochemical properties of ICAM-1-I-domain interactions are similar to those of carbohydrate-selectin interactions. Understanding the biophysics of adhesion mediated by the I-domain of LFA-1 can elucidate the complex roles this integrin plays in leukocyte adhesion in inflammation.

  11. Plasma concentration of soluble intercellular adhesion molecule-1 (sICAM-1) is elevated in type 2 diabetic patients, and sICAM-1 synthesis is associated with leptin-induced activation of the mitogen-activated protein kinase (MAPK) pathway.

    PubMed

    Cha, Jin Joo; Hyun, Young Youl; Jee, Yi Hwa; Lee, Mi Jin; Han, Kum Hyun; Kang, Young Sun; Han, Sang Youb; Cha, Dae Ryong

    2013-08-01

    The intercellular adhesion molecule-1 (ICAM-1) and leptin are important inflammatory biomarkers. We investigated whether plasma-soluble ICAM-1 levels were related to the diabetic nephropathy and systemic inflammation. One hundred forty-seven type 2 diabetic patients and 46 healthy control subjects were studied. Plasma sICAM-1 concentrations were significantly higher in the diabetic groups than controls and increased significantly as diabetic nephropathy advanced. Plasma sICAM-1 levels were positively correlated with body mass index, fasting and postprandial blood glucose, urinary albumin excretion, and negatively correlated with creatinine clearance. Multiple regression analysis showed that plasma leptin levels were associated with a significant increase in plasma sICAM-1 levels. In cultured HUVECs, leptin increased ICAM-1 production in a dose-dependent manner, and this stimulating effect of leptin on ICAM-1 expression was reversed by MEK inhibitor, PD98059. Overall, these findings suggest that activation of leptin synthesis in a diabetic environment promotes ICAM-1 activation via mitogen-activated protein kinase pathway in type 2 diabetic patients.

  12. VCAM1 and ICAM1 expression in oral lichen planus

    PubMed Central

    Seyedmajidi, Maryam; Shafaee, Shahryar; Bijani, Ali; Bagheri, Soodabeh

    2013-01-01

    Oral lichen planus is a chronic inflammatory immune-mediated disease. ICAM-1 and VCAM-1 are vascular adhesion molecules that their receptors are located on endothelial cells and leukocytes. The aim of this study is the immunohistochemical evaluation of VCAM1 and ICAM1 in oral lichen planus and to compare these two markers with normal mucosa for evaluation of angiogenesis. This descriptive-analytical study was performed on 70 paraffined blocks of oral lichen planus and 30 normal mucosa samples taken from around the lesions. Samples were stained with H & E and then with Immunohistochemistry using monoclonal mouse anti human VCAM1 (CD106), & monoclonal mouse anti human ICAM1(CD54) for confirmation of diagnosis. Slides were evaluated under light microscope and VCAM1 and ICAM1 positive cells (endothelial cells and leukocytes) were counted. Data were analyzed with Mann-Whitney test, Wilcoxon and Chi-Square and p<0.001 was declared significant. VCAM1 and ICAM1 expression significantly increased compared to normal mucosa in oral lichen planus according to the percentage of stained cells (p=0.000& p=0.000, Mann-Whitney test). Thirty cases of oral normal mucosa associated with lichen planus showed that the VCAM1 has increased significantly in comparison to normal mucosa (p<0.001). Also, ICAM1 expression between lichen planus and normal mucosa, showed a significantly difference (p<0.001). A significant difference between VCAM1 and ICAM1 expression and type of lichen planus was not observed (p>0.05). Regarding the results, it seems that high expression of VCAM1 and ICAM1 is related to oral lichen planus. PMID:24551788

  13. Variation in the ICAM1-ICAM4-ICAM5 locus is associated with systemic lupus erythematosus susceptibility in multiple ancestries.

    PubMed

    Kim, Kwangwoo; Brown, Elizabeth E; Choi, Chan-Bum; Alarcón-Riquelme, Marta E; Kelly, Jennifer A; Glenn, Stuart B; Ojwang, Joshua O; Adler, Adam; Lee, Hye-Soon; Boackle, Susan A; Criswell, Lindsey A; Alarcón, Graciela S; Edberg, Jeffrey C; Stevens, Anne M; Jacob, Chaim O; Gilkeson, Gary S; Kamen, Diane L; Tsao, Betty P; Anaya, Juan-Manuel; Guthridge, Joel M; Nath, Swapan K; Richardson, Bruce; Sawalha, Amr H; Kang, Young Mo; Shim, Seung Cheol; Suh, Chang-Hee; Lee, Soo-Kon; Kim, Chang-sik; Merrill, Joan T; Petri, Michelle; Ramsey-Goldman, Rosalind; Vilá, Luis M; Niewold, Timothy B; Martin, Javier; Pons-Estel, Bernardo A; Vyse, Timothy J; Freedman, Barry I; Moser, Kathy L; Gaffney, Patrick M; Williams, Adrienne; Comeau, Mary; Reveille, John D; James, Judith A; Scofield, R Hal; Langefeld, Carl D; Kaufman, Kenneth M; Harley, John B; Kang, Changwon; Kimberly, Robert P; Bae, Sang-Cheol

    2012-11-01

    Systemic lupus erythematosus (SLE; OMIM 152700) is a chronic autoimmune disease for which the aetiology includes genetic and environmental factors. ITGAM, integrin α(M) (complement component 3 receptor 3 subunit) encoding a ligand for intracellular adhesion molecule (ICAM) proteins, is an established SLE susceptibility locus. This study aimed to evaluate the independent and joint effects of genetic variations in the genes that encode ITGAM and ICAM. The authors examined several markers in the ICAM1-ICAM4-ICAM5 locus on chromosome 19p13 and the single ITGAM polymorphism (rs1143679) using a large-scale case-control study of 17 481 unrelated participants from four ancestry populations. The single-marker association and gene-gene interaction were analysed for each ancestry, and a meta-analysis across the four ancestries was performed. The A-allele of ICAM1-ICAM4-ICAM5 rs3093030, associated with elevated plasma levels of soluble ICAM1, and the A-allele of ITGAM rs1143679 showed the strongest association with increased SLE susceptibility in each of the ancestry populations and the trans-ancestry meta-analysis (OR(meta)=1.16, 95% CI 1.11 to 1.22; p=4.88×10(-10) and OR(meta)=1.67, 95% CI 1.55 to 1.79; p=3.32×10(-46), respectively). The effect of the ICAM single-nucleotide polymorphisms (SNPs) was independent of the effect of the ITGAM SNP rs1143679, and carriers of both ICAM rs3093030-AA and ITGAM rs1143679-AA had an OR of 4.08 compared with those with no risk allele in either SNP (95% CI 2.09 to 7.98; p=3.91×10(-5)). These findings are the first to suggest that an ICAM-integrin-mediated pathway contributes to susceptibility to SLE.

  14. Endothelial adhesion molecules and leukocyte integrins in preeclamptic patients.

    PubMed

    Haller, H; Ziegler, E M; Homuth, V; Drab, M; Eichhorn, J; Nagy, Z; Busjahn, A; Vetter, K; Luft, F C

    1997-01-01

    Endothelial cell activation is important in the pathogenesis of preeclampsia; however, the nature of the activation is unknown. We investigated 22 patients with preeclampsia. 29 normotensive pregnancies, and 18 nonpregnant women to test the hypothesis that serum from preeclamptic patients induces expression of intercellular adhesion molecule-1 (ICAM-1) and vascular adhesion molecule-1 (VCAM-1) and stimulates intracellular free calcium concentrations [Ca2+]i in cultured endothelial cells. We then asked whether the corresponding integrin adhesive counter receptors lymphocyte function-associated antigen-1 (CD11a/CD18), macrophage-1 antigen (CD11b/CD18), p150,95 (CD11c/CD18), and very late activation antigen-4 (CD49/CD29) are increased in patients with preeclampsia. In the pregnant women, the measurements were conducted both before and after delivery. Integrin expression was measured by fluorescent antibody cell sorting analysis using monoclonal antibodies. ICAM-1 and VCAM-1 were analyzed on endothelial cells by enzyme-linked immunosorbent assay. [Ca2+]i was measured with fura 2. Serum from preeclamptic patients increased endothelial cell ICAM-1 expression but not VCAM-1 expression. Preeclamptic patients' serum also increased [Ca2+]i in endothelial cells compared with serum from normal nonpregnant or normal pregnant women. Endothelial cell [Ca2+]i concentrations were correlated with the ICAM-1 expression in preeclamptic patients (r = .80, P < .001) before but not after delivery. Expression of the integrin counter receptors on leukocytes was similarly increased in preclampsia and normal pregnancy compared with the nonpregnant state. The expression decreased significantly after delivery in both groups. Our results demonstrate that serum from preeclamptic women induces increased ICAM-1 surface expression on endothelial cells, while the expression of the integrin counterreceptors was not different. The effect on endothelial cells may be related to an increase in [Ca2+]i

  15. Epidermal Expression of Intercellular Adhesion Molecule 1 is Not a Primary Inducer of Cutaneous Inflammation in Transgenic Mice

    NASA Astrophysics Data System (ADS)

    Williams, Ifor R.; Kupper, Thomas S.

    1994-10-01

    Keratinocytes at sites of cutaneous inflammation have increased expression of intercellular adhesion molecule 1 (ICAM-1), a cytokine-inducible adhesion molecule which binds the leukocyte integrins LFA-1 and Mac-1. Transgenic mice were prepared in which the expression of mouse ICAM-1 was targeted to basal keratinocytes by using the human K14 keratin promoter. The level of constitutive expression attained in the transgenic mice exceeded the peak level of ICAM-1 expression induced on nontransgenic mouse keratinocytes in vitro by optimal combinations of interferon γ and tumor necrosis factor α or in vivo by proinflammatory stimuli such as phorbol 12-myristate 13-acetate. In vitro adhesion assays demonstrated that cultured transgenic keratinocytes were superior to normal keratinocytes as a substrate for the LFA-1-dependent binding of mouse T cells, confirming that the transgene-encoded ICAM-1 was expressed in a functional form. However, the high level of constitutive ICAM-1 expression achieved on keratinocytes in vivo in these transgenic mice did not result in additional recruitment of CD45^+ leukocytes into transgenic epidermis, nor did it elicit dermal inflammation. Keratinocyte ICAM-1 expression also did not potentiate contact-hypersensitivity reactions to epicutaneous application of haptens. The absence of a spontaneous phenotype in these transgenic mice was not the result of increased levels of soluble ICAM-1, since serum levels of soluble ICAM-1 were equal in transgenic mice and controls. We conclude that elevated ICAM-1 expression on keratinocytes cannot act independently to influence leukocyte trafficking and elicit cutaneous inflammation.

  16. A novel point mutation in CD18 causing the expression of dysfunctional CD11/CD18 leucocyte integrins in a patient with leucocyte adhesion deficiency (LAD)

    PubMed Central

    Mathew, E C; Shaw, J M; Bonilla, F A; Law, S K A; Wright, D A

    2000-01-01

    Leucocyte adhesion deficiency type 1 (LAD-1) is characterized by the incapacity of leucocytes to carry out their adhesion functions via their CD11/CD18 antigens, which are also referred to as the leucocyte integrins. The patients generally suffer from poor wound healing and recurrent bacterial and fungal infections. In severe cases, the infections are often systemic and life-threatening. A LAD patient (AW) of moderate phenotype has been identified but, unlike most other cases, the level of CD11/CD18 antigens on her leucocytes are uncharacteristically high for a LAD patient. Molecular analysis revealed that she is a compound heterozygote for CD18 mutations. She has inherited a D231H mutation from her father and a G284S mutation from her mother. By transfection studies, it was established that the G284S mutation does not support CD11/CD18 antigen expression on the cell surface. In contrast, the D231H mutation does not affect CD18 forming integrin heterodimers with the CD11 antigens on the cell surface. However, the expressed integrins with the D231H mutation are not adhesive to ligands. PMID:10886250

  17. Localization of intercellular adhesion molecule-1 (ICAM-1) in the lungs of silica-exposed mice.

    PubMed Central

    Nario, R C; Hubbard, A K

    1997-01-01

    Intercellular adhesion molecule-1 (ICAM-1) is expressed on a variety of cells including endothelial cells, alveolar epithelial cells, and alveolar macrophages. Endothelial/epithelial cell ICAM-1 participates in the migration of leukocytes out of the blood in response to pulmonary inflammation, whereas alveolar macrophage ICAM-1 may represent cell activation. Our previous studies have shown that there is increased expression of ICAM-1 in lung tissue during acute inflammation following intratracheal injection with silica particles (2 mg/mouse). This increased expression was shown to play a role, in part, in the migration of neutrophils from the circulation into the tissue parenchyma. The aim of the current work is to localize expression of ICAM-1 during acute inflammation in lungs of mice exposed to either silica or the nuisance dust, titanium dioxide. In silica-exposed mice, a significant increase in ICAM-1 was detected on day-1 and localized by immunohistochemistry to aggregates of pulmonary macrophages and to type II epithelial cells. Areas of the lung with increased ICAM-1 expression also showed increased tumor necrosis factor alpha expression. Immunocytochemical staining of bronchoalveolar lavage (BAL) cells demonstrated increased ICAM-1 expression associated with alveolar macrophages 3, 5, and 7 days following silica exposure. Finally, soluble ICAM-1 levels in the BAL fluid were significantly increased in mice exposed to silica on the same days. Titanium dioxide exposure elicited a minimal increase in expression of ICAM-1 in the lungs. These data demonstrate that exposure to the toxic particle silica specifically increases ICAM-1 expression localized to pulmonary macrophages and type II epithelial cells. Images Figure 2. B Figure 2. A Figure 2. D Figure 2. C Figure 3. A Figure 3. B Figure 5. B Figure 5. A Figure 5. C PMID:9400721

  18. Endothelium adhesion molecules ICAM-1, ICAM-2, VCAM-1 and VLA-4 expression in leprosy.

    PubMed

    de Sousa, Juarez; Sousa Aarão, Tinara Leila; Rodrigues de Sousa, Jorge; Hirai, Kelly Emi; Silva, Luciana Mota; Dias, Leonidas Braga; Oliveira Carneiro, Francisca Regina; Fuzii, Hellen Thais; Quaresma, Juarez Antonio Simões

    2017-03-01

    Leprosy triggers a complex relationship between the pathogen and host immune response. Endothelium plays an important role in this immune response by directly influencing cell migration to infected tissues. The objective of this work is to investigate the possible role of endothelium in M. leprae infection, correlating the characteristics of endothelial markers with the expression pattern of cytokines. Thirty-six skin biopsy samples were cut into 5-μm thick sections and stained with hematoxylin-eosin and Ziehl-Neelsen for morphological analysis and then submitted to immunohistochemical analysis using monoclonal antibodies against ICAM-1, ICAM-2, VCAM-1, and VLA-4. Immunostaining for ICAM-1 showed a significantly larger number of stained endothelial cells in the tuberculoid leprosy (9.92 ± 1.11 cells/mm 2 ) when compared to lepromatous samples (5.87 ± 1.01 cells/mm 2 ) and ICAM-2 revealed no significant difference in the number of endothelial cells expressing this marker between the tuberculoid (13.21 ± 1.27 cells/mm 2 ) and lepromatous leprosy (14.3 ± 1.02 cells/mm 2 ). VCAM-1-immunostained showed 18.28 ± 1.46/mm 2 cells in tuberculoid leprosy and 10.67 ± 1.25 cells/mm 2 in the lepromatous leprosy. VLA-4 exhibited 22.46 ± 1.38 cells/mm 2 in the tuberculoid leprosy 16.04 ± 1.56 cells/mm 2 in the lepromatous leprosy. Samples with characteristics of the tuberculoid leprosy exhibited a larger number of cells stained with ICAM-1, VCAM-1 and VLA-4, demonstrating the importance of these molecules in the migration and selection of cells that reach the inflamed tissue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Variation in the ICAM1ICAM4–ICAM5 locus is associated with systemic lupus erythematosus susceptibility in multiple ancestries

    PubMed Central

    Kim, Kwangwoo; Brown, Elizabeth E; Choi, Chan-Bum; Alarcón-Riquelme, Marta E; Kelly, Jennifer A; Glenn, Stuart B; Ojwang, Joshua O; Adler, Adam; Lee, Hye-Soon; Boackle, Susan A; Criswell, Lindsey A; Alarcón, Graciela S; Edberg, Jeffrey C; Stevens, Anne M; Jacob, Chaim O; Gilkeson, Gary S; Kamen, Diane L; Tsao, Betty P; Anaya, Juan-Manuel; Guthridge, Joel M; Nath, Swapan K; Richardson, Bruce; Sawalha, Amr H; Kang, Young Mo; Shim, Seung Cheol; Suh, Chang-Hee; Lee, Soo-Kon; Kim, Chang-sik; Merrill, Joan T; Petri, Michelle; Ramsey-Goldman, Rosalind; Vilá, Luis M; Niewold, Timothy B; Martin, Javier; Pons-Estel, Bernardo A; Vyse, Timothy J; Freedman, Barry I; Moser, Kathy L; Gaffney, Patrick M; Williams, Adrienne; Comeau, Mary; Reveille, John D; James, Judith A; Scofield, R Hal; Langefeld, Carl D; Kaufman, Kenneth M; Harley, John B; Kang, Changwon; Kimberly, Robert P; Bae, Sang-Cheol

    2012-01-01

    Objective Systemic lupus erythematosus (SLE; OMIM 152700) is a chronic autoimmune disease for which the aetiology includes genetic and environmental factors. ITGAM, integrin αΜ (complement component 3 receptor 3 subunit) encoding a ligand for intracellular adhesion molecule (ICAM) proteins, is an established SLE susceptibility locus. This study aimed to evaluate the independent and joint effects of genetic variations in the genes that encode ITGAM and ICAM. Methods The authors examined several markers in the ICAM1ICAM4–ICAM5 locus on chromosome 19p13 and the single ITGAM polymorphism (rs1143679) using a large-scale case–control study of 17 481 unrelated participants from four ancestry populations. The single marker association and gene–gene interaction were analysed for each ancestry, and a meta-analysis across the four ancestries was performed. Results The A-allele of ICAM1ICAM4–ICAM5 rs3093030, associated with elevated plasma levels of soluble ICAM1, and the A-allele of ITGAM rs1143679 showed the strongest association with increased SLE susceptibility in each of the ancestry populations and the trans-ancestry meta-analysis (ORmeta=1.16, 95% CI 1.11 to 1.22; p=4.88×10−10 and ORmeta=1.67, 95% CI 1.55 to 1.79; p=3.32×10−46, respectively). The effect of the ICAM single-nucleotide polymorphisms (SNPs) was independent of the effect of the ITGAM SNP rs1143679, and carriers of both ICAM rs3093030-AA and ITGAM rs1143679-AA had an OR of 4.08 compared with those with no risk allele in either SNP (95% CI 2.09 to 7.98; p=3.91×10−5). Conclusion These findings are the first to suggest that an ICAM–integrin-mediated pathway contributes to susceptibility to SLE. PMID:22523428

  20. Hug tightly and say goodbye: role of endothelial ICAM-1 in leukocyte transmigration.

    PubMed

    Rahman, Arshad; Fazal, Fabeha

    2009-04-01

    Stable adhesion of leukocytes to endothelium is crucial for transendothelial migration (TEM) of leukocytes evoked during inflammatory responses, immune surveillance, and homing and mobilization of hematopoietic progenitor cells. The basis of stable adhesion involves expression of intercellular adhesion molecule-1 (ICAM-1), an inducible endothelial adhesive protein that serves as a counter-receptor for beta(2)-integrins on leukocytes. Interaction of ICAM-1 with beta(2)-integrins enables leukocytes to adhere firmly to the vascular endothelium and subsequently, to migrate across the endothelial barrier. The emerging paradigm is that ICAM-1, in addition to firmly capturing leukocytes, triggers intracellular signaling events that may contribute to active participation of the endothelium in facilitating the TEM of adherent leukocytes. The nature, duration, and intensity of ICAM-1-dependent signaling events may contribute to the determination of the route (paracellular vs. transcellular) of leukocyte passage; these aspects of ICAM-1 signaling may in turn be influenced by density and distribution of ICAM-1 on the endothelial cell surface, the source of endothelial cells it is present on, and the type of leukocytes with which it is engaged. This review summarizes our current understanding of the "ICAM-1 paradigm" of TEM with an emphasis on the signaling events mediating ICAM-1 expression and activated by ICAM-1 engagement in endothelial cells.

  1. Intercellular Adhesion Molecule 1 Knockout Abrogates Radiation Induced Pulmonary Inflammation

    NASA Astrophysics Data System (ADS)

    Hallahan, Dennis E.; Virudachalam, Subbulakshmi

    1997-06-01

    Increased expression of intercellular adhesion molecule 1 (ICAM-1; CD54) is induced by exposure to ionizing radiation. The lung was used as a model to study the role of ICAM-1 in the pathogenesis of the radiation-induced inflammation-like response. ICAM-1 expression increased in the pulmonary microvascular endothelium and not in the endothelium of larger pulmonary vessels following treatment of mice with thoracic irradiation. To quantify radiation-induced ICAM-1 expression, we utilized fluorescence-activated cell sorting analysis of anti-ICAM-1 antibody labeling of pulmonary microvascular endothelial cells from human cadaver donors (HMVEC-L cells). Fluorochrome conjugates and UV microscopy were used to quantify the fluorescence intensity of ICAM in the irradiated lung. These studies showed a dose- and time-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium. Peak expression occurred at 24 h, while threshold dose was as low as 2 Gy. To determine whether ICAM-1 is required for inflammatory cell infiltration into the irradiated lung, the anti-ICAM-1 blocking antibody was administered by tail vein injection to mice following thoracic irradiation. Inflammatory cells were quantified by immunofluorescence for leukocyte common antigen (CD45). Mice treated with the anti-ICAM-1 blocking antibody showed attenuation of inflammatory cell infiltration into the lung in response to ionizing radiation exposure. To verify the requirement of ICAM-1 in the inflammation-like radiation response, we utilized the ICAM-1 knockout mouse. ICAM-1 was not expressed in the lungs of ICAM-1-deficient mice following treatment with thoracic irradiation. ICAM-1 knockout mice had no increase in the inflammatory cell infiltration into the lung in response to thoracic irradiation. These studies demonstrate a radiation dose-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium, and show that ICAM-1 is required for inflammatory cell infiltration

  2. PI3Kδ promotes CD4(+) T-cell interactions with antigen-presenting cells by increasing LFA-1 binding to ICAM-1.

    PubMed

    Garçon, Fabien; Okkenhaug, Klaus

    2016-05-01

    Activation of T lymphocytes by peptide/major histocompatibility complex on antigen-presenting cells (APCs) involves dynamic contacts between the two cells, during which T cells undergo marked morphological changes. These interactions are facilitated by integrins. Activation of the T cells increases the binding of the integrin lymphocyte function-associated antigen 1 (LFA-1) expressed by T cells to intercellular adhesion molecule (ICAM)-1 and ICAM-2 expressed by APCs. The signalling pathways that control integrin affinities are incompletely defined. The phosphoinositide 3-kinases (PI3Ks) generate second-messenger signalling molecules that control cell growth, proliferation, differentiation and trafficking. Here we show that in T cells, PI3Kδ attenuates the activation of Rac1, but sustains the activation of Rap1. Consequently, PI3Kδ increases LFA-1-dependent adhesion to form stable conjugates with APCs. Increased Rap1 activity and LFA-1 adhesion were only in part mediated by the downstream kinase Akt, suggesting the involvement of additional phosphatidylinositol(3,4,5)P3-binding proteins. These results establish a link between PI3K activity, cytoskeletal changes and integrin binding and help explain the impaired T-cell-dependent immune responses in PI3Kδ-deficient mice.

  3. Endotoxaemia-augmented murine venous thrombosis is dependent on TLR-4 and ICAM-1, and potentiated by neutropenia.

    PubMed

    Obi, Andrea T; Andraska, Elizabeth; Kanthi, Yogendra; Kessinger, Chase W; Elfline, Megan; Luke, Cathy; Siahaan, Teruna J; Jaffer, Farouc A; Wakefield, Thomas W; Henke, Peter K

    2017-01-26

    Venous thromboembolism is a major cause of death during and immediately post-sepsis. Venous thrombosis (VT) is mediated by cell adhesion molecules and leukocytes, including neutrophil extracellular traps (NETs). Sepsis, or experimentally, endotoxaemia, shares similar characteristics and is modulated via toll like receptor 4 (TLR4). This study was undertaken to determine if endotoxaemia potentiates early stasis thrombogenesis, and secondarily to determine the role of VT TLR4, ICAM-1 and neutrophils (PMNs). Wild-type (WT), ICAM-1 -/- and TLR4 -/- mice underwent treatment with saline or LPS (10 mg/kg i. p.) alone, or followed by inferior vena cava (IVC) ligation to generate stasis VT. In vivo microscopy of leukocyte trafficking was performed in non-thrombosed mice, and tissue and plasma were harvested during early VT formation. Pre-thrombosis, circulating ICAM-1 was elevated and increased leukocyte adhesion and rolling occurred on the IVC of LPS-treated mice. Post-thrombosis, endotoxaemic mice formed larger, platelet-poor thrombi. Endotoxaemic TLR4 -/- mice did not have an augmented thrombotic response and exhibited significantly decreased circulating ICAM-1 compared to endotoxaemic WT controls. Endotoxaemic ICAM-1 -/- mice had significantly smaller thrombi compared to controls. Hypothesising that PMNs localised to the inflamed endothelium were promoting thrombosis, PMN depletion using anti-Ly6G antibody was performed. Paradoxically, VT formed without PMNs was amplified, potentially related to endotoxaemia induced elevation of PAI-1 and circulating FXIII, and decreased uPA. Endotoxaemia enhanced early VT occurs in a TLR-4 and ICAM-1 dependent fashion, and is potentiated by neutropenia. ICAM-1 and/or TLR-4 inhibition may be a unique strategy to prevent sepsis-associated VT.

  4. ICAM-1 (CD54) expression on B lymphocytes is associated with their costimulatory function and can be increased by coactivation with IL-1 and IL-7.

    PubMed

    Dennig, D; Lacerda, J; Yan, Y; Gasparetto, C; O'Reilly, R J

    1994-07-01

    Recent studies have demonstrated that acute lymphoblastic leukemia-derived pre-B cell lines are deficient in their costimulatory function for T cell proliferation in response to the mitogen Con A and the superantigens TSST-1 and SEB. Stimulation of these pre-B cells with IL-7 increased their costimulatory function which involved the B7/CD28 pathway. In the present study, we stimulated T cells with Con A, TSST-1, and SEB in the presence of peripheral blood B lineage cells that do not constitutively express B7/BB1 on their surface and investigated whether their costimulatory function could also be enhanced by IL-7. We found that, in the presence of IL-1, stimulation with IL-7 increased the costimulatory function of B cells and their surface expression level of ICAM-1 (CD54). We then investigated whether costimulatory B cell function could be inhibited by blocking the ICAM-1/LFA-1 pathway. Addition of anti-ICAM-1 mAb to the coculture of T and B cells inhibited T cell proliferation by approximately 20%. In contrast, addition of anti-LFA-1 beta (CD18) mAb, directed against the T cell ligand of ICAM-1, inhibited T cell proliferation almost completely. To determine the role of ICAM-1 in costimulatory B cell function, we sorted B cells into ICAM-1low-and ICAM-1high-expressing populations. We found that B cells expressing high levels of surface ICAM-1 elicited significantly higher T cell responses than those with low levels, suggesting that the expression level of ICAM-1 on peripheral blood B cells correlates with their costimulatory function.

  5. αMβ2-integrin-intercellular adhesion molecule-1 interactions drive the flow-dependent trafficking of Guillain-Barré syndrome patient derived mononuclear leukocytes at the blood-nerve barrier in vitro

    PubMed Central

    Yosef, Nejla; Ubogu, Eroboghene E.

    2012-01-01

    The mechanisms of hematogenous leukocyte trafficking at the human blood-nerve barrier (BNB) are largely unknown. Intercellular adhesion molecule-1 (ICAM-1) has been implicated in the pathogenesis of Guillain-Barré syndrome (GBS). We developed a cytokine-activated human in vitro BNB model using primary endoneurial endothelial cells. Endothelial treatment with 10 U/mL tissue necrosis factor-α and 20 U/mL interferon-γ resulted in de novo expression of proinflammatory chemokines CCL2, CXCL9, CXCL11 and CCL20, with increased expression of CXCL2-3, CXCL8 and CXCL10 relative to basal levels. Cytokine treatment induced/ enhanced ICAM-1, E- and P-selectin, vascular cell adhesion molecule-1 and the alternatively spliced pro-adhesive fibronectin variant, fibronectin connecting segment-1 expression in a time-dependent manner, without alterations in junctional adhesion molecule-A expression. Lymphocytes and monocytes from untreated GBS patients express ICAM-1 counterligands, αM- and αL-integrin, with differential regulation of αM-integrin expression compared to healthy controls. Under flow conditions that mimic capillary hemodynamics in vivo, there was a >3-fold increase in total GBS patient and healthy control mononuclear leukocyte adhesion/ migration at the BNB following cytokine treatment relative to the untreated state. Function neutralizing monoclonal antibodies against human αM-integrin (CD11b) and ICAM-1 reduced untreated GBS patient mononuclear leukocyte trafficking at the BNB by 59% and 64.2% respectively. Monoclonal antibodies against αL-integrin (CD11a) and human intravenous immunoglobulin reduced total leukocyte adhesion/migration by 22.8% and 17.6% respectively. This study demonstrates differential regulation of αM-integrin on circulating mononuclear cells in GBS, as well as an important role for αM-integrin-ICAM-1 interactions in pathogenic GBS patient leukocyte trafficking at the human BNB in vitro. PMID:22552879

  6. Increased plasma soluble adhesion molecules; ICAM-1, VCAM-1, and E-selectin levels in patients with slow coronary flow.

    PubMed

    Turhan, Hasan; Saydam, Gul Sevim; Erbay, Ali Riza; Ayaz, Selime; Yasar, Ayse Saatci; Aksoy, Yuksel; Basar, Nurcan; Yetkin, Ertan

    2006-04-04

    Inflammation has been reported to be a major contributing factor to many cardiovascular events. In the present study, we aimed to evaluate plasma soluble adhesion molecules; intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and E-selectin as possible indicators of endothelial activation or inflammation in patients with slow coronary flow. Study population included 17 patients with angiographically proven normal coronary arteries and slow coronary flow in all three coronary vessels (group I, 11 male, 6 female, mean age=48+/-9 years), and 20 subjects with angiographically proven normal coronary arteries without associated slow coronary flow (group II, 11 male, 9 female, mean age=50+/-8 years). Coronary flow rates of all patients and control subjects were documented by Thrombolysis In Myocardial Infarction frame count (TIMI frame count). All patients in group I had TIMI frame counts greater than two standard deviation above those of control subjects (group II) and, therefore, were accepted as exhibiting slow coronary flow. Serum levels of ICAM-1, VCAM-1, and E-selectin were measured in all patients and control subjects using commercially available ELISA kits. Serum ICAM-1, VCAM-1, and E-selectin levels of patients with slow coronary flow were found to be significantly higher than those of control subjects with normal coronary flow (ICAM-1: 545+/-198 ng/ml vs. 242+/-113 ng/ml respectively, p<0.001, VCAM-1: 2040+/-634 ng/ml vs. 918+/-336 ng/ml respectively, p<0.001, E-selectin: 67+/-9 ng/ml vs. 52+/-8 ng/ml respectively, p<0.001). Average TIMI frame count was detected to be significantly correlated with plasma soluble ICAM-1 (r=0.550, p<0.001), VCAM-1 (r=0.569, p<0.001) and E-selectin (r=0.443, p=0.006). Increased levels of soluble adhesion molecules in patients with slow coronary flow may be an indicator of endothelial activation and inflammation and are likely to be in the causal pathway leading to slow coronary flow.

  7. SLAT promotes TCR-mediated, Rap1-dependent LFA-1 activation and adhesion through interaction of its PH domain with Rap1

    PubMed Central

    Côte, Marjorie; Fos, Camille; Canonigo-Balancio, Ann J.; Ley, Klaus; Bécart, Stéphane; Altman, Amnon

    2015-01-01

    ABSTRACT SLAT (also known as DEF6) promotes T cell activation and differentiation by regulating NFAT-Ca2+ signaling. However, its role in TCR-mediated inside-out signaling, which induces integrin activation and T cell adhesion, a central process in T cell immunity and inflammation, has not been explored. Here, we show that SLAT is crucial for TCR-induced adhesion to ICAM-1 and affinity maturation of LFA-1 in CD4+ T cells. Mechanistic studies revealed that SLAT interacts, through its PH domain, with a key component of inside-out signaling, namely the active form of the small GTPase Rap1 (which has two isoforms, Rap1A and Rap1B). This interaction has been further shown to facilitate the interdependent recruitment of Rap1 and SLAT to the T cell immunological synapse upon TCR engagement. Furthermore, a SLAT mutant lacking its PH domain drastically inhibited LFA-1 activation and CD4+ T cell adhesion. Finally, we established that a constitutively active form of Rap1, which is present at the plasma membrane, rescues the defective LFA-1 activation and ICAM-1 adhesion in SLAT-deficient (Def6−/−) T cells. These findings ascribe a new function to SLAT, and identify Rap1 as a target of SLAT function in TCR-mediated inside-out signaling. PMID:26483383

  8. SLAT promotes TCR-mediated, Rap1-dependent LFA-1 activation and adhesion through interaction of its PH domain with Rap1.

    PubMed

    Côte, Marjorie; Fos, Camille; Canonigo-Balancio, Ann J; Ley, Klaus; Bécart, Stéphane; Altman, Amnon

    2015-12-01

    SLAT (also known as DEF6) promotes T cell activation and differentiation by regulating NFAT-Ca(2+) signaling. However, its role in TCR-mediated inside-out signaling, which induces integrin activation and T cell adhesion, a central process in T cell immunity and inflammation, has not been explored. Here, we show that SLAT is crucial for TCR-induced adhesion to ICAM-1 and affinity maturation of LFA-1 in CD4(+) T cells. Mechanistic studies revealed that SLAT interacts, through its PH domain, with a key component of inside-out signaling, namely the active form of the small GTPase Rap1 (which has two isoforms, Rap1A and Rap1B). This interaction has been further shown to facilitate the interdependent recruitment of Rap1 and SLAT to the T cell immunological synapse upon TCR engagement. Furthermore, a SLAT mutant lacking its PH domain drastically inhibited LFA-1 activation and CD4(+) T cell adhesion. Finally, we established that a constitutively active form of Rap1, which is present at the plasma membrane, rescues the defective LFA-1 activation and ICAM-1 adhesion in SLAT-deficient (Def6(-/-)) T cells. These findings ascribe a new function to SLAT, and identify Rap1 as a target of SLAT function in TCR-mediated inside-out signaling. © 2015. Published by The Company of Biologists Ltd.

  9. Borrelia burgdorferi upregulates the adhesion molecules E-selectin, P-selectin, ICAM-1 and VCAM-1 on mouse endothelioma cells in vitro.

    PubMed

    Böggemeyer, E; Stehle, T; Schaible, U E; Hahne, M; Vestweber, D; Simon, M M

    1994-06-01

    In order to obtain more information on processes leading to Borrelia burgdorferi-induced inflammation in the host, we have developed an in vitro model to study the upregulation of cell surface expression of adhesion molecules on endothelial cells by spirochetes. A mouse endothelioma cell line, derived from brain capillaries, bEnd3, was used as indicator population. bEnd3 cells were incubated with preparations of viable, inactivated or sonicated spirochetes and the expression of E-selectin, P-selectin, ICAM-1 and VCAM-1 was monitored by immunocytochemistry and quantified by cell surface ELISA. We show that all three spirochetal preparations are able to upregulate cell surface expression of E-selectin, P-selectin, ICAM-1 and VCAM-1 on bEnd 3 cells in a dose-dependent manner. The kinetics of cell surface expression of the individual adhesion molecules in the presence of Borrelia burgdorferi showed maxima at about 50 h of incubation or later; this was distinct from results obtained with sonicated-preparations of Escherichia coli bacteria or with enterobacterial LPS where peak expression was observed between 4 h and 16 h. The fact that Borrelia burgdorferi does not contain conventional LPS suggests that the mode of induction of adhesion molecules on endothelial cells is influenced by the phenotype of bacteria. At the peak of spirochete-induced cell surface expression of adhesion molecules (approximately 50 h), bEnd3 cells were found to bind cells of a VLA-4+ B lymphoma line (L1-2) much more efficiently than untreated control cells. The binding of L1-2 cells to presensitized bEnd3 cells was significantly inhibited (more than 75%) in the presence of monoclonal antibodies to both VLA-4 and its endothelial counterreceptor VCAM-1. These findings demonstrate that Borrelia burgdorferi organisms are able to induce functionally active adhesion molecules on endothelial cells in vitro and suggest that E-selectin, P-selectin, ICAM-1 and VCAM-1 play an important role in the

  10. Elevated expression in situ of selectin and immunoglobulin superfamily type adhesion molecules in retroocular connective tissues from patients with Graves' ophthalmopathy.

    PubMed Central

    Heufelder, A E; Bahn, R S

    1993-01-01

    Activation of certain adhesion molecules within vascular endothelium and the surrounding extravascular space is a critical event in the recruitment and targeting of an inflammatory response or autoimmune attack to a particular tissue site. We have recently demonstrated that the adhesion of lymphocytes to cultured retroocular fibroblasts obtained from patients with Graves' ophthalmopathy (GO) is mediated predominantly by the interaction of lymphocyte function-associated antigen-1 (LFA-1), expressed on lymphocytes, with intercellular adhesion molecule-1 (ICAM-1), expressed by these cells following exposure to interferon-gamma (IFN-gamma), tumour necrosis factor-alpha (TNF-alpha), IL-1 alpha or purified thyroid-stimulating immunoglobulins. We now report the expression and localization in situ of several adhesion molecules, ICAM-1, endothelial leucocyte adhesion molecule-1 (ELAM-1), vascular cell adhesion molecule-1 (VCAM-1), and LFA-3 in retroocular tissues derived from patients with severe GO (n = 4) and normal individuals (n = 3). Serial cryostat sections of tissue specimens were processed for immunoperoxidase staining using various MoAbs against ICAM-1, ELAM-1, VCAM-1 and LFA-3. In addition, consecutive sections were stained with MoAbs against LFA-1, CD45RO (UCHL-1)DR-human leucocyte antigen (HLA-DR), CD11b/CD18 (Mac-1), and CD11c/CD18 (p150,95). In GO-retroocular tissues, strong immunoreactivity for ICAM-1 and LFA-3 was detected in blood vessels (> 90%), in perimysial fibroblasts surrounding extraocular muscle fibres, and in connective tissue distinct from extraocular muscle. No ICAM-1 or LFA-3 immunoreactivity was present in extraocular muscle cells themselves. ICAM-1 and LFA-3 immunoreactivity in normal tissues was minimal or absent both in connective and muscle tissues. Vascular endothelium was strongly positive for ELAM-1 and VCAM-1 in GO-retroocular tissues, while VCAM-1 immunoreactivity was minimal (< 5% of blood vessels) and ELAM-1 immunoreactivity was

  11. Effects of Tumor Necrosis Factor α (TNF-α) and Interleukina 10 (IL-10) on Intercellular Cell Adhesion Molecule-1 (ICAM-1) and Cluster of Differentiation 31 (CD31) in Human Coronary Artery Endothelial Cells.

    PubMed

    Xue, Mingming; Qiqige, Chaolumen; Zhang, Qi; Zhao, Haixia; Su, Liping; Sun, Peng; Zhao, Pengwei

    2018-06-27

    BACKGROUND The aim of this study was to investigate the effects of TNF-α and IL-10 on the expression of ICAM-1 and CD31 in human coronary artery endothelial cells (HCAEC). MATERIAL AND METHODS HCAEC was treated with 0, 2.5 μg/l, 5 μg/l, and 10 μg/l of TNF-α for 2 h, 6 h, and 10 h, and with 0 μg/l, 10 μg/l, 100 μg/l, and 200 μg/l of IL-10 for 5 h, 10 h and 15 h, respectively. RNA inference of TNF-αR was performed with siRNA. Real-time PCR, Western blot analysis, and ELSA were used to detect the mRNA level and protein level of ICAM-1 and CD31. RESULTS TNF-α significantly increased the mRNA and protein expression of ICAM-1 (P<0.05), and 2.5 μg/l TNF-α had the most obvious effect. RNAi of TNF-aR reduced the induction of TNF-α on the mRNA and protein expression of ICAM-1 (P<0.05). TNF-α significantly decreased the CD31 in the supernatant (P<0.05), and 2.5 μg/l TNF-a had the most obvious effect. IL-10 significantly decreased the ICAM-1 protein level. IL-10 decreased the mRNA expression and the protein expression of CD31. The effect on mRNA was not significant (P>0.05), while the effect on the protein expression was significant (P<0.05). CONCLUSIONS TNF-α and IL-10 treatment can affect the expression of ICAM-1 and CD31 in HCAEC.

  12. d(-) Lactic Acid-Induced Adhesion of Bovine Neutrophils onto Endothelial Cells Is Dependent on Neutrophils Extracellular Traps Formation and CD11b Expression.

    PubMed

    Alarcón, Pablo; Manosalva, Carolina; Conejeros, Ivan; Carretta, María D; Muñoz-Caro, Tamara; Silva, Liliana M R; Taubert, Anja; Hermosilla, Carlos; Hidalgo, María A; Burgos, Rafael A

    2017-01-01

    Bovine ruminal acidosis is of economic importance as it contributes to reduced milk and meat production. This phenomenon is mainly attributed to an overload of highly fermentable carbohydrate, resulting in increased d(-) lactic acid levels in serum and plasma. Ruminal acidosis correlates with elevated acute phase proteins in blood, along with neutrophil activation and infiltration into various tissues leading to laminitis and aseptic polysynovitis. Previous studies in bovine neutrophils indicated that d(-) lactic acid decreased expression of L-selectin and increased expression of CD11b to concentrations higher than 6 mM, suggesting a potential role in neutrophil adhesion onto endothelia. The two aims of this study were to evaluate whether d(-) lactic acid influenced neutrophil and endothelial adhesion and to trigger neutrophil extracellular trap (NET) production (NETosis) in exposed neutrophils. Exposure of bovine neutrophils to 5 mM d(-) lactic acid elevated NET release compared to unstimulated neutrophil negative controls. Moreover, this NET contains CD11b and histone H 4 citrullinated, the latter was dependent on PAD4 activation, a critical enzyme in DNA decondensation and NETosis. Furthermore, NET formation was dependent on d(-) lactic acid plasma membrane transport through monocarboxylate transporter 1 (MCT1). d(-) lactic acid enhanced neutrophil adhesion onto endothelial sheets as demonstrated by in vitro neutrophil adhesion assays under continuous physiological flow conditions, indicating that cell adhesion was a NET- and a CD11b/ICAM-1-dependent process. Finally, d(-) lactic acid was demonstrated for the first time to trigger NETosis in a PAD4- and MCT1-dependent manner. Thus, d(-) lactic acid-mediated neutrophil activation may contribute to neutrophil-derived pro-inflammatory processes, such as aseptic laminitis and/or polysynovitis in animals suffering acute ruminal acidosis.

  13. Intercellular adhesion molecule-1 augments myoblast adhesion and fusion through homophilic trans-interactions.

    PubMed

    Pizza, Francis X; Martin, Ryan A; Springer, Evan M; Leffler, Maxwell S; Woelmer, Bryce R; Recker, Isaac J; Leaman, Douglas W

    2017-07-11

    The overall objective of the study was to identify mechanisms through which intercellular adhesion molecule-1 (ICAM-1) augments the adhesive and fusogenic properties of myogenic cells. Hypotheses were tested using cultured myoblasts and fibroblasts, which do not constitutively express ICAM-1, and myoblasts and fibroblasts forced to express full length ICAM-1 or a truncated form lacking the cytoplasmic domain of ICAM-1. ICAM-1 mediated myoblast adhesion and fusion were quantified using novel assays and cell mixing experiments. We report that ICAM-1 augments myoblast adhesion to myoblasts and myotubes through homophilic trans-interactions. Such adhesive interactions enhanced levels of active Rac in adherent and fusing myoblasts, as well as triggered lamellipodia, spreading, and fusion of myoblasts through the signaling function of the cytoplasmic domain of ICAM-1. Rac inhibition negated ICAM-1 mediated lamellipodia, spreading, and fusion of myoblasts. The fusogenic property of ICAM-1-ICAM-1 interactions was restricted to myogenic cells, as forced expression of ICAM-1 by fibroblasts did not augment their fusion to ICAM-1+ myoblasts/myotubes. We conclude that ICAM-1 augments myoblast adhesion and fusion through its ability to self-associate and initiate Rac-mediated remodeling of the actin cytoskeleton.

  14. Serological level of ICAM and ELAM adhesion molecules in allergic vascularitis.

    PubMed

    Alecu, M; Coman, G; Gălăţescu, E

    1997-01-01

    A 24-patient lot with hypersensitivity vasculitis was investigated for serological determinations of ICAM and ELAM adhesion molecules. Determinations were made in attack and in remission. Over two thirds of the cases presented elevated serological levels of ICAM and ELAM in attack, with twofold higher values than normal. In remission, in the absence of clinical signs, ICAM and ELAM values were normal in 19 cases (ICAM) and 22 cases (ELAM). Serological level of ICAM and ELAM was concordant with serological level of IL-2, IL-6, circulating immune complexes and clinical status. The increased values of ICAM and ELAM are due to the expression of these molecules both on the surface of endothelial cells and on immune cells. The adherence of leukocytes on the endothelial cells, by adhesion molecules involvement, followed by their extravasation represents an important event in the vascular lesion pathogeny of the hypersensitivity vasculitis.

  15. Infection of human intestinal epithelial cells with invasive bacteria upregulates apical intercellular adhesion molecule-1 (ICAM)-1) expression and neutrophil adhesion.

    PubMed Central

    Huang, G T; Eckmann, L; Savidge, T C; Kagnoff, M F

    1996-01-01

    The acute host response to gastrointestinal infection with invasive bacteria is characterized by an accumulation of neutrophils in the lamina propria, and neutrophil transmigration to the luminal side of the crypts. Intestinal epithelial cells play an important role in the recruitment of inflammatory cells to the site of infection through the secretion of chemokines. However, little is known regarding the expression, by epithelial cells, of molecules that are involved in interactions between the epithelium and neutrophils following bacterial invasion. We report herein that expression of ICAM-1 on human colon epithelial cell lines, and on human enterocytes in an in vivo model system, is upregulated following infection with invasive bacteria. Increased ICAM-1 expression in the early period (4-9 h) after infection appeared to result mainly from a direct interaction between invaded bacteria and host epithelial cells since it co-localized to cells invaded by bacteria, and the release of soluble factors by epithelial cells played only a minor role in mediating increased ICAM-1 expression. Furthermore, ICAM-1 was expressed on the apical side of polarized intestinal epithelial cells, and increased expression was accompanied by increased neutrophil adhesion to these cells. ICAM-1 expression by intestinal epithelial cells following infection with invasive bacteria may function to maintain neutrophils that have transmigrated through the epithelium in close contact with the intestinal epithelium, thereby reducing further invasion of the mucosa by invading pathogens. PMID:8755670

  16. d(−) Lactic Acid-Induced Adhesion of Bovine Neutrophils onto Endothelial Cells Is Dependent on Neutrophils Extracellular Traps Formation and CD11b Expression

    PubMed Central

    Alarcón, Pablo; Manosalva, Carolina; Conejeros, Ivan; Carretta, María D.; Muñoz-Caro, Tamara; Silva, Liliana M. R.; Taubert, Anja; Hermosilla, Carlos; Hidalgo, María A.; Burgos, Rafael A.

    2017-01-01

    Bovine ruminal acidosis is of economic importance as it contributes to reduced milk and meat production. This phenomenon is mainly attributed to an overload of highly fermentable carbohydrate, resulting in increased d(−) lactic acid levels in serum and plasma. Ruminal acidosis correlates with elevated acute phase proteins in blood, along with neutrophil activation and infiltration into various tissues leading to laminitis and aseptic polysynovitis. Previous studies in bovine neutrophils indicated that d(−) lactic acid decreased expression of L-selectin and increased expression of CD11b to concentrations higher than 6 mM, suggesting a potential role in neutrophil adhesion onto endothelia. The two aims of this study were to evaluate whether d(−) lactic acid influenced neutrophil and endothelial adhesion and to trigger neutrophil extracellular trap (NET) production (NETosis) in exposed neutrophils. Exposure of bovine neutrophils to 5 mM d(−) lactic acid elevated NET release compared to unstimulated neutrophil negative controls. Moreover, this NET contains CD11b and histone H4 citrullinated, the latter was dependent on PAD4 activation, a critical enzyme in DNA decondensation and NETosis. Furthermore, NET formation was dependent on d(−) lactic acid plasma membrane transport through monocarboxylate transporter 1 (MCT1). d(−) lactic acid enhanced neutrophil adhesion onto endothelial sheets as demonstrated by in vitro neutrophil adhesion assays under continuous physiological flow conditions, indicating that cell adhesion was a NET- and a CD11b/ICAM-1-dependent process. Finally, d(−) lactic acid was demonstrated for the first time to trigger NETosis in a PAD4- and MCT1-dependent manner. Thus, d(−) lactic acid-mediated neutrophil activation may contribute to neutrophil-derived pro-inflammatory processes, such as aseptic laminitis and/or polysynovitis in animals suffering acute ruminal acidosis. PMID:28861083

  17. High-density lipoprotein of patients with breast cancer complicated with type 2 diabetes mellitus promotes cancer cells adhesion to vascular endothelium via ICAM-1 and VCAM-1 upregulation.

    PubMed

    Huang, Xiaoqin; He, Dan; Ming, Jia; He, Yubin; Zhou, Champion; Ren, Hui; He, Xin; Wang, Chenguang; Jin, Jingru; Ji, Liang; Willard, Belinda; Pan, Bing; Zheng, Lemin

    2016-02-01

    Adhesion of disseminating tumor cells to vascular endothelium is a pivotal starting point in the metastasis cascade. We have shown previously that diabetic high-density lipoprotein (HDL) has the capability of promoting breast cancer metastasis, and this report summarizes our more recent work studying the role of abnormal HDL in facilitating the adhesion of the circulating tumor cells to the endothelium. This is an initiating step in breast cancer metastasis, and this work assesses the role of ICAM-1 and VCAM-1 in this process. MDA-MB-231, MCF 7, and human umbilical vein endothelial cells (HUVECs) were treated with normal HDL from healthy controls (N-HDL), HDL from breast cancer patients (B-HDL), or HDL from breast cancer patients complicated with type 2 diabetes mellitus (BD-HDL), and the cell adhesion abilities were determined. ICAM-1 and VCAM-1 expression as well as the protein kinase C (PKC) activity were evaluated. The effect of PKC inhibitor and PKC siRNA on adhesion was also studied. The immunohistochemical staining of ICAM-1, VCAM-1, and E-selectin from breast cancer patients and breast cancer patients complicated with type 2 diabetes mellitus (T2DM) were examined. Our results indicate that BD-HDL promoted an increase in breast cancer cell adhesion to HUVECs and stimulated higher ICAM-1 and VCAM-1 expression on the cells surface of both breast cancer and HUVEC cells, along with the activation of PKC. Increased tumor cell (TC)-HUVEC adhesion, as well as ICAM-1 and VCAM-1 expression induced by BD-HDL, could be inhibited by staurosporine and PKC siRNA. In addition, a Db/db type 2 diabetes mouse model has more TC-Vascular Endothelium adhesion compared to a normal model. However, BD patients have a lower expression of ICAM-1, VCAM-1, and E-selectin in their tumor tissues. BD-HDL facilitates the adhesion of tumor cells to vascular endothelium by upregulating the expression of ICAM-1 and VCAM-1, thereby promoting the initial progression of breast cancer metastasis

  18. Tetraspanin CD151 regulates alpha6beta1 integrin adhesion strengthening

    NASA Technical Reports Server (NTRS)

    Lammerding, Jan; Kazarov, Alexander R.; Huang, Hayden; Lee, Richard T.; Hemler, Martin E.

    2003-01-01

    The tetraspanin CD151 molecule associates specifically with laminin-binding integrins, including alpha6beta1. To probe strength of alpha6beta1-dependent adhesion to laminin-1, defined forces (0-1.5 nN) were applied to magnetic laminin-coated microbeads bound to NIH 3T3 cells. For NIH 3T3 cells bearing wild-type CD151, adhesion strengthening was observed, as bead detachment became more difficult over time. In contrast, mutant CD151 (with the C-terminal region replaced) showed impaired adhesion strengthening. Static cell adhesion to laminin-1, and detachment of beads coated with fibronectin or anti-alpha6 antibody were all unaffected by CD151 mutation. Hence, CD151 plays a key role in selectively strengthening alpha6beta1 integrin-mediated adhesion to laminin-1.

  19. VCAM-1 expression is upregulated by CD34+/CD133+-stem cells derived from septic patients

    PubMed Central

    Remmé, Christoph; Betzen, Christian; Tönshoff, Burkhard; Yard, Benito A.; Beck, Grietje; Rafat, Neysan

    2018-01-01

    CD34+/CD133+- cells are a bone marrow derived stem cell population, which presumably contain vascular progenitor cells and are associated with improved vascular repair. In this study, we investigated whether the adhesion molecules ICAM-1 (intercellular adhesion molecule-1), VCAM-1 (vascular adhesion molecule-1), E-selectin und L-selectin, which are involved in homing of vascular stem cells, are upregulated by CD34+/CD133+-stem cells from septic patients and would be associated with improved clinical outcome. Peripheral blood mononuclear cells from intensive care unit (ICU) patients with (n = 30) and without sepsis (n = 10), and healthy volunteers (n = 15) were isolated using Ficoll density gradient centrifugation. The expression of VCAM-1, ICAM-1, E-selectin and L-selectin was detected on CD34+/CD133+-stem cells by flow cytometry. The severity of disease was assessed by the Simplified Acute Physiology Score (SAPS) II. Serum concentrations of vascular endothelial growth factor (VEGF) and angiopoietin (Ang)-2 were determined by Enzyme-linked immunosorbent assay. The expression of VCAM-1, ICAM-1, E-selectin and L-selectin by CD34+/CD133+-stem cells was significantly upregulated in septic patients, and correlated with sepsis severity. Furthermore, high expression of VCAM-1 by CD34+/CD133+-stem cells revealed a positive association with mortalitiy (p<0.05). Furthermore, significantly higher serum concentrations of VEGF and Ang-2 were found in septic patients, however none showed a strong association with survival. Our data suggest, that VCAM-1 upregulation on CD34+/CD133+-stem cells could play a crucial role in their homing in the course of sepsis. An increase in sepsis severity resulted in both and increase in CD34+/CD133+-stem cells and VCAM-1-expression by those cells, which might reflect an increase in need for vascular repair. PMID:29601599

  20. Expression of intercellular adhesion molecule-1 by myofibers in mdx mice.

    PubMed

    Torres-Palsa, Maria J; Koziol, Matthew V; Goh, Qingnian; Cicinelli, Peter A; Peterson, Jennifer M; Pizza, Francis X

    2015-11-01

    We investigated the extent to which intercellular adhesion molecule-1 (ICAM-1), a critical protein of the inflammatory response, is expressed in skeletal muscles of mdx mice (a murine model of Duchenne muscular dystrophy). Muscles were collected from control and mdx mice at 2-24 weeks of age and analyzed for ICAM-1 expression by means of Western blot and immunofluorescence. Western blot revealed higher expression of ICAM-1 in mdx compared with control muscles through 24 weeks of age. In contrast to control muscles, ICAM-1 was expressed on the membrane of damaged, regenerating, and normal myofibers of mdx mice. CD11b+ myeloid cells also expressed ICAM-1 in mdx muscles, and CD11b+ cells were closely associated with the membrane of myofibers expressing ICAM-1. These findings support a paradigm in which ICAM-1 and its localization to myofibers in muscles of mdx mice contributes to the dystrophic pathology. © 2015 Wiley Periodicals, Inc.

  1. EXPRESSION OF INTERCELLULAR ADHESION MOLECULE-1 BY MYOFIBERS IN mdx MICE

    PubMed Central

    TORRES-PALSA, MARIA J.; KOZIOL, MATTHEW V.; GOH, QINGNIAN; CICINELLI, PETER A.; PETERSON, JENNIFER M.; PIZZA, FRANCIS X.

    2017-01-01

    Introduction We investigated the extent to which intercellular adhesion molecule-1 (ICAM-1), a critical protein of the inflammatory response, is expressed in skeletal muscles of mdx mice (a murine model of Duchenne muscular dystrophy). Methods Muscles were collected from control and mdx mice at 2–24 weeks of age and analyzed for ICAM-1 expression by means of Western blot and immunofluorescence. Results Western blot revealed higher expression of ICAM-1 in mdx compared with control muscles through 24 weeks of age. In contrast to control muscles, ICAM-1 was expressed on the membrane of damaged, regenerating, and normal myofibers of mdx mice. CD11b+ myeloid cells also expressed ICAM-1 in mdx muscles, and CD11b+ cells were closely associated with the membrane of myofibers expressing ICAM-1. Conclusions These findings support a paradigm in which ICAM-1 and its localization to myofibers in muscles of mdx mice contributes to the dystrophic pathology. PMID:25728314

  2. The neural cell adhesion molecule-derived peptide, FGL, attenuates lipopolysaccharide-induced changes in glia in a CD200-dependent manner.

    PubMed

    Cox, F F; Berezin, V; Bock, E; Lynch, M A

    2013-04-03

    Fibroblast growth loop (FGL) is a neural cell adhesion molecule (NCAM)-mimetic peptide that mimics the interaction of NCAM with fibroblast growth factor receptor (FGFR). FGL increases neurite outgrowth and promotes neuronal survival in vitro, and it has also been shown to have neuroprotective effects in vivo. More recent evidence has indicated that FGL has anti-inflammatory effects, decreasing age-related changes in microglial activation and production of inflammatory cytokines. These changes have been associated with an FGL-induced increase in expression of the glycoprotein, CD200, which interacts with its receptor to help maintain microglia in a quiescent state. However whether the FGL-induced anti-inflammatory effects are CD200-dependent has not been examined. The objective of this study was to address this question. Mixed glia were prepared from brain tissue of neonatal wildtype and CD200-deficient mice and preincubated with FGL prior to stimulation with lipopolysaccharide (LPS). Cells were assessed for mRNA expression of markers of microglial activation, CD11b, CD40 and intercellular adhesion molecule 1 (ICAM-1) and also the inflammatory cytokines, interleukin (IL)-1β, IL-6 and tumour necrosis factor (TNF)-α, while supernatant concentrations of these cytokine were also assessed. LPS significantly increased all these parameters and the effect was greater in cells prepared from CD200-deficient mice. Whereas FGL attenuated the LPS-induced changes in cells from wildtype mice, it did not do so in cells from CD200-deficient mice. We conclude that the FGL-induced changes in microglial activation are CD200-dependent and demonstrate that the interaction of astrocytes with microglia is critically important for modulating microglial activation. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis.

    PubMed

    Goh, Qingnian; Dearth, Christopher L; Corbett, Jacob T; Pierre, Philippe; Chadee, Deborah N; Pizza, Francis X

    2015-02-15

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast-myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube-myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube-myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Intercellular Adhesion Molecule-1 Expression by Skeletal Muscle Cells Augments Myogenesis

    PubMed Central

    Goh, Qingnian; Dearth, Christopher L.; Corbett, Jacob T.; Pierre, Philippe; Chadee, Deborah N.; Pizza, Francis X.

    2014-01-01

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast-myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube-myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube-myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. PMID:25281303

  5. Neutrophil adherence to isolated adult canine myocytes. Evidence for a CD18-dependent mechanism.

    PubMed

    Entman, M L; Youker, K; Shappell, S B; Siegel, C; Rothlein, R; Dreyer, W J; Schmalstieg, F C; Smith, C W

    1990-05-01

    Cardiac myocytes were isolated from adult dogs and incubated with isolated canine neutrophils (PMN). Intercellular adhesion was low and unchanged by stimulation of the PMN with zymosan activated serum or platelet activating factor (PAF) at concentrations that significantly enhance PMN adhesion to protein-coated glass and canine endothelial cell monolayers. Intercellular adhesion was significantly increased only when both myocytes and PMN were stimulated (e.g., myocytes incubated with IL-1, tumor necrosis factor, or phorbol myristate acetate, and PMN were chemotactically stimulated). Inhibitors of protein synthesis diminished the IL-1 beta-induced effect by greater than 80%. The IL-1 beta, PAF-stimulated PMN-myocyte adhesion was associated with substantial H2O2 production. Under conditions with low PMN-myocyte adhesion (i.e., IL-1 beta alone, PAF alone, or no stimulus) H2O2 production was generally less than 5% of that occurring with high adhesion. An anti-CD18 monoclonal antibody (R15.7) inhibited stimulated PMN-myocyte adhesion by greater than 95% and reduced H2O2 production by greater than 90%. Control isotype-matched, binding, and nonbinding antibodies were without effect on adherence or H2O2 production. The results indicate that cytokine stimulation of adult myocytes induces expression of a ligand involved in CD18-dependent adherence of canine neutrophils.

  6. Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goh, Qingnian; Dearth, Christopher L.; Corbett, Jacob T.

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast–myoblast adhesion, myotube formation,more » myonuclear number, myotube alignment, myotube–myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube–myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. - Highlights: • We examined mechanisms through which skeletal muscle cell expression of ICAM-1 facilitates events of in vitro myogenesis. • Expression of ICAM-1 by cultured myoblasts did not influence their ability to proliferate or differentiate. • Skeletal muscle cell expression of ICAM-1 augmented myoblast fusion, myotube alignment, myotube–myotube fusion, and myotube size. • ICAM-1 augmented myogenic processes

  7. Endocan--the new endothelial activation marker independently associated with soluble endothelial adhesion molecules in uraemic patients with cardiovascular disease.

    PubMed

    Pawlak, Krystyna; Mysliwiec, Michal; Pawlak, Dariusz

    2015-04-01

    Endocan is a new marker of endothelial cell activation that mediates adhesion of leukocytes into endothelium. Soluble intercellular (sICAM-1) and vascular cellular (sVCAM-1) adhesion molecules play an important role in the prevalence of cardiovascular disease (CVD) in chronic kidney disease (CKD) patients. The aim of this study is to investigate whether endocan could affect the concentrations of sICAM-1 and sVCAM-1 in CKD patients, particularly in those with CVD. We evaluated plasma endocan, sICAM-1, sVCAM-1 and the markers of inflammation: high sensitivity C-reactive protein (hs CRP), interleukin-6, tumor necrosis factor-α (TNF-α) and their interrelationships in 53 CKD patients (both with and without CVD) and 29 healthy controls. Endocan, sICAM-1, sVCAM-1 and inflammatory markers were significantly higher in CKD patients than in controls, and patients with CVD had levels significantly higher (except interleukin-6 and TNF-α) than those without CVD. The presence of CVD, ferritin, TNF-α and SBP were the independent predictors of endocan levels in the whole CKD group. In this group, the weak relationship was between endocan and sICAM-1 and sVCAM-1, but age was the only independent predictor of these adhesion molecules. The strong association between endocan and sICAM-1 and sVCAM-1 was exclusively observed in subgroup with CVD, and the low % of lymphocytes followed by increased endocan was identified as the independent variables significantly associated with these soluble molecule levels. This study shows that plasma endocan is significantly increased and independently associated with sICAM-1 and sVCAM-1 levels in CKD patients with cardiovascular complications. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  8. Impact of Blood Vessel Quantity and Vascular Expression of CD133 and ICAM-1 on Survival of Glioblastoma Patients

    PubMed Central

    Kase, Marju; Saretok, Mikk; Adamson-Raieste, Aidi; Kase, Sandra; Niinepuu, Kristi; Vardja, Markus; Asser, Toomas

    2017-01-01

    Glioblastoma (GB) is the most angiogenic tumor. Nevertheless, antiangiogenic therapy has not shown significant clinical efficacy. The aim of this study was to assess blood vessel characteristics on survival of GB patients. Surgically excised GB tissues were histologically examined for overall proportion of glomeruloid microvascular proliferation (MP) and the total number of blood vessels. Also, immunohistochemical vascular staining intensities of CD133 and ICAM-1 were determined. Vessel parameters were correlated with patients' overall survival. The survival time depended on the number of blood vessels (p = 0.03) but not on the proportion of MP. Median survival times for patients with low (CD133 were 9.0 months (95% CI: 8.0–10.1) and 12.0 months (95% CI: 10.3–13.7). In contrast, the staining intensity of vascular ICAM-1 did not affect survival. In multivariate analysis, the number of blood vessels emerged as an independent predictor for longer overall survival (HR: 2.4, 95% CI: 1.2–5.0, p = 0.02). For success in antiangiogenic therapy, better understanding about tumor vasculature biology is needed. PMID:29250531

  9. Molecular analysis of antigen-independent adhesion forces between T and B lymphocytes.

    PubMed Central

    Amblard, F; Auffray, C; Sekaly, R; Fischer, A

    1994-01-01

    The low-affinity interactions underlying antigen recognition by T-cell receptors (TCRs) are thought to involve antigen-independent adhesion mechanisms. Using a hydrodynamic approach, we found that antigen-independent adhesion occurred between human B cells and resting T cells in a transient and temperature-dependent fashion. The mean cell-cell adhesion force was 0.32 x 10(-9) N and was generated by similar contributions (0.16 x 10(-9) N) of the LFA-1- and CD2-dependent adhesion pathways. After T-cell stimulation with a phorbol ester, the force contributed by LFA-1 was drastically increased, while that of CD2 was unaffected. We propose that weak receptor-mediated adhesion initiates antigen-independent intercellular contacts required for antigen recognition by the TCR and is upregulated following TCR engagement. The method used permits adhesion forces between living cells to be resolved at the molecular level and should prove valuable for the rapid assessment of interaction forces between various types of cells and cell-sized particles. Images PMID:7909604

  10. House dust mite induces expression of intercellular adhesion molecule-1 in EoL-1 human eosinophilic leukemic cells.

    PubMed

    Kwon, Byoung Chul; Sohn, Myung Hyun; Kim, Kyung Won; Kim, Eun Soo; Kim, Kyu-Earn; Shin, Myeong Heon

    2007-10-01

    The house dust mite (HDM) is considered to be the most common indoor allergen associated with bronchial asthma. In this study, we investigated whether crude extract of the HDM Dermatophagoides farinae could activate human eosinophilic leukemic cells (EoL-1) to induce upregulation of cell-surface adhesion molecules. When EoL-1 cells were incubated with D. farinae extract, expression of intercellular adhesion molecule-1 (ICAM-1) significantly increased on the cell surfaces compared to cells incubated with medium alone. In contrast, surface expression of CD11b and CD49d in EoL-1 cells was not affected by D. farinae extract. In addition, pretreatment of cells with NF-kappaB inhibitor (MG-132) or JNK inhibitor (SP600125) significantly inhibited ICAM-1 expression promoted by HDM extract. However, neither p38 MAP kinase inhibitor nor MEK inhibitor prevented HDM-induced ICAM-1 expression in EoL-1 cells. These results suggest that crude extract of D. farinae induces ICAM-1 expression in EoL-1 cells through signaling pathways involving both NF-kappaB and JNK.

  11. House Dust Mite Induces Expression of Intercellular Adhesion Molecule-1 in EoL-1 Human Eosinophilic Leukemic Cells

    PubMed Central

    Kwon, Byoung Chul; Sohn, Myung Hyun; Kim, Kyung Won; Kim, Eun Soo; Kim, Kyu-Earn

    2007-01-01

    The house dust mite (HDM) is considered to be the most common indoor allergen associated with bronchial asthma. In this study, we investigated whether crude extract of the HDM Dermatophagoides farinae could activate human eosinophilic leukemic cells (EoL-1) to induce upregulation of cell-surface adhesion molecules. When EoL-1 cells were incubated with D. farinae extract, expression of intercellular adhesion molecule-1 (ICAM-1) significantly increased on the cell surfaces compared to cells incubated with medium alone. In contrast, surface expression of CD11b and CD49d in EoL-1 cells was not affected by D. farinae extract. In addition, pretreatment of cells with NF-κB inhibitor (MG-132) or JNK inhibitor (SP600125) significantly inhibited ICAM-1 expression promoted by HDM extract. However, neither p38 MAP kinase inhibitor nor MEK inhibitor prevented HDM-induced ICAM-1 expression in EoL-1 cells. These results suggest that crude extract of D. farinae induces ICAM-1 expression in EoL-1 cells through signaling pathways involving both NF-κB and JNK. PMID:17982228

  12. Circulating sICAM-1 and sE-Selectin as biomarker of infection and prognosis in patients with systemic inflammatory response syndrome.

    PubMed

    de Pablo, Raúl; Monserrat, Jorge; Reyes, Eduardo; Díaz, David; Rodríguez-Zapata, Manuel; de la Hera, Antonio; Prieto, Alfredo; Álvarez-Mon, Melchor

    2013-03-01

    Vascular endothelium activation is a key pathogenic step in systemic inflammatory response syndrome (SIRS) that can be triggered by both microbial and sterile proinflammatory stimuli. The relevance of soluble adhesion molecules as clinical biomarkers to discriminate between infectious and non-infectious SIRS, and the individual patient prognosis, has not been established. We prospectively measured by sandwich ELISA, serum levels of soluble E-Selectin (sE-Selectin), soluble vascular cell adhesion molecule-1 (sVCAM-1), soluble intercellular adhesion molecule-1 (sICAM-1) and soluble intercellular adhesion molecule-2 (sICAM-2) at ICU admission and at days 3, 7, 14 and 28 in patients with sepsis and at days 3 and 7 in patients with non-infectious SIRS. At ICU admission, sE-Selectin, sVCAM-1 and sICAM-1 in patients with infectious SIRS were significantly higher than those found in patients with non-infectious SIRS. ROC analysis revealed that the AUC for infection identification was best for sICAM-1 (0.900±0.041; 95% CI 0.819-0.981; p<0.0001). Moreover, multivariate analysis showed that 4 variables were significantly and independently associated with mortality at 28 days: male gender (OR 15.90; 95% CI, 2.54-99.32), MODS score (OR 5.60; 95% CI, 1.67-18.74), circulating sE-Selectin levels (OR 4.81; 95% CI, 1.34-17.19) and sVCAM-1 concentrations (OR 4.80; 95% CI, 1.34-17.14). Patients with SIRS secondary to infectious or non-infectious etiology show distinctive patterns of disturbance in serum soluble adhesion molecules. Serum ICAM-1 is a reliable biomarker for classifying patients with infectious SIRS from those with non-infectious SIRS. In addition, soluble E-Selectin is a prognostic biomarker with higher levels in patients with SIRS and fatal outcome. Copyright © 2012 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  13. Mouse CD23 regulates monocyte activation through an interaction with the adhesion molecule CD11b/CD18.

    PubMed

    Lecoanet-Henchoz, S; Plater-Zyberk, C; Graber, P; Gretener, D; Aubry, J P; Conrad, D H; Bonnefoy, J Y

    1997-09-01

    CD23 is expressed on a variety of hemopoietic cells. Recently, we have reported that blocking CD23 interactions in a murine model of arthritis resulted in a marked improvement of disease severity. Here, we demonstrate that CD11b, the alpha chain of the beta 2 integrin adhesion molecule complex CD11b/CD18 expressed on monocytes interacts with CD23. Using a recombinant fusion protein (ZZ-CD23), murine CD23 was shown to bind to peritoneal macrophages and peripheral blood cells isolated from mice as well as the murine macrophage cell line, RAW. The interactions between mouse ZZ-CD23 and CD11b/CD18-expressing cells were significantly inhibited by anti-CD11b monoclonal antibodies. A functional consequence was then demonstrated by inducing an up-regulation of interleukin-6 (IL-6) production following ZZ-CD23 incubation with monocytes. The addition of Fab fragments generated from the monoclonal antibody CD11b impaired this cytokine production by 50%. Interestingly, a positive autocrine loop was identified as IL-6 was shown to increase CD23 binding to macrophages. These results demonstrate that similar to findings using human cells, murine CD23 binds to the surface adhesion molecule, CD11b, and these interactions regulate biological activities of murine myeloid cells.

  14. Increased Cell Adhesion Molecules, PECAM-1, ICAM-3, or VCAM-1, Predict Increased Risk for Flare in Patients With Quiescent Inflammatory Bowel Disease.

    PubMed

    Gu, Phillip; Theiss, Arianne; Han, Jie; Feagins, Linda A

    2017-07-01

    Predicting the risk of flare-ups for patients with inflammatory bowel disease (IBD) is difficult. Alterations in gut endothelial regulation of mucosal immune homeostasis might be early events leading to flares in IBD. Cell adhesion molecules (CAMs), in particular, are important in maintaining endothelial integrity and regulating the migration of leukocytes into the gut. We evaluated the mRNA expression of various tight junction proteins, with an emphasis on CAMs, in 40 patients with IBD in clinical remission. Patients were retrospectively assessed at 6, 12, and 24 months after baseline colonoscopy, and at the end of all available follow-up (maximum 65 mo), for flare events to determine whether baseline mRNA expression was associated with subsequent flares. At all follow-up points, the baseline expression of platelet endothelial cell adhesion molecule-1 (PECAM-1), ICAM-3, and VCAM-1 was significantly higher in patients who flared than in those who did not (2.4-fold elevation, P=0.012 for PECAM-1; 1.9-fold increased, P=0.03 for ICAM-3; and 1.4-fold increased, P=0.02 for VCAM-1). PECAM-1 and ICAM-3 expression was significantly increased in patients who flared as early as 6 months after baseline colonoscopy. In contrast, there were no significant differences between patients with and without flares in baseline expression of other CAMs (ESAM, ICAM-1, ICAM-2, E-selectin, P-selectin, and MadCAM1). Increased expression of PECAM-1, ICAM-3, and VCAM-1 in colonic biopsies from patients with IBD in clinical remission is associated with subsequent flares. This suggests that increases in the expression of these proteins may be early events that lead to flares in patients with IBD.

  15. Quercetin nanoparticle complex attenuated diabetic nephropathy via regulating the expression level of ICAM-1 on endothelium

    PubMed Central

    Tong, Fei; Liu, Suhuan; Yan, Bing; Li, Xuejun; Ruan, Shiwei; Yang, Shuyu

    2017-01-01

    The purpose of the study was to reveal the therapeutic effect of quercetin (QUE) nanoparticle complex on diabetic nephropathy (DN) by regulating the expression of intercellular adhesion molecular-1 (ICAM-1) on endothelium as compared to free QUE. QUE 10 mg/kg as a single abdominal subcutaneous injection daily for 8 weeks continuously in diabetic rats and 10 mg/kg QUE nanoparticle complex as a single abdominal subcutaneous injection every 5 days, continuously administered for 8 weeks to diabetic rats. Blood and left kidneys were collected; pathological change of kidney, renal function, oxidative stress level, blood glucose level, serum lipid, urine protein, and albumin/creatinine ratio were measured; and neutrophil adhesion, ICAM-1 expression, and CD11b+ cells infiltration were observed. Both QUE and QUE nanoparticle complex preconditioning ameliorated the pathological damage of kidney and improved renal function, alleviated renal oxidative stress injury, restricted inflammatory cells infiltration, and downregulated the ICAM-1 expression as compared to DN group, while QUE nanoparticle complex significantly alleviated this effect. PMID:29123394

  16. Th17 Cells Induce Dopaminergic Neuronal Death via LFA-1/ICAM-1 Interaction in a Mouse Model of Parkinson's Disease.

    PubMed

    Liu, Zhan; Huang, Yan; Cao, Bei-Bei; Qiu, Yi-Hua; Peng, Yu-Ping

    2017-12-01

    T helper (Th)17 cells, a subset of CD4 + T lymphocytes, have strong pro-inflammatory property and appear to be essential in the pathogenesis of many inflammatory diseases. However, the involvement of Th17 cells in Parkinson's disease (PD) that is characterized by a progressive degeneration of dopaminergic (DAergic) neurons in the nigrostriatal system is unclear. Here, we aimed to demonstrate that Th17 cells infiltrate into the brain parenchyma and induce neuroinflammation and DAergic neuronal death in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)- or 1-methyl-4-phenylpyridinium (MPP + )-induced PD models. Blood-brain barrier (BBB) disruption in the substantia nigra (SN) was assessed by the signal of FITC-labeled albumin that was injected into blood circulation via the ascending aorta. Live cell imaging system was used to observe a direct contact of Th17 cells with neurons by staining these cells using the two adhesion molecules, leukocyte function-associated antigen (LFA)-1 and intercellular adhesion molecule (ICAM)-1, respectively. Th17 cells invaded into the SN where BBB was disrupted in MPTP-induced PD mice. Th17 cells exacerbated DAergic neuronal loss and pro-inflammatory/neurotrophic factor disorders in MPP + -treated ventral mesencephalic (VM) cell cultures. A direct contact of LFA-1-stained Th17 cells with ICAM-1-stained VM neurons was dynamically captured. Either blocking LFA-1 in Th17 cells or blocking ICAM-1 in VM neurons with neutralizing antibodies abolished Th17-induced DAergic neuronal death. These results establish that Th17 cells infiltrate into the brain parenchyma of PD mice through lesioned BBB and exert neurotoxic property by promoting glial activation and importantly by a direct damage to neurons depending on LFA-1/ICAM-1 interaction.

  17. Altered Monocyte and Endothelial Cell Adhesion Molecule Expression Is Linked to Vascular Inflammation in Human Immunodeficiency Virus Infection.

    PubMed

    Kulkarni, Manjusha; Bowman, Emily; Gabriel, Janelle; Amburgy, Taylor; Mayne, Elizabeth; Zidar, David A; Maierhofer, Courtney; Turner, Abigail Norris; Bazan, Jose A; Koletar, Susan L; Lederman, Michael M; Sieg, Scott F; Funderburg, Nicholas T

    2016-10-01

    Human immunodeficiency virus (HIV)-infected individuals have increased risk for vascular thrombosis, potentially driven by interactions between activated leukocytes and the endothelium. Monocyte subsets (CD14 + CD16 - , CD14 + CD16 + , CD14 Dim CD16 + ) from HIV negative (HIV - ) and antiretroviral therapy-treated HIV positive (HIV + ) participants (N = 19 and 49) were analyzed by flow cytometry for adhesion molecule expression (lymphocyte function-associated antigen 1 [LFA-1], macrophage-1 antigen [Mac-1], CD11c/CD18, very late antigen [VLA]-4) and the fractalkine receptor (CX3CR1); these receptors recognize ligands (intercellular adhesion molecules [ICAMs], vascular cell adhesion molecule [VCAM]-1, fractalkine) on activated endothelial cells (ECs) and promote vascular migration. Plasma markers of monocyte (soluble [s]CD14, sCD163) and EC (VCAM-1, ICAM-1,2, fractalkine) activation and systemic (tumor necrosis factor receptor [TNFR-I], TNFR-II) and vascular (lipoprotein-associated phospholipase A 2 [Lp-PLA 2 ]) inflammation were measured by enzyme-linked immunosorbent assay. Proportions of CD16 + monocyte subsets were increased in HIV + participants. Among all monocyte subsets, levels of LFA-1 were increased and CX3CR1 levels were decreased in HIV + participants ( P < .01). Levels of sCD163, sCD14, fractalkine, ICAM-1, VCAM-1, TNFR-II, and Lp-PLA 2 were also increased in HIV + participants ( P < .05), and levels of sCD14, TNFR-I, and TNFR-II were directly related to ICAM-1 and VCAM-1 levels in HIV + participants. Expression of CX3CR1 on monocyte subsets was inversely related to plasma Lp-PLA 2 ( P < .05 for all). Increased proportions of CD16 + monocytes, cells with altered adhesion molecule expression, combined with elevated levels of their ligands, may promote vascular inflammation in HIV infection. © The Author 2016. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.

  18. Tumour-derived Interleukin 35 promotes pancreatic ductal adenocarcinoma cell extravasation and metastasis by inducing ICAM1 expression

    PubMed Central

    Huang, Chongbiao; Li, Na; Li, Zengxun; Chang, Antao; Chen, Yanan; Zhao, Tiansuo; Li, Yang; Wang, Xiuchao; Zhang, Wei; Wang, Zhimin; Luo, Lin; Shi, Jingjing; Yang, Shengyu; Ren, He; Hao, Jihui

    2017-01-01

    Interleukin 35 (IL-35) is a novel member of the IL-12 family, consisting of an EBV-induced gene 3 (EBI3) subunit and a P35 subunit. IL-35 is an immune-suppressive cytokine mainly produced by regulatory T cells. However, the role of IL-35 in cancer metastasis and progression is not well understood. Here we demonstrate that IL-35 is overexpressed in human pancreatic ductal adenocarcinoma (PDAC) tissues, and that IL-35 overexpression is associated with poor prognosis in PDAC patients. IL-35 has critical roles in PDAC cell extravasation and metastasis by facilitating the adhesion to endothelial cells and transendothelial extravasation. Mechanistically, IL-35 promotes ICAM1 overexpression through a GP130-STAT1 signalling pathway, which facilitates endothelial adhesion and transendothelial migration via an ICAM1–fibrinogen–ICAM1 bridge. In an orthotopic xenograft model, IL-35 promotes spontaneous pancreatic cancer metastasis in an ICAM1-dependent manner. Together, our results indicate additional functions of IL-35 in promoting PDAC metastasis through mediating ICAM1 expression. PMID:28102193

  19. The dominant roles of ICAM-1-encoding gene in DNA vaccination against Japanese encephalitis virus are the activation of dendritic cells and enhancement of cellular immunity.

    PubMed

    Zhai, Yong-Zhen; Zhou, Yan; Ma, Li; Feng, Guo-He

    2013-01-01

    We investigated the cellular immune responses elicited by a plasmid DNA vaccine encoding prM-E protein from the Japanese encephalitis (JE) virus (JEV) with or without various forms of intercellular adhesion molecule (ICAM)-1 gene to maximize the immune responses evoked by the JE DNA vaccine. We observed that co-immunization with the construct containing murine ICAM-1 gene (pICAM-1) resulted in a significant increase in the percentage of CD4(+)T cells, high level of JEV-specific cytotoxic T lymphocyte response, and high production of T helper 1 (Th1)-type cytokines in splenic T cells. Furthermore, the co-expression of ICAM-1 and DNA immunogens was found to be more effective in generating T cell-mediated immune responses than those induced by immunization with pJME in combination with pICAM-1. Our results suggested that ICAM-1 enhanced T cell receptor signaling and activated Th1 immune responses in the JEV model system by increasing the induction of CD4(+)Th1 cell subset and activating dendritic cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Expression and function of heterotypic adhesion molecules during differentiation of human skeletal muscle in culture.

    PubMed Central

    Beauchamp, J. R.; Abraham, D. J.; Bou-Gharios, G.; Partridge, T. A.; Olsen, I.

    1992-01-01

    The infiltration of skeletal muscle by leukocytes occurs in a variety of myopathies and frequently accompanies muscle degeneration and regeneration. The latter involves development of new myofibers from precursor myoblasts, and so infiltrating cells may interact with muscle at all stages of differentiation. The authors have investigated the surface expression of ligands for T-cell adhesion during the differentiation of human skeletal muscle in vitro. Myoblasts expressed low levels of ICAM-1 (CD54), which remained constant during muscle cell differentiation and could be induced by cytokines such as gamma-interferon. It is therefore likely that ICAM-1 is involved in the invasive accumulation of lymphocytes during skeletal muscle inflammation. In contrast, LFA-3 (CD58) was expressed at higher levels than ICAM-1 on myoblasts, decreased significantly during myogenesis, and was unaffected by immune mediators. Both ICAM-1 and LFA-3 were able to mediate T cell binding to myoblasts, whereas adhesion to myotubes was independent of the LFA-3 ligand. Although expressed throughout myogenesis, human leukocyte antigen class I and CD44 did not appear to mediate T cell binding. The expression of ligands that facilitate interaction of myogenic cells with lymphocytes may have important implications for myoblast transplantation. Images Figure 1 Figure 3 Figure 4 PMID:1739132

  1. Cyclophilin B induces integrin-mediated cell adhesion by a mechanism involving CD98-dependent activation of protein kinase C-delta and p44/42 mitogen-activated protein kinases.

    PubMed

    Melchior, Aurélie; Denys, Agnès; Deligny, Audrey; Mazurier, Joël; Allain, Fabrice

    2008-02-01

    Initially identified as a cyclosporin-A binding protein, cyclophilin B (CyPB) is an inflammatory mediator that induces adhesion of T lymphocytes to fibronectin, by a mechanism dependent on CD147 and alpha 4 beta 1 integrins. Recent findings have suggested that another cell membrane protein, CD98, may cooperate with CD147 to regulate beta1 integrin functions. Based on these functional relationships, we examined the contribution of CD98 in the pro-adhesive activity of CyPB, by utilizing the responsive promonocyte cell line THP-1. We demonstrated that cross-linking CD98 with CD98-AHN-18 antibody mimicked the responses induced by CyPB, i.e. homotypic aggregation, integrin-mediated adhesion to fibronectin and activation of p44/42 MAPK. Consistent with previous data, immunoprecipitation confirmed the existence of a heterocomplex wherein CD147, CD98 and beta1 integrins were associated. We then demonstrated that CyPB-induced cell adhesion and p44/42 MAPK activation were dependent on the participation of phosphoinositide 3-kinase and subsequent activation of protein kinase C-delta. Finally, silencing the expression of CD98 by RNA interference potently reduced CyPB-induced cell responses, thus confirming the role of CD98 in the pro-adhesive activity of CyPB. Altogether, our results support a model whereby CyPB induces integrin-mediated adhesion via interaction with a multimolecular unit formed by the association between CD147, CD98 and beta1 integrins.

  2. Polymorphisms and linkage analysis for ICAM-1 and the selectin gene cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vora, D.K.; Rosenbloom, C.L.; Cottingham, R.W.

    1994-06-01

    Genetic polymorphisms in leukocyte and endothelial cell adhesion molecules may be important variables with regard to susceptibility to multifactorial disease processes that include an inflammatory component. For this reason, polymorphisms were sought for intercellular adhesion molecule-1 (ICAM-1; gene symbol ICAM1) and for the three genes in the selectin cluster, P-selectin, L-selectin, and E-selectin (gene symbols SELP, SELL, and SELE, respectively). Two amino acid polymorphisms were identified for ICAM-1; Gly or Arg at codon 241 and Lys or Glu at codon 469. Dinucleotide repeat polymorphisms were identified in the 3{prime}-untranslated region for ICAM-1 and in intron 9 for P-selectin. Restriction fragmentmore » length polymorphisms were found using cDNAs for each of the three selectin genes as probes; E-selectin with BglII, P-selectin with ScaI, and L-selectin with HincII. Linkage analysis was performed for the selectin gene cluster and for ICAM-1 using the CEPH families; ICAM-1 is very tightly linked to the LDL receptor on chromosome 19, and the selectin cluster is linked to markers at chromosome 1q23. 41 refs., 2 tabs.« less

  3. Acid Sphingomyelinase-Derived Ceramide Regulates ICAM-1 Function during T Cell Transmigration across Brain Endothelial Cells.

    PubMed

    Lopes Pinheiro, Melissa A; Kroon, Jeffrey; Hoogenboezem, Mark; Geerts, Dirk; van Het Hof, Bert; van der Pol, Susanne M A; van Buul, Jaap D; de Vries, Helga E

    2016-01-01

    Multiple sclerosis (MS) is a chronic demyelinating disorder of the CNS characterized by immune cell infiltration across the brain vasculature into the brain, a process not yet fully understood. We previously demonstrated that the sphingolipid metabolism is altered in MS lesions. In particular, acid sphingomyelinase (ASM), a critical enzyme in the production of the bioactive lipid ceramide, is involved in the pathogenesis of MS; however, its role in the brain vasculature remains unknown. Transmigration of T lymphocytes is highly dependent on adhesion molecules in the vasculature such as intercellular adhesion molecule-1 (ICAM-1). In this article, we hypothesize that ASM controls T cell migration by regulating ICAM-1 function. To study the role of endothelial ASM in transmigration, we generated brain endothelial cells lacking ASM activity using a lentiviral shRNA approach. Interestingly, although ICAM-1 expression was increased in cells lacking ASM activity, we measured a significant decrease in T lymphocyte adhesion and consequently transmigration both in static and under flow conditions. As an underlying mechanism, we revealed that upon lack of endothelial ASM activity, the phosphorylation of ezrin was perturbed as well as the interaction between filamin and ICAM-1 upon ICAM-1 clustering. Functionally this resulted in reduced microvilli formation and impaired transendothelial migration of T cells. In conclusion, in this article, we show that ASM coordinates ICAM-1 function in brain endothelial cells by regulating its interaction with filamin and phosphorylation of ezrin. The understanding of these underlying mechanisms of T lymphocyte transmigration is of great value to develop new strategies against MS lesion formation. Copyright © 2015 by The American Association of Immunologists, Inc.

  4. Levels of sVCAM-1 and sICAM-1 in patients with lyme disease.

    PubMed

    Biesiada, Grazyna; Czepiel, Jacek; Sobczyk-Krupiarz, Iwona; Salamon, Dominika; Garlicki, Aleksander; Mach, Tomasz

    2009-04-01

    Lyme disease is a multi-organ animal-borne disease caused by the spirochete Borrelia burgdorferi (Bb). As the pathogenesis of Lyme borreliosis is not fully understood, the study has been designed to examine levels of soluble vascular cell adhesion molecule-1 (sVCAM-1) and soluble intercellular adhesion molecule-1 (sICAM-1) in serum and the cerebrospinal fluid (CSF) of patients with Lyme borreliosis and their associations with clinical signs and symptoms and anti-Borrelia burgdorferi (anti-Bb) antibody titers. Sixty-four patients were enrolled in the study, including 39 patients treated for Lyme borreliosis and 25 without the disease (control group). In both groups sVCAM-1 and sICAM-1 levels were determined in serum and the CSF. Mean serum sICAM-1 and sVCAM-1 levels were higher in patients with Lyme borreliosis than in the control group. Serum sICAM-1 levels were significantly lower among patients with results positive for immunoglobulin M seroreactivity with Bb than among those with negative antibody responses. In patients with Bb-specific serum immunoglobulin G (IgG) antibodies, significantly higher serum sICAM-1 levels were found. Higher sVCAM-1 and sICAM-1 levels in the CSF were observed in patients positive for anti-Bb IgG antibody titers in the CSF. In patients with Lyme borreliosis, endothelial cell activation results in elevated levels of sICAM-1 and sVCAM-1 in serum and the CSF.

  5. Regulation of T-lymphocyte motility, adhesion and de-adhesion by a cell surface mechanism directed by low density lipoprotein receptor-related protein 1 and endogenous thrombospondin-1.

    PubMed

    Talme, Toomas; Bergdahl, Eva; Sundqvist, Karl-Gösta

    2014-06-01

    T lymphocytes are highly motile and constantly reposition themselves between a free-floating vascular state, transient adhesion and migration in tissues. The regulation behind this unique dynamic behaviour remains unclear. Here we show that T cells have a cell surface mechanism for integrated regulation of motility and adhesion and that integrin ligands and CXCL12/SDF-1 influence motility and adhesion through this mechanism. Targeting cell surface-expressed low-density lipoprotein receptor-related protein 1 (LRP1) with an antibody, or blocking transport of LRP1 to the cell surface, perturbed the cell surface distribution of endogenous thrombospondin-1 (TSP-1) while inhibiting motility and potentiating cytoplasmic spreading on intercellular adhesion molecule 1 (ICAM-1) and fibronectin. Integrin ligands and CXCL12 stimulated motility and enhanced cell surface expression of LRP1, intact TSP-1 and a 130,000 MW TSP-1 fragment while preventing formation of a de-adhesion-coupled 110 000 MW TSP-1 fragment. The appearance of the 130 000 MW TSP-1 fragment was inhibited by the antibody that targeted LRP1 expression, inhibited motility and enhanced spreading. The TSP-1 binding site in the LRP1-associated protein, calreticulin, stimulated adhesion to ICAM-1 through intact TSP-1 and CD47. Shear flow enhanced cell surface expression of intact TSP-1. Hence, chemokines and integrin ligands up-regulate a dominant motogenic pathway through LRP1 and TSP-1 cleavage and activate an associated adhesion pathway through the LRP1-calreticulin complex, intact TSP-1 and CD47. This regulation of T-cell motility and adhesion makes pro-adhesive stimuli favour motile responses, which may explain why T cells prioritize movement before permanent adhesion.

  6. ICAM-1 Targeting of Doxorubicin-Loaded PLGA Nanoparticles to Lung Epithelial Cells

    PubMed Central

    Chuda, Chittasupho; Sheng-Xue, Xie; Abdulgader, Baoum; Tatyana, Yakovleva; Teruna, Siahaan J.; Cory, Berkland

    2009-01-01

    Interaction of leukocyte function associated antigen-1 (LFA-1) on T-lymphoctytes and intercellular adhesion molecule-1 (ICAM-1) on epithelial cells controls leukocyte adhesion, spreading, and extravasation. This process plays an important role in leukocyte recruitment to a specific site of inflammation and has been indentified as a biomarker for certain types of carcinomas. Cyclo-(1,12)-PenITDGEATDSGC (cLABL) has been shown to inhibit LFA-1 and ICAM-1 interaction via binding to ICAM-1. In addition, cLABL has been shown to internalize after binding ICAM-1. The possibility of using cLABL conjugated nanoparticles (cLABL-NP) as a targeted and controlled release drug delivery system has been investigated in this study. The cLABL peptide was conjugated to a modified Pluronic® surfactant on poly (DL-lactic-co-glycolic acid) (PLGA) nanoparticles. The cLABL-NP showed more rapid cellular uptake by A549 lung epithelial cells compared to nanoparticles without peptide. The specificity of ICAM-1 mediated internalization was confirmed by blocking the uptake of cLABL-NP to ICAM-1 using free cLABL peptide to block the binding of cLABL-NP to ICAM-1 on the cell surface. Cell studies suggested that cLABL-NPs targeted encapsulated doxorubicin to ICAM-1 expressing cells. Cytotoxicity assay confirmed the activity of the drug incorporated in nanoparticles. Sustained release of doxorubicin afforded by PLGA nanoparticles may enable cLABL-NP as a targeted, controlled release drug delivery system. PMID:19429421

  7. Enhancement of CCL15 expression and monocyte adhesion to endothelial cells (ECs) after hypoxia/reoxygenation and induction of ICAM-1 expression by CCL15 via the JAK2/STAT3 pathway in ECs.

    PubMed

    Park, Keun Hyung; Lee, Tae Hoon; Kim, Chan Woo; Kim, Jiyoung

    2013-06-15

    CCL15, a member of the CC chemokine family, is a potent chemoattractant for leukocytes and endothelial cells (ECs). Given that chemokines play key roles in vascular inflammation, we investigated the effects of hypoxia/reoxygenation (H/R) on expression of human CCL15 and a role of CCL15 in upregulating ICAM-1 in ECs. We found that exposure of ECs to H/R increased expression of CCL15 and ICAM-1, which resulted in an increase in monocyte adhesivity to the ECs. Further studies revealed that knockdown of CCL15 or CCR1 attenuated expression of ICAM-1 in ECs after H/R, suggesting that expression of ICAM-1 is upregulated by CCL15. Stimulation of ECs with CCL15 significantly increased expression of ICAM-1 predominantly via the CCR1 receptor. We observed that phosphorylation of JAK2 and STAT3 was stimulated by CCL15 treatment of ECs. Results from reporter and chromatin immunoprecipitation assays revealed that CCL15 activates transcription from the IFN-γ activation site promoter and stimulates binding of STAT3 to the ICAM-1 promoter. Our data also showed that CCL15 increased cell adhesion of human monocytes to ECs under static and shear-stress conditions. Pretreatment of these cells with inhibitors for JAK, PI3K, and AKT prevented the CCL15-induced expression of ICAM-1 and monocyte adhesion to ECs, suggesting the involvement of those signaling molecules in ICAM-1 gene activation by CCL15. The results suggest that CCR1 and its ligands may be a potential target for treating inflammatory diseases involving upregulation of cell adhesion molecules.

  8. Expression of adhesion molecules is specific and time-dependent in cytokine-stimulated endothelial cells in culture.

    PubMed

    Scholz, D; Devaux, B; Hirche, A; Pötzsch, B; Kropp, B; Schaper, W; Schaper, J

    1996-06-01

    The time course of expression of the adhesion molecules E-selectin, VCAM-1, ICAM-1 and PECAM-1 was studied in interleukin-1 beta-stimulated human umbilical vein cells (HUVEC) and the subcellular sites of synthesis were determined by means of fluorescence immunohistochemistry. The maximal number of cells labelled for E-selectin was observed at 2-4 h, for VCAM-1 at 4-8 h and ICAM-1 at 6-72 h. At 8 h, E-selectin and VCAM-1 started to disappear, but ICAM-1-positive cells persisted. PECAM-1 was constitutively expressed. De novo synthesis for E-selectin started at 1 h and for both, VCAM-1 and ICAM-1 at 1.5-2 h. Maximal synthetic activity was observed at 2.5-4 h for E-selectin and at 4-6 h for VCAM-1 and ICAM-1; thereafter, synthesis slowly decreased. Transport granules occurred at 1.5 h for E-selectin and 4 h for VCAM-1; they were absent for ICAM-1. Diffuse cellular and membrane labelling indicative of the functional activity of the adhesion molecules began at 2-4 h for E-selectin, and 4 h for VCAM, but was constitutively present for ICAM-1. In conclusion, each adhesion molecule shows a specific time-dependent course of appearance and disappearance in interleukin-1 beta-stimulated HUVECs in accordance with their physiological role in vivo. These morphological results confirm data obtained by flow cytometry and Western blotting, but they provide new information about the behaviour of individual cells with regard to the sites of synthesis and cellular localization of the adhesion molecules.

  9. ICAM-1 expression and organization in human endothelial cells is sensitive to gravity

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Sang, Chen; Paulsen, Katrin; Arenz, Andrea; Zhao, Ziyan; Jia, Xiaoling; Ullrich, Oliver; Zhuang, Fengyuan

    2010-11-01

    Transendothelial migration (TEM) of immune cells is a crucial process during a multitude of physiological and pathological conditions such as development, defense against infections and wound healing. Migration within the body tissues and through endothelial barriers is strongly dependent and regulated both by cytoskeletal processes and by expression of surface adhesion molecules such as ICAM-1 and VCAM-1. Space flight experiments have confirmed that TEM will be inhibited and may cause astronauts' immune function decreased and make them easy for infection. We used NASA RCCS to provide a simulated microgravity environment; endothelial cells were cultured on microcarrier beads and activated by TNF-α. Results demonstrate after clinorotation ICAM-1 expression increased, consistent with the notion in parabolic flights. However, VCAM-1 showed no significant change between activated or inactivated cells. Depolymerization of F-actin and clustering of ICAM-1 on cell membrane were also observed in short-term simulated microgravity, and after 24 h clinorotation, actin fiber rearrangement was initiated and clustering of ICAM-1 became stable. ICAM-1 mRNA and VCAM-1 mRNA were up-regulated after 30 min clinorotation, and returned to the same level with controls after 24 h clinorotation.

  10. The polymorphisms K469E and G261R of intercellular adhesion molecule-1 and susceptibility to inflammatory bowel disease: a meta-analysis.

    PubMed

    Song, Gwan Gyu; Lee, Young Ho

    2015-01-01

    The aim of this study was to explore whether polymorphisms of intercellular adhesion molecule-1 (ICAM-1) are associated with susceptibility to Crohn's disease (CD) and ulcerative colitis (UC). The authors conducted a meta-analysis on the associations between the polymorphisms K469E and G241R of ICAM-1 and susceptibility to CD and UC. A total of 8 studies with 801 patients with CD, 672 patients with UC, and 1,828 controls were included in the meta-analysis. The meta-analysis revealed no association between CD and the ICAM-1 469E allele among the subjects (OR = 1.175, 95% CI = 0.901-1.533, p = 0.233). However, stratification by ethnicity indicated an association between the ICAM-1 469E allele and CD in Europeans (OR = 1.425, 95% CI = 1.013-2.002, p = 0.042). Meta-analysis using the homozygosity also showed an association with CD in Europeans (OR = 2.054, 95% CI = 1.036-4.073, p = 0.039). The meta-analysis revealed no association between UC and the ICAM-1 K469E polymorphism. No association between CD or UC and the ICAM-1 G241R polymorphism was observed. This meta-analysis demonstrates that the ICAM-1 K469E polymorphism may be associated with susceptibility to CD in Europeans, but no association was found between ICAM-1 K469E and UC. In contrast, the G241R polymorphism was not found to be associated with susceptibility to either CD or UC.

  11. Cannabinoids increase lung cancer cell lysis by lymphokine-activated killer cells via upregulation of ICAM-1.

    PubMed

    Haustein, Maria; Ramer, Robert; Linnebacher, Michael; Manda, Katrin; Hinz, Burkhard

    2014-11-15

    Cannabinoids have been shown to promote the expression of the intercellular adhesion molecule 1 (ICAM-1) on lung cancer cells as part of their anti-invasive and antimetastatic action. Using lung cancer cell lines (A549, H460) and metastatic cells derived from a lung cancer patient, the present study addressed the impact of cannabinoid-induced ICAM-1 on cancer cell adhesion to lymphokine-activated killer (LAK) cells and LAK cell-mediated cytotoxicity. Cannabidiol (CBD), a non-psychoactive cannabinoid, enhanced the susceptibility of cancer cells to adhere to and subsequently be lysed by LAK cells, with both effects being reversed by a neutralizing ICAM-1 antibody. Increased cancer cell lysis by CBD was likewise abrogated when CBD-induced ICAM-1 expression was blocked by specific siRNA or by antagonists to cannabinoid receptors (CB1, CB2) and to transient receptor potential vanilloid 1. In addition, enhanced killing of CBD-treated cancer cells was reversed by preincubation of LAK cells with an antibody to lymphocyte function associated antigen-1 (LFA-1) suggesting intercellular ICAM-1/LFA-1 crosslink as crucial event within this process. ICAM-1-dependent pro-killing effects were further confirmed for the phytocannabinoid Δ(9)-tetrahydrocannabinol (THC) and R(+)-methanandamide (MA), a hydrolysis-stable endocannabinoid analogue. Finally, each cannabinoid elicited no significant increase of LAK cell-mediated lysis of non-tumor bronchial epithelial cells, BEAS-2B, associated with a far less pronounced (CBD, THC) or absent (MA) ICAM-1 induction as compared to cancer cells. Altogether, our data demonstrate cannabinoid-induced upregulation of ICAM-1 on lung cancer cells to be responsible for increased cancer cell lysis by LAK cells. These findings provide proof for a novel antitumorigenic mechanism of cannabinoids. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Monocyte chemoattractant protein 1, intercellular adhesion molecule 1, and vascular cell adhesion molecule 1 in exudative age-related macular degeneration.

    PubMed

    Jonas, Jost B; Tao, Yong; Neumaier, Michael; Findeisen, Peter

    2010-10-01

    To examine intraocular concentrations of monocyte chemoattractant protein 1 (MCP-1), soluble intercellular adhesion molecule 1 (sICAM-1), soluble vascular cell adhesion molecule 1 (sVCAM-1), and vascular endothelial growth factor (VEGF) in eyes with exudative age-related macular degeneration (AMD). The investigation included a study group of 28 patients (28 eyes) with exudative AMD and a control group of 25 patients (25 eyes) with cataract. The concentrations of MCP-1, sICAM-1, sVCAM-1, and VEGF in aqueous humor samples obtained during surgery were measured using a solid-phase chemiluminescence immunoassay. The study group as compared with the control group had higher aqueous concentrations of sICAM-1 (mean [SD], 844 [2073] vs 246 [206] pg/mL, respectively; P < .001), sVCAM-1 (mean [SD], 7978 [7120] vs 2999 [1426] pg/mL, respectively; P < .001), and MCP-1 (mean [SD], 587 [338] vs 435 [221] pg/mL, respectively; P = .07). The concentration of VEGF did not vary significantly between the groups (P = .76). The MCP-1 concentration was significantly associated with macular thickness (r = 0.40; P = .004). It decreased significantly with the type of subfoveal neovascular membrane (classic membrane type, occult membrane, retinal pigment epithelium detachment) (P = .009). The concentrations of sICAM-1, sVCAM-1, and VEGF were not significantly associated with membrane type and macular thickness (P ≥ .18). Concentrations of MCP-1, sICAM-1, and sVCAM-1 are significantly associated with exudative AMD, even in the presence of normal VEGF concentrations. Intraocular MCP-1 concentrations are correlated with the subfoveal neovascular membrane type and the amount of macular edema. One may infer that MCP-1, sICAM-1, and sVCAM-1 could potentially be additional target molecules in therapy for exudative AMD.

  13. CD44-mediated activation of α5β1-integrin, cortactin and paxillin signaling underpins adhesion of basal-like breast cancer cells to endothelium and Fibronectin-enriched matrices

    PubMed Central

    McFarlane, Suzanne; McFarlane, Cheryl; Montgomery, Nicola; Hill, Ashleigh; Waugh, David J.J.

    2015-01-01

    CD44 expression is elevated in basal-like breast cancer (BLBC) tissue, and correlates with increased efficiency of distant metastasis in patients and experimental models. We sought to characterize mechanisms underpinning CD44-promoted adhesion of BLBC cells to vascular endothelial monolayers and extracellular matrix (ECM) substrates. Stimulation with hyaluronan (HA), the native ligand for CD44, increased expression and activation of β1-integrin receptors, and increased α5-integrin subunit expression. Adhesion assays confirmed that CD44-signalling potentiated BLBC cell adhesion to endothelium and Fibronectin in an α5B1-integrin-dependent mechanism. Co-immunoprecipitation experiments confirmed HA-promoted association of CD44 with talin and the β1-integrin chain in BLBC cells. Knockdown of talin inhibited CD44 complexing with β1-integrin and repressed HA-induced, CD44-mediated activation of β1-integrin receptors. Immunoblotting confirmed that HA induced rapid phosphorylation of cortactin and paxillin, through a CD44-dependent and β1-integrin-dependent mechanism. Knockdown of CD44, cortactin or paxillin independently attenuated the adhesion of BL-BCa cells to endothelial monolayers and Fibronectin. Accordingly, we conclude that CD44 induced, integrin-mediated signaling not only underpins efficient adhesion of BLBC cells to BMECs to facilitate extravasation but initiates their adhesion to Fibronectin, enabling penetrant cancer cells to adhere more efficiently to underlying Fibronectin-enriched matrix present within the metastatic niche. PMID:26447611

  14. Comparative Expression of CD34, Intercellular Adhesion Molecule-1, and Podoplanin and the Presence of Mast Cells in Periapical Granulomas, Cysts, and Residual Cysts.

    PubMed

    Lopes, Cristiane Barbosa; Armada, Luciana; Pires, Fábio Ramôa

    2018-07-01

    The aim of the present study was to compare the immunoexpression of CD34, intercellular adhesion molecule-1 (ICAM-1), and podoplanin and the presence of mast cells with clinical, demographic, radiologic, and histologic features from periapical granulomas, periapical cysts, and residual cysts. Thirty-one lesions (5 granulomas, 15 periapical cysts, and 11 residual cysts) were selected. Histologic sections in silanized slides were used for the immunohistochemical reactions. The analysis of the images was performed by using an optical microscope, and data were analyzed with 5% significance (P < .05). Cysts presented atrophic and hyperplastic epithelium in 11 cases (35.5%) and 15 cases (48.8%), respectively (P > .05). The intensity of the inflammatory infiltrate was similar when comparing the 3 groups (P > .05). CD34 and podoplanin expression and the presence of mast cells were similar when comparing the 3 groups; ICAM-1 expression was more intense in granulomas than cysts (P < .05). There were no statistically significant differences associated with the expression of the evaluated markers according to the intensity of the inflammatory infiltrate. There were no differences in the expression of CD34 and podoplanin and in the presence of mast cells when the 3 groups were compared. ICAM-1 expression was more common in periapical granulomas. Copyright © 2018 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Cyclosporin A inhibits CD11a/CD18 adhesion molecules due to inhibition of TNFα and IL-1β levels in the mouse model of pleurisy induced by carrageenan

    PubMed Central

    Dalmarco, Eduardo Monguilhott; Medeiros, Yara Santos

    2008-01-01

    The mouse model of pleurisy induced by carrageenan is characterized by a significant enhancement of cell migration due to neutrophils 4 h after pleurisy induction. Forty-eight hours after pleurisy induction, a significant increase in cell migration due to mononuclear cells occurs. Recently, studies in our laboratory have demonstrated that cyclosporine A (CsA) inhibits leukocyte migration in the pleural cavity and lungs in the mouse model of pleurisy induced by carrageenan. In the present work we evaluated whether CsA was able to downregulate CD11a/CD18 adhesion molecule in the lungs, as well as TNFα and IL-1β levels in the fluid leakage of the pleural cavity in this model. Our results showed that CsA significantly decreased CD11a/CD18 in the lungs, as well as TNFα and IL-1β levels in the fluid leakage of the pleural cavity 4 h and 48 h after pleurisy induction. It is our hypothesis that the inhibitory effect elicited by CsA upon these adhesion molecules may be also be attributed to the downregulation of TNFα and IL-1β cytokines. PMID:19262158

  16. Specific Binding, Uptake, and Transport of ICAM-1-Targeted Nanocarriers Across Endothelial and Subendothelial Cell Components of the Blood-Brain Barrier

    PubMed Central

    Hsu, Janet; Rappaport, Jeff; Muro, Silvia

    2014-01-01

    Purpose The blood-brain barrier (BBB) represents a target for therapeutic intervention and an obstacle for brain drug delivery. Targeting endocytic receptors on brain endothelial cells (ECs) helps transporting drugs and carriers into and across this barrier. While most receptors tested are associated with clathrin-mediated pathways, clathrin-independent routes are rather unexplored. We have examined the potential for one of these pathways, cell adhesion molecule (CAM)-mediated endocytosis induced by targeting intercellular adhesion molecule 1 (ICAM-1), to transport drug carriers into and across BBB models. Methods Model polymer nanocarriers (NCs) coated with control IgG or antibodies against ICAM-1 (IgG NCs vs. anti-ICAM NCs; ~250-nm) were incubated with human brain ECs, astrocytes (ACs), or pericytes (PCs) grown as monocultures or bilayered (endothelial+subendothelial) co-cultures. Results ICAM-1 was present and overexpressed in disease-like conditions on ECs and, at a lesser extent, on ACs and PCs which are BBB subendothelial components. Specific targeting and CAM-mediated uptake of anti-ICAM NCs occurred in these cells, although this was greater for ECs. Anti-ICAM NCs were transported across endothelial monolayers and endothelial+subendothelial co-cultures modeling the BBB. Conclusions CAM-mediated transport induced by ICAM-1 targeting operates in endothelial and subendothelial cellular components of the BBB, which may provide an avenue to overcome this barrier. PMID:24558007

  17. Specific binding, uptake, and transport of ICAM-1-targeted nanocarriers across endothelial and subendothelial cell components of the blood-brain barrier.

    PubMed

    Hsu, Janet; Rappaport, Jeff; Muro, Silvia

    2014-07-01

    The blood-brain barrier (BBB) represents a target for therapeutic intervention and an obstacle for brain drug delivery. Targeting endocytic receptors on brain endothelial cells (ECs) helps transport drugs and carriers into and across this barrier. While most receptors tested are associated with clathrin-mediated pathways, clathrin-independent routes are rather unexplored. We have examined the potential for one of these pathways, cell adhesion molecule (CAM)-mediated endocytosis induced by targeting intercellular adhesion molecule -1 (ICAM-1), to transport drug carriers into and across BBB models. Model polymer nanocarriers (NCs) coated with control IgG or antibodies against ICAM-1 (IgG NCs vs. anti-ICAM NCs; ~250-nm) were incubated with human brain ECs, astrocytes (ACs), or pericytes (PCs) grown as monocultures or bilayered (endothelial+subendothelial) co-cultures. ICAM-1 was present and overexpressed in disease-like conditions on ECs and, at a lesser extent, on ACs and PCs which are BBB subendothelial components. Specific targeting and CAM-mediated uptake of anti-ICAM NCs occurred in these cells, although this was greater for ECs. Anti-ICAM NCs were transported across endothelial monolayers and endothelial+subendothelial co-cultures modeling the BBB. CAM-mediated transport induced by ICAM-1 targeting operates in endothelial and subendothelial cellular components of the BBB, which may provide an avenue to overcome this barrier.

  18. Endothelial activation biomarkers increase after HIV-1 acquisition: plasma vascular cell adhesion molecule-1 predicts disease progression.

    PubMed

    Graham, Susan M; Rajwans, Nimerta; Jaoko, Walter; Estambale, Benson B A; McClelland, R Scott; Overbaugh, Julie; Liles, W Conrad

    2013-07-17

    We aimed to determine whether endothelial activation biomarkers increase after HIV-1 acquisition, and whether biomarker levels measured in chronic infection would predict disease progression and death in HIV-1 seroconverters. HIV-1-seronegative Kenyan women were monitored monthly for seroconversion, and followed prospectively after HIV-1 acquisition. Plasma levels of angiopoietin-1 and angiopoietin-2 (ANG-1, ANG-2) and soluble vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-selectin were tested in stored samples from pre-infection, acute infection, and two chronic infection time points. We used nonparametric tests to compare biomarkers before and after HIV-1 acquisition, and Cox proportional-hazards regression to analyze associations with disease progression (CD4 < 200 cells/μl, stage IV disease, or antiretroviral therapy initiation) or death. Soluble ICAM-1 and VCAM-1 were elevated relative to baseline in all postinfection periods assessed (P < 0.0001). Soluble E-selectin and the ANG-2:ANG-1 ratio increased in acute infection (P = 0.0001), and ANG-1 decreased in chronic infection (P = 0.0004). Among 228 participants followed over 1028 person-years, 115 experienced disease progression or death. Plasma VCAM-1 levels measured during chronic infection were independently associated with time to HIV progression or death (adjusted hazard ratio 5.36, 95% confidence interval 1.99-14.44 per log10 increase), after adjustment for set point plasma viral load, age at infection, and soluble ICAM-1 levels. HIV-1 acquisition was associated with endothelial activation, with sustained elevations of soluble ICAM-1 and VCAM-1 postinfection. Soluble VCAM-1 may be an informative biomarker for predicting the risk of HIV-1 disease progression, morbidity, and mortality.

  19. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice.

    PubMed

    Peled, A; Kollet, O; Ponomaryov, T; Petit, I; Franitza, S; Grabovsky, V; Slav, M M; Nagler, A; Lider, O; Alon, R; Zipori, D; Lapidot, T

    2000-06-01

    Hematopoietic stem cell homing and engraftment require several adhesion interactions, which are not fully understood. Engraftment of nonobese/severe combined immunodeficiency (NOD/SCID) mice by human stem cells is dependent on the major integrins very late activation antigen-4 (VLA-4); VLA-5; and to a lesser degree, lymphocyte function associated antigen-1 (LFA-1). Treatment of human CD34(+) cells with antibodies to either VLA-4 or VLA-5 prevented engraftment, and treatment with anti-LFA-1 antibodies significantly reduced the levels of engraftment. Activation of CD34(+) cells, which bear the chemokine receptor CXCR4, with stromal derived factor 1 (SDF-1) led to firm adhesion and transendothelial migration, which was dependent on LFA-1/ICAM-1 (intracellular adhesion molecule-1) and VLA-4/VCAM-1 (vascular adhesion molecule-1). Furthermore, SDF-1-induced polarization and extravasation of CD34(+)/CXCR4(+) cells through the extracellular matrix underlining the endothelium was dependent on both VLA-4 and VLA-5. Our results demonstrate that repopulating human stem cells functionally express LFA-1, VLA-4, and VLA-5. Furthermore, this study implies a novel approach to further advance clinical transplantation.

  20. Soluble VCAM-1/soluble ICAM-1 ratio is a promising biomarker for diagnosing endometriosis.

    PubMed

    Kuessel, L; Wenzl, R; Proestling, K; Balendran, S; Pateisky, P; Yotova; Yerlikaya, G; Streubel, B; Husslein, H

    2017-04-01

    Do cell adhesion molecules play a role in endometriosis, and can they be used as a biomarker for diagnosing endometriosis? Altered expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) in the endometrium and peritoneum may play a key role in endometriosis and the soluble VCAM-1/soluble ICAM-1 ratio is a promising biomarker. Cell adhesion molecules are cell surface proteins that mediate cellular adherence, inflammatory and immune responses, and cancer-related biological processes. Altered expression of VCAM-1 and ICAM-1 in women with endometriosis has been investigated previously; however, gene expression levels in tissues and protein levels in the serum have not been investigated in the same patients. We performed a prospective, longitudinal study (the Endometriosis Marker Austria) in patients who underwent a laparoscopy for benign gynecological pathology in a university-based tertiary referral center for endometriosis. From a total of 138 women who were included in the study from July 2013 through September 2014, 97 had not received hormonal treatment for at least 3 months prior to recruitment and were included in the analysis; 49 (50.5%) of these women had endometriosis, and the 48 (49.5%) who did not have endometriosis served as a control group. During laparoscopy, tissue samples were obtained from ectopic and eutopic endometrium, and from normal pelvic peritoneum. In addition, serum samples were collected immediately before and 6-10 weeks after surgery. The mRNA levels of VCAM-1, ICAM-1 and epithelial cell adhesion molecule (EpCAM) were measured using quantitative real-time PCR, and serum protein levels of soluble VCAM-1 (sVCAM-1), ICAM-1 (sICAM-1) and EpCAM (sEpCAM) were measured using ELISA and correlated with endometriosis status. The mRNA levels of both VCAM-1 and ICAM-1 were higher in ectopic endometriotic lesions than in eutopic endometrium (P < 0.001). Moreover, the mRNA levels of both VCAM-1 and ICAM-1

  1. HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells

    PubMed Central

    Tabet, Fatiha; Vickers, Kasey C.; Cuesta Torres, Luisa F.; Wiese, Carrie B.; Shoucri, Bassem M.; Lambert, Gilles; Catherinet, Claire; Prado-Lourenco, Leonel; Levin, Michael G.; Thacker, Seth; Sethupathy, Praveen; Barter, Philip J.; Remaley, Alan T.; Rye, Kerry-Anne

    2014-01-01

    High-density lipoproteins (HDL) have many biological functions, including reducing endothelial activation and adhesion molecule expression. We recently reported that HDL transport and deliver functional microRNAs (miRNA). Here we show that HDL suppresses expression of intercellular adhesion molecule 1 (ICAM-1) through the transfer of miR-223 to endothelial cells. After incubation of endothelial cells with HDL, mature miR-223 levels are significantly increased in endothelial cells and decreased on HDL. However, miR-223 is not transcribed in endothelial cells and is not increased in cells treated with HDL from miR-223−/− mice. HDL inhibit ICAM-1 protein levels, but not in cells pretreated with miR-223 inhibitors. ICAM-1 is a direct target of HDL-transferred miR-223 and this is the first example of an extracellular miRNA regulating gene expression in cells where it is not transcribed. Collectively, we demonstrate that HDL’s anti-inflammatory properties are conferred, in part, through HDL-miR-223 delivery and translational repression of ICAM-1 in endothelial cells. PMID:24576947

  2. Comparative immunoexpression of ICAM-1, TGF-β1 and ki-67 in periapical and residual cysts

    PubMed Central

    Armada, Luciana; dos Santos, Teresa-Cristina; Pires, Fabio-Ramoa

    2017-01-01

    Background This study compared the immunohistochemical expression of ki-67, transforming growth factor beta 1 (TGF-β1) and intercellular adhesion molecule-1 (ICAM-1) in inflammatory periapical cysts and residual cysts. Material and Methods The study sample was composed by 25 periapical cysts and 25 residual cysts and immunohistochemical reactions were carried out using antibodies directed against ICAM-1, TGF-β1 and ki-67. Clinical, radiological, gross, histological and immunohistochemical data were tabulated for descriptive and comparative analysis using the SPSS software and differences were considered statistically significant when p<0.05%. Results There were no differences between the expression of ICAM-1 (p=0.239) and TGF-β1 (p=0.258) when comparing both groups. Ki-67 labeling index was higher in residual cysts compared to periapical cysts (p=0.017). Conclusions Results from the present study suggest that some specific inflammatory stimuli on residual cysts would modulate their mechanisms of etiopathogenesis, growing and repair. Key words:Periapical cyst, radicular cyst, residual cyst, transforming growth factor beta 1 (TGF-β1), intercellular adhesion molecule 1 (ICAM-1), ki-67. PMID:27918735

  3. Social defeat promotes a reactive endothelium in a brain region-dependent manner with increased expression of key adhesion molecules, selectins and chemokines associated with the recruitment of myeloid cells to the brain.

    PubMed

    Sawicki, C M; McKim, D B; Wohleb, E S; Jarrett, B L; Reader, B F; Norden, D M; Godbout, J P; Sheridan, J F

    2015-08-27

    Repeated social defeat (RSD) in mice causes myeloid cell trafficking to the brain that contributes to the development of prolonged anxiety-like behavior. Myeloid cell recruitment following RSD occurs in regions where neuronal and microglia activation is observed. Thus, we hypothesized that crosstalk between neurons, microglia, and endothelial cells contributes to brain myeloid cell trafficking via chemokine signaling and vascular adhesion molecules. Here we show that social defeat caused an exposure- and brain region-dependent increase in several key adhesion molecules and chemokines involved in the recruitment of myeloid cells. For example, RSD induced distinct patterns of adhesion molecule expression that may explain brain region-dependent myeloid cell trafficking. VCAM-1 and ICAM-1 mRNA expression were increased in an exposure-dependent manner. Furthermore, RSD-induced VCAM-1 and ICAM-1 protein expression were localized to the vasculature of brain regions implicated in fear and anxiety responses, which spatially corresponded to previously reported patterns of myeloid cell trafficking. Next, mRNA expression of additional adhesion molecules (E- and P-selectin, PECAM-1) and chemokines (CXCL1, CXCL2, CXCL12, CCL2) were determined in the brain. Social defeat induced an exposure-dependent increase in mRNA levels of E-selectin, CXCL1, and CXCL2 that increased with additional days of social defeat. While CXCL12 was unaffected by RSD, CCL2 expression was increased by six days of social defeat. Last, comparison between enriched CD11b(+) cells (microglia/macrophages) and enriched GLAST-1(+)/CD11b(-) cells (astrocytes) revealed RSD increased mRNA expression of IL-1β, CCL2, and CXCL2 in microglia/macrophages but not in astrocytes. Collectively, these data indicate that key mediators of leukocyte recruitment were increased in the brain vasculature following RSD in an exposure- and brain region-dependent manner. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights

  4. Social defeat promotes a reactive endothelium in a brain region-dependent manner with increased expression of key adhesion molecules, selectins and chemokines associated with the recruitment of myeloid cells to the brain

    PubMed Central

    Sawicki, Caroline M.; McKim, Daniel B.; Wohleb, Eric S.; Jarrett, Brant L.; Reader, Brenda F.; Norden, Diana M.; Godbout, Jonathan P.; Sheridan, John F.

    2014-01-01

    Repeated social defeat (RSD) in mice causes myeloid cell trafficking to the brain that contributes to the development of prolonged anxiety-like behavior. Myeloid cell recruitment following RSD occurs in regions where neuronal and microglia activation is observed. Thus, we hypothesized that crosstalk between neurons, microglia, and endothelial cells contributes to brain-myeloid cell trafficking via chemokine signaling and vascular adhesion molecules. Here we show that social defeat caused an exposure- and brain region-dependent increase in several key adhesion molecules and chemokines involved in the recruitment of myeloid cells. For example, RSD induced distinct patterns of adhesion molecule expression that may explain brain region-dependent myeloid cell trafficking. VCAM-1 and ICAM-1 mRNA expression were increased in an exposure-dependent manner. Furthermore, RSD-induced VCAM-1 and ICAM-1 protein expression were localized to the vasculature of brain regions implicated in fear and anxiety responses, which spatially corresponded to previously reported patterns of myeloid cell trafficking. Next, mRNA expression of additional adhesion molecules (E- and P-selectin, PECAM-1) and chemokines (CXCL1, CXCL2, CXCL12, CCL2) were determined in the brain. Social defeat induced an exposure-dependent increase in mRNA levels of E-selectin, CXCL1, and CXCL2 that increased with additional days of social defeat. While CXCL12 was unaffected by RSD, CCL2 expression was increased by six days of social defeat. Last, comparison between enriched CD11b+ cells (microglia/macrophages) and enriched GLAST-1+/CD11b− cells (astrocytes) revealed RSD increased mRNA expression of IL-1β, CCL2, and CXCL2 in microglia/macrophages but not in astrocytes. Collectively, these data indicate that key mediators of leukocyte recruitment were increased in the brain vasculature following RSD in an exposure- and brain-region dependent manner. PMID:25445193

  5. Medium-chain, triglyceride-containing lipid emulsions increase human neutrophil beta2 integrin expression, adhesion, and degranulation.

    PubMed

    Wanten, G J; Geijtenbeek, T B; Raymakers, R A; van Kooyk, Y; Roos, D; Jansen, J B; Naber, A H

    2000-01-01

    To test the hypothesis that lipid emulsions with different triglyceride structures have distinct immunomodulatory properties, we analyzed human neutrophil adhesion and degranulation after lipid incubation. Neutrophils, isolated from the blood of 10 healthy volunteers, were incubated in medium or physiologic (2.5 mmol/L) emulsions containing long-chain (LCT), medium-chain (MCT), mixed LCT/MCT, or structured (SL) triglycerides. Expression of adhesion molecules and degranulation markers was evaluated by flow cytometry. Also, functional adhesion was investigated by means of a flow cytometric assay using fluorescent beads coated with the integrin ligand intercellular adhesion molecule (ICAM)-1. Although LCT and SL had no effect, LCT/MCT significantly increased expression of the beta2 integrins lymphocyte-function-associated antigen 1 (+18%), macrophage antigen 1 (+387%), p150,95 (+82%), and (alphaDbeta2 (+230%). Degranulation marker expression for azurophilic (CD63, +210%) and specific granules (CD66b, +370%) also significantly increased, whereas L-selectin (CD62L, -70%) decreased. The effects of LCT/MCT were mimicked by the MCT emulsion. ICAM-1 adhesion (% beads bound) was increased by LCT/MCT (34% +/- 4%), whereas LCT (19% +/-3%) and SL (20% +/- 2%) had no effect compared with medium (17% +/- 3%). LCT/MCT and MCT, contrary to LCT and SL emulsions, increased neutrophil beta2 integrin expression, adhesion, and degranulation. Apart from other emulsion constituents, triglyceride chain length might therefore be a key feature in the interaction of lipid emulsions and the phagocyte immune system.

  6. Impacts of ICAM-1 gene polymorphisms on urothelial cell carcinoma susceptibility and clinicopathologic characteristics in Taiwan.

    PubMed

    Wang, Shian-Shiang; Hsieh, Ming-Ju; Ou, Yen-Chuan; Chen, Chuan-Shu; Li, Jian-Ri; Hsiao, Pei-Ching; Yang, Shun-Fa

    2014-08-01

    Intercellular adhesion molecule (ICAM)-1, a cell adhesion molecule, is reportedly overexpressed in several cancers and may contribute to tumorgenesis and metastasis. The current study explored the effect of ICAM-1 gene polymorphisms on the susceptibility of developing urothelial cell carcinoma (UCC) and the clinicopathological status. A total of 558 participants, including 279 healthy people and 279 patients with UCC, were recruited for this study. Four single-nucleotide polymorphisms of the ICAM-1 gene were assessed by a real-time polymerase chain reaction with the TaqMan assay. After adjusting for other covariants, the individuals carrying at least one G allele at ICAM-1 rs5498 had a 1.603-fold risk of developing UCC than did wild-type (AA) carriers. Furthermore, UCC patients who carried at least one G allele at rs5498 had a higher invasive stage risk (p < 0.05) than did patients carrying the wild-type allele. In conclusion, the rs5498 polymorphic genotypes of ICAM-1 might contribute to the prediction of susceptibility to and pathological development of UCC. This is the first study to provide insight into risk factors associated with ICAM-1 variants in carcinogenesis of UCC in Taiwan.

  7. The Crystal Structure of Coxsackievirus A21 and Its Interaction with ICAM-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Chuan; Bator-Kelly, Carol M.; Rieder, Elizabeth

    2010-11-30

    CVA21 and polioviruses both belong to the Enterovirus genus in the family of Picornaviridae, whereas rhinoviruses form a distinct picornavirus genus. Nevertheless, CVA21 and the major group of human rhinoviruses recognize intercellular adhesion molecule-1 (ICAM-1) as their cellular receptor, whereas polioviruses use poliovirus receptor. The crystal structure of CVA21 has been determined to 3.2 {angstrom} resolution. Its structure has greater similarity to poliovirus structures than to other known picornavirus structures. Cryo-electron microscopy (cryo-EM) was used to determine an 8.0 {angstrom} resolution structure of CVA21 complexed with an ICAM-1 variant, ICAM-1{sup Kilifi}. The cryo-EM map was fitted with the crystal structuresmore » of ICAM-1 and CVA21. Significant differences in the structure of CVA21 with respect to the poliovirus structures account for the inability of ICAM-1 to bind polioviruses. The interface between CVA21 and ICAM-1 has shape and electrostatic complementarity with many residues being conserved among those CVAs that bind ICAM-1.« less

  8. Drug-induced in vitro inhibition of neutrophil-endothelial cell adhesion.

    PubMed Central

    Pellegatta, F.; Lu, Y.; Radaelli, A.; Zocchi, M. R.; Ferrero, E.; Chierchia, S.; Gaja, G.; Ferrero, M. E.

    1996-01-01

    1. Leukocyte-endothelial cell interactions play an important role during ischaemia-reperfusion events. Adhesion molecules are specifically implicated in this interaction process. 2. Since defibrotide has been shown to be an efficient drug in reducing damage due to ischaemia-reperfusion in many experimental models, we analysed the effect of defibrotide in vitro on leukocyte adhesion to endothelial cells in basal conditions and after their stimulation. 3. In basal conditions, defibrotide (1000 micrograms ml-1) partially inhibited leukocyte adhesion to endothelial cells by 17.3% +/- 3.6 (P < 0.05), and after endothelial cell stimulation (TNF-alpha, 500 u ml-1) or after leukocyte stimulation (fMLP, 10(-7) M), it inhibited leukocyte adhesion by 26.5% +/- 3.4 and 32.4% +/- 1.8, respectively (P < 0.05). 4. In adhesion blockage experiments, the use of the monoclonal antibody anti-CD31 (5 micrograms ml-1) did not demonstrate a significant inhibitory effect whereas use of the monoclonal antibody anti-LFA-1 (5 micrograms ml-1) significantly interfered with the effect of defibrotide. 5. This result was confirmed in NIH/3T3-ICAM-1 transfected cells. 6. We conclude that defibrotide is able to interfere with leukocyte adhesion to endothelial cells mainly in activated conditions and that the ICAM-1/LFA-1 adhesion system is involved in the defibrotide mechanism of action. PMID:8762067

  9. ICAM-1-expressing neutrophils exhibit enhanced effector functions in murine models of endotoxemia.

    PubMed

    Woodfin, Abigail; Beyrau, Martina; Voisin, Mathieu-Benoit; Ma, Bin; Whiteford, James R; Hordijk, Peter L; Hogg, Nancy; Nourshargh, Sussan

    2016-02-18

    Intracellular adhesion molecule-1 (ICAM-1) is a transmembrane glycoprotein expressed on the cell surface of numerous cell types such as endothelial and epithelial cells, vascular smooth muscle cells, and certain leukocyte subsets. With respect to the latter, ICAM-1 has been detected on neutrophils in several clinical and experimental settings, but little is known about the regulation of expression or function of neutrophil ICAM-1. In this study, we report on the de novo induction of ICAM-1 on the cell surface of murine neutrophils by lipopolysaccharide (LPS), tumor necrosis factor, and zymosan particles in vitro. The induction of neutrophil ICAM-1 was associated with enhanced phagocytosis of zymosan particles and reactive oxygen species (ROS) generation. Conversely, neutrophils from ICAM-1-deficient mice were defective in these effector functions. Mechanistically, ICAM-1-mediated intracellular signaling appeared to support neutrophil ROS generation and phagocytosis. In vivo, LPS-induced inflammation in the mouse cremaster muscle and peritoneal cavity led to ICAM-1 expression on intravascular and locally transmigrated neutrophils. The use of chimeric mice deficient in ICAM-1 on myeloid cells demonstrated that neutrophil ICAM-1 was not required for local neutrophil transmigration, but supported optimal intravascular and extravascular phagocytosis of zymosan particles. Collectively, the present results shed light on regulation of expression and function of ICAM-1 on neutrophils and identify it as an additional regulator of neutrophil effector responses in host defense. © 2016 by The American Society of Hematology.

  10. O-GlcNAc modification of Sp1 mediates hyperglycaemia-induced ICAM-1 up-regulation in endothelial cells.

    PubMed

    Zhang, Yuan; Qu, Yuan; Niu, Tian; Wang, Haiyan; Liu, Kun

    2017-02-26

    Intracellular adhesion molecule 1 (ICAM-1) is an important inflammatory factor that causes retinal damage during diabetic retinopathy. Hyperglycaemia can increase ICAM-1 expression in endothelial cells and the ICAM-1 promoter is responsive to the transcription factor specificity protein 1 (Sp1). O-GlcNAc modification is driven by the glucose concentration and has a profound effect on Sp1 activity. In this study, we investigated the underlying mechanism through which hyperglycaemia triggers ICAM-1 expression, which is mediated by O-GlcNAc modification of Sp1 in human umbilical vein endothelial cells (HUVECs) and rat retinal capillary endothelial cells (RRCECs). We showed that hyperglycaemia (30 mM) increased ICAM-1 expression compared to control conditions (5 mM). The addition of an OGT inhibitor decreased ICAM-1 expression and addition of an OGA inhibitor enhanced ICAM-1 expression. Furthermore, cells transduced with siSp1 exhibited dramatically decreased ICAM-1 expression. These results proved that the up-regulation of ICAM-1 with hyperglycaemia is mediated by O-GlcNAc modification of Sp1. It helps to explain the mechanism of ICAM-1 processing in HUVECs and RRCECs. Understanding how this inflammatory factor is modulated during diabetic retinopathy will ultimately help to design novel therapeutics to treat this condition. Copyright © 2017. Published by Elsevier Inc.

  11. ICAMs Redistributed by Chemokines to Cellular Uropods as a Mechanism for Recruitment of T Lymphocytes

    PubMed Central

    del Pozo, Miguel Angel; Cabañas, Carlos; Montoya, María C.; Ager, Ann; Sánchez-Mateos, Paloma; Sánchez-Madrid, Francisco

    1997-01-01

    The recruitment of leukocytes from the bloodstream is a key step in the inflammatory reaction, and chemokines are among the main regulators of this process. During lymphocyte–endothelial interaction, chemokines induce the polarization of T lymphocytes, with the formation of a cytoplasmic projection (uropod) and redistribution of several adhesion molecules (ICAM-1,-3, CD43, CD44) to this structure. Although it has been reported that these cytokines regulate the adhesive state of integrins in leukocytes, their precise mechanisms of chemoattraction remain to be elucidated. We have herein studied the functional role of the lymphocyte uropod. Confocal microscopy studies clearly showed that cell uropods project away from the cell bodies of adhered lymphocytes and that polarized T cells contact other T cells through the uropod structure. Time-lapse videomicroscopy studies revealed that uropod-bearing T cells were able, through this cellular projection, to contact, capture, and transport additional bystander T cells. Quantitative analysis revealed that the induction of uropods results in a 5–10-fold increase in cell recruitment. Uropod-mediated cell recruitment seems to have physiological relevance, since it was promoted by both CD45R0+ peripheral blood memory T cells as well as by in vivo activated lymphocytes. Additional studies showed that the cell recruitment mediated by uropods was abrogated with antibodies to ICAM-1, -3, and LFA-1, whereas mAb to CD43, CD44, CD45, and L-selectin did not have a significant effect, thus indicating that the interaction of LFA-1 with ICAM-1 and -3 appears to be responsible for this process. To determine whether the increment in cell recruitment mediated by uropod may affect the transendothelial migration of T cells, we carried out chemotaxis assays through confluent monolayers of endothelial cells specialized in lymphocyte extravasation. An enhancement of T cell migration was observed under conditions of uropod formation, and this

  12. Clinical Significance of Soluble Intercellular Adhesion Molecule-1 and Interleukin-6 in Patients with Extrahepatic Cholangiocarcinoma.

    PubMed

    Shimura, Tatsuo; Shibata, Masahiko; Gonda, Kenji; Kofunato, Yasuhide; Okada, Ryo; Ishigame, Teruhide; Kimura, Takashi; Kenjo, Akira; Marubashi, Shigeru; Kono, Koji; Takenoshita, Seiichi

    2017-09-19

    Purpose/Aim: Although several prognostic factors for extrahepatic cholangiocarcinoma (EHC) have been reported, preoperative prognostic factors have yet to be established. We investigated the serum concentration of angiogenic, inflammatory, and nutritional parameters. Twenty-five patients with EHC were enrolled before starting treatment. Preoperative prognostic factors were identified using multivariate analyses. The serum soluble intercellular adhesion molecule-1 (sICAM-1) levels were significantly higher in the patients with EHC (436.0 ± 43.2 ng/ml) than in the healthy volunteers (228.6 ± 22.0 ng/ml) (p <.001). In addition, the serum IL-6 levels were significantly higher in the patients (18.0 ± 5.6 pg/ml) than in the healthy volunteers (5.7 ± 0.8 pg/ml) (p <.05). The serum IL-6 and sICAM-1 showed a strong correlation (r = 0.559) in the patients with EHC (p <.01). The serum IL-6 (area under the curve = 0.764, p =.030, cut-off level = 11.6) and sICAM-1 (area under the curve = 0.818, p =.007, cutoff level = 322.6) were revealed to be useful as prognostic factors by the receiver operating characteristic curves. The high IL-6 group and the high sICAM-1 group showed poorer DSS than those of the respective low groups. In the multivariate analysis, IL-6 (hazard ratio: 1.050, 95% confidence interval: 1.002-1.100, p =.043) and sICAM-1 (hazard ratio: 1.009, 95% confidence interval: 1.002-1.015, p =.009) were independent prognostic factors for DSS. IL-6 and sICAM-1 were independent preoperative prognostic factors in EHC patients, causing continuous inflammation and malnutrition in collaboration with other pro-angiogenic factors.

  13. Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule Are Induced by Ionizing Radiation on Lymphatic Endothelium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez-Ruiz, María E., E-mail: mrruiz@unav.es; Radiation Oncology, University Clinic, University of Navarra, Pamplona; Garasa, Saray

    Purpose/Objectives: The goal of this study was to assess the effects of ionizing radiation on the expression of the integrin ligands ICAM-1 and VCAM that control leucocyte transit by lymphatic endothelial cells. Materials/Methods: Confluent monolayers of primary human lymphatic endothelial cells (LEC) were irradiated with single dose of 2, 5, 10 or 20 Gy, with 6 MeV-x-rays using a Linear-Accelerator. ICAM-1 and VCAM expression was determined by flow cytometry. Human tissue specimens received a single dose of 20 Gy with 15 MeV-x-rays. MC38, B16-OVA or B16-VEGF-C tumors grown in C57BL/6 mice were irradiated with single dose of 20Gy using amore » Linear-Accelerator fitted with a 10mm Radiosurgery collimator. Clinical samples were obtained from patients previous and 4 weeks after complete standard radiotherapy. ICAM-1 and VCAM expression was detected in all tissue specimens by confocal microscopy. To understand the role of TGFβ in this process anti-TGFβ blocking mAb were injected i.p. 30min before radiotherapy. Cell adhesion to irradiated LEC was analyzed in adhesion experiments performed in the presence or in the absence of anti- TGFβ and /or anti-ICAM1 blocking mAb. Results: We demonstrate that lymphatic endothelial cells in tumor samples experience induction of surface ICAM-1 and VCAM when exposed to ionizing radiation in a dose- and time-dependent manner. These effects can be recapitulated in cultured LEC, and are in part mediated by TGFβ. These data are consistent with increases in ICAM-1 and VCAM expression on LYVE-1+ endothelial cells in freshly explanted human tumor tissue and in mouse transplanted tumors after radiotherapy. Finally, ICAM-1 and VCAM expression accounts for enhanced adherence of human T lymphocytes to irradiated LEC. Conclusion: Our results show induction of ICAM-1 and VCAM on LVs in irradiated lesions and offer a starting point for elucidating the biological and therapeutic implications of targeting leukocyte traffic in combination to

  14. Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule Are Induced by Ionizing Radiation on Lymphatic Endothelium.

    PubMed

    Rodriguez-Ruiz, María E; Garasa, Saray; Rodriguez, Inmaculada; Solorzano, Jose Luis; Barbes, Benigno; Yanguas, Alba; Teijeira, Alvaro; Etxeberria, Iñaki; Aristu, José Javier; Halin, Cornelia; Melero, Ignacio; Rouzaut, Ana

    2017-02-01

    The goal of this study was to assess the effects of ionizing radiation on the expression of the integrin ligands ICAM-1 and VCAM that control leucocyte transit by lymphatic endothelial cells. Confluent monolayers of primary human lymphatic endothelial cells (LEC) were irradiated with single dose of 2, 5, 10 or 20 Gy, with 6 MeV-x-rays using a Linear-Accelerator. ICAM-1 and VCAM expression was determined by flow cytometry. Human tissue specimens received a single dose of 20 Gy with 15 MeV-x-rays. MC38, B16-OVA or B16-VEGF-C tumors grown in C57BL/6 mice were irradiated with single dose of 20Gy using a Linear-Accelerator fitted with a 10mm Radiosurgery collimator. Clinical samples were obtained from patients previous and 4 weeks after complete standard radiotherapy. ICAM-1 and VCAM expression was detected in all tissue specimens by confocal microscopy. To understand the role of TGFβ in this process anti-TGFβ blocking mAb were injected i.p. 30min before radiotherapy. Cell adhesion to irradiated LEC was analyzed in adhesion experiments performed in the presence or in the absence of anti- TGFβ and /or anti-ICAM1 blocking mAb. We demonstrate that lymphatic endothelial cells in tumor samples experience induction of surface ICAM-1 and VCAM when exposed to ionizing radiation in a dose- and time-dependent manner. These effects can be recapitulated in cultured LEC, and are in part mediated by TGFβ. These data are consistent with increases in ICAM-1 and VCAM expression on LYVE-1+ endothelial cells in freshly explanted human tumor tissue and in mouse transplanted tumors after radiotherapy. Finally, ICAM-1 and VCAM expression accounts for enhanced adherence of human T lymphocytes to irradiated LEC. Our results show induction of ICAM-1 and VCAM on LVs in irradiated lesions and offer a starting point for elucidating the biological and therapeutic implications of targeting leukocyte traffic in combination to immunotherapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. PTEN differentially regulates expressions of ICAM-1 and VCAM-1 through PI3K/Akt/GSK-3β/GATA-6 signaling pathways in TNF-α-activated human endothelial cells.

    PubMed

    Tsoyi, Konstantin; Jang, Hwa Jin; Nizamutdinova, Irina Tsoy; Park, Kyungok; Kim, Young Min; Kim, Hye Jung; Seo, Han Geuk; Lee, Jae Heun; Chang, Ki Churl

    2010-11-01

    Phosphotase and tensin homolog deleted on chromosome 10 (PTEN) is a potent negative regulator of PI3K/Akt pathway. Here, we tried to elucidate the role of PTEN in the regulation of endothelial adhesion molecules, vascular cell adhesion molecule (VCAM)-1 and intracellular adhesion molecule (ICAM)-1, induced by TNF-α in human endothelial cells (ECs). Transfection with PTEN overexpressing vector resulted in the significant decrease in phosphorylation of Akt in TNF-α-treated ECs. PTEN strongly inhibited VCAM-1 but not ICAM-1, however this inhibitory effect was reversed by co-transfection with constitutively active-Akt (CA-Akt-HA) in TNF-α-stimulated ECs. Additionally, silencing of PTEN with specific siRNA showed significant increase of phosphor-Akt compared with TNF-α alone treated ECs. siPTEN significantly upregulated VCAM-1 but was indifferent to ICAM-1 in TNF-α-treated cells. Further, chromatin immunoprecipitation (ChIP) assay showed that PTEN targets GATA-6 but not IRF-1 binding to VCAM-1 promoter. In addition, GATA-6 is associated with glycogen synthesis kinase-3beta (GSK-3β) which is in turn regulated by PTEN-dependent Akt activity. Finally, PTEN significantly prevented monocyte adhesion to TNF-α-induced ECs probably through VCAM-1 regulation. It is concluded that PTEN selectively inhibits expression of VCAM-1 but not ICAM-1 through modulation of PI3K/Akt/GSK-3β/GATA-6 signaling cascade in TNF-α-treated ECs. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  16. The ICAM-1 antisense oligonucleotide ISIS-3082 prevents the development of postoperative ileus in mice

    PubMed Central

    The, Frans O; de Jonge, Wouter J; Bennink, Roel J; van den Wijngaard, Rene M; Boeckxstaens, Guy E

    2005-01-01

    Intestinal manipulation (IM) during abdominal surgery triggers the influx of inflammatory cells, leading to postoperative ileus. Prevention of this local muscle inflammation, using intercellular adhesion molecule-1 (ICAM-1) and leukocyte function-associated antigen-1-specific antibodies, has been shown to shorten postoperative ileus. However, the therapeutic use of antibodies has considerable disadvantages. The aim of the current study was to evaluate the effect of ISIS-3082, a mouse-specific ICAM-1 antisense oligonucleotide, on postoperative ileus in mice. Mice underwent a laparotomy or a laparotomy combined with IM after treatment with ICAM-1 antibodies, 0.1–10 mg kg−1 ISIS-3082, saline or ISIS-8997 (scrambled control antisense oligonucleotides, 1 and 3 mg kg−1). At 24 h after surgery, gastric emptying of a 99mTC labelled semi-liquid meal was determined using scintigraphy. Intestinal inflammation was assessed by myeloperoxidase (MPO) activity in ileal muscle whole mounts. IM significantly reduced gastric emptying compared to laparotomy. Pretreatment with ISIS-3082 (0.11 mg kg−1) as well as ICAM-1 antibodies (10 mg kg−1), but not ISIS-8997 or saline, improved gastric emptying in a dose-dependent manner. This effect diminished with higher doses of ISIS-3082 (3–10 mg kg−1). Similarly, ISIS-3082 (0.11 mg kg−1) and ICAM-1 antibodies, but not ISIS-8997 or higher doses of ISIS-3082 (3–10 mg kg−1), reduced manipulation-induced inflammation. Immunohistochemistry showed reduction of ICAM-1 expression with ISIS-3082 only. ISIS-3082 pretreatment prevents postoperative ileus in mice by reduction of manipulation-induced local intestinal muscle inflammation. Our data suggest that targeting ICAM-1 using antisense oligonucleotides may represent a new therapeutic approach to the prevention of postoperative ileus. PMID:15997238

  17. The ICAM-1 antisense oligonucleotide ISIS-3082 prevents the development of postoperative ileus in mice.

    PubMed

    The, Frans O; de Jonge, Wouter J; Bennink, Roel J; van den Wijngaard, Rene M; Boeckxstaens, Guy E

    2005-09-01

    Intestinal manipulation (IM) during abdominal surgery triggers the influx of inflammatory cells, leading to postoperative ileus. Prevention of this local muscle inflammation, using intercellular adhesion molecule-1 (ICAM-1) and leukocyte function-associated antigen-1-specific antibodies, has been shown to shorten postoperative ileus. However, the therapeutic use of antibodies has considerable disadvantages. The aim of the current study was to evaluate the effect of ISIS-3082, a mouse-specific ICAM-1 antisense oligonucleotide, on postoperative ileus in mice. Mice underwent a laparotomy or a laparotomy combined with IM after treatment with ICAM-1 antibodies, 0.1-10 mg kg(-1) ISIS-3082, saline or ISIS-8997 (scrambled control antisense oligonucleotides, 1 and 3 mg kg(-1)). At 24 h after surgery, gastric emptying of a 99mTC labelled semi-liquid meal was determined using scintigraphy. Intestinal inflammation was assessed by myeloperoxidase (MPO) activity in ileal muscle whole mounts. IM significantly reduced gastric emptying compared to laparotomy. Pretreatment with ISIS-3082 (0.1-1 mg kg(-1)) as well as ICAM-1 antibodies (10 mg kg(-1)), but not ISIS-8997 or saline, improved gastric emptying in a dose-dependent manner. This effect diminished with higher doses of ISIS-3082 (3-10 mg kg(-1)). Similarly, ISIS-3082 (0.1-1 mg kg(-1)) and ICAM-1 antibodies, but not ISIS-8997 or higher doses of ISIS-3082 (3-10 mg kg(-1)), reduced manipulation-induced inflammation. Immunohistochemistry showed reduction of ICAM-1 expression with ISIS-3082 only. ISIS-3082 pretreatment prevents postoperative ileus in mice by reduction of manipulation-induced local intestinal muscle inflammation. Our data suggest that targeting ICAM-1 using antisense oligonucleotides may represent a new therapeutic approach to the prevention of postoperative ileus.

  18. Extracellular matrix proteins matrix metallopeptidase 9 (MMP9) and soluble intercellular adhesion molecule 1 (sICAM-1) and correlations with clinical staging in euthymic bipolar disorder.

    PubMed

    Reininghaus, Eva Z; Lackner, Nina; Birner, Armin; Bengesser, Susanne; Fellendorf, Frederike T; Platzer, Martina; Rieger, Alexandra; Queissner, Robert; Kainzbauer, Nora; Reininghaus, Bernd; McIntyre, Roger S; Mangge, Harald; Zelzer, Sieglinde; Fuchs, Dietmar; Dejonge, Silvia; Müller, Norbert

    2016-03-01

    Matrix metallopeptidase 9 (MMP9) and soluble intercellular adhesion molecule 1 (sICAM-1) are both involved in the restructuring of connective tissues. Evidence also implicates MMP9 and sICAM in cardiovascular and neoplastic diseases, where blood levels may be a marker of disease severity or prognosis. In individuals with bipolar disorder (BD), higher risk for cardiovascular illness has been extensively reported. The aim of this investigation was to measure and compare peripheral levels of serum MMP9 and sICAM in adults with euthymic BD and healthy controls (HC). Furthermore, we focussed on correlations with illness severity and metabolic parameters. MMP9 levels among the BD sample (n = 112) were significantly higher than among the HC (n = 80) (MMP9: F = 9.885, p = 0.002, η(2)  = 0.058) after controlling for confounding factors. Patients with BD in a later, progressive stage of disease showed significantly higher MMP9 as well as sICAM-1 levels compared to patients with BD in an earlier stage of disease (MMP9: F = 5.8, p = 0.018, η(2)  = 0.054; sICAM-1: F = 5.6, p = 0.020, η(2)  = 0.052). Correlation analyses of cognitive measures revealed a negative association between performance on the d2 Test of Attention and MMP9 (r = -0.287, p = 0.018) in the BD sample. Despite the sample being euthymic (i.e., according to conventional criteria) at the time of analysis, we found significant correlations between MMP9 as well as sICAM-1 and subthreshold depressive/hypomanic symptoms. A collection of disparate findings herein point to a role of MMP9 and cICAM-1 in the patho-progressive process of BD: the increased levels of serum MMP9 and sICAM-1, the correlation between higher levels of these parameters, progressive stage, and cognitive dysfunction in BD, and the positive correlation with subthreshold symptoms. As sICAM-1 and MMP9 are reliable biomarkers of inflammatory and early atherosclerotic disease, these markers may provide indications of the

  19. l-Theanine inhibits proinflammatory PKC/ERK/ICAM-1/IL-33 signaling, apoptosis, and autophagy formation in substance P-induced hyperactive bladder in rats.

    PubMed

    Tsai, Wen-Hsin; Wu, Chung-Hsin; Yu, Hong-Jeng; Chien, Chiang-Ting

    2017-02-01

    Upregulation of substance P (SP) and neurokinin-1 receptor (NK1R) activation induces pro-inflammatory bladder hyperactivity through the PKC/ERK/NF-κB/ICAM-1/IL-33 signaling pathways to increase the leukocyte infiltration and adhesion leading to reactive oxygen species (ROS) production, autophagy, and apoptosis. l-Theanine is a unique non-protein-forming amino acid present in tea (Camellia sinensis [L.] O. Kuntze) with its antioxidant, anti-inflammatory, and relaxation effects to improve cognition, mood, gastric ulcer injury, and cerebral ischemia/reperfusion injury, and posttraumatic stress disorder. We explored the protective effect of l-theanine on SP-induced bladder hyperactivity. In urethane-anesthetized female Wistar rats, we explored the transcystometrogram, pelvic nerve activity, proinflammatory PKC/ERK/NF-κB/ICAM-1/IL-33 signaling, apoptosis-related Caspase 3/poly-(ADP-ribose)-polymerase (PARP), and autophagy-mediated LC3 II expression by Western blot, electrophoretic-mobility shift assay and immunohistochemistry, bladder ROS amount by a ultrasensitive chemiluminescence method, and possible ROS sources from the different leukocytes by specific stains in SP-evoked hyperactive bladder. l-Theanine dose-dependently depressed H 2 O 2 and HOCl activity in vitro. In urethane-anesthetized female Wistar rats, intra-arterial SP through NK1R activation increased voiding frequency (shortened intercontraction intervals) associated with the increase in bladder nerve activity, proinflammatory PKC/ERK/NF-κB/ICAM-1/IL-33 signaling, Caspase 3/PARP-mediated apoptosis, LC3 II-mediated autophagy, ROS amount, neutrophils adhesion, CD68 (monocyte/macrophage) infiltration, and mast cells degranulation in the hyperactive bladder. Intragastrical l-theanine (15 mg/kg) twice daily for 2 weeks efficiently ameliorated all the enhanced parameters in the SP-treated hyperactive bladder. In conclusion, l-theanine through antioxidant and anti-inflammatory actions ameliorates SP

  20. Transmigrated neutrophils in the intestinal lumen engage ICAM 1 to regulate the epithelial barrier and neutrophil recruitment

    PubMed Central

    Sumagin, Ronen; Robin, Alex Z.; Nusrat, Asma; Parkos, Charles A.

    2014-01-01

    Neutrophil (PMN) transepithelial migration (TEM) and accumulation in luminal spaces is a hallmark of mucosal inflammation. TEM has been extensively modeled, however the functional consequences and molecular basis of PMN interactions with luminal epithelial ligands are not clear. Here we report that cytokine-induced expression of a PMN ligand, intercellular adhesion molecule-1 (ICAM-1), exclusively on the luminal (apical) membrane of the intestinal epithelium results in accumulation and enhanced motility of transmigrated PMN on the apical epithelial surface. Using complementary in-vitro and in-vivo approaches we demonstrate that ligation of epithelial ICAM-1 by PMN or with specific antibodies results in myosin light chain kinase (MLCK)-dependent increases in epithelial permeability that are associated with enhanced PMN TEM. Effects of ICAM-1 ligation on epithelial permeability and PMN migration in-vivo were blocked after intraluminal addition of peptides derived from the cytoplasmic domain of ICAM-1. These findings provide new evidence for functional interactions between PMN and epithelial cells after migration into the intestinal lumen. While such interactions may aid in clearance of invading microorganisms by promoting PMN recruitment, engagement of ICAM-1 under pathologic conditions would increase accumulation of epithelial-associated PMN, thus contributing to mucosal injury as observed in conditions including ulcerative colitis. PMID:24345805

  1. Brain endothelial adhesion molecule expression in experimental colitis.

    PubMed

    Sans, M; Kawachi, S; Soriano, A; Palacín, A; Morise, Z; Granger, D N; Piqué, J M; Grisham, M B; Panés, J

    2001-04-01

    1) To determine if endothelial expression of adhesion molecules involved in leukocyte recruitment is increased in the brain and other organs in four different models of experimental colitis, and 2) to investigate whether leukocyte infiltration occurs in the brain of colitic animals. Endothelial vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) expression was quantified, using the dual radiolabeled antibody technique in rats with trinitrobenzenesulfonic acid (TNBS)-induced colitis, in mice with dextran sulfate sodium (DSS)-induced colitis, in SCID mice reconstituted with CD45RBhigh T-cells, and in IL-10-/- mice. Leukocyte infiltration in the brain of TNBS-induced colitic rats was assessed by myeloperoxidase activity and immunohistochemical staining with anti-CD45 monoclonal antibody. Marked upregulation of brain endothelial VCAM-1 (2- to 5.5-fold) was consistently found in colitic animals in the four models studied. Brain VCAM-1 strongly correlated with colon VCAM-1 and colon weight. By contrast, upregulation of brain ICAM-1 in colitic animals was only observed in the CD45RBhigh transfer (3-fold) and the TNBS-induced (1.5-fold models). Heart and muscle VCAM-1 and ICAM-1 were not upregulated in colitic animals in the majority of models studied. There was no leukocyte infiltration into the brain of TNBS-induced colitic rats. Our study demonstrates a marked and specific upregulation of endothelial VCAM-1 in the brain of colitic animals. This activation of cerebral endothelial cells was not associated with an infiltration of leukocytes into brain tissue.

  2. Endothelial targeting of high-affinity multivalent polymer nanocarriers directed to intercellular adhesion molecule 1.

    PubMed

    Muro, Silvia; Dziubla, Thomas; Qiu, Weining; Leferovich, John; Cui, Xiumin; Berk, Erik; Muzykantov, Vladimir R

    2006-06-01

    Targeting of diagnostic and therapeutic agents to endothelial cells (ECs) provides an avenue to improve treatment of many maladies. For example, intercellular adhesion molecule 1 (ICAM-1), a constitutive endothelial cell adhesion molecule up-regulated in many diseases, is a good determinant for endothelial targeting of therapeutic enzymes and polymer nanocarriers (PNCs) conjugated with anti-ICAM (anti-ICAM/PNCs). However, intrinsic and extrinsic factors that control targeting of anti-ICAM/PNCs to ECs (e.g., anti-ICAM affinity and PNC valency and flow) have not been defined. In this study we tested in vitro and in vivo parameters of targeting to ECs of anti-ICAM/PNCs consisting of either prototype polystyrene or biodegradable poly(lactic-coglycolic) acid polymers (approximately 200 nm diameter spheres carrying approximately 200 anti-ICAM molecules). Anti-ICAM/PNCs, but not control IgG/PNCs 1) rapidly (t1/2 approximately 5 min) and specifically bound to tumor necrosis factor-activated ECs in a dose-dependent manner (Bmax approximately 350 PNC/cell) at both static and physiological shear stress conditions and 2) bound to ECs and accumulated in the pulmonary vasculature after i.v. injection in mice. Anti-ICAM/PNCs displayed markedly higher EC affinity versus naked anti-ICAM (Kd approximately 80 pM versus approximately 8 nM) in cell culture and, probably because of this factor, higher value (185.3 +/- 24.2 versus 50.5 +/- 1.5% injected dose/g) and selectivity (lung/blood ratio 81.0 +/- 10.9 versus 2.1 +/- 0.02, in part due to faster blood clearance) of pulmonary targeting. These results 1) show that reformatting monomolecular anti-ICAM into high-affinity multivalent PNCs boosts their vascular immuno-targeting, which withstands physiological hydrodynamics and 2) support potential anti-ICAM/PNCs utility for medical applications.

  3. Soluble Forms of Intercellular and Vascular Cell Adhesion Molecules Independently Predict Progression to Type 2 Diabetes in Mexican American Families

    PubMed Central

    Kulkarni, Hemant; Mamtani, Manju; Peralta, Juan; Almeida, Marcio; Dyer, Thomas D.; Goring, Harald H.; Johnson, Matthew P.; Duggirala, Ravindranath; Mahaney, Michael C.; Olvera, Rene L.; Almasy, Laura; Glahn, David C.; Williams-Blangero, Sarah; Curran, Joanne E.; Blangero, John

    2016-01-01

    Objective While the role of type 2 diabetes (T2D) in inducing endothelial dysfunction is fairly well-established the etiological role of endothelial dysfunction in the onset of T2D is still a matter of debate. In the light of conflicting evidence in this regard, we conducted a prospective study to determine the association of circulating levels of soluble intercellular adhesion molecule 1 (sICAM-1) and soluble vessel cell adhesion molecule 1 (sVCAM-1) with incident T2D. Methods Data from this study came from 1,269 Mexican Americans of whom 821 initially T2D-free individuals were longitudinally followed up in the San Antonio Family Heart Study. These individuals were followed for 9752.95 person-years for development of T2D. Prospective association of sICAM-1 and sVCAM-1 with incident T2D was studied using Kaplan-Meier survival plots and mixed effects Cox proportional hazards modeling to account for relatedness among study participants. Incremental value of adhesion molecule biomarkers was studied using integrated discrimination improvement (IDI) and net reclassification improvement (NRI) indexes. Results Decreasing median values for serum concentrations of sICAM-1 and sVCAM-1 were observed in the following groups in this order: individuals with T2D at baseline, individuals who developed T2D during follow-up, individuals with prediabetes at baseline and normal glucose tolerant (NGT) individuals who remained T2D-free during follow-up. Top quartiles for sICAM-1 and sVCAM-1 were strongly and significantly associated with homeostatic model of assessment—insulin resistance (HOMA-IR). Mixed effects Cox proportional hazards modeling revealed that after correcting for important clinical confounders, high sICAM-1 and sVCAM-1 concentrations were associated with 2.52 and 1.99 times faster progression to T2D as compared to low concentrations, respectively. Individuals with high concentrations for both sICAM-1 and sVCAM-1 progressed to T2D 3.42 times faster than those with low

  4. Elevated levels of serum sICAM-1 in asphyxiated low birth weight newborns

    PubMed Central

    Huseynova, Saadat; Panakhova, Nushaba; Orujova, Pusta; Hasanov, Safikhan; Guliyev, Mehman; Orujov, Agil

    2014-01-01

    Perinatal hypoxia results in neuronal and endothelial cell damage. The main purpose of this study was to investigate the correlation of soluble intercellular adhesion molecule 1 (sICAM-1) expression and peripheral blood changes in perinatal asphyxia with neuronal injury markers in low birth weight (LBW) neonates. We compared the concentrations of serum sICAM-1, neuron-specific enolase (NSE) and antibodies specific for NR2 glutamate receptors in 29 asphyxiated and 20 control infants using standard enzyme immunoassay procedures. The mean total concentrations of sICAM-1 and neuron-specific proteins (NSE and NR2-specific antibodies) were higher in the asphyxiated infants than in the control infants. The serum sICAM-1 concentrations significantly correlated with Apgar scoring and with the pH and lactate data from capillary or arterial cord blood. No significant correlation between serum concentrations of neuron specific proteins and blood changes of asphyxia was found. Therefore, endothelial sICAM-1 expression levels might be accepted as an indicator of the severity of perinatal asphyxia in LBW infants. PMID:25358349

  5. Bilirubin Prevents Atherosclerotic Lesion Formation in Low-Density Lipoprotein Receptor-Deficient Mice by Inhibiting Endothelial VCAM-1 and ICAM-1 Signaling.

    PubMed

    Vogel, Megan E; Idelman, Gila; Konaniah, Eddy S; Zucker, Stephen D

    2017-04-01

    Numerous epidemiological studies support an inverse association between serum bilirubin levels and the incidence of cardiovascular disease; however, the mechanism(s) by which bilirubin may protect against atherosclerosis is undefined. The goals of the present investigations were to assess the ability of bilirubin to prevent atherosclerotic plaque formation in low-density lipoprotein receptor-deficient ( Ldlr -/- ) mice and elucidate the molecular processes underlying this effect. Bilirubin, at physiological concentrations (≤20 μmol/L), dose-dependently inhibits THP-1 monocyte migration across tumor necrosis factor α-activated human umbilical vein endothelial cell monolayers without altering leukocyte binding or cytokine production. A potent antioxidant, bilirubin effectively blocks the generation of cellular reactive oxygen species induced by the cross-linking of endothelial vascular cell adhesion molecule 1 (VCAM-1) or intercellular adhesion molecule 1 (ICAM-1). These findings were validated by treating cells with blocking antibodies or with specific inhibitors of VCAM-1 and ICAM-1 signaling. When administered to Ldlr -/- mice on a Western diet, bilirubin (30 mg/kg intraperitoneally) prevents atherosclerotic plaque formation, but does not alter circulating cholesterol or chemokine levels. Aortic roots from bilirubin-treated animals exhibit reduced lipid and collagen deposition, decreased infiltration of monocytes and lymphocytes, fewer smooth muscle cells, and diminished levels of chlorotyrosine and nitrotyrosine, without changes in VCAM-1 or ICAM-1 expression. Bilirubin suppresses atherosclerotic plaque formation in Ldlr -/- mice by disrupting endothelial VCAM-1- and ICAM-1-mediated leukocyte migration through the scavenging of reactive oxygen species signaling intermediaries. These findings suggest a potential mechanism for the apparent cardioprotective effects of bilirubin. © 2017 The Authors. Published on behalf of the American Heart Association, Inc

  6. Suppression of proatherogenic leukocyte interactions by MCS-18--Impact on advanced atherosclerosis in ApoE-deficient mice.

    PubMed

    Kuehn, Constanze; Tauchi, Miyuki; Stumpf, Christian; Daniel, Christoph; Bäuerle, Tobias; Schwarz, Marc; Kerek, Franz; Steinkasserer, Alexander; Zinser, Elisabeth; Achenbach, Stephan; Dietel, Barbara

    2016-02-01

    Atherosclerosis is associated with chronic inflammatory responses of the arterial blood vessels. The previously observed protective effect of the MCS-18 substance against the initiation of atherosclerosis in a murine model was explained by its pronounced anti-inflammatory activity. Here, we investigated its impact on murine plaque progression in advanced atherosclerosis and on proatherogenic processes. ApoE-deficient mice were fed a high-fat diet for 12 weeks to induce atherosclerosis, followed by normal chow and intraperitoneal injections of either MCS-18 (500 μg, n = 10) or saline (n = 10) twice a week for another 12 weeks. Plaque size was reduced in MCS-18 treated mice compared to controls (p = 0.001), which was associated with a reduced size of the lipid core (p = 0.01). There was a decrease in apoptotic cells (p = 0.02), endothelial ICAM-1 expression (p < 0.001), and macrophage density (p = 0.01) in the MCS-18 group. In addition, human and murine dendritic cells (DCs) and human umbilical vein endothelial cells (HUVECs) were treated with MCS-18 (50-200 μg/ml) to analyze cell migration and adhesion under flow conditions. MCS-18 reduced human (p = 0.01) and murine (p = 0.006) DC migration. Furthermore, adhesion of MCS-18-treated DCs to a HUVEC monolayer was decreased (p < 0.001). Compared to controls, CD209 (p < 0.001) and CCR7 (p = 0.003) expression was decreased in MCS-18-treated DCs, while in HUVECs lower levels of ICAM-1 (p < 0.001) and of phosphorylated NF-κB-p65 (p = 0.002) were observed. Blocking of ICAM-1 reduced DC adhesion (p < 0.001). MCS-18 exhibits interesting therapeutic effects when applied in advanced murine atherosclerosis. Its antiatherogenic impact might be associated with a suppressed adhesion to the endothelium due to down-regulation of endothelial ICAM-1 expression. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Cannabidiol inhibits lung cancer cell invasion and metastasis via intercellular adhesion molecule-1.

    PubMed

    Ramer, Robert; Bublitz, Katharina; Freimuth, Nadine; Merkord, Jutta; Rohde, Helga; Haustein, Maria; Borchert, Philipp; Schmuhl, Ellen; Linnebacher, Michael; Hinz, Burkhard

    2012-04-01

    Cannabinoids inhibit cancer cell invasion via increasing tissue inhibitor of matrix metalloproteinases-1 (TIMP-1). This study investigates the role of intercellular adhesion molecule-1 (ICAM-1) within this action. In the lung cancer cell lines A549, H358, and H460, cannabidiol (CBD; 0.001-3 μM) elicited concentration-dependent ICAM-1 up-regulation compared to vehicle via cannabinoid receptors, transient receptor potential vanilloid 1, and p42/44 mitogen-activated protein kinase. Up-regulation of ICAM-1 mRNA by CBD in A549 was 4-fold at 3 μM, with significant effects already evident at 0.01 μM. ICAM-1 induction became significant after 2 h, whereas significant TIMP-1 mRNA increases were observed only after 48 h. Inhibition of ICAM-1 by antibody or siRNA approaches reversed the anti-invasive and TIMP-1-upregulating action of CBD and the likewise ICAM-1-inducing cannabinoids Δ(9)-tetrahydrocannabinol and R(+)-methanandamide when compared to isotype or nonsilencing siRNA controls. ICAM-1-dependent anti-invasive cannabinoid effects were confirmed in primary tumor cells from a lung cancer patient. In athymic nude mice, CBD elicited a 2.6- and 3.0-fold increase of ICAM-1 and TIMP-1 protein in A549 xenografts, as compared to vehicle-treated animals, and an antimetastatic effect that was fully reversed by a neutralizing antibody against ICAM-1 [% metastatic lung nodules vs. isotype control (100%): 47.7% for CBD + isotype antibody and 106.6% for CBD + ICAM-1 antibody]. Overall, our data indicate that cannabinoids induce ICAM-1, thereby conferring TIMP-1 induction and subsequent decreased cancer cell invasiveness.

  8. A distinct profile of serum levels of soluble intercellular adhesion molecule-1 and intercellular adhesion molecule-3 in mycosis fungoides and Sézary syndrome.

    PubMed

    López-Lerma, Ingrid; Estrach, Maria Teresa

    2009-08-01

    Cell adhesion molecules (CAMs) play a pivotal role in cutaneous localization of T cells. Tissue-selective localization of T lymphocytes to the skin is crucial for immune surveillance and in the pathogenesis of skin disorders. To detect the profile of soluble CAMs in patients with cutaneous T-cell lymphoma (CTCL), we investigated the levels of intercellular adhesion molecule-1 (ICAM-1, soluble ICAM-1 [sICAM-1]); intercellular adhesion molecule-3 (sICAM-3); vascular cell adhesion molecule-1 (sVCAM-1); and E-selectin (sE-selectin) in sera from patients with T-cell-mediated skin diseases. Serum levels of the 4 CAMs were measured by enzyme-linked immunosorbent assay in 42 participants including 11 patients with early stages of CTCL; 7 with advanced stages of CTCL including Sézary syndrome; 12 with inflammatory skin diseases (psoriasis and atopic dermatitis); 8 with skin diseases that may evolve into CTCL; and healthy individuals. Levels were correlated with biological parameters known as prognostic factors in non-Hodgkin lymphomas. In patients with CTCL, significantly increased levels of sICAM-1 and sICAM-3 were found when compared with healthy individuals and patients with inflammatory dermatosis. Soluble E-selectin and sVCAM-1 levels were not increased. There were significant positive correlations between sICAM-1 and sICAM-3 levels and each of them with beta2-microglobulin levels. Limited number of patients was a limitation. There is a distinct profile of soluble CAMs in patients with CTCL. However, future studies with a larger group of patients are needed to confirm these findings. We propose that high sICAM-1 and sICAM-3 levels have important implications in the context of immune response and immune surveillance in these patients.

  9. Silibinin Inhibits ICAM-1 Expression via Regulation of N-Linked and O-Linked Glycosylation in ARPE-19 Cells

    PubMed Central

    Chen, Yi-Hao; Chen, Ching-Long; Liang, Chang-Min; Liang, Jy-Been; Tai, Ming-Cheng; Chang, Yun-Hsiang; Lu, Da-Wen; Chen, Jiann-Torng

    2014-01-01

    To evaluate the effects of silibinin on intercellular adhesion molecule-1 (ICAM-1) expression, we used ARPE-19 cells as a model in which tumor necrosis factor (TNF-α) and interferon (IFN-γ) enhanced ICAM-1 expression. This upregulation was inhibited by silibinin. In an adherence assay using ARPE-19 and THP-1 cells, silibinin inhibited the cell adhesion function of ICAM-1. The inhibitory effects of silibinin on ICAM-1 expression were mediated via the blockage of nuclear translocation of p65 proteins in TNF-α and phosphorylation of STAT1 in IFN-γ-stimulated cells. In addition, silibinin altered the degree of N-linked glycosylation posttranslationally in ARPE-19 cells by significantly enhancing MGAT3 gene expression. Silibinin can increase the O-GlcNAc levels of glycoproteins in ARPE-19 cells. In a reporter gene assay, PUGNAc, which can also increase O-GlcNAc levels, inhibited NF-κB reporter activity in TNF-α-induced ARPE-19 cells and this process was augmented by silibinin treatment. Overexpression of OGT gene was associated with reduced TNF-α-induced ICAM-1 levels, which is consistent with that induced by silibinin treatment. Taken together, silibinin inhibits ICAM-1 expression and its function through altered O-linked glycosylation in NF-κB and STAT1 signaling pathways and decreases the N-linked glycosylation of ICAM-1 transmembrane protein in proinflammatory cytokine-stimulated ARPE-19 cells. PMID:25032222

  10. Interplay between Rolling and Firm Adhesion Elucidated with a Cell-Free System Engineered with Two Distinct Receptor-Ligand Pairs

    PubMed Central

    Eniola, A. Omolola; Willcox, P. Jeanene; Hammer, Daniel A.

    2003-01-01

    The firm arrest of leukocytes to the endothelium during inflammation is known to be mediated by endothelial intercellular adhesion molecules (ICAMs) binding to activated integrins displayed on leukocyte surface. Selectin-ligand interactions, which mediate rolling, are believed to be important for facilitating firm adhesion, either by activating integrins or by facilitating the transition to firm adhesion by making it easier for integrins to bind. Although leukocytes employ two distinct adhesion molecules that mediate different states of adhesion, the fundamental biophysical mechanisms by which two pairs of adhesion molecules facilitate cell adhesion is not well understood. In this work, we attempt to understand the interaction between two molecular systems using a cell-free system in which polystyrene microspheres functionalized with the selectin ligand, sialyl LewisX (sLeX), and an antibody against ICAM-1, aICAM-1, are perfused over P-selectin/ICAM-1 coated surfaces in a parallel plate flow chamber. Separately, sLeX/P-selectin interactions support rolling and aICAM-1/ICAM-1 interactions mediate firm adhesion. Our results show that sLeX/aICAM-1 microspheres will firmly adhere to P-selectin/ICAM-1 coated surfaces, and that the extent of firm adhesion of microspheres is dependent on wall shear stress within the flow chamber, sLeX/aICAM-1 microsphere site density, and P-selectin/ICAM-1 surface density ratio. We show that P-selectin's interaction with sLeX mechanistically facilitates firm adhesion mediated by antibody binding to ICAM-1: the extent of firm adhesion for the same concentration of aICAM-1/ICAM-1 interaction is greater when sLeX/P-selectin interactions are present. aICAM-1/ICAM-1 interactions also stabilize rolling by increasing pause times and decreasing average rolling velocities. Although aICAM-1 is a surrogate for β2-integrin, the kinetics of association between aICAM-1 and ICAM-1 is within a factor of 1.5 of activated integrin binding ICAM-1

  11. In vitro effects of ATG-Fresenius on immune cell adhesion.

    PubMed

    Kanzler, I; Seitz-Merwald, I; Schleger, S; Kaczmarek, I; Kur, F; Beiras-Fernandez, A

    2013-06-01

    ATG-Fresenius, a purified rabbit polyclonal anti-human T-lymphocyte immunoglobulin is used for induction immunosuppression as well as prevention and treatment of acute rejection episodes among patients receiving solid organ transplants. The aim of this study was to investigate the in vitro activity of ATG-Fresenius upon immune cell adhesion, which may explain its activity to mitigate ischemia-reperfusion injury. Human vascular endothelial cells (HUVEC) and peripheral blood mononuclear cells (PBMCs) isolated from umbilical vein or peripheral blood were incubated 20 to 24 hours before analysis. HUVEC were incubated with 10 and 100 μg/mL ATG-Fresenius or reference polyclonal rabbit immunoglobulin G. Analysis of immune cell adhesion to endothelial cells was studied in cocultures of PBMCs and adherent HUVEC. Endothelial cell expression of adhesion molecules CD62E and CD54 was determined by flow cytometry. The numbers of T-, B- and natural killer cells attached to HUVEC were also determined by flow cytometry. Groups were compared using one-way analysis of variance. We showed that ATG-Fresenius binds to endothelial cells particularly activated ones expressing increased levels of E-selectin and ICAM-1. The increased binding of ATG-Fresenius to activated endothelial cells was consistent with its known binding to Intercellular Adhesion Molecule 1 (ICAM-1) and selectins. We also showed that ATG-Fresenius inhibited adhesion of prestimulated immune cells to activated endothelium. We demonstrated dose-dependent binding of ATG-Fresenius to activated endothelial cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Endothelial NOS is required for SDF-1alpha/CXCR4-mediated peripheral endothelial adhesion of c-kit+ bone marrow stem cells.

    PubMed

    Kaminski, Alexander; Ma, Nan; Donndorf, Peter; Lindenblatt, Nicole; Feldmeier, Gregor; Ong, Lee-Lee; Furlani, Dario; Skrabal, Christian A; Liebold, Andreas; Vollmar, Brigitte; Steinhoff, Gustav

    2008-01-01

    In the era of intravascular approaches for regenerative cell therapy, the underlying mechanisms of stem cell migration to non-marrow tissue have not been clarified. We hypothesized that next to a local inflammatory response implying adhesion molecule expression, endothelial nitric oxide synthase (eNOS)-dependent signaling is required for stromal- cell-derived factor-1 alpha (SDF-1alpha)-induced adhesion of c-kit+ cells to the vascular endothelium. SDF-1alpha/tumor necrosis factor-alpha (TNF-alpha)-induced c-kit+-cell shape change and migration capacity was studied in vitro using immunohistochemistry and Boyden chamber assays. In vivo interaction of c-kit+ cells from bone marrow with the endothelium in response to SDF-1alpha/TNF-alpha stimulation was visualized in the cremaster muscle microcirculation of wild-type (WT) and eNOS (-/-) mice using intravital fluorescence microscopy. In addition, NOS activity was inhibited with N-nitro-L-arginine-methylester-hydrochloride in WT mice. To reveal c-kit+-specific adhesion behavior, endogenous leukocytes (EL) and c-kit+ cells from peripheral blood served as control. Moreover, intercellular adhesion molecule-1 (ICAM-1) and CXCR4 were blocked systemically to determine their role in inflammation-related c-kit+-cell adhesion. In vitro, SDF-1alpha enhanced c-kit+-cell migration. In vivo, SDF-1alpha alone triggered endothelial rolling-not firm adherence-of c-kit+ cells in WT mice. While TNF-alpha alone had little effect on adhesion of c-kit+ cells, it induced maximum endothelial EL adherence. However, after combined treatment with SDF-1alpha+TNF-alpha, endothelial adhesion of c-kit+ cells increased independent of their origin, while EL adhesion was not further incremented. Systemic treatment with anti-ICAM-1 and anti-CXCR4-monoclonal antibody completely abolished endothelial c-kit+-cell adhesion. In N-nitro-L-arginine-methylester-hydrochloride-treated WT mice as well as in eNOS (-/-) mice, firm endothelial adhesion of c-kit+ cells

  13. Outer membrane protein A of Escherichia coli K1 selectively enhances the expression of intercellular adhesion molecule-1 in brain microvascular endothelial cells.

    PubMed

    Selvaraj, Suresh K; Periandythevar, Parameswaran; Prasadarao, Nemani V

    2007-04-01

    Escherichia coli K1 meningitis is a serious central nervous system disease with unchanged mortality and morbidity rates for last few decades. Intercellular adhesion molecule 1 (ICAM-1) is a cell adhesion molecule involved in leukocyte trafficking toward inflammatory stimuli at the vascular endothelium; however, the effect of E. coli invasion of endothelial cells on the expression of ICAM-1 is not known. We demonstrate here that E. coli K1 invasion of human brain microvascular endothelial cells (HBMEC) selectively up-regulates the expression of ICAM-1, which occurs only in HBMEC invaded by the bacteria. The interaction of outer membrane protein A (OmpA) of E. coli with its receptor, Ecgp, on HBMEC was critical for the up-regulation of ICAM-1 and was depend on PKC-alpha and PI3-kinase signaling. Of note, the E. coli-induced up-regulation of ICAM-1 was not due to the cytokines secreted by HBMEC upon bacterial infection. Activation of NF-kappaB was required for E. coli mediated expression of ICAM-1, which was significantly inhibited by over-expressing the dominant negative forms of PKC-alpha and p85 subunit of PI3-kinase. The increased expression of ICAM-1 also enhanced the binding of THP-1 cells to HBMEC. Taken together, these data suggest that localized increase in ICAM-1 expression in HBMEC invaded by E. coli requires a novel interaction between OmpA and its receptor, Ecgp.

  14. Cryptotanshinone inhibits oxidized LDL-induced adhesion molecule expression via ROS dependent NF-κB pathways

    PubMed Central

    Zhao, Wenwen; Wu, Chuanhong; Chen, Xiuping

    2016-01-01

    ABSTRACT Adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin, play important roles in the initial stage of atherosclerosis. Cryptotanshinone (CPT), a natural compound isolated from Salvia miltiorrhiza Bunge, exhibits anti-atherosclerotic activity although the underlying mechanisms remain elusive. In this study, the protective effect of CPT against oxidized low-density lipoprotein (ox-LDL)-induced adhesion molecule expression was investigated in human umbilical vein endothelial cells. Ox-LDL significantly induced ICAM-1, VCAM-1, and E-selectin expression at the mRNA and protein levels but reduced eNOS phosphorylation and NO generation, which were reversed by CPT pretreatment. Sodium nitroprusside, a NO donor, N-acetyl-L-cysteine (NAC), a reactive oxygen species (ROS) scavenger, and BAY117082, a NF-κB inhibitor, inhibited ox-LDL-induced ICAM-1, VCAM-1, and E-selectin expression. Ox-LDL-induced ROS production was significantly inhibited by CPT and NAC. Furthermore, ox-LDL activated the NF-κB signaling pathway by inducing phosphorylation of IKKβ and IκBα, promoting the interaction of IKKβ and IκBα, and increasing p65 nuclear translocation, which were significantly inhibited by CPT. In addition, CPT, NAC, and BAY117082 inhibited ox-LDL-induced membrane expression of ICAM-1, VCAM-1, E-selectin, and endothelial–monocyte adhesion and restored eNOS phosphorylation and NO generation. Results suggested that CPT inhibited ox-LDL-induced adhesion molecule expression by decreasing ROS and inhibiting the NF-κB pathways, which provides new insight into the anti-atherosclerotic mechanism of CPT. PMID:26647279

  15. ICAM-1 Binding Rhinoviruses A89 and B14 Uncoat in Different Endosomal Compartments

    PubMed Central

    Conzemius, Rick; Ganjian, Haleh; Blaas, Dieter

    2016-01-01

    ABSTRACT Human rhinovirus A89 (HRV-A89) and HRV-B14 bind to and are internalized by intercellular adhesion molecule 1 (ICAM-1); as demonstrated earlier, the RNA genome of HRV-B14 penetrates into the cytoplasm from endosomal compartments of the lysosomal pathway. Here, we show by immunofluorescence microscopy that HRV-A89 but not HRV-B14 colocalizes with transferrin in the endocytic recycling compartment (ERC). Applying drugs differentially interfering with endosomal recycling and with the pathway to lysosomes, we demonstrate that these two major-group HRVs productively uncoat in distinct endosomal compartments. Overexpression of constitutively active (Rab11-GTP) and dominant negative (Rab11-GDP) mutants revealed that uncoating of HRV-A89 depends on functional Rab11. Thus, two ICAM-1 binding HRVs are routed into distinct endosomal compartments for productive uncoating. IMPORTANCE Based on similarity of their RNA genomic sequences, the more than 150 currently known common cold virus serotypes were classified as species A, B, and C. The majority of HRV-A viruses and all HRV-B viruses use ICAM-1 for cell attachment and entry. Our results highlight important differences of two ICAM-1 binding HRVs with respect to their intracellular trafficking and productive uncoating; they demonstrate that serotypes belonging to species A and B, but entering the cell via the same receptors, direct the endocytosis machinery to ferry them along distinct pathways toward different endocytic compartments for uncoating. PMID:27334586

  16. In vitro studies of the antirhinovirus activity of soluble intercellular adhesion molecule-1.

    PubMed Central

    Arruda, E; Crump, C E; Marlin, S D; Merluzzi, V J; Hayden, F G

    1992-01-01

    We studied the in vitro antirhinovirus activity of a soluble form of intercellular adhesion molecule-1 (sICAM-1). sICAM-1 inhibited the cytopathic effect of 10 representative human rhinovirus (HRV) serotypes of the major receptor group with, 50% effective concentrations (EC50s) of 0.1 to 7.9 micrograms/ml. Cell type-dependent variation in the inhibitory activity of sICAM-1 was observed for two major receptor group serotypes in HeLa cells (EC50, greater than 32 micrograms/ml), and no inhibitory effect was observed for two serotypes which use different cell receptors. Yield reduction assays showed that sICAM-1 inhibited the replication of HRV serotype 39 (HRV-39) in human adenoid explants in a concentration-dependent manner. No direct inactivation of infectivity of HRV-39 (EC50, 0.5 microgram/ml) was observed after incubation with sICAM-1 (32 micrograms/ml) for up to 24 h. Single-cycle-of-replication experiments with the addition of sICAM-1 at 10 micrograms/ml at different times showed that the inhibitory effect occurs only when sICAM-1 is added within 30 min after infection. In experiments in which absorption was carried out at 4 degrees C and then a single cycle of replication incubation was carried out at 33 degrees C, it was found that sICAM-1 at 10 micrograms/ml was inhibitory only when it was present during the absorption period. Our data show that sICAM-1 is inhibitory for representative major receptor group serotypes of HRV in two cell lines and human respiratory epithelium, that the interaction of sICAM-1 with HRV is readily reversible by dilution, and that the inhibitory effect of sICAM-1 on virus replication is present early in the infection cycle. PMID:1358025

  17. Reduced Expression of Adipose Triglyceride Lipase Enhances Tumor Necrosis Factor α-induced Intercellular Adhesion Molecule-1 Expression in Human Aortic Endothelial Cells via Protein Kinase C-dependent Activation of Nuclear Factor-κB*

    PubMed Central

    Inoue, Tomoaki; Kobayashi, Kunihisa; Inoguchi, Toyoshi; Sonoda, Noriyuki; Fujii, Masakazu; Maeda, Yasutaka; Fujimura, Yoshinori; Miura, Daisuke; Hirano, Ken-ichi; Takayanagi, Ryoichi

    2011-01-01

    We examined the effects of adipose triglyceride lipase (ATGL) on the initiation of atherosclerosis. ATGL was recently identified as a rate-limiting triglyceride (TG) lipase. Mutations in the human ATGL gene are associated with neutral lipid storage disease with myopathy, a rare genetic disease characterized by excessive accumulation of TG in multiple tissues. The cardiac phenotype, known as triglyceride deposit cardiomyovasculopathy, shows massive TG accumulation in both coronary atherosclerotic lesions and the myocardium. Recent reports show that myocardial triglyceride content is significantly higher in patients with prediabetes or diabetes and that ATGL expression is decreased in the obese insulin-resistant state. Therefore, we investigated the effect of decreased ATGL activity on the development of atherosclerosis using human aortic endothelial cells. We found that ATGL knockdown enhanced monocyte adhesion via increased expression of TNFα-induced intercellular adhesion molecule-1 (ICAM-1). Next, we determined the pathways (MAPK, PKC, or NFκB) involved in ICAM-1 up-regulation induced by ATGL knockdown. Both phosphorylation of PKC and degradation of IκBα were increased in ATGL knockdown human aortic endothelial cells. In addition, intracellular diacylglycerol levels and free fatty acid uptake via CD36 were significantly increased in these cells. Inhibition of the PKC pathway using calphostin C and GF109203X suppressed TNFα-induced ICAM-1 expression. In conclusion, we showed that ATGL knockdown increased monocyte adhesion to the endothelium through enhanced TNFα-induced ICAM-1 expression via activation of NFκB and PKC. These results suggest that reduced ATGL expression may influence the atherogenic process in neutral lipid storage diseases and in the insulin-resistant state. PMID:21828047

  18. Polymorphisms of IL-17 and ICAM-1 and their expression in Guillain-Barré syndrome.

    PubMed

    Kharwar, N K; Prasad, K N; Singh, K; Paliwal, V K; Modi, D R

    2017-08-01

    Guillain-Barré syndrome (GBS) is an acute inflammatory, autoimmune disorder of peripheral nervous system. Interleukin-17 (IL-17) and intercellular adhesion molecule-1 (ICAM-1) polymorphisms with higher expression levels have already been studied in many inflammatory and autoimmune diseases. However, the possible role of IL-17 and ICAM-1 polymorphisms in GBS remains unknown. Therefore, the current study investigated IL-17 (His161Arg and Glu126Gly) and ICAM-1 (Gly241Arg) polymorphisms. In this study, total 80 GBS patients and 75 normal healthy controls were included. IL-17 (His161Arg and Glu126Gly) and ICAM-1 (Gly241Arg) polymorphisms were performed using polymerase chain reaction -restriction fragment length polymorphism analysis. Further, the expression of ICAM-1 and IL-17 was determined by reverse-transcriptase PCR and enzyme-linked immunosorbent assay. IL-17 (Glu126Gly) mutant and ICAM-1 (Gly241Arg) heterozygous genotypes were strongly associated with increased risk of GBS (p < 0.016; OR = 3.706, 95% CI = 1.28-10.67; p < 0.001; OR = 4.148, 95% CI = 2.119-8.119, respectively). IL-17 and ICAM-1 genes showed significantly higher expression in GBS when compared with healthy controls. IL-17 and ICAM-1 polymorphisms showed significant association with GBS and their enhanced expressions have possible role in GBS development. IL-17 and ICAM-1 polymorphisms could be genetic markers to GBS susceptibility.

  19. CD40 in Retinal Müller Cells Induces P2X7-Dependent Cytokine Expression in Macrophages/Microglia in Diabetic Mice and Development of Early Experimental Diabetic Retinopathy.

    PubMed

    Portillo, Jose-Andres C; Lopez Corcino, Yalitza; Miao, Yanling; Tang, Jie; Sheibani, Nader; Kern, Timothy S; Dubyak, George R; Subauste, Carlos S

    2017-02-01

    Müller cells and macrophages/microglia are likely important for the development of diabetic retinopathy; however, the interplay between these cells in this disease is not well understood. An inflammatory process is linked to the onset of experimental diabetic retinopathy. CD40 deficiency impairs this process and prevents diabetic retinopathy. Using mice with CD40 expression restricted to Müller cells, we identified a mechanism by which Müller cells trigger proinflammatory cytokine expression in myeloid cells. During diabetes, mice with CD40 expressed in Müller cells upregulated retinal tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), intracellular adhesion molecule 1 (ICAM-1), and nitric oxide synthase (NOS2), developed leukostasis and capillary degeneration. However, CD40 did not cause TNF-α or IL-1β secretion in Müller cells. TNF-α was not detected in Müller cells from diabetic mice with CD40 + Müller cells. Rather, TNF-α was upregulated in macrophages/microglia. CD40 ligation in Müller cells triggered phospholipase C-dependent ATP release that caused P2X 7 -dependent production of TNF-α and IL-1β by macrophages. P2X 7 -/- mice and mice treated with a P2X 7 inhibitor were protected from diabetes-induced TNF-α, IL-1β, ICAM-1, and NOS2 upregulation. Our studies indicate that CD40 in Müller cells is sufficient to upregulate retinal inflammatory markers and appears to promote experimental diabetic retinopathy and that Müller cells orchestrate inflammatory responses in myeloid cells through a CD40-ATP-P2X 7 pathway. © 2017 by the American Diabetes Association.

  20. The ICAM-1 expression level determines the susceptibility of human endothelial cells to simulated microgravity.

    PubMed

    Buravkova, Ludmila B; Rudimov, Eugene G; Andreeva, Elena R; Grigoriev, Anatoly I

    2018-03-01

    Microgravity is a principal risk factor hampering human cardiovascular regulation during space flights. Endothelial dysfunction associated with the impaired integrity and uniformity of the monolayer represents a potential trigger for vascular damage. We characterized the expression profile of the multi-step cascade of adhesion molecules (ICAM-1, VCAM-1, E-selectin, VE-cadherin) in umbilical cord endothelial cells (ECs) after 24 h of exposure to simulated microgravity (SMG), pro-inflammatory cytokine TNF-α, and the combination of the two. Random Positioning Machine (RPM)-mediated SMG was used to mimic microgravity effects. SMG stimulated the expression of E-selectin, which is known to be involved in slowing leukocyte rolling. Primary ECs displayed heterogeneity with respect to the proportion of ICAM-1-positive cells. ECs were divided into two groups: pre-activated ECs displaying high proportion of ICAM-1 + -cells (ECs-1) (greater than 50%) and non-activated ECs with low proportion of ICAM-1 + -cells (ECs-2) (less than 25%). Only non-activated ECs-2 responded to SMG by elevating gene transcription and increasing ICAM-1 and VE-cadherin expression. This effect was enhanced after cumulative SMG-TNF-α exposure. ECs-1 displayed an unexpected decrease in number of E-selectin- and ICAM-1-positive ECs and pronounced up-regulation of VCAM1 upon activation of inflammation, which was partially abolished by SMG. Thus, non-activated ECs-2 are quite resistant to the impacts of microgravity and even exhibited an elevation of the VE-cadherin gene and protein expression, thus improving the integrity of the endothelial monolayer. Pre-activation of ECs with inflammatory stimuli may disturb the EC adhesion profile, attenuating its barrier function. These alterations may be among the mechanisms underlying cardiovascular dysregulation in real microgravity conditions. © 2017 Wiley Periodicals, Inc.

  1. Rapid detection of urinary soluble intercellular adhesion molecule-1 for determination of lupus nephritis activity.

    PubMed

    Wang, Yanyun; Tao, Ye; Liu, Yi; Zhao, Yi; Song, Chao; Zhou, Bin; Wang, Tao; Gao, Linbo; Zhang, Lin; Hu, Huaizhong

    2018-06-01

    The current methods of monitoring the activity of lupus nephritis (LN) may cause unnecessary hospital visits or delayed immunosuppressive therapy. We aimed to find a urinary biomarker that could be developed as a home-based test for monitoring the activity of LN.Urine samples were collected immediately before a renal biopsy from patients of suspected active LN, and also from patients with inactive LN, systemic lupus erythematous without LN or healthy controls. Biomarker search was conducted on a cytokine antibody array and confirmation was done by quantitative evaluation with enzyme-linked immunosorbent assay. The Mann-Whiney test or Student t test was used to compare the levels of 9 cytokines between different groups. The sensitivity and specificity of each cytokine for diagnosis of LN was evaluated by receiver operating characteristic curve. A rapid test based on colloidal gold immunochromatography was then developed for bedside or home use. Furthermore, an experimental e-healthcare system was constructed for recording and sharing the results of the rapid test a cloud-assisted internet of things (IoT) consisting of a sensing device, an IoT device and a cloud server.Adiponectin (Acrp30), soluble intercellular cell adhesion molecule-1 (sICAM-1), neural cell adhesion molecule 1 (NCAM-1), and CD26 were significantly higher in urine samples of active LN patients. sICAM-1 appeared more sensitive and specific among these candidates. When the cut-off value of sICAM-1 was set at 1.44 ng/mL, the sensitivity reached 98.33% with a specificity at 85.71%. The sICAM-1 strip test showed comparable sensitivity of 95% and a specificity of 83.3% for assessing the LN activity. Meanwhile, the e-healthcare system was able to conveniently digitize and share the sICAM-1 rapid test results.sICAM-1 appeared to be an excellent biomarker for monitoring LN activity. The e-healthcare system with cloud-assisted IoT could assist the digitalization and sharing of the bedside or home-based sICAM

  2. The immunosuppressive drug mycophenolate mofetil impairs the adhesion capacity of gastrointestinal tumour cells

    PubMed Central

    LECKEL, K; BEECKEN, W-D; JONAS, D; OPPERMANN, E; COMAN, M C; BECK, K-F; CINATL, J; HAILER, N P; AUTH, M K H; BECHSTEIN, W O; SHIPKOVA, M; BLAHETA, R A

    2003-01-01

    Immunosuppression correlates with the development and recurrence of cancer. Mycophenolate mofetil (MMF) has been shown to reduce adhesion molecule expression and leucocyte recruitment into the donor organ. We have hypothesized that MMF might also prevent receptor-dependent tumour dissemination. Therefore, we have investigated the effects of MMF on tumour cell adhesion to human umbilical vein endothelial cells (HUVEC) and compared them with the effects on T cell–endothelial cell interactions. Influence of MMF on cellular adhesion to HUVEC was analysed using isolated CD4+ and CD8+ T cells, or WiDr colon adenocarcinoma cells as the model tumour. HUVEC receptors ICAM-1, VCAM-1, E-selectin and P-selectin were detected by flow cytometry, Western blot or Northern blot analysis. Binding activity of T cells or WiDr cells in the presence of MMF were measured using immobilized receptor globulin chimeras. MMF potently blocked both T cell and WiDr cell binding to endothelium by 80%. Surface expression of the endothelial cell receptors was reduced by MMF in a dose-dependent manner. E-selectin mRNA was concurrently reduced with a maximum effect at 1 µm. Interestingly, MMF acted differently on T cells and WiDr cells. Maximum efficacy of MMF was reached at 10 and 1 µm, respectively. Furthermore, MMF specifically suppressed T cell attachment to ICAM-1, VCAM-1 and P-selectin. In contrast, MMF prevented WiDr cell attachment to E-selectin. In conclusion, our data reveal distinct effects of MMF on both T cell adhesion and tumour cell adhesion to endothelial cells. This suggests that MMF not only interferes with the invasion of alloactivated T cells, but might also be of value in managing post-transplantation malignancy. PMID:14616783

  3. The immunosuppressive drug mycophenolate mofetil impairs the adhesion capacity of gastrointestinal tumour cells.

    PubMed

    Leckel, K; Beecken, W-D; Jonas, D; Oppermann, E; Coman, M C; Beck, K-F; Cinatl, J; Hailer, N P; Auth, M K H; Bechstein, W O; Shipkova, M; Blaheta, R A

    2003-11-01

    Immunosuppression correlates with the development and recurrence of cancer. Mycophenolate mofetil (MMF) has been shown to reduce adhesion molecule expression and leucocyte recruitment into the donor organ. We have hypothesized that MMF might also prevent receptor-dependent tumour dissemination. Therefore, we have investigated the effects of MMF on tumour cell adhesion to human umbilical vein endothelial cells (HUVEC) and compared them with the effects on T cell-endothelial cell interactions. Influence of MMF on cellular adhesion to HUVEC was analysed using isolated CD4+ and CD8+ T cells, or WiDr colon adenocarcinoma cells as the model tumour. HUVEC receptors ICAM-1, VCAM-1, E-selectin and P-selectin were detected by flow cytometry, Western blot or Northern blot analysis. Binding activity of T cells or WiDr cells in the presence of MMF were measured using immobilized receptor globulin chimeras. MMF potently blocked both T cell and WiDr cell binding to endothelium by 80%. Surface expression of the endothelial cell receptors was reduced by MMF in a dose-dependent manner. E-selectin mRNA was concurrently reduced with a maximum effect at 1 microm. Interestingly, MMF acted differently on T cells and WiDr cells. Maximum efficacy of MMF was reached at 10 and 1 microm, respectively. Furthermore, MMF specifically suppressed T cell attachment to ICAM-1, VCAM-1 and P-selectin. In contrast, MMF prevented WiDr cell attachment to E-selectin. In conclusion, our data reveal distinct effects of MMF on both T cell adhesion and tumour cell adhesion to endothelial cells. This suggests that MMF not only interferes with the invasion of alloactivated T cells, but might also be of value in managing post-transplantation malignancy.

  4. Measuring Soluble ICAM-1 in African Populations

    PubMed Central

    Abdi, Abdirahman I.; Muthui, Michelle; Kiragu, Esther; Bull, Peter C.

    2014-01-01

    The level of plasma soluble ICAM-1 (sICAM-1) has been associated with the pathogenesis of several diseases. Previously, a commercial antibody was reported not to recognize an ICAM-1 allele known as ICAM-1kilifi prevalent among African populations. However, that study was based on 19 samples from African Americans of whom 13 had the wild type allele, five heterozygotes and one homozygote. Here, we compare plasma sICAM-1 measures using three different commercial antibodies in samples from Kenyan children genotyped for ICAM-1kilifi allele. We show that two of these antibodies have some degree of deficiency in detecting the ICAM-1kilifi allele. Consideration of the antibody used to measure sICAM-1 is important as up to 30% of the populations in Africa harbour this allele. PMID:25289635

  5. Effect of flow on endothelial endocytosis of nanocarriers targeted to ICAM-1.

    PubMed

    Bhowmick, Tridib; Berk, Erik; Cui, Xiumin; Muzykantov, Vladimir R; Muro, Silvia

    2012-02-10

    Delivery of drugs into the endothelium by nanocarriers targeted to endothelial determinants may improve treatment of vascular maladies. This is the case for intercellular adhesion molecule 1 (ICAM-1), a glycoprotein overexpressed on endothelial cells (ECs) in many pathologies. ICAM-1-targeted nanocarriers bind to and are internalized by ECs via a non-classical pathway, CAM-mediated endocytosis. In this work we studied the effects of endothelial adaptation to physiological flow on the endocytosis of model polymer nanocarriers targeted to ICAM-1 (anti-ICAM/NCs, ~180 nm diameter). Culturing established endothelial-like cells (EAhy926 cells) and primary human umbilical vein ECs (HUVECs) under 4 dyn/cm(2) laminar shear stress for 24 h resulted in flow adaptation: cell elongation and formation of actin stress fibers aligned to the flow direction. Fluorescence microscopy showed that flow-adapted cells internalized anti-ICAM/NCs under flow, although at slower rate versus non flow-adapted cells under static incubation (~35% reduction). Uptake was inhibited by amiloride, whereas marginally affected by filipin and cadaverine, implicating that CAM-endocytosis accounts for anti-ICAM/NC uptake under flow. Internalization under flow was more modestly affected by inhibiting protein kinase C, which regulates actin remodeling during CAM-endocytosis. Actin recruitment to stress fibers that maintain the cell shape under flow may delay uptake of anti-ICAM/NCs under this condition by interfering with actin reorganization needed for CAM-endocytosis. Electron microscopy revealed somewhat slow, yet effective endocytosis of anti-ICAM/NCs by pulmonary endothelium after i.v. injection in mice, similar to that of flow-adapted cell cultures: ~40% (30 min) and 80% (3 h) internalization. Similar to cell culture data, uptake was slightly faster in capillaries with lower shear stress. Further, LPS treatment accelerated internalization of anti-ICAM/NCs in mice. Therefore, regulation of endocytosis

  6. Effect of flow on endothelial endocytosis of nanocarriers targeted to ICAM-1

    PubMed Central

    Bhowmick, Tridib; Berk, Erik; Cui, Xiumin; Muzykantov, Vladimir R.; Muro, Silvia

    2011-01-01

    Delivery of drugs into the endothelium by nanocarriers targeted to endothelial determinants may improve treatment of vascular maladies. This is the case for intercellular adhesion molecule 1 (ICAM-1), a glycoprotein overexpressed on endothelial cells (ECs) in many pathologies. ICAM-1-targeted nanocarriers bind to and are internalized by ECs via a non-classical pathway, CAM-mediated endocytosis. In this work we studied the effects of endothelial adaptation to physiological flow on the endocytosis of model polymer nanocarriers targeted to ICAM-1 (anti-ICAM/NCs, ~180-nm diameter). Culturing established endothelial-like cells (EAhy926 cells) and primary human umbilical vein ECs (HUVECs) under 4 dyn/cm2 laminar shear stress for 24 h resulted in flow adaptation: cell elongation and formation of actin stress fibers aligned to the flow direction. Fluorescence microscopy showed that flow-adapted cells internalized anti-ICAM/NCs under flow, although at slower rate versus non flow-adapted cells under static incubation (~35% reduction). Uptake was inhibited by amiloride, whereas marginally affected by filipin and cadaverine, implicating that CAM-endocytosis accounts for anti-ICAM/NC uptake under flow. Internalization under flow was more modestly affected by inhibiting protein kinase C, which regulates actin remodeling during CAM-endocytosis. Actin recruitment to stress fibers that maintain the cell shape under flow may delay uptake of anti-ICAM/NCs under this condition by interfering with actin reorganization needed for CAM-endocytosis. Electron microscopy revealed somewhat slow, yet effective endocytosis of anti-ICAM/NCs by pulmonary endothelium after i.v. injection in mice, similar to that of flow-adapted cell cultures: ~40% (30 min) and 80% (3 h) internalization. Similar to cell culture data, uptake was slightly faster in capillaries with lower shear stress. Further, LPS treatment accelerated internalization of anti-ICAM/NCs in mice. Therefore, regulation of endocytosis of

  7. ICAM-1, ELAM-1, TNF-alpha and IL-6 in serum and blister liquid of pemphigus vulgaris patients.

    PubMed

    Alecu, M; Alecu, S; Coman, G; Gălăţescu, E; Ursaciuc, C

    1999-01-01

    The levels of ICAM-1, ELAM-1, TNF-alpha and IL-6 were determined in 12 patients with pemphigus vulgaris (PV) both in serum and the blister liquid. As a control, the same parameters were determined in 7 patients with herpes zoster (HZ). The patients with PV presented significantly higher values of ICAM-1 in the blister liquid, as compared to the serum values. The values of TNF-alpha and IL-6 were increased both in serum and the blister liquid. The ELAM-1 values did not show significant differences between serum and the blister liquid. In HZ patients, the blister liquid values did not significantly exceed the serum values both for ICAM-1 and ELAM-1. TNF-alpha and IL-6 presented high values both in serum and the blister liquid. We consider that the high values of ICAM-1 in the blister liquid from PV patients suggest the involvement of this adhesion molecule in the PV pathogenic features. The implication of ICAM-1 could be nonspecific and limited, and could possibly represent a reaction to the destruction of the desmosomal bonds within keratinocytes.

  8. MicroSPECT imaging of triple negative breast cancer cell tumor xenografted in athymic mice with radioiodinated anti-ICAM-1 monoclonal antibody.

    PubMed

    You, Linyi; Wang, Xiangyu; Guo, Zhide; Zhang, Deliang; Zhang, Pu; Li, Jindian; Su, Xinhui; Pan, Weimin; Zhang, Xianzhong

    2018-04-04

    Intercellular adhesion molecule-1(ICAM-1) is a potential molecular target and biomarker for triple negative breast cancer (TNBC) therapy and diagnosis. In this study, aICAM-1 was radioiodinated with 125 I/ 131 I in high radiochemical yield and the probes for TNBC tumor targeting and radioimmunotherapy were evaluated in tumor-bearing mice. High and specific accumulation of 125 I-aICAM1 in TNBC MDA-MB-231 tumor was observed in SPECT imaging and the tumor grew was inhibited obviously by 131 I-aICAM1. Thus, the radioiodinated aICAM1 could serve as potential agents for TNBC theranostics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Cytoadherence of Plasmodium falciparum to intercellular adhesion molecule 1 and chondroitin-4-sulfate expressed by the syncytiotrophoblast in the human placenta.

    PubMed Central

    Maubert, B; Guilbert, L J; Deloron, P

    1997-01-01

    Late stages of Plasmodium falciparum-infected erythrocytes (IRBCs) frequently sequester in the placentas of pregnant women, a phenomenon associated with low birth weight of the offspring. To investigate the physiological mechanism of this sequestration, we developed an in vitro assay for studying the cytoadherence of IRBCs to cultured term human trophoblasts. The capacity for binding to the syncytiotrophoblast varied greatly among P. falciparum isolates and was mediated by intercellular adhesion molecule 1 (ICAM-1), as binding was totally inhibited by 84H10, a monoclonal antibody specific for ICAM-1. Binding of the P. falciparum line RP5 to the syncytiotrophoblast involves chondroitin-4-sulfate (CSA), as this binding was dramatically impaired by addition of free CSA to the binding medium or by preincubation of the syncytiotrophoblast with chondroitinase ABC. ICAM-1 and CSA were visualized on the syncytiotrophoblast by immunofluorescence, while CD36, E-selectin, and vascular cell adhesion molecule 1 were not expressed even on tumor necrosis factor alpha (TNF-alpha)-stimulated syncytiotrophoblast tissue, and monoclonal antibodies against these cell adhesion molecules did not inhibit cytoadherence. ICAM-1 expression and cytoadherence of wild isolates was upregulated by TNF-alpha, a cytokine that can be secreted by the numerous mononuclear phagocytes present in malaria-infected placentas. These results suggest that cytoadherence may be involved in the placental sequestration and broaden the understanding of the physiopathology of the malaria-infected placenta. PMID:9119459

  10. Tetrandrine suppresses lung cancer growth and induces apoptosis, potentially via the VEGF/HIF-1α/ICAM-1 signaling pathway

    PubMed Central

    Chen, Zhuo; Zhao, Liang; Zhao, Feng; Yang, Guanghai; Wang, Jian Jun

    2018-01-01

    The present study investigated the effect of tetrandrine on lung cancer cell growth and apoptosis, and its possible underlying molecular mechanism. A549 human lung cancer cells were incubated with between 2.5 and 10 µM tetrandrine for 12, 24 and 48 h, following which the effect of tetrandrine on cell viability and apoptosis were assessed using an MTT assay and flow cytometry. ELISA and western blotting were used to analyze VEGF activity, and the expression of poly (ADP-ribose) polymerase (PARP), phosphorylated protein kinase B (Akt), Bcl-2-associated X protein (Bax), hypoxia inducible factor (HIF)-1α and inter-cellular adhesion molecule-1 (ICAM-1). Tetrandrine effectively suppressed the growth of and induced apoptosis in A549 lung cancer cells. The expression of PARP, Bax, intercellular adhesion molecule-1 (ICAM-1) and vascular endothelial growth factor (VEGF) was significantly upregulated, and the phosphorylation of Akt and expression of HIF-1α was significantly suppressed in A549 lung cancer cells. Therefore, tetrandrine may suppress cell viability and induce apoptosis via the VEGF/HIF-1α/ICAM-1 signaling pathway. PMID:29849794

  11. Blocking pulmonary ICAM-1 expression ameliorates lung injury in established diet-induced pancreatitis.

    PubMed

    Lundberg, A H; Fukatsu, K; Gaber, L; Callicutt, S; Kotb, M; Wilcox, H; Kudsk, K; Gaber, A O

    2001-02-01

    To determine whether blocking the cell surface expression of intracellular adhesion molecules (ICAM-1) in established severe acute pancreatitis (AP) would ameliorate pulmonary injury. Lung injury in AP is in part mediated by infiltrating leukocytes, which are directed to lung tissue by ICAM-l. The authors' laboratory has previously demonstrated that AP results in overproduction of inflammatory cytokines, upregulation of pulmonary ICAM-1 expression, and a concomitant infiltration of neutrophils, which results in lung injury. Young female mice were fed a choline-deficient/ethionine-supplemented diet to induce AP and were treated with a blocking dose of monoclonal antibody specific to the ICAM-1 receptor. Antibody treatment was administered at 72, 96, and 120 hours after beginning the diet, and all animals were killed at 144 hours. The degree of pancreatitis was evaluated by serum biochemical and tumor necrosis factor alpha levels as well as histology. The dual radiolabeled monoclonal antibody method was used to quantitate ICAM-1 cell surface expression in pulmonary tissue. Lung injury was assessed histologically and by determining lung microvascular permeability by measuring accumulated 125I-radiolabeled albumin. Pulmonary neutrophil sequestration was determined by the myeloperoxidase assay. All mice developed severe AP, and pancreatic injury was equally severe in both treated and untreated groups. Pulmonary ICAM-1 expression was significantly upregulated in animals with AP compared with controls. Treatment with a blocking dose of anti-ICAM-1 antibody after the induction of AP resulted in inhibited ICAM-1 cell surface expression to near control levels. Compared to untreated animals with AP, mice treated with anti-ICAM-1 mice had significantly reduced histologic lung injury and neutrophil sequestration, and a decreased microvascular permeability by more than twofold. These results demonstrate for the first time that treatment targeting the cell surface expression of

  12. Exendin-4 and GLP-1 decreases induced expression of ICAM-1, VCAM-1 and RAGE in human retinal pigment epithelial cells.

    PubMed

    Dorecka, Mariola; Siemianowicz, Krzysztof; Francuz, Tomasz; Garczorz, Wojciech; Chyra, Agnieszka; Klych, Agnieszka; Romaniuk, Wanda

    2013-01-01

    Advanced glycation end products (AGEs) take part in the development of diabetic retinopathy. Hyperglycemia triggers an inflammatory response in the retina. These mechanisms may lead to an enhanced expression of adhesion molecules (ICAM-1 and VCAM-1) in human retinal pigment epithelium (HRPE). Glucagon-like peptide 1 (GLP-1) functions as an incretin hormone with antidiabetogenic properties. GLP-1 also possesses vasoprotective properties. The aim of our study was to evaluate the influence of glycated albumin (GlyAlb; 100; 500 and 1000 mg/l) and pro-inflammatory cytokine, TNF-α (2.5 and 10 ng/ml), on expression of RAGE, ICAM-1 and VCAM-1 and to evaluate the influence of GLP-1 (100 nM) and its analogue, exendin-4 (10 nM), on the expression of RAGE, ICAM-1 and VCAM-1 in stimulated HRPE. TNF-α increased RAGE expression in HRPE cells. The addition of GlyAlb (500 and 1000 mg/l) resulted in a decrease of RAGE expression. Both TNF-α and GlyAlb increased the secretion of both adhesion molecules. In cells co-treated with GLP-1 or exendin-4 both incretins decreased RAGE expression in TNF-α treated cells, and in GlyAlb group. The ICAM-1 expression was lowered by exendin-4 and GLP-1 in cells stimulated by TNF-α and GlyAlb. The similar results were obtained for VCAM-1. All observed alterations were statistically significant. The obtained results indicate that both GLP-1 and exendin-4 by decreasing the expression of RAGE in HRPE can make these cells more resistant to circulating AGEs, and decreased expression of circulating VCAM-1 and ICAM-1, can be the result of anti-inflammatory properties of incretins and decreased expression of RAGE.

  13. Comparative immunoexpression of ICAM-1, TGF-β1 and ki-67 in periapical and residual cysts.

    PubMed

    Martins, R; Armada, L; Dos Santos, T-C; Pires, F-R

    2017-01-01

    This study compared the immunohistochemical expression of ki-67, transforming growth factor beta 1 (TGF-β1) and intercellular adhesion molecule-1 (ICAM-1) in inflammatory periapical cysts and residual cysts. The study sample was composed by 25 periapical cysts and 25 residual cysts and immunohistochemical reactions were carried out using antibodies directed against ICAM-1, TGF-β1 and ki-67. Clinical, radiological, gross, histological and immunohistochemical data were tabulated for descriptive and comparative analysis using the SPSS software and differences were considered statistically significant when p<0.05%. There were no differences between the expression of ICAM-1 (p=0.239) and TGF-β1 (p=0.258) when comparing both groups. Ki-67 labeling index was higher in residual cysts compared to periapical cysts (p=0.017). Results from the present study suggest that some specific inflammatory stimuli on residual cysts would modulate their mechanisms of etiopathogenesis, growing and repair.

  14. Analysis of cytotoxic activity of the CD4+ T lymphocytes generated by local immunotherapy.

    PubMed Central

    Katsumoto, Y.; Monden, T.; Takeda, T.; Haba, A.; Ito, Y.; Wakasugi, E.; Wakasugi, T.; Sekimoto, M.; Kobayashi, T.; Shiozaki, H.; Shimano, T.; Monden, M.

    1996-01-01

    We previously reported that the anti-tumour effect of OK-432 is considerably enhanced by its intratumoral injection together with fibrinogen. In the present study, we generated killer T cells by culturing tumour-infiltrating lymphocytes from thyroid cancer patients who had received this local immunotherapy. Phenotypic analysis revealed that the T cells were positive for CD3+, CD4+, Leu8-, CD45RO+ and T-cell receptor (TCR)alpha beta+, as well as showing strong surface expression of HLA-DR, CD25, LFA-1 and ICAM-1. The generated CD4+ T cells secreted interferon (IFN)-gamma, tumour necrosis factor (TNF)-alpha, TNF-beta, and interleukin (IL)-6 (but not IL-4), and exhibited a high level of cytolytic activity against several tumour cell lines. The cytolytic activity of these T cells for Daudi cells was inhibited by preincubation with an anti-intercellular adhesion molecule (ICAM)-1 antibody, but not by preincubation with anti-TCR alpha beta, anti-CD2, or anti-LFA-1 antibodies. Pretreatment with anti-ICAM-1 antibody inhibited T-cell cytolytic activity, but not conjugation with target cells. In addition, incubation with immobilised anti-ICAM-1 enhanced the secretion of IFN-gamma by T cells. We conclude that ICAM-1 expressed on the effector cytotoxic CD4+ T lymphocytes delivers regulatory signals that enhance IFN-gamma secretion. PMID:8554971

  15. CD36 Recruits α5β1 Integrin to Promote Cytoadherence of P. falciparum-Infected Erythrocytes

    PubMed Central

    Davis, Shevaun P.; Lee, Kristine; Gillrie, Mark R.; Roa, Lina; Amrein, Matthias; Ho, May

    2013-01-01

    The adhesion of Plasmodium falciparum-infected erythrocytes (IRBC) to receptors on different host cells plays a divergent yet critical role in determining the progression and outcome of the infection. Based on our ex vivo studies with clinical parasite isolates from adult Thai patients, we have previously proposed a paradigm for IRBC cytoadherence under physiological shear stress that consists of a recruitment cascade mediated largely by P-selectin, ICAM-1 and CD36 on primary human dermal microvascular endothelium (HDMEC). In addition, we detected post-adhesion signaling events involving Src family kinases and the adaptor protein p130CAS in endothelial cells that lead to CD36 clustering and cytoskeletal rearrangement which enhance the magnitude of the adhesive strength, allowing adherent IRBC to withstand shear stress of up to 20 dynes/cm2. In this study, we addressed whether CD36 supports IRBC adhesion as part of an assembly of membrane receptors. Using a combination of flow chamber assay, atomic force and confocal microscopy, we showed for the first time by loss- and gain-of function assays that in the resting state, the integrin α5β1 does not support adhesive interactions between IRBC and HDMEC. Upon IRBC adhesion to CD36, the integrin is recruited either passively as part of a molecular complex with CD36, or actively to the site of IRBC attachment through phosphorylation of Src family kinases, a process that is Ca2+-dependent. Clustering of β1 integrin is associated with an increase in IRBC recruitment as well as in adhesive strength after attachment (∼40% in both cases). The adhesion of IRBC to a multimolecular complex on the surface of endothelial cells could be of critical importance in enabling adherent IRBC to withstand the high shear stress in the microcirculations. Targeting integrins may provide a novel approach to decrease IRBC cytoadherence to microvascular endothelium. PMID:24009511

  16. The low molecular weight Dextran 40 inhibits the adhesion of T lymphocytes to endothelial cells

    PubMed Central

    TERMEER, C C; WEISS, J M; SCHÖPF, E; VANSCHEIDT, W; SIMON, J C

    1998-01-01

    Dextrans are complex colloidal macromolecules widely used as haemorrheologic substances and anti-thrombotic agents. Here we describe a novel function of Dextran 40 by demonstrating an inhibition of T lymphocyte adhesion to endothelial cells (EC). We applied an established microassay in which constitutive and tumour necrosis factor-alpha (TNF-α)-induced binding of mouse T lymphoma cells (TK-1) to mouse endothelioma (eEND.2) cells is mediated by the interaction of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) on EC with their counter-receptors the LFA-1 heterodimer (CD11a/CD18) and VLA-4 on T cells. Dextran 40 in therapeutically achievable levels (2–32 mg/ml) reduced both constitutive and TNF-α-stimulated TK-1 adhesion to eEND.2. Selective preincubation of eEND.2 or TK-1 revealed that Dextran 40 acted exclusively on the T cells. To explore further the mechanisms by which Dextran 40 interfered with TK-1 adhesion, their LFA-1 and VLA-4 expression was analysed by FACS. The surface expression levels of neither receptor were affected by Dextran 40. However, confocal microscopy revealed that Dextran 40 interfered with the activation-dependent capping and clustering of LFA-1 and VLA-4 on the surface of TK-1. We conclude that Dextran 40 inhibits the capacity of TK-1 T cells to adhere to eEND.2 endothelial cells and thus may be useful for therapeutic intervention in diseases associated with enhanced T lymphocyte binding to microvascular endothelium. PMID:9844053

  17. Celecoxib increases lung cancer cell lysis by lymphokine-activated killer cells via upregulation of ICAM-1.

    PubMed

    Schellhorn, Melina; Haustein, Maria; Frank, Marcus; Linnebacher, Michael; Hinz, Burkhard

    2015-11-17

    The antitumorigenic mechanism of the selective cyclooxygenase-2 (COX-2) inhibitor celecoxib is still a matter of debate. Using lung cancer cell lines (A549, H460) and metastatic cells derived from a lung cancer patient, the present study investigates the impact of celecoxib on the expression of intercellular adhesion molecule 1 (ICAM-1) and cancer cell lysis by lymphokine-activated killer (LAK) cells. Celecoxib, but not other structurally related selective COX-2 inhibitors (i.e., etoricoxib, rofecoxib, valdecoxib), was found to cause a substantial upregulation of ICAM-1 protein levels. Likewise, ICAM-1 mRNA expression was increased by celecoxib. Celecoxib enhanced the susceptibility of cancer cells to be lysed by LAK cells with the respective effect being reversed by a neutralizing ICAM-1 antibody. In addition, enhanced killing of celecoxib-treated cancer cells was reversed by preincubation of LAK cells with an antibody to lymphocyte function associated antigen 1 (LFA-1), suggesting intercellular ICAM-1/LFA-1 crosslink as crucial event within this process. Finally, celecoxib elicited no significant increase of LAK cell-mediated lysis of non-tumor bronchial epithelial cells, BEAS-2B, associated with a far less ICAM-1 induction as compared to cancer cells. Altogether, our data demonstrate celecoxib-induced upregulation of ICAM-1 on lung cancer cells to be responsible for intercellular ICAM-1/LFA-1 crosslink that confers increased cancer cell lysis by LAK cells. These findings provide proof for a novel antitumorigenic mechanism of celecoxib.

  18. Celecoxib increases lung cancer cell lysis by lymphokine-activated killer cells via upregulation of ICAM-1

    PubMed Central

    Frank, Marcus; Linnebacher, Michael; Hinz, Burkhard

    2015-01-01

    The antitumorigenic mechanism of the selective cyclooxygenase-2 (COX-2) inhibitor celecoxib is still a matter of debate. Using lung cancer cell lines (A549, H460) and metastatic cells derived from a lung cancer patient, the present study investigates the impact of celecoxib on the expression of intercellular adhesion molecule 1 (ICAM-1) and cancer cell lysis by lymphokine-activated killer (LAK) cells. Celecoxib, but not other structurally related selective COX-2 inhibitors (i.e., etoricoxib, rofecoxib, valdecoxib), was found to cause a substantial upregulation of ICAM-1 protein levels. Likewise, ICAM-1 mRNA expression was increased by celecoxib. Celecoxib enhanced the susceptibility of cancer cells to be lysed by LAK cells with the respective effect being reversed by a neutralizing ICAM-1 antibody. In addition, enhanced killing of celecoxib-treated cancer cells was reversed by preincubation of LAK cells with an antibody to lymphocyte function associated antigen 1 (LFA-1), suggesting intercellular ICAM-1/LFA-1 crosslink as crucial event within this process. Finally, celecoxib elicited no significant increase of LAK cell-mediated lysis of non-tumor bronchial epithelial cells, BEAS-2B, associated with a far less ICAM-1 induction as compared to cancer cells. Altogether, our data demonstrate celecoxib-induced upregulation of ICAM-1 on lung cancer cells to be responsible for intercellular ICAM-1/LFA-1 crosslink that confers increased cancer cell lysis by LAK cells. These findings provide proof for a novel antitumorigenic mechanism of celecoxib. PMID:26513172

  19. Exosomes from iPSCs Delivering siRNA Attenuate Intracellular Adhesion Molecule-1 Expression and Neutrophils Adhesion in Pulmonary Microvascular Endothelial Cells.

    PubMed

    Ju, Zhihai; Ma, Jinhui; Wang, Chen; Yu, Jie; Qiao, Yeru; Hei, Feilong

    2017-04-01

    The pro-inflammatory activation of pulmonary microvascular endothelial cells resulting in continuous expression of cellular adhesion molecules, and subsequently recruiting primed neutrophils to form a firm neutrophils-endothelium (PMN-EC) adhesion, has been examined and found to play a vital role in acute lung injury (ALI). RNA interference (RNAi) is a cellular process through harnessing a natural pathway silencing target gene based on recognition and subsequent degradation of specific mRNA sequences. It opens a promising approach for precision medicine. However, this application was hampered by many obstacles, such as immunogenicity, instability, toxicity problems, and difficulty in across the biological membrane. In this study, we reprogrammed urine exfoliated renal epithelial cells into human induced pluripotent stem cells (huiPSCs) and purified the exosomes (Exo) from huiPSCs as RNAi delivery system. Through choosing the episomal system to deliver transcription factors, we obtained a non-integrating huiPSCs. Experiments in both vitro and vivo demonstrated that these huiPSCs possess the pluripotent properties. The exosomes of huiPSCs isolated by differential centrifugation were visualized by transmission electron microscopy (TEM) showing a typical exosomal appearance with an average diameter of 122 nm. Immunoblotting confirmed the presence of the typical exosomal markers, including CD63, TSG 101, and Alix. Co-cultured PKH26-labeled exosomes with human primary pulmonary microvascular endothelial cells (HMVECs) confirmed that they could be internalized by recipient cells at a time-dependent manner. Then, electroporation was used to introduce siRNA against intercellular adhesion molecule-1 (ICAM-1) into exosomes to form an Exo/siRNA compound. The Exo/siRNA compound efficiently delivered the target siRNA into HMVECs causing selective gene silencing, inhibiting the ICAM-1 protein expression, and PMN-EC adhesion induced by lipopolysaccharide (LPS). These data suggest

  20. Intercellular adhesion molecule-1 blockade attenuates inflammatory response and improves microvascular perfusion in rat pancreas grafts.

    PubMed

    Preissler, Gerhard; Eichhorn, Martin; Waldner, Helmut; Winter, Hauke; Kleespies, Axel; Massberg, Steffen

    2012-10-01

    After pancreas transplantation (PTx), early capillary malperfusion and leukocyte recruitment indicate the manifestation of severe ischemia/reperfusion injury (IRI). Oscillatory blood-flow redistribution (intermittent capillary perfusion, IP), leading to an overall decrease in erythrocyte flux, precedes complete microvascular perfusion failure with persistent blood flow cessation. We addressed the role of intercellular adhesion molecule-1 (ICAM-1) for leukocyte-endothelial interactions (LEIs) after PTx and evaluated the contribution of IP and malperfusion. Pancreas transplantation was performed in rats after 18-hour preservation, receiving either isotype-matched IgG or monoclonal anti-ICAM-1 antibodies (10 mg/kg intravenously) once before reperfusion. Leukocyte-endothelial interaction, IP, erythrocyte flux, and functional capillary density, respectively, were examined in vivo during 2-hour reperfusion. Nontransplanted animals served as controls. Tissue samples were analyzed by histomorphometry. In grafts of IgG-treated animals, IP was encountered already at an early stage after reperfusion and steadily increased over 2 hours, whereas erythrocyte flux declined continuously. In contrast, inhibition of ICAM-1 significantly improved erythrocyte flux and delayed IP appearance by 2 hours. Further, anti-ICAM-1 significantly reduced LEI and leukocyte tissue infiltration when compared to IgG; edema development was less pronounced in response to anti-ICAM-1 monoclonal antibody. Intercellular adhesion molecule-1 blockade significantly attenuates IRI via immediate reduction of LEI and concomitant improvement of capillary perfusion patterns, emphasizing its central role during IRI in PTx.

  1. Essential Role of Cofilin-1 in Regulating Thrombin-induced RelA/p65 Nuclear Translocation and Intercellular Adhesion Molecule 1 (ICAM-1) Expression in Endothelial Cells*

    PubMed Central

    Fazal, Fabeha; Bijli, Kaiser M.; Minhajuddin, Mohd; Rein, Theo; Finkelstein, Jacob N.; Rahman, Arshad

    2009-01-01

    Activation of RhoA/Rho-associated kinase (ROCK) pathway and the associated changes in actin cytoskeleton induced by thrombin are crucial for activation of NF-κB and expression of its target gene ICAM-1 in endothelial cells. However, the events acting downstream of RhoA/ROCK to mediate these responses remain unclear. Here, we show a central role of cofilin-1, an actin-binding protein that promotes actin depolymerization, in linking RhoA/ROCK pathway to dynamic alterations in actin cytoskeleton that are necessary for activation of NF-κB and thereby expression of ICAM-1 in these cells. Stimulation of human umbilical vein endothelial cells with thrombin resulted in Ser3 phosphorylation/inactivation of cofilin and formation of actin stress fibers in a ROCK-dependent manner. RNA interference knockdown of cofilin-1 stabilized the actin filaments and inhibited thrombin- and RhoA-induced NF-κB activity. Similarly, constitutively inactive mutant of cofilin-1 (Cof1-S3D), known to stabilize the actin cytoskeleton, inhibited NF-κB activity by thrombin. Overexpression of wild type cofilin-1 or constitutively active cofilin-1 mutant (Cof1-S3A), known to destabilize the actin cytoskeleton, also impaired thrombin-induced NF-κB activity. Additionally, depletion of cofilin-1 was associated with a marked reduction in ICAM-1 expression induced by thrombin. The effect of cofilin-1 depletion on NF-κB activity and ICAM-1 expression occurred downstream of IκBα degradation and was a result of impaired RelA/p65 nuclear translocation and consequently, RelA/p65 binding to DNA. Together, these data show that cofilin-1 occupies a central position in RhoA-actin pathway mediating nuclear translocation of RelA/p65 and expression of ICAM-1 in endothelial cells. PMID:19483084

  2. Essential role of cofilin-1 in regulating thrombin-induced RelA/p65 nuclear translocation and intercellular adhesion molecule 1 (ICAM-1) expression in endothelial cells.

    PubMed

    Fazal, Fabeha; Bijli, Kaiser M; Minhajuddin, Mohd; Rein, Theo; Finkelstein, Jacob N; Rahman, Arshad

    2009-07-31

    Activation of RhoA/Rho-associated kinase (ROCK) pathway and the associated changes in actin cytoskeleton induced by thrombin are crucial for activation of NF-kappaB and expression of its target gene ICAM-1 in endothelial cells. However, the events acting downstream of RhoA/ROCK to mediate these responses remain unclear. Here, we show a central role of cofilin-1, an actin-binding protein that promotes actin depolymerization, in linking RhoA/ROCK pathway to dynamic alterations in actin cytoskeleton that are necessary for activation of NF-kappaB and thereby expression of ICAM-1 in these cells. Stimulation of human umbilical vein endothelial cells with thrombin resulted in Ser(3) phosphorylation/inactivation of cofilin and formation of actin stress fibers in a ROCK-dependent manner. RNA interference knockdown of cofilin-1 stabilized the actin filaments and inhibited thrombin- and RhoA-induced NF-kappaB activity. Similarly, constitutively inactive mutant of cofilin-1 (Cof1-S3D), known to stabilize the actin cytoskeleton, inhibited NF-kappaB activity by thrombin. Overexpression of wild type cofilin-1 or constitutively active cofilin-1 mutant (Cof1-S3A), known to destabilize the actin cytoskeleton, also impaired thrombin-induced NF-kappaB activity. Additionally, depletion of cofilin-1 was associated with a marked reduction in ICAM-1 expression induced by thrombin. The effect of cofilin-1 depletion on NF-kappaB activity and ICAM-1 expression occurred downstream of IkappaBalpha degradation and was a result of impaired RelA/p65 nuclear translocation and consequently, RelA/p65 binding to DNA. Together, these data show that cofilin-1 occupies a central position in RhoA-actin pathway mediating nuclear translocation of RelA/p65 and expression of ICAM-1 in endothelial cells.

  3. KHYG-1 and NK-92 represent different subtypes of LFA-1-mediated NK cell adhesiveness.

    PubMed

    Suck, Garnet; Tan, Suet-Mien; Chu, Sixian; Niam, Madelaine; Vararattanavech, Ardcharaporn; Lim, Tsyr Jong; Koh, Mickey B C

    2011-01-01

    Novel cancer cellular therapy approaches involving long-term ex vivo IL-2 stimulated highly cytotoxic natural killer (NK) cells are emerging. However, adhesion properties of such NK cells are not very well understood. Herein, we describe the novel observation of permanently activated alphaLbeta2 integrin leukocyte function-associated antigen (LFA)-1 adhesion receptor in long-term IL-2 activated NK cells and the permanent NK cell lines KHYG-1 and NK-92. We show that such cytokine activated NK effectors constitutively adhered to the LFA-1-ligand ICAM-1, whereas binding to the lower affinity ligand ICAM-3 required additional exogenous activating conditions. The results demonstrate an extended conformation and an intermediate affinity state for the LFA-1 population expressed by the NK cells. Interestingly, adhesion to ICAM-1 or K562 induced pronounced cell spreading in KHYG-1, but not in NK-92, and partially in long-term IL-2 stimulated primary NK cells. It is conceivable that such differential adhesion characteristics may impact motility potential of such NK effectors with relevance to clinical tumor targeting. KHYG-1 could be a useful model in planning future targeted therapeutic approaches involving NK effectors with augmented functions.

  4. Regulation of Bacteria-Induced Intercellular Adhesion Molecule-1 by CCAAT/Enhancer Binding Proteins

    PubMed Central

    Manzel, Lori J.; Chin, Cecilia L.; Behlke, Mark A.; Look, Dwight C.

    2009-01-01

    Direct interaction between bacteria and epithelial cells may initiate or amplify the airway response through induction of epithelial defense gene expression by nuclear factor-κB (NF-κB). However, multiple signaling pathways modify NF-κB effects to modulate gene expression. In this study, the effects of CCAAT/enhancer binding protein (C/EBP) family members on induction of the leukocyte adhesion glycoprotein intercellular adhesion molecule-1 (ICAM-1) was examined in primary cultures of human tracheobronchial epithelial cells incubated with nontypeable Haemophilus influenzae. Increased ICAM-1 gene transcription in response to H. influenzae required gene sequences located at −200 to −135 in the 5′-flanking region that contain a C/EBP-binding sequence immediately upstream of the NF-κB enhancer site. Constitutive C/EBPβ was found to have an important role in epithelial cell ICAM-1 regulation, while the adjacent NF-κB sequence binds the RelA/p65 and NF-κB1/p50 members of the NF-κB family to induce ICAM-1 expression in response to H. influenzae. The expression of C/EBP proteins is not regulated by p38 mitogen-activated protein kinase activation, but p38 affects gene transcription by increasing the binding of TATA-binding protein to TATA-box–containing gene sequences. Epithelial cell ICAM-1 expression in response to H. influenzae was decreased by expressing dominant-negative protein or RNA interference against C/EBPβ, confirming its role in ICAM-1 regulation. Although airway epithelial cells express multiple constitutive and inducible C/EBP family members that bind C/EBP sequences, the results indicate that C/EBPβ plays a central role in modulation of NF-κB–dependent defense gene expression in human airway epithelial cells after exposure to H. influenzae. PMID:18703796

  5. Phloretin ameliorates chemokines and ICAM-1 expression via blocking of the NF-κB pathway in the TNF-α-induced HaCaT human keratinocytes.

    PubMed

    Huang, Wen-Chung; Dai, Yi-Wen; Peng, Hui-Ling; Kang, Chiao-Wei; Kuo, Chun-Yu; Liou, Chian-Jiun

    2015-07-01

    Previous studies found that phloretin had anti-oxidant, anti-inflammatory, and anti-tumor properties. In this study, we investigated whether phloretin could suppress the production of the intercellular adhesion molecule (ICAM)-1 and chemokines through downregulation of the nuclear transcription factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways in TNF-α-stimulated HaCaT human keratinocytes. HaCaT cells were treated with phloretin and then the cells were stimulated by TNF-α. Phloretin treatment decreased the production of IL-6, IL-8, CCL5, MDC, and TARC. Phloretin decreased ICAM-1 protein and mRNA expression, and also suppressed the adhesion of monocyte THP-1 cells to inflammatory HaCaT cells. Phloretin inhibited NF-κB translocation into the nucleus and also suppressed the phosphorylation of Akt and MAPK signal. In addition, phloretin increased heme oxygenase-1 production in a concentration-dependent manner. These results demonstrated that phloretin has anti-inflammatory effects to inhibit chemokines and ICAM-1 expressions through suppression of the NF-κB and MAPK pathways in human keratinocytes. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Glucocorticoid-induced tumor necrosis factor receptor family-related ligand triggering upregulates vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 and promotes leukocyte adhesion.

    PubMed

    Lacal, Pedro Miguel; Petrillo, Maria Grazia; Ruffini, Federica; Muzi, Alessia; Bianchini, Rodolfo; Ronchetti, Simona; Migliorati, Graziella; Riccardi, Carlo; Graziani, Grazia; Nocentini, Giuseppe

    2013-10-01

    The interaction of glucocorticoid-induced tumor necrosis factor receptor-family related (GITR) protein with its ligand (GITRL) modulates different functions, including immune/inflammatory response. These effects are consequent to intracellular signals activated by both GITR and GITRL. Previous results have suggested that lack of GITR expression in GITR(-/-) mice decreases the number of leukocytes within inflamed tissues. We performed experiments to analyze whether the GITRL/GITR system modulates leukocyte adhesion and extravasation. For that purpose, we first evaluated the capability of murine splenocytes to adhere to endothelial cells (EC). Our results indicated that adhesion of GITR(-/-) splenocytes to EC was reduced as compared with wild-type cells, suggesting that GITR plays a role in adhesion and that this effect may be due to GITRL-GITR interaction. Moreover, adhesion was increased when EC were pretreated with an agonist GITR-Fc fusion protein, thus indicating that triggering of GITRL plays a role in adhesion by EC regulation. In a human in vitro model, the adhesion to human EC of HL-60 cells differentiated toward the monocytic lineage was increased by EC pretreatment with agonist GITR-Fc. Conversely, antagonistic anti-GITR and anti-GITRL Ab decreased adhesion, thus further indicating that GITRL triggering increases the EC capability to support leukocyte adhesion. EC treatment with GITR-Fc favored extravasation, as demonstrated by a transmigration assay. Notably, GITRL triggering increased intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expression and anti-ICAM-1 and anti-VCAM-1 Abs reversed GITR-Fc effects. Our study demonstrates that GITRL triggering in EC increases leukocyte adhesion and transmigration, suggesting new anti-inflammatory therapeutic approaches based on inhibition of GITRL-GITR interaction.

  7. VCAM-1 blockade delays disease onset, reduces disease severity and inflammatory cells in an atopic dermatitis model.

    PubMed

    Chen, Lin; Lin, Shao-xia; Amin, Sanober; Overbergh, Lut; Maggiolino, Giacomo; Chan, Lawrence S

    2010-01-01

    We investigated the functions of critical adhesion molecules ICAM-1 and VCAM-1 in a keratin-14 IL-4-transgenic (Tg) mouse model of atopic dermatitis, the skin lesions of which are characterized by prominent inflammatory cell infiltration, significantly increased mRNAs and proteins of ICAM-1, VCAM-1, E-selectin, P-selectin, L-selectin, and PSGL-1, and significantly increased numbers of dermal vessels expressing these adhesion molecules. We tested the hypotheses that deletion or blockade of these molecules may impede the inflammation by examining the disease progresses in the Tg mice crossed with ICAM-1-knockout mice and Tg mice received anti-VCAM-1-neutralizing antibody. Although the findings of the ICAM-1-knockout Tg mice (Tg/ICAM-1(-/-)) developed skin lesions similar to wide-type ICAM-1 Tg mice (Tg/ICAM-1(+/+)) were surprising, a compensatory mechanism may account for it: the frequency of VCAM-1 ligand, CD49d, on CD3(+) T cells in the lesional skin significantly increased in the Tg/ICAM-1(-/-) mouse, compared with the Tg/ICAM-1(+/+) mice. In contrast, anti-VCAM-1-treated Tg/ICAM-1(-/-) or Tg/ICAM-1(+/+) mice had significantly delayed onset of skin inflammation compared with isotype antibody-treated groups. Moreover, anti-VCAM-1 significantly reduced the skin inflammation severity in Tg/ICAM-1(+/+) mice, accompanied with reduction of mast cell, eosinophil, and CD3(+) T cell infiltration. VCAM-1 is more critical in developing skin inflammation in this model.

  8. Comparison of sVCAM-1 and sICAM-1 levels in maternal serum and vaginal secretion between pregnant women with preterm prelabour ruptures of membranes and healthy pregnant women.

    PubMed

    Sak, Sibel; Barut, Mert; Incebiyik, Adnan; Ağaçayak, Elif; Kirmit, Adnan; Koyuncu, Ismail; Sak, Muhammet

    2017-11-02

    The study aims to evaluate the maternal serum and the vaginal fluid levels of soluble vascular cell adhesion molecule-1 (sVCAM-1) and soluble intercellular adhesion molecular (sICAM-1) in pregnant women complicated by preterm prelabour ruptures of membranes (PPROM). The prospective case control study included 34 pregnant women with PPROM and 34 healthy pregnant women. Patients with additional diseases, a smoking habit and vaginal bleeding, as well as those using antibiotics, during the study period were not included in the study. Cervicovaginal fluid and serum samples were taken during the patients' admission. The demographic data, maternal serum and vaginal fluid sVCAM-1 and sICAM-1, C reactive protein (CRP) and leukocyte counts were noted for all pregnant women included in the study. The sVCAM-1 and sICAM-1 levels were measured by enzyme-linked immunosorbent assay kits. In pregnant women with PPROM, the serum leukocyte (mean ± SD =11.41 ± 1.067 versus 9.18 ± 1.56, p < .0001), serum sVCAM-1 (median 771.20 versus 704.60 ng/ml, p < .001), sICAM-1 (mean ± SD 213.10 ± 35.59 ng/ml versus 188.11 ± 37.35 ng/ml, p = .06), vaginal sVCAM-1 (median 208.00 versus 140.20 ng/ml, p = .014) and sICAM-1 (mean ± SD 32.32 ± 6.49 ng/ml versus 24.87 ± 6.79 ng/ml, p < .001) values were found to be significantly higher in pregnant women with PPROM than in healthy pregnant women. A positive and significant correlation was observed between the leukocyte count and the vaginal sVCAM-1 level (r = 0.850; p < .001). To the best of our knowledge, this is the first study evaluating the levels of sICAM-1 in maternal serum in pregnant women with PPROM. The maternal serum and vaginal fluid sVCAM-1 and sICAM-1 levels can be used as biochemical markers supporting the PPROM diagnosis because of the increase in both maternal serum and vaginal fluid sVCAM-1 and sICAM-1 levels in pregnant women with PPROM.

  9. A Functional Analysis on the Interspecies Interaction between Mouse LFA-1 and Human Intercellular Adhesion Molecule-1 at the Cell Level

    PubMed Central

    Núñez, David; Comas, Laura; Lanuza, Pilar M.; Sánchez-Martinez, Diego; Pérez-Hernández, Marta; Catalán, Elena; Domingo, María Pilar; Velázquez-Campoy, Adrián; Pardo, Julián; Gálvez, Eva M.

    2017-01-01

    The interaction between intercellular adhesion molecules (ICAM) and the integrin leukocyte function-associated antigen-1 (LFA-1) is crucial for the regulation of several physiological and pathophysiological processes like cell-mediated elimination of tumor or virus infected cells, cancer metastasis, or inflammatory and autoimmune processes. Using purified proteins it was reported a species restriction for the interaction of ICAM-1 and LFA-1, being mouse ICAM-1 able to interact with human LFA-1 but not human ICAM-1 with mouse LFA-1. However, in vivo results employing tumor cells transfected with human ICAM-1 suggest that functionally mouse LFA-1 can recognize human ICAM-1. In order to clarify the interspecies cross-reactivity of the ICAM-1/LFA-1 interaction, we have performed functional studies analyzing the ability of human soluble ICAM-1 and human/mouse LFA-1 derived peptides to inhibit cell aggregation and adhesion as well as cell-mediated cytotoxicity in both mouse and human systems. In parallel, the affinity of the interaction between mouse LFA-1-derived peptides and human ICAM-1 was determined by calorimetry assays. According to the results obtained, it seems that human ICAM-1 is able to interact with mouse LFA-1 on intact cells, which should be taking into account when using humanized mice and xenograft models for the study of immune-related processes. PMID:29312326

  10. A Functional Analysis on the Interspecies Interaction between Mouse LFA-1 and Human Intercellular Adhesion Molecule-1 at the Cell Level.

    PubMed

    Núñez, David; Comas, Laura; Lanuza, Pilar M; Sánchez-Martinez, Diego; Pérez-Hernández, Marta; Catalán, Elena; Domingo, María Pilar; Velázquez-Campoy, Adrián; Pardo, Julián; Gálvez, Eva M

    2017-01-01

    The interaction between intercellular adhesion molecules (ICAM) and the integrin leukocyte function-associated antigen-1 (LFA-1) is crucial for the regulation of several physiological and pathophysiological processes like cell-mediated elimination of tumor or virus infected cells, cancer metastasis, or inflammatory and autoimmune processes. Using purified proteins it was reported a species restriction for the interaction of ICAM-1 and LFA-1, being mouse ICAM-1 able to interact with human LFA-1 but not human ICAM-1 with mouse LFA-1. However, in vivo results employing tumor cells transfected with human ICAM-1 suggest that functionally mouse LFA-1 can recognize human ICAM-1. In order to clarify the interspecies cross-reactivity of the ICAM-1/LFA-1 interaction, we have performed functional studies analyzing the ability of human soluble ICAM-1 and human/mouse LFA-1 derived peptides to inhibit cell aggregation and adhesion as well as cell-mediated cytotoxicity in both mouse and human systems. In parallel, the affinity of the interaction between mouse LFA-1-derived peptides and human ICAM-1 was determined by calorimetry assays. According to the results obtained, it seems that human ICAM-1 is able to interact with mouse LFA-1 on intact cells, which should be taking into account when using humanized mice and xenograft models for the study of immune-related processes.

  11. Soluble intercellular adhesion molecule-1 and interleukin-6 levels reflect endothelial dysfunction in patients with primary hypercholesterolaemia treated with atorvastatin.

    PubMed

    Nawawi, H; Osman, N S; Annuar, R; Khalid, B A K; Yusoff, K

    2003-08-01

    Adhesion molecules and cytokines are involved in the pathogenesis of intimal injury in atherosclerosis but their relationship with endothelial function remains unclear. The objectives of this study were to examine the effects of atorvastatin on soluble adhesion molecules, interleukin-6 (IL-6) and brachial artery endothelial-dependent flow mediated dilatation (FMD) in patients with familial (FH) and non-familial hypercholesterolaemia (NFH). A total of 74 patients (27 FH and 47 NFH) were recruited. Fasting lipid profiles, soluble intercellular adhesion molecule-1 (sICAM-1), soluble vascular-cellular adhesion molecule-1 (sVCAM-1), E-selectin, IL-6 and FMD were measured at baseline, 2 weeks, 3 and 9 months post-atorvastatin treatment (FH--80 mg/day, NFH--10 mg/day). In both groups, compared to baseline, sICAM-1 levels were significantly reduced at 2 weeks, further reduced at 3 months and maintained at 9 months (P<0.0001). The IL-6 levels were significantly reduced at 3 months and 9 months compared to baseline for FH (P<0.005) and NFH (P<0.0001). In both groups, the FMD at 2 weeks was higher than baseline (P<0.005), with progressive improvement up to 9 months. FMD was negatively correlated with sICAM-1 and IL-6. In conclusion, both low and high doses of atorvastatin lead to early progressive improvement in endothelial function in patients with primary hypercholesterolaemia. sICAM-1 and IL-6 levels reflect endothelial dysfunction in these patients.

  12. Intercellular Adhesion Molecule-5 Induces Dendritic Outgrowth by Homophilic Adhesion

    PubMed Central

    Tian, Li; Nyman, Henrietta; Kilgannon, Patrick; Yoshihara, Yoshihiro; Mori, Kensaku; Andersson, Leif C.; Kaukinen, Sami; Rauvala, Heikki; Gallatin, W. Michael; Gahmberg, Carl G.

    2000-01-01

    Intercellular adhesion molecule-5 (ICAM-5) is a dendritically polarized membrane glycoprotein in telencephalic neurons, which shows heterophilic binding to leukocyte β2-integrins. Here, we show that the human ICAM-5 protein interacts in a homophilic manner through the binding of the immunoglobulin domain 1 to domains 4–5. Surface coated ICAM-5-Fc promoted dendritic outgrowth and arborization of ICAM- 5–expressing hippocampal neurons. During dendritogenesis in developing rat brain, ICAM-5 was in monomer form, whereas in mature neurons it migrated as a high molecular weight complex. The findings indicate that its homophilic binding activity was regulated by nonmonomer/monomer transition. Thus, ICAM-5 displays two types of adhesion activity, homophilic binding between neurons and heterophilic binding between neurons and leukocytes. PMID:10893271

  13. Lifitegrast: First LFA-1/ICAM-1 antagonist for treatment of dry eye disease.

    PubMed

    Paton, D M

    2016-09-01

    Dry eye disease is an extremely common condition affecting millions worldwide. The underlying pathophysiological mechanism is thought to be localized inflammation of the ocular surface resulting in the localization of T cells at this surface followed by their activation and subsequent liberation of cytokines. This effect on T cells results from the binding of lymphocyte function-associated antigen-1 (LFA-1) located on T cells to intercellular adhesion molecule 1 (ICAM-1) expressed on inflamed epithelium and endothelium, and on T cells. Lifitegrast is a T-cell integrin antagonist designed to mimic ICAM-1, thus blocking the interaction of LFA-1 and ICAM-1. Lifitegrast enters the systemic circulation to a limited extent thus reducing the likelihood of unwanted systemic reactions. Clinical trials in over 2,500 subjects with dry eye disease have shown that 5.0% lifitegrast given by ocular instillation causes a significant reduction in objective and subjective signs and symptoms of the disease. These beneficial effects are associated with a relatively low incidence of unwanted effects, almost all local in nature. In light of these findings, lifitegrast was approved by the Food and Drug Administration (FDA) in 2016 for the treatment of dry eye disease, the first drug with this mechanism of action to be so approved. Copyright 2016 Prous Science, S.A.U. or its licensors. All rights reserved.

  14. Extract of corn silk (stigma of Zea mays) inhibits the tumour necrosis factor-alpha- and bacterial lipopolysaccharide-induced cell adhesion and ICAM-1 expression.

    PubMed

    Habtemariam, S

    1998-05-01

    Treatment of human endothelial cells with cytokines such as tumour necrosis factor-alpha (TNF) or E. coli lipopolysaccharide (LPS) induces the expression of several adhesion molecules and enhances leukocyte adhesion to endothelial cell surface. Interfering with this leukocyte adhesion or adhesion molecules upregulation is an important therapeutic target for the treatment of bacterial sepsis and various inflammatory diseases. In the course of screening marketed European anti-inflammatory herbal drugs for TNF antagonistic activity, a crude ethanolic extract of corn silk (stigma of Zea mays) exhibited significant activity. The extract at concentrations of 9-250 micrograms/ml effectively inhibited the TNF- and LPS-induced adhesiveness of EAhy 926 endothelial cells to monocytic U937 cells. Similar concentration ranges of corn silk extract did also block the TNF and LPS but not the phorbol 12-myristate 13-acetate-induced ICAM-1 expression on EAhy 926 endothelial cell surface. The extract did not alter the production of TNF by LPS-activated macrophages and failed to inhibit the cytotoxic activity of TNF. It is concluded that corn silk possesses important therapeutic potential for TNF- and LPS-mediated leukocyte adhesion and trafficking.

  15. Levels of soluble vascular cell adhesion molecule-1 and soluble intercellular adhesion molecule-2 in plasma of patients with hemorrhagic fever with renal syndrome, and significance of the changes in level.

    PubMed

    Qi, Bao-Tai; Wang, Ping; Li, Jie; Ren, Hui-Xun; Xie, Ming

    2006-01-01

    Hemorrhagic fever with renal syndrome (HFRS) is an acute viral disease characterized by endothelial dysfunction. Vascular cell adhesion molecule (VCAM)-1 and intercellular adhesion molecule (ICAM)-2 provide costimulatory signals for the activation of T lymphocytes; these adhesion molecules play key roles in leukocyte adherence and propagation of inflammatory responses. They may be involved in the immunologic response that leads to vascular endothelial cell (VEC) and kidney damage of HFRS patients, and increased levels of soluble (s)VCAM-1 and sICAM-2 in plasma may indicate the severity of HFRS. We examined the presence of sVCAM-1 and sICAM-2 in 52 plasma samples collected from 52 patients. We tested these plasma samples for sVCAM-1 and sICAM-2 by double-antibody sandwich ELISA. We found variable, but persistently elevated, levels of sVCAM-1 and sICAM-2 throughout the various phases and types of the disease, which suggested sVCAM-1 may play an important role in the immunopathological lesions of HFRS and is closely correlated to the severity of HFRS and the degree of kidney damage. sICAM-2 may be associated with the hyperfunctioning of the cellular immune response.

  16. The effects of platelet activating factor and retinoic acid on the expression of ELAM-1 and ICAM-1 and the functions of neutrophils

    PubMed Central

    1995-01-01

    Preincubation of pulmonary microvascular endothelial cells (PMVECs) with platelet-activating factor (PAF) for 3.5 h increased the adhesion rate of polymorphonuclear leukocytes (PMNs) to PMVECs from 57.3% to 72.8% (p < 0.01). Preincubation of PMNs with PAF also increased PMN-PMVEC adhesion rate. All-trans retinoic acid (RA) blocked the adherence of untreated PMNs to PAF-pretreated PMVECs but not the adherence of PAF-pretreated PMNs to untreated PMVECs. PAF increased the expression of intercellular adhesion molecule-1 (ICAM-1) and E-selection (ELAM-1) on PMVECs, PMN chemotaxis to zymosan-activated serum and histamine, and PMN aggregation and the release of acid phosphatase from PMNs. Co-incubation of RA inhibited PAF-induced PMN aggregation, the release of acid phosphatase from PMNs, and PMN chemotaxis to zymosan-activated serum and histamine while the expression of ICAM-1 and ELAM-1 did not change. Our results suggest that RA can be used to ameliorate PMN-mediated inflammation. PMID:18475624

  17. Expression Profiles of Ligands for Activating Natural Killer Cell Receptors on HIV Infected and Uninfected CD4⁺ T Cells.

    PubMed

    Tremblay-McLean, Alexandra; Bruneau, Julie; Lebouché, Bertrand; Lisovsky, Irene; Song, Rujun; Bernard, Nicole F

    2017-10-12

    Natural Killer (NK) cell responses to HIV-infected CD4 T cells (iCD4) depend on the integration of signals received through inhibitory (iNKR) and activating NK receptors (aNKR). iCD4 activate NK cells to inhibit HIV replication. HIV infection-dependent changes in the human leukocyte antigen (HLA) ligands for iNKR on iCD4 are well documented. By contrast, less is known regarding the HIV infection related changes in ligands for aNKR on iCD4. We examined the aNKR ligand profiles HIV p24⁺ HIV iCD4s that maintained cell surface CD4 (iCD4⁺), did not maintain CD4 (iCD4 - ) and uninfected CD4 (unCD4) T cells for expression of unique long (UL)-16 binding proteins-1 (ULBP-1), ULBP-2/5/6, ULBP-3, major histocompatibility complex (MHC) class 1-related (MIC)-A, MIC-B, CD48, CD80, CD86, CD112, CD155, Intercellular adhesion molecule (ICAM)-1, ICAM-2, HLA-E, HLA-F, HLA-A2, HLA-C, and the ligands to NKp30, NKp44, NKp46, and killer immunoglobulin-like receptor 3DS1 (KIR3DS1) by flow cytometry on CD4 T cells from 17 HIV-1 seronegative donors activated and infected with HIV. iCD4⁺ cells had higher expression of aNKR ligands than did unCD4. However, the expression of aNKR ligands on iCD4 where CD4 was downregulated (iCD4 - ) was similar to (ULBP-1, ULBP-2/5/6, ULBP-3, MIC-A, CD48, CD80, CD86 and CD155) or significantly lower than (MIC-B, CD112 and ICAM-2) what was observed on unCD4. Thus, HIV infection can be associated with increased expression of aNKR ligands or either baseline or lower than baseline levels of aNKR ligands, concomitantly with the HIV-mediated downregulation of cell surface CD4 on infected cells.

  18. Effects of endurance and high intensity training on ICAM-1 and VCAM-1 levels and arterial pressure in obese and normal weight adolescents.

    PubMed

    Kargarfard, Mehdi; Lam, Eddie T C; Shariat, Ardalan; Asle Mohammadi, Mahmoud; Afrasiabi, Saleh; Shaw, Ina; Shaw, Brandon S

    2016-09-01

    Obesity prevalence has increased in Iranian adolescents in recent years. However, few studies have examined the impact of intervention programs on this health issue. The main objective of this study was to evaluate the effects of 8-week endurance training (ET) and high intensity interval training (HIIT) on intercellular adhesion molecule-1(ICAM-1) and vascular adhesion molecule-1(VCAM-1) levels among obese and normal-weight male adolescents. Thirty obese and 30 normal-weight subjects were assigned to the ET, HIIT, or control group for eight weeks. Before and after the intervention, ICAM-1, VCAM-1, body weight, BMI, VO2max, and blood pressures were measured. SPSS (Version 21) was used for data analysis, and the significance level was set at p < 0.05. Mixed design ANOVAs indicated that the obese participants had significantly (p < 0.05) lower ICAM-1 levels in the ET (from 509 ± 61 ng/ml to 387 ± 43 ng/ml) and HIIT (from 517 ± 72 ng/ml to 374 ± 50 ng/ml), but their VCAM-1 level was significantly (p < 0.05) reduced only after the HIIT (from 1689 ± 119 ng/ml to 1282 ± 63 ng/ml). Similarly, normal weight participants significantly (p < 0.05) lowered their ICAM-1 levels in the ET (from 296 ± 18 ng/ml to 216 ± 14 ng/ml) and HIIT (from 289 ± 22 ng/ml to 202 ± 12 ng/ml), but their VCAM-1 level was significantly (p < 0.05) reduced only after the HIIT (from 895 ± 50 ng/ml to 673 ± 142 ng/ml). Systolic blood pressure and diastolic blood pressures of all the participants were significantly (p < 0.01) decreased at the conclusion of the ET and HIIT. While both the ET and HIIT were useful in lowering the SBP and DBP of the participants, HIIT was more effective than ET in reducing ICAM-1 and VCAM-1 content in normal and obese adolescents.

  19. Expression, production, and renaturation of a functional single-chain variable antibody fragment (scFv) against human ICAM-1

    PubMed Central

    Sun, H.; Wu, G.M.; Chen, Y.Y.; Tian, Y.; Yue, Y.H.; Zhang, G.L.

    2014-01-01

    Intercellular adhesion molecule-1 (ICAM-1) is an important factor in the progression of inflammatory responses in vivo. To develop a new anti-inflammatory drug to block the biological activity of ICAM-1, we produced a monoclonal antibody (Ka=4.19×10−8 M) against human ICAM-1. The anti-ICAM-1 single-chain variable antibody fragment (scFv) was expressed at a high level as inclusion bodies in Escherichia coli. We refolded the scFv (Ka=2.35×10−7 M) by ion-exchange chromatography, dialysis, and dilution. The results showed that column chromatography refolding by high-performance Q Sepharose had remarkable advantages over conventional dilution and dialysis methods. Furthermore, the anti-ICAM-1 scFv yield of about 60 mg/L was higher with this method. The purity of the final product was greater than 90%, as shown by denaturing gel electrophoresis. Enzyme-linked immunosorbent assay, cell culture, and animal experiments were used to assess the immunological properties and biological activities of the renatured scFv. PMID:24919171

  20. Induction of ICAM-1 Expression in Mouse Embryonic Fibroblasts Cultured on Fibroin-Gelatin Scaffolds

    PubMed Central

    Nosenko, M. A.; Maluchenko, N. V.; Drutskaya, M. S.; Arkhipova, A. Y.; Agapov, I. I.; Nedospasov, S. A.; Moisenovich, M. M.

    2017-01-01

    Culturing of allogeneic or autologous cells in three-dimensional bioresorbable scaffolds is an important step in the engineering of constructs for regenerative medicine, as well as for experimental systems to study the mechanisms of cell differentiation and cell-to-cell interaction. Artificial substrates can modulate the phenotype and functional activity of immobilized cells. Investigating these changes is important for understanding the fundamental processes underlying cellular interactions in a 3D microenvironment and for improving tissue-engineered structures. In this study, we investigated the expression of the ICAM-1 adhesion molecule in mouse embryonic fibroblasts (MEF) when cultured on gelatin-fibroin scaffolds. Increased expression of ICAM-1 in MEF was detected only under 3D culture conditions both at the mRNA and protein levels. At the same time, the MEF cultured on various substrates did not oerexpress MAdCAM-1, indicating the selective effect of 3D culture conditions on ICAM-1 expression. One possible mechanism for ICAM-1 induction in MEF is associated with the activation of AP-1, since expression of c-Fos and Junb (but not cJun and Jund) was increased in MEF in 3D. When cultured under 2D conditions, the expression level of AP-1 components did not change. PMID:29104780

  1. The tetraspanin CD63 regulates ESCRT-independent and dependent endosomal sorting during melanogenesis

    PubMed Central

    van Niel, Guillaume; Charrin, Stéphanie; Simoes, Sabrina; Romao, Maryse; Rochin, Leila; Saftig, Paul; Marks, Michael S.; Rubinstein, Eric; Raposo, Graça

    2011-01-01

    Summary Cargo sorting to intraluminal vesicles (ILVs) of multivesicular endosomes is required for numerous physiological processes including lysosome-related organelle (LRO) biogenesis. PMEL – a component of melanocyte LROs (melanosomes) – is sorted to ILVs in an ESCRT-independent manner, where it is proteolytically processed and assembled into functional amyloid fibrils during melanosome maturation. Here we show that the tetraspanin CD63 directly participates in ESCRT-independent sorting of the PMEL luminal domain, but not of traditional ESCRT-dependent cargoes, to ILVs. Inactivating CD63 in cell culture or in mice impairs amyloidogenesis and downstream melanosome morphogenesis. Whereas CD63 is required for normal PMEL luminal domain sorting, the disposal of the remaining PMEL transmembrane fragment requires functional ESCRTs but not CD63. In the absence of CD63, the PMEL luminal domain follows this fragment and is targeted for ESCRT-dependent degradation. Our data thus reveal a tight interplay regulated by CD63 between two distinct endosomal ILV sorting processes for a single cargo during LRO biogenesis. PMID:21962903

  2. ICAM-1 is necessary for epithelial recruitment of gammadelta T cells and efficient corneal wound healing.

    USDA-ARS?s Scientific Manuscript database

    Wound healing and inflammation are both significantly reduced in mice that lack gammadelta T cells. Here, the role of epithelial intercellular adhesion molecule-1 (ICAM-1) in gammadelta T cell migration in corneal wound healing was assessed. Wild-type mice had an approximate fivefold increase in epi...

  3. Induction of human macrophage vascular endothelial growth factor and intercellular adhesion molecule-1 by Ureaplasma urealyticum and downregulation by steroids.

    PubMed

    Li, Ying-Hua; Brauner, Annelie; Jensen, Jørgen Skov; Tullus, Kjell

    2002-01-01

    Chronic lung disease (CLD) remains a major cause of morbidity for the prematurely born infant. The pathogenesis of CLD is complex and has not been defined entirely. Infection and lung inflammatory events have been thought to play a key role in the development of CLD. However, the contribution of Ureaplasma urealyticum to the development of CLD is debated and steroids produce some improvement in neonates with this disease. The aim of this study was to investigate if U. urealyticum could stimulate macrophages to produce vascular endothelial growth factor (VEGF) and intercellular adhesion molecule-1 (ICAM-1) in vitro, which are potentially associated with both early and later pathological changes in the lung during the development of CLD. In addition, the impact of dexamethasone and budesonide on these processes was examined. We found that U. urealyticum antigen (>/=4 x 10(7) color-changing units/ml) stimulated human macrophages (phorbol 12-myristate 13-acetate-differentiated THP-1 cell line) to produce VEGF and soluble ICAM-1 in a dose-dependent manner (p < 0.05) measured by ELISA. Likewise, cell surface ICAM-1 (CD54) measured by flow cytometry was increased after stimulation with U. urealyticum. This effect was attenuated by budesonide and dexamethasone (p < 0.05). The mRNA expressions of VEGF and ICAM-1 detected by a semi-quantitative reverse transcriptase polymerase chain reaction were also induced in response to U. urealyticum and inhibited by the steroids (p < 0.05). The expression of ICAM-1 was reduced by 85.5% when the TNF-alpha production was neutralized with an anti-TNF-alpha antibody. Our findings imply that U. urealyticum might be involved in the development of CLD of prematurity. Copyright 2002 S. Karger AG, Basel

  4. Impact of simulated microgravity on the secretory and adhesive activity of cultured human vascular endothelial cells.

    NASA Astrophysics Data System (ADS)

    Rudimov, Evgeny; Buravkova, Ludmila; Pogodina, Margarita; Andrianova, Irina

    The layer of vascular endothelial cells (ECs) is a dynamic,disseminated organ that perform the function of an interface between the blood and vascular wall. The endothelial monolayer is able to quickly respond to changes in the microenvironment due to its synthesis of vasoactive substances, chemokines, adhesion molecules expression, etc. ECs are highly sensitive to gravitational changes and capable of short-term and long-term responses (Sangha et al., 2001; Buravkova et al., 2005; Infanger et al., 2006, 2007. However, the question remains how to reflect the impact of microgravity on endothelium under the inflammatory process. Therefore, the aim of this study was to investigate secretory and adhesive activity of human umbilical vein endothelial cells (HUVECs) during simulated microgravity and TNF-a activation. HUVECs were isolated according to Gimbrone et al. (1978) in modification A. Antonov (1981) and used for experiments at 2-4 passages. HUVECs were activated by low level of TNF-a (2 ng/ml). Microgravity was generated by Random Positioning Machine (RPM, Dutch Space, Leiden) placed into the thermostat at 37°C. After 24 hours of clinorotation we measured adhesion molecules expression on the cell surface (ICAM-1, VCAM-1, PECAM-1, E-selectin, CD144, endoglin (CD105)) and cell viability using a flow cytometry. To evaluate the level of target gene expression was used the real time RT-PCR. IL-6 and IL-8 concentration was measured in the conditioned medium of HUVECs by using the ELISA test. We found that simulated microgravity within 24 hours caused a decrease of ICAM-1, CD144, and E-selectin expression, at the same time not affect the cell viability, endoglin and PECAM-1 expression on the surface HUVEC. Furthermore, there were no changes of the level of IL-6 and IL-8 gene expression and their products in the culture medium. TNF-activated HUVECs showed an increase in gene expression of interleukins and molecules involved in the adhesion process, which also was confirmed

  5. A separate role for ICAM-1 and fluid shear in regulating leukocyte interactions with straight regions of venular wall and venular convergences

    PubMed Central

    Sumagin, Ronen; Lamkin-Kennard, Kathleen A.; Sarelius, Ingrid H

    2011-01-01

    Objective Variation in expression of adhesion molecules plays a key role in regulating leukocyte behavior, but the contribution of fluid shear to these interactions cannot be ignored. Here we dissected the effects of each of these factors on leukocyte behavior in different venular regions. Methods Leukocyte behavior was quantified in blood perfused microvascular networks in anesthetized mouse cremaster muscle using intravital confocal microscopy. ICAM-1 expression and fluid shear rate were quantified using ICAM-1 fluorescent labeling, fluorescent particle tracking, and computational fluid dynamics. Results TNFα-induced an increase in ICAM-1 expression, and abolished the differences observed among control venules of different sizes. Consequently, leukocyte adhesion was increased to a similar level across all vessel sizes (5.1±0.46 leukocytes/100μm vs. 2.1±0.47 [control]), but remained significantly higher in venular convergences (7.8±0.4). Leukocyte transmigration occurred primarily in the smallest venules and venular convergences (23.9±5.1 and 31.9±2.7 leukocytes/10,000μm2 tissue, respectively). In venular convergences the two inlet vessels are predicted to create a region of low velocity, increasing leukocyte adhesion probability. Conclusions In straight regions of different sized venules the variability in ICAM-1 expression accounts for the differences in leukocyte behavior; in converging regions, fluid shear potentially has a greater effect on leukocyte-EC interactions. PMID:19468960

  6. Impact of Intercellular Adhesion Molecule-1 Genetic Polymorphisms on Coronary Artery Disease Susceptibility in Taiwanese Subjects.

    PubMed

    Chou, Chi-Hung; Ueng, Kwo-Chang; Liu, Yu-Fan; Wu, Chih-Hsien; Yang, Shun-Fa; Wang, Po-Hui

    2015-01-01

    The principal pathogenesis of coronary artery disease (CAD) is coronary artery atherosclerosis, a chronic inflammatory disease of the vessel walls of the coronary artery. Intercellular adhesion molecule-1 (ICAM-1) displays an important role in the development of the inflammation reaction and atherosclerosis. Few studies report the association of ICAM-1 genetic polymorphisms with CAD in Taiwanese subjects. Therefore, we conducted a study to associate the single nucleotide polymorphisms (SNPs) of ICAM-1, rs5491, rs5498, rs281432 and rs3093030 with CAD. Five hundred and twenty-five male and female subjects, who received elective coronary angiography in Taiwan Chung Shan Medical University Hospital, were recruited to determine four ICAM-1 SNPs by real time-polymerase chain reaction and genotyping. The relationships among ICAM-1 SNPs, haplotypes, demographic and characteristics and CAD were analyzed. This study showed that rs281432 (C8823G) was the only ICAM-1 SNP which affect the development of CAD. Multivariate analysis revealed that ICAM-1 SNP rs281432 CC/CG [p=0.016; odds ratio (OR): 2.56, 95% confidence interval (CI): 1.19-5.56], male gender (p=0.018; OR: 1.66, 95% CI: 1.09-2.51), aspirin use in the past 7 days (p=0.001; OR: 2.05, 95% CI: 1.33-3.14), hypertension (p<0.001; OR: 2.15, 95% CI: 1.42-3.25), serum cardiac troponin I elevation (p<0.001; OR: 2.14, 95% CI: 1.47-3.24) and severe angina in recent 24 hours (p=0.001; OR: 1.97, 95% CI: 1.31- 2.95) increase the risk of CAD. In conclusion, ICAM-1 SNP rs281432 is an independent factor to predict the development of CAD. ICAM-1 SNP rs281432 homozygotic mutant GG can reduce the susceptibility to the CAD in Taiwanese subjects.

  7. Downregulation of SS18-SSX1 expression in synovial sarcoma by small interfering RNA enhances the focal adhesion pathway and inhibits anchorage-independent growth in vitro and tumor growth in vivo.

    PubMed

    Takenaka, Satoshi; Naka, Norifumi; Araki, Nobuhito; Hashimoto, Nobuyuki; Ueda, Takafumi; Yoshioka, Kiyoko; Yoshikawa, Hideki; Itoh, Kazuyuki

    2010-04-01

    Synovial sarcoma (SS) is an aggressive soft-tissue malignancy characterized by a unique t(X;18) translocation resulting in expression of SS18-SSX fusion protein. In order to investigate the biological function of this fusion protein and to develop a novel therapeutic option, we examined downregulation of SS18-SSX1 expression by small interfering RNA targeting SS18-SSX1 in three human SS cell lines. Microarray analysis comparing SS18-SSX1-silenced cells with control cells in three SS cell lines showed that SS18-SSX1 mainly affected the focal adhesion pathway. In accord with the array data, silencing of SS18-SSX1 enhances adhesion to the extracellular matrix through the induction of expression of myosin light-chain kinase. Furthermore, the silencing of SS18-SSX1 inhibits anchorage-independent growth in vitro and systemic delivery of siRNA against SS18-SSX1 using a nanoparticle system inhibited tumor growth in a nude mouse xenograft model. Our results demonstrate that siRNA targeting of SS18-SSX1 has therapeutic potential for the treatment of SS.

  8. PGE(2) inhibition of TGF-beta1-induced myofibroblast differentiation is Smad-independent but involves cell shape and adhesion-dependent signaling.

    PubMed

    Thomas, Peedikayil E; Peters-Golden, Marc; White, Eric S; Thannickal, Victor J; Moore, Bethany B

    2007-08-01

    Myofibroblasts are pathogenic in pulmonary fibrotic disease due to their exuberant production of matrix rich in collagen that interferes with gas exchange and the ability of these cells to contract and distort the alveolar space. Transforming growth factor-beta1 (TGF-beta1) is a well-known inducer of myofibroblast differentiation. TGF-beta1-induced transformation of fibroblasts to apoptosis-resistant myofibroblasts is adhesion-dependent and focal adhesion kinase (FAK)-mediated. Prostaglandin E(2) (PGE(2)) inhibits this differentiation via E prostanoid receptor 2 (EP2) signaling and cAMP elevation, but whether PGE(2) does so by interfering with TGF-beta1 signaling is unknown. Thus we examined the effects of PGE(2) in the presence and absence of TGF-beta1 stimulation on candidate signaling pathways in human lung fibroblasts. We now demonstrate that PGE(2) does not interfere with TGF-beta1-induced Smad phosphorylation or its translocation to the nucleus. Rather, PGE(2) has dramatic effects on cell shape and cytoskeletal architecture and disrupts the formation of appropriate focal adhesions. PGE(2) treatment diminishes TGF-beta1-induced phosphorylation of paxillin, STAT-3, and FAK and, in turn, limits activation of the protein kinase B (PKB/Akt) pathway. These alterations do not, however, result in increased apoptosis within the first 24 h of treatment. Interestingly, the effects of PGE(2) stimulation alone do not always mirror the effects of PGE(2) in the presence of TGF-beta1, indicating that the context for EP2 signaling is different in the presence of TGF-beta1. Taken together, our results demonstrate that PGE(2) has the potential to limit TGF-beta1-induced myofibroblast differentiation via adhesion-dependent, but Smad-independent, pathways.

  9. Biomechanics of P-selectin PSGL-1 bonds: Shear threshold and integrin-independent cell adhesion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Zhihua; Goldsmith, Harry L.; MacIntosh, Fiona A.

    2006-03-01

    Platelet-leukocyte adhesion may contribute to thrombosis and inflammation. We examined the heterotypic interaction between unactivated neutrophils and either thrombin receptor activating peptide (TRAP) stimulated platelets or P-selectin bearing beads (Ps-beads) in suspension. Cone-plate viscometers were used to apply controlled shear rates from 14-3000/s. Platelet-neutrophil and bead-neutrophil adhesion analysis was performed using both flow cytometry and high-speed videomicroscopy. We observed that while blocking antibodies against either P-selectin or P-selectin glycoprotein ligand-1 (PSGL-1) alone inhibited platelet-neutrophil adhesion by ~60% at 140/s, these reagents completely blocked adhesion at 3000/s. Anti-Mac-1 alone did not alter platelet-neutrophil adhesion rates at any shear rate, though inmore » synergy with selectin antagonists it abrogated cell binding. Unstimulated neutrophils avidly bound Ps-beads and activated platelets in an integrin-independent manner, suggesting that purely selectin-dependent cell adhesion is possible. In support of this, antagonists against P-selectin or PSGL-1 dissociated previously formed platelet-neutrophil and Ps-bead neutrophil aggregates under shear in a variety of experimental systems, including in assays performed with whole blood. In studies where medium viscosity and shear rate were varied, a subtle shear threshold for P-selectin PSGL-1 binding was also noted at shear rates<100/s and at force loading rates of ~300pN/sec. Results are discussed in light of biophysical computations that characterize the collision between unequal size particles in linear shear flow. Overall, our studies reveal an integrin-independent regime for cell adhesion that may be physiologically relevant.« less

  10. The effect of soy protein beverages on serum cell adhesion molecule concentrations in prehypertensive/stage 1 hypertensive individuals.

    PubMed

    Dettmer, Michelle; Alekel, D Lee; Lasrado, Joanne A; Messina, Mark; Carriquiry, Alicia; Heiberger, Kevin; Stewart, Jeanne W; Franke, Warren

    2012-04-01

    Prehypertensive and hypertensive individuals are at increased risk of atherosclerotic cardiovascular disease (CVD), in part because hypertension contributes to endothelial dysfunction and increased cell adhesion molecule expression. Soy protein and isoflavones may favorably alter CVD risk factors, and hence the aim of this study was to determine whether intake of cow's milk compared with soy beverage prepared from whole soy bean (WSB) or soy protein isolate (SPI) would lower soluble cell adhesion molecule concentrations as a means of decreasing CVD risk. We enrolled healthy prehypertensive/stage 1 hypertensive men (n = 60; 18-63 years) and premenopausal women (n = 8; 20-48 years). Participants were randomized to 1 of 3 groups for 8 weeks: cow's milk (600 mL/d), SPI beverage (840 mL/d; 30.1 mg total isoflavones/d), or WSB beverage (840 mL/d; 91.4 mg total isoflavones/d). We measured soluble vascular cell adhesion molecule-1 (VCAM-1), intercellular cell adhesion molecule-1 (ICAM-1), and endothelial-leukocyte adhesion molecule-1 (E-selectin) concentrations at baseline and week 8. Soluble CAM concentrations were not altered by treatment and did not differ between prehypertensive and hypertensive participants. However, analysis of variance indicated a treatment × gender interaction (gender effect) for ICAM-1 (p = 0.0037) but not for E-selectin (p = 0.067) or VCAM-1 (p = 0.16). Men had higher concentrations of ICAM-1 and E-selectin, respectively, at baseline (p = 0.0071, p = 0.049) and week 8 (p = 0.0054, p = 0.038) than women did. Neither intake of cow's milk nor soy beverage for 8 weeks altered soluble CAM concentrations in prehypertensive/stage 1 hypertensive individuals, suggesting that neither type of beverage diminished atherosclerotic CVD risk in mildly hypertensive individuals by way of improving circulating CAM concentrations.

  11. [Influence of Kudou Shencha decotion on INF-gamma, ICAM-1, MCP-1 levels of prostate tissue homogenate in immunity prostatitis model rats].

    PubMed

    Xia, Li-Ying; Liu, Wei-Jia; Li, Ming-Xi; Ge, Wen-Jin; Gao, Xue-Min; Zhang, Jian-Jun

    2014-05-01

    To investigate the influence of Kudou Shencha decotion on INF-y, ICAM-1, MCP-1 levels of prostate tissue homogenate in immunity prostatitis model rats. Forty Wistar male rats were divided into 5 groups randomly: Kudou Shencha decotion group with high dosage and low dosage, Qianleitai group, the model control group and normal group. The rat model of chronic nonbacterial prostatitis was established by multiple hypodermical injection of the suspension of prostatic protein purification with Freund's completed adjuvant. The level of intercellular adhesion molecule (ICAM-1), interferon gamma (INF-gamma) and monocyte chemotactic protein-1 (MCP-1) were measured by enzyme linked immunosorbent assay (ELISA). The content of ICAM-1 and MCP-1 in the model group was higher than that of the normal group (P < 0.05), the content of ICAM-1 was obviously decreased in Kudou Shencha decotion group with high dosage (P <0.05), the contents of MCP-1 were all obviously decreased in Kudou Shencha decotion groups and Qianlietai group. Compared with the model group, the contents of INF-gamma in all treatment groups were decreased insignificantly. Kudou Shencha decotion has the action of lowering the level of ICAM-1 and MCP-1, which may be one of the mechanisms of Kudou Shencha decotion in the therapy of chronic prostatitis.

  12. 9-cis-Retinoic Acid Promotes Cell Adhesion Through Integrin Dependent and Independent Mechanisms Across Immune Lineages

    PubMed Central

    Whelan, Jarrett T.; Chen, Jianming; Miller, Jabin; Morrow, Rebekah L.; Lingo, Joshuah D.; Merrell, Kaitlin; Shaikh, Saame Raza; Bridges, Lance C.

    2012-01-01

    Retinoids are essential in the proper establishment and maintenance of immunity. Although retinoids are implicated in immune related processes, their role in immune cell adhesion has not been well established. In this study, the effect of 9-cis-retinoic acid (9-cis-RA) on human hematopoietic cell adhesion was investigated. 9-cis-RA treatment specifically induced cell adhesion of the human immune cell lines HuT-78, NB4, RPMI 8866, and U937. Due to the prominent role of integrin receptors in mediating immune cell adhesion, we sought to evaluate if cell adhesion was integrin-dependent. By employing a variety of integrin antagonist including function-blocking antibodies and EDTA, we establish that 9-cis-RA prompts immune cell adhesion through established integrin receptors in addition to a novel integrin-independent process. The novel integrin-independent adhesion required the presence of retinoid and was attenuated by treatment with synthetic corticosteroids. Finally, we demonstrate that 9-cis-RA treatment of primary murine B-cells induces ex vivo adhesion that persists in the absence of integrin function. Our study is the first to demonstrate that 9-cis-retinoic acid influences immune cell adhesion through at least two functionally distinct mechanisms. PMID:22925918

  13. ICAM-1-Targeted Liposomes Loaded with Liver X Receptor Agonists Suppress PDGF-Induced Proliferation of Vascular Smooth Muscle Cells

    NASA Astrophysics Data System (ADS)

    Huang, Xu; Xu, Meng-Qi; Zhang, Wei; Ma, Sai; Guo, Weisheng; Wang, Yabin; Zhang, Yan; Gou, Tiantian; Chen, Yundai; Liang, Xing-Jie; Cao, Feng

    2017-05-01

    The proliferation of vascular smooth muscle cells (VSMCs) is one of the key events during the progress of atherosclerosis. The activated liver X receptor (LXR) signalling pathway is demonstrated to inhibit platelet-derived growth factor BB (PDGF-BB)-induced VSMC proliferation. Notably, following PDGF-BB stimulation, the expression of intercellular adhesion molecule-1 (ICAM-1) by VSMCs increases significantly. In this study, anti-ICAM-1 antibody-conjugated liposomes were fabricated for targeted delivery of a water-insoluble LXR agonist (T0901317) to inhibit VSMC proliferation. The liposomes were prepared by filming-rehydration method with uniform size distribution and considerable drug entrapment efficiency. The targeting effect of the anti-ICAM-T0901317 liposomes was evaluated by confocal laser scanning microscope (CLSM) and flow cytometry. Anti-ICAM-T0901317 liposomes showed significantly higher inhibition effect of VSMC proliferation than free T0901317 by CCk8 proliferation assays and BrdU staining. Western blot assay further confirmed that anti-ICAM-T0901317 liposomes inhibited retinoblastoma (Rb) phosphorylation and MCM6 expression. In conclusion, this study identified anti-ICAM-T0901317 liposomes as a promising nanotherapeutic approach to overcome VSMC proliferation during atherosclerosis progression.

  14. Spilanthol Inhibits COX-2 and ICAM-1 Expression via Suppression of NF-κB and MAPK Signaling in Interleukin-1β-Stimulated Human Lung Epithelial Cells.

    PubMed

    Huang, Wen-Chung; Wu, Ling-Yu; Hu, Sindy; Wu, Shu-Ju

    2018-06-30

    Spilanthol a phytochemical derived from the Spilanthes acmella plant has antimicrobial, antioxidant, and anti-inflammatory properties. This study evaluated its effects on the expression of intercellular adhesion molecule 1 (ICAM-1) and inflammation-related mediators in IL-1β-stimulated human lung epithelial A549 cells. Human lung epithelial A549 cells were pretreated with various concentrations of spilanthol (3-100 μM) followed by treatment with IL-1β to induce inflammation. The protein levels of pro-inflammatory cytokines, chemokines, and prostaglandin E2 (PGE2) were measured using ELISA. Cyclooxygenase-2 (COX-2), heme oxygenase (HO-1), nuclear transcription factor kappa-B (NF-κB), and mitogen-activated protein kinase (MAPK) were measured by immunoblotting. The mRNA expression levels of ICAM-1 and MUC5AC were determined by real-time polymerase chain reaction. Spilanthol decreased the expression of PGE 2 , COX-2, TNF-α, and MCP-1. It also decreased ICAM-1 expression and suppressed monocyte adhesion to IL-1β-stimulated A549 cells. Spilanthol also significantly inhibited the phosphorylation of MAPK and I-κB. These results suggest that spilanthol exerts anti-inflammatory effects by inhibiting the expression of the pro-inflammatory cytokines, COX-2, and ICAM-1 by inhibiting the NF-κB and MAPK signaling pathways. Graphical Abstract ᅟ.

  15. Elevation of soluble intercellular adhesion molecule-1 levels, but not angiopoietin 2, in the plasma of human immunodeficiency virus-infected African women with clinical Kaposi sarcoma.

    PubMed

    Graham, Susan M; Rajwans, Nimerta; Richardson, Barbra A; Jaoko, Walter; McClelland, R Scott; Overbaugh, Julie; Liles, W Conrad

    2014-10-01

    Circulating levels of endothelial activation biomarkers are elevated in during infection with human immunodeficiency virus 1 (HIV-1) and may also be increased in Kaposi sarcoma (KS). We compared 23 HIV-1-seropositive women with clinically diagnosed KS with 46 randomly selected controls matched for visit year, CD4 count, and antiretroviral therapy status. Conditional logistic regression was used to identify differences between cases and controls. The odds of clinical KS increased with increasing plasma viral load and with intercellular adhesion molecule 1 (ICAM-1) levels above or equal to the median. There was a borderline association between increasing plasma angiopoietin 2 levels and KS. In multivariable modeling including plasma viral load, angiopoietin 2, and ICAM-1, plasma ICAM-1 levels above or equal to the median remained associated with clinical KS (odds ratio = 14.2, 95% confidence interval = 2.3-87.7). Circulating ICAM-1 levels should be evaluated as a potential biomarker for disease progression and treatment response among HIV-infected KS patients. © The American Society of Tropical Medicine and Hygiene.

  16. Association of ICAM-1 and HMGA1 Gene Variants with Retinopathy in Type 2 Diabetes Mellitus Among Chinese Individuals.

    PubMed

    Lv, Zhiping; Li, Ying; Wu, Yongzhong; Qu, Yi

    2016-08-01

    To evaluate the association of intercellular cell-adhesion molecule 1 (ICAM-1) and high-mobility group A1 (HMGA1) gene variants with diabetic retinopathy (DR) in a Chinese type 2 diabetes mellitus (T2DM) cohort. A total of 792 patients with T2DM were enrolled and categorized into two groups: (1) the DR group consisted of 448 patients, which was further subclassified into the proliferative DR (PDR) group with 220 patients and the nonproliferative DR (NPDR) group with 228 patients; (2) the diabetes without retinopathy (DNR) group comprised 344 patients who had no signs of DR. The single-nucleotide polymorphism (SNP) rs5498 in ICAM-1 gene and IVS5-13insC variant in HMGA1 gene were genotyped. No evident association was found in the allele frequencies between SNP rs5498 in ICAM-1 gene and DR patients; the combined p values for the additive, dominant, and recessive models in genotype were greater than 0.05. No significant association was identified between the IVS5-13insC variant in HMGA1 gene and DR individuals. Our results revealed that SNP rs5498 in ICAM-1 gene and IVS5-13insC variant in HMGA1 gene were not associated with the susceptibility of DR in the Chinese T2DM cohort.

  17. Time-dependent expression of ICAM-1 & VCAM-1 on coronaries of the heterotopically transplanted mouse heart.

    PubMed Central

    Lee, J. R.; Huh, J. H.; Seo, J. W.; Suk, C. J.; Jeong, H. M.; Kim, E. K.

    1999-01-01

    To investigate the pathogenesis of accelerated graft atherosclerosis after cardiac transplantation, a genetically well-defined and reproducible animal model is required. We performed heterotopic intraabdominal heart transplantation between the two inbred strains of mice. Forty hearts from B10.A mice were transplanted into B10.BR mice. Recipients were sacrificed at 1, 3, 5, 7, 14, 28, and 42 days after implantation. The specimens from both donor and recipient were examined with fluorescent immunohistochemistry and the serial histopathologic changes were evaluated. In the donor hearts, ICAM-1 and VCAM-1 expressions were minimal at day 1 and they gradually increased, reaching their peaks on day 5 or 7 and remained unchanged by day 42. However, there were very little expressions in the recipients' hearts. Mean percent areas of intima in the donor coronaries revealed progressive increase by day 42. However, those in the recipients occupied consistently less than 5% of the lumen. In conclusion, we demonstrated that a heterotopic murine heart transplantation model was a useful tool to produce transplantation coronary artery disease and that adhesion molecules on the cardiac allografts were activated very early and remained elevated at all time-points, nonetheless the arterial lesion was detected after day 28 and its progression was accelerated thereafter. PMID:10402165

  18. Inhibitory effects of clotrimazole on TNF-alpha-induced adhesion molecule expression and angiogenesis.

    PubMed

    Thapa, Dinesh; Lee, Jong Suk; Park, Min-A; Cho, Mi-Yeon; Park, Young-Joon; Choi, Han Gon; Jeong, Tae Cheon; Kim, Jung-Ae

    2009-04-01

    Cell adhesion molecules play a pivotal role in chronic inflammation and pathological angiogenesis. In the present study, we investigated the inhibitory effects of clotrimazole (CLT) on tumor necrosis factor (TNF)-alpha-induced changes in adhesion molecule expression. CLT dose-dependently inhibited monocyte chemoattractant protein-1 (MCP-1), intercellular cell adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) expressions in TNF-alpha-stimulated HT29 colonic epithelial cells. This inhibitory action of CLT correlated with a significant reduction in TNF-alpha-induced adhesion of monocytes to HT29 cells, which was comparable to the inhibitory effects of anti-ICAM-1 and VCAM-1 monoclonal antibodies on monocyte-epithelial adhesion. These inhibitory actions of CLT were, at least in part, attributable to the inhibition of redox sensitive NF-kappaB activation, as CLT inhibited TNF-alpha-induced ROS generation as well as NF-kappaB nuclear translocation and activation in HT29 cells. Furthermore, the inhibition of TNF-alpha-induced monocyte adhesion was also mimicked by the specific NF-kappaB inhibitor, pyrrolidine dithiocarbamate (PDTC). Inflammatory mediators including TNF-alpha have known to promote angiogenesis, which in turn further contributes to inflammatory pathology. Therefore, we additionally evaluated whether CLT modulates TNF-alpha-induced angiogenesis using in vivo chick chorioallantoic membrane (CAM) assay. The CAM assay showed that CLT dose-dependently attenuated TNF-alpha-induced angiogenesis, and the effect was correlated with decreased inflammation of the CAM tissue. In conclusion, our results suggest that CLT can inhibit TNF-alpha-triggered expression of adhesion molecules, ICAM-1 and VCAM-1, and angiogenesis during inflammation.

  19. Phloretin inhibits interleukin-1β-induced COX-2 and ICAM-1 expression through inhibition of MAPK, Akt, and NF-κB signaling in human lung epithelial cells.

    PubMed

    Huang, Wen-Chung; Wu, Shu-Ju; Tu, Rong-Syuan; Lai, You-Rong; Liou, Chian-Jiun

    2015-06-01

    Phloretin, a flavonoid isolated from the apple tree, is reported to have anti-inflammatory, anti-oxidant, and anti-adiposity effects. In this study, we evaluated the suppressive effects of phloretin on intercellular adhesion molecule 1 (ICAM-1) and cyclooxygenase (COX)-2 expression in IL-1β-stimulated human lung epithelial A549 cells. The cells were pretreated with various concentrations of phloretin (3-100 μM), followed by induced inflammation by IL-1β. Phloretin inhibited levels of prostaglandin E2, decreased COX-2 expression, and suppressed IL-8, monocyte chemotactic protein 1, and IL-6 production. It also decreased ICAM-1 gene and protein expression and suppressed monocyte adhesion to inflammatory A549 cells. Phloretin also significantly inhibited Akt and mitogen-activated protein kinase (MAPK) phosphorylation and decreased nuclear transcription factor kappa-B (NF-κB) subunit p65 protein translocation into the nucleus. In addition, ICAM-1 and COX-2 expression was suppressed by pretreatment with both MAPK inhibitors and phloretin in inflammatory A549 cells. However, phlorizin, a derivative of phloretin, did not suppress the inflammatory response in IL-1β-stimulated A549 cells. These results suggest that phloretin might have an anti-inflammatory effect by inhibiting proinflammatory cytokine, COX-2, and ICAM-1 expression via blocked NF-κB and MAPK signaling pathways.

  20. Bone marrow-derived mesenchymal stem cells propagate immunosuppressive/anti-inflammatory macrophages in cell-to-cell contact-independent and -dependent manners under hypoxic culture.

    PubMed

    Takizawa, Naoki; Okubo, Naoto; Kamo, Masaharu; Chosa, Naoyuki; Mikami, Toshinari; Suzuki, Keita; Yokota, Seiji; Ibi, Miho; Ohtsuka, Masato; Taira, Masayuki; Yaegashi, Takashi; Ishisaki, Akira; Kyakumoto, Seiko

    2017-09-15

    Immunosuppressive/anti-inflammatory macrophage (Mφ), M2-Mφ that expressed the typical M2-Mφs marker, CD206, and anti-inflammatory cytokine, interleukin (IL)-10, is beneficial and expected tool for the cytotherapy against inflammatory diseases. Here, we demonstrated that bone marrow-derived lineage-positive (Lin+) blood cells proliferated and differentiated into M2-Mφs by cooperation with the bone marrow-derived mesenchymal stem cells (MSCs) under hypoxic condition: MSCs not only promoted proliferation of undifferentiated M2-Mφs, pre-M2-Mφs, in the Lin+ fraction via a proliferative effect of the MSCs-secreted macrophage colony-stimulating factor, but also promoted M2-Mφ polarization of the pre-M2-Mφs through cell-to-cell contact with the pre-M2-Mφs. Intriguingly, an inhibitor for intercellular adhesion molecule (ICAM)-1 receptor/lymphocyte function-associated antigen (LFA)-1, Rwj50271, partially suppressed expression of CD206 in the Lin+ blood cells but an inhibitor for VCAM-1 receptor/VLA-4, BIO5192, did not, suggesting that the cell-to-cell adhesion through LFA-1 on pre-M2-Mφs and ICAM-1 on MSCs was supposed to promoted the M2-Mφ polarization. Thus, the co-culture system consisting of bone marrow-derived Lin+ blood cells and MSCs under hypoxic condition was a beneficial supplier of a number of M2-Mφs, which could be clinically applicable to inflammatory diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Glycyrrhetinic acid inhibits ICAM-1 expression via blocking JNK and NF-κB pathways in TNF-α-activated endothelial cells

    PubMed Central

    Chang, Ying-ling; Chen, Chien-lin; Kuo, Chao-Lin; Chen, Bor-chyuan; You, Jyh-sheng

    2010-01-01

    Aim: To investigate the effects of glycyrrhetinic acid (GA), an active component extracted from the root of Glycyrrhizae glabra, on the expression of intercellular adhesion molecule-1 (ICAM-1) in tumor necrosis factor-α (TNF-α)-activated human umbilical vein endothelial cells (HUVEC). Methods: ICAM-1 mRNA and protein levels were detected using RT-PCR and cell enzyme-linked immunosorbent assays. The adherence of human monocytic THP-1 cells labeled with [3H]thymidine to HUVEC was determined by counting radioactivity with a scintillation counter. The activation of mitogen-activated protein kinases as well as the degradation of IκB and nuclear factor-κB (NF-κB) or phospho-c-Jun in the nucleus were detected by western blots. NF-κB binding activity was detected using electrophoretic mobility shift assay. Results: GA (50 and 100 μmol/L) significantly inhibits TNF-α-induced ICAM-1 mRNA and protein expressions, as well as THP-1 cell adhesiveness in HUVEC. GA selectively inhibited TNF-α-activated signal pathway of c-Jun N-terminal kinase (JNK), without affecting extracellular signal-regulated kinase 1/2 and p38. Furthermore, GA apparently inhibited IκB/NF-κB signaling system by preventing IκB degradation, NF-κB translocation, and NF-κB/DNA binding activity. Finally, pretreatment with GA or the inhibitors of NF-κB, JNK, and p38 reduced the ICAM-1 protein expression induced by TNF-α. Conclusion: GA inhibits TNF-α-stimulated ICAM-1 expression, leading to a decrease in adherent monocytes to HUVEC. This inhibition is attributed to GA interruption of both JNK/c-Jun and IκB/NF-κB signaling pathways, which decrease activator protein-1 (AP-1) and NF-κB mediated ICAM-1 expressions. The results suggest that GA may provide a beneficial effect in treating vascular diseases associated with inflammation, such as atherosclerosis. PMID:20418897

  2. Degraded carrageenan causing colitis in rats induces TNF secretion and ICAM-1 upregulation in monocytes through NF-kappaB activation.

    PubMed

    Benard, Claudine; Cultrone, Antonietta; Michel, Catherine; Rosales, Carlos; Segain, Jean-Pierre; Lahaye, Marc; Galmiche, Jean-Paul; Cherbut, Christine; Blottière, Hervé M

    2010-01-13

    Carrageenan (CGN) is a high molecular weight sulphated polysaccharide derived from red seaweeds. In rodents, its degraded forms (dCGN) can induce intestinal inflammation associated with macrophage recruitment and activation. The aim of this study was: 1) to analyze the size-dependent effects of dCGN on colon inflammation in vivo, and 2) to correlate these effects with monocyte/macrophage proliferation, cytokine production and expression of various cell surface antigens including ICAM-1 adhesion molecule. Peripheral blood monocytes (PBM) and THP-1 monocytic cells were cultured in the presence of either 10 or 40 kDa, dCGN. The 40 kDa, but not the 10 kDa dCGN, induced colitis in in vivo. Degraded CGN inhibited THP-1 cell proliferation in vitro, arresting the cells in G1 phase. In addition, dCGN increased ICAM-1 expression in both PBM and THP-1 cells with a major effect seen after 40 kDa dCGN exposure. Also, dCGN stimulated monocyte aggregation in vitro that was prevented by incubation with anti-ICAM-1 antibody. Finally, dCGN stimulated TNF-alpha expression and secretion by both PBM and THP-1 cells. All these effects were linked to NF-kappaB activation. These data strongly suggest that the degraded forms of CGN have a pronounced effect on monocytes, characteristic of an inflammatory phenotype.

  3. Magnolol inhibits tumor necrosis factor-α-induced ICAM-1 expression via suppressing NF-κB and MAPK signaling pathways in human lung epithelial cells.

    PubMed

    Chunlian, Wu; Heyong, Wang; Jia, Xu; Jie, Huang; Xi, Chen; Gentao, Liu

    2014-12-01

    Magnolol is a traditional Chinese medicine from the root and bark of Magnolia officinalis. It has long been used to treat anxiety, cough, headache and allergies, as well as a variety of inflammations. Lung inflammation is a key event in the pathogenesis of asthma and chronic obstructive pulmonary disease. The present study sought to examine the effects of magnolol on tumor necrosis factor (TNF)-α-induced upregulation of intercellular adhesion molecule-1 (ICAM-1), activation of the nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) signaling pathway in cultured human pulmonary epithelial cells, and adhesion of human macrophage-like U937 cells to A549 cells. A549 cells were incubated with magnolol at 25 and 50 μmol/l. Then, 20 ng/ml TNF-α was used to activate the cells. Magnolol inhibited the growth of human pulmonary epithelial A549 cells in a dose- and time-dependent manner. Magnolol suppressed the adhesion of U937 cells to TNF-α-induced A549 cells. In cultured human pulmonary epithelial A549 cells, magnolol decreased TNF-α-induced upregulation of ICAM-1. Magnolol repressed TNF-α-induced activation of NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways in A549 cells by inhibiting phosphorylation of NF-κB, p38, extracellular signal-regulated kinase (ERK) 1/2, and stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK). These findings support the hypothesis that magnolol inhibits the inflammatory process in lung epithelial A549 cells by suppressing the ICAM-1 and NF-κB and MAPK signaling pathways. Taken together, these results indicate that magnolol offers significant potential as a therapeutic treatment for inflammatory diseases of the lungs including asthma, sepsis, and chronic obstructive pulmonary disease.

  4. [Study of serum levels of interlukin-2 and its receptor, interlukin-6, sICAM-1, sVCAM-1 in patients with recurrent genital herpes].

    PubMed

    Zhang, Min; Zhang, Yizhi

    2003-01-01

    To study cellular immunity status and serum levels of adhesion molecules of patients with recurrent genital herpes. Serum levels of interlukin-2 and its soluble receptor, interlukin-6, sICAM-1, sVCAM-1 were measured by ELISA in 34 patients with recurrent genital herpes. The serum levels of IL-2 and IL-6 were significantly lower in patients than in healthy controls (P < 0.01). The levels of sIL-2R, sICAM-1 and sVCAM-1 were significantly higher in patients than in controls (P < 0.05). No significant differences were seen in all variables of patients in relapse phase and remission phase (P > 0.05). There are cellular immunity deficiency and high serum levels of adhesion molecules in patients with recurrent genital herpes, and these changes may be related to therecurrence of genital herpes and the development of inflammatory reaction.

  5. Hypothermia inhibits expression of CD11b (MAC-1) and CD162 (PSGL-1) on monocytes during extracorporeal circulation.

    PubMed

    Swoboda, Stefanie; Gruettner, Joachim; Lang, Siegfried; Wendel, Hans-Peter; Beyer, Martin E; Griesel, Eva; Hoffmeister, Hans-Martin; Walter, Thomas

    2013-01-01

    The aim of the present study was to investigate the effect of different hypothermic temperatures on the expression of cellular adhesion molecules on leukocytes. Circulation of blood from six volunteers was performed in an extracorporeal circulation model at 36°C, 28°C and 18°C for 30 minutes. Expression of CD11b, CD54 and CD162 on monocytes was measured using flow cytometry. Expression of CD11b significantly decreased at 18°C and at 28°C compared to 36°C. A significant reduction of CD162 expression was found at 18°C compared to 28°C and 36°C and at 28°C compared to 36°C. No association was found between temperature and expression of CD54. Expression of CD11b and CD162 on monocytes has a temperature-dependent regulation, with decreased expression during hypothermia, which may result in an inhibition of leukocyte-endothelial and leukocyte-platelet interaction. This beneficial effect may influence the extracorporeal circulation-related inflammatory response and tissue damage.

  6. Signal Regulatory Protein α Negatively Regulates β2 Integrin-Mediated Monocyte Adhesion, Transendothelial Migration and Phagocytosis

    PubMed Central

    Liu, Dan-Qing; Li, Li-Min; Guo, Ya-Lan; Bai, Rui; Wang, Chen; Bian, Zhen; Zhang, Chen-Yu; Zen, Ke

    2008-01-01

    Background Signal regulate protein α (SIRPα) is involved in many functional aspects of monocytes. Here we investigate the role of SIRPα in regulating β2 integrin-mediated monocyte adhesion, transendothelial migration (TEM) and phagocytosis. Methodology/Principal Findings THP-1 monocytes/macropahges treated with advanced glycation end products (AGEs) resulted in a decrease of SIRPα expression but an increase of β2 integrin cell surface expression and β2 integrin-mediated adhesion to tumor necrosis factor-α (TNFα)–stimulated human microvascular endothelial cell (HMEC-1) monolayers. In contrast, SIRPα overexpression in THP-1 cells showed a significant less monocyte chemotactic protein-1 (MCP-1)–triggered cell surface expression of β2 integrins, in particular CD11b/CD18. SIRPα overexpression reduced β2 integrin-mediated firm adhesion of THP-1 cells to either TNFα–stimulated HMEC-1 monolayers or to immobilized intercellular adhesion molecule-1 (ICAM-1). SIRPα overexpression also reduced MCP-1–initiated migration of THP-1 cells across TNFα–stimulated HMEC-1 monolayers. Furthermore, β2 integrin-mediated THP-1 cell spreading and actin polymerization in response to MCP-1, and phagocytosis of bacteria were both inhibited by SIRPα overexpression. Conclusions/Significance SIRPα negatively regulates β2 integrin-mediated monocyte adhesion, transendothelial migration and phagocytosis, thus may serve as a critical molecule in preventing excessive activation and accumulation of monocytes in the arterial wall during early stage of atherosclerosis. PMID:18820737

  7. Inactivated Sendai virus particle upregulates cancer cell expression of intercellular adhesion molecule-1 and enhances natural killer cell sensitivity on cancer cells.

    PubMed

    Li, Simin; Nishikawa, Tomoyuki; Kaneda, Yasufumi

    2017-12-01

    We have already reported that the inactivated Sendai virus (hemagglutinating virus of Japan; HVJ) envelope (HVJ-E) has multiple anticancer effects, including induction of cancer-selective cell death and activation of anticancer immunity. The HVJ-E stimulates dendritic cells to produce cytokines and chemokines such as β-interferon, interleukin-6, chemokine (C-C motif) ligand 5, and chemokine (C-X-C motif) ligand 10, which activate both CD8 + T cells and natural killer (NK) cells and recruit them to the tumor microenvironment. However, the effect of HVJ-E on modulating the sensitivity of cancer cells to immune cell attack has yet to be investigated. In this study, we found that HVJ-E induced the production of intercellular adhesion molecule-1 (ICAM-1, CD54), a ligand of lymphocyte function-associated antigen 1, in several cancer cell lines through the activation of nuclear factor-κB downstream of retinoic acid-inducible gene I and the mitochondrial antiviral signaling pathway. The upregulation of ICAM-1 on the surface of cancer cells increased the sensitivity of cancer cells to NK cells. Knocking out expression of ICAM-1 in MDA-MB-231 cells using the CRISPR/Cas9 method significantly reduced the killing effect of NK cells on ICAM-1-depleted MDA-MB-231 cells. In addition, HVJ-E suppressed tumor growth in MDA-MB-231 tumor-bearing SCID mice, and the HVJ-E antitumor effect was impaired when NK cells were depleted by treatment with the anti-asialo GM1 antibody. Our findings suggest that HVJ-E enhances NK cell sensitivity against cancer cells by increasing ICAM-1 expression on the cancer cell surface. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  8. Myosin 1g Contributes to CD44 Adhesion Protein and Lipid Rafts Recycling and Controls CD44 Capping and Cell Migration in B Lymphocytes

    PubMed Central

    López-Ortega, Orestes; Santos-Argumedo, Leopoldo

    2017-01-01

    Cell migration and adhesion are critical for immune system function and involve many proteins, which must be continuously transported and recycled in the cell. Recycling of adhesion molecules requires the participation of several proteins, including actin, tubulin, and GTPases, and of membrane components such as sphingolipids and cholesterol. However, roles of actin motor proteins in adhesion molecule recycling are poorly understood. In this study, we identified myosin 1g as one of the important motor proteins that drives recycling of the adhesion protein CD44 in B lymphocytes. We demonstrate that the lack of Myo1g decreases the cell-surface levels of CD44 and of the lipid raft surrogate GM1. In cells depleted of Myo1g, the recycling of CD44 was delayed, the delay seems to be caused at the level of formation of recycling complex and entry into recycling endosomes. Moreover, a defective lipid raft recycling in Myo1g-deficient cells had an impact both on the capping of CD44 and on cell migration. Both processes required the transportation of lipid rafts to the cell surface to deliver signaling components. Furthermore, the extramembrane was essential for cell expansion and remodeling of the plasma membrane topology. Therefore, Myo1g is important during the recycling of lipid rafts to the membrane and to the accompanied proteins that regulate plasma membrane plasticity. Thus, Myosin 1g contributes to cell adhesion and cell migration through CD44 recycling in B lymphocytes. PMID:29321775

  9. SAOS-2 osteosarcoma cells bind fibroblasts via ICAM-1 and this is increased by tumour necrosis factor-α.

    PubMed

    David, Manu S; Kelly, Elizabeth; Cheung, Ivan; Xaymardan, Munira; Moore, Malcolm A S; Zoellner, Hans

    2014-01-01

    We recently reported exchange of membrane and cytoplasmic markers between SAOS-2 osteosarcoma cells and human gingival fibroblasts (h-GF) without comparable exchange of nuclear markers, while similar h-GF exchange was seen for melanoma and ovarian carcinoma cells. This process of "cellular sipping" changes phenotype such that cells sharing markers of both SAOS-2 and h-GF have morphology intermediate to that of either cell population cultured alone, evidencing increased tumour cell diversity without genetic change. TNF-α increases cellular sipping between h-GF and SAOS-2, and we here study binding of SAOS-2 to TNF-α treated h-GF to determine if increased cellular sipping can be accounted for by cytokine stimulated SAOS-2 binding. More SAOS-2 bound h-GF pe-seeded wells than culture plastic alone (p<0.001), and this was increased by h-GF pre-treatment with TNF-α (p<0.001). TNF-α stimulated binding was dose dependent and maximal at 1.16 nM (p<0.05) with no activity below 0.006 nM. SAOS-2 binding to h-GF was independent of serum, while the lipopolysaccharide antagonist Polymyxin B did not affect results, and TNF-α activity was lost on boiling. h-GF binding of SAOS-2 started to increase after 30min TNF-α stimulation and was maximal by 1.5 hr pre-treatment (p<0.001). h-GF retained maximal binding up to 6 hrs after TNF-α stimulation, but this was lost by 18 hrs (p<0.001). FACS analysis demonstrated increased ICAM-1 consistent with the time course of SAOS-2 binding, while antibody against ICAM-1 inhibited SAOS-2 adhesion (p<0.04). Pre-treating SAOS-2 with TNF-α reduced h-GF binding to background levels (p<0.003), and this opposite effect to h-GF cytokine stimulation suggests that the history of cytokine exposure of malignant cells migrating across different microenvironments can influence subsequent interactions with fibroblasts. Since cytokine stimulated binding was comparable in magnitude to earlier reported TNF-α stimulated cellular sipping, we conclude that TNF

  10. Epigallocatechin 3-gallate inhibits 7-ketocholesterol-induced monocyte-endothelial cell adhesion.

    PubMed

    Yamagata, Kazuo; Tanaka, Noriko; Suzuki, Koichi

    2013-07-01

    7-Ketocholesterol (7KC) induces monocytic adhesion to endothelial cells, and induces arteriosclerosis while high-density lipoprotein (HDL) inhibits monocytic adhesion to the endothelium. Epigallocatechin 3-gallate (EGCG) was found to have a protective effect against arteriosclerosis. Therefore, the purpose of this study was to examine the possible HDL-like mechanisms of EGCG in endothelial cells by investigating whether EGCG inhibits 7KC-induced monocyte-endothelial cell adhesion by activating HDL-dependent signal transduction pathways. 7KC and/or EGCG were added to human endothelial cells (ISO-HAS), and the adhesion of pro-monocytic U937 cells was examined. The expression of genes associated with HDL effects such as Ca(2+)/calmodulin-dependent kinase II (CaMKKII), liver kinase B (LKD1), PSD-95/Dlg/ZO-1 kinase 1 (PDZK1), phosphatidylinositol 3-kinase (PI3K), intercellular adhesion molecule-1 (ICAM-1), monocyte chemotactic protein-1 (MCP-1), and endothelial nitric oxide synthase (eNOS) was examined by RT-PCR, and ICAM-1 protein expression was evaluated by western blot (WB). Production of reactive oxygen species (ROS) was examined with H2DCFDA. 7KC significantly induced adhesion of U937 cells to human endothelial cells while significantly increasing gene expressions of ICAM-1 and MCP-1 and decreasing eNOS and CaMKKII gene expressions. EGCG inhibited 7KC-induced monocytic adhesion to endothelial cells, and induced expression of eNOS and several genes involved in the CaMKKII pathway. Stimulation of endothelial cells with EGCG produced intracellular ROS, whereas treatment with N-acetylcysteine (NAC) blocked EGCG-induced expression of eNOS and CaMKKII. These results suggest that inhibition of monocyte-endothelial cell adhesion by EGCG is associated with CaMKKII pathway activation by ROS. Inhibition of 7KC-induced monocyte-endothelial cell adhesion induced by EGCG may function similarly to HDL. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. High-Throughput Screening based Identification of Small Molecule Antagonists of Integrin CD11b/CD18 Ligand Binding

    PubMed Central

    Faridi, Mohd Hafeez; Maiguel, Dony; Brown, Brock T.; Suyama, Eigo; Barth, Constantinos J.; Hedrick, Michael; Vasile, Stefan; Sergienko, Eduard; Schürer, Stephan; Gupta, Vineet

    2010-01-01

    Binding of leukocyte specific integrin CD11b/CD18 to its physiologic ligands is important for the development of normal immune response in vivo. Integrin CD11b/CD18 is also a key cellular effector of various inflammatory and autoimmune diseases. However, small molecules selectively inhibiting the function of integrin CD11b/CD18 are currently lacking. We used a newly described cell-based high throughput screening assay to identify a number of highly potent antagonists of integrin CD11b/CD18 from chemical libraries containing >100,000 unique compounds. Computational analyses suggest that the identified compounds cluster into several different chemical classes. A number of the newly identified compounds blocked adhesion of wild-type mouse neutrophils to CD11b/CD18 ligand fibrinogen. Mapping the most active compounds against chemical fingerprints of known antagonists of related integrin CD11a/CD18 shows little structural similarity, suggesting that the newly identified compounds are novel and unique. PMID:20188705

  12. Functional variants in intercellular adhesion molecule-1 and toll-like receptor-4 genes are more frequent in children with febrile urinary tract infection with renal parenchymal involvement.

    PubMed

    Hussein, Almontaser; Saad, Khaled; Askar, Eman; Zahran, Asmaa M; Farghaly, Hekma; Metwalley, Kotb; Elderwy, Ahmad A

    2018-02-01

    We studied the functional polymorphisms of intercellular adhesion molecule-1 (ICAM-1) and toll-like receptor-4 (TLR-4) genes and risk of acute pyelonephritis (APN) in children attending Assiut University Children's Hospitals, Egypt, from 2011 to 2015. Urinary tract infections (UTIs) were diagnosed in 380 children: 98 had APN and 282 had lower UTIs. Four single-nucleotide polymorphisms in ICAM-1 and TLR-4 genes were genotyped in all subjects: ICAM-1 rs1799969 Gly241Arg, ICAM-1 rs5498 Glu469Lys, TLR-4 rs4896791 Thr399Ile and TLR-4 rs4896790 Asp299Gly. Patients with APN were significantly more likely to have AA genotype of the ICAM-1 rs5498 (1462 A/G) polymorphism (p = 0.04) than children with lower UTIs and the TLR-4 Asp299Gly GG genotype (p = 0.002) and G allele (p = 0.006) than healthy controls. The association with the ICAM-1 Glu469Lys (1462A/G) was less evident. The GG genotype was associated with a modest relative risk of 1.4 (p = 0.1) of developing APN, but was not an independent odds ratio, at 1.2 (p = 0.48). Functional variants in ICAM-1 and TLR-4 genes were increasingly common in children with febrile UTIs with renal parenchymal involvement, but the ICAM-1 Glu469Lys (1462A/G) association was less evident. TLR4 Asp299Gly might independently increase renal parenchymal infection rather than renal scarring. ©2017 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  13. Tumor necrosis factor alpha (TNF-alpha)-induced cell adhesion to human endothelial cells is under dominant control of one TNF receptor type, TNF-R55

    PubMed Central

    1993-01-01

    Tumor necrosis factor alpha (TNF-alpha) is a pleiotropic cytokine triggering cell responses through two distinct membrane receptors. Stimulation of leukocyte adhesion to the endothelium is one of the many TNF-alpha activities and is explained by the upregulation of adhesion molecules on the endothelial cell surface. Human umbilical vein endothelial cells (HUVEC) were isolated, cultured, and demonstrated to express both TNF receptor types, TNF-R55 and TNF-R75. Cell adhesion to HUVEC was studied using the HL60, U937, and MOLT-4 cell lines. HUVEC were activated by either TNF-alpha, binding to both TNF-R55 and TNF- R75, and by receptor type-specific agonists, binding exclusively to TNF- R55 or to TNF-R75. The TNF-alpha-induced cell adhesion to HUVEC was found to be controlled almost exclusively by TNF-R55. This finding correlated with the exclusive activity of TNF-R55 in the TNF-alpha- dependent regulation of the expression of the intercellular adhesion molecule type 1 (ICAM-1), E-selectin, and vascular cell adhesion molecule type 1 (VCAM-1). The CD44 adhesion molecule in HUVEC was also found to be upregulated through TNF-R55. However, both TNF-R55 and TNF- R75 upregulate alpha 2 integrin expression in HUVEC. The predominant role of TNF-R55 in TNF-alpha-induced adhesion in HUVEC may correlate with its specific control of NF-kappa B activation, since kappa B elements are known to be present in ICAM-1, E-selectin, and VCAM-1 gene regulatory sequences. PMID:8386742

  14. The G Protein-Coupled Estrogen Receptor-1, GPER-1, Promotes Fibrillogenesis via a Shc-Dependent Pathway Resulting in Anchorage-Independent Growth

    PubMed Central

    Magruder, Hilary T.; Quinn, Jeffrey A.; Schwartzbauer, Jean E.; Reichner, Jonathan; Huang, Allan

    2016-01-01

    The G protein-coupled estrogen receptor-1, GPER-1, coordinates fibronectin (FN) matrix assembly and release of heparan-bound epidermal growth factor (HB-EGF). This mechanism of action results in the recruitment of FN-engaged integrin α5β1 to fibrillar adhesions and the formation of integrin α5β1-Shc adaptor protein complexes. Here, we show that GPER-1 stimulation of murine 4 T1 or human SKBR3 breast cancer cells with 17β-estradiol (E2β) promotes the formation of focal adhesions and actin stress fibers and results in increased cellular adhesion and haptotaxis on FN, but not collagen. These actions are also induced by the xenoestrogen, bisphenol A, and the estrogen receptor (ER) antagonist, ICI 182, 780, but not the inactive stereoisomer, 17α-estradiol (E2α). In addition, we show that GPER-1 stimulation of breast cancer cells allows for FN-dependent, anchorage-independent growth and FN fibril formation in “hanging drop” assays, indicating that these GPER-1-mediated actions occur independently of adhesion to solid substrata. Stable expression of Shc mutant Y317F lacking its primary tyrosyl phosphorylation site disrupts E2β-induced focal adhesion and actin stress fiber formation and abolishes E2β-enhanced haptotaxis on FN and anchorage-dependent growth. Collectively, these data demonstrate that E2β action via GPER-1 enhances cellular adhesivity and FN matrix assembly and allows for anchorage-independent growth, cellular events that may allow for cellular survival, and tumor progression. PMID:25096985

  15. Plasma levels of soluble intercellular adhesion molecule-1 as a biomarker for disease severity of patients with community-acquired pneumonia.

    PubMed

    Chang, Pin-Yu; Tsao, Shih-Ming; Chang, Jer-Hwa; Chien, Ming-Hsien; Hung, Wen-Yueh; Huang, Yi-Wen; Yang, Shun-Fa

    2016-12-01

    Community-acquired pneumonia (CAP) is characterized as an acute inflammation of the lung associated with the activation of macrophages and neutrophils. Intercellular adhesion molecule-1 (ICAM-1) is an essential adhesion molecule involved in immune cell recruitment in lung inflammation. We investigated whether ICAM-1 is a useful biomarker for assessing the disease severity of hospitalized adult patients with CAP. Plasma soluble ICAM-1 (sICAM-1) levels were measured in 78 patients with CAP and 69 healthy controls by using a commercial enzyme-linked immunosorbent assay. The pneumonia severity index scores were used to determine CAP severity in patients upon initial hospitalization. The sICAM-1 and C-reactive protein (CRP) levels decreased significantly in patients with CAP after antibiotic treatment. The plasma concentration of sICAM-1 alone, but not CRP, was correlated with CAP severity according to the pneumonia severity index scores (r=0.431, p<0.001). The sICAM-1 levels in patients with CAP with high mortality risk were significantly higher than those in patients with CAP with medium or low mortality risk. Moreover, the sICAM-1 level showed a significant correlation with the length of hospital stay (r=0.488, p<0.001). Mechanistic investigations found that bacterial lipopolysaccharide induced upregulation of ICAM-1 expression through the c-Jun N-terminal kinase pathway in RAW264.7 macrophages. Plasma sICAM-1 levels may play a role in the diagnosis and clinical assessment of CAP severity. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. CD147-targeting siRNA inhibits cell-matrix adhesion of human malignant melanoma cells by phosphorylating focal adhesion kinase.

    PubMed

    Nishibaba, Rie; Higashi, Yuko; Su, Juan; Furukawa, Tatsuhiko; Kawai, Kazuhiro; Kanekura, Takuro

    2012-01-01

    CD147/basigin, highly expressed on the surface of malignant tumor cells including malignant melanoma (MM) cells, plays a critical role in the invasiveness and metastasis of MM. Metastasis is an orchestrated process comprised of multiple steps including adhesion and invasion. Integrin, a major adhesion molecule, co-localizes with CD147/basigin on the cell surface. Using the human MM cell line A375 that highly expresses CD147/basigin, we investigated whether CD147/basigin is involved in adhesion in association with integrin. CD147/basigin was knocked-down using siRNA targeting CD147 to elucidate the role of CD147/basigin. Cell adhesion was evaluated by adhesion assay on matrix-coated plates. The localization of integrin was inspected under a confocal microscope and the expression and phosphorylation of focal adhesion kinase (FAK), a downstream kinase of integrin, were examined by western blot analysis. Silencing of CD147/basigin in A375 cells by siRNA induced the phosphorylation of FAK at Y397. Integrin identified on the surface of parental cells was distributed in a speckled fashion in the cytoplasm of CD147 knockdown cells, resulting in morphological changes from a round to a polygonal shape with pseudopodial protrusions. Silencing of CD147/basigin in A375 cells clearly weakened their adhesiveness to collagen I and IV. Our results suggest that CD147/basigin regulates the adhesion of MM cells to extracellular matrices and of integrin β1 signaling via the phosphorylation of FAK. © 2011 Japanese Dermatological Association.

  17. Regulation of epithelial and lymphocyte cell adhesion by adenosine deaminase-CD26 interaction.

    PubMed Central

    Ginés, Silvia; Mariño, Marta; Mallol, Josefa; Canela, Enric I; Morimoto, Chikao; Callebaut, Christian; Hovanessian, Ara; Casadó, Vicent; Lluis, Carmen; Franco, Rafael

    2002-01-01

    The extra-enzymic function of cell-surface adenosine deaminase (ADA), an enzyme mainly localized in the cytosol but also found on the cell surface of monocytes, B cells and T cells, has lately been the subject of numerous studies. Cell-surface ADA is able to transduce co-stimulatory signals in T cells via its interaction with CD26, an integral membrane protein that acts as ADA-binding protein. The aim of the present study was to explore whether ADA-CD26 interaction plays a role in the adhesion of lymphocyte cells to human epithelial cells. To meet this aim, different lymphocyte cell lines (Jurkat and CEM T) expressing endogenous, or overexpressing human, CD26 protein were tested in adhesion assays to monolayers of colon adenocarcinoma human epithelial cells, Caco-2, which express high levels of cell-surface ADA. Interestingly, the adhesion of Jurkat and CEM T cells to a monolayer of Caco-2 cells was greatly dependent on CD26. An increase by 50% in the cell-to-cell adhesion was found in cells containing higher levels of CD26. Incubation with an anti-CD26 antibody raised against the ADA-binding site or with exogenous ADA resulted in a significant reduction (50-70%) of T-cell adhesion to monolayers of epithelial cells. The role of ADA-CD26 interaction in the lymphocyte-epithelial cell adhesion appears to be mediated by CD26 molecules that are not interacting with endogenous ADA (ADA-free CD26), since SKW6.4 (B cells) that express more cell-surface ADA showed lower adhesion than T cells. Adhesion stimulated by CD26 and ADA is mediated by T cell lymphocyte function-associated antigen. A role for ADA-CD26 interaction in cell-to-cell adhesion was confirmed further in integrin activation assays. FACS analysis revealed a higher expression of activated integrins on T cell lines in the presence of increasing amounts of exogenous ADA. Taken together, these results suggest that the ADA-CD26 interaction on the cell surface has a role in lymphocyte-epithelial cell adhesion. PMID

  18. Anti-inflammatory effects on ischemia/reperfusion-injured lung transplants by the cluster of differentiation 26/dipeptidylpeptidase 4 (CD26/DPP4) inhibitor vildagliptin.

    PubMed

    Jang, Jae-Hwi; Yamada, Yoshito; Janker, Florian; De Meester, Ingrid; Baerts, Lesley; Vliegen, Gwendolyn; Inci, Ilhan; Chatterjee, Shampa; Weder, Walter; Jungraithmayr, Wolfgang

    2017-03-01

    We showed previously that stromal cell-derived factor 1 (SDF-1) is a substrate of cluster of differentiation 26/dipeptidylpeptidase 4 (CD26/DPP4) and exerts regenerative properties on acute lung ischemia-reperfusion injury on CD26/DPP4 inhibition. Here, we extend our studies to test whether an intermediate recovery of lung transplants from ischemia/reperfusion injury by CD26/DPP4 inhibition can be achieved for up to 14 days. Syngeneic mouse lung transplantation (Tx) was performed in C57BL/6 and in CD26-/- mice by applying 18 hours of cold ischemia. Donor lungs were preconditioned with saline or the CD26/DPP4 inhibitor vildagliptin (1 μg/mL [3 μM]). In vitro, the influence of vildagliptin and SDF-1 on the macrophage cell line RAW 264.7 was tested. Transplants were analyzed up to 14 days after Tx for the expression of SDF-1, tumor necrosis factor-α (TNF-α), interleukin-10, intercellular adhesion molecule-1 (ICAM-1), immune cell infiltration, and oxygenation. Cold ischemic time of 18 hours with vildagliptin preconditioning elevated lung SDF-1 levels (P = .0011) and increased interleukin-10-producing macrophages (P = .0165) compared with the control. SDF-1 reduced macrophage-derived TNF-α (P = .0248) in vitro. Five hours after Tx, vildagliptin significantly reduced macrophages and neutrophils (P = .0306), decreased ICAM-1 expression (P = .002), and improved transplant oxygenation (P = .0181). Seven days after Tx, grafts were preserved on CD26/DPP4-inhibition: perivascular macrophages (P = .0046) and TNF-α (P = .0013) were reduced as well as T and B cells. ICAM-1 was absent in CD26/DPP4-inhibited grafts at all time points. This study proves an intermediate improvement of ischemia/reperfusion-injured lung transplants by the CD26/DPP4-inhibitor vildagliptin up to 14 days. Enhanced levels of SDF-1 induced an anti-inflammatory effect on a cellular and protein level, and render CD26/DPP4 inhibition preconditioning effective for the protection

  19. Amphiregulin enhances intercellular adhesion molecule-1 expression and promotes tumor metastasis in human osteosarcoma

    PubMed Central

    Liu, Ju-Fang; Tsao, Ya-Ting; Hou, Chun-Han

    2015-01-01

    Osteosarcoma is a common, high malignant, and metastatic bone cancer. Amphiregulin (AREG) has been associated with cancer cellular activities. However, the effect of AREG on metastasis activity in human osteosarcoma cells has yet to be determined. We determined that AREG increases the expression of intercellular adhesion molecule-1 (ICAM-1) through PI3K/Akt signaling pathway via its interaction with the epidermal growth factor receptor, thus resulting in the enhanced cell migration of osteosarcoma. Furthermore, AREG stimulation increased the association of NF-κB to ICAM-1 promoter which then up-regulated ICAM-1 expression. Finally, we observed that shRNA silencing of AREG decreased osteosarcoma metastasis in vivo. Our findings revealed a relationship between osteosarcoma metastatic potential and AREG expression and the modulating effect of AREG on ICAM-1 expression. PMID:26503469

  20. Induction of mast cell accumulation by chymase via an enzymatic activity- and intercellular adhesion molecule-1-dependent mechanism.

    PubMed

    Zhang, Huiyun; Wang, Junling; Wang, Ling; Zhan, Mengmeng; Li, Shigang; Fang, Zeman; Xu, Ciyan; Zheng, Yanshan; He, Shaoheng

    2018-02-01

    Chymase is a unique, abundant secretory product of mast cells and a potent chemoattractant for eosinophils, monocytes and neutrophils, but little is known of its influence on mast cell accumulation. A mouse peritoneal inflammation model, cell migration assay and flowcytometry analysis, were used to investigate the role of chymase in recruiting mast cells. Chymase increased, by up to 5.4-fold, mast cell numbers in mouse peritoneum. Inhibitors of chymase, heat-inactivation of the enzyme, sodium cromoglycate and terfenadine, and pretreatment of mice with anti-intercellular adhesion molecule 1, anti-L-selectin, anti-CD11a and anti-CD18 antibodies dramatically diminished the chymase-induced increase in mast cell accumulation. These findings indicate that this effect of chymase is dependent on its enzymatic activity and activation of adhesion molecules. In addition, chymase provoked a significant increase in 5-HT and eotaxin release (up to 1.8- and 2.2-fold, respectively) in mouse peritoneum. Since 5-HT, eotaxin and RANTES can induce marked mast cell accumulation, these indirect mechanisms may also contribute to chymase-induced mast cell accumulation. Moreover, chymase increased the trans-endothelium migration of mast cells in vitro indicating it also acts as a chemoattractant. The finding that mast cells accumulate in response to chymase implies further that chymase is a major pro-inflammatory mediator of mast cells. This effect of chymase, a major product of mast cell granules, suggests a novel self-amplification mechanism for mast cell accumulation in allergic inflammation. Mast cell stabilizers and inhibitors of chymase may have potential as a treatment of allergic disorders. © 2017 The British Pharmacological Society.

  1. Cyclic Stretching of Mesangial Cells Up-Regulates Intercellular Adhesion Molecule-1 and Leukocyte Adherence

    PubMed Central

    Riser, Bruce L.; Varani, James; Cortes, Pedro; Yee, Jerry; Dame, Michael; Sharba, Abdul K.

    2001-01-01

    Intraglomerular hypertension is a primary causal factor in the progressive glomerulosclerosis that characterizes diabetic nephropathy or severe renal ablation. However, inflammation of the glomerular mesangium also participates in at least the early phase of these diseases. In glomerulonephritis, where inflammation is thought to be the predominant causal factor, intraglomerular hypertension is also often present. Mesangial cells (MCs) are critical in orchestrating key functions of the glomerulus including extracellular matrix metabolism, cytokine production, and interaction with leukocytes. Because MCs are subject to increased stretching when intraglomerular hypertension is present, and in glomerulonephritis MC/leukocyte interactions seem to be mediated primarily via the up-regulation of intercellular adhesion molecule-1 (ICAM-1), we examine the possibility that cyclic stretching is a stimulus for increased MC ICAM-1 activity. We demonstrate that the normal low levels of MC ICAM-1 mRNA and protein are dramatically up-regulated by even short intervals of cyclic stretch. This effect is dose- and time-dependent, and requires little amplitude and a brief period of elongation for significant induction. Stretch-induced MC ICAM-1 also leads to a marked elevation in phagocytic leukocyte adherence. This stimulated adherence is equal or greater than that induced by the inflammatory cytokine tumor necrosis factor-α, whereas an additive effect occurs when both are applied in combination. Our results indicate that stretch-induced ICAM-1 may provide a direct link between hypertension and inflammation in the progression of injury and glomerulosclerosis in diabetes, renal ablation, and other forms of glomerulonephritis. PMID:11141473

  2. Different effects of antisense RelA p65 and NF-kappaB1 p50 oligonucleotides on the nuclear factor-kappaB mediated expression of ICAM-1 in human coronary endothelial and smooth muscle cells.

    PubMed

    Voisard, R; Huber, N; Baur, R; Susa, M; Ickrath, O; Both, A; Koenig, W; Hombach, V

    2001-01-01

    Activation of nuclear factor-kappaB (NF-kappaB) is one of the key events in early atherosclerosis and restenosis. We hypothesized that tumor necrosis factor-alpha (TNF-alpha) induced and NF-kappaB mediated expression of intercellular adhesion molecule-1 (ICAM-1) can be inhibited by antisense RelA p65 and NF-kappaB1 p50 oligonucleotides (RelA p65 and NF-kappaB1 p50). Smooth muscle cells (SMC) from human coronary plaque material (HCPSMC, plaque material of 52 patients), SMC from the human coronary media (HCMSMC), human endothelial cells (EC) from umbilical veins (HUVEC), and human coronary EC (HCAEC) were successfully isolated (HCPSMC, HUVEC), identified and cultured (HCPSMC, HCMSMC, HUVEC, HCAEC). 12 hrs prior to TNF-alpha stimulus (20 ng/mL, 6 hrs) RelA p65 and NF-kappaB1 p50 (1, 2, 4, 10, 20, and 30 microM) and controls were added for a period of 18 hrs. In HUVEC and HCAEC there was a dose dependent inhibition of ICAM-1 expression after adding of both RelA p65 and NF-kappaB1 p50. No inhibitory effect was seen after incubation of HCMSMC with RelA p65 and NF-kappaB1 p50. A moderate inhibition of ICAM-1 expression was found after simultaneous addition of RelA p65 and NF-kappaB1 p50 to HCPSMC, no inhibitory effect was detected after individual addition of RelA p65 and NF-kappaB1 p50. The data point out that differences exist in the NF-kappaB mediated expression of ICAM-1 between EC and SMC. Experimental antisense strategies directed against RelA p65 and NF-kappaB1 p50 in early atherosclerosis and restenosis are promising in HCAEC but will be confronted with redundant pathways in HCMSMC and HCPSMC.

  3. Largazole, a class I histone deacetylase inhibitor, enhances TNF-α-induced ICAM-1 and VCAM-1 expression in rheumatoid arthritis synovial fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Salahuddin, E-mail: Salah.Ahmed@utoledo.edu; Riegsecker, Sharayah; Beamer, Maria

    In the present study, we evaluated the effect of largazole (LAR), a marine-derived class I HDAC inhibitor, on tumor necrosis factor-α (TNF-α)-induced expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), and matrix metalloproteinase-2 (MMP-2) activity. LAR (1–5 μM) had no adverse effect on the viability of RA synovial fibroblasts. Among the different class I HDACs screened, LAR (0.5–5 μM) inhibited the constitutive expression of HDAC1 (0–30%). Surprisingly, LAR increased class II HDAC [HDAC6] by ∼ 220% with a concomitant decrease in HDAC5 [30–58%] expression in RA synovial fibroblasts. SAHA (5 μM), a pan-HDAC inhibitor, also inducedmore » HDAC6 expression in RA synovial fibroblasts. Pretreatment of RA synovial fibroblasts with LAR further enhanced TNF-α-induced ICAM-1 and VCAM-1 expression. However, LAR inhibited TNF-α-induced MMP-2 activity in RA synovial fibroblasts by 35% when compared to the TNF-α-treated group. Further, the addition of HDAC6 specific inhibitor Tubastatin A with LAR suppressed TNF-α + LAR-induced ICAM-1 and VCAM-1 expression and completely blocked MMP-2 activity, suggesting a role of HDAC6 in LAR-induced ICAM-1 and VCAM-1 expression. LAR also enhanced TNF-α-induced phospho-p38 and phospho-AKT expression, but inhibited the expression of phospho-JNK and nuclear translocation of NF-κBp65 in RA synovial fibroblasts. These results suggest that LAR activates p38 and Akt pathways and influences class II HDACs, in particular HDAC6, to enhance some of the detrimental effects of TNF-α in RA synovial fibroblasts. Understanding the exact role of different HDAC isoenzymes in RA pathogenesis is extremely important in order to develop highly effective HDAC inhibitors for the treatment of RA. - Highlights: • Largazole enhances TNF-α-induced ICAM-1 and VCAM-1. • Largazole upregulates class II HDAC (HDAC6) in RA synovial fibroblasts. • Largazole also induces the expression of

  4. Highly sensitivity adhesion molecules detection in hereditary haemochromatosis patients reveals altered expression.

    PubMed

    Norris, S; White, M; Mankan, A K; Lawless, M W

    2010-04-01

    Several abnormalities in the immune status of patients with hereditary haemochromatosis (HH) have been reported, suggesting an imbalance in their immune function. This may include persistent production of, or exposure to, altered immune signalling contributing to the pathogenesis of this disorder. Adhesion molecules L-, E- and P-Selectin, intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) are some of the major regulators of the immune processes and altered levels of these proteins have been found in pathological states including cardiovascular diseases, arthritis and liver cancer. The aim of this study was to assess L-, E- and P-Selectin, ICAM-1 and VCAM-1 expression in patients with HH and correlate these results with HFE mutation status and iron indexes. A total of 139 subjects were diagnosed with HH (C282Y homozygotes = 87, C282Y/H63D = 26 heterozygotes, H63D homozygotes = 26), 27 healthy control subjects with no HFE mutation (N/N), 18 normal subjects heterozygous for the H63D mutation served as age-sex-matched controls. We observed a significant decrease in L-selectin (P = 0.0002) and increased E-selectin and ICAM-1 (P = 0.0006 and P = 0.0059) expression in HH patients compared with healthy controls. This study observes for the first time that an altered adhesion molecules profile occurs in patients with HH that is associated with specific HFE genetic component for iron overload, suggesting that differential expression of adhesion molecules may play a role in the pathogenesis of HH.

  5. ICAM-1-related long non-coding RNA: promoter analysis and expression in human retinal endothelial cells.

    PubMed

    Lumsden, Amanda L; Ma, Yuefang; Ashander, Liam M; Stempel, Andrew J; Keating, Damien J; Smith, Justine R; Appukuttan, Binoy

    2018-05-09

    Regulation of intercellular adhesion molecule (ICAM)-1 in retinal endothelial cells is a promising druggable target for retinal vascular diseases. The ICAM-1-related (ICR) long non-coding RNA stabilizes ICAM-1 transcript, increasing protein expression. However, studies of ICR involvement in disease have been limited as the promoter is uncharacterized. To address this issue, we undertook a comprehensive in silico analysis of the human ICR gene promoter region. We used genomic evolutionary rate profiling to identify a 115 base pair (bp) sequence within 500 bp upstream of the transcription start site of the annotated human ICR gene that was conserved across 25 eutherian genomes. A second constrained sequence upstream of the orthologous mouse gene (68 bp; conserved across 27 Eutherian genomes including human) was also discovered. Searching these elements identified 33 matrices predictive of binding sites for transcription factors known to be responsive to a broad range of pathological stimuli, including hypoxia, and metabolic and inflammatory proteins. Five phenotype-associated single nucleotide polymorphisms (SNPs) in the immediate vicinity of these elements included four SNPs (i.e. rs2569693, rs281439, rs281440 and rs11575074) predicted to impact binding motifs of transcription factors, and thus the expression of ICR and ICAM-1 genes, with potential to influence disease susceptibility. We verified that human retinal endothelial cells expressed ICR, and observed induction of expression by tumor necrosis factor-α.

  6. Roles of cell-cell adhesion-dependent tyrosine phosphorylation of Gab-1.

    PubMed

    Shinohara, M; Kodama, A; Matozaki, T; Fukuhara, A; Tachibana, K; Nakanishi, H; Takai, Y

    2001-06-01

    Gab-1 is a multiple docking protein that is tyrosine phosphorylated by receptor tyrosine kinases such as c-Met, hepatocyte growth factor/scatter factor receptor, and epidermal growth factor receptor. We have now demonstrated that cell-cell adhesion also induces marked tyrosine phosphorylation of Gab-1 and that disruption of cell-cell adhesion results in its dephosphorylation. An anti-E-cadherin antibody decreased cell-cell adhesion-dependent tyrosine phosphorylation of Gab-1, whereas the expression of E-cadherin specifically induced tyrosine phosphorylation of Gab-1. A relatively selective inhibitor of Src family kinases reduced cell-cell adhesion-dependent tyrosine phosphorylation of Gab-1, whereas expression of a dominant-negative mutant of Csk increased it. Disruption of cell-cell adhesion, which reduced tyrosine phosphorylation of Gab-1, also reduced the activation of mitogen-activated protein kinase and Akt in response to cell-cell adhesion. These results indicate that E-cadherin-mediated cell-cell adhesion induces tyrosine phosphorylation by a Src family kinase of Gab-1, thereby regulating the activation of Ras/MAP kinase and phosphatidylinositol 3-kinase/Akt cascades.

  7. Separable requirements for cytoplasmic domain of PSGL-1 in leukocyte rolling and signaling under flow

    PubMed Central

    Miner, Jonathan J.; Xia, Lijun; Yago, Tadayuki; Kappelmayer, János; Liu, Zhenghui; Klopocki, Arkadiusz G.; Shao, Bojing; McDaniel, J. Michael; Setiadi, Hendra; Schmidtke, David W.

    2008-01-01

    In inflamed venules, leukocytes use P-selectin glycoprotein ligand-1 (PSGL-1) to roll on P-selectin and E-selectin and to activate integrin αLβ2 (lymphocyte function-associated antigen-1, LFA-1) to slow rolling on intercellular adhesion molecule-1 (ICAM-1). Studies in cell lines have suggested that PSGL-1 requires its cytoplasmic domain to localize in membrane domains, to support rolling on P-selectin, and to signal through spleen tyrosine kinase (Syk). We generated “ΔCD” mice that express PSGL-1 without the cytoplasmic domain. Unexpectedly, neutrophils from these mice localized PSGL-1 normally in microvilli, uropods, and lipid rafts. ΔCD neutrophils expressed less PSGL-1 on their surfaces because of inefficient export from the endoplasmic reticulum. Limited digestion of wild-type neutrophils with O-sialoglycoprotein endopeptidase was used to reduce the PSGL-1 density to that on ΔCD neutrophils. At matched PSGL-1 densities, both ΔCD and wild-type neutrophils rolled similarly on P-selectin. However, ΔCD neutrophils rolling on P-selectin did not trigger Syk-dependent activation of LFA-1 to slow rolling on ICAM-1. These data demonstrate that the PSGL-1 cytoplasmic domain is dispensable for leukocyte rolling on P-selectin but is essential to activate β2 integrins to slow rolling on ICAM-1. PMID:18550846

  8. Effect of antisense oligodeoxynucleotides for ICAM-1 on renal ischaemia–reperfusion injury in the anaesthetised rat

    PubMed Central

    Kiew, Lik Voon; Munavvar, Abdul Sattar; Law, Chung Hiong; Azizan, Abdullah Nor; Nazarina, Abdul Rahman; Sidik, Khalifah; Johns, Edward J

    2004-01-01

    An antisense oligodeoxynucleotide (As-ODN) to the 3′ untranslated region of the mRNA sequence expressing the intracellular adhesion molecule-1 (ICAM-1) was employed to determine ICAM-1's role in renal ischaemia–reperfusion injury in the rat. Wistar-Kyoto rats receiving i.v. either lipofectin–As-ODN (As-ODN group), lipofectin–reverse ODN (Rv-ODN group) or lipofectin (ischaemia control group) 8 h prior to study were anaesthetized and subjected to 30 min of renal artery occlusion. Renal haemodynamic and excretory parameters were monitored before and after renal ischaemia. On termination of the study renal tissue was subjected to histological and Western blot analysis. Renal blood flow decreased in the 3 h post-ischaemia period in the ischaemia control and Rv-ODN groups, but was maintained in the As-ODN group. Glomerular filtration rate was depressed initially but gradually increased to 10% above basal levels in the ischaemia control and Rv-ODN groups, but was below basal levels (20%) in the As-ODN group. There was a three- to fourfold increase in sodium and water excretion following ischaemia in the ischaemia control and reverse-ODN groups but not in the As-ODN treated group. The As-ODN ameliorated the histological evidence of ischaemic damage and reduced ICAM-1 protein levels to a greater extent in the medulla than cortex. These observations suggested that in the post-ischaemic period afferent and efferent arteriolar tone was increased with a loss of reabsorptive capacity which was in part due to ICAM-1. The possibility arises that the action of ICAM-1 at vascular and tubular sites in the deeper regions of the kidney contributes to the ischaemia–reperfusion injury. PMID:15047774

  9. Quantitative genetic analysis of cellular adhesion molecules: the Fels Longitudinal Study.

    PubMed

    Lee, Miryoung; Czerwinski, Stefan A; Choh, Audrey C; Demerath, Ellen W; Sun, Shumei S; Chumlea, Wm C; Towne, Bradford; Siervogel, Roger M

    2006-03-01

    Circulating concentrations of inflammatory markers predict cardiovascular disease (CVD) risk and are closely associated with obesity. However, little is known concerning genetic influences on serum levels of inflammatory markers. In this study, we estimated the heritability (h2) of soluble cellular adhesion molecule (sCAM) concentrations and examined the correlational architecture between different sCAMs. The study population included 234 men and 270 women aged 18-76 years, belonging to 121 families participating in the Fels Longitudinal Study. Serum levels of soluble intercellular adhesion molecule-1 (sICAM-1), vascular cell adhesion molecule-1 (sVCAM-1), E-selectin (sESEL-1) and P-selectin (sPSEL-1) were assayed using commercially available kits. A variance components-based maximum likelihood method was used to estimate the h2 of the different serum inflammatory markers while simultaneously adjusting for the effects of known CVD risk factors, such as age and smoking. Additionally, we used bivariate extensions of these methods to estimate genetic and random environmental correlations among sCAMs. Levels of sCAMs were significantly heritable: h2=0.24+/-0.10 for sICAM-1, h2=0.22+/-0.10 for sVCAM-1, h2=0.50+/-0.11 for sESEL-1, and h2=0.46+/-0.10 for sPSEL-1. In addition, a significant genetic correlation (rho(G)=0.63) was found between sICAM-1 and sVCAM-1 indicating some degree of shared genetic control. In the Fels Longitudinal Study, the levels of four sCAMs are significantly influenced by genetic effects, and sICAM-1 shares a common genetic background with sVCAM-1.

  10. Inhibition of TNFα-induced adhesion molecule expression by (Z)-(S)-9-octadecenamide, N-(2-hydroxyethyl,1-methyl).

    PubMed

    Chen, Caixia; Jin, Xin; Meng, Xianglan; Zheng, Chengwei; Shen, Yanhui; Wang, Yiqing

    2011-06-25

    Inflammation is a primary event in atherogenesis. Oleoylethanolamide (OEA), a naturally occurring fatty-acid ethanolamide, lowers lipid levels in liver and blood through activation of the nuclear receptor, peroxisome proliferator-activated receptor-alpha (PPARα). We designed and synthesized (Z)-(S)-9-octadecenamide, N-(2-hydroxyethyl, 1-methyl) (OPA), an OEA analog. The present study investigated the effect of OPA on the expression of adhesion molecules in human umbilical vein endothelial cells (HUVEC). OPA inhibited expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) stimulated by Tumor Necrosis Factor-α (TNF-α) via activation of PPARα. This inhibition of VCAM-1 and ICAM-1 expression decreased adhesion of monocyte-like cells to stimulated endothelial cells. These results demonstrate that OPA may have anti-inflammatory properties. Our results thus provide new insights into possible future therapeutic approaches to the treatment of atherosclerosis. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Decoy receptor 3 promotes cell adhesion and enhances endometriosis development.

    PubMed

    Tsai, Hsiao-Wen; Huang, Ming-Ting; Wang, Peng-Hui; Huang, Ben-Shian; Chen, Yi-Jen; Hsieh, Shie-Liang

    2018-02-01

    Endometriosis is a multifactorial inflammatory disease with persistent activation of the nuclear factor-κB (NF-κB) signalling pathway. Aberrant adhesion of endometrium is the essential step in the progression of endometriosis, but the molecular mechanism of ectopic growth of endometrium is still unclear. Decoy receptor 3 (DcR3)/TNFRSF6B, a pleiotropic immunomodulator regulated by oestrogen, is able to activate focal adhesion kinase to promote cell adhesion. We found that DcR3 is upregulated in human ectopic endometrial cells via activation of the Akt-NF-κB signalling pathway, and its expression level correlates positively with that of the adhesion molecules intercellular adhesion molecule 1 (ICAM-1) and homing cell adhesion molecule (HCAM; CD44). In a multivariate regression model, DcR3 expression level was the most significant parameter associated with endometriosis severity. Knockdown of DcR3 not only downregulated the expression of ICAM-1 and HCAM, but also reduced cell adhesion and migration. In vivo investigation further showed that DcR3 promoted the growth and spread of endometrium, whereas knockdown of DcR3 by lentivirus-delivered short hairpin RNA inhibited ectopic adhesion of endometrium and abrogated endometriosis progression. These observations are in support of DcR3 playing a critical role in the pathogenesis of endometriosis, and the inhibition of DcR3 expression being a promising approach for the treatment of endometriosis. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  12. Antibody Against Integrin Lymphocyte Function-Associated Antigen 1 Inhibits HIV Type 1 Infection in Primary Cells Through Caspase-8-Mediated Apoptosis

    PubMed Central

    Walker, Tiffany N.; Cimakasky, Lisa M.; Coleman, Ebony M.; Madison, M. Nia

    2013-01-01

    Abstract HIV-1 infection induces formation of a virological synapse wherein CD4, chemokine receptors, and cell-adhesion molecules such as lymphocyte function-associated antigen 1 (LFA-1) form localized domains on the cell surface. Studies show that LFA-1 on the surface of HIV-1 particles retains its adhesion function and enhances virus attachment to susceptible cells by binding its counterreceptor intercellular adhesion molecule 1 (ICAM-1). This virus–cell interaction augments virus infectivity by facilitating binding and entry events. In this study, we demonstrate that inhibition of the LFA-1/ICAM-1 interaction by a monoclonal antibody leads to decreased virus production and spread in association with increased apoptosis of HIV-infected primary T cells. The data indicate that the LFA-1/ICAM-1 interaction may limit apoptosis in HIV-1-infected T cells. This phenomenon appears similar to anoikis wherein epithelial cells are protected from apoptosis conferred by ligand-bound integrins. These results have implications for further understanding HIV pathogenesis and replication in peripheral compartments and lymphoid organs. PMID:22697794

  13. Physical association and functional interaction between beta1 integrin and CD98 on human T lymphocytes

    NASA Technical Reports Server (NTRS)

    Miyamoto, Yuko J.; Mitchell, Jason S.; McIntyre, Bradley W.

    2003-01-01

    CD98 is a cell surface protein previously characterized as a cell activation marker, an amino acid transporter, and has recently been implicated in integrin-related functions. Integrins are cell surface proteins, important for homotypic cell aggregation, cell adhesion, and coactivation of T lymphocytes. We have previously shown that the anti-CD98 mAb 80A10, when coimmobilized with anti-CD3 mAb OKT3, is able to mediate human T cell coactivation that is inhibited by anti-beta1 integrin specific mAb 18D3. These results indicated a functional association of CD98 and beta1 integrin signaling but left open the question of a physical association. We now show the induction of homotypic aggregation through CD98 among human T cells and this aggregation was inhibited by anti-beta1 integrin mAb. Therefore, CD98-dependent lymphocyte proliferation and adhesion may involve integrins. Competitive binding assays and fluorescence colocalization analysis suggested that CD98 and beta1 integrin were physically associated. Differential extraction techniques and immunoprecipitations provided the first evidence that the alpha4beta1 integrin and CD98 are specifically associated on human T lymphocytes.

  14. Intercellular adhesion molecule, plasma adiponectin and albuminuria in type 2 diabetic patients.

    PubMed

    Lenghel, Alina Ramona; Kacso, Ina Maria; Bondor, Cosmina Ioana; Rusu, Crina; Rahaian, Rodica; Gherman Caprioara, Mirela

    2012-01-01

    Our study addressed the influence of early inflammatory stages of diabetic kidney disease: leukocyte adhesion and monocyte activation (as assessed by intercellular leukocyte adhesion molecule-ICAM-1 and monocyte chemoatractant protein-MCP-1) on the degree of albuminuria. Plasma levels of adiponectin, a possible anti-inflammatory counteracting mechanism, were also studied in correlation to the above-mentioned cytokines. 79 consecutive type 2 diabetic outpatients and 46 controls were included. Routine laboratory analysis, urinary albumin to creatinine ratio (uACR), plasma adiponectin, plasma ICAM-1 and urinary MPC-1 were assessed. In multiple regression ICAM-1 (p=0.004) and adiponectin (p=0.04) were the main determinants of uACR. Plasma adiponectin positively correlated to ICAM-1 (p=0.03, r=0.24). In albuminuric patients (uACR ≥30 mg/g) plasma adiponectin was significantly higher compared to normoalbuminuric ones (uACR <30 mg/g). In albuminuric patients the main determinants of uACR were plasma ICAM-1 and adiponectin. In multiple regression ICAM-1 is the only one that retains statistical significance (p=0.02). Urinary MCP-1 did not correlate to uACR. In our type 2 diabetic patients, plasma levels of ICAM-1 and adiponectin are predictive for albuminuria. Urinary MCP-1 does not correlated to uACR. Plasma adiponectin positively correlates to adhesion molecule ICAM-1 in our cohort. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. Endothelial Activation Biomarkers Increase after HIV-1 Acquisition: Plasma VCAM-1 Predicts Disease Progression

    PubMed Central

    GRAHAM, Susan M.; RAJWANS, Nimerta; JAOKO, Walter; ESTAMBALE, Benson B.A.; MCCLELLAND, R. Scott; OVERBAUGH, Julie; LILES, W. Conrad

    2013-01-01

    Objective We aimed to determine whether endothelial activation biomarkers increase after HIV-1 acquisition, and whether biomarker levels measured in chronic infection would predict disease progression and death in HIV-1 seroconverters. Design HIV-1-seronegative Kenyan women were monitored monthly for seroconversion, and followed prospectively after HIV-1 acquisition. Methods Plasma levels of angiopoietins-1 and -2 (ANG-1, ANG-2) and soluble vascular cell adhesion marker-1 (VCAM-1), intercellular adhesion marker-1 (ICAM-1), and E-selectin were tested in stored samples from before infection, acute infection, and at two points during chronic infection. We used non-parametric tests to compare biomarkers before and after HIV-1 acquisition, and Cox proportional-hazards regression to analyze associations with disease progression (CD4 <200 cells/μL, Stage IV disease, or ART initiation) or death. Results Soluble ICAM-1 and VCAM-1 were elevated relative to baseline in all post-infection periods assessed (p<0.0001). Soluble E-selectin and the ANG-2:ANG-1 ratio increased in acute infection (p=0.0001), and ANG-1 decreased in chronic infection (p=0.0004). Among 228 subjects followed over 1,028 person-years, 115 experienced disease progression or death. Plasma VCAM-1 levels measured during chronic infection were independently associated with time to HIV progression or death (aHR 5.36, 95% confidence interval 1.99–14.44 per log10 increase), after adjustment for set point plasma viral load, age at infection, and soluble ICAM-1 levels. Conclusions HIV-1 acquisition was associated with endothelial activation, with sustained elevations of soluble ICAM-1 and VCAM-1 post-infection. Soluble VCAM-1 may be an informative biomarker for predicting the risk of HIV-1 disease progression, morbidity, and mortality. PMID:23807276

  16. Clinical significance of circulating vascular cell adhesion molecule-1 to white matter disintegrity in Alzheimer's dementia.

    PubMed

    Huang, Chi-Wei; Tsai, Meng-Han; Chen, Nai-Ching; Chen, Wei-Hsi; Lu, Yan-Ting; Lui, Chun-Chung; Chang, Ya-Ting; Chang, Wen-Neng; Chang, Alice Y W; Chang, Chiung-Chih

    2015-11-25

    Endothelial dysfunction leads to worse cognitive performance in Alzheimer's dementia (AD). While both cerebrovascular risk factors and endothelial dysfunction lead to activation of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1) and E-selectin, it is not known whether these biomarkers extend the diagnostic repertoire in reflecting intracerebral structural damage or cognitive performance. A total of 110 AD patients and 50 age-matched controls were enrolled. Plasma levels of VCAM-1, ICAM-1 and E-selectin were measured and correlated with the cognitive performance, white matter macro-structural changes, and major tract-specific fractional anisotropy quantification. The AD patients were further stratified by clinical dementia rating score (mild dementia, n=60; moderate-to-severe dementia, n=50). Compared with the controls, plasma levels of VCAM-1 (p< 0.001), ICAM-1 (p=0.028) and E-selectin (p=0.016) were significantly higher in the patients, but only VCAM-1 levels significantly reflected the severity of dementia (p< 0.001). In addition, only VCAM-1 levels showed an association with macro- and micro- white matter changes especially in the superior longitudinal fasciculus (p< 0.001), posterior thalamic radiation (p=0.002), stria terminalis (p=0.002) and corpus callosum (p=0.009), and were independent of, age and cortical volume. These tracts show significant association with MMSE, short term memory and visuospatial function. Meanwhile, while VCAM-1 level correlated significantly with short-term memory (p=0.026) and drawing (p=0.025) scores in the AD patients after adjusting for age and education, the significance disappeared after adjusting for global FA. Endothelial activation, especially VCAM-1, was of clinical significance in AD that reflects macro- and micro-structural changes and poor short term memory and visuospatial function.

  17. Phagocytosis of gram-negative bacteria by a unique CD14-dependent mechanism.

    PubMed

    Schiff, D E; Kline, L; Soldau, K; Lee, J D; Pugin, J; Tobias, P S; Ulevitch, R J

    1997-12-01

    THP-1-derived cell lines were stably transfected with constructs encoding glycophosphatidylinositol (GPI)-anchored or transmembrane forms of human CD14. CD14 expression was associated with enhanced phagocytosis of serum (heat-inactivated)-opsonized Escherichia coli (opEc). Both the GPI-anchored and transmembrane forms of CD14 supported phagocytosis of opEc equally well. Lipopolysaccharide-binding protein (LBP) played a role in CD14-dependent phagocytosis as evidenced by inhibition of CD14-dependent phagocytosis of opEc with anti-LBP monoclonal antibody (mAb) and by enhanced phagocytosis of E. coli opsonized with purified LBP. CD14-dependent phagocytosis was inhibited by a phosphatidylinositol (PI) 3-kinase inhibitor (wortmannin) and a protein tyrosine kinase inhibitor (tyrphostin 23) but not a protein kinase C inhibitor (bisindolyl-maleimide) or a divalent cation chelator (ethylenediaminetetraacetate). Anti-LBP mAb 18G4 and anti-CD14 mAb 18E12 were used to differentiate between the pathways involved in CD14-dependent phagocytosis and CD14-dependent cell activation. F(ab')2 fragments of 18G4, a mAb to LBP that does not block cell activation, inhibited ingestion of opEc by THP1-wtCD14 cells. 18E12 (an anti-CD14 mAb that does not block LPS binding to CD14 but does inhibit CD14-dependent cell activation) did not inhibit phagocytosis of LBP-opEc by THP1-wtCD14 cells. Furthermore, CD14-dependent phagocytosis was not inhibited by anti-CD18 (CR3 and CR4 beta-chain) or anti-Fcgamma receptor mAb.

  18. Suppression of endothelial cell adhesion by XJP-1, a new phenolic compound derived from banana peel.

    PubMed

    Fu, Rong; Yan, Tianhua; Wang, Qiujuan; Guo, Qinglong; Yao, Hequan; Wu, Xiaoming; Li, Yang

    2012-01-01

    The adhesion of monocytes to activated vascular endothelial cells is a critical event in the initiation of atherosclerosis. Adhesion is mediated by oxidized low-density lipoprotein (ox-LDL) which up-regulates inflammatory markers on endothelial cells. Here we report that (±) 7, 8-dihydroxy-3-methyl-isochromanone-4 (XJP-1), an inhibitor of ox-LDL-induced adhesion of monocytes to endothelial cells blocks cellular functions which are associated with adhesion. We show that XJP-1 down-regulates ox-LDL-induced over-expression of adhesion molecules (ICAM-1 and VCAM-1) in a dose-dependent manner in human umbilical vein endothelial cells (HUVECs), attenuates ox-LDL-induced up-regulation of low-density lipoprotein receptor (LOX)-1, decreases generation of reactive oxygen species (ROS), blocks translocation of nuclear factor-kappa B (NF-κB) activity, and prevents activation of c-Jun N-terminal kinase (JNK)/p38 pathways in endothelial cells. These findings suggest that XJP-1 may attenuate ox-LDL-induced endothelial adhesion of monocytes by blocking expression of adhesion molecules through suppressing ROS/NF-κB, JNK and p38 pathways. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Characterization of a Distinct Population of Circulating Human Non-Adherent Endothelial Forming Cells and Their Recruitment via Intercellular Adhesion Molecule-3

    PubMed Central

    Thompson, Emma J.; Barrett, Jeffrey M.; Tooley, Katie; Sen, Shaundeep; Sun, Wai Yan; Grose, Randall; Nicholson, Ian; Levina, Vitalina; Cooke, Ira; Talbo, Gert; Lopez, Angel F.; Bonder, Claudine S.

    2012-01-01

    Circulating vascular progenitor cells contribute to the pathological vasculogenesis of cancer whilst on the other hand offer much promise in therapeutic revascularization in post-occlusion intervention in cardiovascular disease. However, their characterization has been hampered by the many variables to produce them as well as their described phenotypic and functional heterogeneity. Herein we have isolated, enriched for and then characterized a human umbilical cord blood derived CD133+ population of non-adherent endothelial forming cells (naEFCs) which expressed the hematopoietic progenitor cell markers (CD133, CD34, CD117, CD90 and CD38) together with mature endothelial cell markers (VEGFR2, CD144 and CD31). These cells also expressed low levels of CD45 but did not express the lymphoid markers (CD3, CD4, CD8) or myeloid markers (CD11b and CD14) which distinguishes them from ‘early’ endothelial progenitor cells (EPCs). Functional studies demonstrated that these naEFCs (i) bound Ulex europaeus lectin, (ii) demonstrated acetylated-low density lipoprotein uptake, (iii) increased vascular cell adhesion molecule (VCAM-1) surface expression in response to tumor necrosis factor and (iv) in co-culture with mature endothelial cells increased the number of tubes, tubule branching and loops in a 3-dimensional in vitro matrix. More importantly, naEFCs placed in vivo generated new lumen containing vasculature lined by CD144 expressing human endothelial cells (ECs). Extensive genomic and proteomic analyses of the naEFCs showed that intercellular adhesion molecule (ICAM)-3 is expressed on their cell surface but not on mature endothelial cells. Furthermore, functional analysis demonstrated that ICAM-3 mediated the rolling and adhesive events of the naEFCs under shear stress. We suggest that the distinct population of naEFCs identified and characterized here represents a new valuable therapeutic target to control aberrant vasculogenesis. PMID:23144795

  20. Drospirenone and levonorgestrel in combination with either 30 or 20 mcg ethinylestradiol reduce soluble adhesion molecules in Brazilian women; cross-sectional study.

    PubMed

    Stocco, Bianca; Fumagalli, Helen Figueiredo; Franceschini, Silvio Antônio; Martinez, Edson Zangiacomi; Marzocchi-Machado, Cleni Mara; Toloi, Maria Regina Torqueti

    2012-11-01

    The objective of this study was to evaluate the effect of three contraceptive pills containing ethinylestradiol (EE) (20 or 30 mcg) in combination with drospirenone (DRSP) and levonorgestrel (LNG) on plasma concentration of adhesion molecules vascular cell adhesion molecule -1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1) and E-selectin. A cross-sectional study was conducted with 72 participants (18-30 years old) distributed into three groups that used oral contraceptives containing EE 20 or 30 mcg combined with DRSP 3 mg or EE 30 mcg/LNG 150 mcg for at least 6 months. The control group was comprised of nonusers of contraceptives. Soluble VCAM-1, soluble ICAM-1 and soluble E-selectin were evaluated by enzyme-linked immunosorbent assay. Compared to the control group, a significant decrease was found in VCAM-1 and ICAM-1 concentrations with use of DRSP/20 EE and LNG/30 EE. DRSP/20 EE and LNG/30 EE induce favorable changes in endothelial function. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. CD151 supports VCAM-1-mediated lymphocyte adhesion to liver endothelium and is upregulated in chronic liver disease and hepatocellular carcinoma

    PubMed Central

    Wadkin, James C. R.; Patten, Daniel A.; Kamarajah, Sivesh K.; Shepherd, Emma L.; Novitskaya, Vera; Berditchevski, Fedor; Adams, David H.; Weston, Chris J.

    2017-01-01

    CD151, a member of the tetraspanin family of receptors, is a lateral organizer and modulator of activity of several families of transmembrane proteins. It has been implicated in the development and progression of several cancers, but its role in chronic inflammatory disease is less well understood. Here we show that CD151 is upregulated by distinct microenvironmental signals in a range of chronic inflammatory liver diseases and in primary liver cancer, in which it supports lymphocyte recruitment. CD151 was highly expressed in endothelial cells of the hepatic sinusoids and neovessels developing in fibrotic septa and tumor margins. Primary cultures of human hepatic sinusoidal endothelial cells (HSECs) expressed CD151 at the cell membrane and in intracellular vesicles. CD151 was upregulated by VEGF and HepG2 conditioned media but not by proinflammatory cytokines. Confocal microscopy confirmed that CD151 colocalized with the endothelial adhesion molecule/immunoglobulin superfamily member, VCAM-1. Functional flow-based adhesion assays with primary human lymphocytes and HSECs demonstrated a 40% reduction of lymphocyte adhesion with CD151 blockade. Inhibition of lymphocyte adhesion was similar between VCAM-1 blockade and a combination of CD151/VCAM-1 blockade, suggesting a collaborative role between the two receptors. These studies demonstrate that CD151 is upregulated within the liver during chronic inflammation, where it supports lymphocyte recruitment via liver endothelium. We propose that CD151 regulates the activity of VCAM-1 during lymphocyte recruitment to the human liver and could be a novel anti-inflammatory target in chronic liver disease and hepatocellular cancer prevention. NEW & NOTEWORTHY Chronic hepatitis is characterized by lymphocyte accumulation in liver tissue, which drives fibrosis and carcinogenesis. Here, we demonstrate for the first time that the tetraspanin CD151 supports lymphocyte adhesion to liver endothelium. We show that CD151 is upregulated

  2. Withaferin A inhibits tumor necrosis factor-alpha-induced expression of cell adhesion molecules by inactivation of Akt and NF-kappaB in human pulmonary epithelial cells.

    PubMed

    Oh, Jung Hwa; Kwon, Taeg Kyu

    2009-05-01

    We here investigated the functional effect of withaferin A on airway inflammation and its action mechanism. Withaferin A inhibited the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in human lung epithelial A549 cells stimulated with tumor necrosis factor-alpha (TNF-alpha), resulting in the suppression of leukocyte adhesion to lung epithelial A549 cells. In addition, withaferin A inhibited TNF-alpha-induced expression of adhesion molecules (ICAM-1 and VCAM-1) protein and mRNA in a dose-dependent manner. Withaferin A prevented DNA binding activity of nuclear factor-kappaB (NF-kappaB) and nuclear translocation of NF-kappaB. It also inhibited phosphorylation of Akt and extracellular signal-regulated kinase (ERK), which are upstream in the regulation of adhesion molecules by TNF-alpha. Furthermore, withaferin A inhibited U937 monocyte adhesion to A549 cells stimulated by TNF-alpha, suggesting that it may inhibit the binding of these cells by regulating the expression of critical adhesion molecules by TNF-alpha. Taken together, these results suggest that withaferin A inhibits cell adhesion through inhibition of ICAM-1 and VCAM-1 expression, at least in part, by blocking Akt and down-regulating NF-kappaB activity.

  3. Adhesion of normal erythrocytes at depressed venous shear rates to activated neutrophils, activated platelets, and fibrin polymerized from plasma.

    PubMed

    Goel, Mukul S; Diamond, Scott L

    2002-11-15

    Deep vein thrombosis (DVT) is a low flow pathology often prevented by vascular compression to increase blood movement. We report new heterotypic adhesive interactions of normal erythrocytes operative at low wall shear rates (gamma(w)) below 100 s(-1). Adhesion at gamma(w) = 50 s(-1) of washed red blood cells (RBCs) to fibrinogen-adherent platelets was 4-fold less (P <.005) than to collagen-adherent platelets (279 +/- 105 RBC/mm(2)). This glycoprotein VI (GPVI)-triggered adhesion was antagonized (> 80% reduction) by soluble fibrinogen (3 mg/mL) and ethylenediaminetetraacetic acid (EDTA). RBC-platelet adhesion was reduced in half by antibodies against CD36 or GPIb, but not by antibodies against GPIIb/IIIa, von Willebrand factor (VWF), thrombospondin (TSP), P-selectin, beta(1), alpha(v), or CD47. Adhesion of washed RBCs to fibrinogen-adherent neutrophils was increased 6-fold in the presence of 20 microM N-formyl-Met-Leu-Phe to a level of 67 RBCs per 100 neutrophils after 5 minutes at 50 s(-1). RBC-neutrophil adhesion was diminished by anti-CD11b (76%), anti-RBC Landsteiner-Wiener (LW) (ICAM4; 40%), or by EDTA (> 80%), but not by soluble fibrinogen or antibodies against CD11a, CD11c, CD36, TSP, beta(1), alpha(v), or CD47. RBC adhesion to activated platelets and activated neutrophils was prevented by wall shear stress above 1 dyne/cm(2) (at 100 s(-1)). Whereas washed RBCs did not adhere to fibrin formed from purified fibrinogen, adhesion was marked when pure fibrin was precoated with TSP or when RBCs were perfused over fibrin formed from recalcified plasma. Endothelial activation and unusually low flow may be a setting prone to receptor-mediated RBC adhesion to adherent neutrophils (or platelets/fibrin), all of which may contribute to DVT.

  4. Inhibition of STAT3 phosphorylation by sulforaphane reduces adhesion molecule expression in vascular endothelial cell.

    PubMed

    Cho, Young S; Kim, Chan H; Ha, Tae S; Ahn, Hee Y

    2015-11-18

    Intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) play key roles in the initiation of vascular inflammation. In this study, we explored whether sulforaphane, a dietary phytochemical, can inhibit the expression of ICAM-1 and VCAM-1 in human umbilical vein endothelial cells (HUVEC) stimulated with lipopolysaccharide (LPS), and the mechanisms involved. Sulforaphane prevented the LPS-mediated increase in ICAM-1 and VCAM-1 expression, (P < 0.01) in HUVEC. Sulforaphane also prevented the LPS-mediated increase in the phosphorylation of signal transducer and activator of transcription 3 (STAT3) (P < 0.01). Stattic, a STAT3 inhibitor, reduced the LPS-induced expression of ICAM-1 and VCAM-1, and STAT3 phosphorylation (P < 0.01). STAT3 small interfering RNA treatment reduced the LPS-induced expression of ICAM-1, VCAM-1, and STAT3 (P < 0.01). Sulforaphane reduced LPS-mediated THP-1 monocyte adhesion to HUVEC (P < 0.01). In C57BL/6 mice, injection of LPS increased aortic ICAM-1 and VCAM-1 expression, and this effect was prevented by sulforaphane. These data provide insight into the mechanism through which sulforaphane partly reduces the expression of ICAM-1 and VCAM-1 on the vascular wall by inhibiting STAT3 phosphorylation.

  5. The angiogenic factor CCN1 promotes adhesion and migration of circulating CD34+ progenitor cells: potential role in angiogenesis and endothelial regeneration.

    PubMed

    Grote, Karsten; Salguero, Gustavo; Ballmaier, Matthias; Dangers, Marc; Drexler, Helmut; Schieffer, Bernhard

    2007-08-01

    Tissue regeneration involves the formation of new blood vessels regulated by angiogenic factors. We reported recently that the expression of the angiogenic factor CCN1 is up-regulated under various pathophysiologic conditions within the cardiovascular system. Because CD34+ progenitor cells participate in cardiovascular tissue regeneration, we investigated whether CCN1-detected for the first time in human plasma-promotes the recruitment of CD34+ progenitor cells to endothelial cells, thereby enhancing endothelial proliferation and neovascularization. In this study, we demonstrated that CCN1 and supernatants from CCN1-stimulated human CD34+ progenitor cells promoted proliferation of endothelial cells and angiogenesis in vitro and in vivo. In addition, CCN1 induced migration and transendothelial migration of CD34+ cells and the release of multiple growth factors, chemokines, and matrix metalloproteinase-9 (MMP-9) from these cells. Moreover, the CCN1-specific integrins alpha(M)beta(2) and alpha(V)beta(3) are expressed on CD34+ cells and CCN1 stimulated integrin-dependent signaling. Furthermore, integrin antagonists (RGD-peptides) suppressed both binding of CCN1 to CD34+ cells and CCN1-induced adhesion of CD34+ cells to endothelial cells. These data suggest that CCN1 promotes integrin-dependent recruitment of CD34+ progenitor cells to endothelial cells, which may contribute to paracrine effects on angiogenesis and tissue regeneration.

  6. CD151-mediated adhesion is crucial to osteosarcoma pulmonary metastasis

    PubMed Central

    Sun, Mengxiong; Zhou, Chenghao; Chen, Jian; Yin, Fei; Wang, Hongsheng; Lin, Binhui; Zuo, Dongqing; Li, Suoyuan; Feng, Lijin; Duan, Zhenfeng; Cai, Zhengdong; Hua, Yingqi

    2016-01-01

    CD151, a tetraspanin family protein involved in cell-cell and cell-extracellular matrix interaction, is differentially expressed in osteosarcoma cell membranes. Thus, this study aimed to investigate the role of CD151 in osteosarcoma metastasis. We analyzed CD151 expression in patient tissue samples using immunohistochemistry. CD151 expression was also silenced with shRNA in osteosarcoma cells of high metastatic potential, and cell adhesion, migration and invasion were evaluated in vitro and pulmonary metastasis was investigated in vivo. Mediators of cell signaling pathways were also examined following suppression of CD151 expression. Overall survival for patients with low versus high CD151 expression level was 94 vs. 41 months (p=0.0451). CD151 expression in osteosarcoma cells with high metastatic potential was significantly higher than in those with low metastatic potential (p<0.001). shRNA-mediated silencing of CD151 did not influence cell viability or proliferation; however, cell adhesion, migration and invasion were all inhibited (all p<0.001). In mice inoculated with shRNA-transduced osteosarcoma cells, the number and size of lung metastatic lesions were reduced compared to the mice inoculated with control-shRNA transduced cells (p<0.001). In addition, CD151 knockdown significantly reduced Akt, p38, and p65 phosphorylation as well as focal adhesion kinase, integrin β1, p70s6, and p-mTOR levels. Taken together, CD151 induced osteosarcoma metastasis likely by regulating cell function through adhesion signaling. Further studies are necessary to fully explore the diagnostic and prognostic value of determining CD151 expression in osteosarcoma patients. PMID:27556355

  7. ICAM-1 and AMPK regulate cell detachment and apoptosis by N-methyl-N Prime -nitro-N-nitrosoguanidine, a widely spread environmental chemical, in human hormone-refractory prostate cancers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yi-Cheng; Lu, Pin-Hsuan; Hsu, Jui-Ling

    2011-12-15

    Poly(ADP-ribose) polymerase-1 (PARP-1), a sensor of DNA damage, plays a crucial role in the regulation of DNA repair. PARP-1 hyperactivation causes DNA damage and cell death. The underlying mechanism is complicated and is through diverse pathways. The understanding of responsible signaling pathways may offer implications for effective therapies. After concentration-response determination of N-Methyl-N Prime -Nitro-N-Nitrosoguanidine (MNNG, a PARP-1 activating agent and an environmental mutagen) in human hormone-refractory prostate cancers, the data showed that concentrations below 5 {mu}M did not change cell survival but cause a time-dependent up-regulation of intracellular adhesion molecule-1 (ICAM-1) in mRNA, total protein and cell surface levels.more » Detection of phosphorylation and degradation of I{kappa}B-{alpha} and nuclear translocation of NF-{kappa}B showed that MNNG induced the activation of NF-{kappa}B that was responsible for the ICAM-1 up-regulation since PDTC (a NF-{kappa}B inhibitor) significantly abolished this effect. However, higher concentrations (e.g., 10 {mu}M) of MNNG induced a 61% detachment of the cells which were apoptosis associated with the activation of AMP-activated protein kinase (AMPK), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). Further identification showed that both AMPK and JNK other than p38 MAPK functionally contributed to cell death. The remaining 39% attached cells were survival associated with high ICAM-1 expression. In conclusion, the data suggest that NF-{kappa}B-dependent up-regulation of ICAM-1 plays a key role on cell attachment and survival; whereas, activation of AMPK and JNK participates in cytotoxic signaling pathways in detached cells caused by PARP-1 activation. Highlights: Black-Right-Pointing-Pointer Low level of DNA damage helps cell attachment and survival via ICAM-1 upregulation. Black-Right-Pointing-Pointer High level of DNA damage causes AMPK- and JNK-involved cell

  8. Inhibitors of adhesion molecules expression; the synthesis and pharmacological properties of 10H-pyrazino[2,3-b][1,4]benzothiazine derivatives.

    PubMed

    Kaneko, Toshihiko; Clark, Richard S J; Ohi, Norihito; Kawahara, Tetsuya; Akamatsu, Hiroshi; Ozaki, Fumihiro; Kamada, Atsushi; Okano, Kazuo; Yokohama, Hiromitsu; Muramoto, Kenzo; Ohkuro, Masayoshi; Takenaka, Osamu; Kobayashi, Seiichi

    2002-07-01

    During a search for novel, orally-active inhibitors of upregulation of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1), we found a new series of 10H-pyrazino[2,3-b][1,4]benzothiazine derivatives to be potent ICAM-1 inhibitors. Of these compounds, N-[1-(10H-Pyrazino[2,3-b][1,4]benzothiazin-8-ylmethyl)piperidin-4-yl]-N',N'-dimethylsulfamide 7p showed the potent oral inhibitory activities against neutrophil migration in a murine interleukin-1 (IL-1) induced paw inflammation model. The synthesis and structure-activity relationships of these amide derivatives are described.

  9. Renoprotective effects of berberine and its potential effect on the expression of β-arrestins and intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in streptozocin-diabetic nephropathy rats.

    PubMed

    Tang, Li-Qin; Ni, Wei-Jian; Cai, Ming; Ding, Hai-Hua; Liu, Sheng; Zhang, Shan-Tang

    2016-09-01

    Berberine has been shown to exert protective effects against diabetic nephropathy (DN), but the mechanisms involved have not been fully characterized. The aim of the present study was to explore the effects of berberine on the expression of β-arrestins, intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in DN rat kidneys and investigate the underlying molecular mechanisms. To create the DN model, rats fed a high-fat and high-glucose diet were injected with a single dose of streptozotocin (35 mg/kg, i.p.). Then, DN rats were either treated or not with berberine (50, 100, 200 mg/kg per day, i.g., 8 weeks). Periodic acid-Schiff staining was used to evaluate renal histopathological changes. Renal tissue levels of β-arrestin 1 and β-arrestin 2 were determined by Western blot analysis, whereas immunohistochemistry was used to determine renal ICAM-1 and VCAM-1 levels. Berberine (100, 200 mg/kg) ameliorated the histopathological changes in the diabetic kidney. Western blot analysis revealed significant increases in ICAM-1 and VCAM-1 levels in the kidneys of DN rats, which were reversed by treatment with 100 and 200 mg/kg berberine. In addition, berberine treatment (50, 100, 200 mg/kg) increased diabetic-induced decreases in β-arrestin 1 and β-arrestin 2. Berberine exhibited renoprotective effects in DN rats. The underlying molecular mechanisms may be associated with changes in the levels and regulation of β-arrestin expression, as well as ICAM-1 and VCAM-1 levels in the rat kidney. © 2015 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  10. Inflammatory impact of IFN-γ in CD8+ T cell-mediated lung injury is mediated by both Stat1-dependent and -independent pathways

    PubMed Central

    Ramana, Chilakamarti V.; DeBerge, Matthew P.; Kumar, Aseem; Alia, Christopher S.; Durbin, Joan E.

    2015-01-01

    Influenza infection results in considerable pulmonary pathology, a significant component of which is mediated by CD8+ T cell effector functions. To isolate the specific contribution of CD8+ T cells to lung immunopathology, we utilized a nonviral murine model in which alveolar epithelial cells express an influenza antigen and injury is initiated by adoptive transfer of influenza-specific CD8+ T cells. We report that IFN-γ production by adoptively transferred influenza-specific CD8+ T cells is a significant contributor to acute lung injury following influenza antigen recognition, in isolation from its impact on viral clearance. CD8+ T cell production of IFN-γ enhanced lung epithelial cell expression of chemokines and the subsequent recruitment of inflammatory cells into the airways. Surprisingly, Stat1 deficiency in the adoptive-transfer recipients exacerbated the lung injury that was mediated by the transferred influenza-specific CD8+ T cells but was still dependent on IFN-γ production by these cells. Loss of Stat1 resulted in sustained activation of Stat3 signaling, dysregulated chemokine expression, and increased infiltration of the airways by inflammatory cells. Taken together, these data identify important roles for IFN-γ signaling and Stat1-independent IFN-γ signaling in regulating CD8+ T cell-mediated acute lung injury. This is the first study to demonstrate an anti-inflammatory effect of Stat1 on CD8+ T cell-mediated lung immunopathology without the complication of differences in viral load. PMID:25617378

  11. Double blind, placebo controlled trial of the remission inducing and steroid sparing properties of an ICAM-1 antisense oligodeoxynucleotide, alicaforsen (ISIS 2302), in active steroid dependent Crohn's disease

    PubMed Central

    Yacyshyn, B R; Chey, W Y; Goff, J; Salzberg, B; Baerg, R; Buchman, A L; Tami, J; Yu, R; Gibiansky, E; Shanahan, W R

    2002-01-01

    Background and aims: To evaluate the safety and efficacy of the intercellular adhesion molecule 1 (ICAM-1) antisense phosphorothioate oligonucleotide alicaforsen (ISIS 2302) in Crohn's disease. Methods: Active (Crohn's disease activity index (CDAI) 200–350), steroid dependent (prednisone 10–40 mg) Crohn's patients were randomised into three treatment groups: placebo versus ISIS 2302 (2 mg/kg intravenously three times a week) for two or four weeks. Patients were treated in months 1 and 3, with steroid withdrawal attempted by week 10. The primary end point (steroid free remission) was a CDAI <150 off steroids at the end of week 14. Results: A total of 299 patients were enrolled, with a mean baseline CDAI of 276 and steroid dose of 23 mg/day. Rates of steroid free remission were equivalent for the two and four week ISIS 2302 groups (20.2% and 21.2%) and the placebo group (18.8%). At week 14, steroid withdrawal was successful in more ISIS 2302 patients compared with placebo treated patients (78% v 64%; p=0.032). Steroid free remission was highly correlated with exposure (p=0.0064). Other clinical responses were correlated with exposure, with significant results versus placebo being observed in the highest area under the curve subgroup. CDAI scores decreased by 136 (112) at week 14 versus 52 (107) for placebo (p=0.027) and inflammatory bowel disease score questionnaire improved by 43 (31) versus 15 (36) for placebo (p=0.027). Conclusions: Although the primary outcomes failed to demonstrate efficacy, pharmacodynamic modelling suggests that alicaforsen (ISIS 2302) may be an effective therapy for steroid dependent Crohn's disease. PMID:12077088

  12. CD151 supports VCAM-1-mediated lymphocyte adhesion to liver endothelium and is upregulated in chronic liver disease and hepatocellular carcinoma.

    PubMed

    Wadkin, James C R; Patten, Daniel A; Kamarajah, Sivesh K; Shepherd, Emma L; Novitskaya, Vera; Berditchevski, Fedor; Adams, David H; Weston, Chris J; Shetty, Shishir

    2017-08-01

    CD151, a member of the tetraspanin family of receptors, is a lateral organizer and modulator of activity of several families of transmembrane proteins. It has been implicated in the development and progression of several cancers, but its role in chronic inflammatory disease is less well understood. Here we show that CD151 is upregulated by distinct microenvironmental signals in a range of chronic inflammatory liver diseases and in primary liver cancer, in which it supports lymphocyte recruitment. CD151 was highly expressed in endothelial cells of the hepatic sinusoids and neovessels developing in fibrotic septa and tumor margins. Primary cultures of human hepatic sinusoidal endothelial cells (HSECs) expressed CD151 at the cell membrane and in intracellular vesicles. CD151 was upregulated by VEGF and HepG2 conditioned media but not by proinflammatory cytokines. Confocal microscopy confirmed that CD151 colocalized with the endothelial adhesion molecule/immunoglobulin superfamily member, VCAM-1. Functional flow-based adhesion assays with primary human lymphocytes and HSECs demonstrated a 40% reduction of lymphocyte adhesion with CD151 blockade. Inhibition of lymphocyte adhesion was similar between VCAM-1 blockade and a combination of CD151/VCAM-1 blockade, suggesting a collaborative role between the two receptors. These studies demonstrate that CD151 is upregulated within the liver during chronic inflammation, where it supports lymphocyte recruitment via liver endothelium. We propose that CD151 regulates the activity of VCAM-1 during lymphocyte recruitment to the human liver and could be a novel anti-inflammatory target in chronic liver disease and hepatocellular cancer prevention. NEW & NOTEWORTHY Chronic hepatitis is characterized by lymphocyte accumulation in liver tissue, which drives fibrosis and carcinogenesis. Here, we demonstrate for the first time that the tetraspanin CD151 supports lymphocyte adhesion to liver endothelium. We show that CD151 is upregulated

  13. Chlorella 11-Peptide Inhibits the Production of Macrophage-Induced Adhesion Molecules and Reduces Endothelin-1 Expression and Endothelial Permeability

    PubMed Central

    Shih, Mei Fen; Chen, Lih Chi; Cherng, Jong Yuh

    2013-01-01

    The inflammation process in large vessels involves the up-regulation of vascular adhesion molecules such as endothelial cell selectin (E-selectin), intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) which are also known as the markers of atherosclerosis. We have reported that Chlorella 11-peptide exhibited effective anti-inflammatory effects. This peptide with an amino sequence Val-Glu-Cys-Tyr-Gly-Pro-Asn-Arg-Pro-Gln-Phe was further examined for its potential in preventing atherosclerosis in this study. In particular, the roles of Chlorella 11-peptide in lowering the production of vascular adhesion molecules, monocyte chemoattractant protein (MCP-1) and expression of endothelin-1 (ET-1) from endothelia (SVEC4-10 cells) were studied. The production of E-selectin, ICAM-1, VCAM-1 and MCP-1 in SVEC4-10 cells was measured with ELISA. The mRNA expression of ET-1 was analyzed by RT-PCR and agarose gel. Results showed that Chlorella 11-peptide significantly suppressed the levels of E-selectin, ICAM, VCAM, MCP-1 as well as ET-1 gene expression. The inhibition of ICAM-1 and VCAM-1 production by Chlorella 11-peptide was reversed in the presence of protein kinase A inhibitor (H89) which suggests that the cAMP pathway was involved in the inhibitory cause of the peptide. In addition, this peptide was shown to reduce the extent of increased intercellular permeability induced by combination of 50% of lipopolysaccharide (LPS)-activated RAW 264.7 cells medium and 50% normal SEVC cell culture medium (referred to as 50% RAW-conditioned medium). These data demonstrate that Chlorella 11-peptide is a promising biomolecule in preventing chronic inflammatory-related vascular diseases. PMID:24129228

  14. Soluble intercellular adhesion molecule-1 and clinical outcomes in patients with acute lung injury

    PubMed Central

    Eisner, Mark D.; Parsons, Polly E.; Thompson, B. Taylor; Conner, Edward R.; Matthay, Michael A.; Ware, Lorraine B.

    2009-01-01

    Objective To determine if levels of soluble intercellular adhesion molecule-1 (sICAM-1), a marker of alveolar epithelial and endothelial injury, differ in patients with hydrostatic pulmonary edema and acute lung injury (ALI) and are associated with clinical outcomes in patients with ALI. Design, setting, and participants Measurement of sICAM-1 levels in (1) plasma and edema fluid from 67 patients with either hydrostatic pulmonary edema or ALI enrolled in an observational, prospective single center study, and (2) in plasma from 778 patients with ALI enrolled in a large multi-center randomized controlled trial of ventilator strategy. Results In the single-center study, levels of sICAM-1 were significantly higher in both edema fluid and plasma (median 938 and 545 ng/ml, respectively) from ALI patients compared to hydrostatic edema patients (median 384 and 177 ng/ml, P < 0.03 for both comparisons). In the multi-center study, higher plasma sICAM-1 levels were associated with poor clinical outcomes in both unadjusted and multivariable models. Subjects with ALI whose plasma sICAM-1 levels increased over the first 3 days of the study had a higher risk of death, after adjusting for other important predictors of outcome (odds ratio 1.48; 95% CI 1.03–2.12, P = 0.03). Conclusions Both plasma and edema fluid levels of sICAM-1 are higher in patients with ALI than in patients with hydrostatic pulmonary edema. Higher plasma sICAM-1 levels and increasing sICAM-1 levels over time are associated with poor clinical outcomes in ALI. Measurement of sICAM-1 levels may be useful for identifying patients at highest risk of poor outcomes from ALI. PMID:18670758

  15. Soluble endothelium-associated adhesion molecules in patients with Graves' disease.

    PubMed Central

    Wenisch, C; Myskiw, D; Parschalk, B; Hartmann, T; Dam, K; Graninger, W

    1994-01-01

    The targeting and recruitment of inflammatory cells to vascular endothelium in Graves' disease (GD) is mediated by intercellular adhesion molecule-1 (ICAM-1), endothelial leucocyte adhesion molecule-1 (ELAM-1), and vascular cell adhesion molecule-1 (VCAM-1). We have studied serum levels of soluble ICAM-1 (sICAM-1), soluble ELAM-1 (sELAM-1), and soluble VCAM-1 (sVCAM-1) in patients with GD (n = 21) and in patients with iodine-deficient goitre (IDG) (n = 23). The serum levels of sICAM-1 were markedly elevated in patients with GD before treatment with thiamazole (median 560 ng/ml versus 185 ng/ml in patients with IDG). In addition, elevated serum concentrations of sELAM-1 (median 85 ng/ml versus 33 ng/ml, respectively) and sVCAM-1 (median 42 ng/ml versus 15 ng/ml, respectively) were observed in patients with GD (P < 0.01 for all). The serum levels of sELAM-1 and sVCAM-1 dropped significantly after initiation of therapy and were within the normal range after 4, and 8 weeks of therapy, respectively. Serum levels of sICAM-1 were elevated even after 8 weeks of therapy. Serum levels of sVACM-1 and sICAM-1 correlated with the serum concentrations of anti-thyroid-stimulating hormone (TSH)-receptor antibodies (TSHR-R) (n = 21; r = 0.929 and r = 0.810, respectively) and anti-thyroid peroxidase antibodies (TPO-Ab) (n = 21; r = 0.673 and r = 0.750, respectively). However, no correlation between sELAM-1 and TPO-Ab, TSHR-R, and anti-thyroglobulin antibodies (Tg-Ab), respectively, could be found. In addition to thyroid hormones and autoantibodies, serum concentrations of sELAM-1 and sVCAM-1, but not sICAM-1, could be useful as clinical markers for disease activity. PMID:7525128

  16. 6-Mercaptopurine attenuates adhesive molecules in experimental vasospasm.

    PubMed

    Chang, Chih-Zen; Lin, Chih-Lung; Kassel, Neal F; Kwan, Aij-Lie; Howng, Shen-Long

    2010-05-01

    Adhesion molecules, including intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin, are important inflammatory mediators which are elevated in the serum of patients following aneurysmal subarachnoid hemorrhage (SAH). The authors previously found that 6-mercaptopurine (6-mp) was effective in preventing and reversing arterial narrowing in a rodent SAH model. The present study was to examine whether levels of adhesion molecules were altered after treatment with 6-mp in this animal model. Animals were each injected with autologous blood into the cisterna magna, and intraperitoneal treatment with 6-mp (2 mg/kg) was initiated 1 h before (prevention) or later (treatment). The compound was subsequently administered at 24 and 48 h post-SAH. Blood samples were collected at 72 h post-SAH to measure ICAM-1, VCAM-1, and E-selectin levels. The basilar arteries were harvested and sliced, and their cross-sectional areas were measured. Morphologically, convolution of the internal elastic lamina, distorted endothelial wall, and myonecrosis of the smooth muscle were prominently observed in the SAH only and vehicle-treated SAH groups, but not in the 6-mp-treated SAH group or in healthy controls. No significant differences were found in the levels of VCAM-1 among all groups. However, the levels of E-selectin were increased in all animals subjected to SAH (SAH only and SAH plus vehicle groups) compared with healthy controls (no SAH), but not in the 6-mp group (SAH plus 6-mp treatment and preventive treatment with 6-mp).Likewise, the levels of ICAM-1 in the SAH only and SAH plus vehicle groups were significantly elevated (p < 0.001), and pretreatment and treatment with 6-mp reduced ICAM-1 to control levels. These results show that ICAM-1 and E-selectin may play a role in mediating SAH-induced vasospasm and that a reduction of both adhesive molecules after SAH may partly contribute to the antispastic effect of 6-mp.

  17. Syndecan-1/CD147 association is essential for cyclophilin B-induced activation of p44/42 mitogen-activated protein kinases and promotion of cell adhesion and chemotaxis.

    PubMed

    Pakula, Rachel; Melchior, Aurélie; Denys, Agnès; Vanpouille, Christophe; Mazurier, Joël; Allain, Fabrice

    2007-05-01

    Many of the biological functions attributed to cell surface proteoglycans are dependent on the interaction with extracellular mediators through their heparan sulphate (HS) moieties and the participation of their core proteins in signaling events. A class of recently identified inflammatory mediators is secreted cyclophilins, which are mostly known as cyclosporin A-binding proteins. We previously demonstrated that cyclophilin B (CyPB) triggers chemotaxis and integrin-mediated adhesion of T lymphocytes mainly of the CD4+/CD45RO+ phenotype. These activities are related to interactions with two types of binding sites, CD147 and cell surface HS. Here, we demonstrate that CyPB-mediated adhesion of CD4+/CD45RO+ T cells is related to p44/42 mitogen-activated protein kinase (MAPK) activation by a mechanism involving CD147 and HS proteoglycans (HSPG). Although HSPG core proteins are represented by syndecan-1, -2, -4, CD44v3 and betaglycan in CD4+/CD45RO+ T cells, we found that only syndecan-1 is physically associated with CD147. The intensity of the heterocomplex increased in response to CyPB, suggesting a transient enhancement and/or stabilization in the association of CD147 to syndecan-1. Pretreatment with anti-syndecan-1 antibodies or knockdown of syndecan-1 expression by RNA interference dramatically reduced CyPB-induced p44/p42 MAPK activation and consequent migration and adhesion, supporting the model in which syndecan-1 serves as a binding subunit to form the fully active receptor of CyPB. Altogether, our findings provide a novel example of a soluble mediator in which a member of the syndecan family plays a critical role in efficient interaction with signaling receptors and initiation of cellular responses.

  18. Shikonin inhibits oxidized LDL-induced monocyte adhesion by suppressing NFκB activation via up-regulation of PI3K/Akt/Nrf2-dependent antioxidation in EA.hy926 endothelial cells.

    PubMed

    Huang, Chin-Shiu; Lin, Ai-Hsuan; Yang, Ting-Chun; Liu, Kai-Li; Chen, Haw-Wen; Lii, Chong-Kuei

    2015-02-01

    Oxidized low-density lipoprotein (oxLDL) is a key contributor to atherogenesis through multiple mechanisms, including the reactive oxygen species (ROS)-mediated nuclear factor-kappaB (NFκB) signaling pathway. Although shikonin, one of the main active components isolated from the Chinese herb Lithospermum erythrorhizon, has been shown to possess cardioprotective, antioxidative, and anti-inflammatory effects, the mechanisms underlying these actions are not well understood. In this study, we used EA.hy926 endothelial-like cells to examine the anti-atherogenic activity of shikonin. Shikonin (0-1 μM) concentration-dependently induced heme oxygenase-1, glutamate cysteine ligase modifier subunit, catalase, superoxide dismutase 1, glutathione peroxidase 1, and glutathione reductase protein and mRNA expression and glutathione content via activation of the phosphatidylinositol 3-kinase (PI3K)/Akt/Nrf2 signaling pathway. In the presence of oxLDL (40 μg/ml), shikonin pretreatment reversed oxLDL-induced ROS production, antioxidant response element reporter activity, NFκB nuclear translocation, and intercellular adhesion molecule (ICAM)-1 and E-selectin expression and suppressed the increase of monocyte adhesion to endothelial cells. Nrf2 knockdown by using RNA interference attenuated the ability of shikonin to inhibit oxLDL-induced NFκB DNA binding activity, adhesion molecule expression, and monocyte adhesion. Taken together, these results suggest that shikonin protects against oxLDL-induced endothelial damage by suppressing ROS/NFκB-mediated ICAM-1 and E-selectin expression via up-regulation of PI3K/Akt/Nrf2-dependent antioxidant enzyme expression. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Complement C3 participation in monocyte adhesion to different surfaces.

    PubMed Central

    McNally, A K; Anderson, J M

    1994-01-01

    As part of an ongoing investigation into the role of the monocyte/macrophage in biocompatibility, a major goal is to identify the adhesion mechanisms that initiate and promote the observed in vivo morphologic progression of monocyte-to-macrophage-to-foreign body giant cell on biomaterials. We have exploited differently modified polystyrenes, specific component-depleted sera, and monoclonal antibodies (mAbs) to leukocyte integrins to ask what adhesion mechanisms mediate human blood monocyte adhesion to different surfaces in vitro. Preliminary findings are that monocyte interactions with fluorinated, siliconized, nitrogenated, and oxygenated surfaces are reduced by 50-100% when complement component C3-depleted serum is used for adsorption; reductions vary with material surface properties. Adhesion is restored on all surfaces when C3-depleted serum is replenished with purified C3. Monocyte adhesion to serum-adsorbed surfaces is inhibited by mAbs to the leukocyte integrin beta subunit, CD18 (mAbs 60.3 and MHM23), and partially inhibited by a mAb to the alpha subunit, CD11b (mAb 60.1), suggesting adhesive interactions between adsorbed C3bi (the hemolytically inactive form of the C3b fragment) and the leukocyte integrin CD11b/CD18. However, adsorbed fibrinogen reduces the effectiveness of these mAbs, indicating that alternative adhesion mechanisms may operate depending on the propensities of critical adhesion-mediating components to be adsorbed onto different surfaces. Images PMID:7937848

  20. Passage-dependent morphological and phenotypical changes of a canine histiocytic sarcoma cell line (DH82 cells).

    PubMed

    Heinrich, Franziska; Contioso, Vanessa Bono; Stein, Veronika M; Carlson, Regina; Tipold, Andrea; Ulrich, Reiner; Puff, Christina; Baumgärtner, Wolfgang; Spitzbarth, Ingo

    2015-01-15

    DH82 cells represent a permanent macrophage cell line isolated from a dog with histiocytic sarcoma (HS) and are commonly used in various fields of research upon infection and cancer, respectively. Despite its frequent use, data on cell surface antigen expression of this cell line are fragmentary and in part inconsistent. We therefore aimed at a detailed morphological and antigenic characterization of DH82 cells with respect to passage-dependent differences. Cellular morphology of early (≤ 13) and late (≥ 66) passages of DH82 cells was evaluated via scanning electron microscopy. Moreover, cells were labelled with 10 monoclonal antibodies directed against CD11c, CD14, CD18, CD44, CD45, CD80, CD86, MHC-I, MHC-II, and ICAM-1 for flow cytometric analysis. Early passage cells were characterized by round cell bodies with abundant small cytoplasmic projections whereas later passages exhibited a spindle-shaped morphology with large processes. The percentage of CD11c-, CD14-, CD18-, CD45-, and CD80 positive cells significantly decreased in late passages whereas the expression of CD44, CD86, MHC-I, MHC-II and ICAM-1 remained unchanged. DH82 cells represent a remarkably heterogeneous cell line with divergent antigenic and morphologic properties. The present findings have important implications for future studies, which should consider distinct characteristics with regard to the used passage. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. [Expression of cell adhesion molecules in acute leukemia cell].

    PubMed

    Ju, Xiaoping; Peng, Min; Xu, Xiaoping; Lu, Shuqing; Li, Yao; Ying, Kang; Xie, Yi; Mao, Yumin; Xia, Fang

    2002-11-01

    To investigate the role of cell adhesion molecule in the development and extramedullary infiltration (EI) of acute leukemia. The expressions of neural cell adhesion molecule (NCAM) gene, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule (VCAM-1) genes in 25 acute leukemia patients bone marrow cells were detected by microarray and reverse transcriptase-polymerase chain reaction (RT-PCR). The expressions of NCAM, ICAM-1 and VCAM-1 gene were significantly higher in acute leukemia cells and leukemia cells with EI than in normal tissues and leukemia cells without EI, respectively, both by cDNA microarray and by RT-PCR. The cDNA microarray is a powerful technique in analysis of acute leukemia cells associated genes. High expressions of cell adhesion molecule genes might be correlated with leukemia pathogenesis and infiltration of acute leukemia cell.

  2. CD28-CD80 interactions control regulatory T cell motility and immunological synapse formation1,2

    PubMed Central

    Thauland, Timothy J.; Koguchi, Yoshinobu; Dustin, Michael L.; Parker, David C.

    2014-01-01

    Regulatory T cells (Tregs) are essential for tolerance to self and environmental antigens, acting in part by downmodulating costimulatory molecules on the surface of dendritic cells (DCs) and altering naïve CD4 T cell-DC interactions. Here, we show that Tregs form stable conjugates with DCs before, but not after, they decrease surface expression of the costimulatory molecule CD80 on the DCs. We use supported planar bilayers to show that Tregs dramatically slow down, but maintain a highly polarized and motile phenotype after recognizing antigen in the absence of costimulation. These motile cells are characterized by distinct accumulations of LFA-1-ICAM-1 in the lamella and TCR-MHC in the uropod, consistent with a motile immunological synapse or ‘kinapse’. However, in the presence of high, but not low, concentrations of CD80, Tregs form stationary, symmetrical synapses. Using blocking antibodies, we show that, while CTLA-4 is required for CD80 downmodulation, CD28-CD80 interactions are critical for modulating Treg motility in the presence of antigen. Together, these results support the hypothesis that Tregs are tuned to alter their motility depending on costimulatory signals. PMID:25355918

  3. HIV-1 Nef and Vpu Interfere with L-Selectin (CD62L) Cell Surface Expression To Inhibit Adhesion and Signaling in Infected CD4+ T Lymphocytes

    PubMed Central

    Vassena, Lia; Giuliani, Erica; Koppensteiner, Herwig; Bolduan, Sebastian; Schindler, Michael

    2015-01-01

    ABSTRACT Leukocyte recirculation between blood and lymphoid tissues is required for the generation and maintenance of immune responses against pathogens and is crucially controlled by the L-selectin (CD62L) leukocyte homing receptor. CD62L has adhesion and signaling functions and initiates the capture and rolling on the vascular endothelium of cells entering peripheral lymph nodes. This study reveals that CD62L is strongly downregulated on primary CD4+ T lymphocytes upon infection with human immunodeficiency virus type 1 (HIV-1). Reduced cell surface CD62L expression was attributable to the Nef and Vpu viral proteins and not due to increased shedding via matrix metalloproteases. Both Nef and Vpu associated with and sequestered CD62L in perinuclear compartments, thereby impeding CD62L transport to the plasma membrane. In addition, Nef decreased total CD62L protein levels. Importantly, infection with wild-type, but not Nef- and Vpu-deficient, HIV-1 inhibited the capacity of primary CD4+ T lymphocytes to adhere to immobilized fibronectin in response to CD62L ligation. Moreover, HIV-1 infection impaired the signaling pathways and costimulatory signals triggered in primary CD4+ T cells by CD62L ligation. We propose that HIV-1 dysregulates CD62L expression to interfere with the trafficking and activation of infected T cells. Altogether, this novel HIV-1 function could contribute to virus dissemination and evasion of host immune responses. IMPORTANCE L-selectin (CD62L) is an adhesion molecule that mediates the first steps of leukocyte homing to peripheral lymph nodes, thus crucially controlling the initiation and maintenance of immune responses to pathogens. Here, we report that CD62L is downmodulated on the surfaces of HIV-1-infected T cells through the activities of two viral proteins, Nef and Vpu, that prevent newly synthesized CD62L molecules from reaching the plasma membrane. We provide evidence that CD62L downregulation on HIV-1-infected primary T cells results in

  4. Leukocyte function-associated antigen-1-dependent lysis of Fas+ (CD95+/Apo-1+) innocent bystanders by antigen-specific CD8+ CTL.

    PubMed

    Kojima, H; Eshima, K; Takayama, H; Sitkovsky, M V

    1997-09-15

    Exquisite specificity toward Ag-bearing cells (cognate targets) is one of the most important properties of CD8+ CTL-mediated cytotoxicity. Using highly Ag-specific CD8+ CTL lines and clones, which spare noncognate, Ag-free targets, we found that in the presence of Ag-bearing targets the CTL acquire the ability to lyse noncognate target cells (bystanders). It is shown that the unexpectedly rapid and efficient lysis of bystanders by Ag-activated CTL is mediated by a Fas ligand (FasL)/Fas-based mechanism and does not depend on perforin. The CTL lysed Fas-expressing bystanders, but spared the Fas-negative or anti-Fas mAb-resistant bystander cells. Accordingly, the FasL-deficient gld/gld CTL did not kill bystanders, while perforin-deficient CTL did. Unlike anti-Fas mAb-induced cell death, the lysis of bystanders was not only FasL/Fas dependent but also required adhesion molecule LFA-1 on the surface of the activated CTL. Lysis of bystanders is viewed as acceptable "collateral" damage, but the persistent presence of activated CTL could result in immunopathologies involving functional Fas-expressing tissues.

  5. Peptides based on alphaV-binding domains of erythrocyte ICAM-4 inhibit sickle red cell-endothelial interactions and vaso-occlusion in the microcirculation.

    PubMed

    Kaul, Dhananjay K; Liu, Xiao-du; Zhang, Xiaoqin; Mankelow, Tosti; Parsons, Stephen; Spring, Frances; An, Xiuli; Mohandas, Narla; Anstee, David; Chasis, Joel Anne

    2006-11-01

    Growing evidence shows that adhesion molecules on sickle erythrocytes interact with vascular endothelium leading to vaso-occlusion. Erythrocyte intercellular adhesion molecule-4 (ICAM-4) binds alphaV-integrins, including alphaVbeta3 on endothelial cells. To explore the contribution of ICAM-4 to vascular pathology of sickle cell disease, we tested the effects of synthetic peptides, V(16)PFWVRMS (FWV) and T(91)RWATSRI (ATSR), based on alphaV-binding domains of ICAM-4 and capable of inhibiting ICAM-4 and alphaV-binding in vitro. For these studies, we utilized an established ex vivo microvascular model system that enables intravital microscopy and quantitation of adhesion under shear flow. In this model, the use of platelet-activating factor, which causes endothelial oxidant generation and endothelial activation, mimicked physiological states known to occur in sickle cell disease. Infusion of sickle erythrocytes into platelet-activating factor-treated ex vivo rat mesocecum vasculature produced pronounced adhesion of erythrocytes; small-diameter venules were sites of maximal adhesion and frequent blockage. Both FWV and ATSR peptides markedly decreased adhesion, and no vessel blockage was observed with either of the peptides, resulting in improved hemodynamics. ATSR also inhibited adhesion in unactivated microvasculature. Although infused fluoresceinated ATSR colocalized with vascular endothelium, pretreatment with function-blocking antibody to alphaVbeta3-integrin markedly inhibited this interaction. Our data strengthen the thesis that ICAM-4 on sickle erythrocytes binds endothelium via alphaVbeta3 and that this interaction contributes to vaso-occlusion. Thus peptides or small molecule mimetics of ICAM-4 may have therapeutic potential.

  6. The Prognostic Value of Soluble Intercellular Adhesion Molecule 1 Plasma Level in Children With Acute Lung Injury.

    PubMed

    Al-Biltagi, Mohammed A; Abo-Elezz, Ahmed Ahmed Abd ElBasset; Abu-Ela, Khaled Talaat; Suliman, Ghada Abudelmomen; Sultan, Tamer Gomaa Hassan

    2017-06-01

    The objective of this study was to evaluate the prognostic significance of soluble intercellular adhesion molecule 1 (sICAM-1) measurement in plasma for the prediction of outcome of acute lung injury (ALI) in children that may allow early recognition of critical cases. The study was performed as a prospective, controlled cohort study involving 40 children with ALI and 30 healthy children. The plasma level of sICAM-1 was measured at days 1 and 3 of development of ALI for the patient group and measured only once for the control group. C-Reactive protein was measured in both groups on day 1 only. There was significant increase in sICAM-1 in the patient group than in the control group ( P = .001*). The mortality rate reached 55% in children with ALI. The ceased group had significantly higher plasma sICAM-1 levels both at days 1 and 3 than the survived group ( P < .001*), and there was positive correlation between plasma sICAM-1 level and both duration of mechanical ventilation and the death rate, but more significant correlation was observed with plasma sICAM-1 levels at day 3 than day 1. Plasma sICAM-1 level served as a good predictor biomarker for both mechanical ventilation duration and the mortality risk in children with ALI.

  7. Besides an ITIM/SHP-1-dependent pathway, CD22 collaborates with Grb2 and plasma membrane calcium-ATPase in an ITIM/SHP-1-independent pathway of attenuation of Ca2+i signal in B cells

    PubMed Central

    Chen, Jie; Wang, Hong; Xu, Wei-Ping; Wei, Si-Si; Li, Hui Joyce; Mei, Yun-Qing; Li, Yi-Gang; Wang, Yue-Peng

    2016-01-01

    CD22 is a surface immunoglobulin implicated in negative regulation of B cell receptor (BCR) signaling; particularly inhibiting intracellular Ca2+ (Ca2+i)signals. Its cytoplasmic tail contains six tyrosine residues (Y773/Y783/Y817/Y828/Y843/Y863, designated Y1~Y6 respectively), including three (Y2/5/6) lying within immunoreceptor tyrosine-based inhibitory motifs (ITIMs) that serve to recruit the protein tyrosine phosphatase SHP-1 after BCR activation-induced phosphorylation. The mechanism of inhibiting Ca2+i by CD22 has been poorly understood. Previous study demonstrated that CD22 associated with plasma membrane calcium-ATPase (PMCA) and enhanced its activity (Chen, J. et al. Nat Immunol 2004;5:651-7). The association is dependent on BCR activation-induced cytoplasmic tyrosine phosphorylation, because CD22 with either all six tyrosines mutated to phenylalanines or cytoplasmic tail truncated loses its ability to associate with PMCA. However, which individual or a group of tyrosine residues determine the association and how CD22 and PMCA interacts, are still unclear. In this study, by using a series of CD22 tyrosine mutants, we found that ITIM Y2/5/6 accounts for 34.3~37.1% Ca2+i inhibition but is irrelevant for CD22/PMCA association. Non-ITIM Y4 and its YEND motif contribute to the remaining 69.4~71.7% Ca2+i inhibition and is the binding site for PMCA-associated Grb2. Grb2, independently of BCR cross-linking, is constitutively associated with and directly binds to PMCA in both chicken and human B cells. Knockout of Grb2 by CRISPR/Cas9 completely disrupted the CD22/PMCA association. Thus, our results demonstrate for the first time that in addition to previously-identified ITIM/SHP-1-dependent pathway, CD22 holds a major pathway of negative regulation of Ca2+i signal, which is ITIM/SHP-1-independent, but Y4/Grb2/PMCA-dependent. PMID:27276708

  8. Besides an ITIM/SHP-1-dependent pathway, CD22 collaborates with Grb2 and plasma membrane calcium-ATPase in an ITIM/SHP-1-independent pathway of attenuation of Ca2+i signal in B cells.

    PubMed

    Chen, Jie; Wang, Hong; Xu, Wei-Ping; Wei, Si-Si; Li, Hui Joyce; Mei, Yun-Qing; Li, Yi-Gang; Wang, Yue-Peng

    2016-08-30

    CD22 is a surface immunoglobulin implicated in negative regulation of B cell receptor (BCR) signaling; particularly inhibiting intracellular Ca2+ (Ca2+i)signals. Its cytoplasmic tail contains six tyrosine residues (Y773/Y783/Y817/Y828/Y843/Y863, designated Y1~Y6 respectively), including three (Y2/5/6) lying within immunoreceptor tyrosine-based inhibitory motifs (ITIMs) that serve to recruit the protein tyrosine phosphatase SHP-1 after BCR activation-induced phosphorylation. The mechanism of inhibiting Ca2+i by CD22 has been poorly understood. Previous study demonstrated that CD22 associated with plasma membrane calcium-ATPase (PMCA) and enhanced its activity (Chen, J. et al. Nat Immunol 2004;5:651-7). The association is dependent on BCR activation-induced cytoplasmic tyrosine phosphorylation, because CD22 with either all six tyrosines mutated to phenylalanines or cytoplasmic tail truncated loses its ability to associate with PMCA. However, which individual or a group of tyrosine residues determine the association and how CD22 and PMCA interacts, are still unclear. In this study, by using a series of CD22 tyrosine mutants, we found that ITIM Y2/5/6 accounts for 34.3~37.1% Ca2+i inhibition but is irrelevant for CD22/PMCA association. Non-ITIM Y4 and its YEND motif contribute to the remaining 69.4~71.7% Ca2+i inhibition and is the binding site for PMCA-associated Grb2. Grb2, independently of BCR cross-linking, is constitutively associated with and directly binds to PMCA in both chicken and human B cells. Knockout of Grb2 by CRISPR/Cas9 completely disrupted the CD22/PMCA association. Thus, our results demonstrate for the first time that in addition to previously-identified ITIM/SHP-1-dependent pathway, CD22 holds a major pathway of negative regulation of Ca2+i signal, which is ITIM/SHP-1-independent, but Y4/Grb2/PMCA-dependent.

  9. Fumaric Acid Esters Do Not Reduce Inflammatory NF-κB/p65 Nuclear Translocation, ICAM-1 Expression and T-Cell Adhesiveness of Human Brain Microvascular Endothelial Cells.

    PubMed

    Haarmann, Axel; Nehen, Mathias; Deiß, Annika; Buttmann, Mathias

    2015-08-13

    Dimethyl fumarate (DMF) is approved for disease-modifying treatment of patients with relapsing-remitting multiple sclerosis. Animal experiments suggested that part of its therapeutic effect is due to a reduction of T-cell infiltration of the central nervous system (CNS) by uncertain mechanisms. Here we evaluated whether DMF and its primary metabolite monomethyl fumarate (MMF) modulate pro-inflammatory intracellular signaling and T-cell adhesiveness of nonimmortalized single donor human brain microvascular endothelial cells at low passages. Neither DMF nor MMF at concentrations of 10 or 50 µM blocked the IL-1β-induced nuclear translocation of NF-κB/p65, whereas the higher concentration of DMF inhibited the nuclear entry of p65 in human umbilical vein endothelium cultured in parallel. DMF and MMF also did not alter the IL-1β-stimulated activation of p38 MAPK in brain endothelium. Furthermore, neither DMF nor MMF reduced the basal or IL-1β-inducible expression of ICAM-1. In accordance, both fumaric acid esters did not reduce the adhesion of activated Jurkat T cells to brain endothelium under basal or inflammatory conditions. Therefore, brain endothelial cells probably do not directly mediate a potential blocking effect of fumaric acid esters on the inflammatory infiltration of the CNS by T cells.

  10. Decreased Superoxide Production, Degranulation, Tumor Necrosis Factor Alpha Secretion, and CD11b/CD18 Receptor Expression by Adherent Monocytes from Preterm Infants

    PubMed Central

    Kaufman, David; Kilpatrick, Laurie; Hudson, R. Guy; Campbell, Donald E.; Kaufman, Ann; Douglas, Steven D.; Harris, Mary C.

    1999-01-01

    Preterm infants have an increased incidence of infection, which is principally due to deficiencies in neonatal host defense mechanisms. Monocyte adherence is important in localizing cells at sites of infection and is associated with enhanced antimicrobial functions. We isolated cord blood monocytes from preterm and full-term infants to study their adhesion and immune functions, including superoxide (O2−) generation, degranulation, and cytokine secretion and their adhesion receptors. O2− production and degranulation were significantly diminished, by 28 and 37%, respectively, in adherent monocytes from preterm infants compared to full-term infants (P < 0.05); however, these differences were not seen in freshly isolated cells. We also observed a significant decrease of 35% in tumor necrosis factor alpha secretion by lipopolysaccharide-stimulated adherent monocytes from preterm infants compared to full-term infants (P < 0.05); however, this difference was not observed in interleukin-1β or interleukin-6 production by the monocytes. The cell surface expression of the CD11b/CD18 adhesion receptor subunits was significantly decreased (by 60 and 52%, respectively) in monocytes from preterm infants compared to full-term infants (P < 0.01). The cascade of the immune response to infection involves monocyte upregulation and adherence via CD11b/CD18 receptors followed by cell activation and the release of cytokines and bactericidal products. We speculate that monocyte adherence factors may be important in the modulation of immune responses in preterm infants. PMID:10391855

  11. Evidence for actin cytoskeleton-dependent and -independent pathways for RelA/p65 nuclear translocation in endothelial cells.

    PubMed

    Fazal, Fabeha; Minhajuddin, Mohd; Bijli, Kaiser M; McGrath, James L; Rahman, Arshad

    2007-02-09

    Activation of the transcription factor NF-kappaB involves its release from the inhibitory protein IkappaBalpha in the cytoplasm and subsequently, its translocation to the nucleus. Whereas the events responsible for its release have been elucidated, mechanisms regulating the nuclear transport of NF-kappaB remain elusive. We now provide evidence for actin cytoskeleton-dependent and -independent mechanisms of RelA/p65 nuclear transport using the proinflammatory mediators, thrombin and tumor necrosis factor alpha, respectively. We demonstrate that thrombin alters the actin cytoskeleton in endothelial cells and interfering with these alterations, whether by stabilizing or destabilizing the actin filaments, prevents thrombin-induced NF-kappaB activation and consequently, expression of its target gene, ICAM-1. The blockade of NF-kappaB activation occurs downstream of IkappaBalpha degradation and is associated with impaired RelA/p65 nuclear translocation. Importantly, thrombin induces association of RelA/p65 with actin and this interaction is sensitive to stabilization/destabilization of the actin filaments. In parallel studies, stabilizing or destabilizing the actin filaments fails to inhibit RelA/p65 nuclear accumulation and ICAM-1 expression by tumor necrosis factor alpha, consistent with its inability to induce actin filament formation comparable with thrombin. Thus, these studies reveal the existence of actin cytoskeleton-dependent and -independent pathways that may be engaged in a stimulus-specific manner to facilitate RelA/p65 nuclear import and thereby ICAM-1 expression in endothelial cells.

  12. Differential intracellular calcium influx, nitric oxide production, ICAM-1 and IL8 expression in primary bovine endothelial cells exposed to nonesterified fatty acids.

    PubMed

    Loaiza, Anitsi; Carretta, María D; Taubert, Anja; Hermosilla, Carlos; Hidalgo, María A; Burgos, Rafael A

    2016-02-25

    Nonesterified fatty acids (NEFAs) are involved in proinflammatory processes in cattle, including in the increased expression of adhesion molecules in endothelial cells. However, the mechanisms underlying these effects are still unknown. The aim of this study was to assess the effects of NEFAs on the intracellular calcium (Ca(2+) i) influx, nitric oxide production, and ICAM-1 and IL-8 expression in primary bovine umbilical vein endothelial cells (BUVECs). Myristic (MA), palmitic (PA), stearic (SA), oleic (OA) and linoleic acid (LA) rapidly increased Ca(2+) i. The calcium response to all tested NEFAs showed an extracellular calcium dependence and only the LA response was significantly inhibited until the intracellular calcium was chelated. The EC50 values for MA and LA were 125 μM and 37 μM, respectively, and the MA and LA effects were dependent on calcium release from the endoplasmic reticulum stores and on the L-type calcium channels. Only the calcium response to MA was significantly reduced by GW1100, a selective G-protein-coupled free fatty acid receptor (GPR40) antagonist. We also detected a functional FFAR1/GPR40 protein in BUVECs by using western blotting and the FFAR1/GPR40 agonist TAK-875. Only LA increased the cellular nitric oxide levels in a calcium-dependent manner. LA stimulation but not MA stimulation increased ICAM-1 and IL-8-expression in BUVECs. This effect was inhibited by GW1100, an antagonist of FFAR1/GPR40, but not by U-73122, a phospholipase C inhibitor. These findings strongly suggest that each individual NEFA stimulates endothelial cells in a different way, with clearly different effects on intracellular calcium mobilization, NO production, and IL-8 and ICAM-1 expression in primary BUVECs. These findings not only extend our understanding of NEFA-mediated diseases in ruminants, but also provide new insight into the different molecular mechanisms involved during endothelial cell activation by NEFAs.

  13. The CD157-integrin partnership controls transendothelial migration and adhesion of human monocytes.

    PubMed

    Lo Buono, Nicola; Parrotta, Rossella; Morone, Simona; Bovino, Paola; Nacci, Giulia; Ortolan, Erika; Horenstein, Alberto L; Inzhutova, Alona; Ferrero, Enza; Funaro, Ada

    2011-05-27

    CD157, a member of the CD38 gene family, is an NAD-metabolizing ectoenzyme and a signaling molecule whose role in polarization, migration, and diapedesis of human granulocytes has been documented; however, the molecular events underpinning this role remain to be elucidated. This study focused on the role exerted by CD157 in monocyte migration across the endothelial lining and adhesion to extracellular matrix proteins. The results demonstrated that anti-CD157 antibodies block monocyte transmigration and adhesion to fibronectin and fibrinogen but that CD157 cross-linking is sufficient to overcome the block, suggesting an active signaling role for the molecule. Consistent with this is the observation that CD157 is prevalently located within the detergent-resistant membrane microdomains to which, upon clustering, it promotes the recruitment of β(1) and β(2) integrin, which, in turn, leads to the formation of a multimolecular complex favoring signal transduction. This functional cross-talk with integrins allows CD157 to act as a receptor despite its intrinsic structural inability to do so on its own. Intracellular signals mediated by CD157 rely on the integrin/Src/FAK (focal adhesion kinase) pathway, resulting in increased activity of the MAPK/ERK1/2 and the PI3K/Akt downstream signaling pathways, which are crucial in the control of monocyte transendothelial migration. Collectively, these findings indicate that CD157 acts as a molecular organizer of signaling-competent membrane microdomains and that it forms part of a larger molecular machine ruled by integrins. The CD157-integrin partnership provides optimal adhesion and transmigration of human monocytes.

  14. Human Endometrial CD98 Is Essential for Blastocyst Adhesion

    PubMed Central

    Domínguez, Francisco; Simón, Carlos; Quiñonero, Alicia; Ramírez, Miguel Ángel; González-Muñoz, Elena; Burghardt, Hans; Cervero, Ana; Martínez, Sebastián; Pellicer, Antonio; Palacín, Manuel; Sánchez-Madrid, Francisco; Yáñez-Mó, María

    2010-01-01

    Background Understanding the molecular basis of embryonic implantation is of great clinical and biological relevance. Little is currently known about the adhesion receptors that determine endometrial receptivity for embryonic implantation in humans. Methods and Principal Findings Using two human endometrial cell lines characterized by low and high receptivity, we identified the membrane receptor CD98 as a novel molecule selectively and significantly associated with the receptive phenotype. In human endometrial samples, CD98 was the only molecule studied whose expression was restricted to the implantation window in human endometrial tissue. CD98 expression was restricted to the apical surface and included in tetraspanin-enriched microdomains of primary endometrial epithelial cells, as demonstrated by the biochemical association between CD98 and tetraspanin CD9. CD98 expression was induced in vitro by treatment of primary endometrial epithelial cells with human chorionic gonadotropin, 17-β-estradiol, LIF or EGF. Endometrial overexpression of CD98 or tetraspanin CD9 greatly enhanced mouse blastocyst adhesion, while their siRNA-mediated depletion reduced the blastocyst adhesion rate. Conclusions These results indicate that CD98, a component of tetraspanin-enriched microdomains, appears to be an important determinant of human endometrial receptivity during the implantation window. PMID:20976164

  15. Downregulation of endothelial adhesion molecules by dimethylfumarate, but not monomethylfumarate, and impairment of dynamic lymphocyte-endothelial cell interactions.

    PubMed

    Wallbrecht, Katrin; Drick, Nora; Hund, Anna-Carina; Schön, Michael P

    2011-12-01

    Although fumaric acid esters (FAE) have a decade-long firm place in the therapeutic armamentarium for psoriasis, their pleiotropic mode of action is not yet fully understood. While most previous studies have focused on the effects of FAE on leucocytes, we have addressed their activity on macro- and microvascular endothelial cells. As detected both on mRNA and protein levels, dimethylfumarate effected a profound reduction of TNFα-induced expression of E-selectin (CD62E), ICAM-1 (CD54) and VCAM-1 (CD106) on two different endothelial cell populations in a concentration-dependent manner. This reduction of several endothelial adhesion molecules was accompanied by a dramatic diminution of both rolling and firm adhesive interactions between endothelial cells and lymphocytes in a dynamic flow chamber system. Dimethylfumarate, at a concentration of 50 μm, reduced lymphocyte rolling on endothelial cells by 85.9% (P<0.001 compared to untreated controls), and it diminished the number of adherent cells by 88% (P<0.001). In contrast, monomethylfumarate (MMF) influenced neither surface expression of adhesion molecules nor interactions between endothelial cells and lymphocytes. These observations demonstrate that endothelial cells, in addition to the known effects on leucocytes, undergo profound functional changes in response to dimethylfumarate. These changes are accompanied by severely impaired dynamic interactions with lymphocytes, which constitute the critical initial step of leucocyte recruitment to inflamed tissues in psoriasis and other TNF-related inflammatory disorders. © 2011 John Wiley & Sons A/S.

  16. Regulation of ICAM-1 in cells of the monocyte/macrophage system in microgravity.

    PubMed

    Paulsen, Katrin; Tauber, Svantje; Dumrese, Claudia; Bradacs, Gesine; Simmet, Dana M; Gölz, Nadine; Hauschild, Swantje; Raig, Christiane; Engeli, Stephanie; Gutewort, Annett; Hürlimann, Eva; Biskup, Josefine; Unverdorben, Felix; Rieder, Gabriela; Hofmänner, Daniel; Mutschler, Lisa; Krammer, Sonja; Buttron, Isabell; Philpot, Claudia; Huge, Andreas; Lier, Hartwin; Barz, Ines; Engelmann, Frank; Layer, Liliana E; Thiel, Cora S; Ullrich, Oliver

    2015-01-01

    Cells of the immune system are highly sensitive to altered gravity, and the monocyte as well as the macrophage function is proven to be impaired under microgravity conditions. In our study, we investigated the surface expression of ICAM-1 protein and expression of ICAM-1 mRNA in cells of the monocyte/macrophage system in microgravity during clinostat, parabolic flight, sounding rocket, and orbital experiments. In murine BV-2 microglial cells, we detected a downregulation of ICAM-1 expression in clinorotation experiments and a rapid and reversible downregulation in the microgravity phase of parabolic flight experiments. In contrast, ICAM-1 expression increased in macrophage-like differentiated human U937 cells during the microgravity phase of parabolic flights and in long-term microgravity provided by a 2D clinostat or during the orbital SIMBOX/Shenzhou-8 mission. In nondifferentiated U937 cells, no effect of microgravity on ICAM-1 expression could be observed during parabolic flight experiments. We conclude that disturbed immune function in microgravity could be a consequence of ICAM-1 modulation in the monocyte/macrophage system, which in turn could have a strong impact on the interaction with T lymphocytes and cell migration. Thus, ICAM-1 can be considered as a rapid-reacting and sustained gravity-regulated molecule in mammalian cells.

  17. Regulation of ICAM-1 in Cells of the Monocyte/Macrophage System in Microgravity

    PubMed Central

    Paulsen, Katrin; Tauber, Svantje; Dumrese, Claudia; Bradacs, Gesine; Simmet, Dana M.; Gölz, Nadine; Hauschild, Swantje; Raig, Christiane; Engeli, Stephanie; Gutewort, Annett; Hürlimann, Eva; Biskup, Josefine; Rieder, Gabriela; Hofmänner, Daniel; Mutschler, Lisa; Krammer, Sonja; Philpot, Claudia; Huge, Andreas; Lier, Hartwin; Barz, Ines; Engelmann, Frank; Layer, Liliana E.; Thiel, Cora S.

    2015-01-01

    Cells of the immune system are highly sensitive to altered gravity, and the monocyte as well as the macrophage function is proven to be impaired under microgravity conditions. In our study, we investigated the surface expression of ICAM-1 protein and expression of ICAM-1 mRNA in cells of the monocyte/macrophage system in microgravity during clinostat, parabolic flight, sounding rocket, and orbital experiments. In murine BV-2 microglial cells, we detected a downregulation of ICAM-1 expression in clinorotation experiments and a rapid and reversible downregulation in the microgravity phase of parabolic flight experiments. In contrast, ICAM-1 expression increased in macrophage-like differentiated human U937 cells during the microgravity phase of parabolic flights and in long-term microgravity provided by a 2D clinostat or during the orbital SIMBOX/Shenzhou-8 mission. In nondifferentiated U937 cells, no effect of microgravity on ICAM-1 expression could be observed during parabolic flight experiments. We conclude that disturbed immune function in microgravity could be a consequence of ICAM-1 modulation in the monocyte/macrophage system, which in turn could have a strong impact on the interaction with T lymphocytes and cell migration. Thus, ICAM-1 can be considered as a rapid-reacting and sustained gravity-regulated molecule in mammalian cells. PMID:25654110

  18. Glycosphingolipid-functionalized nanoparticles recapitulate CD169-dependent HIV-1 uptake and trafficking in dendritic cells

    NASA Astrophysics Data System (ADS)

    Yu, Xinwei; Feizpour, Amin; Ramirez, Nora-Guadalupe P.; Wu, Linxi; Akiyama, Hisashi; Xu, Fangda; Gummuluru, Suryaram; Reinhard, Björn M.

    2014-06-01

    Ganglioside GM3, a host-derived glycosphingolipid incorporated in the membrane of human immunodeficiency virus-1 (HIV-1) viral particles, mediates interactions between HIV-1 and Siglec1/CD169, a protein expressed on dendritic cells (DCs). Such interactions, which seem to be independent of viral envelope glycoprotein gp120, are poorly understood. Here we develop a model system consisting of self-assembled artificial virus nanoparticles (AVNs) that are free of viral glycoproteins or other host-derived glycolipids and glycoproteins. These plasmonic AVNs contain a membrane of defined composition wrapped around a solid metal core. GM3-containing AVNs are captured by CD169-expressing HeLa cells or mature DCs, and are sequestered within non-lysosomal tetraspanin-positive compartments. This distribution is reminiscent of CD169-dependent HIV-1 sequestration in mature DCs. Our results highlight GM3-CD169 binding as a gp120-independent signal for sequestration and preservation of HIV-1 infectivity. They also indicate that plasmonic AVNs offer improved features over liposome-based systems and represent a versatile tool for probing specific virus-cell interactions.

  19. Dynamic pattern of endothelial cell adhesion molecule expression in muscle and perineural vessels from patients with classic polyarteritis nodosa.

    PubMed

    Coll-Vinent, B; Cebrián, M; Cid, M C; Font, C; Esparza, J; Juan, M; Yagüe, J; Urbano-Márquez, A; Grau, J M

    1998-03-01

    To investigate endothelial cell adhesion molecule expression in vessels from patients with classic polyarteritis nodosa (PAN). Frozen sections of 21 muscle and 16 nerve samples from 30 patients with biopsy-proven PAN and 12 histologically normal muscle and 2 histologically normal nerve samples from 12 controls were studied immunohistochemically, using specific monoclonal antibodies (MAb) that recognize adhesion molecules. Adhesion molecules identified were intercellular adhesion molecule 1 (ICAM-1), ICAM-2, ICAM-3, vascular cell adhesion molecule 1 (VCAM-1), platelet endothelial cell adhesion molecule 1 (PECAM-1), E-selectin, P-selectin, L-selectin, lymphocyte function-associated antigen 1 (LFA-1), and very late activation antigen 4 (VLA-4). Neutrophils were identified with a MAb recognizing neutrophil elastase. Endothelial cells were identified with the lectin ulex europaeus. In early lesions, expression of PECAM-1, ICAM-1, ICAM-2, and P-selectin was similar to that in control samples, and VCAM-1 and E-selectin were induced in vascular endothelium. In advanced lesions, immunostaining for adhesion molecules diminished or disappeared in luminal endothelium, whereas these molecules were clearly expressed in microvessels within and surrounding inflamed vessels. Staining in endothelia from vessels in a healing stage tended to be negative. A high proportion of infiltrating leukocytes expressed LFA-1 and VLA-4, and only a minority expressed L-selectin. No relationship between the expression pattern of adhesion molecules and clinical features, disease duration, or previous corticosteroid treatment was observed. Endothelial adhesion molecule expression in PAN is a dynamic process that varies according to the histopathologic stage of the vascular lesions. The preferential expression of constitutive and inducible adhesion molecules in microvessels suggests that angiogenesis contributes to the persistence of inflammatory infiltration in PAN.

  20. Protopine inhibits heterotypic cell adhesion in MDA-MB-231 cells through down-regulation of multi-adhesive factors.

    PubMed

    He, Kai; Gao, Jian-Li

    2014-01-01

    A Chinese herb Corydalis yanhusuo W.T. Wang that showed anticancer and anti-angiogenesis effects in our previous studies was presented for further studies. In the present study, we studied the anticancer proliferation and adhesion effects of five alkaloids which were isolated from Corydalis yanhusuo. MTT dose response curves, cell migration assay, cell invasion assay, as well as three types of cell adhesive assay were performed on MDA-MB-231 human breast cancer cells. The mechanism of the compounds on inhibiting heterotypic cell adhesion were further explored by determining the expression of epidermal growth factor receptor (EGFR), Intercellular adhesion molecule 1 (ICAM-1), αv-integrin, β1-integrin and β5-integrin by western blotting assay. In five tested alkaloids, only protopine exhibited anti-adhesive and anti-invasion effects in MDA-MB-231 cells, which contributed to the anti-metastasis effect of Corydalis yanhusuo. The results showed that after treatment with protopine for 90 min, the expression of EGFR, ICAM-1, αv-integrin, β1-integrin and β5-integrin were remarkably reduced. The present results suggest that protopine seems to inhibit the heterotypic cell adhesion between MDA-MB-231 cells, and human umbilical vein endothelial cells by changing the expression of adhesive factors.

  1. Effects of clopidogrel on inflammatory cytokines and adhesion molecules in human endothelial cells: Role of nitric oxide mediating pleiotropic effects.

    PubMed

    Cerda, Alvaro; Pavez, Monica; Manriquez, Victor; Luchessi, Andre Ducati; Leal, Pamela; Benavente, Felipe; Fajardo, Cristina Moreno; Salazar, Luis; Hirata, Mario Hiroyuki; Hirata, Rosario Dominguez Crespo

    2017-08-01

    Clopidogrel is commonly used in prevention and treatment of atherothrombosis. Some previous studies have suggested a pleiotropic effect of clopidogrel; however, when this drug causes platelet-independent effects on endothelial function remains unclear. To evaluate the influence of clopidogrel on inflammatory biomarkers and adhesion molecules in human endothelial cells and the role of nitric oxide (NO) in this process. TNF-α-induced human umbilical vein endothelial cells (HUVEC) were exposed to clopidogrel. Gene expression and protein expression of ICAM-1, P-selectin, IL-8, IL-6, and MCP-1 were evaluated by qPCR, flux cytometry, or milliplex technology. Expression of endothelial nitric oxide synthase (NOS3) and NO release were also evaluated. Influence of clopidogrel was further evaluated in NOS3 downregulated HUVEC by RNAi. Clopidogrel at 20 μmol/L induced NO release in HUVEC after 24-hours treatment. Gene expressions of inflammatory markers IL-8 and MCP1 were reduced after clopidogrel treatment (P<.05); however, only MCP-1 remained reduced at protein level. IL-6 was not modified by clopidogrel treatment. Gene expression and protein expression of ICAM-1 were diminished by 24-hours clopidogrel exposure, whereas P-selectin was not modified. NOS3 downregulated HUVEC model revealed that ICAM-1 modification by clopidogrel is dependent of this via, whereas MCP-1 is modulated in an NO-independent form. Our results support new evidence for pleiotropic effects of clopidogrel on inflammation and endothelial function. Reduction in ICAM-1 and MCP-1 in human endothelium is an important extent of the use of this drug for treatment of cardiovascular diseases, and NO has an important role in this process. © 2017 John Wiley & Sons Ltd.

  2. Direct evidence for activated CD8+ T cell transmigration across portal vein endothelial cells in liver graft rejection.

    PubMed

    Kariya, Taro; Ueta, Hisashi; Xu, Xue-Dong; Koga, Daisuke; Ezaki, Taichi; Yu, Enqiao; Kusumi, Satoshi; Kitazawa, Yusuke; Sawanobori, Yasushi; Ushiki, Tatsuo; Issekutz, Thomas; Matsuno, Kenjiro

    2016-10-01

    Lymphocyte recruitment into the portal tract is crucial not only for homeostatic immune surveillance but also for many liver diseases. However, the exact route of entry for lymphocytes into portal tract is still obscure. We investigated this question using a rat hepatic allograft rejection model. A migration route was analyzed by immunohistological methods including a recently developed scanning electron microscopy method. Transmigration-associated molecules such as selectins, integrins, and chemokines and their receptors expressed by hepatic vessels and recruited T-cells were analyzed by immunohistochemistry and flow cytometry. The immunoelectron microscopic analysis clearly showed CD8β(+) cells passing through the portal vein (PV) endothelia. Furthermore, the migrating pathway seemed to pass through the endothelial cell body. Local vascular cell adhesion molecule-1 (VCAM-1) expression was induced in PV endothelial cells from day 2 after liver transplantation. Although intercellular adhesion molecule-1 (ICAM-1) expression was also upregulated, it was restricted to sinusoidal endothelia. Recipient T-cells in the graft perfusate were CD25(+)CD44(+)ICAM-1(+)CXCR3(+)CCR5(-) and upregulated α4β1 or αLβ2 integrins. Immunohistochemistry showed the expression of CXCL10 in donor MHCII(high) cells in the portal tract as well as endothelial walls of PV. We show for the first time direct evidence of T-cell transmigration across PV endothelial cells during hepatic allograft rejection. Interactions between VCAM-1 on endothelia and α4β1 integrin on recipient effector T-cells putatively play critical roles in adhesion and transmigration through endothelia. A chemokine axis of CXCL10 and CXCR3 also may be involved.

  3. Rosiglitazone attenuates NF-{kappa}B-dependent ICAM-1 and TNF-{alpha} production caused by homocysteine via inhibiting ERK{sub 1/2}/p38MAPK activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Yong-Ping; Liu, Yu-Hui; Chen, Jia

    2007-08-17

    Previous studies demonstrated an important interaction between nuclear factor-kappaB (NF-{kappa}B) activation and homocysteine (Hcy)-induced cytokines expression in endothelial cells and vascular smooth muscle cells. However, the underlying mechanism remains illusive. In this study, we investigated the effects of Hcy on NF-{kappa}B-mediated sICAM-1, TNF-{alpha} production and the possible involvement of ERK{sub 1/2}/p38MAPK pathway. The effects of rosiglitazone intervention were also examined. Our results show that Hcy increased the levels of sICAM-1 and TNF-{alpha} in cultured human umbilical vein endothelial cells (HUVECs) in a time- and concentration-dependent manner. This effect was significantly depressed by rosiglitazone and different inhibitors (PDTC, NF-{kappa}B inhibitor; PD98059,more » MEK inhibitor; SB203580, p38MAPK specific inhibitor; and staurosporine, PKC inhibitor). Next, we investigated the effect of Hcy on ERK{sub 1/2}/p38MAPK pathway and NF-{kappa}B activity in HUVECs. The results show that Hcy activated both ERK{sub 1/2}/p38MAPK pathway and NF-{kappa}B-DNA-binding activity. These effects were markedly inhibited by rosiglitazone as well as other inhibitors (SB203580, PD98059, and PDTC). Further, the pretreatment of staurosporine abrogated ERK{sub 1/2}/p38MAPK phosphorylation, suggesting that Hcy-induced ERK{sub 1/2}/p38MAPK activation is associated with PKC activity. Our results provide evidence that Hcy-induced NF-{kappa}B activation was mediated by activation of ERK{sub 1/2}/p38MAPK pathway involving PKC activity. Rosiglitazone reduces the NF-{kappa}B-mediated sICAM-1 and TNF-{alpha} production induced by Hcy via inhibition of ERK{sub 1/2}/p38MAPK pa0011thw.« less

  4. [Effect of Golgi α-mannosidase 2 (GM2) gene knockdown on adhesion abilities of human gastric carcinoma cell line BGC-823 and its mechanism].

    PubMed

    Zeng, Bo; Zeng, Zhen; Liu, Chang; Yang, Yaying

    2017-06-01

    Objective To investigate the effect of Golgi α-mannosidase II (GM2) gene knockdown on adhesion abilities of BGC-823 human gastric carcinoma cells. Methods Three plasmid vectors expressing GM2 shRNAs and a negative control plasmid vector were designed, constructed and then transfected into BGC-823 cells by Lipofectamine TM 2000. After transfection, the mRNA and protein levels of GM2 in BGC-823 cells were detected by real-time quantitative PCR (qRT-PCR) and Western blotting to evaluate the transfection efficacy. The best plasmid for GM2 gene knockdown was selected and stably transfected into BGC-823 cells. Adhesion abilities of BGC-823 cells after GM2 gene silencing were observed by cell-cell, cell-matrix and cell-endothelial cell adhesion assays. At the same time, the expressions of E-cadherin, P-selectin, CD44v6 and intercellular adhesion molecule-1 (ICAM-1) proteins were detected by Western blotting after GM2 gene knockdown. Results The expression of GM2 was effectively knockdown in GM2-shRNA-2-transfected BGC-823 cells. Compared with the blank control group and the negative control group, the intercellular adhesion ability of the GM2-shRNA-2-transfected cells increased significantly, while their cell-matrix and cell-endothelium adhesion abilities markedly decreased. In GM2-shRNA-2 transfection group, E-cadherin expression was significantly elevated and the P-selectin expression was significantly reduced, while the expression levels of CD44v6 and ICAM-1 were not obviously changed. Conclusion After GM2 gene knockdown, the intercellular adhesion ability of gastric carcinoma BGC-823 cells is enhanced, while the adhesion abilities with the extracellular matrix and endothelial cells are weakened. The changes might be related to the up-regulated expression of E-cadherin and the down-regulation of P-selectin.

  5. Cyclic stretching of mesangial cells up-regulates intercellular adhesion molecule-1 and leukocyte adherence: a possible new mechanism for glomerulosclerosis.

    PubMed

    Riser, B L; Varani, J; Cortes, P; Yee, J; Dame, M; Sharba, A K

    2001-01-01

    Intraglomerular hypertension is a primary causal factor in the progressive glomerulosclerosis that characterizes diabetic nephropathy or severe renal ablation. However, inflammation of the glomerular mesangium also participates in at least the early phase of these diseases. In glomerulonephritis, where inflammation is thought to be the predominant causal factor, intraglomerular hypertension is also often present. Mesangial cells (MCs) are critical in orchestrating key functions of the glomerulus including extracellular matrix metabolism, cytokine production, and interaction with leukocytes. Because MCs are subject to increased stretching when intraglomerular hypertension is present, and in glomerulonephritis MC/leukocyte interactions seem to be mediated primarily via the up-regulation of intercellular adhesion molecule-1 (ICAM-1), we examine the possibility that cyclic stretching is a stimulus for increased MC ICAM-1 activity. We demonstrate that the normal low levels of MC ICAM-1 mRNA and protein are dramatically up-regulated by even short intervals of cyclic stretch. This effect is dose- and time-dependent, and requires little amplitude and a brief period of elongation for significant induction. Stretch-induced MC ICAM-1 also leads to a marked elevation in phagocytic leukocyte adherence. This stimulated adherence is equal or greater than that induced by the inflammatory cytokine tumor necrosis factor-alpha, whereas an additive effect occurs when both are applied in combination. Our results indicate that stretch-induced ICAM-1 may provide a direct link between hypertension and inflammation in the progression of injury and glomerulosclerosis in diabetes, renal ablation, and other forms of glomerulonephritis.

  6. Ox-LDL Promotes Migration and Adhesion of Bone Marrow-Derived Mesenchymal Stem Cells via Regulation of MCP-1 Expression

    PubMed Central

    Wang, Congrui; Wang, Huaibin; Lu, Ming; Li, Yonghai; Feng, Huigen; Yuan, Zhiqing

    2013-01-01

    Bone marrow-derived mesenchymal stem cells (bmMSCs) are the most important cell source for stem cell transplant therapy. The migration capacity of MSCs is one of the determinants of the efficiency of MSC-based transplant therapy. Our recent study has shown that low concentrations of oxidized low-density lipoprotein (ox-LDL) can stimulate proliferation of bmMSCs. In this study, we investigated the effects of ox-LDL on bmMSC migration and adhesion, as well as the related mechanisms. Our results show that transmigration rates of bmMSCs and cell-cell adhesion between bmMSCs and monocytes are significantly increased by treatments with ox-LDL in a dose- and time-dependent manner. Expressions of ICAM-1, PECAM-1, and VCAM-1 as well as the levels of intracellular Ca2+ are also markedly increased by ox-LDL in a dose-dependent manner. Cytoskeleton analysis shows that ox-LDL treatment benefits to spreading of bmMSCs and organization of F-actin fibers after being plated for 6 hours. More interestingly, treatments with ox-LDL also markedly increase expressions of LOX-1, MCP-1, and TGF-β; however, LOX-1 antibody and MCP-1 shRNA markedly inhibit ox-LDL-induced migration and adhesion of bmMSCs, which suggests that ox-LDL-induced bmMSC migration and adhesion are dependent on LOX-1 activation and MCP-1 expression. PMID:23956504

  7. The CD157-Integrin Partnership Controls Transendothelial Migration and Adhesion of Human Monocytes*

    PubMed Central

    Lo Buono, Nicola; Parrotta, Rossella; Morone, Simona; Bovino, Paola; Nacci, Giulia; Ortolan, Erika; Horenstein, Alberto L.; Inzhutova, Alona; Ferrero, Enza; Funaro, Ada

    2011-01-01

    CD157, a member of the CD38 gene family, is an NAD-metabolizing ectoenzyme and a signaling molecule whose role in polarization, migration, and diapedesis of human granulocytes has been documented; however, the molecular events underpinning this role remain to be elucidated. This study focused on the role exerted by CD157 in monocyte migration across the endothelial lining and adhesion to extracellular matrix proteins. The results demonstrated that anti-CD157 antibodies block monocyte transmigration and adhesion to fibronectin and fibrinogen but that CD157 cross-linking is sufficient to overcome the block, suggesting an active signaling role for the molecule. Consistent with this is the observation that CD157 is prevalently located within the detergent-resistant membrane microdomains to which, upon clustering, it promotes the recruitment of β1 and β2 integrin, which, in turn, leads to the formation of a multimolecular complex favoring signal transduction. This functional cross-talk with integrins allows CD157 to act as a receptor despite its intrinsic structural inability to do so on its own. Intracellular signals mediated by CD157 rely on the integrin/Src/FAK (focal adhesion kinase) pathway, resulting in increased activity of the MAPK/ERK1/2 and the PI3K/Akt downstream signaling pathways, which are crucial in the control of monocyte transendothelial migration. Collectively, these findings indicate that CD157 acts as a molecular organizer of signaling-competent membrane microdomains and that it forms part of a larger molecular machine ruled by integrins. The CD157-integrin partnership provides optimal adhesion and transmigration of human monocytes. PMID:21478153

  8. The Upregulation of Integrin αDβ2 (CD11d/CD18) on Inflammatory Macrophages Promotes Macrophage Retention in Vascular Lesions and Development of Atherosclerosis.

    PubMed

    Aziz, Moammir H; Cui, Kui; Das, Mitali; Brown, Kathleen E; Ardell, Christopher L; Febbraio, Maria; Pluskota, Elzbieta; Han, Juying; Wu, Huaizhu; Ballantyne, Christie M; Smith, Jonathan D; Cathcart, Martha K; Yakubenko, Valentin P

    2017-06-15

    Macrophage accumulation is a critical step during development of chronic inflammation, initiating progression of many devastating diseases. Leukocyte-specific integrin α D β 2 (CD11d/CD18) is dramatically upregulated on macrophages at inflammatory sites. Previously we found that CD11d overexpression on cell surfaces inhibits in vitro cell migration due to excessive adhesion. In this study, we have investigated how inflammation-mediated CD11d upregulation contributes to macrophage retention at inflammatory sites during atherogenesis. Atherosclerosis was evaluated in CD11d -/- /ApoE -/- mice after 16 wk on a Western diet. CD11d deficiency led to a marked reduction in lipid deposition in aortas and isolated macrophages. Macrophage numbers in aortic sinuses of CD11d -/- mice were reduced without affecting their apoptosis and proliferation. Adoptive transfer of fluorescently labeled wild-type and CD11d -/- monocytes into ApoE -/- mice demonstrated similar recruitment from circulation, but reduced accumulation of CD11d -/- macrophages within the aortas. Furthermore, CD11d expression was significantly upregulated on macrophages in atherosclerotic lesions and M1 macrophages in vitro. Interestingly, expression of the related ligand-sharing integrin CD11b was not altered. This difference defines their distinct roles in the regulation of macrophage migration. CD11d-deficient M1 macrophages demonstrated improved migration in a three-dimensional fibrin matrix and during resolution of peritoneal inflammation, whereas migration of CD11b -/- M1 macrophages was not affected. These results prove the contribution of high densities of CD11d to macrophage arrest during atherogenesis. Because high expression of CD11d was detected in several inflammation-dependent diseases, we suggest that CD11d/CD18 upregulation on proinflammatory macrophages may represent a common mechanism for macrophage retention at inflammatory sites, thereby promoting chronic inflammation and disease development

  9. Genetic, epigenetic and protein analyses of intercellular adhesion molecule 1 in Malaysian subjects with type 2 diabetes and diabetic nephropathy.

    PubMed

    Abu Seman, Norhashimah; Anderstam, Björn; Wan Mohamud, Wan Nazaimoon; Östenson, Claes-Göran; Brismar, Kerstin; Gu, Harvest F

    2015-01-01

    Recent research has implicated that the inflammation may be a key pathophysiological mechanism in diabetic nephropathy (DN). Intercellular adhesion molecule 1 (ICAM-1) is an acute phase marker of inflammation. In the present study, we carried out genetic, epigenetic and protein analyses of ICAM-1 in a Malaysian population, including normal glucose tolerance (NGT) subjects and type 2 diabetes (T2D) patients with or without DN in order to evaluate its role in DN. Analyses of DNA polymorphism and methylation in the ICAM1 gene were performed with TaqMan allelic discrimination and pyrosequencing, respectively. Plasma ICAM-1 levels were determined using an enzyme-linked immune-sorbent assay kit. We found that the ICAM1 K469E(A/G) polymorphism (rs5498) was significantly associated with DN. Particularly, 86.1% of T2D patients with DN carried heterozygous genotype compared to the patients without DN (68.6%). Furthermore, plasma ICAM-1 levels were increased from NGT subjects to T2D patients without and with DN (P<0.001). The NGT subjects carrying heterozygous genotype had significantly lower plasma ICAM-1 levels compared to the K469(A/A) genotype carriers (P=0.009). In the ICAM1 gene promoter, DNA methylation levels of CpG sites were low, and no association of the ICAM1 DNA methylation alteration with DN was detected. The present study provided evidence that the ICAM1 K469E(A/G) polymorphism with high heterozygous index and elevation of plasma ICAM-1 levels were associated with DN in a Malaysian population. Further prospective study of ICAM-1 protein according to the ICAM1 K469E(A/G) genotypes is necessary for predicting the susceptibility to T2D and DN. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Increased soluble vascular cell adhesion molecule-1 plasma levels and soluble intercellular adhesion molecule-1 during antiretroviral therapy interruption and retention of elevated soluble vascular cellular adhesion molecule-1 levels following resumption of antiretroviral therapy.

    PubMed

    Papasavvas, Emmanouil; Azzoni, Livio; Pistilli, Maxwell; Hancock, Aidan; Reynolds, Griffin; Gallo, Cecile; Ondercin, Joe; Kostman, Jay R; Mounzer, Karam; Shull, Jane; Montaner, Luis J

    2008-06-19

    We investigated the effect of short viremic episodes on soluble markers associated with endothelial stress and cardiovascular disease risk in chronically HIV-1-infected patients followed during continuous antiretroviral therapy, antiretroviral therapy interruption and antiretroviral therapy resumption. We assessed changes in plasma levels of von Willebrand factor, soluble vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 by enzyme-linked immunosorbent assay, as well as T-cell activation (CD8+/CD38+, CD8+/HLA-DR+ and CD3+/CD95+) by flow cytometry, in 36 chronically HIV-1-infected patients participating in a randomized study. Patients were divided into the following three groups: a, on continuous antiretroviral therapy; b, on a 6-week antiretroviral therapy interruption; or c, on antiretroviral therapy interruption extended to the achievement of viral set point. Although all measurements remained stable over a 40-week follow-up on antiretroviral therapy, plasma levels of soluble vascular cell adhesion molecule-1 (P < 0.0001) and soluble intercellular adhesion molecule-1 (P = 0.003) increased during treatment interruption in correlation with viral rebound and T-cell activation. No significant changes in von Willebrand factor were observed in any of the groups. After resuming antiretroviral therapy, soluble vascular cell adhesion molecule-1 levels remained elevated even after achievement of viral suppression to less than 50 copies/ml. The prompt rise in plasma soluble vascular cell adhesion molecule-1 and soluble intercellular adhesion molecule-1 upon viral rebound suggests an acute increase in endothelial stress upon treatment interruption, which may persists after viral resuppression of virus. Thus, viral replication during short-term treatment interruption may increase the overall cardiovascular risk during and beyond treatment interruption.

  11. Levels of Soluble Adhesion Molecules PECAM-1 and P-Selectin are Decreased in Children with Autism Spectrum Disorder

    PubMed Central

    Onore, Charity E.; Nordahl, Christine Wu; Young, Gregory S.; Van de Water, Judy A.; Rogers, Sally J.; Ashwood, Paul

    2012-01-01

    Background Although the etiopathology of Autism Spectrum Disorder (ASD) is not clear there is increasing evidence that dysfunction in the immune system affects many children with ASD. Findings of immune dysfunction in ASD include increases in inflammatory cytokines, chemokines and microglial activity in brain tissue and CSF, as well as abnormal peripheral immune cell function. Methods Adhesion molecules, such as platelet endothelial adhesion molecule-1 (PECAM-1), intercellular adhesion molecule-1 (ICAM-1), vascular adhesion molecule-1 (VCAM-1), P-Selectin, and L-Selectin, function to facilitate leukocyte transendothelial migration. We assessed concentrations of soluble adhesion molecules, sPECAM-1, sICAM-1, sVCAM-1, sP-Selectin, and sL-Selectin in the plasma of 49 participants with ASD, and 31 typically developing controls of the same age, all of whom were enrolled as part of the Autism Phenome Project (APP). Behavioral assessment, the levels of soluble adhesion molecules, head circumference and MRI measurements of brain volume were compared in the same subjects. Results Levels of sPECAM-1 and sP-Selectin were significantly reduced in the ASD group compared to typically developing controls (p < 0.02). Soluble PECAM-1 levels were negatively associated with repetitive behavior and abnormal brain growth in children with ASD (p=0.03). Conclusions As adhesion molecules modulate the permeability and signaling at the blood brain barrier as well as leukocyte infiltration into the CNS, current data suggests a role for these molecules in the complex pathophysiology of ASD. PMID:22717029

  12. Dopamine Increases CD14+CD16+ Monocyte Migration and Adhesion in the Context of Substance Abuse and HIV Neuropathogenesis

    PubMed Central

    Coley, Jacqueline S.; Calderon, Tina M.; Gaskill, Peter J.; Eugenin, Eliseo A.; Berman, Joan W.

    2015-01-01

    Drug abuse is a major comorbidity of HIV infection and cognitive disorders are often more severe in the drug abusing HIV infected population. CD14+CD16+ monocytes, a mature subpopulation of peripheral blood monocytes, are key mediators of HIV neuropathogenesis. Infected CD14+CD16+ monocyte transmigration across the blood brain barrier mediates HIV entry into the brain and establishes a viral reservoir within the CNS. Despite successful antiretroviral therapy, continued influx of CD14+CD16+ monocytes, both infected and uninfected, contributes to chronic neuroinflammation and the development of HIV associated neurocognitive disorders (HAND). Drug abuse increases extracellular dopamine in the CNS. Once in the brain, CD14+CD16+ monocytes can be exposed to extracellular dopamine due to drug abuse. The direct effects of dopamine on CD14+CD16+ monocytes and their contribution to HIV neuropathogenesis are not known. In this study, we showed that CD14+CD16+ monocytes express mRNA for all five dopamine receptors by qRT-PCR and D1R, D5R and D4R surface protein by flow cytometry. Dopamine and the D1-like dopamine receptor agonist, SKF38393, increased CD14+CD16+ monocyte migration that was characterized as chemokinesis. To determine whether dopamine affected cell motility and adhesion, live cell imaging was used to monitor the accumulation of CD14+CD16+ monocytes on the surface of a tissue culture dish. Dopamine increased the number and the rate at which CD14+CD16+ monocytes in suspension settled to the dish surface. In a spreading assay, dopamine increased the area of CD14+CD16+ monocytes during the early stages of cell adhesion. In addition, adhesion assays showed that the overall total number of adherent CD14+CD16+ monocytes increased in the presence of dopamine. These data suggest that elevated extracellular dopamine in the CNS of HIV infected drug abusers contributes to HIV neuropathogenesis by increasing the accumulation of CD14+CD16+ monocytes in dopamine rich brain

  13. Cocaine-associated retiform purpura: a C5b-9-mediated microangiopathy syndrome associated with enhanced apoptosis and high levels of intercellular adhesion molecule-1 expression.

    PubMed

    Magro, Cynthia M; Wang, Xuan

    2013-10-01

    Cocaine-associated retiform purpura is a recently described entity characterized by striking hemorrhagic necrosis involving areas of skin associated with administration of cocaine. Levamisole, an adulterant in cocaine, has been suggested as the main culprit pathogenetically. Four cases of cocaine-associated retiform purpura were encountered in the dermatopathology practice of C. M. Magro. The light microscopic findings were correlated with immunohistochemical and immunofluorescence studies. All 4 cases showed a very striking thrombotic diathesis associated with intravascular macrophage accumulation. Necrotizing vasculitis was noted in 1 case. Striking intercellular adhesion molecule-1 (ICAM-1)/CD54 expression in vessel wall along with endothelial expression of caspase 3 and extensive vascular C5b-9 deposition was observed in all biopsies examined. Cocaine-induced retiform purpura is a C5b-9-mediated microvascular injury associated with enhanced apoptosis and prominent vascular expression of ICAM-1, all of which have been shown in prior in vitro and in vivo murine models to be a direct effect of cocaine metabolic products. Antineutrophilic cytoplasmic antibody and antiphospholipid antibodies are likely the direct sequelae of the proapoptotic microenvironment. The inflammatory vasculitic lesion could reflect the downstream end point reflective of enhanced ICAM-1 expression and the development of antineutrophilic cytoplasmic antibody. Levamisole likely works synergistically with cocaine in the propagation of this syndromic complex.

  14. PAK4 promotes kinase-independent stabilization of RhoU to modulate cell adhesion

    PubMed Central

    Dart, Anna E.; Box, Gary M.; Court, William; Gale, Madeline E.; Brown, John P.; Pinder, Sarah E.; Eccles, Suzanne A.

    2015-01-01

    P21-activated kinase 4 (PAK4) is a Cdc42 effector protein thought to regulate cell adhesion disassembly in a kinase-dependent manner. We found that PAK4 expression is significantly higher in high-grade human breast cancer patient samples, whereas depletion of PAK4 modifies cell adhesion dynamics of breast cancer cells. Surprisingly, systematic analysis of PAK4 functionality revealed that PAK4-driven adhesion turnover is neither dependent on Cdc42 binding nor kinase activity. Rather, reduced expression of PAK4 leads to a concomitant loss of RhoU expression. We report that RhoU is targeted for ubiquitination by the Rab40A–Cullin 5 complex and demonstrate that PAK4 protects RhoU from ubiquitination in a kinase-independent manner. Overexpression of RhoU rescues the PAK4 depletion phenotype, whereas loss of RhoU expression reduces cell adhesion turnover and migration. These data support a new kinase-independent mechanism for PAK4 function, where an important role of PAK4 in cellular adhesions is to stabilize RhoU protein levels. Thus, PAK4 and RhoU cooperate to drive adhesion turnover and promote cell migration. PMID:26598620

  15. Production and Breeding of Transgenic Cloned Pigs Expressing Human CD73.

    PubMed

    Lee, Seung-Chan; Lee, Haesun; Oh, Keon Bong; Hwang, In-Sul; Yang, Hyeon; Park, Mi-Ryung; Ock, Sun-A; Woo, Jae-Seok; Im, Gi-Sun; Hwang, Seongsoo

    2017-06-01

    One of the reasons to causing blood coagulation in the tissue of xenografted organs was known to incompatibility of the blood coagulation and anti-coagulation regulatory system between TG pigs and primates. Thus, overexpression of human CD73 (hCD73) in the pig endothelial cells is considered as a method to reduce coagulopathy after pig-to-non-human-primate xenotransplantation. This study was performed to produce and breed transgenic pigs expressing hCD73 for the studies immune rejection responses and could provide a successful application of xenotransplantation. The transgenic cells were constructed an hCD73 expression vector under control porcine Icam2 promoter (pIcam2-hCD73) and established donor cell lines expressing hCD73. The numbers of transferred reconstructed embryos were 127 ± 18.9. The pregnancy and delivery rate of surrogates were 8/18 (44%) and 3/18 (16%). The total number of delivered cloned pigs were 10 (2 alive, 7 mummy, and 1 died after birth). Among them, three live hCD73-pigs were successfully delivered by Caesarean section, but one was dead after birth. The two hCD73 TG cloned pigs had normal reproductive ability. They mated with wild type (WT) MGH (Massachusetts General Hospital) female sows and produced totally 16 piglets. Among them, 5 piglets were identified as hCD73 TG pigs. In conclusion, we successfully generated the hCD73 transgenic cloned pigs and produced their litters by natural mating. It can be possible to use a mate for the production of multiple transgenic pigs such as α-1,3-galactosyltransferase knock-out /hCD46 for xenotransplantation.

  16. Sulfation-dependent recognition of high endothelial venules (HEV)- ligands by L-selectin and MECA 79, and adhesion-blocking monoclonal antibody

    PubMed Central

    1994-01-01

    L-selectin is a lectin-like receptor that mediates the attachment of lymphocytes to high endothelial venules (HEV) of lymph nodes during the process of lymphocyte recirculation. Two sulfated, mucin-like glycoproteins known as Sgp50/GlyCAM-1 and Sgp90/CD34 have previously been identified as HEV-associated ligands for L-selectin. These proteins were originally detected with an L-selectin/Ig chimera called LEC-IgG. GlyCAM-1 and CD34 are also recognized by an antiperipheral node addressin (PNAd) mAb called MECA 79, which blocks L-selectin- dependent adhesion and selectively stains lymph node HEV. The present study compares the requirements for the binding of MECA 79 and LEC-IgG to HEV-ligands. Whereas desialylation of GlyCAM-1 and CD34 drastically reduced binding to LEC-IgG, this treatment enhanced the binding of GlyCAM-1 to MECA 79. In contrast, the binding of both MECA 79 and LEC- IgG to GlyCAM-1 and CD34 was greatly decreased when the sulfation of these ligands was reduced with chlorate, a metabolic inhibitor of sulfation. Because MECA 79 stains HEV-like vessels at various sites of inflammation, recognition by L-selectin of ligands outside of secondary lymphoid organs may depend on sulfation. In addition to their reactivity with GlyCAM-1 and CD34, both MECA 79 and LEC-IgG recognize an independent molecule of approximately 200 kD in a sulfate-dependent manner. Thus, this molecule, which we designate Sgp200, is an additional ligand for L-selectin. PMID:7525849

  17. Changes in the vascular cell adhesion molecule-1, intercellular adhesion molecule-1 and c-reactive protein following administration of aqueous extract of piper sarmentosum on experimental rabbits fed with cholesterol diet

    PubMed Central

    2011-01-01

    Background Inflammation process plays an important role in the development of atherosclerosis. Hypercholesterolemia is one of the major risk factors for atherosclerosis. The present study aimed to evaluate the effect of aqueous extract of Piper sarmentosum (P.s) on inflammatory markers like vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and C-reactive protein (CRP). Methods Forty two male New Zealand white rabbits were divided equally into seven groups; (i) C- control group fed normal rabbit chow (ii) CH- cholesterol diet (1%cholesterol) (iii) X1- 1% cholesterol with water extract of P.s (62.5 mg/kg) (iv) X2- 1% cholesterol with water extract of P.s (125 mg/kg (v) X3- 1% cholesterol with water extract of P.s (250 mg/kg) (vi) X4- 1% cholesterol with water extract of P.s (500 mg/kg) and (vii) SMV group fed with 1% cholesterol supplemented with simvistatin drug (1.2 mg/kg). All animals were treated for 10 weeks. Blood serum was taken for observing the inflammatory markers at the beginning and end of the experiment. Results Rabbits fed with 1% cholesterol diet (CH) showed significant increase in the level of VCAM-1, ICAM-1 and CRP compared to the C group. The levels of VCAM-1, ICAM-1 and CRP in the 1% cholesterol group and supplemented with P.s (500 mg/kg) were significantly reduced compared to the cholesterol group. Similar results were also reported with simvistatin group. Conclusion These results suggest that the supplementation of Piper sarmentosum extract could inhibit inflammatory markers which in turn could prevent atherosclerosis. PMID:21214952

  18. Stalk-dependent and Stalk-independent Signaling by the Adhesion G Protein-coupled Receptors GPR56 (ADGRG1) and BAI1 (ADGRB1).

    PubMed

    Kishore, Ayush; Purcell, Ryan H; Nassiri-Toosi, Zahra; Hall, Randy A

    2016-02-12

    The adhesion G protein-coupled receptors (aGPCRs) are a large yet poorly understood family of seven-transmembrane proteins. A defining characteristic of the aGPCR family is the conserved GAIN domain, which has autoproteolytic activity and can cleave the receptors near the first transmembrane domain. Several aGPCRs, including ADGRB1 (BAI1 or B1) and ADGRG1 (GPR56 or G1), have been found to exhibit significantly increased constitutive activity when truncated to mimic GAIN domain cleavage (ΔNT). Recent reports have suggested that the new N-terminal stalk, which is revealed by GAIN domain cleavage, can directly activate aGPCRs as a tethered agonist. We tested this hypothesis in studies on two distinct aGPCRs, B1 and G1, by engineering mutant receptors lacking the entire NT including the stalk (B1- and G1-SL, with "SL" indicating "stalkless"). These receptors were evaluated in a battery of signaling assays and compared with full-length wild-type and cleavage-mimicking (ΔNT) forms of the two receptors. We found that B1-SL, in multiple assays, exhibited robust signaling activity, suggesting that the membrane-proximal stalk region is not necessary for its activation. For G1, however, the results were mixed, with the SL mutant exhibiting robust activity in several signaling assays (including TGFα shedding, activation of NFAT luciferase, and β-arrestin recruitment) but reduced activity relative to ΔNT in a distinct assay (activation of SRF luciferase). These data support a model in which the activation of certain pathways downstream of aGPCRs is stalk-dependent, whereas signaling to other pathways is stalk-independent. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. PKC-Dependent Human Monocyte Adhesion Requires AMPK and Syk Activation

    PubMed Central

    Chang, Mei-Ying; Huang, Duen-Yi; Ho, Feng-Ming; Huang, Kuo-Chin; Lin, Wan-Wan

    2012-01-01

    PKC plays a pivotal role in mediating monocyte adhesion; however, the underlying mechanisms of PKC-mediated cell adhesion are still unclear. In this study, we elucidated the signaling network of phorbol ester PMA-stimulated human monocyte adhesion. Our results with pharmacological inhibitors suggested the involvement of AMPK, Syk, Src and ERK in PKC-dependent adhesion of THP-1 monocytes to culture plates. Biochemical analysis further confirmed the ability of PMA to activate these kinases, as well as the involvement of AMPK-Syk-Src signaling in this event. Direct protein interaction between AMPK and Syk, which requires the kinase domain of AMPK and linker region of Syk, was observed following PMA stimulation. Notably, we identified Syk as a novel downstream target of AMPK; AICAR can induce Syk phosphorylation at Ser178 and activation of this kinase. However, activation of AMPK alone, either by stimulation with AICAR or by overexpression, is not sufficient to induce monocyte adhesion. Studies further demonstrated that PKC-mediated ERK signaling independent of AMPK activation is also involved in cell adhesion. Moreover, AMPK, Syk, Src and ERK signaling were also required for PMA to induce THP-1 cell adhesion to endothelial cells as well as to induce adhesion response of human primary monocytes. Taken together, we propose a bifurcated kinase signaling pathway involved in PMA-mediated adhesion of monocytes. PKC can activate LKB1/AMPK, leading to phosphorylation and activation of Syk, and subsequent activation of Src and FAK. In addition, PKC-dependent ERK activation induces a coordinated signal for cytoskeleton rearrangement and cell adhesion. For the first time we demonstrate Syk as a novel substrate target of AMPK, and shed new light on the role of AMPK in monocyte adhesion, in addition to its well identified functions in energy homeostasis. PMID:22848421

  20. Comparison of the effects of Crataegus oxyacantha extract, aerobic exercise and their combination on the serum levels of ICAM-1 and E-Selectin in patients with stable angina pectoris.

    PubMed

    Jalaly, Leila; Sharifi, Gholamreza; Faramarzi, Mohammad; Nematollahi, Alireza; Rafieian-kopaei, Mahmoud; Amiri, Masoud; Moattar, Fariborz

    2015-12-19

    Adhesion molecules play an important role in the development and progression of coronary atherosclerosis. The aim of this study was comparing the effect of Cratagol herbal tablet, aerobic exercise and their combination on the serum levels of Intercellular adhesion molecule (ICAM)-1 and E-Selectin in patients with stable angina pectoris. Eighty stable angina pectoris patients aged between 45 and 65 years, were randomly divided into four groups including three experimental groups and one control group: aerobic exercise (E), Crataegus oxyacantha extract (S), aerobic exercise and Crataegus oxyacantha extract (S+E), and control (C). Blood sampling was taken 24 h before and after 12 weeks of aerobic exercise and Crataegus oxyacantha extract consumption. The results of serum levels of ICAM-1 and E-selectin were compared. Intergroup comparison of the data revealed a significant reduction (P <0.01) in serum levels of ICAM-1 and E-selectin in experimental groups. Analysis of data showed that the serum levels of ICAM-1 had significant difference when group S+E was compared with groups S and C, but not group E (P = 0.021, P = 0.000 and P = 0.068, respectively). Also the difference between the levels of E-selectin was significant comparing S+E and S but not E with group C (P = 0.021, P = 0.000 and P = 0.052, respectively). Twelve weeks effects of aerobic exercise and Crataegus oxyacantha extract consuming is an effective complementary strategy to significantly lower the risk of atherosclerosis and heart problems.

  1. Effects of anti-tumor necrosis factor-alpha and anti-intercellular adhesion molecule-1 antibodies on ischemia/reperfusion lung injury.

    PubMed

    Chiang, Chi-Huei

    2006-10-31

    Inhibition of neutrophil activation and adherence to endothelium by antibodies to tumor necrosis factor-alpha (TNF-alpha) and intercellular adhesion molecules (ICAM-1), respectively, might attenuate ischemia-reperfusion injury (I/R). I/R was conducted in an isolated rat lung model. Anti-TNF-alpha antibody and/or anti-ICAM-1 antibody were added before ischemia or after reperfusion. Hemodynamic changes, lung weight gain (LWG), capillary filtration coefficients (Kfc), and pathologic changes were assessed to evaluate the severity of I/R. The LWG, Kfc, pathological changes and lung injury score of treatment groups with anti-TNF-alpha antibody treatment, either pre-ischemia or during reperfusion, were less than those observed in control groups. Similar findings were found in group treated with anti-ICAM-1 antibody or combination therapy during reperfusion. In contrast, pre-I/R treatment with anti-ICAM-1 antibody induced severe lung edema and failure to complete the experimental procedure. No additional therapeutic effect was found in combination therapy. We conclude that TNF-alpha and ICAM-1 play important roles in I/R. Anti-TNF-alpha antibody has therapeutic and preventive effects on I/R. However, combined therapy with anti-TNF-alpha antibody and anti-ICAM-1 antibody may have no additive effect and need further investigation.

  2. Serum ICAM-1 level and ICAM-1 gene 1462A>G (K469E) polimorphism on microalbuminuria in nondiabetic, nonhypertensive and normolipidemic obese patients: Genetical background of microalbuminuria in obesity.

    PubMed

    Atay, Ahmet Engin; Esen, Bennur; Akbas, Halit; Gokmen, Emel Saglam; Pilten, Saadet; Guler, Hale; Yavuz, Dilek Gogas

    A growing body of evidence suggest that obese individuals are under risk of renal parenchymal disorders when compared to nonobese counterparts. Microalbuminuria is the early marker of renal involvement. Although most of obese patients carries multiple risk factors for microalbuminuria, some obese individuals without risk factor may progress to microalbuminuria. The present study was performed to examine the role of ICAM-1 gene 1462A>G (K469E) polymorphism on microalbuminuria in obese subjects without diabetes mellitus, hypertension, hiperlipidemia and older age. Ninety eight obese and 96 nonobese individuals without a comorbidity enrolled into the study. Serum ICAM-1 level was measured by enzyme linked immunoabsorbent assay (ELISA) method. ICAM-1 gene 1462A>G (K469E) polymorphism was examined by restriction fragment length polymorphism-polymerase chain reaction (RFLP-PCR). Nepholometric method was used to examine urinary albumin loss, and microalbuminuria was measured by albumin to creatinine ratio. Obese individuals had significantly higher microalbuminuria and proteinuria level compared to nonobese subjects (p: 0.043 and p: 0.011; respectively). GG genotype of ICAM-1 carriers have significantly higher microalbuminuria compared to individuals with AA or AG genotype carriers (p: 0.042). Serum ICAM-1 level was significantly correlated with creatinine and microalbuminuria (p: 0.002 and p: 0.03; respectively). Logistic regression analysis indicated a 7.39 fold increased risk of microalbuminuria in individuals with GG genotype of ICAM-1 gene 1462A>G (K469E) polymorphism. GG genotype of ICAM-1 gene K469E polymorphism is associated with increased microalbuminuria in obese individuals without another metabolic risk factor. Copyright © 2017 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  3. Aspirin inhibits surface glycoprotein IIb/IIIa, P-selectin, CD63, and CD107a receptor expression on human platelets.

    PubMed

    McKenzie, Marcus E; Malinin, Alex I; Bell, Christopher R; Dzhanashvili, Alex; Horowitz, Eric D; Oshrine, Benjamin R; Atar, Dan; Serebruany, Victor L

    2003-04-01

    Platelet inhibition after aspirin therapy reduces the risk for the development of acute coronary syndromes. However, the mechanism by which aspirin affect platelets other than by prostaglandin blockade is unclear. We sought to determine the in vitro effects of aspirin on the surface expression of nine platelet receptors using whole blood flow cytometry. Blood from 24 healthy volunteers was incubated for 30 min with 1.8 and 7.2 mg/l phosphate-buffered saline-diluted acetylsalicylic acid in the presence or absence of apyrase. Platelet serotonin release, and the surface expression of platelet receptors with or without apyrase were determined using the following monoclonal antibodies: anit-CD41 [glycoprotein (GP)IIb/IIIa], CD42b (GPIb), CD62p (P-selectin), CD51/CD61 (vitronectin receptor), CD31 [platelet/endothelial cellular adhesion molecule-1 (PECAM-1)], CD107a [lysosomal associated membrane protein (LAMP)-1], CD107b (LAMP-2), CD63 (LIMP or LAMP-3), and CD151 (PETA-3). Samples were then immediately fixed with 2% paraformaldehyde, and run on the flow cytometer within 48 h. Aspirin does not affect serotonin release from human platelets. Dose-dependent inhibition of GPIIb/IIIa, P-selectin, CD63, and CD107a receptor expression was observed in the aspirin-treated whole-blood samples. Apyrase potentiates the effects of aspirin, and independently inhibits PECAM-1. In addition to the known effect of irreversibly inhibiting platelet cyclooxygenase-1, thereby blocking thromboxane A(2) synthesis, it appears that aspirin exhibits direct effects on selective major platelet receptors.

  4. Association of TLR2 S450S and ICAM1 K469E polymorphisms with polycystic ovary syndrome (PCOS) and obesity.

    PubMed

    Ojeda-Ojeda, Miriam; Martínez-García, M Ángeles; Alpañés, Macarena; Luque-Ramírez, Manuel; Escobar-Morreale, Héctor F

    2016-02-01

    Toll-like receptors (TLRs) are activated by inflammatory stimuli and influence endothelial functions, contributing to the pathogenesis of atherosclerosis. We investigate the influence of polymorphisms in the genes encoding toll-like receptor 2 (TLR2) and 4 (TLR4) and endothelial adhesion molecules on polycystic ovary syndrome (PCOS) and its interaction with obesity. Ten single nucleotide polymorphisms were genotyped in 305 women with PCOS and 166 non-hyperandrogenic control women. In obese women, TLR2 S450S and ICAM1 K469E polymorphisms differently influenced metabolic variables and PCOS, respectively. Irrespective of PCOS, variant alleles of TLR2 S450S increased triglycerides, fasting insulin levels, and insulin resistance in obese women. TLR2 S450S interacted with obesity and PCOS on androstenedione levels, mutant alleles were associated with increased androstenedione concentrations in all women, with the exception of obese patients with PCOS (P=0.034). Regarding ICAM1 K469E, homozygosis for K469 alleles was more frequent in PCOS, but only in obese women (P=0.014). K469 alleles were also related to increased body mass index (P=0.017) and diastolic blood pressure (P=0.034). Moreover, ICAM1 K469E interacted with obesity and PCOS on serum triglyceride levels (P=0.019) and with PCOS on serum sex hormone-binding globulin concentrations (P=0.006). In conclusion, TLR2 S450S and ICAM1 K469E polymorphisms may be associated with PCOS and metabolic comorbidities in obese women. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. CD22-Binding Synthetic Sialosides Regulate B Lymphocyte Proliferation Through CD22 Ligand-Dependent and Independent Pathways, and Enhance Antibody Production in Mice

    PubMed Central

    Matsubara, Naoko; Imamura, Akihiro; Yonemizu, Tatsuya; Akatsu, Chizuru; Yang, Hongrui; Ueki, Akiharu; Watanabe, Natsuki; Abdu-Allah, Hajjaj; Numoto, Nobutaka; Takematsu, Hiromu; Kitazume, Shinobu; Tedder, Thomas F.; Marth, Jamey D.; Ito, Nobutoshi; Ando, Hiromune; Ishida, Hideharu; Kiso, Makoto; Tsubata, Takeshi

    2018-01-01

    Sialic acid-binding immunoglobulin-like lectins (Siglecs) are expressed in various immune cells and most of them carry signaling functions. High-affinity synthetic sialoside ligands have been developed for various Siglecs. Therapeutic potentials of the nanoparticles and compounds that contain multiple numbers of these sialosides and other reagents such as toxins and antigens have been demonstrated. However, whether immune responses can be regulated by monomeric sialoside ligands has not yet been known. CD22 (also known as Siglec-2) is an inhibitory molecule preferentially expressed in B lymphocytes (B cells) and is constitutively bound and functionally regulated by α2,6 sialic acids expressed on the same cell (cis-ligands). Here, we developed synthetic sialosides GSC718 and GSC839 that bind to CD22 with high affinity (IC50 ~100 nM), and inhibit ligand binding of CD22. When B cells are activated by B cell antigen receptor (BCR) ligation, both GSC718 and GSC839 downregulate proliferation of B cells, and this regulation requires both CD22 and α2,6 sialic acids. This result suggests that these sialosides regulate BCR ligation-induced B cell activation by reversing endogenous ligand-mediated regulation of CD22. By contrast, GSC718 and GSC839 augment B cell proliferation induced by TLR ligands or CD40 ligation, and this augmentation requires CD22 but not α2,6 sialic acids. Thus, these sialosides appear to enhance B cell activation by directly suppressing the inhibitory function of CD22 independently of endogenous ligand-mediated regulation. Moreover, GSC839 augments B cell proliferation that depends on both BCR ligation and CD40 ligation as is the case for in vivo B cell responses to antigens, and enhanced antibody production to the extent comparable to CpG oligonuleotides or a small amount of alum. Although these known adjuvants induce production of the inflammatory cytokines or accumulation of inflammatory cells, CD22-binding sialosides do not. Thus, synthetic

  6. CD22-Binding Synthetic Sialosides Regulate B Lymphocyte Proliferation Through CD22 Ligand-Dependent and Independent Pathways, and Enhance Antibody Production in Mice.

    PubMed

    Matsubara, Naoko; Imamura, Akihiro; Yonemizu, Tatsuya; Akatsu, Chizuru; Yang, Hongrui; Ueki, Akiharu; Watanabe, Natsuki; Abdu-Allah, Hajjaj; Numoto, Nobutaka; Takematsu, Hiromu; Kitazume, Shinobu; Tedder, Thomas F; Marth, Jamey D; Ito, Nobutoshi; Ando, Hiromune; Ishida, Hideharu; Kiso, Makoto; Tsubata, Takeshi

    2018-01-01

    Sialic acid-binding immunoglobulin-like lectins (Siglecs) are expressed in various immune cells and most of them carry signaling functions. High-affinity synthetic sialoside ligands have been developed for various Siglecs. Therapeutic potentials of the nanoparticles and compounds that contain multiple numbers of these sialosides and other reagents such as toxins and antigens have been demonstrated. However, whether immune responses can be regulated by monomeric sialoside ligands has not yet been known. CD22 (also known as Siglec-2) is an inhibitory molecule preferentially expressed in B lymphocytes (B cells) and is constitutively bound and functionally regulated by α2,6 sialic acids expressed on the same cell (cis-ligands). Here, we developed synthetic sialosides GSC718 and GSC839 that bind to CD22 with high affinity (IC 50 ~100 nM), and inhibit ligand binding of CD22. When B cells are activated by B cell antigen receptor (BCR) ligation, both GSC718 and GSC839 downregulate proliferation of B cells, and this regulation requires both CD22 and α2,6 sialic acids. This result suggests that these sialosides regulate BCR ligation-induced B cell activation by reversing endogenous ligand-mediated regulation of CD22. By contrast, GSC718 and GSC839 augment B cell proliferation induced by TLR ligands or CD40 ligation, and this augmentation requires CD22 but not α2,6 sialic acids. Thus, these sialosides appear to enhance B cell activation by directly suppressing the inhibitory function of CD22 independently of endogenous ligand-mediated regulation. Moreover, GSC839 augments B cell proliferation that depends on both BCR ligation and CD40 ligation as is the case for in vivo B cell responses to antigens, and enhanced antibody production to the extent comparable to CpG oligonuleotides or a small amount of alum. Although these known adjuvants induce production of the inflammatory cytokines or accumulation of inflammatory cells, CD22-binding sialosides do not. Thus, synthetic

  7. Ral-Arf6 crosstalk regulates Ral dependent exocyst trafficking and anchorage independent growth signalling.

    PubMed

    Pawar, Archana; Meier, Jeremy A; Dasgupta, Anwesha; Diwanji, Neha; Deshpande, Neha; Saxena, Kritika; Buwa, Natasha; Inchanalkar, Siddhi; Schwartz, Martin Alexander; Balasubramanian, Nagaraj

    2016-09-01

    Integrin dependent regulation of growth factor signalling confers anchorage dependence that is deregulated in cancers. Downstream of integrins and oncogenic Ras the small GTPase Ral is a vital mediator of adhesion dependent trafficking and signalling. This study identifies a novel regulatory crosstalk between Ral and Arf6 that controls Ral function in cells. In re-adherent mouse fibroblasts (MEFs) integrin dependent activation of RalA drives Arf6 activation. Independent of adhesion constitutively active RalA and RalB could both however activate Arf6. This is further conserved in oncogenic H-Ras containing bladder cancer T24 cells, which express anchorage independent active Ral that supports Arf6 activation. Arf6 mediates active Ral-exocyst dependent delivery of raft microdomains to the plasma membrane that supports anchorage independent growth signalling. Accordingly in T24 cells the RalB-Arf6 crosstalk is seen to preferentially regulate anchorage independent Erk signalling. Active Ral we further find uses a Ral-RalBP1-ARNO-Arf6 pathway to mediate Arf6 activation. This study hence identifies Arf6, through this regulatory crosstalk, to be a key downstream mediator of Ral isoform function along adhesion dependent pathways in normal and cancer cells. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Fas Ligand-Mediated Lysis of Self Bystander Targets by Human Papillomavirus-Specific CD8+ Cytotoxic T Lymphocytes

    PubMed Central

    Smyth, Mark J.; Krasovskis, Erika; Johnstone, Ricky W.

    1998-01-01

    Mouse cytotoxic T lymphocytes (CTL) reactive with a H-2Db-presented 9-mer peptide of the human papillomavirus type 16 protein E749-57 (RAHYNIVTF) were generated from the spleen cells of wild-type C57BL/6 (B6) or B6 perforin-deficient (B6.P0) mice. CD8+ B6 CTL displayed peptide-specific perforin- and Fas-mediated lysis of E7-transfected mouse RMA lymphoma cells (RMA-E7), while CD8+ CTL from B6.P0 mice lysed RMA-E7 cells via Fas ligand (FasL) exclusively. Rapid and efficient lysis of syngeneic bystander B6 blasts or RMA cells by either B6 or B6.P0 Ag-activated CTL was mediated by a FasL-Fas mechanism. Fas-resistant bystanders were not lysed, nor were allogeneic Fas-sensitive C3H/HeJ (H-2k) or BALB/c (H-2d) bystander blasts. Interestingly, however, phorbol myristate acetate-ionomycin preactivation of B6.P0 effectors enabled lysis of allogeneic H-2k and H-2d bystanders even in the absence of antigenic stimulation. Lysis of syngeneic bystander cells was always FasL-Fas dependent and required effector-bystander contact and, in particular, an interaction between CTL LFA-1 and bystander ICAM-1. Thus, in the context of major histocompatibility complex class I molecule-peptide ligation of the T-cell receptors of CD8+ CTL, neighboring bystander cells that are syngeneic and Fas sensitive and express the adhesion molecule ICAM-1 are potential targets of CTL attack. PMID:9621057

  9. Enhancement of ICAM-1 via the JAK2/STAT3 signaling pathway in a rat model of severe acute pancreatitis-associated lung injury

    PubMed Central

    HAN, XIAO; WANG, YUXI; CHEN, HAILONG; ZHANG, JINGWEN; XU, CAIMING; LI, JIAN; LI, MINGYUE

    2016-01-01

    Acute lung injury (ALI), which is associated with severe acute pancreatitis (SAP), results from damage to the pulmonary microvascular endothelial cells (PMVECs), which in turn leads to high levels of inflammatory cytokines that destroy PMVECs. However, the molecular mechanisms underlying SAP-associated ALI (SAP-ALI) are currently not well understood. Intercellular adhesion molecule-1 (ICAM-1) has been implicated in the persistent migration and accumulation of neutrophils and macrophages, which in turn has been associated with the increased permeability of microvascular endothelial cells. Signal transduction via the Janus kinase-2 (JAK2)/signal transducer and activator of transcription-3 (STAT3) transcription factors has been shown to be involved in inflammation. The present study aimed to investigate the expression levels of ICAM-1 and JAK2/STAT3 signaling components in a rat model of SAP-ALI. SAP was induced in the rat model, and dexamethasone (DEX) was administered to the treatment group. Subsequently, ICAM-1, interleukin (IL)-6, IL-8, tumor necrosis factor (TNF)-α, JAK2, STAT3 and nuclear factor (NF)-κB mRNA expression levels were determined using reverse transcription-polymerase chain reaction; ICAM-1 protein expression levels were determined using western blotting; and IL-6, IL-8 and TNF-α levels were measured via an enzyme-linked immunosorbent assay. In addition, an immunohistochemical analysis of ICAM-1, NF-κB, JAK2 and STAT3 was conducted, and the protein expression and cell morphology of the lungs in all rats was analyzed. ICAM-1 mRNA and protein expression levels were significantly increased following induction of SAP, and were significantly decreased in the DEX-treated group. Furthermore, treatment with DEX significantly reduced serum expression levels of IL-6, IL-8 and TNF-α and decreased expression levels of NF-κB, JAK2 and STAT3 in the lung tissue, as compared with the untreated SAP group. The present study demonstrated that DEX treatment was

  10. Omentin inhibits TNF-{alpha}-induced expression of adhesion molecules in endothelial cells via ERK/NF-{kappa}B pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Xia, E-mail: zhongxia1977@126.com; Li, Xiaonan; Liu, Fuli

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Omentin inhibited TNF-{alpha}-induced adhesion of THP-1 cells to HUVECs. Black-Right-Pointing-Pointer Omentin reduces expression of ICAM-1 and VCAM-1 induced by TNF-{alpha} in HUVECs. Black-Right-Pointing-Pointer Omentin inhibits TNF-{alpha}-induced ERK and NF-{kappa}B activation in HUVECs. Black-Right-Pointing-Pointer Omentin supreeses TNF-{alpha}-induced expression of ICAM-1 and VCAM-1 via ERK/NF-{kappa}B pathway. -- Abstract: In the present study, we investigated whether omentin affected the expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor-{alpha} (TNF-{alpha}) induced human umbilical vein endothelial cells (HUVECs). Our data showed that omentin decreased TNF-{alpha}-induced expression of ICAM-1 and VCAM-1 in HUVECs. In addition, omentin inhibitedmore » TNF-{alpha}-induced adhesion of THP-1 cells to HUVECs. Further, we found that omentin inhibited TNF-{alpha}-activated signal pathway of nuclear factor-{kappa}B (NF-{kappa}B) by preventing NF-{kappa}B inhibitory protein (I{kappa}B{alpha}) degradation and NF-{kappa}B/DNA binding activity. Omentin pretreatment significantly inhibited TNF-{alpha}-induced ERK activity and ERK phosphorylation in HUVECs. Pretreatment with PD98059 suppressed TNF-{alpha}-induced NF-{kappa}B activity. Omentin, NF-kB inhibitor (BAY11-7082) and ERK inhibitor (PD98059) reduced the up-regulation of ICAM-1 and VCAM-1 induced by TNF-{alpha}. These results suggest that omentin may inhibit TNF-{alpha}-induced expression of adhesion molecules in endothelial cells via blocking ERK/NF-{kappa}B pathway.« less

  11. Separation of integrin-dependent adhesion from morphological changes based on differential PLC specificities.

    PubMed

    Wooten, D K; Teague, T K; McIntyre, B W

    1999-01-01

    In normal lymphocytes an inside-out signal up-regulating integrin adhesion is followed by a ligand-mediated outside-in cell spreading signal. Protein kinase C (PKC) inhibition blocks lymphocyte adherence to and spreading on fibronectin. In contrast, putative PLC inhibitors yield distinct differences with respect to adhesion and morphology. The phosphatidylinositol-specific phospholipase C (PLC) inhibitor neomycin blocked spreading of CD3/CD28-activated T cells on fibronectin by disrupting adhesion. Furthermore, when an additional inside-out signal for fibronectin adhesion is unnecessary such as with HPB-ALL T leukemic or phorbol-myristate-acetate-treated normal T cells, neomycin treatment does not alter adhesion or morphology. However, the phosphatidylcholine-specific PLC inhibitor D609 abrogates cell spreading without affecting adhesion to fibronectin in these cells as well as the CD3/CD28-activated T cells. These results strongly suggest that inside-out signaling for the integrin alpha4beta1 in lymphocytes proceeds through phosphatidylinositol-specific PLC and PKC, whereas the outside-in signal utilizes phosphatidylcholine-specific PLC and PKC.

  12. Focal Adhesion-Independent Cell Migration.

    PubMed

    Paluch, Ewa K; Aspalter, Irene M; Sixt, Michael

    2016-10-06

    Cell migration is central to a multitude of physiological processes, including embryonic development, immune surveillance, and wound healing, and deregulated migration is key to cancer dissemination. Decades of investigations have uncovered many of the molecular and physical mechanisms underlying cell migration. Together with protrusion extension and cell body retraction, adhesion to the substrate via specific focal adhesion points has long been considered an essential step in cell migration. Although this is true for cells moving on two-dimensional substrates, recent studies have demonstrated that focal adhesions are not required for cells moving in three dimensions, in which confinement is sufficient to maintain a cell in contact with its substrate. Here, we review the investigations that have led to challenging the requirement of specific adhesions for migration, discuss the physical mechanisms proposed for cell body translocation during focal adhesion-independent migration, and highlight the remaining open questions for the future.

  13. The CD14+CD16+ Inflammatory Monocyte Subset Displays Increased Mitochondrial Activity and Effector Function During Acute Plasmodium vivax Malaria

    PubMed Central

    Antonelli, Lis R. V.; Leoratti, Fabiana M. S.; Costa, Pedro A. C.; Rocha, Bruno C.; Diniz, Suelen Q.; Tada, Mauro S.; Pereira, Dhelio B.; Teixeira-Carvalho, Andrea; Golenbock, Douglas T.; Gonçalves, Ricardo; Gazzinelli, Ricardo T.

    2014-01-01

    Infection with Plasmodium vivax results in strong activation of monocytes, which are important components of both the systemic inflammatory response and parasite control. The overall goal of this study was to define the role of monocytes during P. vivax malaria. Here, we demonstrate that P. vivax–infected patients display significant increase in circulating monocytes, which were defined as CD14+CD16− (classical), CD14+CD16+ (inflammatory), and CD14loCD16+ (patrolling) cells. While the classical and inflammatory monocytes were found to be the primary source of pro-inflammatory cytokines, the CD16+ cells, in particular the CD14+CD16+ monocytes, expressed the highest levels of activation markers, which included chemokine receptors and adhesion molecules. Morphologically, CD14+ were distinguished from CD14lo monocytes by displaying larger and more active mitochondria. CD14+CD16+ monocytes were more efficient in phagocytizing P. vivax-infected reticulocytes, which induced them to produce high levels of intracellular TNF-α and reactive oxygen species. Importantly, antibodies specific for ICAM-1, PECAM-1 or LFA-1 efficiently blocked the phagocytosis of infected reticulocytes by monocytes. Hence, our results provide key information on the mechanism by which CD14+CD16+ cells control parasite burden, supporting the hypothesis that they play a role in resistance to P. vivax infection. PMID:25233271

  14. CD18 deficiency improves liver injury in the MCD model of steatohepatitis

    PubMed Central

    Pierce, Andrew A.; Siao, Kevin; Mattis, Aras N.; Goodsell, Amanda; Baron, Jody L.; Maher, Jacquelyn J.

    2017-01-01

    Neutrophils and macrophages are important constituents of the hepatic inflammatory infiltrate in non-alcoholic steatohepatitis. These innate immune cells express CD18, an adhesion molecule that facilitates leukocyte activation. In the context of fatty liver, activation of infiltrated leukocytes is believed to enhance hepatocellular injury. The objective of this study was to determine the degree to which activated innate immune cells promote steatohepatitis by comparing hepatic outcomes in wild-type and CD18-mutant mice fed a methionine-choline-deficient (MCD) diet. After 3 weeks of MCD feeding, hepatocyte injury, based on serum ALT elevation, was 40% lower in CD18-mutant than wild-type mice. Leukocyte infiltration into the liver was not impaired in CD18-mutant mice, but leukocyte activation was markedly reduced, as shown by the lack of evidence of oxidant production. Despite having reduced hepatocellular injury, CD18-mutant mice developed significantly more hepatic steatosis than wild-type mice after MCD feeding. This coincided with greater hepatic induction of pro-inflammatory and lipogenic genes as well as a modest reduction in hepatic expression of adipose triglyceride lipase. Overall, the data indicate that CD18 deficiency curbs MCD-mediated liver injury by limiting the activation of innate immune cells in the liver without compromising intrahepatic cytokine activation. Reduced liver injury occurs at the expense of increased hepatic steatosis, which suggests that in addition to damaging hepatocytes, infiltrating leukocytes may influence lipid homeostasis in the liver. PMID:28873429

  15. CD18 deficiency improves liver injury in the MCD model of steatohepatitis.

    PubMed

    Pierce, Andrew A; Duwaerts, Caroline C; Siao, Kevin; Mattis, Aras N; Goodsell, Amanda; Baron, Jody L; Maher, Jacquelyn J

    2017-01-01

    Neutrophils and macrophages are important constituents of the hepatic inflammatory infiltrate in non-alcoholic steatohepatitis. These innate immune cells express CD18, an adhesion molecule that facilitates leukocyte activation. In the context of fatty liver, activation of infiltrated leukocytes is believed to enhance hepatocellular injury. The objective of this study was to determine the degree to which activated innate immune cells promote steatohepatitis by comparing hepatic outcomes in wild-type and CD18-mutant mice fed a methionine-choline-deficient (MCD) diet. After 3 weeks of MCD feeding, hepatocyte injury, based on serum ALT elevation, was 40% lower in CD18-mutant than wild-type mice. Leukocyte infiltration into the liver was not impaired in CD18-mutant mice, but leukocyte activation was markedly reduced, as shown by the lack of evidence of oxidant production. Despite having reduced hepatocellular injury, CD18-mutant mice developed significantly more hepatic steatosis than wild-type mice after MCD feeding. This coincided with greater hepatic induction of pro-inflammatory and lipogenic genes as well as a modest reduction in hepatic expression of adipose triglyceride lipase. Overall, the data indicate that CD18 deficiency curbs MCD-mediated liver injury by limiting the activation of innate immune cells in the liver without compromising intrahepatic cytokine activation. Reduced liver injury occurs at the expense of increased hepatic steatosis, which suggests that in addition to damaging hepatocytes, infiltrating leukocytes may influence lipid homeostasis in the liver.

  16. CD44 in cancer progression: adhesion, migration and growth regulation.

    PubMed

    Marhaba, R; Zöller, M

    2004-03-01

    It is well established that the large array of functions that a tumour cell has to fulfil to settle as a metastasis in a distant organ requires cooperative activities between the tumour and the surrounding tissue and that several classes of molecules are involved, such as cell-cell and cell-matrix adhesion molecules and matrix degrading enzymes, to name only a few. Furthermore, metastasis formation requires concerted activities between tumour cells and surrounding cells as well as matrix elements and possibly concerted activities between individual molecules of the tumour cell itself. Adhesion molecules have originally been thought to be essential for the formation of multicellular organisms and to tether cells to the extracellular matrix or to neighbouring cells. CD44 transmembrane glycoproteins belong to the families of adhesion molecules and have originally been described to mediate lymphocyte homing to peripheral lymphoid tissues. It was soon recognized that the molecules, under selective conditions, may suffice to initiate metastatic spread of tumour cells. The question remained as to how a single adhesion molecule can fulfil that task. This review outlines that adhesion is by no means a passive task. Rather, ligand binding, as exemplified for CD44 and other similar adhesion molecules, initiates a cascade of events that can be started by adherence to the extracellular matrix. This leads to activation of the molecule itself, binding to additional ligands, such as growth factors and matrix degrading enzymes, complex formation with additional transmembrane molecules and association with cytoskeletal elements and signal transducing molecules. Thus, through the interplay of CD44 with its ligands and associating molecules CD44 modulates adhesiveness, motility, matrix degradation, proliferation and cell survival, features that together may well allow a tumour cell to proceed through all steps of the metastatic cascade.

  17. An Analysis of the Binding Characteristics of a Panel of Recently Selected ICAM-1 Binding Plasmodium falciparum Patient Isolates

    PubMed Central

    Madkhali, Aymen M.; Alkurbi, Mohammed O.; Szestak, Tadge; Bengtsson, Anja; Patil, Pradeep R.; Wu, Yang; Alharthi, Saeed; Jensen, Anja T. R.; Pleass, Richard; Craig, Alister G.

    2014-01-01

    The basis of severe malaria pathogenesis in part includes sequestration of Plasmodium falciparum-infected erythrocytes (IE) from the peripheral circulation. This phenomenon is mediated by the interaction between several endothelial receptors and one of the main parasite-derived variant antigens (PfEMP1) expressed on the surface of the infected erythrocyte membrane. One of the commonly used host receptors is ICAM-1, and it has been suggested that ICAM-1 has a role in cerebral malaria pathology, although the evidence to support this is not conclusive. The current study examined the cytoadherence patterns of lab-adapted patient isolates after selecting on ICAM-1. We investigated the binding phenotypes using variant ICAM-1 proteins including ICAM-1Ref, ICAM-1Kilifi, ICAM-1S22/A, ICAM-1L42/A and ICAM-1L44/A using static assays. The study also examined ICAM-1 blocking by four anti-ICAM-1 monoclonal antibodies (mAb) under static conditions. We also characterised the binding phenotypes using Human Dermal Microvascular Endothelial Cells (HDMEC) under flow conditions. The results show that different isolates have variant-specific binding phenotypes under both static and flow conditions, extending our previous observations that this variation might be due to variable contact residues on ICAM-1 being used by different parasite PfEMP1 variants. PMID:25360558

  18. Distinct subcellular trafficking resulting from monomeric vs multimeric targeting to endothelial ICAM-1: implications for drug delivery.

    PubMed

    Ghaffarian, Rasa; Muro, Silvia

    2014-12-01

    Ligand-targeted, receptor-mediated endocytosis is commonly exploited for intracellular drug delivery. However, cells-surface receptors may follow distinct endocytic fates when bound by monomeric vs multimeric ligands. Our purpose was to study this paradigm using ICAM-1, an endothelial receptor involved in inflammation, to better understand its regulation and potential for drug delivery. Our procedure involved fluorescence microscopy of human endothelial cells to determine the endocytic behavior of unbound ICAM-1 vs ICAM-1 bound by model ligands: monomeric (anti-ICAM) vs multimeric (anti-ICAM biotin-streptavidin conjugates or anti-ICAM coated onto 100 nm nanocarriers). Our findings suggest that both monomeric and multimeric ligands undergo a similar endocytic pathway sensitive to amiloride (∼50% inhibition), but not inhibitors of clathrin-pits or caveoli. After 30 min, ∼60-70% of both ligands colocalized with Rab11a-compartments. By 3-5 h, ∼65-80% of multimeric anti-ICAM colocalized with perinuclear lysosomes with ∼60-80% degradation, while 70% of monomeric anti-ICAM remained associated with Rab11a at the cell periphery and recycled to and from the cell-surface with minimal (<10%) lysosomal colocalization and minimal (≤15%) degradation. In the absence of ligands, ICAM-1 also underwent amiloride-sensitive endocytosis with peripheral distribution, suggesting that monomeric (not multimeric) anti-ICAM follows the route of this receptor. In conclusion, ICAM-1 can mediate different intracellular itineraries, revealing new insight into this biological pathway and alternative avenues for drug delivery.

  19. Delivery of acid sphingomyelinase in normal and niemann-pick disease mice using intercellular adhesion molecule-1-targeted polymer nanocarriers.

    PubMed

    Garnacho, Carmen; Dhami, Rajwinder; Simone, Eric; Dziubla, Thomas; Leferovich, John; Schuchman, Edward H; Muzykantov, Vladimir; Muro, Silvia

    2008-05-01

    Type B Niemann-Pick disease (NPD) is a multiorgan system disorder caused by a genetic deficiency of acid sphingomyelinase (ASM), for which lung is an important and challenging therapeutic target. In this study, we designed and evaluated new delivery vehicles for enzyme replacement therapy of type B NPD, consisting of polystyrene and poly(lactic-coglycolic) acid polymer nanocarriers targeted to intercellular adhesion molecule (ICAM)-1, an endothelial surface protein up-regulated in many pathologies, including type B NPD. Real-time vascular imaging using intravital microscopy and postmortem imaging of mouse organs showed rapid, uniform, and efficient binding of fluorescently labeled ICAM-1-targeted ASM nanocarriers (anti-ICAM/ASM nanocarriers) to endothelium after i.v. injection in mice. Fluorescence microscopy of lung alveoli actin, tissue histology, and 125I-albumin blood-to-lung transport showed that anti-ICAM nanocarriers cause neither detectable lung injury, nor abnormal vascular permeability in animals. Radioisotope tracing showed rapid disappearance from the circulation and enhanced accumulation of anti-ICAM/125I-ASM nanocarriers over the nontargeted naked enzyme in kidney, heart, liver, spleen, and primarily lung, both in wild-type and ASM knockout mice. These data demonstrate that ICAM-1-targeted nanocarriers may enhance enzyme replacement therapy for type B NPD and perhaps other lysosomal storage disorders.

  20. Compound Danshen injection improves endotoxin-induced microcirculatory disturbance in rat mesentery.

    PubMed

    Han, Jing-Yan; Horie, Yoshinori; Miura, Soichiro; Akiba, Yasutada; Guo, Jun; Li, Dan; Fan, Jing-Yu; Liu, Yu-Ying; Hu, Bai-He; An, Li-Hua; Chang, Xin; Xu, Man; Guo, De-An; Sun, Kai; Yang, Ji-Ying; Fang, Shu-Ping; Xian, Ming-Ji; Kizaki, Masahiro; Nagata, Hiroshi; Hibi, Toshifumi

    2007-07-14

    To investigate the effect of compound Danshen injection on lipopolysaccharide (LPS)-induced rat mesenteric microcirculatory dysfunctions and the underlying possible mechanism by an inverted intravital microscope and high-speed video camera system. LPS was continuously infused through the jugular artery of male Wistar rats at the dose of 2 mg/kg per hour. Changes in mesenteric microcirculation, such as diameters of arterioles and venules, velocity of RBCs in venules, leukocyte rolling, adhesion and emigration, free radicals released from post-capillary venules, FITC-albumin leakage and mast cell degranulation, were observed through an inverted intravital microscope assisted with CCD camera and SIT camera. Meanwhile, the expression of adhesion molecules CD11b/CD18 and the production of free radical in neutrophils, and the expression of intercellular adhesion molecule 1 (ICAM-1) in human umbilical vein endothelial cells (HUVECs) were quantified by flow cytometry (FACS) in vitro. The continuous infusion with LPS resulted in a number of responses in microcirculation, including a significant increase in the positive region of venule stained with Monastral blue B, rolling and adhesion of leukocytes, production of oxygen radical in venular wall, albumin efflux and enhanced mast cell degranulation in vivo, all of which, except for the leukocyte rolling, were attenuated by the treatment with compound Danshen injection. Experiments performed in vitro further revealed that the expression of CD11b/CD18 and the production of oxygen free radical in neutrophils, and the expression of ICAM-1 in HUVECs were increased by exposure to LPS, and they were attenuated by compound Danshen injection. These results suggest that compound Danshen injection is an efficient drug with multi-targeting potential for improving the microcirculatory disturbance.

  1. Streptococcus pyogenes Phospholipase A2 Induces the Expression of Adhesion Molecules on Human Umbilical Vein Endothelial Cells and Aorta of Mice.

    PubMed

    Oda, Masataka; Domon, Hisanori; Kurosawa, Mie; Isono, Toshihito; Maekawa, Tomoki; Yamaguchi, Masaya; Kawabata, Shigetada; Terao, Yutaka

    2017-01-01

    The Streptococcus pyogenes phospholipase A 2 (SlaA) gene is highly conserved in the M3 serotype of group A S. pyogenes , which often involves hypervirulent clones. However, the role of SlaA in S. pyogenes pathogenesis is unclear. Herein, we report that SlaA induces the expression of intercellular adhesion molecule 1 (ICAM1) and vascular cell adhesion molecule 1 (VCAM1) via the arachidonic acid signaling cascade. Notably, recombinant SlaA induced ICAM1 and VCAM1 expression in human umbilical vein endothelial cells (HUVECs), resulting in enhanced adhesion of human monocytic leukemia (THP-1) cells. However, C134A, a variant enzyme with no enzymatic activity, did not induce such events. In addition, culture supernatants from S. pyogenes SSI-1 enhanced the adhesion of THP-1 cells to HUVECs, but culture supernatants from the Δ slaA isogenic mutant strain had limited effects. Aspirin, a cyclooxygenase 2 inhibitor, prevented the adhesion of THP-1 cells to HUVECs and did not induce ICAM1 and VCAM1 expression in HUVECs treated with SlaA. However, zileuton, a 5-lipoxygenase inhibitor, did not exhibit such effects. Furthermore, pre-administration of aspirin in mice intravenously injected with SlaA attenuated the transcriptional abundance of ICAM1 and VCAM1 in the aorta. These results suggested that SlaA from S. pyogenes stimulates the expression of adhesion molecules in vascular endothelial cells. Thus, SlaA contributes to the inflammation of vascular endothelial cells upon S. pyogenes infection.

  2. HAb18G/CD147 Promotes pSTAT3-Mediated Pancreatic Cancer Development via CD44s †, ‡

    PubMed Central

    Li, Ling; Tang, Wenhua; Wu, Xiaoqing; Karnak, David; Meng, Xiaojie; Thompson, Rachel; Hao, Xinbao; Li, Yongmin; Qiao, Xiaotan T.; Lin, Jiayuh; Fuchs, James; Simeone, Diane M.; Chen, Zhi-Nan; Lawrence, Theodore S.; Xu, Liang

    2013-01-01

    Purpose STAT3 plays a critical role in initiation and progression of pancreatic cancer. However, therapeutically targeting STAT3 is failure in clinic. We previously identified HAb18G/CD147 as an effective target for cancer treatment. In this study, we aimed to investigate potential role of HAb18G/CD147 in STAT3-involved pancreatic tumorigenesis in vitro and in vivo. Experimental Design The expression of HAb18G/CD147, pSTAT3 and CD44s were determined in tissue microarrays. The tumorigenic function and molecular signaling mechanism of HAb18G/CD147 was assessed by in vitro cellular and clonogenic growth, reporter assay, immunoblot, immunofluorescence staining, immunoprecipitation, and in vivo tumor formationusing loss or gain-of-function strategies. Results Highly expressed HAb18G/CD147 promoted cellular and clonogenic growth in vitro and tumorigenicity in vivo. CyPA, a ligand of CD147, stimulated STAT3 phosphorylation and its downstream genes cyclin D1/survivin through HAb18G/CD147 dependent mechanisms. HAb18G/CD147 was associated and co-localized with cancer stem cell marker CD44s in lipid rafts. The inhibitors of STAT3 and survivin, as well as CD44s neutralizing antibodies suppressed the HAb18G/CD147-induced cell growth. High HAb18G/CD147 expression in pancreatic cancer was significantly correlated with the poor tumor differentiation, and the high co-expression of HAb18G/CD147-CD44s-STAT3 associated with poor survival of patients with pancreatic cancer. Conclusions We identified HAb18G/CD147 as a novel upstream activator of STAT3 via interacts with CD44s and plays a critical role in the development of pancreatic cancer. The data suggest HAb18G/CD147 could be a promising therapeutic target for highly aggressive pancreatic cancer and a surrogate marker in the STAT3-targeted molecular therapies. PMID:24132924

  3. A new universal simplified adhesive: 18-month clinical evaluation.

    PubMed

    Perdigão, J; Kose, C; Mena-Serrano, A P; De Paula, E A; Tay, L Y; Reis, A; Loguercio, A D

    2014-01-01

    To evaluate the 18-month clinical performance of a multimode adhesive (Scotchbond Universal Adhesive, SU, 3M ESPE, St Paul, MN, USA) in noncarious cervical lesions (NCCLs) using two evaluation criteria. Thirty-nine patients participated in this study. Two-hundred restorations were assigned to four groups: ERm, etch-and-rinse + moist dentin; ERd, etch-and-rinse + dry dentin; Set, selective enamel etching; and SE, self-etch. The composite resin, Filtek Supreme Ultra (3M ESPE), was placed incrementally. The restorations were evaluated at baseline, and at 18 months, using both the World Dental Federation (FDI) and the United States Public Health Service (USPHS) criteria. Statistical analyses were performed using Friedman repeated-measures analysis of variance by rank and McNemar test for significance in each pair (α=0.05). Five restorations (SE: 3; Set: 1; and ERm: 1) were lost after 18 months (p>0.05 for either criteria). Marginal staining occurred in four and 10% of the restorations evaluated (p>0.05), respectively, for USPHS and FDI criteria. Nine restorations were scored as bravo for marginal adaptation using the USPHS criteria and 38%, 40%, 36%, and 44% for groups ERm, ERd, Set, and SE, respectively, when the FDI criteria were applied (p>0.05). However, when semiquantitative scores (or SQUACE) for marginal adaptation were used, SE resulted in a significantly greater number of restorations, with more than 30% of the total length of the interface showing marginal discrepancy (28%) in comparison with the other groups (8%, 6%, and 8%, respectively, for ERm, ERd, and Set). The clinical retention of the multimode adhesive at 18 months does not depend on the bonding strategy. The only differences between strategies were found for the parameter marginal adaptation, for which the FDI criteria were more sensitive than the USPHS criteria.

  4. Immunologic changes in TNF-alpha, sE-selectin, sP-selectin, sICAM-1, and IL-8 in pediatric patients treated for psoriasis with the Goeckerman regimen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borska, L.; Fiala, Z.; Krejsek, J.

    2007-11-15

    Psoriasis is a chronic inflammatory skin disease which is often manifested during childhood. The present study investigated changes in the serum levels of proinflammatory cytokines and soluble forms of adhesion molecules in children with psoriasis. The observed patient group of 26 children was treated with the Goeckerman regimen. This therapy combines dermal application of crude coal tar with ultraviolet radiation. The Psoriasis Area Severity Index decreased significantly after treatment by with the Goeckerman regimen (p < 0.001). Serum levels of the proinflammatory cytokine TNF-alpha and adhesion molecules sICAM-1, sP-selectin and sE-selectin decreased after the Goeckerman regimen. The TNF-alpha and sICAM-1more » decreased significantly (p < 0.05). Our findings support the complex role of these immune parameters in the immunopathogenesis of psoriasis in children. The serum level of IL-8 increased after the Goeckerman regimen. This fact indicates that the chemokine pathway of IL-8 activity could be modulated by this treatment, most likely by polycyclic aromatic hydrocarbons.« less

  5. Specific Receptor Usage in Plasmodium falciparum Cytoadherence Is Associated with Disease Outcome

    PubMed Central

    Ochola, Lucy B.; Siddondo, Bethsheba R.; Ocholla, Harold; Nkya, Siana; Kimani, Eva N.; Williams, Thomas N.; Makale, Johnstone O.; Liljander, Anne; Urban, Britta C.; Bull, Pete C.; Szestak, Tadge; Marsh, Kevin; Craig, Alister G.

    2011-01-01

    Our understanding of the basis of severe disease in malaria is incomplete. It is clear that pathology is in part related to the pro-inflammatory nature of the host response but a number of other factors are also thought to be involved, including the interaction between infected erythrocytes and endothelium. This is a complex system involving several host receptors and a major parasite-derived variant antigen (PfEMP1) expressed on the surface of the infected erythrocyte membrane. Previous studies have suggested a role for ICAM-1 in the pathology of cerebral malaria, although these have been inconclusive. In this study we have examined the cytoadherence patterns of 101 patient isolates from varying clinical syndromes to CD36 and ICAM-1, and have used variant ICAM-1 proteins to further characterise this adhesive phenotype. Our results show that increased binding to CD36 is associated with uncomplicated malaria while ICAM-1 adhesion is raised in parasites from cerebral malaria cases. PMID:21390226

  6. Cytokine and adhesion molecule expression evolves between the neutrophilic and lymphocytic phases of viral meningitis.

    PubMed

    Makis, Alexandros; Shipway, David; Hatzimichael, Eleftheria; Galanakis, Emmanouil; Pshezhetskiy, Dmitry; Chaliasos, Nikolaos; Stebbing, Justin; Siamopoulou, Antigone

    2010-09-01

    Viral meningitis is characterized by cerebrospinal fluid (CSF) lymphocyte pleocytosis, although neutrophils may predominate in the early phase. The T helper 1 (Th1)/Th2 cytokine balance and expression of adhesion molecules seem to be involved in the CSF chemotaxis. We aimed to determine expression of cytokines and adhesion molecules in enteroviral meningitis. We investigated the serum and CSF levels of adhesion molecules (E-selectin, L-selectin, vascular cell adhesion molecule-1 [VCAM-1], and intracellular adhesion molecule-1 [ICAM-1]) and cytokines (interleukin-12 [IL-12] and IL-4) in 105 children during an outbreak of enteroviral meningitis. Diagnosis was confirmed with positive polymerase chain reaction (PCR) and/or serology for echovirus or Coxsackie virus, and matched with control subjects for clinical features but with negative PCR and/or serology. Apart from VCAM-1, the CSF levels of all investigated inflammatory molecules were significantly increased. In serum, sL-selectin and ICAM-1 levels were significantly higher than control subjects. Serum and CSF L-selectin, serum VCAM-1, and CSF IL-12 were all observed to be expressed in significantly higher levels in the neutrophil-dominant subgroup (72% had duration of symptoms <24 h) than in the lymphocyte-dominant group (87.5% had duration of symptoms >24 h). Serum and CSF ICAM-1 was found at significantly higher levels in the latter group. Evolving expression of adhesion molecules and cytokines indicates a shift from Th1 to Th2 immune responses as infection progresses.

  7. Antibody ligation of murine Ly-6G induces neutropenia, blood flow cessation, and death via complement-dependent and independent mechanisms.

    PubMed

    Abbitt, Katherine B; Cotter, Matthew J; Ridger, Victoria C; Crossman, David C; Hellewell, Paul G; Norman, Keith E

    2009-01-01

    Ly-6G is a member of the Ly-6 family of GPI-linked proteins, which is expressed on murine neutrophils. Antibodies against Ly-6G cause neutropenia, and fatal reactions also develop if mice are primed with TNF-alpha prior to antibody treatment. We have investigated the mechanisms behind these responses to Ly-6G ligation in the belief that similar mechanisms may be involved in neutropenia and respiratory disorders associated with alloantibody ligation of the related Ly-6 family member, NB1, in humans. Neutrophil adhesion, microvascular obstruction, breathing difficulties, and death initiated by anti-Ly-6G antibodies in TNF-alpha-primed mice were shown to be highly complement-dependent, partly mediated by CD11b, CD18, and FcgammaR and associated with clustering of Ly-6G. Neutrophil depletion, on the other hand, was only partly complement-dependent and was not altered by blockade of CD11b, CD18, or FcgammaR. Unlike other neutrophil-activating agents, Ly-6G ligation did not induce neutropenia via sequestration in the lungs. Cross-linking Ly-6G mimicked the responses seen with whole antibody in vivo and also activated murine neutrophils in vitro. Although this suggests that the responses are, in part, mediated by nonspecific properties of antibody ligation, neutrophil depletion requires an additional mechanism possibly specific to the natural function of Ly-6G.

  8. Endothelial cell expression of adhesion molecules is induced by fetal plasma from pregnancies with umbilical placental vascular disease.

    PubMed

    Wang, Xin; Athayde, Neil; Trudinger, Brian

    2002-07-01

    To test the hypothesis that local production with spill into the fetal circulation of factor(s) injurious to endothelium is responsible for the vascular pathology present when the umbilical artery Doppler study is abnormal. Expression of adhesion molecules is a feature of endothelial cell activation. Case-control study. University teaching hospital. Fetal plasma was collected from 27 normal pregnancies, 39 pregnancies with umbilical placental vascular disease defined by abnormal umbilical artery Doppler and 11 pregnancies with pre-eclampsia and normal umbilical artery Doppler. Isolated and cultured human umbilical vein endothelial cells from normal pregnancies were incubated with fetal plasma from three study groups. mRNA expression of intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and platelet-endothelial cell adhesion molecule-1 (PECAM-1) were assessed by reverse transcription-polymerase chain reaction. To confirm the occurrence of this in vivo, we measured the levels of soluble fractions of sICAM-1, sVCAM-1 and sPECAM-1 in the fetal circulation in the fetal plasma used for endothelial cell incubation. The mRNA expression of ICAM-1 [median 1.1 (interquartile range 0.5-1.9) vs 0.7 (0.3-1.2), P < 0.05] and PECAM-1 [2.1 (1.2-3.0) vs 1.5 (0.7-2.1), P < 0.05] was significantly higher following incubation with fetal plasma from umbilical placental vascular disease compared with the normal group. There was no difference in the expression of VCAM-1 [1.2 (0.9-1.8) vs 1.1 (0.8-1.6), ns]. The group with maternal pre-eclampsia and normal umbilical artery Doppler did not differ from the normal group. In the umbilical placental vascular disease group, the results were similar in the presence or absence of pre-eclampsia. For soluble fractions of the adhesion molecules released into the fetal circulation, we found the levels (ng/mL) of sICAM- I [median 248.5 (interquartile range 197.3-315.7) vs 174.2 (144.5-212.9), P < 0.05] and s

  9. Lycopene inhibits ICAM-1 expression and NF-κB activation by Nrf2-regulated cell redox state in human retinal pigment epithelial cells.

    PubMed

    Yang, Po-Min; Wu, Zhi-Zhen; Zhang, Yu-Qi; Wung, Being-Sun

    2016-06-15

    Age-related macular degeneration (AMD) is one of the most common diseases leading to blindness in elderly people. The progression of AMD may be prevented through anti-inflammation and antioxidation in retinal pigment epithelium (RPE) cells. Lycopene, a carotenoid, has been shown to possess both antioxidative and anti-inflammatory properties. This research was conducted to detail the mechanisms of these effects of lycopene-treated RPE cells. We exposed ARPE-19 cells to TNFα after pretreatment with lycopene, and measured monocyte adhesion, ICAM-1 expression, NF-κB nuclear translocation, and transcriptional activity. Cell viability was assayed with Alamar Blue. The cell redox state was tested by glutathione (GSH) and reactive oxygen species (ROS) levels. The importance of the Nrf2 pathway was tested in nuclear translocation, promoter reporter assay, and siRNA. Lycopene could reduce TNF-α-induced monocyte adhesion and H2O2- induced cell damage in RPE cells. Furthermore, lycopene inhibits ICAM-1 expression and abolishes NF-κB activation for up to 12h in TNFα-treated RPE cells. Lycopene upregulates Nrf2 levels in nuclear extracts and increases the transactivity of antioxidant response elements. The use of Nrf2 siRNA blocks the inhibitory effect of lycopene in TNF-α-induced ICAM-1 expression and NF-κB activation. Glutamate-cysteine ligase (GCL) is the rate-limiting enzyme in the de novo synthesis of GSH. We found that lycopene increases intracellular GSH levels and GCL expression. Following lycopene treatment, TNF-α-induced ROS production was abolished. The Nrf2-regulated antioxidant property plays a pivotal role in the anti-inflammatory mechanism underlying the inhibition of NF-κB activation in lycopene-treated ARPE-19 cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Activation of cannabinoid CB2 receptor ameliorates atherosclerosis associated with suppression of adhesion molecules.

    PubMed

    Zhao, Yan; Yuan, Zuyi; Liu, Yan; Xue, Jiahong; Tian, Yuling; Liu, Weimin; Zhang, Weiping; Shen, Yan; Xu, Wei; Liang, Xiao; Chen, Tao

    2010-03-01

    Adhesion molecules have been implicated in the development and progression of atherosclerosis. Cannabinoids have been reported to modulate the migration and adhesion molecules expression of various cell types. Here we examined the effects of WIN55212-2, a cannabinoid receptor 1 (CB1-R)/cannabinoid receptor 2 (CB2-R) agonist on the development of atherosclerotic lesions in apolipoprotein E-deficient (ApoE-/-) mice, which are vulnerable because of their high plasma cholesterol and triacylglycerol levels, focusing on the expression of endothelial adhesion molecules. In the aorta of ApoE-/- mice, WIN55212-2 significantly reduced aortic root plaque area. The mechanism for this seemed to be reduced infiltration of macrophages into the atherosclerotic plaque which was also associated with reduced expression of vascular cellular adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and P-selectin in the aorta. In vitro studies revealed reduced cell adhesion of a monocytic cell line (U937) to human umbilical vein endothelial cells after incubation with WIN55212-2. The reduction in macrophage adhesion also correlated with significant reductions in the expression of VCAM-1, ICAM-1, and P-selectin, indicating that reduced infiltration of macrophages in atherosclerotic plaques may occur as a result of the direct effect of WIN55212-2 on adhesion molecules in macrophages and endothelial cells. In conclusion, WIN55212-2 seems to have direct anti-atherosclerotic effects in an animal model of atherosclerosis. These effects were at least partly due to effects on the expression of VCAM-1, ICAM-1, and P-selectin, which led to reduced macrophage adhesion and infiltration. Furthermore, the protective effects completely blocked by the highly selective CB2 receptor antagonist AM630 suggest that these beneficial effects of WIN55212-2 may be mediated through the CB2 receptor.

  11. Elevated concentrations of nonesterified fatty acids increase monocyte expression of CD11b and adhesion to endothelial cells.

    PubMed

    Zhang, Wei-Yang; Schwartz, Eric; Wang, Yingjie; Attrep, Jeanne; Li, Zhi; Reaven, Peter

    2006-03-01

    Monocyte proinflammatory activity has been demonstrated in obesity, insulin resistance, and type 2 diabetes, metabolic conditions that are frequently associated with elevated levels of nonesterified fatty acids (NEFA). We therefore tested the hypothesis that NEFA may induce monocyte inflammation. Monocytes exposed to NEFA for 2 days demonstrated a dose-related increase in intracellular reactive oxygen species (ROS) formation and adhesion to endothelial cells. All of these effects were inhibited by the coaddition of antioxidants such as glutathione or butylated hydroxytoluene, by inhibition of ROS generation by NADPH oxidase inhibitors, and by inhibition of protein kinase C, a recognized stimulator of NAPDH oxidase. Monocytes exposed to NEFA also demonstrated a significant increase in CD11b message expression. Stimulation of monocyte adhesion to endothelial cells by NEFA was inhibited by addition of neutralizing antibodies to either CD11b or CD18. Finally, surface expression of CD11b increased significantly on monocytes as measured by flow cytometry, after their incubation with NEFA. These studies indicate that elevated concentrations of NEFA may enhance integrin facilitated monocyte adhesion to endothelial cells and these effects appear mediated, in part, through activation of NADPH oxidase and oxidative stress.

  12. Functional and clinical relevance of VLA-4 (CD49d/CD29) in ibrutinib-treated chronic lymphocytic leukemia.

    PubMed

    Tissino, Erika; Benedetti, Dania; Herman, Sarah E M; Ten Hacken, Elisa; Ahn, Inhye E; Chaffee, Kari G; Rossi, Francesca Maria; Dal Bo, Michele; Bulian, Pietro; Bomben, Riccardo; Bayer, Elisabeth; Härzschel, Andrea; Gutjahr, Julia Christine; Postorino, Massimiliano; Santinelli, Enrico; Ayed, Ayed; Zaja, Francesco; Chiarenza, Annalisa; Pozzato, Gabriele; Chigaev, Alexandre; Sklar, Larry A; Burger, Jan A; Ferrajoli, Alessandra; Shanafelt, Tait D; Wiestner, Adrian; Del Poeta, Giovanni; Hartmann, Tanja Nicole; Gattei, Valter; Zucchetto, Antonella

    2018-02-05

    The Bruton's tyrosine kinase (BTK) inhibitor ibrutinib, which antagonizes B cell receptor (BCR) signals, demonstrates remarkable clinical activity in chronic lymphocytic leukemia (CLL). The lymphocytosis experienced by most patients under ibrutinib has previously been attributed to inhibition of BTK-dependent integrin and chemokine cues operating to retain the tumor cells in nodal compartments. Here, we show that the VLA-4 integrin, as expressed by CD49d-positive CLL, can be inside-out activated upon BCR triggering, thus reinforcing the adhesive capacities of CLL cells. In vitro and in vivo ibrutinib treatment, although reducing the constitutive VLA-4 activation and cell adhesion, can be overcome by exogenous BCR triggering in a BTK-independent manner involving PI3K. Clinically, in three independent ibrutinib-treated CLL cohorts, CD49d expression identifies cases with reduced lymphocytosis and inferior nodal response and behaves as independent predictor of shorter progression-free survival, suggesting the retention of CD49d-expressing CLL cells in tissue sites via activated VLA-4. Evaluation of CD49d expression should be incorporated in the characterization of CLL undergoing therapy with BCR inhibitors. © 2018 Tissino et al.

  13. Functional and clinical relevance of VLA-4 (CD49d/CD29) in ibrutinib-treated chronic lymphocytic leukemia

    PubMed Central

    Tissino, Erika; Benedetti, Dania; Herman, Sarah E.M.; ten Hacken, Elisa; Rossi, Francesca Maria; Dal Bo, Michele; Bulian, Pietro; Bomben, Riccardo; Bayer, Elisabeth; Härzschel, Andrea; Gutjahr, Julia Christine; Postorino, Massimiliano; Santinelli, Enrico; Zaja, Francesco; Pozzato, Gabriele; Chigaev, Alexandre; Sklar, Larry A.; Burger, Jan A.; Ferrajoli, Alessandra; Shanafelt, Tait D.; Wiestner, Adrian; Del Poeta, Giovanni; Hartmann, Tanja Nicole

    2018-01-01

    The Bruton’s tyrosine kinase (BTK) inhibitor ibrutinib, which antagonizes B cell receptor (BCR) signals, demonstrates remarkable clinical activity in chronic lymphocytic leukemia (CLL). The lymphocytosis experienced by most patients under ibrutinib has previously been attributed to inhibition of BTK-dependent integrin and chemokine cues operating to retain the tumor cells in nodal compartments. Here, we show that the VLA-4 integrin, as expressed by CD49d-positive CLL, can be inside-out activated upon BCR triggering, thus reinforcing the adhesive capacities of CLL cells. In vitro and in vivo ibrutinib treatment, although reducing the constitutive VLA-4 activation and cell adhesion, can be overcome by exogenous BCR triggering in a BTK-independent manner involving PI3K. Clinically, in three independent ibrutinib-treated CLL cohorts, CD49d expression identifies cases with reduced lymphocytosis and inferior nodal response and behaves as independent predictor of shorter progression-free survival, suggesting the retention of CD49d-expressing CLL cells in tissue sites via activated VLA-4. Evaluation of CD49d expression should be incorporated in the characterization of CLL undergoing therapy with BCR inhibitors. PMID:29301866

  14. Quantal concept of T-cell activation: adhesion domains as immunological synapses

    NASA Astrophysics Data System (ADS)

    Sackmann, Erich

    2011-06-01

    Adhesion micro-domains (ADs) formed during encounters of lymphocytes with antigen-presenting cells (APC) mediate the genetic expression of quanta of cytokines interleukin-2 (IL-2). The IL-2-induced activation of IL-2 receptors promotes the stepwise progression of the T-cells through the cell cycle, hence their name, immunological synapses. The ADs form short-lived reaction centres controlling the recruitment of activators of the biochemical pathway (the kinases Lck and ZAP) while preventing the access of inhibitors (phosphatase CD45) through steric repulsion forces. CD45 acts as the generator of adhesion domains and, through its role as a spacer protein, also as the promoter of the reaction. In a second phase of T-cell-APC encounters, long-lived global reaction spaces (called supramolecular activation complexes (SMAC)) form by talin-mediated binding of the T-cell integrin (LFA-1) to the counter-receptor ICAM-1, resulting in the formation of ring-like tight adhesion zones (peripheral SMAC). The ADs move to the centre of the intercellular adhesion zone forming the central SMAC, which serve in the recycling of the AD. We propose that cell stimulation is triggered by integrating the effect evoked by the short-lived adhesion domains. Similar global reaction platforms are formed by killer cells to destruct APC. We present a testable mechanical model showing that global reaction spaces (SMAC or dome-like contacts between cytotoxic cells and APC) form by self-organization through delayed activation of the integrin-binding affinity and stabilization of the adhesion zones by F-actin recruitment. The mechanical stability and the polarization of the adhering T-cells are mediated by microtubule-actin cross-talk.

  15. Effects of HAb18G/CD147 knockout on hepatocellular carcinoma cells in vitro using a novel zinc-finger nuclease-targeted gene knockout approach.

    PubMed

    Li, Hong-Wei; Yang, Xiang-Min; Tang, Juan; Wang, Shi-Jie; Chen, Zhi-Nan; Jiang, Jian-Li

    2015-03-01

    HAb18G/CD147 belongs to the immunoglobulin superfamily and predominantly functions as an inducer of matrix metalloproteinase secretion for tumor invasion and metastasis. This study was designed to investigate the effects of HAb18G/CD147 knockout on hepatocellular carcinoma cells using zinc-finger nuclease (ZFNs)-targeted gene knockout approach. The HCC cell line SMMC-7721 was used for ZFNs-targeted cleavage of the HAb18G/CD147 gene. RT-PCR and Western blot assays were used to detect HAb18G/CD147 expression. HAb18G phenotypic changes following HAb18G/CD147 knockout in SMMC-K7721 cells were assessed using tumor cell adhesion, invasion, migration and colony formation and flow cytometric assays. These data demonstrated that tumor cell adhesion, invasion, migration, and colony formation capabilities of SMMC-K7721 were significantly reduced compared to parental cells or SMMC-7721 with re-expression of HAb18G/CD147 protein transfected with HAb18G/CD147 cDNA. Moreover, knockout of HAb18G/CD147 expression also induced SMMC-K7721 cells to undergo apoptosis compared to SMMC-7721 and SMMC-R7721 (P < 0.01). Molecularly, protein expression of p53 was induced in these cells, but re-expression of HAb18G/CD147 reduced p53 levels in SMMC-R7721 cells, possibly through inhibition of the PI3K-Akt-MDM2 signaling pathway. The findings provide a novel insight into the mechanisms underlying HAb18G/CD147-induced progression of HCC cells.

  16. NEU1 Sialidase Regulates the Sialylation State of CD31 and Disrupts CD31-driven Capillary-like Tube Formation in Human Lung Microvascular Endothelia*

    PubMed Central

    Lee, Chunsik; Liu, Anguo; Miranda-Ribera, Alba; Hyun, Sang Won; Lillehoj, Erik P.; Cross, Alan S.; Passaniti, Antonino; Grimm, P. Richard; Kim, Bo-Young; Welling, Paul A.; Madri, Joseph A.; DeLisser, Horace M.; Goldblum, Simeon E.

    2014-01-01

    The highly sialylated vascular endothelial surface undergoes changes in sialylation upon adopting the migratory/angiogenic phenotype. We recently established endothelial cell (EC) expression of NEU1 sialidase (Cross, A. S., Hyun, S. W., Miranda-Ribera, A., Feng, C., Liu, A., Nguyen, C., Zhang, L., Luzina, I. G., Atamas, S. P., Twaddell, W. S., Guang, W., Lillehoj, E. P., Puché, A. C., Huang, W., Wang, L. X., Passaniti, A., and Goldblum, S. E. (2012) NEU1 and NEU3 sialidase activity expressed in human lung microvascular endothelia. NEU1 restrains endothelial cell migration whereas NEU3 does not. J. Biol. Chem. 287, 15966–15980). We asked whether NEU1 might regulate EC capillary-like tube formation on a Matrigel substrate. In human pulmonary microvascular ECs (HPMECs), prior silencing of NEU1 did not alter tube formation. Infection of HPMECs with increasing multiplicities of infection of an adenovirus encoding for catalytically active WT NEU1 dose-dependently impaired tube formation, whereas overexpression of either a catalytically dead NEU1 mutant, NEU1-G68V, or another human sialidase, NEU3, did not. NEU1 overexpression also diminished EC adhesion to the Matrigel substrate and restrained EC migration in a wounding assay. In HPMECs, the adhesion molecule, CD31, also known as platelet endothelial cell adhesion molecule-1, was sialylated via α2,6-linkages, as shown by Sambucus nigra agglutinin lectin blotting. NEU1 overexpression increased CD31 binding to Arachis hypogaea or peanut agglutinin lectin, indicating CD31 desialylation. In the postconfluent state, when CD31 ectodomains are homophilically engaged, NEU1 was recruited to and desialylated CD31. In postconfluent ECs, CD31 was desialylated compared with subconfluent cells, and prior NEU1 silencing completely protected against CD31 desialylation. Prior CD31 silencing and the use of CD31-null ECs each abrogated the NEU1 inhibitory effect on EC tube formation. Sialyltransferase 6 GAL-I overexpression increased

  17. Upregulation of CD147 Promotes Metastasis of Cholangiocarcinoma by Modulating the Epithelial-to-Mesenchymal Transitional Process.

    PubMed

    Dana, Paweena; Kariya, Ryusho; Vaeteewoottacharn, Kulthida; Sawanyawisuth, Kanlayanee; Seubwai, Wunchana; Matsuda, Kouki; Okada, Seiji; Wongkham, Sopit

    2017-08-07

    CD147 is a transmembrane protein that can induce the expression and activity of matrix metalloproteinases (MMPs). Expression of CD147 has been shown to potentiate cell migration, invasion, and metastasis of cancer. In this study, the critical role of CD147 in metastasis was elucidated using CD147-overexpressing cholangiocarcinoma (CCA) cells in vitro and in vivo. The molecular mechanism, demonstrated herein, supported the hypothesis that metastasis increased in CD147-overexpressing cells. Five CD147-overexpressing clones (Ex-CD147) were established from a low CD147-expressing CCA cell line, KKU-055, using lentivirus containing pReceiver-Lenti-CD147. The metastatic capability was determined using the tail vein injection mouse model and an in vitro 3D invasion assay. Liver colonization was assessed using anti-HLA class I immunohistochemistry. Adhesion abilities, cytoskeletal arrangements, MMP activities, the expressions of adhesion molecules, and epithelial-mesenchymal transitional markers were analyzed. All Ex-CD147 clones exhibited a high CD147 expression and high liver colonization in the tail vein-injected mouse model, whereas parental cells lacked this ability. Ex-CD147 clones exhibited metastatic phenotypes (i.e., an increase in F-actin rearrangement) and cell invasion and a decrease in cell adhesion. The molecular mechanisms were shown to be via the induction of MMP-2 activity and enhancement of epithelial-mesenchymal transitions. An increase in mesenchymal markers Slug, vimentin, and N-cadherin, and a decrease in epithelial markers E-cadherin and claudin-1, together with suppression of the adhesion molecule ICAM-1, were observed in the Ex-CD147 clones. Moreover, suppression of CD147 expression using siCD147 in two CCA cell lines with high CD147 expression significantly decreased cell migration and invasion of these CCA cells. These findings emphasize the essential role of CD147 in CCA metastasis and suggest CD147 as a promising target for the effective

  18. Effects of gonadotropin-releasing hormone agonist/recombinant follicle-stimulating hormone versus gonadotropin-releasing hormone antagonist/recombinant follicle-stimulating hormone on follicular fluid levels of adhesion molecules during in vitro fertilization.

    PubMed

    Fornaro, Felice; Cobellis, Luigi; Mele, Daniela; Tassou, Argyrò; Badolati, Barbara; Sorrentino, Simona; De Lucia, Domenico; Colacurci, Nicola

    2007-01-01

    To compare the effects of GnRH-agonist/recombinant rFSH versus GnRH-antagonist/recombinant FSH stimulation on follicular fluid levels of soluble intercellular adhesion molecule (sICAM)-1 and vascular cell adhesion molecule-1 (sVCAM-1) during in vitro fertilization (IVF). Prospective, randomized study. University hospital. Seventy-three women underwent IVF. GnRH-agonist/rFSH or GnRH-antagonist/rFSH administration and collection of follicular fluid from 3 small (11-14 mm in diameter) and 3 large (18-21 mm in diameter) follicles on the day of oocyte retrieval. Follicular fluid levels of sICAM-1 and sVCAM-1 and intrafollicular estradiol and progesterone were also measured. Women who underwent GnRH-agonist/rFSH showed higher concentrations of sICAM-1 in both small and large follicles were compared with patients who received GnRH-antagonist/rFSH treatment; follicular fluid levels of sVCAM-1 were similar between the 2 stimulation protocols. Content of sICAM-1 in small and large follicles positively correlated with the number of follicles of > or =15 mm and the number of oocytes that were retrieved in both study groups. Concentrations of follicular fluid sVCAM-1 and progesterone were higher in large than in small follicles and were correlated positively to each other in both follicular classes. In IVF, GnRH-agonist/rFSH is associated with higher follicular fluid levels of sICAM-1 compared with GnRH-antagonist/rFSH regimen. Intrafollicular sICAM-1 content may predict ovarian response, and sVCAM-1 appears as an indicator of the degree of follicular luteinization.

  19. Randomized clinical trial on acute effects of i.v. iron sucrose during haemodialysis.

    PubMed

    Garcia-Fernandez, Nuria; Echeverria, Aitziber; Sanchez-Ibarrola, Alfonso; Páramo, José Antonio; Coma-Canella, Isabel

    2010-03-01

    Haemodialysis induces endothelial dysfunction by oxidation and inflammation. Intravenous iron administration during haemodialysis could worsen endothelial dysfunction. The aim of this study was to ascertain if iron produces endothelial dysfunction and the possible neutralizing effect of N-acetylcysteine when infused before iron. The oxidative and inflammatory effects of iron during haemodialysis were also assessed. Forty patients undergoing haemodialysis were studied in a randomized and cross-over design with and without N-acetylcysteine infused before iron sucrose (50 or 100 mg). Plasma Von Willebrand factor (vWF), soluble intercellular adhesion molecule-1 (sICAM-1) levels, malondialdehyde, total antioxidant capacity, CD11b/CD18 expression in monocytes, interleukin (IL)-8 in monocytes and plasma IL-8 were studied at baseline and during haemodialysis. Haemodialysis produced significant (P < 0.001) increase in plasma vWF, sICAM-1, malondialdehyde, IL-8 and CD11b/CD18 expression in monocytes, as well as decrease in total antioxidant capacity. Iron induced significant increase in plasma malondialdehyde and IL-8 in monocytes, but had no effect on total antioxidant capacity, CD11b/CD18 expression, plasma IL-8, vWF and sICAM-1. The addition of N-acetylcysteine to 50 mg of iron produced a significant (P = 0.040) decrease in malondialdehyde. Standard (100 mg) and low (50 mg) doses of iron during haemodialysis had no effects on endothelium. Iron only had minor effects on inflammation and produced an increase in oxidative stress, which was neutralized by N-acetylcysteine at low iron dose. Haemodialysis caused a significant increase in oxidative stress, inflammation and endothelial dysfunction markers.

  20. Increased plasma and endothelial cell expression of chemokines and adhesion molecules in chronic kidney disease.

    PubMed

    Stinghen, A E M; Gonçalves, S M; Martines, E G; Nakao, L S; Riella, M C; Aita, C A; Pecoits-Filho, R

    2009-01-01

    Chemokines and adhesion molecules are involved in early events of atherogenesis. In the present study, we investigated the effects of the uremic milieu on the expression of monocyte chemoattractant protein-1 (MCP-1), interleukin-8 (IL-8), soluble vascular adhesion molecule-1 (sVCAM-1) and soluble intercellular adhesion molecule-1 (sICAM-1) and their relationship to cardiovascular status. Plasma samples were obtained from patients in different stages of chronic kidney disease (CKD). Cardiovascular status was evaluated by intima-media thickness and endothelial dysfunction by flow mediation dilatation and proteinuria. In vitro studies were performed using human umbilical endothelial cells exposed to uremic plasma or plasma from healthy subjects. MCP-1, IL-8, sVCAM-1 and sICAM-1 levels in plasma and in supernatant were analyzed by enzyme-linked immunosorbent assay. The population consisted of 73 (mean age 57 years; 48% males) CKD patients with glomerular filtration rate (GFR) of 37 +/- 2 ml/min. MCP-1 and sVCAM-1 plasma levels were negatively correlated with GFR (rho = -0.40, p < 0.0005 and rho = -0.42, p < 0.0005, respectively). Fibrinogen was positively correlated with MCP-1, sICAM-1 and sVCAM-1 (rho = 0.33, p < 0.005, rho = 0.32, p < 0.05 and rho = 0.25, p < 0.05, respectively) and ultra-high-sensitivity C-reactive protein was positively correlated with sICAM-1 (rho = 0.25, p < 0.0005). Plasma IL-8 had a significant positive correlation with proteinuria (rho = 0.31, p < 0.01). There was a time- and CKD-stage-dependent MCP-1, IL-8 and sVCAM-1 endothelial expression (p < 0.05). In summary, plasma levels of markers of endothelial cell activation (MCP-1 and sVCAM-1) are increased in more advanced CKD. Exposure of endothelial cells to uremic plasma results in a time- and CKD-stage-dependent increased expression of MCP-1, IL-8 and sVCAM-1, suggesting a link between vascular activation, systemic inflammation and uremic toxicity. Future studies are necessary to investigate

  1. Activities and Accomplishments of ICAM

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.

    1997-01-01

    A brief historical background on establishing the Institute for Computational and Applied Mechanics (ICAM) is presented and basic goals and objectives are discussed. It is emphasized that the goal of the ICAM has been to develop and maintain a self-sustaining center of excellence in computational methods at Old Dominion University (ODU). Information is provided on funding sources and budget disposition, recent activities and accomplishments, list of graduate students supported on the program, and number of students who received graduate degrees (M.S. as well as Ph.D.). Information is also provided on research coordination with various scientists and engineers, and on different reports specifically written for ICAM. ICAM has been supported, in part, by NASA Langley Research Center through Grant NAG-1-363. This report constitutes the final report for ICAM for the period ending December 1996. The grant has been monitored by the University Affairs Officers at NASA Langley.

  2. [Circulating levels of MCP-1, VEGF-A, sICAM-1, sVCAM-1, sE-selectin and sVE-cadherin: Relationship with components of metabolic syndrome in young population].

    PubMed

    Guzmán-Guzmán, Iris Paola; Zaragoza-García, Oscar; Vences-Velázquez, Amalia; Castro-Alarcón, Natividad; Muñoz-Valle, José Francisco; Parra-Rojas, Isela

    2016-11-18

    Inflammation and endothelial dysfunction are considered the primary manifestations of the cardiovascular disease. Studies have established a relationship among components of metabolic syndrome (MetS) with inflammatory markers and the loss of permeability, vasoconstriction and vasodilatation endothelial. To determine the relationship among the concentrations of soluble endothelial dysfunction molecules and inflammation cytokines and components of the metabolic syndrome in young population. A study was performed in 240 young adult students ages 18-28 years. To define the presence of clinical and metabolic alterations and MetS the modified ATP-III criteria was considered. In all subjects were determined sociodemographic characteristics, anthropometric measures and the metabolic profile. Circulating levels of MCP-1, VEGF-A, sICAM-1, sVCAM-1, sE-selectin and sVE-cadherin were determined by ELISA immunoassay (Bioscience). Statistical analysis was performed using STATA statistical software v. 9.2. From all the participants, 44.6% had obesity, 59.9% had abdominal obesity, 49.6% low HDL-c and 16.7% high levels triglycerids. The 16.25% of the population showed 3 or more components of the MetS. Elevated MCP-1, sICAM-1 and sE-selectin levels were linked to the presence of obesity. In a model adjusted by age-gender, high soluble levels of MCP-1 and VEGF-A were linked with abdominal obesity (OR=1.83; 1.02-3.28 and OR=2.03; 1.15-3.56, respectively), as well as to the presence of the 2 components of MetS. sVCAM-1 levels were associated with impaired glucose (OR=4.74; 1.32-17.0); sE-selectin with low HDL-c (OR=1.99; 1.05-3.75), although sICAM-1 and sVE-cadherin were associated with impaired systolic blood pressure (OR=4.04; 1.24-13.1 and OR=6.28; 1.90-20.7, respectively). Levels of circulating MCP-1 and VEGF-A were associated with adiposity, levels of sVCAM-1 with the presence of impaired glucose, sE-selectin with low HDL-c, while the levels of sICAM-1 and sVE-cadherin were

  3. Loss of a single N-linked glycan allows CD4-independent human immunodeficiency virus type 1 infection by altering the position of the gp120 V1/V2 variable loops.

    PubMed

    Kolchinsky, P; Kiprilov, E; Bartley, P; Rubinstein, R; Sodroski, J

    2001-04-01

    The gp120 envelope glycoprotein of primary human immunodeficiency virus type 1 (HIV-1) promotes virus entry by sequentially binding CD4 and the CCR5 chemokine receptor on the target cell. Previously, we adapted a primary HIV-1 isolate, ADA, to replicate in CD4-negative canine cells expressing human CCR5. The gp120 changes responsible for CD4-independent replication were limited to the V2 loop-V1/V2 stem. Here we show that elimination of a single glycosylation site at asparagine 197 in the V1/V2 stem is sufficient for CD4-independent gp120 binding to CCR5 and for HIV-1 entry into CD4-negative cells expressing CCR5. Deletion of the V1/V2 loops also allowed CD4-independent viral entry and gp120 binding to CCR5. The binding of the wild-type ADA gp120 to CCR5 was less dependent upon CD4 at 4 degrees C than at 37 degrees C. In the absence of the V1/V2 loops, neither removal of the N-linked carbohydrate at asparagine 197 nor lowering of the temperature increased the CD4-independent phenotypes. A CCR5-binding conformation of gp120, achieved by CD4 interaction or by modification of temperature, glycosylation, or variable loops, was preferentially recognized by the monoclonal antibody 48d. These results suggest that the CCR5-binding region of gp120 is occluded by the V1/V2 variable loops, the position of which can be modulated by temperature, CD4 binding, or an N-linked glycan in the V1/V2 stem.

  4. γ-Oryzanol reduces adhesion molecule expression in vascular endothelial cells via suppression of nuclear factor-κB activation.

    PubMed

    Sakai, Satoshi; Murata, Takahisa; Tsubosaka, Yoshiki; Ushio, Hideki; Hori, Masatoshi; Ozaki, Hiroshi

    2012-04-04

    γ-Oryzanol (γ-ORZ) is a mixture of phytosteryl ferulates purified from rice bran oil. In this study, we examined whether γ-ORZ represents a suppressive effect on the lipopolysaccharide (LPS)-induced adhesion molecule expression on vascular endothelium. Treatment with LPS elevated the mRNA expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-selectin in bovine aortic endothelial cells (BAECs). Pretreatment with γ-ORZ dose-dependently decreased the LPS-mediated expression of these genes. Western blotting also revealed that pretreatment with γ-ORZ dose-dependently inhibited LPS-induced VCAM-1 expression in human umbilical vein endothelial cells. Consistently, pretreatment with γ-ORZ dose-dependently reduced LPS-induced U937 monocyte adhesion to BAECs. In immunofluorescence, LPS caused nuclear factor-κB (NF-κB) nuclear translocation in 40% of BAECs, which indicates NF-κB activation. Pretreatment with γ-ORZ, as well as its components (cycloartenyl ferulate, ferulic acid, or cycloartenol), dose-dependently inhibited LPS-mediated NF-κB activation. Collectively, our results suggested that γ-ORZ reduced LPS-mediated adhesion molecule expression through NF-κB inhibition in vascular endothelium.

  5. Compound Danshen injection improves endotoxin-induced microcirculatory disturbance in rat mesentery

    PubMed Central

    Han, Jing-Yan; Horie, Yoshinori; Miura, Soichiro; Akiba, Yasutada; Guo, Jun; Li, Dan; Fan, Jing-Yu; Liu, Yu-Ying; Hu, Bai-He; An, Li-Hua; Chang, Xin; Xu, Man; Guo, De-An; Sun, Kai; Yang, Ji-Ying; Fang, Shu-Ping; Xian, Ming-Ji; Kizaki, Masahiro; Nagata, Hiroshi; Hibi, Toshifumi

    2007-01-01

    AIM: To investigate the effect of compound Danshen injection on lipopolysaccharide (LPS)-induced rat mesenteric microcirculatory dysfunctions and the underlying possible mechanism by an inverted intravital microscope and high-speed video camera system. METHODS: LPS was continuously infused through the jugular artery of male Wistar rats at the dose of 2 mg/kg per hour. Changes in mesenteric microcirculation, such as diameters of arterioles and venules, velocity of RBCs in venules, leukocyte rolling, adhesion and emigration, free radicals released from post-capillary venules, FITC-albumin leakage and mast cell degranulation, were observed through an inverted intravital microscope assisted with CCD camera and SIT camera. Meanwhile, the expression of adhesion molecules CD11b/CD18 and the production of free radical in neutrophils, and the expression of intercellular adhesion molecule 1 (ICAM-1) in human umbilical vein endothelial cells (HUVECs) were quantified by flow cytometry (FACS) in vitro. RESULTS: The continuous infusion with LPS resulted in a number of responses in microcirculation, including a significant increase in the positive region of venule stained with Monastral blue B, rolling and adhesion of leukocytes, production of oxygen radical in venular wall, albumin efflux and enhanced mast cell degranulation in vivo, all of which, except for the leukocyte rolling, were attenuated by the treatment with compound Danshen injection. Experiments performed in vitro further revealed that the expression of CD11b/CD18 and the production of oxygen free radical in neutrophils, and the expression of ICAM-1 in HUVECs were increased by exposure to LPS, and they were attenuated by compound Danshen injection. CONCLUSION: These results suggest that compound Danshen injection is an efficient drug with multi-targeting potential for improving the microcirculatory disturbance. PMID:17659708

  6. Activity of the HIV-1 Attachment Inhibitor BMS-626529, the Active Component of the Prodrug BMS-663068, against CD4-Independent Viruses and HIV-1 Envelopes Resistant to Other Entry Inhibitors

    PubMed Central

    Li, Zhufang; Zhou, Nannan; Sun, Yongnian; Ray, Neelanjana; Lataillade, Max; Hanna, George J.

    2013-01-01

    BMS-626529 is a novel small-molecule HIV-1 attachment inhibitor active against both CCR5- and CXCR4-tropic viruses. BMS-626529 functions by preventing gp120 from binding to CD4. A prodrug of this compound, BMS-663068, is currently in clinical development. As a theoretical resistance pathway to BMS-663068 could be the development of a CD4-independent phenotype, we examined the activity of BMS-626529 against CD4-independent viruses and investigated whether resistance to BMS-626529 could be associated with a CD4-independent phenotype. Finally, we evaluated whether cross-resistance exists between BMS-626529 and other HIV-1 entry inhibitors. Two laboratory-derived envelopes with a CD4-independent phenotype (one CXCR4 tropic and one CCR5 tropic), five envelopes from clinical isolates with preexisting BMS-626529 resistance, and several site-specific mutant BMS-626529-resistant envelopes were examined for their dependence on CD4 for infectivity or susceptibility to BMS-626529. Viruses resistant to other entry inhibitors (enfuvirtide, maraviroc, and ibalizumab) were also examined for susceptibility to BMS-626529. Both CD4-independent laboratory isolates retained sensitivity to BMS-626529 in CD4− cells, while HIV-1 envelopes from viruses resistant to BMS-626529 exhibited no evidence of a CD4-independent phenotype. BMS-626529 also exhibited inhibitory activity against ibalizumab- and enfuvirtide-resistant envelopes. While there appeared to be some association between maraviroc resistance and reduced susceptibility to BMS-626529, an absolute correlation cannot be presumed, since some CCR5-tropic maraviroc-resistant envelopes remained sensitive to BMS-626529. Clinical use of the prodrug BMS-663068 is unlikely to promote resistance via generation of CD4-independent virus. No cross-resistance between BMS-626529 and other HIV entry inhibitors was observed, which could allow for sequential or concurrent use with different classes of entry inhibitors. PMID:23774428

  7. Structure-activity relationship of ortho- and meta-phenol based LFA-1 ICAM inhibitors.

    PubMed

    Lin, Edward Yin-Shiang; Guckian, Kevin M; Silvian, Laura; Chin, Donovan; Boriack-Sjodin, P Ann; van Vlijmen, Herman; Friedman, Jessica E; Scott, Daniel M

    2008-10-01

    LFA-1 ICAM inhibitors based on ortho- and meta-phenol templates were designed and synthesized by Mitsunobu chemistry. The selection of targets was guided by X-ray co-crystal data, and led to compounds which showed an up to 30-fold increase in potency over reference compound 1 in the LFA-1/ICAM1-Ig assay. The most active compound exploited a new hydrogen bond to the I-domain and exhibited subnanomolar potency.

  8. Retinoids induce integrin-independent lymphocyte adhesion through RAR-α nuclear receptor activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whelan, Jarrett T.; Wang, Lei; Chen, Jianming

    2014-11-28

    Highlights: • Transcription and translation are required for retinoid-induced lymphocyte adhesion. • RAR activation is sufficient to induced lymphocyte cell adhesion. • Vitamin D derivatives inhibit RAR-prompted lymphocyte adhesion. • Adhesion occurs through a novel binding site within ADAM disintegrin domains. • RARα is a key nuclear receptor for retinoid-dependent lymphocyte cell adhesion. - Abstract: Oxidative metabolites of vitamin A, in particular all-trans-retinoic acid (atRA), have emerged as key factors in immunity by specifying the localization of immune cells to the gut. Although it is appreciated that isomers of retinoic acid activate the retinoic acid receptor (RAR) and retinoid Xmore » receptor (RXR) family of nuclear receptors to elicit cellular changes, the molecular details of retinoic acid action remain poorly defined in immune processes. Here we employ a battery of agonists and antagonists to delineate the specific nuclear receptors utilized by retinoids to evoke lymphocyte cell adhesion to ADAM (adisintegrin and metalloprotease) protein family members. We report that RAR agonism is sufficient to promote immune cell adhesion in both immortal and primary immune cells. Interestingly, adhesion occurs independent of integrin function, and mutant studies demonstrate that atRA-induced adhesion to ADAM members required a distinct binding interface(s) as compared to integrin recognition. Anti-inflammatory corticosteroids as well as 1,25-(OH){sub 2}D{sub 3}, a vitamin D metabolite that prompts immune cell trafficking to the skin, potently inhibited the observed adhesion. Finally, our data establish that induced adhesion was specifically attributable to the RAR-α receptor isotype. The current study provides novel molecular resolution as to which nuclear receptors transduce retinoid exposure into immune cell adhesion.« less

  9. Substance P acts via the neurokinin receptor 1 to elicit bronchoconstriction, oxidative stress, and upregulated ICAM-1 expression after oil smoke exposure.

    PubMed

    Li, Ping-Chia; Chen, Wen-Chung; Chang, Li-Ching; Lin, Shao-Chieh

    2008-05-01

    This study aimed to 1) assess whether substance P (SP) acts via neurokinin (NK)-1 and NK-2 receptors to stimulate neurogenic inflammation (indicated by formation of ICAM-1 expression and oxidative stress) following oil smoke exposure (OSE) in rats; and 2) determine if pretreatment with antioxidants ameliorates the deleterious effects of OSE. Rats were pretreated with NK-1 receptor antagonist CP-96345, NK-2 receptor antagonist SR-48968, vitamin C, or catechins. OSE was for 30-120 min. Rats were killed 0-8 h later. Total lung resistance (RL), airway smooth muscle activity (ASMA), lung ICAM-1 expression, neurogenic plasma extravasation (via India ink and Evans blue dye), bronchoalveolar lavage fluid SP concentrations, and reactive oxygen species formation [via lucigenin- and luminal-amplified chemiluminescence (CL)] were assessed. Lung histology was performed. SP concentrations increased significantly in nonpretreated rats following OSE in a dose-dependent manner. RL and total ASMA increased over time after OSE. Vitamin C and catechin pretreatments were associated with significantly reduced lucigenin CL 2 and 4 h after OSE. Pretreatment with catechins significantly reduced luminal CL counts 4 and 8 h after OSE. Evans blue levels were significantly reduced following 60 and 120 min of OSE in catechin- and CP-96345-pretreated rats. ICAM-1 protein expression was significantly decreased in all pretreatment groups after OSE. Thickening of the alveolar capillary membrane, focal hemorrhaging, interstitial pneumonitis, and peribronchiolar inflammation were apparent in OSE lungs. These findings suggest that SP acts via the NK-1 receptor to provoke neurogenic inflammation, oxidative stress, and ICAM-1 expression after OSE in rats.

  10. The effects of spaceflight on adrenergic receptors and agonists and cell adhesion molecule expression

    NASA Technical Reports Server (NTRS)

    Mills, Paul J.; Perez, Christy J.; Adler, Karen A.; Ziegler, Michael G.; Meck, J. V. (Principal Investigator)

    2002-01-01

    Twenty-two astronauts who flew aboard 10 different US Space Shuttle flights were studied 10 days before launch, on landing day, and 2-4 days post-landing. After landing, plasma levels of norepinephrine (p<0.01) were elevated. Lymphocyte beta(2)-adrenergic receptors were desensitized 2-4 days post-landing (p<0.02). The density of CD62L on lymphocytes was unchanged but the densities of CD11a (p<0.01) and CD54 (p<0.001) were down-regulated. CD11a density was also down-regulated on monocytes (p<0.01). Neutrophils showed an up-regulation of CD11a (p<0.01) and a down-regulation of CD54 (p<0.01). CD11a density on neutrophils remained up-regulated (p<0.01) and CD54 density remained down-regulated (p<0.01) at 2-4 days post-landing. Circulating levels of soluble ICAM-1 (CD54) and soluble E-selectin (CD62E) were decreased after landing (p's<0.05). The data suggest that spaceflight leads to an environment that would support reduced leukocyte-endothelial adhesion. Sympathetic activation may contribute to this phenomenon.

  11. [Effect of haw leaf extract and its preparation on polymorphonuclear leucocyte adhesion during HUVEC anoxia/reoxygenation injury].

    PubMed

    Li, Peng; Fu, Jian-hua; Li, Xin-zhi

    2008-08-01

    To study the effect and molecular mechanism of two haw leaf extracts, Vitexin-rhamnoside (VR) and Vitexin-glucoside (VG), and their preparation, Aoshaen injection (AI), on the polymorphonuclear leucocyte (PMN) adhesion during human umbilical vein endothelial cell (HUVEC) anoxia/reoxygenation (A/R) injury. The cell model of A/R injury duplicated by breaking off the oxygen supplying of HUVEC for 60 min followed with reoxygenating for 30 min (phase 1) or 240 min (phase 2) was taken as the experimental objective. The effects of testing drugs (VR, VG and AI) on PMN adhesion in the model cells were measured by enzyme immunoassay, and their effects on PMN superficial adhesion molecule CD11/CD18 expression were measured by flow cytometer respectively. After 60 min of anoxia, HUVEC was shrunk and deformed. The adhesion between PMN and HUVEC significantly revealed at phase 1 in the model group, but it was fewer in the normal cell group, and also lesser in the groups treated with various drugs. The condition of cell adhesion revealed at phase 2 was the similar to that at phase 1. All testing drugs, VR, VG and AI, showed inhibitory effect on the cell adhesion at either phase 1 or phase 2, showing a certain dose-effect relationship. The expression of CD11/ CD18 was also inhibited by the testing drugs, and a good dose-effect relation was shown by VG and AI. At the resting condition, there are almost no expression of CD11/CD18 molecule, but it could be enhanced by incubating PMN with supernate of A/R injured HUVEC culture, and more marked at phase 1. Adding the test drugs into the supernate could inhibit the enhancing of CD11/CD18 molecule expression and reduce the PMN-HUVEC adhesion, which may be one of the molecular mechanisms of haw leaf extracts and their preparation in protecting heart against A/R injury.

  12. Intracellular signaling required for CCL25-stimulated T cell adhesion mediated by the integrin alpha4beta1.

    PubMed

    Parmo-Cabañas, Marisa; García-Bernal, David; García-Verdugo, Rosa; Kremer, Leonor; Márquez, Gabriel; Teixidó, Joaquin

    2007-08-01

    The alpha4beta1 integrin is expressed on thymocytes and mediates cell attachment to its ligands CS-1/fibronectin (CS-1/FN) and VCAM-1 in the thymus. The chemokine CCL25 is highly expressed in the thymus, where it binds to its receptor CCR9 on thymocytes promoting migration and activation. We show here that alpha4beta1 and CCR9 are coexpressed mainly on double- and single-positive thymocytes and that CCL25 strongly stimulates CD4(+)CD8(+) and CD4(+)CD8(-) adhesion to CS-1/FN and VCAM-1. CCL25 rapidly activated the GTPases Rac and Rap1 on thymocytes, and this activation was required for stimulation of adhesion, as detected using the CCR9(+)/alpha4beta1(+) human T cell line Molt-4. To study the role on CCL25-stimulated adhesion of the Rac downstream effector Wiskott-Aldrich syndrome protein family verproline-homologous protein 2 (WAVE2) as well as of Rap1-GTP-interacting proteins, regulator of adhesion and cell polarization enriched in lymphoid tissues (RAPL) and Rap1-GTP-interacting adapter molecule (RIAM), we knocked down their expression and tested transfectant attachment to alpha4beta1 ligands. We found that WAVE2 and RAPL but not RIAM were required for efficient triggering by CCL25 of T cell adhesion to CS-1/FN and VCAM-1. Although Rac and Rap1 activation was required during early steps of T cell adhesion stimulated by CCL25, WAVE2 was needed for the development of actin-dependent T cell spreading subsequent to adhesion strengthening but not during initial alpha4beta1-ligand interactions. These results suggest that regulation by CCL25 of adhesion of thymocyte subpopulations mediated by alpha4beta1 could contribute to control their trafficking in the thymus during maturation, and identify Rac-WAVE2 and Rap1-RAPL as pathways whose activation is required in inside-out signaling, leading to stimulated adhesion.

  13. CD15s/CD62E Interaction Mediates the Adhesion of Non-Small Cell Lung Cancer Cells on Brain Endothelial Cells: Implications for Cerebral Metastasis

    PubMed Central

    Jassam, Samah A.; Maherally, Zaynah; Ashkan, Keyoumars; Roncaroli, Federico; Fillmore, Helen L.; Pilkington, Geoffrey J.

    2017-01-01

    Expression of the cell adhesion molecule (CAM), Sialyl Lewis X (CD15s) correlates with cancer metastasis, while expression of E-selectin (CD62E) is stimulated by TNF-α. CD15s/CD62E interaction plays a key role in the homing process of circulating leukocytes. We investigated the heterophilic interaction of CD15s and CD62E in brain metastasis-related cancer cell adhesion. CD15s and CD62E were characterised in human brain endothelium (hCMEC/D3), primary non-small cell lung cancer (NSCLC) (COR-L105 and A549) and metastatic NSCLC (SEBTA-001 and NCI-H1299) using immunocytochemistry, Western blotting, flow cytometry and immunohistochemistry in human brain tissue sections. TNF-α (25 pg/mL) stimulated extracellular expression of CD62E while adhesion assays, under both static and physiological flow live-cell conditions, explored the effect of CD15s-mAb immunoblocking on adhesion of cancer cell–brain endothelium. CD15s was faintly expressed on hCMEC/D3, while high levels were observed on primary NSCLC cells with expression highest on metastatic NSCLC cells (p < 0.001). CD62E was highly expressed on hCMEC/D3 cells activated with TNF-α, with lower levels on primary and metastatic NSCLC cells. CD15s and CD62E were expressed on lung metastatic brain biopsies. CD15s/CD62E interaction was localised at adhesion sites of cancer cell–brain endothelium. CD15s immunoblocking significantly decreased cancer cell adhesion to brain endothelium under static and shear stress conditions (p < 0.001), highlighting the role of CD15s–CD62E interaction in brain metastasis. PMID:28698503

  14. CD15s/CD62E Interaction Mediates the Adhesion of Non-Small Cell Lung Cancer Cells on Brain Endothelial Cells: Implications for Cerebral Metastasis.

    PubMed

    Jassam, Samah A; Maherally, Zaynah; Smith, James R; Ashkan, Keyoumars; Roncaroli, Federico; Fillmore, Helen L; Pilkington, Geoffrey J

    2017-07-10

    Expression of the cell adhesion molecule (CAM), Sialyl Lewis X (CD15s) correlates with cancer metastasis, while expression of E-selectin (CD62E) is stimulated by TNF-α. CD15s/CD62E interaction plays a key role in the homing process of circulating leukocytes. We investigated the heterophilic interaction of CD15s and CD62E in brain metastasis-related cancer cell adhesion. CD15s and CD62E were characterised in human brain endothelium (hCMEC/D3), primary non-small cell lung cancer (NSCLC) (COR-L105 and A549) and metastatic NSCLC (SEBTA-001 and NCI-H1299) using immunocytochemistry, Western blotting, flow cytometry and immunohistochemistry in human brain tissue sections. TNF-α (25 pg/mL) stimulated extracellular expression of CD62E while adhesion assays, under both static and physiological flow live-cell conditions, explored the effect of CD15s-mAb immunoblocking on adhesion of cancer cell-brain endothelium. CD15s was faintly expressed on hCMEC/D3, while high levels were observed on primary NSCLC cells with expression highest on metastatic NSCLC cells ( p < 0.001). CD62E was highly expressed on hCMEC/D3 cells activated with TNF-α, with lower levels on primary and metastatic NSCLC cells. CD15s and CD62E were expressed on lung metastatic brain biopsies. CD15s/CD62E interaction was localised at adhesion sites of cancer cell-brain endothelium. CD15s immunoblocking significantly decreased cancer cell adhesion to brain endothelium under static and shear stress conditions ( p < 0.001), highlighting the role of CD15s-CD62E interaction in brain metastasis.

  15. Effective Control of Chronic γ-Herpesvirus Infection by Unconventional MHC Class Ia–Independent CD8 T Cells

    PubMed Central

    Tibbetts, Scott A; McClellan, Kelly B

    2006-01-01

    Control of virus infection is mediated in part by major histocompatibility complex (MHC) Class Ia presentation of viral peptides to conventional CD8 T cells. Although important, the absolute requirement for MHC Class Ia–dependent CD8 T cells for control of chronic virus infection has not been formally demonstrated. We show here that mice lacking MHC Class Ia molecules (Kb−/−xDb−/− mice) effectively control chronic γ-herpesvirus 68 (γHV68) infection via a robust expansion of β2-microglobulin (β2-m)-dependent, but CD1d-independent, unconventional CD8 T cells. These unconventional CD8 T cells expressed: (1) CD8αβ and CD3, (2) cell surface molecules associated with conventional effector/memory CD8 T cells, (3) TCRαβ with a significant Vβ4, Vβ3, and Vβ10 bias, and (4) the key effector cytokine interferon-γ (IFNγ). Unconventional CD8 T cells utilized a diverse TCR repertoire, and CDR3 analysis suggests that some of that repertoire may be utilized even in the presence of conventional CD8 T cells. This is the first demonstration to our knowledge that β2-m–dependent, but Class Ia–independent, unconventional CD8 T cells can efficiently control chronic virus infection, implicating a role for β2-n–dependent non-classical MHC molecules in control of chronic viral infection. We speculate that similar unconventional CD8 T cells may be able to control of other chronic viral infections, especially when viruses evade immunity by inhibiting generation of Class Ia–restricted T cells. PMID:16733540

  16. Evaluation of Liver Ischemia-Reperfusion Injury in Rabbits Using a Nanoscale Ultrasound Contrast Agent Targeting ICAM-1.

    PubMed

    Xie, Fang; Li, Zhi-Ping; Wang, Hong-Wei; Fei, Xiang; Jiao, Zi-Yu; Tang, Wen-Bo; Tang, Jie; Luo, Yu-Kun

    2016-01-01

    To assess the feasibility of ultrasound molecular imaging in the early diagnosis of liver ischemia-reperfusion injury (IRI) using a nanoscale contrast agent targeting anti-intracellular adhesion molecule-1 (anti-ICAM-1). The targeted nanobubbles containing anti-ICAM-1 antibody were prepared using the avidin-biotin binding method. Human hepatic sinusoidal endothelial cells (HHSECs) were cultured at the circumstances of hypoxia/reoxygenation (H/R) and low temperature. The rabbit liver IRI model (I/R group) was established using the Pringle's maneuver. The time-intensity curve of the liver contrast ultrasonographic images was plotted and the peak intensity, time to peak, and time of duration were calculated. The size of the targeted nanobubbles were 148.15 ± 39.75 nm and the concentration was 3.6-7.4 × 109/ml, and bound well with the H/R HHSECs. Animal contrast enhanced ultrasound images showed that the peak intensity and time of duration of the targeted nanobubbles were significantly higher than that of common nanobubbles in the I/R group, and the peak intensity and time of duration of the targeted nanobubbles in the I/R group were also significantly higher than that in the SO group. The targeted nanobubbles have small particle size, stable characteristic, and good targeting ability, which can assess hepatic ischemia-reperfusion injury specifically, noninvasively, and quantitatively at the molecular level.

  17. Human mesenchymal stem cells target adhesion molecules and receptors involved in T cell extravasation.

    PubMed

    Benvenuto, Federica; Voci, Adriana; Carminati, Enrico; Gualandi, Francesca; Mancardi, Gianluigi; Uccelli, Antonio; Vergani, Laura

    2015-12-10

    Systemic delivery of bone marrow-derived mesenchymal stem cells (MSC) seems to be of benefit in the treatment of multiple sclerosis (MS), an autoimmune disease of the central nervous system (CNS) sustained by migration of T cells across the brain blood barrier (BBB) and subsequent induction of inflammatory lesions into CNS. MSC have been found to modulate several effector functions of T cells. In this study, we investigated the effects of MSC on adhesion molecules and receptors on T cell surface that sustain their transendothelial migration. We used different co-culture methods combined with real-time PCR and flow cytometry to evaluate the expression both at the mRNA and at the plasma-membrane level of α4 integrin, β2 integrin, ICAM-1 and CXCR3. In parallel, we assessed if MSC are able to modulate expression of adhesion molecules on the endothelial cells that interact with T cells during their transendothelial migration. Our in vitro analyses revealed that MSC: (i) inhibit proliferation and activation of both peripheral blood mononuclear cells (PBMC) and CD3(+)-selected lymphocytes through the release of soluble factors; (ii) exert suppressive effects on those surface molecules highly expressed by activated lymphocytes and involved in transendothelial migration; (iii) inhibit CXCL10-driven chemotaxis of CD3(+) cells; (iv) down-regulated expression of adhesion molecules on endothelial cells. Taken together, these data demonstrate that the immunosuppressive effect of MSC does not exclusively depends on their anti-proliferative activity on T cells, but also on the impairment of leukocyte migratory potential through the inhibition of the adhesion molecules and receptors that are responsible for T cell trafficking across BBB. This could suggest a new mechanism through which MSC modulate T cell responses.

  18. Outside-in HLA class I signaling regulates ICAM-1 clustering and endothelial cell-monocyte interactions via mTOR in transplant antibody-mediated rejection.

    PubMed

    Salehi, Sahar; Sosa, Rebecca A; Jin, Yi-Ping; Kageyama, Shoichi; Fishbein, Michael C; Rozengurt, Enrique; Kupiec-Weglinski, Jerzy W; Reed, Elaine F

    2018-05-01

    Antibody-mediated rejection (AMR) resulting in transplant allograft vasculopathy (TAV) is the major obstacle for long-term survival of solid organ transplants. AMR is caused by donor-specific antibodies to HLA, which contribute to TAV by initiating outside-in signaling transduction pathways that elicit monocyte recruitment to activated endothelium. Mechanistic target of rapamycin (mTOR) inhibitors can attenuate TAV; therefore, we sought to understand the mechanistic underpinnings of mTOR signaling in HLA class I Ab-mediated endothelial cell activation and monocyte recruitment. We used an in vitro model to assess monocyte binding to HLA I Ab-activated endothelial cells and found mTOR inhibition reduced ezrin/radixin/moesin (ERM) phosphorylation, intercellular adhesion molecule 1 (ICAM-1) clustering, and monocyte firm adhesion to HLA I Ab-activated endothelium. Further, in a mouse model of AMR, in which C57BL/6. RAG1 -/- recipients of BALB/c cardiac allografts were passively transferred with donor-specific MHC I antibodies, mTOR inhibition significantly reduced vascular injury, ERM phosphorylation, and macrophage infiltration of the allograft. Taken together, these studies indicate mTOR inhibition suppresses ERM phosphorylation in endothelial cells, which impedes ICAM-1 clustering in response to HLA class I Ab and prevents macrophage infiltration into cardiac allografts. These findings indicate a novel therapeutic application for mTOR inhibitors to disrupt endothelial cell-monocyte interactions during AMR. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  19. YBX1 is a modulator of MIA/CD-RAP-dependent chondrogenesis.

    PubMed

    Schmid, Rainer; Meyer, Katharina; Spang, Rainer; Schittek, Birgit; Bosserhoff, Anja Katrin

    2013-01-01

    MIA/CD-RAP is a small, secreted protein involved in cartilage differentiation and melanoma progression. We recently revealed that p54(nrb) acts as a mediator of MIA/CD-RAP action to promote chondrogenesis and the progression of malignant melanoma. As the molecular mechanism of MIA/CD-RAP action in cartilage has not been defined in detail until now, we aimed to understand the regulation of p54(nrb) transcription in chondrogenesis. We concentrated on the previously described MIA/CD-RAP-dependent regulatory region in the p54(nrb) promoter and characterized the transcriptional regulation of p54(nrb) by MIA/CD-RAP in cartilage. A series of truncated p54(nrb) promoter constructs and mutagenesis analysis revealed that the transcription factor YBX1, which has not been investigated in chondrogenesis thus far, is the mediator of MIA/CD-RAP dependent activation of p54(nrb) transcription. A systematic analysis of genes carrying this binding site in their promoter region revealed further potential MIA/CD-RAP-regulated genes that have been implicated in cartilage differentiation. In summary, we described the effects of MIA/CD-RAP on transcriptional regulation in chondrocytes. Understanding the regulation of p54(nrb) via YBX1 contributes to the understanding of chondrogenesis. Uncovering new downstream effectors that function via the activation of YBX1 supports the important role of MIA/CD-RAP in these processes.

  20. Biochemical features of the adhesion G protein-coupled receptor CD97 related to its auto-proteolysis and HeLa cell attachment activities

    PubMed Central

    Yang, Li-yun; Liu, Xiao-fang; Yang, Yang; Yang, Lin-lin; Liu, Kai-wen; Tang, Yu-bo; Zhang, Min; Tan, Min-jia; Cheng, Shan-mei; Xu, Ye-chun; Yang, Huai-yu; Liu, Zhi-jie; Song, Gao-jie; Huang, Wei

    2017-01-01

    CD97 belongs to the adhesion GPCR family characterized by a long ECD linked to the 7TM via a GPCR proteolytic site (GPS) and plays important roles in modulating cell migration and invasion. CD97 (EGF1-5) is a splicing variant of CD97 that recognizes a specific ligand chondroitin sulfate on cell membranes and the extracellular matrix. The aim of this study was to elucidate the extracellular molecular basis of the CD97 EGF1-5 isoform in protein expression, auto-proteolysis and cell adhesion, including epidermal growth factor (EGF)-like domain, GPCR autoproteolysis-inducing (GAIN) domain, as well as GPS mutagenesis and N-glycosylation. Both wild-type (WT) CD97-ECD and its truncated, GPS mutated, PNGase F-deglycosylated, and N-glycosylation site mutated forms were expressed and purified. The auto-proteolysis of the proteins was analyzed with Western blotting and SDS-PAGE. Small angle X-ray scattering (SAXS) and molecular modeling were used to determine a structural profile of the properly expressed receptor. Potential N-glycosylation sites were identified using MS and were modulated with PNGase F digestion and glyco-site mutations. A flow cytometry-based HeLa cell attachment assay was used for all aforementioned CD97 variants to elucidate the molecular basis of CD97-HeLa interactions. A unique concentration-dependent GPS auto-proteolysis was observed in CD97 EGF1-5 isoform with the highest concentration (4 mg/mL) per sample was self-cleaved much faster than the lower concentration (0.1 mg/mL), supporting an intermolecular mechanism of auto-proteolysis that is distinct to the reported intramolecular mechanism for other CD97 isoforms. N-glycosylation affected the auto-proteolysis of CD97 EGF1-5 isoform in a similar way as the other previously reported CD97 isoforms. SAXS data for WT and deglycosylated CD97ECD revealed a spatula-like shape with GAIN and EGF domains constituting the body and handle, respectively. Structural modeling indicated a potential interaction

  1. Biochemical features of the adhesion G protein-coupled receptor CD97 related to its auto-proteolysis and HeLa cell attachment activities.

    PubMed

    Yang, Li-Yun; Liu, Xiao-Fang; Yang, Yang; Yang, Lin-Lin; Liu, Kai-Wen; Tang, Yu-Bo; Zhang, Min; Tan, Min-Jia; Cheng, Shan-Mei; Xu, Ye-Chun; Yang, Huai-Yu; Liu, Zhi-Jie; Song, Gao-Jie; Huang, Wei

    2017-01-01

    CD97 belongs to the adhesion GPCR family characterized by a long ECD linked to the 7TM via a GPCR proteolytic site (GPS) and plays important roles in modulating cell migration and invasion. CD97 (EGF1-5) is a splicing variant of CD97 that recognizes a specific ligand chondroitin sulfate on cell membranes and the extracellular matrix. The aim of this study was to elucidate the extracellular molecular basis of the CD97 EGF1-5 isoform in protein expression, auto-proteolysis and cell adhesion, including epidermal growth factor (EGF)-like domain, GPCR autoproteolysis-inducing (GAIN) domain, as well as GPS mutagenesis and N-glycosylation. Both wild-type (WT) CD97-ECD and its truncated, GPS mutated, PNGase F-deglycosylated, and N-glycosylation site mutated forms were expressed and purified. The auto-proteolysis of the proteins was analyzed with Western blotting and SDS-PAGE. Small angle X-ray scattering (SAXS) and molecular modeling were used to determine a structural profile of the properly expressed receptor. Potential N-glycosylation sites were identified using MS and were modulated with PNGase F digestion and glyco-site mutations. A flow cytometry-based HeLa cell attachment assay was used for all aforementioned CD97 variants to elucidate the molecular basis of CD97-HeLa interactions. A unique concentration-dependent GPS auto-proteolysis was observed in CD97 EGF1-5 isoform with the highest concentration (4 mg/mL) per sample was self-cleaved much faster than the lower concentration (0.1 mg/mL), supporting an intermolecular mechanism of auto-proteolysis that is distinct to the reported intramolecular mechanism for other CD97 isoforms. N-glycosylation affected the auto-proteolysis of CD97 EGF1-5 isoform in a similar way as the other previously reported CD97 isoforms. SAXS data for WT and deglycosylated CD97ECD revealed a spatula-like shape with GAIN and EGF domains constituting the body and handle, respectively. Structural modeling indicated a potential interaction

  2. Transcription factor-dependent chromatin remodeling of Il18r1 during Th1 and Th2 differentiation 1

    PubMed Central

    Yu, Qing; Chang, Hua-Chen; Ahyi, Ayele-Nati N.; Kaplan, Mark H.

    2008-01-01

    The IL-18Rα chain is expressed on Th1 but not Th2 cells. We have recently shown that Stat4 is an important component of programming the Il18r1 locus (encoding IL-18Rα) for maximal expression in Th1 cells. Il18r1 is reciprocally repressed during Th2 development. In this report we demonstrate that the establishment of DNase hypersensitivity patterns that are distinct among undifferentiated CD4 T cells, Th1 and Th2 cells. Stat6 is required for the repression of Il18r1 expression and in Stat6-deficient Th2 cultures, mRNA levels, histone acetylation and H3K4 methylation levels are intermediate between levels observed in Th1 and Th2 cells. Despite the repressive effects of IL-4 during Th2 differentiation, we observed only modest binding of Stat6 to the Il18r1 locus. In contrast, we observed robust GATA-3 binding to a central region of the locus where DNase hypersensitivity sites overlapped with conserved non-coding sequences in Il18r1 introns. Ectopic expression of GATA-3 in differentiated Th1 cells repressed Il18r1 mRNA and surface expression of IL-18Rα. These data provide further mechanistic insight into transcription factor dependent establishment of Th subset-specific patterns of gene expression. PMID:18714006

  3. A pathway of costimulation that prevents anergy in CD28- T cells: B7- independent costimulation of CD1-restricted T cells

    PubMed Central

    1995-01-01

    A class of molecules that is expressed on antigen presenting cells, exemplified by CD80 (B7), has been found to provide a necessary costimulatory signal for T cell activation and proliferation. CD28 and CTLA4 are the B7 counterreceptors and are expressed on the majority of human CD4+ T cells and many CD8+ T cells. The signal these molecules mediate is distinguished from other costimulatory signals by the finding that T cell recognition of antigen results in a prolonged state of T cell unresponsiveness or anergy, unless these costimulatory molecules are engaged. However, nearly half of the CD8+ and CD4-CD8- T cells lack CD28, and the costimulatory signals required for the activation of such cells are unknown. To understand the pathways of activation used by CD28- T cells, we have examined the costimulatory requirements of antigen-specific CD4-CD8- TCR(+)-alpha/beta circulating T cells that lack the expression of CD28. We have characterized two T cell lines, DN1 and DN6, that recognize a mycobacterial antigen, and are restricted not by major histocompatibility complex class I or II, but by CD1b or CD1c, two members of a family of major histocompatibility complex-related molecules that have been recently implicated in a distinct pathway for antigen presentation. Comparison of antigen-specific cytolytic responses of the DN1 and DN6 T cell lines against antigen-pulsed CD1+ monocytes or CD1+ B lymphoblastoid cell lines (B-LCL) demonstrated that these T cells recognized antigen presented by both types of cells. However, T cell proliferation occurred only when antigen was presented by CD1+ monocytes, indicating that the CD1+ monocytes expressed a costimulatory molecule that the B- LCL transfectants lacked. This hypothesis was confirmed by demonstrating that the T cells became anergic when incubated with the CD1(+)-transfected B-LCL in the presence of antigen, but not in the absence of antigen. The required costimulatory signal occurred by a CD28-independent mechanism since

  4. EphA2 promotes cell adhesion and spreading of monocyte and monocyte/macrophage cell lines on integrin ligand-coated surfaces.

    PubMed

    Saeki, Noritaka; Nishino, Shingo; Shimizu, Tomohiro; Ogawa, Kazushige

    2015-01-01

    Eph signaling, which arises following stimulation by ephrins, is known to induce opposite cell behaviors such as promoting and inhibiting cell adhesion as well as promoting cell-cell adhesion and repulsion by altering the organization of the actin cytoskeleton and influencing the adhesion activities of integrins. However, crosstalk between Eph/ephrin with integrin signaling has not been fully elucidated in leukocytes, including monocytes and their related cells. Using a cell attachment stripe assay, we have shown that, following stimulation with ephrin-A1, kinase-independent EphA2 promoted cell spreading/elongation as well as adhesion to integrin ligand-coated surfaces in cultured U937 (monocyte) and J774.1 (monocyte/macrophage) cells as well as sublines of these cells expressing dominant negative EphA2 that lacks most of the intracellular region. Moreover, a pull-down assay showed that dominant negative EphA2 is recruited to the β2 integrin/ICAM1 and β2 integrin/VCAM1 molecular complexes in the subline cells following stimulation with ephrin-A1-Fc. Notably, this study is the first comprehensive analysis of the effects of EphA2 receptors on integrin-mediated cell adhesion in monocytic cells. Based on these findings we propose that EphA2 promotes cell adhesion by an unknown signaling pathway that largely depends on the extracellular region of EphA2 and the activation of outside-in integrin signaling.

  5. Ursolic acid, a natural pentacyclic triterpenoid, inhibits intracellular trafficking of proteins and induces accumulation of intercellular adhesion molecule-1 linked to high-mannose-type glycans in the endoplasmic reticulum

    PubMed Central

    Mitsuda, Satoshi; Yokomichi, Tomonobu; Yokoigawa, Junpei; Kataoka, Takao

    2014-01-01

    Ursolic acid (3β-hydroxy-urs-12-en-28-oic acid) is a natural pentacyclic triterpenoid that is present in many plants, including medicinal herbs, and foods. Ursolic acid was initially identified as an inhibitor of the expression of intercellular adhesion molecule-1 (ICAM-1) in response to interleukin-1α (IL-1α). We report here a novel biological activity: ursolic acid inhibits intracellular trafficking of proteins. Ursolic acid markedly inhibited the IL-1α-induced cell-surface ICAM-1 expression in human cancer cell lines and human umbilical vein endothelial cells. By contrast, ursolic acid exerted weak inhibitory effects on the IL-1α-induced ICAM-1 expression at the protein level. Surprisingly, we found that ursolic acid decreased the apparent molecular weight of ICAM-1 and altered the structures of N-linked oligosaccharides bound to ICAM-1. Ursolic acid induced the accumulation of ICAM-1 in the endoplasmic reticulum, which was linked mainly to high-mannose-type glycans. Moreover, in ursolic-acid-treated cells, the Golgi apparatus was fragmented into pieces and distributed over the cells. Thus, our results reveal that ursolic acid inhibits intracellular trafficking of proteins and induces the accumulation of ICAM-1 linked to high-mannose-type glycans in the endoplasmic reticulum. PMID:24649404

  6. Role of elevated plasma soluble ICAM-1 and bronchial lavage fluid IL-8 levels as markers of chronic lung disease in premature infants.

    PubMed Central

    Little, S.; Dean, T.; Bevin, S.; Hall, M.; Ashton, M.; Church, M.; Warner, J.; Shute, J.

    1995-01-01

    BACKGROUND--Pulmonary neutrophilia characterises both the relatively transient inflammation associated with infant respiratory distress syndrome (IRDS) and the persistent inflammation of chronic lung disease. The possibility that persistently raised markers of inflammation indicate the development of chronic lung disease in low birth weight (< 1730 g) preterm (< 31 weeks) infants was therefore investigated. METHODS--Soluble ICAM-1 (sICAM-1) levels in plasma, and interleukin (IL)-8 and myeloperoxidase (MPO) levels in bronchial lavage fluid (BLF) obtained from 17 infants on days 1, 5, and 14 following birth were measured and correlations with the number of neutrophils in BLF sought. Peripheral neutrophils were isolated on Polymorphoprep and chemotactic responsiveness to IL-8 was assessed using micro Boyden chambers. RESULTS--Sixteen infants developed IRDS and, of these, 10 infants subsequently developed chronic lung disease. Levels of IL-8 in BLF at 14 days of age correlated with the long term requirement for intermittent positive pressure ventilation (IPPV). Interleukin 8 levels in BLF correlated with neutrophil numbers and MPO concentration, suggesting both recruitment and activation in response to this cytokine. Antibody depletion studies showed that approximately 50% of total neutrophil chemotactic activity in BLF was due to IL-8. No difference in peripheral neutrophil chemotactic responsiveness at any age was observed for infants with IRDS or chronic lung disease. Plasma soluble intercellular adhesion molecule (sICAM-1) was higher at 14 days of age in infants who developed chronic lung disease than in those with resolving IRDS, and correlated with severity of disease, as indicated by duration of IPPV. CONCLUSIONS--The results indicate that high levels of plasma sICAM-1 and IL-8 in BLF at day 14 correlate with the development of chronic lung disease and indicate the severity of disease. PMID:7491556

  7. Novel whole blood assay for phenotyping platelet reactivity in mice identifies ICAM-1 as a mediator of platelet-monocyte interaction

    PubMed Central

    Kirkby, Nicholas S.; Chan, Melissa V.; Finsterbusch, Michaela; Hogg, Nancy; Nourshargh, Sussan; Warner, Timothy D.

    2015-01-01

    Testing of platelet function is central to the cardiovascular phenotyping of genetically modified mice. Traditional platelet function tests have been developed primarily for testing human samples and the volumes required make them highly unsuitable for the testing of mouse platelets. This limits research in this area. To address this problem, we have developed a miniaturized whole blood aggregometry assay, based on a readily accessible 96-well plate format coupled with quantification of single platelet depletion by flow cytometric analysis. Using this approach, we observed a concentration-dependent loss of single platelets in blood exposed to arachidonic acid, collagen, U46619 or protease activated receptor 4 activating peptide. This loss was sensitive to well-established antiplatelet agents and genetic manipulation of platelet activation pathways. Observations were more deeply analyzed by flow cytometric imaging, confocal imaging, and measurement of platelet releasates. Phenotypic analysis of the reactivity of platelets taken from mice lacking intercellular adhesion molecule (ICAM)-1 identified a marked decrease in fibrinogen-dependent platelet-monocyte interactions, especially under inflammatory conditions. Such findings exemplify the value of screening platelet phenotypes of genetically modified mice and shed further light upon the roles and interactions of platelets in inflammation. PMID:26215112

  8. Mycophenolate mofetil modulates adhesion receptors of the beta1 integrin family on tumor cells: impact on tumor recurrence and malignancy

    PubMed Central

    Engl, Tobias; Makarević, Jasmina; Relja, Borna; Natsheh, Iyad; Müller, Iris; Beecken, Wolf-Dietrich; Jonas, Dietger; Blaheta, Roman A

    2005-01-01

    Background Tumor development remains one of the major obstacles following organ transplantation. Immunosuppressive drugs such as cyclosporine and tacrolimus directly contribute to enhanced malignancy, whereas the influence of the novel compound mycophenolate mofetil (MMF) on tumor cell dissemination has not been explored. We therefore investigated the adhesion capacity of colon, pancreas, prostate and kidney carcinoma cell lines to endothelium, as well as their beta1 integrin expression profile before and after MMF treatment. Methods Tumor cell adhesion to endothelial cell monolayers was evaluated in the presence of 0.1 and 1 μM MMF and compared to unstimulated controls. beta1 integrin analysis included alpha1beta1 (CD49a), alpha2beta1 (CD49b), alpha3beta1 (CD49c), alpha4beta1 (CD49d), alpha5beta1 (CD49e), and alpha6beta1 (CD49f) receptors, and was carried out by reverse transcriptase-polymerase chain reaction, confocal microscopy and flow cytometry. Results Adhesion of the colon carcinoma cell line HT-29 was strongly reduced in the presence of 0.1 μM MMF. This effect was accompanied by down-regulation of alpha3beta1 and alpha6beta1 surface expression and of alpha3beta1 and alpha6beta1 coding mRNA. Adhesion of the prostate tumor cell line DU-145 was blocked dose-dependently by MMF. In contrast to MMF's effects on HT-29 cells, MMF dose-dependently up-regulated alpha1beta1, alpha2beta1, alpha3beta1, and alpha5beta1 on DU-145 tumor cell membranes. Conclusion We conclude that MMF possesses distinct anti-tumoral properties, particularly in colon and prostate carcinoma cells. Adhesion blockage of HT-29 cells was due to the loss of alpha3beta1 and alpha6beta1 surface expression, which might contribute to a reduced invasive behaviour of this tumor entity. The enhancement of integrin beta1 subtypes observed in DU-145 cells possibly causes re-differentiation towards a low-invasive phenotype. PMID:15644133

  9. A prospective study of endothelial activation biomarkers, including plasma angiopoietin-1 and angiopoietin-2, in Kenyan women initiating antiretroviral therapy.

    PubMed

    Graham, Susan M; Rajwans, Nimerta; Tapia, Kenneth A; Jaoko, Walter; Estambale, Benson B A; McClelland, R Scott; Overbaugh, Julie; Liles, W Conrad

    2013-06-04

    HIV-1-related inflammation is associated with increased levels of biomarkers of vascular adhesion and endothelial activation, and may increase production of the inflammatory protein angiopoietin-2 (ANG-2), an adverse prognostic biomarker in severe systemic infection. We hypothesized that antiretroviral therapy (ART) initiation would decrease endothelial activation, reducing plasma levels of ANG-2. Antiretroviral-naïve Kenyan women with advanced HIV infection were followed prospectively. Endothelial activation biomarkers including soluble intercellular adhesion molecule-1 (ICAM-1), vascular adhesion molecule-1 (VCAM-1), and E-selectin, and plasma ANG-2 and angiopoietin-1 (ANG-1) were tested in stored plasma samples from 0, 6, and 12 months after ART initiation. We used Wilcoxon matched-pairs signed rank tests to compare endothelial activation biomarkers across time-points, generalized estimating equations to analyze associations with change in log10-transformed biomarkers after ART initiation, and Cox proportional-hazards regression to analyze associations with mortality. The 102 HIV-1-seropositive women studied had advanced infection (median CD4 count, 124 cells/μL). Soluble ICAM-1 and plasma ANG-2 levels decreased at both time-points after ART initiation, with concomitant increases in the beneficial protein ANG-1. Higher ANG-2 levels after ART initiation were associated with higher plasma HIV-1 RNA, oral contraceptive pill use, pregnancy, severe malnutrition, and tuberculosis. Baseline ANG-2 levels were higher among five women who died after ART initiation than among women who did not (median 2.85 ng/mL [inter-quartile range (IQR) 2.47-5.74 ng/mL] versus median 1.32 ng/mL [IQR 0.35-2.18 ng/mL], p = 0.01). Both soluble ICAM-1 and plasma ANG-2 levels predicted mortality after ART initiation. Biomarkers of endothelial activation decreased after ART initiation in women with advanced HIV-1 infection. Changes in plasma ANG-2 were associated with HIV-1 RNA

  10. Interaction between hyaluronan and CD44 in the development of dimethylnitrosamine-induced liver cirrhosis.

    PubMed

    Satoh, T; Ichida, T; Matsuda, Y; Sugiyama, M; Yonekura, K; Ishikawa, T; Asakura, H

    2000-04-01

    A significant increase in serum hyaluronan (HA) levels has been reported in patients with liver cirrhosis. This mechanism is not yet clear, and receptors for HA have not been characterized. In this study, we examined the expression of both HA and its receptors, CD44 and intercellular adhesion molecule-1 (ICAM-1), in dimethylnitrosamine-induced liver cirrhosis. Using biotinylated HA binding protein, HA was detected in the area of periportal fibrosis and around the sinusoidal wall where hepatic fibrosis was developing. Electron microscopy revealed that HA was localized on Ito cells and sinusoidal endothelial cells (SEC). Conversely, CD44, which was only expressed weakly in normal liver, was present in large amounts in cirrhotic liver. The distribution pattern of CD44 was similar to that of HA, however, CD44 was mainly localized on the infiltrating lymphocytes and Kupffer cells. Moreover, CD44 was detected on part of factor VIII-positive SEC. Intercellular adhesion molecule-1, another receptor for HA, was detected on the surface of hepatocytes and around the sinusoidal wall in cirrhotic liver, but its distribution was not accompanied by expression of HA. With respect to CD44 isoforms, the standard form m-RNA predominated in both normal and cirrhotic liver. Variant pMeta-1 mRNA was detected at low levels. An interaction between HA and CD44 may play a role in the recruitment of numerous infiltrating cells and HA accumulation in hepatic sinusoids. Together with phenotypic changes in the SEC, these results may lead to a disturbance in the elimination of HA during the progression of liver cirrhosis.

  11. [Capillary leak syndrome disclosing Ofuji's papuloerythroderma].

    PubMed

    Carsuzaa, F; Pierre, C; Morand, J J; Farnarier, C; Marrot, F; Kaplanski, G

    1996-01-01

    Capillary leak syndrome is a specific entity among syndromes with capillary hyperpermeability. Endothelial cell activation is related to the higt level of adhesion molecules (sICAM-1, sVCAM-&, sCD62E) possibly due to several cytokines (IL-2, TNF ...). An 84-year-old woman was hospitalized for erythroderma. Ofujui papuloerythroderma was diagnosed and edema was attributed to capillary leak. A kinetic study of several cytokines and adhesion molecules sCD62E, sVCAM-1 and sICAM-1 was done. Outcome was favorable with corticopuvatherapy. The capillary leak syndrome reported here is simlar to that described in other erythrodermas with or without lymphoma. The keratinocyte would be activated by the CD4 T lymphocyte via the gamma-interferon mediator. The T cell secretes cytokines (interleukin-1, tumor necrosis factor ...) which activates the endothelium and increases vascular permeability. The level of adhesion molecules and changes observed during the episode of edema demonstrated the endothelial activation.

  12. Correlation of serum intercellular adhesion molecule 1 and vascular endothelial growth factor with tumor grading and staging in breast cancer patients.

    PubMed

    Haghi, Alireza Rastgoo; Vahedi, Amir; Shekarchi, Ali Akbar; Kamran, Aziz

    2017-01-01

    Breast cancer is the most common cancer among women. There are several prognostic factors for this disease. The aim of this article is to explore the correlation of serum level of vascular endothelial growth factor (VEGF) and intercellular adhesion molecule 1 (ICAM1) with tumor, node, metastasis staging and grading of breast cancer. Serum samples of 51 patients with breast cancer were assessed with enzyme-linked immunosorbent assay for the level of VEGF and ICAM1 preoperatively. After the operation, histopathologic specimens stained with hematoxylin and eosin were evaluated for tumor size, histopathologic subtype, grade, lymph node, vascular and lymphatic involvement. Then, the correlation of tumor stage and grade and serum level of markers was analyzed. There was no significant correlation between serum level of markers with vascular invasions, lymph node involvement, and menstruation. There was a weak correlation between tumor size and serum level of ICAM1 with Pearson score correlation, but there was no significant correlation with VEGF. There was no significant correlation between tumor grading and staging with the level of markers. There was a significant correlation between the level of VEGF and ICAM1 and histologic type of tumors in invasive through in situ tumors. Levels of VEGF and ICAM1 can be used as a predictor of tumor invasion and also for target therapy.

  13. Stable coordination of the inhibitory Ca2+ ion at MIDAS in integrin CD11b/CD18 by an antibody-derived ligand aspartate: Implications for integrin regulation and structure-based drug design

    PubMed Central

    Mahalingam, Bhuvaneshwari; Ajroud, Kaouther; Alonso, Jose Luis; Anand, Saurabh; Adair, Brian; Horenstein, Alberto L; Malavasi, Fabio; Xiong, Jian-Ping; Arnaout, M. Amin

    2011-01-01

    A central feature of integrin interaction with physiologic ligands is the monodentate binding of a ligand carboxylate to a Mg2+ ion hexacoordinated at the metal-ion-dependent-adhesion site (MIDAS) in the integrin A-domain. This interaction stabilizes the A-domain in the high-affinity state, which is distinguished from the default low-affinity state by tertiary changes in the domain that culminate in cell adhesion. Small molecule ligand-mimetic integrin antagonists act as partial agonists, eliciting similar activating conformational changes in the A-domain, which has contributed to paradoxical adhesion and increased patient mortality in large clinical trials. As with other ligand-mimetic integrin antagonists, the function-blocking monoclonal antibody (mAb) 107 binds MIDAS of integrin CD11b/CD18 A-domain (CD11bA), but in contrast, it favors the inhibitory Ca2+ ion over Mg2+ at MIDAS. We determined the crystal structures of the Fab fragment of mAb 107 complexed to the low- and high-affinity states of CD11bA. Favored binding of Ca2+ at MIDAS is caused by the unusual symmetric bidentate ligation of a Fab-derived ligand Asp to a heptacoordinated MIDAS Ca2+. Binding of Fab 107 to CD11bA did not trigger the activating tertiary changes in the domain or in the full-length integrin. These data show that denticity of the ligand Asp/Glu can modify divalent cation selectivity at MIDAS and hence integrin function. Stabilizing the Ca2+ ion at MIDAS by bidentate ligation to a ligand Asp/Glu may provide one approach for designing pure integrin antagonists. PMID:22095715

  14. PLCε1 regulates SDF-1α–induced lymphocyte adhesion and migration to sites of inflammation

    PubMed Central

    Strazza, Marianne; Azoulay-Alfaguter, Inbar; Peled, Michael; Smrcka, Alan V.; Skolnik, Edward Y.; Srivastava, Shekhar; Mor, Adam

    2017-01-01

    Regulation of integrins is critical for lymphocyte adhesion to endothelium and migration throughout the body. Inside-out signaling to integrins is mediated by the small GTPase Ras-proximate-1 (Rap1). Using an RNA-mediated interference screen, we identified phospholipase Cε 1 (PLCε1) as a crucial regulator of stromal cell-derived factor 1 alpha (SDF-1α)-induced Rap1 activation. We have shown that SDF-1α-induced activation of Rap1 is transient in comparison with the sustained level following cross-linking of the antigen receptor. We identified that PLCε1 was necessary for SDF-1α-induced adhesion using shear stress, cell morphology alterations, and crawling on intercellular adhesion molecule 1 (ICAM-1)–expressing cells. Structure–function experiments to separate the dual-enzymatic function of PLCε1 uncover necessary contributions of the CDC25, Pleckstrin homology, and Ras-associating domains, but not phospholipase activity, to this pathway. In the mouse model of delayed type hypersensitivity, we have shown an essential role for PLCε1 in T-cell migration to inflamed skin, but not for cytokine secretion and proliferation in regional lymph nodes. Our results reveal a signaling pathway where SDF-1α induces T-cell adhesion through activation of PLCε1, suggesting that PLCε1 is a specific potential target in treating conditions involving migration of T cells to inflamed organs. PMID:28213494

  15. INF-gamma rearranges membrane topography of MHC-I and ICAM-1 in colon carcinoma cells.

    PubMed

    Bacsó, Zsolt; Bene, László; Damjanovich, László; Damjanovich, Sándor

    2002-01-18

    Flow-cytometric fluorescence energy transfer (FCET) measurements between fluorescently labeled cell surface MHC-I and ICAM-1 molecules indicated similar receptor patterns in the plasma membrane of interferon-gamma (INF-gamma)-treated colon carcinoma cells as those observed earlier at the surface of lymphoid cells. INF-gamma activation significantly increased the density of MHC-I and ICAM-1 proteins in the membrane. This increase in receptor density was accompanied by decreased proximity level of the homo-associated MHC-I receptors. Hetero-association of MHC-I and ICAM-1 molecules was increased by INF-gamma treatment. INF-gamma changed neither hetero- nor homo-association of transferrin receptors. By staining the sphingomyelin/cholesterol-enriched lipid microdomains with fluorescently labeled cholera toxin B subunit, we found an increase in the amount of lipid-raft associated G(M1)-gangliosides due to INF-gamma treatment. Confocal microscopic results and FCET measurements show that MHC-I and ICAM-1 are components of G(M1)-ganglioside containing lipid-rafts and also support an increase in the size of these lipid-rafts upon INF-gamma treatment.

  16. Biomechanics of ant adhesive pads: frictional forces are rate- and temperature-dependent.

    PubMed

    Federle, Walter; Baumgartner, Werner; Hölldobler, Bert

    2004-01-01

    Tarsal adhesive pads enable insects to hold on to smooth plant surfaces. Using a centrifuge technique, we tested whether a "wet adhesion" model of a thin film of liquid secreted between the pad and the surface can explain adhesive and frictional forces in Asian Weaver ants (Oecophylla smaragdina). When forces are acting parallel to the surface, pads in contact with the surface can slide smoothly. Force per unit pad contact area was strongly dependent on sliding velocity and temperature. Seemingly consistent with the effect of a thin liquid film in the contact zone, (1) frictional force linearly increased with sliding velocity, (2) the increment was greater at lower temperatures and (3) no temperature dependence was detected for low-rate perpendicular detachment forces. However, we observed a strong, temperature-independent static friction that was inconsistent with a fully lubricated contact. Static friction was too large to be explained by the contribution of other (sclerotized) body parts. Moreover, the rate-specific increase of shear stress strongly exceeded predictions derived from estimates of the adhesive liquid film's thickness and viscosity. Both lines of evidence indicate that the adhesive secretion alone is insufficient to explain the observed forces and that direct interaction of the soft pad cuticle with the surface ("rubber friction") is involved.

  17. Low-calorie cranberry juice supplementation reduces plasma oxidized LDL and cell adhesion molecule concentrations in men.

    PubMed

    Ruel, Guillaume; Pomerleau, Sonia; Couture, Patrick; Lemieux, Simone; Lamarche, Benoît; Couillard, Charles

    2008-02-01

    Elevated circulating concentrations of oxidized LDL (OxLDL) and cell adhesion molecules are considered to be relevant markers of oxidative stress and endothelial activation which are implicated in the development of CVD. On the other hand, it has been suggested that dietary flavonoid consumption may be cardioprotective through possible favourable impacts on LDL particle oxidation and endothelial activation. The present study was undertaken to determine the effect of the daily consumption of low-calorie cranberry juice cocktail on plasma OxLDL, intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and E-selectin concentrations in men. Thirty men (mean age 51 (sd 10) years) were recruited and asked to consume increasing daily doses of cranberry juice cocktail (125, 250 and 500 ml/d) over three successive periods of 4 weeks. Plasma OxLDL and adhesion molecule concentrations were measured by ELISA before and after each phase. We noted a significant decrease in plasma OxLDL concentrations following the intervention (P < 0.0001). We also found that plasma ICAM-1 (P < 0.0001) and VCAM-1 (P < 0.05) concentrations decreased significantly during the course of the study. In summary, the present results show that daily cranberry juice cocktail consumption is associated with decreases in plasma OxLDL, ICAM-1 and VCAM-1 concentrations in men.

  18. Mac-1 (CD11b/CD18) is essential for Fc receptor-mediated neutrophil cytotoxicity and immunologic synapse formation.

    PubMed

    van Spriel, A B; Leusen, J H; van Egmond, M; Dijkman, H B; Assmann, K J; Mayadas, T N; van de Winkel, J G

    2001-04-15

    Receptors for human immunoglobulin (Ig)G and IgA initiate potent cytolysis of antibody (Ab)-coated targets by polymorphonuclear leukocytes (PMNs). Mac-1 (complement receptor type 3, CD11b/CD18) has previously been implicated in receptor cooperation with Fc receptors (FcRs). The role of Mac-1 in FcR-mediated lysis of tumor cells was characterized by studying normal human PMNs, Mac-1-deficient mouse PMNs, and mouse PMNs transgenic for human FcR. All PMNs efficiently phagocytosed Ab-coated particles. However, antibody-dependent cellular cytotoxicity (ADCC) was abrogated in Mac-1(-/-) PMNs and in human PMNs blocked with anti-Mac-1 monoclonal Ab (mAb). Mac-1(-/-) PMNs were unable to spread on Ab-opsonized target cells and other Ab-coated surfaces. Confocal laser scanning and electron microscopy revealed a striking difference in immunologic synapse formation between Mac-1(-/-) and wild-type PMNs. Also, respiratory burst activity could be measured outside membrane-enclosed compartments by using Mac-1(-/-) PMNs bound to Ab-coated tumor cells, in contrast to wild-type PMNs. In summary, these data document an absolute requirement of Mac-1 for FcR-mediated PMN cytotoxicity toward tumor targets. Mac-1(-/-) PMNs exhibit defective spreading on Ab-coated targets, impaired formation of immunologic synapses, and absent tumor cytolysis.

  19. Double-stranded RNA promotes CTL-independent tumor cytolysis mediated by CD11b+Ly6G+ intratumor myeloid cells through the TICAM-1 signaling pathway

    PubMed Central

    Shime, Hiroaki; Matsumoto, Misako; Seya, Tsukasa

    2017-01-01

    PolyI:C, a synthetic double-stranded RNA analog, acts as an immune-enhancing adjuvant that regresses tumors in cytotoxic T lymphocyte (CTL)-dependent and CTL-independent manner, the latter of which remains largely unknown. Tumors contain CD11b+Ly6G+ cells, known as granulocytic myeloid-derived suppressor cells (G-MDSCs) or tumor-associated neutrophils (TANs) that play a critical role in tumor progression and development. Here, we demonstrate that CD11b+Ly6G+ cells respond to polyI:C and exhibit tumoricidal activity in an EL4 tumor implant model. PolyI:C-induced inhibition of tumor growth was attributed to caspase-8/3 cascade activation in tumor cells that occurred independently of CD8α+/CD103+ dendritic cells (DCs) and CTLs. CD11b+Ly6G+ cells was essential for the antitumor effect because depletion of CD11b+Ly6G+ cells totally abrogated tumor regression and caspase activation after polyI:C treatment. CD11b+Ly6G+ cells that had been activated with polyI:C showed cytotoxicity and inhibited tumor growth through the production of reactive oxygen species (ROS)/reactive nitrogen species (RNS). These responses were abolished in either Toll/interleukin-1 receptor domain-containing adaptor molecule-1 (TICAM-1)−/− or interferon (IFN)-αβ receptor 1 (IFNAR1)−/− mice. Thus, our results suggest that polyI:C activates the TLR3/TICAM-1 and IFNAR signaling pathways in CD11b+Ly6G+ cells in tumors, thereby eliciting their antitumor activity, independent of those in CD8α+/CD103+ DCs that prime CTLs. PMID:27834952

  20. HPK1 competes with ADAP for SLP-76 binding and via Rap1 negatively affects T-cell adhesion.

    PubMed

    Patzak, Irene M; Königsberger, Sebastian; Suzuki, Akira; Mak, Tak W; Kiefer, Friedemann

    2010-11-01

    The hematopoietic progenitor kinase 1 (HPK1) signals into MAPK and NFκB pathways downstream of immunoreceptors, but enigmatically is a negative regulator of leukocytes. Here, we report a novel role for HPK1 in regulating the activation of the adhesion molecule leukocyte function-associated antigen-1 (LFA-1). Upon TCR stimulation, mediated by binding of adhesion and degranulation promoting adaptor protein (ADAP) to SLP-76, a ternary complex composed of ADAP/55-kDa src kinase associated phosphoprotein (SKAP-55) and RIAM translocates to the membrane and causes membrane recruitment of the active small GTPase Ras-related protein 1 (Rap1). Active Rap1, via its binding to RapL (regulator for cell adhesion and polarization enriched in lymphoid tissues), mediates LFA-1 integrin activation. We show here that HPK1, which also binds SLP-76, compete with ADAP for SLP-76 binding. In addition, HPK1 dampens Rap1 activation, resulting in decreased LFA-1 activity. Analysis of HPK1-deficient T cells revealed increased ADAP recruitment to SLP-76 and elevated Rap1 activation in those cells, leading to increased adhesion to ICAM-1 and cell spreading. Altogether, these results describe a novel function for HPK1 in linking TCR signaling to cell adhesion regulation and provide a mechanistic explanation for the negative regulatory role of HPK1 in T-cell biology.

  1. CD74-Downregulation of Placental Macrophage-Trophoblastic Interactions in Preeclampsia.

    PubMed

    Przybyl, Lukasz; Haase, Nadine; Golic, Michaela; Rugor, Julianna; Solano, Maria Emilia; Arck, Petra Clara; Gauster, Martin; Huppertz, Berthold; Emontzpohl, Christoph; Stoppe, Christian; Bernhagen, Jürgen; Leng, Lin; Bucala, Richard; Schulz, Herbert; Heuser, Arnd; Weedon-Fekjær, M Susanne; Johnsen, Guro M; Peetz, Dirk; Luft, Friedrich C; Staff, Anne Cathrine; Müller, Dominik N; Dechend, Ralf; Herse, Florian

    2016-06-24

    We hypothesized that cluster of differentiation 74 (CD74) downregulation on placental macrophages, leading to altered macrophage-trophoblast interaction, is involved in preeclampsia. Preeclamptic pregnancies feature hypertension, proteinuria, and placental anomalies. Feto-placental macrophages regulate villous trophoblast differentiation during placental development. Disturbance of this well-balanced regulation can lead to pathological pregnancies. We performed whole-genome expression analysis of placental tissue. CD74 was one of the most downregulated genes in placentas from preeclamptic women. By reverse transcriptase-polymerase chain reaction, we confirmed this finding in early-onset (<34 gestational week, n=26) and late-onset (≥34 gestational week, n=24) samples from preeclamptic women, compared with healthy pregnant controls (n=28). CD74 protein levels were analyzed by Western blot and flow cytometry. We identified placental macrophages to express CD74 by immunofluorescence, flow cytometry, and RT-PCR. CD74-positive macrophages were significantly reduced in preeclamptic placentas compared with controls. CD74-silenced macrophages showed that the adhesion molecules ALCAM, ICAM4, and Syndecan-2, as well as macrophage adhesion to trophoblasts were diminished. Naive and activated macrophages lacking CD74 showed a shift toward a proinflammatory signature with an increased secretion of tumor necrosis factor-α, chemokine (C-C motif) ligand 5, and monocyte chemotactic protein-1, when cocultured with trophoblasts compared with control macrophages. Trophoblasts stimulated by these factors express more CYP2J2, sFlt1, TNFα, and IL-8. CD74-knockout mice showed disturbed placental morphology, reduced junctional zone, smaller placentas, and impaired spiral artery remodeling with fetal growth restriction. CD74 downregulation in placental macrophages is present in preeclampsia. CD74 downregulation leads to altered macrophage activation toward a proinflammatory signature and

  2. Structural and compositional dependence of the CdTexSe 1-x alloy layer photoactivity in CdTe-based solar cells

    DOE PAGES

    Poplawsky, Jonathan D.; Guo, Wei; Paudel, Naba; ...

    2016-07-27

    The published external quantum efficiency data of the world-record CdTe solar cell suggests that the device uses bandgap engineering, most likely with a CdTe xSe 1₋x alloy layer to increase the short-circuit current and overall device efficiency. Here atom probe tomography, transmission electron microscopy and electron beam-induced current are used to clarify the dependence of Se content on the photoactive properties of CdTe xSe 1₋x alloy layers in bandgap-graded CdTe solar cells. Four solar cells were prepared with 50, 100, 200 and 400 nm-thick CdSe layers to reveal the formation, growth, composition, structure and photoactivity of the CdTe xSe 1₋xmore » alloy with respect to the degree of Se diffusion. Finally, the results show that the CdTe xSe 1₋x layer photoactivity is highly dependent on the crystalline structure of the alloy (zincblende versus wurtzite), which is also dependent on the Se and Te concentrations.« less

  3. Gastrin-releasing peptide induces monocyte adhesion to vascular endothelium by upregulating endothelial adhesion molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Mi-Kyoung; Park, Hyun-Joo; Department of Dental Pharmacology, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 626-870

    Gastrin-releasing peptide (GRP) is a neuropeptide that plays roles in various pathophysiological conditions including inflammatory diseases in peripheral tissues; however, little is known about whether GRP can directly regulate endothelial inflammatory processes. In this study, we showed that GRP promotes the adhesion of leukocytes to human umbilical vein endothelial cells (HUVECs) and the aortic endothelium. GRP increased the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) by activating nuclear factor-κB (NF-κB) in endothelial cells. In addition, GRP activated extracellular signal-regulated kinase 1/2 (ERK1/2), p38MAPK, and AKT, and the inhibition of these signaling pathways significantly reduced GRP-inducedmore » monocyte adhesion to the endothelium. Overall, our results suggested that GRP may cause endothelial dysfunction, which could be of particular relevance in the development of vascular inflammatory disorders. - Highlights: • GRP induces adhesion of monocytes to vascular endothelium. • GRP increases the expression of endothelial adhesion molecules through the activation of NF-κB. • ERK1/2, p38MAPK, and Akt pathways are involved in the GRP-induced leukocyte adhesiveness to endothelium.« less

  4. Evaluation of Liver Ischemia-Reperfusion Injury in Rabbits Using a Nanoscale Ultrasound Contrast Agent Targeting ICAM-1

    PubMed Central

    Xie, Fang; Li, Zhi-Ping; Wang, Hong-Wei; Fei, Xiang; Jiao, Zi-Yu; Tang, Wen-Bo; Tang, Jie; Luo, Yu-Kun

    2016-01-01

    Objective To assess the feasibility of ultrasound molecular imaging in the early diagnosis of liver ischemia-reperfusion injury (IRI) using a nanoscale contrast agent targeting anti-intracellular adhesion molecule-1 (anti-ICAM-1). Methods The targeted nanobubbles containing anti-ICAM-1 antibody were prepared using the avidin-biotin binding method. Human hepatic sinusoidal endothelial cells (HHSECs) were cultured at the circumstances of hypoxia/reoxygenation (H/R) and low temperature. The rabbit liver IRI model (I/R group) was established using the Pringle’s maneuver. The time-intensity curve of the liver contrast ultrasonographic images was plotted and the peak intensity, time to peak, and time of duration were calculated. Results The size of the targeted nanobubbles were 148.15 ± 39.75 nm and the concentration was 3.6–7.4 × 109/ml, and bound well with the H/R HHSECs. Animal contrast enhanced ultrasound images showed that the peak intensity and time of duration of the targeted nanobubbles were significantly higher than that of common nanobubbles in the I/R group, and the peak intensity and time of duration of the targeted nanobubbles in the I/R group were also significantly higher than that in the SO group. Conclusion The targeted nanobubbles have small particle size, stable characteristic, and good targeting ability, which can assess hepatic ischemia-reperfusion injury specifically, noninvasively, and quantitatively at the molecular level. PMID:27120181

  5. Structural and compositional dependence of the CdTexSe1−x alloy layer photoactivity in CdTe-based solar cells

    PubMed Central

    Poplawsky, Jonathan D.; Guo, Wei; Paudel, Naba; Ng, Amy; More, Karren; Leonard, Donovan; Yan, Yanfa

    2016-01-01

    The published external quantum efficiency data of the world-record CdTe solar cell suggests that the device uses bandgap engineering, most likely with a CdTexSe1−x alloy layer to increase the short-circuit current and overall device efficiency. Here atom probe tomography, transmission electron microscopy and electron beam-induced current are used to clarify the dependence of Se content on the photoactive properties of CdTexSe1−x alloy layers in bandgap-graded CdTe solar cells. Four solar cells were prepared with 50, 100, 200 and 400 nm-thick CdSe layers to reveal the formation, growth, composition, structure and photoactivity of the CdTexSe1−x alloy with respect to the degree of Se diffusion. The results show that the CdTexSe1−x layer photoactivity is highly dependent on the crystalline structure of the alloy (zincblende versus wurtzite), which is also dependent on the Se and Te concentrations. PMID:27460872

  6. Sulforaphane suppresses vascular adhesion molecule-1 expression in TNF-α-stimulated mouse vascular smooth muscle cells: involvement of the MAPK, NF-κB and AP-1 signaling pathways.

    PubMed

    Kim, Ji-Yun; Park, Hye-Jin; Um, Sung Hee; Sohn, Eun-Hwa; Kim, Byung-Oh; Moon, Eun-Yi; Rhee, Dong-Kwon; Pyo, Suhkneung

    2012-01-01

    Atherosclerosis is a long-term inflammatory disease of the arterial wall. Increased expression of the cell adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) is associated with increased proliferation of vascular smooth muscle cells (VSMCs), leading to increased neointima or atherosclerotic lesion formation. Therefore, the functional inhibition of adhesion molecules could be a critical therapeutic target of inflammatory disease. In the present study, we investigate the effect of sulforaphane on the expression of VCAM-1 induced by TNF-α in cultured mouse vascular smooth muscle cell lines. Pretreatment of VSMCs for 2h with sulforaphane (1-5μg/ml) dose-dependently inhibited TNF-α-induced adhesion of THP-1 monocytic cells and protein expression of VCAM-1. Sulforaphane also suppressed TNF-α-induced production of intracellular reactive oxygen species (ROS) and activation of p38, ERK and JNK. Furthermore, sulforaphane inhibited NK-κB and AP-1 activation induced by TNF-α. Sulforaphane inhibited TNF-α-induced ΙκΒ kinase activation, subsequent degradation of ΙκΒα and nuclear translocation of p65 NF-κB and decreased c-Jun and c-Fos protein level. This study suggests that sulforaphane inhibits the adhesive capacity of VSMC and downregulates the TNF-α-mediated induction of VCAM-1 in VSMC by inhibiting the MAPK, NF-κB and AP-1 signaling pathways and intracellular ROS production. Thus, sulforaphane may have beneficial effects to suppress inflammation within the atherosclerotic lesion. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. A fermented bean flour extract downregulates LOX-1, CHOP and ICAM-1 in HMEC-1 stimulated by ox-LDL.

    PubMed

    Gabriele, Morena; Pucci, Laura; La Marca, Margherita; Lucchesi, Daniela; Della Croce, Clara Maria; Longo, Vincenzo; Lubrano, Valter

    2016-01-01

    This study focused on an extract from fermented flour from the Lady Joy variety of the common bean Phaseolus vulgaris . The extract, Lady Joy lysate (Lys LJ), is enriched in antioxidant compounds during the fermentation. We assessed it for its protective effect on endothelial cells treated with oxidized-LDL (ox-LDL). The oxidative stress was determined by measuring the contents of thiobarbituric acid-reactive substances and reactive oxygen metabolites. ICAM-1, ET-1 and IL-6 concentrations were assessed using ELISA. LOX-1 and CHOP expression were analyzed using both quantitative RT-PCR and ELISA or western blotting. Ox-LDL treatment induced significant oxidative stress, which was strongly reduced by pre-treatment with the extract. The ox-LDL exposure significantly enhanced ICAM-1, IL-6 and ET-1 levels over basal levels. Lys LJ pre-treatment exerted an inhibitory effect on ox-LDL-induced endothelial activation with ICAM-1 levels comparable to those for the untreated cells. IL-6 and ET-1 production, although reduced, was still significantly higher than for the control. Both LOX-1 and CHOP expression were upregulated after ox-LDL exposure, but this effect was significantly decreased after Lys LJ pre-treatment. Lys LJ alone did not alter the ICAM-1, IL-6 and ET-1 concentrations or CHOP expression, but it did significantly lower the LOX-1 protein level. Our data suggest that Lys LJ is an effective antioxidant that is able to inhibit the oxidation process, but that it is only marginally active against inflammation and ET-1 production in HMEC-1 exposed to ox-LDL.

  8. Reduced immunohistochemical expression of adhesion molecules in vitiligo skin biopsies.

    PubMed

    Reichert Faria, Adriane; Jung, Juliana Elizabeth; Silva de Castro, Caio César; de Noronha, Lucia

    2017-03-01

    Because defects in adhesion impairment seem to be involved in the etiopathogenesis of vitiligo, this study aimed to compare the immunohistochemical expression of several adhesion molecules in the epidermis of vitiligo and non lesional vitiligo skin. Sixty-six specimens of lesional and non lesional skin from 33 volunteers with vitiligo were evaluated by immunohistochemistry using anti-beta-catenin, anti-E-cadherin, anti-laminin, anti-beta1 integrin, anti-collagen IV, anti-ICAM-1 and anti-VCAM-1 antibodies. Biopsies of vitiligo skin demonstrated a significant reduction in the expression of laminin and integrin. The average value of the immunohistochemically positive reaction area of the vitiligo specimens was 3053.2μm 2 , compared with the observed value of 3431.8μm 2 in non vitiligo skin (p=0.003) for laminin. The immuno-positive area was 7174.6μm 2 (vitiligo) and 8966.7μm 2 (non lesional skin) for integrin (p=0.042). A reduction in ICAM-1 and VCAM-1 expression in the basal layer of the epidermis in vitiligo samples was also observed (p=0.001 and p<0.001, respectively). However, no significant differences were observed with respect to the expression of beta-catenin, E-cadherin, and collagen IV between vitiligo and non lesional skin. Our results suggest that an impairment in adhesion exists in vitiligo skin, which is supported by the diminished immunohistochemical expression of laminin, beta1 integrin, ICAM-1 and VCAM-1. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. Elevated liver stiffness is linked to increased biomarkers of inflammation and immune activation in HIV/hepatitis C virus-coinfected patients.

    PubMed

    Medrano, Luz M; Garcia-Broncano, Pilar; Berenguer, Juan; González-García, Juan; Jiménez-Sousa, Ma Ángeles; Guardiola, Josep M; Crespo, Manuel; Quereda, Carmen; Sanz, José; Canorea, Isabel; Carrero, Ana; Hontañón, Victor; Muñoz-Fernández, Ma Ángeles; Resino, Salvador

    2018-06-01

    Immune dysregulation is a hallmark of HIV and hepatitis C virus (HCV) infections. We aimed to evaluate the relationship between liver stiffness measurement (LSM) and biomarkers of T-cell activation, bacterial translocation, inflammation, endothelial dysfunction, and coagulopathy in HIV/HCV-coinfected patients. Cross-sectional study. We studied 238 HIV/HCV-coinfected patients, 32 healthy controls, and 39 HIV-monoinfected patients. Patients were stratified according to LSM into four groups: less than 12.5, 12.5-25, 25-40, and more than 40 kPa. T-cell subsets were measured using flow cytometry and plasma biomarkers using immunoassays. HIV/HCV-coinfected patients had higher biomarker levels of immune activation in peripheral blood [T-cell activation (CD4CD38 and CD8CD38), bacterial translocation (soluble CD14), inflammation [IL-1b, IL-6, IL-8, IL-18, IFN-γ-inducible protein 10 (IP-10)] endothelial dysfunction [soluble vascular cell adhesion molecule 1 (sVCAM1), soluble intercellular cell adhesion molecule 1 (sICAM1), and soluble tumor necrosis factor receptor 1 (sTNFR1)], and coagulopathy (plasminogen activator inhibitor-1)] than healthy controls and HIV-monoinfected patients. Moreover, in HIV/HCV-coinfected patients, a direct relationship between LSM and immune activation [T-cell activation (CD8CD38 bacterial translocation (lipopolysaccharide), inflammation (IL-8, IP-10), endothelial dysfunction (sVCAM1, sICAM1, and sTNFR1), and coagulopathy (D-dimer)] was found. Subsequently, patients were stratified into different fibrosis stages, finding that patients with cirrhosis who had LSM at least 40 kPa showed higher biomarker values of immune activation [T-cell activation (CD4CD38 and CD8CD38), bacterial translocation (lipopolysaccharide), inflammation (IL-8, IL-6, IP-10), endothelial dysfunction (sVCAM1, sICAM1, and sTNFR1), and coagulopathy (D-dimer)] than patients from the other three groups (<12.5, 12.5-25, and 25-40 kPa). T-cell activation, bacterial

  10. Combined Treatment with Amlodipine and Atorvastatin Calcium Reduces Circulating Levels of Intercellular Adhesion Molecule-1 and Tumor Necrosis Factor-α in Hypertensive Patients with Prediabetes.

    PubMed

    Huang, Zhouqing; Chen, Chen; Li, Sheng; Kong, Fanqi; Shan, Peiren; Huang, Weijian

    2016-01-01

    To assess the effect of amlodipine and atorvastatin on intercellular adhesion molecule (ICAM)-1 and tumor necrosis factor (TNF)-α expression, as endothelial function and inflammation indicators, respectively, in hypertensive patients with and without prediabetes. Forty-five consecutive patients with hypertension, diagnosed according to JNC7, were divided into two groups based on the presence (HD group, n = 23) or absence (H group, n = 22) of prediabetes, diagnosed according to 2010 ADA criteria, including impaired glucose tolerance (IGT) and fasting glucose tests. All patients simultaneously underwent 12-week treatment with daily single-pill amlodipine besylate/atorvastatin calcium combination (5/10 mg; Hisun-Pfizer Pharmaceuticals Co. Ltd). Serum isolated before and after treatment from overnight fasting blood samples was analyzed by ELISA. In the HD and H groups after vs. before 12-week amlodipine/atorvastatin treatment, there were significantly (all P < 0.01) lower levels of ICAM-1 (3.06 ± 0.34 vs. 4.07 ± 0.70 pg/ml; 3.26 ± 0.32 vs. 3.81 ± 0.60 pg/ml, respectively) and TNF-α (78.71 ± 9.19 vs. 110.94 ± 10.71 pg/ml; 80.95 ± 9.33 vs. 101.79 ± 11.72 pg/ml, respectively), with more pronounced reductions in HD vs. H group (ICAM-1Δ: 1.01 ± 0.80 vs. 0.55 ± 0.64 pg/ml, respectively, P = 0.037; TNF-αΔ: 32.23 ± 14.33 vs. 20.84 ± 14.89 pg/ml, respectively, P = 0.011), independent of the blood pressure (BP) and cholesterol level reduction. Amlodipine/atorvastatin improved endothelial function and inflammation, as reflected by lower circulating levels of ICAM-1 and TNF-α, more prominently in hypertensives with than without prediabetes. Starting statin treatment before overt diabetes in hypertensives might thus improve cardiovascular outcomes.

  11. [Serum concentration of soluble adhesive molecules in patients with different forms of coronary artery disease].

    PubMed

    Damnjanović, Goran; Jelić, Marija; Dindić, Boris; Ilić, Stevan

    2009-04-01

    Vascular cell adhesion molecules-1 (VCAM-1) and intercellular cell adhesive molecules-1 (ICAM-1) play an important role in developing and progression of coronary atherosderosis. The aim of the paper was to compare concentrations of soluble forms of VCAM-1 and ICAM-1 in patients with different clinical presentations of coronary artery disease (CAD) and patients without CAD. Blood samples were taken from 25 patients with acute myocardial infarction (AMI), 25 patients with unstable angina pectoris (UAP), 25 with stable angina pectoris (SAP) and from 15 control patients without CAD, and concentrations of solubile adhesive molecules (VCAM-1, ICAM-1) were determined. Obesity was more prominent in the NAP than in the SAP and the control patients (p < 0.05). There were no significant differences in gender distribution, age, duration of the CAD and body mass index between the groups. Hypertension and diabetes mellitus type 2 were more frequent in the CAD patients than in the controls (p < 0.01). Family history of the CAD was more frequent in the AMI and the UAP group than in the controls (p < 0.05). Serum concentrations of VCAM-1 was similar in the patients with AMI (955.9 +/- 117.8 ng/mL), UAP (952.4 +/- 139.1 ng/mL) and SAP (931 +/- 169.8 ng/mL), and significantly higher in these groups compared with the controls (823.4 +/- 97.6; p < 0.05, p < 0.05 and p < 0.1 respectively). Serum concentration of ICAM-1 was similar in the patients with AMI (699.2 +/- 125.6 ng/mL), UAP (727.6 +/- 171.8 ng/mL) and SAP (697.5 +/- 165.6 ng/mL), and significantly higher in these groups compared with the controls (583.4 +/- 86.6; p < 0.1, p < 0.05 and p < 0.1 respectively). Increased concentrations of VCAM-1 and ICAM-1, as markers of inflammation, showed the importance of inflammatory processes in development of atherosclerosis and clinical expresion of CAD. Measurement of soluble ICAM-1 and VCAM-1 concentrations is a usefull indicator of atherosclerosis presence but not severity of CAD

  12. BetaIg-h3 is involved in the HAb18G/CD147-mediated metastasis process in human hepatoma cells.

    PubMed

    Tang, Juan; Zhou, Hong-wei; Jiang, Jian-li; Yang, Xiang-min; Li, Yu; Zhang, Hong-xin; Chen, Zhi-nan; Guo, Wei-ping

    2007-03-01

    HAb18G/CD147, a new hepatoma-associated antigen cloned and screened from human hepatocellular carcinoma cDNA library, is closely correlated with metastasis process in human hepatoma cells. In the present study we aimed to identify the pivotal molecules of the HAb18G/CD147 signal transduction pathway. The investigation showed that betaig-h3, a secretory extracellular matrix (ECM) protein, was upregulated in HAb18G/CD147-expressing human hepatoma T7721 cells and was downregulated by depressing HAb18G/CD147 expression. The expression of betaig-h3, upregulated in human hepatoma cells, was positively relative to the expression of HAb18G/CD147 in different human hepatoma cell lines. By overexpressing betaig-h3 in human SMMC-7721 hepatoma cells, we discovered that betaig-h3 promoted cell adhesion, invasion, and matrix metalloproteinase (MMP) secretion potential. HAb18G/CD147-induced invasion and metastasis potential of human hepatoma cells can be attenuated by antibodies specific for betaig-h3, and no significant differences on inhibitory effects were observed among T7721 cells incubated with antibodies for betaig-h3 or HAb18G/CD147 or both types together. Taken together, our study suggests that betaig-h3, regulated by the expression of HAb18G/CD147, is involved in the HAb18G/CD147 signal transduction pathway and mediates the HAb18G/CD147-induced invasion and metastasis process of human hepatoma cells.

  13. Plasma protein binding of an antisense oligonucleotide targeting human ICAM-1 (ISIS 2302).

    PubMed

    Watanabe, Tanya A; Geary, Richard S; Levin, Arthur A

    2006-01-01

    In vitro ultrafiltration was used to determine the plasma protein-binding characteristics of phosphorothioate oligonucleotides (PS ODNs). Although there are binding data on multiple PS ODNs presented here, the focus of this research is on the protein-binding characteristics of ISIS 2302, a PS ODN targeting human intercellular adhesion molecule-1 (ICAM-1) mRNA, which is currently in clinical trials for the treatment of ulcerative colitis. ISIS 2302 was shown to be highly bound (> 97%) across species (mouse, rat, monkey, human), with the mouse having the least degree of binding. ISIS 2302 was highly bound to albumin and, to a lesser, extent alpha2-macroglobulin and had negligible binding to alpha1-acid glycoprotein. Ten shortened ODN metabolites (8, 10, and 12-19 nucleotides [nt] in length, truncated from the 3' end) were evaluated in human plasma. The degree of binding was reduced as the ODN metabolite length decreased. Three additional 20-nt (20-mer) PS ODNs (ISIS 3521, ISIS 2503, and ISIS 5132) of varying sequence but similar chemistry were evaluated. Although the tested PS ODNs were highly bound to plasma proteins, suggesting a commonality within the chemical class, these results suggested that the protein-binding characteristics in human plasma may be sequence dependent. Lastly, drug displacement studies with ISIS 2302 and other concomitant drugs with known protein-binding properties were conducted to provide information on potential drug interactions. Coadministered ISIS 2302 and other high-binding drugs evaluated in this study did not displace one another at supraclinical plasma concentrations and, thus, are not anticipated to cause any pharmacokinetic interaction in the clinic as a result of the displacement of binding to plasma proteins.

  14. Prognostic implications of adhesion molecule expression in colorectal cancer.

    PubMed

    Seo, Kyung-Jin; Kim, Maru; Kim, Jeana

    2015-01-01

    Research on the expression of adhesion molecules, E-cadherin (ECAD), CD24, CD44 and osteopontin (OPN) in colorectal cancer (CRC) has been limited, even though CRC is one of the leading causes of cancer-related deaths. This study was conducted to evaluate the expression of adhesion molecules in CRC and to determine their relationships with clinicopathologic variables, and the prognostic significance. The expression of ECAD, CD24, CD44 and OPN was examined in 174 stage II and III CRC specimens by immunohistochemistry of TMA. Negative ECAD expression was significantly correlated with advanced nodal stage and poor tumor differentiation. Multivariate analysis showed that both negative expression of ECAD and positive expression of CD24 were independent prognostic factors for disease-free survival (DFS) in CRC patients (P<0.001, relative risk [RR] = 5.596, 95% CI = 2.712-11.549; P = 0.038, RR = 3.768, 95% CI = 1.077-13.185, respectively). However, for overall survival (OS), only ECAD negativity showed statistically significant results in multivariate analysis (P<0.001, RR = 4.819, 95% CI = 2.515-9.234). Positive expression of CD24 was associated with poor OS in univariate analysis but was of no prognostic value in multivariate analysis. In conclusion, our study suggests that among these four adhesion molecules, ECAD and CD24 expression can be considered independent prognostic factors. The role of CD44 and OPN may need further evaluation.

  15. Prognostic implications of adhesion molecule expression in colorectal cancer

    PubMed Central

    Seo, Kyung-Jin; Kim, Maru; Kim, Jeana

    2015-01-01

    Research on the expression of adhesion molecules, E-cadherin (ECAD), CD24, CD44 and osteopontin (OPN) in colorectal cancer (CRC) has been limited, even though CRC is one of the leading causes of cancer-related deaths. This study was conducted to evaluate the expression of adhesion molecules in CRC and to determine their relationships with clinicopathologic variables, and the prognostic significance. The expression of ECAD, CD24, CD44 and OPN was examined in 174 stage II and III CRC specimens by immunohistochemistry of TMA. Negative ECAD expression was significantly correlated with advanced nodal stage and poor tumor differentiation. Multivariate analysis showed that both negative expression of ECAD and positive expression of CD24 were independent prognostic factors for disease-free survival (DFS) in CRC patients (P<0.001, relative risk [RR] = 5.596, 95% CI = 2.712-11.549; P = 0.038, RR = 3.768, 95% CI = 1.077-13.185, respectively). However, for overall survival (OS), only ECAD negativity showed statistically significant results in multivariate analysis (P<0.001, RR = 4.819, 95% CI = 2.515-9.234). Positive expression of CD24 was associated with poor OS in univariate analysis but was of no prognostic value in multivariate analysis. In conclusion, our study suggests that among these four adhesion molecules, ECAD and CD24 expression can be considered independent prognostic factors. The role of CD44 and OPN may need further evaluation. PMID:26097606

  16. Modulation of lens cell adhesion molecules by particle beams

    NASA Technical Reports Server (NTRS)

    McNamara, M. P.; Bjornstad, K. A.; Chang, P. Y.; Chou, W.; Lockett, S. J.; Blakely, E. A.

    2001-01-01

    Cell adhesion molecules (CAMs) are proteins which anchor cells to each other and to the extracellular matrix (ECM), but whose functions also include signal transduction, differentiation, and apoptosis. We are testing a hypothesis that particle radiations modulate CAM expression and this contributes to radiation-induced lens opacification. We observed dose-dependent changes in the expression of beta 1-integrin and ICAM-1 in exponentially-growing and confluent cells of a differentiating human lens epithelial cell model after exposure to particle beams. Human lens epithelial (HLE) cells, less than 10 passages after their initial culture from fetal tissue, were grown on bovine corneal endothelial cell-derived ECM in medium containing 15% fetal bovine serum and supplemented with 5 ng/ml basic fibroblast growth factor (FGF-2). Multiple cell populations at three different stages of differentiation were prepared for experiment: cells in exponential growth, and cells at 5 and 10 days post-confluence. The differentiation status of cells was characterized morphologically by digital image analysis, and biochemically by Western blotting using lens epithelial and fiber cell-specific markers. Cultures were irradiated with single doses (4, 8 or 12 Gy) of 55 MeV protons and, along with unirradiated control samples, were fixed using -20 degrees C methanol at 6 hours after exposure. Replicate experiments and similar experiments with helium ions are in progress. The intracellular localization of beta 1-integrin and ICAM-1 was detected by immunofluorescence using monoclonal antibodies specific for each CAM. Cells known to express each CAM were also processed as positive controls. Both exponentially-growing and confluent, differentiating cells demonstrated a dramatic proton-dose-dependent modulation (upregulation for exponential cells, downregulation for confluent cells) and a change in the intracellular distribution of the beta 1-integrin, compared to unirradiated controls. In contrast

  17. Effects of thalidomide on the expression of adhesion molecules in rat liver cirrhosis.

    PubMed

    Lv, Peng; Paul, Shelley Chireyath; Xiao, Yanjv; Liu, Shiquan; Luo, Hesheng

    2006-01-01

    This study was to evaluate the effects of thalidomide on expression of adhesion molecules in liver cirrhosis. The cirrhosis was induced in Wistar rats by intraperitoneal injection of CCl(4), and thalidomide (10 mg/kg/day or 100 mg/kg/day) was given by intragastric administration for 8 weeks. Liver histopathology and immunohistochemistry were significantly improved and the expressions of ICAM-1, VCAM-1, E-selectin, and TNF-alpha mRNA and protein were decreased significantly in rats treated with a high dose of thalidomide. Close positive correlation was observed in the expression of the TNF-alpha mRNA and that of ICAM-1, VCAM-1, and E-selectin mRNA, respectively. These results indicate that thalidomide exerts its effect on the downregulation of adhesion molecules via TNF-alpha signaling pathway to inhibit liver fibrosis.

  18. Blocking the Adhesion Cascade at the Premetastatic Niche for Prevention of Breast Cancer Metastasis

    PubMed Central

    Kang, Shin-Ae; Hasan, Nafis; Mann, Aman P; Zheng, Wei; Zhao, Lichao; Morris, Lynsie; Zhu, Weizhu; Zhao, Yan D; Suh, K Stephen; Dooley, William C; Volk, David; Gorenstein, David G; Cristofanilli, Massimo; Rui, Hallgeir; Tanaka, Takemi

    2015-01-01

    Shear-resistant adhesion and extravasation of disseminated cancer cells at the target organ is a crucial step in hematogenous metastasis. We found that the vascular adhesion molecule E-selectin preferentially promoted the shear-resistant adhesion and transendothelial migration of the estrogen receptor (ER)–/CD44+ hormone-independent breast cancer cells, but not of the ER+/CD44-/low hormone-dependent breast cancer cells. Coincidentally, CD44+ breast cancer cells were abundant in metastatic lung and brain lesions in ER– breast cancer, suggesting that E-selectin supports hematogenous metastasis of ER–/CD44+ breast cancer. In an attempt to prevent hematogenous metastasis through the inhibition of a shear-resistant adhesion of CD44+ cancer cells to E-selectin-expressing blood vessels on the premetastatic niche, an E-selectin targeted aptamer (ESTA) was developed. We demonstrated that a single intravenous injection of ESTA reduced metastases to a baseline level in both syngeneic and xenogeneic forced breast cancer metastasis models without relocating the site of metastasis. The effect of ESTA was absent in E-selectin knockout mice, suggesting that E-selectin is a molecular target of ESTA. Our data highlight the potential application of an E-selectin antagonist for the prevention of hematogenous metastasis of ER–/CD44+ breast cancer. PMID:25815697

  19. Blocking the adhesion cascade at the premetastatic niche for prevention of breast cancer metastasis.

    PubMed

    Kang, Shin-Ae; Hasan, Nafis; Mann, Aman P; Zheng, Wei; Zhao, Lichao; Morris, Lynsie; Zhu, Weizhu; Zhao, Yan D; Suh, K Stephen; Dooley, William C; Volk, David; Gorenstein, David G; Cristofanilli, Massimo; Rui, Hallgeir; Tanaka, Takemi

    2015-06-01

    Shear-resistant adhesion and extravasation of disseminated cancer cells at the target organ is a crucial step in hematogenous metastasis. We found that the vascular adhesion molecule E-selectin preferentially promoted the shear-resistant adhesion and transendothelial migration of the estrogen receptor (ER)(-)/CD44(+) hormone-independent breast cancer cells, but not of the ER(+)/CD44(-/low) hormone-dependent breast cancer cells. Coincidentally, CD44(+) breast cancer cells were abundant in metastatic lung and brain lesions in ER(-) breast cancer, suggesting that E-selectin supports hematogenous metastasis of ER(-)/CD44(+) breast cancer. In an attempt to prevent hematogenous metastasis through the inhibition of a shear-resistant adhesion of CD44(+) cancer cells to E-selectin-expressing blood vessels on the premetastatic niche, an E-selectin targeted aptamer (ESTA) was developed. We demonstrated that a single intravenous injection of ESTA reduced metastases to a baseline level in both syngeneic and xenogeneic forced breast cancer metastasis models without relocating the site of metastasis. The effect of ESTA was absent in E-selectin knockout mice, suggesting that E-selectin is a molecular target of ESTA. Our data highlight the potential application of an E-selectin antagonist for the prevention of hematogenous metastasis of ER(-)/CD44(+) breast cancer.

  20. Effects of anisodamine on the expressions of vascular endothelial growth factor and intercellular adhesion molecule 1 in experimental infusion phlebitis.

    PubMed

    Zhang, Zhen-Xiang; Wang, Peng; Zhang, Qiu-Shi; Pan, Xue; Zhao, Qing-Xia; Wang, Xiao-Kai

    2012-01-01

    Infusion phlebitis is the most common side effect of clinical intravenous drug therapy and several clinical studies have demonstrated that anisodamine can effectively prevent the occurrence of infusion phlebitis. This study was designed to investigate effects of anisodamine on the expressions of vascular endothelial growth factor (VEGF) and intercellular adhesion molecule 1 (ICAM-1) in a rabbit model of infusion phlebitis and to analyze the mechanisms of anisodamine effect on the prevention and treatment of experimental infusion phlebitis. Twenty-four specific pathogen-free male Japanese white rabbits were randomly assigned to the control group, the model group, the magnesium sulfate group and the anisodamine group. The rabbit model of infusion phlebitis, induced by intravenous administration, was established and expressions of VEGF and ICAM-1 were determined and contrasted with the control group treated with normal saline. We evaluated expression by histopathology, immunohistochemistry, reverse transcription-polymerase chain reaction, and Western blotting assay. Pathohistological changes of the model group were observed, such as loss of venous endothelial cells, inflammatory cell infiltration, edema and thrombus. The magnesium sulfate group and the anisodamine group showed significant protective effects on vascular congestion, inflammatory cell infiltration, proliferation, swelling of endothelium and perivascular hemorrhage. The model group showed the highest expressions of VEGF and ICAM-1 of the four groups (P < 0.01). On the contrary, anisodamine alleviated the inflammatory damage by significantly reducing the expressions of VEGF and ICAM-1 compared with the model group (P < 0.01). There was no significant difference in the expressions of VEGF and ICAM-1 between the magnesium sulfate group and the anisodamine group (P > 0.05). Anisodamine alleviates inflammatory damage by significantly reducing the expressions of VEGF and ICAM-1, and shows significant protective

  1. Size-Independent Exciton Localization Efficiency in Colloidal CdSe/CdS Core/Crown Nanosheet Type-I Heterostructures.

    PubMed

    Li, Qiuyang; Wu, Kaifeng; Chen, Jinquan; Chen, Zheyuan; McBride, James R; Lian, Tianquan

    2016-03-22

    CdSe/CdS core/crown nanoplatelet type I heterostructures are a class of two-dimensional materials with atomically precise thickness and many potential optoelectronic applications. It remains unclear how the precise thickness and lack of energy disorder affect the properties of exciton transport in these materials. By steady-state photoluminescence excitation spectroscopy and ultrafast transient absorption spectroscopy, we show that in five CdSe/CdS core/crown structures with the same core and increasing crown size (with thickness of ∼1.8 nm, width of ∼11 nm, and length from 20 to 40 nm), the crown-to-core exciton localization efficiency is independent of crown size and increases with photon energy above the band edge (from 70% at 400 nm to ∼100% at 370 nm), while the localization time increases with the crown size. These observations can be understood by a model that accounts for the competition of in-plane exciton diffusion and selective hole trapping at the core/crown interface. Our findings suggest that the exciton localization efficiency can be further improved by reducing interfacial defects.

  2. TNF-α enhancement of CD62E mediates adhesion of non–small cell lung cancer cells to brain endothelium via CD15 in lung-brain metastasis

    PubMed Central

    Jassam, Samah A.; Maherally, Zaynah; Smith, James R.; Ashkan, Keyoumars; Roncaroli, Federico; Fillmore, Helen L.; Pilkington, Geoffrey J.

    2016-01-01

    Background CD15, which is overexpressed on various cancers, has been reported as a cell adhesion molecule that plays a key role in non-CNS metastasis. However, the role of CD15 in brain metastasis is largely unexplored. This study provides a better understanding of CD15/CD62E interaction, enhanced by tumor necrosis factor-α (TNF-α), and its correlation with brain metastasis in non–small cell lung cancer (NSCLC). Methods CD15 and E-selectin (CD62E) expression was demonstrated in both human primary and metastatic NSCLC cells using flow cytometry, immunofluorescence, and Western blotting. The role of CD15 was investigated using an adhesion assay under static and physiological flow live-cell conditions. Human tissue sections were examined using immunohistochemistry. Results CD15, which was weakly expressed on hCMEC/D3 human brain endothelial cells, was expressed at high levels on metastatic NSCLC cells (NCI-H1299, SEBTA-001, and SEBTA-005) and at lower levels on primary NSCLC (COR-L105 and A549) cells (P < .001). The highest expression of CD62E was observed on hCMEC/D3 cells activated with TNF-α, with lower levels on metastatic NSCLC cells followed by primary NSCLC cells. Metastatic NSCLC cells adhered most strongly to hCMEC/D3 compared with primary NSCLC cells. CD15 immunoblocking decreased cancer cell adhesion to brain endothelium under static and shear stress conditions (P < .0001), confirming a correlation between CD15 and cerebral metastasis. Both CD15 and CD62E expression were detected in lung metastatic brain biopsies. Conclusion This study enhances the understanding of cancer cell-brain endothelial adhesion and confirms that CD15 plays a crucial role in adhesion in concert with TNF-α activation of its binding partner, CD62E. PMID:26472821

  3. Apolipoprotein A-I inhibits chemotaxis, adhesion, activation of THP-1 cells and improves the plasma HDL inflammatory index.

    PubMed

    Wang, Li; Chen, Wei-Zhong; Wu, Man-Ping

    2010-02-01

    The anti-inflammatory effects of high density lipoprotein (HDL) are well described, however, such effects of Apolipoprotein A-I (ApoA-I) are less studied. Building on our previous study, we further explored the mechanism of anti-inflammatory effects of ApoA-I, and focused especially on the interaction between monocyte and endothelial cells and plasma HDL inflammatory index in LPS-challenged rabbits. Our results show that ApoA-I significantly decreased LPS-induced MCP-1 release from THP-1 cells and ox-LDL-induced THP-1 migration ratio (P<0.01, respectively). ApoA-I significantly decreased sL-selectin, sICAM-1 and sVCAM-1 release (P<0.01, P<0.01, P<0.05, respectively) from LPS-stimulated THP-1 cells. Furthermore, ApoA-I significantly inhibited LPS-induced CD11b and VCAM-1 expression on THP-1 cells (P<0.01, P<0.05, respectively). ApoA-I diminished LPS-induced mCD14 expression (P<0.01) and NFkappaB nuclear translocation in THP-1 cells. After single dose treatment of ApoA-I, the value of plasma HDL inflammatory index in LPS-challenged rabbits was improved significantly (P<0.05). These results suggest that ApoA-I can inhibit chemotaxis, adhesion and activation of human monocytes and improve plasma HDL inflammatory index with presenting beneficial anti-inflammatory effects. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Shear Stress Regulates Adhesion and Rolling of CD44+ Leukemic and Hematopoietic Progenitor Cells on Hyaluronan

    PubMed Central

    Christophis, Christof; Taubert, Isabel; Meseck, Georg R.; Schubert, Mario; Grunze, Michael; Ho, Anthony D.; Rosenhahn, Axel

    2011-01-01

    Leukemic cells and human hematopoietic progenitor cells expressing CD44 receptors have the ability to attach and roll on hyaluronan. We investigated quantitatively the adhesion behavior of leukemic cell lines and hematopoietic progenitor cells on thin films of the polysaccharides hyaluronan and alginate in a microfluidic system. An applied flow enhances the interaction between CD44-positive cells and hyaluronan if a threshold shear stress of 0.2 dyn/cm2 is exceeded. At shear stress ∼1 dyn/cm2, the cell rolling speed reaches a maximum of 15 μm/s. Leukemic Jurkat and Kasumi-1 cells lacking CD44-expression showed no adhesion or rolling on the polysaccharides whereas the CD44-expressing leukemic cells KG-1a, HL-60, K-562, and hematopoietic progenitor cells attached and rolled on hyaluronan. Interestingly, the observations of flow-induced cell rolling are related to those found in the recruitment of leukocytes to inflammatory sites and the mechanisms of stem-cell homing into the bone marrow. PMID:21806926

  5. ICAM-1 targeted catalase encapsulated PLGA-b-PEG nanoparticles against vascular oxidative stress.

    PubMed

    Sari, Ece; Tunc-Sarisozen, Yeliz; Mutlu, Hulya; Shahbazi, Reza; Ucar, Gulberk; Ulubayram, Kezban

    2015-01-01

    Targeted delivery of therapeutics is the favourable idea, whereas it is possible to distribute the therapeutically active drug molecule only to the site of action. For this purpose, in this study, catalase encapsulated poly(D,L-lactide-co-glycolide)-block-poly(ethylene glycol) (PLGA-b-PEG) nanoparticles were developed and an endothelial target molecule (anti-ICAM-1) was conjugated to this carrier system in order to decrease the oxidative stress level in the target site. According to the enzymatic activity results, initial catalase activity of nanoparticles was increased from 27.39 U/mg to up to 45.66 U/mg by adding 5 mg/mL bovine serum albumin (BSA). After 4 h, initial catalase activity was preserved up to 46.98% while free catalase retained less than 4% of its activity in proteolytic environment. Furthermore, FITC labelled anti-ICAM-1 targeted catalase encapsulated nanoparticles (anti-ICAM-1/CatNPs) were rapidly taken up by cultured endothelial cells and concomitantly endothelial cells were resistant to H2O2 induced oxidative impairment.

  6. Epidermal Cadm1 expression promotes autoimmune alopecia via enhanced T cell adhesion and cytotoxicity.

    PubMed

    Giangreco, Adam; Hoste, Esther; Takai, Yoshimi; Rosewell, Ian; Watt, Fiona M

    2012-02-01

    Autoimmune alopecia is characterized by an extensive epidermal T cell infiltrate that mediates hair follicle destruction. We have investigated the role of cell adhesion molecule 1 (Cadm1; Necl2) in this disease. Cadm1 is expressed by epidermal cells and mediates heterotypic adhesion to lymphocytes expressing class 1-restricted T cell-associated molecule (CRTAM). Using a murine autoimmune alopecia model, we observed an increase in early-activated cytotoxic (CD8-restricted, CRTAM-expressing) T cells, which preferentially associated with hair follicle keratinocytes expressing Cadm1. Coculture with Cadm1-transduced MHC-matched APCs stimulated alopecic lymph node cells to release IL-2 and IFN-γ. Overexpression of Cadm1 in cultured human keratinocytes did not promote cytokine secretion, but led to increased adhesion of alopecic cytotoxic T cells and enhanced T cell cytotoxicity in an MHC-independent manner. Epidermal overexpression of Cadm1 in transgenic mice led to increased autoimmune alopecia susceptibility relative to nontransgenic littermate controls. Our findings reveal that Cadm1 expression in the hair follicle plays a role in autoimmune alopecia.

  7. Sulforaphane inhibits TNF-α-induced adhesion molecule expression through the Rho A/ROCK/NF-κB signaling pathway.

    PubMed

    Hung, Chi-Nan; Huang, Hui-Pei; Wang, Chau-Jong; Liu, Kai-Li; Lii, Chong-Kuei

    2014-10-01

    Endothelial dysfunction is an early indicator of cardiovascular diseases. Increased stimulation of tumor necrosis factor-α (TNF-α) triggers the inflammatory mediator secretion of endothelial cells, leading to atherosclerotic risk. In this study, we investigated whether sulforaphane (SFN) affected the expression of intracellular adhesion molecule-1 (ICAM-1) in TNF-α-induced ECV 304 endothelial cells. Our data showed that SFN attenuated TNF-α-induced expression of ICAM-1 in ECV 304 cells. Pretreatment of ECV 304 cells with SFN inhibited dose-dependently the secretion of proinflammatory cytokines, such as interleukin (IL)-1β, IL-6, and IL-8. SFN inhibited TNF-α-induced nuclear factor-κB (NF-κB) DNA binding activity. Furthermore, SFN decreased TNF-α-mediated phosphorylation of IκB kinase (IKK) and IκBα, Rho A, ROCK, ERK1/2, and plasminogen activator inhibitor-1 (PAI-1) levels. Collectively, SFN inhibited the NF-κB DNA binding activity and downregulated the TNF-α-mediated induction of ICAM-1 in endothelial cells by inhibiting the Rho A/ROCK/NF-κB signaling pathway, suggesting the beneficial effects of SFN on suppression of inflammation within the atherosclerotic lesion.

  8. Antioxidant betalains from cactus pear (Opuntia ficus-indica) inhibit endothelial ICAM-1 expression.

    PubMed

    Gentile, C; Tesoriere, L; Allegra, M; Livrea, M A; D'Alessio, P

    2004-12-01

    It has been suggested that some pigments would have antioxidant properties and that their presence in dietary constituents would contribute to reduce the risk of oxidative stress-correlated diseases. Among others, inflammatory response depends on redox status and may implicate oxidative stress. Vascular endothelial cells are a direct target of oxidative stress in inflammation. We have tested the impact of the free radical scavenger and antioxidant properties of betalains from the prickle pear in an in vitro model of endothelial cells. Here we show the capacity of betalains to protect endothelium from cytokine-induced redox state alteration, through ICAM-1 inhibition.

  9. CD22 Promotes B-1b Cell Responses to T Cell-Independent Type 2 Antigens.

    PubMed

    Haas, Karen M; Johnson, Kristen L; Phipps, James P; Do, Cardinal

    2018-03-01

    CD22 (Siglec-2) is a critical regulator of B cell activation and survival. CD22 -/- mice generate significantly impaired Ab responses to T cell-independent type 2 (TI-2) Ags, including haptenated Ficoll and pneumococcal polysaccharides, Ags that elicit poor T cell help and activate BCR signaling via multivalent epitope crosslinking. This has been proposed to be due to impaired marginal zone (MZ) B cell development/maintenance in CD22 -/- mice. However, mice expressing a mutant form of CD22 unable to bind sialic acid ligands generated normal TI-2 Ab responses, despite significantly reduced MZ B cells. Moreover, mice treated with CD22 ligand-binding blocking mAbs, which deplete MZ B cells, had little effect on TI-2 Ab responses. We therefore investigated the effects of CD22 deficiency on B-1b cells, an innate-like B cell population that plays a key role in TI-2 Ab responses. B-1b cells from CD22 -/- mice had impaired BCR-induced proliferation and significantly increased intracellular Ca 2+ concentration responses following BCR crosslinking. Ag-specific B-1b cell expansion and plasmablast differentiation following TI-2 Ag immunization was significantly impaired in CD22 -/- mice, consistent with reduced TI-2 Ab responses. We generated CD22 -/- mice with reduced CD19 levels (CD22 -/- CD19 +/- ) to test the hypothesis that augmented B-1b cell BCR signaling in CD22 -/- mice contributes to impaired TI-2 Ab responses. BCR-induced proliferation and intracellular Ca 2+ concentration responses were normalized in CD22 -/- CD19 +/- B-1b cells. Consistent with this, TI-2 Ag-specific B-1b cell expansion, plasmablast differentiation, survival, and Ab responses were rescued in CD22 -/- CD19 +/- mice. Thus, CD22 plays a critical role in regulating TI-2 Ab responses through regulating B-1b cell signaling thresholds. Copyright © 2018 by The American Association of Immunologists, Inc.

  10. Effects of Thalidomide on the Expression of Adhesion Molecules in Rat Liver Cirrhosis

    PubMed Central

    Lv, Peng; Paul, Shelley Chireyath; Xiao, Yanjv; Liu, Shiquan; Luo, Hesheng

    2006-01-01

    This study was to evaluate the effects of thalidomide on expression of adhesion molecules in liver cirrhosis. The cirrhosis was induced in Wistar rats by intraperitoneal injection of CCl4, and thalidomide (10 mg/kg/day or 100 mg/kg/day) was given by intragastric administration for 8 weeks. Liver histopathology and immunohistochemistry were significantly improved and the expressions of ICAM-1, VCAM-1, E-selectin, and TNF-α mRNA and protein were decreased significantly in rats treated with a high dose of thalidomide. Close positive correlation was observed in the expression of the TNF-α mRNA and that of ICAM-1, VCAM-1, and E-selectin mRNA, respectively. These results indicate that thalidomide exerts its effect on the downregulation of adhesion molecules via TNF-α signaling pathway to inhibit liver fibrosis. PMID:17047296

  11. Allergen-stimulated T lymphocytes from allergic patients induce vascular cell adhesion molecule-1 (VCAM-1) expression and IL-6 production by endothelial cells.

    PubMed Central

    Delneste, Y; Jeannin, P; Gosset, P; Lassalle, P; Cardot, E; Tillie-Leblond, I; Joseph, M; Pestel, J; Tonnel, A B

    1995-01-01

    Adhesion of inflammatory cells to endothelium is a critical step for their transvascular migration to inflammatory sites. To evaluate the relationship between T lymphocytes (TL) and vascular endothelium, supernatants from allergen-stimulated TL obtained from patients sensitive to Dermatophagoides pteronyssinus (Dpt) versus healthy subjects were added to endothelial cell (EC) cultures. TL were stimulated by autologous-activated antigen-presenting cells (APC) previously fixed in paraformaldehyde to prevent monokine secretion. Two parameters were measured: the expression of adhesion molecule and the production of IL-6. Related allergen-stimulated TL supernatants from allergic patients induced an increase of VCAM-1 and intercellular adhesion molecule-1 (ICAM-1) expression when supernatants of the control groups (TL exposed to an unrelated allergen or not stimulated or TL obtained from healthy subjects) did not. E-selectin expression was not modulated whatever the supernatant added to EC culture. IL-6 production by EC was significantly enhanced after activation with related allergen-stimulated TL supernatants from allergics compared with control supernatants. Induction of VCAM-1 expression was inhibited by adding neutralizing antibodies against IL-4, whereas IL-6 production and ICAM-1 expression were inhibited by anti-interferon-gamma (IFN-gamma) antibodies. Enhanced production of IL-4 and IFN-gamma was detected in related allergen-stimulated TL supernatants from allergic subjects compared with the different supernatants. These data suggest that allergen-specific TL present in the peripheral blood of allergic patients are of Th1 and Th2 subtypes. Their stimulation in allergic patients may lead to the activation of endothelial cells and thereby participate in leucocyte recruitment towards the inflammatory site. PMID:7542574

  12. Glycosylation-dependent binding of galectin-8 to activated leukocyte cell adhesion molecule (ALCAM/CD166) promotes its surface segregation on breast cancer cells.

    PubMed

    Fernández, Marisa M; Ferragut, Fátima; Cárdenas Delgado, Víctor M; Bracalente, Candelaria; Bravo, Alicia I; Cagnoni, Alejandro J; Nuñez, Myriam; Morosi, Luciano G; Quinta, Héctor R; Espelt, María V; Troncoso, María F; Wolfenstein-Todel, Carlota; Mariño, Karina V; Malchiodi, Emilio L; Rabinovich, Gabriel A; Elola, María T

    2016-10-01

    We previously demonstrated that the activated leukocyte cell adhesion molecule (ALCAM/CD166) can interact with galectin-8 (Gal-8) in endothelial cells. ALCAM is a member of the immunoglobulin superfamily that promotes homophilic and heterophilic cell-cell interactions. Gal-8 is a "tandem-repeat"-type galectin, known as a matricellular protein involved in cell adhesion. Here, we analyzed the physical interaction between both molecules in breast cancer cells and the functional relevance of this phenomenon. We performed binding assays by surface plasmon resonance to study the interaction between Gal-8 and the recombinant glycosylated ALCAM ectodomain or endogenous ALCAM from MDA-MB-231 breast cancer cells. We also analyzed the binding of ALCAM-silenced or control breast cancer cells to immobilized Gal-8 by SPR. In internalization assays, we evaluated the influence of Gal-8 on ALCAM surface localization. We showed that recombinant glycosylated ALCAM and endogenous ALCAM from breast carcinoma cells physically interacted with Gal-8 in a glycosylation-dependent fashion displaying a differential behavior compared to non-glycosylated ALCAM. Moreover, ALCAM-silenced breast cancer cells exhibited reduced binding to Gal-8 relative to control cells. Importantly, exogenously added Gal-8 provoked ALCAM segregation, probably trapping this adhesion molecule at the surface of breast cancer cells. Our data indicate that Gal-8 interacts with ALCAM at the surface of breast cancer cells through glycosylation-dependent mechanisms. A novel heterophilic interaction between ALCAM and Gal-8 is demonstrated here, suggesting its physiologic relevance in the biology of breast cancer cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Nlrp3-dependent IL-1β inhibits CD103+ dendritic cell differentiation in the gut.

    PubMed

    Mak'Anyengo, Rachel; Duewell, Peter; Reichl, Cornelia; Hörth, Christine; Lehr, Hans-Anton; Fischer, Sandra; Clavel, Thomas; Denk, Gerald; Hohenester, Simon; Kobold, Sebastian; Endres, Stefan; Schnurr, Max; Bauer, Christian

    2018-03-08

    Inflammatory bowel disease (IBD) is associated with enhanced levels of the IL-1 family cytokines IL-1β and IL-18, which are activated by the Nlrp3 inflammasome. Here, we investigated the role of inflammasome-driven cytokine release on T cell polarization and DC differentiation in steady state and T cell transfer colitis. In vitro and in vivo data showed that IL-1β induces Th17 polarization and increases GM‑CSF production by T cells. Reduced IL-1β levels in Nlrp3-/- mice correlated with enhanced FLT3L levels and increased frequency of tolerogenic CD103+ DC. In the T cell transfer colitis model, Nlrp3 deficiency resulted in lower IL‑1β levels, reduced Th17 immunity, and less severe colitis. Unaltered IL-18 levels in both mouse strains pointed toward Nlrp3-independent processing. Importantly, cohousing revealed that the gut microbiome had no impact on the observed Nlrp3-/- phenotype. This study demonstrates that NLRP3 acts as a molecular switch of intestinal homeostasis by shifting local immune cells toward an inflammatory phenotype via IL-1β.

  14. Crohn's disease-associated adherent-invasive Escherichia coli adhesion is enhanced by exposure to the ubiquitous dietary polysaccharide maltodextrin.

    PubMed

    Nickerson, Kourtney P; McDonald, Christine

    2012-01-01

    Crohn's disease (CD) is associated with intestinal dysbiosis evidenced by an altered microbiome forming thick biofilms on the epithelium. Additionally, adherent-invasive E. coli (AIEC) strains are frequently isolated from ileal lesions of CD patients indicating a potential role for these strains in disease pathogenesis. The composition and characteristics of the host microbiome are influenced by environmental factors, particularly diet. Polysaccharides added to food as emulsifiers, stabilizers or bulking agents have been linked to bacteria-associated intestinal disorders. The escalating consumption of polysaccharides in Western diets parallels an increased incidence of CD during the latter 20(th) century. In this study, the effect of a polysaccharide panel on adhesiveness of the CD-associated AIEC strain LF82 was analyzed to determine if these food additives promote disease-associated bacterial phenotypes. Maltodextrin (MDX), a polysaccharide derived from starch hydrolysis, markedly enhanced LF82 specific biofilm formation. Biofilm formation of multiple other E. coli strains was also promoted by MDX. MDX-induced E. coli biofilm formation was independent of polysaccharide chain length indicating a requirement for MDX metabolism. MDX exposure induced type I pili expression, which was required for MDX-enhanced biofilm formation. MDX also increased bacterial adhesion to human intestinal epithelial cell monolayers in a mechanism dependent on type 1 pili and independent of the cellular receptor CEACAM6, suggesting a novel mechanism of epithelial cell adhesion. Analysis of mucosa-associated bacteria from individuals with and without CD showed increased prevalence of malX, a gene essential for MDX metabolism, uniquely in the ileum of CD patients. These findings demonstrate that the ubiquitous dietary component MDX enhances E. coli adhesion and suggests a mechanism by which Western diets rich in specific polysaccharides may promote dysbiosis of gut microbes and contribute

  15. Piperidine carboxylic acid derivatives of 10H-pyrazino[2,3-b][1,4]benzothiazine as orally-active adhesion molecule inhibitors.

    PubMed

    Kaneko, Toshihiko; Clark, Richard S J; Ohi, Norihito; Ozaki, Fumihiro; Kawahara, Tetsuya; Kamada, Atsushi; Okano, Kazuo; Yokohama, Hiromitsu; Ohkuro, Masayoshi; Muramoto, Kenzo; Takenaka, Osamu; Kobayashi, Seiichi

    2004-06-01

    Novel piperidine carboxylic acid derivatives of 10H-pyrazino[2,3-b][1,4]benzothiazine were prepared and evaluated for their inhibitory activity on the upregulation of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1). Replacement of the methanesulfonyl group on the piperidine ring of previously prepared derivatives with a carboxylic acid-containing moiety resulted in a number of potent adhesion molecule inhibitors. Of these, (anti) [3-(10H-pyrazino[2,3-b][1,4]benzothiazin-8-yl)methyl-3-azabicyclo[3.3.1]non-9-yl]acetic acid 2q (ER-49890), showed the most potent oral inhibitory activities against neutrophil migration in an interleukin-1 (IL-1) induced paw inflammation model using mice, and leukocyte accumulation in a carrageenan pleurisy model in the rat, and therapeutic effect on collagen-induced arthritis in rats.

  16. Ultrasound-microbubble-mediated intercellular adhesion molecule-1 small interfering ribonucleic acid transfection attenuates neointimal formation after arterial injury in mice.

    PubMed

    Suzuki, Jun-ichi; Ogawa, Masahito; Takayama, Kiyoshi; Taniyama, Yoshiaki; Morishita, Ryuichi; Hirata, Yasunobu; Nagai, Ryozo; Isobe, Mitsuaki

    2010-03-02

    The purpose of this study was to investigate the efficiency of small interfering ribonucleic acid (siRNA) in murine arteries. We transfected it using a nonviral ultrasound-microbubble-mediated in vivo gene delivery system. siRNA is an effective methodology to suppress gene function. The siRNA can be synthesized easily; however, a major obstacle in the use of siRNA as therapeutics is the difficulty involved in effective in vivo delivery. To investigate the efficiency of nonviral ultrasound-microbubble-mediated in vivo siRNA delivery, we used a fluorescein-labeled siRNA, green fluorescent protein (GFP) siRNA, and intercellular adhesion molecule (ICAM)-1 siRNA in murine arteries. Murine femoral arteries were injured using flexible wires to establish arterial injury. The fluorescein-labeled siRNA and GFP siRNA showed that this nonviral approach could deliver siRNA into target arteries effectively without any tissue damage and systemic adverse effects. ICAM-1 siRNA transfection into murine injured arteries significantly suppressed the development of neointimal formation in comparison to those in the control group. Immunohistochemistry revealed that accumulation of T cells and adhesion molecule positive cells was observed in nontreated injured arteries, whereas siRNA suppressed accumulation. The nonviral ultrasound-microbubble delivery of siRNA ensures effective transfection into target arteries. ICAM-1 siRNA has the potential to suppress arterial neointimal formation. Transfection of siRNA can be beneficial for the clinical treatment of cardiovascular and other inflammatory diseases. Copyright 2010 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  17. TNF-α enhancement of CD62E mediates adhesion of non-small cell lung cancer cells to brain endothelium via CD15 in lung-brain metastasis.

    PubMed

    Jassam, Samah A; Maherally, Zaynah; Smith, James R; Ashkan, Keyoumars; Roncaroli, Federico; Fillmore, Helen L; Pilkington, Geoffrey J

    2016-05-01

    CD15, which is overexpressed on various cancers, has been reported as a cell adhesion molecule that plays a key role in non-CNS metastasis. However, the role of CD15 in brain metastasis is largely unexplored. This study provides a better understanding of CD15/CD62E interaction, enhanced by tumor necrosis factor-α (TNF-α), and its correlation with brain metastasis in non-small cell lung cancer (NSCLC). CD15 and E-selectin (CD62E) expression was demonstrated in both human primary and metastatic NSCLC cells using flow cytometry, immunofluorescence, and Western blotting. The role of CD15 was investigated using an adhesion assay under static and physiological flow live-cell conditions. Human tissue sections were examined using immunohistochemistry. CD15, which was weakly expressed on hCMEC/D3 human brain endothelial cells, was expressed at high levels on metastatic NSCLC cells (NCI-H1299, SEBTA-001, and SEBTA-005) and at lower levels on primary NSCLC (COR-L105 and A549) cells (P < .001). The highest expression of CD62E was observed on hCMEC/D3 cells activated with TNF-α, with lower levels on metastatic NSCLC cells followed by primary NSCLC cells. Metastatic NSCLC cells adhered most strongly to hCMEC/D3 compared with primary NSCLC cells. CD15 immunoblocking decreased cancer cell adhesion to brain endothelium under static and shear stress conditions (P < .0001), confirming a correlation between CD15 and cerebral metastasis. Both CD15 and CD62E expression were detected in lung metastatic brain biopsies. This study enhances the understanding of cancer cell-brain endothelial adhesion and confirms that CD15 plays a crucial role in adhesion in concert with TNF-α activation of its binding partner, CD62E. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology.

  18. Soy-Leaf Extract Exerts Atheroprotective Effects via Modulation of Krüppel-Like Factor 2 and Adhesion Molecules

    PubMed Central

    Han, Jong-Min; Li, Hua; Cho, Moon-Hee; Baek, Seung-Hwa; Lee, Chul-Ho; Park, Ho-Yong; Jeong, Tae-Sook

    2017-01-01

    Soy-leaf extracts exert their cardioprotective effects by inducing endothelium-dependent vasodilation in the arteries, and they favorably modulate the serum lipid profile. In this study, we investigated the atheroprotective effects of an ethanol extract of soy leaf (ESL) in human umbilical vein endothelial cells (HUVECs) and high-cholesterol diet (HCD)-fed low-density lipoprotein receptor deficient (LDLR−/−) mice. ESL induced the expression of Krüppel-like factor 2 (KLF2), an endothelial transcription factor, and endothelial nitric oxide synthase (eNOS), and suppressed the expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) through moderate inflammatory signal activation, not only in tumor necrosis factor-α (TNF-α)-stimulated HUVECs but also in 7-ketocholesterol (7-KC)-stimulated HUVECs. ESL supplementation reduced aortic lesion formation in Western diet-fed LDLR−/− mice by 46% (p < 0.01) compared to the HCD group. ESL also markedly decreased the aortic expression levels of VCAM-1, ICAM-1, monocyte chemotactic protein-1 (MCP-1), TNF-α, IL-6, IL-1β, matrix metallopeptidase 9 (MMP-9), and fractalkine, while the expression of KLF2 was significantly increased. These results suggest that ESL supplementation has potential for preventing HCD-induced atherosclerosis effectively. PMID:28208647

  19. Fractalkine and CX3CR1 Mediate a Novel Mechanism of Leukocyte Capture, Firm Adhesion, and Activation under Physiologic Flow

    PubMed Central

    Fong, Alan M.; Robinson, Lisa A.; Steeber, Douglas A.; Tedder, Thomas F.; Yoshie, Osamu; Imai, Toshio; Patel, Dhavalkumar D.

    1998-01-01

    Leukocyte migration into sites of inflammation involves multiple molecular interactions between leukocytes and vascular endothelial cells, mediating sequential leukocyte capture, rolling, and firm adhesion. In this study, we tested the role of molecular interactions between fractalkine (FKN), a transmembrane mucin-chemokine hybrid molecule expressed on activated endothelium, and its receptor (CX3CR1) in leukocyte capture, firm adhesion, and activation under physiologic flow conditions. Immobilized FKN fusion proteins captured resting peripheral blood mononuclear cells at physiologic wall shear stresses and induced firm adhesion of resting monocytes, resting and interleukin (IL)-2–activated CD8+ T lymphocytes and IL-2–activated NK cells. FKN also induced cell shape change in firmly adherent monocytes and IL-2–activated lymphocytes. CX3CR1-transfected K562 cells, but not control K562 cells, firmly adhered to FKN-expressing ECV-304 cells (ECV-FKN) and tumor necrosis factor α–activated human umbilical vein endothelial cells. This firm adhesion was not inhibited by pertussis toxin, EDTA/EGTA, or antiintegrin antibodies, indicating that the firm adhesion was integrin independent. In summary, FKN mediated the rapid capture, integrin-independent firm adhesion, and activation of circulating leukocytes under flow. Thus, FKN and CX3CR1 mediate a novel pathway for leukocyte trafficking. PMID:9782118

  20. Ligand-induced adhesion to activated endothelium and to vascular cell adhesion molecule-1 in lymphocytes transfected with the N-formyl peptide receptor.

    PubMed

    Honda, S; Campbell, J J; Andrew, D P; Engelhardt, B; Butcher, B A; Warnock, R A; Ye, R D; Butcher, E C

    1994-04-15

    Binding of FMLP to the neutrophil N-formyl peptide receptor (FPR) transmits signals through pertussis toxin-sensitive G proteins triggering Ca2+ flux, superoxide production, granule exocytosis, and neutrophil aggregation and adhesion involving the beta 2 (CD18) integrins. Expression of the FPR in mouse fibroblasts or human kidney cells has been shown to confer an N-formyl peptide-inducible Ca2+ flux in transfectants. Here we demonstrate that the transfected receptor can also support ligand-induced alterations in cellular adhesion. We established stable transfectants of mouse L1-2 pre-B cells with cDNA for human FPR (L1-2 FPR cells). The transfectants bind N-formyl-Nle-Leu-Phe-Nle-Tyr-Lys-fluorescein with 1.4 x 10(5) sites per cell and a dissociation constant of 3.3 nM. Stimulation with FMLP induces a transient Ca2+ flux. FMLP also triggers adhesion of L1-2 FPR cells to TNF-alpha- or LPS-activated bEnd3 cells (mouse brain-derived endothelial cells) and to purified mouse VCAM-1. Binding is inhibited by Abs to VCAM-1 and to the alpha-chain of its lymphocyte receptor (the alpha 4 beta 1 integrin, VLA-4). Stimulation with FMLP does not induce a change in cell surface expression of alpha 4. Induced adhesion to VCAM-1 is rapid, detectable at the earliest times measurable (30 to 60 s after FMLP addition), and is inhibited by pertussis toxin. We conclude that FPR can mediate integrin activation not only in neutrophils but also in lymphocytes, and can trigger rapid adhesion via lymphocyte alpha 4 beta 1. The adhesion of lymphocytes is critical to their migration and targeting; our results suggest the possibility of manipulating adhesive responses through expression of chemoattractant receptors in lymphoid cells engineered for cellular therapy, allowing targeted adhesion and potentially migration in response to locally administered ligands.

  1. Characterization of a conformationally sensitive murine monoclonal antibody directed to the metal ion-dependent adhesion site face of integrin CD11b.

    PubMed

    Li, Rui; Haruta, Ikuko; Rieu, Philippe; Sugimori, Takashi; Xiong, Jian-Ping; Arnaout, M Amin

    2002-02-01

    Integrin binding to physiologic ligands requires divalent cations and an inside-out-driven switch of the integrin to a high-affinity state. Divalent cations at the metal ion-dependent adhesion site (MIDAS) face of the alpha subunit-derived A domain provide a direct bridge between ligands and the integrin, and it has been proposed that activation dependency is caused by reorientation of the surrounding residues relative to the metal ion, forming an optimal binding interface. To gain more insight into the functional significance of the protein movements on the MIDAS face, we raised and characterized a murine mAb 107 directed against the MIDAS face of the A domain from integrin CD11b. We find that mAb 107 behaves as a ligand mimic. It binds in a divalent-cation-dependent manner to solvent-exposed residues on the MIDAS face of CD11b, blocks interaction of 11bA or the holoreceptor with ligands, and inhibits spreading and phagocytosis by human neutrophils. However, in contrast to physiologic ligands, mAb 107 preferentially binds to the inactive low-affinity form of the integrin, suggesting that its antagonistic effects are exerted in part by stabilizing the receptor in the low-affinity state. These data support a functional relevance of the protein movements on the MIDAS face and suggest that stabilizing the A domain in the low-affinity state may have therapeutic benefit.

  2. Highly osteogenic PDL stem cell clones specifically express elevated levels of ICAM1, ITGB1 and TERT.

    PubMed

    Sununliganon, Laddawun; Singhatanadgit, Weerachai

    2012-01-01

    Cells derived from the periodontal ligament (PDL) have previously been reported to have stem cell-like characteristics (PDL stem cells; PDLSCs) and play an important part in bone engineering, including that of alveolar bone. However, these populations have been heterogeneous, and thus far no specific marker has yet been established from adult human stem cells derived from PDL tissue. We have previously isolated highly purified single cell-derived PDLSC clones and delineated their phenotypic and functional characteristics. In this report, we further obtained three homogeneous and distinct PDLSC clones demonstrating low, moderate and high mineralized matrix forming ability-namely PC12, PC4 and PC3, respectively, and the expression of mesenchymal stem cell pathway-specific genes in these clones was investigated. PCR array revealed that the expression of intercellular adhesion molecule 1 (ICAM1), integrin beta 1 (ITGB1) and telomerase reverse transcriptase (TERT) was associated with highly osteogenic PDLSC clones, as determined by the expression of key osteoblastic markers and their ability to form alizarin red S positive mineralized matrix in vitro. The present results suggest that these three mesenchymal stem cell-associated markers could potentially be used to isolate PDLSCs with high osteogenic capability for engineering new bone.

  3. Lycopene inhibits NF-κB activation and adhesion molecule expression through Nrf2-mediated heme oxygenase-1 in endothelial cells.

    PubMed

    Yang, Po-Min; Chen, Huang-Zhi; Huang, Yu-Ting; Hsieh, Chia-Wen; Wung, Being-Sun

    2017-06-01

    The endothelial expression of cell adhesion molecules plays a leading role in atherosclerosis. Lycopene, a carotenoid with 11 conjugated double bonds, has been shown to have anti-inflammatory properties. In the present study, we demonstrate a putative mechanism for the anti-inflammatory effects of lycopene. We demonstrate that lycopene inhibits the adhesion of tumor necrosis factor α (TNFα)-stimulated monocytes to endothelial cells and suppresses the expression of intercellular cell adhesion molecule-1 (ICAM-1) at the transcriptional level. Moreover, lycopene was found to exert its inhibitory effects by blocking the degradation of the inhibitory protein, IκBα, following 6 h of pre-treatment. In TNFα-stimulated endothelial cells, nuclear factor-κB (NF-κB) nuclear translocation and transcriptional activity were abolished by up to 12 h of lycopene pre-treatment. We also found that lycopene increased the intracellular glutathione (GSH) level and glutamate-cysteine ligase expression. Subsequently, lycopene induced nuclear factor-erythroid 2 related factor 2 (Nrf2) activation, leading to the increased expression of downstream of heme oxygenase-1 (HO-1). The use of siRNA targeting HO-1 blocked the inhibitory effects of lycopene on IκB degradation and ICAM-1 expression. The inhibitory effects of lycopene thus appear to be mediated through its induction of Nrf2-mediated HO-1 expression. Therefore, the findings of the present study indicate that lycopene suppresses the activation of TNFα-induced signaling pathways through the upregulation of Nrf2-mediated HO-1 expression.

  4. A novel CD44-binding peptide from the pro-matrix metalloproteinase-9 hemopexin domain impairs adhesion and migration of chronic lymphocytic leukemia (CLL) cells.

    PubMed

    Ugarte-Berzal, Estefanía; Bailón, Elvira; Amigo-Jiménez, Irene; Albar, Juan Pablo; García-Marco, José A; García-Pardo, Angeles

    2014-05-30

    (pro)MMP-9 binds to CLL cells through the PEX9 domain and contributes to CLL progression. To biochemically characterize this interaction and identify potential therapeutic targets, we prepared GST-PEX9 forms containing structural blades B1B2 or B3B4. We recently described a sequence in blade B4 (P3 sequence) that bound α4β1 integrin and partially impaired cell adhesion and migration. We have now studied the possible contribution of the B1B2 region to cell interaction with PEX9. CLL cells bound to GST-B1B2 and CD44 was the primary receptor. GST-B1B2 inhibited CLL cell migration as effectively as GST-B3B4. Overlapping synthetic peptides spanning the B1B2 region identified the sequence FDAIAEIGNQLYLFKDGKYW, present in B1 and contained in peptide P6, as the most effective site. P6 inhibited cell adhesion to PEX9 in a dose-dependent manner and with an IC50 value of 90 μM. P6 also inhibited cell adhesion to hyaluronan but had no effect on adhesion to VCAM-1 (α4β1 integrin ligand), confirming its specific interaction with CD44. Spatial localization analyses mapped P6 to the central cavity of PEX9, in close proximity to the previously identified P3 sequence. Both P6 and P3 equally impaired cell adhesion to (pro)MMP-9. Moreover, P6 synergistically cooperated with P3, resulting in complete inhibition of CLL cell binding to PEX9, chemotaxis, and transendothelial migration. Thus, P6 is a novel sequence in PEX9 involved in cell-PEX9/(pro)MMP-9 binding by interacting with CD44. Targeting both sites, P6 and P3, should efficiently prevent (pro)MMP-9 binding to CLL cells and its pathological consequences. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Rate-dependent elastic hysteresis during the peeling of pressure sensitive adhesives.

    PubMed

    Villey, Richard; Creton, Costantino; Cortet, Pierre-Philippe; Dalbe, Marie-Julie; Jet, Thomas; Saintyves, Baudouin; Santucci, Stéphane; Vanel, Loïc; Yarusso, David J; Ciccotti, Matteo

    2015-05-07

    The modelling of the adherence energy during peeling of Pressure Sensitive Adhesives (PSA) has received much attention since the 1950's, uncovering several factors that aim at explaining their high adherence on most substrates, such as the softness and strong viscoelastic behaviour of the adhesive, the low thickness of the adhesive layer and its confinement by a rigid backing. The more recent investigation of adhesives by probe-tack methods also revealed the importance of cavitation and stringing mechanisms during debonding, underlining the influence of large deformations and of the related non-linear response of the material, which also intervenes during peeling. Although a global modelling of the complex coupling of all these ingredients remains a formidable issue, we report here some key experiments and modelling arguments that should constitute an important step forward. We first measure a non-trivial dependence of the adherence energy on the loading geometry, namely through the influence of the peeling angle, which is found to be separable from the peeling velocity dependence. This is the first time to our knowledge that such adherence energy dependence on the peeling angle is systematically investigated and unambiguously demonstrated. Secondly, we reveal an independent strong influence of the large strain rheology of the adhesives on the adherence energy. We complete both measurements with a microscopic investigation of the debonding region. We discuss existing modellings in light of these measurements and of recent soft material mechanics arguments, to show that the adherence energy during peeling of PSA should not be associated to the propagation of an interfacial stress singularity. The relevant deformation mechanisms are actually located over the whole adhesive thickness, and the adherence energy during peeling of PSA should rather be associated to the energy loss by viscous friction and by rate-dependent elastic hysteresis.

  6. Dark chocolate consumption improves leukocyte adhesion factors and vascular function in overweight men.

    PubMed

    Esser, Diederik; Mars, Monica; Oosterink, Els; Stalmach, Angelique; Müller, Michael; Afman, Lydia A

    2014-03-01

    Flavanol-enriched chocolate consumption increases endothelium-dependent vasodilation. Most research so far has focused on flow-mediated dilation (FMD) only; the effects on other factors relevant to endothelial health, such as inflammation and leukocyte adhesion, have hardly been addressed. We investigated whether consumption of regular dark chocolate also affects other markers of endothelial health, and whether chocolate enrichment with flavanols has additional benefits. In a randomized double-blind crossover study, the effects of acute and of 4 wk daily consumption of high flavanol chocolate (HFC) and normal flavanol chocolate (NFC) on FMD, augmentation index (AIX), leukocyte count, plasma cytokines, and leukocyte cell surface molecules in overweight men (age 45-70 yr) were investigated. Sensory profiles and motivation scores to eat chocolate were also collected. Findings showed that a 4 wk chocolate intake increased FMD by 1%, which was paralleled by a decreased AIX of 1%, decreased leukocyte cell count, decreased plasma sICAM1 and sICAM3, and decreased leukocyte adhesion marker expression (P<0.05 for time effect), with no difference between HFC and NFC consumption. Flavanol enrichment did affect taste and negatively affected motivation to consume chocolate. This study provides new insights on how chocolate affects endothelial health by demonstrating that chocolate consumption, besides improving vascular function, also lowers the adherence capacity of leukocytes in the circulation.

  7. Cinnamaldehyde inhibits the tumor necrosis factor-{alpha}-induced expression of cell adhesion molecules in endothelial cells by suppressing NF-{kappa}B activation: Effects upon I{kappa}B and Nrf2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, B.-C.; Hsieh, C.-W.; Liu, Y.-C.

    The production of adhesion molecules and subsequent attachment of leukocytes to endothelial cells (ECs) are critical early events in atherogenesis. These adhesion molecules thus play an important role in the development of this disease. Recent studies have highlighted the chemoprotective and anti-inflammatory effects of cinnamaldehyde, a Cinnamomum cassia Presl-specific diterpene. In our current study, we have examined the effects of both cinnamaldehyde and extracts of C. cassia on cytokine-induced monocyte/human endothelial cell interactions. We find that these compounds inhibit the adhesion of TNF{alpha}-induced monocytes to endothelial cells and suppress the expression of the cell adhesion molecules, VCAM-1 and ICAM-1, atmore » the transcriptional level. Moreover, in TNF{alpha}-treated ECs, the principal downstream signal of VCAM-1 and ICAM-1, NF-{kappa}B, was also found to be abolished in a time-dependent manner. Interestingly, cinnamaldehyde exerts its anti-inflammatory effects by blocking the degradation of the inhibitory protein I{kappa}B-{alpha}, but only in short term pretreatments, whereas it does so via the induction of Nrf2-related genes, including heme-oxygenase-1 (HO-1), over long term pretreatments. Treating ECs with zinc protoporphyrin, a HO-1 inhibitor, partially blocks the anti-inflammatory effects of cinnamaldehyde. Elevated HO-1 protein levels were associated with the inhibition of TNF{alpha}-induced ICAM-1 expression. In addition to HO-1, we also found that cinnamaldehyde can upregulate Nrf2 in nuclear extracts, and can increase ARE-luciferase activity and upregulate thioredoxin reductase-1, another Nrf2-related gene. Moreover, cinnamaldehyde exposure rapidly reduces the cellular GSH levels in ECs over short term treatments but increases these levels after 9 h exposure. Hence, our present findings indicate that cinnamaldehyde suppresses TNF-induced singling pathways via two distinct mechanisms that are activated by different pretreatment

  8. Differential Expression of Adhesion-Related Proteins and MAPK Pathways Lead to Suitable Osteoblast Differentiation of Human Mesenchymal Stem Cells Subpopulations.

    PubMed

    Leyva-Leyva, Margarita; López-Díaz, Annia; Barrera, Lourdes; Camacho-Morales, Alberto; Hernandez-Aguilar, Felipe; Carrillo-Casas, Erika M; Arriaga-Pizano, Lourdes; Calderón-Pérez, Jaime; García-Álvarez, Jorge; Orozco-Hoyuela, Gabriel; Piña-Barba, Cristina; Rojas-Martínez, Augusto; Romero-Díaz, Víktor; Lara-Arias, Jorge; Rivera-Bolaños, Nancy; López-Camarillo, César; Moncada-Saucedo, Nidia; Galván-De los Santos, Alejandra; Meza-Urzúa, Fátima; Villarreal-Gómez, Luis; Fuentes-Mera, Lizeth

    2015-11-01

    Cellular adhesion enables communication between cells and their environment. Adhesion can be achieved throughout focal adhesions and its components influence osteoblast differentiation of human mesenchymal stem cells (hMSCs). Because cell adhesion and osteoblast differentiation are closely related, this article aimed to analyze the expression profiles of adhesion-related proteins during osteoblastic differentiation of two hMSCs subpopulations (CD105(+) and CD105(-)) and propose a strategy for assembling bone grafts based on its adhesion ability. In vitro experiments of osteogenic differentiation in CD105(-) cells showed superior adhesion efficiency and 2-fold increase of α-actinin expression compared with CD105(+) cells at the maturation stage. Interestingly, levels of activated β1-integrin increased in CD105(-) cells during the process. Additionally, the CD105(-) subpopulation showed 3-fold increase of phosphorylated FAK(Y397) compared to CD105(+) cells. Results also indicate that ERK1/2 was activated during CD105(-) bone differentiation and participation of mitogen-activated protein kinase (MAPK)-p38 in CD105(+) differentiation through a focal adhesion kinase (FAK)-independent pathway. In vivo trial demonstrated that grafts containing CD105(-) showed osteocytes embedded in a mineralized matrix, promoted adequate graft integration, increased host vascular infiltration, and efficient intramembranous repairing. In contrast, grafts containing CD105(+) showed deficient endochondral ossification and fibrocartilaginous tissue. Based on the expression of α-actinin, FAKy,(397) and ERK1/2 activation, we define maturation stage as critical for bone graft assembling. By in vitro assays, CD105(-) subpopulation showed superior adhesion efficiency compared to CD105(+) cells. Considering in vitro and in vivo assays, this study suggests that integration of a scaffold with CD105(-) subpopulation at the maturation stage represents an attractive strategy for clinical use in

  9. In vivo imaging of endothelial cell adhesion molecule expression after radiosurgery in an animal model of arteriovenous malformation.

    PubMed

    Raoufi-Rad, Newsha; McRobb, Lucinda S; Lee, Vivienne S; Bervini, David; Grace, Michael; Ukath, Jaysree; Mchattan, Joshua; Sreenivasan, Varun K A; Duong, T T Hong; Zhao, Zhenjun; Stoodley, Marcus A

    2017-01-01

    Focussed radiosurgery may provide a means of inducing molecular changes on the luminal surface of diseased endothelium to allow targeted delivery of novel therapeutic compounds. We investigated the potential of ionizing radiation to induce surface expression of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) on endothelial cells (EC) in vitro and in vivo, to assess their suitability as vascular targets in irradiated arteriovenous malformations (AVMs). Cultured brain microvascular EC were irradiated by linear accelerator at single doses of 0, 5, 15 or 25 Gy and expression of ICAM-1 and VCAM-1 measured by qRT-PCR, Western, ELISA and immunocytochemistry. In vivo, near-infrared (NIR) fluorescence optical imaging using Xenolight 750-conjugated ICAM-1 or VCAM-1 antibodies examined luminal biodistribution over 84 days in a rat AVM model after Gamma Knife surgery at a single 15 Gy dose. ICAM-1 and VCAM-1 were minimally expressed on untreated EC in vitro. Doses of 15 and 25 Gy stimulated expression equally; 5 Gy was not different from the unirradiated. In vivo, normal vessels did not bind or retain the fluorescent probes, however binding was significant in AVM vessels. No additive increases in probe binding were found in response to radiosurgery at a dose of 15 Gy. In summary, radiation induces adhesion molecule expression in vitro but elevated baseline levels in AVM vessels precludes further induction in vivo. These molecules may be suitable targets in irradiated vessels without hemodynamic derangement, but not AVMs. These findings demonstrate the importance of using flow-modulated, pre-clinical animal models for validating candidate proteins for vascular targeting in irradiated AVMs.

  10. Plasma Soluble CD163 Level Independently Predicts All-Cause Mortality in HIV-1-Infected Individuals.

    PubMed

    Knudsen, Troels Bygum; Ertner, Gideon; Petersen, Janne; Møller, Holger Jon; Moestrup, Søren K; Eugen-Olsen, Jesper; Kronborg, Gitte; Benfield, Thomas

    2016-10-15

    CD163, a monocyte- and macrophage-specific scavenger receptor, is shed as soluble CD163 (sCD163) during the proinflammatory response. Here, we assessed the association between plasma sCD163 levels and progression to AIDS and all-cause mortality among individuals infected with human immunodeficiency virus type 1 (HIV). Plasma sCD163 levels were measured in 933 HIV-infected individuals. Hazard ratios (HRs) with 95% confidence intervals (CIs) associated with mortality were computed by Cox proportional hazards regression. At baseline, 86% were receiving antiretroviral treatment, 73% had plasma a HIV RNA level of <50 copies/mL, and the median CD4(+) T-cell count was 503 cells/µL. During 10.5 years of follow-up, 167 (17.9%) died. Plasma sCD163 levels were higher in nonsurvivors than in survivors (4.92 mg/L [interquartile range {IQR}, 3.29-8.65 mg/L] vs 3.16 mg/L [IQR, 2.16-4.64 mg/L]; P = .0001). The cumulative incidence of death increased with increasing plasma sCD163 levels, corresponding to a 6% or 35% increased risk of death for each milligram per liter or quartile increase, respectively, in baseline plasma sCD163 level (adjusted HR, 1.06 [95% CI, 1.03-1.09] and 1.35 [95% CI, 1.13-1.63], respectively). Plasma sCD163 was an independent marker of all-cause mortality in a cohort of HIV-infected individuals, suggesting that monocyte/macrophage activation may play a role in HIV pathogenesis and be a target of intervention. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  11. Genetic Analysis of 13 Iranian Families With Leukocyte Adhesion Deficiency Type 1.

    PubMed

    Teimourian, Shahram; De Boer, Martin; Roos, Dirk; Isaian, Anna; Bemanian, Mohammad Hassan; Lashkary, Sharhzad; Nabavi, Mohammad; Arshi, Saba; Nateghian, Alireza; Sayyahfar, Shirin; Sazgara, Faezeh; Taheripak, Gholamreza; Alipour Fayez, Elham

    2018-05-10

    Leukocyte adhesion deficiency type 1 is a rare, autosomal recessive disorder that results from mutations in the ITGB2 gene. This gene encodes the CD18 subunit of β2 integrin leukocyte adhesion cell molecules. Leukocyte adhesion deficiency type 1 is characterized by recurrent bacterial infections, impaired wound healing, inadequate pus formation, and delayed separation of the umbilical cord. Blood samples were taken from 13 patients after written consent had been obtained. Genomic DNA was extracted, and ITGB2 exons and exon-intron boundaries were amplified by polymerase chain reaction. The products were examined by Sanger sequencing. In this study, 8 different previously reported mutations (intron7+1G>A, c.715G>A, c.1777 C>T, c.843del C, c.1768T>C, c.1821C>A, Intron7+1G>A, c.1885G>A) and 2 novel mutations (c.1821C>A; p.Tyr607Ter and c.1822C>T; p.Gln608Ter) were found. c.1821C>A (p.Tyr607Ter) and c.1822C>T (p.Gln608Ter) mutations should be included in the panel of carrier detection and prenatal diagnosis.

  12. Measuring piconewton forces with micropipette suction and its application to the flow and adhesion of individual neutrophils

    NASA Astrophysics Data System (ADS)

    Shao, Jin-Yu

    A versatile technique for measuring piconewton forces, based upon a micropipette manipulation system and low Reynolds number hydrodynamics, was established. Spherical cells or beads can be used directly as force transducers, and the force resolution is determined by the diameter of the micropipette that contains the transducer and the accuracy of the pressure measurements. The strength of the technique is in its simplicity and its ability to measure forces between cells without requiring the use of a solid surface. Here, it was employed to study: (1) The adhesion between human neutrophils and antibody-coated latex beads. Three antibodies, directed against three receptors on the neutrophil surface (CD62L, CD18 and CD45), were used. It was found that CD62L could be more easily extracted from the neutrophil surface than CD18, while the anchorage of CD45 was much stronger than that of CD62L or CD18. The logarithm of the adhesion lifetime showed a linear dependence upon the force applied to the adherent neutrophil. The association energy of CD62L or CD18 with the membrane and the cytoskeleton is equivalent to that for about fourteen hydrogen bonds. From the experiments with CD45, the natural lengths of neutrophil microvilli were inferred (˜0.3 mum). According to the force applied on their tips, microvilli can be either extended to constant lengths or pulled out to form membrane tethers. The characteristic time of microvillus extension is ˜0.83 s and the minimum force required to form a tether from neutrophils is ˜45 pN. (2) The resistance to flow of individual human neutrophils in glass capillary tubes with diameters between 4.65 and 7.75 μm. With the aid of a theory that describes the motion of a concentric, smooth-walled, sausage-shaped body in a tube, the maximum gap width in the larger capillary tubes was calculated to be on the order of 0.1 mum, whereas the minimum gap width in the smaller capillaries was only about 0.015 mum. Maximum values for the adhesive

  13. ILK mediates LPS-induced vascular adhesion receptor expression and subsequent leucocyte trans-endothelial migration.

    PubMed

    Hortelano, Sonsoles; López-Fontal, Raquel; Través, Paqui G; Villa, Natividad; Grashoff, Carsten; Boscá, Lisardo; Luque, Alfonso

    2010-05-01

    The inflammatory response to injurious agents is tightly regulated to avoid adverse consequences of inappropriate leucocyte accumulation or failed resolution. Lipopolysaccharide (LPS)-activated endothelium recruits leucocytes to the inflamed tissue through controlled expression of membrane-associated adhesion molecules. LPS responses in macrophages are known to be regulated by integrin-linked kinase (ILK); in this study, we investigated the role of ILK in the regulation of the LPS-elicited inflammatory response in endothelium. This study was performed on immortalized mouse endothelial cells (EC) isolated from lung and coronary vasculature. Cells were thoroughly characterized and the role of ILK in the regulation of the LPS response was investigated by suppressing ILK expression using siRNA and shRNA technologies. Phenotypic and functional analyses confirmed that the immortalized cells behaved as true EC. LPS induced the expression of the inflammatory genes E-selectin, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). ILK knockdown impaired LPS-mediated endothelial activation by preventing the induction of ICAM-1 and VCAM-1. Blockade of the LPS-induced response inhibited the inflammatory-related processes of firm adhesion and trans-endothelial migration of leucocytes. ILK is involved in the expression of cell adhesion molecules by EC activated with the inflammatory stimulus LPS. This reduced expression modulates leucocyte adhesion to the endothelium and the extravasation process. This finding suggests ILK as a potential anti-inflammatory target for the development of vascular-specific treatments for inflammation-related diseases.

  14. Edaravone attenuates monocyte adhesion to endothelial cells induced by oxidized low-density lipoprotein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhijuan, E-mail: zjlee038@163.com; Cheng, Jianxin; Wang, Liping

    2015-10-30

    Oxidized low-density lipoprotein (oxLDL) plays a vital role in recruitment of monocytes to endothelial cells, which is important during early stages of atherosclerosis development. Edaravone, a potent and novel scavenger of free radicals inhibiting hydroxyl radicals, has been clinically used to reduce the neuronal damage following ischemic stroke. In the present study, Edaravone was revealed to markedly reduce oxLDL-induced monocyte adhesion to human umbilical vein endothelial cells (HUVECs). The inhibitory mechanism of Edaravone was associated with suppression of the chemokine MCP-1 and adhesion molecule VCAM-1 and ICAM-1 expression. In addition, luciferase reporter assay results revealed that administration of Edaravone attenuatedmore » the increase in NF-κB transcriptional activity induced by oxLDL. Notably, it's also shown that Edaravone treatment blocked oxLDL induced p65 nuclear translocation in HUVECs. Results indicate that Edaravone negatively regulates endothelial inflammation. - Highlights: • Edaravone reduces oxLDL-induced monocyte adhesion to HUVECs. • Edaravone attenuates oxLDL-induced expression of MCP-1, VCAM-1, and ICAM-1. • Edaravone reduces NF-κB transcriptional activity and p65 nuclear translocation.« less

  15. Cooperativity of CD44 and CD49d in leukemia cell homing, migration, and survival offers a means for therapeutic attack.

    PubMed

    Singh, Vibuthi; Erb, Ulrike; Zöller, Margot

    2013-11-15

    A CD44 blockade drives leukemic cells into differentiation and apoptosis by dislodging from the osteogenic niche. Because anti-CD49d also supports hematopoietic stem cell mobilization, we sought to determine the therapeutic efficacy of a joint CD49d/CD44 blockade. To unravel the underlying mechanism, the CD49d(-) EL4 lymphoma was transfected with CD49d or point-mutated CD49d, prohibiting phosphorylation and FAK binding; additionally, a CD44(-) Jurkat subline was transfected with murine CD44, CD44 with a point mutation in the ezrin binding site, or with cytoplasmic tail-truncated CD44. Parental and transfected EL4 and Jurkat cells were evaluated for adhesion, migration, and apoptosis susceptibility in vitro and in vivo. Ligand-binding and Ab-blocking studies revealed CD44-CD49d cooperation in vitro and in vivo in adhesion, migration, and apoptosis resistance. The cooperation depends on ligand-induced proximity such that both CD44 and CD49d get access to src, FAK, and paxillin and via lck to the MAPK pathway, with the latter also supporting antiapoptotic molecule liberation. Accordingly, synergisms were only seen in leukemia cells expressing wild-type CD44 and CD49d. Anti-CD44 together with anti-CD49d efficiently dislodged EL4-CD49d/Jurkat-CD44 in bone marrow and spleen. Dislodging was accompanied by increased apoptosis susceptibility that strengthened low-dose chemotherapy, the combined treatment most strongly interfering with metastatic settlement and being partly curative. Ab treatment also promoted NK and Ab-dependent cellular cytotoxicity activation, which affected leukemia cells independent of CD44/CD49d tail mutations. Thus, mostly owing to a blockade of joint signaling, anti-CD44 and anti-CD49d hamper leukemic cell settlement and break apoptosis resistance, which strongly supports low-dose chemotherapy.

  16. Circulating CD4+CD28null and extra-thymic CD4+CD8+ double positive T cells are independently associated with disease damage in systemic lupus erythematosus patients.

    PubMed

    Ugarte-Gil, M F; Sánchez-Zúñiga, C; Gamboa-Cárdenas, R V; Aliaga-Zamudio, M; Zevallos, F; Tineo-Pozo, G; Cucho-Venegas, J M; Mosqueira-Riveros, A; Medina, M; Perich-Campos, R A; Alfaro-Lozano, J L; Rodriguez-Bellido, Z; Alarcón, G S; Pastor-Asurza, C A

    2016-03-01

    To determine whether circulating CD4+CD28null and extra-thymic CD4+CD8+ double positive (DP) T cells are independently associated with damage accrual in systemic lupus erythematosus (SLE) patients. This cross-sectional study was conducted between September 2013 and April 2014 in consecutive SLE patients from our Rheumatology Department. CD4+CD28null and CD4+CD8+ DP T-cell frequencies were analyzed by flow-cytometry. The association of damage (SLICC/ACR Damage Index, SDI) and CD4+CD28null and CD4+CD8+ DP T cells was examined by univariable and multivariable Poisson regression models, adjusting for possible confounders. All analyses were performed using SPSS 21.0. Patients' (n = 133) mean (SD) age at diagnosis was 35.5 (16.8) years, 124 (93.2%) were female; all were mestizo (mixed Caucasian and Amerindian ancestry). Disease duration was 7.4 (6.8) years. The SLE Disease Activity Index was 5.5 (4.2), and the SDI 0.9 (1.2). The percentages of CD4+CD28null and CD4+CD8+ DP T cells were 17.1 (14.4) and 0.4 (1.4), respectively. The percentage of CD4+CD28null and CD4+CD8+ DP T cells were positively associated with a higher SDI in both univariable (rate ratio (RR) 1.02, 95% confidence interval (CI): 1.01-1.03 and 1.17, 95% CI: 1.07-1.27, respectively; p < 0.001 for both) and multivariable analyses RR 1.02, 95% CI: 1.01-1.03, p = 0.001 for CD4+CD28null T cells and 1.28, 95% CI: 1.13-1.44, p < 0.001 for CD4+CD8+ DP T cells). Only the renal domain remained associated with CD4+CD28null in multivariable analyses (RR 1.023 (1.002-1.045); p = 0.034). In SLE patients, CD4+CD28null and CD4+CD8+ DP T cells are independently associated with disease damage. Longitudinal studies are warranted to determine the predictive value of these associations. © The Author(s) 2015.

  17. Effects of phytoestrogens derived from soy bean on expression of adhesion molecules on HUVEC.

    PubMed

    Andrade, C M de; Sá, M F Silva de; Toloi, M R Torqueti

    2012-04-01

    The risks of hormone replacement therapy have led to a search for new alternatives such as phytoestrogens, plant compounds with estrogen-like biological activity. Isoflavones are the phytoestrogens most extensively studied and can be found in soybean, red clover and other plants. Due to this estrogen-like activity, phytoestrogens can have some effect on atherosclerosis. Human umbilical vein endothelial cells (HUVEC) have been extensively used to study the biology and pathobiology of human endothelial cells and most of the knowledge acquired is due to experiments with cultures of these cells. To evaluate the effects of the phytoestrogen extracts from Glycine max soy bean, genistein, formononetin, biochanin A and daidzein, as well as a mixture of these extracts (Mix), on expression of adhesion molecules, VCAM-1, ICAM-1 and E-selectin, by endothelial cell HUVEC, stimulated with lipopolysaccharide. HUVEC were cultured in medium EBM(2), pretreated with isoflavones for 24 and 48 h and then stimulated with lipopolysaccharide; in addition, isoflavones were added, after stimulation by lipopolysaccharide, to HUVEC. We evaluated the production of VCAM-1, ICAM-1 and E-selectin on cell surface, by cell-based enzyme immunoassay, and of sVCAM-1, sICAM-1 and sE-selectin in culture supernatant, by ELISA. Genistein, formononetin, biochanin A and daidzein, as well as the Mix were able to reduce VCAM-1, ICAM-1 and E-selectin on cell surface and in culture supernatant. Conclusion Isoflavones extracted from Glycine max soy bean, in vitro, presented antiatherogenic effects, reducing the expression of adhesion molecules and acting as preventive agents as well as therapeutic agents.

  18. Free Fatty Acids Shift Insulin-induced Hepatocyte Proliferation towards CD95-dependent Apoptosis*

    PubMed Central

    Sommerfeld, Annika; Reinehr, Roland; Häussinger, Dieter

    2015-01-01

    Insulin is known to induce hepatocyte swelling, which triggers via integrins and c-Src kinase an activation of the epidermal growth factor receptor (EGFR) and subsequent cell proliferation (1). Free fatty acids (FFAs) are known to induce lipoapoptosis in liver cells in a c-Jun-NH2-terminal kinase (JNK)-dependent, but death receptor-independent way (2). As non-alcoholic steatohepatitis (NASH) is associated with hyperinsulinemia and increased FFA-blood levels, the interplay between insulin and FFA was studied with regard to hepatocyte proliferation and apoptosis in isolated rat and mouse hepatocytes. Saturated long chain FFAs induced apoptosis and JNK activation in primary rat hepatocytes, but did not activate the CD95 (Fas, APO-1) system, whereas insulin triggered EGFR activation and hepatocyte proliferation. Coadministration of insulin and FFAs, however, abolished hepatocyte proliferation and triggered CD95-dependent apoptosis due to a JNK-dependent association of the activated EGFR with CD95, subsequent CD95 tyrosine phosphorylation and formation of the death-inducing signaling complex (DISC). JNK inhibition restored the proliferative insulin effect in presence of FFAs and prevented EGFR/CD95 association, CD95 tyrosine phosphorylation and DISC formation. Likewise, in presence of FFAs insulin increased apoptosis in hepatocytes from wild type but not from Alb-Cre-FASfl/fl mice, which lack functional CD95. It is concluded that FFAs can shift insulin-induced hepatocyte proliferation toward hepatocyte apoptosis by triggering a JNK signal, which allows activated EGFR to associate with CD95 and to trigger CD95-dependent apoptosis. Such phenomena may contribute to the pathogenesis of NASH. PMID:25548285

  19. Interferons alpha and gamma induce p53-dependent and p53-independent apoptosis, respectively.

    PubMed

    Porta, Chiara; Hadj-Slimane, Reda; Nejmeddine, Mohamed; Pampin, Mathieu; Tovey, Michael G; Espert, Lucile; Alvarez, Sandra; Chelbi-Alix, Mounira K

    2005-01-20

    Type I interferon (IFN) enhances the transcription of the tumor suppressor gene p53. To elucidate the molecular mechanism mediating IFN-induced apoptosis, we analysed programmed cell death in response to type I (IFNalpha) or type II (IFNgamma) treatment in relation to p53 status. In two cell lines (MCF-7, SKNSH), IFNalpha, but not IFNgamma, enhanced apoptosis in a p53-dependent manner. Furthermore, only IFNalpha upregulated p53 as well as p53 target genes (Noxa, Mdm2 and CD95). The apoptotic response to IFNalpha decreased in the presence of ZB4, an anti-CD95 antibody, suggesting that CD95 is involved in this process. When p53 was inactivated by the E6 viral protein or the expression of a p53 mutant, IFNalpha-induced apoptosis and p53 target genes upregulation were abrogated. Altogether these results demonstrate that p53 plays a pivotal role in the IFNalpha-induced apoptotic response. IFNalpha-induced PML was unable to recruit p53 into nuclear bodies and its downregulation by siRNA did not alter CD95 expression. In contrast, IFNgamma-induced apoptosis is p53-independent. CD95 and IFN-regulatory factor 1 (IRF1) are directly upregulated by this cytokine. Apoptotic response to IFNgamma is decreased in the presence of ZB4 and strongly diminished by IRF1 siRNA, implicating both CD95 and IRF1 in IFNgamma-induced apoptotic response. Taken together, these results show that in two different cell lines, IFNalpha and IFNgamma, induce p53-dependent -independent apoptosis, respectively.

  20. CD39/NTPDase-1 expression and activity in human umbilical vein endothelial cells are differentially regulated by leaf extracts from Rubus caesius and Rubus idaeus.

    PubMed

    Dudzinska, Dominika; Luzak, Boguslawa; Boncler, Magdalena; Rywaniak, Joanna; Sosnowska, Dorota; Podsedek, Anna; Watala, Cezary

    2014-09-01

    Many experimental studies have demonstrated the favorable biological activities of plants belonging to the genus Rubus, but little is known of the role of Rubus leaf extracts in the modulation of the surface membrane expression and activity of endothelial apyrase. The aim of this study was to assess the influence of 1-15 μg/ml Rubus extracts on CD39 expression and enzymatic activity, and on the activation (ICAM-1 expression) and viability of human umbilical vein endothelial cells (HUVEC). The polyphenolic contents and antioxidative capacities of extracts from dewberry (R. caesius L.) and raspberry (R. idaeus L.) leaves were also investigated. The techniques applied were flow cytometry (endothelial surface membrane expression of ICAM-1 and CD39), malachite green assay (CD39 activity), HPLC-DAD (quantitative analysis of polyphenolic extract), ABTS, DPPH and FRAP spectrometric assays (antioxidant capacity), and the MTT test (cell viability). Significantly increased CD39 expressions and significantly decreased ATPDase activities were found in the cells treated with 15 μg/ml of either extract compared to the results for the controls. Neither of the extracts affected cell proliferation, but both significantly augmented endothelial cell ICAM-1 expression. The overall antioxidant capacities of the examined extracts remained relatively high and corresponded well to the determined total polyphenol contents. Overall, the results indicate that under in vitro conditions dewberry and raspberry leaf extracts have unfavorable impact on endothelial cells.

  1. CD2 and CD3 associate independently with CD5 and differentially regulate signaling through CD5 in Jurkat T cells.

    PubMed

    Carmo, A M; Castro, M A; Arosa, F A

    1999-10-15

    In T lymphocytes, the CD2 and CD5 glycoproteins are believed to be involved in the regulation of signals elicited by the TCR/CD3 complex. Here we show that CD2 and CD3 independently associate with CD5 in human PBMC and Jurkat cells. CD5 coprecipitates with CD2 in CD3-deficient cells and, conversely, coprecipitates with CD3 in cells devoid of CD2. In unstimulated CD2+ CD3+ Jurkat cells, CD5 associates equivalently with CD2 and CD3 and is as efficiently phosphorylated in CD2 as in CD3 immune complexes. However, upon activation the involvement of CD5 is the opposite in the CD2 and CD3 pathways. CD5 becomes rapidly tyrosine phosphorylated after CD3 stimulation, but is dephosphorylated upon CD2 cross-linking. These opposing effects correlate with the decrease in the activity of the SH2 domain-containing protein phosphatase 1 (SHP-1) following CD3 activation vs an enhanced activity of the phosphatase after CD2 triggering. The failure of CD5 to become phosphorylated on tyrosine residues in the CD2 pathway has no parallel with the lack of use of zeta-chains in CD2 signaling; contrasting with comparable levels of association of CD2 or CD3 with CD5, zeta associates with CD2 only residually and is nevertheless slightly phosphorylated after CD2 stimulation. The modulation of CD5 phosphorylation may thus represent a level of regulation controlled by CD2 in signal transduction mechanisms in human T lymphocytes.

  2. Host resistance of CD18 knockout mice against systemic infection with Listeria monocytogenes

    NASA Technical Reports Server (NTRS)

    Wu, Huaizhu; Prince, Joseph E.; Brayton, Cory F.; Shah, Chirayu; Zeve, Daniel; Gregory, Stephen H.; Smith, C. Wayne; Ballantyne, Christie M.

    2003-01-01

    Mice with targeted mutations of CD18, the common beta2 subunit of CD11/CD18 integrins, have leukocytosis, impaired transendothelial neutrophil emigration, and reduced host defense to Streptococcus pneumoniae, a gram-positive extracellular bacterium. Previous studies using blocking monoclonal antibodies suggested roles for CD18 and CD11b in hepatic neutrophil recruitment and host innate response to Listeria monocytogenes, a gram-positive intracellular bacterium. We induced systemic listeriosis in CD18 knockout (CD18-ko) and wild-type (WT) mice by tail vein injection with Listeria. By 14 days postinjection (dpi), 8 of 10 WT mice died, compared with 2 of 10 CD18-ko mice (P < 0.01). Quantitative organ culture showed that numbers of Listeria organisms in livers and spleens were similar in both groups at 20 min postinfection. By 3, 5, and 7 dpi, however, numbers of Listeria organisms were significantly lower in livers and spleens of CD18-ko mice than in WT mice. Histopathology showed that following Listeria infection, CD18-ko mice had milder inflammatory and necrotizing lesions in both spleens and livers than did WT mice. Cytokine assays indicated that baseline interleukin-1beta and granulocyte colony-stimulating factor (G-CSF) levels were higher in CD18-ko mice than in WT mice and that CD18-ko splenocytes produced higher levels of interleukin-1beta and G-CSF than WT splenocytes under the same amount of Listeria stimulation. These findings show that CD18 is not an absolute requirement for antilisterial innate immunity or hepatic neutrophil recruitment. We propose that the absence of CD18 in the mice results in the priming of innate immunity, as evidenced by elevated cytokine expression, and neutrophilic leukocytosis, which augments antilisterial defense.

  3. Expression of interleukin-8 and intercellular cell adhesion molecule-1 in the synovial membrane and cranial cruciate ligament of dogs after rupture of the ligament

    PubMed Central

    El-Hadi, Mustafa; Charavaryamath, Chandarshekhar; Aebischer, Andrea; Smith, C. Wayne; Shmon, Cindy; Singh, Baljit

    2012-01-01

    This cross-sectional clinical study compared inflammation, including expression of the chemokine interleukin (IL)-8 and intercellular cell adhesion molecule-1 (ICAM-1), in the stifle joints of 4 control dogs and 23 dogs with cranial cruciate ligament rupture (CCLR). The CCL, synovial membrane, meniscus, cartilage, and synovial fluid from the affected stifle joints of all the dogs were examined. Inflammatory cell counts were performed on the synovial fluid, and the tissues were processed for histologic study and immunohistochemical detection of IL-8 and ICAM-1. The synovial fluid from the stifle joints of the dogs with CCLR had an increased percentage of neutrophils (P = 0.054) and a decreased percentage of lymphocytes (P = 0.004) but not macrophages compared with the fluid from the control dogs. There was accumulation of inflammatory cells and increased expression of IL-8 and ICAM-1 in the vascular endothelium of the synovial membrane and the CCL of the dogs with CCLR. The increase in inflammatory cells in the stifle joints of dogs with CCLR may therefore be due to increased expression of IL-8 and ICAM-1 in the synovial membrane and the CCL after the injury. These data may help in understanding the mechanisms of inflammation associated with CCLR. PMID:22754089

  4. Expression of interleukin-8 and intercellular cell adhesion molecule-1 in the synovial membrane and cranial cruciate ligament of dogs after rupture of the ligament.

    PubMed

    El-Hadi, Mustafa; Charavaryamath, Chandarshekhar; Aebischer, Andrea; Smith, C Wayne; Shmon, Cindy; Singh, Baljit

    2012-01-01

    This cross-sectional clinical study compared inflammation, including expression of the chemokine interleukin (IL)-8 and intercellular cell adhesion molecule-1 (ICAM-1), in the stifle joints of 4 control dogs and 23 dogs with cranial cruciate ligament rupture (CCLR). The CCL, synovial membrane, meniscus, cartilage, and synovial fluid from the affected stifle joints of all the dogs were examined. Inflammatory cell counts were performed on the synovial fluid, and the tissues were processed for histologic study and immunohistochemical detection of IL-8 and ICAM-1. The synovial fluid from the stifle joints of the dogs with CCLR had an increased percentage of neutrophils (P = 0.054) and a decreased percentage of lymphocytes (P = 0.004) but not macrophages compared with the fluid from the control dogs. There was accumulation of inflammatory cells and increased expression of IL-8 and ICAM-1 in the vascular endothelium of the synovial membrane and the CCL of the dogs with CCLR. The increase in inflammatory cells in the stifle joints of dogs with CCLR may therefore be due to increased expression of IL-8 and ICAM-1 in the synovial membrane and the CCL after the injury. These data may help in understanding the mechanisms of inflammation associated with CCLR.

  5. Mild Hyperthermia Downregulates Receptor-dependent Neutrophil Function

    PubMed Central

    Fröhlich, Dieter; Wittmann, Sigrid; Rothe, Gregor; Sessler, Daniel I.; Vogel, Peter; Taeger, Kai

    2005-01-01

    Mild hypothermia impairs resistance to infection and, reportedly, impairs phagocytosis and oxidative killing of un-opsonized bacteria. We evaluated various functions at 33 to 41°C in neutrophils taken from volunteers. Adhesion on endothelial cells was determined using light microscopy. Adhesion molecules expression and receptors, phagocytosis, and release of reactive oxidants were assessed using flow cytometric assays. Adhesion protein CD11b expression on resting neutrophils was temperature independent. However, upregulation of CD11b with TNF-α was increased by hypothermia and decreased with hyperthermia. Neutrophil adhesion to either resting or activated endothelial cells was not temperature dependent. Bacterial uptake was inversely related to temperature, more so with E. coli than S. aureus. Temperature dependence of phagocytosis occurred only with opsonized bacteria. Hypothermia slightly increased N-Formyl-L-methionyl-L-leucyl-phenylalanine (FMLP) receptors on neutrophils: hyperthermia decreased expression, especially with TNF-α. FMLP-induced H2O2 production was inversely related to temperature, especially in the presence of TNF-α. Conversely, phorbol-13-myristate-12-acetate, an activator of protein kinase C, induced an extreme and homogenous release of reactive oxidants that increased with temperature. In contrast to non-receptor dependent phagocytosis and oxidative killing, several crucial receptor-dependent neutrophil activities show temperature-dependent regulation, with hypothermia increasing function. The temperature dependence of neutrophil function is thus more complicated than previously appreciated. PMID:15281545

  6. Bioavailable IGF-1 is beneficially associated with biomarkers of endothelial function in young healthy adults: The African-PREDICT study.

    PubMed

    Barnard, Sunelle A; Smith, Wayne; Mels, Catharina M C; Botha, Shani; Schutte, Aletta E

    2018-06-12

    Low circulating levels of insulin-like growth factor-1 (IGF-1) are associated with endothelial dysfunction, subsequently leading to the development of cardiovascular disease. To better understand the early phases of vascular deterioration in a young, healthy population, we investigated, cross-sectionally, whether biomarkers of endothelial function (intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and von Willebrand factor antigen (vWF ag )) are associated with IGF-1 in a healthy study population forming part of the larger African Prospective study on the Early Detection and Identification of Cardiovascular diseases and Hypertension (African-PREDICT). We included 825 black and white men and women (aged 20-30 years) and determined IGF-1, IGF binding protein-3 (IGFBP-3), ICAM-1, VCAM-1 and vWF ag from blood samples. We also measured 24-h blood pressure and health behaviours namely waist circumference, accelerometery, cotinine and gamma glutamyl transferase. We used the IGF-1/IGFBP-3 M ratio as an estimate of bioavailable IGF-1. In multivariable-adjusted regression analyses performed in the total group, VCAM-1 associated positively with IGFBP-3 (β = 0.21; p < .001) and negatively with IGF-1/IGFBP-3 (β = -0.18; p < .001). ICAM-1 showed a borderline negative association with IGF-1 (β = -0.09; p = .054) and IGF-1/IGFBP-3 (β = -0.08; p = .057). vWF ag was not associated with IGF-1, IGFBP-3 or bioavailable IGF-1. VCAM-1 is beneficially associated with IGF-1 in a young healthy cohort, independent of sex, ethnicity, blood pressure and health behaviours - thereby confirming the potential importance of bioavailable IGF-1 in early vascular endothelial protection. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Nlrp3-dependent IL-1β inhibits CD103+ dendritic cell differentiation in the gut

    PubMed Central

    Mak’Anyengo, Rachel; Reichl, Cornelia; Hörth, Christine; Lehr, Hans‑Anton; Fischer, Sandra; Clavel, Thomas; Denk, Gerald; Kobold, Sebastian; Endres, Stefan; Bauer, Christian

    2018-01-01

    Inflammatory bowel disease (IBD) is associated with enhanced levels of the IL-1 family cytokines IL-1β and IL-18, which are activated by the Nlrp3 inflammasome. Here, we investigated the role of inflammasome-driven cytokine release on T cell polarization and DC differentiation in steady state and T cell transfer colitis. In vitro and in vivo data showed that IL-1β induces Th17 polarization and increases GM‑CSF production by T cells. Reduced IL-1β levels in Nlrp3–/– mice correlated with enhanced FLT3L levels and increased frequency of tolerogenic CD103+ DC. In the T cell transfer colitis model, Nlrp3 deficiency resulted in lower IL‑1β levels, reduced Th17 immunity, and less severe colitis. Unaltered IL-18 levels in both mouse strains pointed toward Nlrp3-independent processing. Importantly, cohousing revealed that the gut microbiome had no impact on the observed Nlrp3–/– phenotype. This study demonstrates that NLRP3 acts as a molecular switch of intestinal homeostasis by shifting local immune cells toward an inflammatory phenotype via IL-1β. PMID:29515025

  8. Adhesion of Epstein–Barr virus-positive natural killer cell lines to cultured endothelial cells stimulated with inflammatory cytokines

    PubMed Central

    Kanno, H; Watabe, D; Shimizu, N; Sawai, T

    2008-01-01

    Chronic active Epstein–Barr virus (EBV) infection (CAEBV) is characterized by chronic recurrent infectious mononucleosis-like symptoms. Approximately one-fourth of CAEBV patients develop vascular lesions with infiltration of EBV-positive lymphoid cells. Furthermore, EBV-positive natural killer (NK)/T cell lymphomas often exhibit angiocentric or angiodestructive lesions. These suggest an affinity of EBV-positive NK/T cells to vascular components. In this study, we evaluated the expression of adhesion molecules and cytokines in EBV-positive NK lymphoma cell lines, SNK1 and SNK6, and examined the role of cytokines in the interaction between NK cell lines and endothelial cells. SNKs expressed intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) at much higher levels than those in EBV-negative T cell lines. SNKs produced the larger amount of tumour necrosis factor (TNF)-α, which caused increased expression of ICAM-1 and VCAM-1 in cultured human endothelial cells, than that from EBV-negative T cell lines. Furthermore, SNKs exhibited increased adhesion to cultured endothelial cells stimulated with TNF-α or interleukin (IL)-1β, and the pretreatment of cytokine-stimulated endothelial cells with anti-VCAM-1-antibodies reduced cell adhesion. These indicate that the up-regulated expression of VCAM-1 on cytokine-stimulated endothelial cells would be important for the adhesion of EBV-positive NK cells and might initiate the vascular lesions. PMID:18190605

  9. Tumor necrosis factor -α, interleukin-10, intercellular and vascular adhesion molecules are possible biomarkers of disease severity in complicated Plasmodium vivax isolates from Pakistan.

    PubMed

    Raza, Afsheen; Ghanchi, Najia K; Sarwar Zubairi, Ali bin; Raheem, Ahmed; Nizami, Sobia; Beg, Mohammad Asim

    2013-01-01

    Cytokine-mediated endothelial activation pathway is a known mechanism of pathogenesis employed by Plasmodium falciparum to induce severe disease symptoms in human host. Though considered benign, complicated cases of Plasmodium vivax are being reported worldwide and from Pakistan. It has been hypothesized that P.vivax utilizes similar mechanism of pathogenesis, as that of P.falciparum for manifestations of severe malaria. Therefore, the main objective of this study was to characterize the role of cytokines and endothelial activation markers in complicated Plasmodium vivax isolates from Pakistan. A case control study using plasma samples from well-characterized groups suffering from P.vivax infection including uncomplicated cases (n=100), complicated cases (n=82) and healthy controls (n=100) were investigated. Base line levels of Tumor necrosis factor-α (TNF-α), Interleukin-6 (IL-6), Interleukin-10 (IL-10), Intercellular adhesion molecule-1 (ICAM-1), Vascular adhesion molecule-1(VCAM-1) and E-selectin were measured by ELISA. Correlation of cytokines and endothelial activation markers was done using Spearman's correlation analysis. Furthermore, significance of these biomarkers as indicators of disease severity was also analyzed. The results showed that TNF-α, IL-10, ICAM-1and VCAM-1 were 3-fold, 3.7 fold and 2 fold increased between uncomplicated and complicated cases. Comparison of healthy controls with uncomplicated cases showed no significant difference in TNF-α concentrations while IL-6, IL-10, ICAM-1, VCAM-1 and E-selectin were found to be elevated respectively. In addition, significant positive correlation was observed between TNF-α and IL-10/ ICAM-1, IL-6 and IL-10, ICAM-1 and VCAM-1.A Receiver operating curve (ROC) was generated which showed that TNF-α, IL-10, ICAM-1 and VCAM-1 were the best individual predictors of complicated P.vivax malaria. The results suggest that though endothelial adhesion molecules are inducible by pro-inflammatory cytokine TNF

  10. Effects of aqueous extracts of Taraxacum Officinale on expression of tumor necrosis factor-alpha and intracellular adhesion molecule 1 in LPS-stimulated RMMVECs.

    PubMed

    Hu, Ge; Wang, Junjie; Hong, Dong; Zhang, Tao; Duan, Huiqin; Mu, Xiang; Yang, Zuojun

    2017-01-11

    Mastitis gives rise to big financial burden to farm industry (mainly dairy production) and public health. Its incidence is currently high and therefore, highly effective treatments for therapy, especially with natural products are required. Taraxacum officinale has been reported to use for anti-inflammation. However, its effect on endothelium during mastitis has not been reported. We firstly established inflammation experimental model of rat mammary microvascular endothelial cells (RMMVECs). We evaluated the effects of dandelion leaf aqueous extracts (DAE) on LPS-induced production of inflammatory mediators in RMMVECs by enzyme-linked immunosorbent assay and Western blot. We treated RMMVECs with 1 μg/ml LPS for 4 h and then incubated with 10, 100 and 200 μg/mL DAE for 4, 8, 12 and 24 h. The expression (mRNA and protein level) of targets (tumor necrosis factor-alpha (TNF- α) and Intracellular Adhesion Molecule 1 (ICAM1) was analyzed by employing real-time PCR and Western blots. The in vivo anti-inflammatory effect of DAE on mastitis within an Staphylococcus aureus-induced mouse model was also determined. The obtained results showed that dandelion extracts at the concentration of 100 and 200 μg/mL could significantly inhibit both TNF-α and ICAM-1 expression in all time points checked while 10 μg/mL of dandelion only suppress both expression at 8 and 12 h post-treatment. The in vivo tests showed that the DAE inhibited the expression of TNF-α and ICAM-1 in a time-dependent manner. All results suggest that the endothelium may use as as a possible target of dandelion for anti-inflammation.

  11. Activation of macrophages and interference with CD4+ T-cell stimulation by Mycobacterium avium subspecies paratuberculosis and Mycobacterium avium subspecies avium

    PubMed Central

    Lage, Susanne Zur; Goethe, Ralph; Darji, Ayub; Valentin-Weigand, Peter; Weiss, Siegfried

    2003-01-01

    Mycobacterium avium subspecies paratuberculosis (M. ptb) and M. avium subspecies avium (M. avium) are closely related but exhibit significant differences in their interaction with the host immune system. The macrophage line, J774, was infected with M. ptb and M. avium and analysed for cytokine production and stimulatory capacity towards antigen-specific CD4+ T cells. Under all conditions J774 cells were activated to produce proinflammatory cytokines. No influence on the expression of major histocompatibility complex (MHC) class II, intracellular adhesion molecule-1 (ICAM-1), B7.1, B7.2 or CD40 was found. However, the antigen-specific stimulatory capacity of J774 cells for a CD4+ T-cell line was significantly inhibited after infection with M. ptb, but not with M. avium. When a T-cell hybridoma expressing a T-cell receptor identical to that of the T-cell line was used, this inhibition was not observed, suggesting that costimulation which is essential for the CD4+ T-cell line is influenced by the pathogenic bacterium M. ptb. PMID:12519304

  12. Amino acids exhibit anti-inflammatory effects in human monocytic leukemia cell line, THP-1 cells.

    PubMed

    Hasegawa, Shunji; Ichiyama, Takashi; Sonaka, Ichiro; Ohsaki, Ayami; Hirano, Reiji; Haneda, Yasuhiro; Fukano, Reiji; Hara, Masami; Furukawa, Susumu

    2011-11-01

    The elemental diet is one of the effective therapies for inflammatory bowel disease. However, the mechanism remains unclear, and there have never been reports about the inhibitory effects of amino acids in human monocytes/macrophages. We investigated the inhibitory effects of amino acids on cytokine production or expression of adhesion molecules that are involved in inflammatory diseases, in human monocytes/macrophages. We examined the inhibitory effects of cysteine, histidine or glycine on the induction of nuclear factor-κB (NF-κB) activation, expression of intracellular adhesion molecule-1 (ICAM-1, CD54) and production of interleukin-8 (IL-8) in THP-1 cells, a human monocytic leukemia cell line, and peripheral blood mononuclear cells (PBMCs) stimulated with tumor necrosis factor-α (TNF-α). Cysteine, histidine and glycine significantly reduced the activation of NF-κB in THP-1 cells stimulated with TNF-α. In addition, cysteine and histidine significantly inhibited the expression of ICAM-1 and production of IL-8 in THP-1 cells and PBMCs. Our results suggest that cysteine and histidine exhibit anti-inflammatory effects in THP-1 cells, and may be responsible for the efficacy of treatment in inflammatory bowel diseases.

  13. Hyperforin, the active component of St. John's wort, induces IL-8 expression in human intestinal epithelial cells via a MAPK-dependent, NF-kappaB-independent pathway.

    PubMed

    Zhou, Changcheng; Tabb, Michelle M; Sadatrafiei, Asal; Grün, Felix; Sun, Aixu; Blumberg, Bruce

    2004-11-01

    St. John's wort is widely used as an herbal antidepressant and is among the top-selling botanical products in the United States. Although St. John's wort has been reported to have minimal side effects compared with other antidepressants, here we show that hyperforin, the active component of St. John's wort, can stimulate interleukin-8 (IL-8) expression in human intestinal epithelia cells (IEC) and primary hepatocytes. Hyperforin is also able to induce expression of mRNA, encoding another major inflammatory mediator--intercellular adhesion molecule-1 (ICAM-1). IEC participate in the intestinal inflammatory process and serve as a first line of defense through bidirectional communication between host and infectious pathogens. Although hyperforin is a potent ligand for the steroid and xenobiotic receptor (SXR), we found that hyperforin induced IL-8 mRNA through an SXR-independent transcriptional activation pathway. IL-8 induction by hyperforin required the activation of AP-1 but not the NF-kappaB transcription factor, thereby distinguishing it from the NF-kappaB-dependent IL-8 induction mediated by tumor necrosis factor alpha (TNFalpha). Further study revealed that extracellular signal-regulated kinase 1 and 2 (ERK1/2) were required for the hyperforin-induced expression of IL-8. Our results suggest a previously unsuspected effect of St. John's wort in modulating the immune and inflammatory responses.

  14. PDGF Suppresses the Sulfation of CD44v and Potentiates CD44v-Mediated Binding of Colon Carcinoma Cells to Fibrin under Flow

    PubMed Central

    Alves, Christina S.; Konstantopoulos, Konstantinos

    2012-01-01

    Fibrin(ogen) mediates sustained tumor cell adhesion and survival in the pulmonary vasculature, thereby facilitating the metastatic dissemination of tumor cells. CD44 is the major functional fibrin receptor on colon carcinoma cells. Growth factors, such as platelet-derived growth factor (PDGF), induce post-translational protein modifications, which modulate ligand binding activity. In view of the roles of PDGF, fibrin(ogen) and CD44 in cancer metastasis, we aimed to delineate the effect of PDGF on CD44-fibrin recognition. By immunoprecipitating CD44 from PDGF-treated and untreated LS174T colon carcinoma cells, which express primarily CD44v, we demonstrate that PDGF enhances the adhesion of CD44v-coated beads to immobilized fibrin. Enzymatic inhibition studies coupled with flow-based adhesion assays and autoradiography reveal that PDGF augments the binding of CD44v to fibrin by significantly attenuating the extent of CD44 sulfation primarily on chondroitin and dermatan sulfate chains. Surface plasmon resonance assays confirm that PDGF enhances the affinity of CD44v-fibrin binding by markedly reducing its dissociation rate while modestly increasing the association rate. PDGF mildly reduces the affinity of CD44v-hyaluronan binding without affecting selectin-CD44v recognition. The latter is attributed to the fact that CD44v binds to selectins via sialofucosylated O-linked residues independent of heparan, dermatan and chondroitin sulfates. Interestingly, PDGF moderately reduces the sulfation of CD44s and CD44s-fibrin recognition. Collectively, these data offer a novel perspective into the mechanism by which PGDF regulates CD44-dependent binding of metastatic colon carcinoma cells to fibrin(ogen). PMID:23056168

  15. Relationship between adhesion molecules with hs-CRP and changes therein after ARB (Valsartan) administration in patients with obstructive sleep apnea syndrome.

    PubMed

    Kageyama, Norihito; Nomura, Masahiro; Nakaya, Yutaka; Watanabe, Tomonori; Ito, Susumu

    2006-02-01

    It has been reported that a relationship exists between obstructive sleep apnea syndrome (OSAS) and cardiovascular and cerebrovascular diseases. To address this issue, we evaluated whether OSAS is associated with adhesion molecules and inflammatory signs, important indicators of atherosclerosis. Levels of high-sensitivity CRP (hs-CRP) and intercellular adhesion molecule-1 (ICAM-1) were measured in 30 patients with ischemic heart disease, confirmed by coronary arteriography (IHD group). Twenty healthy volunteers without sleep apnea were used as controls (Group N). Sleeping respiratory information was collected using a portable sleep polygraph, together on information about oronasal flow, tracheal sound, chest respiration, and percutaneous oxygen saturation (SpO2) to obtain the apnea-hypopnea index (AHI). In the IHD group, 9 (30%) of the 30 patients showed evidence of OSAS [IHD(AHI> or = 40) group] and 21 did not [IHD(AHI<40) group]. The levels of hs-CRP and ICAM-1 were significantly higher in the IHD group than in the N group (p<0.01). Moreover, the levels of hs-CRP and ICAM-1 were significantly higher in the IHD(AHI > or = 40) group than in the IHD(AHI<40) group (p<0.01). However, after the administration of valsartan, angiotensin II receptor antagonists (ARB) to both IHD groups, the levels of hs-CRP and ICAM-1 decreased significantly in both groups. Moreover, a multivariate analysis revealed that the levels of hs-CRP and ICAM-1 were associated with the severity of sleep apnea. These findings suggest that, in OSAS the levels of hs-CRP and ICAM-1 are decreased and that the administration of ARB decreases the risk of atherosclerosis.

  16. Sialoadhesin (Sn) maps to mouse chromosome 2 and human chromosome 20 and is not linked to the other members of the Sialoadhesin family, CD22, MAG, and CD33

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mucklow, S.; Hartnell, A.; Crocker, P.R.

    1995-07-20

    Sialoadhesin is a cell-cell interaction molecule expressed by subpopulations of tissue macrophages. It contains 17 immunoglobulin (Ig)-like domains and is structurally related to CD22, MAG, and CD33. These molecules establish a distinct family of sialic acid-dependent adhesion molecules, the sialoadhesin family. We have mapped the rodent sialoadhesin gene, Sn, to chromosome 2F-H1 by in situ hybridization (ISH) and shown linkage to Il1b and four other markers by backcross linkage analysis. We have also used ISH and a human-mouse somatic cell hybrid panel to localize the human sialoadhesin gene, SN, to the conserved syntenic region on human chromosome 20p13. This demonstratesmore » that the sialoadhesin gene is not linked to the other members of the sialoadhesin family, CD22, MAG. and CD33, which have been independently mapped to the distal region of mouse chromosome 7 and to human chromosome 19q13.1-3. 19 refs., 1 fig.« less

  17. Novel mode of action of the calcium antagonist mibefradil (Ro 40-5967): potent immunosuppression by inhibition of T-cell infiltration through allogeneic endothelium.

    PubMed Central

    Blaheta, R A; Hailer, N P; Brude, N; Wittig, B; Oppermann, E; Leckel, K; Harder, S; Scholz, M; Weber, S; Encke, A; Markus, B H

    1998-01-01

    Cyclosporin A reduces the mitotic activity of allosensitized lymphocytes, but fails to limit emigration of these cells into the donor organ. However, the modulation of both lymphocyte proliferation and infiltration are desirable characteristics of immunosuppressive therapy. The calcium-channel blocker, verapamil, has recently been shown to effectively prevent the transmigration of CD4+ and CD8+ T cells through allogeneic endothelium. Mibefradil (Ro 40-5967) represents a new generation of calcium antagonists with high potency and long-term activity. To evaluate the immunosuppressive potential of this drug, the influence of mibefradil on lymphocyte adhesion to, horizontal locomotion along, and penetration through allogeneic endothelium (HUVEC) was performed. When lymphocytes were prestimulated for 24 hr with mibefradil, adhesion and penetration were dose-dependently reduced. The adhesion ID50 values were 3.4 microM (CD4+ T cells) versus 9.2 microM (CD8+ T cells) and 2.1 microM (CD4+ T cells) versus 3.9 microM (CD8+ T cells) with regard to penetration. Mibefradil also effectively blocked horizontal locomotion. Specific down-regulation of T-cell binding to the P-selection receptor (ID50: CD4+ T cells, 0.8 microM: CD8+ T cells, 1.2 microM) and to the intracellular adhesion molecule-1 (ICAM-1) receptor (ID50: CD4+ T cells, 1.9 microM; CD8+ T cells, 1.5 microM) by mibefradil seems to be responsible for the decreased adhesion and penetration rates. Reduction of intracellular F-actin in T lymphocytes could diminish cell locomotion. In conclusion, the potent suppressive properties of mibefradil support its use as a co-medication in cyclosporin A-based immunosuppressive therapy. PMID:9741343

  18. Novel mode of action of the calcium antagonist mibefradil (Ro 40-5967): potent immunosuppression by inhibition of T-cell infiltration through allogeneic endothelium.

    PubMed

    Blaheta, R A; Hailer, N P; Brude, N; Wittig, B; Oppermann, E; Leckel, K; Harder, S; Scholz, M; Weber, S; Encke, A; Markus, B H

    1998-06-01

    Cyclosporin A reduces the mitotic activity of allosensitized lymphocytes, but fails to limit emigration of these cells into the donor organ. However, the modulation of both lymphocyte proliferation and infiltration are desirable characteristics of immunosuppressive therapy. The calcium-channel blocker, verapamil, has recently been shown to effectively prevent the transmigration of CD4+ and CD8+ T cells through allogeneic endothelium. Mibefradil (Ro 40-5967) represents a new generation of calcium antagonists with high potency and long-term activity. To evaluate the immunosuppressive potential of this drug, the influence of mibefradil on lymphocyte adhesion to, horizontal locomotion along, and penetration through allogeneic endothelium (HUVEC) was performed. When lymphocytes were prestimulated for 24 hr with mibefradil, adhesion and penetration were dose-dependently reduced. The adhesion ID50 values were 3.4 microM (CD4+ T cells) versus 9.2 microM (CD8+ T cells) and 2.1 microM (CD4+ T cells) versus 3.9 microM (CD8+ T cells) with regard to penetration. Mibefradil also effectively blocked horizontal locomotion. Specific down-regulation of T-cell binding to the P-selection receptor (ID50: CD4+ T cells, 0.8 microM: CD8+ T cells, 1.2 microM) and to the intracellular adhesion molecule-1 (ICAM-1) receptor (ID50: CD4+ T cells, 1.9 microM; CD8+ T cells, 1.5 microM) by mibefradil seems to be responsible for the decreased adhesion and penetration rates. Reduction of intracellular F-actin in T lymphocytes could diminish cell locomotion. In conclusion, the potent suppressive properties of mibefradil support its use as a co-medication in cyclosporin A-based immunosuppressive therapy.

  19. Emodin self-emulsifying platform ameliorates the expression of FN, ICAM-1 and TGF-β1 in AGEs-induced glomerular mesangial cells by promoting absorption.

    PubMed

    Huang, Jiani; Gong, Wenyan; Chen, Zhiquan; Huang, Junying; Chen, Qiuhong; Huang, Heqing; Zhao, Chunshun

    2017-03-01

    Emodin, a potential anti-diabetic nephropathy agent, is limited by its oral use due to the poor water solubility. The present study aimed to enhance the absorption and the suppressive effects of emodin on renal fibrosis by developing a self-microemulsifying drug delivery system (SMEDDS). Solubility studies, compatibility tests, pseudo-ternary phase diagrams analysis and central composite design were carried out to obtain the optimized formulation. The average droplet size of emodin-loaded SMEDDS was about 18.31±0.12nm, and the droplet size and zeta potential remained stable at different dilution ratios of water and different values of pH varying from 1.2 to 7.2. Enhanced cellular uptake in both the Caco-2 cells and glomerular mesangial cells (GMCs) is great advantageous for the formulation. The AUC 0-24h of emodin-loaded SMEDDS was 1.87-fold greater than that of emodin suspension, which may be attributed to enhanced uptake in Caco-2 cells. Moreover, emodin-loaded SMEDDS showed better suppressive effects on the protein level of fibronectin (FN), transforming growth factor-beta 1 (TGF-β1) and intercellular adhesion molecule 1 (ICAM-1) than the crude emodin in advanced glycation-end products (AGEs)-induced GMCs and renal tubular epithelial cells (NRK-52E). Our study illustrated that developed SMEDDS improved the oral absorption of emodin, and attained better suppressive effects on the protein level of renal fibrosis compositions in AGEs-induced GMCs and NRK-52E cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. CD59 signaling and membrane pores drive Syk-dependent erythrocyte necroptosis

    PubMed Central

    LaRocca, T J; Stivison, E A; Mal-Sarkar, T; Hooven, T A; Hod, E A; Spitalnik, S L; Ratner, A J

    2015-01-01

    Mature erythrocytes (red blood cells (RBCs)) undergo the programmed cell death (PCD) pathway of necroptosis in response to bacterial pore-forming toxins (PFTs) that target human CD59 (hCD59) but not hCD59-independent PFTs. Here, we investigate the biochemical mechanism of RBC necroptosis with a focus on the mechanism of induction and the minimal requirements for such RBC death. Binding or crosslinking of the hCD59 receptor led to Syk-dependent induction of vesiculated morphology (echinocytes) that was associated with phosphorylation of Band 3 and was required for Fas ligand (FasL) release. FasL-dependent phosphorylation of receptor-interacting protein kinase 1 (RIP1) in combination with plasma membrane pore formation was required for execution of RBC necroptosis. RIP1 phosphorylation led to the phosphorylation of RIP3, which was also critical for RBC necroptosis. Notably, RBC necroptosis was mediated by FasL and not by other candidate inducers, including tumor necrosis factor alpha (TNF-α) and TNF-related apoptosis-inducing ligand (TRAIL). Other types of RBC damage, such as eryptotic damage, failed to induce necroptosis when combined with hCD59 crosslinking. This work sheds light on the requirements for this recently discovered PCD in RBCs and provides a clear picture of the biochemical mechanism of induction of RBC necroptosis. PMID:26018734

  1. CD59 signaling and membrane pores drive Syk-dependent erythrocyte necroptosis.

    PubMed

    LaRocca, T J; Stivison, E A; Mal-Sarkar, T; Hooven, T A; Hod, E A; Spitalnik, S L; Ratner, A J

    2015-05-28

    Mature erythrocytes (red blood cells (RBCs)) undergo the programmed cell death (PCD) pathway of necroptosis in response to bacterial pore-forming toxins (PFTs) that target human CD59 (hCD59) but not hCD59-independent PFTs. Here, we investigate the biochemical mechanism of RBC necroptosis with a focus on the mechanism of induction and the minimal requirements for such RBC death. Binding or crosslinking of the hCD59 receptor led to Syk-dependent induction of vesiculated morphology (echinocytes) that was associated with phosphorylation of Band 3 and was required for Fas ligand (FasL) release. FasL-dependent phosphorylation of receptor-interacting protein kinase 1 (RIP1) in combination with plasma membrane pore formation was required for execution of RBC necroptosis. RIP1 phosphorylation led to the phosphorylation of RIP3, which was also critical for RBC necroptosis. Notably, RBC necroptosis was mediated by FasL and not by other candidate inducers, including tumor necrosis factor alpha (TNF-α) and TNF-related apoptosis-inducing ligand (TRAIL). Other types of RBC damage, such as eryptotic damage, failed to induce necroptosis when combined with hCD59 crosslinking. This work sheds light on the requirements for this recently discovered PCD in RBCs and provides a clear picture of the biochemical mechanism of induction of RBC necroptosis.

  2. Strong composition dependence of adhesive properties of ultraviolet curing adhesives with modified acrylates

    NASA Astrophysics Data System (ADS)

    Feng, Yefeng; Li, Yandong; Wang, Fupeng; Peng, Cheng; Xu, Zhichao; Hu, Jianbing

    2018-05-01

    Ultraviolet (UV) curable adhesives have been widely researched in fields of health care and electronic components. UV curing systems with modified acrylic ester prepolymers have been frequently employed. In order to clarify composition dependence of adhesive properties of adhesives containing modified acrylates, in this work, several UV curing adhesives bearing urethane and epoxy acrylates were designed and fabricated. The effects of prepolymer, diluent, feed ratio, initiator and assistant on adhesive performances were investigated. This work might offer a facile route to gain promising high-performance UV curable adhesives with desired adhesive traits through regulating their compositions.

  3. Serum amyloid P inhibits granulocyte adhesion

    PubMed Central

    2013-01-01

    Background The extravasation of granulocytes (such as neutrophils) at a site of inflammation is a key aspect of the innate immune system. Signals from the site of inflammation upregulate granulocyte adhesion to the endothelium to initiate extravasation, and also enhance granulocyte adhesion to extracellular matrix proteins to facilitate granulocyte movement through the inflamed tissue. During the resolution of inflammation, other signals inhibit granulocyte adhesion to slow and ultimately stop granulocyte influx into the tissue. In a variety of inflammatory diseases such as acute respiratory distress syndrome, an excess infiltration of granulocytes into a tissue causes undesired collateral damage, and being able to reduce granulocyte adhesion and influx could reduce this damage. Results We found that serum amyloid P (SAP), a constitutive protein component of the blood, inhibits granulocyte spreading and granulocyte adhesion to extracellular matrix components. This indicates that in addition to granulocyte adhesion inhibitors that are secreted during the resolution of inflammation, a granulocyte adhesion inhibitor is present at all times in the blood. Although SAP affects adhesion, it does not affect the granulocyte adhesion molecules CD11b, CD62L, CD18, or CD44. SAP also has no effect on the production of hydrogen peroxide by resting or stimulated granulocytes, or N-formyl-methionine-leucine-phenylalanine (fMLP)-induced granulocyte migration. In mice treated with intratracheal bleomycin to induce granulocyte accumulation in the lungs, SAP injections reduced the number of granulocytes in the lungs. Conclusions We found that SAP, a constitutive component of blood, is a granulocyte adhesion inhibitor. We hypothesize that SAP allows granulocytes to sense whether they are in the blood or in a tissue. PMID:23324174

  4. CD81 Controls Sustained T Cell Activation Signaling and Defines the Maturation Stages of Cognate Immunological Synapses

    PubMed Central

    Rocha-Perugini, V.; Zamai, M.; González-Granado, J. M.; Barreiro, O.; Tejera, E.; Yañez-Mó, M.; Caiolfa, V. R.

    2013-01-01

    In this study, we investigated the dynamics of the molecular interactions of tetraspanin CD81 in T lymphocytes, and we show that CD81 controls the organization of the immune synapse (IS) and T cell activation. Using quantitative microscopy, including fluorescence recovery after photobleaching (FRAP), phasor fluorescence lifetime imaging microscopy-Föster resonance energy transfer (phasorFLIM-FRET), and total internal reflection fluorescence microscopy (TIRFM), we demonstrate that CD81 interacts with ICAM-1 and CD3 during conjugation between T cells and antigen-presenting cells (APCs). CD81 and ICAM-1 exhibit distinct mobilities in central and peripheral areas of early and late T cell-APC contacts. Moreover, CD81–ICAM-1 and CD81-CD3 dynamic interactions increase over the time course of IS formation, as these molecules redistribute throughout the contact area. Therefore, CD81 associations unexpectedly define novel sequential steps of IS maturation. Our results indicate that CD81 controls the temporal progression of the IS and the permanence of CD3 in the membrane contact area, contributing to sustained T cell receptor (TCR)-CD3-mediated signaling. Accordingly, we find that CD81 is required for proper T cell activation, regulating CD3ζ, ZAP-70, LAT, and extracellular signal-regulated kinase (ERK) phosphorylation; CD69 surface expression; and interleukin-2 (IL-2) secretion. Our data demonstrate the important role of CD81 in the molecular organization and dynamics of the IS architecture that sets the signaling threshold in T cell activation. PMID:23858057

  5. Organization and mobility of CD11b/CD18 and targeting of superoxide on the surface of degranulated human neutrophils.

    PubMed

    Mukherjee, G; Rasmusson, B; Linner, J G; Quinn, M T; Parkos, C A; Magnusson, K E; Jesaitis, A J

    1998-09-01

    A monoclonal IgM, specifically recognizing both CD11b and CD18 of human neutrophils, was used to examine the organization and mobility of CD11b/CD18 in the plasma membrane of human neutrophils degranulated by dihydrocytochalasin B (dhCB) treatment and fMet-Leu-Phe (fMLF) stimulation. Subcellular fractionation analysis of untreated or dhCB-treated control neutrophils indicated that 20% of CD11b/CD18 cosedimented with plasma membrane and the remainder with specific granules. In contrast, fMLF stimulation of dhCB-treated cells caused a major reorganization of CD11b/CD18, in which 60-70% of CD11b/CD18 sedimented in dense plasma membrane fractions that were also enriched in superoxide-generating NADPH oxidase activity. Similarly pretreated neutrophils were fixed, immunogold labeled, and examined by scanning electron microscopy. Immunogold particles were distributed uniformly over the symmetrically ruffled surface of unstimulated neutrophils. On dhCB-treated cells, immunogold was mostly uniformly distributed on a smooth membrane with a small percentage of particles lining up into linear arrays. After fMLF + dhCB stimulation, CD11b/CD18 gold label was more abundant on the cell surface and formed large aggregates on polarized membrane protrusions. However, when cells were adhered to an albumin-coated quartz surface and stimulated with fMLF in the presence of dhCB, immunogold was excluded on the articulated and rounded cell body but concentrated on the periphery of adherent lamellae. Fluorescence photobleaching recovery indicated that in unstimulated cells 38 +/- 3% of CD11b/CD18 was mobile (R) with a diffusion constant D of 3.1 +/- 0.3 x 10(-10) cm2/s. Treatment with dhCB raised R and D 24 and 74%, respectively. Stimulation using 1 microM fMLF with dhCB lowered D and R to near control levels. Since NADPH oxidase and CD11b/CD18 cosediment in high-density plasma membrane domains after fMLF + dhCB stimulation, we speculate that a stimulus-induced reorganization of CD11b/CD18

  6. Mechanisms of splicing-dependent trans-synaptic adhesion by PTPδ-IL1RAPL1/IL-1RAcP for synaptic differentiation

    NASA Astrophysics Data System (ADS)

    Yamagata, Atsushi; Yoshida, Tomoyuki; Sato, Yusuke; Goto-Ito, Sakurako; Uemura, Takeshi; Maeda, Asami; Shiroshima, Tomoko; Iwasawa-Okamoto, Shiho; Mori, Hisashi; Mishina, Masayoshi; Fukai, Shuya

    2015-04-01

    Synapse formation is triggered through trans-synaptic interaction between pairs of pre- and postsynaptic adhesion molecules, the specificity of which depends on splice inserts known as `splice-insert signaling codes'. Receptor protein tyrosine phosphatase δ (PTPδ) can bidirectionally induce pre- and postsynaptic differentiation of neurons by trans-synaptically binding to interleukin-1 receptor accessory protein (IL-1RAcP) and IL-1RAcP-like-1 (IL1RAPL1) in a splicing-dependent manner. Here, we report crystal structures of PTPδ in complex with IL1RAPL1 and IL-1RAcP. The first immunoglobulin-like (Ig) domain of IL1RAPL1 directly recognizes the first splice insert, which is critical for binding to IL1RAPL1. The second splice insert functions as an adjustable linker that positions the Ig2 and Ig3 domains of PTPδ for simultaneously interacting with the Ig1 domain of IL1RAPL1 or IL-1RAcP. We further identified the IL1RAPL1-specific interaction, which appears coupled to the first-splice-insert-mediated interaction. Our results thus reveal the decoding mechanism of splice-insert signaling codes for synaptic differentiation induced by trans-synaptic adhesion between PTPδ and IL1RAPL1/IL-1RAcP.

  7. Anti-LRP/LR Specific Antibody IgG1-iS18 Impedes Adhesion and Invasion of Liver Cancer Cells

    PubMed Central

    Chetty, Carryn; Khumalo, Thandokuhle; Da Costa Dias, Bianca; Reusch, Uwe; Knackmuss, Stefan; Little, Melvyn; Weiss, Stefan F. T.

    2014-01-01

    Two key events, namely adhesion and invasion, are pivotal to the occurrence of metastasis. Importantly, the 37 kDa/67 kDa laminin receptor (LRP/LR) has been implicated in enhancing these two events thus facilitating cancer progression. In the current study, the role of LRP/LR in the adhesion and invasion of liver cancer (HUH-7) and leukaemia (K562) cells was investigated. Flow cytometry revealed that the HUH-7 cells displayed significantly higher cell surface LRP/LR levels compared to the poorly-invasive breast cancer (MCF-7) control cells, whilst the K562 cells displayed significantly lower cell surface LRP/LR levels in comparison to the MCF-7 control cells. However, Western blotting and densitometric analysis revealed that all three tumorigenic cell lines did not differ significantly with regards to total LRP/LR levels. Furthermore, treatment of liver cancer cells with anti-LRP/LR specific antibody IgG1-iS18 (0.2 mg/ml) significantly reduced the adhesive potential of cells to laminin-1 and the invasive potential of cells through the ECM-like Matrigel, whilst leukaemia cells showed no significant differences in both instances. Additionally, Pearson's correlation coefficients suggested direct proportionality between cell surface LRP/LR levels and the adhesive and invasive potential of liver cancer and leukaemia cells. These findings suggest the potential use of anti-LRP/LR specific antibody IgG1-iS18 as an alternative therapeutic tool for metastatic liver cancer through impediment of the LRP/LR- laminin-1 interaction. PMID:24798101

  8. CD11B EXPRESSION IN THE AIRWAY IS ASSOCIATED WITH ASTHMA SEVERITY, AIRWAY INFLAMMATION, AND REDUCED PERCENTAGE OF CD-54POSITIVE BLOOD LYMPHOCYTES IN ASTHMATICS

    EPA Science Inventory

    CD11b and its counter receptor CD54 (ICAM-1) are both essential for migration of blood monocytes and neutrophils into tissues in response to inflammatory stimuli. Methods: Forty induced sputum and peripheral blood samples were taken over a six week period from nine atopic adults...

  9. Effects of CD44 and E-cadherin overexpression on the proliferation, adhesion and invasion of ovarian cancer cells.

    PubMed

    Mao, Meiya; Zheng, Xiaojiao; Jin, Bohong; Zhang, Fubin; Zhu, Linyan; Cui, Lining

    2017-12-01

    CD44 is a prognostic indicator of shorter survival time in ovarian cancer. E-cadherin fragmentation promotes the progression of ovarian cancer. However, the effects of CD44 and E-cadherin overexpression on ovarian cancer cells have remained elusive. The present study aimed to investigate the effects of overexpression of CD44 and E-cadherin on cell proliferation, adhesion and invasion of SKOV-3 and OVCAR-3 ovarian cancer cells. Overexpression of CD44 and E-cadherin was achieved by transfecting SKOV-3 and OVCAR-3 cells with viruses carrying the CD44 or E-cadherin gene, respectively. Expression of CD44 and E-cadherin was detected by western blot analysis. The proliferation of SKOV-3 and OVCAR-3 cells was measured by a Cell Counting Kit-8 at 0, 24 and 48 h after viral transfection. The adhesion ability of SKOV-3 and OVCAR-3 cells to the endothelial layer was detected. A Transwell invasion assay was utilized to assess the invasion ability of the cells. Overexpression of CD44 and E-cadherin in SKOV-3 and OVCAR-3 cells was confirmed by western blot. Compared with the blank or negative control groups, the CD44 overexpression groups of SKOV-3 and OVCAR-3 cells exhibited an increased cell proliferation rate at 24 and 48 h, whereas overexpression of E-cadherin did not alter the proliferation of these cells. Furthermore, compared with the blank and negative control groups, the cell adhesion and invasion ability in the CD44 overexpression groups of SKOV-3 and OVCAR-3 cells was markedly higher. There were no significant differences in adhesion ability between the E-cadherin overexpression group and the blank/negative control group. Of note, overexpression of E-cadherin decreased the invasive ability of SKOV-3 and OVCAR-3 cells. In conclusion, Overexpression of CD44 increased the proliferation, adhesion and invasion of ovarian cancer cells, while overexpression of E-cadherin decreased the invasion of ovarian cancer cells.

  10. Strong mechanical adhesion of gold electroless contacts on CdZnTe deposited by alcoholic solutions

    NASA Astrophysics Data System (ADS)

    Benassi, G.; Nasi, L.; Bettelli, M.; Zambelli, N.; Calestani, D.; Zappettini, A.

    2017-02-01

    CdZnTe crystals are nowadays employed as X-ray detectors for a number of applications, such as medical imaging, security, and environmental monitoring. One of the main difficulties connected with CdZnTe-based detector processing is the poor contact adhesion that affect bonding procedures and device long term stability. We have shown that it is possible to obtain mechanically stable contacts by common electroless deposition using alcoholic solutions instead of water solutions. The contacts show blocking current-voltage characteristic that is required for obtaining spectroscopic detectors. Nanoscale-resolved chemical analysis indicated that the improved mechanical adhesion is due to a better control of the stoichiometry of the CdZnTe layer below the contact.

  11. Meta-analysis of association between K469E polymorphism of the ICAM-1 gene and retinopathy in type 2 diabetes

    PubMed Central

    Fan, Wen-Ying; Liu, Ning-Pu

    2015-01-01

    AIM To collectively evaluate the association of intercellular adhesion molecule-1 (ICAM-1) gene K469E polymorphism (rs5498) with diabetic retinopathy (DR) in patients with type 2 diabetic mellitus (T2DM). METHODS Overall review of available literatures relating K469E polymorphism to the risk of DR was conducted on 4 electronic databases. Meta-analysis was performed by Stata 12.0 to calculate pooled odds ratios (ORs). Potential sources of heterogeneity and bias were explored. RESULTS Seven studies with genotype frequency data including 1120 cases with DR and 956 diabetic controls free of DR were included. Meta-analysis did not show significant association of K469E polymorphism with DR (P>0.05). A statistically significant association was detected between the K469E polymorphism and proliferative diabetic retinopathy (PDR) in Asians only in dominant model (GG+AG vs AA) with pooled OR of 0.729 (95%CI: 0.564-0.942, P=0.016, Pheterogeneity=0.143), however, this association was not detected in recessive model (GA+AA vs GG; OR=1.178, 95%CI: 0.898-1.545, P=0.236, Pheterogeneity=0.248) or allelic model (G vs A; OR=0.769, 95% CI: 0.576-1.026, P=0.074, Pheterogeneity=0.094). No publication bias was found by Funnel plot, Begg's and Egger's test. CONCLUSION This research found no statistically significant association between ICAM-1 gene K469E polymorphism and DR in patients with T2DM, but showed significant association of the K469E polymorphism with PDR in Asian diabetic patients only in dominant model. Further investigation would be required to consolidate the conclusion. PMID:26086016

  12. Caspase-1 from Human Myeloid-Derived Suppressor Cells Can Promote T Cell-Independent Tumor Proliferation.

    PubMed

    Zeng, Qi; Fu, Juan; Korrer, Michael; Gorbounov, Mikhail; Murray, Peter J; Pardoll, Drew; Masica, David L; Kim, Young J

    2018-05-01

    Immunosuppressive myeloid-derived suppressive cells (MDSCs) are characterized by their phenotypic and functional heterogeneity. To better define their T cell-independent functions within the tumor, sorted monocytic CD14 + CD11b + HLA-DR low/- MDSCs (mMDSC) from squamous cell carcinoma patients showed upregulated caspase-1 activity, which was associated with increased IL1β and IL18 expression. In vitro studies demonstrated that mMDSCs promoted caspase-1-dependent proliferation of multiple squamous carcinoma cell lines in both human and murine systems. In vivo , growth rates of B16, MOC1, and Panc02 were significantly blunted in chimeric mice adoptively transferred with caspase-1 null bone marrow cells under T cell-depleted conditions. Adoptive transfer of wild-type Gr-1 + CD11b + MDSCs from tumor-bearing mice reversed this antitumor response, whereas caspase-1 inhibiting thalidomide-treated MDSCs phenocopied the antitumor response found in caspase-1 null mice. We further hypothesized that MDSC caspase-1 activity could promote tumor-intrinsic MyD88-dependent carcinogenesis. In mice with wild-type caspase-1, MyD88-silenced tumors displayed reduced growth rate, but in chimeric mice with caspase-1 null bone marrow cells, MyD88-silenced tumors did not display differential tumor growth rate. When we queried the TCGA database, we found that caspase-1 expression is correlated with overall survival in squamous cell carcinoma patients. Taken together, our findings demonstrated that caspase-1 in MDSCs is a direct T cell-independent mediator of tumor proliferation. Cancer Immunol Res; 6(5); 566-77. ©2018 AACR . ©2018 American Association for Cancer Research.

  13. MEL-18 loss mediates estrogen receptor–α downregulation and hormone independence

    PubMed Central

    Lee, Jeong-Yeon; Won, Hee-Young; Park, Ji-Hye; Kim, Hye-Yeon; Choi, Hee-Joo; Shin, Dong-Hui; Kang, Ju-Hee; Woo, Jong-Kyu; Oh, Seung-Hyun; Son, Taekwon; Choi, Jin-Woo; Kim, Sehwan; Kim, Hyung-Yong; Yi, Kijong; Jang, Ki-Seok; Oh, Young-Ha; Kong, Gu

    2015-01-01

    The polycomb protein MEL-18 has been proposed as a tumor suppressor in breast cancer; however, its functional relevance to the hormonal regulation of breast cancer remains unknown. Here, we demonstrated that MEL-18 loss contributes to the hormone-independent phenotype of breast cancer by modulating hormone receptor expression. In multiple breast cancer cohorts, MEL-18 was markedly downregulated in triple-negative breast cancer (TNBC). MEL-18 expression positively correlated with the expression of luminal markers, including estrogen receptor–α (ER-α, encoded by ESR1). MEL-18 loss was also associated with poor response to antihormonal therapy in ER-α–positive breast cancer. Furthermore, whereas MEL-18 loss in luminal breast cancer cells resulted in the downregulation of expression and activity of ER-α and the progesterone receptor (PR), MEL-18 overexpression restored ER-α expression in TNBC. Consistently, in vivo xenograft experiments demonstrated that MEL-18 loss induces estrogen-independent growth and tamoxifen resistance in luminal breast cancer, and that MEL-18 overexpression confers tamoxifen sensitivity in TNBC. MEL-18 suppressed SUMOylation of the ESR1 transactivators p53 and SP1, thereby driving ESR1 transcription. MEL-18 facilitated the deSUMOylation process by inhibiting BMI-1/RING1B-mediated ubiquitin-proteasomal degradation of SUMO1/sentrin-specific protease 1 (SENP1). These findings demonstrate that MEL-18 is a SUMO-dependent regulator of hormone receptors and suggest MEL-18 expression as a marker for determining the antihormonal therapy response in patients with breast cancer. PMID:25822021

  14. Impact of CD1d deficiency on metabolism.

    PubMed

    Kotas, Maya E; Lee, Hui-Young; Gillum, Matthew P; Annicelli, Charles; Guigni, Blas A; Shulman, Gerald I; Medzhitov, Ruslan

    2011-01-01

    Invariant natural killer T cells (iNKTs) are innate-like T cells that are highly concentrated in the liver and recognize lipids presented on the MHC-like molecule CD1d. Although capable of a myriad of responses, few essential functions have been described for iNKTs. Among the many cell types of the immune system implicated in metabolic control and disease, iNKTs seem ideally poised for such a role, yet little has been done to elucidate such a possible function. We hypothesized that lipid presentation by CD1d could report on metabolic status and engage iNKTs to regulate cellular lipid content through their various effector mechanisms. To test this hypothesis, we examined CD1d deficient mice in a variety of metabolically stressed paradigms including high fat feeding, choline-deficient feeding, fasting, and acute inflammation. CD1d deficiency led to a mild exacerbation of steatosis during high fat or choline-deficient feeding, accompanied by impaired hepatic glucose tolerance. Surprisingly, however, this phenotype was not observed in Jα18⁻/⁻ mice, which are deficient in iNKTs but express CD1d. Thus, CD1d appears to modulate some metabolic functions through an iNKT-independent mechanism.

  15. A PLC-γ1-independent, RasGRP1-ERK dependent pathway drives lymphoproliferative disease in LAT-Y136F mutant mice

    PubMed Central

    Kortum, Robert L.; Rouquette-Jazdanian, Alexandre K.; Miyaji, Michihiko; Merrill, Robert K.; Markegard, Evan; Pinski, John M.; Wesselink, Amelia; Nath, Nandan N.; Alexander, Clayton P.; Li, Wenmei; Kedei, Noemi; Roose, Jeroen P.; Blumberg, Peter M.; Samelson, Lawrence E.; Sommers, Connie L.

    2012-01-01

    Mice expressing a germline mutation in the PLC-γ1 binding site of LAT (linker for activation of T cells) show progressive lymphoproliferation and ultimately die at 4–6 months of age. The hyper-activated T cells in these mice show defective TCR-induced calcium flux, but enhanced Ras/ERK activation that is critical for disease progression. Despite the loss of LAT-dependent PLC-γ1 binding and activation, genetic analysis revealed RasGRP1, and not Sos1 or Sos2, to be the major RasGEF responsible for ERK activation and the lymphoproliferative phenotype in these mice. Analysis of isolated CD4+ T cells from LAT-Y136F mice showed altered proximal TCR-dependent kinase signaling, which activated a Zap70- and LAT-independent pathway. Moreover, LAT-Y136F T cells showed ERK activation that was dependent on Lck and/or Fyn, PKCθ, and RasGRP1. These data demonstrate a novel route to Ras activation in vivo in a pathological setting. PMID:23209318

  16. CD40 dependent exacerbation of immune mediated hepatitis by hepatic CD11b+ Gr-1+ myeloid derived suppressor cells in tumor bearing mice

    PubMed Central

    Kapanadze, Tamar; Medina-Echeverz, José; Gamrekelashvili, Jaba; Weiss, Jonathan M.; Wiltrout, Robert H.; Kapoor, Veena; Hawk, Nga; Terabe, Masaki; Berzofsky, Jay A.; Manns, Michael P.; Wang, Ena; Marincola, Francesco M.; Korangy, Firouzeh; Greten, Tim F.

    2015-01-01

    Immunosuppressive CD11b+Gr-1+ myeloid-derived suppressor cells (MDSC) accumulate in the livers of tumor-bearing mice. We studied hepatic MDSC in two murine models of immune mediated hepatitis. Unexpectedly, treatment of tumor bearing mice with Concanavalin A or α-Galactosylceramide resulted in increased ALT and AST serum levels in comparison to tumor free mice. Adoptive transfer of hepatic MDSC into naïve mice exacerbated Concanavalin A induced liver damage. Hepatic CD11b+Gr-1+ cells revealed a polarized pro-inflammatory gene signature after Concanavalin A treatment. An interferon gamma- dependent up-regulation of CD40 on hepatic CD11b+Gr-1+ cells along with an up-regulation of CD80, CD86, and CD1d after Concanavalin A treatment was observed. Concanavalin A treatment resulted in a loss of suppressor function by tumor-induced CD11b+Gr-1+ MDSC as well as enhanced reactive oxygen species-mediated hepatotoxicity. CD40 knockdown in hepatic MDSC led to increased arginase activity upon Concanavalin A treatment and lower ALT/AST serum levels. Finally, blockade of arginase activity in Cd40−/− tumor-induced myeloid cells resulted in exacerbation of hepatitis and increased reactive oxygen species production in vivo. Our findings indicate that in a setting of acute hepatitis, tumor-induced hepatic MDSC act as pro-inflammatory immune effector cells capable of killing hepatocytes in a CD40-dependent manner. PMID:25616156

  17. Does infection with Chlamydia pneumoniae and/or Helicobacter pylori increase the expression of endothelial cell adhesion molecules in humans?

    PubMed

    Schumacher, A; Seljeflot, I; Lerkerød, A B; Sommervoll, L; Otterstad, J E; Arnesen, H

    2002-10-01

    To investigate if Chlamydia pneumoniae and/or Helicobacter pylori seropositivity is associated with elevated levels of soluble endothelial cell adhesion molecules (sCAMs) as markers of atherosclerotic activity. Immunoglobulin A (IgA) and IgG antibodies to the two bacteria, soluble intercellular cell adhesion molecule-1 (sICAM-1), soluble vascular cell adhesion molecule-1 (sVCAM-1) and E-selectin were measured in coronary heart disease (CHD) patients (n = 193) and age- and sex-matched controls (n = 193). Two different serological methods were used for the detection of Chlamydia antibodies: Labsystems microimmunofluorescence to detect species-specific C. pneumoniae antibodies and Medac's recombinant enzyme-linked immunosorbent assay to detect genus-specific lipopolysaccharide antibodies. The concentrations of sICAM-1 and E-selectin were higher in CHD patients with positive vs. negative Chlamydia lipopolysaccharide IgA (P = 0.044 for both). H. pylori antibodies alone did not predict raised levels of sCAMs, but in CHD patients sICAM-1 was increased with IgA seropositivity to both bacteria compared to double seronegativity (P = 0.034). Concentrations of sVCAM-1 were elevated in CHD patients with double IgA seropositivity compared to those with Chlamydia lipopolysaccharide IgA seropositivity alone (P = 0.018). Our results may indicate that C. pneumoniae contributes to increased inflammation in CHD, and that this contribution is even more pronounced when present in combination with H. pylori IgA antibodies.

  18. The efficacy of activated protein C in murine endotoxemia is dependent on integrin CD11b

    PubMed Central

    Cao, Chunzhang; Gao, Yamei; Li, Yang; Antalis, Toni M.; Castellino, Francis J.; Zhang, Li

    2010-01-01

    Activated protein C (APC), the only FDA-approved biotherapeutic drug for sepsis, possesses anticoagulant, antiinflammatory, and barrier-protective activities. However, the mechanisms underlying its anti­inflammatory functions are not well defined. Here, we report that the antiinflammatory activity of APC on macrophages is dependent on integrin CD11b/CD18, but not on endothelial protein C receptor (EPCR). We showed that CD11b/CD18 bound APC within specialized membrane microdomains/lipid rafts and facilitated APC cleavage and activation of protease-activated receptor–1 (PAR1), leading to enhanced production of sphingosine-1-phosphate (S1P) and suppression of the proinflammatory response of activated macrophages. Deletion of the γ-carboxyglutamic acid domain of APC, a region critical for its anticoagulant activity and EPCR-dependent barrier protection, had no effect on its antiinflammatory function. Genetic inactivation of CD11b, PAR1, or sphingosine kinase–1, but not EPCR, abolished the ability of APC to suppress the macrophage inflammatory response in vitro. Using an LPS-induced mouse model of lethal endotoxemia, we showed that APC administration reduced the mortality of wild-type mice, but not CD11b-deficient mice. These data establish what we believe to be a novel mechanism underlying the antiinflammatory activity of APC in the setting of endotoxemia and provide clear evidence that the antiinflammatory function of APC is distinct from its barrier-protective function and anticoagulant activities. PMID:20458145

  19. Unique Monoclonal Antibody Recognizing the Third Extracellular Loop of CXCR4 Induces Lymphocyte Agglutination and Enhances Human Immunodeficiency Virus Type 1-Mediated Syncytium Formation and Productive Infection

    PubMed Central

    Tanaka, Reiko; Yoshida, Atsushi; Murakami, Tsutomu; Baba, Eishi; Lichtenfeld, Julliane; Omori, Takeru; Kimura, Tohru; Tsurutani, Naomi; Fujii, Nobutaka; Wang, Zi-Xuan; Peiper, Stephen C.; Yamamoto, Naoki; Tanaka, Yuetsu

    2001-01-01

    To increase insight into the structural basis of CXCR4 utilization in human immunodeficiency virus type 1 (HIV-1) infection, a new generation of three monoclonal antibodies (MAbs) was developed in WKA rats. The A80 MAb, which binds an epitope in the third extracellular loop (ECL3) of CXCR4, has unique biologic properties that provide novel insights into CXCR4 function. This agent enhanced syncytium formation in activated human peripheral blood mononuclear cells (PBMC) infected with X4 or R5 and CEM cells infected with X4 HIV-1 strains. Exposure to A80 increased the productive infection of activated CD4+ T cells and CEM cells with R5 and X4 viruses, respectively. This antibody uniquely induced agglutination of PBMC and CEM cells but did not activate calcium mobilization. Agglutination induced by A80 was inhibited by stromal cell-derived factor 1, T22, and phorbol 12-myristate 13-acetate but was not significantly altered by pretreatment of cells with pertussis toxin, wortmannin, or MAbs to LFA-1, ICAM-1, ICAM-2, and ICAM-3. The binding of the A145 and A120 MAbs was mapped to the N-terminal extracellular domain and a conformational epitope involving ECL1 and ECL2, respectively. Both of these MAbs inhibited HIV-1 infection and lacked the novel properties of A80. These results suggest a new role for CXCR4 in homologous lymphocyte adhesion that is ligand independent and in HIV-1 infection. PMID:11689635

  20. Material- and feature-dependent effects on cell adhesion to micro injection moulded medical polymers.

    PubMed

    Choi, Seong Ying; Habimana, Olivier; Flood, Peter; Reynaud, Emmanuel G; Rodriguez, Brian J; Zhang, Nan; Casey, Eoin; Gilchrist, Michael D

    2016-09-01

    Two polymers, polymethylmethacrylate (PMMA) and cyclic olefin copolymer (COC), containing a range of nano- to micron- roughness surfaces (Ra 0.01, 0.1, 0.4, 1.0, 2.0, 3.2 and 5.0μm) were fabricated using electrical discharge machining (EDM) and replicated using micro injection moulding (μIM). Polymer samples were characterized using optical profilometry, atomic force microscopy (AFM) and water surface contact angle. Cell adhesion tests were carried out using bacterial Pseudomonas fluorescens and mammalian Madin-Darby Canine Kidney (MDCK) cells to determine the effect of surface hydrophobicity, surface roughness and stiffness. It is found that there are features which gave insignificant differences (feature-dependent effect) in cell adhesion, albeit a significant difference in the physicochemical properties (material-dependent effect) of substrata. In bacterial cell adhesion, the strongest feature-dependence is found at Ra 0.4μm surfaces, with material-dependent effects strongest at Ra 0.01μm. Ra 0.1μm surfaces exhibited strongest feature-dependent effects and Ra 5.0μm has strongest material-dependent effects on mammalian cell adhesion. Bacterial cell adhesion is found to be favourable to hydrophobic surfaces (COC), with the lowest adhesion at Ra 0.4μm for both materials. Mammalian cell adhesion is lowest in Ra 0.1μm and highest in Ra 1.0μm, and generally favours hydrophilic surfaces (PMMA). These findings can be used as a basis for developing medical implants or microfluidic devices using micro injection moulding for diagnostic purposes, by tuning the cell adhesion on different areas containing different surface roughnesses on the diagnostic microfluidic devices or medical implants. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Influence of benzoporphyrin-derivative monoacid ring A (BPD-MA, verteporfin) on murine dendritic cells

    NASA Astrophysics Data System (ADS)

    Hunt, David W. C.; King, Diane E.; Levy, Julia G.

    1997-05-01

    The impact of bensoporphyrin derivative monoacid ring A, and visible light was determined for mouse splenic dendritic cells (DC), potent antigen-presenting cells (APC) of the immune system. It was discovered that sub-lethal doses of BPD-MA and light significantly altered the surface receptor pattern of DC as well as diminishing the capacity of these cells to activate allogeneic T cells. Treatment of highly purified DC with BPD-MA and 690 nm wavelength light decreased DC expression of major histocompatibility (MHC) Class I and II antigens, leukocyte common antigen CD45, intercellular adhesion molecule-1 (ICAM-1, CD54), the co- stimulatory molecules CD80 and CD86, CD95 as well as integrin CD11c. In contrast, DC expression of leukocyte function-associated-1 (LFA-1, CD11a), CD11b, CD18, CD40, and the DC DEC-205 receptor increased after the treatment. Changes in receptor levels occurred rapidly. DC MHC Class I and ICAM-1 expression declined to 40 percent of control levels by 2 hours post-PDT. DC treated with BPD-MA and light were poor stimulators of allogeneic T cells in the mixed leukocyte reaction. BPD-MA, in the absence of light, had no effect on the immunostimulatory properties of these cells. The changes in DC receptor expression pattern produced by BPD-MA and light were comparable to those produced by ultraviolet B light, a treatment known to alter the immunostimulatory characteristics of DC. Photodynamic therapy with BPD-MA represents an innovative approach for the modification of immune reactivity.

  2. Nanoporous Monolithic Microsphere Arrays Have Anti-Adhesive Properties Independent of Humidity

    PubMed Central

    Eichler-Volf, Anna; Xue, Longjian; Kovalev, Alexander; Gorb, Elena V.; Gorb, Stanislav N.; Steinhart, Martin

    2016-01-01

    Bioinspired artificial surfaces with tailored adhesive properties have attracted significant interest. While fibrillar adhesive pads mimicking gecko feet are optimized for strong reversible adhesion, monolithic microsphere arrays mimicking the slippery zone of the pitchers of carnivorous plants of the genus Nepenthes show anti-adhesive properties even against tacky counterpart surfaces. In contrast to the influence of topography, the influence of relative humidity (RH) on adhesion has been widely neglected. Some previous works deal with the influence of RH on the adhesive performance of fibrillar adhesive pads. Commonly, humidity-induced softening of the fibrils enhances adhesion. However, little is known on the influence of RH on solid anti-adhesive surfaces. We prepared polymeric nanoporous monolithic microsphere arrays (NMMAs) with microsphere diameters of a few 10 µm to test their anti-adhesive properties at RHs of 2% and 90%. Despite the presence of continuous nanopore systems through which the inner nanopore walls were accessible to humid air, the topography-induced anti-adhesive properties of NMMAs on tacky counterpart surfaces were retained even at RH = 90%. This RH-independent robustness of the anti-adhesive properties of NMMAs significantly contrasts the adhesion enhancement by humidity-induced softening on nanoporous fibrillar adhesive pads made of the same material. PMID:28773497

  3. Anti-inflammatory activity of polyphenolics from açai (Euterpe oleracea Martius) in intestinal myofibroblasts CCD-18Co cells.

    PubMed

    Dias, Manoela Maciel dos Santos; Martino, Hércia Stampini Duarte; Noratto, Giuliana; Roque-Andrade, Andrea; Stringheta, Paulo César; Talcott, Stephen; Ramos, Afonso Mota; Mertens-Talcott, Susanne U

    2015-10-01

    The demand for tropical fruits high in polyphenolics including açai (Euterpe oleracea Mart.) has been increasing based on ascribed health benefits and antioxidant properties. This study evaluated the anti-inflammatory activities of açai polyphenolics in human colon myofibroblastic CCD-18Co cells to investigate the suppression of reactive oxygen species (ROS), and mRNA and protein expression of inflammatory proteins. Non-cytotoxic concentrations of açai extract, 1-5 mg gallic acid equivalent L(-1), were selected. The generation of ROS was induced by lipopolysaccharide (LPS) and açai extract partially reversed this effect to 0.53-fold of the LPS-control. Açai extract (5 mg GAE L(-1)) down-regulated LPS-induced mRNA-expression of tumor necrosis factor alpha, TNF-α (to 0.42-fold), cyclooxygenase 2, COX-2 (to 0.61-fold), toll-like receptor-4, TLR-4 (to 0.52-fold), TNF receptor-associated factor 6, TRAF-6 (to 0.64-fold), nuclear factor kappa-B, NF-κB (to 0.76-fold), vascular cell adhesion molecule 1, VCAM-1 (to 0.71-fold) and intercellular adhesion molecule 1, ICAM-1 (to 0.68-fold). The protein levels of COX-2, TLR-4, p-NF-κB and ICAM-1 were induced by LPS and the açai extract partially reversed this effect in a dose-dependent manner. These results suggest the anti-inflammatory effect of açai polyphenolic extract in intestinal cells are at least in part mediated through the inhibition of ROS and the expression of TLR-4 and NF-κB. Results indicate the potential for açai polyphenolics in the prevention of intestinal inflammation.

  4. Tumor-induced CD11b(+) Gr-1(+) myeloid-derived suppressor cells exacerbate immune-mediated hepatitis in mice in a CD40-dependent manner.

    PubMed

    Kapanadze, Tamar; Medina-Echeverz, José; Gamrekelashvili, Jaba; Weiss, Jonathan M; Wiltrout, Robert H; Kapoor, Veena; Hawk, Nga; Terabe, Masaki; Berzofsky, Jay A; Manns, Michael P; Wang, Ena; Marincola, Francesco M; Korangy, Firouzeh; Greten, Tim F

    2015-04-01

    Immunosuppressive CD11b(+) Gr-1(+) myeloid-derived suppressor cells (MDSCs) accumulate in the livers of tumor-bearing (TB) mice. We studied hepatic MDSCs in two murine models of immune-mediated hepatitis. Unexpectedly, treatment of TB mice with Concanavalin A (Con A) or α-galactosylceramide resulted in increased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) serum levels in comparison to tumor-free mice. Adoptive transfer of hepatic MDSCs into naïve mice exacerbated Con A induced liver damage. Hepatic CD11b(+) Gr-1(+) cells revealed a polarized proinflammatory gene signature after Con A treatment. An IFN-γ-dependent upregulation of CD40 on hepatic CD11b(+) Gr-1(+) cells along with an upregulation of CD80, CD86, and CD1d after Con A treatment was observed. Con A treatment resulted in a loss of suppressor function by tumor-induced CD11b(+) Gr-1(+) MDSCs as well as enhanced reactive oxygen species (ROS)-mediated hepatotoxicity. CD40 knockdown in hepatic MDSCs led to increased arginase activity upon Con A treatment and lower ALT/AST serum levels. Finally, blockade of arginase activity in Cd40(-/-) tumor-induced myeloid cells resulted in exacerbation of hepatitis and increased ROS production in vivo. Our findings indicate that in a setting of acute hepatitis, tumor-induced hepatic MDSCs act as proinflammatory immune effector cells capable of killing hepatocytes in a CD40-dependent manner. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  5. CD8+ memory T-cell inflation renders compromised CD4+ T-cell-dependent CD8+ T-cell immunity via naïve T-cell anergy.

    PubMed

    Xu, Aizhang; Freywald, Andrew; Xie, Yufeng; Li, Zejun; Xiang, Jim

    2017-01-01

    Whether inflation of CD8 + memory T (mT) cells, which is often derived from repeated prime-boost vaccinations or chronic viral infections in the elderly, would affect late CD8 + T-cell immunity is a long-standing paradox. We have previously established an animal model with mT-cell inflation by transferring ConA-stimulated monoclonal CD8 + T cells derived from Ova-specific T-cell-receptor transgenic OTI mice into irradiation-induced lymphopenic B6 mice. In this study, we also established another two animal models with mT-cell inflation by transferring, 1) ConA-stimulated monoclonal CD8 + T cells derived from lymphocytic choriomeningitis virus glycoprotein-specific T-cell-receptor transgenic P14 mice, and 2) ConA-stimulated polyclonal CD8 + T cells derived from B6.1 mice into B6 mice with irradiation-induced lymphopenia. We vaccinated these mice with recombinant Ova-expressing Listeria monocytogenes and Ova-pulsed dendritic cells, which stimulated CD4 + T cell-independent and CD4 + T-cell-dependent CD8 + T-cell responses, respectively, and assessed Ova-specific CD8 + T-cell responses by flow cytometry. We found that Ova-specific CD8 + T-cell responses derived from the latter but not the former vaccination were significantly reduced in mice with CD8 + mT-cell inflation compared to wild-type B6 mice. We determined that naïve CD8 + T cells purified from splenocytes of mice with mT-cell inflation had defects in cell proliferation upon stimulation in vitro and in vivo and upregulated T-cell anergy-associated Itch and GRAIL molecules. Taken together, our data reveal that CD8 + mT-cell inflation renders compromised CD4 + T-cell-dependent CD8 + T-cell immunity via naïve T-cell anergy, and thus show promise for the design of efficient vaccines for elderly patients with CD8 + mT-cell inflation.

  6. Independent Reading of CD-ROM Storybooks: Measuring Comprehension with Oral Retellings

    ERIC Educational Resources Information Center

    Pearman, Cathy J.

    2008-01-01

    CD-ROM storybooks may facilitate reading comprehension for students who are struggling with reading comprehension. Therefore, the use of CD-ROM storybooks in the classroom as part of a reading instruction program, literacy center, or for independent reading time could benefit young readers. (Contains 2 tables and 1 figure.)

  7. The RhoA/ROCK Pathway Ameliorates Adhesion and Inflammatory Infiltration Induced by AGEs in Glomerular Endothelial Cells.

    PubMed

    Rao, Jialing; Ye, Zengchun; Tang, Hua; Wang, Cheng; Peng, Hui; Lai, Weiyan; Li, Yin; Huang, Wanbing; Lou, Tanqi

    2017-01-05

    A recent study demonstrated that advanced glycation end products (AGEs) play a role in monocyte infiltration in mesangial areas in diabetic nephropathy. The Ras homolog gene family, member A Rho kinase (RhoA/ROCK) pathway plays a role in regulating cell migration. We hypothesized that the RhoA/ROCK pathway affects adhesion and inflammation in endothelial cells induced by AGEs. Rat glomerular endothelial cells (rGECs) were cultured with AGEs (80 μg/ml) in vitro. The ROCK inhibitor Y27632 (10 nmol/l) and ROCK1-siRNA were used to inhibit ROCK. We investigated levels of the intercellular adhesion molecule 1 (ICAM-1) and monocyte chemoattractant protein1 (MCP-1) in rGECs. Db/db mice were used as a diabetes model and received Fasudil (10 mg/kg/d, n = 6) via intraperitoneal injection for 12 weeks. We found that AGEs increased the expression of ICAM-1 and MCP-1 in rGECs, and the RhoA/ROCK pathway inhibitor Y27632 depressed the release of adhesion molecules. Moreover, blocking the RhoA/ROCK pathway ameliorated macrophage transfer to the endothelium. Reduced expression of adhesion molecules and amelioration of inflammatory cell infiltration in the glomerulus were observed in db/db mice treated with Fasudil. The RhoA/ROCK pathway plays a role in adhesion molecule expression and inflammatory cell infiltration in glomerular endothelial cells induced by AGEs.

  8. Cell to cell contact through ICAM-1-LFA-1 and TNF-alpha synergistically contributes to GM-CSF and subsequent cytokine synthesis in DBA/2 mice induced by 1,3-beta-D-Glucan SCG.

    PubMed

    Harada, Toshie; Kawaminami, Hiromi; Miura, Noriko N; Adachi, Yoshiyuki; Nakajima, Mitsuhiro; Yadomae, Toshiro; Ohno, Naohito

    2006-04-01

    SCG is a major 6-branched 1,3-beta-D-glucan in Sparassis crispa Fr. showing antitumor activity. We recently found that the splenocytes from naive DBA/1 and DBA/2 mice are potently induced by SCG to produce interferon- gamma (IFN-gamma), tumor necrosis factor-alpha (TNF-alpha), granulocyte-macrophage colony-stimulating factor (GM-CSF), and interleukin-12p70 (IL-12p70), and that GM-CSF plays a key biologic role among these cytokines. In this study, we investigated the contribution of cell-cell contact and soluble factors to cytokine induction by SCG in DBA/2 mice. Cell-cell contact involving intercellular adhesion molecule-1 (ICAM-1) and lymphocyte function-associated antigen-1 (LFA-1) was an essential step for the induction of GM-CSF and IFN-gamma by SCG but not for the induction of TNF-alpha or IL-12p70 by SCG. SCG directly induced adherent splenocytes to produce TNF-alpha and IL-12p70. GM-CSF was required for the induction of TNF-alpha by SCG, and in turn, TNF-alpha enhanced the release of GM-CSF and thereby augmented the induction of IL-12p70 and IFN-gamma by SCG. Neutralization of IL-12 significantly inhibited the induction of IFN-gamma by SCG. We concluded that induction of GM-CSF production by SCG was mediated through ICAM-1 and LFA-1 interaction, GM-CSF subsequently contributed to further cytokine induction by SCG, and reciprocal actions of the cytokines were essential for enhancement of the overall response to SCG in DBA/2 mice.

  9. Flavonoids inhibit cytokine-induced endothelial cell adhesion protein gene expression.

    PubMed Central

    Gerritsen, M. E.; Carley, W. W.; Ranges, G. E.; Shen, C. P.; Phan, S. A.; Ligon, G. F.; Perry, C. A.

    1995-01-01

    Treatment of human endothelial cells with cytokines such as interleukin-1, tumor necrosis factor-alpha (TNF-alpha) or interferon-gamma induces the expression of specific leukocyte adhesion molecules on the endothelial cell surface. Interfering with either leukocyte adhesion or adhesion protein upregulation is an important therapeutic target as evidenced by the potent anti-inflammatory actions of neutralizing antibodies to these ligands in various animal models and in patients. In the present study we report that cotreatment of human endothelial cells with certain hydroxyflavones and flavanols blocks cytokine-induced ICAM-1, VCAM-1, and E-selectin expression on human endothelial cells. One of the most potent flavones, apigenin, exhibited a dose- and time-dependent, reversible effect on adhesion protein expression as well as inhibiting adhesion protein upregulation at the transcriptional level. Apigenin also inhibited IL-1 alpha-induced prostaglandin synthesis and TNF-alpha-induced IL-6 and IL-8 production, suggesting that the hydroxyflavones may act as general inhibitors of cytokine-induced gene expression. Although apigenin did not inhibit TNF-alpha-induced nuclear translocation of NF-kappa B(p50(NFKB1)/p65(RelA)) we found this flavonoid did inhibit TNF-alpha induced beta-galactosidase activity in SW480 cells stably transfected with a beta-galactosidase reporter construct driven by four NF-kappa B elements, suggesting an action on NF-kappa B transcriptional activation. Adhesion of leukocytes to cytokine-treated endothelial cells was blocked in endothelial cells cotreated with apigenin. Finally, apigenin demonstrated potent anti-inflammatory activity in carrageenan induced rat paw edema and delayed type hypersensitivity in the mouse. We conclude that flavonoids offer important therapeutic potential for the treatment of a variety of inflammatory diseases involving an increase in leukocyte adhesion and trafficking. Images Figure 7 Figure 8 Figure 11 PMID:7543732

  10. TCR-independent CD28-mediated gene expression in peripheral blood lymphocytes from donors chronically infected with HIV-1.

    PubMed Central

    Wong, J G; Smithgall, M D; Haffar, O K

    1997-01-01

    Complete activation of peripheral blood T cells requires both T-cell receptor (TCR) stimulation and CD28 costimulation. Signalling pathways associated specifically with CD28 are not well understood, however, because ligation of CD28 in the absence of TCR stimulation does not give rise to cellular responses in normal cells. In peripheral blood lymphocytes (PBL) from donors chronically infected with human immunodeficiency virus-1 (HIV-1), CD28 can induce viral replication through an alternative pathway that does not require TCR ligation. We have exploited this observation to study CD28-mediated signal transduction using reverse transcriptase-mediated polymerase chain reaction (RT-PCR) to amplify viral RNA. Independent ligation of CD28 on donor PBL induced expression of the HIV-1 tat gene but not the interleukin-2 (IL-2) gene. Viral induction did not occur following pretreatment of cells with actinomycin D, suggesting it was mediated through transcriptional activation of the viral long terminal repeat (LTR). tat was induced in the presence of the protein kinase C inhibitor H-7, but was inhibited by cyclosporin A. Our results demonstrate that CD28 is linked directly to specific signalling pathways leading to de novo induction of genes in PBL. Images Figure 1 Figure 2 Figure 3 PMID:9135558

  11. Effect of nuclear factor kappa B on intercellular adhesion molecule-1 expression and neutrophil infiltration in lung injury induced by intestinal ischemia/reperfusion in rats

    PubMed Central

    Tian, Xiao-Feng; Yao, Ji-Hong; Li, Ying-Hua; Zhang, Xue-Song; Feng, Bing-An; Yang, Chun-Ming; Zheng, Shu-Sen

    2006-01-01

    AIM: To investigate the role of nuclear factor kappa B (NF-κB) in the pathogenesis of lung injury induced by intestinal ischemia/reperfusion (I/R), and its effect on intercellular adhesion molecule-1 (ICAM-1) expression and neutrophil infiltration. METHODS: Twenty-four Wistar rats were divided randomly into control, I/R and pyrrolidine dithiocarbamate (PDTC) treatment groups, n = 8 in each. I/R group and PDTC treatment group received superior mysenteric artery (SMA) occluding for 1 h and reperfusion for 2 h. PDTC group was administrated with intraperitoneal injection of 2% 100 mg/kg PDTC 1 h before surgery. Lung histology and bronchia alveolus lung fluid (BALF) protein were assayed. Serum IL-6, lung malondialdehyde (MDA) and myeloperoxidase (MPO) as well as the expression level of NF-κB and ICAM-1 were measured. RESULTS: Lung injury induced by intestinal I/R, was characterized by edema, hemorrhage and neutrophil infiltration as well as by the significant rising of BALF protein. Compared to control group, the levels of serum IL-6 and lung MDA and MPO increased significantly in I/R group (P = 0.001). Strong positive expression of NF-κB p65 and ICAM-1 was observed. After the administration of PDTC, the level of serum IL-6, lung MDA and MPO as well as NF-κB and ICAM-1 decreased significantly (P < 0.05) when compared to I/R group. CONCLUSION: The activation of NF-κB plays an important role in the pathogenesis of lung injury induced by intestinal I/R through upregulating the neutrophil infiltration and lung ICAM-1 expression. PDTC as an inhibitor of NF-κB can prevent lung injury induced by intestinal I/R through inhibiting the activity of NF-κB. PMID:16489637

  12. The Anti-Atherosclerotic Effect of Naringin Is Associated with Reduced Expressions of Cell Adhesion Molecules and Chemokines through NF-κB Pathway.

    PubMed

    Hsueh, Tun-Pin; Sheen, Jer-Ming; Pang, Jong-Hwei S; Bi, Kuo-Wei; Huang, Chao-Chun; Wu, Hsiao-Ting; Huang, Sheng-Teng

    2016-02-05

    Naringin has been reported to have an anti-atherosclerosis effect but the underlying mechanism is not fully understood. The aim of this study is to investigate the impact of naringin on the TNF-α-induced expressions of cell adhesion molecules, chemokines and NF-κB signaling pathway in human umbilical vein endothelial cells (HUVECs). The experiments revealed that naringin, at concentrations without cytotoxicity, dose-dependently inhibited the adhesion of THP-1 monocytes to the TNF-α-stimulated HUVECs. The TNF-α-induced expressions of cell adhesion molecules, including VCAM-1, ICAM-1 and E-selectin, at both the mRNA and protein levels, were significantly suppressed by naringin in a dose dependent manner. In addition, the TNF-α-induced mRNA and protein levels of chemokines, including fractalkine/CX3CL1, MCP-1 and RANTES, were also reduced by naringin. Naringin significantly inhibited TNF-α-induced nuclear translocation of NF-κB, which resulted from the inhibited phosphorylation of IKKα/β, IκB-α and NF-κB. Altogether, we proposed that naringin modulated TNF-α-induced expressions of cell adhesion molecules and chemokines through the inhibition of TNF-α-induced activation of IKK/NF-κB signaling pathway to exert the anti-atherosclerotic effect.

  13. Persistence of the Oral Probiotic Streptococcus salivarius M18 Is Dose Dependent and Megaplasmid Transfer Can Augment Their Bacteriocin Production and Adhesion Characteristics

    PubMed Central

    Burton, Jeremy P.; Wescombe, Philip A.; Macklaim, Jean M.; Chai, Melissa H. C.; MacDonald, Kyle; Hale, John D. F.; Tagg, John; Reid, Gregor; Gloor, Gregory B.; Cadieux, Peter A.

    2013-01-01

    Bacteriocin-producing probiotic Streptococcus salivarius M18 offers beneficial modulatory capabilities within the oral microbiome, apparently through potent inhibitory activity against potentially deleterious bacteria, such as Streptococcus pyogenes. The oral cavity persistence of S. salivarius M18 was investigated in 75 subjects receiving four different doses for 28 days. Sixty per cent of the subjects already had some inhibitor-producing S. salivarius in their saliva prior to probiotic intervention. Strain M18’s persistence was dependent upon the dose, but not the period of administration. Culture analysis indicated that in some individuals the introduced strain had almost entirely replaced the indigenous S. salivarius, though the total numbers of the species did not increase. Selected subjects showing either high or low probiotic persistence had their salivary populations profiled using Illumina sequencing of the V6 region of the 16S rRNA gene. Analysis indicated that while certain bacterial phenotypes were markedly modulated, the overall composition of the oral microbiome was not modified by the probiotic treatment. Megaplasmids encoding bacteriocins and adhesion factors were transferred in vitro to generate a transconjugant S. salivarius exhibiting enhanced antimicrobial production and binding capabilities to HEp-2 cells. Since no widespread perturbation of the existing indigenous microbiota was associated with oral instillation and given its antimicrobial activity against potentially pathogenic streptococci, it appears that application of probiotic strain M18 offers potential low impact alternative to classical antibiotic prophylaxis. For candidate probiotic strains having relatively poor antimicrobial or adhesive properties, unique derivatives displaying improved probiotic performance may be engineered in vitro by megaplasmid transfer. PMID:23785463

  14. Persistence of the oral probiotic Streptococcus salivarius M18 is dose dependent and megaplasmid transfer can augment their bacteriocin production and adhesion characteristics.

    PubMed

    Burton, Jeremy P; Wescombe, Philip A; Macklaim, Jean M; Chai, Melissa H C; Macdonald, Kyle; Hale, John D F; Tagg, John; Reid, Gregor; Gloor, Gregory B; Cadieux, Peter A

    2013-01-01

    Bacteriocin-producing probiotic Streptococcus salivarius M18 offers beneficial modulatory capabilities within the oral microbiome, apparently through potent inhibitory activity against potentially deleterious bacteria, such as Streptococcus pyogenes. The oral cavity persistence of S. salivarius M18 was investigated in 75 subjects receiving four different doses for 28 days. Sixty per cent of the subjects already had some inhibitor-producing S. salivarius in their saliva prior to probiotic intervention. Strain M18's persistence was dependent upon the dose, but not the period of administration. Culture analysis indicated that in some individuals the introduced strain had almost entirely replaced the indigenous S. salivarius, though the total numbers of the species did not increase. Selected subjects showing either high or low probiotic persistence had their salivary populations profiled using Illumina sequencing of the V6 region of the 16S rRNA gene. Analysis indicated that while certain bacterial phenotypes were markedly modulated, the overall composition of the oral microbiome was not modified by the probiotic treatment. Megaplasmids encoding bacteriocins and adhesion factors were transferred in vitro to generate a transconjugant S. salivarius exhibiting enhanced antimicrobial production and binding capabilities to HEp-2 cells. Since no widespread perturbation of the existing indigenous microbiota was associated with oral instillation and given its antimicrobial activity against potentially pathogenic streptococci, it appears that application of probiotic strain M18 offers potential low impact alternative to classical antibiotic prophylaxis. For candidate probiotic strains having relatively poor antimicrobial or adhesive properties, unique derivatives displaying improved probiotic performance may be engineered in vitro by megaplasmid transfer.

  15. Molecules mediating adhesion of T and B cells, monocytes and granulocytes to vascular endothelial cells.

    PubMed Central

    Prieto, J; Beatty, P G; Clark, E A; Patarroyo, M

    1988-01-01

    Leucocytes interact with vascular endothelial cells (EC), and adhesion between these two cell types in vitro is modulated by phorbol ester. Monocytes were found to display the highest basal adhesion to EC, followed by Epstein-Barr virus-immortalized normal B cells (EBV-B), T cells and granulocytes. Phorbol ester treatment increased the adhesion of all types of leucocytes, except monocytes. In the presence of this compound, monoclonal antibody 60.3 to GP90 (CD18, a leucocyte-adhesion protein which is non-covalently associated to either GP160, GP155, or GP130) was found to inhibit the adhesion of the four types of leucocytes to a considerable extent, while anti-lymphocyte function-associated antigen-1 (LFA-1) antibody to GP160 (CD11a) inhibited the adhesion of T and B cells only. Antibody 60.1 to GP155 (CD11b) had a major inhibitory activity exclusively on granulocytes, while antibody LB-2, which recognizes a distinct adhesion molecule (GP84) and, in contrast to the previous antibodies, reacts with EC, mainly inhibited adhesion of EBV-B and did not increase the inhibition obtained with antibody 60.3 alone. Fab fragments of antibody 60.3 inhibited leucocyte adhesion more efficiently, in either the absence or presence of phorbol ester, than the intact antibody molecule. It is concluded the GP90, either alone or associated to the larger glycoproteins, mediates the adhesion in all types of leucocytes, while GP84 mediates the adhesion of the activated B cells. Images Figure 2 PMID:3259203

  16. CD44 Promotes Inflammation and Extracellular Matrix Production During Arteriovenous Fistula Maturation

    PubMed Central

    Kuwahara, Go; Hashimoto, Takuya; Tsuneki, Masayuki; Yamamoto, Kota; Assi, Roland; Foster, Trenton R; Hanisch, Jesse J; Bai, Hualong; Hu, Haidi; Protack, Clinton D; Hall, Michael R; Schardt, John S; Jay, Steven M; Madri, Joseph A; Kodama, Shohta; Dardik, Alan

    2017-01-01

    Objective Arteriovenous fistulae (AVF) remain the optimal conduit for hemodialysis access but continue to demonstrate poor patency and poor rates of maturation. We hypothesized that CD44, a widely expressed cellular adhesion molecule that serves as a major receptor for extracellular matrix (ECM) components, promotes wall thickening and ECM deposition during AVF maturation. Approach and Results AVF were created via needle puncture in wild-type (WT) C57BL/6J and CD44 knockout (KO) mice. CD44 mRNA and protein expression was increased in WT AVF. CD44 KO mice showed no increase in AVF wall thickness (8.9 μm vs. 26.8 μm; P = 0.0114), collagen density, and hyaluronic acid density, but similar elastin density when compared to control AVF. CD44 KO mice also showed no increase in VCAM-1 expression, ICAM-1 expression and MCP-1 expression in the AVF compared to controls; there were also no increased M2 macrophage markers (TGM2: 81.5 fold, P = 0.0015; IL-10: 7.6 fold, P = 0.0450) in CD44 KO mice. Delivery of MCP-1 to CD44 KO mice rescued the phenotype with thicker AVF walls (27.2 μm vs. 14.7 μm; P = 0.0306), increased collagen density (2.4 fold; P = 0.0432), and increased number of M2 macrophages (2.1 fold; P = 0.0335). Conclusions CD44 promotes accumulation of M2 macrophages, ECM deposition and wall thickening during AVF maturation. These data show the association of M2 macrophages with wall thickening during AVF maturation and suggest that enhancing CD44 activity may be a strategy to increase AVF maturation. PMID:28450292

  17. Primary porcine Kupffer cell phagocytosis of human platelets involves the CD18 receptor.

    PubMed

    Chihara, Ray K; Paris, Leela L; Reyes, Luz M; Sidner, Richard A; Estrada, Jose L; Downey, Susan M; Wang, Zheng-Yu; Tector, A Joseph; Burlak, Christopher

    2011-10-15

    Hepatic failure has been treated successfully with clinical extracorporeal perfusions of porcine livers. However, dog-to-pig and pig-to-baboon liver xenotransplant models have resulted in severe bleeding secondary to liver xenograft-induced thrombocytopenia. Kupffer cells (KC) are abundant phagocytic cells in the liver. KC express the CD11b/CD18 receptor, which has been implicated in chilled platelet binding and phagocytosis through interaction with platelet surface proteins and carbohydrates. We sought to identify the role of KC CD18 in liver xenograft-induced thrombocytopenia. Primary pig KC were characterized by flow cytometry, immunoblots, and quantitative polymerase chain reaction. Pig KC were used in inhibition assays with fluorescently labeled human platelets. The CD18 receptor was targeted for siRNA knockdown. Domestic and α1,3-galactosyltransferase double knockout porcine KC cultures were approximately 92% positive for CD18 as detected by quantitative polymerase chain reaction and flow cytometry. Use of CD18 blocking antibodies resulted in reduction of human platelet binding and phagocytosis. Additionally, asialofetuin, not fetuin, inhibited platelet phagocytosis suggesting the involvement of an oligosaccharide-binding site. Furthermore, reduced CD18 expression by siRNA resulted in decreased human platelet binding. Our data suggest that primary pig KC bind and phagocytose human platelets with involvement of CD18. Further understanding and modification of CD18 expression in pigs may result in a liver xenograft with reduced thrombocytopenic effects, which could be used as a bridge to allogeneic liver transplantation.

  18. Sarcoptes scabiei (Acari: Sarcoptidae) Mite Extract Modulates Expression of Cytokines and Adhesion Molecules by Human Dermal Microvascular Endothelial Cells.

    PubMed Central

    Elder, B. Laurel; Arlian, Larry G.; Morgan, Marjorie S.

    2007-01-01

    The inflammatory and immune responses seen with the worldwide disease scabies (caused by the mite Sarcoptes scabiei) are complex. Clinical symptoms are delayed for weeks in patients when they are infested with scabies for the first time. This study was undertaken to elucidate the role of the human dermal microvascular endothelial cell (HMVEC-D) in modulating the inflammatory and immune responses in the skin to S. scabiei. Extracts of S. scabiei were incubated with HMVEC-D and the expression of adhesion molecules and chemokine receptors on the cells and the secretion of selected cytokines were determined by ELISA. S. scabiei extract was found to inhibit HMVEC-D expression of E-selectin and vascular cell adhesion molecule-1 (VCAM-1) although not intercellular adhesion molecule-1 (ICAM-1). The secretion of interleukin-8 (IL-8) was also inhibited by S. scabiei extract. S. scabiei extract increased expression of the chemokine receptor CXCR-1, and both down-regulated and up-regulated expression of CXCR-2 depending on the concentration tested. These findings help explain the delayed inflammatory reaction to infestation with S. scabiei. PMID:17017228

  19. Effects of perceived stress and uplifts on inflammation and coagulability.

    PubMed

    Jain, Shamini; Mills, Paul J; von Känel, Roland; Hong, Suzi; Dimsdale, Joel E

    2007-01-01

    We investigated whether depressed mood and chronic hassles and uplifts predicted levels of hemostasis markers D-Dimer and type-1 plasminogen activator inhibitor (PAI-1), as well as the proinflammatory markers interleukin-6 (IL-6) and soluble intercellular adhesion molecule-1 (sICAM-1) in 108 healthy individuals. One hundred eight African-American and Euro-American men and women were studied (58 men, 50 women; mean age = 36.5 +/- 8 years). D-Dimer, PAI-1, IL-6, and sICAM-1 plasma levels were analyzed from fasting venous blood samples. Data were analyzed via hierarchical linear regression and followed with partial correlation analysis. Regression analyses combined with partial correlation analyses suggested that increases in hassle frequency predicted elevated levels of sICAM-1 (p= .034), and increases in hassle severity predicted elevated levels of D-Dimer (p= .017). Increases in uplift intensity predicted lower levels of PAI-1 (p= .004) as well as showed a trend for decreased IL-6 (p= .069). Depressed mood did not significantly predict any dependent variable. These results were independent of sociodemographic, biological, and other related mood variables. The findings suggest that for even relatively healthy persons, increased perceptions of hassles are independently associated with greater inflammation and hypercoagulability, whereas increased perceptions of uplifts are independently associated with decreased hypercoagulability.

  20. [CD(4+) T lymphocyte responses to anti-retroviral therapy, among HIV/AIDS patients aged 18 and over].

    PubMed

    Guo, X X; Ma, Y; Dou, Z H; Wu, Y S; Zhao, D C; Cai, W P; Li, Y; Dong, X X

    2017-06-10

    Objective: To compare the differences of CD(4) (+) T lymphocyte (CD(4)) counts between patients aged 18 and over, to explore the effect of age on treatment, 36 months after having received the China National Free AIDS Antiretroviral Treatment on HIV/AIDS. Methods: Through the National ART Information Ssystem, we selected those HIV/AIDS patients who initiated the ART 36 months after the ART, between January 1, 2010 and December 31, 2012 in Guangzhou, Liuzhou and Kunming. Patients were divided into age groups as 18-49, 50-59 and 60 or over year olds, at the baseline of treatment. Under different levels of baseline CD(4) counts, we chose the baseline and different time-point of CD(4) counts as dependent variables, applied mixed linear model to analyze the effects of age, viral suppression, gender, baseline CD(4)/CD(8) ratio and initial treatment regimen. Results: A total of 5 331 HIV/AIDS patients were recruited. No differences were found on age group ratios between different levels of baseline CD(4) counts. At the level of baseline CD(4)<200 cells/μl, both the 50-59 and 60 or above years old groups had lower CD(4) counts than the 18-49 year-old group, within 36 months after the initiation of ART. However, at the baseline CD(4) level of 200-350 cells/μl, no significant differences on CD(4) counts between the 50-59 year-old and 18-49 year-old groups were noticed. CD(4) counts seemed lower in the 60 and above year-old group than in the 18-49 year-old group. Conclusion: Age might serve as an influencing factor on CD(4) counts within 36 months after the initiation of ART, suggesting that earlier initiation of ART might be of help to the recovery of immune function in the 50-59 year-old group.