Sample records for icarus study group

  1. Project Icarus: Nuclear Fusion Propulsion Concept Comparison

    NASA Astrophysics Data System (ADS)

    Stanic, M.

    Project Icarus will use nuclear fusion as the primary propulsion, since achieving breakeven is imminent within the next decade. Therefore, fusion technology provides confidence in further development and fairly high technological maturity by the time the Icarus mission would be plausible. Currently there are numerous (over 2 dozen) different fusion approaches that are simultaneously being developed around the World and it is difficult to predict which of the concepts is going to be the most successful one. This study tried to estimate current technological maturity and possible technological extrapolation of fusion approaches for which appropriate data could be found. Figures of merit that were assessed include: current technological state, mass and volume estimates, possible gain values, main advantages and disadvantages of the concept and an attempt to extrapolate current technological state for the next decade or two. Analysis suggests that Magnetic Confinement Fusion (MCF) concepts are not likely to deliver sufficient performance due to size, mass, gain and large technological barriers of the concept. However, ICF and PJMIF did show potential for delivering necessary performance, assuming appropriate techno- logical advances. This paper is a submission of the Project Icarus Study Group.

  2. Project Icarus: Stakeholder Scenarios for an Interstellar Exploration Program

    NASA Astrophysics Data System (ADS)

    Hein, A. M.; Tziolas, A. C.; Osborne, R.

    The Project Icarus Study Group's objective is to design a mainly fusion-propelled interstellar probe. The starting point are the results of the Daedalus study, which was conducted by the British Interplanetary Society during the 1970's. As the Daedalus study already indicated, interstellar probes will be the result of a large scale, decade-long development program. To sustain a program over such long periods, the commitment of key stakeholders is vital. Although previous publications identified political and societal preconditions to an interstellar exploration program, there is a lack of more specific scientific and political stakeholder scenarios. This paper develops stakeholder scenarios which allow for a more detailed sustainability assessment of future programs. For this purpose, key stakeholder groups and their needs are identified and scientific and political scenarios derived. Political scenarios are based on patterns of past space programs but unprecedented scenarios are considered as well. Although it is very difficult to sustain an interstellar exploration program, there are scenarios in which this seems to be possible, e.g. the discovery of life within the solar system and on an exoplanet, a global technology development program, and dual-use of technologies for defence and security purposes. This is a submission of the Project Icarus Study Group.

  3. Project Icarus: Preliminary Thoughts on the Selection of Probes and Instruments for an Icarus-style Interstellar Mission

    NASA Astrophysics Data System (ADS)

    Crawford, Ian A.

    2016-06-01

    In this paper we outline the range of probes and scientific instruments that will be required in order for Icarus to fulfill its scientific mission of exploring a nearby star, its attendant planetary system, and the intervening interstellar medium. Based on this preliminary analysis, we estimate that the minimum total Icarus scientific payload mass (i.e. the mass of probes and instruments which must be decelerated to rest in the target system to enable a meaningful programme of scientific investigation) will be in the region of 100 tonnes. Of this, approximately 10 tonnes would be allocated for cruise-phase science instruments, and about 35 tonnes (i.e. the average of estimated lower and upper limits of 28 and 41 tonnes) would be contributed by the intra-system science payload itself (i.e. the dry mass of the stellar and planetary probes and their instruments). The remaining ~55 tonnes is allocated for the sub-probe intra-system propulsion requirements (crudely estimated from current Solar System missions; detailed modelling of sub-probe propulsion systems will be needed to refine this figure). The overall mass contributed by the science payload to the total that must be decelerated from the interstellar cruise velocity will be considerably more than 100 tonnes, however, as allowance must be made for the payload structural and infrastructural elements required to support, deploy, and communicate with the science probes and instruments. Based on the earlier Daedalus study, we estimate another factor of two to allow for these components. Pending the outcome of more detailed studies, it therefore appears that an overall science-related payload mass of ~200 tonnes will be required. This paper is a submission of the Project Icarus Study Group.

  4. Project Icarus: Analysis of Plasma jet driven Magneto-Inertial Fusion as potential primary propulsion driver for the Icarus probe

    NASA Astrophysics Data System (ADS)

    Stanic, M.; Cassibry, J. T.; Adams, R. B.

    2013-05-01

    Hopes of sending probes to another star other than the Sun are currently limited by the maturity of advanced propulsion technologies. One of the few candidate propulsion systems for providing interstellar flight capabilities is nuclear fusion. In the past many fusion propulsion concepts have been proposed and some of them have even been explored in detail, Project Daedalus for example. However, as scientific progress in this field has advanced, new fusion concepts have emerged that merit evaluation as potential drivers for interstellar missions. Plasma jet driven Magneto-Inertial Fusion (PJMIF) is one of those concepts. PJMIF involves a salvo of converging plasma jets that form a uniform liner, which compresses a magnetized target to fusion conditions. It is an Inertial Confinement Fusion (ICF)-Magnetic Confinement Fusion (MCF) hybrid approach that has the potential for a multitude of benefits over both ICF and MCF, such as lower system mass and significantly lower cost. This paper concentrates on a thermodynamic assessment of basic performance parameters necessary for utilization of PJMIF as a candidate propulsion system for the Project Icarus mission. These parameters include: specific impulse, thrust, exhaust velocity, mass of the engine system, mass of the fuel required etc. This is a submission of the Project Icarus Study Group.

  5. The Small Module Fixed Mirror Distributed Focus (FMDF) Photothermal Concentrator Study

    NASA Technical Reports Server (NTRS)

    Meinel, A. B.

    1981-01-01

    The development of a general ray trace evaluation program called ICARUS, the study of novel Fresnel concepts, and the review of a report draft on novel Fresnel concepts are covered. ICARUS is documented, reports on the novel Fresnel concepts were previously submitted.

  6. Icarus: visualizer for de novo assembly evaluation.

    PubMed

    Mikheenko, Alla; Valin, Gleb; Prjibelski, Andrey; Saveliev, Vladislav; Gurevich, Alexey

    2016-11-01

    : Data visualization plays an increasingly important role in NGS data analysis. With advances in both sequencing and computational technologies, it has become a new bottleneck in genomics studies. Indeed, evaluation of de novo genome assemblies is one of the areas that can benefit from the visualization. However, even though multiple quality assessment methods are now available, existing visualization tools are hardly suitable for this purpose. Here, we present Icarus-a novel genome visualizer for accurate assessment and analysis of genomic draft assemblies, which is based on the tool QUAST. Icarus can be used in studies where a related reference genome is available, as well as for non-model organisms. The tool is available online and as a standalone application. http://cab.spbu.ru/software/icarus CONTACT: aleksey.gurevich@spbu.ruSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Integrated Cognitive-neuroscience Architectures for Understanding Sensemaking (ICArUS): Phase 1 Challenge Problem Walkthrough

    DTIC Science & Technology

    2014-11-01

    Integrated Cognitive-neuroscience Architectures for Understanding Sensemaking (ICArUS): Phase 1 Challenge Problem Walkthrough Kevin Burns...4. TITLE AND SUBTITLE Integrated Cognitive-neuroscience Architectures for Understanding Sensemaking (ICArUS): Phase 1 Challenge Problem Walkthrough...Integrated Cognitive-neuroscience Architectures for Understanding Sensemaking (ICArUS) Phase 1 challenge problem. The pages include screen shots

  8. Integrated Cognitive-neuroscience Architectures for Understanding Sensemaking (ICArUS): Phase 2 Challenge Problem Walkthrough

    DTIC Science & Technology

    2014-11-01

    Integrated Cognitive-neuroscience Architectures for Understanding Sensemaking (ICArUS): Phase 2 Challenge Problem Walkthrough Kevin Burns...neuroscience Architectures for Understanding Sensemaking (ICArUS) Phase 2 challenge problem. The pages include screen shots from the tutorial that...Burns, K., Fine, M., Bonaceto, C., & Oertel, C. (2014). Integrated Cognitive-neuroscience Architectures for Understanding Sensemaking (ICArUS

  9. Developing a weather observation routine during ICARUS

    NASA Astrophysics Data System (ADS)

    Mei, F.; Hubbe, J. M.; de Boer, G.; Lawrence, D.; Shupe, M.; Ivey, M.; Dexheimer, D.; Schmid, B.

    2016-12-01

    Starting in 2014, the Atmospheric Radiation Measurement (ARM) program began a major reconfiguration to more tightly link measurements and atmospheric models. As part of this the reconfiguration, ARM's North Slope of Alaska (NSA) site is being upgraded to include additional observations to support modeling and process studies. The Inaugural Campaigns for ARM Research using Unmanned Systems (ICARUS) have been launched in 2016. This internal initiative at Oliktok Point, Alaska focus on developing routine operations of Unmanned Aerial Systems (UAS) and Tethered Balloon Systems (TBS). The main purpose of ICARUS is to collect spatial data about surface radiation, heat fluxes, and vertical profiles of the basic atmospheric state (temperature, humidity, and horizontal wind). Based on the data collected during ICARUS, we will develop the operation routines for each atmospheric state measurement, and then optimize the operation schedule to maximize the data collection capacity. The statistical representation of important atmospheric state parameters will be discussed.

  10. ICARUS Mission, Next Step of Coronal Exploration after Solar Orbiter and Solar Probe Plus

    NASA Astrophysics Data System (ADS)

    Krasnoselskikh, V.; Tsurutani, B.; Velli, M.; Maksimovic, M.; Balikhin, M. A.; Dudok de Wit, T.; Kretzschmar, M.

    2017-12-01

    The primary scientific goal of ICARUS, a mother-daughter satellite mission, will be to determine how the magnetic field and plasma dynamics in the outer solar atmosphere give rise to the corona, the solar wind and the heliosphere. Reaching this goal will be a Rosetta-stone step, with results broadly applicable in the fields of space plasma and astrophysics. Within ESA's Cosmic Vision roadmap, these goals address Theme 2: How does the solar system work ?" Investigating basic processes occurring from the Sun to the edge of the Solar System". ICARUS will not only advance our understanding of the plasma environment around the Sun, but also of the numerous magnetically active stars with hot plasma coronae. ICARUS I will perform the firstever direct in situ measurements of electromagnetic fields, particle acceleration, wave activity, energy distribution and flows directly in the regions where the solar wind emerges from the coronal plasma. ICARUS I will have a perihelion at 1 Solar radius from its surface, it will cross the region where the major energy deposition occurs. The polar orbit of ICARUS I will enable crossing the regions where both the fast and slow wind are generated. It will probe local characteristics of the plasma and provide unique information about the processes involved in the creation of the solar wind. ICARUS II will observe this region using remote-sensing instruments, providing simultaneous information about regions crossed by ICARUS I and the solar atmosphere below as observed by solar telescopes. It will provide bridges for understanding the magnetic links between heliosphere and solar atmosphere. Such information is crucial to understanding of the physics and electrodynamics of the solar atmosphere. ICARUS II will also play an important relay role, enabling the radio-link with ICARUS I. It will receive, collect and store information transmitted from ICARUS I during its closest approach to the Sun. It will perform preliminary data processing and transmit it to the Earth. Performing such unique in situ measurements in the region where deadly solar energetic particles are energized, ICARUS will make fundamental contributions to our ability to monitor and forecast the space radiation environment. Such knowledge is extremely important for space explorations, especially for long-term manned space missions.

  11. The Icarus Project: a counter narrative for psychic diversity.

    PubMed

    DuBrul, Sascha Altman

    2014-09-01

    Over the past 12 years, I've had the good fortune of collaborating with others to create a project which challenges and complicates the dominant biopsychiatric model of mental illness. The Icarus Project, founded in 2002, not only critiqued the terms and practices central to the biopsychiatric model, it also inspired a new language and a new community for people struggling with mental health issues in the 21st century. The Icarus Project believes that humans are meaning makers, that meaning is created through developing intrapersonal and interpersonal narratives, and that these narratives are important sites of creativity, struggle, and growth. The Icarus counter narrative and the community it fostered has been invaluable for people around the world dealing with psychic diversity--particularly for people alienated by mainstream approaches. But, despite the numbers of people who have been inspired by this approach, the historical background of the Icarus Project is hard to find. It exists primarily in oral history, newspaper articles, unpublished or self-published Icarus documents, and in internet discussion forums. As the co-founder of the Icarus Project, I use this article to make my understanding of that history and its key documents more widely available.

  12. The Myth of Icarus

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Ever since humans first saw birds soar through the sky, they have wanted to fly. The ancient Greeks and Romans pictured many of their gods with winged feet, and imagined mythological winged animals. According to the legend of Daedalus and Icarus, the father and son escaped prison by attaching wings made of wax and feathers to their bodies. Unfortunately, Icarus flew too near the sun, and the heat caused the wax and feathers to melt. The feathers fell off, and Icarus plummeted to the sea. Daedalus landed safely in Sicily.

  13. The Himalia Satellite Group: A Case Study on the Dynamical Self-spreading of Families of Irregular Satellites and Asteroids

    NASA Astrophysics Data System (ADS)

    Li, Daohai; Christou, Apostolos A.

    2015-11-01

    Many of the outer planets' irregular satellites are grouped into families, thought to originate from collisional fragmentation (Nesvorný et al 2004, AJ). Interestingly, families associated with the largest irregulars are either more dispersed than expected (e.g. J6 Himalia; Nesvorný et al 2003, AJ), or do not exist at all (e.g. S9 Phoebe; Ćuk et al 2003, DDA meeting #34). Christou (2005, Icarus) found that gravitational scattering by Himalia of its own group could explain the large velocity dispersion found by Nesvorný et al (2003, AJ). At the same time, Christou identified a new type of dynamical mechanism that intermittently locks the node of the satellite J10 Lysithea to that of Himalia. The same mechanism, but due to Ceres, was recently found to operate within the Hoffmeister family, dispersing its members and allowing an estimate of its age (Novaković et al 2015, ApJ).Here we revisit the issue of family self-dispersion, aiming to better understand it by studying its effects on the Himalia group. For this we utilise (a) intensive test particle simulations on a larger scale than those by Christou (2005, Icarus) (b) a semi-analytical treatment of the new resonance based on the secular theory of coorbital motion by Namouni (1999, Icarus). This has allowed us to obtain firmer constraints on the rate of dispersion over time and on how the resonance affects the long-term evolution of the orbital elements. A principal result of this work is that particles near the resonance evolve differently than those away from it. During the meeting, we will present a new estimate of the family’s age as well as an analysis of the resonant structure and how it affects Himalia family members. We will also discuss the broader implications for the long-term evolution of orbital concentrations of small bodies in the solar system.Astronomical research at the Armagh Observatory is funded by the Northern Ireland Department of Culture, Arts and Leisure (DCAL).

  14. Icarus Rewaxed: A high speed, low-cost general aviation aircraft for Aeroworld

    NASA Technical Reports Server (NTRS)

    Farrens, Bryan; Hueckel, Macy; Fulkerson, Dan; Barents, Matt; Capozzi, Brian; Ramsey, Keri

    1994-01-01

    Icarus Rewaxed is a single engine, six passenger, general aviation airplane. With a cruise velocity of 72 ft/s, the Icarus can compete with the performance of any other airplane in its class with an eye on economics and safety. It has a very competitive initial price ($3498.00) and cost per flight ($6.36-8.40). Icarus can serve all airports in Aeroworld with a takeoff distance of 25.4 feet and maximum range of 38,000 feet. It is capable of taking off from an unprepared field with a grass depth of 3 inches. Icarus Rewaxed fills the market need for a high-speed, low cost aircraft. It provides customers with a general aviation craft that can compete in the existing performance market with the added security of an advanced structure. With the use of advanced materials, the maneuvering capability of the Icarus is increased, as it can withstand greater load factors than previous aircraft.

  15. ICARUS mission, next step of coronal exploration after Solar Orbiter and Solar Probe Plus

    NASA Astrophysics Data System (ADS)

    Krasnoselskikh, Vladimir; Tsurutani, Bruce T.; Velli, Marco; Maksimovic, Milan; Balikhin, Mikhael; Dudok de Wit, Thierry; Kretzschmar, Matthieu

    2017-04-01

    The primary scientific goal of ICARUS (Investigation of Coronal AcceleRation and heating Up to the Sun), a mother-daughter satellite mission, will be to determine how the magnetic _field and plasma dynamics in the outer solar atmosphere give rise to the corona, the solar wind and the entire heliosphere. Reaching this goal will be a Rosetta-stone step, with results broadly applicable within the fields of space plasma physics and astrophysics. Within ESA's Cosmic Vision roadmap, these science goals address Theme 2: How does the solar system work ?" by investigating basic processes occurring From the Sun to the edge of the Solar System". ICARUS will not only advance our understanding of the plasma environment around our the Sun, but also of the numerous magnetically active stars with hot plasma coronae. ICARUS I will perform the first-ever direct in situ measurements of electromagnetic fields, particle acceleration, wave activity, energy distribution and flows directly in the regions where the solar wind emerges from the coronal plasma. ICARUS I will have a perihelion at 1 Solar radius from its surface, it will cross the region where the major energy deposition occurs. The polar orbit of ICARUS I will enable crossing the regions where both the fast and slow wind are generated. It will probe local characteristics of the plasma and provide unique information about the physical processes involved in the creation of the solar wind. ICARUS II will observe this region using remote-sensing instruments, providing simultaneous information about regions crossed by ICARUS I and the solar atmosphere below as observed by solar telescopes. It will thus provide bridges for understanding the magnetic links between the heliosphere and the solar atmosphere. Such information is crucial to our understanding of the plasma physics and electrodynamics of the solar atmosphere. ICARUS II will also play a very important relay role, enabling the radio-link with ICARUS I. It will receive, collect and store information transmitted from ICARUS I during its closest approach to the Sun. It will also perform preliminary data processing before transmitting it to the Earth. Performing such unique in situ measurements in the region where presumably deadly solar energetic particles are energized, ICARUS will make fundamental contributions to our ability to monitor and forecast the space radiation environment. Such a knowledge is extremely important for future space explorations, especially for long-term manned space missions.

  16. Integrated Cognitive-neuroscience Architectures for Understanding Sensemaking (ICArUS): Phase 1 Test and Evaluation Development Guide

    DTIC Science & Technology

    2014-11-01

    Integrated Cognitive-neuroscience Architectures for Understanding Sensemaking (ICArUS): Phase 1 Test and Evaluation Development Guide Craig...Self-initiated sensemaking ........................................................................................... 19 Feature Vector Format: Tasks...The Integrated Cognitive-neuroscience Architectures for Understanding Sensemaking (ICArUS) Program aimed to build computational cognitive

  17. Radiation forces on small particles in the Solar System: A re-consideration

    NASA Astrophysics Data System (ADS)

    Burns, Joseph A.; Lamy, Philippe L.; Soter, Steven

    2014-04-01

    We respond to Klačka et al. (Klačka, J., Petržala, J., Pástor, P., Kómar, L. [2014]. Icarus, this issue, http://dx.doi.org/10.1016/j.icarus.2012.06.044.), who have criticized many previous derivations of the acceleration experienced by a spherical interplanetary particle owing to the Sun’s radiation. Much of their criticism arises from differences in semantics and notation as well as effects that are unimportant at Solar System speeds. Accordingly, in the appropriate limiting cases, most published expressions for the radiation forces, such as that found in Burns et al. (Burns, J.A., Lamy, P.L., Soter, S. [1979]. Icarus 40 1-48), are correct and duplicate the results of Klačka et al. (Klačka, J., Petržala, J., Pástor, P., Kómar, L. [2014]. Icarus, this issue, http://dx.doi.org/10.1016/j.icarus.2012.06.044).

  18. Project Icarus: The First Unmanned Interstellar Mission - Robotic Expansion and Technological Growth

    NASA Astrophysics Data System (ADS)

    Long, K. F.

    This paper discusses the important role of `disruptive technology' in altering the assessment on when the first unmanned interstellar probe mission is possible. Historical estimates suggest that such a mission is likely possible in the 23rd or 24th century. This paper argues that if such assessments also consider the role of high-growth exponential technology trends then in fact the first unmanned mission may be possible much earlier. The case study of a 100 year flyby space probe mission to Alpha Centauri 4.3 light years distance is examined, with an ideal cruise speed of 2,700 AU/year. Starting from an assumed mission capacity of 5 AU/year in 2020 a simple assessment shows that assuming a greater than ~8% technology growth annually in mission capacity (as measured by the attainment of cruise speed) it may be possible to launch an interstellar probe by around the year 2100. This depends upon significant and sustained science and technology research investment being made, particularly into space propulsion engineering in the near-term. This paper is a submission of the Project Icarus Study Group.

  19. Studying the Structure of Condensables Jupiter’s 24deg Jet

    NASA Astrophysics Data System (ADS)

    Flom, Abigail; Sankar, Ramanakumar; Palotai, Csaba J.; Dowling, Timothy E.

    2017-10-01

    Simulations of the atmospheres of Jovian planets can be used to check our current understanding of the physics of their atmospheres. Such studies have been performed in the past, but the development of cloud microphysics models allows us to gain new insight in how the clouds form and behave in areas of interest. This study conducts high resolution cloudy simulations of the 24 degree north high speed jet for a period of 200 days. The models were created using the Explicit Planetary Isentropic_Coordinate (EPIC) general circulation model (Dowling et al 1998, 2006) that includes full hydrological cycle for multiple condensible species (Palotai and dowling 2008, Palotai et al 2016). This builds off of work presented by our group last year at DPS. The simulations were run under various conditions again in order to test what parameters led to stable simulations. These results help describe which physical parameters can lead to stable high speed jets and how water and ammonia behave within these features. Reference: [1] T. Dowling, A. Fischer, P. Gierasch, J. Harrington, R. Lebeau, and C. Santori. The explicit planetary isentropic-coordinate (epic) atmospheric model. Icarus, 1998. [2] T. E. Dowling, M. E. Bradley, E. Colon, J. Kramer, R. P. LeBeau, G. C. H. Lee, T. I. Mattox, R. Morales-Juberias, C. J. Palotai, V. k. Parimi, and A. P. Showman. The epic atmospheric model with an isentropic/terrain-following hybrid vertical coordinate. Icarus, 182:259-273, may 2006.[3] C. Palotai and T. E. Dowling. Addition of water and ammonia cloud microphysics to the epic model. Icarus, 2008.[4] C. J. Palotai, R. P. Le Beau, R. Shankar, A. Flom, J. Lashley, and T. McCabe. A cloud microphysics model for the gas giant planets. In AAS/Division for Planetary Sciences Meeting Abstracts, 2016.

  20. Organo-Nitrogen Reactions on Jupiter

    NASA Astrophysics Data System (ADS)

    Lamothe, V. L.; Moses, J. I.

    2000-10-01

    Because the altitude regions for CH4 and NH3 photodissociation are physically separated from each other in the Jovian atmosphere, the possibility of forming organo-nitrogen compounds on Jupiter has been an uncertain problem [1,2,3,4,5]. Carbon- and nitrogen-bearing species do not interact significantly in laboratory experiments involving ultraviolet irradiation of CH4-NH3-H2 mixtures [6,7]. However, HCN and a variety of complex organo-nitrogen molecules are produced when methane in the above experiments is replaced by unsaturated hydrocarbons such as C2H2 or CH3C2H [8,9]. To determine the formation efficiency of organo-nitrogen compounds on Jupiter, we have added the reaction schemes proposed by [3,8,9] to a photochemical model of the Jovian troposphere and stratosphere. We find that HCN does not form in observable quantities unless a large tropospheric source of C2H2 exists (e.g., via lightning-induced chemistry, see [10]). Organo-nitrogen reactions are unlikely to be important on Jupiter --- chromophores are most likely due to inorganic compounds. References: [1] Strobel, D. F. (1973), J. Atmos. Sci. 30, 1205; [2] Kaye, J. A., and D. F. Strobel (1983a), Icarus\\ 55, 399; [3] Kaye, J. A., and D. F. Strobel (1983b), Icarus\\ 54, 417; [4] Tokunaga, A. T. et al./ (1981), Icarus\\ 48, 283; [5] Bézard, B. et al./ (1995), Icarus\\ 118, 384; [6] Raulin, F. et al. (1979), Icarus\\ 38, 358; [7] Ferris, J. P., and J. Y. Morimoto (1981), Icarus\\ 48, 118; [8] Ferris, J. P., and Y. Ishikawa (1988), J. Am. Chem. Soc. 110, 4306; [9] Ferris, J. et\\ al. (1992), Icarus\\ 95, 54; [10] Bétremieux, Y., and R. V. Yelle (1999), BAAS\\ 31, 1180.

  1. Early Rockets

    NASA Image and Video Library

    2004-04-15

    Ever since humans first saw birds soar through the sky, they have wanted to fly. The ancient Greeks and Romans pictured many of their gods with winged feet, and imagined mythological winged animals. According to the legend of Daedalus and Icarus, the father and son escaped prison by attaching wings made of wax and feathers to their bodies. Unfortunately, Icarus flew too near the sun, and the heat caused the wax and feathers to melt. The feathers fell off, and Icarus plummeted to the sea. Daedalus landed safely in Sicily.

  2. Development of a Three-Dimensional, Unstructured Material Response Design Tool

    NASA Technical Reports Server (NTRS)

    Schulz, Joseph C.; Stern, Eric C.; Muppidi, Suman; Palmer, Grant E.; Schroeder, Olivia

    2017-01-01

    A preliminary verification and validation of a new material response model is presented. This model, Icarus, is intended to serve as a design tool for the thermal protection systems of re-entry vehicles. Currently, the capability of the model is limited to simulating the pyrolysis of a material as a result of the radiative and convective surface heating imposed on the material from the surrounding high enthalpy gas. Since the major focus behind the development of Icarus has been model extensibility, the hope is that additional physics can be quickly added. This extensibility is critical since thermal protection systems are becoming increasing complex, e.g. woven carbon polymers. Additionally, as a three-dimensional, unstructured, finite-volume model, Icarus is capable of modeling complex geometries. In this paper, the mathematical and numerical formulation is presented followed by a discussion of the software architecture and some preliminary verification and validation studies.

  3. Rebuttal to comment on “Modeling of opposition effects with ensembles of clusters: Interplay of various scattering mechanisms” by Elena V. Petrova, Victor P. Tishkovets, Klaus Jockers, 2007 [Icarus 188, 233 245

    NASA Astrophysics Data System (ADS)

    Petrova, Elena V.; Tishkovets, Victor P.; Jockers, Klaus

    2008-04-01

    Shkuratov and Zubko [Shkuratov, Yu.G., Zubko, E., 2008. Icarus 194, 850-852] criticize our paper [Petrova, E.V., Tishkovets, V.P., Jockers, K., 2007. Icarus 188, 233-245]. With this comment we reply to this criticism. We show that the experimental data and the modeling calculations presented by these authors cannot disprove the near-field effect as an important contributor to the scattering mechanisms considered in our paper.

  4. Orbital clustering of martian Trojans: An asteroid family in the inner Solar System?

    NASA Astrophysics Data System (ADS)

    Christou, Apostolos A.

    2013-05-01

    We report on the discovery of new martian Trojans within the Minor Planet Center list of asteroids. Their orbital evolution over 108 yr shows characteristic signatures of dynamical longevity (Scholl, H., Marzari, F., Tricarico, P. [2005]. Icarus 175, 397-408) while their average orbits resemble that of the largest known martian Trojan, 5261 Eureka. The group forms a cluster within the region where the most stable Trojans should reside. Based on a combinatorial analysis and a comparison with the jovian Trojan population, we argue that both this feature and the apparent paucity of km-sized martian Trojans (Trilling, D.E., Spahr, T.B., Rivkin, A.S., Hergenrother, C.W., Kortenkamp, S.J. [2006]. ID 2006A-0251) as compared to expectations from earlier work (Tabachnik, S., Evans, N.W. [1999]. Astrophys. J. 517, L63-L66) is not due to observational bias but instead a natural end result of the collisional comminution (Jutzi, M., Michel, P., Benz, W., Richardson, D.C. [2010]. Icarus 207, 54-65) or, alternatively, the rotational fission (Pravec, P. et al. [2010]. Nature 466, 1085-1088) of a progenitor L5 Trojan of Mars. Under the collisional scenario in particular, the new martian Trojans are dynamically young, in agreement with our age estimate of this "cluster" of <2 Gyr based on the earlier work of Scholl et al. (Scholl, H., Marzari, F., Tricarico, P. [2005]. Icarus 175, 397-408). This work highlights the Trojan regions of the terrestrial planets as natural laboratories to study processes important for small body evolution in the Solar System and provides the first direct evidence for an orbital cluster of asteroids close to the Earth.

  5. Meteorite Source Regions as Revealed by the Near-Earth Object Population

    NASA Astrophysics Data System (ADS)

    Binzel, Richard P.; DeMeo, Francesca E.; Burt, Brian J.; Polishook, David; Burbine, Thomas H.; Bus, Schelte J.; Tokunaga, Alan; Birlan, Mirel

    2014-11-01

    Spectroscopic and taxonomic information is now available for 1000 near-Earth objects, having been obtained through both targeted surveys (e.g. [1], [2], [3]) or resulting from all-sky surveys (e.g. [4]). We determine their taxonomic types in the Bus-DeMeo system [5] [6] and subsequently examine meteorite correlations based on spectral analysis (e.g. [7],[8]). We correlate our spectral findings with the source region probabilities calculated using the methods of Bottke et al. [9]. In terms of taxonomy, very clear sources are indicated: Q-, Sq-, and S-types most strongly associated with ordinary chondrite meteorites show clear source signatures through the inner main-belt. V-types are relatively equally balanced between nu6 and 3:1 resonance sources, consistent with the orbital dispersion of the Vesta family. B- and C-types show distinct source region preferences for the outer belt and for Jupiter family comets. A Jupiter family comet source predominates for the D-type near-Earth objects, implying these "asteroidal" bodies may be extinct or dormant comets [10]. Similarly, near-Earth objects falling in the spectrally featureless "X-type" category also show a strong outer belt and Jupiter family comet source region preference. Finally the Xe-class near-Earth objects, which most closely match the spectral properties of enstatite achondrite (aubrite) meteorites seen in the Hungaria region[11], show a source region preference consistent with a Hungaria origin by entering near-Earth space through the Mars crossing and nu6 resonance pathways. This work supported by the National Science Foundation Grant 0907766 and NASA Grant NNX10AG27G.[1] Lazzarin, M. et al. (2004), Mem. S. A. It. Suppl. 5, 21. [2] Thomas, C. A. et al. (2014), Icarus 228, 217. [3] Tokunaga, A. et al. (2006) BAAS 38, 59.07. [4] Hasselmann, P. H., Carvano, J. M., Lazzaro, D. (2011) NASA PDS, EAR-A-I0035-5-SDSSTAX-V1.0. [5] Bus, S.J., Binzel, R.P. (2002). Icarus 158, 146. [6] DeMeo, F.E. et al. (2009), Icarus 202, 160. [7] Dunn et al. (2010) Icarus 208, 789. [8] Dunn et al. (2013) Icarus 222, 273. [9] Bottke, W.F. et al. (2002), Icarus 156, 399. [10] DeMeo, F., Binzel, R. P. (2007) Icarus 194, 436. [11] Gaffey, M. J. et al. (1992) Icarus 100, 95.

  6. Development of an Unstructured, Three-Dimensional Material Response Design Tool

    NASA Technical Reports Server (NTRS)

    Schulz, Joseph; Stern, Eric; Palmer, Grant; Muppidi, Suman; Schroeder, Olivia

    2017-01-01

    A preliminary verification and validation of a new material response model is presented. This model, Icarus, is intended to serve as a design tool for the thermal protection systems of re-entry vehicles. Currently, the capability of the model is limited to simulating the pyrolysis of a material as a result of the radiative and convective surface heating imposed on the material from the surrounding high enthalpy gas. Since the major focus behind the development of Icarus has been model extensibility, the hope is that additional physics can be quickly added. The extensibility is critical since thermal protection systems are becoming increasing complex, e.g. woven carbon polymers. Additionally, as a three-dimensional, unstructured, finite-volume model, Icarus is capable of modeling complex geometries as well as multi-dimensional physics, which have been shown to be important in some scenarios and are not captured by one-dimensional models. In this paper, the mathematical and numerical formulation is presented followed by a discussion of the software architecture and some preliminary verification and validation studies.

  7. The spatial distribution of water in the inner coma of Comet 9P/Tempel 1: Comparison between models and observations

    NASA Astrophysics Data System (ADS)

    Finklenburg, S.; Thomas, N.; Su, C. C.; Wu, J.-S.

    2014-07-01

    The near nucleus coma of Comet 9P/Tempel 1 has been simulated with the 3D Direct Simulation Monte Carlo (DSMC) code PDSC++ (Su, C.-C. [2013]. Parallel Direct Simulation Monte Carlo (DSMC) Methods for Modeling Rarefied Gas Dynamics. PhD Thesis, National Chiao Tung University, Taiwan) and the derived column densities have been compared to observations of the water vapour distribution found by using infrared imaging spectrometer on the Deep Impact spacecraft (Feaga, L.M., A’Hearn, M.F., Sunshine, J.M., Groussin, O., Farnham, T.L. [2007]. Icarus 191(2), 134-145. http://dx.doi.org/10.1016/j.icarus.2007.04.038). Modelled total production rates are also compared to various observations made at the time of the Deep Impact encounter. Three different models were tested. For all models, the shape model constructed from the Deep Impact observations by Thomas et al. (Thomas, P.C., Veverka, J., Belton, M.J.S., Hidy, A., A’Hearn, M.F., Farnham, T.L., et al. [2007]. Icarus, 187(1), 4-15. http://dx.doi.org/10.1016/j.icarus.2006.12.013) was used. Outgassing depending only on the cosine of the solar insolation angle on each shape model facet is shown to provide an unsatisfactory model. Models constructed on the basis of active areas suggested by Kossacki and Szutowicz (Kossacki, K., Szutowicz, S. [2008]. Icarus, 195(2), 705-724. http://dx.doi.org/10.1016/j.icarus.2007.12.014) are shown to be superior. The Kossacki and Szutowicz model, however, also shows deficits which we have sought to improve upon. For the best model we investigate the properties of the outflow.

  8. New evidence for chemical depletion of ammonia in the 1 to 2 bar region of Jupiter's atmosphere

    NASA Astrophysics Data System (ADS)

    Wong, M. H.; Atreya, S. K.; Romani, P. N.; De Pater, I.; Kuhn, W. R.; Kalogerakis, K. S.

    2014-12-01

    It has long been known that the vertical profile of ammonia within Jupiter's cloud layers is not well-described by a simple equilibrium profile, with saturated vapor above the cloud base and the well-mixed deep abundance below the cloud base. An additional depletion of ammonia by a factor of 4-10 is required by global microwave spectra at p < 6 bar [e.g., 1]. Dynamical effects, ranging from cloud layer circulation between belts and zones [2] to molecular differentiation following convective activity [3] might be sufficient to explain the global microwave data. However, in situ cloud density measurements by the Galileo Probe [4] suggest a large gap in our understanding of cloud chemistry in Jupiter, especially when combined with other tracers such as volatile mixing ratios [5] and static stability [6]. Using the "fresh clouds" method of modeling cloud density [7], and assuming that cloud-forming advection was weak at all levels in the probe site, we find that NH4SH formation cannot explain cloud densities between 1 and 1.4 bar in situ. The composition of additional chemical species, or adsorption of ammonia on other ices, are candidate processes that strongly require further laboratory study of the H2O-NH3-H2S volatile system at temperatures of 150 to 300 K [1]. Spectral features near 3 microns suggest widespread NH4SH in the visible cloud decks of Jupiter [8], but additional species may also contribute to absorption at these wavelengths. Infrared spectroscopy at high angular resolution in the future---performed by Juno, JWST, or 30-m class ground-based telescopes---may be able to observe ammonia depletion mechanisms in action. References:[1] de Pater et al. (2001), Icarus 149, 66-78.[2] Showman and de Pater (2005), Icarus 174, 192-204.[3] Sugiyama et al. (2011), GRL 38, L13201.[4] Ragent et al. (1998), JGR 103, 22891-22909.[5] Wong et al. (2004), Icarus 171, 153-170.[6] Magalhães, Seiff, and Young (2002), Icarus 158, 410-433.[7] Wong et al. (2014), Icarus, submitted.[8] Sromovsky et al. (2010), Icarus 210, 211-229 and 230-257. [This material is supported by the NASA Juno Project through a SWRI subcontract (SKA), and by NASA Grant No. NNX11AM55G issued through the Outer Planets Research Program (MHW).

  9. Origin of Martian Interior Layered Deposits (ILDs) by atmospherically driven processes

    NASA Astrophysics Data System (ADS)

    Michalski, J. R.; Niles, P. B.

    2011-12-01

    Since the first photogeologic exploration of Mars, vast mounds of layered sediments found within the Valles Marineris canyon system (Interior Layered Deposits or ILDs) have remained unexplained. Recent spectroscopic results showing that these materials contain coarse-grained hematite [1] and sulfate [2-8] suggest that they are fundamentally similar to layered sulfate deposits seen elsewhere on Mars [3], and are therefore a key piece of Mars' global aqueous history. Layered sulfate deposits (including ILDs) are often considered to have formed in association with transient, wet surface environments caused by groundwater upwelling [9] in the Hesperian. Here, we use spectroscopic mapping along with geomorphic observations and mass balance calculations to demonstrate that the sulfate-bearing ILDs likely did not form due to groundwater upwelling or any similar playa-lacustrine scenario. Instead, the ILDs likely formed from atmospherically driven processes in a configuration similar to that observed today. We suggest that Hesperian layered sulfate deposits formed in response to massive amounts of pyroclastic volcanism and SO2-outgassing that peaked near 3.5-3.7 Ga in a Martian climate that was largely cold and dry. This origin for the ILDs is also applicable to other layered terrain of similar age and characteristics, including sulphate-bearing crater fill, chaos terrains, and the Meridiani Planum sediments. [1] Weitz, C. M., Lane, M. D., Staid, M. & Dobrea, E. N. Gray hematite distribution and formation in Ophir and Candor chasmata. Journal of Geophysical Research-Planets 113, doi:E02016 10.1029/2007je002930 (2008). [2] Wendt, L. et al. Sulfates and iron oxides in Ophir Chasma, Mars, based on OMEGA and CRISM observations. Icarus 213, 86-103, doi:10.1016/j.icarus.2011.02.013 (2011). [3] Murchie, S. et al. Evidence for the origin of layered deposits in Candor Chasma, Mars, from mineral composition and hydrologic modeling. Journal of Geophysical Research-Planets 114, doi:E00d05 10.1029/2009je003343 (2009). [4] Mangold, N. et al. Spectral and geological study of the sulfate-rich region of West Candor Chasma, Mars. Icarus 194, 519-543, doi:10.1016/j.icarus.2007.10.021 (2008). [5] Le Deit, L. et al. Morphology, stratigraphy, and mineralogical composition of a layered formation covering the plateaus around Valles Marineris, Mars: Implications for its geological history. Icarus 208, 684-703, doi:10.1016/j.icarus.2010.03.012 (2010). [6] Gendrin, A. et al. Suffates in martian layered terrains: the OMEGA/Mars Express view. Science 307, 1587-1591, doi:10.1126/science.1109087 (2005). [7] Bibring, J.-P. et al. Coupled Ferric Oxides and Sulfates on the Martian Surface. Science 317, 1206-1210, doi:10.1126/science.1144174 (2007). [8] Roach, L. H., Mustard, J. F., Lane, M. D., Bishop, J. L. & Murchie, S. L. Diagenetic haematite and sulfate assemblages in Valles Marineris. Icarus 207, 659-674, doi:10.1016/j.icarus.2009.11.029 (2010). [9] Andrews-Hanna, J. C. & Lewis, K. W. Early Mars hydrology: 2. Hydrological evolution in the Noachian and Hesperian epochs. Journal of Geophysical Research-Planets 116, doi:E02007 10.1029/2010je003709 (2011).

  10. Photochemistry, mixing and transport in Jupiter’s stratosphere constrained by Cassini

    NASA Astrophysics Data System (ADS)

    Hue, Vincent; Hersant, Franck; Cavalié, Thibault; Dobrijevic, Michel

    2015-11-01

    Jupiter’s obliquity and eccentricity drive the seasonal forcing on its atmosphere. The seasonal variations on its stratospheric temperature through radiative heating and composition through photochemistry are smaller than for Saturn, due to a lower obliquity and eccentricity. Although the physical conditions in these two planets are different, the stratospheric photochemistry is initiated and controlled by the methane photolysis [1]. We adapted a 2D (altitude-latitude) seasonal photochemical model of Saturn [2] to Jupiter. We compare the seasonal effects on the atmospheric composition between these two planets. We use previous 1D photochemical models for the vertical mixing efficiency [1,3] and recent Cassini observations to constrain the meridional mixing efficiency and transport processes [4,5,6].Cassini’s flyby of Jupiter has allowed mapping its stratospheric temperature as a function of latitude [7]. It has also revealed the meridional distribution of hydrocarbons [8,9], which were suggested by earlier studies [10,4]. Previous models suggest that vertical mixing alone is not sufficient to reproduce the observations of C2H2 and C2H6 [5,6], and that meridional mixing is needed. We show that, in addition to meridional mixing, advective circulation is required to reproduce Cassini observations of C2H6. Preliminary results from our model suggest an equator-to-pole circulation cell in Jupiter’s stratosphere, around 30-0.01 mbar.References[1] Moses et al., 2005. JGR 110, 8001.[2] Hue et al., 2015. Icarus 257, 163-184.[3] Gladstone et al., 1996. Icarus 119, 1-52.[4] Kunde et al., 2004. Science 305, 1582-1587.[5] Liang et al., 2005. ApJ Lett. 635, L177-L180.[6] Lellouch et al., 2006. Icarus 184 (2), 478-497.[7] Simon-Miller et al., 2006. Icarus 180 (1), 98-112.[8] Nixon et al., 2007. Icarus 188, 47-71.[9] Nixon et al., 2010. PSS 58, 1667-1680.[10] Maguire et al., 1984. Bulletin of the AAS 16, 647-647.

  11. The Icarus challenge - Predicting vulnerability to climate change using an algorithm-based species' trait approach

    EPA Science Inventory

    The Icarus challenge - Predicting vulnerability to climate change using an algorithm-based species’ trait approachHenry Lee II, Christina Folger, Deborah A. Reusser, Patrick Clinton, and Rene Graham1 U.S. EPA, Western Ecology Division, Newport, OR USA E-mail: lee.henry@ep...

  12. The Icarus challenge - Predicting vulnerability to climate change using an algorithm-based species’ trait approach

    EPA Science Inventory

    Like Icarus, the world’s ecological resources are “flying too close” to the sun, and climate change will impact near-coastal species through temperature, sea-level rise, and ocean acidification and indirectly through changes in invasive species and land-use patt...

  13. Influence of Haze on Molecular Lines Formed in the Atmosphere of Titan

    NASA Astrophysics Data System (ADS)

    Kim, Sang J.

    2012-10-01

    Radiative transfer calculations for the ro-vibrational lines of CH4, C2H2, C2H6, and HCN in atmosphere of Titan have been carried out without consideration of haze opacities (e.g., Yelle and Griffith, 2003), or only for very high (z > 500 km) atmospheric layers where haze influence is assumed to be negligible (e.g., Adriani et al. 2011; and García-Comas et al. 2011). Haze particles are found to exist in the high-altitude atmosphere of Titan, where the absorption lines of these molecules are modified by the haze opacities (Bellucci et al. 2009; Kim et al. 2011). We will present a discussion on the influence of the haze opacities on these molecular lines based on a preliminary result from updated radiative transfer calculations. References Adriani, A. et al. 2011. Icarus 214, 584-595. Bellucci, A. et al. 2009. Icarus 201, 198-216. García-Comas, M. et al. 2011. Icarus 214, 571-583. Kim, et al. 2011. 2011. Planetary and Space Science 59, 699-704. Yelle, R.V., Griffith, C.A., 2003. Icarus 166, 107-115.

  14. Coupled Photochemical and Condensation Model for the Venus Atmosphere

    NASA Astrophysics Data System (ADS)

    Bierson, Carver; Zhang, Xi; Mendonca, Joao; Liang, Mao-Chang

    2017-10-01

    Ground based and Venus Express observations have provided a wealth of information on the vertical and latitudinal distribution of many chemical species in the Venus atmosphere [1,2]. Previous 1D models have focused on the chemistry of either the lower [3] or middle atmosphere [4,5]. Photochemical models focusing on the sulfur gas chemistry have also been independent from models of the sulfuric acid haze and cloud formation [6,7]. In recent years sulfur-bearing particles have become important candidates for the observed SO2 inversion above 80 km [5]. To test this hypothesis it is import to create a self-consistent model that includes photochemistry, transport, and cloud condensation.In this work we extend the domain of the 1D chemistry model of Zhang et al. (2012) [5] to encompass the region between the surface to 110 km. This model includes a simple sulfuric acid condensation scheme with gravitational settling. It simultaneously solves for the chemistry and condensation allowing for self-consistent cloud formation. We compare the resulting chemical distributions to observations at all altitudes. We have also validated our model cloud mass against pioneer Venus observations [8]. This updated full atmosphere chemistry model is also being applied in our 2D solver (altitude and altitude). With this 2D model we can model how the latitudinal distribution of chemical species depends on the meridional circulation. This allows us to use the existing chemical observations to place constraints on Venus GCMs [9-11].References: [1] Arney et al., JGR:Planets, 2014 [2] Vandaele et al., Icarus 2017 (pt. 1 & 2) [3] Krasnopolsky, Icarus, 2007 [4] Krasnopolsky, Icarus, 2012 [5] Zhang et al., Icarus 2012 [6] Gao et al., Icarus, 2014 [7] Krasnopolsky, Icarus, 2015 [8] Knollenberg and Hunten, JGR:Space Physics, 1980 [9] Lee et al., JGR:Planets, 2007 [10] Lebonnois et al., Towards Understanding the Climate of Venus, 2013 [11] Mendoncca and Read, Planetary and Space Science, 2016

  15. Icarus Investigations: A Model for Engaging Citizen Scientists to Solve Solar Big Data Challenges

    NASA Astrophysics Data System (ADS)

    Winter, H. D., III; Loftus, K.

    2017-12-01

    Solar data is growing at an exponential rate. NASA's Atmospheric Imaging Assembly (AIA) has produced a data volume of over 6 petabytes to date, and that volume is growing. The initial suite of instruments on DKIST are expected to generate approximately 25TB of data per day, with bursts up to 50TB. Making sense of this deluge of solar data is as formidable a task as collecting it. New techniques and new ways of thinking are needed in order to optimize the value of this immense amount of data. While machine learning algorithms are a natural tool to sift through Big Data, those tools need to be carefully constructed and trained in order to provide meaningful results. Trained volunteers are needed to provide a large volume of initial classifications in order to properly train machine learning algorithms. To retain a highly trained pool of volunteers to teach machine learning algorithms, we propose to host an ever-changing array of solar-based citizen science projects under a single collaborative project banner: Icarus Investigations. Icarus Investigations would build and retain a dedicated user base within Zooniverse, the most popular citizen science website with over a million registered users. Volunteers will become increasingly comfortable with solar images and solar features of interest as they work on projects that focus on a wide array of solar phenomena. Under a unified framework, new solar citizen science projects submitted to Icarus Investigations will build on the successes, and learn from the missteps, of their predecessors. In this talk we discuss the importance and benefits of engaging the public in citizen science projects and call for collaborators on future citizen science projects. We will also demonstrate the initial Icarus Investigations project, The Where of the Flare. This demonstration will allow us to highlight the workflow of a Icarus Investigations citizen science project with a concrete example.

  16. The Icarus challenge - Predicting geographical and taxonomic patterns of vulnerability to climate change in near-coastal species

    EPA Science Inventory

    Like Icarus, the world's oceans are "flying too close" to the sun. Increases in temperature and sea level and reductions in pH will affect many, if not most, near-coastal species. The type and severity of the effects will vary both by species and regionally due to geogr...

  17. SOFIA + FORCAST Observations of 10 Aqueously Altered Asteroids

    NASA Astrophysics Data System (ADS)

    McAdam, Margaret; Sunshine, Jessica M.; Kelley, Michael S.; Bus, Schelte J.

    2016-10-01

    Aqueous alteration, or the reaction of water and minerals to produce hydrated minerals, has affected certain groups of carbonaceous meteorites (e.g., the CM and CI meteorites) and asteroids. In the visible/near-infrared (VNIR), CM/CI meteorites and some dark C-complex asteroids are known to have 0.7-µm absorptions that indicate the presence of hydrated minerals [1, 2, 3]. However, this feature does not provide any information about the amount of hydrated minerals in asteroids or meteorites [1]. In contrast, at mid-infrared (MIR) wavelengths, strong spectral features change continuously with amount of hydrated minerals in a suite of well-characterized CM/CI meteorites [1].Using these results, we analyze the spectra of 10 C-complex asteroids observed by SOFIA + FORCAST. These targets are large objects (>95 km diameter) situated in the mid to outer Main Asteroid Belt (2.4 - 3.4 AU). We present spectra of the following asteroids, spectral types in parentheses: 36 Atalante (C), 38 Leda (Cgh), 62 Erato (Ch), 121 Hermione (Ch), 165 Loreley (Cb), 194 Prokne (C), 203 Pompeja (C), 266 Aline (Ch), 52 Europa (Ch), and 19 Fortuna (Ch). Spectra were obtained in two wavelength regions: 8.5-13.6-μm and 17.6-27.7-μm. In these spectral regions, mineralogical features that are known to change continuously with amount of hydrated minerals appear. Most of these targets are known to have hydrated minerals on their surfaces by the presence of the 0.7-μm feature [e.g. 3, 4] or from observations in the 3-μm region [5]. We interpret the spectral features observed using SOFIA and estimate the abundances of hydrated minerals for each asteroid. Additionally, we compare these observations to Spitzer observations of similar objects. A subset of these asteroids have also been measured in VNIR, which allows us to directly compare the signatures of hydration in both the VNIR and the MIR.[1] McAdam et al., (2015), Icarus, 245, 320-332. [2] Cloutis, et al., (2011), Icarus, 216, 309-346. [3] Vilas and Gaffey (1989), Science, 246, 790-792. [4] Bus and Binzel (2002), Icarus, 158, 146-177. Takir and Emery (2012), Icarus, 219, 641-654.

  18. Slim Chance: The Pivotal Role of Air Mobility in the Burma Campaign

    DTIC Science & Technology

    2011-06-01

    to address other, persistent lessons learned from Burma: proper crew management, to prevent aircrew burnout from extended combat flying; streamlined...1 Carl H. Builder, The Icarus Syndrome (London: Transaction Publishers, 2003), 12. In transitioning from the historical analysis of air...Icarus Syndrome . London: Transaction Publishers, 2003. Burlingame, Roger. General Billy Mitchell: Champion of Air Defense. Westport, Connecticut

  19. Vertical cloud structure of Uranus from UKIRT/UIST observations and changes seen during Uranus’ northern spring equinox from 2006 to 2008

    NASA Astrophysics Data System (ADS)

    Irwin, P. G. J.; Teanby, N. A.; Davis, G. R.

    2009-09-01

    Long-slit spectroscopy observations of Uranus by the United Kingdom Infrared Telescope UIST instrument in 2006, 2007 and 2008 have been used to monitor the change in Uranus' vertical and latitudinal cloud structure through the planet's northern spring equinox in December 2007. The observed reflectance spectra in the Long J (1.17-1.31 μm) and H (1.45-1.65 μm) bands, obtained with the slit aligned along Uranus' central meridian, have been fitted with an optimal estimation retrieval model to determine the vertical cloud profile from 0.1 to 6-8 bar over a wide range of latitudes. Context images in a number of spectral bands were used to discriminate general zonal cloud structural changes from passing discrete clouds. From 2006 to 2007 reflection from deep clouds at pressures between 2 and 6-8 bar increased at all latitudes, although there is some systematic uncertainty in the absolute pressure levels resulting from extrapolating the methane coefficients of Irwin et al. (Irwin, P.G.J., Sromovsky, L.A., Strong, E.K., Sihra, K., Teanby, N.A., Bowles, N., Calcutt, S.B., Remedios, J.J. [2006] Icarus, 181, 309-319) at pressures greater than 1 bar, as noted by Tomasko et al. and Karkoschka and Tomasko (Tomasko, M.G., Bezard, B., Doose, L., Engel, S., Karkoschka, E. [2008] Planet. Space Sci., 56, 624-647; Karkoschka, E., Tomasko, M. [2009] Icarus). However, from 2007 to 2008 reflection from these clouds throughout the southern hemisphere and from both northern and southern mid-latitudes (30° N,S) diminished. As a result, the southern polar collar at 45°S has diminished in brightness relative to mid-latitudes, a similar collar at 45°N has become more prominent (e.g. Rages, K.A., Hammel, H.B., Sromovsky, L. [2007] Bull. Am. Astron. Soc., 39, 425; Sromovsky, L.A., Fry, P.M., Ahue, W.M., Hammel, H.B., de Pater, I., Rages, K.A., Showalter, M.R., van Dam, M.A. [2008] vol. 40 of AAS/Division for Planetary Sciences Meeting Abstracts, pp. 488-489; Sromovsky, L.A., Ahue, W.K.M., Fry, P.M., Hammel, H.B., de Pater, I., Rages, K.A., Showalter, M.R. [2009] Icarus), and the lowering reflectivity from mid-latitudes has left a noticeable brighter cloud zone at the equator (e.g. Sromovsky, L.A., Fry, P.M. [2007] Icarus, 192, 527-557;Karkoschka, E., Tomasko, M. [2009] Icarus). For such substantial cloud changes to have occurred in just two years suggests that the circulation of Uranus' atmosphere is much more vigorous and/or efficient than is commonly thought. The composition of the main observed cloud decks between 2 and 6-8 bar is unclear, but the absence of the expected methane cloud at 1.2-1.3 bar (Lindal, G.F., Lyons, J.R., Sweetnam, D.N., Eshleman, V.R., Hinson, D.P. [1987] J. Geophys. Res., 92, 14987-15001) is striking (as previously noted by, among others, Sromovsky, L.A., Irwin, P.G.J., Fry, P.M. [2006] Icarus, 182, 577-593; Sromovsky, L.A., Fry, P.M. [2007] Icarus, 192, 527-557; Sromovsky, L.A., Fry, P.M. [2008] Icarus, 193, 252-266; Karkoschka, E., Tomasko, M. [2009] Icarus) and suggests that cloud particles may be considerably different from pure condensates and may be linked with stratospheric haze particles drizzling down from above, or that tropospheric hazes are generated near the methane condensation level and then drizzle down to deep pressures as suggested by Karkoschka and Tomasko (Karkoschka, E., Tomasko, M. [2009] Icarus). The retrieved cloud structures were also tested for different assumptions of the deep methane mole fraction, which Karkoschka and Tomasko (Karkoschka, E., Tomasko, M. [2009] Icarus) find may vary from ˜1-2% in polar regions to perhaps as much as 4% equatorwards of 45°N,S. We found that such variations did not significantly affect our conclusions.

  20. Fireball data analysis: bridging the gap between small solar system bodies and meteorite studies

    NASA Astrophysics Data System (ADS)

    Gritsevich, Maria; Moreno-Ibáñez, Manuel; Kuznetsova, Daria; Bouquet, Alexis; Trigo-Rodríguez, Josep; Peltoniemi, Jouni; Koschny, Detlef

    2015-08-01

    One of the important steps in identification of meteorite-producing fireballs and prediction of impact threat to Earth raised by potentially hazardous asteroids is the understanding and modeling of processes accompanying the object’s entry into the terrestrial atmosphere (Gritsevich et al., 2012). Such knowledge enables characterization, simulation and classification of possible impact consequences with further reommendation for potential meteorite searches. Using dimensionless expressions, which involve the pre-atmospheric meteoroid parameters, we have built physically based parametrisation to describe changes in mass, height, velocity and luminosity of the object along its atmospheric path (Gritsevich and Koschny, 2011; Bouquet et al., 2014). The developed model is suitable to estimate a number of crucial unknown values including shape change coefficient, ablation rate, and surviving meteorite mass. It is also applicable to predict the terminal height of the luminous flight and therefore, duration of the fireball (Moreno-Ibáñez et al., 2015). Besides the model description, we demonstrate its application using the wide range of observational data from meteorite-producing fireballs appearing annually (such as Košice) to larger scale impacts (such as Chelyabinsk, Sikhote-Alin and Tunguska).REFERENCESBouquet A., Baratoux D., Vaubaillon J., Gritsevich M.I., Mimoun D., Mousis O., Bouley S. (2014): Planetary and Space Science, 103, 238-249, http://dx.doi.org/10.1016/j.pss.2014.09.001Gritsevich M., Koschny D. (2011): Icarus, 212(2), 877-884, http://dx.doi.org/10.1016/j.icarus.2011.01.033Gritsevich M.I., Stulov V.P., Turchak L.I. (2012): Cosmic Research, 50(1), 56-64, http://dx.doi.org/10.1134/S0010952512010017Moreno-Ibáñez M., Gritsevich M., Trigo-Rodríguez J.M. (2015): Icarus, 250, 544-552, http://dx.doi.org/10.1016/j.icarus.2014.12.027

  1. Experimental search for the "LSND anomaly" with the ICARUS detector in the CNGS neutrino beam

    NASA Astrophysics Data System (ADS)

    Antonello, M.; Baibussinov, B.; Benetti, P.; Calligarich, E.; Canci, N.; Centro, S.; Cesana, A.; Cieślik, K.; Cline, D. B.; Cocco, A. G.; Dabrowska, A.; Dequal, D.; Dermenev, A.; Dolfini, R.; Farnese, C.; Fava, A.; Ferrari, A.; Fiorillo, G.; Gibin, D.; Gninenko, S.; Guglielmi, A.; Haranczyk, M.; Holeczek, J.; Ivashkin, A.; Kirsanov, M.; Kisiel, J.; Kochanek, I.; Lagoda, J.; Mania, S.; Menegolli, A.; Meng, G.; Montanari, C.; Otwinowski, S.; Piazzoli, A.; Picchi, P.; Pietropaolo, F.; Plonski, P.; Rappoldi, A.; Raselli, G. L.; Rossella, M.; Rubbia, C.; Sala, P. R.; Scantamburlo, E.; Scaramelli, A.; Segreto, E.; Sergiampietri, F.; Stefan, D.; Stepaniak, J.; Sulej, R.; Szarska, M.; Terrani, M.; Varanini, F.; Ventura, S.; Vignoli, C.; Wang, H. G.; Yang, X.; Zalewska, A.; Zaremba, K.

    2013-03-01

    We report an early result from the ICARUS experiment on the search for a ν μ → ν e signal due to the LSND anomaly. The search was performed with the ICARUS T600 detector located at the Gran Sasso Laboratory, receiving CNGS neutrinos from CERN at an average energy of about 20 GeV, after a flight path of ˜730 km. The LSND anomaly would manifest as an excess of ν e events, characterized by a fast energy oscillation averaging approximately to sin2(1.27Δ m2_{new}L/E_{ν})≈ 1/2 with probability P_{ν_{μ}→ νe} = 1/2 sin2(2θ_{new}). The present analysis is based on 1091 neutrino events, which are about 50 % of the ICARUS data collected in 2010-2011. Two clear ν e events have been found, compared with the expectation of 3.7±0.6 events from conventional sources. Within the range of our observations, this result is compatible with the absence of a LSND anomaly. At 90 % and 99 % confidence levels the limits of 3.4 and 7.3 events corresponding to oscillation probabilities < P_{ν_{μ}→ νe}rangle le 5.4 × 10^{-3} and < P_{ν_{μ}→ νe}rangle le 1.1 × 10^{-2} are set respectively. The result strongly limits the window of open options for the LSND anomaly to a narrow region around (Δ m 2,sin2(2 θ))new=(0.5 eV2,0.005), where there is an overall agreement (90 % CL) between the present ICARUS limit, the published limits of KARMEN and the published positive signals of LSND and MiniBooNE Collaborations.

  2. Submillimeter mapping of mesospheric minor species on Venus with ALMA

    NASA Astrophysics Data System (ADS)

    Encrenaz, Therese; Moreno, Raphael; Moullet, Arielle; Lellouch, Emmanuel; Fouchet, Thierry

    2014-05-01

    ALMA offers a unique opportunity to map mesospheric species on Venus. During Cycle 0, we have observed Venus on November 14 and 15, 2011, using the compact configuration of ALMA. The diameter of Venus was 11 arcsec and the illumination factor was about 90 percent. Maps of CO, SO, SO2, and HDO have been built from transitions recorded in the 335-347 GHz frequency range. The mesospheric thermal profile has been inferred using the CO transition at 345.795 GHz. From the integrated spectrum of SO recorded on Nov. 14 at 346.528 GHz, we find that the best fit is obtained with a cut-off in the SO vertical distribution at about 88 km and a mean mixing ratio of about 8.0 ppb above this level. In the case of SO2, as for SO, we find that the best fit is obtained with a cut-off at about 88 km; the SO2 mixing ratio above this level is about 12 ppb. The map of HDO is retrieved from the 335.395 GHz transition. Assuming a typical D/H ratio of 200 times the terrestrial value in the mesosphere of Venus, we find that the disk averaged HDO spectrum is consistent with a H2O mixing ratio of about 2.5 ppm, constant with altitude. Our results are in good agreement with previous single dish submillimeter observations (Sandor and Clancy, Icarus 177, 129, 2005; Gurwell et al. Icarus 188, 288, 2007; Sandor et al. Icarus 208, 49, 2010; Icarus 217, 836, 2012), as well as with the predictions of photochemical models (Zhang et al. Icarus 217, 714, 2012).

  3. Integrated Cognitive-neuroscience Architectures for Understanding Sensemaking (ICArUS): A Computational Basis for ICArUS Challenge Problem Design

    DTIC Science & Technology

    2014-11-01

    Kullback , S., & Leibler , R. (1951). On information and sufficiency. Annals of Mathematical Statistics, 22, 79...cognitive challenges of sensemaking only informally using conceptual notions like "framing" and "re-framing", which are not sufficient to support T&E in...appropriate frame(s) from memory. Assess the Frame: Evaluate the quality of fit between data and frame. Generate Hypotheses: Use the current

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchanan, Charles D.; Cline, David B.; Byers, N.

    Progress in the various components of the UCLA High-Energy Physics Research program is summarized, including some representative figures and lists of resulting presentations and published papers. Principal efforts were directed at the following: (I) UCLA hadronization model, PEP4/9 e{sup +}e{sup {minus}} analysis, {bar P} decay; (II) ICARUS and astroparticle physics (physics goals, technical progress on electronics, data acquisition, and detector performance, long baseline neutrino beam from CERN to the Gran Sasso and ICARUS, future ICARUS program, and WIMP experiment with xenon), B physics with hadron beams and colliders, high-energy collider physics, and the {phi} factory project; (III) theoretical high-energy physics;more » (IV) H dibaryon search, search for K{sub L}{sup 0} {yields} {pi}{sup 0}{gamma}{gamma} and {pi}{sup 0}{nu}{bar {nu}}, and detector design and construction for the FNAL-KTeV project; (V) UCLA participation in the experiment CDF at Fermilab; and (VI) VLPC/scintillating fiber R D.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Progress in the various components of the UCLA High-Energy Physics Research program is summarized, including some representative figures and lists of resulting presentations and published papers. Principal efforts were directed at the following: (I) UCLA hadronization model, PEP4/9 e{sup +}e{sup {minus}} analysis, {bar P} decay; (II) ICARUS and astroparticle physics (physics goals, technical progress on electronics, data acquisition, and detector performance, long baseline neutrino beam from CERN to the Gran Sasso and ICARUS, future ICARUS program, and WIMP experiment with xenon), B physics with hadron beams and colliders, high-energy collider physics, and the {phi} factory project; (III) theoretical high-energy physics;more » (IV) H dibaryon search, search for K{sub L}{sup 0} {yields} {pi}{sup 0}{gamma}{gamma} and {pi}{sup 0}{nu}{bar {nu}}, and detector design and construction for the FNAL-KTeV project; (V) UCLA participation in the experiment CDF at Fermilab; and (VI) VLPC/scintillating fiber R & D.« less

  6. Orbital evolution and escape of Martian Trojans due to the Yarkovsky effect

    NASA Astrophysics Data System (ADS)

    Christou, Apostolos

    2017-06-01

    Recently it was shown that the Yarkovsky effect can lead to significant orbit change for Trojans of Mars [1,2] and that the orbital distribution of observed Trojans is consistent with a negative along-track acceleration of the same functional form as seasonal yarkovsky; this feature was used to constrain the age of the Eureka family of Mars Trojan asteroids [2]. In contrast, the Yarkovsky effect appears to have a negligible role in shaping observed families of Jupiter Trojans [3].To explore the evolution and end states of Trojans evolved by the Yarkosky effect, I have numerically integrated test particles under a model of the diurnal variant and for different values of the acceleration strength up to 10-2 AU/Myr for da/dt outside the resonance. I use as a starting point the orbits of the three largest Martian Trojans: 5261 Eureka, (101429) 1998 VF31 and (121514) 1999 UJ7.I find, as in [2], that the evolution of the inclination I and the libration amplitude L depends on the sign of the acceleration and is essentially deterministic. Considering the rate of change of the Tisserand constant [5,6] leads to a simple analytical expression that reproduces well the inclination evolution of the Trojans. The evolution of e is somewhat more stochastic, probably due to chaotic diffusion [4] and/or the influence of Mars’ eccentricity [2].Trojans escape upon reaching the boundaries of stability domains mapped out in [4], demarcated by resonances with principal secular modes and the Kozai resonance. The mechanism of escape is by increasing e and/or the libration amplitude to the point of allowing close encounters with Mars.During the presentation I will describe the ensemble evolution of Trojans under Yarkovsky, how it is related to the lifetime in the 1:1 resonance and discuss the implications for Trojan stability at Earth and Jupiter.[1] Christou, A.A., 2013, Icarus, 224, 144.[2] Ćuk, M., Christou, A.A., Hamilton, D.P., 2015, Icarus, 252, 339.[3] Milani, A., Knezević, Z., Spoto, F., Cellino, A., Novaković, B., Tsirvoulis, G., 2017, Icarus, 288, 240.[4] Scholl, H., Marzari, F., Tricarico, P., 2005, Icarus, 175, 397.[5] Hamilton, D.P., 1994, Icarus, 109, 221[6] Liou, J. C., Zook, H. A., 1997, Icarus, 128, 354.

  7. Searching for Thermal Anomalies on Icy Satellites: Step 1- Validation of the Three Dimensional Volatile-Transport (VT3D)

    NASA Astrophysics Data System (ADS)

    Simmons, Gary G.; Howett, Carly J. A.; Young, Leslie A.; Spencer, John R.

    2015-11-01

    In the last few decades, thermal data from the Galileo and Cassini spacecraft have detected various anomalies on Jovian and Saturnian satellites, including the thermally anomalous “PacMan” regions on Mimas and Tethys and the Pwyll anomaly on Europa (Howett et al. 2011, Howett et al. 2012, Spencer et al. 1999). Yet, the peculiarities of some of these anomalies, like the weak detection of the “PacMan” anomalies on Rhea and Dione and the low thermal inertia values of the widespread anomalies on equatorial Europa, are subjects for on-going research (Howett et al. 2014, Rathbun et al. 2010). Further, analysis and review of all the data both Galileo and Cassini took of these worlds will provide information of the thermal inertia and albedos of their surfaces, perhaps highlighting potential targets of interest for future Jovian and Saturnian system missions. Many previous works have used a thermophysical model for airless planets developed by Spencer (1990). However, the Three Dimensional Volatile-Transport (VT3D) model proposed by Young (2012) is able to predict surface temperatures in significantly faster computation time, incorporating seasonal and diurnal insolation variations. This work is the first step in an ongoing investigation, which will use VT3D’s capabilities to reanalyze Galileo and Cassini data. VT3D, which has already been used to analyze volatile transport on Pluto, is validated by comparing its results to that of the Spencer thermal model. We will also present our initial results using VT3D to reanalyze the thermophysical properties of the PacMan anomaly previous discovered on Mimas by Howett et al. (2011), using temperature constraints of diurnal data from Cassini/CIRS. VT3D is expected to be an efficient tool in identifying new thermal anomalies in future Saturnian and Jovian missions.Bibliography:C.J.A. Howett et al. (2011), Icarus 216, 221.C.J.A. Howett et al. (2012), Icarus 221, 1084.C.J.A. Howett et al. (2014), Icarus 241, 239.J.A. Rathbun et al. (2010), Icarus 210, 763J. R. Spencer (1990), Icarus 83, 27.J. R. Spencer et al. (1999), Science 284, 1514.L. A. Young (2012), Icarus 221, 80.

  8. Experimental study of IR-signature of water ices between 1 and 2.5 µm : a thermal probe for icy moons

    NASA Astrophysics Data System (ADS)

    Taffin, C.; Grasset, O.; Le Menn, E.; Le Mouélic, S.

    2009-12-01

    Near IR signatures of water ices are known to depend on temperature and grain size, a property that could be used to constrain the surface characteristics of icy moons1,2,3. Models indicate that the 1.65 µm absorption band depends strongly on temperature2,4,5 and on grain size. Other bands (1.03, 1.27, 1.50 and 2 µm) show a strong dependence with grain size (e.g. (6) for the 1.03 µm band). But the respective influence of temperature and grain size is still not fully understood. In this work, we focus on the 1.50 and 1.55 µm absorption bands. Characteristics of near-IR spectra of pure ice Ih grains have been experimentally investigated using temperature and pressure ranges relevant for icy moons. Nineteen experiments have been conducted both at microscopic (individual grains smaller than 100 mm) and macroscopic (grains ranging from 200 to 800 µm) scales, using a FTIR spectrometer. Position, area and depth of the four main absorption bands in the near-IR domain (1.50, 1.55, 1.65 and 2 µm) have been studied . It will be shown that the positions of the 1.50 µm and the 1.55 µm bands are very good indicators of grain size and of temperature, respectively (Fig.1). The scaling laws established from experimental data can be used to characterize the surface properties of icy moons. Preliminary tests are conducted on extensively studied regions to validate the approach. An application to the Tiger Stripes on Enceladus will be presented. The estimated temperatures are at first order consistent with those obtained by CIRS7, but they still appear slightly higher in average (between 10 and 20 K). Grain size are also bigger than in a previous model8 but the same tendency is observed, i.e., the grain size is larger on the Tiger Stripes than in the surroundings. Ref. : 1-Fink and Larson, Icarus, 1975. 2-Leto et al. Mem. S.A.It. Suppl. 2005. 3-Grundy, Icarus, 1999. 4-Grundy and Schmitt, JGR. 1998. 5-Mastrapa et al. Icarus, 2008. 6-Nolin and Dozier Rem. Sens. Environ. 2000. 7-Abramov and Spencer, Icarus 2009. 8-Jaumann et al. Icarus, 2007. Figure 1: a) Position of the 1.55 µm band versus temperature for ice (black) and frost (red). For each temperature a dispersion of 10 - 20 cm-1 is observed due to the grain size variations from 200 to 800 µm. b) Position of the 1.50 µm band relative to the grain size at microscopic (black) and macroscopic (red) scales. The grain size of macroscopic samples is estimated using the Nolin and Dozier’s method (6).

  9. Aromatic and aliphatic organic materials on Iapetus: Analysis of Cassini VIMS data

    NASA Astrophysics Data System (ADS)

    Cruikshank, Dale P.; Dalle Ore, Cristina M.; Clark, Roger N.; Pendleton, Yvonne J.

    2014-05-01

    We present a quantitative analysis of the hydrocarbon and other organic molecular inventory as a component of the low-albedo material of Saturn’s satellite Iapetus, based on a revision of the calibration of the Cassini VIMS instrument. Our study uses hyperspectral data from a mosaic of Iapetus’ surface (Pinilla-Alonso, N., Roush, T.L., Marzo, G.A., Cruikshank, D.P., Dalle Ore, C.M. [2011]. Icarus 215, 75-82) constructed from VIMS data on a close fly-by of the satellite. We extracted 2235 individual spectra of the low-albedo regions, and with a clustering analysis tool (Dalle Ore, C.M., Cruikshank, D.P., Clark, R.N. [2012]. Icarus 221, 735-743), separated them into two spectrally distinct groups, one concentrated on the leading hemisphere of Iapetus, and the other group on the trailing. This distribution is broadly consistent with that found from Cassini ISS data analyzed by Denk et al. (Denk, T. et al. [2010]. Science 327, 435-439). We modeled the average spectra of the two geographic regions using the materials and techniques described by Clark et al. (Clark, R.N., Cruikshank, D.P., Jaumann, R., Brown, R.H., Stephan, K., Dalle Ore, C.M., Livio, K.E., Pearson, N., Curchin, J.M., Hoefen, T.M., Buratti, B.J., Filacchione, G., Baines, K.H., Nicholson, P.D. [2012]. Icarus 218, 831-860), and after dividing the Iapetus spectrum by the model for each case, we extracted the resulting spectra in the interval 2.7-4.0 μm for analysis of the organic molecular bands. The spectra reveal the Csbnd H stretching modes of aromatic hydrocarbons at ∼3.28 μm (∼3050 cm-1), plus four blended bands of aliphatic sbnd CH2sbnd and sbnd CH3 in the range ∼3.36-3.52 μm (∼2980-2840 cm-1). In these data, the aromatic band, probably indicating the presence of polycyclic aromatic hydrocarbons (PAH), is unusually strong in comparison to the aliphatic bands, as was found for Hyperion (Dalton, J.B., Cruikshank, D.P., Clark, R.N. [2012]. Icarus 220, 752-776; Dalle Ore, C.M., Cruikshank, D.P., Clark, R.N. [2012], op. cit.) and Phoebe (Dalle Ore, C.M., Cruikshank, D.P., Clark, R.N. [2012], op. cit.). Our Gaussian decomposition of the organic band region suggests the presence of molecular bands in addition to those noted above, specifically bands attributable to cycloalkanes, olefinic compounds, CH3OH, and N-substituted PAHs, as well as possible Hn-PAHs (PAHs with excess peripheral H atoms). In a minimalist interpretation of the Gaussian band fitting, we find the ratio of aromatic CH to aliphatic CH2 + CH3 functional groups for both the leading and trailing hemispheres of Iapetus is ∼10, with no clear difference between them. In the aliphatic component of the surface material, the ratio CH2/CH3 is 4.0 on the leading hemisphere and 3.0 on the trailing; both values are higher than those found in interstellar dust and other Solar System materials and the difference between the two hemispheres may be statistically significant. The superficial layer of low-albedo material on Iapetus originated in the interior of Phoebe and is being transported to and deposited on Iapetus (and Hyperion) in the current epoch via the Phoebe dust ring (Tosi, F., Turrini, D., Coradini, A., Filacchione, G., and the VIMS Team [2010]. Mon. Not. R. Astron. Soc. 403, 1113-1130; Tamayo, D., Burns, J.A., Hamilton, D.P., Hedman, M.M. [2011]. Icarus 215, 260-278). The PAHs on Iapetus exist in a H2O-rich environment, and consequently are subject to UV destruction by hydrogenation on short time-scales. The occurrence of this material is therefore consistent with the assertion that the deposition of the PAH-bearing dust is occurring at the present time. If the organic inventory we observe represents the interior composition of Phoebe, we may be sampling the original material from a region of the solar nebula beyond Neptune where Phoebe formed prior to its capture by Saturn (Johnson, T.V., Lunine, J.I. [2005]. Nature 435, 69-71).

  10. Developing the Multimedia User Interface Component (MUSIC) for the Icarus Presentation System (IPS)

    DTIC Science & Technology

    1993-12-01

    AD-A276 341 In-House Report December 1993 DEVELOPING THE MULTIMEDIA USER INTERFACE COMPONENT ( MUSIC ) FOR THE ICARUS PRESENTATION SYSTEM (IPS) Ingrid...DATEs COVERED 7 December 1993 Ina-House Jun - Aug 93 4 TWLE AM SL1sM1E & FUNDING NUMBERS DEVELOPING THE MULTIMEDIA USER INTERFACE COMPONENT ( MUSIC ) PE...the Multimedia User Interface Component ( MUSIC ). This report documents the initial research, design and implementation of a prototype of the MUSIC

  11. NASA Lunar Impact Monitoring

    NASA Technical Reports Server (NTRS)

    Suggs, Robert M.; Moser, D. E.

    2015-01-01

    The MSFC lunar impact monitoring program began in 2006 in support of environment definition for the Constellation (return to Moon) program. Work continued by the Meteoroid Environment Office after Constellation cancellation. Over 330 impacts have been recorded. A paper published in Icarus reported on the first 5 years of observations and 126 calibrated flashes. Icarus: http://www.sciencedirect.com/science/article/pii/S0019103514002243; ArXiv: http://arxiv.org/abs/1404.6458 A NASA Technical Memorandum on flash locations is in press

  12. Photometric Properties of Icy Bodies: A Comparison

    NASA Technical Reports Server (NTRS)

    Arakalian, B. J.; Buratti, T.

    1997-01-01

    Photometry is the quantitative measurement of reflected or emitted radiation. In the past 15 years, the classical study on planetary surfaces of arbitrary albedo, including bright icy satellites (e.g., Hapke, 1981 JGR, 1984 and 1986, Icarus).

  13. The size distribution of Jupiter's main ring from Galileo imaging and spectroscopy

    NASA Astrophysics Data System (ADS)

    Brooks, Shawn M.; Esposito, Larry W.; Showalter, Mark R.; Throop, Henry B.

    2004-07-01

    Galileo's Solid State Imaging experiment (SSI) obtained 36 visible wavelength images of Jupiter's ring system during the nominal mission (Ockert-Bell et al., 1999, Icarus 138, 188-213) and another 21 during the extended mission. The Near Infrared Mapping Spectrometer (NIMS) recorded an observation of Jupiter's main ring during orbit C3 at wavelengths from 0.7 to 5.2 μm; a second observation was attempted during orbit E4. We analyze the high phase angle NIMS and SSI observations to constrain the size distribution of the main ring's micron-sized dust population. This portion of the population is best constrained at high phase angles, as the light scattering behavior of small dust grains dominates at these geometries and contributions from larger ring particles are negligible. High phase angle images of the main ring obtained by the Voyager spacecraft covered phase angles between 173.8° and 176.9° (Showalter et al., 1987, Icarus 69, 458-498). Galileo images extend this range up to 178.6°. We model the Galileo phase curve and the ring spectra from the C3 NIMS ring observation as the combination of two power law distributions. Our analysis of the main ring phase curve and the NIMS spectra suggests the size distribution of the smallest ring particles is a power law with an index of 2.0±0.3 below a size of ˜15 μm that transitions to a power law with an index of 5.0±1.5 at larger sizes. This combined power law distribution, or "broken power law" distribution, yields a better fit to the NIMS data than do the power law distributions that have previously been fit to the Voyager imaging data (Showalter et al., 1987, Icarus 69, 458-498). The broken power law distribution reconciles the results of Showalter et al. (1987, Icarus 69, 458-498) and McMuldroch et al. (2000, Icarus 146, 1-11), who also analyzed the NIMS data, and can be considered as an obvious extension of a simple power law. This more complex size distribution could indicate that ring particle production rates and/or lifetimes vary with size and may relate to the physical processes that control their evolution. The significant near arm/far arm asymmetry reported elsewhere (see Showalter et al., 1987, Icarus 69, 458-498; Ockert-Bell et al., 1999, Icarus 138, 188-213) persists in the data even after the main ring is isolated in the SSI images. However, the sense of the asymmetry seen in Galileo images differs from that seen in Voyager images. We interpret this asymmetry as a broad-scale, azimuthal brightness variation. No consistent association with the magnetic field of Jupiter has been observed. It is possible that these longitudinal variations may be similar to the random brightness fluctuations observed in Saturn's F ring by Voyager (Smith et al., 1982, Science 215, 504-537) and during the 1995 ring plane crossings (Nicholson et al., 1996, Science 272, 509-515; Bosh and Rivkin, 1996, Science 272, 518-521; Poulet et al., 2000, Icarus 144, 135-148). Stochastic events may thus play a significant role in the evolution of the jovian main ring.

  14. A Mid-Latitude Geomorphologic Map of Titan

    NASA Astrophysics Data System (ADS)

    Lopes, Rosaly M. C.; Malaska, Michael; Schoenfeld, Ashley; Solomonidou, Anezina; Birch, Samuel; Hayes, Alexander; Williams, David A.; Janssen, Michael A.; Le Gall, Alice; Turtle, Elizabeth P.; Radebaugh, Jani; Cassini RADAR Team

    2016-10-01

    We investigated the geologic history of Titan through mapping and analyzing the distribution of observed geomorphic features using a combination of Cassini data collected by RADAR, VIMS, and ISS. Determining the spatial and superposition relationships between geomorphologic units on Titan leads to an understanding of the likely time evolution of the landscape and gives insight into the process interactions that drive its evolution. We have used all available datasets to extend the mapping initially done by Lopes et al. [1]. We now have the mid-latitudes (60N to 60S) of Titan mapped at 1:800,000 scale in all areas covered by Synthetic Aperture Radar (SAR). A map of the polar regions has been done by Birch et al. [2]. For the mid-latitudes, we have defined five broad classes of terrains following Malaska et al. [3], largely based on prior mapping [1]. These broad classes are: craters, hummocky/mountainous, labyrinth, plains, and dunes. We have found that the hummocky/mountainous terrains are the oldest units on the surface and appear radiometrically cold, indicating icy materials [5]. Dunes are the youngest units and appear radiometrically warm, indicating organic sediments. VIMS analysis shows that compositional variations can also exist within the same class of unit [6, 7]. Future work aims to combine the polar maps of Birch et al. [2] with the mid-latitude maps presented here and harmonize the units at the 60 degrees boundaries. We also plan to extend the map in regions not covered by SAR to produce a 1:1,500,000 scale map compatible with USGS standards.References: [1] Lopes, R.M.C., et al.: Icarus, 205, 540-588, 2010; [2] Birch et al., submitted to Icarus. [3] Malaska, M., et al.: Icarus, 270, 130-161, 2016; [4] Barnes, J., et al.: Pl. Scie., 2:1, 2013; [5] Janssen et al., 2016 Icarus 270, 443-459, 2016. [6] Solomonidou, A., et al. : DPS abstract, 2016. [7] Lopes, R.M.C., et al, Icarus, 270, 162-182, 2016.

  15. Small-scale lobes on Mars: Solifluction, thaw and clues to gully formation.

    NASA Astrophysics Data System (ADS)

    Johnsson, Andreas; Reiss, Dennis; Conway, Susan; Hauber, Ernst; Hiesinger, Harald

    2017-04-01

    Small-scale lobes (SSL) on Mars are landforms that show striking morphologic resemblance to solifluction lobes on Earth [1,2]. Solifluction is the net downslope movement of soil driven by phase changes of near-surface water due to freeze-thaw activity [3]. SSLs on Mars consist of an arcuate front (riser) tens to hundreds of meters wide [1,2]. Risers are typically decimeters to a few meters (<5m) in height [1]. Where the riser is outlined by visible clasts the tread surface is relatively clast free [1]. SLLs often display overlapping of individual lobes. Previously SLL's have only been studied in detail in the northern hemisphere on Mars [1,2,4,5] where they have been found to be latitude-dependent landforms [1,2]. In contrast, only a few observations have been made in the southern hemisphere [6,7]. Several authors argue for a freeze-thaw hypothesis for SSL formation on Mars [1,2,4-7]. If correct, the implication is significant since it would require transient H2O liquids in a frost-susceptible regolith over large areal extents. Thus a better understanding of SLL will allow identifying environments that may have experienced transient liquid water in the shallow subsurface in the recent past. This study aims to determine the distribution of SSL in the southern hemisphere and to investigate their relationship to gullies and other possible periglacial landforms such as patterned ground and polygonal terrain. Collectively, these landforms may be linked to phase changes of water at the surface or in the shallow subsurface. We show that the distribution of SLLs in the southern hemisphere roughly mirrors that in the northern hemisphere distribution. Hence, SLLs are hemispherically bimodal-distributed landforms, similar to polygonal terrain [e.g. 5] and gullies [e.g. 8]. However, despite more abundant sloping terrain in the southern hemisphere, fewer SLLs are observed, except in the Charitum Montes region. This is in contrast to gully landforms which are more abundant in the southern hemisphere. Martian gully landforms and their formative processes have received considerable attention in the last decade and there are currently conflicting ideas whether liquid water [e.g. 9] or CO2-triggered mass wasting [e.g. 10] are the primary agents of erosion. As there are no CO2 frost triggered hypotheses that can explain the occurrence of SSL, a thaw-based hypothesis could explain both landforms. In the latter scenario gullies and SLLs may form a hydrologic continuum where available water content governs the type of landform produced. Solifluction would require ice lens formation (excess ice) to develop. Excess ice was encountered by the Phoenix lander in 2008 [11]. Furthermore, modelling attempts may suggest that ice lenses could be widespread on Mars [12]. However more work is needed to understand the physical environment related to the CO2 paradigm and the full suite of slope landforms predicted by it. Hence, we suggest that any model to explain gully formation must incorporate the geomorphologic context in which they occur. [1] Johnsson et al. (2012) Icarus 21, 489-505. [2] Gallagher et al. (2011) Icarus 211, 458-471. [3] Matsuoka (2001) Earth-Sci. Rev. 55, 107-134. [3] Gallagher and Balme (2011) GSL 356, 87-111. [4] Nyström and Johnsson (2014) EPSC, #EPSC2014-480. [5] Balme et al. (2013) Prog. Phys. Geogr., 37, 289-324. [6] Mangold (2005) Icarus 174, 336-359. [7] Soare et al. (2016). Icarus 264, 184-197. [8] Harrison et al. (2016) Icarus 252, 236-254. [9] Conway et al. (2015) Icarus 254, 189-204. [10] Pilorget and Forget (2015) Nature Geo., 9. 65-69. [11] Mellon et al (2009). JGR-Planets 114, E003417 [12] Sizemore et al. (2015). Icarus 251, 191-210.

  16. Comment on “Modeling of opposition effects with ensembles of clusters: Interplay of various scattering mechanisms” by Elena V. Petrova, Victor P. Tishkovets, Klaus Jockers, 2007 [Icarus 188, 233 245

    NASA Astrophysics Data System (ADS)

    Shkuratov, Yuriy G.; Zubko, Evgenij S.

    2008-04-01

    We show that the mechanism called "near-field effect" [e.g., Petrova, E.V., Tishkovets, V.P., Jockers, K., 2007. Icarus 188, 233-245], which is used to explain wide-phase-angle negative polarization branch observed for planetary regoliths and cometary comas, is not realistic as it contradicts laboratory experiments and results of modeling with discrete dipole approximation calculations.

  17. Numerical Simulations Of Catastrophic Disruption Of Porous Bodies: Application To Dark-type Asteroids And Kuiper-belt Family Formation

    NASA Astrophysics Data System (ADS)

    Michel, Patrick; Jutzi, M.; Richardson, D. C.; Benz, W.

    2010-10-01

    Asteroids of dark (e.g. C, D) taxonomic classes as well as Kuiper Belt objects and comets are believed to have high porosity, not only in the form of large voids but also in the form of micro-pores. The presence of such microscale porosity introduces additional physics in the impact process. We have enhanced our 3D SPH hydrocode, used to simulate catastrophic breakups, with a model of porosity [1] and validated it at small scale by comparison with impact experiments on pumice targets [2]. Our model is now ready to be applied to a large range of problems. In particular, accounting for the gravitational phase of an impact, we can study the formation of dark-type asteroid families, such as Veritas, and Kuiper-Belt families, such as Haumea. Recently we characterized for the first time the catastrophic impact energy threshold, usually called Q*D, as a function of the target's diameter, porosity, material strength and impact speed [3]. Regarding the mentioned families, our preliminary results show that accounting for porosity leads to different outcomes that may better represent their properties and constrain their definition. In particular, for Veritas, we find that its membership may need some revision [4]. The parameter space is still large, many interesting families need to be investigated and our model will be applied to a large range of cases. PM, MJ and DCR acknowledge financial support from the French Programme National de Planétologie, NASA PG&G "Small Bodies and Planetary Collisions" and NASA under Grant No. NNX08AM39G issued through the Office of Space Science, respectively. [1] Jutzi et al. 2008. Icarus 198, 242-255; [2] Jutzi et al. 2009. Icarus 201, 802-813; [3] Jutzi et al. 2010. Fragment properties at the catastrophic disruption threshold: The effect of the parent body's internal structure, Icarus 207, 54-65; [4] Michel et al. 2010. Icarus, submitted.

  18. A radar survey of M- and X-class asteroids. III. Insights into their composition, hydration state, & structure

    NASA Astrophysics Data System (ADS)

    Shepard, Michael K.; Taylor, Patrick A.; Nolan, Michael C.; Howell, Ellen S.; Springmann, Alessondra; Giorgini, Jon D.; Warner, Brian D.; Harris, Alan W.; Stephens, Robert; Merline, William J.; Rivkin, Andrew; Benner, Lance A. M.; Coley, Dan; Clark, Beth Ellen; Ockert-Bell, Maureen; Magri, Christopher

    2015-01-01

    Using the S-band radar at Arecibo Observatory, we observed thirteen X/M-class asteroids; nine were previously undetected and four were re-observed, bringing the total number of Tholen X/M-class asteroids observed with radar to 29. Of these 29M-class asteroids, 13 are also W-class, defined as M-class objects that also display a 3-μm absorption feature which is often interpreted as the signature of hydrated minerals (Jones, T.D., Lebofsky, L.A., Lewis, J.S., Marley, M.S. [1990]. Icarus 88, 172-192; Rivkin, A.S., Howell, E.S., Britt, D.T., Lebofsky, L.A., Nolan, M.C., Branston, D.D. [1995]. Icarus 117, 90-100; Rivkin, A.S., Howell, E.S., Lebofsky, L.A., Clark, B.E., Britt, D.T. [2000]. Icarus 145, 351-368). Consistent with our previous work (Shepard, M.K. et al. [2008]. Icarus 195, 184-205; Shepard, M.K., Harris, A.W., Taylor, P.A., Clark, B.E., Ockert-Bell, M., Nolan, M.C., Howell, E.S., Magri, C., Giorgini, J.D., Benner, L.A.M. [2011]. Icarus 215, 547-551), we find that 38% of our sample (11 of 29) have radar albedos consistent with metal-dominated compositions. With the exception of 83 Beatrix and 572 Rebekka, the remaining objects have radar albedos significantly higher than the mean S- or C-class asteroid (Magri, C., Nolan, M.C., Ostro, S.J., Giorgini, J.D. [2007]. Icarus 186, 126-151). Seven of the eleven high-radar-albedo asteroids, or 64%, also display a 3-μm absorption feature (W-class) which is thought to be inconsistent with the formation of a metal dominated asteroid. We suggest that the hydration absorption could be a secondary feature caused by low-velocity collisions with hydrated asteroids, such as CI or CM analogs, and subsequent implantation of the hydrated minerals into the upper regolith. There is recent evidence for this process on Vesta (Reddy, V. et al. [2012]. Icarus 221, 544-559; McCord, T.B. et al. [2012]. Nature 491, 83-86; Prettyman, T.H. et al. [2012]. Science 338, 242-246; Denevi, B.W. et al. [2012]. Science 338, 246-249). Eleven members of our sample show bifurcated radar echoes at some rotation phases; eight of these are high radar albedo targets. One interpretation of a bifurcated echo is a contact binary, like 216 Kleopatra, and several of our sample are contact binary candidates. However, evidence for other targets indicates they are not contact binaries. Instead, we hypothesize that these asteroids may have large-scale variations in surface bulk density, i.e. isolated patches of metal-rich and silicate-rich regions at the near-surface, possibly the result of collisions between metal and silicate-rich asteroids.

  19. Search for space charge effects in the ICARUS T600 LAr-TPC

    NASA Astrophysics Data System (ADS)

    Torti, Marta

    2016-11-01

    Space charge in Liquid Argon Time Projection Chamber is due to the accumu- lation of positive ions, produced by ionizing tracks crossing the detector, which slowly flow toward the cathode. As a consequence, electric field distortions may arise, thus hindering the possibility to produce faithful 3D images of the ionizing events. The presence of space charge becomes relevant for large TPCs operating at surface or at shallow depths, where cosmic ray flux is high. These effects could interest the next phase of the ICARUS T600 detector, which will be deployed at shallow depths as a Far Detector for Short Baseline Neutrino experiment at FNAL dedicated to sterile neutrino searches. In 2001, the first ICARUS T600 module (T300) operated at surface in Pavia (Italy), recording cosmic ray data. In this work, a sample of cosmic muon tracks from the 2001 run was analyzed and results on space charge effects in LAr-TPCs are shown.

  20. A fast method for finding bound systems in numerical simulations: Results from the formation of asteroid binaries

    NASA Astrophysics Data System (ADS)

    Leinhardt, Zoë M.; Richardson, Derek C.

    2005-08-01

    We present a new code ( companion) that identifies bound systems of particles in O(NlogN) time. Simple binaries consisting of pairs of mutually bound particles and complex hierarchies consisting of collections of mutually bound particles are identifiable with this code. In comparison, brute force binary search methods scale as O(N) while full hierarchy searches can be as expensive as O(N), making analysis highly inefficient for multiple data sets with N≳10. A simple test case is provided to illustrate the method. Timing tests demonstrating O(NlogN) scaling with the new code on real data are presented. We apply our method to data from asteroid satellite simulations [Durda et al., 2004. Icarus 167, 382-396; Erratum: Icarus 170, 242; reprinted article: Icarus 170, 243-257] and note interesting multi-particle configurations. The code is available at http://www.astro.umd.edu/zoe/companion/ and is distributed under the terms and conditions of the GNU Public License.

  1. Towards routine measurements of meteorological and aerosol parameters using small unmanned aerial and tethered balloon systems

    NASA Astrophysics Data System (ADS)

    Mei, F.; Dexheimer, D.; Hubbe, J. M.; deBoer, G.; Schmid, B.; Ivey, M.; Longbottom, C.; Carroll, P.

    2017-12-01

    The Inaugural Campaigns for ARM Research using Unmanned Systems (ICARUS) had been launched in 2016 and then the effort has been continued in 2017. ICARUS centered on Oliktok Point, Alaska focusses on developing routine operations of Unmanned Aerial Systems (UAS) and Tethered Balloon Systems (TBS). The operation routine practiced during ICARUS 2016 provided valuable guidance for the ICARUS 2017 deployment. During two intensive operation periods in 2017, a small DataHawk II UAS has been deployed to collect data for two weeks each in May and August. Coordinated with DataHawk flights, the TBS has been launched with meteorology sensors such as iMet and Tethersondes, therefore vertical profiles of the basic atmospheric state (temperature, humidity, and horizontal wind) were observed simultaneously by UAS and TBS. In addition, an aerosol payload was attached and launched with 2 TBS flights in April and 7 TBS flights in May, which include a condensation particle counter (CPC, TSI 3007) and two printed optical particle spectrometers (POPS, Handix TBS version). The two POPS were operated at different inlet temperatures. This approach provided potential measurements for aerosol optical closure in future. Measured aerosol properties include total particle number concentrations, particle size distribution, at different ambient temperature and relative humidity. Vertical profiles of atmospheric state and aerosol properties will be discussed based on the coordinated flights. Monthly variation will be assessed with data from the upcoming August flights.

  2. The composition of the Eureka family of Martian Trojan asteroids

    NASA Astrophysics Data System (ADS)

    Borisov, Galin; Christou, Apostolos; Bagnulo, Stefano

    2016-10-01

    The so-called Martian Trojan asteroids orbit the Sun just inside the terrestrial planet region. They are thought to date from the earliest period of the solar system's history (Scholl et al, Icarus, 2005). Recently, Christou (Icarus, 2013) identified an orbital concentration of Trojans, named the "Eureka" cluster after its largest member, 5261 Eureka. This asteroid belongs to the rare olivine-rich A taxonomic class (Rivkin et al, Icarus, 2007; Lim et al, DPS/EPSC 2011). Unlike asteroids belonging to other taxonomies (e.g. C or S), no orbital concentrations or families of A-types are currently known to exist. These asteroids may represent samples of the building blocks that came together to form Mars and the other terrestrial planets but have since been destroyed by collisions (Sanchez et al, Icarus, 2014, and references therein).We have used the X-SHOOTER echelle spectrograph on the ESO VLT KUEYEN to obtain vis-NIR reflectance spectra of asteroids in the cluster and test their genetic relationship to Eureka. During the presentation we will show the spectra, compare them with available spectra for Eureka itself and discuss the implications for the origin of this cluster and for other olivine-dominated asteroids in the Main Belt.Based on observations made with ESO Telescopes at the La Silla-Paranal Observatory under programme ID 296.C-5030 (PI: A. Christou). Astronomical Research at Armagh Observatory is funded by the Northern Ireland Department of Culture, Arts and Leisure (DCAL).

  3. The opposition and tilt effects of Saturn’s rings from HST observations

    NASA Astrophysics Data System (ADS)

    Salo, Heikki; French, Richard G.

    2010-12-01

    The two major factors contributing to the opposition brightening of Saturn's rings are (i) the intrinsic brightening of particles due to coherent backscattering and/or shadow hiding on their surfaces, and (ii) the reduced interparticle shadowing when the solar phase angle α → 0°. We utilize the extensive set of Hubble Space Telescope observations (Cuzzi, J.N., French, R.G., Dones, L. [2002]. Icarus 158, 199-223) for different elevation angles B and wavelengths λ to disentangle these contributions. We assume that the intrinsic contribution is independent of B, so that any B dependence of the phase curves is due to interparticle shadowing, which must also act similarly for all λ's. Our study complements that of Poulet et al. (Poulet, F., Cuzzi, J.N., French, R.G., Dones, L. [2002]. Icarus 158, 224), who used a subset of data for a single B ˜ 10°, and the French et al. (French, R.G., Verbiscer, A., Salo, H., McGhee, C.A., Dones, L. [2007b] PASP 119, 623-642) study for the B ˜ 23° data set that included exact opposition. We construct a grid of dynamical/photometric simulation models, with the method of Salo and Karjalainen (Salo and Karjalainen [2003]. Icarus 164, 428-460), and use these simulations to fit the elevation-dependent part of opposition brightening. Eliminating the modeled interparticle component yields the intrinsic contribution to the opposition effect: for the B and A rings it is almost entirely due to coherent backscattering; for the C ring, an intraparticle shadow hiding contribution may also be present. Based on our simulations, the width of the interparticle shadowing effect is roughly proportional to B. This follows from the observation that as B decreases, the scattering is primarily from the rarefied low filling factor upper ring layers, whereas at larger B's the dense inner parts are visible. Vertical segregation of particle sizes further enhances this effect. The elevation angle dependence of interparticle shadowing also explains most of the B ring tilt effect (the increase of brightness with elevation). From comparison of the magnitude of the tilt effect at different filters, we show that multiple scattering can account for at most a 10% brightness increase as B → 26°, whereas the remaining 20% brightening is due to a variable degree of interparticle shadowing. The negative tilt effect of the middle A ring is well explained by the the same self-gravity wake models that account for the observed A ring azimuthal brightness asymmetry (Salo, H., Karjalainen, R., French, R.G. [2004]. Icarus 170, 70-90; French, R.G., Salo, H., McGhee, C.A., Dones, L. [2007]. Icarus 189, 493-522).

  4. The orbit and size distribution of small Solar System objects orbiting the Sun interior to the Earth's orbit

    NASA Astrophysics Data System (ADS)

    Zavodny, Maximilian; Jedicke, Robert; Beshore, Edward C.; Bernardi, Fabrizio; Larson, Stephen

    2008-12-01

    We present the first observational measurement of the orbit and size distribution of small Solar System objects whose orbits are wholly interior to the Earth's (Inner Earth Objects, IEOs, with aphelion <0.983 AU). We show that we are able to model the detections of near-Earth objects (NEO) by the Catalina Sky Survey (CSS) using a detailed parameterization of the CSS survey cadence and detection efficiencies as implemented within the Jedicke et al. [Jedicke, R., Morbidelli, A., Spahr, T., Petit, J.M., Bottke, W.F., 2003. Icarus 161, 17-33] survey simulator and utilizing the Bottke et al. [Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J.-M., Levison, H.F., Michel, P., Metcalfe, T.S., 2002. Icarus 156, 399-433] model of the NEO population's size and orbit distribution. We then show that the CSS detections of 4 IEOs are consistent with the Bottke et al. [Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J.-M., Levison, H.F., Michel, P., Metcalfe, T.S., 2002. Icarus 156, 399-433] IEO model. Observational selection effects for the IEOs discovered by the CSS were then determined using the survey simulator in order to calculate the corrected number and H distribution of the IEOs. The actual number of IEOs with H<18 (21) is 36±26 ( 530±240) and the slope of the H magnitude distribution ( ∝10) for the IEOs is α=0.44-0.22+0.23. The slope is consistent with previous measurements for the NEO population of α=0.35±0.02 [Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J.-M., Levison, H.F., Michel, P., Metcalfe, T.S., 2002. Icarus 156, 399-433] and α=0.39±0.013 [Stuart, J.S., Binzel, R.P., 2004. Icarus 170, 295-311]. Based on the agreement between the predicted and observed IEO orbit and absolute magnitude distributions there is no indication of any non-gravitational effects (e.g. Yarkovsky, tidal disruption) affecting the known IEO population.

  5. Cassini ISS observations of Iapetus: Results from the primary mission

    NASA Astrophysics Data System (ADS)

    Denk, Tilmann; Schmedemann, Nico; Wagner, Roland; Giese, Bernd; Perry, Jason; Helfenstein, Paul; Turtle, Elizabeth; Neukum, Gerhard; Roatsch, Thomas; Porco, Carolyn

    Cassini ISS images obtained over the past 4 years in orbit around Saturn provide new insights about the surface features, properties, processes and history of Iapetus, the outermost regular Saturnian moon. Particularly valuable are the non-targeted flyby on New-Year's Eve 2005 with a good view on the leading side, and the targeted flyby in September 2007 where especially the trailing side was seen in particularly fine detail. There are many questions about Iapetus to which imaging might contribute solutions: What is the reason for the unique global brightness dichotomy that has already been discovered in 1672 by G.D. Cassini? How is the global color dichotomy, which was detected by the Cassini spacecraft, related to the brightness dichotomy? How did the (also unique) equatorial ridge form, and what is its detailed morphology? What is the distribution of the craters and large basins on the surface, and how old is the surface? What geologic processes (besides cratering) took place on Iapetus? Why is there a very distinct patchy segregation of dark and bright material at local scales? What is the thickness of the dark blanket? Why are there no large bright craters within the dark hemisphere? What is the time scale for a fresh bright crater in the dark terrain to fade back to the darkness of the surrounding terrain? Attempts to answer these questions will be given in the presentation. Selected references: Buratti B.J. et al. (2002) Icarus 155, 375-381, doi:10.1006/icar.2001.6730. Castillo-Rogez J.C. et al. (2007) Icarus 190, 179-202, doi:10.1016/j.icarus.2007.02.018. Denk T. et al. (2006) EGU, abstract EGU06-A-08352. Denk T. et al. (2008) LPSC XXXIX, abstract #2533. Giese B. et al. (2008) Icarus 193, 359-371, doi:10.1016/j.icarus.2007.06.005. Porco C.C. et al. (2005) Science 307, 1243-1247. Schmedemann N. et al. (2008) LPSC XXXIX, abstract #2070. Spencer J.R. et al. (2005) 37th DPS, abstract 39.08.

  6. The Time Variability of Individual Geysers in the Plume of Enceladus

    NASA Astrophysics Data System (ADS)

    Trumbo, S. K.; Ewald, S. P.; Ingersoll, A. P.

    2016-12-01

    Porco et al. (2014) [1] published the locations of 100 jets along the so-called "tiger stripes" that feed the massive plume of Enceladus. Hedman et al. (2013) [2] observed fluctuations in integrated plume brightness in response to periodic tidal forcing on the orbital timescale of Enceladus, in which the plume is brightest near apocenter and dimmest near pericenter. The thin crack models of Hurford et al. (2007, 2012) [3, 4] suggest that individual jets should respond to the same forces on similar timescales. However, if the jets are produced via vapor and liquid propagation through thin subterranean cracks, then they may also be controlled thermodynamically and dependent on the timescale of ice buildup on the conduit walls. Ingersoll and Ewald (2016) [5] demonstrate that the plume also varies on decadal timescales, perhaps as a result of an eleven-year tide or long-term ice accumulation within source cracks. We examine Cassini ISS Narrow Angle Camera images spanning 2005 - 2012 in order to assess the temporal variability of individual geysers and regional emission in the plume. We observe both the appearance and disappearance of individual jets, as well as visible changes in regional emission. Our observations suggest localized variations on timescales of months to years that are not easily tied to mean anomaly, but that may be indicative of subsurface processes. Theoretical models of the geyser mechanisms and subsurface plumbing predict closure timescales of individual cracks that are dependent on model parameters, such as crack width, crack tortuosity, and water table depth [6, 7, 8]. Thus, we discuss possible implications of these observations for both the mechanism and anatomy of an Enceladus geyser. [1] Porco et al. (2014), AJ, 148, 3. [2] Hedman et al. (2013), Nature, 500, 182 - 184. [3] Hurford et al. (2007), Nature, 447, 292 - 294. [4] Hurford et al. (2012), Icarus, 220, 896 - 903. [5] Ingersoll and Ewald (2016), Icarus, in review. [6] Ingersoll and Pankine (2010), Icarus, 206, 594 - 607. [7] Nakajima and Ingersoll (2016), Icarus, 272, 309 - 318. [8] Ingersoll and Nakajima (2016), Icarus, 272, 319 - 326.

  7. Laboratory simulation of photochemistry on Titan

    NASA Astrophysics Data System (ADS)

    Ferris, J.; Tran, B.; Force, M.; Briggs, R.; Vuitton, V.

    Solar UV radiation is the principal energy source driving the chemistry in Titan's atmosphere ....(Sagan and Thompson, 1984). We have investigated the photochemical reactions in Titan's atmosphere in a flow reactor using the 185 and 254 nm UV emissions from a low-pressure mercury lamp ....(Clarke, et al., 2000) .....(Tran, et al., 2003). A solid product is formed using this apparatus and its optical properties have been measured since it is an analog of the haze layer on Titan. The complex refractive index of the solid material was determined and compared with the corresponding refractive index derived from the optical data obtained from Voyager 1 .......(Tran, et al., 2003). The current research focuses on the volatile reaction products. The principal gaseous compounds that absorb 185 nm light in Titan's atmosphere (acetylene, ethylene, and cyanoacetylene) were irradiated individually and in the presence of other atmospheric constituents at their mixing ratios in the Titan atmosphere. The objectives of this study are to determine the reaction pathways and to construct a model that reproduces the experimental results. Quantum yields for the loss of reactants and the formation of products were determined from the rates measured by gas chromatographic analysis. Irradiation of a mixture of acetylene, ethylene, cyanoacetylene, methane, hydrogen and nitrogen generated over 120 compounds. The structures of about 100 of these compounds were determined by GC/MS. The structures of many of these compounds were confirmed by use of authentic samples. The similarities and difference in the products obtained photochemically and by plasma discharges will be discussed. Clarke D. W., J. C. Joseph and J. P. Ferris, 2000, The design and use of a photochemical flow reactor: A laboratory study of the atmospheric chemistry of cyanoacetylene on Titan, Icarus, 282-291. Sagan C. and W. R. Thompson, 1984, Production and condensation of organic gases in the atmosphere of Titan, Icarus, 59, 133-161. Tran B. N., J. P. Ferris and J. J. Chera, 2003, The photochemical formation of a Titan haze analog. Structural analysis by X-ray photoelectron and infrared spectroscopy, Icarus, 162, 114-124. Tran B. N., J. C. Joseph, J. P. Ferris, P. D. Persans and J. J. Chera, 2003, Simulation of Titan haze formation using a photochemical flow reactor: The Optical constants of the polymer. Icarus, 165, 379-390.

  8. Constraining the Age of Martian Polar Strata by Crater Counts

    NASA Astrophysics Data System (ADS)

    Grier, J. A.; Hartmann, W. K.; Berman, D. C.; Goldman, E. B.; Esquerdo, G. A.

    2000-10-01

    Mars Global Surveyor images are capable of giving good counts on craters down to about D 11 m. We studied 70 north polar images covering 2513 km2, mostly at latitudes 79-86 degrees, detecting a few probable impact craters and placing upper limits from non-detections in other frames. From these data we conclude that impact craters in the diameter range 11 m < D < 88 m indicate a survival lifetime of craters and crater-like topography in the north polar regions of < a few hundred Ka. The crater counts suggest a much flatter slope in the diameter distribution of the young polar laminae than found in the production function on young, low-latitude lava surfaces, confirming the rapid obliteration of smaller craters even in recent geologic time (Plaut et al. 1988). To obliterate small craters, if vertical relief on the order of 30 m is completely blanketed and removed in < 500,000 yrs, then an inferred upper limit on the sediment deposition rate is 6 x 10-5 meters/year or 60 μ /y. These results are consistent with models which call for enhanced dust deposition at the poles due to a process whereby dust particles act as condensation nuclei for winter ice and are preferentially dropped out of the polar atmosphere. Pollack et al. (1979) calculated polar deposition at 300 μ /y. Our age results are also consistent with Herkenhoff and Plaut (2000) who sought craters of D > 300 m on Viking images of the north cap and derived the same age, < 100,000 years. They used the same logic to infer a higher deposition limit of 1200 μ /y. The measured north polar deposition rates are one to three orders of magnitude above the 1 to 4 μ /y suggested at lower latitudes (Hartmann 1966, 1971; Matijevic et al. 1997). References: Hartmann 1966, Icarus 5:406; Hartmann 1971, Icarus 15: 410; Herkenhoff and Plaut 2000, Icarus 144: 243; Matijevic et al. 1997, Science 278:1765; Pollack et al. 1977, J. Geophys. Res. 84: 2929; Plaut et al. 1988 Icarus 75 :357.

  9. Numerical Simulations of Microporous Body Disruptions: Comparison with Non-porous and Rubble-pile targets

    NASA Astrophysics Data System (ADS)

    Michel, Patrick; Jutzi, Martin; Richardson, Derek C.

    2014-11-01

    In recent years, we have shown by numerical impact simulations that collisions and gravitational reaccumulation together can explain the formation of asteroid families and satellites (e.g. [1]). We also found that the presence of microporosity influences the outcome of a catastrophic disruption ([2], [3]). The size-frequency distributions (SFDs) resulting from the disruption of 100 km-diameter targets consisting of either monolithic non-porous basalt or non-porous basalt blocks held together by gravity (termed rubble piles by the investigators) has already been determined ([4], [5]). Using the same wide range of collision speeds, impact angles, and impactor sizes, we extended those studies to targets consisting of porous material represented by parameters for pumice. Dark-type asteroid families, such as C-type, are often considered to contain a high fraction of porosity (including microporosity). To determine the impact conditions for dark-type asteroid family formation, a comparison is needed between the actual family SFD and that of impact disruptions of porous bodies. Moreover, the comparison between the disruptions of non-porous, rubble-pile, and porous targets is important to assess the influence of various internal structures on the outcome. Our results show that in terms of largest remnants, in general, the outcomes for porous bodies are more similar to the ones for non-porous targets ([4]) than for rubble-pile targets ([5]). In particular, the latter targets are much weaker (the largest remnants are much smaller). We suspect that this is because the pressure-dependent shear strength between the individual components of the rubble pile is not properly modeled, which makes the body behave more like a fluid than an actual rubble pile. We will present our results and implications in terms of SFDs as well as ejection velocities over the entire considered parameter space. We will also check whether we find good agreement with existing dark-type asteroid families, allowing us to say something about their history. [1] Michel et al. 2001. Science 294, 1696.[2] Jutzi et al. 2008. Icarus 198, 242.[3] Jutzi et al. 2010. Icarus 207, 54.[4] Durda et al. 2007, Icarus 186, 498.[5] Benavidez et al. 2012. Icarus 219, 57.

  10. Integrated Cognitive-neuroscience Architectures for Understanding Sensemaking (ICArUS): Transition to the Intelligence Community

    DTIC Science & Technology

    2014-12-01

    Case Study P U Pc Pt Ft Pa 1 Clinical vs. Actuarial Geospatial Profiling Strategies X X 2 Route Security in Baghdad X X X X 3 International...Information Sciences , 176, 1570-1589. Burns, K., & Bonaceto, C. (2014). Integrated Cognitive-neuroscience Architectures for Understanding Sensemaking

  11. The Composition of the Dwarf Planet Ceres

    NASA Astrophysics Data System (ADS)

    Rivkin, A.; Li, J. Y.; Milliken, R. E.; Lim, L. F.; Lovell, A.; Schmidt, B. E.; McFadden, L. A.

    2012-12-01

    Ceres, the largest object between Mars and Jupiter, is not easily classified. Its low density suggests a significant ice fraction, like the icy satellites. It is too warm for ice to remain stable over much of its surface, but may maintain ice at a depth of a few meters [1,2]. It is large enough to be in hydrostatic equilibrium, but is probably differentiated rock from ice rather than the metal-rock separation seen in the planets [3,4]. It is considered a "dwarf planet" in the current IAU scheme, the only one interior to Neptune. What we know about Ceres has to this point been determined via remote sensing. The first observations of Ceres were made in the visible-near IR (0.4-2.5 μm) spectral region, and established an overall similarity to carbonaceous chondrites based on a low albedo and relatively flat spectrum. Its visible specrtum places it within the C class, which dominates the middle of the asteroid belt [5,6]. Positive identifications of absorptions have been rare in this spectral region, beyond a decrease in reflectance shortward of 0.4 μm due to oxidized iron. A broad band centered near 1.1 μm is consistent with magnetite, which is also found in some carbonaceous chondrites [7]. Longer wavelengths have provided more quantitative identifications. A series of absorptions in the 3-4 μm region have been interpreted most recently as due to brucite and carbonates [8-11]. Mid-IR (8-13 μm) observations have inconsistently found evidence for carbonates, but on the whole are consistent with the 3-4 μm observations [12,13]. A list of identified and yet-unidentified [14,15] absorptions in Ceres' spectrum is presented in Table 1. In addition to these identified species, the possibility of near-surface ice on Ceres combined with a low obliquity and resultant low temperatures at high latitudes leads to the prospect of polar caps, undetected in our low spatial resolution data but observable from orbit. The possibility of solar wind-created OH and impactor contamination on Ceres' surface, as has been suggested for the Moon and Vesta [16,17], also needs to be considered when considering in detail what Dawn may find. Over the last 35 years, astronomers and geologists have pieced together our ideas of Ceres' surface composition, which along with modeling and laboratory efforts leads to our overall interpretation of this body. We will present our current synthesis of Ceres research as it stands in the pre-Dawn era. References: [1] Fanale and Salvail (1989) Icarus, 82, [ [2] Schorghofer (2008) ApJ, 682. [3] McCord and Sotin (2005) JGR, 110. [4] Thomas et al. (2005) Nature, 437. [5] Bus and Binzel (2002), Icarus, 158. [6] Johnson and Fanale (1973), JGR, 35. [7] Larson et al. (1979) Icarus, 39. [8] Lebofsky et al. (1981) Icarus, 48. [9] King et al. (1992) Science, 255. [10] Rivkin et al. (2006) Icarus, 185. [11] Milliken and Rivkin (2009) Nature Geo., 2. [12] Cohen et al. (1998), AJ, 115. [13] Lim et al. (2005) Icarus, 173. [14] Parker et al. (2002) AJ, 123. [15] Li et al. (2006) Icarus, 182. [16] Clark/Sunshine et al./Pieters et al. (2009) Science 326.[17] McCord et al. (2012) LPSC 43.Identified spectral features on Ceres

  12. Monitoring Active Atmospheres on Uranus and Neptune

    NASA Astrophysics Data System (ADS)

    Rages, Kathy

    2009-07-01

    We propose Snapshot observations of Uranus and Neptune to monitor changes in their atmospheres on time scales of weeks and months, as we have been doing for the past seven years. Previous Hubble Space Telescope observations {including previous Snapshot programs 8634, 10170, 10534, and 11156}, together with near-IR images obtained using adaptive optics on the Keck Telescope, reveal both planets to be dynamic worlds which change on time scales ranging from hours to {terrestrial} years. Uranus equinox occurred in December 2007, and the northern hemisphere is becoming fully visible for the first time since the early 1960s. HST observations during the past several years {Hammel et al. 2005, Icarus 175, 284 and references therein} have revealed strongly wavelength-dependent latitudinal structure, the presence of numerous visible-wavelength cloud features in the northern hemisphere, at least one very long-lived discrete cloud in the southern hemisphere, and in 2006 the first clearly defined dark spot seen on Uranus. Long-term ground-based observations {Lockwood and Jerzekiewicz, 2006, Icarus 180, 442; Hammel and Lockwood 2007, Icarus 186, 291} reveal seasonal brightness changes that seem to demand the appearance of a bright northern polar cap within the next few years. Recent HST and Keck observations of Neptune {Sromovsky et al. 2003, Icarus 163, 256 and references therein} show a general increase in activity at south temperate latitudes until 2004, when Neptune returned to a rather Voyager-like appearance with discrete bright spots rather than active latitude bands. Further Snapshot observations of these two dynamic planets will elucidate the nature of long-term changes in their zonal atmospheric bands and clarify the processes of formation, evolution, and dissipation of discrete albedo features.

  13. Verification of the Icarus Material Response Tool

    NASA Technical Reports Server (NTRS)

    Schroeder, Olivia; Palmer, Grant; Stern, Eric; Schulz, Joseph; Muppidi, Suman; Martin, Alexandre

    2017-01-01

    Due to the complex physics encountered during reentry, material response solvers are used for two main purposes: improve the understanding of the physical phenomena; and design and size thermal protection systems (TPS). Icarus, is a three dimensional, unstructured material response tool that is intended to be used for design while maintaining the flexibility to easily implement physical models as needed. Because TPS selection and sizing is critical, it is of the utmost importance that the design tools be extensively verified and validated before their use. Verification tests aim at insuring that the numerical schemes and equations are implemented correctly by comparison to analytical solutions and grid convergence tests.

  14. ICARUS 600 ton: A status report

    NASA Astrophysics Data System (ADS)

    Vignoli, C.; Arneodo, F.; Badertscher, A.; Barbieri, E.; Benetti, P.; di Tigliole, A. Borio; Brunetti, R.; Bueno, A.; Calligarich, E.; Campanelli, M.; Carli, F.; Carpanese, C.; Cavalli, D.; Cavanna, F.; Cennini, P.; Centro, S.; Cesana, A.; Chen, C.; Chen, Y.; Cinquini, C.; Cline, D.; De Mitri, I.; Dolfini, R.; Favaretto, D.; Ferrari, A.; Berzolari, A. Gigli; Goudsmit, P.; He, K.; Huang, X.; Li, Z.; Lu, F.; Ma, J.; Mannocchi, G.; Mauri, F.; Mazza, D.; Mazzone, L.; Montanari, C.; Nurzia, G. P.; Otwinowski, S.; Palamara, O.; Pascoli, D.; Pepato, A.; Periale, L.; Petrera, S.; Piano-Mortari, G.; Piazzoli, A.; Picchi, P.; Pietropaolo, F.; Rancati, T.; Rappoldi, A.; Raselli, G. L.; Rebuzzi, D.; Revol, J. P.; Rico, J.; Rossella, M.; Rossi, C.; Rubbia, A.; Rubbia, C.; Sala, P.; Scannicchio, D.; Sergiampietri, F.; Suzuki, S.; Terrani, M.; Ventura, S.; Verdecchia, M.; Wang, H.; Woo, J.; Xu, G.; Xu, Z.; Zhang, C.; Zhang, Q.; Zheng, S.

    2000-05-01

    The goal of the ICARUS Project is the installation of a multi-kiloton LAr TPC in the underground Gran Sasso Laboratory. The programme foresees the realization of the detector in a modular way. The first step is the construction of a 600 ton module which is now at an advanced phase. It will be mounted and tested in Pavia in one year and then it will be moved to Gran Sasso for the final operation. The major cryogenic and purification systems and the mechanical components of the detector have been constructed and tested in a 10 m 3 prototype. The results of these tests are here summarized.

  15. Precise 3D Track Reconstruction Algorithm for the ICARUS T600 Liquid Argon Time Projection Chamber Detector

    DOE PAGES

    Antonello, M.; Baibussinov, B.; Benetti, P.; ...

    2013-01-15

    Liquid Argon Time Projection Chamber (LAr TPC) detectors offer charged particle imaging capability with remarkable spatial resolution. Precise event reconstruction procedures are critical in order to fully exploit the potential of this technology. In this paper we present a new, general approach to 3D reconstruction for the LAr TPC with a practical application to the track reconstruction. The efficiency of the method is evaluated on a sample of simulated tracks. We present also the application of the method to the analysis of stopping particle tracks collected during the ICARUS T600 detector operation with the CNGS neutrino beam.

  16. Structural stability of rubble-pile asteroids

    NASA Astrophysics Data System (ADS)

    Sharma, Ishan

    2013-03-01

    Granular aggregates, like fluids, do not admit all manners of shapes and rotation rates. It is hoped that an analysis of a suspected granular asteroid’s equilibrium shape and its structural stability will help confirm its rubble-pile nature, and, perhaps, even constrain the asteroid’s material parameters. Equilibrium shapes have been analyzed in the past by several investigators (Holsapple, K.A. [2001]. Icarus 154, 432-448; Harris, A.W., Fahnestock, E.G., Pravec, P. [2009]. Icarus 199, 310-318; Sharma, I., Jenkins, J.T., Burns, J.A. [2009]. Icarus 200, 304-322). Here, we extend the classical Lagrange-Dirichlet stability theorem to the case of self-gravitating granular aggregates. This stability test is then applied to probe the stability of several near-Earth asteroids, and explore the influence of material parameters such as internal friction angle and plastic bulk modulus. Finally, we consider their structural stability to close planetary encounters. We find that it is possible for asteroids to be stable to small perturbations, but unstable to strong and/or extended perturbations as experienced during close flybys. Conversely, assuming stability in certain situations, it is possible to estimate material properties of some asteroids like, for example, 1943 Anteros.

  17. Modelling Thermal Emission to Constrain Io's Largest Eruptions

    NASA Astrophysics Data System (ADS)

    Davies, A. G.; De Pater, I.; de Kleer, K.; Head, J. W., III; Wilson, L.

    2016-12-01

    Massive, voluminous, low-silica content basalt lava flows played a major role in shaping the surfaces of the terrestrial planets and the Moon [1] but the mechanisms of eruption, including effusion rate profiles and flow regime, are often obscure. However, eruptions of large volumes of lava and the emplacement of thick, areally extensive silicate lava flows are extant on the volcanic jovian moon Io [2], thus providing a template for understanding how these processes behaved elsewhere in the Solar System. We have modelled data of the largest of these eruptions to constrain eruption processes from the evolution of the wavelength variation of the resulting thermal emission [3]. We continue to refine our models to further constrain eruption parameters. We focus on large "outburst" eruptions, large lava fountains which feed lava flows [4] which have been directly observed on Io from the Galileo spacecraft [5, 6]. Outburst data continue to be collected by large ground-based telescopes [7, 8]. These data have been fitted with a sophisticated thermal emission model to derive eruption parameters such as areal coverage and effusion rates. We have created a number of tools for investigating and constraining effusion rate for Io's largest eruptions. It remains for all of the components to be integrated into a single model with rheological properties dependent on flow regime and the effects of heat loss. The crucial advance on previous estimates of lava flow emplacement on Io [e.g., 5] is that, by keeping track of the temperature distribution on the surface of the lava flows (a function of flow regime and varying effusion rate) the integrated thermal emission spectrum can be synthesized. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. We thank the NASA OPR Program (NNN13D466T) and NSF (Grant AST-1313485) for supports. Refs: [1] Wilson, L. and J. W. Head (2016), Icarus, doi:10.1016/j.icarus.2015.12.039. [2] Davies, A. (2007) Volcanism on Io, Cambridge. [3] Davies, A. et al. (2010) JGR, 194, 75.99. [4] Davies, A. (1996) Icarus, 124, 45-61. [5] Keszthelyi, L. et al., (2001) JGR, 106, 33025-33052. [6] Williams, D. et al. (2001) JGR, 106, 33105-33120. [7] dePater, I. et al. (2014) Icarus, 242, 365-378. [8] de Kleer, K. et al. (2014) Icarus, 242, 352-364.

  18. Exciting New Images | Lunar Reconnaissance Orbiter Camera

    Science.gov Websites

    slowly and relentlessly reshapes the Moon's topography. Comparative study of the shapes of lunar craters , quantitative comparison be derived? And how can we quantify and compare the topography of a large number of for quantitative characterization of impact crater topography (Mahanti, P. et al., 2014, Icarus v. 241

  19. Identification of Saturn-driven bending waves in Saturn's inner C ring

    NASA Astrophysics Data System (ADS)

    French, Richard; Colwell, Joshua; Nicholson, Phillip; Marouf, Essam; McGhee-French, Colleen; Hedman, Matthew

    2016-07-01

    Saturn's C ring is host to more than a dozen wavelike features whose detailed nature has been a mystery since their discovery in high-resolution Voyager radio occultations of the rings. Rosen et al. (1991 Icarus 93, 25) enumerated several of these, and the list was augmented by Baillié et al. (2011 Icarus 216, 292), based on a detailed analysis of Cassini UVIS stellar occultation profiles. Recently, Hedman and Nicholson (2013 Astron. J. 146, 12; 2014 MNRAS 444, 1369) were able to identify the wavenumbers and pattern speeds for several of the waves. They showed that several Outer Lindblad Resonances (OLR) density waves had properties that were in general quite consistent with the predictions of Marley and Porco (1993 Icarus, 106, 508) and Marley (2014 Icarus, 234, 194) that Saturn's acoustic oscillations had pattern speeds with corresponding resonance radii in the C ring. Hedman and Nicholson also identified a set of Inner Lindblad Resonance density waves with pattern speeds very close to Saturn's rotation period. Finally, French et al. (2016 Icarus, in press) identified an inward-propagating m=2 wave in the Maxwell Ringlet. These new identifications ushered in the field of Kronoseismology -- the probing of the nature of Saturn's interior from the analysis of Saturn-driven waves in the rings. Here, we report the identification of six additional wave features, all in the inner C ring, from Cassini occultation measurements. Two of the waves are OLRs: Baillié feature #5 (B1 = W76.022 (i.e., r=76022 km)) with wavenumber m=-9, and Baillié #9 (B9 = W76.435) with m=-2. The first of these is presumably Saturn-driven, but of unknown origin; W76.435 fits very nicely in the pattern predicted by Marley (2014) for an m=l-2, q=2 internal oscillation. We also report the identification of a new class of Saturn-driven waves: B1 (W74.666), B3 (W74.936), B4 (W74.941), and B6 (W76.234) are all bending waves at Outer Vertical Resonances (OVR) with wavenumbers between m=-4 and m=-9. Marley and Porco (1993) and Marley (2014) predicted the pattern speeds of first- and second-order acoustic modes that might produce bending waves, and these results confirm this expectation. The wavelengths of these waves are quite short - on the order of 1 km for the longest wavecrest - and the alignment of individual occultation wave profiles sorted by the phase of the wave is highly dependent on an extremely accurate (200 m) absolute radius scale for the rings, made possible by orbit fits to over 15,000 individual ring and gap edge measurements from Cassini occultation data. Collectively, the amplitudes, wavenumbers, and pattern speeds of these waves can be used to refine our understanding of Saturn's internal structure (Fuller et al. 2014 Icarus 231, 34). ~

  20. How much material do the radar-bright craters at the Mercurian poles contain?

    NASA Astrophysics Data System (ADS)

    Vilas, Faith; Cobian, Paul S.; Barlow, Nadine G.; Lederer, Susan M.

    2005-12-01

    The depth-to-diameter (d/D) ratios were determined for 12 craters located near the Mercurian north pole that were identified by Harmon et al. (2001, Icarus 149) as having strong depolarized radar echos. We find that the mean d/D value of these radar-bright craters is {2}/{3} the mean d/D value of the general population of non-radar-bright craters in the surrounding north polar region. Previous studies, however, show no difference between d/D values of Mercurian polar and equatorial crater populations, suggesting that no terrain softening which could modify crater structure exists at the Mercurian poles (Barlow et al., 1999, 194, Icarus 141). Thus, the change in d/D is governed by a change in crater depth, probably due to deposition of material inside the crater. The volume of infilling material, including volatiles, in the radar-bright craters is significantly greater than predicted by proposed mechanisms for the emplacement of either water ice or sulfur.

  1. Wave-clouds coupling in the Jovian troposphere.

    NASA Astrophysics Data System (ADS)

    Gaulme, P.; Mosser, B.

    2003-05-01

    First studies about Jovian oscillations are due to Vorontsov et al. (1976). Attempts to observe them started in the late 1980's (Deming et al. 1989, Mosser et al. 1991). The micro-satellite Jovis and ground-based observations campaign such as SŸMPA (e.g Baglin et al. 1999) account for an accurate analysis of the cloud response to an acoustic wave. Therefore, the propagation of sound or gravity waves in the Jovian troposphere is revisited, in order to estimate their effect on the highest clouds layer. From basic thermodynamics, the troposphere should be stratified in three major ice clouds layers: water-ammonia, ammonium-hydrosulfide and ammonia ice for the highest. The presence of ammonia ice clouds has been inferred from Kuiper in 1952, and was predicted to dominate the Jovian skies. However, they had been observed spectroscopically over less than one percent of the surface. This absence of spectral proof could come from a coating of ammonia particles from other substances (Baines et al. 2002). In this work, we study the behaviour of a cloud submitted to a periodic pressure perturbation. We suppose a vertical wave propagating in a plane parallel atmosphere including an ammonia ice cloud layer. We determine the relation between the Lagrangian pressure perturbation and the variation of the fraction of solid ammonia. The linearized equations governing the evolution of the Eulerian pressure and density perturbed terms allows us to study how the propagation is altered by the clouds and how the clouds move with the wave. Finally, because a pressure perturbation modifies the fraction of solid ammonia, we estimate how much an ammonia crystal should grow or decrease and how the clouds albedo could change with the wave. Baglin et al. 1999. BAAS 31, 813. Baines et al. 2002. Icarus 159, 74. Deming et al. 1989. Icarus 21, 943. Kuiper 1952.The atmospheres of the Earth and Planets pp. 306-405. Univ. of Chicago Press, Chicago. Mosser et al. 1991. A&A 251, 356. Vorontsov et al. 1976. Icarus 27, 109.

  2. Dynamical passage to approximate equilibrium shapes for spinning, gravitating rubble asteroids

    NASA Astrophysics Data System (ADS)

    Sharma, Ishan; Jenkins, James T.; Burns, Joseph A.

    2009-03-01

    Many asteroids are thought to be particle aggregates held together principally by self-gravity. Here we study — for static and dynamical situations — the equilibrium shapes of spinning asteroids that are permitted for rubble piles. As in the case of spinning fluid masses, not all shapes are compatible with a granular rheology. We take the asteroid to always be an ellipsoid with an interior modeled as a rigid-plastic, cohesion-less material with a Drucker-Prager yield criterion. Using an approximate volume-averaged procedure, based on the classical method of moments, we investigate the dynamical process by which such objects may achieve equilibrium. We first collapse our dynamical approach to its statical limit to derive regions in spin-shape parameter space that allow equilibrium solutions to exist. At present, only a graphical illustration of these solutions for a prolate ellipsoid following the Drucker-Prager failure law is available [Sharma, I., Jenkins, J.T., Burns, J.A., 2005a. Bull. Am. Astron. Soc. 37, 643; Sharma, I., Jenkins, J.T., Burns, J.A., 2005b. Equilibrium shapes of ellipsoidal soil asteroids. In: García-Rojo, R., Hermann, H.J., McNamara, S. (Eds.), Proceedings of the 5th International Conference on Micromechanics of Granular Media, vol. 1. A.A. Balkema, UK; Holsapple, K.A., 2007. Icarus 187, 500-509]. Here, we obtain the equilibrium landscapes for general triaxial ellipsoids, as well as provide the requisite governing formulae. In addition, we demonstrate that it may be possible to better interpret the results of Richardson et al. [Richardson, D.C., Elankumaran, P., Sanderson, R.E., 2005. Icarus 173, 349-361] within the context of a Drucker-Prager material. The graphical result for prolate ellipsoids in the static limit is the same as those of Holsapple [Holsapple, K.A., 2007. Icarus 187, 500-509] because, when worked out, his final equations will match ours. This is because, though the formalisms to reach these expressions differ, in statics, at the lowest level of approximation, volume-averaging and the approach of Holsapple [Holsapple, K.A., 2007. Icarus 187, 500-509] coincide. We note that the approach applied here was obtained independently [Sharma, I., Jenkins, J.T., Burns, J.A., 2003. Bull. Am. Astron. Soc. 35, 1034; Sharma, I., 2004. Rotational Dynamics of Deformable Ellipsoids with Applications to Asteroids. Ph.D. thesis, Cornell University] and it provides a general, though approximate, framework that is amenable to systematic improvements and is flexible enough to incorporate the dynamical effects of a changing shape, different rheologies and complex rotational histories. To demonstrate our technique, we investigate the non-equilibrium dynamics of rigid-plastic, spinning, prolate asteroids to examine the simultaneous histories of shape and spin rate for rubble piles. We have succeeded in recovering most results of Richardson et al. [Richardson, D.C., Elankumaran, P., Sanderson, R.E., 2005. Icarus 173, 349-361], who obtained equilibrium shapes by studying numerically the passage into equilibrium of aggregates containing discrete, interacting, frictionless, spherical particles. Our mainly analytical approach aids in understanding and quantifying previous numerical simulations.

  3. Impact of CAre-related Regret Upon Sleep (ICARUS) cohort study: protocol of a 3-year multicentre, international, prospective cohort study of novice healthcare professionals.

    PubMed

    Cheval, Boris; Cullati, Stéphane; Pihl-Thingvad, Jesper; Mongin, Denis; Von Arx, Martina; Chopard, Pierre; Courvoisier, Delphine S

    2018-03-27

    Healthcare professionals are particularly at risk of developing numerous physical and psychological health problems. The experiences of emotional burden associated with providing healthcare, notably care-related regret, have been associated with these health problems, but only using cross-sectional data so far. Evidence of a causal impact of regret has not been assessed. The Impact of CAre-related Regret Upon Sleep (ICARUS) study is the first prospective and international cohort study established to examine how newly practising healthcare professionals adapt to their challenging job by assessing the impact of care-related regret on sleep and job quitting. The ICARUS cohort study will include newly practising healthcare professionals working in acute care hospitals and clinics recruited between May 2017 and November 2019. Data collection, which will begin as soon as the participant starts working with patients, will consist of a 1-year weekly assessment using a secure web survey. Follow-up data will be collected at 6, 12, 18 and 24 months after the end of the first year. We will collect detailed information on the experience of care-related regret (ie, highest regret intensity, accumulation of regrets and coping strategies related to regrets), sleep problems and job quitting. Moreover, quality of life, health status and burnout will be assessed during the follow-up. Several confounders factors, including sociodemographic characteristics, personality, night shifts and work environment characteristics, will be assessed. The study was approved by the Ethics Committee of Geneva Canton, Switzerland (CCER2016-02041), the Ethics Committee of London South Bank University (HSCSEP/17/06) and the University Research Ethics Committee of Bedfordshire (UREC106). Other study centres deemed local ethical approval unnecessary since the main ethics committee (Geneva) had already accepted the project. Results will be published in relevant scientific journals and be disseminated in international conferences. Fully anonymised data and questionnaires will be freely accessible to everyone (scientists and general public). © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. Determination of the complex refractive indices of Titan haze analogs using photothermal deflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Vuitton, Véronique; Tran, Buu N.; Persans, Peter D.; Ferris, James P.

    2009-10-01

    The spectrometers of the Cassini mission to the Saturn system have detected haze layers reaching up to 800 km in Titan's atmosphere. Knowledge of the complex refractive index ( k) of the haze is important for modeling the surface and atmosphere of Titan and retrieving some information about the functional groups present in the aerosols. Plasma discharges or ultraviolet radiation are commonly used to drive the formation of solid organics assumed to be good analogs of the Titan aerosols. [Tran, B.N., Ferris, J.P., Chera, J.J., 2003a. The photochemical formation of a Titan haze analog. Structural analysis by X-ray photoelectron and infrared spectroscopy. Icarus 162, 114-124; Tran, B.N., Force, M., Briggs, R., Ferris J.P., Persans, P., Chera, J.J., 2008. Photochemical processes on Titan: Irradiation of mixtures of gases that simulate Titan's atmosphere. Icarus 177, 106-115] reported the index of refraction of analogs synthesized by far ultraviolet irradiation of various gas mixtures. k was determined in the 200-800 nm wavelength range from transmission and reflection spectroscopy. However, this technique is limited by (i) uncertainties in the absorption values because of the small amounts of organics available, (ii) light scattering by the surface roughness and particulates in the sample. These limitations prompted us to perform new measurements using photothermal deflection spectroscopy (PDS), a technique based on the conversion of absorbed light into heat in the material of interest. By combining traditional spectroscopy ( λ < 500 nm) and PDS ( λ > 500 nm), we determined values of k over the 375-1550 nm range. k values as low as 10 -4 above 1000 nm were determined. This is one order of magnitude lower than the measurements generally used as a reference for Titan's aerosols analogs [Khare, B.N., Sagan, C., Arakawa, E.T., Suits, F., Callicott, T.A., Williams, M.W., 1984. Optical-constants of organic Tholins produced in a simulated Titanian atmosphere—from soft-X-ray to microwave-frequencies. Icarus 60(1), 127-137]. We recommend that these results were used in models to describe the optical properties of the aerosols produced in Titan's stratosphere.

  5. Optical low-dispersion spectroscopic observations of Comet 103P/Hartley 2 at Koyama Astronomical Observatory during the EPOXI flyby

    NASA Astrophysics Data System (ADS)

    Shinnaka, Yoshiharu; Kawakita, Hideyo; Kobayashi, Hitomi; Naka, Chiharu; Arai, Akira; Arasaki, Takayuki; Kitao, Eiji; Taguchi, Gaku; Ikeda, Yuji

    2013-02-01

    We performed low-dispersion spectroscopic observations of Comet 103P/Hartley 2 in optical wavelengths using the LOSA/F2 mounted on the 1.3 m-Araki telescope at Koyama Astronomical Observatory on UT 2010 November 4 during the close approach of the Deep Impact spacecraft to the nucleus of Comet 103P/Hartley 2 in the EPOXI mission flyby. Our observations have revealed the chemistry of the coma at optical wavelengths; including CN, C3, C2 and NH2 along with H2O from [OI] emission at 6300 Å. Resultant mixing ratios of these radicals put the comet into the normal group in chemical composition. The mixing ratios with respect to H2O obtained in our observations are basically consistent with the previous optical spectro-photometric observations of Comet 103P/Hartley 2 in 1991 by A'Hearn et al. (A'Hearn, M.F., Millis, R.L., Schleicher, D.G., Osip, D.J., Birch, P.V. [1995]. Icarus 118, 223-270), the optical spectroscopic observations in 1998 by Fink (Fink, U. [2009]. Icarus 201, 311-334) and also consistent with the observations on UT 2010 October 27 and 29 by Lara et al. (Lara, L.M., Lin, Z.-Y., Meech, K. [2011]. Astron. Astrophys. 532, A87) (but only for the ratio relative to CN).

  6. Characterization of the Titan's VIMS - units: Using Spectral Slopes

    NASA Astrophysics Data System (ADS)

    Brossier, Jérémy F.; Jaumann, Ralf; Stephan, Katrin; Le Mouélic, Stéphane; Brown, Robert H.

    2016-04-01

    Since the equatorial regions of Titan have been fully observed by the Visible and Infrared Mapping Spectrometer (VIMS) [1], the analysis of false-color composites enables distinguishing four main spectral units: the equatorial bright, brown, blue, and 5 μm-bright spectral units [2-4]. More precisely, the equatorial bright plateaus and inselbergs correspond to water-ice substrate coated by a layer of organic sediments. Moreover, the blue materials are more likely enriched in water-ice, which consist of icy particles exposition derived from the high standing plateaus and deposited into the lowlands after fluvial/pluvial processes [5] and/or impact cratering [6]. These blue materials are mainly located at the frontier of the large bright plateaus, and hence considered as transition zones to the brown areas corresponding to the radar dunes [7]. Whereas these brown dunes consist on atmospheric aerosols (i.e. tholins) [4] contaminated with particles of water-ice. Here we try to better characterize these spectral units, through VIMS observations at high resolution from TA (Oct. 2004) to T114 (Nov. 2015). Regions of interest show local transition zones between the equatorial bright areas, the blue materials, and the brown dunes, suggesting weathering and erosional processes (e.g. the Huygens landing site; areas at the east of Xanadu province; and Bohai Sinus at the south of Quivira plateau) [5,8], and impact cratering (e.g. Sinlap, Selk, Menrva, and Paxsi craters) [6,9]. Areas exposing large (i.e. Tui and Hotei Regiones) and small (e.g. Yalaing Terra, NW Belet, and NW Fensal) 5 μm-bright units - presumed evaporitic deposits - are also included in this study [9-11]. Subtle differences in the spectral behavior of these four units can be enhanced by using ratios of VIMS channels. At short wavelengths (i.e. below 2 μm), brown and blue materials seem to correspond to a granular mixture of organic sediments - similar to the atmospheric aerosols - and water-ice particles [7]. As for the 5 μm-bright units, they show paucity in water-ice at the longer wavelengths, implying that these features cannot be related to cryovolcanic processes, as it has been originally suggested for Hotei and Tui Regiones, arguing for an evaporitic origin [9-11]. References: [1] Brown, R. H. et al. (2005) SSR. [2] Barnes, J. W. et al. (2007) Icarus, 186 (1). [3] Soderblom, L. A. et al. (2007) PSS, 55 (13). [4] Langhans, M. H. et al. (2011) PSS, 60. [5] Jaumann, R. et al. (2008) Icarus, 197. [6] Le Mouélic, S. et al. (2008) JGR, 113 (E04003). [7] Rodriguez, S. et al. (2013) Icarus, 230. [8] Jaumann, R. et al. (2009) LPSC. [9] Soderblom, L. A. et al. (2009) Icarus, 204. [10] Solomonidou, A. et al. (2013) PSS, 77. [11] McKenzie, M. S. et al. (2014) Icarus.

  7. What explains the structure of Enceladus's ice shell and can it be in equilibrium?

    NASA Astrophysics Data System (ADS)

    Hemingway, D.; Mittal, T.

    2017-12-01

    Over the course of the Cassini mission, a series of geodetic measurements [1-3] have revealed that Enceladus's ongoing south polar eruptions are likely sourced from a global subsurface liquid water ocean [2-6]. The extent of the ocean and the structure of the overlying ice shell are of particular importance as they speak to the nature of the eruptions and the thermal state and evolution of Enceladus. How quickly is Enceladus cooling? Is the ocean a recent, perhaps transient phenomenon, or has it been present for billions of years? Based on shape, gravity, and libration observations, the floating ice shell is inferred to be thickest at the equator, where it is perhaps 35-45 km thick at the sub- and anti-Saturnian points, and thinnest at the poles, especially beneath the broad topographic depression associated with the South Polar Terrain (SPT), where the shell is likely less—perhaps much less—than 10 km thick [6,7]. Although tidal heating is assumed to be the mechanism primarily responsible for the observed shell structure, and whereas several theoretical studies have been carried out [e.g., 8], a clear match between theory and observations has yet to be demonstrated. Likewise, the question of whether or not the current configuration can be in equilibrium, remains open. Here we model the effects of tidal heating on Enceladus's ice shell, showing that the expected equilibrium ice shell structure is largely consistent with the structure inferred from shape, gravity, and libration observations. We consider the nature of the north-south polar asymmetry in shell structure and geologic activity, and we address the question of whether or not the current structure can be maintained in spite of ongoing relaxation. In light of our results, we discuss implications for the heat budget and thermal evolution of Enceladus. [1] P. Thomas et al., Icarus 190 (2), 573-584, Oct. 2007. [2] L. Iess et al., Science 344 (6179), 78-80, 2014. [3] P. C. Thomas et al., Icarus 264, 37-47, 2016. [4] W. B. McKinnon, Geophys. Res. Lett. 42, 2015. [5] O. Čadek et al., Geophys. Res. Lett. 43, 2016. [6] M. Beuthe, A. Rivoldini, and A. Trinh, Geophys. Res. Lett. 43, 2016. [7] D. J. Hemingway and T. Mittal, Icarus, in prep. [8] J. H. Roberts and F. Nimmo, Icarus 194 (2), 675-689, 2008.

  8. Mineralogy of dark asteroids: Detection of phyllosilicate features in the mid-infrared

    NASA Astrophysics Data System (ADS)

    McAdam, Margaret; Sunshine , Jessica Sunshine M.; Kelley, Michael S.

    2014-11-01

    Dark asteroids (C- and related types) have been shown to have phyllosilicates on their surfaces by the presence of the 0.7-µm charge transfer band in the visible/near-infrared (VIS/NIR) spectral region (e.g. [1], [2]). Observations of asteroids in the 2.5-5-µm have also indicated the presence of water [3, 4] and phyllosilicates [5, 6]. Phyllosilicates also have spectral features in the 8-30-µm [7]. The results of a coordinated spectral-mineralogical study of aqueously altered meteorites [8] can be used to both remotely identify the presence of aqueous alteration and determine the degree of alteration on asteroids. Two main regions have strong features related to the mineralogy and degree of alteration: the 10-13-µm and the 16-25-µm region. Alteration features change continuously in these regions between less 60%) and highly 90%) altered meteorites. These features have been identified in the spectra of some dark asteroids [8, 9, 10]. Additionally, no trends are found between 0.7-µm charge transfer band and degree of alteration. While all meteorites with a 0.7-µm band have phyllosilicates, the absence of a 0.7-µm band is not indicative of the absence of alteration. Altered meteorites always exhibit MIR features that are directly related to their degree of alteration whether or not they have a 0.7-µm band. Here, we present preliminary results of a survey of archived Spitzer Space Telescope data of asteroids in the 10-13-µm region and the 16-25-µm region (where data is available) including comparisons to published VIS/NIR spectra of the same dark asteroids without VIS/NIR features. Possible effects in comparing laboratory measurements of meteorite powders under ambient conditions to telescopic spectra of asteroid regoliths are considered. [1] Vilas and Gaffey, (1989) Nature, 246, 790-792. [2] Barucci et al (1998) Icarus, 132, 388-396. [3] Campins et al., (2010), Nature Letters, 464, 1320-1321. [4] Rivkin & Emery (2010) Nature Letters, 464, 1322-1323. [5] Hargrove, et al. (2012), Icarus, 221, 453-455. [6] Takir and Emery (2012) Icarus, 219, 641-654. [7] Calvin & King, (1997), Met. & Plan. Sci., 32, 693-701. [8] McAdam et al, Icarus, in review. [9] McAdam, et al (2013) DPS abs. [10] McAdam et al, ACM abs.

  9. Recent Arecibo Radar Observations of Main-Belt Asteroids.

    NASA Astrophysics Data System (ADS)

    Shepard, Michael K.; Howell, Ellen; Nolan, Michael; Taylor, Patrick; Springmann, Alessondra; Giorgini, Jon; Benner, Lance; Magri, Christopher

    2014-11-01

    We recently observed main-belt asteroids 12 Victoria (Tholen S-class, Bus L-class), 246 Asporina (A-class), and 2035 Stearns with the S-band (12 cm) Arecibo radar. Signal-to-noise ratios for Asporina and Stearns were only strong enough for continuous-wave (CW) analysis. Signal-to-noise ratios for Victoria were high enough for delay-Doppler imaging. Stearns exhibited a high radar polarization ratio of unity, higher than any other main-belt E-class, but similar to near-Earth E-class asteroids [Benner et al. Icarus 198, 294-304, 2008; Shepard et al. Icarus 215, 547-551, 2011]. The A-class asteroids show spectral absorption features consistent with olivine and have been suggested as the source of pallasite meteorites or the rare brachinites [Cruikshank and Hartmann, Science 223, 281-283, 1984]. The radar cross-section measured for Asporina leads to a radar albedo estimate of 0.11, suggesting a low near-surface bulk density, and by inference, a low metal content. This suggests that the brachinites are a better analog for Asporina than the iron-rich pallasites. Victoria has been observed by radar in the past and the continuous-wave echoes suggest it has a large concavity or is a contact binary [Mitchell et al. Icarus 118, 105-131, 1995]. Our new imaging observations should determine which is more likely.

  10. Testing Collisional Scaling Laws: Comparing with Observables

    NASA Astrophysics Data System (ADS)

    Davis, D. R.; Marzari, F.; Farinella, P.

    1999-09-01

    How large bodies break up in response to energetic collisions is a problem that has attracted considerable attention in recent years. Ever more sophisticated computation methods have also been developed; prominent among these are hydrocode simulations of collisional disruption by Benz and Asphaug (1999, Icarus, in press), Love and Ahrens (1996, LPSC XXVII, 777-778), and Melosh and Ryan (1997, Icarus 129, 562-564). Durda et al. (1998, Icarus 135, 431-440) used the observed asteroid size distribution to infer a scaling algorithm. The present situation is that there are several proposed scaling laws that differ by as much as two orders of magnitude at particular sizes. We have expanded upon the work of Davis et al. (1994, Goutelas Proceedings) and tested the suite of proposed scaling algorithms against observations of the main-belt asteroids. The effects of collisions among the asteroids produce the following observables: (a) the size distribution has been significantly shaped by collisions, (b) collisions have produced about 25 well recognized asteroid families, and (c) the basaltic crust of Vesta has been largely preserved in the face of about 4.5 Byr of impacts. We will present results from a numerical simulation of asteroid collisional evolution over the age of the solar system using proposed scaling laws and a range of hypothetical initial populations.

  11. Extending the McDonald Observatory Serendipitous Survey of UV/Blue Asteroid Spectra

    NASA Technical Reports Server (NTRS)

    Vilas, Faith; Cochran, A. L.

    1999-01-01

    Moderate resolution asteroid spectra in the 350 - 650 nm spectral range acquired randomly over many years (Cochran and Vilas, Icarus v 127, 121, 1997) identified absorption features in spectra of some of the asteroids. A feature centered at 430 nm was identified in the spectra of some low-albedo asteroids (C class and subclass), similar to the feature identified by Vilas et al. (Icarus, v. 102, 225,1993) in other low-albedo asteroid spectra and attributed to a ferric iron spin-forbidden transition in iron alteration minerals such as jarosite. Features at 505 nm and 430 nm were identified in the spectrum of 4 Vesta. The 505-nm feature is highly diagnostic of the amount and form of calcium in pyroxenes. This suggested further research on the sharpness and spectral placement of this feature in the spectra of Vesta and Vestoids (e.g., Cochran and Vilas, Icarus v. 134, 207, 1998). In 1997 and 1998, additional UV/blue spectra were obtained at the 2.7-m Harlan J. Smith telescope with a facility cassegrain spectrograph. These included spectra of low-albedo asteroids, the R-class asteroid 349 Dembowska, and the M-class asteroid 135 Hertha. These spectra will be presented and identified features will be discussed.

  12. Re-examination of the Possibility of Haze in Pluto's Atmosphere Based on Multi-Wavelength Observations of the Pluto Occultation of P131.1.

    NASA Astrophysics Data System (ADS)

    Thomas-Osip, J. E.; Elliot, J. L.; Clancy, K. B.

    2002-12-01

    Multi-wavelength observations of the occultation of P131.1 by Pluto (see Elliot et al., this conference) allow for a re-examination of the possibility of the existence of haze in Pluto's atmosphere. Models of the extinction efficiency of haze particles as a function of wavelength are being used investigate the potential for the existence of haze in the 2002 Pluto atmosphere. The existence of a haze layer in Pluto's atmosphere was postulated to explain the abrupt change in slope seen in the light curve of the 1988 stellar occultation by Pluto (Elliot and Young 1992, AJ, 103, 991). An alternative explanation (Hubbard et al. 1990, Icarus, 84, 1) includes a steep thermal gradient near the surface instead of, or in addition to, a haze layer. Modeling of the growth and sedimentation of photo-chemically produced spherical aerosols (Stansberry et al. 1989, Geophys. Res. Let., 16, 1221) suggested that an appropriate production rate is not sufficient to produce the opacity necessary to account for change in slope found in the 1988 light curve, if it were due solely to spherical particle haze extinction. Recent studies (see for example, Rannou et al. 1995, Icarus, 188, 355 and Thomas-Osip et al. 2002, Icarus, submitted) have shown that it is likely that photochemical hazes on Titan are aggregate in nature. Fractal aggregate particles can have larger extinction efficiencies than equivalent mass spheres of the same material (Rannou et al. 1999, Planet. Space Sci., 47,385). We are, therefore, also re-examining the effect of a haze with an aggregate morphology on modeling of the 1988 occultation observations. This research has been supported in part by NSF Grant AST-0073447 and NASA Grant NAG5-10444.

  13. Characteristics of Known Triple Asteroid Systems in the Main Belt

    NASA Astrophysics Data System (ADS)

    Marchis, Franck; Berthier, J.; Burns, K. J.; Descamps, P.; Durech, J.; Emery, J. P.; Enriquez, J. E.; Lainey, V.; Reiss, A. E.; Vachier, F.

    2010-10-01

    Since the discovery of "Sylvia Remus II” [1], around the binary asteroid (87) Sylvia [2] using the VLT/NACO instrument, the number of known triple systems increased significantly. Using the same instrument, a second moonlet was discovered around the binary (45) Eugenia [3] in 2007 [4]. Using an improved W.M. Keck II AO system, [5] announced the discovery of two 3 & 5-km moons orbiting the M-type asteroid (216) Kleopatra and more recently, [6] revealed the presence of two tiny 4-km moons around the C-type (93) Minerva. 3749 Balam is a different triple asteroid system whose existence was suggested by combining lightcurves and AO observations [7]. The properties of these triple systems have been derived individually and published recently [1, 8,9,10]. We will review and contrast their characteristics, including the orbital parameters of the satellite orbits, the size and shape of the primary and the satellites, their taxonomic classes, their bulk densities, and their ages. The goal of this study is to uncover clues concerning the formation and evolution of these mini-planetary systems. The National Science Foundation supported this research under award number AAG-0807468. 1. Marchis et al. Nature 2005 2. Brown et al., IAU 7588, 2001 3. Merline et al. Nature 401, 1999 4. Marchis et al. IAU 1073, 2007 5. Marchis et al. IAU 8980, 2008 6. Marchis et al., IAU 9069, 2009 7. Marchis et al., IAU 8928, 2008 8. Marchis et al., A Dynamical Solution of the Triple Asteroid System (45) Eugenia , Icarus in press, 2010 9. Descamps et al, Triplicity and Physical Characteristics of Asteroid 216 Kleopatra Icarus, in revision, 2010 10. Marchis et al., Triplicity and Physical Characteristics of the main-belt Asteroid (93) Minerva, Icarus submitted 2010

  14. New Occultation Systems and the 2005 July 11 Charon Occultation

    NASA Astrophysics Data System (ADS)

    Young, L. A.; French, R. G.; Gregory, B.; Olkin, C. B.; Ruhland, C.; Shoemaker, K.; Young, E. F.

    2005-08-01

    Charon's density is an important input to models of its formation and internal structure. Estimates range from 1.59 to 1.83 g/cm3 (Olkin et al. 2003. Icarus 164, 254), with Charon's radius as the main source of uncertainty. Reported values of Charon's radius from mutual events range from 593±13 (Buie et al. 1992, Icarus 97, 211) to 621±21 km (Young & Binzel 1994, Icarus 108), while an occultation observed from a single site gives a lower limit on the radius of 601.5 km (Walker 1980 MNRAS 192, 47; Elliot & Young 1991, Icarus 89, 244). On 2005 July 11 UT (following this abstract submission date), Charon is predicted to occult the star C313.2. If successful, this event will be the first Charon occultation observed since 1980, and the first giving multiple chords across Charon's disk. This event is expected to measure Charon's radius to 1 km. Our team is observing from three telescopes in Chile, the 4.0-m Blanco and the 0.9-m telescopes at Cerro Tololo and the 4.2-m SOAR telescope at Cerro Pachon. At SOAR, we will be using the camera from our new PHOT systems (Portable High-speed Occultation Telescopes). The PHOT camera is a Princeton Instrument MicroMAX:512BFT from Roper Scientific, a 512×512 frame-transfer CCD with a readnoise of only 3 electrons at the 100 kHz digitization rate. The camera's exposures are triggered by a custom built, compact, stand-alone GPS-based pulse-train generator. A PHOT camera and pulse-train generator were used to observe the occultation of 2MASS 1275723153 by Pluto on 2005 June 15 UT from Sommers-Bausch Observatory in Boulder Colorado; preliminary analysis shows this was at best a grazing occultation from this site and a successful engineering run for the July 11 Charon occultation. The work was supported, in part, by NSF AST-0321338 (EFY) and NASA NNG-05GF05G (LAY).

  15. Iceless Icy Moons: Is the Nice Model In Trouble?

    NASA Astrophysics Data System (ADS)

    Dones, Henry C. Luke; Levison, H. F.

    2012-05-01

    Nimmo and Korycansky (2012; henceforth NK12) stated that if the outer Solar System underwent a Late Heavy Bombardment (LHB) in the Nice model, the mass striking the icy satellites at speeds up to tens of km/s would have vaporized so much ice that moons such as Mimas, Enceladus, and Miranda would have been devolatilized. NK12's possible explanations of this apparent discrepancy with observations include (1) the mass influx was a factor of 10 less than that in the Nice model; (2) the mass distribution of the impactors was top-heavy, so that luck might have saved some of the moons from suffering large, vapor-removing impacts; or (3) the inner moons formed after the LHB. NK12 calculated the mass influx onto the satellites from the lunar impact rate estimated by Gomes et al. (2005) and scaling factors calculated by Zahnle et al. (1998, 2003; also see Barr and Canup 2010). Production of vapor in hypervelocity impacts is calculated from Kraus et al. (2011). Our preliminary results show that there is about an order-of-magnitude uncertainty in the mass striking the satellites during the LHB, with NK12's estimate at the upper end of the range. We will discuss how the mass influx depends on the velocity and mass distributions of the impactors. The Nice model lives. We thank the NASA Lunar Science Institute (http://lunarscience.nasa.gov/) for support. Barr, A.C., Canup, R.M., Nature Geoscience 3, 164-167 (2010). Gomes, R., Levison, H.F., Tsiganis, K., Morbidelli, A., Nature 435, 466-469 (2005). Kraus, R.G., Senft, L.E., Stewart, S.T., Icarus 214, 724-738 (2011). Nimmo, F., Korycansky, D.G., Icarus, in press, http://www.sciencedirect.com/science/article/pii/S0019103512000310 (2012). Zahnle, K., Dones, L., Levison, H.F., Icarus 136, 202-222 (1998). Zahnle, K., Schenk, P., Levison, H.F., Dones, L., Icarus 163, 263-289 (2003).

  16. Implications of New Methane Absorption Coefficients on Uranus Vertical Structure Derived from Near-IR Spectra

    NASA Astrophysics Data System (ADS)

    Fry, Patrick M.; Sromovsky, L. A.

    2009-09-01

    Using new methane absorption coefficients from Karkoschka and Tomasko (2009, submitted to Icarus, "Methane Absorption Coefficients for the Jovian Planets from Laboratory, Huygens, and HST Data"), we fit Uranus near-IR spectra previously analyzed in Sromovsky et al. (2006, Icarus 182, 577-593, Fink and Larson, 1979 J- and H-band), Sromovsky and Fry (2008, Icarus 193, 252-266, 2006 NIRC2 J- and H-band, 2006 SpeX) using Irwin et al. (2006, Icarus 181, 309-319) methane absorption coefficients. Because the new absorption coefficients usually result in higher opacities at the low temperatures seen in Uranus' upper troposphere, our previously derived cloud altitudes are expected to generally rise to higher altitudes. For example, using Lindal et al. (1987, JGR 92, 14987-15001) model D temperature and methane abundance profiles, we are better able to fit the J-band 43-deg. south bright band with the new coefficients (chi-square=205, vs. 315 for Irwin), with the pressure of the upper tropospheric cloud decreasing to 1.6 bars (from 2.4 bars using Irwin coefficients). Improvements in fitting H-band spectra from the same latitude are not as readily obtained. Derived upper tropospheric cloud pressures are very similar using the two absorption datasets (1.6-1.7 bars), but the character of the fits differs. New Karkoschka and Tomasko coefficients better fit some details in the 1.5-1.58 micron region, but Irwin fits the broad absorption band wing at 1.61-1.62 microns better, and the fit chi-square values are similar (K&T: 243, Irwin: 220). Results for a higher methane concentration (Lindal et al. model F) were similar. Whether the new coefficients will simply raise derived altitudes across the planet or will result in fundamental changes in structure is as yet unclear. This work was suported by NASA planetary astronomy and planetary atmospheres programs.

  17. Triton's Atmospheric Structure: What We Have Learned from Stellar Occultations and Prospects for the Future

    NASA Astrophysics Data System (ADS)

    Elliot, J. L.; Olkin, C. B.

    1997-07-01

    In 1993 we began a program for observing stellar occultations by Triton with the following objectives: (1) probe Triton's atmosphere in the microbar pressure region for comparison with models based on Voyager data (e.g. Strobel et al., Icarus 120, 266), (2) investigate the predicted seasonal changes in surface pressure (Spencer & Moore, Icarus 99, 261; Hansen & Paige, Icarus 99, 273) and (3) investigate spatial variability of the atmospheric structure. Observations have been successful for three stars, and the results are descibed by Olkin et al. (Icarus, in press) and Elliot et al. (Science, submitted). A large difference between the observations and models in the pressure and temperature at a radius of 1400 km (about 50 km altitude) may be due to seasonal change or inadequacy of the models. Triton's atmosphere has been found to be highly distorted from spherical symmetry, which has been interpreted as evidence for winds near the sonic velocity ( ~ 140 m s(-1) ). Based on current knowledge of Triton's atmosphere just described, our goals for future investigations of Triton's atmosphere are threefold: (i) map the central-flash with multiple chords in order to understand how Triton's atmosphere is distorted, (ii) obtain a light curve of greater S/N than we have at present in order to better establish Triton's temperature and pressure profiles so that present models based on Voyager data can be improved; and (iii) regularly probe Triton's atmosphere (annually if possible) in order to learn how its pressure changes with time. The prospects for observation of more high-quality Triton occultations are bright for the next three years (McDonald & Elliot, AJ 109, 1352), after which the Neptune system moves away from the galactic plane and the frequency of events diminishes. This work was supported, in part, by NASA Grants NAG5-3940 at MIT and NAG2-1078 at Lowell Observatory.

  18. Could the Craters on the Mid-Sized Moons of Saturn Have Been Made by Satellite Debris?

    NASA Astrophysics Data System (ADS)

    Dones, Henry C. Luke; Alvarellos, Jose; Bierhaus, Edward B.; Bottke, William; Cuk, Matija; Hamill, Patrick; Nesvorny, David; Robbins, Stuart J.; Zahnle, Kevin

    2016-10-01

    Saturn's mid-sized moons have usually been assumed to be primordial. However, Charnoz et al. (2011) and Crida and Charnoz (2012) showed that the steep trend of mass vs. distance of the moons out to Rhea is consistent with the spreading of an early massive ring (e.g., Canup 2010) beyond Saturn's Roche limit. In this model, these moons would be billions of years old, but with Mimas forming perhaps 1 Gyr after Rhea.Cuk et al. (2016) investigated the dynamical evolution of the, mid-sized saturnian moons due to tides. They infer that the moons have migrated little. Tethys and Dione probably did not cross their 3:2 resonance, but the system likely did cross a Dione-Rhea 5:3 resonance and a Tethys-Dione secular resonance. These crossings would have happened recently; for Q = 1500 (Lainey et al. 2012), within the past 100 Myr. Cuk et al. suggested that a previous generation of moons underwent an orbital instability, perhaps due to a solar evection resonance, leading to catastrophic collisions between them (Movshovitz et al. 2016). Today's moons would have reaccreted from the debris. This model implies that most craters on the moons were formed by this debris, with impacts taking place at much lower speeds than applies for impacts by comets.Many crater properties, such as the depth-to-diameter ratio (Bray and Schenk 2015) and the amount of melting and vaporization (Kraus et al. 2011), depend on the impact velocity. We will discuss how measurements of craters in Cassini images of saturnian moons can be used to distinguish between the Cuk et al. scenario and the view in which the largest craters are made by comets and planetocentric debris makes only smaller craters (Alvarellos et al. 2005).We thank the Cassini Data Analysis Program for support and Amy Barr Mlinar for discussions.Alvarellos, J.L., Zahnle, K.J., Dobrovolskis, A.R., Hamill,P. (2005). Icarus 178, 104Bray, V.J., Schenk, P.M. (2015). Icarus 246, 156Canup, R.M. (2010). Nature 468, 943Charnoz, S., et al. (2011). Icarus 216, 535Crida, A., Charnoz, S. (2012). Science 338, 1196Cuk, M., Dones, L., Nesvorny, D. (2016). Astrophys. J. 820:97Kraus, R.G., Senft, L.E., Stewart, S.T. (2011). Icarus 214, 724Lainey, V., et al. (2012). Astrophys. J. 752:14Movshovitz, N., et al. (2016). Icarus 275, 85

  19. Branding Icarus: The Construction of Identity and Diversity at The United States Air Force Academy

    DTIC Science & Technology

    2015-06-01

    Government-sponsored research , prompting the question: “Why study the military if the result of investigations can be utilized by armed forces to...Gradu- ates (Colorado Springs, CO: HQ USAFA Institutional Research and Assessment Division, 2005), 71 social studies .11 There are also gaps...PRESENTED TO THE FACULTY OF THE SCHOOL OF ADVANCED AIR AND SPACE STUDIES FOR COMPLETION OF GRADUATION REQUIREMENTS SCHOOL OF ADVANCED AIR AND

  20. On the long-term variability of Jupiter and Saturn zonal winds

    NASA Astrophysics Data System (ADS)

    Sanchez-Lavega, A.; Garcia-Melendo, E.; Hueso, R.; Barrado-Izagirre, N.; Legarreta, J.; Rojas, J. F.

    2012-12-01

    We present an analysis of the long-term variability of Jupiter and Saturn zonal wind profiles at their upper cloud level as retrieved from cloud motion tracking on images obtained at ground-based observatories and with different spacecraft missions since 1979, encompassing about three Jovian and one Saturn years. We study the sensitivity and variability of the zonal wind profile in both planets to major planetary-scale disturbances and to seasonal forcing. We finally discuss the implications that these results have for current model efforts to explain the global tropospheric circulation in these planets. Acknowledgements: This work has been funded by Spanish MICIIN AYA2009-10701 with FEDER support, Grupos Gobierno Vasco IT-464-07 and UPV/EHU UFI11/55. [1] Sánchez-Lavega A., et al., Icarus, 147, 405-420 (2000). [2] García-Melendo E., Sánchez LavegaA., Icarus, 152, 316-330 (2001) [3] Sánchez-Lavega A., et al., Nature, 423, 623-625 (2003). [4] García-Melendo E., et al., Geophysical Research Letters, 37, L22204 (2010).

  1. Uranus and Neptune: internal heat flow

    NASA Astrophysics Data System (ADS)

    Hofstadter, M. D.; Simon, A. A.; Banfield, D. J.; Fortney, J. J.; Hayes, A. G., Jr.; Hedman, M.; Hospodarsky, G. B.; Mandt, K.; Showalter, G. M.; Soderlund, K. M.; Turtle, E. P.; Hofstadter, M. D.; Sayanagi, K. M.; Simon, A. A.; Banfield, D. J.; Fortney, J. J.; Hayes, A.; Hedman, M.; Hospodarsky, G. B.; Mandt, K.; Showalter, G. M.; Soderlund, K. M.; Turtle, E. P.; Nettelmann, N.; Scheibe, L.; Redmer, R.

    2017-12-01

    Uranus and Neptune offer unique possibilities to study the behavior of gas-ice-rock mixtures at high pressures, the formation of planets, planetary magnetic field generation [1], and planetary atmospheres. While Uranus and Neptune interior models have been constructed that satisfy some of the observational constraints, so far there are no physically motivated models that are consistent with all of them. Especially the observed intrinsic heat fluxes pose challenges [2]. Here I present the thermal boundary layer approach [3] to explain both the extraordinary low heat flux of Uranus and the high heat flux of Neptune, and discuss implications. In particular, current models suggest miscibility of ices with rocks at P>1 Mbar and super-solar ice-to-rock ratios, for Uranus an irradiated exoplanet-like evolution in equilibrium with the stellar incident flux, and fully convective deep interiors. The Figure illustrates such an ice giant interior model.[1] Soderlund K.M., Heimpel, M.H., King E.M. Aurnou J.M. (2013), Icarus 224, 97 [2] Guillot T. (2005), Annu. Rev. Earth Planet. Sci. 33, 493 [3] Nettelmann N., Wang K., Fortney J.J. et al (2016), Icarus 275, 107

  2. Identification of possible recent water/lava source fissures in the Cerberus Plains: stratigraphic and crater count age constraints

    NASA Astrophysics Data System (ADS)

    Thomas, Rebecca J.

    2013-04-01

    The Cerberus plains are one of the youngest surfaces on Mars. They are thought to have been formed by lava and/or water flows, but there is considerable debate regarding the source of this material. Much of the material forming the western plains, including the Athabasca Valles outflow channels, appears to have flowed from the region of the Cerberus Fossae graben system [1,2,3] and limited areas forming the eastern plains may have been erupted by low shield volcanoes [4,5]. However, flow of material from west to east is obstructed by a ridge centred on 157°E, 7°N and, prior to this study, vents which might be the source of fluid of a low enough viscosity to form the majority of the flat eastern plains had not been identified. We studied new HiRISE (25cm/px, High Resolution Science Imaging Experiment) images of the ridge between the east and west plains and observed possible source vents for this material: the ridge is cut by a series of pits and fissures which lie at the heads of flows and channels extending towards the surrounding plains. In order to establish the stratigraphic relationships between the vents and plains, this study produced large scale geomorphological maps based on the HiRISE images. The mapping showed that both incised channels and leveed flows extend onto the plain to the south of the ridge and that these were the final phase of plains-forming activity in that region. Conversely, to the north, ridge-sourced deposits only form the plains surface close to the ridge - beyond that, they are overlain by large-scale regional flows that appear to have originated from the direction of Athabasca Valles. In the southeast, a large-scale flow which does not emanate from this ridge forms the plains surface, but there is evidence that the youngest outflow activity from the ridge was contemporaneous with emplacement of this unit. We also performed crater counts to age-date the surfaces and these indicate that plains-forming and ridge-sourced units are of a similar Late Amazonian age (<100Ma), with the latest activity tentatively dating to 10Ma. Thus, this study implies that very recent outflows from these vents contributed to the formation of the Cerberus Plains. It also constrains the timing of other large-scale plains-forming flows in the region and suggests that outflows from this ridge were part of a broader process of Cerberus plains formation from multiple sources [6]. References: [1] Plescia, J. B. (1990) Icarus, 88 (2), 465-490. [2] Burr et al. (2002) Geophysical Research Letters, 29, 1013. [3] Berman & Hartmann (2002) Icarus 159, 1-7. [4] Plescia et al. (2003) Icarus, 164, 79-95. [5] Vaucher et al. (2009) Icarus, 204, 418-442. [6] Thomas, R. (2012) JGR Planets (submitted).

  3. Astronomical Odds: A Policy Framework for the Cosmic Impact Hazard

    DTIC Science & Technology

    2004-06-01

    171. 52 An early example of an expost approach to NEO interceptor design is Project Icarus, a study effort that recommended a Saturn-V class system...68 vii viii Astronomical Odds: A Policy Framework for the Cosmic Impact Hazard 3.2. "Giggle factor" within USAF study report...the access to the NEO SDT Study model provided by MIT Lincoln Laboratory, with special thanks to Grant Stokes and Jenifer Evans. I am grateful for

  4. Lightcurve, Color and Phase Function Photometry of the OSIRIS-REx Target Asteroid (101955) Bennu

    NASA Astrophysics Data System (ADS)

    Hergenrother, Carl W.; Nolan, Michael C.; Binzel, Richard P.; Cloutis, Edward A.; Barucci, Maria Antonietta; Michel, Patrick; Scheeres, Daniel J.; d'Aubigny, Christian Drouet; Lazzaro, Daniela; Pinilla-Alonso, Noemi; Campins, Humberto; Licandro, Javier; Clark, Beth E.; Rizk, Bashar; Beshore, Edward C.; Lauretta, Dante S.

    2013-09-01

    The NASA OSIRIS-REx mission will retrieve a sample of the carbonaceous near-Earth Asteroid (101955) Bennu and return it to Earth in 2023. Photometry in the Eight Color Asteroid Survey (ECAS) filter system and Johnson-Cousins V and R filters were conducted during the two most recent apparitions in 2005/2006 and 2011/2012. Lightcurve observations over the nights of September 14-17, 2005 yielded a synodic rotation period of 4.2905 ± 0.0065 h, which is consistent with the results of Nolan et al. (2013). ECAS color measurements made during the same nights confirm the B-type classification of Clark et al. (Clark, B.E., Binzel, R.P., Howell, E.S., Cloutis, E.A., Ockert-Bell, M., Christensen, P., Barucci, M.A., DeMeo, F., Lauretta, D.S., Connolly, H., Soderberg, A., Hergenrother, C., Lim, L., Emery, J., Mueller, M. [2011]. Icarus 216, 462-475). A search for the 0.7 μm hydration feature using the method of Vilas (Vilas, F. [1994]. Icarus 111, 456-467) did not reveal its presence. Photometry was obtained over a range of phase angles from 15° to 96° between 2005 and 2012. The resulting phase function slope of 0.040 magnitudes per degree is consistent with the phase slopes of other low albedo near-Earth asteroids (Belskaya, I.N., Shevchenko, V.G. [2000]. Icarus 147, 94-105).

  5. Laboratory Simulations of Space Weathering of Asteroid Surfaces by Solar Wind Ions.

    NASA Astrophysics Data System (ADS)

    Miller, Kenneth A.; De Ruette, Nathalie; Harlow, George; Domingue, Deborah L.; Savin, Daniel Wolf

    2014-06-01

    Studies into the formation of the terrestrial planets rely on the analysis of asteroids and meteorites. Asteroids are solar system remnants from the planetary formation period. By characterizing their mineralogical composition we can better constrain the formation and evolution of the inner planets.Remote sensing is the primary means for studying asteroids. Sample return missions, such as Hayabusa, are complex and expensive, hence we rely on asteroid reflectance spectra to determine chemical composition. Links have been made and debated between meteorite classes and asteroid types [1, 2]. If such relationships can be confirmed, then meteorites would provide a low cost asteroid sample set for study. However, a major issue in establishing this link is the spectral differences between meteorite samples and asteroid surfaces. The most commonly invoked explanation for these differences is that the surfaces of asteroids are space weathered [2, 3]. The dominant mechanism for this weathering is believed to be solar-wind ion irradiation [2, 4, 5]. Laboratory simulations of space weathering have demonstrated changes in the general direction required to alter spectra from unweathered meteorite samples to asteroid observations [3, 6 -10], but many open questions remain and we still lack a comprehensive understanding. We propose to explore the alleged connection of ordinary chondrite (OC) meteorites to S-type asteroids through a series of systematic laboratory simulations of solar-wind space weathering of asteroid surface materials. Here we describe the issue in more detail and describe the proposed apparatus. [1] Chapman C. R. (1996) Meteorit. Planet. Sci., 31, 699-725. [2] Chapman C. R. (2004), Annu. Rev. Earth Planet. Sci., 32, 539-567. [3] Hapke B. (2001) J. Ge-ophys. Res., 106, 10039-10074. [4] Pieters C.M. et al. (2000) Meteorit. Planet. Sci., 35, 1101-1107. [5] Ver-nazza P. et al. (2009) Nature, 458, 993-995. [6] Stra-zulla G. et al. (2005) Icarus, 174, 31-35 (2005). [7] Brunetto R and Strazzulla G (2005) Icarus, 179, 265-273. [8] Marchi S et al. (2005) Astron. Astrophys., 443, 769-775. [9] Loeffler M. J. et al. (2009) J. Geo-phys. Res., 114, E03003. [10] Fu X. et al. (2012) Ica-rus, 219, 630-640

  6. Vital Signs: Seismology of Europa and Other Ocean World

    NASA Astrophysics Data System (ADS)

    Kedar, S.; Vance, S.; Anandakrishnan, S.; Banerdt, W. B.; Bills, B. G.; Castillo, J. C.; Huang, H. H.; Jackson, J. M.; Lognonne, P. H.; Lorenz, R. D.; Panning, M. P.; Pike, W. T.; Stähler, S. C.; Tsai, V. C.

    2016-12-01

    Seismic investigations offer the most comprehensive view into the deep interiors of planetary bodies. The InSight mission and concepts for a Europa Lander and a Lunar Geophysical Network present unique opportunies for seismology to play a critical role in constraining interior structure and thermal state. In oceanic icy worlds, measuring the radial depths of compositional interfaces using seismology in a broad frequency range can sharpen inferences of interior structures deduced from gravity and magnetometry studies, such as those planned for NASA's proposed Europa Mission and ESA's JUICE mission. Seismology may also offer information about fluid motions within or beneath ice, which complements magnetic studies; and can record the dynamics of ice layers, which would reveal mechanisms and spatiotemporal occurrence of crack formation and propagation. Investigating these structures and processes in the future calls for detailed modeling of seismic sources and signatures, in order to develop the most suitable instrumentation. We will present results of simulations of plausible seismic sources and wave-field propagation in Europa, with extension to other oceanic icy worlds, building on prior studies (Kovach and Chyba 2001, Lee et al. 2003, Cammarano et al. 2006, Panning et al. 2006, Leighton et al. 2008). We also consider additional sources: gravitationally forced librations, which will create volume-filling turbulent flow, a possible seismic source similar to that seen from turbulent flow in terrestrial rivers; downflow of dense brines from chaos regions on Europa into its underlying ocean, which possibly resemble riverine flows and flows through glacial channels and ocean acoustic signals that couple with the overlying ice to produce seismic waves, by analogy with Earth's ocean-generated seismic hum. Cammarano, F., Lekic, V., Manga, M., Panning, M., and Romanowicz, B. (2006). JGR, E12009:doi:10.1029/2006JE002710. Kovach, R. L. and Chyba, C. F. (2001). Icarus, 150(2):279-287. Lee, S. W., Zanolin, M., Thode, A. M., Pappalardo, R. T., and Makris, N. C. (2003). Icarus, 165(1):144-167. Leighton, T. G., Finfer, D. C., and White, P. R. (2008). Icarus, 193(2):649-652. Panning, M., Lekic, V., Manga, M., and Romanowicz, B. (2006). Journal of Geophysical Research, E12008:doi:10.1029/2006JE002712.

  7. The Role of Clouds in the Long-Term Habitability of Planets

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.; Tolbert, Margaret

    2000-01-01

    We proposed to conduct theoretical and laboratory investigations of the role that clouds play in the long-term climate history of the Earth and other habitable planets. We made significant progress in the first area we proposed to consider- the properties of carbon dioxide clouds in atmospheres that are rich in carbon dioxide. We submitted a modeling paper on the microphysical properties of the clouds to Icarus showing that such clouds are unlikely to play an important role in the early greenhouses on Earth or Mars. The model was based on lab studies of the nucleation and growth of carbon dioxide. We have also submitted a manuscript describing these lab studies to Icarus. These lab studies are critical not only to the ancient Mars atmosphere, but also to the current one. We also submitted a paper to Nature describing modeling of current Martian CO2 clouds. We will also model the properties of water clouds in the early history of Earth. Early in Earth's history the atmosphere contained no free oxygen. Without oxygen, sulfate aerosols that are currently the dominant cloud nuclei, cannot form. Without such nuclei the cloud structure would have been far different than it is now. We initiated studies of the aerosols on Titan as part of this work. We reported these studies in a short paper on nucleation and in several conferences.

  8. Icarus Institute for Interstellar Sciences (IIS)

    NASA Astrophysics Data System (ADS)

    Cress, B.

    2012-09-01

    In this paper, a vision for a proposed interstellar research center, to be developed in the United States, will be presented. The major focus will be on an innovative approach to the planning and achieving a new sustainable world class facility devoted to the technologies and various science missions of multi-disciplined teams reaching for the stars. The project will provide the personnel, feature sets, facilities and equipment needed to initiate and support an aggressive program of advanced interstellar vehicle and propulsion design and implementation. Also shared will be personal insights and economic considerations gained during prior planning for a private research institute in Nevada, home to more than 300 international scientists. The views expressed in this discussion paper are the personal views of the author and not necessarily representing the entire Icarus team.

  9. Stability of binaries. Part 1: Rigid binaries

    NASA Astrophysics Data System (ADS)

    Sharma, Ishan

    2015-09-01

    We consider the stability of binary asteroids whose members are possibly granular aggregates held together by self-gravity alone. A binary is said to be stable whenever each member is orbitally and structurally stable to both orbital and structural perturbations. To this end, we extend the stability test for rotating granular aggregates introduced by Sharma (Sharma, I. [2012]. J. Fluid Mech., 708, 71-99; Sharma, I. [2013]. Icarus, 223, 367-382; Sharma, I. [2014]. Icarus, 229, 278-294) to the case of binary systems comprised of rubble members. In part I, we specialize to the case of a binary with rigid members subjected to full three-dimensional perturbations. Finally, we employ the stability test to critically appraise shape models of four suspected binary systems, viz., 216 Kleopatra, 25143 Itokawa, 624 Hektor and 90 Antiope.

  10. Between ice and gas: CO2 on the icy satellites of Jupiter and Saturn

    NASA Astrophysics Data System (ADS)

    Hibbitts, C.

    2010-12-01

    CO2 exists in the surfaces of the icy Galilean and Saturnian satellites [1-6], yet despite its discovery over a decade ago on Ganymede, and five years ago on the Saturnian satellites, its nature is still debated [7]. On the Galilean satellites Callisto and Ganymede, the CO2 that is detected is bound to, or trapped within, the non-ice materials that prevent it from sublimating or otherwise escaping from the surface. On Europa, it resides within both the ice and nonice materials [8,9]. While greater abundances of CO2 may exist in the interiors of these moons, or small amounts may be continually created through particle bombardment of the surface, the observed CO2 is only a trace material, with a few hundred molecules responsible for the deepest absorption features and an estimated molar abundance of 0.1% [2; 10-12]. Yet its presence may provide essential clues to processes that shape the surfaces of the moon [13] and potentially key to understanding the composition of potential oceans in the subsurfaces. We continue measurements of the infrared properties associated with CO2 adsorbed onto nonice materials under pressures and at temperatures relevant to these icy satellites using bidirectional reflectance spectroscopy from ~ 1.5 to 5.5 μm. Previous measurements, using transmission spectroscopy, demonstrated both a compositional and a temperature dependence on the spectral signature of adsorbed CO2 [14]. Bidirectional spectroscopy enables detection of lower concentrations of adsorbate on fine-grained materials such as clays due to their large surface area to volume ratios and thus large surface areas that may be covered by adsorbate [15]. The effectiveness of transmission spectroscopy was also limited by the strong absorption of light within the pressed sample and its impermeability, which limited the coverage by adsorbate to the pellet’s outer surface. All measurements demonstrate that CO2 adsorbs onto montmorillonite clays, possibly due to its quadrupole moment, with the position of its ν3 fundament absorption band dependent on the cation composition and on the dosing temperature. It may also be that the presence of charge-compensating ions, and the resulting negative charge of the remaining structure, enables CO2 to adsorb through an induced dipole attraction. In general, the IR absorption band of CO2 in montmorillonite tends to shift toward longer wavelengths as the density of the electric field of the principle cation decreases, with the exception that the IR absorption band of the Na-rich endmember occurs at a shorter wavelength than for the Li-rich endmember. References: [1] Carlson et al., (1996) Science; [2] McCord et al., (1998) J. Geophys. Res.; [3] Buratti et al., (2005) Astrophys. J.; [4]Clark et al., (2005) Nature; [5] Brown et al., (2006) , Icarus; [6] Filacchione et al., (2006) , Icarus; [7] Cruikshank et al., (2010), Icarus, 206, 561-572; [9] Smythe et al., (1998),DPS,30, #55.P07, 1448; [9] Hansen and McCord, (2008), GRL, 35; [10] Hibbitts et al., (2000) J. Geophys. Res.; [11] Hibbitts et al., (2002) , J. Geophys. Res.; [12] Hibbitts et al., (2003) J. Geophys. Res.; [13] Moore et al., (2000), Icarus, 140, 294-312; [14] Hibbitts and Szanyi, (2007), Icarus. 191, 371-380; [15] Dyar et al., (2010), Icarus, 208, 425-437.

  11. Multi-instrument data analysis for interpretation of the Martian North polar layered deposits

    NASA Astrophysics Data System (ADS)

    Mirino, Melissa; Sefton-Nash, Elliot; Witasse, Olivier; Frigeri, Alessandro

    2017-04-01

    The Martian polar caps have engendered substantial study due to their spiral morphology, layered structure and the seasonal variability in thickness of the uppermost H2O and CO2 ice layers. We demonstrate a multi-instrument study of exposed and buried north polar layers using data from ESA's Mars Express (MEx) and NASA's Mars Reconnaissance Orbiter (MRO) missions. We perform analysis of high resolution images from MRO's HiRISE, which provide textural and morphological information about surface features larger than 0.3m, with NIR hyperspectral data from MRO CRISM, which allows study of surface mineralogy at a maximum resolution of 18 m/pixel. Stereo-derived topography is provided by MEx's HRSC. Together with these surficial observations we interpret radargrams from MRO SHARAD to obtain information about layered structures at a horizontal resolution between 0.3 and 3 kilometers and a free-space vertical resolution of 15 meters (vertical resolution depends on the dielectric properties of the medium). This combination of datasets allows us to attempt to correlate polar layering, made visible by dielectric interfaces between beds, with surface mineralogies and structures outcropping at specific stratigraphic levels. We analyse two opposite areas of the north polar cap with the intention to characterise in multiple datasets each geologic unit identified in the north polar cap's stratigraphy (mapped by e.g. [1]). We selected deposits observed in Chasma Boreale and Olympia Cavi because these areas allow us to observe and map strata at opposing sides of the north polar cap. Using the CRISM Analysis Tool and spectral summary parameters [2] we map the spectral characteristics of the two areas that show H2O and CO2 ice layering exposed on polar scarps. Through spatial-registration in a GIS with HRSC topography and HiRISE imagery we assess the mineralogical and morphological characteristics of exposed layers. In order to constrain the cross section between the two selected localities we choose SHARAD radargrams that most closely align with the transect between the sites. We interpret sub-horizontal features to be due to dielectric interfaces involving the deposits analysed. Our interpretation of radargrams in the context of compositional and structural constraints, from areas where pertinent beds outcrop, illustrates how joint analysis of surface and sub-surface data can benefit geological interpretation of planetary surfaces and subsurfaces. This technique applied to Mars' north polar layered deposits may offer additional constraint on morphology of internal layering resulting from seasonal deposition/sublimation cycles over varying obliquity [3]. References: [1] Tanaka et al. (2008), Icarus, 196, p. 318-358, doi:10.1016/j.icarus.2008.01.021. [2] Viviano-Beck et al. (2014), J. Geophys. Res. Planets, 119, p. 1403-1431, doi:10.1002/2014JE004627..[3] Putzig et al. (2009), Icarus, 204, p. 443-457, doi:10.1016/j.icarus.2009.07.034.

  12. Numerical Simulations of Granular Processes

    NASA Astrophysics Data System (ADS)

    Richardson, Derek C.; Michel, Patrick; Schwartz, Stephen R.; Ballouz, Ronald-Louis; Yu, Yang; Matsumura, Soko

    2014-11-01

    Spacecraft images and indirect observations including thermal inertia measurements indicate most small bodies have surface regolith. Evidence of granular flow is also apparent in the images. This material motion occurs in very low gravity, therefore in a completely different gravitational environment than on the Earth. Understanding and modeling these motions can aid in the interpretation of imaged surface features that may exhibit signatures of constituent material properties. Also, upcoming sample-return missions to small bodies, and possible future manned missions, will involve interaction with the surface regolith, so it is important to develop tools to predict the surface response. We have added new capabilities to the parallelized N-body gravity tree code pkdgrav [1,2] that permit the simulation of granular dynamics, including multi-contact physics and friction forces, using the soft-sphere discrete-element method [3]. The numerical approach has been validated through comparison with laboratory experiments (e.g., [3,4]). Ongoing and recently completed projects include: impacts into granular materials using different projectile shapes [5]; possible tidal resurfacing of asteroid Apophis during its 2029 encounter [6]; the Brazil-nut effect in low gravity [7]; and avalanche modeling.Acknowledgements: DCR acknowledges NASA (grants NNX08AM39G, NNX10AQ01G, NNX12AG29G) and NSF (AST1009579). PM acknowledges the French agency CNES. SRS works on the NEOShield Project funded under the European Commission’s FP7 program agreement No. 282703. SM acknowledges support from the Center for Theory and Computation at U Maryland and the Dundee Fellowship at U Dundee. Most simulations were performed using the YORP cluster in the Dept. of Astronomy at U Maryland and on the Deepthought High-Performance Computing Cluster at U Maryland.References: [1] Richardson, D.C. et al. 2000, Icarus 143, 45; [2] Stadel, J. 2001, Ph.D. Thesis, U Washington; [3] Schwartz, S.R. et al. 2012, Gran. Matt. 14, 363. [4] Schwartz, S.R. et al. 2013, Icarus 226, 67; [5] Schwartz, S.R. et al. 2014, P&SS, 10.1016/j.pss.2014.07.013; [6] Yu, Y. et al. 2014, Icarus, 10.1016/j.icarus.2014.07.027; [7] Matsumura, S. et al. 2014, MNRAS, 10.1093/mnras/stu1388.

  13. Exploring external time-dependent sources of H2O into Titan's atmosphere

    NASA Astrophysics Data System (ADS)

    Lara, Luisa-Maria; Lellouch, Emmanuel; González, Marta; Moreno, Raphael; Rengel, Miriam

    2014-05-01

    Recent observations (Cottini et al., 2012, and Moreno et al., 2012) and steady-state photochemical modelling (Moreno et al., 2012; Dobrijevic et al., 2014) indicate that the amounts of CO2 and H2O in Titan's stratosphere imply relatively inconsistent values of the OH/H2O input flux. Moreno et al. (2012) proposed that the oxygen source is time-variable, whereas Dobrijevic et al. (2014) arrived to the same conclusion of Moreno et al. (2012) that the HSO (Herschel Space Observatory) measured H2O profile is'inconsistent" with the CO2 abundance. Furthermore, Dobrijevic et al. (2014) also found that reconciliation was possible if abundances reported by Cottini et al. (2012) are correct instead, though in this situation and for an Enceladus source, their model tended to overpredict the thermospheric abundance of H2O , compared to the upper limit by Cui et al. (2009). We attempt to reconcile the H2O and CO2 observed profiles in Titan's atmosphere by considering several time-dependent scenarios for the infux/evolution of oxygen species. To explore this, we use a time-dependent photochemical model of Titan's atmosphere to calculate effective lifetimes and the response of Titan's oxygen compounds to changes in the oxygen input flux. We consider a time-variable Enceladus source, as well as the evolution of material delivered by a cometary impact. We will show results on effective H2O and CO2 effective lifetimes, on the feasibility of time-variable Enceladus source, and on an additional H2O loss-to-the-haze. Regarding CO2, we will analyse its production following a cometary impact. A summary on viable scenarios to explain the H2O / CO2 puzzle will be given. References Moreno, R., Lellouch, E., Lara, L. M., et al. 2012, Icarus, 221, 753. Cottini, V., Nixon, C. A., Jennings, D. E., et al. 2012, Icarus, 220, 855. Cui, J., Yelle, R. V., Vuitton, V., et al. 2009, Icarus, 200, 581. Dobrijevic, M., Hébrard, E., Loison, J., and Hickson, K. 2014, Icarus, 228, 324.

  14. Asteroid age distributions determined by space weathering and collisional evolution models

    NASA Astrophysics Data System (ADS)

    Willman, Mark; Jedicke, Robert

    2011-01-01

    We provide evidence of consistency between the dynamical evolution of main belt asteroids and their color evolution due to space weathering. The dynamical age of an asteroid's surface (Bottke, W.F., Durda, D.D., Nesvorný, D., Jedicke, R., Morbidelli, A., Vokrouhlický, D., Levison, H. [2005]. Icarus 175 (1), 111-140; Nesvorný, D., Jedicke, R., Whiteley, R.J., Ivezić, Ž. [2005]. Icarus 173, 132-152) is the time since its last catastrophic disruption event which is a function of the object's diameter. The age of an S-complex asteroid's surface may also be determined from its color using a space weathering model (e.g. Willman, M., Jedicke, R., Moskovitz, N., Nesvorný, D., Vokrouhlický, D., Mothé-Diniz, T. [2010]. Icarus 208, 758-772; Jedicke, R., Nesvorný, D., Whiteley, R.J., Ivezić, Ž., Jurić, M. [2004]. Nature 429, 275-277; Willman, M., Jedicke, R., Nesvorny, D., Moskovitz, N., Ivezić, Ž., Fevig, R. [2008]. Icarus 195, 663-673. We used a sample of 95 S-complex asteroids from SMASS and obtained their absolute magnitudes and u, g, r, i, z filter magnitudes from SDSS. The absolute magnitudes yield a size-derived age distribution. The u, g, r, i, z filter magnitudes lead to the principal component color which yields a color-derived age distribution by inverting our color-age relationship, an enhanced version of the 'dual τ' space weathering model of Willman et al. (2010). We fit the size-age distribution to the enhanced dual τ model and found characteristic weathering and gardening times of τw = 2050 ± 80 Myr and τg=4400-500+700Myr respectively. The fit also suggests an initial principal component color of -0.05 ± 0.01 for fresh asteroid surface with a maximum possible change of the probable color due to weathering of Δ PC = 1.34 ± 0.04. Our predicted color of fresh asteroid surface matches the color of fresh ordinary chondritic surface of PC1 = 0.17 ± 0.39.

  15. Pluto's Atmosphers

    NASA Astrophysics Data System (ADS)

    Elliot, J. L.

    2002-09-01

    Pluto's tenuous atmosphere -- detected with a widely observed stellar occultation in 1988 (Millis et al., 1993, Icarus 105, 282) -- consists primarily of N2, with trace amounts of CO and CH4. The N2 gas is in vapor-pressure equilibrium with surface ice, which should maintain a uniform temperature for the N2 ice on the surface of the body. Data from the Kuiper Airborne Observatory (KAO) for the 1988 occultation showed Pluto's middle atmosphere to be isothermal at about 105 K for at least a scale height above a radius of about 1215 km (Pluto's surface radius is 1175 +/- 25 km; Tholen & Buie 1997, in Pluto and Charon, 193). This temperature can be explained with radiative-conductive models (e.g. Yelle & Lunine 1989, Nature 339, 288; Strobel et al. 1996, Icarus 120 266), using the spectroscopically measured amount of CH4 (Young et al. 1997, Icarus, 127 258). Below the isothermal region there is an abrupt drop in the KAO occultation light curve, which has been interpreted as being caused either by (i) an absorption layer, or (ii) a sharp thermal gradient. As Pluto recedes from the sun, the diminishing solar flux provides less energy for sublimation, which may lead to a substantial drop in surface pressure. On the other hand, the emissivity change that accompanies the α - β phase transition for N2 ice may leave the surface pressure relatively unchanged from its present value (Stansberry & Yelle 1999, Icarus 141, 299). Stellar occultation observations were successfully carried out in 2002 July and August (Sicardy et al., Buie et al., and Elliot et al., this conference) from a large number of telescopes: the IRTF, UH 2.2 m, UH 0.6 m, UKIRT, CFHT, Lick 3 m, Lowell 1.8 m, Palomar 5 m, as well as 0.35 m and smaller portable telescopes. The wavelengths of these observations ranged from the visible to near IR. These new data give us a snapshot of Pluto's atmospheric structure 14 years after the initial observations and reveal changes in the structure of Pluto's atmosphere. Occultation research at MIT is supported, in part, by NASA (NAG5-10444) and NSF (AST-0073447).

  16. Origins and Asteroid Main-Belt Stratigraphy for H-, L-, LL-Chondrite Meteorites

    NASA Astrophysics Data System (ADS)

    Binzel, Richard; DeMeo, Francesca; Burbine, Thomas; Polishook, David; Birlan, Mirel

    2016-10-01

    We trace the origins of ordinary chondrite meteorites to their main-belt sources using their (presumably) larger counterparts observable as near-Earth asteroids (NEAs). We find the ordinary chondrite stratigraphy in the main belt to be LL, H, L (increasing distance from the Sun). We derive this result using spectral information from more than 1000 near-Earth asteroids [1]. Our methodology is to correlate each NEA's main-belt source region [2] with its modeled mineralogy [3]. We find LL chondrites predominantly originate from the inner edge of the asteroid belt (nu6 region at 2.1 AU), H chondrites from the 3:1 resonance region (2.5 AU), and the L chondrites from the outer belt 5:2 resonance region (2.8 AU). Each of these source regions has been cited by previous researchers [e.g. 4, 5, 6], but this work uses an independent methodology that simultaneously solves for the LL, H, L stratigraphy. We seek feedback from the planetary origins and meteoritical communities on the viability or implications of this stratrigraphy.Methodology: Spectroscopic and taxonomic data are from the NASA IRTF MIT-Hawaii Near-Earth Object Spectroscopic Survey (MITHNEOS) [1]. For each near-Earth asteroid, we use the Bottke source model [2] to assign a probability that the object is derived from five different main-belt source regions. For each spectrum, we apply the Shkuratov model [3] for radiative transfer within compositional mixing to derive estimates for the ol / (ol+px) ratio (and its uncertainty). The Bottke source region model [2] and the Shkuratov mineralogic model [3] each deliver a probability distribution. For each NEA, we convolve its source region probability distribution with its meteorite class distribution to yield a likelihood for where that class originates. Acknowledgements: This work supported by the National Science Foundation Grant 0907766 and NASA Grant NNX10AG27G.References: [1] Binzel et al. (2005), LPSC XXXVI, 36.1817. [2] Bottke et al. (2002). Icarus 156, 399. [3] Shkuratov et al. (1999). Icarus 137, 222. [4] Vernazza et al. (2008). Nature 454, 858. [5] Thomas et al. (2010). Icarus 205, 419. [6] Nesvorný et al.(2009). Icarus 200, 698.

  17. Asteroids and Meteorites from Venus? Only the Earth Goddess Knows

    NASA Astrophysics Data System (ADS)

    Dones, Henry; Zahnle, Kevin J.; Alvarellos, José L.

    2018-04-01

    No meteorites from Venus have been found; indeed, some find theirexistence unlikely because of the perceived difficulty of launchingrocks at speeds above 10 km/s and traversing the planet's 93 baratmosphere. [1] Nonetheless, we keep hope alive, since cosmochemistssay they can identify Cytherean meteorites, should candidates be found[2]. Gladman et al. [3] modeled the exchange of impact ejecta betweenthe terrestrial planets, but did not consider meteorites launched fromVenus in any detail. At the time of Gladman's work, no asteroids thatremained entirely within Earth's orbit were known. 14 suchEarth-interior objects with good orbits have now been discovered, andare known as Atiras, for the Pawnee goddess of the Earth. The largestknown member of the class is 163693 Atira, a binary whose componentshave diameters of approximately 4.8 and 1 km. Discovery of Atiras isvery incomplete because they can only be seen at small solarelongations [4]. Greenstreet et al. [5] modeled the orbitaldistribution of Atiras from main-belt asteroidal and cometary sourceregions, while Ribeiro et al. [6] mapped the stability region ofhypothetical Atiras and integrated the orbits of clones of 12 realAtiras for 1 million years. 97% of the clones survived for 1 Myrimpact with Venus was the most common fate of those that met theirends. We have performed orbital integrations of 1000 clones of each ofthe known Atiras, and of hypothetical ejecta that escape Venus afterasteroid impacts, for 10-100 Myr. The latter calculations usetechniques like those of Alvarellos et al. [7] and Zahnle et al. [8]for transfer amongst Jupiter's galilean satellites. Our goals are toestimate the fraction of Atiras that are ejecta launched from Venus,the time spent in space by hypothetical meteorites from Venus, and therate at which such meteorites strike the Earth.[1] Gilmore M., et al (2017). Space Sci. Rev. 212, 1511. [2] JourdanF., Eroglu E. (2017). MAPS 52, 884. [3] Gladman B.J., etal. (1996). Science 271, 1387. [4] Masi G. (2003). Icarus 163,389. [5] Greenstreet S., Ngo H., Gladman B. (2012). Icarus 217,355. [6] Ribeiro A.O., et al. (2016). MNRAS 458, 4471. [7] Alvarellos,J.L., et al. (2008). Icarus 194, 636. [8] Zahnle, K., etal. (2008). Icarus 194, 660.

  18. The search for Ar in the lunar atmosphere using the Lunar Reconnaissance Orbiter's LAMP instrument.

    NASA Astrophysics Data System (ADS)

    Cook, J. C.; Stern, S. A.; Feldman, P. D.; Gladstone, R.; Retherford, K. D.; Greathouse, T. K.; Grava, C.

    2014-12-01

    The Apollo 17 mass spectrometer, LACE, first measured mass 40 particles in the lunar atmosphere, and over a nine-month period, detected variations correlated with the lunar day (Hoffman et al., 1973, LPSC, 4, 2865). LACE detected a high particle density at dusk (0.6-1.0x104 cm-3), decreasing through the lunar night to a few hundred cm-3, then increasing rapidly before dawn to levels 2-4 times greater than at dusk. No daytime measurements were made due to instrument saturation. Given the LACE measurements' periodic nature, and the Ar abundance in lunar regolith samples (Kaiser, 1972, EPSL, 13, 387), it was concluded that mass 40 was likely due to Ar. Benna et al. (2014, LPSC, 45, 1535) recently reported that the Neutral Mass Spectrometer (NMS) aboard LADEE also detected Ar (mass 40) with similar diurnal profiles. We report on UV spectra of the lunar atmosphere as obtained by the Lunar Reconnaissance Orbiter (LRO). Aboard LRO is the UV-spectrograph, LAMP (Lyman Alpha Mapping Project), spanning the spectral range 575 to 1965 Å. LAMP is typically oriented toward the surface and has been mapping the Moon since September 2009. LAMP also observes the tenuous lunar atmosphere when the surface is in darkness, but the atmospheric column below LRO is illuminated. We have previously used nadir oriented twilight observations to examine the sparse lunar atmosphere (Feldman et al., 2012, Icarus, 221, 854; Cook et al., 2013, Icarus, 225, 681; Stern et al., 2013, Icarus, 226, 1210; Cook & Stern 2014, Icarus, 236, 48). In Cook et al., 2013, we reported an upper limit for Ar of 2.3x104 cm-3. Since then, we have collected additional data and refined our search method by focusing on the regions (near equator) and local times (dawn and dusk) where Ar has been reported previously. We have carefully considered effective area calibration and g-factor accuracies and find these to be unlikely explanations for the order of magnitude differences. We will report new results, which provide much lower density upper limits than any previous detection and continue to explore other potential sources of uncertainty in these results.

  19. A large-scale anomaly in Enceladus' microwave emission

    NASA Astrophysics Data System (ADS)

    Ries, Paul A.; Janssen, Michael

    2015-09-01

    The Cassini spacecraft flew by Enceladus on 6 November 2011, configured to acquire synthetic aperture RADAR imaging of most of the surface with the RADAR instrument. The pass also recorded microwave thermal emission from most of the surface. We report on global patterns of thermal emission at 2.17 cm based on this data set in the context of additional unresolved data both from the ground and from Cassini. The observed thermal emission is consistent with dielectric constants of pure water or methane ice, but cannot discriminate between the two. The emissivity is similar to those of other icy satellites (≈ 0.7), consistent with volume scattering. The most intriguing result, however, is an anomaly in the thermal emission of Enceladus' leading hemisphere. Evidence presented here suggests the anomaly is buried at depths on the order of a few meters. This anomaly is located in similar geographic location to anomalies previously detected with the CIRS and ISS instruments on Mimas, Tethys, and Dione (Howett, C.J.A. et al. [2011]. Icarus 216, 221-226; Howett, C.J.A. et al. [2012]. Icarus 221, 1084-1088; Howett, C.J.A. et al. [2014]. Icarus 241, 239-247; Schenk, P. et al. [2011]. Icarus 211, 740-757), but also corresponds with a geological feature on Enceladus' leading terrain (Crow-Willard, E., Pappalardo, R.T. [2011]. Global geological mapping of Enceladus. In: EPSC-DPS Joint Meeting 2011. p. 635). Simple models show that the Crow-Willard and Pappalardo (Crow-Willard, E., Pappalardo, R.T. [2011]. Global geological mapping of Enceladus. In: EPSC-DPS Joint Meeting 2011. p. 635) model is a better fit to the data. Our best-supported hypothesis is that the leading hemisphere smooth terrain is young enough (<75-200 Myr old) that the micrometeorite impact gardening depth is shallower than the electromagnetic skin depth of the observations (≈ 3-5 m), a picture consistent with ground and space radar measurements, which show no variation at 2 cm, but an increase in albedo in the anomaly region at 13 cm.

  20. Families Among High-Inclination Asteroids

    NASA Astrophysics Data System (ADS)

    Novakovic, B.; Cellino, A.; Knezevic, Z.

    2012-05-01

    We review briefly the most important results of the classification of high-inclination asteroids into families performed by Novakovic et al.(Icarus, 2011,216) and present some new results about a very interesting (5438) Lorre cluster.

  1. Collisional Disruption of Gravity Dominated Bodies: New Data and Scaling

    NASA Astrophysics Data System (ADS)

    Movshovitz, N.; Nimmo, F.; Korycansky, D. G.; Asphaug, E. I.; Owen, M.

    2015-12-01

    We present data from a suite of 169 hydrocode simulations of collisions between planetary bodies with radii from 100 to 1000 km. The data is used to derive a simple scaling law for the threshold for catastrophic disruption, defined as a collision that leads to half the total colliding mass escaping the system post impact. For a target radius 100≤R_T≤1000 km and a mass MTM_T and a projectile radius r_p≤R_T and mass mpm_p we find that a head-on impact with velocity magnitude vv is catastrophic if the kinetic energy of the system in the center of mass frame, K=0.5{M_T}{m_p}/(M_T+m_p)v^2, exceeds K∗R_D=(3.3±0.6)U_R U_R where U_R=(3/5)G{M_T}^2/R_T + (3/5)G{m_p}^2/{r_p}+G{M_T}{m_p}/(M_T+{m_p}) is the gravitational binding energy of the system at the moment of impact; GG is the gravitational constant. Oblique impacts are catastrophic when the fraction of kinetic energy contained in the volume of the projectile intersecting the target at impact exceeds ˜1.9K∗_RD for 30° impacts and ˜3.5K∗_RD for 45deg; impacts. We compare predictions made with this scaling to those made with existing scaling laws in the literature extrapolated from numerical studies on smaller targets. We find significant divergence between predictions where in general our data suggest a lower threshold for disruption except for highly oblique impacts with r_p≪R_T. This result has implications for the efficiency of collisional grinding in the asteroid belt (Morbidelli, A., Bottke, W. F., Nesvorny, D., & Levison, H. F., 2009, Icarus, 204, 558-573), Kuiper belt (Greenstreet, S., Gladman, B., & McKinnon, W. B., 2015, Icarus, 258, 267-288), and early solar system accretion (Chambers, J. E., 2013, Icarus, 224, 43-56).

  2. Impact disruption of gravity-dominated bodies: New simulation data and scaling

    NASA Astrophysics Data System (ADS)

    Movshovitz, N.; Nimmo, F.; Korycansky, D. G.; Asphaug, E.; Owen, J. M.

    2016-09-01

    We present results from a suite of 169 hydrocode simulations of collisions between planetary bodies with radii from 100 to 1000 km. The simulation data are used to derive a simple scaling law for the threshold for catastrophic disruption, defined as a collision that leads to half the total colliding mass escaping the system post impact. For a target radius 100 ≤ RT ≤ 1000km and a mass MT and a projectile radius rp ≤ RT and mass mp we find that a head-on impact with velocity magnitude v is catastrophic if the kinetic energy of the system in the center of mass frame, K = 0.5MTmpv2 /(MT +mp) , exceeds a threshold value K* that is a few times U =(3 / 5) GMT2/RT +(3 / 5) Gmp2/rp + GMTmp /(RT +rp) , the gravitational binding energy of the system at the moment of impact; G is the gravitational constant. In all head-on collision runs we find K* =(5.5 ± 2.9) U . Oblique impacts are catastrophic when the fraction of kinetic energy contained in the volume of the projectile intersecting the target during impact exceeds ∼2 K* for 30° impacts and ∼3.5 K* for 45° impacts. We compare predictions made with this scaling to those made with existing scaling laws in the literature extrapolated from numerical studies on smaller targets. We find significant divergence between predictions where in general our results suggest a lower threshold for disruption except for highly oblique impacts with rp ≪ RT. This has implications for the efficiency of collisional grinding in the asteroid belt (Morbidelli et al., [2009] Icarus, 204, 558-573), Kuiper belt (Greenstreet et al., [2015] Icarus, 258, 267-288), and early Solar System accretion (Chambers [2013], Icarus, 224, 43-56).

  3. Evaporites on Ice: Experimental Assessment of Evaporites Formation on Antarctica (and on Martian North Polar Residual Cap)

    NASA Astrophysics Data System (ADS)

    Losiak, Anna; Derkowski, Arkadiusz; Skala, Aleksander; Trzcinski, Jerzy

    2016-04-01

    Evaporites are highly water soluble minerals, formed as a result of the evaporation or freezing of bodies of water. They are common weathering minerals found on rocks (including meteorites) on Antarctic ice sheet [1,2,3,4]. The water necessary for the reaction is produced by melting of ice below the dark-colored meteorites which can heat up to a few degrees above 0 °C due to insolation heating during wind-free summer days [5,6]. The Martian North Polar Residual Cap is surrounded by a young [7] dune field that is rich in evaporitic mineral: gypsum [8]. Its existence implies that relatively recently in the Martian history (in late Amazonian, when surface conditions were comparable to the current ones) there was a significant amount of liquid water present on the Mars surface. One of the proposed solutions to this problem is that gypsum is formed by weathering on/in ice [9,10,11,12,13], similarly to the process occurring on the Antarctic ice sheet. Recently, Losiak et al. 2015 showed that that during the warmest days of the Martian summer, solar irradiation may be sufficient to melt pure water ice located below a layer of dark dust particles lying on the steepest sections of the equator-facing slopes of the spiral troughs within Martian NPRC. Under the current irradiation conditions, melting is possible in very restricted areas of the NPRC and it lasts for up to couple of hours, but during the times of high irradiance at the north pole [15] this process could have been much more pronounced. Liquid water can be metastable at the NPRC because the pressure during the summer season is ~760-650 Pa [16] which is above the triple point of water. The rate of free-surface "clean" liquid water evaporation under average Martian conditions determined experimentally by [17] is comparable to the rate of melting determined by [21] (if there is no wind at the surface). In the current study we attempt to determine experimentally how many melting-freezing cycles are required to form detectable (X-Ray Diffraction and SEM-EDS) amounts of evaporites on basaltic dust and slabs under simulated Antarctic conditions. In the future a similar experiment in simulated Martian conditions will be performed. References: [1] Jull et al. 1988. Science 242:417-419. [2] Gounelle and Zolensky 2001. MAPS 36:1321-1329. [3] Losiak and Velbel 2011. MAPS 46:443-458. [4] Hallis 2013. MAPS 48:165-179. [5] Schultz 1990. Workshop on Antarctic meteorite stranding surfaces 56-59. [6] Harvey 2003. Chemie der Erde 63:93-147. [7] Tanaka et al. 2008. Icarus 196:318-358. [8] Langevin et al. 2005. Science 307:1584-1586. [9] Niles and Michalski 2009. Nat. Geosci. 2:215-220. [10] Catling et al. 2006. Icarus 181:26-51. [11] Zolotov and Mironenko 2007. J. Geophys. Res. 112: 10.1029/ 2006JE002882. [12] Masse et al. 2010. Icarus 209:434-451. [13] Masse et al. 2012. Earth Planet. Sci. Lett. 317-318:44-55. [14] Losiak et al. 2015. Icarus 262:131-139. [15] Laskar et al. 2002. Nature 419:375-377. [16] Millour et al. 2014. Mars Climate Database v5.0 User Manual. [17] Hecht 2002. Icarus 156:373-386.

  4. The Composition and Chemistry of the Deep Tropospheres of Saturn and Uranus from Ground-Based Radio Observations

    NASA Astrophysics Data System (ADS)

    Hofstadter, M. D.; Adumitroaie, V.; Atreya, S. K.; Butler, B.

    2017-12-01

    Ground-based radio observations of the giant planets at wavelengths from 1 millimeter to 1 meter have long been the primary means to study the deep tropospheres of both gas- and ice-giant planets (e.g. de Pater and Massie 1985, Icarus 62; Hofstadter and Butler 2003, Icarus 165). Most recently, radiometers aboard the Cassini and Juno spacecraft at Saturn and Jupiter, respectively, have demonstrated the ability of spaceborne systems to study composition and weather beneath the visible cloud tops with high spatial resolution (Janssen et al. 2013, Icarus 226; Bolton et al. 2016, this meeting). Ground-based observations remain, however, an excellent way to study the tropospheres of the ice giants, particularly the temporal and spatial distribution of condensible species, and to study the deep troposphere of Saturn in the region of the water cloud. This presentation focuses on two ground-based data sets, one for Uranus and one for Saturn. The Uranus data were all collected near the 2007 equinox, and span wavelengths from 0.1 to 20 cm. These data provide a snapshot of atmospheric composition at a single season. The Saturn observations were recently made with the EVLA observatory at wavelengths from 3 to 90 cm, augmented by published observations at shorter and longer wavelengths. It is expected that these data will allow us to constrain conditions in the water cloud region on Saturn. At the time of this writing, both data sets are being analyzed using an optimal estimation retrieval algorithm fed with the latest published information on the chemical and electrical properties of relevant atmospheric species (primarily H2O, NH3, H2S, PH3, and free electrons). At Uranus, we find that—consistent with previously published work—ammonia in the 1 to 50-bar range is strongly depleted from solar values. The relative volume mixing ratios of the above species satisfy PH3 < NH3 < H2S < H2O, which is interesting because based on cosmic abundances one would expect H2S < NH3. At the time of the conference, we hope to have refined estimates of the absolute mixing ratio of each species, and preliminary results on Saturn. We will discuss the implications of our results for the chemistry and composition of the giant planets, and the differences between gas- and ice-giants.

  5. U.S. Naval Base, Pearl Harbor, Red Hill Underground Fuel Storage ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    U.S. Naval Base, Pearl Harbor, Red Hill Underground Fuel Storage System, Linear underground system extending from North Road to Icarus Way, Joint Base Pearl Harbor-Hickam, Honolulu, Honolulu County, HI

  6. Identification of families among highly inclined asteroids

    NASA Astrophysics Data System (ADS)

    Gil-Hutton, R.

    2006-07-01

    A dataset of 3652 high-inclination numbered asteroids was analyzed to search for dynamical families. A fully automated multivariate data analysis technique was applied to identify the groupings. Thirteen dynamical families and twenty-two clumps were found. When taxonomic information is available, the families show cosmochemical consistency and support an interpretation based on a common origin from a single parent body. Four families and three clumps found in this work show a size distribution which is compatible with a formation due to a cratering event on the largest member of the family, and also three families have B- or related taxonomic types members, which represents a 14% of the B-types classified by Bus and Binzel [2002. Icarus 158, 146-177].

  7. First determination of the tropospheric CO abundance in Saturn

    NASA Astrophysics Data System (ADS)

    Fouchet, Thierry; Lellouch, Emmanuel; Cavalié, Thibault; Bézard, Bruno

    2017-10-01

    In Giant Planets, CO has two potential origins: i) an external source in form of cometary impacts, infalling ring/satellite dust or/and interplanetary particles; ii) an internal origin that involves convective transport from the deep, dense, hot atmosphere where the thermodynamic equilibrium CO abundance is relatively large.In Saturn, submilimeter stratospheric CO emissions have been detected (Cavalié et al. A&A, 510, A88, 2010; Cavalié et al. Icarus, 203, 531, 2009), suggesting a cometary impact 200 years ago. In contrast, no observation was in position to confirm or rule out the presence of CO in Saturn's troposphere (Noll et al. Icarus, 89, 168, 1990).Here, we present CRIRES/ELT 5-μm observations of Saturn that definitely confirm the presence of CO in Saturn's troposphere. We will present the derived CO abundance and its implication for Saturn's tropospheric transport rate and water deep abundance.

  8. Evaluating Different Scenarios for the Formation and Early Evolution of the Asteroid Belt

    NASA Astrophysics Data System (ADS)

    O'Brien, David P.; Walsh, Kevin J.

    2014-11-01

    The asteroid belt is dynamically excited, depleted in mass relative to the surface mass density of the rest of the Solar System, and contains numerous diverse taxonomic classes of asteroids that are partly, but not completely, radially mixed. In the 'classical' scenario of Solar System formation, the excitation, depletion and radial mixing of the asteroid belt is best explained by the effect of planetary embryos that are initially present in the primordial asteroid belt region [1-3]. In the more recent 'Grand Tack' scenario proposed by Walsh et al. [4], the early inward-then-outward migration of Jupiter in the gas disk initially depletes, then repopulates the asteroid belt with material scattered from both interior and exterior to Jupiter. Here we will examine in detail the model asteroid distributions resulting from these two scenarios for a range of parameters, and compare them to observational constraints on the current distribution of asteroids in the Solar System. We will also address the possible effects that late-stage planetesimal-driven migration and resonance-crossing of Jupiter and Saturn in the Nice Model [eg. 5,6] may have on the final asteroid distribution.[1] G.W. Wetherill, Icarus 100, 307-325 (1992)[2] J.-M. Petit et al., Icarus 153, 338-347 (2001)[3] D.P. O'Brien t al., Icarus 191, 434-452 (2007)[4] K.J. Walsh et al., Nature 475, 206-209 (2011)[5] K. Tsiganis et al., Nature 435, 459-461 (2005)[6] A. Morbidelli et al., AJ 140, 1391-1401 (2010)

  9. Low altitude cloud height and methane humidity retrievals on Titan in the near-IR

    NASA Astrophysics Data System (ADS)

    Adamkovics, M.; Hayes, A.; Mitchell, J.; De Pater, I.; Young, E.

    2013-12-01

    The formation of low altitude clouds on Titan, with cloud-top altitudes below ~10km, likely occurs by a fundamentally different mechanism than for the clouds commonly observed to have cloud-tops in the upper troposphere, above ~15km [1]. Near-infrared spectroscopy of clouds has been the method of choice for determining cloud altitudes [2], however, uncertainties in aerosols scattering properties and opacities, together with limitations in laboratory measurements of gas opacities (in particular for methane), lead to uncertainties in how accurately the altitude of low clouds can be retrieved [3]. Here we revisit near-IR spectra obtained with Keck and Cassini using new laboratory methane line data in the HITRAN 2012 database [4] to address the problem of measuring the altitudes of low clouds. We discuss the role of topography in relation to the formation of low clouds and other diagnostics of conditions near the surface, such as the tropospheric methane humidity. We reanalyze measurements the tropospheric humidity variation [5] and describe observational strategies for improved diagnostics of the tropospheric humidity on Titan . Acknowledgements: Funding for this work is provided by the NSF grant AST-1008788 and NASA OPR grant NNX12AM81G. References: [1] Brown, et al. (2009) ApJ, 706, L110-L113. [2] Ádámkovics et al. (2010) Icarus, 208, 868-877. [3] Griffith et al. (2012) Icarus, 218, 975-988. [4] Rothman et al. (2013) AIP Conf. Proc., 1545, 223-231. [5] Penteado & Griffith (2010) Icarus, 206, 345-351.

  10. ICARUS: An Innovative Large LAR Detector for Neutrino Physics

    NASA Astrophysics Data System (ADS)

    Vignoli, C.; Barni, D.; Disdier, J. M.; Rampoldi, D.; Icarus Collaboration

    2006-04-01

    ICARUS is an international project that foresees the installation of very large LAr detectors inside the Gran Sasso underground laboratory in order to be sensitive to rare phenomena of particle physics. The detection technique is based on the collection of electrons produced by particle interactions in LAr by a matrix of thousands of thin wires. At the moment the project foresees the installation of a 600,000-kg vessel (T600). The total amount of LAr can be expanded in a modular way to masses of the order of 106 kg. The T600 houses two identical 300,000-kg Ar sub-cryostats that are aluminum boxes about 20-m long, 4-m high and 4-m wide. Safety requirements for the underground installation have led to a unique design for the vessels to prevent LAr spillages even in the case of inner cryostat failure. Electrons must drift over meters requiring the development of special gas and liquid Ar purification units to provide an extremely high LAr purity (better then 0.1 ppb). The cooling system has been designed to assure a high thermal uniformity in the detector volume (less than 1-K differential). The cryogenic system associated with the final ICARUS configuration is based on three N2 refrigerators, three 30-m3 tanks and pump driven two-phase N2 forced-flow cooling of the various sub-systems. The T600 was successfully tested in Pavia in 2001 and it is now under installation in Gran Sasso for final operation. The future mass expansion strategy is under investigation.

  11. Albedos of Centaurs, Jovian Trojans and Hildas

    NASA Astrophysics Data System (ADS)

    Romanishin, William

    2017-01-01

    I present optical V band albedo distributions for samples of outer solar system minor bodies including Centaurs, Jovian Trojans and Hildas. Diameters come almost entirely from the NEOWISE catalog (Mainzer etal 2016- Planetary Data System). Optical photometry (H values) for about 2/3 of the approximately 2700 objects studied are from PanStarrrs (Veres et al 2015 Icarus 261, 34). The PanStarrs optical photometry is supplemented by H values from JPL Horizons (corrected to be on the same photometric system as the PanStarrs data) for the objects in the NEOWISE catalog that are not in the PanStarrs catalog. I compare the albedo distributions of various pairs of subsamples using the nonparametric Wilcoxon rank sum test. Examples of potentially interesting comparisons include: (1) the median L5 Trojan cloud albedo is about 10% darker than that of the L4 cloud at a high level of statistical significance and (2) the median albedo of the gray Centaurs lies between that of the L4 and L5 Trojan groups.

  12. Prediction of Spiral Patterns on the Surface of Asteroid 101955 Bennu

    NASA Astrophysics Data System (ADS)

    Kreslavsky, M. A.

    2017-12-01

    Asteroid 101955 Bennu, the target of OSIRIS-REx space mission, is known to have a "walnut" shape: close to an axially symmetric oblate shape with a sharp equatorial ridge (Nolan M. C., et al., 2013, Icarus 226, 629-640, doi:10.1016/j.icarus.2013.05.028). Such a shape is usual among quickly spinning small asteroids; it is thought to be formed due to surficial transport of asteroid material toward equator under a combination of the gravitational and centrifugal forces, in other words, downhill with respect to the geopotential (e.g., Scheeres, D. J., et al., 2006, Science 314, 1280-1283, doi:10.1126/science.1133599). This is likely to occur, when a rubble-pile asteroid is spun up by the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect. The Rossby number Ro associated with the frictionless downslope movement is scaled as (T/2π)(g sinθ/L)1/2, where T the spin period, g is a characteristic value of the effective gravity (the geopotential gradient), θ is the characteristic surface slope with respect to the geopotential, and L is the characteristic scale length of the slope. Typical values for Bennu, g 6×10-5 m s-2, θ 30° (Scheeres, D.J., et al., 2016, Icarus 276, 116-140, doi:10.1016/j.icarus.2016.04.013), and L 100 m, a part of Bennu radius, yields Ro 1.3, which means that the Coriolis force play a significant role in the downslope movement dynamics. On this basis, it is reasonable to predict that the traces left by material sliding toward equator on Bennu would form spiral patterns. Hopefully, OSIRIS-REx mission will check the prediction soon. I modeled trajectories of rolling boulders, bouncing boulders, and sliding masses assuming different friction models. For these calculations I used an idealized axially symmetric Bennu shape and semianalytical calculation of gravitational potential. I also repeated the calculation for a set of higher spin rates that may be relevant to the geologically recent past. Although the trajectory form itself is insufficient to deconvolve the roles of spin rate and friction, comparison of the observed mass movement traces against the modeled trajectories will still give valuable constraints on the mass movement process on Bennu.

  13. Monitoring Io volcanism with AO telescopes during and after the NH flyby

    NASA Astrophysics Data System (ADS)

    Marchis, F.; Spencer, J. R.; Lopes, R. M.; Davies, A. G.; Dumas, C.

    2007-12-01

    To support the New Horizons (NH) Jupiter encounter we monitored Io's volcanic activity using high angular resolution images in the near infrared (1-5 microns) provided by adaptive optics (AO) systems available on 8-10m class telescopes. We initiated the campaign on Feb. 25 2007 with data obtained with the VLT-Yepun telescope (ESO, Paranal, Chile), just before NH closest approach. We continued monitoring with the Gemini North telescope (Hawaii, USA). The last observation was taken on May 28 2007. Numerous active volcanoes are visible in the data but the Tvashtar eruption is by far the most energetic. Extremely high angular resolution data from NH revealed fine detail of the eruption, such as the presence of an active plume [1]. This volcano has an interesting past history. It was seen as a powerful eruption from Nov. 26 1999 during the Galileo I25 [2] flyby to Feb. 19 2001 from the ground [3]. It was dormant or below our ground-based limit of detection (T<330 K assuming an area of 460 km2) between Dec 2001 and May 2004 [4,5]. The re-awakening of the volcano was reported by Laver et al. [6] in April 2006 based on Keck Adaptive Optics (AO) observations. Our last Gemini AO observation taken on May 26 shows that Tvashtar was still very active. Based on the previous behavior of this volcano [7] it is very likely that the activity reported in 2007 is a continuation of the Tvashtar-2006 eruption. Other hot spots, such as Loki Patera, Pele, and a new hot spot located north of Loki Patera, were seen in our data. We will describe the global picture of Io's volcanic activity derived from our observations, comparing it with previous observations from the Galileo spacecraft and using ground-based AO. 1. Spencer et al., AGU, this session, 2007 2. McEwen et al., Science, 288, 1193-1198, 2000 3. Marchis et al. Icarus, 160, 124-131, 2002 4. Marchis et al., Icarus, 176, 1, 2005 5. Marchis et al., AGU Fall meeting, V33C-1483, 2004 6. Laver et al., Icarus, in press, 2006 7. Milazzo et al., 2005, Icarus, 179, 235-51

  14. How the Enceladus dust plume feeds Saturn’s E ring

    NASA Astrophysics Data System (ADS)

    Kempf, Sascha; Beckmann, Uwe; Schmidt, Jürgen

    2010-04-01

    Pre-Cassini models of Saturn's E ring [Horányi, M., Burns, J., Hamilton, D., 1992. Icarus 97, 248-259; Juhász, A., Horányi, M., 2002. J. Geophys. Res. 107, 1-10] failed to reproduce its peculiar vertical structure inferred from Earth-bound observations [de Pater, I., Martin, S.C., Showalter, M.R., 2004. Icarus 172, 446-454]. After the discovery of an active ice-volcanism of Saturn's icy moon Enceladus the relevance of the directed injection of particles for the vertical ring structure of the E ring was swiftly recognised [Juhász, A., Horányi, M., Morfill, G.E., 2007. Geophys. Res. Lett. 34, L09104; Kempf, S., Beckmann, U., Moragas-Klostermeyer, G., Postberg, F., Srama, R., Economou, T., Schmidt, J., Spahn, F., Grün, E., 2008. Icarus 193, 420-437]. However, simple models for the delivery of particles from the plume to the ring predict a too small vertical ring thickness and overestimate the amount of the injected dust. Here we report on numerical simulations of grains leaving the plume and populating the dust torus of Enceladus. We run a large number of dynamical simulations including gravity and Lorentz force to investigate the earliest phase of the ring particle life span. The evolution of the electrostatic charge carried by the initially uncharged grains is treated selfconsistently. Freshly ejected plume particles are moving in almost circular orbits because the Enceladus orbital speed exceeds the particles' ejection speeds by far. Only a small fraction of grains that leave the Hill sphere of Enceladus survive the next encounter with the moon. Thus, the flux and size distribution of the surviving grains, replenishing the ring particle reservoir, differs significantly from the flux and size distribution of the particles freshly ejected from the plume. Our numerical simulations reproduce the vertical ring profile measured by the Cassini Cosmic Dust Analyzer (CDA) [Kempf, S., Beckmann, U., Moragas-Klostermeyer, G., Postberg, F., Srama, R., EconoDmou, T., Smchmidt, J., Spahn, F., Grün, E., 2008. Icarus 193, 420-437]. From our simulations we calculate the deposition rates of plume particles hitting Enceladus' surface. We find that at a distance of 100 m from a jet a 10 m sized ice boulder should be covered by plume particles in 105- 106 years.

  15. Vertical profiles for SO2 and SO on Venus from different one-dimensional simulations

    NASA Astrophysics Data System (ADS)

    Mills, Franklin P.; Jessup, Kandis-Lea; Yung, Yuk

    2017-10-01

    Sulfur dioxide (SO2) plays many roles in Venus’ atmosphere. It is a precursor for the sulfuric acid that condenses to form the global cloud layers and is likely a precursor for the unidentified UV absorber, which, along with CO2 near the tops of the clouds, appears to be responsible for absorbing about half of the energy deposited in Venus’ atmosphere [1]. Most published simulations of Venus’ mesospheric chemistry have used one-dimensional numerical models intended to represent global-average or diurnal-average conditions [eg, 2, 3, 4]. Observations, however, have found significant variations of SO and SO2 with latitude and local time throughout the mesosphere [eg, 5, 6]. Some recent simulations have examined local time variations of SO and SO2 using analytical models [5], one-dimensional steady-state solar-zenith-angle-dependent numerical models [6], and three-dimensional general circulation models (GCMs) [7]. As an initial step towards a quantitative comparison among these different types of models, this poster compares simulated SO, SO2, and SO/SO2 from global-average, diurnal-average, and solar-zenith-angle (SZA) dependent steady-state models for the mesosphere.The Caltech/JPL photochemical model [8] was used with vertical transport via eddy diffusion set based on observations and observationally-defined lower boundary conditions for HCl, CO, and OCS. Solar fluxes are based on SORCE SOLSTICE and SORCE SIM measurements from 26 December 2010 [9, 10]. The results indicate global-average and diurnal-average models may have significant limitations when used to interpret latitude- and local-time-dependent observations of SO2 and SO.[1] Titov D et al (2007) in Exploring Venus as a Terrestrial Planet, 121-138. [2] Zhang X et al (2012) Icarus, 217, 714-739. [3] Krasnopolsky V A (2012) Icarus, 218, 230-246. [4] Parkinson C D et al (2015) Planet Space Sci, 113-114, 226-236. [5] Sandor B J et al (2010) Icarus, 208, 49-60. [6] Jessup K-L et al (2015) Icarus, 258, 309-336. [7] Stolzenbach A et al (2014) EGU General Assembly 2014, 16, EGU2014-5315. [8] Allen M et al (1981) J Geophys Res, 86, 3617-3627. [9] Harder J W et al (2010) Sol Phys, 263, 3-24. [10] Snow M et al (2005) Sol Phys, 230, 295-324.

  16. Integrated Cognitive-neuroscience Architectures for Understanding Sensemaking (ICArUS): Phase 2 Challenge Problem Design and Test Specification

    DTIC Science & Technology

    2014-11-01

    intelligence. No. Title of Case Study P U Pc Pt Ft Pa 1 Clinical vs. Actuarial Geospatial Profiling Strategies X X 2 Route Security in Baghdad X...support. Information Sciences , 176, 1570-1589. Burns, K. (2005). Mental models and normal errors. In Montgomery, H., Lipshitz, & Brehmer, B. (eds...utilities. Information Sciences , 179, 1599-1607. Davis, M. (1997). Game Theory: A Nontechnical Introduction. New York: Dover. Edwards, W. (1982

  17. Sesquinary Catenae on the Martian Satellite Phobos from Reaccretion of Escaping Ejecta

    DTIC Science & Technology

    2016-08-30

    Life near the Roche limit—behavior of ejecta from satellites close to planets . Icarus 42, 422–441 (1980). 13. Soter, S. in Studies of the Terrestrial...sesquinaries are probes of the primary ejection process, but are also bound to the dynamics of the planet -satellite system. Unlike secondaries, to...intermediate between vesc and the orbital velocity vorb. When the satellite is far from the planet , sesquinaries can produce primary- like crater morphology

  18. Astrobiological Implications of Titan Tholin in Methane Lakes

    NASA Astrophysics Data System (ADS)

    Khare, Bishun N.; McKay, C. P.; McPherson, S.; Cruikshank, D.; Nna-Mvondo, D.; Sekine, Y.

    2010-10-01

    We report here on our ongoing research in the Laboratory for Planetary Studies at NASA Ames Research Center dedicated to determine the degree of solubility of Titan tholin in the methane-ethane lakes. Our work is also directed toward confirming the presence of any astrobiologically significant molecules via hydrolysis and pyrolysis of a simulated lake sample. Our previous work conducted at Cornell University and subsequently in the Laboratory for Planetary Studies at NASA Ames Research Center has established that Titan tholin produces amino acids (Khare et al. Icarus 1986) on hydrolysis, and many compounds including adenine on pyrolysis (Khare et al. Adv. Space Res. 1984). Also, our previous work by Thompson et al. (Icarus 1991) has clearly indicated that when energy is supplied to Titan's atmospheric composition (methane and nitrogen), tholin results from hundreds of contemporary compounds, including highly reactive compounds such as azides and isocyanides. Cassini showed that photolysis of methane produces benzene and many polycyclic aromatic hydrocarbons, along with compounds with very high molecular weights (up to 10000 amu), resulting from the photolytic reactions of CH4 with nitrogen. These heavy aerosols, termed "tholins” by Sagan and Khare (Nature 1979), are also synthesized when Titan intercepts charged particles from the magnetosphere of Saturn. Tholins resulting from both of these syntheses eventually descend to the surface of Titan, where some quantity collects in the methane-ethane lakes. This research is supported by a grant from Planetary Atmospheres.

  19. Dawn at Vesta: An overview after the Dawn mission

    NASA Astrophysics Data System (ADS)

    Zambon, Francesca

    2016-07-01

    Vesta, the second largest object in the main asteroid belt of our Solar System, was explored by the Dawn mission for over a year [1, 2]. Dawn is equipped with the Framing Camera (FC) [3], which provides geological and compositional analysis, the Visible and InfraRed (VIR) mapping spectrometer [4], which allowed a comprehensive mineralogical mapping of the surface, and the Gamma Ray and Neutron Detector (GRaND) [5], which reveals the elemental composition. A wealth of data acquired by these three instruments allowed for improving the knowledge on the surface and near-surface properties of Vesta. Dawn covered a large fraction of Vesta' surface. Dawn's mission at Vesta has been divided into four different phases based on the spacecraft altitude [1], which resulted in a variety of pixel resolutions, reaching down to ~70 m/pixel for VIR and ~25 m/pixel for the FC. Pyroxene absorptions are the most prominent visible-to-near infrared spectral features of Vesta [6]. The overall mineralogy is consistent with howardite-eucrite-diogenite (HED) meteorites [7, 8]. More specifically, VIR spectra, acquired in the overall range 0.25-5.1 μm at spatial scales ranging from tens of meters to tens of kilometers, are consistent with a surface covered by a howardite-like regolith containing various proportions of eucrite and diogenite at different locations [9, 10]. Diogenite shows up in localized regions and mostly occurs in the southern polar region within the Rheasilvia impact basin [10]. Lithologies other than HEDs were indeed revealed by VIR spectra at the local scale. Olivine-rich deposits have been detected in Bellicia and Arruntia craters as well as in a limited number of other sites [11, 12, 13], while a large number of bright [14] and dark units [15, 16, 17] overlay Vesta'surface. Spectrally distinct, eucrite-rich ejecta have been observed in the Oppia and Octavia ejecta, interpreted to be glassy impact melt [18, 19]. VIR spectral analysis highlights a shallow 2.8-μm band diagnostic of OH-bearing phases [20]. This feature is mostly associated with dark material, which is believed to be exogenous material delivered by carbonaceous asteroids over time [16]. However, OH-rich material has been found to correlate with moderate-reflectance such as small spectrally distinct patches in the Oppia region [18], and a large circular area including Bellicia and Arruntia craters [21]. Compared to dark units, bright material units have a much weaker 2.8-μm band [14]. These units are interpreted to have an endogenous origin, therefore representing the relatively uncontaminated indigenous Vesta basaltic soil [16]. [1] Russell, C.T., Raymond, C.A., Space Sci. Rev. 163, 3-23, 2011. [2] Russell, C.T. et al., Science, 336, 684, 2012. [3] Sierks, H. et al., Space Sci. Rev. 163, 263-327, 2011. [4] De Sanctis et al., Space Sci. Rev. 163, 329-369, 2011. [5] Prettyman, T.H. et al., Space Sci. Rev. 163, 371-459, 2011. [6] McCord, Science 168, 1445-1447, 1970. [7] Drake, University of Arizona Press, 1979. [8] Feierberg and Drake, Science 209, 805-807, 1980. [9] De Sanctis et al., Science 336, 697-700, 2012. [10] Ammannito, E. et al., Maps 48, 2185-2198, 2013. [11] Ammannito, E. et al., Nature 504, 112-125, 2013. [12] Ruesch, O. et al, JGR 119-9, 2078-2108, 2014. [13] Palomba et al., Icarus 258, p. 120-134, 2015. [14] Zambon et al., Icarus 240, p. 73-85, 2014. [15] Jaumann et al., Science, 336 (6082), 687, 2012. [16] McCord et al., Nature 491, 83-86, 2012. [17] Palomba et al., Icarus 240, 58-72, 2014. [18] Le Corre, et al., Icarus, 226-2, 1568-1594, 2013. [19] Tosi et al., Icarus 259, 129-149, 2015. [20] De Sanctis et al., Astrophys. J. Lett. 758, L36, 2012. [21] Combe et al., Icarus 259, 53-71, 2015

  20. Analysis of Hubble Space Telescope Observations of an Outburst of Comet 29P/Schwassmann-Wachmann 1

    NASA Astrophysics Data System (ADS)

    Schambeau, Charles Alfred; Fernandez, Yanga R.; Samarasinha, Nalin H.; Kundu, Arunav

    2016-10-01

    We present results of a continuing analysis on the spin state of the enigmatic Comet 29P/Schwassmann-Wachmann 1 (SW1). Previous works have reported possible constraints on the spin state including a non-principal axis state [1] or a rotation period of tens of days [2]. This diversity of published answers highlights the complexity of determining the spin state of an active comet nucleus. Previous work by our group using 3D Monte Carlo coma modeling of ground-based outburst observations from 2008 [3] has placed constraints on the spin period for a set of assumed spin-pole orientations. Due to the nature of the 2008 outburst morphology no constraints on the spin-pole orientation could be found.We present here an analysis of Hubble Space Telescope WFPC2 observations of SW1 shortly after a 1996 outburst [4] with which we have further constrained the spin state. The 0.046-arcsec/pixel scale (176 km/pixel at SW1) of the PC detector gives an order-of-magnitude improvement in spatial resolution over our ground-based observations. Two sets of observations from UT 1996 Mar. 11.3 and 12.1 show the ejected dust forming an asymmetric outflow contained on the sunward side of the coma. A projected outflow velocity of 0.15 ± 0.02 km/s was measured, similar to our measured value from the 2008 observations. Enhancements of the images were performed [5] to bring out subtle variations in coma brightness (i.e., jets) and to allow us to search for signatures of the nucleus' rotation during the outburst. Three curved features are seen in both sets of observations and were modeled using the 3D Monte Carlo coma model [6]. We find a spin period on the order of several days, in agreement with our earlier 2008 analysis.[1] Meech, K. J., et al.: 1993, Astron. J., 106, 1222. [2] Miles, R., et al.: 2016, Icarus, 272, 327. [3] Schambeau, C. A., et al.: 2016, Icarus, submitted. [4] Feldman, P. D., et al.: 1996, AAS/DPS Meeting Abstracts, 28, 1084. [5] Samarasinha, N. and Larson, S.: 2014, Icarus, 239, 168. [6] Samarasinha, N. H., 2000, Astron. J. Letters, 529, L107-L110. We thank the Space Telescope Science Institute (AR14294), and the Center for Lunar and Asteroid Surface Science (CLASS, NNA14AB05A) for support of this work.

  1. Multiple Episodes of Recent Gully Activity Indicated by Gully Fan Stratigraphy in Eastern Promethei Terra, Mars.

    NASA Astrophysics Data System (ADS)

    Schon, S.; Head, J.; Fassett, C.

    2008-09-01

    Introduction Gullies are considered among the youngest geomorphic features on Mars based upon their stratigraphic relationships, superposition on steep slopes and distinctive morphology in unconsolidated sediment. Multiple formation hypotheses have been proposed, which can be divided into three broad classes: entirely dry mechanisms (e.g., [1,2]), wet mechanisms invoking groundwater or ground ice (e.g., [3,4]) and wet mechanisms invoking surficial meltwater (e.g., [5,6,7,8]). It has been difficult to differentiate between these hypotheses based upon past observations and it remains possible that gullies are polygenetic landforms. This study presents stratigraphic relationships in the depositional fan of a crater wall gully system that suggest: (1) multiple episodes of alluvial fan-style deposition, (2) very recent depositional activity that is younger than a newly recognized rayed crater, and (3) surficial snowmelt as the most likely source of these multiple episodes of recent gully activity. Gully-Fan Stratigraphy In Eastern Promethei Terra an ~5 km-diameter crater is observed with a well-developed gully system (Fig. 1) and several smaller gullies in its northnortheast wall. The large gully system (composed of a small western gully and larger eastern gully) shows evidence for incision into the crater wall country rock and has multiple contributory sub-alcoves and channels. The depositional fan associated with this gully system is bounded on its western side by a small arcuate ridge swell that is not observed on the eastern side of the fan. This ridge is interpreted as a moraine-like structure that may have bounded a glacially-formed depression into which the fan is deposited [8]. Similar depressions with bounding ridges are commonly observed in this latitude band (~30-50°S) in association with deeply incised gully alcoves [9,10,11]. This gully fan is composed of multiple lobes with distinct lobe contacts, incised channels, and cut-andfill deposits - all features similar to those seen in terrestrial alluvial fans [12,13]. The western portion of the fan is contained within the depression, while the younger eastern portion overlies and obscures any potential evidence of the ridge structure. A very striking and unusual feature of this gully fan is the large number of superposed impact craters; due to their density and similar diameter, we interpret these to be secondary craters from a large nearby primary impact crater. The depositional lobes of the fan can be divided into two groups: 1) those that predate the secondary crater population and 2) younger lobes that are superposed on the secondary craters. Numerous secondary craters (~1-25 m-diameter) superpose the lowermost stratigraphic lobe (Fig. 1, A), while at least three younger lobes (Fig. 1, C1, D1, and D2) directly superpose the cratered lobe. The emplacement date of these secondaries provides a robust maximum age for the youngest lobes of this fan, and therefore the most recent fluvial activity of the gully. Most gullies either have no superposed impact craters [3,7] or are too small to date with any certainty using crater counts [14]. Therefore, locating and dating the parent impact crater of these secondaries is critical to constrain the chronology and origin of gully systems. Rayed-Crater Source of the Secondary Craters Regional reconnaissance for the origin of the secondary craters led to the discovery of a previously unidentified rayed crater complex (consisting of an ~18 km-diameter outer crater and an ~7 km-diameter inner crater) approximately 175 km southwest of the gully system. Distinctive rays are observed in THEMIS nighttime thermal inertia data, but are not observable as albedo contrasts in THEMIS visible data, consistent with other identifications of young rayed craters on Mars [15,16]. The rims of both craters are distinct and consistent with the morphology of very young impact craters on Mars. The inner crater has a greater depth to diameter ratio than the outer crater (0.121 compared to 0.073), consistent with young Martian craters [17]. Both the outer and inner craters have classically-defined gullies, preferentially developed on their pole-facing walls. Polygons are observed in gully alcoves of the outer crater, but not in alcoves of the inner crater, implying a difference in substrate or thermal cycling time [18]. The outer crater is floored by ejecta from the inner crater and mantling deposits. There is no evidence of an underlying concentric crater fill deposit or other altered fill unit typical of older Amazonian altered craters [19]. The inner crater is floored by unconsolidated sediment and contains a small collection of dunes. No evidence of pits, hummocky texture or other sublimation features are observed indicating that the crater interior is not a periglacial terrain. We interpret the inner crater as younger than the most recent episode of mantling deposition (~0.4Ma) [20] due to the exposed spur and talus slope development on the equator-facing wall, a slope and orientation that preferentially preserves smooth mantle texture in this latitude regime [21]. One superposed crater (~45 mdiameter) is observed in HiRISE coverage. Using the technique of Hartmann and Quantin-Nataf [22], who dated Gratteri crater by counting small craters superposed on the floor, the inner crater is on the order of 100Ka. Based upon these observations and the relative proximity of secondary craters to the outer crater rim (making it unlikely they originated from the outer crater), the 7 km-diameter inner crater is the likely source of the rays and secondary craters of interest on the gully fan lobe. Acknowledgments: Special thanks to the Mars Recognisance Orbiter and HiRISE teams as well as the Odyssey and THEMIS teams. This research was funded by NASA. Conclusions This study has identified a gully system fan in Eastern Promethei Terra with morphology requiring multiple periods of activity for its construction. At least one lobe of the fan has retained a dense secondary crater population, while at least two episodes of activity post-date emplacement of the secondary craters. Approximately 175 km to the southwest, the likely parent rayed crater was discovered using THEMIS thermal inertia data. This 7 km-diameter crater is located within a morphologically older 18 km-diameter crater. We interpret the source crater as younger than the most recent obliquity-controlled glacial period (~0.4Ma), which is consistent with crater age dating of the floor as well. The multiple episodes of alluvial fan activity mapped in this study imply that gullies are not catastrophic landforms that formed in single events. Rather, multiple episodes of fluvial activity in the gully system are required to deposit and rework the alluvial fan that is observed. The alluvial fan morphology [10, 11] and sedimentary channel structures make dry mass-wasting processes implausible for the formation of this gully system. The multiple episodes of activity required by the fan stratigraphy documented here cast serious doubt on catastrophic groundwater discharge scenarios that are unlikely to generate episodic releases. Small amounts of surficial meltwater derived from snow and ice accumulation is suggested by the insolation geometries of gully systems and most plausibly can account for multiple periods of recent (<0.4Ma) activity required by these observations. This chronology is consistent with other evidence [11] that places gully formation in the waning stages of the ice ages that produced the latiduedependent mantles. References [1] Treiman, A. (2003) JGR 108, doi: 10.1029/2002JE001900. [2] Shinbrot, T. et al. (2004) PNAS 101, doi: 10.1073/mnas.03082511 01. [3] Malin, M. and Edgett, K. (2000) Science 288, doi: 10.1126/ science.288.5475.2330. [4] Heldmann, J. et al. (2007) Icarus 188, doi: 10.1016/j.icarus.2006.12.010. [5] Costard, F. et al. (2001) Science 295, doi: 10.1126/science.1066698. [6] Christensen, P. (2003) Nature 422, doi: 10.1038/nature01436. [7] Dickson, J. et al. (2007) Icarus 188, doi: 10/1016/j.icarus.2006.11.020. [8] Head, J. et al. (2008) Workshop on Martian Gullies: Theories and Tests, LPI #1301. [9] Hartmann, W. et al. (2003) Icarus 162, doi: 10.1016/S00 19-1035(02)00065-9. [10] Berman, D. et al. (2005), Icarus 178, doi: 10.1016/j.icarus.2005.05.011. [11] Head, J. et al. (2008) PNAS, in revision: 16 April 2008. [12] Blissenbach, E. (1954) GSA Bulletin 65, 175-190. [13] Blair, T. and McPherson, J. (1994) JSR 64, (3A) 450-489. [14] Hartmann, W. (2005), Icarus 174, doi: 10.1016/j.icar us.2004.11.023. [15] McEwen, A. et al. (2005) Icarus 176 doi: 10.1016/j.icarus.2005.02.009. [16] Tornabene, L. et al. (2006) JGR 111, doi: 10.1029/2005JE002600. [17] Garvin, J. et al. (2003) 6th International Conference on Mars, Abstract 3277. [18] Levy, J. et al. (2008) LPSC [CD-ROM], XXXIX, abstract 1171. [19] Kreslavsky, M. and Head, J. (2006) Meteoritics & Plan. Sci. 41, 1633-1646. [20] Head, J. et al. (2003) Nature 426, 797-802. [21] Schon, S. et al. (2008) LPSC [CD-ROM], XXXIX, abstract 1873. [22] Hartmann, W. and Quantin-Nataf, C. (2008) LPSC [CD-ROM], XXXIX, abstract 1844.

  2. On Organic Material in E Ring Ice Grains

    NASA Astrophysics Data System (ADS)

    Postberg, F.; Khawaja, N.; Reviol, R.; Nölle, L.; Klenner, F.; Hsu, H. W.; Horanyi, M.

    2015-12-01

    Pure water ice dominates the composition of the micron and sub-micron sized dust particles in Saturn's E-ring, a ring constantly replenished by active ice jets of the moon Enceladus [1]. Details about the composition of this tenuous, optically thin ring can only be constrained by in situ measurements. The Cosmic Dust Analyzer (CDA) onboard Cassini investigates the composition of these grains by cationic time-of-flight mass spectra of individual ice grains hitting the instruments target surface. From these spectra three compositional types of E ring ice grains have been identified previously [2,3]: Type-1: Almost pure water, Type-2: Enriched in organics, and Type-3: Enriched in salt. Unlike Type-1 and 3, organic-enriched Type-2 spectra have not yet been investigated in depth. Here we report the first detailed compositional analysis of this type. The spectra analysis is supported by a large-scale laboratory ground campaign yielding a library of analogue spectra for organic material embedded in a water ice matrix. In contrast to Type 1 and 3, Type-2 spectra display a great compositional diversity, which indicates varying contributions of several organic species. So far we have identified characteristic fragment patterns of at least three classes of organic compounds: aromatic species, amines, and carbonyl group species. Work is in progress to quantify concentrations of the identified species and to assign yet un-specified organic mass lines in Type 2 spectra. Due to the dynamical evolution of the orbital elements of E ring grains a large fraction collides with the icy moons embedded in the E ring. Therefore, the organic components identified by CDA can accumulate on the surfaces of these bodies over time. Ref: :[1]Kempf et al., Icarus-206, 2010. [2]Postberg et al., Nature-459, 2009. [3]Postberg et al., Icarus-193, 2008.

  3. A Large Seasonal Variation of Energetic C+ and CO+ Abundances in Saturn's Magnetosphere Probably Resulting from Changing Ring Illumination

    NASA Astrophysics Data System (ADS)

    Hamilton, D. C.; Christon, S. P.

    2017-12-01

    In mid-2014 the Cassini/CHEMS instrument observed a rather dramatic increase in the relative abundances of both C+ and CO+ (factors of 2 to 4). The enhancements then decreased during 2015 and 2016, with CO+ decreasing much more quickly. C+ and CO+ (these mass 28 molecular ions could also include N2+) are trace components of the energetic (96-220 keV) ion population in Saturn's magnetosphere, which is dominated by water group ions W+ (O+, OH+, and H2O+ and H30+), H+, and H2+. We suggest that the C+ and CO+ enhancements are associated with CO2, possibly from Enceladus, building up on the cold rings near equinox, but then released from the north side of the A, and possibly B, rings as they were warmed above 80K in late 2013 or early 2014 by increasing solar illumination after the 2009 equinox (Morishima et al, 2016). Hodyss et al (2008) found preferential sublimation of CO2 from a CO2:H2O ice mixture when it was warmed above 80K. Meteoroid bombardment could be another source of carbon in the ring ice. After release from the ice, transport, dissociation, ionization, and then acceleration in the magnetosphere would produce the observed energetic C+ and CO+, with the enhancements subsiding as the CO2 and other carbon species gradually become depleted. We will report the relevant abundance ratios from SOI in 2004 through the Sept. 15, 2017 end of mission to test this hypothesis. Hodyss, R. et al, Icarus, 194, 836-842, 2008. Morishima, R. et al, Icarus, 279, 2-19, 2016.

  4. Radiolytic Cryovolcanism Revisited

    NASA Astrophysics Data System (ADS)

    Cooper, J. F.; Cooper, P. D.; Sittler, E. C.; Wesenberg, R. P.

    2013-12-01

    Active geysers of water vapor and ice grains from the south pole of Enceladus are not yet definitively explained in terms of energy sources and processes. Other instances of hot (Io) and cold (Mars, Triton) volcanism beyond Earth are known if not fully understood. We revisit, in comparison to other models, the 'Old Faithful' theory of radiolytic gas-driven cryovolcanism first proposed by Cooper et al. [Plan. Sp. Sci. 2009]. In the energetic electron irradiation environment of Enceladus within Saturn's magnetosphere, a 10-percent duty cycle could be maintained for current geyser activity driven by gases from oxidation of ammonia to N2 and methane to CO2 in the thermal margins of a south polar sea. Much shorter duty cycles down to 0.01 percent would be required to account for thermal power output up to 16 GW, Steady accumulation of oxidant energy over four billion years could have powered all Enceladus emissions over the past four hundred thousand to four hundred million years. There could be separate energy sources driving mass flow and thermal emission over vastly different time scales. Since episodic tidal dissipation on 10 Myr time scales at 0.1 - 1 Gyr intervals [O'Neill and Nimmo, Nature 2010], and thus duty cycles 1 - 10 percent, could heat the polar sea to the current level, the radiolytic energy source could easily power and modulate the geyser mass flow on million-year time scales. Maximum thermal emission temperature 223 K [Abramov and Spencer, Icarus 2009] hints at thermal buffering in the basal and vent wall layers by a 1:1 H2O:H2O2 radiolytic eutectic, assuming deep ice crust saturation with H2O2 from long cumulative surface irradiation and downward ice convection. Due to density stratification the peroxide eutectic and salt water layers could separate, so that the denser peroxide layer (1.2 g/cc) descends to the polar sea while the lighter salt water (1.05 g/cc) rises along separate channels. Methane reservoirs could be found dissolved into the polar sea, or else trapped in hydrates [Kieffer et al., Science 2006] along flow paths and at the walls of the polar sea at surface depths below 20 km [Fortes, Icarus 2007]. Driver gas production for cryovolcanism could occur wherever these two layers come into contact under requisite temperature and pressure conditions, e.g. from 220 K and 10 bar at the 10-km basal layer of the overlying ice crust to 647 K and 220 bars at the liquid water limit, above the core-mantle boundary at 460 bars [Fortes, Icarus 2007]. We expect H2O2 oxidation to ignite at high temperatures but metallic minerals could catalyze reactions at lower temperatures nearer the basal layer. Pressure effects on oxidation rates are uncertain. Definitive modeling of Enceladus cryovolcanism likely involves synthesis of key processes from multiple models: Cold Faithful [Porco et al., Science 2006], Frigid Faithful [Keiffer et al., Science 2006], Frothy Faithful [Fortes, Icarus 2007], Old Faithful, and 'Perrier Ocean' recirculation [Matson et al., Icarus 2012].

  5. Submillimeter mapping of mesospheric minor species on Venus with ALMA

    NASA Astrophysics Data System (ADS)

    Encrenaz, T.; Moreno, R.; Moullet, A.; Lellouch, E.; Fouchet, T.

    2015-08-01

    Millimeter and submillimeter heterodyne spectroscopy offers the possibility of probing the mesosphere of Venus and monitoring minor species and winds. ALMA presents a unique opportunity to map mesospheric species of Venus. During Cycle 0, we have observed Venus on November 14 and 15, 2011, using the compact configuration of ALMA. The diameter of Venus was 11″ and the illumination factor was about 90%. Maps of CO, SO, SO2 and HDO have been built from transitions recorded in the 335-347 GHz frequency range. A mean mesospheric thermal profile has been inferred from the analysis of the CO transition at the disk center, to be used in support of minor species retrieval. Maps of SO and SO2 abundance show significant local variations over the disk and contrast variations by as much as a factor 4. In the case of SO2, the spatial distribution appears more "patchy", i.e. shows short-scale structures apparently disconnected from day-side and latitudinal variations. For both molecules, significant changes occur over a timescale of one day. From the disk averaged spectrum of SO recorded on November 14 at 346.528 GHz, we find that the best fit is obtained with a cutoff in the SO vertical distribution at 88±2 km and a uniform mixing ratio of 8.0±2.0 ppb above this level. The SO2 map of November 14, derived from the weaker transition at 346.652 GHz, shows a clear maximum in the morning side at low latitudes, which is less visible in the map of November 15. We find that the best fit for SO2 is obtained for a cutoff in the vertical distribution at 88±3 km and a uniform mixing ratio of 12.0±3.5 ppb above this level. The HDO maps retrieved from the 335.395 GHz show some enhancement in the northern hemisphere, but less contrasted variations than for the sulfur species maps, with little change between November 14 and 15. Assuming a typical D/H ratio of 200 times the terrestrial value in the mesosphere of Venus, we find that the disk averaged HDO spectrum is best fitted with a uniform H2O mixing ratio of 2.5±0.6 ppm (corresponding to a HDO mixing ratio of 0.165±0.040 ppm). We note that our spectrum is also compatible with a H2O mixing ratio of 1.5 ppm in the 80-90 km altitude range, and a mixing ratio of 3 ppm outside this range, as suggested by the photochemical model of Zhang et al. (2012, Icarus, vol. 217, pp. 714-739). Our results are in good general agreement with previous single dish submillimeter observations of Sandor and Clancy (2005, Icarus, vol. 177, pp. 129-143), Gurwell et al. (2007, Icarus, vol. 188, p. 288), and Sandor et al. (2010, Icarus, vol. 208, pp. 49-60; 2012, Icarus, vol. 217, pp. 839-844) and with SPICAV/Venus Express results of Fedorova et al. (2008, J. Geophys. Res., vol. 113, p. E00B25) and Belyaev et al. (2012).

  6. Coordinated 1996 HST and IRTF Imaging of Neptune and Triton. II. Implications of Disk-Integrated Photometry

    NASA Astrophysics Data System (ADS)

    Sromovsky, L. A.; Fry, P. M.; Baines, K. H.; Dowling, T. E.

    2001-02-01

    Near-IR groundbased observations coordinated with Wide Field Planetary Camera 2 (WFPC2) HST observations (Sromovsky et al.Icarus149, 416-434, 459-488) provide new insights into the variations of Neptune and Triton over a variety of time scales. From 1996 WFPC2 imaging we find that a broad circumpolar nonaxisymmetric dark band dominates Neptune's lightcurve at 0.467 μm, while three discrete bright features dominate the lightcurve at longer wavelengths, with amplitudes of 0.5% at 0.467 μm and 22% at 0.89 μm, but of opposite phases. The 0.89-μm modulation in 1994, estimated at 39%, is close to the 50% modulation observed during the 1986 "outburst" documented by Hammel et al. (1992, Icarus99, 363-367), suggesting that the unusual 1994 cloud morphology might also have been present in 1986. Lightcurve amplitudes in J-K bands, from August 1996 IRTF observations, are comparable to those observed in 1977 (D. P. Cruikshank 1978, Astrophys. J. Lett.220, 57-59) but significantly larger than the 1981 amplitudes of M. J. S. Belton et al. (1981, Icarus45, 263-273). The 1996 disk-integrated albedos of Neptune at H-K wavelengths are 2-7 times smaller than the 1977 values of U. Fink and S. Larson (1979, Astrophys. J.233, 1021-1040), which can be explained with about 1/2-1/4 of the upper level cloud opacity being present in 1996. A simplified three-layer model of cloud structure applied to CCD wavelengths implies ˜7% reflectivity at 1.3 bars (at λ=0.55 μm, decreasing as λ -0.94) and ˜1% at 100-150 mbars. To fit the WFPC2 observations and those of E. Karkoschka (1994, Icarus111, 174-192), the putative H 2S cloud between 3.8 and 7-9 bars must have a strong decrease in reflectivity between 0.5 and 0.7 μm, as previously determined by K. H. Baines and W. H. Smith (1990, Icarus85, 65-108). To match our 1996 IRTF results, this cloud must have another substantial drop in reflectivity at near-IR wavelengths, to a level of 0-5%, corresponding to single-scattering albedos of ˜0-0.3. The model that fits our near-IR observations on 13 August 1996 can reproduce the magnitudes of the dramatic 1976 "outburst" (R. R. Joyce et al. 1977, Astrophys. J.214, 657-662) by increasing the upper cloud fraction to 6% (from ˜1%) and lowering its effective pressure to ˜90 mbars (from 151 mbars). Triton's disk-integrated albedo from HST imagery at 11 wavelengths from 0.25 to 0.9 μm are consistent with previous groundbased and Voyager measurements, thus providing no evidence for the albedo decrease suggested by Triton's recent warming (J. L. Elliot et al. 1998 Nature393, 765-767). Triton's lightcurve inferred from 1994-1996 WFPC2 observations has about twice the amplitude inferred from 1989 Voyager models for the UV to long visible range (J. Hillier et al. 1991, J. Geophys. Res.96, 19,211-19,215).

  7. The Origin of the Double Main Belt Asteroid (90) Antiope by Component-Resolved Spectroscopy

    NASA Astrophysics Data System (ADS)

    Marchis, Franck; Enriquez, J. E.; Emery, J. P.; Berthier, J.; Descamps, P.

    2009-09-01

    The origin of (90) Antiope double binary asteroid remains an unsolved puzzle, despite an intensive campaign of observations conducted mostly using the VLT-UT4 telescope equipped with an adaptive Optics system (NACO) in 2007 (Descamps et al., Icarus 2007) and lightcurve data analysis by Descamps et al (Icarus, in press, 2009). These studies suggested that the two rubble pile (density ˜1.3 g/cc porosity˜50%) ellipsoidal (D˜86 km) components have similar surface characteristics and that a 68-km bowl-shaped impact crater is located on one of the components. This giant crater could be the aftermath of a tremendous collision of a 100-km sized proto-Antiope with another Themis family member. This violent shock could have produced the break-up of proto-Antiope into two equisized bodies. To test if the components come from the same parent body, we recorded individual spectra of the components using SPIFFI, a near-infrared (1.1 - 2.45 μm) integral field spectrograph fed by SINFONI, an adaptive optics module available on VLT-UT4. Using our orbital model we requested telescope time when the separation of the components of 90 Antiope was larger than 0.087” during the Feb. 2009 opposition to minimize the contamination between components. Their spectra, in J band (R-2000, S/N=70) and H+K band (R=1500, S/N=230) were recorded in Feb 01.25, Feb 03.30 and Feb 21.20 UT. The data reduction is still in progress. We could extract the H+K spectra on two epochs (Feb 01 and 21). The spectra of each component do not display any significant absorption features and their slope is in aggrement with typical C-type near-infrared spectra from De Meo et al (Icarus, 2009). They are quite similar, with typical variations by less than 5%, and imply that both bodies were formed at the same time from the same material. We acknowledge the support from NSF grant AAG-0807468.

  8. Reanalysis of Asteroid Families Structure Through Visible Spectroscopy

    NASA Astrophysics Data System (ADS)

    Mothé-Diniz, T.; Carvano, J.; Roig, F.; Lazzaro, D.

    In this work we re-analyse the presence of interlopers in asteroid families based on a larger spectral database and on a family determination which makes use of a larger set of proper elements. The asteroid families were defined using the HCM method (Zappalà et al. 1995) on the set of proper elements for 110,000 asteroids available at the Asteroid Dynamic Site (AstDyS http://hamilton.dm.unipi.it/astdys )). The spectroscopic analysis is performed using spectra on the 0.44-0.92 μ m range observed by the SMASS Xu et al. 1995, SMASSII (Bus and Binzel, 2002) and 3OS2 (Lazzaro et al. 2002) surveys, which together total around 2140 asteroids with observed spectra. The asteroid taxonomy used is the Bus taxonomy (Bus et al. 2000). A total of 22 two families were analysed . The families of Vesta, Eunomia, Hoffmeister, Dora, Merxia, Agnia, and Koronis were found to be spectrally homogeneous, which confirms previous studies. The Veritas family, on the other hand, which is quoted in the literature as an heterogeneous family was found to be quite homogeneous in the present work. The Eos family is noteworthy for being at one time spectrally heterogeneous and quite different from the background population. References Bus, S. J., and R. P. Binzel 2002. Phase II of the Small Main-Belt Asteroid Spectroscopic Survey - The Observations. Icarus 158, 106-145. Bus, S. J., R. P. Binzel, and T. H. Burbine 2000. A New Generation of Asteroid Taxonomy. Meteoritics and Planetary Science, vol. 35, Supplement, p.A36 35, 36 +. Lazzaro, D., C. A. Angeli, T. Mothe-Diniz, J. M. Carvano, R. Duffard, and M. Florczak 2002. The superficial characterization of a large sample of asteroids: the S3OS2. Bulletin of the American Astronomical Society 34, 859 +. Xu, S., R. P. Binzel, T. H. Burbine, and S. J. Bus 1995. Small main-belt asteroid spectroscopic survey: Initial results. Icarus 115, 1-35. Zappala, V., P. Bendjoya, A. Cellino, P. Farinella, and C. Froeschle 1995. Asteroid families: Search of a 12,487-asteroid sample using two different clustering techniques. Icarus 116, 291-314.

  9. Ultraviolet reflectance spectroscopy measurements of carbonaceous meteorites and planetary analog materials

    NASA Astrophysics Data System (ADS)

    Hibbitts, Charles A.; Stockstill-Cahill, Karen; Takir, Driss

    2017-10-01

    The compositions of airless solar system objects tell us about the origin and evolutionary processes that are responsible for the current state of our solar system and that shape our environment. Spectral reflectance measurements in the ultraviolet are being used more frequently for providing compositional information of airless solid surfaces. Most minerals absorb in the UV making studying surface composition both informative but also challenging [e.g. 1]. The UV region is sensitive to atomic and molecular electronic absorptions such as the ligand-metal charge transfer band that is present in oxides and silicates and the conduction band at vacuum UV wavelengths. At the JHU-APL, bidirectional UV reflectance measurements are obtained under vacuum using a McPherson monochrometer with a PMT detector to achieve measurements over the range from ~ 140 nm to ~ 570 nm. Sample temperature can also be controlled from ~ 100K to ~ 600K, which enables the exploring the interaction of water ice and other volatiles with refractory samples. We have measured the UV spectra of many carbonaceous chondrites, including Mokoia, Vigarano, Warrenton, Orgueil, SaU290, and Essebi. In addition to being dark, some also possess on OMCT band. We have also obtained IR measurement of these meteorites to explore possible correlations between their UV and IR spectral signatures. In addition, we have also measured the UV spectra of low water content lunar analog glasses and have found a correlation between the spectral nature of the OMCT band and the abundance of iron [3]. Also, the spectral signature of mineralic and adsorbed water in the UV has been investigated. While water-ice has a known strong absorption feature near 180 nm (e.g. 4], adsorbed molecular and disassociatively adsorbed OH appear to not be optically active in this spectral region [5]. References: [1] Wagner et al. (1987) Icarus, 69, 14-28.1987; [2] Cloutis et al. (2008) Icarus, 197, 321-347; [3] Greenspon et al. (2012), 43rd LPSC, 1659, 2490; [4] Hendrix, A. and C. J. Hansen (2008) Icarus, 193, 323-333; [5] Hibbitts, C.A. (2015) DPS #47, 215.05.

  10. Young surface of Pluto's Sputnik Planitia caused by viscous relaxation

    NASA Astrophysics Data System (ADS)

    Wei, Q.; Hu, Y.; Liu, Y.; Lin, D. N. C.; Yang, J.; Showman, A. P.

    2017-12-01

    The young surface of Pluto's Sputnik Planitia (SP) is one of the most prominent features observed by the New Horizon mission (Moore et al., 2016; Stern et al., 2015). No crater has been confirmed on the heart-shaped SP basin, in contrast to more than 5000 identified over comparable areas elsewhere (Robbins et al., 2016). The SP basin is filled with mostly N2 ice and small amount of CH4 and CO ice (Protopapa et al., 2017). Previous studies suggested that the SP surface might be renewed through vigorous thermal convection (McKinnon et al., 2016), and that the surface age may be as young as 500,000 years. In this paper, we present numerical simulations demonstrating that craters can be removed by rapid viscous relaxation of N2 ice over much shorter timescales. The crater retention age is less than 1000 years if the N2-ice thickness is several kilometers. McKinnon, W. B., Nimmo, F., Wong, T., Schenk, P. M., White, O. L., Roberts, J., . . . Umurhan, O. (2016). Convection in a volatile nitrogen-ice-rich layer drives Pluto's geological vigour. Nature, 534(7605), 82-85. Moore, J. M., McKinnon, W. B., Spencer, J. R., Howard, A. D., Schenk, P. M., Beyer, R. A., . . . White, O. L. (2016). The geology of Pluto and Charon through the eyes of New Horizons. Science, 351(6279), 1284-1293. Protopapa, S., Grundy, W. M., Reuter, D. C., Hamilton, D. P., Dalle Ore, C. M., Cook, J. C., . . . Young, L. A. (2017). Pluto's global surface composition through pixel-by-pixel Hapke modeling of New Horizons Ralph/LEISA data. Icarus, Volume 287, 218-228. doi:http://dx.doi.org/10.1016/j.icarus.2016.11.028Robbins, S. J., Singer, K. N., Bray, V. J., Schenk, P., Lauer, T. R., Weaver, H. A., . . . Porter, S. (2016). Craters of the Pluto-Charon system. Icarus. Stern, S. A., Bagenal, F., Ennico, K., Gladstone, G. R., Grundy, W. M., McKinnon, W. B., . . . Zirnstein, E. (2015). The Pluto system: Initial results from its exploration by New Horizons. Science, 350(6258), aad1815.

  11. Prediction and Confirmation of V-type Asteroids Beyond 2.5 AU Based on SDSS Colors

    NASA Astrophysics Data System (ADS)

    Binzel, Richard P.; Masi, G.; Foglia, S.

    2006-09-01

    We apply a taxonomic classification system developed by Masi et al. (2006, submitted to Icarus) to identify C-, S-, and V-type asteroids present within the 3rd Release of the Sloan Digital Sky Survey Moving Object Catalog (SDSS MOC3). The classifications deduced by Masi et al. for 43,000 asteroids using SDSS colors are based on the taxonomy of Bus (1999; MIT Ph.D. thesis). To link SDSS colors to the Bus taxonomy, Masi et al. (2006) use 149 objects measured in common by both SDSS and the Small Main-Belt Asteroid Spectroscopic Survey (SMASS) (Bus and Binzel 2002, Icarus 158, 106). We report results of direct testing of SDSS V-type classification predictions for six objects, where the tests were performed by visible wavelength spectroscopy (Lazzaro et al. 2004, Icarus 172, 179) and target of opportunity near-infrared spectroscopy obtained using the NASA Infrared Telescope Facility (IRTF). Vesta-like spectra and a V-type taxonomy are confirmed for five of the six predicted V-type objects sampled. Most interestingly, the SDSS taxonomy correctly predicted the V-type spectral characteristics for asteroid (21238) 1995 WV7, a 6 km asteroid located far from Vesta across the 3:1 mean motion resonance at 2.54 AU. (Proper elements a,e,i: 2.54 AU, 0.14, and 10.8 deg.) Given the 2 km/sec ejection velocity required from Vesta to reach the current orbit, and the difficulty of migrating across the 3:1 resonance (at 2.5 AU) by a process such as Yarkovsky drift or via secular resonances (Carruba et al. 2005, Astron. Astrophys. 441, 819), asteroid 21238 may be a new candidate for a basaltic asteroid having no relationship to Vesta.

  12. Pluto's Atmospheric Figure from the P131.1 Stellar Occultation

    NASA Astrophysics Data System (ADS)

    Person, M. J.; Elliot, J. L.; Clancy, K. B.; Kern, S. D.; Salyk, C. V.; Tholen, D. J.; Pasachoff, J. M.; Babcock, B. A.; Souza, S. P.; Ticehurst, D. R.; Hall, D.; Roberts, L. C., Jr.; Bosh, A. S.; Buie, M. W.; Dunham, E. W.; Olkin, C. B.; Taylor, B.; Levine, S. E.; Eikenberry, S. S.; Moon, D.-S.; Osip, D. J.

    2003-05-01

    The stellar occultation by Pluto of the 15th magnitude star designated P131.1 (McDonald and Elliot, AJ, 119, 1999) on 2002 August 21 (UT) provided the first significant chance to compare Pluto's atmospheric structure to that determined from the 1988 occultation of P8 (Millis, et al., Icarus, 105, 282). The P131.1 occultation was observed from several stations in Hawaii and the western United States (Elliot et al., Nature, in press, 2003). Numerous occultation chords were obtained enabling us to examine Pluto's atmospheric figure. The light curves from the observations were analyzed together in the occultation coordinate system of Elliot et al., (AJ, 106, 2544). The Mauna Kea and Lick datasets straddle the center of Pluto's figure, providing strong constraints on model fits to cross sections of the atmospheric shape. In 1988, Millis (et al., Icarus, 105, 282) did not report any deviation from sphericity in Pluto's atmospheric figure. From the 2002 data, Pluto;s isobars at the radii probed by the occultation ( 1250 km) appear to be distorted from a circular cross-section. Least-squares fits to this cross-section by elliptical models reveal ellipticities in the range 0.05-0.08 although the shape may be more complex than ellipsoidal. The orientation of the distortion appears uncorrelated with Pluto;s rotational axis. Taken at face value, this ellipticity could imply wind speeds of up to twice the sonic speed ( 200 m/s), which would be difficult to explain. Similar distortions have been reported for Triton's atmosphere (Elliot, J. L., et al., Icarus 148, 347). This work has been supported in part by Research Corporation, the Air Force Research Laboratory, NSF, and NASA.

  13. Simulation of the Upper Clouds and Hazes of Venus Using a Microphysical Cloud Model

    NASA Astrophysics Data System (ADS)

    McGouldrick, K.

    2012-12-01

    Several different microphysical and chemical models of the clouds of Venus have been developed in attempts to reproduce the in situ observations of the Venus clouds made by Pioneer Venus, Venera, and Vega descent probes (Turco et al., 1983 (Icarus 53:18-25), James et al, 1997 (Icarus 129:147-171), Imamura and Hashimoto, 2001 (J. Atm. Sci. 58:3597-3612), and McGouldrick and Toon, 2007 (Icarus 191:1-24)). The model of McGouldrick and Toon has successfully reproduced observations within the condensational middle and lower cloud decks of Venus (between about 48 and 57 km altitude, experiencing conditions similar to Earth's troposphere) and it now being extended to also simulate the microphysics occurring in the upper cloud deck (between altitudes of about 57 km and 70 km, experiencing conditions similar to Earth's stratosphere). In the upper clouds, aerosols composed of a solution of sulfuric acid in water are generated from the reservoir of available water vapor and sulfuric acid vapor that is photochemically produced. The manner of particle creation (e.g., activation of cloud condensation nuclei, or homogeneous or heterogeneous nucleation) is still incompletely understood, and the atmospheric environment has been measured to be not inconsistent with frozen aerosol particles (either sulfuric acid monohydrate or water ice). The material phase, viscosity, and surface tension of the aerosols (which are strongly dependent up on the local temperature and water vapor concentration) can affect the coagulation efficiencies of the aerosol, leading to variations in the size distributions, and other microphysical and radiative properties. Here, I present recent work exploring the effects of nucleation rates and coalescence efficiencies on the simulated Venus upper clouds.

  14. Integrated Research on the Development of Global Climate Risk Management Strategies - Framework and Initial Results of the Research Project ICA-RUS

    NASA Astrophysics Data System (ADS)

    Emori, Seita; Takahashi, Kiyoshi; Yamagata, Yoshiki; Oki, Taikan; Mori, Shunsuke; Fujigaki, Yuko

    2013-04-01

    With the aim of proposing strategies of global climate risk management, we have launched a five-year research project called ICA-RUS (Integrated Climate Assessment - Risks, Uncertainties and Society). In this project with the phrase "risk management" in its title, we aspire for a comprehensive assessment of climate change risks, explicit consideration of uncertainties, utilization of best available information, and consideration of every possible conditions and options. We also regard the problem as one of decision-making at the human level, which involves social value judgments and adapts to future changes in circumstances. The ICA-RUS project consists of the following five themes: 1) Synthesis of global climate risk management strategies, 2) Optimization of land, water and ecosystem uses for climate risk management, 3) Identification and analysis of critical climate risks, 4) Evaluation of climate risk management options under technological, social and economic uncertainties and 5) Interactions between scientific and social rationalities in climate risk management (see also: http://www.nies.go.jp/ica-rus/en/). For the integration of quantitative knowledge of climate change risks and responses, we apply a tool named AIM/Impact [Policy], which consists of an energy-economic model, a simplified climate model and impact projection modules. At the same time, in order to make use of qualitative knowledge as well, we hold monthly project meetings for the discussion of risk management strategies and publish annual reports based on the quantitative and qualitative information. To enhance the comprehensiveness of the analyses, we maintain an inventory of risks and risk management options. The inventory is revised iteratively through interactive meetings with stakeholders such as policymakers, government officials and industrial representatives.

  15. A six-part collisional model of the main asteroid belt

    NASA Astrophysics Data System (ADS)

    Cibulková, H.; Brož, M.; Benavidez, P. G.

    2014-10-01

    In this work, we construct a new model for the collisional evolution of the main asteroid belt. Our goals are to test the scaling law of Benz and Asphaug (Benz, W., Asphaug, E. [1999]. Icarus, 142, 5-20) and ascertain if it can be used for the whole belt. We want to find initial size-frequency distributions (SFDs) for the considered six parts of the belt (inner, middle, “pristine”, outer, Cybele zone, high-inclination region) and to verify if the number of synthetic asteroid families created during the simulation matches the number of observed families as well. We used new observational data from the WISE satellite (Masiero et al., 2011) to construct the observed SFDs. We simulate mutual collisions of asteroids with a modified version of the Boulder code (Morbidelli, A., et al. [2009]. Icarus, 204, 558-573), where the results of hydrodynamic (SPH) simulations of Durda et al. (Durda, D.D., et al. [2007]. Icarus, 498-516) and Benavidez et al. (Benavidez, P.G., et al. [2012]. 219, 57-76) are included. Because material characteristics can significantly affect breakups, we created two models - for monolithic asteroids and for rubble-piles. To explain the observed SFDs in the size range D=1 to 10 km we have to also account for dynamical depletion due to the Yarkovsky effect. The assumption of (purely) rubble-pile asteroids leads to a significantly worse fit to the observed data, so that we can conclude that majority of main-belt asteroids are rather monolithic. Our work may also serve as a motivation for further SPH simulations of disruptions of smaller targets (with a parent body size of the order of 1 km).

  16. Analyzing Bleriot's propeller gaps in Cassini NAC images

    NASA Astrophysics Data System (ADS)

    Hoffmann, Holger; Chen, Cheng; Seiß, Martin; Albers, Nicole; Spahn, Frank; Nic

    2016-10-01

    Among the great discoveries of the Cassini mission are the propeller-shaped structures created by small moonlets embedded in Saturn's dense rings. These moonlets are not massive enough to counteract the viscous ring diffusion to open and maintain circumferential gaps, distinguishing them from ring-moons like Pan and Daphnis.Although one of the defining features of propeller structures, well-formed partial gaps have been resolved by the Imaging Science Subsystem Narrow Angle Camera onboard the Cassini spacecraft only for the largest known propeller named Bleriot. We analyze images of the sunlit side of Saturn's outer A ring showing the propeller Bleriot with clearly visible gaps. By fitting a Gaussian to radial brightness profiles at different azimuthal locations, we obtain the evolution of gap minimum and gap width downstream of the moonlet.We report two findings:1) Numerical simulations indicate that the radial separation of the partial propeller gaps is expected to be 4 Hill radii (Spahn and Sremcevic, 2000, A&A). We infer Bleriot's Hill radius to be a few hundred meters, consistent with values given by Sremcevic et al. (2014, DPS) and Hoffmann et al. (2015, Icarus).2) In order to estimate the ring viscosity in the region of Saturn's outer A ring, where Bleriot orbits, we fit several model functions (one example being the analytic solution derived by Sremcevic, Spahn and Duschl, 2002, MNRAS) describing the azimuthal evolution of the surface density in the propeller gap region to the data obtained from the image analysis. We find viscosity values consistent with the parameterization of ring viscosity by Daisaka et al. (2001, Icarus), but significantly lower than the upper limit given by Esposito et al. (1983, Icarus)

  17. HST/FGS High Angular Resolution Observations of Binary Asteroids

    NASA Astrophysics Data System (ADS)

    Hestroffer, Daniel; Tanga, P.; Cellino, A.; Kaasalainen, M.; Torppa, J.; Marchis, F.; Richardson, D. C.; Elankumaran, P.; Berthier, J.; Colas, F.; Lounis, S.

    2006-09-01

    Binary or multiple asteroids are important bodies that provide insight into the physical properties of asteroids in general. The knowledge of the components orbit in a binary provides the total mass with high accuracy and generally permits a rough bulk-density estimate [1,2]. We have observed 10 selected binary or multiple asteroids (22 Kalliope, 45 Eugenia, 87 Sylvia, 90 Antiope, 107 Camilla, 121 Hermione, 283 Emma, 379 Huenna, 617 Patroclus, 762 Pulcova) with the HST/FGS interferometer in order to obtain high resolution data on the size and shape of their primaries (HST proposal ID 10614). All these systems except the Jupiter Trojan 617 Patroclus are located in the main-belt of asteroids. Combining these HST/FGS data to topographic models obtained from lightcurve inversion [3,4] yields the volume and hence the bulk density of these bodies with unprecedented accuracy [5]. This work will allow us to obtain important information on their internal structure, and insight into the possible gravitational re-accumulation process after a catastrophic disruptive collision [e.g. 6,7,8].In particular, one can see whether or not the surfaces of theses bodies closely follow an effective equipotential surface, and under what circumstances such a correspondence is or is not attained . We will present the preliminary results for the data reduction and the size and bulk density determination. [1] Merline et al. (2003). In: Asteroids III, pp 289. [2] Marchis et al. (2005) ACM 2005, Buzios, Brazil. [3] Kaasalainen et al. (2002) Icarus 159, 359. [4] Torppa et al. (2003) Icarus 164, 346. [5] Hestroffer et al. (2003) ACM 2002, ESA-SP 500, 493. [6] Michel et al. (2004) P&SS 52, 1109. [7] Durda et al. (2004) Icarus 167, 342. [8] Paolicchi et al. (1993) Cel. Mech., 57, 49.

  18. Asteroid (90) Antiope: Another icy member of the Themis family?

    NASA Astrophysics Data System (ADS)

    Hargrove, Kelsey D.; Emery, Joshua P.; Campins, Humberto; Kelley, Michael S. P.

    2015-07-01

    Many members of the Themis family show evidence of hydration in the form of oxidized iron in phyllosilicates (Florczak, M. et al. [1999]. Astron. Astrophys. Suppl. Ser. 134, 463-471), and OH-bearing minerals (Takir, D., Emery, J.P. [2012]. Icarus 219, 641-654). The largest member, (24) Themis, has H2O ice covering its surface (Campins, H. et al. [2010]. Nature 464, 1320-1321; Rivkin, A.S., Emery, J.P. [2010]. Nature 464, 1322-1323). We have investigated the second largest Themis-family asteroid, (90) Antiope, which Castillo-Rogez and Schmidt (Castillo-Rogez, J.C., Schmidt, B.E. [2010]. Geophys. Res. Lett. 37, L10202) predict to have a composition that includes water ice and organics. We obtained 2-4-μm spectroscopy of (90) Antiope in 2006 and 2008, and we find an absorption in the 3-μm region clearly present in our 2008 spectrum and likely in our 2006 spectrum. Both spectra have rounded, bowl-shaped absorptions consistent with those ascribed to water ice as in the spectrum of Asteroid (24) Themis. We also present and compare Spitzer 8-12-μm mid-infrared spectra of (24) Themis and (90) Antiope. We find that (90) Antiope is lacking a "fairy castle" dusty surface, which is in contrast to (24) Themis, other Themis family members (Licandro, J. et al. [2012]. Astron. Astrophys. 537, A73), and Jupiter Trojans (e.g. Emery, J.P., Cruikshank, D.P., Van Cleve, J. [2006]. Icarus 182, 496-512). We conclude that the surface structure of (90) Antiope is most similar to Cybele Asteroid (121) Hermione (Hargrove, K.D. et al. [2012]. Icarus 221, 453-455).

  19. Night side distribution of SO2 content in Venus' upper mesosphere

    NASA Astrophysics Data System (ADS)

    Belyaev, D. A.; Evdokimova, D. G.; Montmessin, F.; Bertaux, J.-L.; Korablev, O. I.; Fedorova, A. A.; Marcq, E.; Soret, L.; Luginin, M. S.

    2017-09-01

    In this paper we present the first night side distribution of SO2 content in Venus' upper mesosphere (altitudes from 85 to 105 km). The dataset is based on the SPICAV UV stellar occultation experiment which took place onboard ESA's Venus Express (VEX) orbiter in 2006-2014. The UV channel of SPICAV spectrometer detected absorption bands of SO2 and CO2 in the spectral range 180-300 nm with a resolution of 1-2 nm while stellar light was occulted by the mesosphere. Altitude profiles of sulfur dioxide's volume mixing ratio (VMR) could be retrieved in the upper part of the mesosphere covering the whole night side on Venus. In parallel, we have reprocessed the terminator UV solar occultations dataset (Belyaev et al., 2012. Icarus 217, 740-751) in the same altitude range and extended its statistics until 2014. On average the SO2 VMR increases with altitude from 10-30 ppb at 85 km to 100-300 ppb at 100 km in both regimes of occultation. The midnight SO2 abundance appears to be 3-4 times higher than in the terminator region: 150-200 ppbv versus 50 pppv at altitude around 95 km. These new results were compared with the distribution of oxygen atoms, which are tracers of the global subsolar-antisolar (SS-AS) circulation at ∼100 km (the data provided by Soret et al., 2012 Icarus, 217, 849-855). The night time behavior looks similar for SO2 molecules and O atoms with a correlation coefficient Rcorr = 0.73. Moreover, the retrieved SO2 enrichment above 85 km appears to correlate with the density of H2SO4 droplets (Luginin et al., 2016; Icarus 277, 154-170).

  20. Ultraviolet reflectance spectroscopy measurements of planetary materials and their analogs

    NASA Astrophysics Data System (ADS)

    Hibbitts, C.; Stockstill-Cahill, K.

    2017-12-01

    The compositions of airless solar system objects tell us about the origin and evolutionary processes that are responsible for the current state of our solar system and that shape our environment. Spacecraft have obtained UV reflectance measurements of the surfaces of Mercury, the Moon, asteroids, comets, icy satellites, and Pluto from which composition is being inferred. Most minerals absorb in the UV making studying surface composition both informative but also challenging [e.g. 1]. The UV region is sensitive to atomic and molecular electronic absorptions such as the ligand-metal charge transfer band that is present in oxides and silicates and the conduction band at vacuum UV wavelengths. Unfortunately, limited laboratory reflectance measurements in the ultraviolet hampers the interpretation of some of these planetary UV reflectance datasets. However, several laboratory efforts have been developed [e.g. 2,3] to fill the need for laboratory UV measurements. These are difficult measurements to make, being complicated by the absorptive nature of the atmosphere, requiring measurements to be conducted under vacuum or over very short path lengths of a N2-purged system. Also, the lack of a widely accepted UV diffuse reflectance standard is problematic. At the JHU-APL, bidirectional UV reflectance measurements are obtained under vacuum from 140 nm to 570 nm. Sample temperature can be controlled from 100K to 600K, which enables the study of the interaction of water ice and other volatiles with the refractory samples. Results from our laboratory research include the development of a correlation between the spectral nature of the OMCT band and the abundance of iron in low water content lunar analog glasses [3]. Also, the spectral signature of water in the UV has been investigated. While water-ice has a known strong absorption feature near 180 nm [e.g. 4], adsorbed molecular and disassociatively adsorbed OH apparently are not optically active in this spectral region [5]. We have also measured the UV spectra of carbonaceous chondrites. References: [1] Wagner et al. (1987) Icarus, 69, 14-28.1987; [2] Cloutis et al. (2008) Icarus, 197, 321-347; [3] Greenspon et al. (2012), 43rd LPSC, 1659, 2490, [4] Hendrix, A. and C. J. Hansen (2008) Icarus, 193, 323-333; [5] Hibbitts, C.A. (2015) DPS #47, 215.05.

  1. NASA Ames’ COSmIC Laboratory Astrophysics Facility: Recent Results and Progress

    NASA Astrophysics Data System (ADS)

    Salama, Farid; Sciamma-O'Brien, Ella; Bejaoui, Salma

    2018-06-01

    The COSmIC facility was developed at NASA Ames to study interstellar, circumstellar and planetary analogs in the laboratory [1, 2]. COSmIC stands for “Cosmic Simulation Chamber” and is dedicated to the study of molecules, ions and nanoparticles under the low temperature and high vacuum conditions that are required to simulate space environments. COSmIC integrates a variety of instruments that allow generating; processing and monitoring simulated space conditions in the laboratory. It is composed of a Pulsed Discharge Nozzle expansion that generates a plasma in a free supersonic jet expansion coupled to high-sensitivity, complementary in situ diagnostic tools, used for the detection and characterization of the species present in the expansion: a Cavity Ring Down Spectroscopy (CRDS) and fluorescence spectroscopy systems for photonic detection, and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection [3, 4].Recent advances achieved in laboratory astrophysics using COSmIC will be presented, in particular in the domain of the diffuse interstellar bands (DIBs) [5, 6] and the monitoring, in the laboratory, of the formation of dust grains and aerosols from their gas-phase molecular precursors in environments as varied as circumstellar outflows [7] and planetary atmospheres [8, 9, 10]. Plans for future laboratory experiments on cosmic molecules and grains in the growing field of laboratory astrophysics (NIR-MIR CRDS, Laser Induced Fluorescence spectra of cosmic molecule analogs and the laser induced incandescence spectra of cosmic grain analogs) will also be addressed as well as the implications for astronomy.References: [1] Salama F., Proceed. IAU S251, Kwok & Sandford eds. CUP, 4, 357 (2008).[2] Salama F., et al., Proceed. IAU S332, Y. Aikawa, M. Cunningham, T. Millar, eds., CUP (2018)[3] Biennier L., et al., J. Chem. Phys., 118, 7863 (2003)[4] Ricketts C. et al. IJMS, 300, 26 (2011)[5] Salama F., et al., ApJ., 728, 154 (2011)[6] EDIBLES consortium, A&A 606, A76 (2017)[7] Contreras, C., Salama, F., ApJ. Suppl. Ser., 208, 6 (2013)[8] Sciamma-O'Brien E., Ricketts C., Salama F. Icarus, 243, 325 (2014)[9] Sciamma-O'Brien E., Upton K.T., Salama F. Icarus, Icarus, 289, 214 (2017)[10] Raymond A.W., et al.. ApJ., 853, 107 (2018)The authors acknowledge NASA SMD/APRA and SSW programs.

  2. Secular perihelion advances of the inner planets and asteroid Icarus

    NASA Astrophysics Data System (ADS)

    Wilhelm, Klaus; Dwivedi, Bhola N.

    2014-08-01

    A small effect expected from a recently proposed gravitational impact model (Wilhelm et al., 2013) is used to explain the remaining secular perihelion advance rates of the planets Mercury, Venus, Earth, Mars, and the asteroid (1566) Icarus-after taking into account the disturbances related to Newton’s Theory of Gravity. Such a rate was discovered by Le Verrier (1859) for Mercury and calculated by Einstein (1915, 1916) in the framework of his General Theory of Relativity (GTR). Accurate observations are now available for the inner Solar System objects with different orbital parameters. This is important, because it allowed us to demonstrate that the quantitative amount of the deviation from an 1/r potential is-under certain conditions-only dependent on the specific mass distribution of the Sun and not on the characteristics of the orbiting objects and their orbits. A displacement of the effective gravitational from the geometric centre of the Sun by about 4400 m towards each object is consistent with the observations and explains the secular perihelion advance rates.

  3. Uncivilizing "Mental Illness": Contextualizing Diverse Mental States and Posthuman Emotional Ecologies within The Icarus Project.

    PubMed

    Fletcher, Erica Hua

    2018-03-01

    This article argues humans should not be defined strictly at their physical boundaries with clear distinctions between anatomical bodies, mental states, and the rest of the world. Rather, diverse mental states, which are often diagnosed as "mental illness," take shape within greater environmental forces and flows, including those that are constructed online. Drawing from a multi-sited ethnography of The Icarus Project, a radical mental health community, the author situates online narratives written by two of its members within posthuman emotional ecologies in which the exchange of ideas online affects mental states in a profound way. These narratives can be seen as a new type of psychiatric resistance based in new technologies, one that "uncivilizes" mental illness by searching for alternative frameworks and metaphors to understand lived experiences with mental distress. This ethnographic perspective differs significantly from traditional bio-psychiatric models and interventions and can offer both patients and mental healthcare providers with an alternative language to frame mental health.

  4. Stability of binaries. Part II: Rubble-pile binaries

    NASA Astrophysics Data System (ADS)

    Sharma, Ishan

    2016-10-01

    We consider the stability of the binary asteroids whose members are granular aggregates held together by self-gravity alone. A binary is said to be stable whenever both its members are orbitally and structurally stable to both orbital and structural perturbations. To this end, we extend the stability analysis of Sharma (Sharma [2015] Icarus, 258, 438-453), that is applicable to binaries with rigid members, to the case of binary systems with rubble members. We employ volume averaging (Sharma et al. [2009] Icarus, 200, 304-322), which was inspired by past work on elastic/fluid, rotating and gravitating ellipsoids. This technique has shown promise when applied to rubble-pile ellipsoids, but requires further work to settle some of its underlying assumptions. The stability test is finally applied to some suspected binary systems, viz., 216 Kleopatra, 624 Hektor and 90 Antiope. We also see that equilibrated binaries that are close to mobilizing their maximum friction can sustain only a narrow range of shapes and, generally, congruent shapes are preferred.

  5. Beyond the Horizon: Developing Future Airpower Strategy

    DTIC Science & Technology

    2014-01-01

    is or becomes more capable, then it is further evidence the USAF failed to proactively usher in these emerging and vital airpower capabilities...USAF airpower. 9. USAF chief of staff, Gen Norton Schwartz, 2009, offered in numerous speeches. 10. Carl H. Builder, The Icarus Syndrome : The Role of

  6. The Soviet Air Force and Strategic Bombing

    DTIC Science & Technology

    1999-04-01

    to envision a British Air Force that could be totally divorced from some form of ground support role. Consequently, he saw an air campaign that would...CA: Presidio Press, 1986. Black, Steven K. The Icarus Illusion: Technology, Doctrine and the Soviet Air Force. Monterrey , CA, 1986. Cockburn, Andrew

  7. Venus upper atmosphere winds from ground-based heterodyne spectroscopy of CO2 at 10μm wavelength

    NASA Astrophysics Data System (ADS)

    Sornig, M.; Sonnabend, G.; Krötz, P.; Stupar, D.; Livengood, T.; Schieder, R.; Kostiuk, T.

    2008-09-01

    We present wind measurements in the Venusian upper mesosphere / lower thermosphere (at an altitude of 100-120km) by means of infrared heterodyne spectroscopy of CO2 P(2) features at 959.3917 cm-1. Provided high spectral resolution winds can be retrieved from Doppler-shifts of CO2 non-thermal emission lines.The mesosphere is the not very well understood transitions zone form the superrotating zonal circulation (RSZ) dominated troposphere and the subsolar to anti-solar flow (SS-AS flow) dominated thermosphere [1,2] hence the addressed altitude region is of special interest. Observations are carried out systematically on the day-side of the planet using the Cologne Tuneable Heterodyne Infrared Spectrometer (THIS). Measurements were gathered during two observing runs: a) May 25 to June 6 2007 at the McMath-Pierce solar telescope on KittPeak/Arizona; b) November 21-28 2007 at the McMath-Pierce solar telescope on KittPeak/Arizona; Both times Venus illumination was about 50%. Run a) took place shortly before Venus superior conjunction and b) shortly after Venus superior conjunction. Several positions on the planet with a diameter of approx. 20" were measured during each observing run. The telescope with a 1.5m main mirror provided a beamsize of 1.7". Zonal wind velocities as well as values for the SS-AS flow were retrieved and will be presented. The data analyzed so far show weak zonal wind velocities (from 3±7m/s to 32 ±4m/s ) with minimum values at the equator and maximum values at mid latitudes. Also the retrieved speed of the SS-AS flow was significantly lower than found by previous observations [3,4,5]. Together with results from space missions [6,7] and complementary ground based observing methods [8,3,4,5] probing wind velocities at different altitudes in the atmosphere of Venus, these measurements can provide global information about dynamical properties and increase the understanding about our neighbor planet. [1] Gierasch, P.J. et al. (1997) University of Arizona Press, 459. [2] Bougher, S.W. et al. (1986) Icarus, 68, 284-312. [3] Lellouch, E. et al. (1994) Icarus, 110, 315-339. [4] Shah, K et al. (1991) Icarus, 93, 96-121. [5] Goldstein, J. et al. (1991) Icarus, 94, 45-63. [6] Drossart, P. et al. (2007) Nature, 450(7170), 641- 645. [7] Markiewicz, W.J. et al. (2007) Nature, 450(7170), 633-636. [8] Widemann, T. et al. (2007) Planetary and Space Science, 55, 1741-1756.

  8. Comparison of ice particle size variations across Ganymede and Callisto

    NASA Astrophysics Data System (ADS)

    Stephan, Katrin; Hoffmann, Harald; Hibbitts, Karl; Wagner, Roland; Jaumann, Ralf

    2016-04-01

    Ratios of band depths of different H2O ice absorptions as measured by the Near Infrared Spectrometer NIMS onboard the Galileo spacecraft [1] have been found to be semi-quantitative indicator of changes in the particle size of ice across the surfaces of the Jovian satellite Ganymede [2]. This method is now applied to Ganymede's neighboring satellite Callisto. On Ganymede, sizes reach from 1 μm near the poles to 1 mm near the equator [2]. Smallest particles occur at latitudes higher than ±30° where the closed magnetic field lines of Ganymede's magnetic field change into open ones and Ganymede's polar caps become apparent. Thus, the formation of these polar caps has often been attributed to brightening effects due to plasma bombardment of the surface [3,4]. Callisto, which does not exhibit an intrinsic magnetic field, however, also shows the same trend as observed on Ganymede with slightly larger particle sizes on Callisto than on Ganymede at low and mid latitude but similar particle sizes in the polar regions. Similar trends in the particle size variations on Callisto and on Ganymede imply that these variations are caused by similar surface processes. Our measurements rather point to a continuous decreasing of ice particle sizes toward the poles on both satellites related to changes of the surface temperatures [5]. Maximum temperatures during the day reach 150 K and 165 K near the equator of Ganymede and Callisto [6, 7], respectively and sublimation of ice particles and crystal growth [8] is expected to be the dominant surface process in these regions. In contrast, polar temperatures do not exceed 80 ± 5 K [5]. Larger particles in the equatorial region of Callisto than on Ganymede could be explained due to the slight higher maximum temperature but also a longer Callistoan day (Callisto: ~ 17 Earth days; Ganymede: ~ 7 Earth days). References: [1] Carlson et al.. (1999) Science 274, 385-388, 1996; [2] Stephan et al., 2009, EPSC, Abstract #EPSC2009-633; [3] Johnson, R.E. (1997), Icarus 128, 469-471; [4] Khurana et al., (2007), Icarus 191, 193-202; [5] Spencer, J.R. (1987), Icarus 69, 297-313 ; [6] Pappalardo et al. (2004), in Jupiter: The Planet, Satellites and Magnetosphere, F. Bagenal, T. Dowling & W. McKinnon (eds), Cambridge University Press.; [7] Moore, J.M. et al. (2004), in Jupiter: The Planet, Satellites and Magnetosphere, F. Bagenal, T. Dowling & W. McKinnon (eds), Cambridge University Press; [8] Clark et al. (1983), Icarus, 56, 233-245.

  9. Light Reflection from Packed Layers of Transparent Spheres: Is Hapke's Photometric Model Accurate Enough to Make Predictions?

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Voss, K. J.

    2011-03-01

    We demonstrate that the diffraction removal procedure outlined by Hapke et al. [Icarus, 199, 210 (2009)] contains an error. By following their intended scheme we found that the Hapke model is not anisotropic enough to describe the reflectance patterns.

  10. Icarus Falling: Re-Imagining Educational Theory

    ERIC Educational Resources Information Center

    Pirrie, Anne

    2015-01-01

    This article offers a critique of the notion of "capacity building" in educational theory. Are the intentions behind the latter enterprise as benign and altruistic as they first appear? How is the term "capacity building" to be understood? The article presents a radical and daring alternative for re-invigorating educational…

  11. TRAIT-BASED FRAMEWORK TO PREDICTING RELATIVE VULNERABILITY TO CLIMATE CHANGE IN NEAR-COASTAL SPECIES AND HABITAT

    EPA Science Inventory

    Like Icarus, near-coastal species are “flying too close” to the sun, and are being impacted by climate-induced changes in air and ocean temperature, precipitation, salinity, ocean pH, sea level rise, and nonindigenous species. Sound management requires knowledge of wh...

  12. Formation Timescales of the Martian Valley Networks

    NASA Astrophysics Data System (ADS)

    Hoke, M. T.; Hynek, B. M.

    2010-12-01

    The presence of valley networks across much of the ancient surface of Mars [e.g. 1] together with the locations and morphologies of the Martian deltas [e.g. 2] and ancient paleolakes [e.g. 3, 4], provides strong evidence that the Martian surface environment was once capable of sustaining long-lived flowing water. Many of the larger Martian valley networks exhibit characteristics consistent with their formation primarily from surface runoff of precipitated water [5-7]. Their formation likely followed similar processes as those that formed terrestrial river valleys, including the gradual erosion and transport of sediment downstream by bed load, suspended load, and wash load processes. When quantifying flow rates on Mars, some researchers have modified the Manning equation for depth- and width-averaged flow velocity in an attempt to better-fit Martian conditions [e.g. 3, 8-10]. These attempts, however, often result in flow velocities on Mars that are overestimated by up to a factor of two [10]. An alternative to the Manning equation that is often overlooked in the planetary science community is the Darcy-Weisbach (D-W) equation [11], which, unlike the Manning equation, maintains a dependence on the acceleration due to gravity. Although the D-W equation relies on a dimensionless friction function that has been fitted to terrestrial data, it is not a constant like the Manning coefficient. Rather, the D-W friction factor is a function of bed slope, flow depth, and median grain size [e.g. 8, 10, 12-14], and therefore it is better suited to model flow velocity on Mars. In this work, we investigate the formation timescales of the Martian valley networks through the use of four different sediment transport models [14], the D-W equation for average flow velocity, and a variety of parameters to encompass a range of possible formation conditions. This is done specific to each of eight large valley networks, all of which have crater densities that place their formation in the Late Noachian and Early Hesperian [15, 16], approximately 3.6 to 3.8 billion years ago. The preferred model scenario includes bankfull flows of 4-5 m depths corresponding to precipitation rates of 5 to 36 mm/day, depending on the valley network, and occurring intermittently 5% of the time. Results of the preferred model include formation timescales of 104 years (3°S, 5°E) to 108 years (east branch of Naktong Valles and 6°S, 45°E). References: [1] Hynek et al. (2010) JGR, doi:10.1029/2009JE003548; [2] Di Achille and Hynek (2010) Nature Geoscience, 3, 459-463; [3] Irwin et al. (2005) JGR, 110, E12S15; [4] Fassett and Head (2008) Icarus, 198, 37-56; [5] Craddock and Howard (2002) JGR, 107, 5111; [6] Howard et al. (2005) JGR, 110, E12S14; [7] Barnhart et al. (2009) JGR, 114, E01003; [8] Komar (1979) Icarus, 37, 156-181; [9] Goldspiel and Squyres (1991) Icarus, 89, 392-410; [10] Wilson et al. (2004) JGR, 109, E09003; [11] Leopold et al. (1964) Fluvial Processes in Geomorphology, 522pp; [12] Bathurst (1993) in Channel Network Hydrology, eds. Beven and Kirkby, p69-98; [13] Komar (1980) Icarus, 42, 317-329; [14] Kleinhans (2005) JGR, 110, E12003; [15] Fassett and Head (2008) Icarus, 195, 61-89; [16] Hoke and Hynek (2009) JGR, 114, E08002.

  13. A Cloud Microphysics Model for the Gas Giant Planets

    NASA Astrophysics Data System (ADS)

    Palotai, Csaba J.; Le Beau, Raymond P.; Shankar, Ramanakumar; Flom, Abigail; Lashley, Jacob; McCabe, Tyler

    2016-10-01

    Recent studies have significantly increased the quality and the number of observed meteorological features on the jovian planets, revealing banded cloud structures and discrete features. Our current understanding of the formation and decay of those clouds also defines the conceptual modes about the underlying atmospheric dynamics. The full interpretation of the new observational data set and the related theories requires modeling these features in a general circulation model (GCM). Here, we present details of our bulk cloud microphysics model that was designed to simulate clouds in the Explicit Planetary Hybrid-Isentropic Coordinate (EPIC) GCM for the jovian planets. The cloud module includes hydrological cycles for each condensable species that consist of interactive vapor, cloud and precipitation phases and it also accounts for latent heating and cooling throughout the transfer processes (Palotai and Dowling, 2008. Icarus, 194, 303-326). Previously, the self-organizing clouds in our simulations successfully reproduced the vertical and horizontal ammonia cloud structure in the vicinity of Jupiter's Great Red Spot and Oval BA (Palotai et al. 2014, Icarus, 232, 141-156). In our recent work, we extended this model to include water clouds on Jupiter and Saturn, ammonia clouds on Saturn, and methane clouds on Uranus and Neptune. Details of our cloud parameterization scheme, our initial results and their comparison with observations will be shown. The latest version of EPIC model is available as open source software from NASA's PDS Atmospheres Node.

  14. ICARUS study: prevalence and clinical features of impulse control disorders in Parkinson's disease.

    PubMed

    Antonini, Angelo; Barone, Paolo; Bonuccelli, Ubaldo; Annoni, Karin; Asgharnejad, Mahnaz; Stanzione, Paolo

    2017-04-01

    Impulse control disorders/other compulsive behaviours ('ICD behaviours') occur in Parkinson's disease (PD), but prospective studies are scarce, and prevalence and clinical characteristics of patients are insufficiently defined. To assess the presence of ICD behaviours over a 2-year period, and evaluate patients' clinical characteristics. A prospective, non-interventional, multicentre study (ICARUS (Impulse Control disorders And the association of neuRopsychiatric symptoms, cognition and qUality of life in ParkinSon disease); SP0990) in treated Italian PD outpatients. Study visits: baseline, year 1, year 2. Surrogate primary variable: presence of ICD behaviours and five ICD subtypes assessed by modified Minnesota Impulsive Disorder Interview (mMIDI). 1069/1095 (97.6%) patients comprised the Full Analysis Set. Point prevalence of ICD behaviours (mMIDI; primary analysis) was stable across visits: 28.6% (306/1069) at baseline, 29.3% (292/995) at year 1, 26.5% (245/925) at year 2. The most prevalent subtype was compulsive eating, followed by punding, compulsive sexual behaviour, gambling and buying disorder. Patients who were ICD positive at baseline were more likely to be male, younger, younger at PD onset, have longer disease duration, more severe non-motor symptoms (including mood and sexual function), depressive symptoms, sleep impairment and poorer PD-related quality of life. However, they did not differ from the ICD-negative patients in their severity of PD functional disability, motor performance and cognitive function. Prevalence of ICD behaviours was relatively stable across the 2-year observational period. ICD-positive patients had more severe depression, poorer sleep quality and reduced quality of life. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  15. Building On Builder: The Persistent Icarus Syndrome at Twenty Years

    DTIC Science & Technology

    2013-06-01

    Organizational Culture : Mapping the Terrain. Foundations for Organizational Science. Thousand Oaks, CA: Sage Publications, 2002. Matsumoto , David Ricky... Culture and Psychology . 4th ed. Belmont, CA: Wadsworth/Thomson, 2008. Maurer, Maurer. Aviation in the U.S. Army, 1919-1939. Honolulu, HI: University...43 4 ORGANIZATIONAL CULTURE : SEARCHING FOR DISCONNECTS...........................................................................72 5 ANALYSIS

  16. Trait-based framework to predict relative vulnerability of near-coastal species and habitats to climate change

    EPA Science Inventory

    Like Icarus, near-coastal species are “flying too close” to the sun, and are being impacted by climate-induced changes in air and ocean temperature, precipitation, salinity, ocean pH, and sea level rise. Sound management requires knowledge of what species and habitats...

  17. The millimeter-wavelength sulfur dioxide absorption spectra measured under simulated Venus conditions

    NASA Astrophysics Data System (ADS)

    Bellotti, Amadeo; Steffes, Paul G.

    2015-07-01

    Over 130 laboratory measurements of the 2-4 mm wavelength opacity of sulfur dioxide in a carbon dioxide atmosphere under simulated conditions for the upper Venus troposphere (temperatures between 308 and 343 K and pressures between 0.03 and 2 bar) have been made. These measurements along with the centimeter wavelength measurements by Steffes et al. (Steffes, P.G. et al. [2015]. Icarus 245, 153-161) have been used to empirically assess existing formalisms for sulfur dioxide opacity in a carbon dioxide atmosphere (Fahd, A.K., Steffes, P.G. [1992]. Icarus 97(2), 200-210; Suleiman, S.H. et al. [1996]. J. Geophys. Res.: Planets 101(E2), 4623-4635). The Van Vleck and Weisskopf Model (VVW) used by Fahd and Steffes with the JPL rotational line catalog (Pickett, H. et al. [1998]. J. Quant. Spectrosc. Radiat. Transfer 60(5), 499-890) was found to fit 85.88% of all 500 measurements within the 2-sigma uncertainty. This work will improve the confidence in retrievals of the atmospheric abundance of sulfur dioxide from millimeter-wavelength observations of the Venus atmosphere.

  18. Occultation Lightcurves for Selected Pluto Volatile Transport Models

    NASA Astrophysics Data System (ADS)

    Young, L. A.

    2004-11-01

    The stellar occultations by Pluto in 1988 and 2002 are demonstrably sensitive to changes in Pluto's atmosphere near one microbar (Elliot and Young 1992, AJ 103, 991; Elliot et al. 2003, Nature 424, 165; Sicardy 2003, Nature 424, 168). However, Pluto volatile-transport models focus on the changes in the atmospheric pressure at the surface (e.g., Hansen and Paige 1996, Icarus 20, 247; Stansberry and Yelle 1999, Icarus 141, 299). What's lacking is a connection between predictions about the surface properties and either temperature and pressure profiles measurable from stellar occultations, or the occultation light curve morphology itself. Radiative-conductive models can illuminate this connection. I will illustrate how Pluto's changing surface pressure, temperature, and heliocentric distance may affect occultation light curves for a selection of existing volatile transport models. Changes in the light curve include the presence or absence of an observable ``kink'' (or departure from an isothermal light curve), the appearance of non-zero minimum flux levels, and the detectability of the solid surface. These light curves can serve as examples of what we may anticipate during the upcoming Pluto occultation season, as Pluto crosses the galactic plane.

  19. Phase behavior and thermodynamic modeling of ices - implications for the geophysics of icy satellites. (Invited)

    NASA Astrophysics Data System (ADS)

    Choukroun, M.

    2010-12-01

    Ground-based observations and space missions to the outer Solar System (Voyager, Galileo, Cassini-Huygens) have evidenced recent geologic activity on many satellites of the giant planets. The diversity in surface expression of these icy moons’ activity is striking: from a scarred and young surface on Europa,1 with hydrated salts that may originate from a liquid layer buried at depth,2 to the South Polar plumes of Enceladus,3 where water ice particles are expelled along with a myriad of more complex molecules,4 to Titan, largest satellite of Saturn, with a dense atmosphere and a hydrocarbon cycle similar to the hydrological cycle on Earth.5 Large icy moons, i.e. with a radius greater than 500 km, share two particularities: a high content in water (on the order of a 30-70% bulk composition), and an interior segregated between a water-dominated mantle and a silicate-dominated core. The many forms water may have beneath the surface (ice polymorphs, liquid, hydrated compounds) bear a crucial role in the detected or alleged activity, and in the potential for astrobiological relevance. Indeed, any endogenic activity can only be approached through geophysical modelling of the internal structure and the thermal evolution. Current internal structure models for the icy moonse.g.,6 rely mainly on the contribution of each internal layer to the moment of inertia, generating non-unique solutions due to the large variability in density of H2O-bearing phases. Thermal evolution models,e.g.,7 can help constrain further the internal structure and geophysical activity, by starting with a given initial composition and state and investigating the thickening of icy layers through time. However, such models require both observational datasets and a precise description, as a function of pressure, temperature, and composition, of the thermophysical properties of the individual layers. Over the past century, experimental studies have provided a comprehensive view of the phase diagram of pure water, and of more complex chemical systems relevant to icy moons (sulfate salts, ammonia, volatiles). This presentation will review phases of interest, their physical properties, and their influence on the geophysical behavior of icy satellites. Then the focus will shift toward thermodynamic tools (equations of state, thermodynamic models), which can provide the inputs required by geophysical models. The specific case of the modeling of the water and water-ammonia phase diagrams will be presented,8,9 along with its planetary implications, and anticipated developments to address the chemical complexity of icy satellites. The author acknowledges support from a NASA Postdoctoral Program Fellowship, administered by Oak Ridge Associated Universities. This work has been conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. Government sponsorship acknowledged. References : 1Greeley et al., Icarus, 1998. 2McCord et al., J. Geophys. Res., 1999. 3Porco et al., Science, 2006. 4Waite et al., Nature, 2009. 5Toon et al., Icarus 1988. 6Sohl et al., Icarus 2002. 7Tobie et al., Icarus, 2005. 8Choukroun and Grasset, J. Chem. Phys, 2007. 9Choukroun and Grasset, J. Chem. Phys., in press.

  20. Model study of the organic photochemistry in the atmosphere of Mars in the context of the upcoming NOMAD/ExoMars mission

    NASA Astrophysics Data System (ADS)

    Viscardy, Sébastien; Daerden, Frank; Neary, Lori; García Muñoz, Antonio; Carine Vandaele, Ann

    2017-04-01

    Several detections of atmospheric methane on Mars have been reported over the last years (Krasnopolsky et al., Icarus, 2004, Formisano et al., Science, 2004, Mumma et al., Science, 2009, Fonti and Marzo, A&A, 2010 , Webster et al., Science, 2015). However those results have been disputed (Zahnle et al., Icarus, 2011) given that the observed lifetime of methane is apparently several orders of magnitude shorter than expected by the known photochemistry (Lefèvre and Forget, Nature, 2009). Until now it remains unclear whether a sink process has still to be discovered or the photochemistry itself is not fully well described. The NOMAD instrument onboard the ExoMars Trace Gas Orbiter (Vandaele et al., PSS, 2015, Robert et al., PSS, 2016) is thus expected to provide key information and make one able to better understand the fate of methane on Mars. Furthermore it has been recently shown that, instead of spreading uniformly in the atmosphere, the methane may form transient layers at 40-50 km in height during the first weeks after surface release (Viscardy et al., GRL, 2016). In this context, we aim to reinvestigate the organic photochemistry using a 3D Global Circulation Model (GCM) in the light of this result. In addition, it has been suggested that there could be a simultaneous release of methane and water vapor (Mumma et al., Science, 2009), e.g. resulting from the destabilization of methane clathrate hydrates. We will thus study how much this can affect the evolution of the atmospheric methane.

  1. Implications for Titan's potentially active regions: A study on Cassini/VIMS data.

    NASA Astrophysics Data System (ADS)

    Solomonidou, Anezina; Coustenis, Athena; Rodriguez, Sebastien; Bratsolis, Emmanuel; Le Mouelic, Stephane; Sotin, Christophe; Bampasidis, Georgios; Kyriakopoulos, Konstantinos; Moussas, Xenophon

    Continuing investigations of Titan's surface have shown that this Earth-like Saturnian satellite presents an extremely complex geology [1, 2, 3]. The Cassini Mission Visual and Infrared Mapping Spectrometer (VIMS) acquires data operating as a multi-spectral camera that allow for a complete analysis of the composition, geology and morphology of Titan's surface [4]. Two of the most geologically interesting areas on Titan are Xanadu's Tui Regio (20S, 130W) and Hotei Regio (26S, 78W) as they present higher 5m reflectivities than the surrounding areas [5] and have been interpreted as cryovolcanic in origin [6]. We present our study on both possibly active regions with the aim to identify the composition as well as the alterations of the components that compose the possible calderas and lava flows [7], by using radiative transfer modeling [8] and a classical staitistical method, the Principal Component Analysis [9]. [1] Jaumann, R. et al., (2009) Springer Netherlands pp. 75-140. [2] Nelson, R. M. et al., (2009) Icarus 199, 429-441. [3] Solomonidou, A. et al., (2009) European Planetary Science Congress Vol. 4, EPSC2009-710. [4] Jaumann, R. et al., (2006) Planet Space Science 54:1146-1155. [5] Barnes, J. W. et al., (2006) Geophysical Research Letters Vol. 33, L16204. [6] Lopes, R. M. C. et al., (2010) Icarus Vol. 205 pp:540-558. [7] Sotin, C. (2005) Nature, Vol 435. [8] Rodriguez, S. et al., (2009) Workshop on Hyperspectral Image and Signal Processing: Evolution on Remore Sensing pp. 1-4. [9] Bellucci, G. et al., (2004) Advances in Space Research 34 pp. 1640-1646.

  2. Comparing the topographic long profiles of gullies on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Conway, Susan; Balme, Matthew; Murray, John; Towner, Martin

    2014-05-01

    Liquid water is not stable under the present atmospheric conditions on the martian surface. Hence, the discovery of widespread recently active kilometre-scale gullies that resemble those carved by water on Earth [1,2], was extremely surprising. Some authors suggest that either carbon dioxide driven processes or dry mass wasting could explain these features [3-6]. However, recent work has shown that some aspects of gully-morphology, such as braiding and streamlined features, are hard to explain with these mechanisms [e.g., 7,8]. In this study we have used topographic long profiles to investigate the formation mechanism of martian gullies. On Earth it is recognised that certain forms of long-profiles can be linked to a particular process, for example, at equilibrium fluvial systems have a profile curve of exponential decay [9]. However, these shapes have not been generalised for kilometre-scale landforms, such as gullies. We used differential GPS data and airborne laser altimeter data on Earth (LiDAR) from NSA-funded NCALM and UK's NERC ARSF to generate profile-data for gullies with a fluvial and debris flow origin. On Mars we used stereo-images from the HiRISE camera (25 cm/pix) and generated the gully-profiles using the manual point-matching method of Kreslavsky [10]. We found that the shape of gully long profiles on Mars is similar to that of both fluvial and debris flow gullies on Earth. However, more of the martian gullies we have studied are similar to fluvial gullies than to debris flow gullies. The slopes of the gully long profiles on Mars tend to be shallower than fluvial gullies on Earth, but this can be accounted for by the difference in gravity between Earth and Mars. References cited: [1] M.C. Malin and K.S. Edgett, Science, (2000), 288,2330-2335.[2] M.C. Malin et al., Science, (2006), 314,1573-1577. [3] T. Shinbrot et al., Proc Natl Acad Sci U A, (2004), 101,8542-8546. [4] S. Diniega et al., Icarus, (2013), 225,526-537. [5] T. Ishii and S. Sasaki, Lunar Planet. Sci. Conf. 35, (2004),no. 1556. [6] C.H. Hugenholtz, Icarus, (2008), 197,65-72. [7] J.L. Dickson and J.W. Head, Icarus, (2009), 204,63-86. [8] C.J. Gallagher and M.R. Balme, Geol. Soc. Lond. Spec. Publ., (2011), 356,87-110. [9] J.T. Hack, US Geol. Surv. Prof. Pap., (1957), 294-B,45-97. [10] M.A. Kreslavsky, Workshop Martian Gullies, (2008),abs.#1301.

  3. Physical properties of the Saturn's rings with the opposition effect.

    NASA Astrophysics Data System (ADS)

    Deau, E.

    2012-04-01

    We use the Cassini/ISS images from the early prime mission to build lit phase curves data from 0.01 degrees to 155 degrees at a solar elevation of 23-20 degrees. All the main rings exhibit on their phase curves a prominent surge at small phase angles. We use various opposition effect models to explain the opposition surge of the rings, including the coherent backscattering, the shadow hiding and a combination of the two (Kawata & Irvine 1974 In: Exploration of the planetary system Book p441; Shkuratov et al. 1999, Icarus, 141, p132; Poulet et al. 2002 Icarus, 158, p224 ; Hapke et al. 2002 Icarus, 157, p523). Our results show that either the coherent backscattering alone or a combination of the shadow hiding and the coherent backscattering can explain the observations providing physical properties (albedo, filling factor, grain size) consistent with previous other studies. However, they disagree with the most recent work of Degiorgio et al. 2011 (EPSC-DPS Abstract #732). We think that their attempt to use the shadow hiding alone lead to unrealistic values of the filling factor of the ring particles layer. For example they found 10^-3 in one of the thickest regions of the C ring (a plateau at R=88439km with an optical depth tau=0.22). We totally disagree with their conclusions stating that these values are consistent for the C ring plateaux and did not found any references that are consistent with theirs, as they claimed. We believe that their unrealistic values originated from the assumptions of the models they used (Kawata & Irvine and Hapke), which are basically an uniform size distribution. Any model using an uniform size distribution force the medium to be very diluted to reproduce the opposition surge. Our modeling that uses a power law size distribution provides realistic values. All these results have been already published previously (http://adsabs.harvard.edu/abs/2007PhDT........25D) and are summarized in a forthcoming manuscript submitted to publication so we recommend to Degiorgio et al. to either cite our work properly or at least try to produce an original work. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Copyright 2012 California Institute of Technology. Government sponsorship is acknowledged.

  4. Spatial Distribution of the Forbidden 1.707 mm Rovibronic Emission on Io

    NASA Astrophysics Data System (ADS)

    de Pater, Imke; de Kleer, Katherine; Adamkovics, Mate

    2017-10-01

    Io’s forbidden SO 1.707 mm rovibronic transition was discovered in 1999 when the satellite was observed with the NIRSPEC spectrometer on the Keck telescope while in eclipse [1]. The emission, at the time indicative of a rotational temperature of 1000 K, was attributed to SO molecules in the excited a1D state, ejected as such from the vent at a thermodynamic quenching temperature of ~1500 K. We suggested Loki as its source, a volcano that was exceptionally active during this period. In subsequent years we found that the disk-averaged SO emission varies substantially over time [2]. In November 2002 we observed Io in eclipse with Keck’s NIRSPEC coupled to the Adaptive Optics (AO) system, and identified a latitudinal variation in SO: most emission came from the equator and the south, and practically no emission was detected in the north [3]. To further investigate the nature of the SO emission, we observed Io in eclipse with the near-infrared integral field spectrograph OSIRIS, coupled to the AO system, on the Keck II telescope on UT 27 July 2010 and 25 December 2015. On the latter date we observed simultaneously with the NIRSPEC spectrometer at a high spectral resolution (R ~ 25,000). On these dates Callisto and Ganymede, resp., were close enough to be used for wavefront sensing. The angular resolution of our images is ~0.1”, or ~10 resolution elements across Io’s disk. The emission is extended; preliminary results show that in 2010 most of the emission originated in the north, and in 2015 it appeared to be more confined to the equatorial region. Potential connections to active volcanoes, or absence thereof, and model fits to the emission bands including LTE vs non-LTE contributions will be discussed. [1]: de Pater, I., et al., 2002. Icarus, 156, 296-301.[2]: Laver, C., et al. 2007. Icarus, 189, 401-408.[3]: de Pater, I. et al., 2007. Icarus, 191, 172-182.

  5. Crystalline and amorphous H2O on Charon

    NASA Astrophysics Data System (ADS)

    Dalle Ore, Cristina M.; Cruikshank, Dale P.; Grundy, Will M.; Ennico, Kimberly; Olkin, Catherine B.; Stern, S. Alan; Young, Leslie A.; Weaver, Harold A.

    2015-11-01

    Charon, the largest satellite of Pluto, is a gray-colored icy world covered mostly in H2O ice, with spectral evidence for NH3, as previously reported (Cook et al. 2007, Astrophys. J. 663, 1406-1419 Merlin, et al. 2010, Icarus, 210, 930; Cook, et al. 2014, AAS/Division for Planetary Sciences Meeting Abstracts, 46, #401.04). Images from the New Horizons spacecraft reveal a surface with terrains of widely different ages and a moderate degree of localized coloration. The presence of H2O ice in its crystalline form (Brown & Calvin 2000 Science 287, 107-109; Buie & Grundy 2000 Icarus 148, 324-339; Merlin et al, 2010) along with NH3 is consistent with a fresh surface.The phase of H2O ice is a key tracer of variations in temperature and physical conditions on the surface of outer Solar System objects. At Charon’s surface temperature H2O is expected to be amorphous, but ground-based observations (e.g., Merlin et al. 2010) show a clearly crystalline signature. From laboratory experiments it is known that amorphous H2O ice becomes crystalline at temperatures of ~130 K. Other mechanisms that can change the phase of the ice from amorphous to crystalline include micro-meteoritic bombardment (Porter et al. 2010, Icarus, 208, 492) or resurfacing processes such as cryovolcanism.New Horizons observed Charon with the LEISA imaging spectrometer, part of the Ralph instrument (Reuter, D.C., Stern, S.A., Scherrer, J., et al. 2008, Space Science Reviews, 140, 129). Making use of high spatial resolution (better than 10 km/px) and spectral resolving power of 240 in the wavelength range 1.25-2.5 µm, and 560 in the range 2.1-2.25 µm, we report on an analysis of the phase of H2O ice on parts of Charon’s surface with a view to investigate the recent history and evolution of this small but intriguing object.This work was supported by NASA’s New Horizons project.

  6. New Approaches in estimating Dust Devil Parameters, Trajectories and Populations from Single-Station Measurements on Mars and Earth

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph

    2015-11-01

    A Monte-Carlo modeling approach (Lorenz, J. Atm. Sci., 2014) using a power law population function and empirical correlations between diameter and longevity can be used to reconcile single-station pressure records of vortex close-approaches with visual counts of dust devils and Large Eddy Simulations (LES). That work suggests that on Earth, the populations can be reconciled if dust-lifting occurs with a typical threshold corresponding to core pressure drop of 0.8 mb, a little higher than the ~0.3 mb estimated in laboratory experiments. A similar analysis can be conducted at Mars. The highest vortex production rates in LES, indicated from field encounters, and extrapolated from visual counts, appear to be of the order of 1000 per km2 per day.Recent field experiments at a playa near Goldstone, CA (Lorenz et al., Bulletin of the Seismological Society of America, in press) show that dust devils cause a ground tilt, due to the negative pressure load of the vortex on the elastic ground, that can be detected with a broadband seismometer like that on InSight. Dust devils therefore can serve as a ‘seismic source’ to characterize the shallow subsurface.Observations of the InSight landing area in Elysium by Reiss and Lorenz (Icarus, submitted) show that dust devil trails are abundant, but smaller in diameter than those at Gusev. This may indicate a shallower Planetary Boundary Layer (PBL) at this site and season : Fenton and Lorenz (Icarus, 2015) found that observed dust devil height and spacing in Amazonis relates to the PBL thickness.Quantitative assessment of dust devil effects (e.g. electrical and magnetic signatures) requires knowledge of encounter geometry, notably miss distance. A recent heuristic approach has been developed (Lorenz, Icarus, submitted) to fit an analytic vortex model to pressure, windspeed and direction histories to recover this geometry. Some ambiguities exist, but can be constrained with camera images and/or the azimuth history estimated from seismic data.

  7. Exogenic and endogenic Europa minerals

    NASA Astrophysics Data System (ADS)

    Maynard-Casely, H. E.; Brand, H. E. A.; Wilson, S. A.

    2016-12-01

    The Galileo Near Infrared Mapping Spectrometer (NIMS) identified a significant `non-ice' component upon the surface of Jupiter's moon Europa. Current explanations invoke both endogenic and exogenic origins for this material. It has long been suggested that magnesium and sodium sulfate minerals could have leached from the rock below a putative ocean (endogenic) 1 and that sulfuric acid hydrate minerals could have been radiologically produced from ionised sulfur originally from Io's volcanoes (exogenic) 2. However, a more recent theory proposes that the `non-ice' component could be radiation damaged NaCl leached from Europa's speculative ocean 3. What if the minerals are actually from combination of both endogenic and exogenic sources? To investigate this possibility we have focused on discovering new minerals that might form in the combination of the latter two cases, that is a mixture of leached sulfates hydrates with radiologically produced sulfuric acid. To this end we have explored a number of solutions in the MgSO4-H2SO4-H2O and Na2SO4-H2SO4-H2O systems, between 80 and 280 K with synchrotron x-ray powder diffraction. We report a number of new materials formed in this these ternary systems. This suggests that it should be considered that the `non-ice' component of the Europa's surface could be a material derived from endogenic and exogenic components. 1 Kargel, J. S. Brine volcanism and the interior structures of asteroids and icy satellites. Icarus 94, 368-390 (1991). 2 Carlson, R. W., Anderson, M. S., Mehlman, R. & Johnson, R. E. Distribution of hydrate on Europa: Further evidence for sulfuric acid hydrate. Icarus 177, 461-471, doi:10.1016/j.icarus.2005.03.026 (2005). 3 Hand, K. P. & Carlson, R. W. Europa's surface color suggests an ocean rich with sodium chloride. Geophysical Research Letters, 2015GL063559, doi:10.1002/2015gl063559 (2015).

  8. Models of the merger between the two long-lived giant anticyclones BE and FA in the Jovian atmosphere using the EPIC code.

    NASA Astrophysics Data System (ADS)

    Morales-Juberías, R.; Sanchez-Lavega, A.; Hueso, R.; Dowling, T. E.

    2001-11-01

    We use the EPIC code (Dowling et al. Icarus, 132, 221. 1998) to simulate the merger that took place in March - April 2000 between the white ovals BE and FA (A. Sanchez-Lavega et al., Icarus, 142, 116. 1999, and Icarus, 149, 491. 2001). This merger was the final stage of a more complex interaction that started the 1st of October 1999 involving also the GRS and a small cyclone cell located between the two white ovals. One of the most important issues we try to reproduce here is the observation that the merger at the NH3 cloud level (pressures ~ 0.4 - 1 bars) and in upper levels (hazes at 0.15 - 0.20 bar) was different. While at high altitude the vortices orbited around each other before merging, at the ammonia cloud level they formed a `peanut-shaped' structure without any appreciable rotation before they joined. The other important issue that we try to adjust in our simulations is the critical distance to merge ( ~ 9700 km) as well as the `merging time' ( ~ 21 days) once this critical distance is reached. We present a series of simulations on the stability, motions and interactions of the vortices for different sets of the vertical temperature profile, the zonal wind velocity structure (meridional and vertical profiles), and the intensity and vertical extension of the vortices themselves. The vertical analysis covers a pressure range from 1 mbar to 10 bar, allowing to perform a characterization of the upper Jovian troposphere. This work has been supported by an Spanish - US Fulbright cooperation project (2000-2001). The Spanish team was also supported by MCYT research project PNAYA2000-0932. R. Morales acknowledges a fellowship from Universidad del País Vasco and R. Hueso a postdoctoral fellowship from Gobierno Vasco.

  9. Mercury exosphere. III: Energetic characterization of its sodium component

    NASA Astrophysics Data System (ADS)

    Leblanc, Francois; Chaufray, Jean-Yves; Doressoundiram, Alain; Berthelier, Jean-Jacques; Mangano, Valeria; López-Ariste, Arturo; Borin, Patrizia

    2013-04-01

    Mercury's sodium exosphere has been observed only few times with high spectral resolution from ground based observatories enabling the analysis of the emission spectra. These observations highlighted the energetic state of the sodium exospheric atoms relative to the surface temperature. More recently, the Doppler shift of the exospheric Na atoms was measured and interpreted as consistent with an exosphere moving outwards from the subsolar point (Potter, A.E., Morgan, T.H., Killen, R.E. [2009]. Icarus 204, 355-367). Using THEMIS solar telescope, we observed Mercury's sodium exosphere with very high spectral resolution at two opposite positions of its orbit. Using this very high spectral resolution and the scanning capabilities of THEMIS, we were able to reconstruct the 2D spatial distributions of the Doppler shifts and widths of the sodium atomic Na D2 and D1 lines. These observations revealed surprisingly large Doppler shift as well as spectral width consistent with previous observations. Starting from our 3D model of Mercury Na exosphere (Mercury Exosphere Global Circulation Model, Leblanc, F., Johnson, R.E. [2010]. Icarus 209, 280-300), we coupled this model with a 3D radiative transfer model described in a companion paper (Chaufray, J.Y., Leblanc, F. [2013]. Icarus, submitted for publication) which allows us to properly treat the non-maxwellian state of the simulated sodium exospheric population. Comparisons between THEMIS observations and simulations suggest that the previously observed energetic state of the Na exosphere might be essentially explained by a state of the Na exospheric atoms far from thermal equilibrium along with the Doppler shift dispersion of the Na atoms induced by the solar radiation pressure. However, the Doppler shift of the spectral lines cannot be explained by our modelling, suggesting either an exosphere spatially structured very differently than in our model or the inaccuracy of the spectral calibration when deriving the Doppler shift.

  10. Climate Cycling on Early Mars Caused by the Carbonate-Silicate Cycle

    NASA Astrophysics Data System (ADS)

    Kasting, J. F.; Batalha, N. E.; Haqq-Misra, J. D.; Kopparapu, R.

    2016-12-01

    For decades, scientists have tried to explain the evidence for fluvial activity on early Mars, but a consensus has yet to emerge regarding the mechanism for producing it. One hypothesis suggests early Mars was warmed by a thick greenhouse atmosphere [1]. Another suggests early Mars was generally cold but was warmed occasionally by impacts or by episodes of enhanced volcanism [2,3], with warming possibly extended by cirrus clouds [4]. These latter hypotheses struggle to produce the amounts of rainfall needed to form the martian valleys, but are consistent with inferred low rates of weathering compared to Earth. We suggest that both schools of thought are partly correct. Mars experienced dramatic climate cycles with extended periods of glaciation punctuated by warm periods lasting up to 10 Myr [5]. Cycles of repeated glaciation and deglaciation occurred because stellar insolation was low, and because CO2 outgassing could not keep pace with CO2 consumption by silicate weathering followed by deposition of carbonates. In order to deglaciate early Mars, substantial outgassing of molecular hydrogen from Mars' reduced crust and mantle was also required, as our own climate model is unable to do this without adding some greenhouse warming from H2 [6,7]. Our hypothesis can be tested by future Mars exploration that better establishes the time scale for valley formation. References: [1] Pollack JB, Kasting JF, Richardson SM, Poliakoff K. 1987. Icarus 71: 203-24 [2] Halevy I, Head JW. 2014. Nature Geoscience 7: 865-8 [3] Segura TL, Toon OB, Colaprete A, Zahnle K. 2002. Science 298: 1977-80 [4] Urata RA, Toon OB. 2013. Icarus 226: 229-50 [5] Batalha NE, Kopparapu RK, Haqq-Misra JD, Kasting JF. submitted. Climate cycling on early Mars caused by the carbonate-silicate cycle. EPSL [6] Ramirez RM, Kopparapu R, Zugger ME, Robinson TD, Freedman R, Kasting JF. 2014. Nature Geosci 7: 59-63 [7] Batalha N, Domagal-Goldman SD, Ramirez R, Kasting JF. 2015. Icarus 258: 337-49

  11. First Views of North Polar Clouds and Circulation on Uranus

    NASA Astrophysics Data System (ADS)

    Sromovsky, Lawrence A.; Fry, P. M.; Hammel, H. B.; de Pater, I.; Rages, K. A.

    2012-10-01

    Post-equinox high S/N imaging of Uranus, by HST in 2009-10 and by Keck and Gemini telescopes in 2011, provide the first detailed views of its high northern latitudes. These images reveal numerous small cloud features from which we were able to extend the zonal wind profile of Uranus into its north polar region and accurately characterize its 60° N 250-m/s prograde jet. We also found a large N-S asymmetry in the morphology of polar cloud features (Sromovsky et al. 2012, Icarus 220, 694-712). The variation of wind speed with latitude in the north polar region is consistent with solid body rotation at a rate of 4.3°/h relative to the interior. When new measurements are combined with measurements from 1997 onward, there remains a small but significant asymmetry at middle latitudes, peaking near 35°, where southern hemisphere winds are 20 m/s more westward than corresponding northern hemisphere winds. The discovery of polar discrete cloud features is significant because of their possible connection to large scale meridional mass flows. Analysis of 2002 HST STIS spectra shows that the southern high latitudes are depleted of methane in the upper troposphere (Karkoschka & Tomasko 2009 Icarus 202 287-309; Sromovsky et al. 2011, Icarus 215, 292-312), suggesting an upper tropospheric downwelling in the south polar region that would tend to depress convective cloud formation there. Indeed, no comparable features have ever been seen in high southern latitudes. On the other hand, the existence of numerous small, possibly convective, features at high northern latitudes suggests that the predominant meridional flow there is not downwelling and that CH4 may not yet be depleted there. New HST STIS observations are expected to resolve this issue. This research was supported by grants from NASA Planetary Atmospheres and Astronomy programs, and from the Space Telescope Science Institute.

  12. Spatial Variability in Enceladus' Plume Material: Convergence of Evidence or Coincidence?

    NASA Astrophysics Data System (ADS)

    Dhingra, Deepak; Hedman, Matthew M.; Clark, Roger Nelson

    2016-10-01

    Systematic spatial trends in the properties of the plume material emerging from Enceladus' tiger stripes can be observed in multiple observations from the Cassini mission. Subtle near infrared spectral differences within the plume have been reported across tiger stripes based on Visual and Infrared Mapping Spectrometer (VIMS) observations at high spatial resolution [1]. These spectral differences are likely due to variable water-ice grain size distribution along the source fissures (i.e. tiger stripes) and perhaps by the presence/absence of water vapor emission [2]. We now report a correlation of this spatial trend (along tiger stripes) with several other published results including (a) differences in the ice particle sizes across tiger stripes on Enceladus' surface [3, 4], (b) the surface abundance of organic material [3] and finally, (c) the relative proportion of type II grains (associated with organic/siliceous material) in the plume [5] from Damascus to Alexandria as measured by the Cosmic Dust Analyzer (CDA) instrument.The general trend indicates that at least some of the plume properties (viz. particle size, organic abundance) achieve a peak over Damascus and then become gradually subtle towards Alexandria. The observed differences between tiger stripes eruptions and the nature of correlations (trends from Damascus to Alexandria) hold important clues to the subsurface environment at Enceladus including differences in the geological setting of the individual tiger stripes [6]. The latter is a likely possibility given the large spatial spread of eruptions in Encealdus' South Polar Terrain (SPT).[1] Dhingra et al., (2015) 46th Lunar Planet. Sci. Conf., Abstract#1648[2] Dhingra et al. (2016) Icarus, submitted[3] Brown et al. (2006) Science, 311, 1425-1428[4] Jaumann et al. (2008) Icarus, 193, 407-419[5] Postberg et al. (2011) Nature, doi:10.1038/nature10175[6] Yin and Pappalardo (2015) Icarus, 260, 409-439

  13. Observational and Theoretical Constraints on Plume Activity at Europa

    NASA Astrophysics Data System (ADS)

    Nimmo, F.; Pappalardo, R.; Cuzzi, J.

    2007-12-01

    The recently-detected plume activity on Enceladus [1] has raised the question of whether Europa, too, might be active. The few Galileo images devoted to searches for plumes yielded no detections; comparisons between Voyager and Galileo images suggest that less than ~1mm of resurfacing has happened in the past 20 years over lengthscales of a few km [2]. Cassini observations of Europa's oxygen torus [3] suggest a column abundance and loss rate roughly consistent with modelled O sputtering rates [4,5]. However, the tenuous atmosphere does appear to be spatially non- uniform [6]. The observations suggest that plumes or other non-sputtering sources produce vapour at rates less than roughly 10~kg/s, or less than 10% of the Enceladus plume rate [1]. One possible source of vapour on Europa is shear heating [7,8]. For nominal Europa parameters the predicted rate of vapour production is roughly 1~kg/s per km of fault and the vapour exit velocity is ~450~m/s, much less than Europa's escape velocity. These results suggest that the bulk of the vapour will reimpact the surface after forming a plume approximately 70~km high. The resulting thermal anomaly due to vapour recondensation is ~2~K. To generate a total vapour production rate of 10~kg/s requires roughly 10~km of active faults. If there is a single plume, the local resurfacing rate is ~0.05~mm/yr, compatible with the observational resurfacing constraints [2]. Using a global lineament map [9] and assuming equi-spaced active faults, areas predicted to show most intense shear heating are two regions near the S pole (at ~90° and ~270° longitude) and one smaller patch near the N pole at ~270°. Shear heating, in addition to vapour production, may also cause elevated surface temperatures resulting in thermal segregation of ice [10]. These predictions may be compared with existing observations from Galileo, Cassini, and Earth-based telescopes [e.g. 6], and may assist in the planning of potential future spacecraft missions. [1] Porco C. et al., Science 311, 1393-1401, 2006. [2] Phillips, C.B. et al., JGR 105, 22579-22597, 2000. [3] Hansen, C.J. et al., Icarus 176, 305-315, 2005 [4] Smyth, W.H. and M.L. Marconi, Icarus 181, 510-526, 2006 [5] Shematovich, V.I. et al., Icarus 173, 480-498, 2005. [6] McGrath, M.A. et al., in Bagenal, F. et al., eds., CUP, 2004. [7] Nimmo, F., E. Gaidos, JGR 107, 5021, 2002. [8] Nimmo, F. et al., Nature 447, 289-291, 2007. [9] Crawford, Z.A., R.T. Pappalardo, LPSC XXXVII, 2264, 2006. [10] Spencer, J.R., Icarus 69, 297-313, 1987.

  14. New evidence for geothermal controls upon recent basal melting of mid-latitude glaciers on Mars

    NASA Astrophysics Data System (ADS)

    Butcher, Frances; Gallagher, Colman; Arnold, Neil; Balme, Matthew; Conway, Susan; Lewis, Stephen; Hagerman, Axel

    2017-04-01

    Diagnostic evidence for past melting of putative debris-covered glaciers (DCGs) in Mars' mid-latitudes [e.g. 1-2] is extremely rare. As such, it is widely believed that these DCGs have been perennially frozen to their beds in cold-based thermal regimes [e.g. 3] since their formation 40 Ma to 1 Ga [4-8]. Here, we present a geomorphic map and propose a landsystem model that challenges this paradigm. We identify a sinuous ridge emerging from the terminus of a DCG in the broad rift zone NE of the Tharsis volcanic province. We interpret this ridge as an esker formed by deposition of sediment within a subglacial meltwater conduit. This is only the second esker-like ridge to be identified in association with a mid-latitude DCG. Recent work [9] identified a complex of esker-like ridges on the foreland of an extant DCG in Phlegra Montes, for which high-resolution analysis is ongoing [10]. Significantly, both candidate eskers are located within graben. Graben are topographic troughs formed by crustal extension and are commonly associated with elevated geothermal heat flux [e.g. 11]. A paucity of meltwater morphologies associated with DCGs elsewhere in Mars' mid-latitudes implies that atmospheric warming alone was insufficient for widespread basal melting. We argue that, during deglaciation, atmospheric warming supplemented enhanced geothermal heat flux within graben such that the basal temperature threshold for basal melting of DCGs was surpassed in these locations [9]. This has implications for the search for recent life on Mars, as it helps constrain the likely regions of recent meltwater production within protected subglacial environments. As eskers are exposed relicts of subglacial drainage systems, they are accessible to landed missions without the high-risk requirement to drill through remnant decametre-thick debris-mantled ice. FEGB is funded by STFC grant ST/N50421X/1 [1] Head, J.W. et al. (2010), Earth Planet. Sc. Lett. 294, 306-320. [2] Levy, J.S. et al. (2014), J. Geophys. Res. Planets 119, 2188-2196. [3] Marchant, D.R., and Head, J.W. (2007), Icarus 192, 187-222. [4] Baker, D.M.H. et al. (2010), Icarus 207, 186-209 [5] Hartmann, W.K. et al. (2014) Icarus 228, 96-120. [6] Levy, J.S. et al. (2007), J. Geophys. Res. Planets 112, E08004. [7] Berman, D.C., et al. (2012), LPSC XLIII, Abstract #1593. [8] Baker, D.M.H. and Head, J.W. (2015), Icarus 260, 269-288. [9] Gallagher, C., and Balme, M.R. (2015), Earth Planet Sc. Lett. 431, 96-109. [10] Butcher, F.E.G. et al. (2016), LPSC XLVIII, Abstract #1238 [11] Meixner, J. et al. (2016), J. Struct. Geol. 82, 1-15.

  15. Compositional Variation in Large-Diameter Low-Albedo asteroids

    NASA Astrophysics Data System (ADS)

    Vilas, F.; Jarvis, K. S.; Thibault, C. A.; Sawyer, S. R.

    2000-12-01

    Age dating of meteorites indicates that the Solar System was subjected to a major heating event 4.5 Gyr ago. Models of the effects of heating by electromagnetic induction or decay of short-lived radionuclides combined with models of the early collisional history of the Solar System after Jupiter's formation indicate that asteroids observed today can be divided into two groups by diameter. Those asteroids having diameters greater than 100 km were mixed by multiple collisions but remain as gravitationally bound rubble piles. Asteroids with diameters less than 100 km should show more compositional diversity. Vilas and Sykes (1996, Icarus, 124) have shown using ECAS photometry that this compositional difference exists. The larger diameter group should be individually homogenous, with spectral differences showing the combined effects of a primordial compositional gradient in the asteroid belt with thermal metamorphism. We address the significance of 36 rotationally-resolved spectra of larger-diameter low-albedo asteroids of the C class (and subclasses B, F, G) and P class in the visible and Near-IR spectral regions. This work was supported by the NASA Planetary Astronomy program.

  16. Gas-drag-assisted capture of Himalia's family

    NASA Astrophysics Data System (ADS)

    Ćuk, Matija; Burns, Joseph A.

    2004-02-01

    To elucidate the capture of Jupiter's outer moons, we reverse-evolve satellites from their present orbits to their original heliocentric paths in the presence of Jupiter's primordial circumplanetary disk (Lubow et al., 1999, Astrophys. J. 526, 1001-1012; Canup and Ward, 2003, Astron. J. 124, 3404-3423). Our orbital histories use a symplectic integrator that allows dissipation. We assume that the present satellites Himalia, Elara, Lysithea, Leda, and S/2000 J11 are collisional fragments of a single parent. Our simulations show that this "prograde-cluster progenitor" (PCP) could be derived from objects with heliocentric orbits like those of the Hilda asteroid group. We show analytically that this capture is energetically possible. We also compare the spectroscopic characteristics of the prograde cluster members (Grav et al., 2003, Icarus, submitted for publication) with those of the Hildas, and conclude that the surface color of the prograde-cluster progenitor is consistent with an origin within the Hilda group. Accordingly, gas drag in the primordial jovian nebula is found to offer a plausible explanation for the origin of the prograde cluster. A similar capture mechanism is proposed for Saturn's Phoebe.

  17. Review on optical constants of Titan aerosols: Experimental results and modeling/observational data

    NASA Astrophysics Data System (ADS)

    Brassé, Coralie; Muñoz, Olga; Coll, Patrice; Raulin, François

    2014-05-01

    During the last years many studies have been performed to improve the experimental database of optical constants of Titan aerosols. Indeed, the determination of the optical constants of these particles is essential to quantify their capacity to absorb and to scatter solar radiation, and thus to evaluate their role on Titan's radiative balance and climate. The study of optical properties is also crucial to analyze and to better interpret many of Titan's observational data, in particular those acquired during the Cassini-Huygens mission. One way to determine Titan aerosols optical constant is to measure the optical constants of analogues of Titan complex organic material synthesized in the laboratory, usually named Titan's tholins (Sagan and Khare, 1979). But the optical constants depend on the chemical composition, the size and the shape of particles (Raulin et al., 2012). Those three parameters result from the experimental conditions such as energy source, gas mixing ratio, gas pressure, flow rate and irradiation time (Cable et al., 2012). Besides the determination of the refractive index in the laboratory, there are others methods using theoretical models or observational data. Nevertheless, theoretical models are based on laboratory data or/and observational data. The visible - near infrared spectral region of optical constants has been widely studied with laboratory analogues. Comparison of the obtained results suggest that tholins synthesized by Tran et al. (2003) and Majhoub et al. (2012) are the best representative of Titan aerosols with regards to their refractive indexes in this spectral region. The mid-infrared spectral range has been studied only by Imanaka et al. (2012) and slightly by Tran et al. (2003). In that spectral range, Titan tholins do not exhibit the features displayed by Kim and Courtin (2013) from Titan's observations. For spectral region of wavelengths smaller than 0.20µm or higher than 25µm, only the data from Khare et al. (1984) are available. Therefore it would be very useful to get more laboratory data and especially from Tran et al (2013), Mahjoub et al. (2012) and Imanaka et al. (2012) samples in these spectral regions since their refractive indexes match observational and theoretical data in other spectral ranges. This presentation will critically summarize these recent results and present detailled constraints on the optical constants Titan's aerosols. In addition, specific lacks of data will be highlighted as well as some possible investigations to be carried out to fill these gaps. References: Cable, M. L., et al., 2012. Titan Tholins: Simulating Titan Organic Chemistry in the Cassini-Huygens Era. Chemical Reviews. 112, 1882-1909. Imanaka, H., et al., 2012. Optical constants of Titan tholins at mid-infrared wavelengths (2.5-25 µm) and the possible chemical nature of Titan's haze particles. Icarus. 218, 247-261. Khare, B. N., et al., 1984. Optical-Constants of Organic Tholins Produced in a Simulated Titanian Atmosphere - from Soft-X-Ray to Microwave-Frequencies. Icarus. 60, 127-137. Kim, S. J., Courtin, R., 2013. Spectral characteristics of the Titanian haze at 1-5 micron from Cassini/VIMS solar occultation data. Astronomy & Astrophysics. 557, L6. Mahjoub, A., et al., 2012. Influence of methane concentration on the optical indices of Titan's aerosols analogues. Icarus. 221, 670-677. Raulin, F., et al., 2012. Prebiotic-like chemistry on Titan. Chemical Society Reviews. 41, 5380-5393. Sagan, C., Khare, B. N., 1979. Tholins - Organic-Chemistry of Inter-Stellar Grains and Gas. Nature. 277, 102-107. Tran, B. N., et al., 2003. Simulation of Titan haze formation using a photochemical flow reactor - The optical constants of the polymer. Icarus. 165, 379-390. Acknowledgements: We acknowledge support from the French Space Agency (CNES) and the European Space Agency (ESA).

  18. Discovery of Grooves on Gaspra

    USGS Publications Warehouse

    Veverka, J.; Thomas, P.; Simonelli, D.; Belton, M.J.S.; Carr, M.; Chapman, C.; Davies, M.E.; Greeley, R.; Greenberg, R.; Head, J.; Klaasen, K.; Johnson, T.V.; Morrison, D.; Neukum, G.

    1994-01-01

    We report the discovery of grooves in Galileo high-resolution images of Gaspra. These features, previously seen only on Mars' satellite Phobos, are most likely related to severe impacts. Grooves on Gaspra occur as linear and pitted depressions, typically 100-200 m wide, 0.8 to 2.5 km long, and 10-20 m deep. Most occur in two major groups, one of which trends approximately parallel to the asteroid's long axis, but is offset by some 15??; the other is approximately perpendicular to this trend. The first of these directions falls along a family of planes which parallel three extensive flat facets identified by Thomas et al., Icarus 107. The occurrence of grooves on Gaspra is consistent with other indications (irregular shape, cratering record) that this asteroid has evolved through a violent collisional history. The bodywide congruence of major groove directions and other structural elements suggests that present-day Gaspra is a globally coherent body. ?? 1994 Academic Press. All rights reserved.

  19. Experimental And Theoretical High Energy Physics Research At UCLA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cousins, Robert D.

    2013-07-22

    This is the final report of the UCLA High Energy Physics DOE Grant No. DE-FG02- 91ER40662. This report covers the last grant project period, namely the three years beginning January 15, 2010, plus extensions through April 30, 2013. The report describes the broad range of our experimental research spanning direct dark matter detection searches using both liquid xenon (XENON) and liquid argon (DARKSIDE); present (ICARUS) and R&D for future (LBNE) neutrino physics; ultra-high-energy neutrino and cosmic ray detection (ANITA); and the highest-energy accelerator-based physics with the CMS experiment and CERN’s Large Hadron Collider. For our theory group, the report describesmore » frontier activities including particle astrophysics and cosmology; neutrino physics; LHC interaction cross section calculations now feasible due to breakthroughs in theoretical techniques; and advances in the formal theory of supergravity.« less

  20. Dynamics of Venus' Southern hemisphere and South Polar Vortex from VIRTIS data obtained during the Venus Expres Mission

    NASA Astrophysics Data System (ADS)

    Hueso, R.; Garate-Lopez, I.; Sanchez-Lavega, A.

    2011-12-01

    The VIRTIS instrument onboard Venus Express observes Venus in two channels (visible and infrared) obtaining spectra and multi-wavelength images of the planet. The images have been used to trace the motions of the atmosphere at different layers of clouds [1-3]. We review the VIRTIS cloud image data and wind results obtained by different groups [1-3] and we present new results concerning the morphology and evolution of the South Polar Vortex at the upper and lower cloud levels with data covering the first 900 days of the mission. We present wind measurements of the South hemisphere obtained by cloud tracking individual cloud features and higher-resolution wind results of the polar region covering the evolution of the South polar vortex. The later were obtained by an image correlation algorithm run under human supervision to validate the data. We present day-side data of the upper clouds obtained at 380 and 980 nm sensitive to altitudes of 66-70 km, night-side data in the near infrared at 1.74 microns of the lower cloud (45-50 km) and day and night-side data obtained in the thermal infrared (wavelengths of 3.8 and 5.1 microns) which covers the dynamical evolution of Venus South Polar vortex at the cloud tops (66-70 km). We explore the different dynamics associated to the varying morphology of the vortex, its dynamical structure at different altitudes, the variability of the global wind data of the southern hemisphere and the interrelation of the polar vortex dynamics with the wind dynamics at subpolar and mid-latitudes. Acknowledgements: Work funded by Spanish MICIIN AYA2009-10701 with FEDER support and Grupos Gobierno Vasco IT-464-07. References [1] A. Sánchez-Lavega et al., Geophys. Res. Lett. 35, L13204, (2008). [2] D. Luz et al., Science, 332, 577-580 (2011). [3] R. Hueso, et al., Icarus doi:10.1016/j.icarus.2011.04.020 (2011)

  1. Recovering Knowledge for Science Education Research: Exploring the "Icarus Effect" in Student Work

    ERIC Educational Resources Information Center

    Georgiou, Helen; Maton, Karl; Sharma, Manjula

    2014-01-01

    Science education research has built a strong body of work on students' understandings but largely overlooked the nature of science knowledge itself. Legitimation Code Theory (LCT), a rapidly growing approach to education, offers a way of analyzing the organizing principles of knowledge practices and their effects on science education. This…

  2. Comment on "The surface of lo: A new model" by Bruce Hapke

    USGS Publications Warehouse

    McEwen, A.S.; Lunine, J.I.

    1990-01-01

    Hapke (1989, Icarus 79, 56-74) proposed that the surface of Io is dominantly basaltic with thin coatings of polysulfur oxide, S2O, ad SO,2. However, observations and models of the active volcanism indicate that volatiles such as sulfur and SO2 must be more abundant than envisioned by Hapke. ?? 1990.

  3. Continued monitoring of aeolian activity within Herschel Crater, Mars

    NASA Astrophysics Data System (ADS)

    Cardinale, Marco; Pozzobon, Riccardo; Michaels, Timothy; Bourke, Mary C.; Okubo, Chris H.; Chiara Tangari, Anna; Marinangeli, Lucia

    2017-04-01

    In this work, we study a dark dune field on the western side of Herschel crater, a 300 km diameter impact basin located near the Martian equator (14.4°S, 130°E), where the ripple and dune motion reflects the actual atmospheric wind conditions. We develop an integrated analysis using (1) automated ripple mapping that yields ripple orientations and evaluates the spatial variation of actual atmospheric wind conditions within the dunes, (2) an optical cross-correlation that allows us to quantify an average ripple migration rate of 0.42 m per Mars year, and (3) mesoscale climate modeling with which we compare the observed aeolian changes with modeled wind stresses and directions. Our observations are consistent with previous work [1] [2] that detected aeolian activity in the western part of the crater. It also demonstrates that not only are the westerly Herschel dunes movable, but that predominant winds from the north are able to keep the ripples and dunes active within most (if not all) of Herschel crater in the current atmospheric conditions. References: [1] Cardinale, M., Silvestro, S., Vaz, D.A., Michaels, T., Bourke, M.C., Komatsu, G., Marinangeli, L., 2016. Present-day aeolian activity in Herschel Crater, Mars. Icarus 265, 139-148. doi:10.1016/j.icarus.2015.10.022. [2] Runyon, K.D., Bridges, N.T., Ayoub, F., Newman, C.E. and Quade, J.J., 2017. An integrated model for dune morphology and sand fluxes on Mars. Earth and Planetary Science Letters, 457, pp.204-212.

  4. Electrostatic Levitation of Fines on Asteroids

    NASA Astrophysics Data System (ADS)

    Lee, P.

    1995-09-01

    Electrostatic fields can develop at the surface of resistive asteroids exposed directly to solar radiation and to the solar wind. As on the Moon (e.g., [1-3]), the process may lead to the levitation and transport of charged grains, and contribute to winnowing asteroidal regoliths of their finest particle size fraction. Two commonly proposed mechanisms for the levitation of dust on the Moon are applied to asteroids. The first depends on global scale electrostatic fields and involves the development of a near-surface photoelectron layer over the asteroid's sunlit hemisphere [4,5] ; the second involves local fields near the terminator and particle charging by higher-energy photoelectron emission on the sunlit faces of blocks and other small-scale prominences [6,7]. Preliminary modeling results suggest that on a sufficiently resistive and slow-rotating asteroid at a heliocentric distance of 3 AU, the subsolar region evolves surface electrostatic fields of ~5 V/m^-1, while field intensities in the terminator zone may reach ~10^5 V/m^-1. Charged regolithic fines are easily levitated, their fate being a function of their charge and size. On a 20 km-radius chondritic main belt asteroid, particles up to ~100 microns across may be electro- statically accelerated to escape. Fines <=1 micron across are subject to radiation pressure and/or to solar wind drag as soon as they are lofted, and may be quickly entrained to escape even if initially launched at sub-escape velocities. Larger particles levitated in the sub-escape regime remain gravitationally bound to the asteroid and experience lateral transport along local electrostatic and gravity gradients. The particles may migrate across the asteroid's surface indefinitely or, more likely, until they settle in perenially shadowed areas and/or topographic lows (craters or grooves), thus smoothing the asteroid's topography and minimizing shadows. They will remain on the asteroid until ejected by impacts or until the particles are further comminuted by micrometeoritic sandblasting. Remote-sensing studies of asteroids and the examination of meteorite regolithic breccias indicate that, in comparison to the lunar regolith, asteroidal regoliths are generally deficient in fine-grained material <=100 microns across (i.e. in dust and agglutinates) (e.g., [8,9]). This characteristic, usually attributed to the preferential loss of smaller particles by micrometeoritic bombardment [10], may be in part due to electrostatic winnowing. Surface features on Phobos, Deimos and on asteroids 951 Gaspra and 243 Ida (regional albedo-topography relationships [11-13], dark-floored craters [11,14], grooves [11,15], blocks with possible basal debris aprons [16]) appear consistent with an electrophysical mobilization of fines. The inference from polarimetry [17] that the surfaces of M-type asteroids, which are thought to be metal-rich and thus unlikely to evolve strong fields, are finer-grained than most other types of asteroid surfaces suggests that the size of the smallest particles retained on asteroids may indeed be related to their electrophysical properties. Although many unknowns remain with regard to the actual electrophysical properties of asteroid surfaces and to the true effectiveness of the levitation mechanisms invoked, the available models predict interesting results. Electrostatic levitation offers an additional means of particle segregation, transport, and removal on asteroids. The process is expected to be more effective closer to the sun, on less massive objects, on asteroids with a slower spin rate, on the more resistive surfaces, over the more rugged terrain, for less dense particles, and for smaller grains. References: [1] Rennilson J. J. and Criswell D. R. (1974) Moon, 10, 121-142. [2] Berg O. E. et al. (1974) GRL, 1, 289. [3] Whipple E. C. (1981) Rept. Prog. Phys., 44, 1197-1250. [4] Singer S. F. and Walker E. H. (1962) Icarus, 1, 7-12. [5] Mendis D. A. et al. (1981) Astrophys. J., 249, 789-797. [6] Criswell D. R. (1973) in Photons and Particle Interactions with Surfaces in Space (R. Grard, ed.), 545-556. [7] De B. R. and Criswell D. R. (1977) JGR, 82, 999-1004. [8] McKay D. S. et al. (1989) in Asteroids II (R. Binzel et al., eds.), 617-642. [9] Bunch T. E. and Rajan R. S. (1988) in Meteorites and the Early Solar System (J. Kerridge and M. Matthews, eds.), 144-164. [10] Matson D. L. et al. (1977). Proc. LSC 8th, 1001-1011. [11] Thomas P. and Veverka J. (1979) in Asteroids (T. Gehrels, ed.), 628-651. [12] Helfenstein P. et al. (1994) Icarus, 107, 37-60. [13] Helfenstein P. et al. (1995) Icarus, submitted. [14] Sullivan R. et al. (1995) Icarus, submitted. [15] Veverka J. et al. (1994) Icarus, 107, 72-83. [16] Lee P. et al. (1995) Icarus, submitted. [17] Dollfus A. et al. (1989) in Asteroids II (R. Binzel et al., eds.), 594-616.

  5. More chips off of Asteroid (4) Vesta: Characterization of eight Vestoids and their HED meteorite analogs

    NASA Astrophysics Data System (ADS)

    Hardersen, Paul S.; Reddy, Vishnu; Roberts, Rachel; Mainzer, Amy

    2014-11-01

    Vestoids are generally considered to be fragments from Asteroid (4) Vesta that were ejected by past collisions that document Vesta's collisional history. Dynamical Vestoids are defined by their spatial proximity with Vesta (Zappala, V., Bendjoya, Ph., Cellino, A., Farinella, P., Froeschle', C. [1995]. Icarus 116, 291-314; Nesvorny, D. [2012]. Nesvorny HCM Asteroid Families V2.0. EAR-A-VARGBDET-5-NESVORNYFAM-V2.0. NASA Planetary Data System.). Taxonomic Vestoids are defined as V-type asteroids that have a photometric, visible-wavelength spectral, or other observational relationship with Vesta (Tholen, D.J., 1984. Asteroid Taxonomy from Cluster Analysis of Photometry. Ph.D. Thesis, University of Arizona, Tucson; Bus, S.J., Binzel, R.P. [2002]. Icarus 158, 106-145; Carvano, J., Hasselmann, P.H., Lazzaro, D., Mothe'-Diniz, T. [2010]. Astron. Astrophys. 510, A43). We define 'genetic Vestoids' as V-type asteroids that are probable fragments ejected from (4) Vesta based on the supporting combination of dynamical, near-infrared (NIR) spectral, and taxonomic evidence. NIR reflectance spectroscopy is one of the primary ground-based techniques to constrain an asteroid's major surface mineralogy (Burns, R.G. [1993a]. Mineralogical Applications of Crystal Field Theory. Cambridge University Press, Cambridge, UK, 551 p). Despite the reasonable likelihood that many dynamical and taxonomic Vestoids likely originate from Vesta, ambiguity exists concerning the fraction of these populations that are from Vesta as compared to the fraction of asteroids that might not be related to Vesta. Currently, one of the most robust techniques to identify the genetic Vestoid population is through NIR reflectance spectroscopy from ∼0.7 to 2.5 μm. The derivation of spectral band parameters, and the comparison of those band parameters with those from representative samples from the Howardite-Eucrite-Diogenite (HED) meteorite types, allows a direct comparison of their primary mineralogies. Establishing tighter constraints on the genetic Vestoid population will better inform mass estimates for the current population of probable Vestoids, will provide more accurate orbital information of Vestoid migration through time that will assist dynamical models, and will constrain the overall current abundance of basaltic material in the main asteroid belt (Moskovitz, N.A., Jedicke, R., Gaidos, E., Willman, M., Nesvorny, D., Fevig, R. [2008]. Icarus 198, 77-90). This work reports high-quality NIR spectra, and their respective interpretations, for eight Vp-type asteroids, as defined by Carvano et al. (Carvano, J., Hasselmann, P.H., Lazzaro, D., Mothe'-Diniz, T. [2010]. Astron. Astrophys. 510, A43), that were observed at the NASA Infrared Telescope Facility on January 14, 2013 UT. They include: (3867) Shiretoko, (5235) Jean-Loup, (5560) Amytis, (6331) 1992 FZ1, (6976) Kanatsu, (17469) 1991 BT, (29796) 1999 CW77, and (30872) 1992 EM17. All eight asteroids exhibit the broad ∼0.9- and ∼1.9-μm mineral absorption features indicative of pyroxene on each asteroid's surface. Data reduction and analysis via multiple techniques produced consistent results for the derived spectral absorption band centers and average pyroxene surface chemistries for all eight asteroids (Reddy, V., Sanchez, J.A., Nathues, A., Moskovitz, N.A., Li, J.-Y, Cloutis, E.A., Archer, K., Tucker, R.A., Gaffey, M.J., Mann, P.J., Sierks, H., Schade, U. [2012c]. Icarus 217, 153-168; Lindsay, S.S., Emery, J.P., Marchis, F., Enriquez, J., Assafin, M. [2013]. A spectroscopic and mineralogic study of multiple asteroid systems. American Astronomical Society, DPS Meeting #45, #112.04; Lindsay, S.S., Marchis, F., Emery, J.P., Enriquez, J.E., Assafin, M. [2014]. Icarus, submitted for publication; Gaffey, M.J., Cloutis, E.A., Kelley, M.K., Reed, K.L. [2002]. Mineralogy of asteroids. In: Bottke Jr., W.F., Cellino, A., Paolicchi, P., Binzel, R.P. (Eds.), Asteroids III. The University of Arizona Press, Tucson, pp. 183-204; Burbine, T.H., Buchanan, P.C., Dolkar, T., Binzel, R.P. [2009]. Met. Planet. Sci. 44, 1331-1341.). (3867) Shiretoko is most consistent with the eucrite meteorites while the remaining seven asteroids are most consistent with the howardite meteorites. The existing evidence suggests that all eight of these Vp-type asteroids are genetic Vestoids that probably originated from Vesta's surface.

  6. Search for nitrates on Mars by the Sample Analysis at Mars (SAM) Instrument

    NASA Astrophysics Data System (ADS)

    Navarro-Gonzalez, Rafael; Stern, Jennifer; Freissinet, Caroline; Franz, Heather; McKay, Christopher; Coll, Patrice; Sutter, Brad; Archer, Doug; McAdam, Amy; Cabane, Michel; Ming, Douglas; Glavin, Daniel; Eigenbrode, Jennifer; Leshin, Laurie; Wong, Michael; Atreya, Sushil; Wray, James; Steele, Andrew; Buch, Arnaud; Prats, Benito

    2014-05-01

    One of the main goals of the Mars Science Laboratory is to determine whether the planet ever had environmental conditions capable of supporting microbial life. Nitrogen is a fundamental element for life, and is present in structural (e.g., proteins), catalytic (e.g., enzymes and ribozymes), energy transfer (e.g., ATP) and information storage (RNA and DNA) bio-molecules. Planetary models suggest that nitrogen was abundant in the early Martian atmosphere as dinitrogen (N2). However, a fraction of N2 has been lost to space by sputtering and photochemical processes [1, 2], impact erosion [3], and chemical oxidation to nitrates [4, 5]. Nitrates produced early in Mars' history by photochemistry may later decompose back into N2 by the current impact flux [6]. It is estimated that the Martian surface could contain soil nitrates at levels of 0.3 wt.% N, if mixed homogenously [6], or a layer of pure NaNO3 of about 3 m thickness [5] distributed globally. Nitrates are a fundamental source for nitrogen for terrestrial microorganisms. Therefore, the detection of soil nitrates is important to assess habitability in the Martian environment. The only previous attempt to search for soil nitrates was by TEGA and the MECA WCL on the Phoenix mission but no evolved N-containing species were detected [7]. Nitrates have been tentatively identified in two Martian meteorites: Nakhla [8] and EETA79001 [9]. SAM is capable of detecting nitrates by their thermal decomposition into nitric oxide, NO. SAM analyzed samples from Rocknest soil and two drill holes located at John Klein (JK) and Cumberland (CB) mudstones in the Sheepbed member of the Yellowknife Bay formation in Gale Crater. There appear to be several peaks associated with the release of m/z 30 in the temperature range from 150° C to 600° C. m/z 30 can be attributed to nitric oxide; however, other possible chemical interferences may be present and are assessed. The origin of nitric oxide is discussed and its thermal evolution is compared with analog studies of mixtures of nitrates and perchlorates [10]. [1] Luhmann, J.G., Johnson E. And Zhang, M.H.G.: 1992, Evolutionary impact of sputtering of the Martian atmosphere by O+ pickup ions. Geophys. Res. Lett. 19, 2151-2154. [2] Jakosky, B.M. Pepin, R.O., Johnsom, R.E. and Fox, J.L: 1994, Mars atmospheric loss and isotopic fractionation by solar-wind-induced sputtering and photochemical escape. Icarus, 111, 271-288. [3] Melosh, H.J. and Vickery, A.M.: 1989, Impact erosion of the primordial atmosphere of Mars. Nature 338, 487-489. [4] Mancinelli, R.L. and McKay, C.P. :1988, The evolution of nitrogen cycling. Origins Life 18, 311-325. [5] Manning, C.V., McKay, C.P., and Zahnle, K.J.: 2008, The nitrogen cycle on Mars: Impact decomposition of near-surface nitrates as a source for a nitrogen steady state. Icarus, 197, 60-64. [6] Smith, M.L., Claire, M.W., Catling, D.C., and Zahnle, K.J.: 2014, The formation of sulfate, nitrate and perchlorate salts in the martian atmosphere. Icarus 231, 51-64. [7] Hecht, M. H., Kounaves, S.P., Quinn, R.C., West, S.J., Young, S.M.M., Ming, D.W.,Catling, D.C., Clark, B.C., Boynton, W.V.,Hoffman, J., DeFlores, L.P., Gospodinova, K., Kapit, J., and Smith,P.H.: 2009, Detection of Perchlorate and the Soluble Chemistry of Martian Soil at the Phoenix Lander Site. Science, 32, 64-67. [8] Grady, M.M., Wright, I. P., and Pillinger C. T.: 1995, Search for nitrates in Martian meteorite. J. Geophys. Res. 100, 5449. [9] Kounaves, S.P., Carrier, B.L., O'Neil, G.D., Stroble, S.T., Claire, M.W.: 2013, Evidence of martian perchlorate, chlorate, and nitrate in Mars meteorite EETA79001: implications for oxidants and organics, Icarus, doi: http://dx.doi.org/10.1016/j.icarus.2013.11.012. [10] Support from the following grants is acknowledged: IN106013 and CONACYT 98466.

  7. Giant elves: Lightning-generated electromagnetic pulses in giant planets.

    NASA Astrophysics Data System (ADS)

    Luque Estepa, Alejandro; Dubrovin, Daria; José Gordillo-Vázquez, Francisco; Ebert, Ute; Parra-Rojas, Francisco Carlos; Yair, Yoav; Price, Colin

    2015-04-01

    We currently have direct optical observations of atmospheric electricity in the two giant gaseous planets of our Solar System [1-5] as well as radio signatures that are possibly generated by lightning from the two icy planets Uranus and Neptune [6,7]. On Earth, the electrical activity of the troposphere is associated with secondary electrical phenomena called Transient Luminous Events (TLEs) that occur in the mesosphere and lower ionosphere. This led some researchers to ask if similar processes may also exist in other planets, focusing first on the quasi-static coupling mechanism [8], which on Earth is responsible for halos and sprites and then including also the induction field, which is negligible in our planet but dominant in Saturn [9]. However, one can show that, according to the best available estimation for lightning parameters, in giant planets such as Saturn and Jupiter the effect of the electromagnetic pulse (EMP) dominates the effect that a lightning discharge has on the lower ionosphere above it. Using a Finite-Differences, Time-Domain (FDTD) solver for the EMP we found [10] that electrically active storms may create a localized but long-lasting layer of enhanced ionization of up to 103 cm-3 free electrons below the ionosphere, thus extending the ionosphere downward. We also estimate that the electromagnetic pulse transports 107 J to 1010 J toward the ionosphere. There emissions of light of up to 108 J would create a transient luminous event analogous to a terrestrial elve. Although these emissions are about 10 times fainter than the emissions coming from the lightning itself, it may be possible to target them for detection by filtering the appropiate wavelengths. [1] Cook, A. F., II, T. C. Duxbury, and G. E. Hunt (1979), First results on Jovian lightning, Nature, 280, 794, doi:10.1038/280794a0. [2] Little, B., C. D. Anger, A. P. Ingersoll, A. R. Vasavada, D. A. Senske, H. H. Breneman, W. J. Borucki, and The Galileo SSI Team (1999), Galileo images of lightning on Jupiter, Icarus, 142, 306-323, doi:10.1006/icar.1999.6195. [3] Dyudina, U. A., A. D. Del Genio, A. P. Ingersoll, C. C. Porco, R. A. West, A. R. Vasavada, and J. M. Barbara (2004), Lightning on Jupiter observed in the Hα line by the Cassini imaging science subsystem, Icarus, 172, 24-36, doi:10.1016/j.icarus.2004.07.014. [4] Baines, K. H., et al. (2007), Polar lightning and decadal-scale cloud variability on Jupiter, Science, 318, 226-229, doi:10.1126/science.1147912. [5] Dyudina, U. A., A. P. Ingersoll, S. P. Ewald, C. C. Porco, G. Fischer, W. S. Kurth, and R. A. West (2010), Detection of visible lightning on Saturn, Geophys. Res. Lett., 37, L09205, doi:10.1029/2010GL043188. [6] Zarka, P., and B. M. Pedersen (1986), Radio detection of Uranian lightning by Voyager 2, Nature, 323, 605-608, doi:10.1038/323605a0. [7] Gurnett, D. A., W. S. Kurth, I. H. Cairns, and L. J. Granroth (1990), Whistlers in Neptune's magnetosphere'Evidence of atmospheric lightning, J. Geophys. Res., 95, 20,967-20,976, doi:10.1029/JA095iA12p20967. [8] Yair, Y., Y. Takahashi, R. Yaniv, U. Ebert, and Y. Goto (2009), A study of the possibility of sprites in the atmospheres of other planets, J. Geophys. Res., 114, E09002, doi:10.1029/2008JE003311. [9] Dubrovin, D., A. Luque, F. J. Gordillo-Vázquez, Y. Yair, F. C. Parra-Rojas, U. Ebert, and C. Price (2014), Impact of lightning on the lower ionosphere of Saturn and possible generation of halos and sprites, Icarus, 241, 313-328, doi:10.1016/j.icarus.2014.06.025. [10] Luque, A., D. Dubrovin, F. J. Gordillo-Vázquez, U. Ebert, F. C. Parra-Rojas, Y. Yair, and C. Price (2014), Coupling between atmospheric layers in gaseous giant planets due to lightning-generated electromagnetic pulses, J. Geophys. Res. Space Physics, 119, doi:10.1002/2014JA020457.

  8. Non-uniform thickness in Europa's icy shell: implications for astrobiology mission design

    NASA Astrophysics Data System (ADS)

    Fairén, A.; Amils, R.

    The exploration of Europa's subsurface ocean is hardly constrained by the presence of an outer ice shell of unknown thickness: a somewhat thin crust would allow easier access to the ocean below. Current estimates for the thickness of Europa's icy surface range from a few km [1] to a few tens of km [2], the shell overlying a liquid water ocean up to 150 km thick [3,4,5]. The surface is believed to be young (mean age of 30-80 Myr [6]) and geologically active [7,8,9], as it is sparsely cratered. Here we report geological evidence indicating that the thickness of Europa's ice crust is actually a complex combination of thicker and thinner areas, highlighting the implications of such structure in the future exploration of the inner ocean. Detailed geologic mapping of impact craters, palimpsests and chaotic terrains distribution on Europa's surface, offers an initial approach to a comprehensive description of the thickness variation in the ice shell. Our analysis is based in: (1) Crater distribution, morphology, diameter and depth. Seminal work by Schenk [2] of transitions in crater shape/diameter suggested enhanced structural collapse of craters with diameter >27-33 km, that will consequently form multiring basins, due to weaker ice or a global ocean at depths >19-25 km. This being true, strictly can only be interpreted regionally: multiring basins indicate regions where the ice shell is thick; in those regions where the icy surface is thin, a bolide impact will breach the ice and leave neither crater nor multiring basin behind, but probably Ganymede's type palimpsests. (2) Palimpsest-type features distribution, indicating regions where the ice shell is too thin to support crater formation after big bolide impacts. In Ganymede, palimpsests are circular, low albedo and relief features formerly formed by impacts [10,11]. (3) Chaotic terrain distribution, considering features tens to hundreds of km across, that may be the evidence for very thin ice areas (from ˜ 2 km to zero shell thickness [12]) with liquid water at shallow depths [5], allowing for bolide penetration, diapirism and the extrusion of water to the surface. The heterogeneity in shell's thickness may be originated in spatial variations in tidal heating [13] and/or warm water upwellings from the silicate interior capable of melt-through the ice from below [12,14]. This thickness heterogeneity can be embedded in a general equatorward thickening trending, due to tidal dissipation and surface temperature variations [15]. A major constraint must be addressed at this point: the dynamism of ductile ice near the base of the shell may drive to decay in lateral thickness contrasts. But this effect has been examined both assuming ice as a Newtonian [16,17,18] and a non-Newtonian material [19], broadly reaching to similar conclusions: global shell thickness variations may survive for up to 100 Myr. In addition, lateral pressure gradients may not decay if they comprise only shallow depths [19]. Therefore, our results point to a dynamic non-uniform Europa's icy shell, displaying some regional and temporal heterogeneity in thickness. As thin/thick ice distribution is as time dependent as the surface ice features are (both are reshaped in periods ˜ 100 Myr), the analysis performed here offers an estimation of the current thickness distribution in the ice shell, estimation that cannot be extrapolated to ancient (e.g., >100 Myr) times. The astrobiological potential the shell and ocean below possess is highlighted by these results: a somewhere thin outer crust allows the possibility for some exogenous materials delivered by asteroids and comets to reach the inner liquid water ocean by breaching the brittle lithosphere [20], and so join to those generated in the interior of Europa via volcanic and hydrothermal activity [21]. In addition, pressure gradients driving the ductile ice at the base of the shell to flow laterally may help to redistribute such materials among the inner ice shell and/or ocean through time. Our results have a direct deal with the investigation of Europa's interior. Mission design will need to incorporate a drill system routine well suited to penetrate the ice shell tens of meters in the thinner areas, allowing to deep subsurface access and sampling. Landing and drilling targets should be selected among the zones where mapping indicates the presence of a thinner ice shell, as it may potentially suggest the existence of nutrient-rich hydrothermal plumes rising from the rocky interior and melting the ice from below, probably creating chaotic terrains [14]. Little-cratered, thin-crust areas would consequently be interpreted as key pacemakers to detect both the ice/ocean interface and the most complex environments under the ice shell. Additionally, drilling processes will be clearly easier in such zones. References: [1] Hoppa, G., et al. Science 285, 1899-1903 (1999). [2] Schenk, P.M. Nature 417, 419-421 (2002). [3] Anderson J.D. et al. Science 276, 1236-1239 (1997). [4] Anderson J.D. et al. Science 281, 2019-2022 (1998). [5] Carr, M.H., et al. Nature 391, 363-365 (1998). [6] Zahnle, K., et al. Icarus 163, 263-289 (2003). [7] Smith, B.A., et al. Science 206, 927-950 (1979). [8] Zahnle, K., et al. Icarus 136, 202-222 (1998). [9] Levison, H.F., et al. Icarus 143, 415-420 (2000). [10] Schenk, P.M. Lunar Planet. Sci. Conf. XXVII, #1137-1138 (1996). [11] Farrar, K.S. & Collins, G.C. Lunar Planet Sci. Conf. XXXIII, #1450 (2002). [12] Greenberg, R., et al. Icarus 141, 263-286 (1999). [13] Ojakangas, G.W. & Stevenson, D.J. Icarus 81, 220-241 (1989). [14] Collins, G.C. & Goodman, J.C. Europa's Icy Shell Conf., #7032 (2004). [15] Tobie, G., et al. J. Geophys. Res. 108, doi: 10.1029/2003JE002099 (2003). [16] Stevenson, D.J. Lunar Planet Sci. Conf. XXXI, #1506 (2000). [17] O'Brien, D.P., et al. Icarus 156, 152-161 (2002). [18] Buck, L., et al. Geophys. Res. Lett. 29, doi: 10.1029/2002GL016171 (2002). [19] Nimmo, F. Icarus in press (2004). [20] Pierazzo, E. and Chyba, C. F. Icarus 157, 120-127 (2002). [21] McCord, T.B. et al. Science 280, 1242-1245 (1998).

  9. Q&A: Brian Greene on music and string theory

    NASA Astrophysics Data System (ADS)

    Hoffman, Jascha

    2010-05-01

    Brian Greene, author of best-selling books The Elegant Universe and The Fabric of the Cosmos, is a theoretical physicist at Columbia University, New York. As an orchestral work based on his 2008 children's book, Icarus at the Edge of Time, premieres next week, Greene discusses black holes and how music might portray the physics of warped space-time.

  10. Map of Io Volcanic Heat Flow

    NASA Image and Video Library

    2015-09-15

    This frame from an animation shows Jupiter volcanic moon Io as seen by NASA Voyager and Galileo spacecraft (at left) and the pattern of heat flow from 242 active volcanoes (at right). The red and yellow areas are places where local heat flow is greatest -- the result of magma erupting from Io's molten interior onto the surface. The map is the result of analyzing decades of observations from spacecraft and ground-based telescopes. It shows Io's usual volcanic thermal emission, excluding the occasional massive but transient "outburst" eruption; in other words, this is what Io looks like most of the time. This heat flow map will be used to test models of interior heating. The map shows that areas of enhanced volcanic heat flow are not necessarily correlated with the number of volcanoes in a particular region and are poorly correlated with expected patterns of heat flow from current models of tidal heating -- something that is yet to be explained. This research is published in association with a 2015 paper in the journal Icarus by A. Davies et al., titled "Map of Io's Volcanic Heat Flow," (http://dx.doi.org/10.1016/j.icarus.2015.08.003.) http://photojournal.jpl.nasa.gov/catalog/PIA19655

  11. Two Decades (almost) of Keck Observations of Io

    NASA Astrophysics Data System (ADS)

    De Pater, I.; Davies, A. G.; de Kleer, K.

    2015-12-01

    We have regularly observed Io with the 10-m Keck Telescope since 1998, initially using the speckle imaging technique, and switching to Adaptive Optics techniques when this became available in 2001. In this talk we will discuss several eruptions that we witnessed, and present 20-30 year timelines of thermal emission from Pele, Pillan, Janus Patera, Kanehekili Fluctus, and Loki Patera, updating timelines in recent publications [1, 2] with additional Keck adaptive optics data obtained between 2002 and 2015. These new timelines are the most comprehensive plots ever produced of the volcanic thermal emission variability for these or any other locations on Io, utilizing data from multiple ground- and space-based assets. Our continuing multi-decadal observing program forms the basis for charting the variability of Io's volcanic activity, of great importance for understanding the evolution of the Galilean satellite system, and with the expectation of new missions to the jovian system in the next decade. Acknowledgements: This research is in part supported by NSF grant AST-1313485 to UC Berkeley. AGD is supported by a grant from the NASA OPR Program. References: [1] Davies et al. (2012) Icarus, 221, 466-470. [2] Rathbun and Spencer (2010) Icarus, 209, 625-630.

  12. The vertical structure of Jupiter and Saturn zonal winds from nonlinear simulations of major vortices and planetary-scale disturbances

    NASA Astrophysics Data System (ADS)

    Garcia-Melendo, E.; Legarreta, J.; Sanchez-Lavega, A.

    2012-12-01

    Direct measurements of the structure of the zonal winds of Jupiter and Saturn below the upper cloud layer are very difficult to retrieve. Except from the vertical profile at a Jupiter hot spot obtained from the Galileo probe in 1995 and measurements from cloud tracking by Cassini instruments just below the upper cloud, no other data are available. We present here our inferences of the vertical structure of Jupiter and Saturn zonal wind across the upper troposphere (deep down to about 10 bar level) obtained from nonlinear simulations using the EPIC code of the stability and interactions of large-scale vortices and planetary-scale disturbances in both planets. Acknowledgements: This work has been funded by Spanish MICIIN AYA2009-10701 with FEDER support, Grupos Gobierno Vasco IT-464-07 and UPV/EHU UFI11/55. [1] García-Melendo E., Sánchez-Lavega A., Dowling T.., Icarus, 176, 272-282 (2005). [2] García-Melendo E., Sánchez-Lavega A., Hueso R., Icarus, 191, 665-677 (2007). [3] Sánchez-Lavega A., et al., Nature, 451, 437- 440 (2008). [4] Sánchez-Lavega A., et al., Nature, 475, 71-74 (2011).

  13. Vertical Profiles of Phosphine and Ammonia on Saturn Derived from the First Cassini RSS Occultation Observation Using Forward Modeling

    NASA Astrophysics Data System (ADS)

    Mohammed, P. N.; Steffes, P. G.; Kliore, A. J.; Anabtawi, A.; Asmar, S. W.; Barbinis, E.; Goltz, G.; Johnston, D.; Marouf, E. A.

    2005-08-01

    The results from the first Cassini Radio Science Subsystem(RSS) occultation, which occurred at the Rev 7 periapse, are being used to derive profiles of the atmospheric constituents encountered by the three frequency (S-, X-, and Ka-band) radio link. A computer model has been developed to simulate ray paths and the ray path parameters in the atmosphere of Saturn encountered during occultation (see Mohammed and Steffes, Bull. Amer. Astron. Soc., 36, no. 4, 1107, 2004). This forward model, which can be used on any oblate planet, will be used to determine the refractive defocusing and derive the profiles of phosphine and ammonia using data observed at Ka-band (32 GHz or 9.3 mm), X-band (8.4 GHz or 3.6 cm) and S-band (2.3 GHz or 13 cm). The results of laboratory measurements of the 9 mm opacity of phosphine and ammonia (Mohammed and Steffes, ICARUS 166, 425-435, 2003) and the centimeter wavelength opacity of these constituents measured under simulated conditions for Saturn (see, e.g., Hoffman et. al. ICARUS 152, 172-184, 2001) were incorporated into the forward radio occultation model used in these derivations.

  14. Constraints on the size of Asteroid (216) Kleopatra using stress analysis

    NASA Astrophysics Data System (ADS)

    Hirabayashi, M.; Scheeres, D. J.

    2013-12-01

    We investigate the stable size of Asteroid (216) Kleopatra by considering structural constraints on this body. Comprehensive radar observations (Ostro et al. 2000, Science) were used to estimate a shape model for this asteroid. Their estimation revealed that the shape looks like a dog-bone, the mean radius is 54.3 km (with uncertainty as large as 25%), and the surface seems similar to lunar surface regolith. However, 10 years later, Descamps et al. (2011, Icarus) performed near-infrared adaptive optics (AO) imaging with the W.M. Keck II telescope and found that although the shape may be consistent with their observation result, their size appeared to be larger than the Ostro size (by a factor of about 1.24). Our motivation in this study is to investigate structural stability constraints on the size of this asteroid. Across the stated range of uncertainty we find significant differences in the necessary angle of friction and cohesion for the body to avoid plastic deformation. We use the following physical parameters as fixed: a mass of 4.64e18 kg (Descamps et al. 2011, Icarus), a rotation period of 5.385 hr (Magnusson 1990, Icarus), and the Ostro et al. shape. We use the Drucker-Prager criterion to describe the rheology of the asteroid's material. Furthermore, we determine the friction angle from the fact that the surface of this asteroid is similar to lunar surface regolith, whose porosity ranges from 33% to 55%. According to Scott (1963), a soil with porosity of 44% (the mean value of the lunar surface porosity) has a friction angle of 32 degrees (which we use as our nominal value). Since the interior structure is unknown, we assume that the body is homogeneous. We first analyze the stable size by using the upper bound theorem from limit analysis on the assumption that this asteroid's materials are cohesionless. Based on this theorem, for any static surface traction and body force, the yield due to a smooth and convex yield envelope associated with the volume average is identical to the upper bound (Holsapple 2008, INT J NONLINEAR MECH). For the average stress, we give total volume (Holsapple, 2008, Icarus) and partial volume (Hirabayashi et al., 2013, ApJ, submitted). This method gives a conservative condition for structural failure. The result shows that if the size is between 1.18 and 1.32 (a scaling factor defined such that the Ostro shape's size has a value of 1.0), (216) Kleopatra is structurally stable, which is consistent with Descamps et al. (2011, Icaurus). Next, we calculate plastic stress solutions to determine possible actual structural failure regimes. For this computation, we use commercial finite element analysis software (ANSYS Academic Teaching Introductory 14.0). To determine structural failure, we search for the condition where a plastic region propagates over the majority of a cross section. Since the zero-cohesion condition leads to large plastic deformations, we evaluate the stable size as a function of cohesion under the constant friction angle 32 degree. The result shows that if the size is 1.24, the necessary cohesion required is 90000 Pa; otherwise, the value dramatically increases up to 1e6 Pa. This technique is robust; therefore, once we obtain accurate physical parameters from more detail observations, our methodology will be able to give stronger constraints (216) Kleopatra, as well as other rubble pile asteroids.

  15. Habitability: where lo look for life? Habitability Index Earth analogs to study Mars and Europa`s habitability

    NASA Astrophysics Data System (ADS)

    Gomez, F.; Amils, R.; Gomez-Elvira, J.

    2010-12-01

    The first astrobiological mission specially designed to detect life on Mars, the Viking missions, thought life unlikely, considering the amount of UV radiation bathing the surface of the planet, the resulting oxidative conditions, and the lack of adequate atmospheric protection. The necessity of the Europa surface exploration comes from the idea of a water ocean existence in its interior. Life needs several requirements for its establishment but, the only sine qua nom elements is the water, taking into account our experience on Earth extreme ecosystems The discovery of extremophiles on Earth widened the window of possibilities for life to develop in the universe, and as a consequence on Mars. The compilation of data produced by the ongoing missions (Mars Global Surveyor, Mars Odyssey, Mars Express and Mars Exploration Rover Opportunity) offers a completely different view: signs of an early wet Mars and rather recent volcanic activity. The discovery of important accumulations of sulfates, and the existence of iron minerals like jarosite, goethite and hematite in rocks of sedimentary origin has allowed specific terrestrial models related with this type of mineralogy to come into focus. Río Tinto (Southwestern Spain, Iberian Pyritic Belt) is an extreme acidic environment, product of the chemolithotrophic activity of microorganisms that thrive in the massive pyrite-rich deposits of the Iberian Pyritic Belt. The high concentrations of ferric iron and sulfates, products of the metabolism of pyrite, generate a collection of minerals, mainly gypsum, jarosite, goethite and hematites, all of which have been detected in different regions of Mars (Fernández-Remolar et al., 2004). But, where to look for life in other planetary bodies? Planet`s or Icy Moon`s surface are adverse for life. Some particular protective environments or elements should house the organic molecules and the first bacterial life forms (Gómez F. et al., 2007). Terrestrial analogues work could help us to afford its comprehension (Gómez F. et al., 2010). We are reporting here some preliminary studies about endolithic niches inside salt deposits used by phototrophs for taking advantage of sheltering particular light wavelengths. These acidic salts deposits located in Río Tinto shelter life forms which are difficult to localize by eye. Molecular ecology techniques are needed for its localization and study. We also are reporting here some results about bacterial survivability in Mars simulation conditions (Gómez F. et al., 2010). Final objective of this work is the development of the Habitability Index. Bibliography Fernández-Remolar, D. et al., Planetary and Space Science 52 (2004) 239 - 248 Gómez, F. et al., Icarus 191 (2007) 352-359. Gómez, F. et al. Icarus (2010), doi:10.1016/j.icarus.2010.05.027 Acknowledgments This study was funded by the project ESP2006-06640 from Spanish Ministry of Education and Science and FEDER funds from European Community.

  16. Modeling Floods in Athabasca Valles, Mars, Using CTX Stereo Topography

    NASA Astrophysics Data System (ADS)

    Dundas, C. M.; Keszthelyi, L. P.; Denlinger, R. P.; Thomas, O. H.; Galuszka, D.; Hare, T. M.; Kirk, R. L.; Howington-Kraus, E.; Rosiek, M.

    2012-12-01

    Among the most remarkable landforms on Mars are the outflow channels, which suggest the occurrence of catastrophic water floods in the past. Athabasca Valles has long been thought to be the youngest of these channels [1-2], although it has recently become clear that the young crater age applies to a coating lava flow [3]. Simulations with a 2.5-dimensional flood model have provided insight into the details of flood dynamics but have also demonstrated that the Digital Elevation Model (DEM) from the Mars Orbiter Laser Altimeter (MOLA) Mission Experiment Gridded Data Records includes significant artifacts at this latitude at the scales relevant for flood modeling [4]. In order to obtain improved topography, we processed stereo images from the Context Camera (CTX) of the Mars Reconnaissance Orbiter (MRO) using methods developed for producing topographic models of the Moon with images from the Lunar Reconnaissance Orbiter Camera, a derivative of the CTX camera. Some work on flood modeling with CTX stereo has been published by [5], but we will present several advances, including corrections to the published CTX optical distortion model and improved methods to combine the stereo and MOLA data. The limitations of current methods are the accuracy of control to MOLA and the level of error introduced when the MRO spacecraft is not in a high-stability mode during stereo imaging, leading to jitter impacting the derived topography. Construction of a mosaic of multiple stereo pairs, controlled to MOLA, allows us to consider flow through the cluster of streamlined islands in the upper part of the channel [6], including what is suggested to be the best example of flood-formed subaqueous dunes on Mars [7]. We will present results from running a flood model [4, 8] through the high-resolution (100 m/post) DEM covering the streamlined islands and subaqueous dunes, using results from a lower-resolution model as a guide to the inflow. By considering a range of flow levels below estimated peak flow, we can examine the flow behavior at the site of the apparent subaqueous dunes and, in particular, assess whether the flow in this area is uniquely conducive to the formation of such bedforms [e.g., 9]. [1] Berman D. C. and Hartmann W. K. (2002) Icarus 159, 1-17. [2] Burr D. M. et al. (2002) Icarus 159, 53-73. [3] Jaeger W. L. et al. (2010) Icarus 205, 230-243. [4] Keszthelyi L. P. et al. (2007) GRL 34, L21206. [5] McIntyre et al. (2012) JGR 117, E03009. [6] Burr D. (2005) Geomorphology 69, 242-252. [7] Burr D. M. et al. (2004) Icarus 171, 68-83. [8] Denlinger R. P. and O'Connell D. R. H. (2008) J. Hyd. Eng. 134, 1590-1602. [9] Kleinhans M. G. (2005) JGR 110, E12003.

  17. Predicted detection rates of regional-scale meteorite impacts on Mars with the InSight short-period seismometer

    NASA Astrophysics Data System (ADS)

    Teanby, N. A.

    2015-08-01

    In 2016 NASA will launch the InSight discovery-class mission, which aims to study the detailed internal structure of Mars for the first time. Short- and long-period seismometers form a major component of InSight's payload and have the potential to detect seismic waves generated by meteorite impacts. Large globally detectable impact events producing craters with diameters of ∼ 100 m have been investigated previously and are likely to be rare (Teanby, N.A., Wookey, J. [2011]. Phys. Earth Planet. Int. 186, 70-80), but smaller impacts producing craters in the 0.5-20 m range are more numerous and potentially occur sufficiently often to be detectable on regional scales (≲1000 km). At these distances, seismic waves will have significant high frequency content and will be suited to detection with InSight's short-period seismometer SEIS-SP. In this paper I estimate the current martian crater production function from observations of new craters (Malin, M.C. et al. [2006]. Science 314, 1573-1577; Daubar, I.J. et al. [2013]. Icarus 225, 506-516), model results (Williams, J.P., Pathare, A.V., Aharonson, O. [2014]. Icarus 235, 23-36), and standard isochrons (Hartmann, W.K. [2005]. Icarus 174, 294-320). These impact rates are combined with an empirical relation between impact energy, source-receiver distance, and peak seismogram amplitude, derived from a compilation of seismic recordings of terrestrial and lunar impacts, chemical explosions, and nuclear tests. The resulting peak seismogram amplitude scaling law contains significant uncertainty, but can be used to predict impact detection rates. I estimate that for a short-period instrument, with a noise spectral density of 10-8 ms-2 Hz-1/2 in the 1-16 Hz frequency band, approximately 0.1-30 regional impacts per year should be detectable with a nominal value of 1-3 impacts per year. Therefore, small regional impacts are likely to be a viable source of seismic energy for probing Mars' crustal and upper mantle structure. This is particularly appealing as such impacts should be easily located with orbital imagery, increasing their scientific value compared to other types of events with unknown origins. Finally, comparison of the empirical results presented here with the modelling study of Teanby and Wookey (Teanby, N.A., Wookey, J. [2011]. Phys. Earth Planet. Int. 186, 70-80) provides constraints on the seismic efficiency, suggesting that values of ∼ 5 × 10-4 may be appropriate for impact generated seismic waves. Comparing explosion and impact datasets indicate that buried explosions are ∼ 10 times more efficient at generating seismic waves than impacts.

  18. Ammonium on Ceres

    NASA Astrophysics Data System (ADS)

    Ammannito, E.; De Sanctis, M. C.; Carrorro, F. G.; Ciarniello, M.; Combe, J. P.; De Angelis, S.; Ehlmann, B. L.; Frigeri, A.; Longobardo, A.; Mugnuolo, R.; Marchi, S.; Palomba, E.; Raymond, C. A.; Salatti, M.; Tosi, F.; Zambon, F.; Russell, C. T.

    2017-12-01

    Since January 2015, the surface of Ceres has been studied by the Dawn spacecraft through the measurements from the three instruments on board (1). The VIR imaging spectrometer, sensitive to the spectral range 0.25 -5.0 μm, provided information on the surficial composition of Ceres at resolutions ranging from few kilometers to about one hundred meters (2). Analysis of VIR reflectance data revealed that the average spectrum of Ceres is compatible with a mixture of low-albedo minerals, Mg- phyllosilicates, ammoniated clays, and Mg- carbonates, (3) confirming previous studies based on ground based spectra (4, 5). Mineralogical maps of the surface at about 1 km/px show that the components identified in the average spectrum are present all across the surface with variations in their relative abundance and chemical composition (6, 7). While the ammoniated clays have been already studied (6), the presence nature and distribution of additional ammoniated species has never been investigated in detail, although the spectral analysis of the bright faculae within Occator crater already revealed the potential presence of ammonium salts (8). Since the position and shape of the ammonium absorption in the VIS-NIR region are function of the hosting mineral specie (8), we did an inventory and characterization of the ammonium-rich regions, in order to analyze their spectral properties. In addition to the presence of ammonium, also the identification of the hosting species has implication for the evolution of Ceres. Our study, therefore, is a step forward in understanding of evolutionary pathway of Ceres. References: (1) Russell, C. T. et al., Science, 2016. (2) De Sanctis M.C. et al., Space Science Reviews, 2011. (3) De Sanctis M.C. et al., Nature, 2015. (4) King T. et al. Science, 1992. (5) Rivkin A.S. et al. Icarus, 2006. (6) Ammannito E. et al., Science, 2016. (7) Carrozzo F.G. et al., Science Advances, in revision. (8) De Sanctis et al., Nature, 2016. (9) Berg et al., Icarus, 2016.

  19. Lunar exospheric helium observations of LRO/LAMP coordinated with ARTEMIS

    NASA Astrophysics Data System (ADS)

    Grava, C.; Retherford, K. D.; Hurley, D. M.; Feldman, P. D.; Gladstone, G. R.; Greathouse, T. K.; Cook, J. C.; Stern, S. A.; Pryor, W. R.; Halekas, J. S.; Kaufmann, D. E.

    2016-07-01

    We present results from Lunar Reconnaissance Orbiter's (LRO) UV spectrograph LAMP (Lyman-Alpha Mapping Project) campaign to study the lunar atmosphere. Several off-nadir maneuvers (lateral rolls) were performed to search for resonantly scattering species, increasing the illuminated line-of-sight (and hence the signal from atoms resonantly scattering the solar photons) compared to previously reported LAMP's "twilight observations" (Cook, J.C., Stern, S.A. [2014]. Icarus 236, 48-55). Helium was the only element distinguishable on a daily basis, and we present latitudinal profiles of its line-of-sight column density in December 2013. We compared the helium line-of-sight column densities with solar wind alpha particle fluxes measured from the ARTEMIS (Acceleration, Reconnection, Turbulence, & Electrodynamics of Moon's Interaction with the Sun) twin spacecraft. Our data show a correlation with the solar wind alpha particle flux, confirming that the solar wind is the main source of the lunar helium. We also support the finding by Benna et al. (Benna, M. et al. [2015]. Geophys. Res. Lett. 42, 3723-3729) and Hurley et al. (Hurley, D.M. et al. [2015]. Icarus, this issue), that a non-zero contribution from endogenic helium, coming from radioactive decay of 232Th and 238U, is present. Moreover, our results suggest that not all of the incident alpha particles are converted to thermalized helium, allowing for a non-negligible fraction to escape as suprathermal helium or simply backscattered from the lunar surface. We compare LAMP-derived helium surface density with the one recorded by the mass spectrometer LACE (Lunar Atmospheric Composition Experiment) deployed on the lunar surface during the Apollo 17 mission, finding good agreement between the two measurements. The LRO/LAMP roll observations presented here are in agreement with the most recent lunar exospheric helium model (Hurley, D.M. et al. [2015]. Icarus, this issue) around mid- to high-latitudes (50-70°) regardless of the local solar time, while there is an underestimation of the model around the low- to mid-latitudes (10-30°), especially around the dawn terminator. The LRO/LAMP roll observations presented here provide unique coverage of local solar time and latitude of the lunar exospheric helium, filling a gap in the knowledge of the structure of the lunar exosphere as a whole. These observations will inform future models of transport of volatiles, since at the terminator the analytic expressions for the surface temperature, essential to determine the energy distribution, the residence time, and the hop length of the particles, is least accurate.

  20. The taxonomic distribution of asteroids from multi-filter all-sky photometric surveys

    NASA Astrophysics Data System (ADS)

    DeMeo, F. E.; Carry, B.

    2013-09-01

    The distribution of asteroids across the main belt has been studied for decades to understand the current compositional distribution and what that tells us about the formation and evolution of our Solar System. All-sky surveys now provide orders of magnitude more data than targeted surveys. We present a method to bias-correct the asteroid population observed in the Sloan Digital Sky Survey (SDSS) according to size, distance, and albedo. We taxonomically classify this dataset consistent with the Bus and Binzel (Bus, S.J., Binzel, R.P. [2002]. Icarus 158, 146-177) and Bus-DeMeo et al. (DeMeo, F.E., Binzel, R.P., Slivan, S.M., Bus, S.J. [2009]. Icarus 202(July), 160-180) systems and present the resulting taxonomic distribution. The dataset includes asteroids as small as 5 km, a factor of three in diameter smaller than in previous work such as by Mothé-Diniz et al. (Mothé-Diniz, T., Carvano, J.M.Á., Lazzaro, D. [2003]. Icarus 162(March), 10-21). Because of the wide range of sizes in our sample, we present the distribution by number, surface area, volume, and mass whereas previous work was exclusively by number. While the distribution by number is a useful quantity and has been used for decades, these additional quantities provide new insights into the distribution of total material. We find evidence for D-types in the inner main belt where they are unexpected according to dynamical models of implantation of bodies from the outer Solar System into the inner Solar System during planetary migration (Levison, H.F., Bottke, W.F., Gounelle, M., Morbidelli, A., Nesvorný, D., Tsiganis, K. [2009]. Nature 460(July), 364-366). We find no evidence of S-types or other unexpected classes among Trojans and Hildas, albeit a bias favoring such a detection. Finally, we estimate for the first time the total amount of material of each class in the inner Solar System. The main belt’s most massive classes are C, B, P, V and S in decreasing order. Excluding the four most massive asteroids, (1) Ceres, (2) Pallas, (4) Vesta and (10) Hygiea that heavily skew the values, primitive material (C-, P-types) account for more than half main-belt and Trojan asteroids by mass, most of the remaining mass being in the S-types. All the other classes are minor contributors to the material between Mars and Jupiter.

  1. Mapping Io's Surface Topography Using Voyager and Galileo Stereo Images and Photoclinometry

    NASA Astrophysics Data System (ADS)

    White, O. L.; Schenk, P.

    2011-12-01

    O.L. White and P.M. Schenk Lunar and Planetary Institute, 3600 Bay Area Boulevard, Houston, Texas, 77058 No instrumentation specifically designed to measure the topography of a planetary surface has ever been deployed to any of the Galilean satellites. Available methods that exist to perform such a task in the absence of the relevant instrumentation include photoclinometry, shadow length measurement, and stereo imaging. Stereo imaging is generally the most accurate of these methods, but is subject to limitations. Io is a challenging subject for stereo imaging given that much of its surface is comprised of volcanic plains, smooth at the resolution of many of the available global images. Radiation noise in Galileo images can also complicate mapping. Paterae, mountains and a few tall shield volcanoes, the only features of any considerable relief, exist as isolated features within these plains; previous research concerning topography measurement on Io using stereo imaging has focused on these features, and has been localized in its scope [Schenk et al., 2001; Schenk et al., 2004]. With customized ISIS software developed at LPI, it is the ultimate intention of our research to use stereo and photoclinometry processing of Voyager and Galileo images to create a global topographic map of Io that will constrain the shapes of local- and regional-scale features on this volcanic moon, and which will be tied to the global shape model of Thomas et al. [1998]. Applications of these data include investigation of how global heat flow varies across the moon and its relation to mantle convection and tidal heating [Tackley et al., 2001], as well as its correlation with local geology. Initial stereo mapping has focused on the Ra Patera/Euboea Montes/Acala Fluctus area, while initial photoclinometry mapping has focused on several paterae and calderas across Io. The results of both stereo and photoclinometry mapping have indicated that distinct topographic areas may correlate with surface geology. To date we have obtained diameter and depth measurements for ten calderas using these DEMs, and we look forward to studying regional and latitudinal variation in caldera depth. References Schenk, P.M., et al. (2001) J. Geophys. Res., 106, pp. 33,201-33,222. Schenk, P.M., et al. (2004) Icarus, 169, pp. 98-110. Tackley, P.J., et al. (2001) Icarus, 149, pp. 79-93. Thomas, P., et al. (1998) Icarus, 135, pp. 175-180. The authors acknowledge the support of the NASA Outer Planet Research and the Planetary Geology and Geophysics research programs.

  2. Thermophysical Model of S-complex NEAs: 1627 Ivar

    NASA Astrophysics Data System (ADS)

    Crowell, Jenna; Howell, Ellen S.; Magri, Christopher; Fernandez, Yanga R.; Marshall, Sean E.; Warner, Brian D.; Vervack, Ronald J., Jr.

    2016-01-01

    We present an updated thermophysical model of 1627 Ivar, an Amor class near Earth asteroid (NEA) with a taxonomic type of Sqw [1]. Ivar's large size and close approach to Earth in 2013 (minimum distance 0.32 AU) provided an opportunity to observe the asteroid over many different viewing angles for an extended period of time, which we have utilized to generate a shape and thermophysical model of Ivar, allowing us to discuss the implications that these results have on the regolith of this asteroid. Using the software SHAPE [2,3], we updated the nonconvex shape model of Ivar, which was constructed by Kaasalainen et al. [4] using photometry. We incorporated 2013 radar data and CCD lightcurves using the Arecibo Observatory's 2380Mz radar and the 0.35m telescope at the Palmer Divide Station respectively, to create a shape model with higher surface detail. We found Ivar to be elongated with maximum extended lengths along principal axes of 12 x 5 x 6 km and a rotation rate of 4.795162 ± 5.4 * 10-6 hrs [5]. In addition to these radar data and lightcurves, we also observed Ivar in the near IR using the SpeX instrument at the NASA IRTF. These data cover a wide range of Ivar's rotational longitudes and viewing geometries. We have used SHERMAN [6,7] with input parameters such as the asteroid's IR emissivity, optical scattering law, and thermal inertia, in order to complete thermal computations based on our shape model and known spin state. Using this procedure, we find which reflective, thermal, and surface properties best reproduce the observed spectra. This allows us to characterize properties of the asteroid's regolith and study heterogeneity of the surface. We will compare these results with those of other S-complex asteroids to better understand this asteroid type and the uniqueness of 1627 Ivar.[1] DeMeo et al. 2009, Icarus 202, 160-180 [2] Magri, C. et al. 2011, Icarus 214, 210-227. [3] Crowell, J. et al. 2014, AAS/DPS 46 [4] Kaasalainen, M. et al. 2004, Icarus 167, 178-196. [5] Crowell, J. et al. 2015, LPSC 46 [6] Crowell, J. et al. 2015, TherMoPS II. [7] Howell, E. et al. 2012, AAS/DPS 44. This work is partially supported by NSF (AST-1109855), NASA (NNX13AQ46G), CLASS (NNA14AB05A), and USRA (06810-05).

  3. Comment on “Methane on Mars: A product of H2O photolysis in the presence of CO” by A. Bar-Nun and V. Dimitrov

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, Vladimir A.

    2007-06-01

    Bar-Nun and Dimitrov [Bar-Nun, A., Dimitrov, V., 2006. Icarus 181, 320-322] suggested a sequence of reactions to form methane on Mars. These reactions are based on the study of products in the N 2-CO-H 2O mixture irradiated at 185 nm. The suggested scheme was not quantitatively justified by chemical kinetics. One of the key reactions is effectively blocked by O 2 in the martian atmosphere, and another key reaction does not exist. There are no pathways for effective formation of methane in the martian atmosphere.

  4. Physical characterization of Warm Spitzer-observed near-Earth objects

    NASA Astrophysics Data System (ADS)

    Thomas, Cristina A.; Emery, Joshua P.; Trilling, David E.; Delbó, Marco; Hora, Joseph L.; Mueller, Michael

    2014-01-01

    Near-infrared spectroscopy of Near-Earth Objects (NEOs) connects diagnostic spectral features to specific surface mineralogies. The combination of spectroscopy with albedos and diameters derived from thermal infrared observations can increase the scientific return beyond that of the individual datasets. For instance, some taxonomic classes can be separated into distinct compositional groupings with albedo and different mineralogies with similar albedos can be distinguished with spectroscopy. To that end, we have completed a spectroscopic observing campaign to complement the ExploreNEOs Warm Spitzer program that obtained albedos and diameters of nearly 600 NEOs (Trilling, D.E. et al. [2010]. Astron. J. 140, 770-784. http://dx.doi.org/10.1088/0004-6256/140/3/770). The spectroscopy campaign included visible and near-infrared observations of ExploreNEOs targets from various observatories. Here we present the results of observations using the low-resolution prism mode (˜0.7-2.5 μm) of the SpeX instrument on the NASA Infrared Telescope Facility (IRTF). We also include near-infrared observations of ExploreNEOs targets from the MIT-UH-IRTF Joint Campaign for Spectral Reconnaissance. Our dataset includes near-infrared spectra of 187 ExploreNEOs targets (125 observations of 92 objects from our survey and 213 observations of 154 objects from the MIT survey). We identify a taxonomic class for each spectrum and use band parameter analysis to investigate the mineralogies for the S-, Q-, and V-complex objects. Our analysis suggests that for spectra that contain near-infrared data but lack the visible wavelength region, the Bus-DeMeo system misidentifies some S-types as Q-types. We find no correlation between spectral band parameters and ExploreNEOs albedos and diameters. We investigate the correlations of phase angle with Band Area Ratio and near-infrared spectral slope. We find slightly negative Band Area Ratio (BAR) correlations with phase angle for Eros and Ivar, but a positive BAR correlation with phase angle for Ganymed. The results of our phase angle study are consistent with those of (Sanchez, J.A., Reddy, V., Nathues, A., Cloutis, E.A., Mann, P., Hiesinger, H. [2012]. Icarus 220, 36-50. http://dx.doi.org/10.1016/j.icarus.2012.04.008, arXiv:1205.0248). We find evidence for spectral phase reddening for Eros, Ganymed, and Ivar. We identify the likely ordinary chondrite type analog for an appropriate subset of our sample. Our resulting proportions of H, L, and LL ordinary chondrites differ from those calculated for meteorite falls and in previous studies of ordinary chondrite-like NEOs.

  5. Titan's atmospheric chemistry: Photolysis of gas mixtures containing hydrogen cyanide and carbon monoxide at 185 and 254 nm

    NASA Astrophysics Data System (ADS)

    Tran, Buu N.; Force, Michael; Briggs, Robert G.; Ferris, James P.; Persans, Peter; Chera, John J.

    2008-01-01

    The formation of organic compounds in the atmosphere of Titan is an ongoing process of the generation of complex organics from the simplest hydrocarbon, methane. Solar radiation and magnetosphere electrons are the main energy sources that drive the reactions in Titan's atmosphere. Since energy from solar radiation is 200 times greater than that from magnetosphere electrons, we have investigated the products formed by the action of UV radiation (185 and 254 nm) on a mixture of gases containing nitrogen, methane, hydrogen, acetylene, ethylene, and cyanoacetylene, the basic gas mixture (BGM) that simulates aspects of Titan's atmosphere using a flow reactor [Tran, B.N., Ferris, J.P., Chera, J.J., 2003a. Icarus 162, 114-124; Tran, B.N., Joseph, J.C., Force, M., Briggs, R.G., Vuitton, V., Ferris, J.P., 2005. Icarus 177, 106-115]. The present research extends these studies by the addition of carbon monoxide and hydrogen cyanide to the BGM. Quantum yields for the loss of reactants and the formation of volatile products were determined and compared with those measured in the absence of the hydrogen cyanide and carbon monoxide. The GCMS analyses of the volatile photolysis products from the BGM, with added hydrogen cyanide, had a composition similar to that of the BGM while the photolysis products of the BGM with added carbon monoxide contained many oxygenated compounds. The infrared spectrum of the corresponding solid product revealed the absorption band of a ketone group, which was probably formed from the reaction of carbon monoxide with the free radicals generated by photolysis of acetylene and ethylene. Of particular interest was the observation that the addition of HCN to the gas mixture only resulted in a very small change in the C/N ratio and in the intensity of the C tbnd N frequency at 2210 cm -1 in the infrared spectrum suggesting that little HCN is incorporated into the haze analog. The C/N ratio of the haze analogs was found to be in the 10-12 range. The UV spectra of the solid products formed when HCN or CO added to the BGM is similar to the UV absorption formed from the BGM alone. This result is consistent with absence of additional UV chromophores to the solid product when these mixtures are photolyzed. The following photoproducts, which were not starting materials in our photochemical studies, have been observed on Titan: acetonitrile, benzene, diacetylene, ethane, propene, propane, and propyne.

  6. Solar wind control of stratospheric temperatures in Jupiter's auroral regions?

    NASA Astrophysics Data System (ADS)

    Sinclair, James Andrew; Orton, Glenn; Kasaba, Yasumasa; Sato, Takao M.; Tao, Chihiro; Waite, J. Hunter; Cravens, Thomas; Houston, Stephen; Fletcher, Leigh; Irwin, Patrick; Greathouse, Thomas K.

    2017-10-01

    Auroral emissions are the process through which the interaction of a planet’s atmosphere and its external magnetosphere can be studied. Jupiter exhibits auroral emission at a multitude of wavelengths including the X-ray, ultraviolet and near-infrared. Enhanced emission of CH4 and other stratospheric hydrocarbons is also observed coincident with Jupiter’s shorter-wavelength auroral emission (e.g. Caldwell et al., 1980, Icarus 44, 667-675, Kostiuk et al., 1993, JGR 98, 18823). This indicates that auroral processes modify the thermal structure and composition of the auroral stratosphere. The exact mechanism responsible for this auroral-related heating of the stratosphere has however remained elusive (Sinclair et al., 2017a, Icarus 292, 182-207, Sinclair et al., 2017b, GRL, 44, 5345-5354). We will present an analysis of 7.8-μm images of Jupiter measured by COMICS (Cooled Mid-Infrared Camera and Spectrograph, Kataza et al., 2000, Proc. SPIE(4008), 1144-1152) on the Subaru telescope. These images were acquired on January 11th, 12th, 13th, 14th, February 4, 5th and May 17th, 18th, 19th and 20th in 2017, allowing the daily variability of Jupiter’s auroral-related stratospheric heating to be tracked. Preliminary results suggest lower stratospheric temperatures are directly forced by the solar wind dynamical pressure. The southern auroral hotspot exhibited a significant increase in brightness temperature over a 24-hour period. Over the same time period, a solar wind propagation model (Tao et al. 2005, JGR 110, A11208) predicts a strong increase in the solar wind dynamical pressure at Jupiter.

  7. Is Earth-based scaling a valid procedure for calculating heat flows for Mars?

    NASA Astrophysics Data System (ADS)

    Ruiz, Javier; Williams, Jean-Pierre; Dohm, James M.; Fernández, Carlos; López, Valle

    2013-09-01

    Heat flow is a very important parameter for constraining the thermal evolution of a planetary body. Several procedures for calculating heat flows for Mars from geophysical or geological proxies have been used, which are valid for the time when the structures used as indicators were formed. The more common procedures are based on estimates of lithospheric strength (the effective elastic thickness of the lithosphere or the depth to the brittle-ductile transition). On the other hand, several works by Kargel and co-workers have estimated martian heat flows from scaling the present-day terrestrial heat flow to Mars, but the so-obtained values are much higher than those deduced from lithospheric strength. In order to explain the discrepancy, a recent paper by Rodriguez et al. (Rodriguez, J.A.P., Kargel, J.S., Tanaka, K.L., Crown, D.A., Berman, D.C., Fairén, A.G., Baker, V.R., Furfaro, R., Candelaria, P., Sasaki, S. [2011]. Icarus 213, 150-194) criticized the heat flow calculations for ancient Mars presented by Ruiz et al. (Ruiz, J., Williams, J.-P., Dohm, J.M., Fernández, C., López, V. [2009]. Icarus 207, 631-637) and other studies calculating ancient martian heat flows from lithospheric strength estimates, and casted doubts on the validity of the results obtained by these works. Here however we demonstrate that the discrepancy is due to computational and conceptual errors made by Kargel and co-workers, and we conclude that the scaling from terrestrial heat flow values is not a valid procedure for estimating reliable heat flows for Mars.

  8. Searching for activity on Dione using Cassini CIRS data

    NASA Astrophysics Data System (ADS)

    Howett, Carly; Spencer, John R.; Verbiscer, Anne; Hurford, Terry; Cassini CIRS Team

    2017-10-01

    No direct detection of activity on Dione has ever been made, but there are many indications that such activity may exist. For example Dione has regions of moderately cratered smooth terrains, implying endogenic activity at some point in its history, and extensive fracturing that may be more recent. Other evidence also points to possible activity on Dione, such as: observations of an atmosphere-like emission around the moon observed by Cassini’s Visual Infrared Mapping Spectrometer (VIMS), possibly caused by outgassing (Clark et al., 2008, Icarus 193, 372); detection of plasma flow from Dione by Cassini’s Plasma Spectrometer (CAPS), which indicates possible outgassing (Burch et al., 2007, Nature 447, 883); an enhancement in the strength of the ion-cyclotron waves in the magnetosphere, which could also be due to ionized plasma from Dione (Khurana et al., 2007, AGU Spring Meeting, Abstract #P43A-03). However, we note that no direct evidence for plumes on Dione was discovered in analysis of Cassini VIMS data (Buratti et al., 2011, Icarus 214, 534).Cassini’s Composite Infrared Spectrometer (CIRS) has taken over 30,000 resolved spectra of Dione since its arrival in the Saturnian system in 2004. The work presented here is the first systematic study of this vast data set to determine whether a thermal signature of ongoing activity exists on Dione. In the event of a detection we will fully characterize the endogenic emission, while in the event of a non-detection upper-limits on Dione's activity will be placed. At the time of writing no endogenic signature had been detected on Dione, but the search continues!

  9. Spectral Modeling of the 0.4-2.5 μm Phobos CRISM dataset

    NASA Astrophysics Data System (ADS)

    Pajola, Maurizio; Roush, Ted; Dalle Ore, Cristina; Marzo, Giuseppe A.; Simioni, Emanuele

    2017-04-01

    We present the spectral modeling of the 0.4-2.5 μm MRO/CRISM Phobos dataset. After applying a statistical clustering technique, based on a K-means partitioning algorithm, we identified eight separate clusters in the Phobos CRISM data, extending the surface coverage beyond the previous analyses of Fraeman et al. (2012, 2014). Each resulting cluster is characterized by an average and its associated variability. We modeled these different spectra using a radiative transfer code based on the approach of Shkuratov et al. (1999). We used the optical constants of the model proposed by Pajola et al. (2013) in our effort, i.e. the Tagish Lake meteorite (TL) and the Mg-rich pyroxene glass (PM80). The Shkuratov model is used in an algorithm that iteratively, and simultaneously changes the relative abundance and grain sizes of the selected components to minimize the differences between the model and observations using a chi-squared criterion. The best-fitting models were achieved with a simple intimate mixture showing that the relative percentages of TL and PM80 vary between 80-20% and 95-5%, respectively, and grain sizes for TL are 12-14 μm and 20-22 μm for PM80. This work aims to return a detailed picture of the surface properties of Phobos identifying specific areas that may be of interest for future planetary exploration, as the proposed Japanese Mars Moon eXploration (MMX) sample return mission. Acknowledgements: We make use of the public NASA-Planetary Data System MRO-CRISM spectral data of Phobos. M.P. was supported for this research by an appointment to the National Aeronautics and Space Administration (NASA) Post-doctoral Program at the Ames Research Center administered by Universities Space Research Association (USRA) through a contract with NASA. References: Fraeman et al. 2012, J. Geophy. Res, E00J15, 10.1029/2012JE004137; Fraeman et al., 2014, Icarus, 229, 196-205, 10.1016/icarus.2013.11.021; Shkuratov, Y. et al. (1999), Icarus, 137, 235. Pajola et al., 2013, The Astrophysical Journal, 777:127, 10.1088/0004-637X/777/2/127.

  10. Modelling of Titan's middle atmosphere with the IPSL climate model

    NASA Astrophysics Data System (ADS)

    Vatant d'Ollone, Jan; Lebonnois, Sébastien; Guerlet, Sandrine

    2017-04-01

    Titan's 3-dimensional Global Climate Model developed at the Institute Pierre-Simon Laplace has already demonstrated its efficiency to reproduce and interpret many features of the Saturnian moon's climate (e.g. Lebonnois et al., 2012). However, it suffered from limits at the top of the model, with temperatures far warmer than the observations and no stratopause simulated. To interpret Cassini's overall observations of seasonal effects in the middle atmosphere (e.g. Vinatier et al., 2015), a satisfying modelling of the temperature profile in this region was first required. Latest developments in the GCM now enable a correct modelling of the temperature profile in the middle atmosphere. In particular, a new, more flexible, radiative transfer scheme based on correlated-k method has been set up, using up-to-date spectroscopic data. Special emphasis is put on the too warm upper stratospheric temperatures in the former model that were due to the absence of the infrared ν4 methane line (7.7 μm) in the radiative transfer. While it was usually neglected in the tropospheric radiative models, this line has a strong cooling effect in Titan's stratospheric conditions and cannot be neglected. In this new version of the GCM, the microphysical model is temporarily switched off and we use a mean profile for haze opacity (Lavvas et al., 2010). The circulation in the middle atmosphere is significantly improved by this new radiative transfer. The new 3-D simulations also show an interesting feature in the modeled vertical profile of the zonal wind as the minimum in low stratosphere is now closer to the observations. Works in progress such as the vertical extension and the computation of the radiative effect of the seasonal variations of trace components will also be presented. - Lavvas P. et al., 2010. Titan's vertical aerosol structure at the Huygens landing site: Constraints on particle size, density, charge, and refractive index. Icarus 210, 832-842. - Lebonnois S. et al., 2012. Titan Global Climate Model: new 3-dimensional version of the IPSL Titan GCM. Icarus 218, 707-722. - Vinatier S. et al., 2015. Seasonal variations in Titan's middle atmosphere during the northern spring derived from Cassini/CIRS observations. Icarus 250, 95-115.

  11. Charon Quandaries

    NASA Astrophysics Data System (ADS)

    Desch, Steven; Neveu, Marc

    2015-11-01

    Recent data from New Horizons have revealed Charon as a dynamic world, with an apparently young surface experiencing geological processes. Tectonic features include a chasm seen on Charon’s terminator, and cliffs or troughs that belt the moon. The ‘mountain-in-a-moat’ seen in LORRI images appears emplaced in a depression, also suggesting an active process. These raise the questions: How hot is Charon’s interior? Are temperatures sufficient for liquid (i.e., > 176 K, the water-ammonia eutectic)? How close to the surface are these temperatures reached? How thick is Charon’s crust? We will report our calculations of these quantities.Following [1,2], we hypothesize that Charon formed from a circumplutonian disk after a giant impact. Unlike in the ‘intact moon’ scenario, a Charon accreted from a disk is everywhere > 100 K, and its outermost surface is > 250 K, possibly leading to full differentiation into rocky core and ice mantle [2]. We suggest that contraction of Charon due to its cooling from this hot initial state to its present-day surface temperature ≈ 50 K might lead to tectonic features like those seen on Mercury [3]. We calculate the thermal history of Charon using our published codes [4,5]. We find temperatures today at the base of the ice mantle are cold (< 100 K), but that ice at sufficient depth in the core should melt, producing liquid. It is unclear whether this liquid could reach the surface from the core, but it may do so via processes described by [6]. This would have implications for cryovolcanism, resurfacing, and the ‘mountain-in-a-moat’. We will discuss the results of our modeling and our interpretation of New Horizons data at the meeting.References: [1] Canup, R (2005) Science 207, 546-550. [2] Desch, SJ (2015) Icarus 246, 37-47. [3] Byrne, P, Klimczak, C, Celal Sengor, AM, Solomon, SC, Watters, TR & Hauck, SA (2014) Nature Geosci. 7, 301-307.[4] Desch, SJ, Cook, JC, Doggett, TC & Porter, SB. (2009) Icarus 202, 694-714. [5] Neveu, M, Desch, SJ & Castillo-Rogez, JC (2015) J. Geophys. Res. E 120, 123-154. [6] Neveu, M, Desch, SJ, Shock, EL & Glein, CR (2015) Icarus 246, 48-64.

  12. Dark Areas on Equatorial Regions of Titan: Implication in Particles Size of Water-Ice and Combination with Tholins.

    NASA Astrophysics Data System (ADS)

    Brossier, J. F.; Stephan, K.; Jaumann, R.; Le Mouelic, S.; Brown, R. H.

    2015-12-01

    Since the equatorial regions of Titan have been fully observed by the Visible and Infrared Mapping Spectrometer (VIMS) [1], the analysis of false-color composite allows distinguishing three mains units: bright, bluish and brownish units [2-4]. This distinction can be enhanced by using ratios of VIMS channels that allow emphasizing subtle difference of spectral behavior of the units, especially at short wavelengths (below 2 µm). The VIMS - bluish unit is mostly enriched in water-ice particles, which consist of particles exposition derived from the high standing water-ice substrate and deposited on the lowlands after fluvial/pluvial processes [5] and impact [6]. This spectral unit is mainly located at the frontier of the large bright plateaus, and hence considered as a transition zone to the VIMS - brownish unit corresponding to the Radar dune-fields [7]. Whereas these brownish dunes consist on atmospheric aerosols, named tholins [4] contaminated with particles of water ice. High resolution observations of VIMS (less than 1 km per pixel), show local transition zones between the bright material and the brownish dunes, suggesting weathering and erosional processes (e.g. Bohai Sinus and the Huygens Landing site). The reason of these spectral variations in this bluish unit might be due to physical properties variations related to erosional processes occurring on the bright plateaus [5,8], such as particles sizes and the degree of mixture with tholins. Our approach enables a better understanding of the distribution of the water-ice grains in terms of particles-size and mixtures with tholins at local and global scale. Reference: [1] Brown, R. H. et al. (2005) SSR. [2] Barnes, J. W. et al. (2007) Icarus, 186 (1). [3] Soderblom, L. A. et al. (2007) PSS, 55 (13). [4] Langhans, M. H. et al. (2011) PSS, 60. [5] Jaumann, R. et al. (2008) Icarus, 197. [6] Le Mouelic, S. et al. (2008) JGR, 113 (E04003). [7] Rodriguez, S. et al. (2013) Icarus. [8] Jaumann, R. et al. (2009) LPSC.

  13. The Formation of Ganymede's Grooved Terrain: Importance of Strain Weakening

    NASA Astrophysics Data System (ADS)

    Bland, M. T.; McKinnon, W. B.; Showman, A. P.

    2008-12-01

    Nearly two-thirds of Ganymede's surface consists of relatively bright, young, tectonically deformed terrain dubbed grooved terrain. The grooved terrain consists of sets of parallel, undulatory ridges and troughs with peak to trough amplitudes of several hundred meters and periodic spacings that range from 3 to 10~km. The low slopes and periodic spacing of the grooves suggest that they formed via unstable extension of the ice lithosphere [e.g. Fink and Fletcher 1981, LPS XII; Pappalardo et al. 1998, Icarus 135]. Application of analytical models of unstable extension to Ganymede suggest that large amplitude grooves with appropriate wavelengths can form if the lithosphere is in pervasive brittle failure and if the lithospheric thermal gradient was relatively high (~45K km-1) [Dombard and McKinnon 2001, Icarus 154]; however, numerical models of unstable extension struggle to produce topographic amplitudes consistent with Ganymede's grooves (maximum amplitudes are a factor of five less than typical large amplitude grooves) [Bland and Showman 2007, Icarus 189]. The difficulties in producing large amplitude deformation may be overcome by the inclusion of strain weakening in models of groove formation. Strain weakening effects account for a material's tendency to strain more easily as viscous and/or plastic deformation accumulates, and as strain localizes in shear zones or along faults. When included in models of terrestrial extension, such effects can increase deformation amplitudes by up to several orders of magnitude [e.g. Fredericksen and Braun 2001, EPSL 188; Behn et al. 2002, EPSL 202]. Here we present the results of simulations of Ganymede's groove formation that include various strain weakening processes. Incorporation of a simple damage rheology, in which the yield strength of the ice lithosphere decreases as plastic strain accumulates, permits a factor of three increase in the amplitude of the simulated grooves, generating topography of 200~m or more. Such groove amplitudes are consistent with the lower-end of the range of observed groove amplitudes. More sophisticated strain weakening rheologies are likely to further increase deformation amplitudes. This work is supported by NASA PG&G.

  14. Uranus' post-equinox north polar brightening characterized with 2013 and 2016 IRTF SpeX observation

    NASA Astrophysics Data System (ADS)

    Fry, Patrick M.; Sromovsky, Lawrence A.

    2017-10-01

    Since its 2007 equinox, the atmosphere of Uranus, as seen in the near infrared (~800-1600 nm) has exhibited dramatic changes. Its southern polar cap, prominent prior to equinox, has faded and a similar polar cap has begun developing in the north. Karkoschka and Tomasko (2009, Icarus 202:287) demonstrated that in 2002 the south polar region, brighter than lower latitude regions when viewed at wavelengths of intermediate methane absorption, was depleted in methane compared to darker regions. Tice et al. (2013, Icarus 223:684) and Sromovsky et al. (2014, Icarus 238:137) concluded that the northern polar regions were similarly depleted. The north polar region (45N-90N) has continued to brighten; modeling of 2015 HST STIS observations (Fry et al. 2016, AAS DPS #48 421.03) suggested that the latitudinal methane distribution has remained essentially unchanged since equinox, but brightening from 2012 to 2015 was due to changes in aerosol scattering. We acquired 0.8-2.5 μm SpeX spectra in 2013 (central meridian) and 2016 (pole-aligned spectra at 0, 0.4, 0.8, and 1.2 arcsec. distant from the CM) under similar seeing conditions (0.4-0.5 arcsec.). The SpeX wavelength range gives us an additional wavelength region where H2 absorption competes with or exceeds CH4 absorption, and a wider wavelength range to characterize aerosol particle properties, compared to STIS. The multiple spectra in 2016 allow us to compare specific latitudes to 2013 at the same view angles (and to use center-to-limb constraints in modeling 2016 spectra). We will present observations, reduction procedures, comparative (2013 vs 2016) modeling of latitudinal methane abundance and vertical aerosol profiles, and compare to 2012/2015 STIS analysis. Preliminary analysis shows that lower latitudes (~30N) have not changed since 2013, but higher latitudes (~70N) have undergone continued significant brightening at pseudo-continuum wavelengths dominated by both H2 (1080 nm, up ~50%) and CH4 (1290 nm, also up ~50%) absorption , indicating a change in scattering properties.This work is supported by NASA Solar System Observations grant NNA16AH99G.

  15. Rotational Properties of Centaurs (32532) Thereus and (8405) Asbolus

    NASA Astrophysics Data System (ADS)

    Brucker, Melissa; Romanishin, W. J.; Tegler, S. C.; Consolmagno, G. J.; J., S.

    2009-12-01

    We present lightcurves of Centaurs (32532) Thereus and (8405) Asbolus from observations taken October 29 through November 2, 2005 on the 1.8m Vatican Advanced Technology Telescope (VATT). Our double-peaked period for Thereus of 8.338±0.002h is consistent with 8.3378±0.0012h from Farnham and Davies (2003 Icarus 164, 418-427), 8.3091±0.0001h from Ortiz et al. (2002 A&A 388, 661-666; 2003 A&A 407, 1149-1155), and 8.33858±0.00056h from Rabinowitz et al. (2007 AJ 133, 26-43). The maximum amplitude of the lightcurve has increased from 0.18mag in Fall 2001 (Ortiz et al. 2002, Farnham and Davies 2003) to 0.34±0.08mag in Fall 2003 (Rabinowitz et al. 2007) to 0.375mag in Fall 2005. For Asbolus, our double-peaked period is 8.932±0.002h, consistent with the period of 8.9351±0.0003h derived by Davies et al. (1998 Icarus 134, 213-227) but inconsistent with the period of 8.87±0.02h of Brown and Luu (1997 Icarus 126, 218-224). Asbolus's lightcurve amplitude has changed from 0.46 in April 1996 (Brown and Luu 1997) to 0.14±0.02 in June 2001 (Kern 2006, PhD Dissertation, MIT, Cambridge, MA) and 0.14±0.1 in Fall 2003 (Rabinowitz et al. 2007) to 0.32 in Fall 2005. We assume that changes in amplitude are due to changes in viewing aspects with respect to their rotational axes. Future work: determine amplitudes from October 2008 observations and constrain rotational pole positions and axis ratios for both Centaurs with an amplitude-aspect model. This work is based on observations with the VATT: The Alice P. Lennon Telescope and the Thomas J. Bannan Astrophysics Facility. We gratefully acknowledge support from NASA Planetary Astronomy grant NNG06G138G to Northern Arizona University and the University of Oklahoma.

  16. Re-analysis of previous laboratory phase curves: 2. Connections between opposition effect morphology and spectral features of stony meteorites

    NASA Astrophysics Data System (ADS)

    Déau, Estelle; Spilker, Linda J.; Flandes, Alberto

    2016-07-01

    We investigate connections between the opposition phase curves and the spectra from ultraviolet to near infrared wavelengths of stony meteorites. We use two datasets: the reflectance dataset of Capaccioni et al. ([1990] Icarus, 83, 325), which consists of optical phase curves (from 2° to 45°) of 17 stony meteorites (three carbonaceous chondrites, 11 ordinary chondrites, and three achondrites), and the spectral dataset from the RELAB database consisting of near-ultraviolet to near-infrared spectra of the same meteorites. We re-analyzed the first dataset and fit it with two morphological models to derive the amplitude A, the angular width HWHM of the surge and the slope S of the linear part. Our re-analysis confirms that stony meteorites have a non-monotonic behavior of the surge amplitude with albedo, which is also observed in planetary surfaces (Déau et al. [2013] Icarus, 226, 1465), laboratory samples (Nelson et al. [2004] Proc. Lunar Sci. Conf., 35, p. 1089) and asteroids (Belskaya and Shevchenko [2000] Icarus, 147, 94). We find a very strong correlation between the opposition effect morphological parameters and the slope of the spectra between 0.75 μm and 0.95 μm. In particular, we found that meteorites with a positive amplitude-albedo correlation have a positive spectral slope between 0.75 μm and 0.95 μm, while meteorites with a negative amplitude-albedo correlation have a negative spectral slope between 0.75 μm and 0.95 μm. We have ruled out the role of the meteorite samples' macro-properties (grain size, porosity and macroscopic roughness) in the correlations found because these properties were constant during the preparation of the samples. If this hypothesis is correct, this implies that other properties like the composition or the micro-properties (grain inclusions, grain shape or microscopic roughness) could have a preponderant role in the non-monotonic behavior of the surge morphology with albedo at small and moderate phase angles. Further accurate characterization of carbonaceous chondrites samples are necessary to draw conclusions about the role of the micro-properties.

  17. Abundances of Elements in Jupiter’s Atmosphere

    NASA Astrophysics Data System (ADS)

    Desch, Steven; Monga, Nikhil

    2014-11-01

    As measured by the Galileo mission, Jupiter’s atmosphere is enriched (relative to H and a protosolar composition) in Ar, Kr, Xe, C, N, S and P, by a similar factor of 3 [1]; it is depleted in He, Ne and O. Fractionation of Ar from H requires temperatures < 35 K [2], but multiple theories exist invoking trapping of species in ices, in principle explaining these enrichments [3-5]. He is depleted by 18%, and Ne by 88% [1]. At the ~1 Mbar level in Jupiter’s atmosphere, where H transitions to a metallic state, He droplets can form that precipitate to Jupiter’s core; Ne, but not Ar, is expected to dissolve into these droplets, explaining the depletion of both He and Ne [6]. The factor-of-2 depletion of O is currently unexplained but is attributed to meteorological effects [7]. The Juno mission en route to Jupiter will measure the global abundance of O [8].We present a model for the enrichments of Ar, Kr, Xe, C, N, S and P. Our model [8] builds on that of [5] in which Jupiter accretes nebular gas depleted in H by photoevaporation. Our model improvements allow enrichments with less mass loss, and explain how water vapor can be produced at T < 35 K, necessary for trapping of Ar and other species. We predict that Jupiter accreted with a factor-of-3 enrichment of O, but was then sequestered into Jupiter’s core along with He and Ne, potentially explaining its factor-of-2 depletion.References:[1] Desch, SJ, Shumway, J, & Monga, N, submitted to Icarus.[2] Bar-Nun, A, Herman, G, Laufer, D, & Rappaport, ML 1985. Icarus 63, 317.[3] Owen, T, et al.1999, Nature 402, 269. [4] Gautier, D, Hersant, F, Mousis, O, & Lunine, JI 2001, Ap.J. 550, L227.[5] Guillot, T & Hueso, R 2006, Mon. Not. Roy. Astron. Soc. 367, L47.[6] Wilson, HF & Militzer, B 2010, Phys Rev Lett.104, 121101.[7] Atreya, SK et al. 1999, Planet. Space Sci. 47, 1243.[7] Janssen, MA et al. 2005, Icarus 173, 447. [8] Monga, N & Desch, SJ, submitted to Ap.J.

  18. Ocean Compositions on Europa and Ganymede

    NASA Astrophysics Data System (ADS)

    Leitner, M. A.; Bothamy, N.; Choukroun, M.; Pappalardo, R. T.; Vance, S.

    2014-12-01

    The ocean compositions of icy Galilean satellites Europa and Ganymede are highly uncertain. Spectral observations of the satellites' surfaces provide clues for the interior composition. Putative sulfate hydration features in Galileo near-infrared reflectance spectra suggest fractionation of Na and Mg sulfates from a subsurface reservoir (McCord et al. 1998, Sci. 278, 271; McCord et al. 1998, Sci. 280, 1242; Dalton et al. 2005, Icarus, 177, 472). Recent spatially resolved spectral mapping of Europa hints at possible partitioning of near-surface brines in Europa's low-lying planes (Shirley et al. 2010; Icarus, 210, 358; Dalton et al. 2012; J. Geophys. Res. 117, E03003). Surface materials can be modified by the delivery of material from impacts and Io's active volcanoes as well as intense irradiation from Jupiter's magnetic field interaction with the jovian magnetosphere. These factors, combined with observations of high Cl/K ratios in Europa's exosphere, have led other investigators to suggest that Europa's ocean is dominated by dissolved chloride rather than sulfate (Brown and Hand 2013; Astr. J. 145, 110). There is still much uncertainty regarding how well the surface composition approximates the interior ocean composition. Exogenic materials, seafloor hydrothermal processes, and fractional crystallization during ice formation will determine the abundances of species in the ocean and by extension those present on Europa's surface. We develop a bottom-up model for oceans on Europa and Ganymede, assuming initial compositions of chondritic and cometary materials including an Fe core for Europa and an Fe-FeS eutectic core for Ganymede. We calculate an ocean composition by employing a Bulk Silicate Earth approach, also used by Zolotov and Shock (2001; J. Geophys. Res. 106, 32815) at Europa, which assess element partitioning between the rocky mantle, Fe-rich core, and water ocean. Partitioning factors are based on terrestrial estimates for Earth. The resulting ocean composition is used to assess solid precipitation into the ocean and ice shell using FREZCHEM modeling software (Marion et al. 2010; Icarus, 207, 675). These results are then compared with measured compositions of brines on Europa's surface. We develop the model in a way that permits ready application to other icy satellites, such as Titan or Enceladus.

  19. The Manannan Impact Crater on Europa: Determination of Surface Compositions of Key Stratigraphic Units

    NASA Astrophysics Data System (ADS)

    Dalton, J. B.; Prockter, L. M.; Shirley, J. H.; Phillips, C. B.; Kamp, L.

    2011-12-01

    Mannanan is a 22-km-diameter impact crater located at 3 N, 240 W on Europa's orbital trailing side. Detailed high resolution geologic mapping by Moore et al. (2001) revealed the likely presence of extensive deposits of impact melt materials largely filling the crater floor, together with surrounding continuous ejecta deposits that may have been excavated from Europa's interior. Terrains surrounding Mannanàn include some of Europa's visibly darkest surfaces, with extensive areas of chaos, traversed by the prominent structure of Belus Linea. The Mannannàn impact crater and its surrounding areas were imaged during the C3 orbital encounter of the Galileo Mission by the orbiter's Near-Infrared Mapping Spectrometer (NIMS). This NIMS observation (C3ENLINEA01A) has not been subjected to a detailed investigation until now, possibly due to the presence of moderate levels of radiation noise. A "despiked" version of this observation has been produced using methods described in Shirley et al. (2010). In addition, new geologic mapping precisely registered to the NIMS coverage of Manannàn and its surroundings allows the extraction of high-quality near-infrared spectra that are specific to individual geologic units and morphological features. We will present linear mixture modeling solutions for the compositions of several of Manannàn's key stratigraphic units, including the crater floor deposits and the adjacent chaos and linea materials. We will interpret these results in the context of ongoing investigations of the interplay of exogenic and endogenic influences on the surface composition of Europa. This work was performed at the Jet Propulsion Laboratory-California Institute of Technology, Johns Hopkins University-Applied Physics Laboratory, and the SETI Institute under a contract with NASA. Support by NASA's Outer Planets Research program is gratefully acknowledged. Moore, J. M. and 25 others 2001. Impact Features on Europa: Results of the Galileo Europa Mission (GEM), Icarus 151, 93-111. Shirley, J. H., J. B. Dalton III, L. M. Prockter, and L. W. Kamp 2010. Europa's ridged plains and smooth low albedo plains: Distinctive compositions and compositional gradients at the leading side-trailing side boundary, Icarus 210, 358-384, doi:10.1016/j.icarus.2010.06.018.

  20. Seismic Investigations of Europa and Other Ocean Worlds

    NASA Astrophysics Data System (ADS)

    Vance, Steve; Tsai, Victor; Kedar, Sharon; Bills, Bruce; Castillo-Rogez, Julie; Jackson, Jennifer

    2016-04-01

    Seismic investigations offer the most comprehensive view into the deep interiors of planetary bodies. Developing missions (InSight, Europa Lander, Lunar Geophysical Network) identify seismology as a critical measurement to constrain interior structure and thermal state. In oceanic icy worlds, pinpointing the radial depths of compositional interfaces using seismology in a broad frequency range can address uncertainty in interior structures inferred from gravity and magnetometry studies, such as those planned for NASA's Europa and ESA's JUICE missions. Seismology also offers information about fluid motions within or beneath ice, which complement magnetic studies; and can record the dynamics of ice layers, which would reveal mechanisms and spatiotemporal occurrence of crack formation and propagation. Investigating these with future missions will require detailed modeling of seismic sources and signatures in order to develop the most suitable instrumentation. We evaluate seismic sources and their propagation in Europa, with extension to other oceanic icy worlds, building on prior studies (Kovach and Chyba 2001, Lee et al. 2003, Cammarano et al. 2006, Panning et al. 2006, Leighton et al. 2008). We also consider additional sources: gravitationally forced librations, which will create volume-filling turbulent flow (le Bars et al. 2015), a possible seismic source similar to that seen from turbulent flow in terrestrial rivers (Tsai et al., 2012; Gimbert et al., 2014; Chao et al., 2015); downflow of dense brines from chaos regions on Europa into its underlying ocean (Sotin et al. 2002), possibly resembling riverine flows and flows through glacial channels (Tsai and Rice 2012); ocean acoustic signals that couple with the overlying ice to produce seismic waves, by analogy with Earth's ocean-generated seismic hum (Kedar 2011, Ardhuin 2015). Ardhuin, F., Gualtieri, L., and Stutzmann, E. (2015). GRL., 42. Cammarano, F., Lekic, V., Manga, M., Panning, M., and Romanowicz, B. (2006). JGR, E12009:doi:10.1029/2006JE002710. Chao, W.-A., Wu, Y.-M., Zhao, L., Tsai, V. C., and Chen, C.-H. (2015). Scientific reports, 5. Gimbert, F., Tsai, V. C., and Lamb, M. P. (2014).JGR: Earth Surface, 119(10):2209-2238. Kedar, S. (2011). Comptes Rendus Geoscience, 343(8):548-557. Kovach, R. L. and Chyba, C. F. (2001). Icarus, 150(2):279-287. Lee, S. W., Zanolin, M., Thode, A. M., Pappalardo, R. T., and Makris, N. C. (2003). Icarus, 165(1):144-167. Leighton, T. G., Finfer, D. C., and White, P. R. (2008). Icarus, 193(2):649-652. Le Bars, M., Cébron, D., and Le Gal, P. (2015). Annual Review of Fluid Mechanics, 47:163-193. Panning, M., Lekic, V., Manga, M., and Romanowicz, B. (2006). Journal of Geophysical Research, E12008:doi:10.1029/2006JE002712. Sotin, C., Head, J. W., and Tobie, G. (2002). Geophysical Research Letters, 29(8):1233. Tsai, V. C., and J. R. Rice (2012). Journal of Applied Mechanics, 79: 031003.

  1. VNIR reflectance spectroscopy of glassy igneous material with variable oxidation states

    NASA Astrophysics Data System (ADS)

    Carli, Cristian; Di Genova, Danilo; Roush, Ted L.; Ertel-Ingrisch, Werner; Capaccioni, Fabrizio; Dingwell, Donald B.

    2017-04-01

    Silicate glasses with igneous compositions may represent an abundant component of planetary surface material via effusive volcanism or impact cratering processes. Several planetary surfaces are mapped with hyper-spectrometers in the visible and near-infrared (VNIR). In this spectral range, crystal field (C.F.) absorptions are useful to discriminate iron-bearing silicate components. At the same time, in the VNIR reflectance spectroscopy iron bearing glasses may exhibit a C.F. absorption at ˜1.1 μm. A weak C.F. absorption is also present at ˜1.9 μm. These absorptions can be therefore diagnostic for glassy component and can also affect the C.F. absorptions of mafic minerals when mixed in the regolith. So far, few studies investigated the spectral properties of systematic glasses compositions and at different oxygen fucacity. For these reasons studying glassy materials, and their optical constants, represents an important effort to document and to interpret, spectral features of Solar System silicate crusts where glasses are present, but may be difficult to map. In previous work Carli et al. (2016) considered the composition of glassy igneous materials produced in Earth-like atmospheric conditions (i.e. oxidized conditions). Here, we expand on that effort by including glasses formed under more reducing condition. In this study, glasses were produced at -9.3 log fO2 and 1400 ˚ C for a duration of 4 h at the Department of Earth and Environmental Sciences at the University of Munich using a gas-mixing furnace. The major element composition, sample homogeneity, and the Fe3+/Fetot. ratio of run products were analytically determined. Moreover, Raman spectra of the same samples were also acquired. Afterwards, powders were produced with nine-grain size from 250-224 μm to 50-20 μm and measured in bidirectional reflectance at Spectroscopy LABoratory (IAPS-INAF, Rome). Reflectance spectra were acquired from 0.35 to 2.5 μm with a Field-Pro Spectrometer mounted on a goniometer. Spectra were obtained with incident and emission angles of 30˚ and 0˚ , respectively. Spectra showed both diagnostic bands, reflectance diminished with increasing iron abundance. The comparison with spectra collected from samples sythetized at "Earth-like" atmospheric conditions showed: 1) Relatively higher reflectance in the visible; 2) less red slope in the IR; 3) deeper 1.1 μm absorption band. Following Carli et al. (2016, Icarus), for all the spectra acquired at each grain size, we apply the radiative transfer model to estimate the optical constant as a wavelength's function. Finally, we will report the retrieved optical constants for our samples and we will compare them with those obtained from the same composition but at "Earth-like" atmospheric conditions. Reference: Carli et al. 2016, Icarus, doi:10.1016/j.icarus.2015.10.032.

  2. The morphology of Cerberus volcanic landforms and the conditions for the formation of fluid lavas

    NASA Astrophysics Data System (ADS)

    Baratoux, D.; Vaucher, J.; Pinet, P.; Toplis, M. J.; Mangold, N.; Bibring, J.

    2007-12-01

    The extremely smooth surface of flows observed on the Cerberus plains has been variably attributed to the role of volcanic flows, subsurface ice, and/or fluvial transport. In an attempt to clarify the debate concerning these flows a new high-resolution geological mapping of the recent unit of the Cerberus plains has been undertaken, thanks to which several new shield volcanoes have been identified [1]. Evidence for the occurrence of widespread volcanic material is reviewed, including morphologic observations and mineralogical compositions from OMEGA and TES observations. Indeed, it is important to note that the OMEGA spectra of exposed dark material of Cerberus are similar to some of those obtained in the Syrtis Major volcanic plateau composed of mafic materials. The various approaches are consistent and indicate that flows on Cerberus can be divided in two distinct groups according to their rheology. The first group has a similar viscosity to other volcanic landforms, to our present knowledge [3] while the second group is composed of extremely fluid lavas (viscosities as low as a few Pa.s), unique in the Martian context. We believe that formation of these fluid and recent lavas has strong implications for the understanding of the volcanic and thermal evolution of Mars. The degree of partial melting associated with volcanism in the Cerberus region is discussed in comparison with other volcanic provinces in light of (a) the thermal structure of the Martian lithosphere, which is likely to be thickening with time [4], (b) the different plausible mechanisms for volcanism on Mars[5], in particular for recent volcanism [6], and (c) from the abundance of incompatible elements, such as potassium and thorium from the available GRS maps. Given the possible ranges of degree of partial melting, we discuss several hypotheses concerning the formation of very fluid lavas, including the role of water and composition for the crystal growth rate during the emplacement of the lavas. [1] Vaucher et. al, in revision for Icarus [2] Baptista et. al, in revision for Journal of Geophysical Research [3] Hiesinger, H., J. W. Head III, and G. Neukum (2007), J. Geophys. Res., 112,E05011, doi:10.1029/2006JE002717. [4] McGovern, P. J., S. C. Solomon, D. E. Smith, M. T. Zuber, M. Simons, M. A. Wieczorek, R. J. Phillips, G. A. Neumann, O. Aharonson, and J. W. Head, J. Geophys. Res., 107 (E12), 5136, doi:10.1029/2002JE001854, 2002. [5] Weizmann A., D. J. Stevenson D. Prialnik and M. Podola, Icarus 150, 195-205 (2001) , doi:10.1006/icar.2000.6572 [6] S. Schumacher, and D. Breuer, Geophys. Res. Lett., 34, L14202, doi:10.1029/2007GL030083, 2007

  3. Asteroidal companions in the visible: HST data

    NASA Astrophysics Data System (ADS)

    Storrs, Alex; Vilas, Faith; Landis, Rob; Gaffey, Michael J.; Makhoul, Khaldoun; Davis, MIke; Richmond, Mike

    2016-01-01

    We present a reanalysis of HST images of five asteroids with known companions (45 Eugenia, 87 Sylvia, 93 Minerva, 107 Camilla, 121 Hermione). It is remarkable that all of these companion bodies are much redder in the visible region than their primary bodies. Storrs et al. (2009, BAAS vol. 41, no. 4, p 189) attributed this to space weathering, however, all of these bodies belong to dark C- or X-type groups. Current modeling of space weathering effects are limited to bright asteroids (e.g. Cloutis et al., Icarus 252, pp. 39-82, 2015) and show little change on the scale reported here. We suggest that the interaction of dark, possibly organic-rich surfaces with the solar wind produces reddening on a much greater scale than is observed in bright, silica-rich surfaces, and that this effect is easily reset by collisions. Thus, while both the parent and companion object accumulate the effects, the parent is much more likely to be "reset" by small collisions than the companion, due to the differences in their cross-sections.

  4. Interpretation of spectrophotometric surface properties of comet 67P/Churyumov-Gerasimenko by laboratory simulations of cometary analogs

    NASA Astrophysics Data System (ADS)

    Jost, Bernhard; Pommerol, Antoine; Poch, Olivier; Carrasco, Nathalie; Szopa, Cyril; Thomas, Nicolas

    2015-11-01

    The OSIRIS imaging system [1] onboard European Space Agency’s Rosetta mission has been orbiting the comet 67P/Churyumov-Gerasimenko (67P) since August 2014. It provides an enormous quantity of high resolution images of the nucleus in the visible spectral range. 67P revealed an unexpected diversity of complex surface structures and spectral properties have also been measured [2].To better interpret this data, a profound knowledge of laboratory analogs of cometary surfaces is essential. For this reason we have set up the LOSSy laboratory (Laboratory for Outflow Studies of Sublimating Materials) to study the spectrophotometric properties of ice-bearing cometary nucleus analogs. The main focus lies on the characterization of the surface evolution under simulated space conditions. The laboratory is equipped with two facilities: the PHIRE-2 radio-goniometer [3], designed to measure the bidirectional visible reflectance of samples under a wide range of geometries and the SCITEAS simulation chamber [4], designed to study the evolution of icy samples subliming under low pressure/temperature conditions by hyperspectral imaging in the VIS-NIR range. Different microscopes complement the two facilities.We present laboratory data of different types of fine grained ice particles mixed with non-volatile components (complex organic matter and minerals). As the ice sublimes, a deposition lag of non-volatile constituents is built-up on top of the ice, possibly mimic a cometary surface. The bidirectional reflectance of the samples have been characterized before and after the sublimation process.A comparison of our laboratory findings with recent OSIRIS data [5] will be presented.[1] Keller, H. U., et al., 2007, Space Sci. Rev., 128, 26[2] Thomas, N. , 2015, Science, 347, Issue 6220, aaa0440[3] Jost, B., submitted, Icarus[4] Pommerol, A., et al., 2015. Planet Space Sci 109:106-122.[5] Fornasier, S., et al., in press. Icarus, arXiv:1505.06888

  5. A Numerical Investigation into Low-Speed Impact Cratering Events

    NASA Astrophysics Data System (ADS)

    Schwartz, Stephen; Richardson, D. C.; Michel, P.

    2012-10-01

    Impact craters are the geological features most commonly observed on the surface of solid Solar System bodies. Crater shapes and features are crucial sources of information regarding past and present surface environments, and can provide indirect information about the internal structures of these bodies. In this study, we consider the effects of low-speed impacts into granular material. Studies of low-speed impact events are suitable for understanding the cratering process leading, for instance, to secondary craters. In addition, upcoming asteroid sample return missions will employ surface sampling strategies that use impacts into the surface by a projectile. An understanding of the process can lead to better sampling strategies. We use our implementation of the Soft-Sphere Discrete Element Method (SSDEM) (Schwartz et al. 2012, Granular Matter 14, 363-380) into the parallel N-body code PKDGRAV (cf. Richardson et al. 2011, Icarus 212, 427-437) to model the impact cratering process into granular material. We consider the effects of boundary conditions on the ejecta velocity profile and discuss how results relate to the Maxwell Z-Model during the crater growth phase. Cratering simulations are compared to those of Wada et al. 2006 (Icarus 180, 528-545) and to impact experiments performed in conjunction with Hayabusa 2. This work is supported in part by grants from the National Science Foundation under grant number AST1009579 and from the Office of Space Science of NASA under grant number NNX08AM39G. Part of this study resulted from discussions with the International Team (#202) sponsored by ISSI in Bern (Switzerland). Some simulations were performed on the YORP cluster administered by the Center for Theory and Computation of the Department of Astronomy at the University of Maryland in College Park and on the SIGGAM computer cluster hosted by the Côte d'Azur Observatory in Nice (France).

  6. Realistic uncertainties on Hapke model parameters from photometric measurement

    NASA Astrophysics Data System (ADS)

    Schmidt, Frédéric; Fernando, Jennifer

    2015-11-01

    The single particle phase function describes the manner in which an average element of a granular material diffuses the light in the angular space usually with two parameters: the asymmetry parameter b describing the width of the scattering lobe and the backscattering fraction c describing the main direction of the scattering lobe. Hapke proposed a convenient and widely used analytical model to describe the spectro-photometry of granular materials. Using a compilation of the published data, Hapke (Hapke, B. [2012]. Icarus 221, 1079-1083) recently studied the relationship of b and c for natural examples and proposed the hockey stick relation (excluding b > 0.5 and c > 0.5). For the moment, there is no theoretical explanation for this relationship. One goal of this article is to study a possible bias due to the retrieval method. We expand here an innovative Bayesian inversion method in order to study into detail the uncertainties of retrieved parameters. On Emission Phase Function (EPF) data, we demonstrate that the uncertainties of the retrieved parameters follow the same hockey stick relation, suggesting that this relation is due to the fact that b and c are coupled parameters in the Hapke model instead of a natural phenomena. Nevertheless, the data used in the Hapke (Hapke, B. [2012]. Icarus 221, 1079-1083) compilation generally are full Bidirectional Reflectance Diffusion Function (BRDF) that are shown not to be subject to this artifact. Moreover, the Bayesian method is a good tool to test if the sampling geometry is sufficient to constrain the parameters (single scattering albedo, surface roughness, b, c , opposition effect). We performed sensitivity tests by mimicking various surface scattering properties and various single image-like/disk resolved image, EPF-like and BRDF-like geometric sampling conditions. The second goal of this article is to estimate the favorable geometric conditions for an accurate estimation of photometric parameters in order to provide new constraints for future observation campaigns and instrumentations.

  7. Neutrino velocity and local Lorentz invariance

    NASA Astrophysics Data System (ADS)

    Cardone, Fabio; Mignani, Roberto; Petrucci, Andrea

    2015-09-01

    We discuss the possible violation of local Lorentz invariance (LLI) arising from a faster-than-light neutrino speed. A toy calculation of the LLI violation parameter δ, based on the (disclaimed) OPERA data, suggests that the values of δ are determined by the interaction involved, and not by the energy range. This hypothesis is further corroborated by the analysis of the more recent results of the BOREXINO, LVD and ICARUS experiments.

  8. Radio Thermal Emission from Pluto and Charon during the New Horizons Encounter

    NASA Astrophysics Data System (ADS)

    Bird, Michael; Linscott, Ivan; Hinson, David; Tyler, G. L.; Strobel, Darrell F.; New Horizons Science Team

    2017-10-01

    As part of the New Horizons Radio-Science Experiment REX, radio thermal emission from Pluto and Charon (wavelength: 4.2 cm) was observed during the encounter on 14 July 2015. The primary REX measurement, a determination of the atmospheric height profile from the surface up to about 100 km, was conducted during an uplink radio occultation at both ingress and egress (Hinson et al., Icarus 290, 96-111, 2017). During the interval between ingress and egress, when the Earth and the REX uplink signals were occulted by the Pluto disk, the spacecraft antenna continued to point toward Earth and thus scanned diametrically across the Pluto nightside. The average diameter of the HGA 3 dB beam was ≈1100 km at the surface during this opportunity, thereby providing crudely resolved measurements of the radio brightness temperature across Pluto. The best resolution for the REX radiometry observations occurred shortly after closest approach, when the HGA was scanned twice across Pluto. These observations will be reported elsewhere (Linscott et al., Icarus, submitted, 2017). In addition to the resolved observations, full disk brightness temperature measurements of both bodies were performed during the approach (dayside) and departure (nightside) phases of the encounter. We present the results of these observations and provide a preliminary interpretation of the measured brightness temperatures.

  9. ARM Tethered Balloon System & AALCO Activities at AMF3 Site at Oliktok Point, AK

    NASA Astrophysics Data System (ADS)

    Hardesty, J.; Dexheimer, D.; Mei, F.; Roesler, E. L.; Longbottom, C.; Hillman, B. R.

    2017-12-01

    Sandia National Laboratories (SNL) has operated the Atmospheric Radiation Measurement program's (ARM) third ARM Mobile Facility (AMF3) and the restricted airspace associated with it at Oliktok Point, Alaska, since October 2013. The site hosts ground-based instrumentation which collects a variety of continuous atmospheric measurements as well as user-conducted unmanned aircraft and tethered balloon campaigns. SNL has operated ARM's tethered balloon system (TBS) as part of the Inaugural Campaigns for ARM Research using Unmanned Systems (ICARUS) since 2016. AALCO (Aerial Assessment of Liquid in Clouds at Oliktok), is an ARM Intensive Operations Period conducted by SNL at the AMF3 since 2016. The operation of the TBS during ICARUS and AALCO to altitudes above 4,000' AGL in a variety of seasons and conditions is addressed. A Distributed Temperature Sensing (DTS) system and supercooled liquid water content (SLWC) sensors have been deployed under both campaigns. The performance of these sensors is discussed and results are presented. DTS measurements and their relationship to concurrent temperature measurements from unmanned aircraft and radiosondes are shown. SLWC sensor in situ measurements are compared with microwave radiometer and radiosonde-derived measurements. Preliminary analysis of using Large Eddy Simulations to compare with the SLWC measurements reveals three-dimensional properties of the observed clouds.

  10. Fates of satellite ejecta in the Saturn system, II

    NASA Astrophysics Data System (ADS)

    Alvarellos, José Luis; Dobrovolskis, Anthony R.; Zahnle, Kevin J.; Hamill, Patrick; Dones, Luke; Robbins, Stuart

    2017-03-01

    We assess the fates of ejecta from the large craters Aeneas on Dione and Ali Baba on Enceladus (161 and 39 km in diameter, respectively), as well as that from Herschel (130 km in diameter) on Mimas. The ejecta are treated either as 'spalls' launched from hard surfaces, or as 'rubble' launched from a weak rubble pile regolith. Once in orbit we consider the ejecta as massless test particles subject to the gravity of Saturn and its classical satellites. The great majority of escaped ejecta get swept up by the source moons. The best fit to the ejecta population decay is a stretched exponential with exponent near 1/2 (Dobrovolskis et al., Icarus 188, 481-505, 2007). We bracket the characteristic ejecta sizes corresponding to Grady-Kipp fragments and spalls. Based on this and computed impact velocities and incidence angles, the resulting sesquinary craters, if they exist, should have diameters on the order of a few meters to a few km. The observed longitude distribution of small craters on Mimas along with the findings of Bierhaus et al. that small moons should not have a secondary crater population (Icarus 218, 602-621, 2012) suggest that the most likely place to find sesquinary craters in the Saturn system is the antapex of Mimas.

  11. Why Small Is Beautiful: Wing Colour Is Free from Thermoregulatory Constraint in the Small Lycaenid Butterfly, Polyommatus icarus

    PubMed Central

    De Keyser, Rien; Breuker, Casper J.; Hails, Rosemary S.; Dennis, Roger L. H.; Shreeve, Tim G.

    2015-01-01

    We examined the roles of wing melanisation, weight, and basking posture in thermoregulation in Polyommatus Icarus, a phenotypically variable and protandrous member of the diverse Polyommatinae (Lycaenidae). Under controlled experimental conditions, approximating to marginal environmental conditions for activity in the field (= infrequent flight, long duration basking periods), warming rates are maximised with fully open wings and maximum body temperatures are dependent on weight. Variation in wing melanisation within and between sexes has no effect on warming rates; males and females which differ in melanisation had similar warming rates. Posture also affected cooling rates, consistent with cooling being dependent on convective heat loss. We hypothesise that for this small sized butterfly, melanisation has little or no effect on thermoregulation. This may be a factor contributing to the diversity of wing colours in the Polyommatinae. Because of the importance of size for thermoregulation in this small butterfly, requirements for attaining a suitable size to confer thermal stability in adults may also be a factor influencing larval feeding rates, development time and patterns of voltinism. Our findings indicate that commonly accepted views of the importance of melanisation, posture and size to thermoregulation, developed using medium and large sized butterflies, are not necessarily applicable to small sized butterflies. PMID:25923738

  12. Why Small Is Beautiful: Wing Colour Is Free from Thermoregulatory Constraint in the Small Lycaenid Butterfly, Polyommatus icarus.

    PubMed

    De Keyser, Rien; Breuker, Casper J; Hails, Rosemary S; Dennis, Roger L H; Shreeve, Tim G

    2015-01-01

    We examined the roles of wing melanisation, weight, and basking posture in thermoregulation in Polyommatus Icarus, a phenotypically variable and protandrous member of the diverse Polyommatinae (Lycaenidae). Under controlled experimental conditions, approximating to marginal environmental conditions for activity in the field (= infrequent flight, long duration basking periods), warming rates are maximised with fully open wings and maximum body temperatures are dependent on weight. Variation in wing melanisation within and between sexes has no effect on warming rates; males and females which differ in melanisation had similar warming rates. Posture also affected cooling rates, consistent with cooling being dependent on convective heat loss. We hypothesise that for this small sized butterfly, melanisation has little or no effect on thermoregulation. This may be a factor contributing to the diversity of wing colours in the Polyommatinae. Because of the importance of size for thermoregulation in this small butterfly, requirements for attaining a suitable size to confer thermal stability in adults may also be a factor influencing larval feeding rates, development time and patterns of voltinism. Our findings indicate that commonly accepted views of the importance of melanisation, posture and size to thermoregulation, developed using medium and large sized butterflies, are not necessarily applicable to small sized butterflies.

  13. Refining Martian Ages and Understanding Geological Processes From Cratering Statistics

    NASA Technical Reports Server (NTRS)

    Hartmann, William K.

    2005-01-01

    Senior Scientist William K. Hartman presents his final report on Mars Data Analysis Program grant number NAG5-12217: The third year of the three-year program was recently completed in mid-2005. The program has been extremely productive in research and data analysis regarding Mars, especially using Mars Global Surveyor and Mars Odyssey imagery. In the 2005 alone, three papers have already been published, to which this work contributed.1) Hartmann, W. K. 200.5. Martian cratering 8. Isochron refinement and the history of Martian geologic activity Icarus 174, 294-320. This paper is a summary of my entire program of establishing Martian chronology through counts of Martian impact craters. 2) Arfstrom, John, and W. K. Hartmann 2005. Martian flow features, moraine-like rieges, and gullies: Terrestrial analogs and interrelationships. Icarus 174,32 1-335. This paper makes pioneering connections between Martian glacier-like features and terrestrial glacial features. 3) Hartmann, W.K., D. Winterhalter, and J. Geiss. 2005 Chronology and Physical Evolution of Planet Mars. In The Solar System and Beyond: Ten Years of ISSI (Bern: International Space Science Institute). This is a summary of work conducted at the International Space Science Institute with an international team, emphasizing our publication of a conference volume about Mars, edited by Hartmann and published in 2001.

  14. Compartmentalisation Strategies for Hydrocarbon-based Biota on Titan

    NASA Astrophysics Data System (ADS)

    Norman, L.; Fortes, A. D.; Skipper, N.; Crawford, I.

    2013-05-01

    The goal of our study is to determine the nature of compartimentalisation strategies for any organisms inhabiting the hydrocarbon lakes of Titan (the largest moon of Saturn). Since receiving huge amounts of data via the Cassini-Huygens mission to the Saturnian system astrobiologists have speculated that exotic biota might currently inhabit this environment. The biota have been theorized to consume acetylene and hydrogen whilst excreting methane (1,2) leading to an anomalous hydrogen depletion near the surface; and there has been evidence to suggest this depletion exists (3). Nevertheless, many questions still remain concerning the possible physiological traits of biota in these environments, including whether cell-like structures can form in low temperature, low molecular weight hydrocarbons. The backbone of terrestrial cell membranes are vesicular structures composed primarily of a phospholipid bilayer with the hydrophilic head groups arranged around the periphery and are thought to be akin to the first protocells that terrestrial life utilised (4). It my be possible that reverse vesicles composed of a bilayer with the hydrophilic head groups arranged internally and a nonpolar core may be ideal model cell membranes for hydrocarbon-based organisms inhabiting Titan's hydrocarbon lakes (5). A variety of different surfactants have been used to create reverse vesicles in nonpolar liquids to date including; non-ionic ethers (7) and esters (6, 8); catanionic surfactant mixtures (9); zwitterionic gemini surfactants (10); coblock polymer surfactants (11); and zwitterionic phospholipid surfactants (12). In order to discover whether certain phospholipids can exhibit vesicular behaviour within hydrocarbon liquids, and to analyse their structure, we have carried out experimental studies using environmental conditions that are increasing comparable to those found on the surface of Titan. Experimental methods that have been used to determine the presence of vesicles include the use of microscopy, the presence of the Tyndall scattering effect, transmission electron microscopy (TEM), dynamic light scattering (DLS) , small-angle neutron scattering (SANS) and small-angle x-ray scattering (SAXS). These studies are currently being anaylzed, however, some results have indcated the presence of reverse vesicles in certain systems. Compounds that are shown to form reverse vesicles in conditions comparable to those of Titan's lakes could be potential 'biomarkers' and searched for in future missions to Titan. References [1] Schulze-Makuch D et al. Orig Life Evol Biosph 36, 324 (2006). [2] McKay C P et al. Icarus 178, 274 (2005). [3] Strobel D F. Icarus 208, 878 (2010). [4]. Fiordemondo D et al. Chem. Bio. Chem. 8, 1965 (2007). [5] Norman L H et al. A&G 52, 39 (2011). [6] Mollee H et al. J Pharm Sci 89, 930 (2000). ). [7] Kunieda H et al. Langmuir 15, 3118 (1999). [8] Shrestha L K et al. Langmuir 22, 1449 (2006). [9] Li H G et al. Chem. Lett 36, 702 (2007). [10] Peresypkin A et al. Mendeleev Commun. 17, 82 (2007). [11] Rangelov S et al. J. Phys. Chem B 108, 7542 (2004). [12] Tung S H et al. J. Am. Chem. 130, 8813 (2008).

  15. A Spectral Comparison of the M Asteroid 75 Eurydike and S Asteroid 27 Euterpe

    NASA Astrophysics Data System (ADS)

    Busarev, V. V.

    1996-09-01

    75 Euridyke and 27 Euterpe were observed under small phase angles and air mass differences with the same reference star of solar type (HD11170) in the course of a night. A scanning spectrophotometer operating in the mode of photon counting in the {3380--7617 Angstroms} range with a resolution of {48 Angstroms} mounted on the 1.25-m telescope in Crimea was used. The obtained reflectance spectra are similar in general shapes to those of other asteroids of corresponding classes [1]. So the bodies may have ordinary contents. On the spectra there are the following absorption features exeeded the error limits (RMSD). For 75 Eurydike these are at {5100 Angstroms} ( ~ 10% with a width of ~ {200 Angstroms}) and {6300 Angstroms} ( ~ 8% with a width of ~ {300 Angstroms}). For 27 Euterpe there are {5100 Angstroms} and {5650 Angstroms} (3--4% with widths of {200 Angstroms}), {6000 Angstroms} and {6550 Angstroms} (2--3% with widths of {400--500 Angstroms}) weak absorption bands. The common spectral features on the bodies at {5100 Angstroms} and {5650 Angstroms} may be a result of crystal-field transitions of Fe(2+) in pyroxenes as in lunar those [2]. The specific absorption band for 75 Eurydike at {6300 Angstroms} may be caused by charge transfer transitions Fe(2+) -Fe(3+) in oxidized pyroxenes as on Earth [4]. The features on the 27 Euterpe's spectra at {6000 Angstroms} and {6550 Angstroms} may arise in oxidized Fe-Ni metal and spinel-group minerals as on other S asteroids [3]. The results show that regolithes of both M and S asteroids may contain pyroxenes and Fe-Ni metal including their oxidized states as common factors influencing optical properties of the bodies. REFERENCES: 1. Chapman C. R. and M. J. Gaffey 1979. In: "Asteroids"(T. Gehrels, Ed.), p. 655--687. Univ. of Arizona Press, Tucson. 2. Hazen R. M. et al. 1978. In: "Proc. LPSC 9th", p. 2919--2934. 3. Hiroi T. and F. Vilas 1996. "Icarus", V.119, p. 202--208. 4. Wagner J. K. et al. 1987. "Icarus", V.69, p. 14--28.

  16. Study of Mare Moscoviense based on orbital NIR hyperspectral data

    NASA Astrophysics Data System (ADS)

    Bhatt, Megha; Wöhler, Christian; Bhardwaj, Anil; Mall, Urs; Grumpe, Arne; Rommel, Daniela

    2016-07-01

    The Moscoviense basin is an important lunar farside impact basin. Previous studies of this region suggest compositional variations across the mare basalts, and significant positive gravity anomaly within the basin [1, 2]. In the highlands immediately west of the mare regions inside the Moscoviense basin, unusual spectral signatures indicating small deposits of orthopyroxene, olivine and spinel have been detected [3]. A detailed study of the Moscoviense basin thus allows for an examination of lunar farside highland materials and mare basalts of varying composition and age, providing insights into the lunar mantle composition and magmatic history. We present a geological study of Mare Moscoviense based on near-infrared high-resolution hyperspectral data obtained by the Moon Mineralogy Mapper (M3) [4] and the near-infrared spectrometer, SIR-2 [5]. An M3 reflectance mosaic of the region has been prepared after applying corrections for thermal emission and topography. Two SIR-2 orbits recorded from 100 km spacecraft altitude have also been used for mineralogical study of the region. Elemental abundance maps of Ti, Ca and Mg as well as a petrologic map have been prepared based on the method described in [6]. Furthermore, we utilized the three different algorithms described in [6, 7, 8] for estimating Fe abundances using the 1-µm and/or 2-µm absorption band parameters. This comparative study aims to identify and map the major morphological and compositional units within the Mare Moscoviense region. References: [1] Gillis et al. (1998) Ph.D. thesis, 248 pp., Rice Univ., Houston, Texas; [2] Kramer et al. (2008) JGR 113, E01002, doi:10.1029/2006JE002860; [3] Pieters et al. (2011) JGR 116, E00G08, doi:10.1029/2010JE003727; [4] Pieters C. M. et al. (2009) Current Science 96, 500-505; [5] Mall, U. et al. (2009) Current Science 96, 506-511; [6] Wöhler C. et al. (2014) Icarus 235, 86-122; [7] Lucey P. G. et al. (2000) JGR 105, 20297-20306; [8] Bhatt M. et al. (2015) Icarus 248, 72-88.

  17. Cassini results on Titan's atmospheric and surface properties changes since the northern equinox

    NASA Astrophysics Data System (ADS)

    Coustenis, Athena; Drossart, Pierre; Flasar, F. Michael; Achterberg, Richard K.; Rodriguez, Sebastien; Nixon, Conor; Bampasidis, Georgios; Solomonidou, Anezina; Jennings, Donald; Lavvas, Panayiotis

    2016-07-01

    Since 2010, we observe the set in and enhancement at Titan's south pole of several trace species, such as HC3N and C6H6, observed only at high northern latitudes before equinox. We will present an analysis of spectra acquired by Cassini/CIRS at high resolution from 2012 in nadir mode. We investigated here several latitudes of 70°S to 70°N since 2010 (after the Southern Autumnal Equinox) until end of 2014 [1]. For some of the most abundant and longest-lived hydrocarbons (C2H2, C2H6 and C3H8) and CO2, the evolution in the past 4 years at a given latitude is not very significant within error bars especially until mid-2013 [1]. In more recent dates, these molecules show a dramatic trend for increase in the south. The 70°S and 50°S or mid-latitudes show different behavior demonstrating that they are subject to different dynamical processes in and out of the polar vortex region. For most species, we find higher abundances at 50°N compared to 50°S, with the exception of C3H8, CO2, C6H6 and HC3N, which arrive at similar mixing ratios after mid-2013 [1]. While the 70°N data show generally no change with a trend rather to a small decrease for most species within 2014, the 70°S results indicate a strong enhancement in trace stratospheric gases after 2012. In particular, HC3N, HCN and C6H6 have increased by 3 orders of magnitude over the past 3-4 years while other molecules, including C2H4, C3H4 and C4H2, have increased less sharply (by 1-2 orders of magnitude). This is a strong indication of the rapid and sudden buildup of the gaseous inventory in the southern stratosphere during 2013-2014, as expected as the pole moves deeper into winter shadow. Subsidence gases that accumulate in the absence of ultraviolet sunlight, evidently increased quickly since 2012 and some of them may be responsible also for the reported haze decrease in the north and its appearance in the south at the same time [2]. Clearly Titan is a dynamic system with indications of short and long-term variations both in the atmosphere and the surface and the two environments are connected. Deposits from the atmosphere can be found on the ground and the tropospheric processes (clouds, rain) affect the appearance of the surface. Thus, we analyse spectro-imaging data (0.8-5.2 µm) from Cassini/VIMS to study Titan's surface multivariable geological terrain and its interactions with the lower atmosphere. The Cassini's Visual and Infrared Mapping Spectrometer (VIMS) and other instruments have provided a better understanding of the dynamic and complex surface expressions of this Saturnian moon, suggesting exogenic and endogenic processes [3;4;5].We apply a Radiative transfer code to analyse different regions and to monitor their spectral behavior with time [6;7,8]. We have already shown that temporal variations of surface albedo (in chemical composition and/or morphology) exist for some areas, but that their origin may differ from one region to the other. Tui Regio and Sotra Patera for instance change with time becoming darker and brighter respectively in terms of surface albedo while the undifferentiated plains and the suggested evaporitic areas in the equatorial regions do not present any significant change [8]. We will infer information on the haze content that we will compare with findings from the stratosphere by CIRS and we will compare with cloud monitoring over specific regions [9]. It remains to identify the role the atmosphere plays in the surface changes. References: [1] Coustenis, et al., Icarus 207, 461, 2010 ; Astrophys. J. 799, 177, 9p ; Icarus, in press, 2015 ; [2] Jennings et al., ApJ 804, L34, 5, 2015; [3] Lopes, R.M.C., et al.: JGR, 118, 416-435, 2013 ; [4] Solomonidou, A., et al.: PSS, 70, 77-104, 2013 ; [5] Moore, J.M., and Howard, A.D.: GRL, 37, L22205, 2010; [6] Hirtzig, M., et al.: Icarus, 226, 470-486, 2013 ; [7] Solomonidou, A., et al.: JGR, 119, 1729-1747, 2014; [8] Solomonidou, A., et al.: Icarus, in press, 2015; [9] Rodriguez et al., Icarus 216, 89-110, 2011.

  18. Two new basaltic objects in the Outer Main Belt

    NASA Astrophysics Data System (ADS)

    Duffard, R.; Roig, F.; Gil-Hutton, R.; Moskovitz, N. A.

    2007-08-01

    The existence of basalt on the surface of asteroids provides information about their thermal history that is likely related to their formation and collisional evolution. Basaltic materials on the surface of an asteroid are indicators of past partial melting, a phenomenon that occurs due to the complicated interplay of heating and cooling processes within the interior of rocky bodies. Until recently, most of the known basaltic asteroids, taxonomically classified as V-type, were members of the Vesta dynamical family. Currently, several V-type asteroids are know to reside outside the Vesta family (e.g. [3][8]), and several NEAs with basaltic mineralogical surface composition have been recognized (e.g. [5] [1][6]). The asteroid (1459) Magnya, a basaltic object in the outer asteroid belt [10], is sufficiently distant from the Vesta family so that its probability of origin from this family is very low [11]. [12] presented the possibility of searching yet unknown V-type asteroids using photometric data from the Sloan Digital Sky Survey (SDSS). A sub-product of this survey is the Moving Objects Catalog (MOC), which in its third release provides five band photometry for 43424 asteroids [7][9]. [12] introduced a systematic method to identify possible candidate V-type asteroids from the SDSS-MOC, applying the Principal Components Analysis to the data. They found 263 V-type candidates that are not members of the Vesta dynamical family. The most interesting result is the presence of 8 V-type candidates in the middle/outer asteroid belt, i.e. with a > 2.5 AU: (7472), (10537), (21238), (40521), (44496), (55613), (66905) and (105041). These asteroids are quite isolated in proper elements space and do not belong to any of the major dynamical families. They are not close in proper elements space to (1459) Magnya either. In a recent study, [2] analyzed the spectra of (21238) in the near infrared (NIR) and confirmed its basaltic nature. In this work we present low resolution spectra in the visible range of (7472) Kumakiri and (10537) 1991 RY16 have been obtained by us on November 14th, 2006, using the Calar Alto Faint Object Spectrograph (CAFOS) at the 2.2m telescope in Calar Alto Observatory, Spain. The reflectance spectra of the two bodies seem to correspond to that of a V-type asteroid. However, the presence of a shallow absorption band around 0.6 microns, which has never been observed before in other V-type spectra, precludes these objects from being classified by any existing taxonomic system [4]. It is worth noting that the observed band is real and its presence in the spectrum of (10537) has been confirmed independently by other observers [13]. Therefore, we do not know whether we have discovered two basaltic asteroids with a very particular and previously unseen mineralogical composition or two objects of non basaltic nature that have to be included in a totally new taxonomic class. To unambiguously determine whether our targets have basaltic surfaces, we will observe in the near-infrared range. References: [1] Binzel, R., Rivkin, A., Stuart, S., et al. 2004, Icarus, 170, 259 [2] Binzel, R.P., Masi, G., Foglia, S., 2006, American Astronomical Society, DPS meeting #38, #71.06. [3] Burbine, T. H.; Buchanan, P. C.; Binzel, R. P.; Bus, S. J.; Hiroi, T.; Hinrichs, J. L.; Meibom, A.; McCoy, T. J., 2001. Meteoritics & Planetary Science 36, 761-781. [4] Bus, S. J., 1999, PhD Thesis, Massachusetts Institute of Technology. [5] Cruikshank, D. P.; Tholen, D. J.; Bell, J. F.; Hartmann,W. K.; Brown, R. H., 1991. Icarus 89, 1-13. [6] Duffard, R.; de Leon, J.; Licandro, J.; Lazzaro, D.; Serra-Ricart, M., 2006. Astronomy and Astrophysics, 456, 775-781. [7] Ivezic et al. 2001. Astronomical Journal 122, 2749-2784. [8] Florczak, M., Lazzaro, D., and Duffard, R. 2002. Icarus 159, 178. [9] Juric et al. 2002. Astronomical Journal 124, 1776-1787. [10] Lazzaro, D., Michtchenko, T.A., Carvano, J.M., Binzel, R.P., Bus, S.J., Burbine, T.H., Mothe-Diniz, T., Florczak, M., Angeli, C.A., and Harris, A.W. 2000. Science 288, 2033. [11] Michtchenko, T.A., Lazzaro, D., Ferraz-Melo, S., and Roig, F. 2002. Icarus 158, 343. [12] Roig, F., and Gil-Hutton, R. 2006. Icarus 183, 411-419. [13]Moskovitz, N. A.; Willman, M.; Lawrence, S. J.; Jedicke, R.; Nesvorny, D.; Gaidos, E. J. 38th Lunar and Planetary Science Conference, (Lunar and Planetary Science XXXVIII), March 12-16, 2007 League City, Texas. LPI Contribution No. 1338, p.1663

  19. Variability of the Structural Coloration in Two Butterfly Species with Different Prezygotic Mating Strategies

    PubMed Central

    Kertész, Krisztián; Bálint, Zsolt; Biró, László Péter

    2016-01-01

    Structural coloration variability was investigated in two Blue butterfly species that are common in Hungary. The males of Polyommatus icarus (Common Blue) and Plebejus argus (Silver-studded Blue) use their blue wing coloration for conspecific recognition. Despite living in the same type of habitat, these two species display differences in prezygotic mating strategy: the males of P. icarus are patrolling, while P. argus males have sedentary behavior. Therefore, the species-specific photonic nanoarchitecture, which is the source of the structural coloration, may have been subjected to different evolutionary effects. Despite the increasing interest in photonic nanoarchitectures of biological origin, there is a lack of studies focused on the biological variability of structural coloration that examine a statistically relevant number of individuals from the same species. To investigate possible structural color variation within the same species in populations separated by large geographical distances, climatic differences, or applied experimental conditions, one has to be able to compare these variations to the normal biological variability within a single population. The structural coloration of the four wings of 25 male individuals (100 samples for each species) was measured and compared using different light-collecting setups: perpendicular and with an integrating sphere. Significant differences were found in the near UV wavelength region that are perceptible by these polyommatine butterflies but are invisible to human observers. The differences are attributed to the differences in the photonic nanoarchitecture in the scales of these butterflies. Differences in the intensity of structural coloration were also observed and were tentatively attributed to the different prezygotic mating strategies of these insects. Despite the optical complexity of the scale covered butterfly wings, for sufficiently large sample batches, the averaged normal incidence measurements and the averaged measurements using an integrating sphere are in agreement. PMID:27832120

  20. Orographic forcing of dune forming winds on Titan

    NASA Astrophysics Data System (ADS)

    Larson, E. J.; Toon, O. B.; Friedson, A. J.

    2013-12-01

    Cassini has observed hundreds of dune fields on Titan, nearly all of which lie in the tropics and suggest westerly (from west to east) winds dominate at the surface [1,2]. Most GCMs however have obtained easterly surface winds in the tropics, seemingly contradicting the wind direction suggested by the dunes. This has led to an active debate in the community about the origin of the dune forming winds on Titan and their direction and modality. This discussion is mostly driven by a study of Earth dunes seen as analogous to Titan [1,2,3]. One can find examples of dunes on Earth that fit several wind regimes. To date only one GCM, that of Tokano [4,5], has presented detailed analysis of its near surface winds and their dune forming capabilities. Despite the bulk of the wind being easterly, this GCM produces faster westerlies at equinox, thus transporting sand to the east. Our model, the Titan CAM [6], is unable to reproduce the fast westerlies, although it is possible we are not outputting frequently enough to catch them. Our GCM has been updated to include realistic topography released by the Cassini radar team. Preliminary results suggest our tropical wind regime now has net westerly winds in the tropics, albeit weak. References: [1], Lorenz, R. et al. 2006. Science, 312, 724-727. [2], Radebaugh, J. et al. 2008. Icarus, 194, 690-703. [3] Rubin, D. and Hesp, P. 2009. Nature Geoscience 2, 653-658. [4] Tokano, T. 2008. Icarus 194, 243-262. [5] Tokano, T. 2010. Aeolian Research 2, 113-127. [6] Friedson, J. et al. 2009. Planetary Space Science, 57, 1931-1949.

  1. Analysis of a cryolava flow-like feature on Titan

    USGS Publications Warehouse

    Le, Corre L.; Le, Mouelic S.; Sotin, Christophe; Combe, J.-P.; Rodriguez, S.; Barnes, J.W.; Brown, R.H.; Buratti, B.J.; Jaumann, R.; Soderblom, J.; Soderblom, L.A.; Clark, R.; Baines, K.H.; Nicholson, P.D.

    2009-01-01

    This paper reports on the analysis of the highest spatial resolution hyperspectral images acquired by the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft during its prime mission. A bright area matches a flow-like feature coming out of a caldera-like feature observed in Synthetic Aperture Radar (SAR) data recorded by the Cassini radar experiment [Lopes et al., 2007. Cryovolcanic features on Titan's surface as revealed by the Cassini Titan Radar Mapper. Icarus 186, 395-412, doi:10.1016/j.icarus.2006.09.006]. In this SAR image, the flow extends about 160 km east of the caldera. The contrast in brightness between the flow and the surroundings progressively vanishes, suggesting alteration or evolution of the composition of the cryolava during the lifetime of the eruptions. Dunes seem to cover part of this flow on its eastern end. We analyze the different terrains using the Spectral Mixing Analysis (SMA) approach of the Multiple-Endmember Linear Unmixing Model (MELSUM, Combe et al., 2008). The study area can be fully modeled by using only two types of terrains. Then, the VIMS spectra are compared with laboratory spectra of known materials in the relevant atmospheric windows (from 1 to 2.78 ??m). We considered simple molecules that could be produced during cryovolcanic events, including H2O, CO2 (using two different grain sizes), CH4 and NH3. We find that the mean spectrum of the cryoflow-like feature is not consistent with pure water ice. It can be best fitted by linear combinations of spectra of the candidate materials, showing that its composition is compatible with a mixture of H2O, CH4 and CO2.. ?? 2009 Elsevier Ltd.

  2. Thermopyhsical conditions for the onset of a core dynamo in Vesta

    NASA Astrophysics Data System (ADS)

    Formisano, Michelangelo; Federico, Costanzo; De Angelis, Simone; De Sanctis, Maria Cristina; Magni, Gianfranco

    2016-04-01

    Recently, a study on the magnetization of the eucrite meteorite Allan Hills A81001 [1] has suggested the possibility that, in its primordial history, Vesta had an active core dynamo. The magnetic field associated could have preserved Vesta from the space-weathering. In this work, using a parametrized thermal convection method, we verified the thermophysical conditions for the onset of a core dynamo. The starting point is a post-differentiated structure [2,3,4], made of a metallic core, silicate mantle and rocky crust. We explored four different fully differentiated configurations of Vesta [5], characterized by different chondritic composition, with the constraints on the core size and density provided by [6]. We also explored three different scaling laws for the core velocity (mixing-length theory, MAC and an intermediate case). Core and mantle have both a temperature-dependent viscosity, which is the parameter that largely influences the magnetic Reynolds number and the dynamo duration. Our results suggest that Vesta had an active dynamo, whose duration lies in the range 150-500 Myr and the more appropriate scaling law for the core velocity is that given by the mixing-length theory. The maximum strength of the primordial core magnetic field is compatible with the estimations provided by [1]. [1] Fu, R. et al, 2012, Science 338, 238 [2] Ghosh, A. and McSween, H.Y., 1998, Icarus, 134, 187 [3] Formisano, M. et al., 2013, Meteoritics and Planetary Science, 48, 2316 [4] Neumann, W., et al., 2014, Earth and Planetary Science Letters, 395, 267 [5] Toplis, M.J., et al., 2013, Meteoritics and Planetary Science, 48, 2300 [6] Ermakov, A.I., et al.2014, Icarus, 240, 146

  3. Spin Rate Distribution of Small Asteroids Shaped by YORP Effect

    NASA Astrophysics Data System (ADS)

    Pravec, Petr

    2008-09-01

    We studied a distribution of spin rates of main belt/Mars crossing (MB/MC) asteroids with diameters 3-15 km using data obtained within the Photometric Survey of Asynchronous Binary Asteroids (Pravec et al. 2008). We found that the spin distribution of the small asteroids is uniform in the range from f = 1 to 9.5 d-1, and there is an excess of slow rotators with f < 1 d-1. The observed distribution appears to be controlled by the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect. The magnitude of the excess of slow rotators is related to the residence time of slowed down asteroids in the excess and the rate of spin rate change outside the excess. We estimated a median YORP spin rate change of 0.022 d-1/Myr for asteroids in our sample (i.e., a median time in which the spin rate changes by 1 d-1 is 45 Myr), thus the residence time of slowed down asteroids in the excess is 110 Myr. The spin rate distribution of near-Earth asteroids (NEAs) with sizes in the range 0.2-3 km ( 5-times smaller in median diameter than the MB/MC asteroids sample) shows a similar excess of slow rotators, but there is also a concentration of NEAs at fast spin rates with f = 9-10 d-1. The concentration at fast spin rates is correlated with a narrower distribution of spin rates of primaries of binary systems among NEAs; the difference may be due to the apparently more evolved population of binaries among MB/MC asteroids. Reference: Pravec, P., and 30 colleagues, 2008. Spin rate distribution of small asteroids. Icarus, in press. DOI: http://dx.doi.org/10.1016/j.icarus.2008.05.012

  4. Variability of the Structural Coloration in Two Butterfly Species with Different Prezygotic Mating Strategies.

    PubMed

    Piszter, Gábor; Kertész, Krisztián; Bálint, Zsolt; Biró, László Péter

    2016-01-01

    Structural coloration variability was investigated in two Blue butterfly species that are common in Hungary. The males of Polyommatus icarus (Common Blue) and Plebejus argus (Silver-studded Blue) use their blue wing coloration for conspecific recognition. Despite living in the same type of habitat, these two species display differences in prezygotic mating strategy: the males of P. icarus are patrolling, while P. argus males have sedentary behavior. Therefore, the species-specific photonic nanoarchitecture, which is the source of the structural coloration, may have been subjected to different evolutionary effects. Despite the increasing interest in photonic nanoarchitectures of biological origin, there is a lack of studies focused on the biological variability of structural coloration that examine a statistically relevant number of individuals from the same species. To investigate possible structural color variation within the same species in populations separated by large geographical distances, climatic differences, or applied experimental conditions, one has to be able to compare these variations to the normal biological variability within a single population. The structural coloration of the four wings of 25 male individuals (100 samples for each species) was measured and compared using different light-collecting setups: perpendicular and with an integrating sphere. Significant differences were found in the near UV wavelength region that are perceptible by these polyommatine butterflies but are invisible to human observers. The differences are attributed to the differences in the photonic nanoarchitecture in the scales of these butterflies. Differences in the intensity of structural coloration were also observed and were tentatively attributed to the different prezygotic mating strategies of these insects. Despite the optical complexity of the scale covered butterfly wings, for sufficiently large sample batches, the averaged normal incidence measurements and the averaged measurements using an integrating sphere are in agreement.

  5. Six Martian years of CO2 clouds survey by OMEGA/MEx.

    NASA Astrophysics Data System (ADS)

    Gondet, Brigitte; bibring, Jean-Pierre; Vincendon, Mathieu

    2014-05-01

    Mesospheric clouds have been detected first from Earth (Bell et al 1996 [1]), then from Mars orbit (MGS/TES and MOC, Clancy et al 1998 [2]). Their composition (CO2) was inferred from temperature. Similar detection and temperature-inferred composition was then performed by Spicam and PFS on board Mars Express (Monmessin et al [3], Formisano et al [4]., 2006). The first direct detection and characterization (altitude, composition, velocity) was performed by OMEGA/ Mars Express (then coupled to HRSC/ Mars Express, and confirmed by CRISM/MRO (Montmessin et al. [5], 2007, Maattanen et al [6]., Scholten et al. [7], 2010, Vincendon et al [8]., 2011). Omega is a very powerful tool for the study of CO2 clouds as it is able to unambiguously identify the CO2 composition of a cloud based on a near-IR spectral feature located at 4.26 μm [5],. Therefore since the beginning of the Mars Express mission (2004) OMEGA as done a systematic survey of these mesospheric clouds. Thanks to the orbit of Mars Express, we can observe this clouds from different altitudes (from apocenter to pericenter) and at different local times. We will present the result of 6 Martians years of observations and point out a correlation with the dust activity. We also observe that their time of appearance/disappearance varies slightly from year to year. We will mention also the existence of mesospheric H2O clouds. References [1] JF Bell. et al. JGR 1996; [2] RT Clancy et al., GRL 1998 [3] F. Montmessin et al. JGR 2006; [4] V. Formisano et al., Icarus 2006; [5] F. Montmessin et al JGR 2007 [6] A. Määttänen et al. Icarus 2010; [7] F. Scholten et al. PSS 2010; [8] M. Viencendon et al. JGR 2011

  6. Mesospheric CO2 Clouds at Mars: Seven Martian Years Survey by OMEGA/MEX

    NASA Astrophysics Data System (ADS)

    Gondet, Brigitte; Bibring, Jean-Pierre

    2016-04-01

    Mesospheric clouds have been detected first from Earth (Bell et al 1996 [1]), then from Mars orbit (MGS/TES and MOC, Clancy et al 1998 [2]). Their composition (CO2) was inferred from temperature. Similar detection and temperature-inferred composition was then performed by Spicam and PFS on board Mars Express (Monmessin et al [3], Formisano et al [4]. 2006). The first direct detection and characterization (altitude, composition, velocity) was performed by OMEGA/ Mars Express (then coupled to HRSC/ Mars Express, and confirmed by CRISM/MRO (Montmessin et al. [5], 2007, Maattanen et al [6]. Scholten et al. [7], 2010, Vincendon et al [8], 2011). Omega is a very powerful tool for the study of CO2 clouds as it is able to unambiguously identify the CO2 composition of a cloud based on a near-IR spectral feature located at 4.26 μm [5] Therefore since the beginning of the Mars Express mission (2004) OMEGA as done a systematic survey of these mesospheric clouds. Thanks to the orbit of Mars Express, we can observe this clouds from different altitudes (from apocenter to pericenter) and at different local times. We will present the result of 7 Martians years of observations, point out a correlation with the dust activity and an irregular concentration of clouds from years to years. References [1] JF Bell. et al. JGR 1996; [2] RT Clancy et al., GRL 1998 [3] F. Montmessin et al. JGR 2006; [4] V. Formisano et al., Icarus 2006; [5] F. Montmessin et al JGR 2007 [6] A. Määttänen et al. Icarus 2010; [7] F. Scholten et al. PSS 2010; [8] M. Viencendon et al. JGR 2011

  7. Asteroid spin-rate studies using large sky-field surveys

    NASA Astrophysics Data System (ADS)

    Chang, Chan-Kao; Lin, Hsing-Wen; Ip, Wing-Huen; Prince, Thomas A.; Kulkarni, Shrinivas R.; Levitan, David; Laher, Russ; Surace, Jason

    2017-12-01

    Eight campaigns to survey asteroid rotation periods have been carried out using the intermediate Palomar Transient Factory in the past 3 years. 2780 reliable rotation periods were obtained, from which we identified two new super-fast rotators (SFRs), (335433) 2005 UW163 and (40511) 1999 RE88, and 23 candidate SFRs. Along with other three known super-fast rotators, there are five known SFRs so far. Contrary to the case of rubble-pile asteroids (i.e., bounded aggregations by gravity only), an internal cohesion, ranging from 100 to 1000 Pa, is required to prevent these five SFRs from flying apart because of their super-fast rotations. This cohesion range is comparable with that of lunar regolith. However, some candidates of several kilometers in size require unusually high cohesion (i.e., a few thousands of Pa). Therefore, the confirmation of these kilometer-sized candidates can provide important information about asteroid interior structure. From the rotation periods we collected, we also found that the spin-rate limit of C-type asteroids, which has a lower bulk density, is lower than for S-type asteroids. This result is in agreement with the general picture of rubble-pile asteroids (i.e., lower bulk density, lower spin-rate limit). Moreover, the spin-rate distributions of asteroids of 3< D < 15 km in size show a steady decrease along frequency for f > 5 rev/day, regardless of the location in the main belt. The YORP effect is indicated to be less efficient in altering asteroid spin rates from our results when compared with the flat distribution found by Pravec et al. (Icarus 197:497-504, 2008. doi: 10.1016/j.icarus.2008.05.012). We also found a significant number drop at f = 5 rev/day in the spin-rate distributions of asteroids of D < 3 km.

  8. HST and ground-based observations of bright storms on Uranus during 2014-2015.

    NASA Astrophysics Data System (ADS)

    Sayanagi, K. M.; Sromovsky, L. A.; Fry, P. M.; De Pater, I.; Hammel, H. B.; Rages, K. A.; Baranec, C.; Delcroix, M.; Wesley, A.; Hueso, R.; Sanchez-Lavega, A.; Simon, A. A.; Wong, M. H.; Orton, G. S.; Irwin, P. G.

    2015-12-01

    We report the temporal evolution of bright, long-lived cloud features on Uranus. We observed and tracked the features between August 2014 and January 2015 with the Hubble Space Telescope, the Keck 2 10-m telescope, VLT, Gran Telescopio Canarias, Gemini, William Herschel Telescope, Robo-AO, Pic du Midi 1-m telescope, and multiple smaller telescopes operated by amateur astronomers. Surprisingly bright features were first revealed in the Keck adaptive-optics images in August; this initial set of observations motivated follow-up observations around the world. One of the storms (identified as "Feature F" in Sromovsky et al. 2015, and Feature 2 in de Pater et al. 2015), which was the deepest in that dataset, was bright enough that it was detected by multiple amateur observers, permitting us to trigger a Hubble Target of Opportunity (ToO) observation on October 14th, 2014. A complex of features at this latitude was also observed by Hubble as part of the Outer Planet Atmospheres Legacy (OPAL) program on November 8-9, 2014. We will present the temporal evolution of the cloud activities from August 2014 through January 2015, and analyze the vertical structure of the cloud features in the Hubble datasets. The Hubble images used in our study were collected with support of HST grants GO13712 to KMS and GO13937 to AAS. Sromovsky et al. 2015, "High S/N Keck and Gemini AO imaging of Uranus during 2012-2014: New cloud patterns, increasing activity, and improved wind measurements." Icarus 258, 192-223. de Pater et al. 2014, "Record-breaking storm activity on Uranus in 2014." Icarus 252, 121-128

  9. Shades of Gray: Releasing the Cognitive Binds that Blind Us

    DTIC Science & Technology

    2016-09-01

    The availability heuristic is the cognitive process of problem solving based on learning and experience. This intuitive thinking process requires...describe a person’s systematic but flawed patterns of response to both judgment and decision problems .2 Research on the effects of cognitive bias on the...errors made. The ICArUS sensemaking model currently being developed could provide the IC with software that has the ability to mirror human cognitive

  10. High resolution VIMS images of Titan's surface: implications for its composition, internal structure and dynamics

    NASA Astrophysics Data System (ADS)

    Sotin, C.; Le Mouelic, S.; Le Corre, L.; Barnes, J.; Brown, R. H.; Jaumann, R.; Buratti, B.; Baines, K.; Clark, R.; Nicholson, P.; Soderblom, L.

    2008-12-01

    With a field of view of 0.5 mrad per pixel, the VIMS (Visual and Infrared Mapping Spectrometer) onboard the Cassini spacecraft can acquire images with a resolution of 500 m per pixel at closest approach during a typical Titan flyby. This resolution is comparable to the resolution of the radar instrument and allows comparisons between the radar images and optical images in the six infrared windows where the surface can be observed. Such opportunities were not set up for the nominal tour before Saturn insertion. The opportunity was offered during the TA flyby [Sotin et al., Nature, 2005] and the results lead the Cassini program to give VIMS the prime observations during closest approach at the T24 and T38 flybys. Two different implementations were experienced. During the T24 flyby (01/29/2007), we used a push-broom mode allowing VIMS to image a long path before pointing to a specific site at the limit between the light and dark terrains. This observation allowed us to see the dunes and to infer some information on their composition [Barnes et al., Icarus, 2008], to image channels and to infer information of erosion processes of the bright equatorial regions [Jaumann et al., Icarus, in press] and to observe the strong correlation between radar images and the VIMS images over a bright area interpreted as a flow feature [Lopes et al., Icarus, 2007]. During the T38 flyby over Ontario Lacus (12/05/2007), it was decided to point to the lake and get different images which provide us with a set of observations obtained with different emergence angles. This observation allowed us to infer the liquid nature of the lake and the composition of the lake [Brown et al., Nature, 2008]. In addition, this mode gives good information on the atmospheric component and will help us remove that component to get better spectra of Titan's surface. During the extended mission, two observations are forecasted at the beginning and at the end of the Cassini Equinox Mission. The first one will happen on November 19, 2008. The VIMS has been programmed to observe the Huygens landing site area at a resolution of 1 km/pixel. Before and after this observation, the push-broom mode will be used in order to cross-cut some of the radar paths. Because Titan's spin rate may be different from synchronous [Stiles et al., 2007; Lorenz et al., 2008], there is some uncertainty on the pointing. This study will report on the results of this flyby. This work has been carried out at the JPL, Caltech, under contract with NASA.

  11. The rheology of water-methanol slurries: Implications for cryovolcanism on Titan

    NASA Astrophysics Data System (ADS)

    Mitchell, K. L.; Zhong, F.; Hays, C. C.; Choukroun, M.; Barmatz, M. B.; Kargel, J. S.

    2008-12-01

    Cassini SAR imagery has revealed the presence of landforms on the surface of Titan that may be cryovolcanic flows and domes [1,2]. In order to relate the observed surface features to the geological processes and chemistries that produced them, it is necessary to construct rheological flow models at cryogenic temperatures. We report preliminary cryogenic rheological measurements on a binary 40 wt% methanol-water composition, used as a path finding analog for characterizing the rheological properties of candidate cryo-magmas and eruptant materials [3]. Work by Kargel et al. [4] used a cryogenic rotational viscometer and a viscous drop experiment to determine the viscosity of ammonia-water slurries, a likely composition of Titan cryomagma. This work revealed that the materials in question have viscosities that were controlled by the pure liquid viscosity and the solid fraction, the latter also resulting in shear-rate dependence. Our cryogenic rheological measurements were conducted between 90-300 K using a home- built LN2 cooled cryogenic rotational viscometer system, with data acquisition and control achieved using the National Instruments LabView program. We report the results of a series of measurements performed as a function of temperature and rotational strain rate. The methanol-water mixture exhibited a variety of rheological response behaviors under these experimental conditions; i.e., development of yield stress-like behaviors, shear-rate dependence, and thixotropic behavior, even at relatively low crystal fractions, which to our knowledge have not been previously observed or reported. At fixed shear rate our data are fit well by the Andrade equation, with the activation energy modified by the solid volume fraction. At fixed temperature, depending on shearing history, a Cross model describes our data well over a wide shear rate range. A Bingham plastic model appears to be a good constitutive model for the data measured at high shear rates when the shear was global, but at low shear stresses the approximation becomes inaccurate because the Bingham yield stress is only an approximation to what is actually a high viscosity creep behavior. This yield-stress-like creep behavior implies that initialization of levees in cryolava flows is more likely than would be inferred from previous cryo-rheological studies and may provide a partial explanation for features observed by the Cassini spacecraft on Titan, which are interpreted as steep-sided volcanic constructs [2]. This analysis will be critical in the development of future experiments designed to measure all the parameters controlling cryomagma rheologies for input into flow models. [1] Elachi et al. (2005) Science 308, 970-974. [2] Lopes et al. (2007) Icarus 186, 395-412. [3] Zhong et al. (in review) Icarus. [4] Kargel et al. (1991) Icarus 89, 93-11.

  12. Characterization of SO2 abundance in Venus' night-side mesosphere from SPICAV/VEX observations

    NASA Astrophysics Data System (ADS)

    Belyaev, Denis; Fedorova, Anna; Piccialli, Arianna; Marcq, Emmanuel; Montmessin, Franck; Bertaux, Jean-Loup; Evdokimova, Daria

    Sulfur dioxide (SO _{2}) is a key component of Venus’ atmosphere since the planet is totally covered by H _{2}SO _{4} droplets clouds at altitudes 50-70 km. Any significant change in the SO _{x} oxides above and within the clouds affects the photochemistry in the mesosphere (70-120 km). Recent continuous observations from the Venus Express orbiter (Belyaev et al., 2012; Marcq et al., 2013) and ground-based telescopes (Sandor et al., 2010; Krasnopolsky, 2010; Encrenaz et al., 2012) showed high variability of SO _{2} abundance with years, diurnal time and latitude on the day-side and terminators (commonly from 20 to 500 ppbv above the clouds). In the night-side mesosphere SO _{2} is not photo dissociative but, so far, its behavior has never been explored in details. In this paper we present first results from sulfur dioxide observations made by SPICAV UV spectrometer onboard Venus Express orbiter in regime of stellar occultation (Bertaux et al., 2007). In this mode the instrument observes night-side mesosphere and can register SO _{2} absorption bands in 190-220 nm and CO _{2} bands in 120-200 nm at altitudes from 85 to 110 km (spectral resolution is ˜2 nm). As a result, vertical distribution of SO _{2} and CO _{2} concentrations has been retrieved in observation period from June 2006 to April 2012, at latitude range 60(°) S-60(°) N and Venus local time 20:00-04:00. On the average, mixing ratio of sulfur dioxide fluctuates around ˜100 ppbv along altitude range 90-100 km. Our work is supported by the Program No.22 of RAS and grant of the Russian Government to MIPT. References: Belyaev D. et al., 2012. Vertical profiling of SO _{2} and SO above Venus' clouds by SPICAV/SOIR solar occultations. Icarus 217, 740-751. Bertaux J.-L. et al., 2007. SPICAV on Venus Express: three spectrometers to study the global structure and composition of Venus atmosphere. Planet. Space Sci. 55, 1673-1700. Encrenaz T. et al., 2012. HDO and SO _{2} thermal mapping on Venus: evidence for strong SO _{2} variability. A&A 543, A153. Krasnopolsky V.A., 2010. Spatially-resolved high-resolution spectroscopy of Venus. 2. Variations of HDO, OCS, and SO _{2} at the cloud tops. Icarus 209, 314-322. Marcq E. et al., 2013. Variations of sulphur dioxide at the cloud top of Venus’s dynamic atmosphere. Nature Geoscience, vol. 6, 25-28. DOI: 10.1038/NGEO1650. Sandor B.J. et al., 2010. Sulfur chemistry in the Venus mesosphere from SO _{2} and SO microwave spectra. Icarus 208, 49-60.

  13. The opposition effect in Saturn's main rings as seen by Cassini ISS: 4. Correlations of the surge morphology with surface albedos and VIMS spectral properties

    NASA Astrophysics Data System (ADS)

    Déau, Estelle; Dones, Luke; Mishchenko, Michael I.; West, Robert A.; Helfenstein, Paul; Hedman, Matt M.; Porco, Carolyn C.

    2018-05-01

    In this paper, we continue our analysis of the saturnian ring opposition effect seen by Cassini ISS. The ring opposition effect is a peak in the rings' reflectivity caused as the directions from a spot on the rings to the observer and to the light source, respectively, converge toward zero degrees. So far, the exact origin of the ring's opposition effect is still a matter of debate. In our previous work (Déau, et al., 2013, Icarus, 226, 591-603), we compared the opposition effect morphology with the rings' optical depth and found that only the slope of the linear part of the rings' phase curves was strongly correlated with the optical depth. We interpreted this as an indication of the predominant role of interparticle shadowing at moderate phase angles (α ∼ 10-40o). More recently (Déau, 2015, Icarus, 253, 311-345), we showed that interparticle shadowing cannot explain the behavior at low phase angles (α < 1o), indirectly confirming our 2013 result. These findings led to the idea that coherent backscattering is preponderant at the smallest phase angles. Coherent backscattering depends on the microscopic scale of the regolith, and there is a growing body of evidence that regolith grain size, porosity, roughness, and composition control the opposition surge behavior for α < 1o. To test this hypothesis, we compare the opposition surge morphology to the regolith albedo and other spectral properties related to the regolith, such as water ice band depths and spectral slopes derived from Cassini VIMS data (Hedman et al., 2013, Icarus, 223, 105-130). Indeed, it has been recently proven that coherent backscattering affects the water ice band depth variations with phase angle for icy saturnian regoliths (Kolokolova et al., 2010, The Astrophysical Journal Letters, 711, L71-L74). We find that the opposition surge morphology is strongly correlated with the water ice band depth and the regolith albedo. We interpret this finding as an indication that coherent backscattering plays a role in affecting both the water ice band depths and the opposition surge at low phase angles (α < 1o). As the regolith albedo and spectral properties are related to the grain size, porosity, roughness, and composition, we try to assess which of these regolith properties are preponderant in coherent backscattering. Our study is able to narrow down the parameter space of these properties, whose values allow a good match between the angular width predicted by models of coherent backscattering and the width of the observed peak.

  14. MARSTHERM: A Web-based System Providing Thermophysical Analysis Tools for Mars Research

    NASA Astrophysics Data System (ADS)

    Putzig, N. E.; Barratt, E. M.; Mellon, M. T.; Michaels, T. I.

    2013-12-01

    We introduce MARSTHERM, a web-based system that will allow researchers access to a standard numerical thermal model of the Martian near-surface and atmosphere. In addition, the system will provide tools for the derivation, mapping, and analysis of apparent thermal inertia from temperature observations by the Mars Global Surveyor Thermal Emission Spectrometer (TES) and the Mars Odyssey Thermal Emission Imaging System (THEMIS). Adjustable parameters for the thermal model include thermal inertia, albedo, surface pressure, surface emissivity, atmospheric dust opacity, latitude, surface slope angle and azimuth, season (solar longitude), and time steps for calculations and output. The model computes diurnal surface and brightness temperatures for either a single day or a full Mars year. Output options include text files and plots of seasonal and diurnal surface, brightness, and atmospheric temperatures. The tools for the derivation and mapping of apparent thermal inertia from spacecraft data are project-based, wherein the user provides an area of interest (AOI) by specifying latitude and longitude ranges. The system will then extract results within the AOI from prior global mapping of elevation (from the Mars Orbiter Laser Altimeter, for calculating surface pressure), TES annual albedo, and TES seasonal and annual-mean 2AM and 2PM apparent thermal inertia (Putzig and Mellon, 2007, Icarus 191, 68-94). In addition, a history of TES dust opacity within the AOI is computed. For each project, users may then provide a list of THEMIS images to process for apparent thermal inertia, optionally overriding the TES-derived dust opacity with a fixed value. Output from the THEMIS derivation process includes thumbnail and context images, GeoTIFF raster data, and HDF5 files containing arrays of input and output data (radiance, brightness temperature, apparent thermal inertia, elevation, quality flag, latitude, and longitude) and ancillary information. As a demonstration of capabilities, we will present results from a thermophysical study of Gale Crater (Barratt and Putzig, 2013, EPSC abstract 613), for which TES and THEMIS mapping has been carried out during system development. Public access to the MARSTHERM system will be provided in conjunction with the 2013 AGU Fall Meeting and will feature the numerical thermal model and thermal-inertia derivation algorithm developed by Mellon et al. (2000, Icarus 148, 437-455) as modified by Putzig and Mellon (2007, Icarus 191, 68-94). Updates to the thermal model and derivation algorithm that include a more sophisticated representation of the atmosphere and a layered subsurface are presently in development, and these will be incorporated into the system when they are available. Other planned enhancements include tools for modeling temperatures from horizontal mixtures of materials and slope facets, for comparing heterogeneity modeling results to TES and THEMIS results, and for mosaicking THEMIS images.

  15. Meandering and material accumulation in the alcove on present day gully evolution

    NASA Astrophysics Data System (ADS)

    Pasquon, K.; Gargani, J.; Masse, M.; Vincendon, M.; Conway, S. J.; Séjourné, A.

    2016-12-01

    Since their first observation by Malin and Edgett (2000) [1], martian gullies have been abundantly studied, but their formation mechanism is still under debate [e.g. 2, 3, 4, 5, 6]. Gullies are generally composed of an alcove, a channel and an apron [1, 7] and some of them are active today [8]. Here, we show for the first time active martian meanders. This study was performed using HiRISE images at 25-30 cm/pix and 1 m/pix HiRISE elevation data. We found that this gully has been extremely active over the last 4 martian years. Each year, we observe an accumulation of material in the alcove and then its subsequent mobilisation - causing meander growth, extension of the channel, and growth of the debris apron. Over one martian year the debris apron expanded by almost 150 meters from an initial size of 900 meters. Two different pulses of activity are observed: 1) in the middle of winter when CO2 frost is still present and 2) at the beginning of spring when the seasonal defrosting is coming to an end. This phenomenon is observed on a moderate east-facing slope ( 13°). A correlation between seasonal frost and this gully could be consistent with its development timing. Laboratory experiments have been performed at low pressure to better constrain the potential range of processes involved in such seasonal mobilisation of material on Mars. [1] Malin and Edgett, 2000 Science 288, 2330-2335 ; [2] Costard et al.; 2002. Science 295, 110-113 ; [3] Treiman, 2003. J. Geophys. Res. Planets, 108 (E4), 8031; [4] Heldmann et al., 2005. J. Geophys. Res. Planets, 110 (E5), 004; [5] Hugenholtz et al., 2008. Icarus 197, 65-72 ; [6] Cedillo-Flores et al., 2011. Geophys. Res. Lett. 38, L21202; [7] Harrison et al., 2015. Icarus 252, 236-254; [8] Diniega et al., 2010. Geology 38, 1047-1050.

  16. Colors and Compositional Characteristics of Kuiper Belt Objects and Centaurs

    NASA Astrophysics Data System (ADS)

    Lederer, S. M.; Vilas, F.; Jarvis, K. S.; French, L.

    2001-11-01

    We present a study designed by Painter et al. (DPS 2000) to search for evidence of aqueous alteration in the surface material of solar system objects. Using VRI broadband photometry, we will search for the presence of the 0.7 um absorption feature (indicative of Fe-bearing hydrated silicates) in KBOs and Centaurs. Vilas (Icarus 111, 1994) found a strong correlation between the presence of the 0.7-um feature in low-albedo asteroids with solar-like colors and the 3-um water of hydration feature, indicative of phyllosilicates. Recent work by Howell et al. (LPSC, 2001) confirms that the presence of the 0.7 um feature in low-albedo asteroids definitely indicates the presence of the 3.0-um water of hydration absorption feature, suggesting the action of aqueous alteration in asteroids. In addition, Feierberg et al. (Icarus 63, 1985) showed that when the U - B color difference is > 0.12 in ECAS photometry, the 3.0-um absorption feature is often present in low albedo asteroids. Therefore, if the U-B color difference is > 0.12 and the 0.7-um feature is present in UBVRI reflectance photometry, water of hydration is implied in KBOs and Centaurs. We pursue these studies based on the mixed flat or steeply reddened photometry of these objects: Water ice has been identified in near-IR dark, flat spectra of some Centaurs, providing a source for the action of aqueous alteration. The complex collisional history proposed for these objects suggests a potential source of heating that would melt water ice, providing a mechanism for aqueous alteration to occur. Finally, we will use BVR photometry to determine the B-V and V-R colors, as has been done by Tegler and Romanishin (Nature, 407). We will compare our results with colors of KBOs and Centaurs published in the literature. This research was supported by the National Research Council and the NASA Planetary Astronomy Program.

  17. A New Model for the Seasonal Evolution of Triton

    NASA Astrophysics Data System (ADS)

    Forget, F.; Decamp, N.; Berthier, J.; Le Guyader, C.

    2000-10-01

    The seasonal evolution of Triton's surface and atmosphere remains poorly understood. No model [1] has been able to fully reproduce the main characterictics of the Voyager 2 observations in 1989 in combination with the "Global warming" recently inferred from stellar occultations [2]. Within this context, we have developped a new thermal model to study the seasonal nitrogen cycle on Triton. The model is the surface part of a Triton atmosphere General circulation model developped at LMD [3]. The nitrogen cycle was found to be very sensitive to Triton complex seasonal variations of the subsolar point latitude, especially during the current decade (south summer solstice). Since only pre-Voyager formulations were available for such a study, this has motivated some new calculations of Triton's motion based on more recent rotationnal elements combined with a relatively complete dynamic solution [4] adapted to Triton. A new analytic formulation suitable for climate modelling has been derived. On this basis, we wish to suggest a new, realistic scenario to explain Triton's apparence and evolution based on solar-induced variation of the frost albedo. Such variations have been observed in Mars CO2 ice seasonal polar caps [5]. Although they seem to result from complex microphysical behavior, they are likely to occur on Triton since both Triton and Mars polar caps are composed of weakly absorbing ice (N2 or CO2) in vapor pressure equilibrium with the main constituant of the atmosphere. [1] e.g. Hansen and Paige, Icarus 99, 273-288 (1992); Brown and Kirk, J. Geophys. Res. 99, 1965-1981 (1994); Spencer and Moore, Icarus 99, 261-272 (1992). [2] Elliot et al., Nature 393, 765-767 (1998). [3] Forget, Descamp and Hourdin, in ``Pluto and Triton, comparisons and evolution over time", Lowell Observatory's fourth annual workshop, Flagstaff, Arizona. (1999) [4] Le Guyader, Astron. Astrophys. 272, 687-694 (1993). [5] Kieffer et al., J. Geophys. Res. 105, 9653-9700 (2000).

  18. Can cirrus clouds warm early Mars?

    NASA Astrophysics Data System (ADS)

    Ramirez, R. M.

    2015-12-01

    The presence of the ancient valley networks on Mars indicates a climate 3.8 Ga that was warm enough to allow substantial liquid water to flow on the martian surface for extended periods of time. However, the origin of these enigmatic features is hotly debated and discussion of their formation has been focused on how warm such a climate may have been and for how long. Recent warm and wet solutions using single-column radiative convective models involve supplementing CO2-H2O atmospheres with other greenhouse gases, such as H2 (i.e. Ramirez et al., 2014; Batalha et al., 2015). An interesting recent proposal, using the CAM 3-D General Circulation model, argues that global cirrus cloud decks in CO2-H2O atmospheres with at least 0.25 bar of CO2 , consisting of 10-micron (and larger) sized particles, could have generated the above-freezing temperatures required to explain the early martian surface geology (Urata and Toon, 2013). Here, we use our single-column radiative convective climate model to check these 3-D results and analyze the likelihood that such warm atmospheres, with mean surface pressures of up to 3 bar, could have supported cirrus cloud decks at full and fractional cloud cover for sufficiently long durations to form the ancient valleys. Our results indicate that cirrus cloud decks could have provided the mean surface temperatures required, but only if cloud cover approaches 100%, in agreement with Urata and Toon (2013). However, even should cirrus cloud coverage approach 100%, we show that such atmospheres are likely to have been too short-lived to produce the volumes of water required to carve the ancient valleys. At more realistic early Mars cloud fractions (~50%, Forget et al., 2013), cirrus clouds do not provide the required warming. Batalha, N., Domagal-Goldman, S. D., Ramirez, R.M., & Kasting, J. F., 2015. Icarus, 258, 337-349. Forget, F., Wordsworth, R., Millour, E., Madeleine, J. B., Kerber, L., Leconte, J., ... & Haberle, R. M., 2013. Icarus, 222,1, 81-99. Ramirez, R. M., Kopparapu, R., Zugger, M. E., Robinson, T. D., Freedman, R., & Kasting, J. F., 2014. Nature Geoscience, 7,1, 59-63. Urata, R.A., and Toon, O.B., 2013. Icarus 226,1, 229-250

  19. Going wild: what a global small-animal tracking system could do for experimental biologists.

    PubMed

    Wikelski, Martin; Kays, Roland W; Kasdin, N Jeremy; Thorup, Kasper; Smith, James A; Swenson, George W

    2007-01-01

    Tracking animals over large temporal and spatial scales has revealed invaluable and spectacular biological information, particularly when the paths and fates of individuals can be monitored on a global scale. However, only large animals (greater than approximately 300 g) currently can be followed globally because of power and size constraints on the tracking devices. And yet the vast majority of animals is small. Tracking small animals is important because they are often part of evolutionary and ecological experiments, they provide important ecosystem services and they are of conservation concern or pose harm to human health. Here, we propose a small-animal satellite tracking system that would enable the global monitoring of animals down to the size of the smallest birds, mammals (bats), marine life and eventually large insects. To create the scientific framework necessary for such a global project, we formed the ICARUS initiative (www.IcarusInitiative.org), the International Cooperation for Animal Research Using Space. ICARUS also highlights how small-animal tracking could address some of the ;Grand Challenges in Environmental Sciences' identified by the US National Academy of Sciences, such as the spread of infectious diseases or the relationship between biological diversity and ecosystem functioning. Small-animal tracking would allow the quantitative assessment of dispersal and migration in natural populations and thus help solve enigmas regarding population dynamics, extinctions and invasions. Experimental biologists may find a global small-animal tracking system helpful in testing, validating and expanding laboratory-derived discoveries in wild, natural populations. We suggest that the relatively modest investment into a global small-animal tracking system will pay off by providing unprecedented insights into both basic and applied nature. Tracking small animals over large spatial and temporal scales could prove to be one of the most powerful techniques of the early 21st century, offering potential solutions to a wide range of biological and societal questions that date back two millennia to the Greek philosopher Aristotle's enigma about songbird migration. Several of the more recent Grand Challenges in Environmental Sciences, such as the regulation and functional consequences of biological diversity or the surveillance of the population ecology of zoonotic hosts, pathogens or vectors, could also be addressed by a global small-animal tracking system. Our discussion is intended to contribute to an emerging groundswell of scientific support to make such a new technological system happen.

  20. Interfacial liquid water on Mars and its potential role in formation of hill and dune gullies

    NASA Astrophysics Data System (ADS)

    Kossacki, Konrad J.; Markiewicz, Wojciech J.

    2010-11-01

    Gullies are among the most intriguing structures identified on the surface of Mars. Most common are gullies located on the slopes of craters which are probably formed by liquid water transported by shallow aquifers (Heldmann, J.L., Carlsson, E., Johansson, H., Mellon, M.T., Toon, O.B. [2007]. Icarus 188, 324-344). Two particular types of gullies are found on slopes of isolated hills and dunes. The hill-slope gullies are located mostly at 50°S, which is at the high end of latitudes of bulk of the gullies found so far. The dune gullies are found in several locations up to 65°S (Reiss, D., Jaumann, R., Kereszturi, A., Sik, A., Neukum, G. [2007]. Lunar Planet. Sci. XXXVIII. Abstract 1993), but the best known are those in Russel crater at 54°S. The hill and dune gullies are longer than others making the aquifers explanation for their formation unlikely (Balme, M., Mangold, N., Baratoux, D., Costard, F., Gosselin, M., Masson, P., Pnet, P., Neukum, G. [2006]. J. Geophys. Res. 111. doi:10.1029/2005JE002607). Recently it has been noted that thin liquid films of interfacial water can play a role in rheological processes on the surface of Mars (Moehlmann, D. [2008]. Icarus 195, 131-139. Kereszturi, A., Moehlmann, D., Berczi, Sz., Ganti, T., Kuti, A., Sik, A., Horvath, A. [2009]. Icarus 201, 492-503.). Here we try to answer the question whether interfacial liquid water may occur on Mars in quantities large enough to play a role in formation of gullies. To verify this hypothesis we have calculated thermal models for hills and dunes of various steepness, orientation and physical properties. We find that within a range of average expected values of parameters it is not possible to have more than a few monolayers of liquid water at depths greater than a centimeter. To create subsurface interfacial water film significantly thicker and hence to produce conditions for the slope instability, parameters have to be chosen to have their extreme realistic values or an additional source of surface heating is needed. One possibility for additional heating is a change of atmospheric conditions due to a local dust storm. We conclude that if interfacial water is responsible for the formation of the hill-slope gullies, our results may explain why the hill gullies are rare.

  1. A radar survey of M- and X-class asteroids II. Summary and synthesis

    NASA Astrophysics Data System (ADS)

    Shepard, Michael K.; Clark, Beth Ellen; Ockert-Bell, Maureen; Nolan, Michael C.; Howell, Ellen S.; Magri, Christopher; Giorgini, Jon D.; Benner, Lance A. M.; Ostro, Steven J.; Harris, Alan W.; Warner, Brian D.; Stephens, Robert D.; Mueller, Michael

    2010-07-01

    Using the S-band radar at Arecibo Observatory, we observed six new M-class main-belt asteroids (MBAs), and re-observed one, bringing the total number of Tholen M-class asteroids observed with radar to 19. The mean radar albedo for all our targets is σ=0.28±0.13, significantly higher than the mean radar albedo of every other class (Magri, C., Nolan, M.C., Ostro, S.J., Giorgini, J.D. [2007]. Icarus 186, 126-151). Seven of these objects (Asteroids 16 Psyche, 129 Antigone, 216 Kleopatra, 347 Pariana, 758 Mancunia, 779 Nina, 785 Zwetana) have radar albedos indicative of a very high metal content (meanσ=0.41±0.13), and consistent with a remnant iron/nickel core interpretation (irons) or exotic high metal meteorite types such as CB. We propose designating these high radar albedo objects as Mm. Two asteroids, 110 Lydia and 678 Fredegundis, have more moderate radar albedos (meanσ=0.22), but exhibit high values (σ˜0.35) at some rotation phases suggesting a significant metal content. The remaining 10 objects have moderate radar albedos (σ=0.20±0.06) at all rotation phases. Most of our targets have visible/near-infrared spectra (Hardersen, P.S., Gaffey, M.J., Abell, P.A. [2005]. Icarus 175, 141-158; Fornasier, S., Clark, B.E., Dotto, E., Migliorini, A., Ockert-Bell, M., Barucci, M.A. [2009]. Icarus, submitted for publication) that indicate the presence of at least some silicate phases. All of the non-Mm asteroids show a positive correlation between visual and radar albedo but the reasons for this are not clear. All of the higher radar albedo targets (the 7 Mm asteroids, Lydia, and Fredegundis) show moderate to large variations in radar albedo with rotation phase. We suggest that their high radar reflectivity exaggerates irregularities in the asteroid shape to cause this behavior. One-third of our targets show evidence for asteroid-scale concavities or bifurcation. Based on all the evidence available, we suggest that most Tholen M-class asteroids are not remnant iron cores or enstatite chondrites, but rather collisional composites of silicates and irons with compositions more analogous to stony-iron meteorites and high-iron carbonaceous chondrites.

  2. Binary asteroid population. 3. Secondary rotations and elongations

    NASA Astrophysics Data System (ADS)

    Pravec, P.; Scheirich, P.; Kušnirák, P.; Hornoch, K.; Galád, A.; Naidu, S. P.; Pray, D. P.; Világi, J.; Gajdoš, Š.; Kornoš, L.; Krugly, Yu. N.; Cooney, W. R.; Gross, J.; Terrell, D.; Gaftonyuk, N.; Pollock, J.; Husárik, M.; Chiorny, V.; Stephens, R. D.; Durkee, R.; Reddy, V.; Dyvig, R.; Vraštil, J.; Žižka, J.; Mottola, S.; Hellmich, S.; Oey, J.; Benishek, V.; Kryszczyńska, A.; Higgins, D.; Ries, J.; Marchis, F.; Baek, M.; Macomber, B.; Inasaridze, R.; Kvaratskhelia, O.; Ayvazian, V.; Rumyantsev, V.; Masi, G.; Colas, F.; Lecacheux, J.; Montaigut, R.; Leroy, A.; Brown, P.; Krzeminski, Z.; Molotov, I.; Reichart, D.; Haislip, J.; LaCluyze, A.

    2016-03-01

    We collected data on rotations and elongations of 46 secondaries of binary and triple systems among near-Earth, Mars-crossing and small main belt asteroids. 24 were found or are strongly suspected to be synchronous (in 1:1 spin-orbit resonance), and the other 22, generally on more distant and/or eccentric orbits, were found or are suggested to have asynchronous rotations. For 18 of the synchronous secondaries, we constrained their librational angles, finding that their long axes pointed to within 20° of the primary on most epochs. The observed anti-correlation of secondary synchroneity with orbital eccentricity and the limited librational angles agree with the theories by Ćuk and Nesvorný (Ćuk, M., Nesvorný, D. [2010]. Icarus 207, 732-743) and Naidu and Margot (Naidu, S.P., Margot, J.-L. [2015]. Astron. J. 149, 80). A reason for the asynchronous secondaries being on wider orbits than synchronous ones may be longer tidal circularization time scales at larger semi-major axes. The asynchronous secondaries show relatively fast spins; their rotation periods are typically < 10 h. An intriguing observation is a paucity of chaotic secondary rotations; with an exception of (35107) 1991 VH, the secondary rotations are single-periodic with no signs of chaotic rotation and their periods are constant on timescales from weeks to years. The secondary equatorial elongations show an upper limit of a2 /b2 ∼ 1.5 . The lack of synchronous secondaries with greater elongations appears consistent, considering uncertainties of the axis ratio estimates, with the theory by Ćuk and Nesvorný that predicts large regions of chaotic rotation in the phase space for a2 /b2 ≳√{ 2 } . Alternatively, secondaries may not form or stay very elongated in gravitational (tidal) field of the primary. It could be due to the secondary fission mechanism suggested by Jacobson and Scheeres (Jacobson, S.A., Scheeres, D.J. [2011]. Icarus 214, 161-178), as its efficiency is correlated with the secondary elongation. Sharma (Sharma, I. [2014]. Icarus 229, 278-294) found that rubble-pile satellites with a2 /b2 ≲ 1.5 are more stable to finite structural perturbations than more elongated ones. It appears that more elongated secondaries, if they originally formed in spin fission of parent asteroid, are less likely to survive intact and they more frequently fail or fission.

  3. Solar Evolution and Climate on the Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Kasting, J. F.

    2008-12-01

    Venus, Earth, and Mars followed different evolutionary paths, partly because of their relative distance from the Sun, and partly because of the differences in their masses. Venus was too close to the Sun to retain its water, despite reduced solar luminosity early in Solar System history (1). The loss of water, followed by the buildup of CO2 in its atmosphere, led to the atmosphere that we see today. Earth was within the liquid water regime throughout its history. However, it must have had a larger greenhouse effect in the past in order to compensate for the faint young Sun. A combination of CO2, H2O, CH4, and C2H6 may have helped keep it warm (2,3). Mars' surface appears to have been wet early in its history, although opinions differ on how warm it must have been (4-6). CO2 and H2O alone could not have kept Mars' surface above freezing during Mars' early history when most of the large-scale fluvial features are thought to have formed (7). SO2 has been suggested as an additional greenhouse gas (8), but new calculations show that it would likely have been insufficient. Other mechanisms for warming early Mars may exist, however. Mars' albedo could have been significantly lowered by the presence of trace gases that absorb visible sunlight. NO2, which has a broad absorption peak centered at 400 nm, is a good candidate. A 3- bar CO2 atmosphere containing 30 ppm of NO2 could have kept Mars' mean surface temperature well above the freezing point of water at 3.8 Ga. Plausible sources of nitrogen oxides on early Mars include lightning and impacts. Other visible/UV-absorbing trace gases may have added to this warming. Thus, a complex mixture of gases could have helped keep early Mars warm. References: 1. J.F. Kasting, Icarus 74, 472 (1988). 2. A.A. Pavlov et al., J. Geophys. Res. 105, 11 (2000). 3. J.D. Haqq-Misra et al., Astrobiol. (in press). 4. J.B. Pollack et al., Icarus 71, 203 (1987). 5. T.L. Segura, O.B. Toon, A. Colaprete et al., Science 298, 1977 (2002). 6. C.P. McKay, J. Phys. IV 121, 283 (2004). 7. J.F. Kasting, Icarus 94, 1 (1991). 8. I. Halevy et al. Science 318, 1903 (2007).

  4. Recent Formation of Saturnian Moons: Constraints from Their Cratering Records

    NASA Astrophysics Data System (ADS)

    Dones, Henry C. Luke; Charnoz, Sebastien; Robbins, Stuart J.; Bierhaus, Edward B.

    2015-05-01

    Charnoz et al. (2010) proposed that Saturn's small "ring moons" out to Janus and Epimetheus consist of ring material that viscously spread beyond the Roche limit and coagulated into moonlets. The moonlets evolve outward due to the torques they exert at resonances in the rings. More massive moonlets migrate faster; orbits can cross and bodies can merge, resulting in a steep trend of mass vs. distance from the planet. Canup (2010) theorized that Saturn's rings are primordial and originated when a differentiated, Titan-like moon migrated inward when the planet was still surrounded by a gas disk. The satellite's icy shell could have been tidally stripped, and would have given rise to today's rings and the mid-sized moons out to Tethys. Charnoz et al. (2011) investigated the formation of satellites out to Rhea from a spreading massive ring, and Crida and Charnoz (2012) extended this scenario to other planets. Once the mid-sized moons recede far from the rings, tidal interaction with the planet determines the rate at which the satellites migrate. Charnoz et al. (2011) found that Mimas would have formed about 1 billion years more recently than Rhea. The cratering records of these moons (Kirchoff and Schenk 2010; Robbins et al. 2015) provide a test of this scenario. If the mid-sized moons are primordial, most of their craters were created through hypervelocity impacts by ecliptic comets from the Kuiper Belt/Scattered Disk (Zahnle et al. 2003; Dones et al. 2009). In the Charnoz et al. scenario, the oldest craters on the moons would result from low-speed accretionary impacts. We thank the Cassini Data Analysis program for support.ReferencesCanup, R. M. (2010). Nature 468, 943Charnoz, S.; Salmon, J., Crida, A. (2010). Nature 465, 752Charnoz, S., et al. (2011). Icarus 216, 535Crida, A.; Charnoz, S. (2012). Science 338, 1196Dones, L., et al. (2009). In Saturn from Cassini-Huygens, p. 613Kirchoff, M. R.; Schenk, P. (2010). Icarus 206, 485Robbins, S. J.; Bierhaus, E. B.; Dones, L. (2015). Lunar and Planetary Science Conference 46, abstract 1654 (http://www.hou.usra.edu/meetings/lpsc2015/eposter/1654.pdf)Zahnle, K.; Schenk, P.; Levison, H.; Dones, L. (2003). Icarus 163, 263

  5. Properties of the Medussae Fossae Formation and its relation to the volcanic history of Mars

    NASA Astrophysics Data System (ADS)

    Ivanov, Anton B.; Cantini, Federico

    2016-10-01

    Medussae Fossae (MFF) is a well known formation, stretching west of Tharsis volanoes. It is characterized as a relatively young Amazonian units (Amm, Amu), due to widespread signs of erosion. Earth based imaging radar observations at 3.5 cm [1] and 12 cm [2] have discovered a dark radar feature (Stealth), which roughly correlates with the MFF outline.Recent investigations [3], suggested that the unit emplacement is in fact during Hesperian period, but it is composed of material that can be easily eroded. It is not clear when the erosion happened and if it is a continuing process. Hypotheses on MFF formation range from volcanic material emplacement (ash flow tuffs or pyroclastic materials) to an ice-rich dusty mantle, deposited during high obliquity.In this work, we will present the latest observations of the East Medussae Fossae formation by the long wavelength MARSIS radar, continuing the work reported in [4], as well as complementing data surveyed by SHARAD data in [5]. The MARSIS radar has detected strong subsurface interfaces in the areas of Gordi and Eumenides Dorsae at depths up to 1.5km. We will present our analysis of the data, inferring the dielectric properties of the material to constrain properties of the material constituting the Medusae Fossae formation. We will also demonstrate an efficient user interface to work with MARSIS data inside a Geographical Information System (GIS).The research leading to these results has received funding from the European Unions Seventh Framework Programme (FP7/2007-2013) under iMars grant agreement 607379.[1] D. Muhleman, et al., "Radar images of mars," Science, vol. 253, no. 5027, 1991.[2] J. K. Harmon, et al., "Arecibo radar imagery of Mars: The major volcanic provinces," Icarus, vol. 220, aug 2012.[3] L. Kerber, et al., "The dispersal of pyroclasts from Apollinaris Patera, Mars: Implications for the origin of the Medusae Fossae Formation," Icarus, vol. 216, nov 2011.[4] T. R. Watters, et al., "Radar Sounding of the Medusae Fossae Formation Mars: Equatorial Ice or Dry, Low-Density Deposits?," Science, vol. 318, nov 2007.[5] L. M. Carter, et al., "Shallow radar (SHARAD) sounding observations of the Medusae Fossae Formation, Mars," Icarus, vol. 199, pp. , feb 2009.

  6. Constraining the 0-20 km Vertical Profile of Water Vapor in the Martian Atmosphere with MGS-TES Limb Sounding

    NASA Astrophysics Data System (ADS)

    McConnochie, T. H.; Smith, M. D.; McDonald, G. D.

    2016-12-01

    The vertical profile of water vapor in the lower atmosphere of Mars is a crucial but poorly-measured detail of the water cycle. Most of our existing water vapor data sets (e.g. Smith, 2002, JGR 107; Smith et al., 2009, JGR 114; Maltagliati et al., 2011, Icarus 213) rely on the traditional assumption of uniform mass mixing from the surface up to a saturation level, but GCM models (Richardson et al., 2002, JGR 107; Navarro et al., 2014, JGR 119) imply that this is not the case in at least some important seasons and locations. For example at the equator during northern summer the water vapor mixing ratio in aforementioned GCMs increases upwards by a factor of two to three in the bottom scale height. This might influence the accuracy of existing precipitable water column (PWC) data sets. Even if not, the correct vertical distribution is critical for determining the extent to which high-altitude cold trapping interferes with inter-hemispheric transport, and its details in the lowest scale heights will be a critical test of the accuracy of modeled water vapor transport. Meanwhile attempts to understand apparent interactions of water vapor with surface soils (e.g. Ojha et al. 2015, Nature Geoscience 8; Savijärvi et al., 2016, Icarus 265) need an estimate for the amount of water vapor in the boundary layer, and existing PWC data sets can't provide this unless the lower atmospheric vertical distribution is known or constrained. Maltagliati et al. (2013, Icarus 223) have obtained vertical profiles of water vapor at higher altitudes with SPICAM on Mars Express, but these are commonly limited to altitudes greater 20 km and they never extend below 10 km. We have previously used Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) limb-sounding to measure the vertical profile of water vapor (e.g. McConnochie and Smith, 2009, Fall AGU #P54B-06), but these preliminary results were clearly not quantitatively accurate in the lower atmosphere. We will present improved TES water vapor profile results that we obtain by: 1) investigating simplified parameterizations of the profile; 2) addressing Nyquist-frequency correlated-noise in the TES spectra; 3) combining nadir and limb sounding to better resolve the bottom scale height.

  7. The Effects of Tidal Dissipation on the Thermal Evolution of Triton

    NASA Astrophysics Data System (ADS)

    Gaeman, J.; Hier-Majumder, S.; Roberts, J. H.

    2009-12-01

    This work explores the coupled structural, thermal, and orbital evolution of Neptune's icy satellite, Triton. Recent geyser activity, ridge formation, and volatile transport, observed on Triton's surface, indicate possible activity within Triton's interior [1,2]. Triton is hypothesized to have been captured from an initially heliocentric orbit. During the circularization of Triton's orbit following its capture by Neptune, intense tidal heating likely contributed to the formation of a subsurface ocean [3]. Although the time of Triton's capture is not exactly known, it is likely that the event took place earlier in the history of our solar system, when the probability of binary capture was higher [4, 5]. This work examines the thermal evolution of Triton by employing a coupled tidal and two-phase thermal evolution model, for both an early and late capture scenario. Thermal evolution of a solid crust underlain by an H2O-NH3 mushy layer is driven by the evolution of tidal heating, as Triton's orbital eccentricity evolves following its capture. The governing equations for tidal heating are solved using the propagator matrix method [6, 7], while the governing equation for the coupled crust-multiphase layer thermal evolution were numerically solved using a finite volume discretization. The results indicate that the existence of a subsurface ocean is strongly dependent on ammonia content as larger concentrations of ammonia influence liquidus temperature and density contrast between solid and liquid phases [8]. Preliminary results indicate that an ocean likely exists for compositions containing a relatively high percentage of ammonia for both early and late capture of the satellite. In contrast, the subsurface ocean freezes completely for lower ammonia content. [1] Brown, R. H., Kirk, R. L. (1994). Journal of Geophysical Research 99, 1965-981. [2] Prockter, L. M., Nimmo, F., Pappalardo, R. T. (2005). Geophysical Research Letters 32, L14202. [3] Ross, M. N., Schubert, G. (1990). Geophysical Research Letters 17, 1749-752. [4] Agnor, C. B., Hamilton, D. P. (2006). Nature 441, 192-94. [5] Schenk, P. M., Zahnle, K. (2007). Icarus 192, 135-49. [6] Roberts, J. H., Nimmo, F. (2008). Icarus 194, 675-689. [7] Sabadini, R., Vermeersen, B., (2004). Global Dynamics of the Earth. Kluwer Academic Publishers. [8] Hogenboom, D. L., Kargel, J. S., Concolmagno, G. J., Holden, T. C., Lee, L., Buyyounouski, M. (1997). Icarus 128, 171-80.

  8. Resistance of lichens to simulated galactic cosmic radiation: limits of survival capacity and biosignature detection

    NASA Astrophysics Data System (ADS)

    de la Torre Noetzel, Rosa; Miller, Ana Z.; Cubero, Beatriz; Raguse, Marina; Meessen, Joachim

    2016-04-01

    Space constitutes an extremely harmful environment for survival of terrestrial organisms. Amongst extremophiles on Earth, lichens are one of the most resistant organisms to harsh terrestrial environments, as well as some species of microorganisms, such as bacteria (Moeller et al., 2010), criptoendolithic cyanobacteria and lithic fungi (de los Ríos et al. 2004). To study the survival capacity of lichens to the harmful radiation environment of space, we have selected the lichen Circinaria gyrosa, an astrobiological model defined by its high capacity of resistance to space conditions (De la Torre et al. 2010) and to a simulated Mars environment (Sanchez et al., 2012). Samples were irradiated with four types of space-relevant ionizing radiation in the STARLIFE campaign: helium and iron ion doses (up to 2,000 Gy), X-ray doses (up to 5,000 Gy) and ultra-high γ-ray doses (from 6 to 113 kGy). Results on resistance of C. gyrosa to space-relevant ionizing radiation and its post-irradiation viability were obtained by: (i) chlorophyll a fluorescence of photosystem II (PS II); (ii) epifluorescence microscopy; (iii) confocal laser-scanning microscopy (CLSM), and (iv) field emission scanning electron microscopy (FESEM). Results of photosynthetic activity and epifluorescence showed no significant changes on the viability of C. gyrosa with increasing doses of helium and iron ions as well as X-rays. In contrast, γ-irradiation elicited significant dose-correlated effects as revealed by all applied techniques. Relevant is the presence of whewellite-like crystals, detected by FESEM on C. gyrosa thalli after high irradiation doses, which has been also identified in previous Mars simulation studies (Böttcher et al., 2014). These studies contribute to the better understanding of the adaptability of extremophile organisms to harsh environments, as well as to estimate the habitability of a planet's surface, like Mars; they will be important for planning experiments on the search of life in the universe, and as contribution of lithopanspermia, the theory that supports the interplanetary transfer of rock inhabiting life by means of meteorites (Mileikovsky et al., 2000). Acknowledgements: AZ Miller acknowledges the support from the Marie Skłodowska-Curie actions (PIEF-GA-2012-328689). References Böttger U, Meessen J, Martinez-Frias J, Hübers H-W, Rull F, Sánchez FJ, de la Torre R, de Vera J-P. 2014. International Journal of Astrobiology 13: 19-27. de la Torre R, Sancho LG, Horneck G, de los Ríos A, Wierzchos J, Olsson-Francis K, et al. 2010. Icarus 208: 735-748. de los Ríos A, Wierzchos J, Sancho LG, Ascaso C. 2004. FEMS Microbiology Ecology 50: 143-152. Mileikovsky C, Cucinotta F, Wilson JW, Gladman B, Horneck G, Lindegren L, Melosh J, Rickman H, Valtonen M, Zheng JQ. 2000. Icarus 145, 391-427. Moeller R, Rohde M, Reitz G. 2010. Icarus 206: 783-786. Sánchez FJ, Mateo-Martí E, Raggio J, Meeßen J, Martínez-Frías J, Sancho LG, et al. 2012. Planetary and Space Science 72: 102-110.

  9. Widespread Surface Weathering on Early Mars: possible implication on the Past Climate

    NASA Astrophysics Data System (ADS)

    Loizeau, Damien; Carter, John; Mangold, Nicolas; Poulet, François; Rossi, Angelo P.; Allemand, Pascal; Lozac'h, Loïc; Quantin, Cathy; Bibring, Jean-Pierre

    2015-04-01

    The recent discovery of widespread hydrous clays on Mars with OMEGA/Mars Express and CRISM/MRO indicates that diverse and widespread aqueous environments existed on Mars, from the surface to kilometric depths [1, 2]. The study of the past habitability and past climates of the planet requires assessing the importance of sustained surface water vs. subsurface water in its aqueous history. Vertical sequences of Al-rich clays on top of Fe/Mg-rich clays in the top tens of meters of the surface are identified on Mars [3-6] (see figure 1) and interpreted as possible weathering profiles, similar to cases of pedogenesis on Earth (e.g. [7, 8]). A global study of these clay sequences has recently been published by Carter et al. [9]. This following work presents detailed geological analysis, performed for each identified candidate, in order to constrain their age and origin. With the increasing availability of CTX and HiRISE stereoimages, we investigate the thickness of the altered sequences, the age of the altered units and the different geological contexts to further understand the weathering process(es), and their possible implication on the past climate. The types of geologic settings where the interpreted weathering profiles are observed are much varied: from basin floor to plateaus, in apparent massive rocks to finely layered rocks. Besides, the number and variety of sequences is/was likely larger. However, in term of chronology, the alteration seems to have stopped in a relatively limited period of time for the studied cases, between 3.8 and 3.6 Ga. This would point to a formation due to a global process that enabled liquid water at the surface and pedogenesis in various regions, on various terrains, from late Noachian to early Hesperian. This global process would imply regular, widely distributed ice or precipitations in large regions of Mars at that time. If weathering occurred before that time, during the early or middle Noachian, the sequences may have been erased by the more intense erosion of that time. Also, it is difficult to date older terrains by crater counting on small surfaces. These observations make a strong constrain concerning the past habitability of Mars: liquid water has been widely available at the surface of the planet, in contact with different rocks, until the early Hesperian time. Acknowledgment: Some of the authors have received funding from the ERC (FP7/2007-2013)/ERC Grant agreement n° 280168. References: [1] Ehlmann B., et al. Nature, 479, 53-60 (2011). [2] Carter J., et al. JGR, 118, 831-858 (2013) [3] Gaudin A., et al. Icarus, 216(1), 257-268 (2011). [4] Loizeau D., et al. Icarus, 205, 396-418 (2010). [5] Noe Dobrea E., et al. JGR, 115, E00D19 (2010). [6] Le Deit L., et al. JGR, 117, E00J05 (2012). [7] Velde B., et al. Ed. Springer, Berlin, (1995). [8] Wilson M. Clay Minerals, 39, 233-266 (2004). [9] Carter J., et al. Icarus, 248, 373-382.

  10. A new multiresolution method applied to the 3D reconstruction of small bodies

    NASA Astrophysics Data System (ADS)

    Capanna, C.; Jorda, L.; Lamy, P. L.; Gesquiere, G.

    2012-12-01

    The knowledge of the three-dimensional (3D) shape of small solar system bodies, such as asteroids and comets, is essential in determining their global physical properties (volume, density, rotational parameters). It also allows performing geomorphological studies of their surface through the characterization of topographic features, such as craters, faults, landslides, grooves, hills, etc.. In the case of small bodies, the shape is often only constrained by images obtained by interplanetary spacecrafts. Several techniques are available to retrieve 3D global shapes from these images. Stereography which relies on control points has been extensively used in the past, most recently to reconstruct the nucleus of comet 9P/Tempel 1 [Thomas (2007)]. The most accurate methods are however photogrammetry and photoclinometry, often used in conjunction with stereography. Stereophotogrammetry (SPG) has been used to reconstruct the shapes of the nucleus of comet 19P/Borrelly [Oberst (2004)] and of the asteroid (21) Lutetia [Preusker (2012)]. Stereophotoclinometry (SPC) has allowed retrieving an accurate shape of the asteroids (25143) Itokawa [Gaskell (2008)] and (2867) Steins [Jorda (2012)]. We present a new photoclinometry method based on the deformation of a 3D triangular mesh [Capanna (2012)] using a multi-resolution scheme which starts from a sphere of 300 facets and yields a shape model with 100; 000 facets. Our strategy is inspired by the "Full Multigrid" method [Botsch (2007)] and consists in going alternatively between two resolutions in order to obtain an optimized shape model at a given resolution before going to the higher resolution. In order to improve the robustness of our method, we use a set of control points obtained by stereography. Our method has been tested on images acquired by the OSIRIS visible camera, aboard the Rosetta spacecraft of the European Space Agency, during the fly-by of asteroid (21) Lutetia in July 2010. We present the corresponding 3D shape model of its surface and compare it with models obtained with the SPG and SPC methods. We finally illustrate the practical interest of our approach in geomorphological studies through an analysis of depth to diameter ratio of several craters and topographic properties of other features. Botsch, M., et al., "Geometric modeling based on polygonal meshes," Proc. ACM SIGGRAPH Course Notes, 2007 Capanna, C., et al.: 3D Reconstruction of small solar system bodies using photoclinometry by deformation, IADIS International Journal on Computer Science and Information Systems, in press, 2012. Gaskell, R. W., et al.: Characterizing and navigating small bodies with imaging data, Meteoritics and Planetary Science, vol 43, p. 1049, 2008. Jorda, L., et al: Asteroid (2867) Steins: Shape, Topography and Global Physical Properties from OSIRIS observations, Icarus, in press, 2012. Oberst, J., et al.: The nucleus of Comet Borrelly: a study of morphology and surface brightness, Icarus, vol. 167, 2004. Preusker, F., et al.: The northern hemisphere of asteroid 21 Lutetia topography and orthoimages from Rosetta OSIRIS NAC image data, Planetary and Space Science, vol. 66, p. 54-63, 2012. Thomas, P. C., et al.: The shape, topography, and geology of Tempel 1 from Deep Impact observations, Icarus, vol. 187, Issue 1, p. 4-15, 2007

  11. The Icarus Illusion: Technology, Doctrine and the Soviet Air Force.

    DTIC Science & Technology

    1986-09-01

    to exert significant influence on national nilitary policy by presenting issues and options to major decisionmaking forums in ways which favor pre...discussion as nearly a dozen articles and letters on theoretical issues were published in the following year. Garthoff argues persuasively that "no official...journal in June 1954 and "banished" to the Institute of History in the Soviet Academy of Sciences.95 Furthermore, the issues he had raised in his article

  12. Performance of a liquid argon time projection chamber exposed to the CERN West Area Neutrino Facility neutrino beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arneodo, F.; Cavanna, F.; Mitri, I. De

    2006-12-01

    We present the results of the first exposure of a Liquid Argon TPC to a multi-GeV neutrino beam. The data have been collected with a 50 liters ICARUS-like chamber located between the CHORUS and NOMAD experiments at the CERN West Area Neutrino Facility (WANF). We discuss both the instrumental performance of the detector and its capability to identify and reconstruct low-multiplicity neutrino interactions.

  13. Future applications of artificial intelligence to Mission Control Centers

    NASA Technical Reports Server (NTRS)

    Friedland, Peter

    1991-01-01

    Future applications of artificial intelligence to Mission Control Centers are presented in the form of the viewgraphs. The following subject areas are covered: basic objectives of the NASA-wide AI program; inhouse research program; constraint-based scheduling; learning and performance improvement for scheduling; GEMPLAN multi-agent planner; planning, scheduling, and control; Bayesian learning; efficient learning algorithms; ICARUS (an integrated architecture for learning); design knowledge acquisition and retention; computer-integrated documentation; and some speculation on future applications.

  14. The S(IV)-type Asteroids as Ordinary Chondrite Parent Body Candidates: Implications for the Completeness of the Meteorite Sample of Asteroids

    NASA Astrophysics Data System (ADS)

    Gaffey, M. J.

    1995-09-01

    The discrepancy between the abundance of ordinary chondrites (OCs) among the meteorites and the rarity of unambiguously similar assemblages in the asteroid belt has been a major point of discussion within and between the asteroid and meteorite communities. Various resolutions to this apparent paradox have been proposed [e.g., 1-5], including: 1) interpretations of S-type asteroid spectra are incorrect due to space weathering effects; 2) ordinary chondrites derive from a few rare but favorably situated parent bodies; 3) OCs come from a residual population of small unheated mainbelt asteroids; 4) shock effects darken OC parent body surfaces disguising them as C-type asteroids, and 5) OCs come from inner solar system planetesimals ejected to the Oort cloud which have been recently perturbed into Earth-crossing orbits. Although none of these possibilities has yet been rigorously excluded, recent investigations suggest that the resolution of the apparent paradox lies in some combination of the first three options. For option 3, the discovery of a small mainbelt asteroid with an OC-like spectrum indicates OC-assemblages among the smaller mainbelt asteroids [6], although their abundance is still low in the current sample [7]. For option 2, the mineralogical survey indicated that while most S-asteroids could be rigorously excluded on mineralogical criteria, the S(IV) subtype of this class has silicate compositions within the OC range [8]. The S(IV)-objects are concentrated near the 3:1 secular resonance at 2.5 AU providing an efficient escape into Earth-crossing orbits. Unfortunately for a simple resolution of the OC parent body question, S(IV) spectra still exhibit weaker silicate features and redder spectral slopes than OC assemblages. Although significant uncertainties remain, optical alteration of asteroid surfaces interpreted from the Galileo images of Ida and Gaspra may reconcile the mismatch between OC and S(IV) spectra [option 1]. Although only a subset of the S(IV) objects are viable OC-parent bodies [3 Juno, 6 Hebe, and 7 Iris are the leading candidates], their proximity to the 3:1 chaotic zone would allow them to contribute a significant portion of the ordinary chondrites. In particular, dynamical models suggest that Hebe should be a major contributor to the terrestrial meteorite flux [9]. Each leading contender is currently undergoing detailed spectral evaluation as a potential OC source. From both asteroid observational constraints and from chemical and isotopic studies of meteorites, the ordinary chondrites appear to represent an extensive and relatively complete (by meteoritic standards) sample of a few asteroid source bodies. In a similar fashion, the Howardite-Eucrite-Diogenite suite sample a single primary parent body (Vesta) and are over-represented in meteorite collections due to a fortuitous (and temporary on a solar system timescale) emplacement of Vesta ejecta fragments close to the 3:1 resonance. This suggests that the particular value of the ordinary chondrites lies in the good sample provided for each source body rather than as representatives of an abundant asteroid type. Acknowledgments: Various portions of this research were supported by NASA Planetary Geology and Geophysics grant NAGW-642 and NSF Planetary Astronomy grant AST-9012180. References: [1] Wetherill G. W. and Chapman C. R. (1988) in Meteorites and the Early Solar System, pp. 35-67, Univ. of Arizona. [2] Bell J. F. et al. (1989) in Asteroids II, pp. 921-945, Univ. of Arizona. [3] Gaffey M. J. et al. (1989) in Asteroids II, pp. 98-127, Univ. of Arizona. [4] Britt D. T. and Pieters C. M. (1991) LPS XXII, 141-142. [5] Gaffey M. J. (1984) Icarus, 60, 83-114. [6] Binzel R. P. et al. (1993) Science, 262, 1541-1543. [7] Shui X. et al. (1995) Icarus, 115, 1-35. [8] Gaffey M. J. et al. (1993) Icarus, 106, 573-602. [9] Farinella P. et al. (1993) Icarus, 101, 174-187.

  15. Turbulent flow over craters on Mars: Vorticity dynamics reveal aeolian excavation mechanism.

    PubMed

    Anderson, William; Day, Mackenzie

    2017-10-01

    Impact craters are scattered across Mars. These craters exhibit geometric self-similarity over a spectrum of diameters, ranging from tens to thousands of kilometers. The late Noachian-early Hesperian boundary marks a dramatic shift in the role of mid-latitude craters, from depocenter sedimentary basins to aeolian source areas. At present day, many craters contain prominent layered sedimentary mounds with maximum elevations comparable to the rim height. The mounds are remnants of Noachian deposition and are surrounded by a radial moat. Large-eddy simulation has been used to model turbulent flows over synthetic craterlike geometries. Geometric attributes of the craters and the aloft flow have been carefully matched to resemble ambient conditions in the atmospheric boundary layer of Mars. Vorticity dynamics analysis within the crater basin reveals the presence of counterrotating helical vortices, verifying the efficacy of deflationary models put forth recently by Bennett and Bell [K. Bennett and J. Bell, Icarus 264, 331 (2016)]ICRSA50019-103510.1016/j.icarus.2015.09.041 and Day et al. [M. Day et al., Geophys. Res. Lett. 43, 2473 (2016)]GPRLAJ0094-827610.1002/2016GL068011. We show how these helical counterrotating vortices spiral around the outer rim, gradually deflating the moat and carving the mound; excavation occurs faster on the upwind side, explaining the radial eccentricity of the mounds relative to the surrounding crater basin.

  16. Latitudinal Variation of Germane in Jovian Atmosphere

    NASA Astrophysics Data System (ADS)

    Hyder, A.; Lunine, J. I.; Wang, D.

    2017-12-01

    Wang et al (2016) presented a chemical-dynamical model for Jupiter's atmosphere that predicted abundances of Germane and other disequilibrium species as a function of latitude, under the assumption that only vertical transport is relevant and no horizontal advection occurs. The model disagrees with the latitudinal distributions derived from high-resolution spectral data acquired from the CRIRES instrument at the VLT as described in Giles et al. 2017. Wang et al. 2016 predicts a maximum molar abundance of Germane at (0.7±0.2) ppb with depletion at higher latitudes, while Giles et al. 2017 predicts a constant molar abundance of Germane at 0.58 ppb with no depletion. We explore an empirical horizontal term for the diffusive transport coefficient as a function of latitude, which does not produce a satisfactory result unless highly arbitrary variations of the vertical eddy mixing term as a function of latitude are imposed. We therefore also explore a horizontal wind from the equator that produces a constant latitudinal profile by transporting Germane-rich gas to the poles, effectively producing a Hadley cell. References: Giles, R. S., Fletcher, L. N., & Irwin, P. G. (2017). Latitudinal variability in Jupiter's tropospheric disequilibrium species: GeH 4, AsH 3 and PH 3. Icarus, 289, 254-269. Wang, D., Lunine, J.I., Mousis, O., 2016. Modeling the disequilibrium species for Jupiter and Saturn: implications for Juno and Saturn entry probe. Icarus 276, 21-38.

  17. Glacial Flow on and onto Sputnik Planum

    NASA Astrophysics Data System (ADS)

    Umurhan, O. M.; Moore, J. M.; McKinnon, W. B.; Howard, A. D.; Nimmo, F.; Grundy, W.; Stern, S. A.; Weaver, H.; Olkin, C.; Ennico, K.; Young, L. A.

    2015-11-01

    Sputnik Planum (SP)[1,2] is the high albedo apparently crater-free western portion of Tombaugh Regio imaged in July by the New Horizons LORRI instrument. The relatively high resolution (400 m/pix) LORRI mosaics of the northern portions of the planum bordered by the Cousteau Rupes (CR) scarp reveal surface patterns highly suggestive of viscous flow dynamics. Spectroscopic measurements of SP taken by the New Horizons LEISA instrument also indicate that SP is a region containing a significant amount of CO[2]. It has also been long known that CO and N2 are associated with one another on SP[3-4]. Taken together these observations suggest the possibility that the high albedo material on SP is a volatile ice mix possibly flowing atop a bedrock-like substrate. The apparent notable lack of craters on SP strongly suggests that the flow processes act on relatively fast geologic timescales. Using the known properties of various volatile ice mixtures in the temperature range of interest, we formulate and implement a numerical landform evolution model in order to examine a number of hypothetical evolutionary scenarios for SP and its environs. This work was supported by NASA's New Horizons project.[1] All place names on Pluto and Charon are informally known as such as of the writing of this abstract. [2] Stern, S. A. et al. 2015 Science. [3] Grundy & Buie 2001 Icarus 153, 248. [4] Grundy et al. 2013 Icarus 223, 710.

  18. Turbulent flow over craters on Mars: Vorticity dynamics reveal aeolian excavation mechanism

    NASA Astrophysics Data System (ADS)

    Anderson, William; Day, Mackenzie

    2017-10-01

    Impact craters are scattered across Mars. These craters exhibit geometric self-similarity over a spectrum of diameters, ranging from tens to thousands of kilometers. The late Noachian-early Hesperian boundary marks a dramatic shift in the role of mid-latitude craters, from depocenter sedimentary basins to aeolian source areas. At present day, many craters contain prominent layered sedimentary mounds with maximum elevations comparable to the rim height. The mounds are remnants of Noachian deposition and are surrounded by a radial moat. Large-eddy simulation has been used to model turbulent flows over synthetic craterlike geometries. Geometric attributes of the craters and the aloft flow have been carefully matched to resemble ambient conditions in the atmospheric boundary layer of Mars. Vorticity dynamics analysis within the crater basin reveals the presence of counterrotating helical vortices, verifying the efficacy of deflationary models put forth recently by Bennett and Bell [K. Bennett and J. Bell, Icarus 264, 331 (2016)], 10.1016/j.icarus.2015.09.041 and Day et al. [M. Day et al., Geophys. Res. Lett. 43, 2473 (2016)], 10.1002/2016GL068011. We show how these helical counterrotating vortices spiral around the outer rim, gradually deflating the moat and carving the mound; excavation occurs faster on the upwind side, explaining the radial eccentricity of the mounds relative to the surrounding crater basin.

  19. Spatial Variability in Enceladus' Plume Material Properties across Tiger Stripes: Observed Correlations and Implications

    NASA Astrophysics Data System (ADS)

    Dhingra, D.; Hedman, M. M.; Clark, R. N.; Postberg, F.

    2016-12-01

    The plume material emerging from Enceladus' south-pole has contributions from many sources distributed along four distinct fissures designated as Alexandria, Cairo, Baghdad and Damascus. In principle, the properties of the material escaping into the plume would depend upon the conditions within these individual fissures. Therefore, the particles emitted from different sources could have different properties. Indeed, observations made by the Visual and Infrared Mapping Spectrometer (VIMS) and Cosmic Dust Analyzer (CDA) instruments indicate differences in the water-ice grain sizes and abundance of organic-rich particles along the various fissures. These differences can be detected in both the plume surface deposits around the fissures [e.g. Brown et al., 2006; Jaumann et al, 2008] as well as in the active plume eruptions [Postberg et al., 2011; Dhingra et al., 2015, 2016]. Furthermore, these variations may represent systematic trends in particle size and organic content across the south polar terrain. We are analyzing these spatial correlations between different parameters and what they mean for the sub-surface environment in the active south polar terrain of Enceladus. Brown et al. (2006) Science, 311, 1425-1428Dhingra at al. (2015) 46th Lunar Planet. Sci. Conf., Abst#1648Dhingra et al. (2016) Icarus, under reviewJaumann et al. (2008) Icarus, 193, 407-419Postberg et al. (2011) Nature, 474, 620-622

  20. Possible Habitability of Ocean Worlds

    NASA Astrophysics Data System (ADS)

    Noack, Lena; Höning, Dennis; Bredehöft, Jan H.; Lammer, Helmut

    2014-05-01

    In the last decade, the number of detected exoplanets has increased to over thousand confirmed planets and more as yet unconfirmed planet candidates. The scientific community mainly concentrates on terrestrial planets (up to 10 Earth masses) in the habitable zone, which describes the distance from the host star where liquid water can exist at the surface (Kasting et al., 1993). Another target group of interest are ocean worlds, where a terrestrial-like body (i.e. with an iron core and a silicate mantle) is covered by a thick water-ice layer - similar to the icy moons of our solar system but with several Earth masses (e.g. Grasset et al., 2009). When an exoplanet is detected and confirmed as a planet, typically the radius and the mass of it are known, leading to the mean density of the planet that gives hints to possible interior structures. A planet with a large relative iron core and a thick ocean on top of the silicate mantle for example would have the same average planet density as a planet with a more Earth-like appearance (where the main contributor to the mass is the silicate mantle). In this study we investigate how the radius and mass of a planet depend on the amount of water, silicates and iron present (after Wagner et al., 2011) the occurence of high-pressure-ice in the water-ice layer (note: we only consider surface temperatures at which liquid water exists at the surface) if the ocean layer influences the initiation of plate tectonics We assume that ocean worlds with a liquid ocean layer (and without the occurence of high-pressure ice anywhere in the water layer) and plate tectonics (especially the occurence of subduction zones, hydrothermal vents and continental formation) may be called habitable (Class III/IV habitats after Lammer et al., 2009). References: Kasting, J.F., Whitmire, D.P., and Reynolds, R.T. (1993). Habitable Zones around Main Sequence Stars. Icarus 101, 108-128. Grasset, O., Schneider, J., and Sotin, C. (2009). A study of the accuracy of mass-radius relationships for silicate-rich and ice-rich planets up to 100 Earth masses. The Astrophysical Journal 693, 722-733. Wagner, F.W., Sohl, F., Hussmann, H., Grott, M., and Rauer, H. (2011). Interior structure models of solid exoplanets using material laws in the infinite pressure limit. Icarus 214, 366-376. Lammer, H., Bredehöft, J.H., Coustenis, A., Khodachenko, M.L., Kaltenegger, L., Grasset, O., Prieur, D., Raulin, F., Ehrenfreund, P., Yamauchi, M., Wahlund, J.-E., Grießmeier, J.-M., Stangl, G., Cockell, C.S., Kulikov, Yu.N., Grenfell, J.L., and Rauer, H. (2009). What makes a planet habitable? Astron Astrophys Rev 17, 181-249.

  1. Young Valley Networks on Mars: Persistent Flow of Water in Lyot Crater, a Distinctive Amazonian Impact Basin Microenvironment

    NASA Astrophysics Data System (ADS)

    Dickson, J.; Fassett, C.; Head, J.

    2008-09-01

    Introduction While Amazonian fluvial landforms are not abundant on Mars, remote sensing data have revealed details regarding the role of ice in non-polar regions in the Amazonian. Evidence includes 1) deposits interpreted to be remnants of cold-based glaciers at low- and mid-latitudes [1-6]; 2) mantling deposits interpreted to be a desiccating layer of ground ice [7- 8]; 3) detection of hydrogen (inferred to be bound as water ice) in soil in the mid- and high-latitudes in each hemisphere [9-10]; and 4) viscous flow features interpreted to be the product of glacial-like flow along steep valley/crater walls [11-12]. The climate of Mars straddles the triple point, which motivated us to investigate the most-likely locations/microclimates for melting of these surface/near-surface ice features [13-14]: large-scale impact craters at low elevations and mid-latitudes, which provide 1) relatively high surface pressure; 2) increased solor insolation; and 3) potential residual thermal anomalies from the impact event. Lyot Crater, a ~215 km peak-ring impact basin in the northern lowlands of Mars (50°N, 30°E), provides an environment that meets these constraints. We analyzed recently obtained CTX data to document evidence of remnant glacial deposits and surface features that appear indicative of melting and drainage. Description The floor of Lyot exhibits several networks of sinuous valleys that have been incised exclusively into a pervasive stippled mantling unit (Fig. 1). Twenty separate networks are observed in CTX and THEMIS data, 15 of which occur in the eastern half of Lyot. The valleys range in length from short, 2 km long isolated valleys to 50 km long networks of multiple valleys that have widths that average ~250 m. Valley floors are smooth at CTX resolution, in contrast to the adjacent stippled mantling unit (Fig. 1). Profiles extracted from the Mars Orbiter Laser Altimeter (MOLA) data set show that, without exception, the valleys follow the local topographic gradient (Fig. 3). Regional slopes in the down-valley direction range from 0.36° to 6.12°, but most networks trend around the median for all valleys of 1.93°. Valleys start at a wide range of elevations, from ~-2883 m to ~-5684 m (mean = -3803.4 m). Valley walls appear uniformly fresh and no impact craters or ejecta blankets are observed on any of the valley floors (Fig. 1). Valleys emanate from the upslope margins of the stippled mantling unit along the crater rim and central peak ring and several terminate with depositional fans (Fig. 2). The valleys are superposed by the smoother mantling deposits observed on the flanks of isolated mesas, implying that valley formation occurred after the emplacement of the stippled mantling unit but before the deposition of the more-localized smooth mantling unit. Chronology Since we interpret the valleys as incising the stippled mantling unit, an accurate age for the stippled mantling unit provides a maximum age for valley formation. CTX imagery is the only data set that adequately resolves the stippled mantling unit in sufficient detail and spatial extent to perform accurate crater counts. Therefore we constrained our mapping of the unit to the three overlapping CTX frames in the eastern half of Lyot. We calculated the age for the stippled mantling unit using both the Neukum [15] and Hartmann [16] systems. In each system our counts yield a Middle Amazonian age, with a best-fit for our crater curve of ~1.5 Gyr in the Neukum [15] system and 0.78 Gyr in the Hartmann [16] system. This crater size-frequency determination is well-matched by production model isochrons and this young age is consistent with other stratigraphic constraints. Thus, we are confident that the valleys found in Lyot are Mid-Amazonian or younger. In either absolute age system, there appears to be a geologically significant (0.8 - 1.9 Gy) period of time between the formation of Lyot and the emplacement of the stippled mantling unit. Formation Numerical modelling has shown that Mars has undergone significant orbital excursions within the Amazonian, resulting in periods of high-obliquity [17]. At high obliquity, models predict an increase in peak surface temperature at the latitude of Lyot crater (50°N) [18-19]. For example, at 60° obliquity, Mischna et al. [18] found a maximum diurnallyaveraged temperature at 50°N at Ls=90 would be ~260°K, compared to ~220°K under current orbital conditions (obliquity = 25°), meaning that peak surface temperatures would be above 273°K for significant periods of time. Given these results and the high surface pressure at Lyot crater, surface conditions above the triple point of water are likely to have been achieved in the Middle- to Late-Amazonian at this location. Thus, insolation changes resulting from orbital variations is likely to have been the primary energy source for the melting of surface/nearsurface ice at Lyot. References [1] Squyres, S. (1978) Icarus, 34, 600-613. [2] Lucchitta, B. (1981) Icarus, 45, 264-303. [3] Head, J. and Marchant, D. (2003) Geology, 31, 641-644. [4] Pierce, T. and Crown, D. (2003) Icarus, 163, 46-65. [5] Head, J. et al. (2005) Nature, 434, 346-351. [6] Head, J. et al. (2006) EPSL, 241, 663-671. [7] Mustard, J. et al. (2001) Nature, 412, 411-414. [8] Head, J. et al. (2003) Nature, 426, 797-802. [9] Boynton, W. et al. (2002) Science, 297, 81-85. [10] Feldman, W. et al. (2002) Science, 297, 75-78. [11] Hartmann, W. et al. (2003) Icarus, 162, 259-277. [12] Milliken, R. et al. (2003) JGR, 108, 11-1. [13] Lobitz, B. et al. (2001) PNAS, 98, 2132-2137. [14] Haberle, R. et al. (2001) JGR, 106, 23317-23326. [15] Ivanov, B. (2001) Space Sci. Rev., 96, 87-104. [16] Hartmann, W. (2005) Icarus, 174, 294-320. [17] Laskar, J. (2004) Icarus, 170, 343-364. [18] Mischna, M. et al. (2003) JGR, 108, E6-5062. [19] Haberle, R. et al. (2003) Icarus, 161, 66-89.

  2. First observations of Ceres by VIR on Dawn mission

    NASA Astrophysics Data System (ADS)

    De Sanctis, M. Cristina; Ammannito, Eleonora; Fonte, Sergio; Magni, Gianfranco; Capaccioni, Fabrizio; Capria, M. Teresa; Raymond, Carol. A.; Russell, Christopher T.

    2015-04-01

    The Dawn spacecraft [1] is now approaching Ceres, the second of its targets. Ceres represents the key to understand some important points relative to the role of the protoplanet size and the water content in the evolution of these bodies. Ceres is thought to be differentiated, and hydrated minerals were proposed to exist on its surface [2,3,4]. Its low density [3] associated with the presence of transient water vapour, suggests a high content of ice inside the body and on its surface. Ceres seems to have been subject to differentiation and hydrothermal activity, and might host a liquid subsurface layer even today. Dawn is equipped with a Visible and InfraRed Mapping Spectrometer (VIR-MS) [5]. VIR-MS is an imaging spectrometer coupling high spectral and spatial resolution in the VIS (0.25-1 micron) and IR (0.95-5 micron) spectral ranges. The surface composition of Ceres is poorly understood through its nearly featureless visible spectrum. Its visible reflectance spectrum has a steep UV absorption edge that begins at a relatively short wavelength, around 0.4 micron, unlike many C-type asteroids where the UV drop-off begins around 0.6 to 0.7 micron[6]. The near-IR spectrum has a strong absorption band centered at about 3-micron. The absorption features in the 3-micron region were attributed to structural water in clay minerals [7,8] but could also be ammoniated clays [9]. [10] reported the discovery of carbonates and iron-rich clays from measurements of weak 3-micron features, and the results are consistent with the mid-IR spectra of clay minerals. On approach to Ceres, Dawn will obtain images and hyperspectral . VIR data, with resolution larger than Hubble images will reveal the first details of the Ceres' surface composition. Here we report about the first data obtained by VIR during its approach to Ceres. Acknowledgments VIR is funded by the Italian Space Agency-ASI and was developed under the leadership of INAF-Istituto di Astrofisica e Planetologia Spaziali, Rome-Italy. The instrument was built by Selex-Galileo, Florence-Italy. The authors acknowledge the support of the Dawn Science, Instrument, and Operations Teams. This work was supported by ASI and NASA. A portion of this work was performed at the JPL/NASA. References [1] Russell, C.T. et al., Science, 336, 684, 2012. [2] McCord et al., Space Science Reviews 163:63, 2011 [3] Thomas, P.C., Parker, J.Wm., McFadden, L.A., et al. Nature, 437, 224-226, 2005 [4] Kuppers et al., Nature, 505, 525-527, 2014 [5]De Sanctis M.C. et al., Space Sci. Rev., DOI 10.1007/s11214-010-9668-5 , 2010. [6] Li et al.,Icarus, doi:10.1016/j.icarus.2005.12.012, 2006 [7] Lebofsky, L.A., Feierberg, M.A., Tokunaga, A.T., Larson, H.P., Johnson, J.R.,. Icarus 48, 453-459. 1981 [8] Feierberg, M.A., Lebofsky, L.A., Larson, H.P., Geochim. Cosmochim. Acta 45, 971-981, 1981 [9] King, T.V.V., Clark, R.N., Calvin, W.M., Sherman, D.M., Brown, R.H.,Science 255, 1551- 1553, 1992 [10] Rivkin, A.S., Volquardsen, E.L., Clark, B.E., Icarus 185, 563-567, 2006

  3. A summary of present-day gully formation and activity on Mars

    NASA Astrophysics Data System (ADS)

    Diniega, Serina; Hansen, Candice; McEwen, Alfred; Dundas, Colin; Byrne, Shane

    2016-07-01

    Over the past decade, gully activity has been carefully monitored on a range of slopes, including dune slopes [1-3] and crater walls [2-4]. Within the southern mid-latitudes, substantial changes in gully morphology have been observed. On dune slopes, observed activity includes major incision (forming a new channel or expanding an existing channel), changes in channel sinuosity, expansion of alcoves, and deposition of an extensive new apron. On rockier slopes, observed activity has cut new channel segments and small terraces, abandoned other channels, and deposited boulder-rich lobate features. Many of these morphologies have been treated as indicative of fluvial processes. However, long-term monitoring campaigns with High Resolution Imaging Science Experiment (HiRISE) data [2-5] of almost 500 gully locations, have shown that the timing of this current activity is generally correlated with the presence of seasonal frost [1-5]. Moreover, the distribution of seasonal frost on slopes is similar to the orientation distribution of gullies [3,6]. Most seasonal frost is CO2, and this is likely the main cause of current activity. Recent modeling has shown that CO2 sublimation from within the regolith pores would be sufficient to create the types of geomorphology seen within martian gullies [7]. Water frost may be involved in some small-scale activity [5]. Liquid water is unlikely to be relevant, because the abundance of water frost is generally low [8] and melting is difficult. An additional current focus is on the north polar sand sea, where "gullies" (generally lacking a channel) have been observed to form on dune slopes over seasonal and annual timescales. There, we aim to differentiate between either a general aeolian [8] or seasonal frost driver [9,10] for the formation process. For these features, formation timing estimates are often less constrained because HiRISE images are not acquired during fall and winter, due to the polar hood and darkness. Thus, analysis of trends and variations in gully size, morphology, orientation, and location are additionally examined as indications of a seasonal (or other) control, as well as variations with latitude, dune type/size/orientation, or Mars year. This presentation will summarize the results of our monitoring campaigns, and will compare the data that are available about gullies of different morphologies and locations. Our aim is to identify possible similarities (and differences) in gully activity processes across Mars, and to estimate the rates of gully formation and modification processes (as has been done for gullies in the southern mid-latitudes [3]). Such estimates would aid interpretation of the likely ages of observed gullies, which have implications for whether records of past (and potential aqueous) gully formation processes are still observable. [1] Diniega et al. (2010) Geology, 38, 1047-1050. [2] Dundas et al. (2012) Icarus, 220, 124-143. [3] Dundas et al. (2015) Icarus, 251, 244-263. [4] Dundas et al. (2010) GRL, 37, L07202. [5] Vincendon (2015) JGR, 120, 1859-1879. [6] Harrison et al. (2015) Icarus, 252, 236-254. [7] Pilorget & Forget (2016) Nature Geosci. 9, 65-69. [8] Vincendon et al. (2010) JGR, 115, E10001. [9] Horgan & Bell (2012) Geophys. Res. Lett. 39, L09201. [10] Hansen et al., (2011) Science 331, 575-578. [11] Hansen et al. (2015) Icarus 251, 264-267.

  4. Formation of Ganymede's Grooved Terrain by Convection-Driven Resurfacing

    NASA Astrophysics Data System (ADS)

    Hammond, N. P.; Barr, A. C.

    2013-12-01

    Over half the surface of Ganymede, Jupiter's largest icy moon, is covered in grooved terrain, which is composed of 10-100 km wide swaths of sub-parallel ridges and troughs [1]. Convection in Ganymede's ice shell was originally suggested as a driving mechanism for grooved terrain formation [2] but subsequent work has argued that convective stresses were too weak to deform the surface [3] and that Ganymede's ice shell was thin and conductive during groove terrain formation [4]. However, the heat flow [5] and strain rate [6] inferred for grooved terrain formation resemble the conditions observed at the active Enceladus South Polar Terrain (SPT), where 'sluggish lid' convection may be occurring [7]. During 'sluggish lid' convection, thermal buoyancy stresses exceed the lithospheric yield stress, allowing convection to reach the surface and drive deformation [8]. Previous work shows that the heat flows and strain rates associated with sluggish lid convection are consistent with the observed heat flow and surface age of the Enceladus SPT [7, 9]. Here we use numerical models of convection in Ganymede's ice shell to show that convection can provide the heat flow and strain rate inferred for grooved terrain formation. We use the finite element model CITCOM [10] to model convection for a wide range of ice shell conditions. We use a newtonian temperature-dependent viscosity consistent with deformation by volume diffusion [11]. We impose a limited viscosity contrast between the surface and base of the ice shell to mimic the effect of an upper surface whose yield stress is less than the critical stress for sluggish lid convection [7, 12] due to impact fracturing [13], tidal flexing, and/or shallow tidal heating. We find that ice shells 10 to 80 km thick are consistent with the heat flow and strain rate inferred for grooved terrain formation. Regions above convective upwellings are consistent with conditions inferred at groove lanes. Regions above downwellings are consistent with heat flow estimates for dark terrain [14] and conditions which favor the formation of long-wavelength, low-amplitude compressional folds [15], similar to those observed on Europa [16]. Such folds may be detectable by the upcoming Jupiter-Icy-Moon-Explorer Mission. Acknowledgements: This work is supported by NASA PG&G #NNX12AI76G References: [1] Collins G. et al., (1998) GRL 25, 3, 233-236 [2] Lucchitta B. (1980) Icarus 44, 481-501 [3] Squyres S. & Croft S. (1986) Satellites 293-341 [4] Showman A. P. et al., (1997) Icarus 129, 367-383 [5] Nimmo F. et al. (2002) GRL 29, 62-65 [6] Bland M. & Showman A. (2007), Icarus 189, 439-456. [7] Barr A. C. (2008) JGR 113, E07009 14 [8] Solomatov V. (2004) JGR 109, B01412 [9] O'Neill C. & Nimmo F. (2010) Nat. Geo. 3 v2 88-91 [10] Moresi L. & Solomatov V. (1995) Phys. Fluids 7, 2154-2162 [11] Goldsby D. & Kohlstedt D. (2001) JGR 106, B6 11017-11030 [12] Solomatov V. (2004) JGR 109, B01412 [13] Nimmo F. & Schenk P. (2006) J. Struc. Geol. 28, 2194-2203 [14] Nimmo F. & Pappalardo R. (2004) GRL 31, L19701 [15] Bland M. & McKinnon W. (2012) Icarus 221, 2, 694-709 [16] Prockter L. & Pappalardo R. (2000) Science 289, 5481, 941-944

  5. Intriguing differences and similarities in the surface compositions of the icy Saturnian and Galilean satellites

    NASA Astrophysics Data System (ADS)

    Hibbitts, C.

    2006-12-01

    Many materials in addition to water ice have been discovered in the surfaces of the icy Galilean and Saturnian satellites. Spacecraft infrared spectroscopy show intriguing differences and similarities suggestive of variations in primordial compositions and subsequent alteration. However, within the diverse compositions in their surfaces are similarities that cross between the systems. For instance, when nonice material is detected on these satellites, it is always hydrated. CO2 is detected in both systems where it is trapped in a host material except possibly for Enceladus where it may be deposited as ice from plumes [1-7]. Satellites in both systems contain aromatic hydrocarbons [8] and possibly CN-bearing materials [9]. The surfaces of Callisto, Ganymede, Europa, Iapetus, Phoebe, Hyperion, and Dione each contain some low albedo non-ice materials. The spectra have a broad 3-micron absorption feature due to structural OH or adsorbed water. However, the band is not sharp like a well-ordered clay mineral but broad, similar in some regards to less well-structured palagonite, goethite, or Murchison meteorite. The hydration of Jovian satellite nonice materials is greater for surfaces that have experienced more tectonism and alteration (i.e. increases from Callisto inward to Europa). The nonice material on Callisto appears to be a single composition (though itself possibly a mixture) that is slightly hydrated [10]. The nonice material on Europa is also of uniform composition everywhere observed, a very heavily hydrated material, perhaps a salt, hydrated SO4 (i.e. sulfuric acid), or both, that either originates from the subsurface ocean, radiolytically altered surface material, or both [11-13]. Ganymede appears to contain two types nonice materials; one an unidentified heavily hydrated material spectrally distinct from the Europa hydrate [11] and a second much less-abundant, less hydrated material spectrally similar to the Callisto nonice material that is largely associated with dark ray craters, possibly impactor contamination or desiccated Ganymede hydrate. The nonice materials on Phoebe and Iapetus is redder (from 1-2.5 microns) than the reddest material on the Galilean satellites (on Callisto) and compositionally different from each other. Iapetus appears to contain some (more) tholin material than Phoebe [14]. The CO2 on both satellites is similar to the CO2 detected in the nonice materials on Callisto and Ganymede with a reflectance minimum ~ 4.258 microns. The spectrum of the CO2 detected on Hyperion and Dione is distinct from that on Iapetus and Phoebe, having a reflectance minimum 10nm shorter at ~ 4.246 microns. This suggests a different bonding energy and possibly a different host material. In summary, the compositions of the icy Galilean satellites reflect the evolutionary state of their surfaces. The compositions of the icy Saturnian satellites are also complex, but with the exception of Enceladus, do not yet show any obvious dependencies on surface structure. There may some commonality in primordial compositions between the satellites of the two systems. References: [1]1Carlson et al., (1996) Science; [2] McCord et al., (1998) J. Geophys. Res.;[3] Hibbitts et al., (2000), J. Geophys. Res; [4] Hibbitts et al., (2003) J. Geophys. Res; [5] Clark et al., (2005) Nature; [6] Buratti et al., (2005) Astrophys. J.; [7] Brown et al., (2006) , Icarus; [8] Clark et al., (2005), Fall AGU; [9] Cruikshank et al., (2005), DPS [10] Calvin et al., (1991), Icarus; [11] McCord et al., 2000; [12]Carlson et al., 1999; [13]Orlando et al., (2005) Icarus; [14] Owens et al., (2001) Icarus;.

  6. Mid-IR Spectroscopy of the Jovian Stratosphere perturbed by comet P/Shoemaker-Levy 9 Impact

    NASA Technical Reports Server (NTRS)

    Hunten, Don M.; Sprague, A. L.; Bjoraker, G. L.; Witteborn, F. C.; Kozlowski, R. W. H.; Wooden, D. H.

    1996-01-01

    The objective was to obtain spectra from 5 to 14 micron before, during, and after the impacts. We were awarded 2 flights of the KAO which was based in Melbourne, Australia for the events. Impacts R and W were covered, and the observations were completely successful. A paper reporting the observation of water vapor is in press, and other work is in progress as limited funding permits. The text of this report is adapted from that of the Icarus paper.

  7. Earth, Wind, and Fire: Elemental Properties of Army and Air Force Cooperation in Close Air Support, 1945-1991

    DTIC Science & Technology

    2014-06-01

    9 Carl H. Builder, The Icarus Syndrome : The Role of Air Power Theory in the Evolution and Fate of the U.S. Air Force (New Brunswick, New... head -on in Europe. In rapid sequence, the United States faced another strategic challenge in October 1949, when Mao Zedong and the Chinese...General Twining took the experiences in Korea as an example of where future warfare would be heading and made it a point throughout the

  8. Integrated Cognitive-neuroscience Architectures for Understanding Sensemaking (ICArUS): Overview of Test and Evaluation Materials

    DTIC Science & Technology

    2014-11-01

    Phase 2 than for Phase 1 ) in three components of T&E: a qualitative Neural Fidelity Assessment (NFA), a quantitative Cognitive Fidelity Assessment ( CFA ...Burns Craig Bonaceto Michael Fine Carsten Oertel November, 2014 MT R 1 4 04 0 9 MIT R E T E C H N IC A L R E P OR T...No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing

  9. Rotation Properties of Small Jovian Trojan Asteroids

    NASA Astrophysics Data System (ADS)

    French, Linda M.; Stephens, Robert D.; James, David; Coley, Daniel R.; Warner, Brian D.; Rohl, Derrick

    2016-10-01

    Jovian Trojan asteroids are of interest both as objects in their own right (we have no spectral analogs among meteorite samples) and as possible relics of Solar System formation. Asteroid lightcurves can give information about processes that have affected a group of asteroids; they can also give information about the density of the objects when enough lightcurves have been collected. We have been carrying out a survey of Trojan lightcurve properties for comparison with small asteroids and with comets. In a recent paper (French et al. 2015) we presented evidence that a significant number of Trojans have rotation periods greater than 24 hours. We will report our latest results and compare them with results of sparsely-sampled lightcurves from the Palomar Transient Factory (Waszczak et al. 2015). LF, RS, and DR were visiting astronomers at Cerro Tololo Interamerican Observatory, operated by AURA under contract with the NSF, and with the SMARTS Consortium at CTIO. This research was sponsored by NSF Planetary Astronomy grant 1212115.ReferencesFrench, L.M. et al. 2015. Icarus 254, pp. 1-17.Waszczak, A. et al. 2015. A.J. 150, Issue 3, I.D. 35.

  10. Advances in Interstellar and Planetary Laboratory Astrophysics with Ames’ COSmIC Facility

    NASA Astrophysics Data System (ADS)

    Salama, Farid; Sciamma-O'Brien, Ella; Bejaoui, Salma

    2017-06-01

    The COSmIC facility was developed at NASA Ames to study interstellar, circumstellar and planetary analogs in the laboratory [1]. COSmIC stands for “Cosmic Simulation Chamber” and is dedicated to the study of neutral and ionized molecules and nanoparticles under the low temperature and high vacuum conditions that are required to simulate space environments. COSmIC integrates a variety of instruments that allow forming, processing and monitoring simulated space conditions in the laboratory. It is composed of a Pulsed Discharge Nozzle (PDN) expansion that generates a plasma in a free supersonic jet expansion coupled to high-sensitivity, complementary in situ diagnostics tools, used for the detection and characterization of the species present in the expansion: a Cavity Ring Down Spectroscopy (CRDS) and fluorescence spectroscopy systems for photonic detection and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection [2].Recent advances achieved in laboratory astrophysics using COSmIC will be presented, in particular the advances that have been achieved in the domain of the diffuse interstellar bands (DIBs) [3] and in monitoring, in the laboratory, the formation of dust grains and aerosols from their gas-phase molecular precursors in environments as varied as circumstellar outflows [4] and planetary atmospheres [5, 6]. Plans for future laboratory experiments on cosmic molecules and grains in the growing field of laboratory astrophysics (NIR-MIR CRDS, Laser Induced Fluorescence spectra of cosmic molecule analogs and the laser induced incandescence spectra of cosmic grain analogs will also be addressed as well as the implications of the on-going studies for astronomy.References: [1] Salama F., In Organic Matter in Space, IAU S251, Kwok & Sandford eds.CUP, 4, 357 (2008).[2] Ricketts C., Contreras C., Walker, R., Salama F., Int. J. Mass Spec, 300, 26 (2011)[3] Salama F., Galazutdinov G., Krelowski J., Biennier L., Beletsky Y., In-Ok Song, The Astrophys. J., 728, 154 (2011)[4] Cesar Contreras & Farid Salama, The Astrophys. J. Suppl. Ser., 208, 6 (2013)[5] Sciamma-O'Brien E., Ricketts C., and Salama F. Icarus, 243, 325 (2014)[6] Sciamma-O'Brien E., Upton K. and Salama F. Icarus, in press (2017)

  11. NEAs: Phase Angle Dependence of Asteroid Class and Diameter from Observational Studies

    NASA Astrophysics Data System (ADS)

    Wooden, Diane H.; Lederer, Susan M.; Bus, Schelte; Tokunaga, Alan; Jehin, Emmanuel; Howell, Ellen S.; Nolan, Michael C.; Ryan, Erin; Fernandez, Yan; Harker, David; Reddy, Vishnu; Benner, Lance AM; Lovell, Amy; Moskovitz, Nicholas; Kerr, Tom; Woodward, Charles

    2015-08-01

    We will discuss the results of a planned observation campaign of Near Earth Asteroids (NEAs), 1999 CU3, 2002 GM2, 2002 FG7, and 3691 Bede with instruments on the United Kingdom Infrared Telescope (UKIRT) from 15-Mar-2015 to 28-April 2015 UT. We will study the phase-angle dependence of the reflectance and thermal emission spectra. Recent publications reveal that the assignment of the asteroid class from visible and near-IR spectroscopy can change with phase angle for NEAs with silicate-bearing minerals on their surfaces (S-class asteroids) (Thomas et al. 2014, Icarus 228, 217; Sanchez et al. 2012 Icarus 220, 36). Only three of the larger NEAs have been measured at a dozen phase angles and the trends are not all the same, so there is not yet enough information to create a phase-angle correction. Also, the phase angle effect is not characterized well for the thermal emission including determination of the albedo and the thermal emission. The few NEAs were selected for our study amongst many possible targets based on being able to observe them through a wide range of phase angles, ranging from less than about 10 degrees to greater than 45 degrees over the constrained date range. The orbits of NEAs often generate short observing windows at phase angles higher than 45 deg (i.e., whizzing by Earth and/or close to dawn or dusk). Ultimately, lowering the uncertainty of the translation of asteroid class to meteorite analog and of albedo and size determinations are amongst our science goals. On a few specific nights, we plan to observe the 0.75-2.5 micron spectra with IRTF+SpeX for comparison with UKIRT data including 5-20 micron with UKIRT+UIST/Michelle to determine as best as possible the albedos. To ensure correct phasing of spectroscopic data, we augment with TRAPPIST-telescope light curves and R-band guider image data. Our observations will contribute to understanding single epoch mid-IR and near-IR measurements to obtain albedo, size and IR beaming parameters (the outcomes of thermal models) and asteroid spectral class.

  12. NEAs: Phase Angle Dependence of Asteroid Class and Diameter from Observational Studies

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Lederer, Susan M.; Bus, Schlete; Tokunaga, Alan; Jehin, Emmanuel; Howell, Ellen S.; Nolan, Michael C.; Ryan, Erin; Fernandez, Yan; Harker, David; hide

    2015-01-01

    We will discuss the results of a planned observation campaign of Near Earth Asteroids (NEAs), 1999 CU3, 2002 GM2, 2002 FG7, and 3691 Bede with instruments on the United Kingdom Infrared Telescope (UKIRT) from 15-Mar-2015 to 28-April 2015 UT. We will study the phase-angle dependence of the reflectance and thermal emission spectra. Recent publications reveal that the assignment of the asteroid class from visible and near-IR spectroscopy can change with phase angle for NEAs with silicate-bearing minerals on their surfaces (S-class asteroids) (Thomas et al. 2014, Icarus 228, 217; Sanchez et al. 2012 Icarus 220, 36). Only three of the larger NEAs have been measured at a dozen phase angles and the trends are not all the same, so there is not yet enough information to create a phase-angle correction. Also, the phase angle effect is not characterized well for the thermal emission including determination of the albedo and the thermal emission. The few NEAs were selected for our study amongst many possible targets based on being able to observe them through a wide range of phase angles, ranging from less than about 10 degrees to greater than 45 degrees over the constrained date range. The orbits of NEAs often generate short observing windows at phase angles higher than 45 deg (i.e., whizzing by Earth and/or close to dawn or dusk). Ultimately, lowering the uncertainty of the translation of asteroid class to meteorite analog and of albedo and size determinations are amongst our science goals. On a few specific nights, we plan to observe the 0.75-2.5 micron spectra with IRTF+SpeX for comparison with UKIRT data including 5-20 micron with UKIRT+UIST/Michelle to determine as best as possible the albedos. To ensure correct phasing of spectroscopic data, we augment with TRAPPIST-telescope light curves and R-band guider image data. Our observations will contribute to understanding single epoch mid-IR and near-IR measurements to obtain albedo, size and IR beaming parameters (the outcomes of thermal models) and asteroid spectral class.

  13. Pits and Gullies on Vesta: Potential Insights from Terrestrial Analogs

    NASA Astrophysics Data System (ADS)

    Sears, D. W.; Tornabene, L. L.; Osinski, G. R.; Hughes, S. S.; Heldmann, J. L.

    2013-12-01

    Arguably the most surprising discovery of the Dawn mission during its observations of Vesta were the pitted terrain [1,2], low albedo regions [3,4], and hydrogen abundances [5,6]. The presence of pitted terrain at the floors of craters on Vesta has been ascribed to the release of volatiles during impact, following the discovery of similar features on Mars where they are interpreted as volatile-rich impact melt deposits [7]. The numerous dark regions and the H abundance have been ascribed to the presence of infall material resembling CM chondrites. CM chondrite clasts are relatively common in brecciated meteorites [8], including the HED meteorites that are presumed to have come from Vesta (or Vesta fragments) [9,10], and contain up to about 10 vol% water [11]. On the walls of craters associated with the pitted terrain in craters, but also observed outside craters, are features resembling gullies [12,13]. The nature of these features, the amount of fluids required, and - especially - the relationship between the pits and gully-like features is unclear. Pit-like structures are commonly observed at terrestrial impact craters (hydrothermal pipes, [14]) and in volcanic fields (phreatic craters, [15]) in which water was present during the active phases of these processes. They are usually well-studied and offer a range of 'ground truths' which might help us understand the features on Vesta. The number, morphology, and locations of the features provide temporal information on their histories. The number, size and distribution of boulders around the features, provides information on energetics and water content. We expect such structures to be present in water-bearing C and X asteroids, where the water in endogenous, and S asteroids where, like Vesta, the water is exogenous. Such features, if present, were generally obscured by regolith on Eros [16], but a search in regolith-poor areas might be worthwhile. In summary, we suggest that new insights into volatile behavior on near-Earth asteroids, with its relevance to geological evolution, astrobiology, and space resources, will be possible through the study of terrestrial analogs. [1] Denevi et al 2012. Science 338, 246-249. [2] Boyce et al 2012. Icarus 221 262-275. [3] McCord et al., 2012. Nature 491, 83-86. [4] Reddy et al 2012. Icarus 221 544-559. [5] De Sanctis et al. 2012. Science 336, 697-700. [6] Prettyman et al 2012. Science 338, 242-246. [7] Tornabene et al (2012). Icarus 220, 348-368. [8] Wilkening et al 1973. Geochim. Cosmochim. Acta 37, 1985-1989. [9] McCord et al 1970. Science 168, 1445-1447. [10] Drake 2001. Meteorit. Planet. Sci. 36, 501-513. [11] Wiik 1969. Commun. Phys. Math. 34 135-145 [12] Scully et al 2012. AGU Meeting, 2012, December 3-7th. [13] Scully et al 2013. 44th LPSC paper #1578. [14] Kirsimäe and Osinski 2013. Chapter 6 in 'Impact Cratering: Processes and Products' eds Osinski and Pierazzo, Blackwell. [15] Hughes et al 1999. Pages 143-168 in 'Guidebook to the Geology of Eastern Idaho' eds Hughes and Thackray, Idaho Museum of Natural History. [16] Robinson et al 2001. Meteorit. Planet. Sci. 37, 1651-1684.

  14. Why we need detailed visible-range spectral data on Kuiper belt objects?

    NASA Astrophysics Data System (ADS)

    Busarev, V. V.

    2001-05-01

    Our understanding of Kuiper belt objects (KBOs)' nature may be based on two general scenarios of their origin. First, they could result from early accretional phases of the Solar System ``in situ". Then they are probably the most primitive and unprocessed bodies among known and should be mostly icy, with a very low content of silicate component. Second, a considerable portion of them (if not a majority) might have been thrown by Jupiter and other giant planets from their zones of accumulation. If so, they could include much more silicates (possibly up to 40%). To check the suppositions we need high-resolution visible and near-infrared spectral data on Centaurs (as possible `fugitives' from the Kuiper belt) and the KBOs. Because of faintness of the objects their physicochemical properties remain still little-known. Visible-range observations of the bodies by means of a spacecraft approaching to the belt could much help in solving the problem. Visible-infrared spectrophotometric observations of the objects showed a considerable diversity among them (Jewitt D. & J. Luu, 1998, Astron. J., 115, 1667-1670). It hints at a diversity in content of their matter. Spectral features of ices could not probably dominate in the visible range spectra of silicate-bearing KBOs. Reflectance spectra of principal gases' frosts are mainly flat and featureless in the range (Wagner J. K. et al., 1987, Icarus, 69, 14-28). Besides, silicates of KBOs are probably oxidized and hydrated to a high extent. Highly hydrated main-belt C-class asteroids have absorption bands at 0.43 and 0.6-0.8 microns (up to about 5%) (Vilas F. & M. J. Gaffey, 1989, Science, 246, 790-792 and Vilas F. et al., 1993, Icarus, 102, 225-231). Similar spectral features attributed to oxidized and hydrated silicates were also found on many M- and S-asteroids (e. g., Busarev V. V., 2001, LPSC XXXII, abstract 1927). The absorption bands are interpreted as caused by electronic processes in a bulk of oxidized silicates and hydrated clay minerals including structural OH-groups. Thus, the absorption features may be considered as indicators of a presence of oxidized and/or hydrated silicates on a solid body regardless of its position in the Solar System. For these reasons we have started visible-range spectroscopic observations of Centaurs and the KBOs on Russian 6-m telescope.

  15. Validity of the "Laplace Swindle" in Calculation of Giant-Planet Gravity Fields

    NASA Astrophysics Data System (ADS)

    Hubbard, William B.

    2014-11-01

    Jupiter and Saturn have large rotation-induced distortions, providing an opportunity to constrain interior structure via precise measurement of external gravity. Anticipated high-precision gravity measurements close to the surfaces of Jupiter (Juno spacecraft) and Saturn (Cassini spacecraft), possibly detecting zonal harmonics to J10 and beyond, will place unprecedented requirements on gravitational modeling via the theory of figures (TOF). It is not widely appreciated that the traditional TOF employs a formally nonconvergent expansion attributed to Laplace. This suspect expansion is intimately related to the standard zonal harmonic (J-coefficient) expansion of the external gravity potential. It can be shown (Hubbard, Schubert, Kong, and Zhang: Icarus, in press) that both Jupiter and Saturn are in the domain where Laplace's "swindle" works exactly, or at least as well as necessary. More highly-distorted objects such as rapidly spinning asteroids may not be in this domain, however. I present a numerical test for the validity and precision of TOF via polar "audit points". I extend the audit-point test to objects rotating differentially on cylinders, obtaining zonal harmonics to J20 and beyond. Models with only low-order differential rotation do not exhibit dramatic effects in the shape of the zonal harmonic spectrum. However, a model with Jupiter-like zonal winds exhibits a break in the zonal harmonic spectrum above about J10, and generally follows the more shallow Kaula power rule at higher orders. This confirms an earlier result obtained by a different method (Hubbard: Icarus 137, 357-359, 1999).

  16. CO2 greenhouse in the early martian atmosphere: SO2 inhibits condensation

    NASA Technical Reports Server (NTRS)

    Yung, Y. L.; Nair, H.; Gerstell, M. F.

    1997-01-01

    Many investigators of the early martian climate have suggested that a dense carbon dioxide atmosphere was present and warmed the surface above the melting point of water (J.B. Pollack, J.F. Kasting, S.M. Richardson, and K. Poliakoff 1987. Icarus 71, 203-224). However, J.F. Kasting (1991. Icarus 94, 1-13) pointed out that previous thermal models of the primitive martian atmosphere had not considered the condensation of CO2. When this effect was incorporated, Kasting found that CO2 by itself is inadequate to warm the surface. SO2 absorbs strongly in the near UV region of the solar spectrum. While a small amount of SO2 may have a negligible effect by itself on the surface temperature, it may have significantly warmed the middle atmosphere of early Mars, much as ozone warms the terrestrial stratosphere today. If this region is kept warm enough to inhibit the condensation of CO2, then CO2 remains a viable greenhouse gas. Our preliminary radiative modeling shows that the addition of 0.1 ppmv of SO2 in a 2 bar CO2 atmosphere raises the temperature of the middle atmosphere by approximately 10 degrees, so that the upper atmosphere in a 1 D model remains above the condensation temperature of CO2. In addition, this amount of SO2 in the atmosphere provides an effective UV shield for a hypothetical biosphere on the martian surface.

  17. Martian Electron Temperatures in the Sub Solar Region.

    NASA Astrophysics Data System (ADS)

    Fowler, C. M.; Peterson, W. K.; Andersson, L.; Thiemann, E.; Mayyasi, M.; Yelle, R. V.; Benna, M.; Espley, J. R.

    2017-12-01

    Observations from Viking, and MAVEN have shown that the observed ionospheric electron temperatures are systematically higher than those predicted by many models. Because electron temperature is a balance between heating, cooling, and heat transport, we systematically compare the magnitude of electron heating from photoelectrons, electron cooling and heat transport, as a function of altitude within 30 degrees of the sub solar point. MAVEN observations of electron temperature and density, EUV irradiance, neutral and ion composition are used to evaluate terms in the heat equation following the framework of Matta et al. (Icarus, 2014, doi:10.1016/j.icarus.2013.09.006). Our analysis is restricted to inbound orbits where the magnetic field is within 30 degrees of horizontal. MAVEN sampled the sub solar region in May 2015 and again in May 2017, in near northern spring equinoctial conditions. Solar activity was higher and the spacecraft sampled altitudes down to 120 km in 2015, compared to 160 km in 2017. We find that between 160 and 200 km the Maven electron temperatures are in thermal equilibrium, in the sub solar region, on field lines inclined less than 30 degrees to the horizontal. Above 200km the data suggest that heating from other sources, such as wave heating are significant. Below 160 km some of the discrepancy comes from measurement limitations. This is because the MAVEN instrument cannot resolve the lowest electron temperatures, and because some cooling rates scale as the difference between the electron and neutral temperatures.

  18. Absolute magnitudes and slope parameters for 250,000 asteroids observed by Pan-STARRS PS1 - Preliminary results

    NASA Astrophysics Data System (ADS)

    Vereš, Peter; Jedicke, Robert; Fitzsimmons, Alan; Denneau, Larry; Granvik, Mikael; Bolin, Bryce; Chastel, Serge; Wainscoat, Richard J.; Burgett, William S.; Chambers, Kenneth C.; Flewelling, Heather; Kaiser, Nick; Magnier, Eugen A.; Morgan, Jeff S.; Price, Paul A.; Tonry, John L.; Waters, Christopher

    2015-11-01

    We present the results of a Monte Carlo technique to calculate the absolute magnitudes (H) and slope parameters (G) of ∼240,000 asteroids observed by the Pan-STARRS1 telescope during the first 15 months of its 3-year all-sky survey mission. The system's exquisite photometry with photometric errors ≲ 0.04mag , and well-defined filter and photometric system, allowed us to derive accurate H and G even with a limited number of observations and restricted range in phase angles. Our Monte Carlo method simulates each asteroid's rotation period, amplitude and color to derive the most-likely H and G, but its major advantage is in estimating realistic statistical + systematic uncertainties and errors on each parameter. The method was tested by comparison with the well-established and accurate results for about 500 asteroids provided by Pravec et al. (Pravec, P. et al. [2012]. Icarus 221, 365-387) and then applied to determining H and G for the Pan-STARRS1 asteroids using both the Muinonen et al. (Muinonen, K. et al. [2010]. Icarus 209, 542-555) and Bowell et al. (Bowell, E. et al. [1989]. Asteroids III, Chapter Application of Photometric Models to Asteroids. University of Arizona Press, pp. 524-555) phase functions. Our results confirm the bias in MPC photometry discovered by Jurić et al. (Jurić, M. et al. [2002]. Astrophys. J. 124, 1776-1787).

  19. Constraints on Particle Sizes in Saturn's G Ring from Ring Plane Crossing Observations

    NASA Astrophysics Data System (ADS)

    Throop, H. B.; Esposito, L. W.

    1996-09-01

    The ring plane crossings in 1995--96 allowed earth-based observations of Saturn's diffuse rings (Nicholson et al., Nature 272, 1996; De Pater et al. Icarus 121, 1996) at a phase angle of alpha ~ 5 deg . We calculate the G ring reflectance for steady state distributions of dust to km-sized bodies from a range of physical models which track the evolution of the G ring from its initial formation following the disruption of a progenitor satellite (Canup & Esposito 1996, \\ Icarus,\\ in press). We model scattering from the ring's small particles using an exact T-matrix method for nonspherical, absorptive particles (Mishchenko et al. 1996, \\ JGR Atmo., in press), large particles using the phase function and spectrum of Europa, and intermediate particles using a linear combination of the small and large limits. Two distinct particle size distributions from the CE96 model fit the observed spectrum. The first is that of a dusty ring, with the majority of ring reflectance in dust particles of relatedly shallow power law size distribution exponent q ~ 2.5. The second has equal reflectances from a) dust in the range q ~ 3.5 -- 6.5 and b) macroscopic bodies > 1 mm. In this second case, the respective slightly blue and red components combine to form the observed relatively flat spectrum. Although light scattering in backscatter is not sufficient to completely constrain the G ring size distribution, the distributions predicted by the CE96 model can explain the earth-based observations.

  20. Crater topography on Titan: Implications for landscape evolution

    NASA Astrophysics Data System (ADS)

    Neish, C.; Kirk, R.; Lorenz, R.; Bray, V.; Schenk, P.; Stiles, B.; Turtle, E.; Cassini Radar Team

    2012-04-01

    Unique among the icy satellites, Titan’s surface shows evidence for extensive modification by fluvial and aeolian erosion, which act to change the topography of its surface over time. Quantifying the extent of this landscape evolution is difficult, since the original, ‘non-eroded’ surface topography is generally unknown. However, fresh craters on icy satellites have a well-known shape and morphology, which has been determined from extensive studies on the airless worlds of the outer solar system (Schenk et al., 2004). By comparing the topography of craters on Titan to similarly sized, pristine analogues on airless bodies, we can obtain one of the few direct measures of the amount of erosion that has occurred on Titan. Cassini RADAR has imaged >30% of the surface of Titan, and more than 60 potential craters have been identified in this data set (Wood et al., 2010; Neish and Lorenz, 2012). Topographic information for these craters can be obtained from a technique known as ‘SARTopo’, which estimates surface heights by comparing the calibration of overlapping synthetic aperture radar (SAR) beams (Stiles et al., 2009). We present topography data for several craters on Titan, and compare the data to similarly sized craters on Ganymede, for which topography has been extracted from stereo-derived digital elevation models (Bray et al., 2012). We find that the depths of craters on Titan are generally within the range of depths observed on Ganymede, but several hundreds of meters shallower than the average (Fig. 1). A statistical comparison between the two data sets suggests that it is extremely unlikely that Titan’s craters were selected from the depth distribution of fresh craters on Ganymede, and that is it much more probable that the relative depths of Titan are uniformly distributed between ‘fresh’ and ‘completely infilled’. This is consistent with an infilling process that varies linearly with time, such as aeolian infilling. Figure 1: Depth of craters on Titan (gray diamonds) compared to similarly sized, fresh craters on Ganymede (central peaks, +; central pits, *) and a handful of relaxed craters (black squares) from Bray et al. (2012). References: Bray, V., et al.: "Ganymede crater dimensions - implications for central peak and central pit formation and development". Icarus, Vol. 217, pp. 115-129, 2012. Neish, C.D., Lorenz, R.D.: "Titan’s global crater population: A new assessment". Planetary and Space Science, Vol. 60, pp. 26-33, 2012. Schenk, P.M., et al.: "Ages and interiors: the cratering record of the Galilean satellites". In: Bagenal, F., McKinnon, W.B. (Eds.), Jupiter: The Planet, Satellites, and Magnetosphere, Cambridge University Press, Cambridge, UK, pp. 427-456, 2004. Stiles, B.W., et al.: "Determining Titan surface topography from Cassini SAR data". Icarus, Vol. 202, pp. 584-598, 2009. Wood, C.A., et al.: "Impact craters on Titan". Icarus, Vol. 206, pp. 334-344, 2010.

  1. Comet 67P/Churyumov-Gerasimenko during the Rosetta mission: numerical simulation of dusty gas coma

    NASA Astrophysics Data System (ADS)

    Tenishev, Valeriy; Combi, Michael; Rubin, Martin; Hansen, Kenneth; Gombosi, Tamas

    The Rosetta spacecraft is en route to comet 67P/Churyumov-Gerasimenko for a rendezvous, landing, and extensive orbital phase beginning in 2014. Having a limited amount of information regarding its coma, interpretation of measurements and safety consideration of the spacecraft will require modeling of the comet's environment. Such models should be able to simulate both the gas and dust phases of the coma as well as the interaction between them in a self-consistent manner. The relevant physical processes in the coma include photolytic reactions and interaction with the nucleus for the gas phase and drag by the gas, gravity of the nucleus, solar gravity and radiation pressure, and charging by the ambient plasma for the dust phase. Developing of such modeling capabilities will be able to link measurements obtained by different instruments onboard of spacecraft. Some examples of cometary comae simulations can be found in [1-3]. In this work we present our kinetic model of a dusty gas coma [4] with results of its application to the case of comet Churyumov-Gerasimenko at conditions corresponding to some stages the during the Rosetta mission. Based on the surface properties and local production rates obtained by MIRO, RSI and VIRTIS the model will be able to propagate the injected gas and dust into the coma linking the measurements to those obtained by ALICE, MIDAS and ROSINA for the gas phase and COSIMA and GIADA for the dust phase of the coma. A simultaneous simulation of the major components of the multi-phase coma will allow us to link observations of the gas and dust phases. In this work we present results of a numerical study of neutral/ionized multispecies gaseous and electrically charged dust environment of the comet Churyumov-Gerasimenko at a helio-centric distance of 1.3 AU. The simulation is performed in fully 3D geometry with a realistic nucleus model that describes its topological features and source distribution. Both, neutral and ionized components of the gas phase of the coma are simulated kinetically. Photolytic reactions are taken into account. Parameters of the ambient plasma as well as the distribution of electric/magnetic fields are obtained from an MHD simulation [5] of the coma connected to the solar wind. Those parameters are used for calculation of the electric charge of dust grains. Trajectories of ions and electrically charged dust grains are simulated by accounting for the gas drag, Lorentz force, nucleus gravity and radiation pressure. REFFERENCES [1] M.R. Combi, Icarus, 123, 207-226 (1996) [2] Y. Skorov, G.N. Markelov, H.U. Keller, Solar Sys. Res. 38, 455-475 (2004) [3] V.V. Zakharov, A.V. Rodionov, G. A. Lukianov, J.F. Crifo, Icarus 201, 358-380 (2009) [4] V. Tenishev, M. R. Combi, B. Davidsson, Astrophysical Journal, 685, 659-677 (2008) [5] M. Rubin, K. C. Hansen, T. Gombosi, M. R. Combi, K. Altwegg, H. Balsiger, Icarus, 199, 505-519 (2009)

  2. Water Ice on Triton

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.; Roush, Ted L.; Owen, Tobias C.; Schmitt, Bernard; Quirico, Eric; Geballe, Thomas R.; deBergh, Catherine; Bartholomew, Mary Jane; DalleOre, Cristina M.; Doute, Sylvain

    1999-01-01

    We report the spectroscopic detection of H2O ice on Triton, evidenced by the broad absorptions in the near infrared at 1.55 and 2.04 micron. The detection on Triton confirms earlier preliminary studies (D. P. Cruikshank, R. H. Brown, and R. N. Clark, Icarus 58, 293-305, 1984). The spectra support the contention that H2O ice on Triton is in a crystalline (cubic or hexagonal) phase. Our spectra (1.87-2.5 micron) taken over an interval of nearly 3.5 years do not show any significant changes that might relate to reports of changes in Triton's spectral reflectance (B. Buratti, M. D. Hicks, and R. L. Newburn, Jr., Nature 397, 219, 1999), or in Triton's volatile inventory (J. L. Elliot et al., Nature 393, 765-767, 1998).

  3. Appendix D. Recently Published Research Papers that Utilized Plates

    NASA Astrophysics Data System (ADS)

    2009-08-01

    A search has been made for papers published in the most prominent journals of astronomy in the period 2000-2009 that made use of photographic plates. The journals surveyed were The Astrophysical Journal (ApJ), Astronomical Journal(AJ), Monthly Notices of the Royal Astronomical Society (MNRAS), Astronomy & Astrophysics (A&A), Publications of the Astronomical Society of the Pacific (PASP) and their associated supplements and letters. Not included are papers where the plates were not used for research, for example a report on testing plate digitization techniques. Fifty-nine articles were identified which are listed below. For convenience, the titles of the articles and the ADS bibliographic code are also included. One additional article from Icarus, the major journal for solar system studies, is given after the main listing.

  4. Generating topography through tectonic deformation of ice lithospheres: Simulating the formation of Ganymede's grooves

    NASA Astrophysics Data System (ADS)

    Bland, M. T.; McKinnon, W. B.

    2010-12-01

    Ganymede’s iconic topography offers clues to both the satellite’s thermal evolution, and the mechanics of tectonic deformation on icy satellites. Much of Ganymede’s surface consists of bright, young terrain, with a characteristic morphology dubbed “groove terrain”. As reviewed in Pappalardo et al. (2004), in Jupiter - The Planet, Satellites, and Magnetosphere (CUP), grooved terrain consists of sets of quasi-parallel, periodically-spaced, ridges and troughs. Peak-to-trough groove amplitudes are ~500 m, with low topographic slopes (~5°). Groove spacing is strongly periodic within a single groove set, ranging from 3-17 km; shorter wavelength deformation is also apparent in high-resolution images. Grooved terrain likely formed via unstable extension of Ganymede’s ice lithosphere, which was deformed into periodically-spaced pinches and swells, and accommodated by tilt-block normal faulting. Analytical models of unstable extension support this formation mechanism [Dombard and McKinnon 2001, Icarus 154], but initial numerical models of extending ice lithospheres struggled to produce large-amplitude, groove-like deformation [Bland and Showman 2007, Icarus 189]. Here we present simulations that reproduce many of the characteristics of Ganymede’s grooves [Bland et al. 2010, Icarus in press]. By more realistically simulating the decrease in material strength after initial fault development, our model allows strain to become readily localized into discrete zones. Such strain localization leads to the formation of periodic structures with amplitudes of 200-500 m, and wavelengths of 3-20 km. The morphology of the deformation depends on both the lithospheric thermal gradient, and the rate at which material strength decreases with increasing plastic strain. Large-amplitude, graben-like structures form when material weakening occurs rapidly with increasing strain, while lower-amplitude, periodic structures form when the ice retains its strength. Thus, extension can result in complex surface deformation, consistent with the variety of surface morphologies observed within the grooved terrain. Our modeling indicates that moderate thermal gradients (10 K km-1) may be sufficient to explain many of Ganymede’s groove morphologies. The implied heat flow (~50 mW m-2), however, is a factor of two greater than the expected radiogenic heat flux, suggesting additional energy input (e.g., tidal dissipation) may be required. Our modeling of groove formation suggests that understanding tectonic deformation on icy satellites requires a detailed understanding of the mechanical behavior of ice and ice lithospheres, and demonstrates the need for new tectonic models that include localization, realistic plasticity, and energy dissipation.

  5. The Heat Flux through the Ice Shell on Europa, Constraints from Measurements in Terrestrial Conditions

    NASA Astrophysics Data System (ADS)

    Hruba, J.; Kletetschka, G.

    2017-12-01

    Heat transport across the ice shell of Europa controls the thermal evolution of its interior. Such process involves energy sources that drive ice resurfacing (1). More importantly, heat flux through the ice shell controls the thickness of the ice (2), that is poorly constrained between 1 km to 30+ km (3). Thin ice would allow ocean water to be affected by radiation from space. Thick ice would limit the heat ocean sources available to the rock-ocean interface at the ocean's bottom due to tidal dissipation and potential radioactive sources. The heat flux structures control the development of geometrical configurations on the Europa's surface like double ridges, ice diapirs, chaos regions because the rheology of ice is temperature dependent (4).Analysis of temperature record of growing ice cover over a pond and water below revealed the importance of solar radiation during the ice growth. If there is no snow cover, a sufficient amount of solar radiation can penetrate through the ice and heat the water below. Due to temperature gradient, there is a heat flux from the water to the ice (Qwi), which may reduce ice growth at the bottom. Details and variables that constrain the heat flux through the ice can be utilized to estimate the ice thickness. We show with this analog analysis provides the forth step towards measurement strategy on the surface of Europa. We identify three types of thermal profiles (5) and fourth with combination of all three mechanisms.References:(1) Barr, A. C., A. P. Showman, 2009, Heat transfer in Europa's icy shell, University of Arizona Press, p. 405-430.(2) Ruiz, J., J. A. Alvarez-Gómez, R. Tejero, and N. Sánchez, 2007, Heat flow and thickness of a convective ice shell on Europa for grain size-dependent rheologies: Icarus, v. 190, p. 145-154.(3) Billings, S. E., S. A. Kattenhorn, 2005, The great thickness debate: Ice shell thickness models for Europa and comparisons with estimates based on flexure at ridges: Icarus, v. 177, p. 397-412.(4) Quick, L. C., B. D. Marsh, 2016, Heat transfer of ascending cryomagma on Europa: Journal of Volcanology and Geothermal Research, v. 319, p. 66-77.(5) Mitri, G., A. P. Showman, 2005, Convective-conductive transitions and sensitivity of a convecting ice shell to perturbations in heat flux and tidal-heating rate: Implications for Europa: Icarus, v. 177, p. 447-460.

  6. Looking for Martian True Polar Wander in mutually oriented slices of ALH84001

    NASA Astrophysics Data System (ADS)

    Buz, J.; Murphy, T. G.; Kirschvink, J. L.

    2016-12-01

    True polar wander (TPW) on Mars has been hypothesized based on a variety of observations including geoid instability [1], locations of apparent polar deposits [2], and locations of magnetic anomalies [3, 4]. A proposed driving force for TPW is redistribution of mass on the surface of the planet such as by extensive volcanism events [5]. The majority of TPW modeling research has been using orbital datasets and modeling. However, laboratory analyses of Martian samples should also be conducted to test for Martian TPW. The Martian meteorite, ALH84001, is a prime sample for observing Martian TPW because of its preservation of thermal remanent magnetization from Mars [6]. Previous work on the sample has demonstrated that the interior of the meteorite was not heated above 40 C during transport from Mars to Earth and that there is a heterogeneous magnetization within the meteorite [7]. Within the meteorite are a series of fracture-filling carbonate blebs which contain magnetite and pyrrhotite with original remanence. These carbonates are presumed to have precipitated onto the meteorite [8]. We have divided a fracture-containing portion of the meteorite into three sets of sequential, mutually oriented slices. Using an ultra-high resolution scanning SQuID magnetometer we are able to visualize the magnetization within each slice. We are able to model each magnetic scan as a series of discrete dipoles using a modification from Lima and Weiss [9]. Our results demonstrate that within one of our slice sequences the dipoles lie along a great circle path. Dipoles lying along an arc in a stereographic projection can be interpreted as resulting from TPW if there is a significant amount of time from start to end of magnetization. Our ongoing work includes continued analysis and scanning of our slices as well as statistical tests for confirming if the dipoles lie along an arc. [1] Sprenke, KF et al. 2005 Icarus 174(2) 486-9 [2] Perron, JT et al. 2007 Nature 447(7146) 840-3 [3] Kobayashi, D & Sprenke, KF 2010 Icarus 210(1) 37-42 [4] Boutin, D & Arkani-Hamed, J 2006 Icarus 181(1) 13-25 [5] Kite, ES et al. 2009 Earth Planet Sci Lett 280(1-4) 254-67 [6] Weiss, B et al. 2000 Science 290(5492) 791-5 [7] Weiss, BP et al. 2002 Earth Planet Sci Lett 201(3-4) 449-63 [8] Halevy, I et al. 2011 Proc Natl Acad Sci 108(41) 16895-9 [9] Lima, EA & Weiss, BP 2009 J Geophys Res 114(B6)

  7. The composition of M-type asteroids: Synthesis of spectroscopic and radar observations

    NASA Astrophysics Data System (ADS)

    Ockert-Bell, M. E.; Clark, B. E.; Shepard, M. K.; Isaacs, R. A.; Cloutis, E. A.; Fornasier, S.; Bus, S. J.

    2010-12-01

    We have conducted a radar-driven observational campaign of 22 main-belt asteroids (MBAs) focused on Bus-DeMeo Xc- and Xk-type objects (Tholen X and M class asteroids) using the Arecibo radar and NASA Infrared Telescope Facilities (IRTF). Sixteen of our targets were near-simultaneously observed with radar and those observations are described in a companion paper (Shepard, M.K., and 19 colleagues [2010]. Icarus, in press). We find that most of the highest metal-content asteroids, as suggested by radar, tend to exhibit silicate absorption features at both 0.9 and 1.9 μm, and the lowest metal-content asteroids tend to exhibit either no bands or only the 0.9 μm band. Eleven of the asteroids were observed at several rotational longitudes in the near-infrared and significant variations in continuum slope were found for nine in the spectral regions 1.1-1.45 μm and 1.6-2.3 μm. We utilized visible wavelength data (Bus, S.J., Binzel, R.P. [2002b]. Icarus 158, 146-177; Fornasier, S., Clark, B.E., Dotto, E., Migliorini, A., Ockert-Bell, M., Barucci, M.A. [2010]. Icarus 210, 655-673.) for a more complete compositional analysis of our targets. Compositional evidence is derived from our target asteroid spectra using two different methods: (1) a χ2 search for spectral matches in the RELAB database, and (2) parametric comparisons with meteorites. This paper synthesizes the results of the RELAB search and the parametric comparisons with compositional suggestions based on radar observations. We find that for six of the seven asteroids with the highest iron abundances, our spectral results are consistent with the radar evidence (16 Psyche, 216 Kleopatra, 347 Pariana, 758 Mancunia, 779 Nina, and 785 Zwetana). Three of the seven asteroids with the lowest metal abundances, our spectral results are consistent with the radar evidence (21 Lutetia, 135 Hertha, 497 Iva). The remaining seven asteroids (22 Kalliope, 97 Klotho, 110 Lydia, 129 Antigone, 224 Oceana, 678 Fredegundis, and 771 Libera) have ambiguous compositional interpretations when comparing the spectral analogs to the radar analogs. The number of objects with ambiguous results from this multi-wavelength survey using visible, near-infrared, and radar wavelengths indicates that perhaps a third diagnostic wavelength region (such as the mid-infrared around 2-4 μm, the mid-infrared around 10-15 μm, and/or the ultraviolet around 0.2-0.4 μm) should be explored to resolve the discrepancies.

  8. Tidal Currents between Titan's Seas Detected by Solar Glints

    NASA Astrophysics Data System (ADS)

    Sotin, C.; Barnes, J. W.; Lawrence, K. J.; Soderblom, J. M.; Audi, E.; Brown, R. H.; Le Mouelic, S.; Baines, K. H.; Buratti, B. J.; Clark, R. N.; Nicholson, P. D.

    2015-12-01

    Titan is the only place in the solar system, besides Earth, to have stable bodies of liquids on its surface. The three large seas and most of the lakes are located in the northern pole area [1]. They are major reservoirs of organic material [2]. Questions related to the variability in composition of the seas [2] and their interaction [3] can be addressed by dedicated observations. For this purpose, the Visual and Infrared Mapping Spectrometer (VIMS) observed the area between Ligeia Mare and Kraken Mare, Titan's two largest seas on February 12, 2015. The location of the specular point was close to the strait that has been suggested to link Ligeia and Kraken [4]. As demonstrated by previous observations of specular reflections on the lakes and seas [5, 6], such observations provide a means to assess the presence of liquids and the dynamics of the liquid surface. The VIMS observation provides images of the strait, named Trevize fretum, with a footprint of about 3 km. It shows a remarkable correlation with the radar images, suggesting that no major changes in the level of the seas have occurred in the last 10 years, a third of a Titan year. Very strong values of I/F at 5-μm suggest specular reflection away from the specular point on the Ligiea outlet. This is consistent with the presence of waves which can be generated by either winds or strong currents between Kraken Mare and Ligeia mare. Such currents can be generated during Titan's orbital motion around Saturn. We have investigated the volume of liquids that would transit through Trevize fretum during a Titan day and have found that the flow would be in a turbulent regime for the value of the mean anomaly at the time of the VIMS observation. Although subsurface communication between the two seas cannot be ruled out, the present observation underlines the role of the strait in providing exchange of fluids between the two large seas. This work has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. [1] Stofan et al. (2007) Nature, 445, 61-64. [2] Lorenz et al. (2014) Icarus, 237, 9-15. [3] Tokano et al. (2014) Icarus, 242, 188-201. [4] Sotin et al. (2014), AGU, P43C-3999. [5] Soderblom et al. (2012) Icarus, 220, 744-751. [6] Barnes et al. (2013) Astrophysical J., 777, 161.

  9. A study of unmanned mission opportunities to comets and asteroids

    NASA Technical Reports Server (NTRS)

    Mann, F. I.; Horsewood, J. L.; Bjorkman, W.

    1974-01-01

    Several unmanned multiple-target mission opportunities to comets and asteroids were studied. The targets investigated include Grigg-Skjellerup, Giacobini-Zinner, Tuttle-Giacobini-Kresak, Borrelly, Halley, Schaumasse, Geographos, Eros, Icarus, and Toro, and the trajectories consist of purely ballistic flight, except that powered swingbys and deep space burns are employed when necessary. Optimum solar electric rendezvous trajectories to the comets Giacobini-Zinner/85, Borrelly/87, and Temple (2)/83 and /88 employing the 8.67 kw Sert III spacecraft modified for interplanetary flight were also investigated. The problem of optimizing electric propulsion heliocentric trajectories, including the effects of geocentric launch asymptote declination on launch vehicle performance capability, was formulated, and a solution developed using variational calculus techniques. Improvements were made to the HILTOP trajectory optimization computer program. An error analysis of high-thrust maneuvers involving spin-stabilized spacecraft was developed and applied to a synchronous meteorological satellite mission.

  10. Excavation of Stratified Phyllosilicate-Bearing Rocks in the Northern Plains of Mars

    NASA Astrophysics Data System (ADS)

    Gross, C.; Carter, J.; Tornabene, L. L.; Sowe, M.; Bishop, J. L.

    2014-12-01

    The Noachian southern highlands of Mars bear old crustal material which appears mostly unaltered (Bandfield, 2002; Bibring et al., 2005; Christensen et al., 2005) and contains phyllosilicate-rich material. Phyllosilicates are of particular interest, as they require the presence of liquid water over long terms and may represent habitable environments. Most phyllosilicates formed early in Mars' history during the Noachian period (Bibring et al., 2006). However, a set of Hesperian-aged impact craters, Toro (Marzo et al., 2010) and Majuro (Mangold et al., 2012) bear evidence for impact-induced hydrothermal activity in the southern highlands. Phyllosilicate outcrops in the northern plains are exclusively found in and around impact craters. This could lead to the conclusion that they might form excavation products of preexisting, buried deposits, exposed by impacting and erosion (Carter et al. 2010; Bibring et al. 2006; Murchie et al. 2009). Nevertheless, when investigating alteration associated with impact craters, pre-, syn- and post-impact scenarios have to be considered (Osinski et al., 2013; Tornabene et al., 2013). We revisited a set of impact sites described by Carter et al. (2010) for further investigation and to test the theory of impact excavation of old preexisting strata versus impact-induced hydrothermal activity. This can be achieved as coverage of high resolution data has drastically increased during the time of that study. We here report the presence of uplifted, stratified, phyllosilicate-rich material in an impact crater, located in the northern plains of Mars, close to the dichotomy boundary. References: Bandfield (2002) JGR, 107, E6, 5042. Bibring et al. (2005) Science, 307, 1576-1581. Christensen et al. (2005) Nature, 436, 504-509. Bibring et al. (2006) Science, 312, 400-404. Marzo et al. (2010) Icarus, 208, 667-683. Mangold et al. (2012) PSS, 72, 18-30. Carter et al. (2010) Science, 328, 1682-1686. Murchie et al. (2009) JGR, 114, E00D06. Osinski et al. (2013) Icarus, 224, 347-363. Tornabene et al. (2013) JGR, 118, 994-1012.

  11. Looking a gift horse in the mouth: Evaluation of wide-field asteroid photometric surveys

    NASA Astrophysics Data System (ADS)

    Harris, Alan W.; Pravec, Petr; Warner, Brian D.

    2012-09-01

    It has recently become possible to do a photometric survey of many asteroids at once, rather than observing single asteroids one (or occasionally a couple) at a time. We evaluate two such surveys. Dermawan et al. (Dermawan et al. [2011]. Publ. Astron. Soc. Jpn. 63, S555-S576) observed one night on the Subaru 8.2 m telescope, and Masiero et al. (Masiero, J., Jedicke, R., Durech, J., Gwen, S., Denneau, L., Larsen, J. [2009]. Icarus 204, 145-171) observed six nights over 2 weeks with the 3.6 m CFHT. Dermawan claimed 83 rotation periods from 127 detected asteroids; Masiero et al. claimed 218 rotation periods from 828 detections. Both teams claim a number of super-fast rotators (P < 2.2 h) among main belt asteroids larger than 250 m diameter, some up to several km in diameter. This would imply that the spin rate distribution of main belt asteroids differs from like-sized NEAs, that there are larger super-fast rotators (monolithic asteroids) in the main belt than among NEAs. Here we evaluate these survey results, applying the same criteria for reliability of results that we apply to all results listed in our Lightcurve Database (Warner, B.D., Harris, A.W., Pravec, P. [2009a]. Icarus 202, 134-146). In doing so, we assigned reliability estimates judged sufficient for inclusion in statistical studies for only 27 out of 83 (33%) periods claimed by Dermawan, and only 87 out of 218 (40%) periods reported by Masiero et al.; none of the super-fast rotators larger than about 250 m diameter claimed by either survey received a reliability rating judged sufficient for analysis. We find no reliable basis for the claim of different rotation properties between main belt and near-Earth asteroids. Our analysis presents a cautionary message for future surveys.

  12. Statistical Clustering and Compositional Modeling of Iapetus VIMS Spectral Data

    NASA Astrophysics Data System (ADS)

    Pinilla-Alonso, N.; Roush, T. L.; Marzo, G.; Dalle Ore, C. M.; Cruikshank, D. P.

    2009-12-01

    It has long been known that the surfaces of Saturn's major satellites are predominantly icy objects [e.g. 1 and references therein]. Since 2004, these bodies have been the subject of observations by the Cassini-VIMS (Visual and Infrared Mapping Spectrometer) experiment [2]. Iapetus has the unique property that the hemisphere centered on the apex of its locked synchronous orbital motion around Saturn has a very low geometrical albedo of 2-6%, while the opposite hemisphere is about 10 times more reflective. The nature and origin of the dark material of Iapetus has remained a question since its discovery [3 and references therein]. The nature of this material and how it is distributed on the surface of this body, can shed new light into the knowledge of the Saturnian system. We apply statistical clustering [4] and theoretical modeling [5,6] to address the surface composition of Iapetus. The VIMS data evaluated were obtained during the second flyby of Iapetus, in September 2007. This close approach allowed VIMS to obtain spectra at relatively high spatial resolution, ~1-22 km/pixel. The data we study sampled the trailing hemisphere and part of the dark leading one. The statistical clustering [4] is used to identify statistically distinct spectra on Iapetus. The composition of these distinct spectra are evaluated using theoretical models [5,6]. We thank Allan Meyer for his help. This research was supported by an appointment to the NASA Postdoctoral Program at the Ames Research Center, administered by Oak Ridge Associated Universities through a contract with NASA. [1] A, Coradini et al., 2009, Earth, Moon & Planets, 105, 289-310. [2] Brown et al., 2004, Space Science Reviews, 115, 111-168. [3] Cruikshank, D. et al Icarus, 2008, 193, 334-343. [4] Marzo, G. et al. 2008, Journal of Geophysical Research, 113, E12, CiteID E12009. [5] Hapke, B. 1993, Theory of reflectance and emittance spectroscopy, Cambridge University Press. [6] Shkuratov, Y. et al. 1999, Icarus, 137, 235-246.

  13. Re-accumulation Scenarios Governing Final Global Shapes of Rubble-Pile Asteroids

    NASA Astrophysics Data System (ADS)

    Hestroffer, Daniel; Tanga, P.; Comito, C.; Paolicchi, P.; Walsh, K.; Richardson, D. C.; Cellino, A.

    2009-05-01

    Asteroids, since the formation of the solar system, are known to have experienced catastrophic collisions, which---depending on the impact energy---can produce a major disruption of the parent body and possibly give birth to asteroid families or binaries [1]. We present a general study of the final shape and dynamical state of asteroids produced by the re-accumulation process following a catastrophic disruption. Starting from a cloud of massive particles (mono-disperse spheres) with given density and velocity distributions, we analyse the final shape, spin state, and angular momentum of the system from numerical integration of a N-body gravitational system (code pkdgrav [2]). The re-accumulation process itself is relatively fast, with a dynamical time corresponding to the spin-period of the final body (several hours). The final global shapes---which are described as tri-axial ellipsoids---exhibit slopes consistent with a degree of shear stress sustained by interlocking particles. We point out a few results: -the final shapes are close to those of hydrostatic equilibrium for incompressible fluids, preferably Maclaurin spheroid rather than Jacobi ellipsoids -for bodies closest to the sequence of hydrostatic equilibrium, there is a direct relation between spin, density and outer shape, suggesting that the outer surface is nearly equipotential -the evolution of the shape during the process follows a track along a gradient of potential energy, without necessarily reaching its minimum -the loose random packing of the particles implies low friction angle and hence fluid-like behaviour, which extends the results of [3]. Future steps of our analysis will include feature refinements of the model initial conditions and re-accumulation process, including impact shakings, realistic velocity distributions, and non equal-sized elementary spheres. References [1] Michel P. et al. 2001. Science 294, 1696 [2] Leinhardt Z.M. et al. 2000. Icarus 146, 133 [3] Richardson D.C. et al. 2005. Icarus 173, 349

  14. Trapping of CH4, CO, and CO2 in Amorphous Water Ice

    NASA Astrophysics Data System (ADS)

    Mastrapa, R. M. E.; Brown, R. H.; Anicich, V. G.; Cohen, B. A.; Dai, W.; Lunine, J. I.

    1999-09-01

    In this study, CO, CH4, and CO2 were trapped in H2O at temperatures as low as 20 K and pressures between 10-5 and 10-8 Torr. IR spectra were taken of each sample before sublimation to confirm the presence of volatiles. The samples were then heated at rates from 0.25 K/min to 1 K/min and the escape ranges were measured with a mass spectrometer. The volatiles escaped from the ice mixtures in temperature ranges similar to those found in previous work (1, 2, 3), namely 48-52 K, 145-160 K, 170-185 K. H2O is released from 150 K to 185 K. However, the temperature range of escape is strongly dependent on deposition temperature and heating rate. If the deposition temperature is below the point where the solid volatile rapidly sublimates in the ambient environment of our experiment, then the first range of volatile escape is centered around it's sublimation point, and there is little of the volatile remaining from 170-185 K. The location of the third escape range shifts to lower temperatures with slower sublimation rate. It was determined that 0.5 K/min is the ideal sample heating rate to determine these escape ranges. In our data, the infrared spectrum of CO trapped in water ice shows a splitting of the 2145 cm-1 solid CO line into two bands at 2343 cm-1 and 2135 cm-1. These shifts are similar to those seen by Sandford, et al. (4). (1) Bar-Nun, A., G. Herman, D. Laufer, and M. L. Rappaport, (1985), Icarus, 63, 317-332. (2) Bar-Nun, A., J. Dror, E. Kochavi, and D. Laufer, (1987), Physical Review B, 35, no. 5, 2427-2435. (3) Hudson, R. L., and B. Donn, (1991), Icarus, 94, 326-332. (4) Sandford, S. A., L. J. Allamandola, A. G. G. M. Tielens, and G. J. Valero, (1988), Astrophysical Journal, 329, 498-510.

  15. The Maturely, Immature Orientale Impact Basin

    NASA Astrophysics Data System (ADS)

    Cahill, J. T.; Lawrence, D. J.; Stickle, A. M.; Delen, O.; Patterson, G.; Greenhagen, B. T.

    2015-12-01

    Lunar surface maturity is consistently examined using the NIR optical maturity parameter (OMAT) [1]. However, the NIR only provides a perspective of the upper microns of the lunar surface. Recent studies of Lunar Prospector (LP) and Lunar Reconnaissance Orbiter data sets are now demonstrating additional measures of maturity with sensitivities to greater depths (~2 m) in the regolith. These include thermal infrared, S-band radar, and epithermal neutron data sets [2-4]. Interestingly, each of these parameters is directly comparable to OMAT despite each measuring slightly different aspects of the regolith. This is demonstrated by Lawrence et al. [3] where LP-measured non-polar highlands epithermal neutrons trend well with albedo, OMAT, and the Christensen Feature (CF). Lawrence et al. [3] used these data to derive and map highlands hydrogen (H) which is dominantly a function of H-implantation. With this in mind, areas of enriched-H are mature, while areas of depleted H are immature. Surface roughness as measured by S-band radar [4], also provides a measure of maturity. In this case, the circular polarization ratio (CPR) is high when rough and immature, and low when smooth and mature. Knowing this, one can recognize areas in the non-polar lunar highlands that show contradictory measures of maturity. For example, while many lunar localities show consistently immature albedo, OMAT, CF, CPR, and H concentrations (e.g., Tycho), others do not. Orientale basin is the most prominent example, shown to have immature CPR, CF, and H concentrations despite a relatively mature albedo and OMAT values as well as an old age determination (~3.8 Ga). To better understand how the lunar regolith is weathering in the upper 1-2 m of regolith with time we examine the Orientale basin relative to other highlands regions. [1] Lucey et al. (2000) JGR, 105, 20377; [2] Lucey et al. (2013) LPSC, 44, 2890; [3] Lawrence et al. (2015) Icarus, j.icarus.2015.01.005; [4] Neish et al. (2013) JGR, 118, 2247.

  16. Future prospects of baryon istability search in p-decay and n n(bar) oscillation experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ball, S.J.; Kamyshkov, Y.A.

    1996-11-01

    These proceedings contain thirty-one papers which review both the theoretical and the experimental status and near future of baryon instability research. Baryon instability is investigated from the vantage point of supersymmetric and unified theories. The interplay between baryogenesis and antimatter is examined. Double beta decay experiments are discussed. The huge Icarus experiment is described with its proton decay capabilities. Neutron-antineutron oscillations investigations are presented, especially efforts with ultra-cold neutrons. Individual papers are indexed separately on the Energy Data Base.

  17. Rheology and Ages of Lava Flows on Arsia and Pavonis Mons, Mars

    NASA Astrophysics Data System (ADS)

    Hiesinger, Harald; Bartel, Nicole; Boas, Theresa; Reiss, Dennis; Pasckert, Jan H.; van der Bogert, Carolyn H.

    2015-04-01

    We performed a new study of young lava flows on Arsia and Pavonis Mons. Compared to our previous study of Arsia and Pavonis flows [1], we not only expanded on the number of flows (13 additional new flows at Arsia; six new flows at Pavonis), but we also derived absolute model ages (AMAs) based on crater size-frequency distribution (CSFD) measurements. On the basis of the current study, we find that the yield strengths of the studied lava flows on Arsia Mons vary between ~2.54 x 102 Pa and ~9.63 x 103 Pa. The effusion rates are on average ~563 m3s-1. The calculated eruption durations range from three days to ~142 days with an average of ~32 days. The viscosities of the lava flows on Arsia Mons are on average ~2.54 x 106 Pa-s and vary between ~1.32 x 104 and ~2.88 x 107 Pa-s. The study also revealed an average yield strength of the Pavonis flows of ~3.56 x 103 Pa, ranging from ~2.5 x 102 to ~8.6 x 103 Pa. The effusion rates range from ~ 60 m3s-1 to ~309 m3s-1, with an average value of ~197 m3s-1. The investigated flows are characterized by an eruption duration in the range of ~3 to ~41 days, averaging about 15 days. The viscosities vary between ~2.8 x 104 Pa-s and ~7.6 x 106 Pa-s, with an average value of ~1.77 x 106 Pa-s. The new CSFD measurements for the Arsia flows yielded AMAs between ~36 and ~857 Ma. One unit shows an underlying older age of ~2.50 Ga and evidence for a resurfacing event at ~857 Ma. These ages are similar to those presented by [2-4] for the caldera of Arsia Mons, i.e., ~100-200 Ma. In addition, [4] argued that their ages represent the latest stages of summit and flank eruptions and that earlier episodes stopped at about 500 Ma, 800 Ma, and 2 Ga ago. Previously, we performed the first study that correlated rheologic properties and AMAs of lava flows on Elysium Mons [5]. We reported that the yield strengths of 32 investigated Elysium flows are on the order of ~3.0 x 103 Pa, ranging from ~3.8 x 102 to ~1.5 x 104 Pa. The effusion rates of the flows range from ~99 to ~4450 m3s-1, averaging at ~747 m3s-1. The lava flows were emplaced in less than a week (very small flows) to up to half a year (~6-183 days). Viscosities were calculated to be on average ~4.1 x 102 Pa-s, with a range of ~1.2 x 105 to ~3.1 x 107 Pa-s. The AMAs of the Elysium flows range from ~632 to ~3460 Ma [5]. Lava flows on both Arsia and Elysium Mons do not show any systematic correlations between the rheologic properties and model ages. In particular, neither yield strength and effusion rate, nor viscosity seems to be correlated with the AMA. Thus, the rheology of the studied flows did not change over several hundreds of million years. Preliminary results for Pavonis flows also do not show systematic changes of the rheology with time. [1] Hiesinger et al. (2008) LPSC 39, 1277. [2] Neukum et al. (2004) Nature 432, 971-979. [3] Robbins et al. (2011) Icarus 211, 1179-1203. [4] Werner (2009) Icarus 201, 44-68. [5] Pasckert et al. (2012) Icarus 219, 443-457.

  18. The Titan Haze Simulation Experiment: Latest Laboratory Results and Dedicated Plasma Chemistry Model

    NASA Astrophysics Data System (ADS)

    Sciamma-O'Brien, Ella; Raymond, Alexander; Mazur, Eric; Salama, Farid

    2017-10-01

    Here, we present the latest results on the gas- and solid phase analyses in the Titan Haze Simulation (THS) experiment, developed at the NASA Ames COSmIC simulation chamber. The THS is a unique experimental platform that allows us to simulate Titan’s complex atmospheric chemistry at Titan-like temperature (200 K) by cooling down N2-CH4-based mixtures in a supersonic expansion before inducing the chemistry by plasma. Because of the accelerated gas flow in the expansion, the residence time of the gas in the active plasma region is less than 3 µs. This results in a truncated chemistry that enables us to control how far in the chain of chemical reactions chemistry processes[1], by adding, in the initial gas mixture, heavier molecules that have been detected as trace elements on Titan.We discuss the results of recent Mid-infrared (MIR) spectroscopy[2] and X-ray Absorption Near Edge Structure spectroscopy studies of THS Titan tholins produced in different gas mixtures (with and without acetylene and benzene). Both studies have shown the presence of nitrogen chemistry, and differences in the level and nature of the nitrogen incorporation depending on the initial gas mixture. A comparison of THS MIR spectra to VIMS data has shown that the THS aerosols produced in simpler mixtures, i.e., that contain more nitrogen and where the N-incorporation is in isocyanide-type molecules instead of nitriles, are more representative of Titan’s aerosols.In addition, a new model has been developed to simulate the plasma chemistry in the THS. Electron impact and chemical kinetics equations for more than 120 species are followed. The calculated mass spectra[3] are in good agreement with the experimental THS mass spectra[1], confirming that the short residence time in the plasma cavity limits the growth of larger species and results in a truncated chemistry, a main feature of the THS.References:[1] Sciamma-O'Brien E. et al., Icarus, 243, 325 (2014)[2] Sciamma-O'Brien E. et al., Icarus, 289, 214 (2017)[3] Raymond, A. et al., submitted

  19. Laboratory and theoretical work in the service of planetary atmospheric research

    NASA Astrophysics Data System (ADS)

    Coustenis, Athena

    2015-08-01

    A large quantity of observations is obtained by instruments onboard space missions exploring our solar system and by large ground-based telescopes observing the planets and also the exoplanets. Spectroscopy plays a major role in this type of investigation. To analyze and exploit these observations, planetary scientists need spectroscopic data covering wide ranges in wavelength but also in temperature, pressure, distance, etc.The outer regions of our solar system in particular, including the giant gaseous planets Jupiter and Saturn and their satellites, have recently been the target of space missions such as Cassini-Huygens and several investigations from the ground. Titan, the largest moon of Saturn, in particular, offers many similarities with our own planet, among which a dense atmosphere whose major component is dinitrogen at about 95%. Combining with methane (at a few percent) and hydrogen, gives rise to a complex organic chemistry with hydrocarbons and nitriles. Oxygen compounds also exist in Titan’s atmosphere. By studying Titan, we learn about our own planet and our Solar system Solar as a whole [1,2,3]. To properly interpret the Cassini-Huygens data and in anticipation of future missions like ESA’s JUICE to the Jupiter system, spectroscopic data are crucially needed. In the field of exoplanets (over 1000 discovered to date), it also becomes urgent to have adequate data of several molecules in order to analyze the observations returned to us every day by major observatories on Earth and in the space [4,5]. I will discuss recent applications from theoretical and experimental studies on the investigation of Titan and exoplanets, with emphasis on methane. I will also present some needs for future analyses.References: [1] Campargue, A., et al. 2012. Icarus 219, 110-128. [2] Coustenis, A., et al. 2013. Astrophys. J. 799, 177, 9p. [3] Hirtzig, et al., 2013. Icarus 226, 470-486 and corrigendum 1182-1182. [4] Tinetti, G., Encrenaz, Th., Coustenis, A., 2013. Astron. Astrophys. Rev. 21, #63. [5] Encrenaz, T., et al., 2014. Experimental Astronomy, DOI: 10.1007/s10686-014-9415-0.

  20. A Statistical Analysis of YORP Coefficients

    NASA Astrophysics Data System (ADS)

    McMahon, Jay W.; Scheeres, D.

    2013-10-01

    The YORP (Yarkovsky-O'Keefe-Radzievskii-Paddack) effect is theorized to be a major factor in the evolution of small asteroids (<10 km) in the near-Earth and main belt populations. YORP torques, which originate from absorbed sunlight and subsequent thermal radiation, causes secular changes in an asteroid's spin rate and spin vector orientation (e.g. Rubincam, Journal of Geophysical Research, 1995). This in turn controls the magnitude and direction of the Yarkovsky effect, which causes a drift in an asteroid's heliocentric semi-major axis (Vokrouhlicky and Farinella, Nature, 2000). YORP is also thought to be responsible for the creation of multiple asteroid systems and asteroid pairs through the process of rotational fission (Pravec et al, Nature, 2010). Despite the fact that the YORP effect has been measured on several asteroids (e.g. Taylor et al, Science, 2007 and Kaasalainen et al, Nature, 2007), it has proven very difficult to predict the effect accurately from a shape model due to the sensitivity of the YORP coefficients to shape changes (Statler, Icarus, 2009). This has been especially troublesome for Itokawa, for which a very detailed shape model is available (Scheeres et al, Icarus 2007; Breiter et al, Astronomy & Astrophysics, 2009). In this study, we compute the YORP coefficients for a number asteroids with detailed shape models available on the PDS-SBN. We then statistically perturb the asteroid shapes at the same resolution, creating a family of YORP coefficients for each shape. Next, we analyze the change in YORP coefficients between a shape model of accuracy obtainable from radar with one including small-scale topography on the surface as was observed on Itokawa. The combination of these families of coefficients will effectively give error bars on our knowledge of the YORP coefficients given a shape model of some accuracy. Finally, we discuss the statistical effect of boulder and craters, and the modification of these results due to recent studies on thermal beaming (Rozitis and Green, Mon. Not. R. Astron. Soc., 2012) and "tangential" YORP (Golubov and Krugly, The Astrophysical Journal Letters, 2012).

  1. Structure of Enceladus' Ice Shell

    NASA Astrophysics Data System (ADS)

    Hemingway, D.

    2016-12-01

    Constraining the internal structure of Enceladus is essential for understanding its evolution, its highly active south polar region, and its prospects for habitability. Of particular interest is the thickness of the icy shell, which has implications for the thermal structure, the effects of tidal stresses, and the conduits feeding the jets and plume. Since Enceladus' low order gravity field was first measured [1], several studies of shape and gravity have suggested the presence of an internal ocean beneath the icy shell [1-3]. These analyses, however, involve several assumptions and approximations and yield distinct shell thickness estimates (ranging from 18-60 km), only some of which are compatible with estimates from the measured physical librations (15-25 km [4,5]). Part of the challenge is that standard approaches to interior modeling (e.g., Radau-Darwin) are not well suited to Enceladus due to its fast rotation and relatively large non-hydrostatic topography [2,6]. Because of Enceladus' small radius, results are also sensitive to the details of the compensation model [7,8]. Here we apply an analytical compensation model that accommodates the spherical geometry in a manner that is distinct from previous studies, and employ a high fidelity numerical approach to modeling the hydrostatic equilibrium figure [6]. We show that the resulting shell thickness estimates are smaller than in previous models—in agreement with the libration observations—suggesting the possibility of an extremely thin ice crust at the south pole. While a range of mean shell thicknesses are permitted within the observational constraints, the amplitude of lateral shell thickness variations is well constrained. In particular, the shell is 10 km thicker at the north pole than at the south pole, potentially helping to explain the nature of the north-south polar asymmetry in endogenic activity. 1. Iess et al., Science. 344, 78-80 (2014). 2. McKinnon, Geophys. Res. Lett.42 (2015). 3. Cadek et al., Geophys. Res. Lett. (2016). 4. Thomas et al., Icarus. 264, 37-47 (2016). 5. Van Hoolst, Baland, Trinh, Icarus. 277, 311-318 (2016). 6. Tricarico, Astrophys. J. 782, 99 (2014). 7. Jeffreys, The Earth (Cambridge University Press, 6thed, 1976). 8. Turcotte, Willemann, Haxby, Norberry, J. Geophys. Res. 86, 3951-3959 (1981).

  2. Gas flow in the near-surface porous boundary layer of the 67P/Churyumov-Gerasimenko using micro-CT images

    NASA Astrophysics Data System (ADS)

    Christou, Chariton; Kokou Dadzie, S.; Thomas, Nicolas; Hartogh, Paul; Jorda, Laurent; Kührt, Ekkehard; Whitby, James; Wright, Ian; Zarnecki, John

    2017-04-01

    While ESA's Rosetta mission has formally been completed, the data analysis and interpretation continues. Here, we address the physics of the gas flow at the surface of the comet. Understanding the sublimation of ice at the surface of the nucleus provides the initial boundary condition for studying the inner coma. The gas flow at the surface of the comet 67P/Churyumov-Gerasimenko can be in the rarefaction regime and a non-Maxwellian velocity distribution may be present. In these cases, continuum methods like Navier-Stokes-Fourier (NSF) set of equations are rarely applicable. Discrete particle methods such as Direct Simulation Monte Carlo (DSMC) method are usually adopted. DSMC is currently the dominant numerical method to study rarefied gas flows. It has been widely used to study cometary outflow over past years .1,2. In the present study, we investigate numerically, gas transport near the surface of the nucleus using DSMC. We focus on the outgassing from the near surface boundary layer into the vacuum (˜20 cm above the nucleus surface). Simulations are performed using the open source code dsmcFoam on an unstructured grid. Until now, artificially generated random porous media formed by packed spheres have been used to represent the comet surface boundary layer structure .3. In the present work, we used instead Micro-computerized-tomography (micro-CT) scanned images to provide geologically realistic 3D representations of the boundary layer porous structure. The images are from earth basins. The resolution is relatively high - in the range of some μm. Simulations from different rock samples with high porosity (and comparable to those expected at 67P) are compared. Gas properties near the surface boundary layer are presented and characterized. We have identified effects of the various porous structure properties on the gas flow fields. Temperature, density and velocity profiles have also been analyzed. .1. J.-F. Crifo, G. Loukianov, A. Rodionov and V. Zakharov, Icarus 176 (1), 192-219 (2005). 2. Y. Liao, C. Su, R. Marschall, J. Wu, M. Rubin, I. Lai, W. Ip, H. Keller, J. Knollenberg and E. Kührt, Earth, Moon, and Planets 117 (1), 41-64 (2016). 3. Y. V. Skorov, R. Van Lieshout, J. Blum and H. U. Keller, Icarus 212 (2), 867-876 (2011).

  3. Search for nitrates on Mars by the Sample Analysis at Mars (SAM) Instrument

    NASA Astrophysics Data System (ADS)

    Navarro-Gonzalez, Rafael

    One of the main goals of the Mars Science Laboratory is to determine whether the planet ever had environmental conditions capable of supporting microbial life. Nitrogen is a fundamental element for life, and is present in structural (e.g., proteins), catalytic (e.g., enzymes and ribozymes), energy transfer (e.g., ATP) and information storage (RNA and DNA) bio-molecules. Planetary models suggest that nitrogen was abundant in the early Martian atmosphere as dinitrogen (N _{2}). However, a fraction of N _{2} has been lost to space by sputtering and photochemical processes [1, 2], impact erosion [3], and chemical oxidation to nitrates [4, 5]. Nitrates produced early in Mars’ history by photochemistry may later decompose back into N _{2} by the current impact flux [6]. It is estimated that the Martian surface could contain soil nitrates at levels of 0.3 wt.% N, if mixed homogenously [6], or a layer of pure NaNO _{3} of about 3 m thickness [5] distributed globally. Nitrates are a fundamental source for nitrogen for terrestrial microorganisms. Therefore, the detection of soil nitrates is important to assess habitability in the Martian environment. The only previous attempt to search for soil nitrates was by TEGA and the MECA WCL on the Phoenix mission but no evolved N-containing species were detected [7]. Nitrates have been tentatively identified in two Martian meteorites: Nakhla [8] and EETA79001 [9]. SAM is capable of detecting nitrates by their thermal decomposition into nitric oxide, NO. SAM analyzed samples from Rocknest soil and two drill holes located at John Klein (JK) and Cumberland (CB) mudstones in the Sheepbed member of the Yellowknife Bay formation in Gale Crater. There appear to be several peaks associated with the release of m/z 30 in the temperature range from 150(°) °C to 600(°) °C. M/z 30 can be attributed to nitric oxide; however, other possible chemical interferences may be present, such as ethane (C _{2}H _{6}), formaldehyde (HCHO), diazene (N _{2}H _{2}), aluminum trihydride (AlH _{3}), and silylene (SiH _{2}), and they are assessed. The origin of nitric oxide is discussed and its thermal evolution is compared with analog studies of mixtures of nitrates and perchlorates [10]. [1] Luhmann, J.G., Johnson E. And Zhang, M.H.G.: 1992, Evolutionary impact of sputtering of the Martian atmosphere by O (+) pickup ions. Geophys. Res. Lett. 19, 2151-2154. [2] Jakosky, B.M. Pepin, R.O., Johnsom, R.E. and Fox, J.L: 1994, Mars atmospheric loss and isotopic fractionation by solar-wind-induced sputtering and photochemical escape. Icarus 111, 271-288. [3] Melosh, H.J. and Vickery, A.M.: 1989, Impact erosion of the primordial atmosphere of Mars. Nature 338, 487-489. [4] Mancinelli, R.L. and McKay, C.P. :1988, The evolution of nitrogen cycling. Origins Life 18, 311-325. [5] Manning, C.V., McKay, C.P., and Zahnle, K.J.: 2008, The nitrogen cycle on Mars: Impact decomposition of near-surface nitrates as a source for a nitrogen steady state. Icarus 197, 60-64. [6] Smith, M.L., Claire, M.W., Catling, D.C., and Zahnle, K.J.: 2014, The formation of sulfate, nitrate and perchlorate salts in the martian atmosphere. Icarus 231, 51-64. [7] Hecht, M. H., Kounaves, S.P., Quinn, R.C., West, S.J., Young, S.M.M., Ming, D.W.,Catling, D.C., Clark, B.C., Boynton, W.V.,Hoffman, J., DeFlores, L.P., Gospodinova, K., Kapit, J., and Smith,P.H.: 2009, Detection of Perchlorate and the Soluble Chemistry of Martian Soil at the Phoenix Lander Site. Science, 325, 64-67. [8] Grady, M.M., Wright, I. P., and Pillinger C. T.: 1995, Search for nitrates in Martian meteorite. J. Geophys. Res. 100, 5449. [9] Kounaves, S.P., Carrier, B.L., O’Neil, G.D., Stroble, S.T., Claire, M.W.: 2013, Evidence of martian perchlorate, chlorate, and nitrate in Mars meteorite EETA79001: implications for oxidants and organics, Icarus 229, 206. [10] Support from the following grants is acknowledged: IN106013 and CONACYT 98466.

  4. Discovery of a Satellite to Asteroid Family Member (702) Alauda

    NASA Astrophysics Data System (ADS)

    Margot, Jean-Luc; Rojo, P.

    2007-10-01

    Rojo and Margot [1] reported the discovery of a satellite to (702) Alauda from adaptive-optics imaging with the European Southern Observatory (ESO) 8-m Very Large Telescope (VLT) on Cerro Paranal, Chile. (702) Alauda (a = 3.2 AU, e = 0.02, i = 21 deg) has been identified as the largest member of a dynamical family [2,3], suggesting a possible origin of the satellite in the family formation event. The diameter of (702) Alauda is given in the IRAS Minor Planet Survey (IMPS) as 194.73 +/- 3.2 km [4]. If the primary and secondary have similar albedoes, the diameter of the satellite is about 5.5 km. This is based on the measured flux ratio between primary and secondary of 1250, possibly the largest ever observed for solar system binaries with adaptive optics. This is the first satellite discovered to a large minor planet of type B in the SMASSII taxonomy, which is defined by a linear featureless spectrum with bluish to neutral slope [5]. B-types are carbonaceous asteroids that are not well characterized. The mass and density estimates of B-type (2) Pallas vary by 50% [6,7]. Our ongoing determination of the satellite orbit will provide mass and density estimates for (702) Alauda. [1] Rojo and Margot, CBET 1016, 2007. [2] Foglia and Masi 2004, Minor Planet Bull. 41, 100. [3] Gil-Hutton 2006, Icarus 183, 93. [4] Tedesco 2002, AJ 123, 1056. [5] Bus and Binzel 2002, Icarus 158, 146. [6] Hilton 2002, Asteroids III, 103. [7] Britt et al. 2002, Asteroids III, 485.

  5. Jovian Planetary Waves

    NASA Astrophysics Data System (ADS)

    Harrington, J.; Deming, D.

    1997-07-01

    We have found over two dozen discrete, linearly-propagating, periodic features in 5-{\\micron} images of Jovian cloud opacities (J. Harrington et al. 1996, Icarus 124, 32--44). Numerous spatially-sinusoidal temperature oscillations also appear in several passbands between 7 and 19 {\\microns} (D. Deming et al. 1997, Icarus 126, 301--312). Both types of Jovian planetary-scale features are zonally-oriented. They have always been detected when sought (1989, '91, '92, '93), and some individual features persist 100 Earth days or longer. These features are superficially consistent with Rossby waves, but they do not follow a simplistic dispersion relation based on cloud-top wind speeds. Planetary wavenumbers are never larger than 15, consistent with predictions based on the Rhines scale for Jupiter. There are many outstanding phenomenological questions: Where and how are the waves driven? How are waves at different atmospheric levels related? What are their true dispersion properties? How long do they last? We are continuing observations and will conduct a search of the Hubble Space Telescope archive for the \\sim 1{°ee} meridional cloud-belt deviations expected for Rossby waves. We are in the process of correlating wave detections of various types, times, and wavelengths with each other. Our goal is to constrain atmospheric stratification and vertical energy transport. Because Rossby waves propagate vertically, these features may probe conditions at the interface between the meteorological atmosphere and the planetary interior. Work supported by NASA Planetary Astronomy RTOP 196-41-54. Work performed while J. H. held a National Research Council - NASA Goddard Space Flight Center Research Associateship.

  6. Velocity and Vorticity Measurements of Jupiter's Great Red Spot Using Automated Cloud Feature Trackers

    NASA Astrophysics Data System (ADS)

    Choi, D. S.; Gierasch, P.; Banfield, D.; Showman, A.

    2005-12-01

    During the 28th orbit of Galileo in May 2000, the spacecraft imaged Jupiter's Great Red Spot (GRS) with a remarkable level of detail. Three observations of the vortex were made over a span of about two hours. We have produced mosaics of the GRS at each observation, and have measured the winds of the GRS using an automated algorithm that does not require manual cloud tracking. The advantage of using this method is the production of a high-density, regular grid of wind velocity vectors as compared to a limited number of scattered wind vectors that result from manual cloud tracking [1]. Using the wind velocity measurements, we are able to compute particle trajectories around the GRS as well as relative and absolute vorticities. We have also mapped turbulent eddies inside the chaotic central region of the GRS, similar to those tracked by Sada et al [2]. We calculate how absolute vorticity changes as a function of latitude along a trajectory around the GRS and compare these measurements to similar ones performed by Dowling and Ingersoll using Voyager imaging data [3]. Future projects with the automated cloud feature trackers will analyze Voyager images of the GRS as well as other high-resolution images of Jovian vortices. We also hope to apply this method to other relevant datasets on planetary atmospheres. References: [1] Legarreta, J. and Sanchez-Lavega, A. (2005) Icarus 174: 178--191. [2] Sada, P. et al. (1996) Icarus 119: 311--335. [3] Dowling, T. and Ingersoll, A. (1988) J. Atm. Sci. 45: 1380--1396.

  7. The Linear Mixing Approximation for Planetary Ices

    NASA Astrophysics Data System (ADS)

    Bethkenhagen, M.; Meyer, E. R.; Hamel, S.; Nettelmann, N.; French, M.; Scheibe, L.; Ticknor, C.; Collins, L. A.; Kress, J. D.; Fortney, J. J.; Redmer, R.

    2017-12-01

    We investigate the validity of the widely used linear mixing approximation for the equations of state (EOS) of planetary ices, which are thought to dominate the interior of the ice giant planets Uranus and Neptune. For that purpose we perform density functional theory molecular dynamics simulations using the VASP code.[1] In particular, we compute 1:1 binary mixtures of water, ammonia, and methane, as well as their 2:1:4 ternary mixture at pressure-temperature conditions typical for the interior of Uranus and Neptune.[2,3] In addition, a new ab initio EOS for methane is presented. The linear mixing approximation is verified for the conditions present inside Uranus ranging up to 10 Mbar based on the comprehensive EOS data set. We also calculate the diffusion coefficients for the ternary mixture along different Uranus interior profiles and compare them to the values of the pure compounds. We find that deviations of the linear mixing approximation from the real mixture are generally small; for the EOS they fall within about 4% uncertainty while the diffusion coefficients deviate up to 20% . The EOS of planetary ices are applied to adiabatic models of Uranus. It turns out that a deep interior of almost pure ices is consistent with the gravity field data, in which case the planet becomes rather cold (T core ˜ 4000 K). [1] G. Kresse and J. Hafner, Physical Review B 47, 558 (1993). [2] R. Redmer, T.R. Mattsson, N. Nettelmann and M. French, Icarus 211, 798 (2011). [3] N. Nettelmann, K. Wang, J. J. Fortney, S. Hamel, S. Yellamilli, M. Bethkenhagen and R. Redmer, Icarus 275, 107 (2016).

  8. Laboratory Measurements of Sulfuric Acid Vapor Opacity at Millimeter Wavelengths Under Venus Conditions

    NASA Astrophysics Data System (ADS)

    Akins, Alexander Brooks; Steffes, Paul G.

    2017-10-01

    Radio astronomical observations of the lower-cloud and sub-cloud regions of the Venusian atmosphere at millimeter wavelengths can provide insight into the nature of the sub-cloud sulfur chemistry. Previous observations (de Pater et al., Icarus 90, 1991 and Sagawa, J. Natl. Inst. of Inf. And Comm. Tech. 55, 2008) indicate substantial variations in Venus disc brightness at millimeter wavelengths, likely due to variations in SO2 and H2SO4 vapor abundances. Although previous measurements of H2SO4 vapor opacity provide accurate information at centimeter wavelengths (Kolodner and Steffes, Icarus 132, 1998), extrapolation to millimeter wavelength observations is speculative. A Fabry-Perot open resonator with a quality factor in excess of 15,000 has been designed to measure the opacity of H2SO4 vapor in a CO2 atmosphere under Venus temperature and pressure conditions below the clouds. The resonator system has been designed using corrosion-resistant materials to ensure data integrity. Opacity measurements made with this system target the 2-4 millimeter wavelength range, applicable to recent Atacama Large Millimeter Array observations of Venus. Initial laboratory results for H2SO4 vapor opacity will be presented, and the implications of these results for pressure broadened opacity formalisms will be discussed. In addition to radio astronomical observations, these results of these measurements can aid in the interpretation of radiometer and radio occultation measurements from future Venus missions, such as the Venera D orbiter. This work is supported by the NASA Solar System Workings Program under grant NNX17AB19G.

  9. More Results from a Long-Term Radar Survey of M-Class Asteroids.

    NASA Astrophysics Data System (ADS)

    Shepard, Michael K.; Clark, B. E.; Benner, L. A.; Giorgini, J. D.; Magri, C.; Nolan, M. C.; Ostro, S. J.

    2006-09-01

    We present more results from our long-term radar survey of main-belt M-class asteroids. Because metals are denser and more radar reflective than silicates, an asteroid's radar cross-section can provide unambiguous information on its composition and near surface porosity [1]. The composition of this enigmatic class has important implications for the structure and evolution of the asteroid belt. As of July 2006 the following twelve main-belt M-class asteroids had been observed with radar: 16 Psyche [2,3,5], 21 Lutetia [3,5], 22 Kalliope [3], 83 Beatrix [4], 97 Klotho [3], 129 Antigone [5], 135 Hertha [5], 224 Oceana [5], 325 Heidelberga [5], and 785 Zwetana [5], 216 Kleopatra [4], and 796 Sarita [3]. Only one-third of this sample -- 16 Psyche, 129 Antigone, 216 Kleopatra and 785 Zwetana -- have radar albedos unambiguously consistent with metallic compositions [1,5]. Our goal is to triple the number of radar observed M-class targets within the next five years. We will present results focusing on the unusual radar variability of 129 Antigone. Acknowledgements. This work was partially supported by a grant from Bloomsburg University to MKS and NSF grant AST-0605903. The Arecibo Observatory is part of the National Astronomy and Ionosphere Center, which is operated by Cornell University under a cooperative agreement with the National Science Foundation. [1] Ostro et al. Science 252, 1399-1404, 1991. [2] Ostro et al. Science 229,442-446, 1985. [3] Magri et al. Icarus 140, 379-407, 1999. [4] Magri et al. submitted to Icarus. [5] Shepard et al in prep.

  10. Predicting body temperature and activity of adult Polyommatus icarus using neural network models under current and projected climate scenarios.

    PubMed

    Howe, P D; Bryant, S R; Shreeve, T G

    2007-10-01

    We use field observations in two geographic regions within the British Isles and regression and neural network models to examine the relationship between microhabitat use, thoracic temperatures and activity in a widespread lycaenid butterfly, Polyommatus icarus. We also make predictions for future activity under climate change scenarios. Individuals from a univoltine northern population initiated flight with significantly lower thoracic temperatures than individuals from a bivoltine southern population. Activity is dependent on body temperature and neural network models of body temperature are better at predicting body temperature than generalized linear models. Neural network models of activity with a sole input of predicted body temperature (using weather and microclimate variables) are good predictors of observed activity and were better predictors than generalized linear models. By modelling activity under climate change scenarios for 2080 we predict differences in activity in relation to both regional differences of climate change and differing body temperature requirements for activity in different populations. Under average conditions for low-emission scenarios there will be little change in the activity of individuals from central-southern Britain and a reduction in northwest Scotland from 2003 activity levels. Under high-emission scenarios, flight-dependent activity in northwest Scotland will increase the greatest, despite smaller predicted increases in temperature and decreases in cloud cover. We suggest that neural network models are an effective way of predicting future activity in changing climates for microhabitat-specialist butterflies and that regional differences in the thermoregulatory response of populations will have profound effects on how they respond to climate change.

  11. TNO/Centaurs grouping tested with asteroid data sets

    NASA Astrophysics Data System (ADS)

    Fulchignoni, M.; Birlan, M.; Barucci, M. A.

    2001-11-01

    Recently, we have discussed the possible subdivision in few groups of a sample of 22 TNO and Centaurs for which the BVRIJ photometry were available (Barucci et al., 2001, A&A, 371,1150). We obtained this results using the multivariate statistics adopted to define the current asteroid taxonomy, namely the Principal Components Analysis and the G-mode method (Tholen & Barucci, 1989, in ASTEROIDS II). How these methods work with a very small statistical sample as the TNO/Centaurs one? Theoretically, the number of degrees of freedom of the sample is correct. In fact it is 88 in our case and have to be larger then 50 to cope with the requirements of the G-mode. Does the random sampling of the small number of members of a large population contain enough information to reveal some structure in the population? We extracted several samples of 22 asteroids out of a data-base of 86 objects of known taxonomic type for which BVRIJ photometry is available from ECAS (Zellner et al. 1985, ICARUS 61, 355), SMASS II (S.W. Bus, 1999, PhD Thesis, MIT), and the Bell et al. Atlas of the asteroid infrared spectra. The objects constituting the first sample were selected in order to give a good representation of the major asteroid taxonomic classes (at least three samples each class): C,S,D,A, and G. Both methods were able to distinguish all these groups confirming the validity of the adopted methods. The S class is hard to individuate as a consequence of the choice of I and J variables, which imply a lack of information on the absorption band at 1 micron. The other samples were obtained by random choice of the objects. Not all the major groups were well represented (less than three samples per groups), but the general trend of the asteroid taxonomy has been always obtained. We conclude that the quoted grouping of TNO/Centaurs is representative of some physico-chemical structure of the outer solar system small body population.

  12. Observations of CO on Mars with OMEGA/Mars Express: A Study of Local Variations over the Volcanoes

    NASA Astrophysics Data System (ADS)

    Encrenaz, T.; Drossart, P.; Fouchet, T.; Melchiorri, R.; Lellouch, E.; Combes, M.; Bibring, J.-P.; Moroz, V.; Ignatiev, N.; Forget, F.; OMEGA Team

    Spectra of Mars recorded with the OMEGA/Mars Express experiment have been used to retrieve information on the CO mixing ratio over the planet. By using simultaneously the CO (1-0) band at 4.7 microns and a weak CO2 band at 4.85 microns, we have inferred the CO mixing ratio in all regions where the thermal emission is dominent, i.e. where the surface temperature is maximum. These observations, in particular, indicate a significant depletion of the CO/CO2 ratio over Olympus Mons. This preliminary result seems to confirm the analysis performed by the ISM imaging spectrometer aboard the Phobos mission, which suggested a possible depletion of CO over the volcanoes (Rosenqvist et al., Icarus 98, 254, 1992). Implications of this result will be discussed.

  13. Surface optical properties of geological materials: a new look at the regolith of the Moon, Mercury and asteroids

    NASA Astrophysics Data System (ADS)

    Souchon, Audrey; Pinet, Patrick; Chevrel, Serge; Daydou, Yves; Josset, Jean-Luc; Beauvivre, Stephane

    2010-05-01

    With the exception of the lunar samples brought back to Earth, the only way to study the surface of a planet so far remains the use of remote-sensing techniques. Among them photometry can be used to determine the physical properties of surface particles (e.g., grain size, roughness…). Laboratory measurements with the spectro-imaging instrument at the DTP laboratory (Toulouse, France) have been made to determine the photometric parameters of natural samples (e.g., basalts, pyroclastics and olivine grains). Each one has been sieved either into natural grain sizes or ground to get particles from 45 microns to 2 mm. Multiangular data spanning the phase range between 20 and 130° have been acquired and Hapke's photometric parameters b, c, theta and w have been determined by means of a dedicated genetic algorithm [Cord, Icarus, 2003]. The modelled phase functions match satisfactorily the observations, and the parameters show very different behaviours depending on the sample and grain size. For non glassy materials, such as fresh basalt or pyroclastics, surface roughness parameter theta ranges from 12° to 25° with an increase seemingly correlated with the grain size, while for glassy materials, such as olivine or Hawaiian basalt, this parameter is much lower (about 4 to 10°) and shows no increase with grain size. Phase parameters b and c estimates displayed on a double Henyey-Greenstein graph (c vs. b) [see McGuire & Hapke, Icarus, 1995] fall on the expected trend, with glassy materials becoming more and more forward-scattering when grain size increases. Non glassy samples display more variability when particle size increases, and generally show a more backward-scattering behaviour. These results show that a characterization of a surface state in terms of physical properties is possible from multiangular datasets using Hapke's photometric model. The combination of photometric results with spectroscopic analyses could thus lead to more thorough understanding of remotely observed surfaces, as these techniques give access to complementary information. To date, few multiangular orbital datasets are available, with the additional difficulties that phase angles larger than 100° and less than 20° are more difficult to acquire than in laboratory experiments. In addition, high resolution topographic information is requested for this type of investigation. A study of multiangular imaging observations of the lunar crater Lavoisier recently made by the AMIE camera onboard the European spacecraft SMART-1 has been undertaken, with phase angles ranging from 26° to 83°. Despite this limited phase coverage, a first-order photometric survey has been carried out. Dark patches believed to be pyroclastic deposits [Gaddis, Icarus, 2003] show similar photometric behaviour (backward scattering, high surface roughness); another dark region within Lavoisier F crater appears to display an even higher surface roughness, associated with a less pronounced backward scattering. The fact that both the modelled phase curves match well the observation and the retrieved parameters are physically plausible, suggests that Hapke's model not only can be applied to laboratory data, but also to orbital imaging datasets. As more complete sets will be produced from ongoing or soon-to-come observations (e.g., Kaguya/Selene, Chandra'yaan, LRO for the Moon, Messenger, Bepi-Colombo for Mercury, Dawn for Vesta and Ceres, …), a more precise characterization of planetary surfaces should be achieved.

  14. Toward an understanding of phyllosilicate mineralogy in the outer main asteroid belt

    NASA Astrophysics Data System (ADS)

    Takir, Driss; Emery, Joshua P.; McSween, Harry Y.

    2015-09-01

    Proposed mineralogical linkages between CM/CI carbonaceous chondrites and outer Main Belt asteroids remain uncertain due to a dearth of diagnostic absorptions in visible and near-infrared (∼0.4-2.5 μm) spectra of the two sets of objects. Absorptions near 3 μm in both sets hold promise for illuminating the potential linkages. Spectral comparisons of meteorites and asteroids have been challenging because meteorite spectra have usually been acquired in ambient terrestrial environments, and hence were contaminated by atmospheric water. In this study, we compare near-infrared spectra of chondrites measured in the laboratory under asteroid-like conditions (Takir, D. et al. [2013]. Meteorit. Planet. Sci. 48, 1618-1637) and spectra of asteroids measured with the long-wavelength cross-dispersed (LXD: 1.9-4.2-μm) mode of the SpeX spectrograph/imager at the NASA Infrared Telescope Facility (IRTF) (Takir, D., Emery, J.P. [2012]. Icarus 219, 641-654). Using the 3-μm band shape, we find that spectral Group 2 CM and CI (Ivuna) chondrites are possible meteorite analogs for asteroids with the sharp 3-μm features, which are predominately located in the 2.5 < a < 3.3 AU region. Spectral Group 2 CM chondrites contain phyllosilicate phases intermediate between endmembers Fe-serpentine and Mg-serpentine, with a petrological subtype ranging from 2.2 to 2.1 (Takir, D. et al. [2013]. Meteorit. Planet. Sci. 48, 1618-1637). No meteorite match was found for asteroids showing a rounded 3-μm feature, which tend to be located farther from the Sun (3.0 < a < 4.0 AU), or for asteroids with distinctive spectra like 1 Ceres or 52 Europa. The study of the 3-μm band in meteorites and asteroids has implications for the understanding of phyllosilicate mineralogy and its distribution in the outer Main Belt region.

  15. An in-depth study of Marcia Crater, Vesta

    NASA Astrophysics Data System (ADS)

    Hiesinger, Harald; Ruesch, Ottaviano; Williams, David A.; Nathues, Andreas; Prettyman, Thomas H.; Tosi, Frederico; De Sanctis, M. Christina; Scully, Jennifer E. C.; Schenk, Paul M.; Aileen Yingst, R.; Denevi, Bret W.; Jaumann, Ralf; Raymond, Carol A.; Russell, Chris T.

    2014-05-01

    After visiting the second most massive asteroid Vesta from July 2011 to September 2012, the Dawn spacecraft is now on its way to asteroid Ceres. Dawn observed Vesta with three instruments: the German Framing Camera (FC), the Italian Visible and InfraRed mapping spectrometer (VIR), and the American Gamma Ray and Neutron Detector (GRaND) [1]. Marcia crater (190°E, 10°N; 68 x 58 km) is the largest of three adjacent impact structures: Marcia (youngest), Calpurnia, and Minucia (oldest). It is the largest well-preserved post-Rheasilvia impact crater, shows a complex geology [2], is young [2], exhibits evidence for gully-like mass wasting [3], contains the largest location of pitted terrain [4], has smooth impact melt ponds [5], shows enhanced spectral pyroxene signatures on its inner walls [2], and has low abundances of OH and H in comparison to the surrounding low-albedo terrain [6, 7]. Geophysically, the broad region of Marcia and Calpurnia craters is characterized by a higher Bouguer gravity, indicating denser material [9]. Williams et al. [2] have produced a detailed geologic map of Marcia crater and the surrounding terrain. They identified several units within Marcia crater, including bright crater material, pitted terrain, and smooth material. Units outside Marcia, include undivided crater ejecta material, bright lobate material, dark lobate material, and dark crater ray material [2]. Because of its extensive ejecta and fresh appearance, the Marcia impact defines a major stratigraphic event, postdating the Rheasilvia impact [2]. However, the exact age of Marcia crater is still under debate. Compositionally, Marcia crater is characterized by higher iron abundances, which were interpreted as more basaltic-eucrite-rich materials suggesting that this region has not been blanketed by diogenitic materials from large impact events [10, 11]. Using FC data, [13] identified "gray material" associated with the ejecta blanket of Marcia crater. This material is characterized by a 0.75-mm reflectance of ~15%, a shallow visible slope, and a weak R(0.75 µm)/R(0.92 µm) ratio [12], which is still high compared to immediately adjacent terrains. The most prominent thermal feature in Marcia is the pitted terrain on its floor [8]. Temperatures of the pitted floor of Marcia are significantly lower than in the surrounding terrains, when observed under similar solar illumination. Denevi et al. [4] argued that the morphology and geologic setting are consistent with rapid degassing of volatile-bearing materials following an impact, which would lead to an increased local density and/or a higher thermal conductivity [8]. References: [1] Russell et al. (2007), Earth Moon Planets 101; [2] Williams et al. (2014), submitted to Icarus; [3] Scully et al. (2013), LPSC 45; [4] Denevi et al. (2012), Science 338; [5] Williams, D.A., et al. (2013) PSS, in press, j.pss.2013.06.017 [6] De Sanctis et al. (2012b) Astrophys. J. Lett. 758; [7] Prettyman et al. (2012), Science 338; [8] Tosi et al. (2014), submitted to Icarus; [9] Konopliv et al. (2013) Icarus, in press; [10] Yamashita et al. (2013), Met. Planet. Sci. 48; [11] Prettyman et al. (2013), Met. Planet. Sci. 48; [12] Reddy et al. (2012), Science 336

  16. Water Ice on Mercury

    NASA Image and Video Library

    2015-04-16

    This orthographic projection view from NASA MESSENGER spacecraft provides a look at Mercury north polar region. The yellow regions in many of the craters mark locations that show evidence for water ice, as detected by Earth-based radar observations from Arecibo Observatory in Puerto Rico. MESSENGER has collected compelling new evidence that the deposits are indeed water ice, including imaging within the permanently shaded interiors of some of the craters, such as Prokofiev and Fuller. Instrument: Mercury Dual Imaging System (MDIS) Arecibo Radar Image: In yellow (Harmon et al., 2011, Icarus 211, 37-50) http://photojournal.jpl.nasa.gov/catalog/PIA19411

  17. Consequences of a new experimental determination of the quadrupole moment of the sun for gravitation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moffat, J.W.

    1983-03-07

    A preliminary experimental determination by Hill, Bos and Goode of the interior rotation of the sun leads to a nonzero value for the quadrupole-moment coefficient J/sub 2/. This produces a deviation of 1.6% from Einstein's prediction of the precession of the perihelion of Mercury. A nonsymmetric gravitational theory can fit the measured precession with this J/sub 2/ and all other solar-system relativity experiments for one value of a post-Newtonian parameter in the theory. A prediction is made for the perihelion precession of Icarus.

  18. Integrated Cognitive-neuroscience Architectures for Understanding Sensemaking (ICArUS): Phase 2 Test and Evaluation Development Guide

    DTIC Science & Technology

    2014-11-01

    location, based on the evidence provided in Datum ( OSINT , IMINT, and the BLUEBOOK). The targetSum and normalizationConstraint attributes indicate that the...34LessThanOrEqualTo" id="Pp" name="P(Attack | IMINT, OSINT )" type="AttackProbabilityReport_Pp"> <Datum locationId=ŕ-1" datumType=" OSINT ...AttackProbabilityProbe_Ppc targetSum=蔴.0" normalizationConstraint="LessThanOrEqualTo" id="Ppc" name="P(Attack | HUMINT, IMINT, OSINT )" type

  19. Enceladus' Internal Structure Inferred from Analysis of Cassini-derived Gravity and Topography

    NASA Astrophysics Data System (ADS)

    Hemingway, D.; Nimmo, F.; Iess, L.

    2013-12-01

    The interior of the small Saturnian satellite, Enceladus, is of great interest as it bears on the body's unusually extensive and on-going geological activity [1,2]. The moon's shape, estimated from limb profiles [3,4], differs significantly from the expected hydrostatic shape and is perhaps related to lateral variations in ice shell thickness [5]. Recent Cassini radio tracking analysis [Iess et al., in preparation] has yielded preliminary estimates of the degree-2 gravity field and J3. Like the topography, the gravity field is not precisely hydrostatic, but both can be separated into their hydrostatic and non-hydrostatic components by assuming a particular moment of inertia. Here, we employ an admittance analysis [6,7] (ratio of gravity to topography) in an attempt to constrain Enceladus' moment of inertia. We estimate the non-hydrostatic admittance separately for both J2 and C22, over a range of possible moments of inertia. Assuming the true admittance is isotropic, the two estimates should converge for the correct moment of inertia. We find the best agreement between the two estimates with normalized moments of inertia (C/MR2) in the range 0.332-0.336, with a 2-sigma lower bound of 0.309 and a 2-sigma upper bound of 0.341, suggesting a differentiated Enceladus with a core density between ~2300 and ~3500 kg/m3 [1]. The admittance estimated from J3 is broadly consistent with this result in that the computed degree-2 and degree-3 admittances are related by approximately the expected ratio of 5/7. These admittance estimates are ~1/3 of what is expected for uncompensated topography, suggesting that the topography is significantly compensated. Assuming a fully isostatic model in which compensation occurs where the ice shell encounters a subsurface liquid ocean [8], and neglecting the role of the silicate interior [9], best estimates for the ice shell thickness range from 25-75 km. If surface loading dominates, our results are incompatible with an average elastic thickness in excess of ~100 m. [1] Schubert, G., Anderson, J. D., Travis, B. J. & Palguta, J., Icarus 188, 345-355 (2007). [2] Spencer, J. R. & Nimmo, F., Annu. Rev. Earth Planet. Sci. 41, 693-717 (2013). [3] Porco, C. C. et al., Science 311, 1393-1401 (2006). [4] Nimmo, F., Bills, B. G. & Thomas, P. C., J. Geophys. Res. 116, E11001 (2011). [5] Schenk, P. M. & McKinnon, W. B., Geophys. Res. Lett. 36, L16202 (2009). [6] McKenzie, D., Icarus 112, 55-88 (1994). [7] Hemingway, D., Nimmo, F., Zebker, H. & Iess, L., Nature (in press). [8] Collins, G. C. & Goodman, J. C., Icarus 189, 72-82 (2007). [9] McKinnon, W. B., AGU Fall Mtg. 2012, P32A-04 (2012).

  20. Using Lunar Impact Basin Relaxation to Test Impact Flux Models

    NASA Astrophysics Data System (ADS)

    Nimmo, F.; Conrad, J. W.; Neumann, G. A.; Kamata, S.; Fassett, C.

    2017-12-01

    Gravity data obtained by the GRAIL mission [1] has constrained the number and distribution of lunar impact basins [2]. We analyzed crater densities for newly-proposed basins to assign relative ages. The extent to which a basin is relaxed is calculated using GRAIL-derived crustal thickness models [3] by comparing the mantle uplift under basins to the surrounding region. With our catalog we can investigate the distribution of basin properties through relative time. We identify a relaxation state transition (RT) around the pre-Nectarian 4 relative age group for basins with diameters > 450 km, similar to previous results using a pre-GRAIL basin catalog [4]. This RT likely signals a change in the global thermal state of the crust, representing the time at which the lunar moho temperature fell below 1400 K [4]. This transition happens 50-100 million years (Myr) after the lunar magma ocean (LMO) solidifies [4]. Based on models and inferences of LMO solidification [5, 6] the RT is expected to occur at 4.25-4.50 Ga, depending on the rate of cooling once a crustal lid has formed [5] and the amount of tidal heating in the early crust [6]. Monotonically declining impact flux models, such as [7] and [8] predict a younger RT; 4.07-4.08 and 4.24-4.27 Ga respectively. A scaled-down version of [8] can fit the RT but fails to match the observed number of younger, unrelaxed basins. Models that invoke a later transient increase in impact flux can reproduce the inferred RT time; for instance, the model of [9] gives a RT age of 4.43-4.46 Ga. This model matches the number of younger basins and implies that basin preservation started at 4.49 Ga, likely before the LMO completely solidified. [1] Zuber M.T. et al. (2013) Science, 339, 668-671. [2] Neumann G.A. et al. (2015) Science Advances, 1, e1500852. [3] Wieczorek M.A. (2013) Science, 339, 671-675. [4] Kamata S. et al. (2015) Icarus, 250, 492-504. [5] Elkins-Tanton L.T. et al. (2011) Earth Planet. Sci. Lett., 304, 326-336. [6] Meyer, J. et al. (2010) Icarus, 208, 1-10. [7] Robbins S.J. (2014) Earth Planet. Sci. Lett., 403, 188-198. [8] Neukum G. et al. (2001) Space Sci. Rev., 96, 55-86. [9] Morbidelli A. et al. (2012) Earth Planet. Sci. Lett., 355, 144-151.

  1. Erosive Wear Characterization of Materials for Lunar Construction

    NASA Technical Reports Server (NTRS)

    Mpagazehe, Jeremiah N.; Street, Kenneth W., Jr.; Delgado, Irebert R.; Higgs, C. Fred, III

    2012-01-01

    NASA s Apollo missions revealed that exhaust from the retrorockets of landing spacecraft may act to significantly accelerate lunar dust on the surface of the Moon. A recent study by Immer et al. (C. Immer, P.T. Metzger, P.E. Hintze, A. Nick, and R. Horan, Apollo 12 Lunar Module exhaust plume impingement on Lunar Surveyor III, Icarus, Vol. 211, pp. 1089-1102, 2011) investigated coupons returned to Earth from the Surveyor III lunar probe which were subjected to lunar dust impingement by the Apollo 12 Lunar Module landing. Their study revealed that even with indirect impingement, the spacecraft sustained erosive damage from the fast-moving lunar dust particles. In this work, results are presented from a series of erosive wear experiments performed on 6061 Aluminum using the JSC-1AF lunar dust simulant. Optical profilometry was used to investigate the surface after the erosion process. It was found that even short durations of lunar dust simulant impacting at low velocities produced substantial changes in the surface.

  2. The ultraviolet reflectance of Enceladus: Implications for surface composition

    NASA Astrophysics Data System (ADS)

    Hendrix, Amanda R.; Hansen, Candice J.; Holsclaw, Greg M.

    2010-04-01

    The reflectance of Saturn's moon Enceladus has been measured at far ultraviolet (FUV) wavelengths (115-190 nm) by Cassini's Ultraviolet Imaging Spectrograph (UVIS). At visible and near infrared (VNIR) wavelengths Enceladus' reflectance spectrum is very bright, consistent with a surface composed primarily of H 2O ice. At FUV wavelengths, however, Enceladus is surprisingly dark - darker than would be expected for pure water ice. Previous analyses have focused on the VNIR spectrum, comparing it to pure water ice (Cruikshank, D.P., Owen, T.C., Dalle Ore, C., Geballe, T.R., Roush, T.L., de Bergh, C., Sandford, S.A., Poulet, F., Benedix, G.K., Emery, J.P. [2005] Icarus, 175, 268-283) or pure water ice plus a small amount of NH 3 (Emery, J.P., Burr, D.M., Cruikshank, D.P., Brown, R.H., Dalton, J.B. [2005] Astron. Astrophys., 435, 353-362) or NH 3 hydrate (Verbiscer, A.J., Peterson, D.E., Skrutskie, M.F., Cushing, M., Helfenstein, P., Nelson, M.J., Smith, J.D., Wilson, J.C. [2006] Icarus, 182, 211-223). We compare Enceladus' FUV spectrum to existing laboratory measurements of the reflectance spectra of candidate species, and to spectral models. We find that the low FUV reflectance of Enceladus can be explained by the presence of a small amount of NH 3 and a small amount of a tholin in addition to H 2O ice on the surface. The presence of these three species (H 2O, NH 3, and a tholin) appears to satisfy not only the low FUV reflectance and spectral shape, but also the middle-ultraviolet to visible wavelength brightness and spectral shape. We expect that ammonia in the Enceladus plume is transported across the surface to provide a global coating.

  3. Comparing Results of SPH/N-body Impact Simulations Using Both Solid and Rubble-pile Target Asteroids

    NASA Astrophysics Data System (ADS)

    Durda, Daniel D.; Bottke, W. F.; Enke, B. L.; Nesvorný, D.; Asphaug, E.; Richardson, D. C.

    2006-09-01

    We have been investigating the properties of satellites and the morphology of size-frequency distributions (SFDs) resulting from a suite of 160 SPH/N-body simulations of impacts into 100-km diameter parent asteroids (Durda et al. 2004, Icarus 170, 243-257; Durda et al. 2006, Icarus, in press). These simulations have produced many valuable insights into the outcomes of cratering and disruptive impacts but were limited to monolithic basalt targets. As a natural consequence of collisional evolution, however, many asteroids have undergone a series of battering impacts that likely have left their interiors substantially fractured, if not completely rubblized. In light of this, we have re-mapped the matrix of simulations using rubble-pile target objects. We constructed the rubble-pile targets by filling the interior of the 100-km diameter spherical shell (the target envelope) with randomly sized solid spheres in mutual contact. We then assigned full damage (which reduces tensile and shear stresses to zero) to SPH particles in the contacts between the components; the remaining volume is void space. The internal spherical components have a power-law distribution of sizes simulating fragments of a pre-shattered parent object. First-look analysis of the rubble-pile results indicate some general similarities to the simulations with the monolithic targets (e.g., similar trends in the number of small, gravitationally bound satellite systems as a function of impact conditions) and some significant differences (e.g., size of largest remnants and smaller debris affecting size frequency distributions of resulting families). We will report details of a more thorough analysis and the implications for collisional models of the main asteroid belt. This work is supported by the National Science Foundation, grant number AST0407045.

  4. Angular Scattering Reflectance and Polarization Measurements of Candidate Regolith Materials Measured in the Laboratory

    NASA Astrophysics Data System (ADS)

    Nelson, Robert M.; Boryta, Mark D.; Hapke, Bruce W.; Shkuratov, Yuriy; Vandervoort, Kurt; Vides, Christina L.

    2016-10-01

    The reflectance and polarization of light reflected from a solar system object indicates the chemical and textural state of the regolith. Remote sensing data are compared to laboratory angular scattering measurements and surface properties are determined.We use a Goniometric Photopolarimeter (GPP) to make angular reflectance and polarization measurements of particulate materials that simulate planetary regoliths. The GPP employs the Helmholtz Reciprocity Principle ( 2, 1) - the incident light is linearly polarized - the intensity of the reflected component is measured. The light encounters fewer optical surfaces improving signal to noise. The lab data are physically equivalent to the astronomical data.Our reflectance and polarization phase curves of highly reflective, fine grained, media simulate the regolith of Jupiter's satellite Europa. Our lab data exhibit polarization phase curves that are very similar to reports by experienced astronomers (4). Our previous reflectance phase curve data of the same materials agree with the same astronomical observers (5). We find these materials exhibit an increase in circular polarization ratio with decreasing phase angle (3). This suggests coherent backscattering (CB) of photons in the regolith (3). Shkuratov et al.(3) report that the polarization properties of these particulate media are also consistent with the CB enhancement process (5). Our results replicate the astronomical data indicating Europa's regolith is fine-grained, high porous with void space exceeding 90%.1. Hapke, B. W. (2012). ISBN 978-0-521-88349-82. Minnaert, M. (1941).Asrophys. J., 93, 403-410.3. Nelson, R. M. et al. (1998). Icarus, 131, 223-230.4. Rosenbush, V. et al. (2015). ISBN 978-1-107-04390-9, pp 340-359.5. Shkuratov, Yu. et al. (2002) Icarus 159, 396-416.

  5. Understanding Europa's Surface Texture from Remote Sensing Photopolarimetry

    NASA Astrophysics Data System (ADS)

    Nelson, R. M.; Boryta, M. D.; Hapke, B. W.; Shkuratov, Y.; Vandervoort, K.; Vides, C. L.

    2016-12-01

    We use a Goniometric Photopolarimeter (GPP) to make angular scattering reflectance and polarization measurements of the light reflected from particulate materials that simulate a planetary regolith. We compare these laboratory results to astronomical remote sensing observations in an effort to understand the chemical and textural state of object's surface. The GPP employs the Helmholtz Reciprocity Principle (1,2) -the incident light is linearly polarized - the intensity of the reflected component is measured. The light encounters fewer optical surfaces, improving signal to noise. These lab data are physically equivalent to the astronomical data. Our reflectance and polarization phase curves of highly reflective, fine grained, media simulate the regolith of Jupiter's satellite Europa. Our laboratory data exhibit polarization phase curves that are remarkably similar to reports by experienced astronomers (4). Our previous reflectance phase curve data of the same materials also agree with the reflectance phase curves reported by same astronomical observers (5). We find these materials exhibit an increase in circular polarization ratio with decreasing phase angle (3). This suggests coherent backscattering (CB) of photons in the regolith (3). Shkuratov et al. report that the polarization properties of these particulate media are also consistent with the CB enhancement process (5). Our results replicate the astronomical data and indicate that Europa's regolith is fine-grained, highly porous with void space exceeding 90%. Future spacecraft missions to the Jovian system will enhance science return by incorporating angular scattering measurements of the reflectance and polarizatin of the surface. Minnaert, M. (1941).Asrophys. J., 93, 403-410. Hapke, B. W. (2012). ISBN 978-0-521-88349-8 Nelson, R. M. et al. (1998). Icarus, 131, 223-230. Rosenbush, V. et al. (2015). ISBN 978-1-107-04390-9, pp 340-359. Shkuratov, Yu. et al. (2002) Icarus 159, 396-416.

  6. Subsidence and Collapse Activity in Arabia Terra, Mars: Which Link with Magmatic Activity?

    NASA Astrophysics Data System (ADS)

    Mangold, N.; Howard, A. D.

    2014-12-01

    Collapsed terrains have been observed using Viking images in the northern part of Arabia Terra from Ismenius Lacus to Deuteronilus Mensae. Recent interpretations of some of these depressions as explosive volcanoes (Michalski and Bleacher, 2013) have renewed the interest for this region. However, recent observations also show the discovery in this region of a series of outflow channels named Okavango Valles (Mangold and Howard, 2013). These channels formed in the Hesperian through catastrophic flows having deposited sediments as deltas in ephemeral lakes. The source area of these channels takes place in a region of widespread depressions and local collapse pits. A continuum of landforms exists from broad depressions (~100 km in length and 100s m in depth) and sharper collapse structures (<100 km in diameter). Given the link between these depressions and the presence of outflow channels, we interpret the collapse structures as resulting from a specific lithology with volatile-rich sediments (or megaregolith) buried at depth. Collapse may be due either to the melting of subsurface ice, or subsurface flows triggered by a change in the groundwater table, or the (less likely) dissolution of buried chemical sediments. Magmatic activity is not excluded: a regionally enhanced thermal flux during the Hesperian could have triggered ground ice melting, and could have initiated subsidence subsequently, but explosive volcanism at the surface is not necessary to explain the presence of large collapsed terrains. Michalski, J. and J. Bleacher, 2013. Supervolcanoes within an ancient volcanic province in Arabia Terra, Mars, Nature, doi:10.1038/nature12482 Mangold N., and A. D. Howard, 2013. Outflow channels with deltaic deposits in Ismenius Lacus, Mars, Icarus, doi.org/10.1016/j.icarus.2013.05.040

  7. The effect of near-surface heating on the underlying convection pattern with application to Enceladus

    NASA Astrophysics Data System (ADS)

    Roberts, J. H.; Nimmo, F.

    2007-12-01

    Rapid strike-slip motion is predicted to be a consequence of diurnal tidal stresses in most satellites of the outer solar system with short orbital timescales [1]. Such motion can lead to near-surface heating through friction or viscous dissipation [2]. Here we discuss the effect of near-surface shear heating on convection in the underlying ice shells of icy satellites [3], with a focus on Enceladus and a possible origin of the south polar thermal anomaly [4]. We present models of convection in spherical ice shells including both spatially variable volumetric tidal heating [5] and regional shear heating localized in the top 5 km at either the pole or the equator. We observe that the presence of the near-surface heating strongly controls the convective pattern, increasing the wavelength, and promoting the formation of a hot upwelling beneath the shear zone. Our results suggest that localized near- surface heating may result in a degree-1 convective planform in an ice shell of a thickness that may be appropriate for a differentiated Enceladus (d < 0.36 Rsat). The near-surface heating and convection pattern will produce a localized heat flow anomaly. The upwelling beneath the shear zone also produces a few hundred meters of long-wavelength dynamic topography. The ℓ=2 component of the topography may cause reorientation of the satellite [6]. [1] Hoppa, G., B. R. Tufts, R. Greenberg, and P. Geissler, Icarus, 141, 287-298, 1999. [2] Nimmo, F., E. Gaidos, JGR, 107, 5021, 2002. [3] Han, L., A. P. Showman, LPSC XXXVIII, #2277, 2007. [4] Spencer, J. R., et al., Science, 311, 1401-1405. [5] Tobie, G., A. Mocquet, C. Sotin, Icarus, 177 534-549. [6] Nimmo, F., R. T. Pappalardo, Nature, 441, 614-616.

  8. Io's Sodium Clouds and Plasma Torus: Three Quiet Apparitions

    NASA Astrophysics Data System (ADS)

    Wilson, Jody; Mendillo, M.; Baumgardner, J.

    2007-10-01

    Ground-based observations of Io's sodium clouds from February 2005 to June 2007 indicate that Io was in an unusually quiet state of atmospheric escape. Simultaneous observations of the sulfur-ion plasma torus in that same period indicate that the torus has been gradually dimming, which is also consistent with below-average atmospheric escape rates from Io. The S+ torus was essentially undetectable in May 2007. Our goal in this 3-year project was to compare variability in the clouds and torus with observations of Io's volcanic infrared ``hot spots'' (e.g., Marchis et al. 2005) in order to track the flow of mass from Io's volcanoes into Jupiter's magnetosphere. Of particular interest was the 18-month cycle of Io's large volcano Loki (Rathbun et al. 2002, Mendillo et al. 2004), however it seems that Loki has settled into an unusually long-term quiescent state (Rathbun and Spencer, 2006). Thus, although we have been unable to monitor the month-to-month effects of the Loki cycle, we nonetheless have indirect evidence for Loki's long-term effects on Io's atmosphere and Jupiter's magnetosphere by observing their weak states when Loki is not actively contributing. This research is funded in part by NASA's Planetary Astronomy Program. Marchis et al., Keck AO survey of Io global volcanic activity between 2 and 5 microns, Icarus, 176, 96-122, 2005. Mendillo et al., Io's volcanic control of Jupiter's extended neutral clouds, Icarus, 170, 430-442, 2004. Rathbun, J.A. et al., Loki, Io: A periodic volcano, Geophysical Research Letters, 29, Issue 10, pp. 84-1, 2002. Rathbun, J.A. and J.R. Spencer, Loki, Io: New ground-based observations and a model describing the change from periodic overturn, Geophysical Research Letters, 33, Issue 17, 2006.

  9. Pluto's Volatile Transport

    NASA Astrophysics Data System (ADS)

    Young, Leslie

    2012-10-01

    Pluto's varying subsolar latitude and heliocentric distance leads to large variations in the surface volatile distribution and surface pressure. I present results of new volatile transport models (Young 2012a, b). The models include insolation, thermal emission, subsurface conduction, heating of a volatile slab, internal heat flux, latent heat of sublimation, and strict global mass balance. Numeric advances include initial conditions that allow for rapid convergence, efficient computation with matrix arithmetic, and stable Crank-Nicholson timesteps for both bare and volatile-covered areas. Runs of the model show six distinct seasons on Pluto. (1) As Pluto approaches perihelion, the volatiles on the old winter pole (the Rotational North Pole, RNP) becomes more directly illuminated , and the pressure and albedo rise rapidly. (2) When a new ice cap forms on the Rotational South Pole, RSP, volatiles are exchanged between poles. The pressure and albedo change more slowly. (3) When all volatiles have sublimed from the RNP, the albedo and pressure drop rapidly. (4-6) A similar pattern is repeated near aphelion with a reversal of the roles and the poles. I will compare results with earlier Pluto models of Hansen and Paige (1996), show the dependence on parameters such as substrate inertia, and make predictions for the New Horizons flyby of Pluto in 2015. This work was supported, in part, by funding from NASA Planetary Atmospheres Grant NNG06GF32G and the Spitzer project (JPL research support Agreement 1368573). Hansen, C. J. and D. A. Paige 1996. Seasonal Nitrogen Cycles on Pluto. Icarus 120, 247-265. Young, L. A. 2012a. Volatile transport on inhomogeneous surfaces: I - Analytic expressions, with application to Pluto’s day. Icarus, in press Young, L. A. 2012b. Volatile transport on inhomogeneous surfaces: II. Numerical calculations, with application to Pluto's season. In preparation.

  10. Stratigraphy and Surface Ages on Iapetus

    NASA Astrophysics Data System (ADS)

    Schmedemann, Nico; Denk, T.; Wagner, R.; Neukum, G.

    2007-10-01

    The examination of the geologic history of Iapetus is a major goal of the Cassini imaging experiment (ISS). Crater counting for the determination of model ages is a powerful tool to understand stratigraphic relationships between different terrain units. The shapes of the measured crater-size frequency distributions follow very closely the distribution of Earth's moon (after correction for the different impact conditions; Neukum et al. 2006), justifying its usage here for model age determinations. Following the models of Castillo-Rogez et al. (2007) and Neukum et al. (2006), an age of 4.4 Gyr is expected for the oldest parts of Iapetus’ surface. Based on these models, we measured different ages at neighboring morphologic units. A small part of the ridge near 96°W longitude and an "average" dark terrain sample north of the ridge shows dense cratering, indicating the most ancient surface ( 4.4 Gyr). The surroundings of the "landslide" crater (diameter 120 km; 6°N/36°W) in the south western part of a huge basin and a large, 420 km diameter basin on the leading side of Iapetus (34°N, 80°W) appear slightly younger ( 4.3 Gyr). The "landslide" crater and the landslide itself are sparsely cratered with a model age of 4.1 Gyr. These might be among the youngest areas on Iapetus. New high-resolution imagery data from the targeted flyby are expected for mid-September (see abstract by Denk et al., this meeting), with spatial resolutions down to 10 m/pxl. We expect to present first results at the meeting. References: Castillo-Rogez J.C., et al. (2007), Icarus, doi:10.1016/j.icarus.2007.02.018. Denk, T., et al. (2007), DPS, this conference. Neukum, G., et al. (2006), 1st EPSC, Berlin, p.610.

  11. Constraints on Pluto's Hazes from 2-Color Occultation Lightcurves

    NASA Astrophysics Data System (ADS)

    Hartig, Kara; Barry, T.; Carriazo, C. Y.; Cole, A.; Gault, D.; Giles, B.; Giles, D.; Hill, K. M.; Howell, R. R.; Hudson, G.; Loader, B.; Mackie, J. A.; Olkin, C. B.; Rannou, P.; Regester, J.; Resnick, A.; Rodgers, T.; Sicardy, B.; Skrutskie, M. F.; Verbiscer, A. J.; Wasserman, L. H.; Watson, C. R.; Young, E. F.; Young, L. A.; Buie, M. W.; Nelson, M.

    2015-11-01

    The controversial question of aerosols in Pluto's atmosphere first arose in 1988, when features in a Pluto occultation lightcurve were alternately attributed to haze opacity (Elliot et al. 1989) or a thermal inversion (Eshleman 1989). A stellar occultation by Pluto in 2002 was observed from several telescopes on Mauna Kea in wavelengths ranging from R- to K-bands (Elliot et al. 2003). This event provided compelling evidence for haze on Pluto, since the mid-event baseline levels were systematically higher at longer wavelengths (as expected if there were an opacity source that scattered more effectively at shorter wavelengths). However, subsequent occultations in 2007 and 2011 showed no significant differences between visible and IR lightcurves (Young et al. 2011).The question of haze on Pluto was definitively answered by direct imaging of forward-scattering aerosols by the New Horizons spacecraft on 14-JUL-2015. We report on results of a bright stellar occultation which we observed on 29-JUN-2015 in B- and H-bands from both grazing and central sites. As in 2007 and 2011, we see no evidence for wavelength-dependent extinction. We will present an analysis of haze parameters (particle sizes, number density profiles, and fractal aggregations), constraining models of haze distribution to those consistent with and to those ruled out by the occultation lightcurves and the New Horizons imaging.References:Elliot, J.L., et al., "Pluto's Atmosphere." Icarus 77, 148-170 (1989)Eshleman, V.R., "Pluto's Atmosphere: Models based on refraction, inversion, and vapor pressure equilibrium." Icarus 80 439-443 (1989)Elliot, J.L., et al., "The recent expansion of Pluto's atmosphere." Nature 424 165-168 (2003)Young, E.F., et al., "Search for Pluto's aerosols: simultaneous IR and visible stellar occultation observations." EPSC-DPS Joint Meeting 2011, held 2-7 October 2011 in Nantes, France (2011)

  12. Water vapor in Titan's stratosphere from Cassini CIRS far-infrared spectra

    NASA Astrophysics Data System (ADS)

    Cottini, V.; Nixon, C. A.; Jennings, D. E.; Anderson, C. M.; Gorius, N.; Bjoraker, G. L.; Coustenis, A.; Teanby, N. A.; Achterberg, R. K.; Bézard, B.; de Kok, R.; Lellouch, E.; Irwin, P. G. J.; Flasar, F. M.; Bampasidis, G.

    2012-08-01

    Here we report the measurement of water vapor in Titan's stratosphere using the Cassini Composite Infrared Spectrometer (CIRS, Flasar, F.M. et al. [2004]. Space Sci. Rev. 115, 169-297). CIRS senses water emissions in the far infrared spectral region near 50 μm, which we have modeled using two independent radiative transfer codes (NEMESIS (Irwin, P.G.J. et al. [2008]. J. Quant. Spectrosc. Radiat. Trans. 109, 1136-1150) and ART (Coustenis, A. et al. [2007]. Icarus 189, 35-62; Coustenis, A. et al. [2010]. Icarus 207, 461-476). From the analysis of nadir spectra we have derived a mixing ratio of 0.14 ± 0.05 ppb at an altitude of 97 km, which corresponds to an integrated (from 0 to 600 km) surface normalized column abundance of 3.7 ± 1.3 × 1014 molecules/cm2. In the latitude range 80°S to 30°N we see no evidence for latitudinal variations in these abundances within the error bars. Using limb observations, we obtained mixing ratios of 0.13 ± 0.04 ppb at an altitude of 115 km and 0.45 ± 0.15 ppb at an altitude of 230 km, confirming that the water abundance has a positive vertical gradient as predicted by photochemical models (e.g. Lara, L.M., Lellouch, F., Lopez-Moreno, J.J., Rodrigo, R. [1996]. J. Geophys. Res. 101(23), 261; Wilson, E.H., Atreya, S.K. [2004]. J. Geophys. Res. 109, E6; Hörst, S.M., Vuitton, V., Yelle, R.V. [2008]. J. Geophys. Res., 113, E10). We have also fitted our data using scaling factors of ˜0.1-0.6 to these photochemical model profiles, indicating that the models over-predict the water abundance in Titan's lower stratosphere.

  13. Observations of Venus at 1-meter wavelength

    NASA Astrophysics Data System (ADS)

    Butler, Bryan J.

    2014-11-01

    Radio wavelength observations of Venus (including from the Magellan spacecraft) have been a powerful method of probing its surface and atmosphere since the 1950's. The emission is generally understood to come from a combination of emission and absorption in the subsurface, surface, and atmosphere at cm and shorter wavelengths [1]. There is, however, a long-standing mystery regarding the long wavelength emission from Venus. First discovered at wavelengths of 50 cm and greater [2], the effect was later confirmed to extend to wavelengths as short as 13 cm [1,3]. The brightness temperatures are depressed significantly 50 K around 10-20 cm, increasing to as much as 200 K around 1 m) from what one would expect from a "normal" surface (e.g., similar to the Moon or Earth) [1-3].No simple surface and subsurface model of Venus can reproduce these large depressions in the long wavelength emission [1-3]. Simple atmospheric and ionospheric models fail similarly. In an attempt to constrain the brightness temperature spectrum more fully, new observations have been made at wavelengths that cover the range 60 cm to 1.3 m at the Very Large Array, using the newly available low-band receiving systems there [4]. The new observations were made over a very wide wavelength range and at several Venus phases, with that wide parameter space coverage potentially allowing us to pinpoint the cause of the phenomenon. The observations and potential interpretations will be presented and discussed.[1] Butler et al. 2001, Icarus, 154, 226. [2] Schloerb et al. 1976, Icarus, 29, 329; Muhleman et al. 1973, ApJ, 183, 1081; Condon et al. 1973, ApJ, 183, 1075; Kuzmin 1965, Radiophysics. [3] Butler & Sault 2003, IAUSS, 1E, 17B. [4] Intema et al. 2014, BASI, 1.

  14. Titan's "Hot Cross Bun": A Titan Laccolith?

    NASA Astrophysics Data System (ADS)

    Lopes, Rosaly M. C.; Stofan, E. R.; Wall, S. D.; Wood, C.; Kirk, R. L.; Lucas, A.; Mitchell, K. L.; Lunine, J. I.; Turtle, E. P.; Radebaugh, J.; Malaska, M.; Cassini RADAR Team

    2012-10-01

    Cassini’s RADAR instrument acquired Synthetic Aperture Radar data during the T83 flyby on May 22, 2012. The data showed a feature centered at 38.5N, 203W that resembles a “hot cross bun”. This type of feature has not been seen on Titan before, even though 52% of Titan’s surface has been imaged using SAR. The feature, approximately 100 km across, is mostly radar bright but the cross pattern, interpreted to be extensional fractures, located roughly at the center of the brighter area, appears darker at radar wavelengths (2.3 cm). Radar illumination of the image indicates that the fractures are lower in elevation than the surrounding bright region. The morphology of the region is markedly similar to that of a 30-km dome-shaped feature on Venus that lies at the summit of the Kunapipi volcano. The Venus feature is interpreted to be the result of intrusion of magma at the summit of the volcano [1]. A similar feature, interpreted as a laccolith, is seen on the Moon near the crater Ramsden [2]. The lunar feature, imaged by the Lunar Reconnaissance Orbiter, shows the cross-shaped depression over a 300 m high rise. No topographic data for the feature on Titan are available at this time, but the morphology seen by the SAR data suggests that the feature may have been formed by material pushing up from below. Laccoliths form when an igneous intrusion splits apart two strata, resulting in a domeline structure. This previously unknown type of structure on Titan may be yet another indication of cryovolcanism. [1] Stofan, E.R., et al, Icarus, 152, 75-95, 2001. [2] Wichman, R.W. and Schultz, P. H. (1996). Icarus, 122, Issue 1, July 1996, pages 193-199. doi:10.1006/icar.1996.0118

  15. First Asteroid Spectrometric Observations with BTA: 3045 Alois

    NASA Astrophysics Data System (ADS)

    Busarev, V. V.; Burenkov, A. N.; Pramskij, A. G.

    2001-11-01

    BTA, Russian 6-m telescope, was mainly used for faint stars and extragalactic objects observations. We have firstly performed with the telescope spectrometric observations of a main belt asteroid, 3045 Alois, and are planning to use it for Centaurs and Kuiper Belt objects spectrometry. We have obtained some results of the observations. Spectra of Alois were recorded on two nights of March 2001 (29/30 and 30/31) with a long slit spectrograph (UAGS + CCD) in the .38-.80 um spectral range. HD105633 (G5) [1] considered as a solar analog was also observed, and the data were used for calculation the asteroid reflectance spectra. It was found that reflectance spectra of Alois obtained on different nights have various continuum slopes and absorption features. The reflectance spectrum on 29/30 March had a flat continuum in the range .44-.65 um and absorption bands at .5 um (ab. 7 % with respect to the continuum) similar to that found on the E-type asteroid 2035 Stearns [2], and at .80 um (ab. 25 %). Another one on 30/31 March had a red continuum in the range .40-.67 um and absorption bands at .43 um (ab. 6 %) resembling absorption features found on some C-, M- and S-type asteroids [3, 4], and at .80 um (ab. 17 %). From the data and taking into account the mean heliocentric distance of 3045 Alois (3.13 AU) we suppose that the asteroid having irregular spectral characteristics may be of M- or E-type and possibly hydrated. Unfortunately, its albedo and rotational period remain still unknown. [1] Mermilliod J.-C. (1994) Bull. Inf. CDS 45, 3. [2] Fornasier S. and Lazzarine M. (2001) Icarus 152, 127-133. [3] Vilas F. et al. (1993) Icarus 102, 225-231. [4] Busarev V. V. (2001) LPSC XXXII, abs. 1927.

  16. Magnetic Anomalies Within Lunar Impact Basins: Constraints on the History of the Lunar Dynamo

    NASA Astrophysics Data System (ADS)

    Richmond, N. C.; Hood, L. L.

    2011-12-01

    Previous work has shown that lunar crustal magnetization has a combination of origins including shock remanent magnetization in transient magnetic fields and thermoremanent magnetization in a steady core dynamo magnetic field (e.g., Hood and Artemieva, Icarus, 2008; Richmond and Hood, JGR, 2008; Garrick-Bethell et al., Science, 2009; Hood, Icarus, 2011). In particular, magnetic anomalies within the interiors of lunar impact basins and large craters provide a potentially valuable means of constraining the history of the former dynamo (Halekas et al., MAPS, 2003; Hood, 2011). These anomalies likely have a thermoremanent origin owing to high subsurface temperatures reached at the time of impact and therefore require a long-lived, steady magnetic field to explain their magnetization. Central anomalies have previously been confirmed to be present using Lunar Prospector magnetometer (LP MAG) data within several Nectarian-aged basins (Moscoviense, Mendel-Rydberg, Crisium, and Humboldtianum), implying that a dynamo existed during this lunar epoch (Hood, 2011). Here, we further analyze low altitude LP MAG data for several additional basins, ranging in age from Nectarian to Imbrian. Results indicate that magnetic anomalies with a probable basin-related origin are present within at least two additional Nectarian-aged basins (Serenitatis and Humorum) and one Imbrian-aged basin (Schrodinger). No discernible anomalies are present within the largest Imbrian-aged basins, Imbrium and Orientale. While there is uncertainty regarding the age of the Schrodinger basin, it has been reported to be slightly more recent than Imbrium (Wilhelms, 1984). Our initial interpretation is therefore that a dynamo likely existed during the Imbrian epoch. The absence of anomalies within Imbrium and Orientale can be explained by insufficient conditions for acquisition of strong magnetization (e.g., inadequate concentrations of efficient remanence carriers) following these relatively large impacts.

  17. The Distribution of Geometric Albedos of Jupiter-Family Comets From SEPPCoN and Visible-Wavelength Photometry

    NASA Astrophysics Data System (ADS)

    Fernandez, Yanga R.; Weaver, Harold A.; Lisse, Casey M.; Meech, Karen Jean; Lowry, Stephen C.; Bauer, James M.; Fitzsimmons, Alan; Snodgrass, Colin

    2016-01-01

    Cometary nuclei are some of the least reflective natural objects in the Solar System, although the number of comets for which the reflectivity has heretofore actually been measured is small due to the difficulty of the requisite measurements. When no other information is present, it is common to assume a geometric albedo of 4%, and this is consistent with the limited number of known albedos. However the true average albedo, median albedo, and spread of the distribution are not well constrained. Knowing the ensemble properties of cometary albedos would aid in understanding the surface scattering properties as well as the interior thermal evolution and surface evolution of the population. We present here a preliminary estimate of the distribution of geometric albedos among the Jupiter-family comet (JFC) population. We make use of and build on the results of the Survey of Ensemble Physical Properties of Cometary Nuclei (SEPPCoN), in which we obtained new and independent estimates of the radii of 89 JFCs [1,2]. We will present our preliminary albedo estimates for ~50 JFC nuclei (by far the most ever obtained), and we will discuss the implications of the ensemble of the results. These JFCs were all observed in R-band, and were all observed at relatively large heliocentric distances (usually >4 AU from the Sun) where the comets appeared inactive, thus minimizing coma contamination. We acknowledge the support of NASA grant NNX09AB44G, of NSF grant AST-0808004, and of the Astrophysical Research Consortium/Apache Point Observatory for this work. References: [1] Y. R. Fernandez et al., 2013, Icarus 226, 1138. [2] M. S. Kelley et al., 2013, Icarus 225, 475.

  18. Gravity Waves in the Atmospheres of Mars and Venus

    NASA Astrophysics Data System (ADS)

    Tellmann, Silvia; Paetzold, Martin; Häusler, Bernd; Bird, Michael K.; Tyler, G. Leonard; Hinson, David P.; Imamura, Takeshi

    2016-10-01

    Gravity waves are ubiquitous in all stably stratified planetary atmospheres and play a major role in the redistribution of energy and momentum. Gravity waves can be excited by many different mechanisms, e.g. by airflow over orographic obstacles or by convection in an adjacent layer.Gravity waves on Mars were observed in the lower atmosphere [1,2] but are also expected to play a major role in the cooling of the thermosphere [3] and the polar warming [4]. They might be excited by convection in the daytime boundary layer or by strong winter jets in combination with the pronounced topographic diversity on Mars.On Venus, gravity waves play an important role in the mesosphere above the cloud layer [5] and probably below. Convection in the cloud layer is one of the most important source mechanisms but certain correlations with topography were observed by different experiments [6,7,8].Temperature height profiles from the radio science experiments on Mars Express (MaRS) [9] and Venus Express (VeRa) [10] have the exceptionally high vertical resolution necessary to study small-scale vertical gravity waves, their global distribution, and possible source mechanisms.Atmospheric instabilities, which are clearly identified in the data, can be investigated to gain further insight into possible atmospheric processes contributing to the excitation of gravity waves.[1] Creasey, J. E., et al.,(2006), Geophys. Res. Lett., 33, L01803, doi:10.1029/2005GL024037.[2]Tellmann, S., et al.(2013), J. Geophys. Res. Planets, 118, 306-320, doi:10.1002/jgre.20058.[3]Medvedev, A. S., et al.(2015), J. Geophys. Res. Planets, 120, 913-927. doi:10.1002/2015JE004802.[4] Barnes, J. R. (1990), J. Geophys. Res., 95, B2, 1401-1421.[5] Tellmann, S., et al. (2012), Icarus, 221, 471 - 480.[6] Blamont, J.E. et al., (1986) 231, 1422-1425.[7] Bertaux J.-L., et al. (2016), J. Geophys. Res., Planets, in press.[8] Piccialli, A., et al. (2014), Icarus, 227, 94 - 111.[9] Pätzold, M., et al. (2016), Planet. Space Sci., 127, 44 - 90.[10] Häusler, B. et al., (2006). 1315-1335.

  19. A 1-D Cryothermal Model of Ceres’ Megaregolith: Predictions for Surface Vapor Flux, Subsurface Temperatures and Pore Ice Distribution

    NASA Astrophysics Data System (ADS)

    Reynolds, Dylan; Wood, Stephen E.; Bapst, Jonathan; Mehlhaff, Joshua; Griffiths, Stephen G.

    2014-11-01

    We have applied a self-consistent 1-D model for heat diffusion, vapor diffusion, and ice condensation/sublimation, and surface energy balance to investigate our hypothesis for the source of the recently observed water vapor around Ceres [1]. As described in a companion presentation [2], we find that the estimated global flux of 6 kg/s can be produced by steady-state sublimation of subsurface ice driven by the “geothermal” temperature gradient for a heat flux of 1 mW/m2 - the value estimated for a chondritic abundance of heat-producing elements [3,4]. We will present a detailed description of our Ceres cryothermal diffusion model and comparisons with previous models. One key difference is the use of a new physics-based analytic model (‘MaxRTCM’) for calculating the thermal conductivity (Kth) of planetary regolith [5] that has been validated by comparisons to a wide range of laboratory data [6]. MaxRTCM predicts much lower Kth values in the upper regolith than those in previous work [3]. It also accounts for a process first modeled in a study of unstable equatorial ground ice on Mars [7,8], where vapor diffusing up from a receding ice table toward the surface can recondense at shallower depths - eventually forming a steady-state profile of pore ice volume fraction that increases with depth and maintains a constant flux of vapor at all depths [7]. Using MaxRTCM we calculate the corresponding Kth(z) profiles and will present predictions and implications of the resulting temperature profile in the upper few kilometers of Ceres’ megaregolith.References: [1] Küppers et al. (2014), Nature, 505(7484), 525-527. [2] Wood et al., 2014, this meeting. [3] Fanale & Salvail (1989) Icarus 82, 97-110. [4] McCord and Sotin (2005) JGR 110, E05009. [5] Wood (2013) LPSC Abs. 44, 3077. [6] Wood (2014), Icarus, in revision. [7] Mellon et al. (1997), JGR, 102, 19357-69. [8] Clifford (1993), JGR, 98, 10973-11016.

  20. Magnetic dynamos in accreting planetary bodies

    NASA Astrophysics Data System (ADS)

    Golabek, Gregor; Labrosse, Stéphane; Gerya, Taras; Morishima, Ryuji; Tackley, Paul

    2013-04-01

    Laboratory measurements revealed ancient remanent magnetization in meteorites [1] indicating the activity of magnetic dynamos in the corresponding meteorite parent body. To study under which circumstances dynamo activity is possible, we use a new methodology to simulate the internal evolution of a planetary body during accretion and differentiation. Using the N-body code PKDGRAV [2] we simulate the accretion of planetary embryos from an initial annulus of several thousand planetesimals. The growth history of the largest resulting planetary embryo is used as an input for the thermomechanical 2D code I2ELVIS [3]. The thermomechanical model takes recent parametrizations of impact processes [4] and of the magnetic dynamo [5] into account. It was pointed out that impacts can not only deposit heat deep into the target body, which is later buried by ejecta of further impacts [6], but also that impacts expose in the crater region originally deep-seated layers, thus cooling the interior [7]. This combination of impact effects becomes even more important when we consider that planetesimals of all masses contribute to planetary accretion. This leads occasionally to collisions between bodies with large ratios between impactor and target mass. Thus, all these processes can be expected to have a profound effect on the thermal evolution during the epoch of planetary accretion and may have implications for the magnetic dynamo activity. Results show that late-formed planetesimals do not experience silicate melting and avoid thermal alteration, whereas in early-formed bodies accretion and iron core growth occur almost simultaneously and a highly variable magnetic dynamo can operate in the interior of these bodies. [1] Weiss, B.P. et al., Science, 322, 713-716, 2008. [2] Richardson, D. C. et al., Icarus, 143, 45-59, 2000. [3] Gerya, T.V and Yuen, D.J., Phys. Earth Planet. Int., 163, 83-105, 2007. [4] Monteux, J. et al., Geophys. Res. Lett., 34, L24201, 2007. [5] Aubert, J. et al., Geophys. J. Int., 179, 1414-1428, 2009. [6] Safronov, V.S., Icarus, 33, 3-12, 1978. [7] Davies, G.F., in: Origin of the Earth, ed. H.E. Newsom, J.H. Jones, Oxford Un. Press, 175-194, 1990.

  1. Binary asteroid orbit evolution due to primary shape deformation

    NASA Astrophysics Data System (ADS)

    Hirabayashi, Masatoshi; Jacobson, Seth A.; Davis, Alex

    2017-10-01

    About a sixth of all small asteroid systems are binary [Margot et al., Science, 2002]. Many binary asteroids consist of an elongated synchronous secondary body orbiting a fast-rotating spheroidal primary body with ridges on its equator. The primary in such systems has experienced a long-term spin-up due to the YORP effect [Vokrouhlick'y et al., Asteroid IV, 2015]. This spin-up process can make the primary reach its spin barrier inducing shape deformation processes that ease the structural condition for failure inside the primary [e.g., Holsapple, Icarus, 2010]. Earlier works have shown that structural heterogeneities in the primary such as the shape and density distribution induce asymmetric deformation [Sánchez and Scheeres, Icarus, 2016]. Here, we investigate how asymmetric shape deformation in the primary affects the mutual motion of a binary system. We use a dynamics model for an irregularly shaped binary system that accounts for possible deformation of the primary [Hirabayashi et al., LPSC, 2017]. In this model, we consider asymmetric deformation that occurs based on structural failure in the primary and thus it modifies the location of the center of mass of the system. Using 1999 KW4 as an example, we study a hypothetical case in which the primary is initially identical to the current shape [Ostro et al., Science, 2006] with an aspect ratio (AR) of 0.83 and then suddenly changes its shape to an AR of 0.76. The results show that the asymmetric deformation process and the shift of the center of mass excite the eccentricity of the mutual orbit. Considering that the original mutual orbit has an eccentricity of 0.0004, after the primary shape change the eccentricity reaches values up to 0.15. Also, since the gravity field is modified after deformation, the secondary’s spin is desynchronized from the mutual orbit. Since synchronicity is a requirement for the binary YORP (BYORP) effect, which modifies the semi-major axis of binary asteroids, a primary shape change temporarily pauses the BYORP effect, in effect lengthening the effective BYORP timescale.

  2. Seasonal Evolution of the North and South Polar Vortex on Titan From 2004 to 2017 as Seen by Cassini/VIMS

    NASA Astrophysics Data System (ADS)

    Le Mouelic, S.; Robidel, R.; Rousseau, B.; Rodriguez, S.; Cornet, T.; Sotin, C.; Barnes, J. W.; Brown, R. H.; Buratti, B. J.; Baines, K. H.; Clark, R. N.; Nicholson, P. D.

    2017-12-01

    Cassini entered in Saturn's orbit in July 2004. In thirteen years, 127 targeted flybys of Titan have been performed. We focus our study on the analysis of the complete Visual and Infrared Mapping Spectrometer data set, with a particular emphasis on the evolving features on both poles. We have computed individual global maps of the north and south poles for each of the 127 targeted flybys, using VIMS wavelengths sensitive both to clouds and surface features. First evidences for a vast ethane cloud covering the North Pole is seen as soon as the first and second targeted flyby in October 2004 and December 2005 [1]. The first detailed imaging of this north polar feature with VIMS was obtained in December 2006, thanks to a change in inclination of the spacecraft orbit [2]. At this time, the northern lakes and seas of Titan were totally masked to the optical instruments by the haze and clouds, whereas the southern pole was well illuminated and mostly clear of haze and vast clouds. The vast north polar feature progressively vanished around the equinox in 2009 [2,3,4], in agreement with the predictions of Global Circulation Models [5]. It revealed progressively the underlying lakes to the ISS and VIMS instruments, which show up very nicely in VIMS in a series of flybys between T90 and T100. First evidences of an atmospheric vortex growing over the south pole occurred in May 2012 (T82), with a high altitude feature being detected consistently at each flyby up to the last T126 targeted flyby, and also appearing in more distant observations up to the end of the Cassini mission. Cassini has covered almost half a titanian year, corresponding to two seasons. The situation observed at the South Pole in the last images may correspond to what was observed in the north as Cassini just arrived. [1] Griffith et al., Science, 2006. [2] Le Mouélic et al., PSS, 2012. [3] Rodriguez et al., Nature, 2009. [4] Rodriguez et al., Icarus 2011. [4] Hirtzig et al., Icarus, 2013. [5] Rannou et al., Science 2005

  3. Analysis of Venusian Atmospheric Two-Dimensional Winds and Features Using Venus Express, Akatsuki, and Ground-Based Images

    NASA Astrophysics Data System (ADS)

    McCabe, Ryan M.; Gunnarson, Jacob; Sayanagi, Kunio M.; Blalock, John J.; Peralta, Javier; Gray, Candace L.; McGouldrick, Kevin; Imamura, Takeshi; Watanabe, Shigeto

    2017-10-01

    We investigate the horizontal dynamics of Venus’s atmosphere at cloud-top level. In particular, we focus on the atmospheric superrotation, in which the equatorial atmosphere rotates with a period of approximately 4-5 days (~60 times faster than the solid planet). The superrotation’s forcing and maintenance mechanisms remain to be explained. Temporal evolution of the zonal (latitudinal direction) wind could reveal the transport of energy and momentum in/out of the equatorial region, and eventually shed light on mechanisms that maintain the Venusian superrotation. As a first step, we characterize the zonal mean wind field of Venus between 2006 and 2013 in ultraviolet images captured by the Venus Monitoring Camera (VMC) on board the ESA Venus Express (VEX) spacecraft which observed Venus’s southern hemisphere. Our measurements show that, between 2006 and 2013, the westward wind speed at mid- to equatorial latitudes exhibit an increase of ~20 m/s; these results are consistent with previous studies by Kouyama et al. 2013 and Khatuntsev et al. 2013. The meridional component of the wind could additionally help us characterize large-scale cloud features and their evolution that may be connected to such superrotation. We also conduct ground-based observations contemporaneously with JAXA’s Akatsuki orbiter at the 3.5 m Astrophysical Research Consortium (ARC) telescope at the Apache Point Observatory (APO) in Sunspot, NM to extend our temporal coverage to present. Images we have captured at APO to date demonstrate that, even under unfavorable illumination, it is possible to see large features that could be used for large-scale feature tracking to be compared to images taken by Akatsuki. Our work has been supported by the following grants: NASA PATM NNX14AK07G, NASA MUREP NNX15AQ03A, NSF AAG 1212216, and JAXA’s ITYF Fellowship.Kouyama, T. et al (2013), J. Geophys. Res. Planets, 118, 37-46, doi:10.1029/2011JE004013.Khatuntsev et al. (2013), Icarus, 226, 140-158, doi:10.1016/j.icarus.2013.05.018

  4. Near-infrared spectroscopy of 3:1 Kirkwood Gap asteroids III

    NASA Astrophysics Data System (ADS)

    Fieber-Beyer, Sherry K.; Gaffey, Michael J.

    2015-09-01

    The research is an integrated effort beginning with telescopic observations and extending through detailed mineralogical characterizations to provide constraints on the composition and meteorite affinities of a subset of fourteen asteroids in/near the 3:1 Kirkwood Gap. Eight asteroids were identified as having either one or two absorption features, while six were deemed featureless. The compositional analysis of Asteroids (355) Gabriella and (1447) Utra reveal Fs and Fa values which are consistent with values for the L-type ordinary chondrites (Fs19-22 and Fa22-26). The location of these two bodies with respect to each other and to the previously identified L-chondrite parent body Asteroid (1722) Goffin, suggests a small L-chondrite genetic family. These results support the model that the L-chondrites come from an asteroid family rather than from a single object. Asteroids (1368) Numidia, (1587) Kahrstadt, (1854) Skvortsov, (2497) Kulikovskij, and (5676) Voltaire were analyzed and determined to have "basaltic" silicate mineralogies similar to those of the HED (howardite-eucrite-diogenite) meteorite group. In particular, we found that the compositions of (1368), (1587) and (1854) are consistent with olivine-orthopyroxenitic diogenites, while (2497) and (5676)'s compositions are consistent with harzburgitic diogenites. The Band I and Band II absorption feature depths are much shallower than seen in diogenite spectra, typically ∼70% depth (Burbine, T.H. et al. [2000]. Forging asteroid-meteorite relationships through reflectance spectroscopy. Lunar Planet. Sci. XXXI. Abstract 1844). The nature of the weak features seen in the asteroid spectra when compared to measured band depths of in situ diogenite samples indicate an additional mechanism(s) acting to weaken the features, most likely space weathering. The aforementioned five asteroids are plausible sources for the olivine-orthopyroxenitic diogenites and harzburgitic diogenites, and very well may be fragments of Vesta. Asteroid (46) Hestia is an interesting object whose surface minerals may be consistent with a CR2 chondrite; however, the unique spectrum deserves further study in the future. Featureless Asteroids (248) Lameia, (1960) Guisan, (3345) Tarkovskij and (6212) 1993 MS1 surface materials are likely organic assemblages consistent with the Type 1 or 2 carbonaceous chondrite meteorite class; however specific terrestrial meteorite analog could not be identified. The spectra of Asteroids (3228) Pire and (3999) Aristarchus are consistent with each other and have been assigned to the Eulalia by Walsh et al. (Walsh, K.J. et al. [2013]. Icarus 225, 283-297). Spectrally they are similar to (495) in terms of blue-slope and albedo (Fieber-Beyer, S.K., et al. [2012]. Icarus 221, 593-602), thus increasing our confidence the three bodies are truly related dynamically and genetically. By extrapolation and due to their location adjacent to the 3:1 Kirkwood Gap, (3228) and (3999) are plausible sources of the CV3OXB carbonaceous chondrites.

  5. The 2016 Transit of Mercury Observed from Major Solar Telescopes and Satellites

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Schneider, Glenn; Gary, Dale; Chen, Bin; Sterling, Alphonse C.; Reardon, Kevin P.; Dantowitz, Ronald; Kopp, Greg A.

    2016-10-01

    We report observations from the ground and space of the 9 May 2016 transit of Mercury. We build on our explanation of the black-drop effect in transits of Venus based on spacecraft observations of the 1999 transit of Mercury (Schneider, Pasachoff, and Golub, Icarus 168, 249, 2004). In 2016, we used the 1.6-m New Solar Telescope at the Big Bear Solar Observatory with active optics to observe Mercury's transit at high spatial resolution. We again saw a small black-drop effect as 3rd contact neared, confirming the data that led to our earlier explanation as a confluence of the point-spread function and the extreme solar limb darkening (Pasachoff, Schneider, and Golub, in IAU Colloq. 196, 2004). We again used IBIS on the Dunn Solar Telescope of the Sacramento Peak Observatory, as A. Potter continued his observations, previously made at the 2006 transit of Mercury, at both telescopes of the sodium exosphere of Mercury (Potter, Killen, Reardon, and Bida, Icarus 226, 172, 2013). We imaged the transit with IBIS as well as with two RED Epic IMAX-quality cameras alongside it, one with a narrow passband. We show animations of our high-resolution ground-based observations along with observations from XRT on JAXA's Hinode and from NASA's Solar Dynamics Observatory. Further, we report on the limit of the transit change in the Total Solar Irradiance, continuing our interest from the transit of Venus TSI (Schneider, Pasachoff, and Willson, ApJ 641, 565, 2006; Pasachoff, Schneider, and Willson, AAS 2005), using NASA's SORCE/TIM and the Air Force's TCTE/TIM. See http://transitofvenus.info and http://nicmosis.as.arizona.edu.Acknowledgments: We were glad for the collaboration at Big Bear of Claude Plymate and his colleagues of the staff of the Big Bear Solar Observatory. We also appreciate the collaboration on the transit studies of Robert Lucas (Sydney, Australia) and Evan Zucker (San Diego, California). JMP appreciates the sabbatical hospitality of the Division of Geosciences and Planetary Sciences of the California Institute of Technology, and of Prof. Andrew Ingersoll there. The solar observations lead into the 2017 eclipse studies, for which JMP is supported by grants from the NSF AGS and National Geographic CRE.

  6. The Titan Haze Simulation Experiment: Latest Laboratory Results and Dedicated Plasma Chemistry Model

    NASA Astrophysics Data System (ADS)

    Sciamma-O'Brien, Ella; Raymond, Alexander; Mazur, Eric; Salama, Farid

    2017-06-01

    In Titan’s atmosphere, a complex organic chemistry occurs between its main constituents, N2 and CH4, and leads to the production of larger molecules and solid aerosols.Here, we present the latest results on the gas and solid phase analyses in the Titan Haze Simulation (THS) experiment, developed on the NASA Ames COSmIC simulation chamber. The THS is a unique experimental platform that allows us to simulate Titan’s atmospheric chemistry at Titan-like temperature (200K) by cooling down N2-CH4-based mixtures in a supersonic expansion before inducing the chemistry by plasma. Because of the accelerated gas flow in the expansion, the residence time of the gas in the active plasma region is less than 3 µs. This results in a truncated chemistry that enables us to monitor the first and intermediate steps of the chemistry as well as specific chemical pathways when adding, in the initial gas mixture, heavier molecules that have been detected as trace elements on Titan[1].We discuss the results of recent Mid-infrared (MIR) spectroscopy[2] and X-ray Absorption Near Edge Structure spectroscopy studies of THS Titan tholins produced in different gas mixtures (with and without acetylene and benzene). Both studies have shown the presence of nitrogen chemistry, and differences in the level and nature of the nitrogen incorporation depending on the initial gas mixture. A comparison of THS MIR spectra to VIMS data has shown that the THS aerosols produced in simpler mixtures, i.e., that contain more nitrogen and where the N-incorporation is in isocyanide-type molecules instead of nitriles, are more representative of Titan’s aerosols.In addition, a new model has been developed to simulate the plasma chemistry in the THS. Electron impact and chemical kinetics equations for more than 120 species are followed. The calculated mass spectra are in good agreement with the experimental THS mass spectra[1], confirming that the short residence time in the plasma cavity limits the growth of larger species and results in a truncated chemistry, a main feature of the THS.References:[1] Sciamma-O'Brien E. et al., Icarus, 243, 325 (2014)[2] Sciamma-O'Brien E. et al., Icarus, in press (2017)

  7. A SHERLOC Study: Detection of Organics in Simulated Martian Soil using Deep UV Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Abbey, W.; Bhartia, R.; Carrier, B. L.; Doloboff, I.; Hara, E. K.; Beegle, L. W.

    2017-12-01

    The SHERLOC investigation is a vital part of NASA's 2020 Mars payload [1]. It utilizes deep UV Raman and fluorescence spectroscopy to enable non-contact, non-destructive detection and characterization of in situ organics and minerals in the Martian surface and near subsurface. Raman spectroscopy using deep UV excitation wavelengths (<250 nm) offers the benefit of spectra obtained in a largely fluorescence-free region, while taking advantage of signal enhancing resonance effects for key classes of organic compounds [2,3]. To further demonstrate SHERLOC's capabilities, we interrogated 3 sample sets using a bench-top version of SHERLOC, utilizing a 248.6 nm hollow cathode laser. Sample sets included: (1) a well characterized Martian soil simulant (MMS) [4] containing 0.04 wt% (400 ppm) condensed carbon; (2) a suite of organic standards and astrobiologically relevant mineral standards; and (3) the MMS spiked with a selection of these standards, at a concentration of 1 wt%, in order to investigate 'real world' matrix effects. We were able to resolve all standards examined at the 1 wt% level. Some organic compounds, such as aromatic hydrocarbons, had especially strong signals, due to resonance effects, even when present in trace amounts. Phenanthrene, for example, was also examined at a concentration of 0.1 wt%, and even at this level it still had a very strong signal-to-noise ratio. Also, it should be noted that this technique requires very low fluence on the sample ( 60 J/cm2), minimizing degradation of organics and allowing their detection in the presence of strong oxidizers without fear of combustion due to heating [5,6]. In this study, perchlorate at 1 wt% was successfully detected in the presence of organic compounds native to the MMS; this concentration is comparable to the amount of perchlorate suspected to be present in Mars soil [6,7]. This work expands on data previously reported in Abbey et al., 2017 [8]. References: [1] Beegle et al., 2015 IEEE Aerospace Conf., 2015; [2] Asher, Anal. Chem. 65 (4), 1993; [3] Bhartia et al., Appl. Spectrosc. 62 (10), 2008; [4] Peters et al., Icarus 197, 2008; [5] Navarro-Gonzalez et al., J. Geophys. Res. 115, 2010; [6] Glavin et al., J. Geophys. Res. 118, 2013; [7] Hecht et al., Science 325, 2009; [8] Abbey et al., Icarus 290, 2017.

  8. Chemical and Physical Properties of Comets in the Lowell Database: Results from Four Decades of Narrowband Photometry

    NASA Astrophysics Data System (ADS)

    Schleicher, David G.; Bair, Allison Nicole

    2016-10-01

    As remnants from the epoch of early solar system formation, comet nuclei are less processed than any other class of objects currently available for detailed study. Compositional and physical studies can therefore be used to investigate primordial conditions across the region of comet formation and/or subsequent evolutionary effects. With these goals, a long duration program of comet narrowband photometry was begun in 1976 and results for 85 comets were published by A'Hearn et al. (1995; Icarus 118, 223). Observations continued and we performed a new set of analyses of data obtained through mid-2011. Following a hiatus due to lack of funding and other competing priorities, we have now resumed our efforts at completing this project while also incorporating the most recent five years of data. The database now includes 191 comets obtained over 848 nights. A restricted subset of 116 objects were observed multiple times and are considered well-determined; these form the basis of our compositional studies. Using a variety of taxonomic techniques, we identified seven compositional classes for the data up to 2011 and anticipate no changes with the newest additions. Several classes are simply sub-groups of the original carbon-chain depleted class found by A'Hearn et al.; all evidence continues to indicate that carbon-chain depletion reflects the primordial composition at the time and location of cometary accretion and is not associated with evolution. Another new class contains five comets depleted in ammonia but not depleted in carbon-chain molecules; it is unclear if this group is primordial or not. In comparison, clear evidence for evolutionary effects are seen in the active fractions for comet nuclei -- decreasing with age -- and with the dust-to-gas ratio -- decreasing with age and perihelion distance, implying an evolution of the surface of the nucleus associated with the peak temperature attained and how often such temperatures have been reached. Updates of these and other results including data from the last five years will be presented. Support was provided by NASA Planetary Atmospheres grant NNX08AG19G.

  9. Chemistry in the Dunes of Titan: Tribochemical Reactions of Complex Organics and Water Ice

    NASA Astrophysics Data System (ADS)

    Beauchamp, J. L.; Thomas, D. A.

    2010-12-01

    Titan’s N2-CH4 atmosphere provides the starting material for a wide array of organic compounds to be formed via photochemistry, and the presence of unsaturated hydrocarbon, amine, and polycyclic aromatic species has been supported by data from the Cassini-Huygens mission [1,2]. Production of tholins by UV irradiation of a simulated N2-CH4 environment has yielded products that match the observed optical properties of Titan haze, suggesting that these compounds provide suitable analogs to Titan aerosol compounds [3, 4, 5]. Organics produced in Titan’s atmosphere eventually settle to the surface and very likely contribute to the particulate matter comprising the expansive longitudinal dune features observed at mid-latitudes [6]. Once on the surface, conditions that lead to incorporation of oxygen via contact with water ice or liquid water in Titan’s low temperature environment are of particular interest and have important implications for astrobiology [7; 8]. In this work, we postulate that the mechanical energy from wind-driven grains in the dunes of Titan can ultimately drive chemical processes and lead to the incorporation of oxygen into organic compounds via tribochemical reactions [9] and describe experiments designed to test this hypothesis. While the exact composition of the dunes of Titan is unknown, it is likely that they mainly comprise organic and water ice particles approximately 0.2 mm in diameter, the ideal size for saltation by the winds of Titan [6]. During the saltation process, organic particles undergo charging due to friction between particles, leading in turn to formation of ions and free radicals in localized electrical discharges at particle interfaces [10]. These reactive intermediates can initiate processes such as free radical and ionic polymerization that further transform organics. Of particular interest is the incorporation of oxygen into organic molecules, providing a pathway to the synthesis of biologically relevant compounds. Experiments modeling such systems are being conducted with laboratory-produced tholins and model unsaturated hydrocarbons, nitriles, imines, and aromatic compounds, and the results and implications of these studies will be presented. 1. Coates, A. J., A. Wellbrock, G. R. Lewis, G. H. Jones, D. T. Young, F. J. Crary, and J. H. Waite Jr (2009), Planet. Space Sci., 57(14-15), 1866-1871. 2. Crary, F. J., B. A. Magee, K. Mandt, J. H. Waite Jr, J. Westlake, and D. T. Young (2009), Planet. Space Sci., 57(14-15), 1847-1856. 3. Khare, B. N., C. Sagan, E. T. Arakawa, F. Suits, T. A. Callcott, and M. W. Williams (1984), Icarus, 60(1), 127-137. 4. Ramirez, S. I., P. Coll, A. da Silva, R. Navarro-González, J. Lafait, and F. Raulin (2002), Icarus, 156(2), 515-529. 5. Imanaka, H., and M. A. Smith (2010), Proc. Natl. Acad. Sci. U.S.A., 107(28), 12423-12428. 6. Lorenz, R. D., et al. (2006), Science, 312(5774), 724-727. 7. O'Brien, D. P., R. D. Lorenz, and J. I. Lunine (2005), Icarus, 173(1), 243-253. 8. Neish, C. D., A. Somogyi, and M. A. Smith (2010), Astrobiology, 10(3), 337-347. 9. Beyer, M. K., and H. Clausen-Schaumann (2005), Chem. Rev., 105(8), 2921-2948. 10. Kajdas, C., and K. Hiratsuka (2009), Proc. Inst. Mech. Eng., Part J, 223(6), 827-848.

  10. Ordinary Chondrite Spectral Signatures in the 243 Ida Asteroid System

    NASA Astrophysics Data System (ADS)

    Granahan, J. C.

    2012-12-01

    The NASA Galileo spacecraft observed asteroid 243 Ida and satellite Dactyl on August 28, 1993, with the Near Infrared Mapping Spectrometer (NIMS) at wavelengths ranging from 0.7 to 5.2 micrometers[Carlson et al., 1994]. Work is being conducted to produce radiance-calibrated spectral images of 243 Ida consisting of 17-channel, 299 meters per pixel files and a 102-channel, 3.2 kilometer per pixel NIMS observations of 243 Ida for the NASA Planetary Data System (PDS). These data are currently archived in PDS as uncalibrated data number counts. Radiometric calibrated 17-channel and 102-channel NIMS spectral data files of Dactyl and light curve 243 Ida observations are also being prepared. Analysis of this infrared asteroid data has confirmed that both 243 Ida and Dactyl are S-type asteroid objects and found that their olivine and pyroxene mineral abundances are consistent with that of ordinary chondrite meteorites. Tholen [1989] identified 243 Ida and Chapman et al. [1995] identified Dactyl as S-type asteroids on the basis of spectral data ranging from 0.4 to 1.0 micrometers. S-type are described [Tholen, 1989] as asteroids with a moderate albedos, a moderate to strong absorption feature shortward of 0.7 micrometers, and moderate to nonexistent absorption features longward of 0.7 micrometers. DeMeo et al. [2009] found 243 Ida to be a Sw asteroid based on Earth-based spectral observations 0.4 to 2.5 micrometers in range. Sw is a subclass of S-type asteroids that has a space weathering spectral component [DeMeo et al., 2009]. The NIMS data 243 Ida and Dactyl processed in this study exhibit signatures consistent with the Sw designation of DeMeo et al. [2009]. Measurements of olivine and pyroxene spectral bands were also conducted for the NIMS radiance data of 243 Ida and Dactyl. Band depth and band center measurements have been used to compare S-type asteroids with those of meteorites [Dunn et al., 2010; Gaffey et al., 1993]. The 243 Ida spectra were found to be consistent with those of Granahan [2002] and corresponded to measurements of LL chondrites. Dactyl was found to have spectral bands that correlate to L chondrite meteorite signatures as measured by Dunn et al. [2010]. The spectra band measurements of both objects correspond to those of the SIV class [Gaffey et al., 1993] of the S asteroids. Both L and LL chondrites are types of ordinary chondrite meteorites. Carlson, R. W., et al. (1994), Bulletin of the American Astronomical Society, 26, 1156. Chapman, C. R., et al. (1995), Nature, 374, 783-785. DeMeo, F. E., R. P. Binzel, S. M. Slivan, and S. J. Bus (2009), Icarus, 202, 160-180. Dunn, T. L., T. J. McCoy, J. M. Sunshine, and H. Y. McSween (2010), Icarus, 208, 789-797. Gaffey, M. J., J. F. Bell, R. H. Brown, T. H. Burbine, J. L. Piatek, K. L. Reed, and D. A. Chaky (1993), Icarus, 106, 573-602. Granahan, J. C. (2002), Journal of Geophysical Research Planets, 107(E10), 5090-5100. Tholen, D. J. (1989), in Asteroids II, edited by R. P. Binzel, T. Gehrels, and M.S. Matthews, pp. 1139-1150, University of Arizona Press, Tucson.

  11. Nitrogen isotopic fractionation during plasma synthesis of Titan's aerosols analogues

    NASA Astrophysics Data System (ADS)

    Kuga, M.; Carrasco, N.; Marty, B.; Marrocchi, Y.; Bernard, S.; Rigaudier, T.

    2013-12-01

    The Cassini-Huygens mission recently provided measurements of the abundance of nitrogen isotopes in Titan's atmosphere. The 14N/15N ratio in the two most abundant N-bearing molecules in Titan's atmosphere was found to be 183×5 for N2 [1] and 56×8 for HCN [2]. Those two molecules are greatly enriched in the heavier isotope 15N compared to our terrestrial atmosphere and Titan's HCN is about three times richer in 15N than its potential photochemical precursor N2. This implies an important fractionation process in the HCN production chain, which is tentatively attributed to an isotopic selectivity of the photodissociation of N2 in Titan's ionosphere [3-4]. The organic aerosols, forming the Titan's orange characteristic haze layers, also contain large amounts of nitrogen [5], and thus represent a third important nitrogen reservoir in Titan's atmosphere. These organic aerosols are presumably produced in the upper atmosphere by chemical reactions between N2 and CH4 induced by solar radiation and electron bombardment from Saturn's magnetosphere. As HCN is a possible precursor for aerosol polymerization [6-7], the 15N enrichment observed in HCN may be linked to the polymerization process. Unfortunately, no data exists on the isotopic nitrogen abundance in Titan's aerosols, and this question remains open. To address this issue, laboratory aerosols analogues have been produced in a N2-CH4 plasma and their nitrogen isotopic composition have been investigated. In this study, the experimental aerosols, called " tholins ", have been synthetized in the PAMPRE reactor (LATMOS, France). This setup is dedicated to simulate chemical processes occurring in Titan's atmosphere and consists in an RF plasma discharge initiated in a N2-CH4 gas mixture at room temperature [8-9]. For our purpose, tholins were produced at different initial CH4 percentages (1, 2, 5, 10%), representative of the variation of the CH4 concentration in Titan's atmosphere. 15N/14N ratio of the N2 gas used in the initial gas mixture was analyzed by dual-inlet and tholins nitrogen isotopes were measured by EA-IRMS. PAMPRE tholins are depleted in 15N by -15 to -25‰ relative to the initial N2. Comparison of this nitrogen isotopic fractionation with a N2-CO-H2O plasma experiment done in very similar experimental conditions and resulting in a very close 15N depletion, has led us to interpret this 15N depletion between N2 and organic aerosols as a kinetic isotopic fractionation occurring during N2 dissociation in the plasma. This nitrogen isotopic fractionation, although important and larger than what is observed in natural terrestrial samples, is weak compared to what is measured in Titan's atmosphere for N2 and HCN. This apparent inconsistency will be discussed. [1] Niemann et al. (2010) JGR, 115, 1151-1154. [2] Vinatier et al. (2007) Icarus, 191, 712-721. [3] Liang et al. (2007) Ap.J. Lett., 664, L115. [4] Croteau et al. (2011) Ap.J. Lett., 728, L32. [5] Israel et al. (2005) [6] Lebonnois et al. (2002) Icarus, 159, 505-517. [7] Lavvas et al. 2008) Planet. Space Sci., 56, 67-99. [8] Szopa et al. (2006) Planet. Space. Sci., 54, 394-404. [9] Sciamma-O'Brien et al. (2010) Icarus, 209, 704-714.

  12. Computer modeling of bidirectional spectra: the role of geometry of illumination/observation

    NASA Astrophysics Data System (ADS)

    Grynko, Ye.; Shkuratov, Yu.; Mall, U.

    Reflectance spectroscopy is widely used in the remote sensing of the Moon. Ground based and space spectrophotometric observations provide information about physical properties and chemical composition of lunar regolith. The main spectral features such as spectral slope and parameters of the absorption bands are different for different minerals and depend on the surface roughness, particle size, degrees of maturity and cristallinity, etc. In order to interpret reflectance measurements a model describing the light interaction with a regolith-like surface is needed. However, the problem of light scattering in dense particulate media consisting of irregular particles larger than the wavelength of light (which is the case for lunar regolith) has not yet been solved and only approximate models exist. Spectrophotometric properties of such surfaces can be analyzed in the geometric optics approach with one-dimensional (1-D) light scattering models (e.g., [1]). Although the 1-D models are successfully applied to interprete planetary regolith spectra they do not give an answer how spectral features depend on the geometrical illumination/observation condition of the surface. Laboratory measurements prove that the changing lighting conditions play a significant role in the formation of the above mentioned spectral features [2, 3]. In the presented work we use computer modeling to simulate light reflection from a regolith-like surface. Our computer experiment includes two stages: The simulation of the medium and ray tracing [4, 5]. Particles with random irregular shape are randomly distributed in a cyclically closed model volume which forms a semi-infinite medium (surface). Their surface is described by flat facets.The applied technique uses a Monte Carlo ray tracing method with parallel rays falling under a given angle relative to the average surface normal. The interaction of a ray with a particle surface facet is determined by Fresnel formulas and Snell's law. The model delivers the absolute surface reflectance as function of wavelength for a given geometrical illumination/observation condition In this paper we study the dependence of the reflectance spectra on the phase angle. The angle of incidence is constant and equals to 70°. The phase angle changes from 0° to 160°. For the substance which the particles are made of we chose average value 1 for the complex refractive index corresponding to lunar mare and highlands. Our calculations reveal a strong dependence of the spectral slopes on the phase angle. This confirms the previous general conclusion given in [2] that the larger the phase angle is the redder is the spectrum. A decomposition of the reflected flux into different scattering components shows that this is caused by the indicatrix of single scattering. Multiple scattering has almost no influence on spectral slope. The shape of the absorption bands also varies with phase angle but this dependence is not regular. The 1 µm feature is more pronounced at small and moderate phase angles and becomes wide and less visible at very large phase angles. References. [1] Yu. Shkuratov et al., Icarus, 137, 235-246 (1999). [2] C. M. Pieters et al., LPSC XXII, Abstract #1069 (1991). [3] A. Cord et al., Icarus, 165, 414-427 (2003). [4] Ye. Grynko and Yu. Shkuratov, J. Quant. Spectrosc. Rad. Trans. 78, 319- 340 (2003). [5] Yu. Shkuratov and Ye. Grynko, Icarus, 173, 16-28 (2006). 2

  13. Photometric Analysis of the Jovian Ring System and Modeling of Ring Origin and Evolution

    NASA Technical Reports Server (NTRS)

    Esposito, L. W.

    2003-01-01

    We have successfully completed the work described in our proposal. The work supported by this grant resulted in the publication of the following paper: Brooks, S. M., L. W. Esposito, M. R. Showalter, and H. B. Throop. 2002. The size distribution of Jupiter's main ring from Galileo imaging and spectroscopy. Icarus, in press. This was also the major part of Dr. Shawn Brooks PhD dissertation. Dr. Brooks gave oral presentations on this work at the Lunar and Planetary Conference, the annual meetings of the Division for Planetary Sciences of the American Astronomical Society, the annual meetings of the European Geophysical Society, the international Jupiter Conference in Boulder, the Jupiter after Galileo and Cassini Conference in Lisbon and to the Working Group in Non-Linear Dynamics in Potsdam, Germany. This work was reviewed in: Esposito, L. W. 2002. Planetary rings. Rep. hog. Phys. 65, 1741-1783. Planetary rings. LASP reprint 874. Online at http://stacks.iop.org/RoPP/65/1741. Dr. Esposito gave presentations at schools and over the internet on the results of this work. Dr. Brooks lectured in undergraduate and graduate classes on Jupiter's rings, and on the meaning of his research. In August 2003, Dr. Shawn Brooks received the Phd degree from the University of Colorado in Astrophysical and Planetary Sciences.

  14. Using Lava Tube Skylight Thermal Emission Spectra to Determine Lava Composition on Io: Quantitative Constraints for Observations by Future Missions to the Jovian System.

    NASA Astrophysics Data System (ADS)

    Davies, A. G.

    2008-12-01

    Deriving the composition of Io's dominant lavas (mafic or ultramafic?) is a major objective of the next missions to the jovian system. The best opportunities for making this determination are from observations of thermal emission from skylights, holes in the roof of a lava tube through which incandescent lava radiates, and Io thermal outbursts, where lava fountaining is taking place [1]. Allowing for lava cooling across the skylight, the expected thermal emission spectra from skylights of different sizes have been calculated for laminar and turbulent tube flow and for mafic and ultramafic composition lavas. The difference between the resulting mafic and ultramafic lava spectra has been quantified, as has the instrument sensitivity needed to acquire the necessary data to determine lava eruption temperature, both from Europa orbit and during an Io flyby. A skylight is an excellent target to observe lava that has cooled very little since eruption (<0.1 K per km from source vent [2]). Using skylights has a number of advantages over outbursts. Lava fountains have a complex physical and thermal structure, and many model inputs can only be roughly estimated. Outburst events are also relatively rare. Finally, fluctuations in fountain activity mean that multi-spectral observations ideally have to be contemporaneous [3] to yield usable results. Skylights provide an unvarying thermal signal on timescales of 1 minute or longer, and expose a restricted range of temperatures close to lava eruption temperature. Skylights are therefore easily discernible against a cool background, and are detectable from great distances at night or with Io in eclipse with imagers covering the range 0.4 to 5.0 μm. To distinguish between ultramafic and mafic lavas, multispectral (or hyperspectral) observations with precise exposure timing and knowledge of filter response are needed in the range 0.4 to 0.8 μm, with (minimally) an additional model-constraining measurement at ~4-5 μm. As with many lava tube systems on Earth, skylights should be common on Io (for example, at Prometheus, Culann and Amirani). The possible superheating of lava prior to eruption complicates the analysis [4], but is likely to be significant only for deep- seated, often explosive, eruptions. Effusive activity at the aforementioned three locations is likely fed from shallow reservoirs [5], minimising superheating effects. This work was carried out at the Jet Propulsion Laboratory-California Institute of Technology, under contract to NASA. AGD is supported by a grant from the NASA OPR Program. References: [1] Davies, A. G., 1996, Icarus, 124, 45-61. [2] Keszthelyi, L., et al., 2006, JGS, 163, 253-264. [3] Davies, A. G., 2007, Volcanism on Io, Cambridge University Press. [4] Keszthelyi, L., et al., 2007, Icarus, 192, 491-502. [5] Davies, A. G., et al., 2006, Icarus, 184, 460-477.

  15. Continuing developments in the search for Martian atmospheric methane

    NASA Astrophysics Data System (ADS)

    Fonti, S.; Roush, T. L.; Chizek, M. R.; Liuzzi, G.; Mancarella, F.; Murphy, J. R.; Blanco, A.

    2012-12-01

    In recent years, the possible presence of a tiny, but meaningful, quantity of methane in the Martian atmosphere has been suggested [1-6] and widely debated [7] within the community, due to the important consequences it may have on our understanding of the planet's evolution. In this framework, and looking forward to the results of the planned search by the Sample Analysis at Mars instrument on-board the recently landed Mars Science Laboratory, the work of Fonti and Marzo [5] is particularly interesting. Using a statistical clustering technique, they analysed ~3x106 Thermal Emission Spectrometer spectra, spanning three Martian years. The results for principal Ls values (0, 90, 180, 270) suggest a temporal variation of the gas content with an annual cycle and a recurrent spatial distribution. In addition a preliminary temporal comparison with the well-known water vapour cycle and dust aerosol opacity has suggested interesting temporal phase correlations among the three atmospheric components. The possible implications of such findings have not been fully explored yet, due to the time and effort necessary to improve the temporal resolution of the data beyond the original four Ls values per year. Before undertaking such demanding effort, we have decided to improve our confidence in the results, currently affected by uncertainty of about 30 % on the derived methane abundance, focusing on the effects of the inhomogeneity in the original dataset that is linked to the presence of some anomalous spectra. Additionally, to better understand how the statistical procedure is affecting the clustering of the spectra, we have applied it to a set of synthetic Martian spectra that were generated by varying a relevant number of atmosphere and surface parameters. The clustering results for the artificial data set have then been compared to the known properties used to create it. [1] Krasnopolsky, V.A., Maillard, J.P., and Owen, T.C. 2004. Detection of methane in the martian atmosphere: evidence for life? Icarus 172, 537-547. [2] Formisano, V., Atreya, S.K., Encrenaz, Th., Ignatiev, N., and Giuranna, M. 2004. Detection of methane in the atmosphere of Mars. Science 306, 1758-1761. [3] Geminale, A., Formisano, V., and Giuranna, M. 2008. Methane in Martian atmosphere: average spatial, diurnal, and seasonal behaviour. Planet. Space Sci. 56, 1194-1203. [4] Mumma, M.J., Villanueva, G.L., Novak, R.E., Hewagama, T., Bonev, B.P., DiSanti, M.A., Mandell, A.M., and Smith, M.D. 2009. Strong release of methane on Mars in northern summer 2003. Science, 323, 1041-1045. [5] Fonti, S. and Marzo, G. 2010. Mapping the methane on Mars. Astron. Astrophys. 512, id.A51, doi: 10.1051/0004-6361/200913178. [6] Geminale, A., Formisano, V., and Sindoni, G. 2010. Mapping methane in Martian atmosphere with PFS-MEX data. Planet. Space Sci. doi:10.1016/j.pss.2010.07.011. [7] Zahnle, K., Freedman, R.S., Catling, D.C., Is there Methane on Mars?, Icarus (2010), doi: 10.1016/j.icarus.2010.11.027

  16. Diurnal variation of atmospheric water vapor at Gale crater: Analysis from ground-based measurements

    NASA Astrophysics Data System (ADS)

    Martinez, German; McConnochie, Timothy; Renno, Nilton; Meslin, Pierre-Yves; Fischer, Erik; Vicente-Retortillo, Alvaro; Borlina, Caue; Kemppinen, Osku; Genzer, Maria; Harri, Ari-Matti; de la Torre-Juárez, Manuel; Zorzano, Mari-Paz; Martin-Torres, Javier; Bridges, Nathan; Maurice, Sylvestre; Gasnault, Olivier; Gomez-Elvira, Javier; Wiens, Roger

    2016-04-01

    We analyze measurements obtained by Curiosity's Rover Environmental Monitoring Station (REMS) and ChemCam (CCAM) instruments to shed light on the hydrological cycle at Gale crater. In particular, we use nighttime REMS measurements taken when the atmospheric volume mixing ratio (VMR) and its uncertainty are the lowest (between 05:00 and 06:00 LTST) [1], and daytime CCAM passive sky measurements taken when the VMR is expected to be the highest (between 10:00 and 14:00 LTST) [2]. VMR is calculated from simultaneous REMS measurements of pressure (P), temperature (T) and relative humidity (RH) at 1.6 m (VMR is defined as RH×es(T)/P , where es is the saturation water vapor pressure over ice). The REMS relative humidity sensor has recently been recalibrated (June 2015), providing RH values slightly lower than those in the previous calibration (Dec 2014). The full diurnal cycle of VMR cannot be analyzed using only REMS data because the uncertainty in daytime VMR derived from REMS measurements is extremely high. Daytime VMR is inferred by fitting the output of a multiple-scattering discrete-ordinates radiative transfer model to CCAM passive sky observations [3]. CCAM makes these observations predominately in the vicinity of 11:00 - 12:00 LTST, but occasionally in the early morning near 08:00 LTST. We find that throughout the Martian year, the daytime VMR is higher than at night, with a maximum day-to-night ratio of about 6 during winter. Various processes might explain the differences between nighttime REMS and daytime CCAM VMR values. Potential explanations include: (i) surface nighttime frost formation followed by daytime sublimation [1], (ii) surface nighttime adsorption of water vapor by the regolith followed by daytime desorption and (iii) large scale circulations changing vertical H2O profiles at different times of the year. Potential formation of surface frost can only occur in late fall and winter [1], coinciding with the time when the diurnal amplitude of the near-surface VMR at Gale is maximum, while adsorption/desorption by the regolith can occur throughout the year [2]. Adsorption by the regolith is expected to be more efficient at lower temperatures (i.e. winter), although it remains unclear whether kinetics would allow for the exchange of adsorbed water on hourly time scales necessary to track insolation [4-5]. Local surface-atmosphere interactions, either via frost formation and/or exchange of adsorbed water with the atmosphere, might play a significant role in the diurnal hydrological cycle at Gale. REFERENCES: [1] Martínez G. M. et al. (2016) Icarus, doi: http://dx.doi.org/10.1016/j.icarus.2015.12.004 [2] Savijärvi H. (2016) Icarus, 265, 63-69. [3] McConnochie T. et al. (2015) AGU Fall Meeting. [4] Beck P. et al. (2010) JGR, 115, E10011. [5] Zent A. P. et al. (2001) JGR, 106, 14667-14674.

  17. Aspherical dust dynamics code for GIADA experiment in the coma of 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Ivanovski, Stavro; Zakharov, Vladimir; Della Corte, Vincenzo; Lucarelli, Francesca; Crifo, Jean-Francois; Rotundi, Alessandra; Fulle, Marco

    2014-05-01

    In 2014, the ESA ROSETTA probe is on its way to face its main scientific objectives by encountering and landing on comet 67P/Churyumov- Gerasimenko. One of the in-situ instrument on board ROSETTA is GIADA (Grain Impact Analyzer and Dust Accumulator)[1], which will measure individual dust grain mass, number density and velocity in the immediate vicinity of the cometary nucleus. Based on the state-of-the-art 3D+t dust coma model [3,4] we developed a 3D+t aspherical dust dynamical code Giaspheria (GIADA aspherical dust analyzer) which treats aspherical dust motion to support the scientific objectives of GIADA. We report the latest improvements in Giaspheria[5,6,7] and the distinctions in the dust dynamics of spherical and aspherical grains using gas solutions for a spherical nucleus not yet data-calibrated. We consider motion of homogeneous, isothermal polygonal convex bodies (close to ellipsoid of revolution with different aspect ratios of axes), moving under influence of three forces: aerodynamic , gravitational and torque. We use the gas distribution (density, velocity, temperature) for a spherical nucleus discussed in [4,8]. We estimate the aerodynamic force from expressions for free molecular interactions and postulate the distribution function of ejection velocity and the distribution function of initial orientation on the surface of the nucleus. We show the dust distribution of aspherical grains at three different heliocentric distances (3AU, 2AU and 1.3 AU) by means of GIPSI simulated GIADA measurements during these stages of the mission. As an input for GIPSI simulations we use the dust and velocity distributions prevised by Giaspheria computations. Acknowledgements: This research has been supported by the Italian Space Agency (ASI) (Ref: n. I/032/05/0) [1] Della Corte V. et al, (2014), Journal of Astronomical Instrumentation (in press). [2] Colangeli, L., et al., Space Science Reviews, Volume 128, Numbers 1-4, 803-821, 2007 [3] Zakharov, V.V., Rodionov A.V., Crifo J.-F., Fulle M., EPSC-DPS , p. 126, 2011 [4] Crifo, J.-F., Loukianov, G.A., Rodionov, A. V., and Zakharov, V. V., Icarus 176, pp. 192-219, 2005 [5] Ivanovski, S. L., Zakharov, V.V., Crifo J.-F., Della Corte V., Rotundi A., EPSC-DPS, p.1371, 2011 [6] Ivanovski, S. L., Zakharov, V.V., Crifo J.-F., Della Corte V., Rotundi A., Vol 7, EPSC2012-592, 2012 [7] Ivanovski, S. L., Zakharov, V.V., Crifo J.-F., Della Corte V., Rotundi A., Vol. 15, EGU2013-11417, 2013 [8] Crifo, J-F., Lukianov,G.A., Rodionov,A.V., Khanlarov,G.O. ,Zakharov,V.V. Icarus Vol.156, 249-268, 2002 [9] Zakharov,V.V., Rodionov, A. V., Lukianov,G.A., Crifo, J-F.,Icarus Vol. 201, I1, p.358-380, 2009

  18. Deciphering the embedded wave in Saturn's Maxwell ringlet

    NASA Astrophysics Data System (ADS)

    French, Richard G.; Nicholson, Philip D.; Hedman, Mathew M.; Hahn, Joseph M.; McGhee-French, Colleen A.; Colwell, Joshua E.; Marouf, Essam A.; Rappaport, Nicole J.

    2016-11-01

    The eccentric Maxwell ringlet in Saturn's C ring is home to a prominent wavelike structure that varies strongly and systematically with true anomaly, as revealed by nearly a decade of high-SNR Cassini occultation observations. Using a simple linear "accordion" model to compensate for the compression and expansion of the ringlet and the wave, we derive a mean optical depth profile for the ringlet and a set of rescaled, background-subtracted radial wave profiles. We use wavelet analysis to identify the wave as a 2-armed trailing spiral, consistent with a density wave driven by an m = 2 outer Lindblad resonance (OLR), with a pattern speed Ωp = 1769.17° d-1 and a corresponding resonance radius ares = 87530.0 km. Estimates of the surface mass density of the Maxwell ringlet range from a mean value of 11g cm-2 derived from the self-gravity model to 5 - 12gcm-2 , as inferred from the wave's phase profile and a theoretical dispersion relation. The corresponding opacity is about 0.12 cm2 g-1, comparable to several plateaus in the outer C ring (Hedman, M.N., Nicholson, P.D. [2014]. Mont. Not. Roy. Astron. Soc. 444, 1369-1388). A linear density wave model using the derived wave phase profile nicely matches the wave's amplitude, wavelength, and phase in most of our observations, confirming the accuracy of the pattern speed and demonstrating the wave's coherence over a period of 8 years. However, the linear model fails to reproduce the narrow, spike-like structures that are prominent in the observed optical depth profiles. Using a symplectic N-body streamline-based dynamical code (Hahn, J.M., Spitale, J.N. [2013]. Astrophys. J. 772, 122), we simulate analogs of the Maxwell ringlet, modeled as an eccentric ringlet with an embedded wave driven by a fictitious satellite with an OLR located within the ring. The simulations reproduce many of the features of the actual observations, including strongly asymmetric peaks and troughs in the inward-propagating density wave. We argue that the Maxwell ringlet wave is generated by a sectoral normal-mode oscillation inside Saturn with ℓ = m = 2 , similar to other planetary internal modes that have been inferred from density waves observed in Saturn's C ring (Hedman, M.N., Nicholson, P.D. [2013]. Astron. J. 146, 12; Hedman, M.N., Nicholson, P.D. [2014]. Mont. Not. Roy. Astron. Soc. 444, 1369-1388). Our identification of a third m = 2 mode associated with saturnian internal oscillations supports the suggestions of mode splitting by Fuller et al. (Fuller, J., Lai, D., Storch, N.I. [2014]. Icarus 231, 34-50) and Fuller (Fuller, J. [2014]. Icarus 242, 283-296). The fitted amplitude of the wave, if it is interpreted as driven by the ℓ = m = 2 f-mode, implies a radial amplitude at the 1 bar level of ∼ 50 cm, according to the models of Marley and Porco (Marley, M.S., Porco, C.C. [1993]. Icarus 106, 508).

  19. First Solar System Results Of The Spitzer Space Telescope, Including Imaging And Spectroscopy Of The Principal Uranian Satellites, Phoebe, And Rhea

    NASA Astrophysics Data System (ADS)

    van Cleve, J.; Cruikshank, D. P.; Stansberry, J. A.; Burgdorf, M. J.; Devost, D.; Emery, J. P.; Fazio, G.; Fernandez, Y. R.; Glaccum, W.; Grillmair, C.; Houck, J. R.; Meadows, V. S.; Morris, P.; Reach, W. T.; Reitsema, H.; Rieke, G. H.; Werner, M. W.

    2004-05-01

    The Spitzer Space Telescope, formerly known as SIRTF, is now operational and delivers unprecedented sensitivity for the observation of Solar System targets. Spitzer has three instruments, IRAC, IRS, and MIPS. IRAC (InfraRed Array Camera) provides simultaneous images at wavelengths of 3.6, 4.5, 5.8, and 8.0 μ m. IRS (InfraRed Spectrograph) has 4 modules providing low-resolution (R=60-120) spectra from 5.3 to 40 μ m, high-resolution (R=600) spectra from 10 to 37 μ m, and an autonomous target acquisition system (PeakUp) which includes small-field imaging at 15 μ m. MIPS (Multiband Imaging Photometer for SIRTF) does imaging photometry at 24, 70, and 160 μ m and low-resolution (R=15-25) spectroscopy (SED) between 55 and 96 μ m. Guaranteed Time Observer (GTO) programs include the moons of the outer Solar System, Pluto, Centaurs, Kuiper Belt Objects, and comets. For example, the "IRS Moons and Planets" program is now examining the principal satellites of outer Solar System planets, as well as Uranus and Neptune, using all SIRTF instruments. IRAC photometry will establish the hitherto unknown albedo of these cold objects at wavelengths between 3.5 and 8 μ m, IRS will do reflectance spectrosopy at wavelengths between 5.3 and 15 μ m, and thermal emission spectroscopy between 10 and 40 μ m. Combined with MIPS photometry and SED measurements, these data will provide compositional information, albedo, and thermal properties of these objects. The observations of Uranus and Neptune will be used to monitor changes in Uranus and Neptune atmospheres with season [1,2], for trace composition data, and for precise straylight subtraction for observations of their innermost principal satellites. We will observe Titan to compare spectra of the hemisphere centered on the "continent" seen in near-IR Hubble images [3] to spectra of other Titan longitudes, and interpret these differences in terms of surface composition and temperature. The poster will represent the first Solar System results of SIRTF, including but not limited to: 1. Photometry of the principal Uranian satellites between 3.6 and 15 μ m and interpretation in terms of surface composition, temperature, and thermal inertia. 2. Images and spectra of Phoebe and Rhea, and such other moons of Saturn as are scheduled for observation between March 1 and the beginning of this conference. 3. Images and spectra of Neptune and Triton, if those observations are scheduled between April 29 and the beginning of this conference. References: [1] Hammel H. B., Young, L. A, Hackwell J., Lynch D. K., Russell R., and Orton G. S. (1992) Icarus, 99, 347. [2] Hammel, H. B., Rages K., Lockwood G. W., Karkoschka E., and de Pater I. (2001) Icarus, 153, 229. [3] Smith, P. H., Lemmon, M. T., Lorenz, R. D., Sromovsky, L. A., Caldwell, J. J., and Allison, M. D. (1996) Icarus, 119, 336.

  20. Albedos of Jovian Trojans, Hildas and Centaurs

    NASA Astrophysics Data System (ADS)

    Romanishin, William; Tegler, Stephen C.

    2017-10-01

    We present distributions of optical V band albedos for samples of outer solar system minor bodies including Centaurs, Jovian Trojans and Hildas. Diameters come almost entirely from the NEOWISE catalog (Mainzer etal 2016- Planetary Data System). Optical photometry (H values) for about 2/3 of the approximately 2700 objects studied are from PanStarrrs (Veres et al 2015 Icarus 261, 34). The PanStarrs optical photometry is supplemented by H values from JPL Horizons (corrected to be on the same photometric system as the PanStarrs data) for the objects in the NEOWISE catalog that are not in the PanStarrs catalog. We compare the albedo distributions of various pairs of subsamples using the nonparametric Wilcoxon rank sum test. Examples of potentially interesting comparisons include: (1) The Hildas are 15-25% darker than the Trojans at a very high level of statistical significance. If the Hildas and Trojans started out with similar surfaces, the Hildas may have darkened due to the effects of gardening as they pass through zone III of the asteroid belt. (2) The median albedo of the gray Centaurs lies between that of the L4 and L5 Trojan groups (3) The median L5 Trojan cloud albedo is about 10% darker than that of the L4 cloud at a high level of significance. However, the modes of the L4 and L5 albedo distributions are very similar, perhaps indicating the presence of a distinct brighter component in the L4 cloud that is not found in the L5 cloud.

  1. Potentially active regions on Titan: New processing of Cassini/VIMS data

    NASA Astrophysics Data System (ADS)

    Solomonidou, A.; Hirtzig, M.; Bratsolis, E.; Bampasidis, G.; Coustenis, A.; Kyriakopoulos, K.; Le Mouélic, S.; Stephan, K.; Jaumann, R.; Drossart, P.; Sotin, C.; St. Seymour, K.; Moussas, X.

    2012-04-01

    The Cassini Visual and Infrared Mapping Spectrometer (VIMS) obtained data of Titan's surface from flybys performed during the last seven years. In the 0.8-5.2 µm range, these spectro-imaging data showed that the surface consists of a multivariable geological terrain hosting complex geological processes. The data from the seven narrow methane spectral "windows" centered at 0.93, 1.08, 1.27, 1.59, 2.03, 2.8 and 5 µm provide some information on the lower atmospheric context and the surface parameters that we want to determine. Atmospheric scattering and absorption need to be clearly evaluated before we can extract the surface properties. We apply here a statistical method [1, 2] and a radiative transfer method [3, 1] on three potentially "active" regions on Titan, i.e. regions possibly subject to change over time (in brightness and/or in color etc) [4]: Tui Regio (20°S, 130°W) [5], a 1,500-km long flow-like figure, Hotei Regio (26°S, 78°W) [6], a 700-km wide volcanic-like terrain, and Sotra Facula (15°S, 42°W) [7], a 235-km in diameter area. With our method of Principal Component Analysis (PCA) we have managed to isolate specific regions of distinct and diverse chemical composition. We have tested this method on the previously studied Sinlap crater [8], delimitating compositional heterogeneous areas compatible with the published conclusions by Le Mouélic et al. (2008). Our follow-up method focuses on retrieving the surface albedo of the three areas and of the surrounding terrains with different spectral response by applying a radiative transfer (RT) code. We have used as input most of the Cassini HASI and DISR measurements, as well as new methane absorption coefficients [9], which are important to evaluate the atmospheric contribution and to allow us to better constrain the real surface alterations, by comparing the spectra of these regions. By superposing these results onto the PCA maps, we can correlate composition and morphology. As a test case, we used our RT code to verify the varying brightness of Hotei Regio reported by other investigators based on models lacking proper simulation of the atmospheric absorption [10]. Even though we have used exactly the same dataset, we did not detect any significant surface albedo variations over time; this led us to revise the definition of "active" regions: even if these regions have not visually changed over the course of the Cassini mission, the determination of the chemical composition and the correlation with the morphological structures [11] observed in these areas do not rule out that past and/or ongoing cryovolcanic processes are still a possible interpretation. [1] Solomonidou, A. et al. (2011). Potentially active regions on Titan: New processing of Cassini/VIMS data. In preparation. [2] Stephan, K. et al. (2008). Reduction of instrument-dependent noise in hyperspectral image data using the principal component analysis: Applications to Galileo NIMS data. Planetary and Space Science 56, 406-419. [3] Hirtzig, M. et al. (2011). Applications of a new methane linelist to Cassini/VIMS spectra of Titan in the 1.28-5.2 µm range . In preparation. [4] Wall, s. D. et al. (2009). Cassini RADAR images at Hotei Arcus and western Xanadu, Titan: Evidence for geologically recent cryovolcanic activity. Journal of Geophysical Research 36, L04203, [5] Barnes, J.W. et al. (2006). Cassini observations of flow-like features in western Tui Regio, Titan. Geophysical Research Letters 33, L16204. [6] Soderblom, L.A. et al. (2009). The geology of Hotei Regio, Titan: Correlation of Cassini VIMS and RADAR. Icarus 204, 610-618. [7] Lopes, R.M.C. et al. (2010). Distribution and interplay of geologic processes on Titan from Cassini radar data. Icarus 205, 540-558. [8] Le Mouélic et al. (2008). Mapping and interpretation of Sinlap crater on Titan using Cassini VIMS and RADAR data. Journal of Geophysical Research 113, E04003. [9] Campargue, A. et al. (2011). An empirical line list for methane at 80 K and 296 K in the 1.26-1.71 µm region for planetary investigations. Application to Titan. Icarus. Submitted. [10] Nelson, R. et al (2009). Saturn's Titan: Surface change, ammonia, and implications for atmospheric and tectonic activity. Icarus 199, 429-441. [11] Solomonidou, A. et al. (2011). Possible morphotectonic features on Titan and their origin. Planetary and Space Science. Submitted.

  2. Hapke modeling of Rhea surface properties through Cassini-VIMS spectra

    USGS Publications Warehouse

    Ciarniello, M.; Capaccioni, F.; Filacchione, G.; Clark, R.N.; Cruikshank, D.P.; Cerroni, P.; Coradini, A.; Brown, R.H.; Buratti, B.J.; Tosi, F.; Stephan, K.

    2011-01-01

    The surface properties of the icy bodies in the saturnian system have been investigated by means of the Cassini-VIMS (Visual Infrared Mapping Spectrometer) hyperspectral imager which operates in the 0.35-5.1. ??m wavelength range. In particular, we have analyzed 111 full disk hyperspectral images of Rhea ranging in solar phase between 0.08?? and 109.8??. These data have been previously analyzed by Filacchione et al. (Filacchione, G. et al. [2007]. Icarus 186, 259-290; Filacchione, G. et al. [2010]. Icarus 206, 507-523) to study, adopting various "spectral indicators" (such as spectral slopes, band depth, and continuum level), the relations among various saturnian satellites. As a further step we proceed in this paper to a quantitative evaluation of the physical parameters determining the spectrophotometric properties of Rhea's surface. To do this we have applied Hapke (Hapke, B. [1993]. Theory of Reflectance and Emittance Spectroscopy, Topics in Remote Sensing: 3 Springer, Berlin) IMSA model (Isotropic Multiple Scattering Approximation) which allow us to model the phase function at VIS-IR (visible-infrared) wavelengths as well as the spectra taking into account various types of mixtures of surface materials. Thanks to this method we have been able to constrain the size of water ice particles covering the surface, the amount of organic contaminants, the large scale surface roughness and the opposition effect surge. From our analysis it appears that wavelength dependent parameters, e.g. opposition surge width (h) and single-particle phase function parameters (b,. v), are strongly correlated to the estimated single-scattering albedo of particles. For Rhea the best fit solution is obtained by assuming: (1) an intraparticle mixture of crystalline water ice and a small amount (0.4%) of Triton tholin; (2) a monodisperse grain size distribution having a particle diameter am= 38. ??m; and (3) a surface roughness parameter value of 33??. The study of phase function shows that both shadow hiding and coherent backscattering contribute to the opposition surge. This study represents the first attempt, in the case of Rhea, to join the spectral and the photometric analysis. The surface model we derived gives a good quantitative description of both spectrum and phase curve of the satellite. The same approach and model, with appropriate modifications, shall be applied to VIMS data of the other icy satellites of Saturn, in order to reveal similarities and differences in the surface characteristics to understand how these bodies interact with their environment. ?? 2011 Elsevier Inc.

  3. Erosion and Ejecta Reaccretion on 243 Ida and Its Moon

    NASA Astrophysics Data System (ADS)

    Geissler, Paul; Petit, Jean-Marc; Durda, Daniel D.; Greenberg, Richard; Bottke, William; Nolan, Michael; Moore, Jeffrey

    1996-03-01

    Galileo images of Asteroid 243 Ida and its satellite Dactyl show surfaces which are dominantly shaped by impact cratering. A number of observations suggest that ejecta from hypervelocity impacts on Ida can be distributed far and wide across the Ida system, following trajectories substantially affected by the low gravity, nonspherical shape, and rapid rotation of the asteroid. We explore the processes of reaccretion and escape of ejecta on Ida and Dactyl using three-dimensional numerical simulations which allow us to compare the theoretical effects of orbital dynamics with observations of surface morphology. The effects of rotation, launch location, and initial launch speed are first examined for the case of an ideal triaxial ellipsoid with Ida's approximate shape and density. Ejecta launched at low speeds (V≪Vesc) reimpact near the source craters, forming well-defined ejecta blankets which are asymmetric in morphology between leading and trailing rotational surfaces. The net effect of cratering at low ejecta launch velocities is to produce a thick regolith which is evenly distributed across the surface of the asteroid. In contrast, no clearly defined ejecta blankets are formed when ejecta is launched at higher initial velocities (V∼Vesc). Most of the ejecta escapes, while that which is retained is preferentially derived from the rotational trailing surfaces. These particles spend a significant time in temporary orbit around the asteroid, in comparison to the asteroid's rotation period, and tend to be swept up onto rotational leading surfaces upon reimpact. The net effect of impact cratering with high ejecta launch velocities is to produce a thinner and less uniform soil cover, with concentrations on the asteroids' rotational leading surfaces. Using a realistic model for the shape of Ida (P. Thomas, J. Veverka, B. Carcich, M. J. S. Belton, R. Sullivan, and M. Davies 1996,Icarus120, 000-000), we find that an extensive color/albedo unit which dominates the northern and western hemispheres of the asteroid can be explained as the result of reaccretion of impact ejecta from the large and evidently recent crater “Azzurra.” Initial ejection speeds required to match the color observations are on the order of a few meters per second, consistent with models (e.g., M. C. Nolan, E. Asphaug, H. J. Melosh, and R. Greenberg 1996,Icarus, submitted; E. Asphaug, J. Moore, D. Morrison, W. Benz, and R. Sullivan 1996,Icarus120, 158-184) that multikilometer craters on Ida form in the gravity-dominated regime and are net producers of locally retained regolith. Azzurra ejecta launched in the direction of rotation at speeds near 10 m/sec are lofted over the asteroid and swept up onto the rotational leading surface on the opposite side. The landing locations of these particles closely match the distribution of large ejecta blocks observed in high resolution images of Ida (P. Lee, J. Veverka, P. Thomas, P. Helfstein, M. J. S. Belton, C. Chapman, R. Greeley, R. Pappalardo, R. Sullivan, and J. W. Head 1996,Icarus120, 87-105). Ida's shape and rotation allow escape of ejecta launched at speeds far below the escape velocity of a nonrotating sphere of Ida's volume and presumed density. While little ejecta from Ida is captured by Dactyl, about half of the mass ejected from Dactyl at speeds of up to 20 m/sec eventually falls on Ida. Particles launched at speeds just barely exceeding Dactyl's escape velocity can enter relatively long-term orbit around Ida, but few are ultimately reaccreted by the satellite. Because of its low gravity, erosion of Dactyl would take place on exceedingly short time scales if unconsolidated materials compose the satellite and crater formation is in the gravity regime. If Dactyl is a solid rock, then its shape has evolved from a presumably irregular initial fragment to its present remarkably rounded figure by collision with a population of impactors too small to be detected by counting visible craters. As the smallest solar system object yet imaged by a spacecraft, the morphology of Dactyl is an important clue to the asteroid population at the smallest sizes.

  4. The age and the probable parent body of the daytime arietid meteor shower

    NASA Astrophysics Data System (ADS)

    Abedin, Abedin; Wiegert, Paul; Pokorný, Petr; Brown, Peter

    2017-01-01

    The daytime Arietid meteor shower is active from mid-May to late June and is amongst the strongest of the annual meteor showers, comparable in activity and duration to the Perseids and the Geminids. Due to the daytime nature of the shower, the Arietids have mostly been constrained by radar studies. The Arietids exhibit a long-debated discrepancy in the semi-major axis and the eccentricity of meteoroid orbits as measured by radar and optical surveys. Radar studies yield systematically lower values for the semi-major axis and eccentricity, where the origin of these discrepancies remain unclear. The proposed parent bodies of the stream include comet 96P/Machholz [McIntosh, B.A., 1990. Comet P/Machholz and the Quadrantid meteor stream. Icarus 86, 894 299-304. doi:10.1016/0019-1035(90)90219-Y.] and more recently a member of the Marsden group of sun-skirting comets, P/1999 J6 [Sekanina, Z., Chodas, P.W., 2005. Origin of the Marsden and Kracht Groups of Sunskirting 922 Comets. I. Association with Comet 96P/Machholz and Its Interplanetary Complex. ApJS 923 161, 551-586. doi:10.1086/497374.]. In this work, we present detailed numerical modelling of the daytime Arietid meteoroid stream, with the goal to identifying the parent body and constraining the age of the stream. We use observational data from an extensive survey of the Arietids by the Canadian Meteor Orbit Radar (CMOR), in the period of 2002-2013, and several optical observations by the SonotaCo meteor network and the Cameras for All-sky Meteor Surveillance (CAMS). We find the most plausible scenario to be that the age and the formation mechanism of the Arietids is consistent with continuous cometary activity of 96P/Machholz over a time interval of ≈12,000 years. The sun-skirting comet P/1999 J6 suggested by [Sekanina, Z., Chodas, P.W., 2005. Origin of the Marsden and Kracht Groups of Sunskirting 922 Comets. I. Association with Comet 96P/Machholz and Its Interplanetary Complex. ApJS 923 161, 551-586. doi:10.1086/497374.] may contribute to the shower, but the comet break up prior to 950 CE they propose does not reproduce all the characteristics of the observed shower.

  5. Mars Habitability, Biosignature Preservation, and Mission Support

    NASA Technical Reports Server (NTRS)

    Oehler, Dorothy Z.; Allen, Carlton C.

    2014-01-01

    Our work has elucidated a new analog for the formation of giant polygons on Mars, involving fluid expulsion in a subaqueous environment. That work is based on three-dimensional (3D) seismic data on Earth that illustrate the mud volcanoes and giant polygons that result from sediment compaction in offshore settings. The description of this process has been published in the journal Icarus, where it will be part of a special volume on Martian analogs. These ideas have been carried further to suggest that giant polygons in the Martian lowlands may be the signature of an ancient ocean and, as such, could mark a region of enhanced habitability. A paper describing this hypothesis has been published in the journal Astrobiology.

  6. Search for Local Variations of Atmospheric H2O and CO on Mars with PFS/Mars Express

    NASA Astrophysics Data System (ADS)

    Lellouch, E.; Encrenaz, T.; Fouchet, T.; Billebaud, F.; Formisano, V.; Atreya, S.; Ignatiev, N.; Moroz, V.; Maturilli, A.; Grassi, D.; Pfs Team

    Spectra recorded by the PFS instrument onboard Mars Express include clear spectral signatures due to CO at 4.7 and 2.3 micron, and H2O at 1.38, 2.6 and 30-50 micron. These features can be used to determine the horizontal distribution of these species on global and local scales and to monitor it with time. Here we investigate the local variations of H2O and CO, focussing on the regions of high-altitude volcanoes. Preliminary results suggest a significant decrease of the CO mixing ratio in these regions, as was found from ISM/Phobos observations (Rosenqvist et al. Icarus 98, 254, 1992).

  7. Recent Simulations of the Late Stages Growth of Jupiter

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; D'Angelo, Gennaro; Hubickyj, Olenka

    2012-01-01

    Presented by Lissauer et al. (2009, Icarus 199, 338) are used to test the model of capture of Jupiter's irregular satellites within proto-Jupiter's distended and thermally-supported envelope. We find such capture highly unlikely, since the envelope shrinks too slowly for a large number of moons to be retained, and many of those that would be retained would orbit closer to the planet than do the observed Jovian irregulars. Our calculations do not address (and therefore do not exclude) the possibility that the irregular satellites were captured as a result of gas drag within a circumjovian disk. Support for this research from NASA Outer Planets Research Program is gratefully acknowledged.

  8. Observations of D/H ratios in H2O, HCl, and HF on Venus and new DCl and DF line strengths

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, V. A.; Belyaev, D. A.; Gordon, I. E.; Li, G.; Rothman, L. S.

    2013-05-01

    Intensities of the spectral lines in the fundamental bands of D35Cl and DF were calculated using the semi-empirical dipole moment functions derived from the most accurate and precise measurements of intensities of the ro-vibrational lines of H35Cl and HF. Values obtained in this way for the deuterated species are superior to any available measured or calculated data to date. Our study of the D/H ratios in H2O, HCl, and HF on Venus is based on spatially-resolved high-resolution spectroscopy using the CSHELL spectrograph at NASA IRTF. Search for DF on Venus using its R5 (1-0) line at 3024.054 cm-1 results in a DF mixing ratio of 0.23 ± 0.11 ppb that corresponds to (D/H)HF = 420 ± 200 times that in the Standard Mean Ocean Water (SMOW). H2O abundances on Venus were retrieved using lines at 3022.366 and 3025.761 cm-1 that were observed at an exceptionally low overhead telluric water abundance of 0.3 pr. mm. The measured H2O mixing ratios at 74 km vary insignificantly between 55°S and 55°N with a mean value of 3.2 ppm. When compared with simultaneous observations of HDO near 2722 cm-1, this results in (D/H)H2O = 95 ± 15 times SMOW. Reanalysis of the observation of the D35Cl R4 (1-0) line at 2141.540 cm-1 (Krasnopolsky, V.A. [2012b]. Icarus 219, 244-249) using the improved line strength and more thorough averaging of the spectra gives (D/H)HCl = 190 ± 50 times SMOW. The similarity of the measured (D/H)H2O = 95 ± 15 at 74 km with 120 ± 40 observed by De Bergh et al. (De Bergh, C., Bezard, B., Owen, T., Crisp, D., Maillard, J.P., Lutz, B.L. [1991]. Science 251, 547-549) below the clouds favors the constant (D/H)H2O from the surface to the mesosphere, in accord with the prediction by theory. D/H ≈ 100 removes a difference of a factor of 2 between H2O abundances in the observations by Krasnopolsky (Krasnopolsky, V.A. [2010b]. Icarus 209, 314-322) and the Venus Express nadir observations (Cottini, V., Ignatiev, N.I., Piccioni, G., Drossart, P., Grassi, D., Markiewicz, W.J. [2012]. Icarus 217, 561-569). Equivalent widths of the HDO and H2O lines are similar in our observations; therefore some errors cancel out in their ratios. Photochemistry of HCl in the mesosphere tends to enrich D in HCl and deplete it in H2O. This may be an explanation of the twofold difference between the observed D/H in HCl and H2O. An alternative explanation is based on (D/H)H2O ≈ 200 observed in the mesosphere by Bjoraker et al. (Bjoraker, G.L., Larson, H.P., Mumma, M.J., Timmermann, R., Montani, J.L. [1992]. Bull. Am. Astron. Soc. 24, 995) and Fedorova et al. (Fedorova, A. et al. J. Geophys. Res. 113, E00B22). This means an effective exchange of D between H2O and HCl and almost equal D/H in both species. However, this requires a twofold increase in D/H from the lower atmosphere to the mesosphere. This increase is not supported by theory; furthermore, condensation processes usually deplete D/H above the clouds. Photochemistry of HF has not been studied; it proceeds mostly in the lower thermosphere, and D/H in HF may be very different from that in H2O. Overall, the observational data on D/H in all hydrogen-bearing species on Venus are helpful to solve the problem of deuterium fractionation on Venus.

  9. The North Polar Layered Deposits on Mars: The Internal Layering of Gemina Lingula and Implications for Ice Flow

    NASA Astrophysics Data System (ADS)

    Karlsson, Nanna B.; Holt, John W.; Hindmarsh, Richard C. A.; Choudhary, Prateek

    2010-05-01

    The North Polar Layered Deposits (NPLD) is one of the largest reservoirs of surface water on Mars and, via an active exchange of water vapour with the atmosphere, it plays an important role in the Martian climate. The impact of ice flow on the overall shape of the NPLD is still widely debated. A study by Winebrenner et al. (2008) found evidence for relict flow lines in the southernmost part of the NPLD called Gemina Lingula (GL). Other studies have concluded that the upper part of the NPLD shows no evidence of flow (Fishbaugh and Hvidberg, 2006) and that surface mass balance alone can produce the topography (Greve et al., 2004 and Greve and Mahajan, 2005) . This paper presents results from an analysis of radar data from the SHARAD (SHallow RADar) instrument on board NASA's Mars Reconnaissance Orbiter. The SHARAD instrument operates with a 20MHz centre frequency and a 10MHz bandwidth and one of its primary mission goals is to map the state and distribution of water on Mars. For more details on the SHARAD instrument please refer to Seu et al. (2007). In the SHARAD data we identified and mapped six internal horizons from over 80 radar lines retrieved over GL. All horizons were easily identifiable in the majority of the data and were on average present in over 80% of the radar data considered. The observed layers were then compared to modelled layers from a 3D ice flow model. The model uses a smoothed surface topography, where troughs and scarps have been filled in, and assumes that the shape and the mass balance of the NPLD are constant in time. The shape of the internal layers are then calculated as they would appear in a flowing ice cap given those parameters. More information on the model can be found in Hindmarsh et al. (2009). The overall fit between modelled and observed layers is reasonably good, but the goodness of the fit varies both between the different horizons and the different regions of GL. Horizons in the upper part of the ice fit less well than horizons in the lower part. The upper horizons also generally achieve a better fit in the western part of GL while the fit for the lower horizons has a less distinct geographical variation. These differences could indicate a time gap in the deposition of the layers and may be explained by the existence of an angular unconformity previously identified within GL (Holt and Safaeinili, 2009). It is possible that the lower layers experienced a significantly different history than the upper, and/or that the geometry of the upper layers is primarily the result of draping the unconformity surface which is an elongated dome. Only taking into account individual layer geometry, our comparison between modelled and observed internal layering indicates that it is possible that ice flow has influenced the shape of NPLD. However, if this is the case GL must have extended farther to the southeast, or alternatively the accumulation pattern must have been significantly different to what is assumed in the model. Fishbaugh and Hvidberg. Journal of Geophysical Research, 111, 2006. Greve et al. Planetary and Space Science, 52, p. 775-787, 2004. Greve and Mahajan. Icarus, 174, p. 475-485, 2005. Hindmarsh et al. Annals of Glaciology, 50, 130140, 2009. Holt and Safaeinili. LPSC XXXX, # 1721, 2009. Phillips et al. Science, 320, 1182, 2008. Putzig et al. Icarus, 204, p. 443-457, 2009. Seu et al. Journal of Geophysical Research, 112, 2007. Winebrenner et al. Icarus, 195, p. 90-105, 2008.

  10. The role of the North Atlantic Oscillation in controlling U.K. butterfly population size and phenology

    PubMed Central

    Westgarth-Smith, Angus R; Roy, David B; Scholze, Martin; Tucker, Allan; Sumpter, John P

    2012-01-01

    1. The North Atlantic Oscillation (NAO) exerts considerable control on U.K. weather. This study investigates the impact of the NAO on butterfly abundance and phenology using 34 years of data from the U.K. Butterfly Monitoring Scheme (UKBMS). 2. The study uses a multi-species indicator to show that the NAO does not affect overall U.K. butterfly population size. However, the abundance of bivoltine butterfly species, which have longer flight seasons, were found to be more likely to respond positively to the NAO compared with univoltine species, which show little or a negative response. 3. A positive winter NAO index is associated with warmer weather and earlier flight dates for Anthocharis cardamines (Lepidoptera: Pieridae), Melanargia galathea (Lepidoptera: Nymphalidae), Aphantopus hyperantus (Lepidoptera: Nymphalidae), Pyronia tithonus (Lepidoptera: Nymphalidae), Lasiommata megera (Lepidoptera: Nymphalidae) and Polyommatus icarus (Lepidoptera: Lycaenidae). In bivoltine species, the NAO affects the phenology of the first generation, the timing of which indirectly controls the timing of the second generation. 4. The NAO influences the timing of U.K. butterfly flight seasons more strongly than it influences population size. PMID:22879687

  11. Conceptual design of cost-effective and environmentally-friendly configurations for fuel ethanol production from sugarcane by knowledge-based process synthesis.

    PubMed

    Sánchez, Óscar J; Cardona, Carlos A

    2012-01-01

    In this work, the hierarchical decomposition methodology was used to conceptually design the production of fuel ethanol from sugarcane. The decomposition of the process into six levels of analysis was carried out. Several options of technological configurations were assessed in each level considering economic and environmental criteria. The most promising alternatives were chosen rejecting the ones with a least favorable performance. Aspen Plus was employed for simulation of each one of the technological configurations studied. Aspen Icarus was used for economic evaluation of each configuration, and WAR algorithm was utilized for calculation of the environmental criterion. The results obtained showed that the most suitable synthesized flowsheet involves the continuous cultivation of Zymomonas mobilis with cane juice as substrate and including cell recycling and the ethanol dehydration by molecular sieves. The proposed strategy demonstrated to be a powerful tool for conceptual design of biotechnological processes considering both techno-economic and environmental indicators. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Use of Unmanned Aerial Systems to Study Atmospheric Processes During Sea Ice Freeze Up

    NASA Astrophysics Data System (ADS)

    de Boer, G.; Lawrence, D.; Weibel, D.; Borenstein, S.; Bendure, A.; Solomon, A.; Intrieri, J. M.

    2017-12-01

    In October 2016, a team of scientists deployed to Oliktok Point, Alaska to make atmospheric measurements as part of the Evaluation of Routine Atmospheric Sounding measurements using Unmanned Systems (ERASMUS) and Inaugural Campaigns for ARM Research using Unmanned Systems (ICARUS) campaigns. The deployment included operations using the University of Colorado DataHawk2 UAS. The DataHawk2 was configured to make measurements of atmospheric thermodynamics, wind and surface temperature, providing information on lower tropospheric thermodynamic structure, turbulent surface fluxes, and surface temperature. During this campaign, the team experienced a variety of weather regimes and witnessed the development of near shore sea ice. In this presentation, we will give an overview of the measurements obtained during this time and how they were used to better understand freeze up processes in this coastal environment. Additionally, we will provide insight into how these platforms are being used for evaluation of a fully-coupled sea ice forecast model operated by NOAA's Physical Sciences Division.

  13. Possible Thermal Metamorphism on the C Asteroids Seen from the 3-micrometer Hydration Band in Comparison with Heated CI/CM Meteorites

    NASA Astrophysics Data System (ADS)

    Hiroi, T.; Pieters, C. M.; Zolensky, M. E.; Lipschutz, M. E.

    1995-09-01

    Thermal metamorphism study of the C (including G, B, and F) asteroids [1] is revisited using their selected reflectance spectra (0.3-3.6 micrometers) [2]. Laboratory spectra of some carbonaceous chondrites and heated Murchison samples [3] have been also measured for comparison. Both CI1 and CM2 meteorites have a characteristic 3-micrometer hydration band [4] at various strengths, and most CM2 meteorites also have 0.7, 0.9, and 1.1-micrometer bands due to ferric/ferrous Fe in septechlorites (Fig. 1). The unusual CI/CM meteorites (Y-86720, B-7904, Y-82162, etc.) that have evidence of thermal metamorphism have no 0.7-micrometer band but still have a weak 3-micrometer band. The 3-micrometer band of heated Murchison samples is gradually reduced for samples heated up to 500 degrees C and gone around 600 degrees C. The 0.7-micrometer band is gone even before 400 degrees C. The 3-micrometer band strengths of the unusual CI/CM meteorites correspond to the heating temperature between 500 and 600 degrees C if the process was similar to the Murchison heating experiment. None of the C asteroids have both the 3-micrometer band strength and overall spectral profile comparable to the common CI/CM meteorites studied here. Among the seven selected asteroids, only two have a meteorite counterpart over this wavelength range. Asteroid 511 Davida and B-7904 are the best counterparts in both spectral shape and brightness (Fig. 1). Existence of the unusual CI/CM meteorites suggests that there were their parent bodies that contained water (ice) at appropriate temperatures over sufficient time to induce aqueous alteration and were subsequently heated up to 500-600 degrees C. It has been recently suggested that some dark inclusions of Vigarano (CV3) experienced extensive aqueous alteration followed by complete dehydration and recrystallization [5]. Since dark inclusions are common in all CV3 meteorites, aqueous alteration and late-stage heating may have been widespread on the CV3 parent bodies. Because common CI/CM meteorites are spectrally different from any of the observed asteroids, those meteorites must have come from another asteroid population, assuming the asteroid surfaces are not significantly altered by space weathering. CI/CM meteorites may have come from smaller unobservable asteroids or the lost outer portions of asteroids, which escaped extensive heating events. Acknowledgments: Antarctic meteorites were loaned from National Institute of Polar Research and Meteorite Working Group. Laboratory reflectance spectra were measured at RELAB operated under NASA grant NAGW-748. Asteroidal 3-micrometer reflectance spectra were taken from SOARD database. This research was supported in part by NASA grant NAG 9-48 to M. L. and the NASA Origins of Solar Systems Program to M. Z. References: [1] Hiroi T. et al. (1993) Science, 261, 1016-1018; Hiroi T. et al. (1994) Proc. NIPR Symp. Antarct. Meteorites, 7, 230-243. [2] Zellner B. et al. (1985) Icarus, 61, 355-416; Bell J. F. et al. (1988) LPS XIX, 57-58; Jones T. D. et al. (1990) Icarus, 88, 172-192. [3] Matza S. D. and Lipschutz M. E. (1977) Proc. LSC 8th, 161-176. [4] Miyamoto M. and Zolensky M. E. (1994) Meteoritics, 29, 849-853. [5] Kojima H. et al. (1993) Meteoritics, 28, 649-658.

  14. A RT-based Technique for the Analysis and the Removal of Titan's Atmosphere by Cassini/VIMS-IR data

    NASA Astrophysics Data System (ADS)

    Sindoni, G.; Tosi, F.; Adriani, A.; Moriconi, M. L.; D'Aversa, E.; Grassi, D.; Oliva, F.; Dinelli, B. M.; Castelli, E.

    2015-12-01

    Since 2004, the Visual and Infrared Mapping Spectrometer (VIMS), together with the CIRS and UVIS spectrometers, aboard the Cassini spacecraft has provided insight on Saturn and Titan atmospheres through remote sensing observations. The presence of clouds and aerosols in Titan's dense atmosphere makes the analysis of the surface radiation a difficult task. For this purpose, an atmospheric radiative transfer (RT) model is required. The implementation of a RT code, which includes multiple scattering, in an inversion algorithm based on the Bayesian approach, can provide strong constraints about both the surface albedo and the atmospheric composition. The application of this retrieval procedure we have developed to VIMS-IR spectra acquired in nadir or slant geometries allows us to retrieve the equivalent opacity of Titan's atmosphere in terms of variable aerosols and gaseous content. Thus, the separation of the atmospheric and surface contributions in the observed spectrum is possible. The atmospheric removal procedure was tested on the spectral range 1-2.2μm of publicly available VIMS data covering the Ontario Lacus and Ligeia Mare regions. The retrieval of the accurate composition of Titan's atmosphere is a much more complex task. So far, the information about the vertical structure of the atmosphere by limb spectra was mostly derived under conditions where the scattering could be neglected [1,2]. Indeed, since the very high aerosol load in the middle-low atmosphere produces strong scattering effects on the measured spectra, the analysis requires a RT modeling taking into account multiple scattering in a spherical-shell geometry. Therefore the use of an innovative method we are developing based on the Monte-Carlo approach, can provide important information about the vertical distribution of the aerosols and the gases composing Titan's atmosphere.[1]Bellucci et al., (2009). Icarus, 201, Issue 1, p. 198-216.[2]de Kok et al., (2007). Icarus, 191, Issue 1, p. 223-235.

  15. Measurement of the meteoroid flux at Mars

    NASA Astrophysics Data System (ADS)

    Domokos, A.; Bell, J. F.; Brown, P.; Lemmon, M. T.; Suggs, R.; Vaubaillon, J.; Cooke, W.

    2007-11-01

    In the fall of 2005, a dedicated meteor observing campaign was carried out by the Panoramic Camera (Pancam) onboard the Mars Exploration Rover (MER) Spirit to determine the viability of using MER cameras as meteor detectors and to obtain the first experimental estimate of the meteoroid flux at Mars. Our observing targets included both the sporadic meteoroid background and two predicted martian meteor showers: one associated with 1P/Halley and a potential stream associated with 2001/R1 LONEOS. A total of 353 images covering 2.7 h of net exposure time were analyzed with no conclusive meteor detections. From these data, an upper limit to the background meteoroid flux at Mars is estimated to be <4.4×10 meteoroidskmh for meteoroids with mass larger than 4 g. For comparison, the estimated flux to this mass limit at the Earth is 10 meteoroidskmh [Grün, E., Zook, H.A., Fechtig, H., Giese, R.H., 1985. Icarus 62, 244-272]. This result is qualitatively consistent, within error bounds, with theoretical models predicting martian fluxes of ˜50% that at Earth for meteoroids of mass 10-10 g [Adolfsson, L.G., Gustafson, B.A.S., Murray, C.D., 1996. Icarus 119, 144-152]. The MER cameras, even using the most sensitive mode of operation, should expect to see on average only one coincident meteor on of order 40-150 h of total exposure time based on these same theoretical martian flux estimates. To more meaningfully constrain these flux models, a longer total integrated exposure time or more sensitive camera is needed. Our analysis also suggests that the event reported as the first martian meteor [Selsis, F., Lemmon, M.T., Vaubaillon, J., Bell, J.F., 2005. Nature 435, 581] is more likely a grazing cosmic ray impact, which we show to be a major source of confusion with potential meteors in all Pancam images.

  16. Initial Results of a Survey of Earth's L4 Point for Possible Earth Trojan Asteroids

    NASA Astrophysics Data System (ADS)

    Connors, M.; Veillet, C.; Wiegert, P.; Innanen, K.; Mikkola, S.

    2000-10-01

    Using the Canada-France-Hawaii 3.6 m telescope and the new CFH12k wide-field CCD imager, a survey of the region near Earth's L4 (morning) Lagrange Point was conducted in May and July/August 2000, in hopes of finding asteroids at or near this point. This survey was motivated by the dynamical interest of a possible Earth Trojan asteroid (ETA) population and by the fact that they would be the easiest asteroids to access from Earth. Recent calculations (Wiegert, Innanen and Mikkola, 2000, Icarus v. 145, 33-43) indicate stability of objects in ETA orbits over a million year timescale and that their on-sky density would be greatest roughly five degrees sunward of the L4 position. An optimized search technique was used, with tracking at the anticipated rate of the target bodies, near real-time scanning of images, and duplication of fields to aid in detection and permit followup. Limited time is available on any given night to search near the Lagrange points, and operations must be conducted at large air mass. Approximately 9 square degrees were efficiently searched and two interesting asteroids were found, NEA 2000 PM8 and our provisionally named CFZ001. CFZ001 cannot be excluded from being an Earth Trojan although that is not the optimal solution for the short arc we observed. This object, of R magnitude 22, was easily detected, suggesting that our search technique worked well. This survey supports the earlier conclusion of Whitely and Tholen (1998, Icarus v. 136, 154-167) that a large population of several hundred meter diameter ETAs does not exist. However, our effective search technique and the discovery of two interesting asteroids suggest the value of completing the survey with approximately 10 more square degrees to be searched near L4 and a comparable search to be done at L5. Funding from Canada's NSERC and HIA and the Academic Research Fund of Athabasca University is gratefully acknowledged.

  17. Neptune's New Dark Vortex: Aerosol Properties from Optical Data

    NASA Astrophysics Data System (ADS)

    Tollefson, J.; Luszcz-Cook, S.; Wong, M. H.; De Pater, I.

    2016-12-01

    Over the past year, amateur and professional astronomers alike have monitored the appearance of a new dark vortex on Neptune, dubbed SDS-2015 for "southern dark spot discovered in 2015" (Wong et al. 2016; CBET 4278). The discovery of SDS-2015 is fortuitous, being one of only five dark spots observed on Neptune since Voyager 2 imaged the Great Dark Spot (Smith et al. 1989, Science 246, 1422). A companion abstract (Wong et al., this meeting) will present Hubble Space Telescope images of SDS-2015, showcasing the discovery of the vortex in September 2015 and subsequent observations in May 2016. These observations span the optical regime. Longer wavelengths track bright companion clouds thought to form as air is diverted around SDS-2015. Shorter wavelengths reveal the dark spot itself. Combined, these data probe the vertical extent of the dark spot and Neptune's surrounding upper atmosphere. We present preliminary radiative transfer analyses of SDS-2015 using our multispectral data. Our model is the same as that in Luszcz-Cook et al. (2016, Icarus 276, 52) but extended to optical wavelengths. Prior to this work, little was known about the composition and vertical extent of Neptune's dark spots. Only data at optical wavelengths reveal these vortices, suggesting they consist of clearings in the background of fine, evenly-distributed haze particle. Alternatively, the spots may consist of low-albedo aerosols, causing their apparent darkness. Radiative transfer modeling is also one way to determine the vortex top altitude. Simulations of the Great Dark Spot by Stratman et al. (2001, Icarus 151, 275) found that the vortex top altitude is coupled to the brightness of companion clouds, where cloud opacity weakened as the top of the vortex reached higher into the tropopause region. The modeling presented here will compare these hypotheses and provide the first glimpses into the vertical structure of SDS-2015.

  18. A Ring-‘Rain’ influence for Saturn’s Cloud Albedo and Temperatures? Evidence Pro or Con from Voyager, HST, and Cassini

    NASA Astrophysics Data System (ADS)

    West, Robert A.; Li, Liming

    2015-11-01

    J. E. P. Connerney [Geophys. Res. Lett, 13, 773-776, 1986] pointed out that ‘latitudinal variations in images of Saturn’s disk, upper atmospheric temperatures, and ionospheric electron densities are found in magnetic conjugacy with features in Saturn’s ring plane’, and proposed ‘that these latitudinal variations are the result of a variable influx of water, transported along magnetic field lines from sources in Saturn’s ring plane’. Observations of H3+ support a ring-ionosphere connection [O'Donoghue et al., Nature 496, 7444, 2013]. What about cloud albedo and temperature? Connerney attributed a hemispheric asymmetry in haze and temperature to an asymmetry in water flux and predicted that ‘the presently-observed north-south asymmetry (upper tropospheric temperatures, aerosols) will persist throughout the Saturn year’. We can now test these ideas with data from the Cassini mission, from the Hubble Space Telescope, and from ground-based observations. Analyses of ground-based images and especially Hubble data established that the hemispheric asymmetry of the aerosol population does change, and seasonal effects are dominant, although non-seasonal variations are also observed [Karkoschka and Tomasko, Icarus 179, 195-221, 2005]. Upper tropospheric temperatures also vary as expected in response to seasonal forcing [Fletcher et al., Icarus 208, 337-352, 2009]. Connerney also identified dark bands in Voyager Green-filter images on magnetic conjugacy with the E ring and edges of the A and B rings. In Cassini Green-filter images there is some correspondence between dark bands and ring features in magnetic conjugacy, but collectively the correlation is not strong. Cassini 727-nm methane band images do not suggest depletion of aerosols in the upper troposphere at ring edge magnetic conjugacy latitudes as proposed by Connerney. We conclude that ring rain does not have a significant influence on upper tropospheric aerosols and temperatures on Saturn. Part of this work was performed by the Jet Propulsion Lab, Calif. Institute of Technology.

  19. Cometary activity and nucleus modelling: a new approach

    NASA Astrophysics Data System (ADS)

    Möhlmann, D.

    1996-06-01

    The phenomena of comet splittings with an average frequency of about one splitting per 100 years and comet (Chen and Jewitt, Icarus108, 265-271, 1994), and the restriction of cometary activity to well-defined small areas at the almost passive and mantle covered surface (Keller et al., ESA SP-250, Vol. II, pp. 363-364, 1986) are at present driving challenges to models of structure and evolution of comet nuclei. Extending the presently discussed models by incorporating lateral subsurface transport of sublimed volatiles, there appears the possibility that the places of sublimation are different from those of activity (the so-called active areas). Then, there is no necessity to distinguish between different surface properties at active and passive areas, assuming, e.g. an uncovered icy surface at active areas. Active areas are simply the very local "source sites" where the accumulated subsurface flows from distant regions reach the surface. The pressure driven subsurface flows of volatiles may not only leave the comet at its surface, they may penetrate via cracks, etc. also deeply into the nucleus. There they can cause a further growth of cracks and also new cracks. This can be a cause for the observed regular splittings. Furthermore, actual models (Kührt and Keller, Icarus109, 121-132, 1994; Skorov and Rickman, Planet. Space Sci.43, 1587-1594, 1995) of the gas transport through porous comet surface crusts can be interpreted as to give first indications for thermodynamical parameters in heat conducting and porous cometary crusts which are appropriate for 1 AU conditions to permit the temporary existence of a layer with fluid subsurface water within these crusts. This exciting result of the possible temporary existence of subsurface warm water in comets which approach the Sun within about 1 AU makes a cometary subsurface chemistry much more efficient than expected hitherto.

  20. The Extraordinary Albedo Variations on Pluto Detected by New Horizons and Implications for Dwarf Planet Eris

    NASA Astrophysics Data System (ADS)

    Buratti, Bonnie J.; Hofgartner, Jason D.; Stern, S. Alan; Weaver, Harold A.; Verbiscer, Anne J.; Ennico, Kimberly; Olkin, Catherine B.; Young, Leslie; New Horizons Geology and Geophysics Team

    2016-10-01

    The New Horizons mission returned stunning observations of active geology on the surface of Pluto (Stern et al., 2015, Science 350, 292). One of the markers for activity on planets or moons is normal albedos approaching 1.0, as is the case for Enceladus (Buratti et al., 1984, Icarus 58, 254; Verbiscer et al., 2005, Icarus 173, 66). When all corrections for viewing geometry are made for Pluto, it has normal albedos that approach unity in the regions that show evidence for activity by a lack of craters, notably the region informally named Sputnik Planum. On the other hand, Pluto also has a very dark (normal albedo ~0.10) equatorial belt.The geometric albedo of Eris, another large dwarf planet in the Kuiper Belt, is 0.96 (Sicardy et al., 2011, Nature 478, 493), close to that of Enceladus. Coupled with a high density of 2.5 gm/cc (Sicardy et al., ibid.), implying an even larger amount of radiogenic heating than that for Pluto (with a density near 1.9 gm/cc), we find it highly likely that Eris is also active with some type of solid state convection or cryovolcanism on its surface. Alternate explanations such as complete condensation of methane frost onto its surface in the colder environment at nearly 100 AUs would not lead to the high albedo observed.Another implication of the extreme albedo variations on Pluto is that the temperature varies by at least 20K on its surface, spawning possible aeolian processes and associated features such as wind streaks and dunes, which are currently being sought on New Horizons images. Finally, low albedo regions on Pluto, with normal reflectances less than 0.10, provide possible evidence for dust in the Kuiper Belt that is accreting onto the surface of Pluto. Another - or additional - explanation for this low-albedo dust is native material created in Pluto's hazy atmosphere.New Horizons funding by NASA is gratefully acknowledged.

  1. Combined Structural and Compositional Evolution of Planetary Rings Due to Micrometeoroid Impacts and Ballistic Transport

    NASA Technical Reports Server (NTRS)

    Estrada, Paul R.; Durisen, Richard H.; Cuzzi, Jeffrey N.; Morgan, Demitri A.

    2015-01-01

    We introduce improved numerical techniques for simulating the structural and compositional evolution of planetary rings due to micrometeoroid bombardment and subsequent ballistic transport of impact ejecta. Our current, robust code is capable of modeling structural changes and pollution transport simultaneously over long times on both local and global scales. In this paper, we describe the methodology based on the original structural code of Durisen et al. (1989, Icarus 80, 136-166) and on the pollution transport code of Cuzzi and Estrada (1998, Icarus 132, 1-35). We provide demonstrative simulations to compare with, and extend upon previous work, as well as examples of how ballistic transport can maintain the observed structure in Saturn's rings using available Cassini occultation optical depth data. In particular, we explicitly verify the claim that the inner B (and presumably A) ring edge can be maintained over long periods of time due to an ejecta distribution that is heavily biased in the prograde direction through a balance between the sharpening effects of ballistic transport and the broadening effects of viscosity. We also see that a "ramp"-like feature forms over time just inside that edge. However, it does not remain linear for the duration of the runs presented here unless a less steep ejecta velocity distribution is adopted. We also model the C ring plateaus and find that their outer edges can be maintained at their observed sharpness for long periods due to ballistic transport. We hypothesize that the addition of a significant component of a retrograde-biased ejecta distribution may help explain the linearity of the ramp and is probably essential for maintaining the sharpness of C ring plateau inner edges. This component would arise for the subset of micrometeoroid impacts which are destructive rather than merely cratering. Such a distribution will be introduced in future work.

  2. Combined structural and compositional evolution of planetary rings due to micrometeoroid impacts and ballistic transport

    NASA Astrophysics Data System (ADS)

    Estrada, Paul R.; Durisen, Richard H.; Cuzzi, Jeffrey N.; Morgan, Demitri A.

    2015-05-01

    We introduce improved numerical techniques for simulating the structural and compositional evolution of planetary rings due to micrometeoroid bombardment and subsequent ballistic transport of impact ejecta. Our current, robust code is capable of modeling structural changes and pollution transport simultaneously over long times on both local and global scales. In this paper, we describe the methodology based on the original structural code of Durisen et al. (Durisen, R.H. et al. [1989]. Icarus 80, 136-166) and on the pollution transport code of Cuzzi and Estrada (Cuzzi, J.N., Estrada, P.R. [1998]. Icarus 132, 1-35). We provide demonstrative simulations to compare with, and extend upon previous work, as well as examples of how ballistic transport can maintain the observed structure in Saturn's rings using available Cassini occultation optical depth data. In particular, we explicitly verify the claim that the inner B (and presumably A) ring edge can be maintained over long periods of time due to an ejecta distribution that is heavily biased in the prograde direction through a balance between the sharpening effects of ballistic transport and the broadening effects of viscosity. We also see that a "ramp"-like feature forms over time just inside that edge. However, it does not remain linear for the duration of the runs presented here unless a less steep ejecta velocity distribution is adopted. We also model the C ring plateaus and find that their outer edges can be maintained at their observed sharpness for long periods due to ballistic transport. We hypothesize that the addition of a significant component of a retrograde-biased ejecta distribution may help explain the linearity of the ramp and could provide a mechanism for maintaining the sharpness of C ring plateau inner edges. This component would arise for the subset of micrometeoroid impacts which are destructive rather than merely cratering. Such a distribution will be introduced in future work.

  3. Core layering

    NASA Astrophysics Data System (ADS)

    Jacobson, S. A.; Rubie, D. C.; Hernlund, J. W.; Morbidelli, A.

    2015-12-01

    We have created a planetary accretion and differentiation model that self-consistently builds and evolves Earth's core. From this model, we show that the core grows stably stratified as the result of rising metal-silicate equilibration temperatures and pressures, which increases the concentrations of light element impurities into each newer core addition. This stable stratification would naturally resist convection and frustrate the onset of a geodynamo, however, late giant impacts could mechanically mix the distinct accreted core layers creating large homogenous regions. Within these regions, a geodynamo may operate. From this model, we interpret the difference between the planetary magnetic fields of Earth and Venus as a difference in giant impact histories. Our planetary accretion model is a numerical N-body integration of the Grand Tack scenario [1]—the most successful terrestrial planet formation model to date [2,3]. Then, we take the accretion histories of Earth-like and Venus-like planets from this model and post-process the growth of each terrestrial planet according to a well-tested planetary differentiation model [4,5]. This model fits Earth's mantle by modifying the oxygen content of the pre-cursor planetesimals and embryos as well as the conditions of metal-silicate equilibration. Other non-volatile major, minor and trace elements included in the model are assumed to be in CI chondrite proportions. The results from this model across many simulated terrestrial planet growth histories are robust. If the kinetic energy delivered by larger impacts is neglected, the core of each planet grows with a strong stable stratification that would significantly impede convection. However, if giant impact mixing is very efficient or if the impact history delivers large impacts late, than the stable stratification can be removed. [1] Walsh et al. Nature 475 (2011) [2] O'Brien et al. Icarus 223 (2014) [3] Jacobson & Morbidelli PTRSA 372 (2014) [4] Rubie et al. EPSL 301 (2011) [5] Rubie et al. Icarus 248 (2015)

  4. Fresh clouds: A parameterized updraft method for calculating cloud densities in one-dimensional models

    NASA Astrophysics Data System (ADS)

    Wong, Michael H.; Atreya, Sushil K.; Kuhn, William R.; Romani, Paul N.; Mihalka, Kristen M.

    2015-01-01

    Models of cloud condensation under thermodynamic equilibrium in planetary atmospheres are useful for several reasons. These equilibrium cloud condensation models (ECCMs) calculate the wet adiabatic lapse rate, determine saturation-limited mixing ratios of condensing species, calculate the stabilizing effect of latent heat release and molecular weight stratification, and locate cloud base levels. Many ECCMs trace their heritage to Lewis (Lewis, J.S. [1969]. Icarus 10, 365-378) and Weidenschilling and Lewis (Weidenschilling, S.J., Lewis, J.S. [1973]. Icarus 20, 465-476). Calculation of atmospheric structure and gas mixing ratios are correct in these models. We resolve errors affecting the cloud density calculation in these models by first calculating a cloud density rate: the change in cloud density with updraft length scale. The updraft length scale parameterizes the strength of the cloud-forming updraft, and converts the cloud density rate from the ECCM into cloud density. The method is validated by comparison with terrestrial cloud data. Our parameterized updraft method gives a first-order prediction of cloud densities in a “fresh” cloud, where condensation is the dominant microphysical process. Older evolved clouds may be better approximated by another 1-D method, the diffusive-precipitative Ackerman and Marley (Ackerman, A.S., Marley, M.S. [2001]. Astrophys. J. 556, 872-884) model, which represents a steady-state equilibrium between precipitation and condensation of vapor delivered by turbulent diffusion. We re-evaluate observed cloud densities in the Galileo Probe entry site (Ragent, B. et al. [1998]. J. Geophys. Res. 103, 22891-22910), and show that the upper and lower observed clouds at ∼0.5 and ∼3 bars are consistent with weak (cirrus-like) updrafts under conditions of saturated ammonia and water vapor, respectively. The densest observed cloud, near 1.3 bar, requires unexpectedly strong updraft conditions, or higher cloud density rates. The cloud density rate in this layer may be augmented by a composition with non-NH4SH components (possibly including adsorbed NH3).

  5. Collision lifetimes and impact statistics of near-Earth asteroids

    NASA Technical Reports Server (NTRS)

    Bottke, W. F., Jr.; Nolan, M. C.; Greenberg, R.

    1993-01-01

    We have examined the lifetimes of Near-Earth asteroids (NEA's) by directly computing the collision probabilities with other asteroids and with the terrestrial planets. We compare these to the dynamical lifetimes, and to collisional lifetimes assumed by other workers. We discuss the implications of the differences. The lifetimes of NEA's are important because, along with the statistics of craters on the Earth and Moon, they help us to compute the number of NEA's and the rate at which new NEA's are brought to the vicinity of the Earth. Assuming that the NEA population is in steady-state, the lifetimes determine the flux of new bodies needed to replenish the population. Earlier estimates of the lifetimes ignored (or incompletely accounted for) the differences in the velocities of asteroids as they move in their orbits, so our results differ from (for example) Greenberg and Chapman (1983, Icarus 55, 455) and Wetherill (1988, Icarus 76, 1) by factors of 2 to 10. We have computed the collision rates and relative velocities of NEA's with each other, the main-belt asteroids, and the terrestrial planets, using the corrected method described by Bottke et. al. (1992, GRL, in press). We find that NEA's typically have shorter collisional lifetimes than do main-belt asteroids of the same size, due to their high eccentricities, which typically give them aphelia in the main belt. Consequently, they spend a great deal of time in the main belt, and are moving much slower than the bodies around them, making them 'sitting ducks' for impacts with other asteroids. They cross the paths of many objects, and their typical collision velocities are much higher (10-15 km/s) than the collision velocities (5 km/s) among objects within the main belt. These factors combine to give them substantially shorter lifetimes than had been previously estimated.

  6. Besieged by Trojans: Material Exchange between Tethys and its Coorbital Moons

    NASA Astrophysics Data System (ADS)

    Nayak, Michael; Rhoden, Alyssa R.; Asphaug, Erik

    2016-10-01

    Two small Trojan moons are coorbital with the Saturnian moon Tethys: Calypso (20-km diameter) resides in the trailing L5 Lagrangian point of Tethys' orbit around Saturn, while Telesto (25-km diameter) occupies the leading L4 Lagrangian point. Due to their fixed location with respect to Tethys, consistent material transfer to Tethys occurs whenever there is a primary impact on either of the Trojan moons. Here we investigate this material exchange, and its implications for the cratering history of Tethys. Multiple craters in excess of 1-km in diameter are seen on both Trojan moons [1]. We model the evolution of ejecta escaping from the largest five and seven craters on Calypso and Telesto respectively. The Maxwell Z-model [2] is used, with an implicit gravity-regime cratering assumption, to approximate outbound ejecta velocity distributions. The smallest craters considered on Calypso and Telesto are 1.35 and 1.9 km in diameter respectively; these impacts would have generated a significant amount of sesquinary ejecta [3] in orbits coorbital to that of Tethys. We model the evolution of these sesquinary ejecta in the Saturnian gravity system across 100 years and track their impact locations [e.g. 4]. Our results show that a large fraction of sesquinary ejecta created by primary impacts to either Trojan is likely to impact Tethys; the coorbital nature of the source bodies results in a significant fraction of this ejecta being incident at low impact velocities and low (oblique) impact angles. We present results of ongoing work to convolve these results with observed crater populations and morphologies on Tethys. The persistence of sesquinary impactors inbound to Tethys suggests that such impacts are a relatively frequent process. Additional sources of impactor material, such as from material excavated by primary impacts to Tethys and later reaccreted, will also be discussed. [1] Thomas et al., 2013, Icarus [2] Melosh, 1989, Oxford Univ. Press [3] Zahnle et al., 2008, Icarus [4] Nayak and Asphaug, 2016, Nature Communications.

  7. Prospects For Earth-Based Measurements Of Europa's Librations

    NASA Astrophysics Data System (ADS)

    Margot, Jean-Luc; Campbell, D. B.; Peale, S. J.

    2010-10-01

    The exploration of Europa is of great interest because it may be hospitable to certain life forms [1]. Several lines of evidence suggest that a subsurface ocean exists beneath an icy shell [2,3], but there is debate about the thickness of the shell [4], which impacts Europa's astrobiological potential. As in the case of Mercury, it may be possible to determine whether an outer shell is decoupled from the interior and to evaluate the shell thickness by measuring the amplitude of forced longitude librations [5,6]. In the simplest configuration of a rigid shell decoupled from a spherically symmetric interior, the libration amplitude is amplified from the nominal value of 18" by C/Cs, where C is the polar moment of inertia of the body and Cs is that of the outer shell that participates in the librations. For a 100-km thick shell, the libration amplitude would reach 200", an estimate that remains valid even in the presence of gravitational coupling between asymmetrical layers [7]. If there are significant departures from rigid behavior, the shell may deform with the ocean underneath and exhibit a libration amplitude of 52" [8]. Europa reaches closest approach in October 2011, offering a once-in-a-decade opportunity to measure spin rate variations by tracking radar speckles, as advocated by Holin [9,10]. Librations of a rigid shell thinner than 100 km would be detectable. We will describe the experimental design and expected sensitivity. References: [1] NRC, Europa Science Strategy, 1999. [2,3] Kivelson et al, Greeley et al, in Jupiter, CUP, 2004. [4] Greenberg, Unmasking Europa, Praxis, 2008. [5] Peale, Nature 262, 1976. [6] Margot et al, Science 316, 2007. [7] van Hoolst et al, Icarus 195, 2008. [8] Goldreich and Mitchell, Icarus, in press. [9] Green, in Radar Astronomy, McGraw-Hill, 1968. [10] Holin, Radiophys. Quant. Elec. 31, 1988.

  8. New insights on the collisional escape of light neutrals from Mars

    NASA Astrophysics Data System (ADS)

    Gacesa, Marko; Zahnle, Kevin

    2017-04-01

    Photodissociative recombination (PDR) of atmospheric molecules on Mars is a major mechanism of production of hot (suprathermal) atoms with sufficient kinetic energy to either directly escape to space or to eject other atmospheric species. This collisional ejection mechanism is important for evaluating the escape rates of all light neutrals that are too heavy to escape via Jeans escape. In particular, it plays a role in estimating the total volume of escaped water constituents (i.e., O and H) from Mars, as well as influences evolution of the atmospheric [D]/[H] ratio1. We present revised estimates of total collisional escape rates of neutral light elements including H, He, and H2, based on recent (years 2015-2016) atmospheric density profiles obtained from the NASA Mars Atmosphere and Volatile Evolution (MAVEN) mission. We also estimate the contribution to the collisional escape from Energetic Neutral Atoms (ENAs) produced in charge-exchange of solar wind H+ and He+ ions with atmospheric gases2,3. Scattering of hot oxygen and atmospheric species of interest is modeled using fully-quantum reactive scattering formalism1,3. The escape rates are evaluated using a 1D model of the atmosphere supplemented with MAVEN measurements of the neutrals. Finally, new estimates of contributions of these non-thermal mechanisms to the estimated PDR escape rates from young Mars4 are presented. [1] M. Gacesa and V. Kharchenko, "Non-thermal escape of molecular hydrogen from Mars", Geophys. Res. Lett., 39, L10203 (2012). [2] N. Lewkow and V. Kharchenko, "Precipitation of Energetic Neutral Atoms and Escape Fluxes induced from the Mars Atmosphere", Astroph. J., 790, 98 (2014). [3] M. Gacesa, N. Lewkow, and V. Kharchenko, "Non-thermal production and escape of OH from the upper atmosphere of Mars", Icarus 284, 90 (2017). [4] J. Zhao, F. Tian, Y. Ni, and X. Huang, "DR-induced escape of O and C from early Mars", Icarus 284, 305 (2017).

  9. Re-Analysis of the Solar Phase Curves of the Icy Galilean Satellites

    NASA Technical Reports Server (NTRS)

    Domingue, Deborah; Verbiscer, Anne

    1997-01-01

    Re-analysis of the solar phase curves of the icy Galilean satellites demonstrates that the quantitative results are dependent on the single particle scattering function incorporated into the photometric model; however, the qualitative properties are independent. The results presented here show that the general physical characteristics predicted by a Hapke model (B. Hapke, 1986, Icarus 67, 264-280) incorporating a two parameter double Henyey-Greenstein scattering function are similar to the predictions given by the same model incorporating a three parameter double Henyey-Greenstein scattering function as long as the data set being modeled has adequate coverage in phase angle. Conflicting results occur when the large phase angle coverage is inadequate. Analysis of the role of isotropic versus anisotropic multiple scattering shows that for surfaces as bright as Europa the two models predict very similar results over phase angles covered by the data. Differences arise only at those phase angles for which there are no data. The single particle scattering behavior between the leading and trailing hemispheres of Europa and Ganymede is commensurate with magnetospheric alterations of their surfaces. Ion bombardment will produce more forward scattering single scattering functions due to annealing of potential scattering centers within regolith particles (N. J. Sack et al., 1992, Icarus 100, 534-540). Both leading and trailing hemispheres of Europa are consistent with a high porosity model and commensurate with a frost surface. There are no strong differences in predicted porosity between the two hemispheres of Callisto, both are consistent with model porosities midway between that deduced for Europa and the Moon. Surface roughness model estimates predict that surface roughness increases with satellite distance from Jupiter, with lunar surface roughness values falling midway between those measured for Ganymede and Callisto. There is no obvious variation in predicted surface roughness with hemisphere for any of the Galilean satellites.

  10. Cometary Jet Collimation Without Physical Confinement

    NASA Astrophysics Data System (ADS)

    Steckloff, Jordan; Melosh, H.

    2012-10-01

    Recent high-resolution images of comet nuclei reveal that gases and dust expelled by the comet are organized into narrow jets. Contemporary models postulate that these jets collimate when the expanding gases and dust pass through a physical aperture or nozzle [1]. However, recent high-resolution spacecraft observations fail to detect such apertures on cometary surfaces [2]. Additionally, observations of comet nuclei by visiting spacecraft have observed that jet activity is tied to the diurnal rotation of the comet. This suggests that jet emissions are driven by the sun, and therefore must emanate from close to the surface of the comet (order of 10 cm.) Here we describe a simplified computer model of jets emanating from Comet Tempel 1. We approximate the active areas (vents) of the comet as a region of smooth, level terrain on the order of 10 m in width. We assume that each element of the active area is emitting gas molecules with the same spatial distribution, and integrate over the active area in order to calculate the gas drag force. We consider two angular emission profiles (isotropic and lambertian), and assume plane-strain geometry. Uniformly sized particles are placed randomly on the surface of the vent, and their positions in time are tracked. For our simulation, spherical particles with radii of 1 µm to 1 cm were considered. We observe that the overwhelming majority of the particles remain close to the central axis of the active area, forming a well-collimated jet, with particles reaching escape velocity. This mechanism may explain cometary jets, given the physical and observational constraints. References: [1] Yelle R.V. (2004) Icarus 167, 30-36. [2] A’Hearn M.F. et al. (2011) Science 332, 1396-1400. [3] Belton M.J.S. and Melosh H.J. (2009) Icarus 200, 280-291. Acknowledgements: This research is supported by NASA grant PGG NNX10AU88G.

  11. Net Thermal Radiation in the Atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Revercomb, H. E.; Sromovsky, L. A.; Suomi, V. E.; Boese, R. W.

    1985-01-01

    The four entry probes of the Pioneer Venus mission measured the radiative net flux in the atmosphere of Venus at latitudes of 60 deg. N, 31 deg. S, 27 deg. S, and 4 deg. N. The three higher latitude probes carried instruments (small probe net flux radiometers; SNFR) with external sensors. The measured SNFR net fluxes are too large below the clouds, but an error source and correction scheme have been found (H. E. Revercomb, L. A. Sromovsky, and V. E. Suomi, 1982, Icarus 52, 279-300). The near-equatorial probe carried an infrared radiometer (LIR) which viewed the atmosphere through a window in the probe. The LIR measurements are reasonable in the clouds, but increase to physically unreasonable levels shortly below the clouds. The probable error source and a correction procedure are identified. Three main conclusions can be drawn from comparisons of the four corrected flux profiles with radiative transfer calculations: (1) thermal net fluxes for the sounder probe do not require a reduction in the Mode 3 number density as has been suggested by O.B. Toon, B. Ragent, D. Colburn, J. Blamont, and C. Cot (1964. Icarus 37, 143-160), but the probe measurements as a whole are most consistent with a significantly reduced mode 3 contribution to the cloud opacity; (2) at all probe sites, the fluxes imply that the upper cloud contains a yet undetected source of IR opacity; and (3) beneath the clouds the fluxes at a given altitude increase with latitude, suggesting greater IR cooling below the clouds a( high latitudes and water vapor mixing ratios of about 2-5 x 10(exp -5) near 6 deg., 2-5 x 10(exp -11) near 30 deg., and less than 5 x 10(exp -4 ) near the equator. The suggested latitudinal variation of IR cooling is consistent with descending motions at high latitudes, and it is speculated that it could provide an important additional drive for the general circulation.

  12. Mineralogical characterization of asteroid (1951) Lick

    NASA Astrophysics Data System (ADS)

    de Leon, J.; Duffard, R.; Licandro, J.; Lazzaro, D.

    A-type asteroids are usually found in the main asteroid belt and their spectra are very similar to spectra of the silicate mineral olivine (Cruikshank and Hartmann 1984). The existence of olivine-rich asteroids is a result of differentiation, those being the pieces of the mantle of a larger parent body. Extraterrestrial sources of such material must exist because we have meteorites that are nearly pure olivine (dunites). There is a limited number of observed asteroids classified as A-type, all of them belonging to the Main Belt and the study of such objects is crucial to better understand their origin and formation and their relation with dunites. We have obtained visible and near infrared reflectance spectra of asteroid (1951) Lick using the telescopes located at Observatorio del Roque de los Muchachos (Canary Islands, Spain). According to its spectral characteristics in the visible region, this object has been classified as an A-type asteroid by Bus and Binzel (2002). Although considered an Amor object by several authors, according to its orbital parameters (a = 1.390 AU, e = 0.061, i = 39.093 deg, q = 1.304) this object is just in the limit that separates Amors from Mars Crossers (q = 1.3). Whether it is classified as an Amor or a Mars Crosser, (1951) Lick is the first object with such orbital characteristics classified as an A-type asteroid. Here we present a mineralogical analysis of the reflectance spectra obtained for (1951) Lick. We calculate several parameters that are extracted from the spectrum of the asteroid and that give relevant information about its mineralogical composition, using the method defined by Gaffey et al. (1993). We also present results obtained by a preliminary fit to the absorption band associated to the presence of the olivine mineral using the Modified Gaussian Model method (MGM) developed by Sunshine et al.(1990). References Bus, J. S. and Binzel, R. P. 2002. Icarus, 158, 146 Cuikshank, D. P. and Hartmann, W. K. 1984. Science, 223, 281 Gaffey, M. J., Bell, J. F., Brown, R. H., Burbine, T. H., Piatek, J. L., Reed, K. L. and Chaky, D. A. 1993. Icarus, 106, 573 Sunshine, J. M., Pieters, C. M. and Pratt, S. F. 1990. JGR, 95, B5, 6955

  13. Primary Accretion and Turbulent Cascades: Scale-Dependence of Particle Concentration Multiplier Probability Distribution Functions

    NASA Astrophysics Data System (ADS)

    Cuzzi, Jeffrey N.; Weston, B.; Shariff, K.

    2013-10-01

    Primitive bodies with 10s-100s of km diameter (or even larger) may form directly from small nebula constituents, bypassing the step-by-step “incremental growth” that faces a variety of barriers at cm, m, and even 1-10km sizes. In the scenario of Cuzzi et al (Icarus 2010 and LPSC 2012; see also Chambers Icarus 2010) the immediate precursors of 10-100km diameter asteroid formation are dense clumps of chondrule-(mm-) size objects. These predictions utilize a so-called cascade model, which is popular in turbulence studies. One of its usual assumptions is that certain statistical properties of the process (the so-called multiplier pdfs p(m)) are scale-independent within a cascade of energy from large eddy scales to smaller scales. In similar analyses, Pan et al (2011 ApJ) found discrepancies with results of Cuzzi and coworkers; one possibility was that p(m) for particle concentration is not scale-independent. To assess the situation we have analyzed recent 3D direct numerical simulations of particles in turbulence covering a much wider range of scales than analyzed by either Cuzzi and coworkers or by Pan and coworkers (see Bec et al 2010, J. Flu. Mech 646, 527). We calculated p(m) at scales ranging from 45-1024η where η is the Kolmogorov scale, for both particles with a range of stopping times spanning the optimum value, and for energy dissipation in the fluid. For comparison, the p(m) for dissipation have been observed to be scale-independent in atmospheric flows (at much larger Reynolds number) for scales of at least 30-3000η. We found that, in the numerical simulations, the multiplier distributions for both particle concentration and fluid dissipation are as expected at scales of tens of η, but both become narrower and less intermittent at larger scales. This is consistent with observations of atmospheric flows showing scale independence to >3000η if scale-free behavior is established only after some number 10 of large-scale bifurcations (at scales perhaps 10x smaller than the largest scales in the flow), but become scale-free at smaller scales. Predictions of primitive body initial mass functions can now be redone using a slightly modified cascade.

  14. Petrologic Modeling of Magmatic Evolution in The Elysium Volcanic Province

    NASA Astrophysics Data System (ADS)

    Susko, D.; Karunatillake, S.; Hood, D.

    2017-12-01

    The Elysium Volcanic Province (EVP) on Mars is a massive expanse of land made up of many hundreds of lava flows of various ages1. The variable surface ages within this volcanic province have distinct elemental compositions based on the derived values from the Gamma Ray Spectrometer (GRS) suite2. Without seismic data or ophiolite sequences on Mars, the compositions of lavas on the surface provide some of the only information to study the properties of the interior of the planet. The Amazonian surface age and isolated nature of the EVP in the northern lowlands of Mars make it ideal for analyzing the mantle beneath Elysium during the most recent geologic era on Mars. The MELTS algorithm is one of the most commonly used programs for simulating compositions and mineral phases of basaltic melt crystallization3. It has been used extensively for both terrestrial applications4 and for other planetary bodies3,5. The pMELTS calibration of the algorithm allows for higher pressure (10-30 kbars) regimes, and is more appropriate for modeling melt compositions and equilibrium conditions for a source within the martian mantle. We use the pMELTS program to model how partial melting of the martian mantle could evolve magmas into the surface compositions derived from the GRS instrument, and how the mantle beneath Elysium has changed over time. We attribute changes to lithospheric loading by long term, episodic volcanism within the EVP throughout its history. 1. Vaucher, J. et al. The volcanic history of central Elysium Planitia: Implications for martian magmatism. Icarus 204, 418-442 (2009). 2. Susko, D. et al. A record of igneous evolution in Elysium, a major martian volcanic province. Scientific Reports 7, 43177 (2017). 3. El Maarry, M. R. et al. Gamma-ray constraints on the chemical composition of the martian surface in the Tharsis region: A signature of partial melting of the mantle? Journal of Volcanology and Geothermal Research 185, 116-122 (2009). 4. Ding, S. & Dasgupta, R. The fate of sulfide during decompression melting of peridotite - implications for sulfur inventory of the MORB-source depleted upper mantle. Earth and Planetary Science Letters 459, 183-195 (2017). 5. Sakaia, R., Nagaharaa, H., Ozawaa, K. & Tachibanab, S. Composition of the lunar magma ocean constrained by the conditions for the crust formation. Icarus 229, 45-56 (2014).

  15. An Experimental Study on Liquid Brine Formation at Gale Crater

    NASA Astrophysics Data System (ADS)

    Fischer, E.; Martinez, G.; Elliott, H. M.; Renno, N. O.

    2014-12-01

    Here we present experiments conducted in the Michigan Mars Environmental Chamber [1] to test the possibility of the formation of liquid brines from calcium perchlorate salts at Gale Crater. We tested bulk samples of Ca(ClO4)2 using Raman spectroscopy to observe spectral changes in the perchlorate band (930-990 cm-1) and the O-H vibrational stretching band (3000-3700 cm-1) of the samples. Our results indicate that brine formation by deliquescence (absorption of water vapor from the atmosphere) does not occur at Gale Crater within the time (< 2 hours) [2] when the ground temperature is above the calcium perchlorate's eutectic temperature (199 K) [3] and the relative humidity is above the deliquescence threshold (26%) [4]. On the contrary, we show that bulk liquid brine of calcium perchlorate salt forms within minutes if the salt is in direct contact with water ice. However, water ice is not expected in the shallow (tens of cm) subsurface of Gale Crater [5] and, on the sols during which frost events might have occurred at the surface, the calculated frost point (~190 K) [2] was below the eutectic temperature of the perchlorate. Liquid water is one of the necessary ingredients for the development of life as we know it. The behavior of various liquid states of H2O such as liquid brine, undercooled liquid interfacial water, subsurface melt water and ground water [6] needs to be understood in order to address the potential habitability of Mars for microbes and future human exploration. These results are relevant because they help in constraining the possible mechanisms of the formation of liquid water at Gale. References: [1] Fischer, E. et al. (2014), Geophys. Res. Lett., 41, doi:10.1002/2014GL060302.[2] Martínez, G. M. et al. (2014), American Geophysical Union Fall Meeting.[3] Marion, G. M. et al. (2010), Icarus, 207(2), 675-685, doi:10.1016/j.icarus.2009.12.003.[4] Nuding, D. et al. (2013), AAS/Division for Planetary Sciences Meeting Abstracts (Vol. 45).[5] Aharonson, O., and N. Schorghofer (2006), J. Geophys. Res.111, E11007, doi:10.1029/2005JE002636.[6] Martínez, G. M., and Renno, N. O. (2013), Space Science Reviews, 175(1-4), 29-51, doi:10.1007/s11214-012-9956-3.

  16. Analyzing asteroid reflectance spectra with numerical tools based on scattering simulations

    NASA Astrophysics Data System (ADS)

    Penttilä, Antti; Väisänen, Timo; Markkanen, Johannes; Martikainen, Julia; Gritsevich, Maria; Muinonen, Karri

    2017-04-01

    We are developing a set of numerical tools that can be used in analyzing the reflectance spectra of granular materials such as the regolith surface of atmosphereless Solar system objects. Our goal is to be able to explain, with realistic numerical scattering models, the spectral features arising when materials are intimately mixed together. We include the space-weathering -type effects in our simulations, i.e., mixing host mineral locally with small inclusions of another material in small proportions. Our motivation for this study comes from the present lack of such tools. The current common practice is to apply a semi-physical approximate model such as some variation of Hapke models [e.g., 1] or the Shkuratov model [2]. These models are expressed in a closed form so that they are relatively fast to apply. They are based on simplifications on the radiative transfer theory. The problem is that the validity of the model is not always guaranteed, and the derived physical properties related to particle scattering properties can be unrealistic [3]. We base our numerical tool into a chain of scattering simulations. Scattering properties of small inclusions inside an absorbing host matrix can be derived using exact methods solving the Maxwell equations of the system. The next step, scattering by a single regolith grain, is solved using a geometrical optics method accounting for surface reflections, internal absorption, and possibly the internal diffuse scattering. The third step involves the radiative transfer simulations of these regolith grains in a macroscopic planar element. The chain can be continued next with shadowing simulation over the target surface elements, and finally by integrating the bidirectional reflectance distribution function over the object's shape. Most of the tools in the proposed chain already exist, and one practical task for us is to tie these together into an easy-to-use toolchain that can be publicly distributed. We plan to open the abovementioned toolchain as a web-based open service. Acknowledgments: The research is funded by the ERC Advanced Grant No. 320773 (SAEMPL) References: [1] B. Hapke, Icarus 195, 918-926, 2008. [2] Yu. Shkuratov et al, Icarus 137, 235-246, 1999. [3] Yu. Shkuratov et al, JQSRT 113, 2431-2456, 2012. [4] K. Muinonen et al, JQSRT 110, 1628-1639, 2009.

  17. Interannual Variability of Water Ice Clouds at Gale Crater

    NASA Astrophysics Data System (ADS)

    Martinez, G.; Giuranna, M.; McConnochie, T. H.; Tamppari, L.; Smith, M. D.; Vicente-Retortillo, Á.; Renno, N. O.; Kloos, J. L.; Moores, J. E.; Guzewich, S.

    2017-12-01

    The Aphelion Cloud Belt (ACB) is a water ice cloud band that encircles the planet longitudinally at latitudes ranging from about 10°S to 30°N during the northern spring and summer (aphelion season). The ACB has been studied extensively using satellite observations over the last two decades [1], showing little interannual variability from MY 24 to 34. The Mars Science Laboratory (MSL) mission has completed more than 1750 sols of measurements at Gale crater (4.5°S), from Ls 155° in MY 31 to Ls 33° in MY 34. Interestingly, MSL results from various instruments indicate that the ACB produces significant interannual variability at Gale crater during the aphelion season. In particular, near-noon retrievals of water ice opacity by the ChemCam instrument indicate an increase in water ice opacity up to 50% from MY 32 to 33 [2], further supported by analysis of UV [3] and ground temperature [4] data taken by the Rover Environmental Monitoring Station during MY 32 and 33. A weaker ( 5%) increase in water ice opacity in MY 33 relative to MY 32 was also observed from images taken during afternoon hours by the rover's Navigation Cameras [5]. We are analyzing simultaneous and noncontemporary satellite observations at the location of Gale made by the Planetary Fourier Spectrometer [6], Mars Climate Sounder, Thermal Emission Imaging System and Thermal Emission Spectrometer to shed light on the nature of the interannual variability of the ACB at Gale, and to locally understand the relation between the ACB and the water cycle. References:[1] Smith, M.D. (2008), Spacecraft observations of the martian atmosphere, Annu. Rev. Earth Planet. Sci. 36. [2] McConnochie, T. H., et al. (2017), Retrieval of Water Vapor Column Abundance and Aerosol Properties from ChemCam Passive Sky Spectroscopy, Icarus (submitted). [3] Vicente-Retortillo, Á., et al. (2017), Determination of dust aerosol particle size at Gale Crater using REMS UVS and Mastcam measurements, GRL, 44. [4] Vasavada, A.R. et al. (2017), Thermophysical properties along Curiosity's traverse in Gale crater, Mars, Icarus 284. [5] Kloos, J. L., and J. E. Moores (2017), Inter-Annual and Diurnal Variability in Clouds Observed from MSL Over Two Martian Years, LPSC, 48. [6] Giuranna, M. et al. (2016), 12 years of atmospheric monitoring by the Planetary Fourier Spectrometer onboard Mars Express, EGU.

  18. The Titan Haze Simulation Experiment: Latest Laboratory Results and Dedicated Plasma Chemistry Model

    NASA Astrophysics Data System (ADS)

    Sciamma-O'Brien, Ella; Raymond, Alexander; Mazur, Eric; Salama, Farid

    2018-06-01

    Here, we present the latest results on the gas and solid phase analyses in the Titan Haze Simulation (THS) experiment. The THS experiment, developed at NASA Ames’ COSmIC facility is a unique experimental platform that allows us to simulate Titan’s complex atmospheric chemistry at Titan-like temperature (200 K) by cooling down N2-CH4-based mixtures in a supersonic expansion before inducing the chemistry by plasma.Gas phase: The residence time of the jet-accelerated gas in the active plasma region is less than 4 µs, which results in a truncated chemistry enabling us to control how far in the chain of reactions the chemistry is processing. By adding heavier molecules in the initial gas mixture, it is then possible to study the first and intermediate steps of Titan’s atmospheric chemistry as well as specific chemical pathways, as demonstrated by mass spectrometry and comparison to Cassini CAPS data [1]. A new model was recently developed to simulate the plasma chemistry in the THS. Calculated mass spectra produced by this model are in good agreement with the experimental THS mass spectra, confirming that the short residence time in the plasma cavity limits the growth of larger species [2].Solid phase: Scanning electron microscopy and infrared spectroscopy have been used to investigate the effect of the initial gas mixture on the morphology of the THS Titan aerosol analogs as well as on the level and nature of the nitrogen incorporation into these aerosols. A comparison to Cassini VIMS observational data has shown that the THS aerosols produced in simpler mixtures, i.e., that contain more nitrogen and where the N-incorporation is in isocyanide-type molecules instead of nitriles, are more representative of Titan’s aerosols [3]. In addition, a new optical constant facility has been developed at NASA Ames that allows us to determine the complex refractive indices of THS Titan aerosol analogs from NIR to FIR (0.76-222 cm-1). The facility and preliminary results will be presented.References:[1] Sciamma-O'Brien E., et al., Icarus, 243, 325 (2014)[2] Raymond, A., et al., ApJ., 853, 107 (2018)[3] Sciamma-O'Brien E., et al., Icarus, 289, 214 (2017)Acknowledgements: This research is supported by the SSW Program of NASA SMD.

  19. 2D-photochemical modeling of Saturn’s stratosphere: hydrocarbon and water distributions

    NASA Astrophysics Data System (ADS)

    Hue, Vincent; Cavalié, Thibault; Hersant, Franck; Dobrijevic, Michel; Greathouse, Thomas; Lellouch, Emmanuel; Hartogh, Paul; Cassidy, Timothy; Spiga, Aymeric; Guerlet, Sandrine; Sylvestre, Melody

    2014-11-01

    Saturn’s axial tilt of 27° produces seasons in a similar way as on Earth. The seasonal forcing over Saturn’s 30 years period influences the production/loss of the major atmospheric absorbers and coolants through photochemistry, and influences therefore Saturn’s stratospheric temperatures. We have developed a 2D time-dependent photochemical model of Saturn’s atmosphere [Hue et al., in prep.], coupled to a radiative-climate model [Greathouse et al., 2008] to study seasonal effects on its atmospheric composition. Cassini spacecraft has revealed that the distribution of hydrocarbons in Saturn’s stratosphere [Guerlet et al., 2009] differs from pure photochemical predictions, i.e. without meridional transport [Moses et al., 2005]. Differences between the observed distribution of hydrocarbons and 2D-photochemical predictions are likely to be an indicator of dynamical forcing.Disentangling the origin of water in the stratosphere of this planet has been a long-term issue. Due to Saturn’s cold tropopause trap, which acts as a transport barrier, the water vapor observed by the Infrared Space Observatory (ISO) [Feuchtgruber et al., 1997] has an external origin. Three external sources have been identified: (i) permanent flux from interplanetary dust particles, (ii) local sources form planetary environments (rings, satellites), (iii) large cometary impacts, similar to Shoemaker-Levy 9 on Jupiter. Previous observations of Saturn with Herschel’s Hsso program [Hartogh et al., 2009] led to the detection of a water torus around Saturn [Hartogh et al., 2011], fed by Enceladus’ geysers. A substantial fraction of this torus is predicted to be a local source of water for Saturn’s and its satellites, as it will spread in this system [Cassidy et al., 2010]. Using the new 2D-photochemical model, we test here the validity of Enceladus’ torus as the source of Saturn’s stratospheric water.References : Hue et al., in prep. Greathouse et al., 2008. AGU Fall Meeting(Abstract P21B06). Guerlet et al., 2009. Icarus, 203, 214-232. Moses et al., 2005. JGR 110. Feuchtgruber et al., 1997. 389, 159-162. Hartogh et al., 2009. PSS 57, 1596-1606 Hartogh et al., 2011. A&A, 532, L2. Cassidy et al., 2010. Icarus, 209, 696-703

  20. Impacts of the cloud structure's latitudinal variation on the general circulation of the Venus atmosphere as modeled by the LMD-GCM

    NASA Astrophysics Data System (ADS)

    Garate-Lopez, Itziar; Lebonnois, Sébastien

    2017-04-01

    A new simulation of Venus atmospheric circulation obtained with the LMD Venus GCM is described and the impact of cloud's latitudinal structure on the general circulation is analyzed. The model used here is based on that presented in Lebonnois et al. (2016). However, in the present simulation we consider the latitudinal variation of the cloud structure (Haus et al., 2014) both for the solar heating and to compute the infrared net-exchange rate matrix used in the radiative transfer module. The new cloud treatment affects mainly the balance in the angular momentum and the zonal wind distribution. Consequently, the agreement between the vertical profile of the modeled mean zonal wind and the profiles measured by different probes, is clearly improved from previous simulations in which zonal winds below the clouds were weak (roughly half the observed values). Moreover, the equatorial jet obtained at the base of the cloud deck is now more consistent with the observations. In Lebonnois et al. (2016) it was too strong compared to mid-latitudes, but in the present simulation the equatorial jet is less intense than the mid-latitude jets, in concordance with cloud-tracking measurements (Hueso et al., 2015). Since the atmospheric waves play a crucial role in the angular momentum budget of the Venus's atmospheric circulation, we analyze the wave activity by means of the Fast Fourier Transform technique studying the frequency spectrum of temperature, zonal and meridional wind fields. Modifications in the activity of the different types of waves present in the Venusian atmosphere compared to Lebonnois et al. (2016) are discussed, in terms of horizontal and vertical transport of the angular momentum by diurnal and semi-diurnal tides, barotropic and baroclinic waves, and Rossby and Kelvin type waves. Haus R., Kappel D. and Arnold G., 2014. Atmospheric thermal structure and cloud features in the southern hemisphere of Venus as retrieved from VIRTIS/VEX radiation measurements. Icarus 232, 232-248. Hueso R., Peralta J., Garate-Lopez I., et al., 2015. Six years of Venus winds at the upper cloud level from UV, visible and near infrared observations from VIRTIS on Venus express. Planet. Space Sci. 113-114, 78-99. Lebonnois S., Sugimoto N., and Gilli G., 2016. Wave analysis in the atmosphere of Venus below 100km altitude, simulated by the LMD Venus GCM. Icarus 278, 38-51.

  1. Visible and Near-Infrared Spectroscopy of Hephaestus Fossae Cratered Cones, Mars

    NASA Astrophysics Data System (ADS)

    Dapremont, A.; Wray, J. J.

    2017-12-01

    Hephaestus Fossae are a system of sub-parallel fractures on Mars (> 500 km long) interpreted as near-surface tensional cracks [1]. Images of the Martian surface from the High Resolution Imaging Science Experiment have revealed cratered cones within the Hephaestus Fossae region. A volcanic origin (cinder/tuff cones) has been proposed for these features based on morphometric measurements and fine-scale surface characteristics [2]. In an effort to further constrain the origin of these cones as the products of igneous or sedimentary volcanism, we use data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). We take advantage of CRISM's S (0.4 - 1.0 microns) and L (1.0 - 3.9 microns) detector wavelength ranges to investigate the presence or absence of spectral signatures consistent with previous identifications of igneous and mud volcanism products on Mars [3,4]. Hephaestus Fossae cratered cone rims exhibit a consistent nanophase ferric oxide signature. We also identify ferrous phases and 3-micron absorptions (attributed to fundamental vibrational stretch frequencies in H2O) on the crater rims of several cones. Mafic signatures on cratered cone rims support an igneous provenance for these features. The 3-micron absorptions are consistent with the presence of structurally bound or adsorbed water. Our CRISM observations are similar to those of small edifice features in Chryse Planitia, which were interpreted as mud volcanism products based on their enrichment of nanophase ferric minerals and 3-micron absorptions on summit crater rims [3]. Hydrothermal activity was invoked for a Coprates Chasma pitted cone (scoria/tuff cone) based on CRISM identification of partially dehydrated opaline silica, which we do not observe in Hephaestus Fossae [4]. Our spectral observations are more consistent with mud volcanism, but we do not definitively rule out an igneous volcanic origin for the cones in our study region. We demonstrate that VNIR spectroscopy is a valuable tool in developing criteria to determine the origin (igneous/sedimentary/periglacial) of cone features on Mars. [1] Skinner and Tanaka (2007) Icarus 186: 41-59. [2] Dundas et al (2007) LPSC XXXVIII Abs #2116. [3] Komatsu et al (2016) Icarus 268: 56-75. [4] Brož et al (2017) Earth and Planetary Sci Letters 473: 122-130.

  2. What can we learn about Mars from satellite magnetic field measurements?

    NASA Astrophysics Data System (ADS)

    Morschhauser, A.; Mittelholz, A.; Thomas, P.; Vervelidou, F.; Grott, M.; Johnson, C.; Lesur, V.; Lillis, R. J.

    2017-12-01

    The Mars orbiters MGS and MAVEN provide vector magnetic field data for Mars at a variety of altitudes, locations, and local times. In spite of the abundance of data, there are many open questions concerning the crustal magnetic field of Mars. In this contribution, we present our efforts to estimate the shutdown time of the Martian core dynamo and to estimate Martian paleopole locations, using magnetic field satellite data and models derived from these data [1]. Models are primarily based on MGS data, and we shortly present our recent advances to include MAVEN data. There exists some controversy concerning the timing of the Martian core dynamo shutdown [e.g., 2-5]. We address this question by studying the so-called visible magnetization [6-7] of impact craters larger than 400 km in diameter, and conclude that the dynamo ceased to operate in the Noachian period [8]. Further, paleopole locations have been used to constrain the dynamics of the Martian core dynamo [e.g. 4-5, 9]. However, such estimates are limited by the inherent non-uniqueness of inferring magnetization from magnetic field measurements. Here, we discuss how estimated paleopoles are influenced by this non-uniqueness and the limited signal-to-noise ratio of satellite measurements [6]. Furthermore, we discuss how paleopole locations may still be obtained from satellite magnetic field measurements. In this context, we present some new paleopole estimates for Mars including estimates of uncertainties. References: [1] A. Morschhauser et al. (2014), JGR, doi: 10.1002/2013JE004555 [2] R.J. Lillis et al. (2015), JGR, doi: 10.1002/2014je004774 [3] L.L. Hood et al. (2010), Icarus, doi: 10.1016/j.icarus.2010.01.009 [4] C. Milbury et al. (2012), JGR, doi: 10.1029/2012JE004099 [5] B. Langlais and M. Purucker (2007), PSS, 10.1016/j.pss.2006.03.008 [6] F. Vervelidou et al., On the accuracy of paleopole estimations from magnetic field measurements, GJI, under revision 2017 [7] D. Gubbins et al. (2011), GJI, doi: 10.1111/j.1365-246X.2011.05153.x [8] B. Langlais and M. Purucker (2007), PSS, 10.1016/j.pss.2006.03.008 [8] F. Vervelidou et al., Constraining the date of the martian dynamo shutdown by means of craters' magnetization signatures, JGR, submitted 2017 [9] J. Arkani-Hamed and D. Boutin (2004), JGR, 10.1029/2003JE002229

  3. The Effects of Perchlorate and its Precursors on Organic Molecules under Simulated Mars Conditions

    NASA Astrophysics Data System (ADS)

    Carrier, B. L.; Beegle, L. W.; Bhartia, R.; Abbey, W. J.

    2016-12-01

    Perchlorate (ClO4-) was first detected on Mars by the Phoenix Lander in 2008 [1] and has subsequently been detected by Curiosity in Gale Crater [2], in Mars meteorite EETA79001 [3], and has been proposed as a possible explanation for results obtained by Viking [4]. Perchlorate has also been shown to be formed under current Mars conditions via the oxidation of mineral chlorides, further supporting the theory that perchlorate is present globally on Mars [5]. The discovery of perchlorate on Mars has raised important questions about its effects on the survival and detection of organic molecules. Although it has been shown that pyrolysis in the presence of perchlorate results in the alteration or destruction of organic molecules [2, 4], few studies have been conducted on the potential effects of perchlorate and its precursors on organic molecules prior to analysis. Perchlorate is typically inert under Mars temperatures and pressures, but it has been shown to decompose to form reactive oxychlorine species such as chlorite (ClO2-), hypochlorite (ClO-) and chlorine dioxide (ClO2) when exposed to Mars conditions including ionizing radiation [6]. The oxidation of chloride to perchlorate also results in the formation of reactive oxychlorine species such as chlorate (ClO3-) [5]. Here we investigate the effects of perchlorate and its oxychlorine precursors on organic molecules. Experiments are performed in a Mars Simulation Chamber (MSC) capable of reproducing the temperature, pressure, atmospheric composition and UV flux found on Mars. Soil simulants are prepared consisting of Mojave Mars Simulant (MMS) [7] and each organic, as well as varying concentrations of perchlorate and/or chloride salts, and exposed in the MSC. Subsequent to exposure in the MSC samples are leached and the leachate analyzed by HPLC and LC-MS to determine the degree of degradation of the original organic and the identity of any potential decomposition products formed by oxidation or chlorination. References: [1] Hecht et al., Science, Vol. 325, 2009 [2] Glavin et al., J. Geophys. Res. Planets, Vol. 118, 2013 [3] Kounaves et al., Icarus, Vol. 229, 2014 [4] Navarro-Gonzalez et al., J. Geophys. Res., 115, 2010 [5] Carrier & Kounaves, Geophys. Res. Lett., Vol. 42, 2015 [6] Quinn et al, Astrobiology, Vol. 13, 2013 [7] Peters et al., Icarus, Vol. 197, 2008.

  4. Visible and Infrared Study of Comet 2P/Encke's Nucleus During Its 2013 Apparition

    NASA Astrophysics Data System (ADS)

    Fernandez, Yanga R.; Mueller, Beatrice E.; Samarasinha, Nalin H.; Woodney, Laura M.; Abell, Paul A.

    2014-11-01

    The 2013 apparition of comet 2P/Encke provided an opportunity to study the comet while it was relatively close to Earth (0.48 AU on October 17, the closest pass until 2030). We initiated a multiwavelength observing campaign for September and October with the goal of further characterizing the physical, thermal, and rotational properties of 2P's nucleus. Spectral observations were timed to coincide with an equator-on view of the nucleus, a rarely-seen vantage point compared to previous data (e.g. [1,2,3,4]). The spectra span both Wien-side thermal emission and reflected sunlight, covering 0.7 to 2.5 μm, and sample all of the nucleus's rotational longitudes. They were obtained using the SpeX instrument at the NASA Infrared Telescope Facility (IRTF). We will present results on thermal inertia and albedo from a preliminary analysis of these data. Visible observations over the past 13 years have shown that the rotation period of 2P's nucleus increases by ~4 minutes per orbit [5,6], and that the light curve has a two-humped shape but that the humps have quite different amplitudes (e.g. [7]). Thus the equator-on view gave us the chance to further investigate 2P's rotation state and shape. We used the CSUSB Murillo Family Observatory 0.5-meter telescope [8], the NOAO Kitt Peak 2.1-meter telescope, and the MORIS instrument at NASA/IRTF to obtain R-band, time-series photometry of the nucleus. We will present new, preliminary constraints on the secular changes in the nucleus's spin state and on the nucleus's shape based on these new data. We thank the allocation committees of the IRTF and NOAO telescopes for granting the time used for this project. References: [1] Y. R. Fernandez et al. 2000, Icarus 147, 145. [2] M. S. Kelley et al. 2006, ApJ 651, 1256. [3] Y. R. Fernandez et al. 2008, 40th Meeting of the DPS, #16.24. [4] P. Abell et al. 2009, 41st Meeting of the DPS, #20.02. [5] B. E. A. Mueller et al. 2008, 40th Meeting of the DPS, #16.25. [6] N. H. Samarasinha and B. E. A. Mueller 2013, ApJ 775, L10. [7] Y. R. Fernandez et al. 2005, Icarus 175, 194. [8] L. M. Woodney et al. 2013, 45th Meeting of the DPS, #413.25.

  5. A massive hydrogen-rich Martian greenhouse recorded in D/H

    NASA Astrophysics Data System (ADS)

    Pahlevan, K.; Schaefer, L. K.; Desch, S. J.; Elkins-Tanton, L. T.

    2017-12-01

    The deuterium-to-hydrogen (D/H) ratio in Martian atmospheric water ( 6x standard mean ocean water, SMOW) [1,2] is higher than that of known sources [3,4] alluding to a planetary enrichment process. A recent measurement by the Curiosity rover of Hesperian clays yields a D/H value 3x higher than SMOW [5], demonstrating that most enrichment occurred early in planetary history, buttressing the conclusions of Martian meteorite studies [6,7]. Extant models of the isotopic evolution of the Martian hydrosphere have not incorporated primordial H2, despite its likely abundance on early Mars. Here, we report the first 1D climate calculations with an atmospheric composition determined via degassing from a reducing magma ocean to study Martian climate during an early water ocean stage. A reducing Martian magma ocean is expected based on experimental petrology [8], the degassing of which gives rise to an H2-rich steam atmosphere [9] with strong attendant greenhouse warming [10,11] even after the removal of steam via condensation. At the pressures and temperatures prevailing in such a degassed greenhouse, we find that isotopic exchange in the fluid envelope is rapid, strongly concentrating deuterium in water molecules over molecular hydrogen [12]. The subsequent loss of the isotopically light H2-rich atmosphere results in a 2x D/H enrichment in the oceans via isotopic equilibration alone. These calculations suggest that most of the D/H enrichment observed in the first billion years of Martian history is produced by the evolution of a massive ( 100 bar) H2-rich greenhouse in the aftermath of magma ocean crystallization. The proposed link between early planetary process and modern isotopic observable opens a new window into the earliest history of Mars. [1] Owen, T. et al. Science 240, 1767-1770 (1988). [2] Webster, C. R. et al. Science 341, 260-263 (2013). [3] Lunine, J. I. et al. Icarus 165, 1-8, (2003). [4] Marty, B. et al. EPSL 441, 91-102, (2016). [5] Mahaffy, P. et al. Science 347, 412-414 (2015). [6] Greenwood, J. P. et al. GRL 35 (2008). [7] Boctor, N. et al. GCA 67, 3971-3989 (2003). [8] Zhang, H. L. et al. GCA 204, 83-103, (2017). [9] Hirschmann, M. M. EPSL 341-344, 48-57, (2012). [10] Wordsworth, R. Icarus 219, 267-273, (2012). [11] Pierrehumbert, R. & Gaidos, E. ApJL 734, L13 (2011). [12] Richet, P. et al. AREPS 5, 65-110, (1977).

  6. Semi-automatic measures of activity in selected south polar regions of Mars using morphological image analysis

    NASA Astrophysics Data System (ADS)

    Aye, Klaus-Michael; Portyankina, Ganna; Pommerol, Antoine; Thomas, Nicolas

    The High Resolution Imaging Science Experiment (HiRISE) onboard Mars Reconnaissance Orbiter (MRO) has been used to monitor the seasonal evolution of several regions at high southern latitudes. Of particular interest have been jet-like activities that may result from the process described by Kieffer (2007), involving translucent CO2 ice. These jets are assumed to create fan-shaped ground features, as studied e.g. in Hansen et.al. (2010) and Portyankina et.al. (2010). In Thomas et.al. (2009), a small region of interest (ROI) inside the south polar Inca City region (81° S, 296° E) was defined for which the seasonal change of the number of fans was determined. This ROI was chosen for its strong visual variability in ground features. The mostly manual counting work showed, that the number of apparent fans increases monotonously for a considerable amount of time from the beginning of the spring time observations at Ls of 178° until approx. 230° , following the increase of available solar energy for the aforementioned processes of the Kieffer model. This fact indicates that the number of visual fan features can be used as an activity measure for the seasonal evolution of this area, in addition to commonly used evolution studies of surface reflectance. Motivated by these results, we would like to determine the fan count evolution for more south polar areas like Ithaca, Manhattan, Giza and others. To increase the reproducibility of the results by avoiding potential variability in fan shape recognition by human eye and to increase the production efficiency, efforts are being undertaken to automise the fan counting procedure. The techniques used, cleanly separated in different stages of the procedure, the difficulties for each stage and an overview of the tools used at each step will be presented. After showing a proof of concept in Aye et.al. (2010), for a ROI that is comparable to the one previously used for manual counting in Thomas et.al. (2009), we now will show results of these semi-automatically determined seasonal fan count evolutions for Inca City, Ithaca and Manhattan ROIs, compare these evolutionary patterns with each other and with surface reflectance evolutions of both HiRISE and CRISM for the same locations. References: Aye, K.-M. et. al. (2010), LPSC 2010, 2707 Hansen, C. et. al (2010) Icarus, 205, Issue 1, p. 283-295 Kieffer, H.H. (2007), JGR 112 Portyankina, G. et. al. (2010), Icarus, 205, Issue 1, p. 311-320 Thomas, N. et. Al. (2009), Vol. 4, EPSC2009-478

  7. Failure analysis of satellite subsystems to define suitable de-orbit devices

    NASA Astrophysics Data System (ADS)

    Palla, Chiara; Peroni, Moreno; Kingston, Jennifer

    2016-11-01

    Space missions in Low Earth Orbit (LEO) are severely affected by the build-up of orbital debris. A key practice, to be compliant with IADC (Inter-Agency Space Debris Coordination Committee) mitigation guidelines, is the removal of space systems that interfere with the LEO region not later than 25 years after the End of Mission. It is important to note that the current guidelines are not generally legally binding, even if different Space Agencies are now looking at the compliance for their missions. If the guidelines will change in law, it will be mandatory to have a postmission disposal strategy for all satellites, including micro and smaller classes. A potential increased number of these satellites is confirmed by different projections, in particular in the commercial sector. Micro and smaller spacecraft are, in general, not provided with propulsion capabilities to achieve a controlled re-entry, so they need different de-orbit disposal methods. When considering the utility of different debris mitigation methods, it is useful to understand which spacecraft subsystems are most likely to fail and how this may affect the operation of a de-orbit system. This also helps the consideration of which components are the most relevant or should be redundant depending on the satellite mass class. This work is based on a sample of LEO and MEO satellites launched between January 2000 and December 2014 with mass lower than 1000 kg. Failure analysis of satellite subsystems is performed by means of the Kaplan-Meier survival analysis; the parametric fits are conducted with Weibull distributions. The study is carried out by using the satellite database SpaceTrak™ which provides anomalies, failures, and trends information for spacecraft subsystems and launch vehicles. The database identifies five states for each satellite subsystem: three degraded states, one fully operational state, and one failed state (complete failure). The results obtained can guide the identification of the activation procedure for a de-orbit strategy and the level of integration it should have with the host satellite in order to be activated before a total failure. At Cranfield Space Research Centre two different solutions have already been developed as de-orbit sail payloads for microsatellites (Icarus-1 on TechDemoSat-1 and Icarus-3 on Carbonite-1 currently on-orbit, DOM for future ESA ESEO mission). This study will provide a useful input to improve and refine the current de-orbit concepts for future satellite missions.

  8. Stratigraphy and Surface Ages of Dwarf Planet (1) Ceres: Results from Geologic and Topographic Mapping in Survey, HAMO and LAMO Data of the Dawn Framing Camera Images

    NASA Astrophysics Data System (ADS)

    Wagner, R. J.; Schmedemann, N.; Stephan, K.; Jaumann, R.; Neesemann, A.; Preusker, F.; Kersten, E.; Roatsch, T.; Hiesinger, H.; Williams, D. A.; Yingst, R. A.; Crown, D. A.; Mest, S. C.; Raymond, C. A.; Russell, C. T.

    2017-12-01

    Since March 6, 2015, the surface of dwarf planet (1) Ceres is being imaged by the FC framing camera aboard the Dawn spacecraft from orbit at various altitudes [1]. For this study we focus on images from the Survey orbit phase (4424 km altitude) with spatial resolutions of 400 m/pxl and use images and topographic data from DTMs (digital terrain models) for global geologic mapping. On Ceres' surface cratered plains are ubiquitous, with variations in superimposed crater frequency indicating different ages and processes. Here, we take the topography into account for geologic mapping and discriminate cratered plains units according to their topographic level - high-standing, medium, or low-lying - in order to examine a possible correlation between topography and surface age. Absolute model ages (AMAs) are derived from two impact cratering chronology models discussed in detail by [2] (henceforth termed LDM: lunar-derived model, and ADM: asteroid-derived model). We also apply an improved method to obtain relative ages and AMAs from crater frequency measurements termed Poisson timing analysis [3]. Our ongoing analysis shows no trend that the topographic level has an influence on the age of the geologic units. Both high-standing and low-lying cratered plains have AMAs ranging from 3.5 to 1.5 Ga (LDM), versus 4.2 to 0.5 Ga (ADM). Some areas of measurement within these units, however, show effects of resurfacing processes in their crater distributions and feature an older and a younger age. We use LAMO data (altitude: 375 km; resolution 30 m/pxl) and/or HAMO data (altitude: 1475 km; resolution 140 m/pxl) to study local geologic units and their ages, e.g., smaller impact craters, especially those not dated so far with crater measurements and/or those with specific spectral properties [4], deposits of mass wasting (e.g., landslides), and mountains, such as Ahuna Mons. Crater frequencies are used to set these geologic units into the context of Ceres' time-stratigraphic system and chronologic periods [5]. References: [1] Russell C. T., et al. (2016), Science 353, doi:10.1126/science.aaf4219. [2] Hiesinger H. H. et al. (2016), Science 353, doi:10.1126/science.aaf4759. [3] Michael G. G. et al. (2016), Icarus 277, 279-285. [4] Stephan K. et al. (2017), submitted to Icarus. [5] Mest S. C. et al. (2017), LPSC XLVIII, abstr. No. 2512.

  9. The internal structure of Jupiter family cometary nuclei from Deep Impact observations: The “talps” or “layered pile” model

    NASA Astrophysics Data System (ADS)

    Belton, Michael J. S.; Thomas, Peter; Veverka, J.; Schultz, Peter; A'Hearn, Michael F.; Feaga, Lori; Farnham, Tony; Groussin, Olivier; Li, Jian-Yang; Lisse, Casey; McFadden, Lucy; Sunshine, Jessica; Meech, Karen J.; Delamere, W. Alan; Kissel, Jochen

    2007-03-01

    We consider the hypothesis that the layering observed on the surface of Comet 9P/Tempel 1 from the Deep Impact spacecraft and identified on other comet nuclei imaged by spacecraft (i.e., 19P/Borrelly and 81P/Wild 2) is ubiquitous on Jupiter family cometary nuclei and is an essential element of their internal structure. The observational characteristics of the layers on 9P/Tempel 1 are detailed and considered in the context of current theories of the accumulation and dynamical evolution of cometary nuclei. The works of Donn [Donn, B.D., 1990. Astron. Astrophys. 235, 441-446], Sirono and Greenberg [Sirono, S.-I., Greenberg, J.M., 2000. Icarus 145, 230-238] and the experiments of Wurm et al. [Wurm, G., Paraskov, G., Krauss, O., 2005. Icarus 178, 253-263] on the collision physics of porous aggregate bodies are used as basis for a conceptual model of the formation of layers. Our hypothesis is found to have implications for the place of origin of the JFCs and their subsequent dynamical history. Models of fragmentation and rubble pile building in the Kuiper belt in a period of collisional activity (e.g., [Kenyon, S.J., Luu, J.X., 1998. Astron. J. 115, 2136-2160; 1999a. Astron. J. 118, 1101-1119; 1999b. Astrophys. J. 526, 465-470; Farinella, P., Davis, D.R., Stern, S.A., 2000. In: Mannings, V., Boss, A.P., Russell, S.S. (Eds.), Protostars and Planets IV. Univ. of Arizona Press, Tucson, pp. 1255-1282; Durda, D.D., Stern, S.J., 2000. Icarus 145, 220-229]) following the formation of Neptune appear to be in conflict with the observed properties of the layers and irreconcilable with the hypothesis. Long-term residence in the scattered disk [Duncan, M.J., Levison, H.F., 1997. Science 276, 1670-1672; Duncan, M., Levison, H., Dones, L., 2004. In: Festou, M., Keller, H.U., Weaver, H.A. (Eds.), Comets II. Univ. of Arizona Press, Tucson, pp. 193-204] and/or a change in fragmentation outcome modeling may explain the long-term persistence of primordial layers. In any event, the existence of layers places constraints on the environment seen by the population of objects from which the Jupiter family comets originated. If correct, our hypothesis implies that the nuclei of Jupiter family comets are primordial remnants of the early agglomeration phase and that the physical structure of their interiors, except for the possible effects of compositional phase changes, is largely as it was when they were formed. We propose a new model for the interiors of Jupiter family cometary nuclei, called the talps or "layered pile" model, in which the interior consists of a core overlain by a pile of randomly stacked layers. We discuss how several cometary characteristics—layers, surface texture, indications of flow, compositional inhomogeneity, low bulk density low strength, propensity to split, etc., might be explained in terms of this model. Finally, we make some observational predictions and suggest goals for future space observations of these objects.

  10. The internal structure of Jupiter family cometary nuclei from Deep Impact observations: The “talps” or “layered pile” model

    NASA Astrophysics Data System (ADS)

    Belton, Michael J. S.; Thomas, Peter; Veverka, J.; Schultz, Peter; A'Hearn, Michael F.; Feaga, Lori; Farnham, Tony; Groussin, Olivier; Li, Jian-Yang; Lisse, Casey; McFadden, Lucy; Sunshine, Jessica; Meech, Karen J.; Delamere, W. Alan; Kissel, Jochen

    We consider the hypothesis that the layering observed on the surface of Comet 9P/Tempel 1 from the Deep Impact spacecraft and identified on other comet nuclei imaged by spacecraft (i.e., 19P/Borrelly and 81P/Wild 2) is ubiquitous on Jupiter family cometary nuclei and is an essential element of their internal structure. The observational characteristics of the layers on 9P/Tempel 1 are detailed and considered in the context of current theories of the accumulation and dynamical evolution of cometary nuclei. The works of Donn [Donn, B.D., 1990. Astron. Astrophys. 235, 441 446], Sirono and Greenberg [Sirono, S.-I., Greenberg, J.M., 2000. Icarus 145, 230 238] and the experiments of Wurm et al. [Wurm, G., Paraskov, G., Krauss, O., 2005. Icarus 178, 253 263] on the collision physics of porous aggregate bodies are used as basis for a conceptual model of the formation of layers. Our hypothesis is found to have implications for the place of origin of the JFCs and their subsequent dynamical history. Models of fragmentation and rubble pile building in the Kuiper belt in a period of collisional activity (e.g., [Kenyon, S.J., Luu, J.X., 1998. Astron. J. 115, 2136 2160; 1999a. Astron. J. 118, 1101 1119; 1999b. Astrophys. J. 526, 465 470; Farinella, P., Davis, D.R., Stern, S.A., 2000. In: Mannings, V., Boss, A.P., Russell, S.S. (Eds.), Protostars and Planets IV. Univ. of Arizona Press, Tucson, pp. 1255 1282; Durda, D.D., Stern, S.J., 2000. Icarus 145, 220 229]) following the formation of Neptune appear to be in conflict with the observed properties of the layers and irreconcilable with the hypothesis. Long-term residence in the scattered disk [Duncan, M.J., Levison, H.F., 1997. Science 276, 1670 1672; Duncan, M., Levison, H., Dones, L., 2004. In: Festou, M., Keller, H.U., Weaver, H.A. (Eds.), Comets II. Univ. of Arizona Press, Tucson, pp. 193 204] and/or a change in fragmentation outcome modeling may explain the long-term persistence of primordial layers. In any event, the existence of layers places constraints on the environment seen by the population of objects from which the Jupiter family comets originated. If correct, our hypothesis implies that the nuclei of Jupiter family comets are primordial remnants of the early agglomeration phase and that the physical structure of their interiors, except for the possible effects of compositional phase changes, is largely as it was when they were formed. We propose a new model for the interiors of Jupiter family cometary nuclei, called the talps or “layered pile” model, in which the interior consists of a core overlain by a pile of randomly stacked layers. We discuss how several cometary characteristics—layers, surface texture, indications of flow, compositional inhomogeneity, low bulk density low strength, propensity to split, etc., might be explained in terms of this model. Finally, we make some observational predictions and suggest goals for future space observations of these objects.

  11. Did the Moon have a dipolar field?

    NASA Astrophysics Data System (ADS)

    Boutin, D.; Arkani-Hamed, J.

    2012-12-01

    Did the Moon have a dipolar core field? Daniel Boutin1 (dboutin003@sympatico.ca) Jafar Arkani-Hamed2 (jafar@physics.utoronto.ca) 1Earth and Planetary Sciences, McGill University, Montreal, QC, H3A-2A7, Canada 2Physics, University of Toronto, Toronto, ON M5S 1A7, Canada The lack of a global scale magnetic field at present and the observed strong magnetic anomalies of the Moon suggest that the magnetic source bodies have been magnetized in the past. The origin of the magnetizing field is poorly understood. Several scenarios have been proposed including a strong core dynamo [1] and the external origin due to giant impacts such as the enhancement of an existing weak field by impact-generated plasmas or a transient field possibly generated during the impacts [2,3]. It is also possible that the existing field was not very strong but the source bodies are highly magnetic [4]. Here we test the hypothesis that the magnetizing field was of internal origin using two sets of data: the 150 degree spherical harmonic representation of the lunar crustal field by Purucker [5] and the raw magnetic data acquired by the Lunar Prospector magnetometer. Although 17 isolated magnetic anomalies are easily identified on the basis of the spherical harmonic representation, we model only 10 anomalies because of the lack of sufficient raw data over others. The isolated magnetic anomalies allow us to model each anomaly by a simple uniformly magnetized elliptical source body. We model the radial component of the magnetic field following the procedure adopted by Boutin and Arkani-Hamed [6] for the martian magnetic anomalies, and determine the three components of the magnetization vector. Seven out of 10 anomalies result in consistent source bodies obtained using the two sets of data. Assuming that each of the source bodies is magnetized by a dipole core field, the paleomagnetic pole of the Moon is determined on the basis of the corresponding magnetization vector. The resulting paleomagnetic pole positions do not show any significant clustering. There is a general agreement between some of our pole positions with those reported by Wieczorek and Weiss [7]. The lack of consistent dipolar core field is probably due to (1) the core field was not dominated by the dipole component, or (2) the core field was mainly dipolar but there has been appreciable true polar wander during the time the source bodies acquired magnetization, or (3) the magnetizing field was not of internal origin. Further investigations are required to identify the characteristics of the magnetizing field. [1] D. R. Stegman, D.R., et al., Nature 421, 143, 2003. [2] Hood, L. And Z. Huang, J. Geophys. Res. 96, 9837, 1991. [3] Hood, L., Icarus 211, 1109 (2011). [4] Wieczorek, M.A. et al., Science, 335, 1212-1215, 2012. [5] Purucker, M.E. Icarus, 197(1), 19-23, 2008. [6] Boutin, D., and Arkani-Hamed, J., Icarus, 181, 13-25, 2006. [7] Wieczorek , M.A. and Weiss, B.P., EPSC Abstracts Vol. 5, EPSC2010-533, 2010.

  12. Ida and Dactyl: Spectral reflectance and color variations

    USGS Publications Warehouse

    Veverka, J.; Helfenstein, P.; Lee, P.; Thomas, P.; McEwen, A.; Belton, M.; Klaasen, K.; Johnson, T.V.; Granahan, J.; Fanale, F.; Geissler, P.; Head, J. W.

    1996-01-01

    Galileo SSI color data between 0.4 and 1.0 ??m demonstrate that both Ida and Dactyl are S-type asteroids with similar, but distinct spectra. Small but definite color variations are also observed on Ida itself and involve both the blue part of the spectrum and the depth of the 1-??m pyroxene-olivine band. Ida's surface can be classified into two color terrains: Terrain A has a shallower 1-??m absorption and a steeper visible red slope than does Terrain B. Qualitatively, the color-albedo systematics of these two terrains follow those noted for color units on Gaspra and the variations in 1-??m band depth with weathering described by Gaffey et al. (Gaffey, M. J., J. F. Bell, R. H. Brown, T. H. Burbine, J. Piatek, K. L. Reed, and D. A. Chaky 1993. Icarus 106, 573-602). Terrain A, with its slightly lower albedo, its shallower 1-??m band, and its slightly steeper visible red slope relative to Terrain B could be interpreted as the "more processed," "more mature," or the "more weathered" of the two terrains. Consistent with this interpretation is that Terrain A appears to be the ubiquitous background on most of Ida, while Terrain B is correlated with some small craters as well as with possible ejecta from the 10-km Azzurra impact structure. Because of these trends, it is less likely that differences between Terrains A and B are caused by an original compositional inhomogeneity within the body of Ida, although they do fall within the range known to occur within the Koronis family. The spectrum of Dactyl is similar to, but definitely different from, that of Terrain B on Ida. It does not conform to the pattern that obtains between the colors and albedos of Terrains A and B: the satellite's 1-??m band is deeper than that of Terrain B, but its albedo is lower, rather than higher. By itself, the deeper band depth could be interpreted, following Gaffey et al., to mean that Dactyl is a less weathered version of Terrain B on Ida, but such an interpretation is at odds with Dactyl's redder spectral slope. Thus, the explanation for the color difference between Dactyl and Ida is likely to be different from that which accounts for the differences between the two terrains on Ida. Given that Dactyl and Ida have very similar photometric properties (Helfenstein, P., J. Veverka, P. C. Thomas, D. P. Simonelli, K. Klassen, T. V. Johnson, F. Fanale, J. Granahan, A. S. McEwen, M. J. S. Belton, and C. R. Chapman 1996 Icarus 120, 48-65), thus ruling out any dramatic texture differences between the two surfaces, the most likely explanation is that the satellite has a slightly different composition (more pyroxene?) than Ida. The spectral difference is within the range reported by Binzel et al. (Binzel, R. P., S. Xu, and S. J. Bus 1993. Icarus 106, 608-611.) for members of the Koronis family, and could be caused by compositional inhomogeneities of the Koronis parent body rather than by post-breakup regolith processes. ?? 1996 Academic Press, Inc.

  13. Ida and Dactyl: Spectral Reflectance and Color Variations

    NASA Astrophysics Data System (ADS)

    Veverka, J.; Helfenstein, P.; Lee, P.; Thomas, P.; McEwen, A.; Belton, M.; Klaasen, K.; Johnson, T. V.; Granahan, J.; Fanale, F.; Geissler, P.; Head, J. W., III

    1996-03-01

    Galileo SSI color data between 0.4 and 1.0 μm demonstrate that both Ida and Dactyl are S-type asteroids with similar, but distinct spectra. Small but definite color variations are also observed on Ida itself and involve both the blue part of the spectrum and the depth of the 1-μm pyroxene-olivine band. Ida's surface can be classified into two color terrains: Terrain A has a shallower 1-μm absorption and a steeper visible red slope than does Terrain B. Qualitatively, the color-albedo systematics of these two terrains follow those noted for color units on Gaspra and the variations in 1-μm band depth with weathering described by Gaffeyet al.(Gaffey, M. J., J. F. Bell, R. H. Brown, T. H. Burbine, J. Piatek, K. L. Reed, and D. A. Chaky 1993.Icarus106, 573-602). Terrain A, with its slightly lower albedo, its shallower 1-μm band, and its slightly steeper visible red slope relative to Terrain B could be interpreted as the “more processed,” “more mature,” or the “more weathered” of the two terrains. Consistent with this interpretation is that Terrain A appears to be the ubiquitous background on most of Ida, while Terrain B is correlated with some small craters as well as with possible ejecta from the 10-km Azzurra impact structure. Because of these trends, it is less likely that differences between Terrains A and B are caused by an original compositional inhomogeneity within the body of Ida, although they do fall within the range known to occur within the Koronis family. The spectrum of Dactyl is similar to, but definitely different from, that of Terrain B on Ida. It does not conform to the pattern that obtains between the colors and albedos of Terrains A and B: the satellite's 1-μm band is deeper than that of Terrain B, but its albedo is lower, rather than higher. By itself, the deeper band depth could be interpreted, following Gaffeyet al., to mean that Dactyl is a less weathered version of Terrain B on Ida, but such an interpretation is at odds with Dactyl's redder spectral slope. Thus, the explanation for the color difference between Dactyl and Ida is likely to be different from that which accounts for the differences between the two terrains on Ida. Given that Dactyl and Ida have very similar photometric properties (Helfenstein, P., J. Veverka, P. C. Thomas, D. P. Simonelli, K. Klassen, T. V. Johnson, F. Fanale, J. Granahan, A. S. McEwen, M. J. S. Belton, and C. R. Chapman 1996Icarus120, 48-65), thus ruling out any dramatic texture differences between the two surfaces, the most likely explanation is that the satellite has a slightly different composition (more pyroxene?) than Ida. The spectral difference is within the range reported by Binzelet al.(Binzel, R. P., S. Xu, and S. J. Bus 1993.Icarus106, 608-611.) for members of the Koronis family, and could be caused by compositional inhomogeneities of the Koronis parent body rather than by post-breakup regolith processes.

  14. Monitoring the perennial martian northern polar cap with MGS MOC

    NASA Astrophysics Data System (ADS)

    Hale, A. Snyder; Bass, D. S.; Tamppari, L. K.

    2005-04-01

    We have used the Mars Global Surveyor Mars Orbiter Camera Wide Angle (MGS MOC WA) dataset to study albedo trends on the martian northern residual cap. Six study regions were selected, the Chasma Boreale source region, three regions near the center of the cap ("fish hook" region, latitude = 87°; "bottle opener" region, latitude = 87°, "steep-shallow" region, latitude = 85°), and two lower latitude regions (crater, latitude = 77°, and polar outlier, latitude = 82°), and the albedos of these six regions were examined. These regions were chosen due to their good temporal coverage in the MOC dataset, as well as having been studied by other researchers (Bass et al., 2000, Icarus 144, 382-396; Calvin and Titus, 2004, Lunar Planet. Sci. XXXV, Abstract 1455). The picture which emerges is complex. Most areas experience a combination of darkening and brightening through the northern summer; only one area consistently brightens (the polar outlier region). A good deal of interannual repeatability in each region's albedo behavior is seen, however. Possible causes for the observed complex behaviors include dust deposition from late summer storms, sintering of frost grains over the course of the summer, and cold trapping of volatiles on bright, cold surfaces.

  15. Compositional Variegation of Large-Diameter Low-Albedo Asteroids

    NASA Astrophysics Data System (ADS)

    Vilas, F.; Jarvis, K. S.; Anz-Meador, T. D.; Thibault, C. A.; Sawyer, S. R.; Fitzsimmons, A.

    1997-07-01

    Asteroids showing signs of aqueous alteration and thermal metamorphism in visible/near IR spectroscopy and photometry (C, G, F, B, and P classes) ranging from 0.37 - 0.90mu m dominate the asteroid population at heliocentric distances of 2.6 - 3.5 AU. Age dating of meteorites indicates that the Solar System was subjected to a major heating event 4.5 Gyr ago. Recent meteoritic research has produced evidence of a carbonaceous chondrite subjected to two separate aqueous alteration events with a metamorphic heating inbetween (Krot et al., 1997, submitted). Models of the effects of heating by electromagnetic induction or decay of short-lived radionuclides combined with models of the early collisional history of the Solar System after Jupiter's formation indicate that asteroids observed today can be divided into two groups by diameter. Those asteroids having diameters greater than 100 km were mixed by multiple collisions but remain as gravitationally bound rubble piles. Asteroids with diameters less than 100 km should show more compositional diversity. Vilas and Sykes (1996, Icarus, v. 124, 483) have shown using ECAS photometry that this compositional difference exists. Those asteroids having diameters greater than 100 km should be individually homogeneous, with spectral differences showing the combined effects of a primordial compositional gradient in the asteroid belt with thermal metamorphism. We address the significance of spatially-resolved spectra of 42 asteroids to the collective origin of these asteroids.

  16. Scientific balloons: historical remarks.

    NASA Astrophysics Data System (ADS)

    Ubertini, P.

    The paper is an overview of the Human attempt to fly, from the myth of Daedalus and his son Icarus to the first "aerostatic" experiment by Joseph-Michel and Jaques-Etienne Montgolfier. Then, via a jump of about 200 years, we arrive to the era of the modern stratospheric ballooning that, from the beginning of the last century, have provided a unique flight opportunity for aerospace experiments. In particular, the Italian scientific community has employed stratospheric balloons since the '50s for cosmic rays and high energy astrophysical experiments with initial launches performed from Cagliari Helmas Airport (Sardinia). More recently an almost ideal location was found in the area of Trapani-Milo (Sicily, Italy), were an old abandoned airport was refurbished to be used as a new launch site that became operative at the beginning of the '70s. Finally, we suggest a short reminiscence of the first transatlantic experiment carried out on August 1975 in collaboration between SAS-CNR (Italy) and NSBF-NASA (USA). The reason why the Long Duration Balloon has been recently re-oriented in a different direction is analysed and future perspectives discussed. Finally, the spirit of the balloon launch performed by the Groups lead by Edoardo Amaldi, Livio Scarsi and other Italian pioneers, with payloads looking like "refrigerators" weighting a few tens of kg is intact and the wide participation to the present Workshop is the clear demonstration.

  17. Spectral observations of 19 weathered and 23 fresh NEAs and their correlations with orbital parameters

    NASA Astrophysics Data System (ADS)

    Fevig, Ronald A.; Fink, Uwe

    2007-05-01

    Results of our visible to near-infrared spectrophotometric observations of 41 near-Earth asteroids (NEAs) are reported. These moderate-resolution spectra, along with 14 previously published spectra from our earlier survey [Hicks, M.D., Fink, U., Grundy, W.M., 1998. Icarus 133, 69-78] show a preponderance of spectra consistent with ordinary chondrites (23 NEAs with this type of spectrum, along with 19 S-types and 13 in other taxonomic groups). There exists statistically significant evidence for orbit-dependent trends in our data. While S-type NEAs from our survey reside primarily in (1) Amor orbits or (2) Aten or Apollo orbits which do not cross the asteroid main-belt, the majority of objects with spectra consistent with ordinary chondrites in our survey are in highly eccentric Apollo orbits which enter the asteroid main-belt. This trend toward fresh, relatively unweathered NEAs with ordinary chondrite type spectra in highly eccentric Apollo orbits is attributed to one or a combination of three possible causes: (1) the chaotic nature of NEA orbits can easily result in high eccentricity orbits/large aphelion distances so that they can enter the collisionally enhanced environment in the main-belt, exposing fresh surfaces, (2) they have recently been injected into such orbits after a collision in the main-belt, or (3) such objects cross the orbits of several terrestrial planets, causing tidal disruption events that expose fresh surfaces.

  18. Spin axis of (2953) Vysheslavia and its implications

    NASA Astrophysics Data System (ADS)

    Vokrouhlický, D.; Brož, M.; Michałowski, T.; Slivan, S. M.; Colas, F.; Šarounová, L.; Velichko, F. P.

    2006-01-01

    Photometric observations made during the years 2000-2005 are used to determine the pole orientation of (2953) Vysheslavia, a ≃15-km size member of the Koronis family. We find admissible solutions for ecliptic latitude and longitude of the rotation pole P: β=-64°±10° and λ=11°±8° or P: β=-68°±8° and λ=192°±8°. These imply obliquity values γ=154°±14° and γ=157°±11°, respectively. The sidereal rotation period is P=0.2622722±0.0000018 day. This result is interesting for two reasons: (i) the obliquity value between 90° and 180° is consistent with a prediction done by Vokrouhlický et al. [Vokrouhlický, D., Brož, M., Farinella, P., Knežević, Z., 2001. Icarus 150, 78-93] that Vysheslavia might have been transported to its unstable orbit by the Yarkovsky effect, and (ii) with the obliquity close to 180°, Vysheslavia seems to belong to one of the two distinct groups in the Koronis family found recently by Slivan [Slivan, S.M., 2002. Nature 419, 49-51], further supporting the case of dichotomy in the spin axis distribution in this family. We also argue against the possibility that Vysheslavia reached its current orbit by a recent collisional breakup.

  19. The Saturnian Moon Iapetus and the Cassini Targeted Flyby on September 10, 2007

    NASA Astrophysics Data System (ADS)

    Denk, T.; Roatsch, Th.; Giese, B.; Wagner, R.; Schmedemann, N.; Neukum, G.

    2007-08-01

    The ISS camera onboard the Cassini Spacecraft orbiting Saturn has observed the enigmatic moon Iapetus for over three years now, but always from great distance. The sofar closest approach occurred at New-Year's Eve 2005 when a range of 124000 km was achieved. Numerous discoveries have been made so far [e.g., 1,2,3]: The equatorial ridge on the leading and anti-Saturn side, a latitude dependence of the characteristics of the dark terrain, an unusually high number of giant impact basins, the latitudinal dependence of bright and dark crater rims, a global color dichotomy that shows different boundaries than the more obvious brightness dichotomy, the true (crater) nature of the "moat" feature, and so on. Earlier discoveries from Voyager data [4,5] such as the irregular boundary between the bright and the dark hemispheres, the giant bright mountains on the anti- and sub-Saturn side ("Voyager" mountains), the ellipsoidal shape of the whole moon, impact craters within the dark terrain, the reddish color of the dark terrain, etc., have been confirmed. Promising attempts were made to explain the formations of the brightness and color dichotomies [6,7] and the ellipsoidal shape [8]. Besides many unanswered questions, a major missing piece is a very close-up view on the surface. This is planned for the targeted flyby on Sept. 10, 2007. Our Cassini group at FU and DLR in Berlin has the responsibility for the imaging observation planning. The spacecraft will approach Iapetus over the mainly unlit, very-low albedo Saturnfacing hemisphere. Closest approach will occur at 1600 km altitude over the anti- Saturn side. This area is close to the (as far as we know) highest parts of the ridge. On the outbound trajectory, Cassini will look back on the as-yet only poorly imaged bright trailing side of Iapetus at low phase angle. A spacecraft trajectory tweak to significantly improve the observation conditions [9] was approved by the project in early 2007. There will be many scientific highlights during the flyby. A few examples are: Spatial resolution down to 10 m/pxl with the ISS narrow angle camera; ridge imaging at high and low phase angles; a large mosaic of the equatorial transition zone; global mapping of the trailing side at˜400 m/pxl; the only SAR observation of an icy satellite (RADAR); a star occultation to look for a tenuous atmosphere (UVIS); very highresolution thermal observations (CIRS); best-ever examination of outer-solar system dark material (VIMS); and much more. A small subset of questions that might be addressed with these data are: What is the geologic nature and origin of the ridge and the bright "Voyager" mountains? How far does the ridge extend into the trailing side? What is the thickness of the dark terrain blanket? Does it harbor small bright "holes" due to recent small impacts? What is the chemical and mineralogical nature of the dark material? How is the distribution of the dark material on the trailing side? What is the overall cause for the existence of the tremendous brightness dichotomy, the color dichotomy, the complex brightness patterns on the transition zones? References: [1] Porco, C.C., et al. (2005): Cassini Imaging Science: Initial Results on Phoebe and Iapetus. Science 307, 1237-1242. [2] Denk, T., et al. (2005): LPSC XXXVI, abstracts #2262 and #2268. [3] Giese et al. (2007): The Topography of Iapetus' Leading Side. Icarus, in press. [4] Morrison et al. (1986): The Satellites of Saturn. In: Satellites, UofA Press, 764-801. [5] Denk et al. (2000) LPSC XXXI, abstract #1596. [6] Spencer, J.R. et al. (2005), 37th DPS, abstract #39.08. [7] Denk et al. (2006) 38th DPS Conference, abstract #69.07. [8] Castillo-Rogez et al. (2007): Iapetus' Geophysics: Rotation Rate, Shape, and Equatorial Ridge. Icarus, doi:10.1016/j.icarus.2007.02.018. [9] Pelletier, F.J. (2006): Cassini Iapetus-1 Flyby Variations. JPL IOM-343J-06-049.

  20. Lunar Reconnaissance Orbiter (LRO) Observations with the Lunar Exploration Neutron Detector (LEND): Neutron Suppression Regions (NSR) and Polar Hydrogen

    NASA Technical Reports Server (NTRS)

    Chin, G.; Mitrofanov, I. G.; Boynton, W. V.; Golovin, D. V.; Evans, L. G.; Harshman, K.; Kozyrev, A. S.; Litvak, M. L.; McClanahan, T.; Milikh, G. M.; hide

    2011-01-01

    Orbital detection of neutrons has become the dominant remote sensing technique for detecting and inferring H concentrations and its spatial distribution beneath planetary surfaces [Lawrence et al, (2010) Icarus, 205, pp. 195-209, Mitrofanov et al (2007) Science 297(5578), 78-81]. Indications for the presence of localized and relatively high water content was provided by LRO and LCROSS. LEND identified Cabeus, as the most promising LCROSS impact site [Mitrofanov I. et al. (2010) Science, 330, 483], and instruments onboard LRO and LCROSS have measured signatures of water, H2 and other volatiles in the impact plume [Colaprete A. et al. (2010) Science, 339,463, Gladstone R. et al. (2010) Science, 330, 472].

  1. Possible slow periglacial mass wasting at the Southern Hemisphere on Mars.

    NASA Astrophysics Data System (ADS)

    Johnsson, Andreas; Reiss, Dennis; Hauber, Ernst; Hiesinger, Harald

    2014-05-01

    Small-scale lobate landforms which are strikingly similar to terrestrial solifluction lobes are cataloged at the Southern Hemisphere on Mars. Terrestrial periglacial solifluction lobes are formed by frost creep, a combination of repeated frost heave and thaw consolidation, and gelifluction (visco-plastic deformation of near saturated soil) in the active layer on top of the permafrost table (e.g., Matsuoka, 2001). All publically available HiRISE images between latitudes 40°S and 80°S on Mars are being used in this study. Compared to previous studies of small-scale lobes in the northern mid and high latitudes (e.g., Gallagher et al., 2011; Johnsson et al., 2012; Barrett et al., 2013), these landforms also occur, in most cases, in close spatial proximity to fluvial gullies and polygonal terrain. This study aims to investigate whether the southern small-scale lobes differ from the northern counterparts in terms of morphology and distribution. Furthermore, spatio-temporal relationships to landforms with ground-ice affinity, such as gullies and polygonal terrain, are investigated. Solifluction-like small-scale lobes have been studied in detail at the northern hemisphere on Mars (Gallagher et al., 2011), where they are widely distributed at high latitudes between 59°N and 80°N (Johnsson et al., 2012). Small-scale lobes are proposed to represent freeze-thaw activity late in Martian climate history (Gallagher et al., 2011; Balme and Gallagher, 2011; Johnsson et al, 2012; Balme et al., 2013). Small-scale lobes differ from permafrost creep (i.e. rock glaciers) in having low fronts, decimeters to less than <5 m meters in height. They also lack compression ridges and furrows and are not confined to topographic niches (i.e. valley confinement). The presence of small-scale lobes raises the question whether they have formed by a warmer-than-thought-climate, or by the influence of soil salts (i.e. perchlorates) under sub-freezing conditions (e.g., Gallagher et al., 2011). Preliminary results indicate that the small-scale lobes are distributed more equatorward than in the north. Morphometry and morphology suggest that they are distinct from permafrost creep. Even though the southern hemisphere have more impact crater slopes fewer lobes have been observed so far in this study. The project is on-going and more work is required to firmly establish their distribution and their association to gullies and polygonal terrain. Though landforms indicative of freeze-thaw activity may be rare on flat terrain on Mars, there is growing evidence that freeze-thaw conditions may have been met on mid and high latitude slopes in recent climate history on Mars. References: Matsuoka, 2001. Earth Sci. Rev. Gallagher et al., 2011. Icarus 211, Balme and Gallagher, 2011. GSL. Johnsson et al., 2012. Icarus 218, Balme et al., 2013. Prog. Phys. Geogr. 1-36. Barrett et al., 2013. EPSC2013-159.

  2. Could G Asteroids be the Parent Bodies of the CM Chondrites?

    NASA Astrophysics Data System (ADS)

    Burbine, T. H.; Binzel, R. P.

    1995-09-01

    Since almost all meteorites are believed to be derived from asteroidal source bodies, the comparison of asteroid and meteorite spectra should allow for possible meteorite parent bodies to be identified. However only two asteroids with unique spectral characteristics, 4 Vesta with the basaltic achondrites [1] and near-Earth asteroid 3103 Eger with the aubrites [2], have been convincingly linked with any meteorite type. Farinella et al. [3] has done a study of 2355 numbered main-belt asteroids to determine which asteroids have the highest probability of having their fragments injected into the 3:1 mean motion and the nu6 secular resonance regions. Interestingly, asteroids with the third (19 Fortuna), tenth (1 Ceres) and eleventh (13 Egeria) highest theoretical total fragment delivery efficiencies are G-asteroids, a moderately rare type of asteroid with approximately ten known members. (Vesta has the fifth highest theoretical total fragment delivery efficiency.) G-asteroids tend to have the strongest ultraviolet, 0.7 micrometers and 3 micrometers absorption features of all C-type (B, C, F and G) asteroids, appearing to indicate that G-asteroids are at the upper range of the aqueous alteration sequence in the asteroid population. (The 0.7 micrometers feature is apparently due to iron oxides in hydrated silicates and the 3 micrometers feature is apparently due to hydrated minerals.) Meteorites that have reflectance spectra with a 3 micrometers feature of comparable intensity to those of the G-asteroids are the CI, CM and CR chondrites. However, G-asteroids (like all C-types) have ultraviolet absorption features that are weaker than previously measured meteorite spectra. Comparisons of reflectance spectra between Ceres and meteorite samples appear to indicate that Ceres is compositionally different from almost all known carbonaceous chondrites. Both Fortuna and Egeria have an absorption feature centered around 0.7 micrometers [4] that is similar in structure and strength to those found in many CM chondrites. The visible and near-infrared spectrum of Fortuna [5] matches very well the spectra of CM chondrites Murchison (bulk powder) [6] and LEW90500 (particle sizes less than 100 micrometers) [7]. However, the ultraviolet absorption feature is still weaker in Fortuna's spectrum. A spectrum of a bulk powder of LEW90500 does have an ultraviolet feature that matches Fortuna's feature, but this spectrum is substantially bluer than Fortuna in the near-infrared. Egeria's ultraviolet absorption feature also matches very well the ultraviolet feature in LEW90500Us (bulk powder) spectrum, but this spectrum is slightly redder than Egeria [5] in the near-infrared. The question is how unique is any postulated linkage between the CM chondrites and the G-asteroids. The problem is that approximately two-thirds of all C-type asteroids have 3 micrometers absorption features [8] and approximately three-fourths have 0.7 micrometers absorption features [4]. However of all observed C-type asteroids, Fortuna and Egeria appear to be two of the best spectral matches for the CM chondrites. Coupled with the high probability that these two asteroids are injecting large numbers of fragments into meteorite-supplying resonances, G-asteroids Fortuna and Egeria appear to be possible CM chondrite parent bodies. Acknowledgments: This research is supported by NASA Grant Number NAGW-2049. References: [1] Binzel R. P. and Xu S. (1993) Science, 260, 186-191. [2] Gaffey M. J. et al. (1992) Icarus, 100, 95-109. [3] Farinella P. et al. (1993) Icarus, 101, 174-187. [4] Sawyer S. R. (1991) Ph.D. thesis, Univ. of Texas, Austin. [5] Bell J. F. et al. (1988) LPS XIX, 57-58. [6] Gaffey M. J. (1976) JGR, 81, 905-920. [7] Hiroi T. et al. (1993) Science, 261, 1016-1018. [8] Jones T. D. et al. (1990) Icarus, 88,172-192.

  3. Observations of Hydrated Minerals on Asteroids: Pushing Back the Frontiers

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The three accomplishments during this grant include: 1) Travel to 2004 Division of Planetary Science (of American Astronomical Society) Conference in Louisville, KY and presentation of Rotationally resolved spectroscopy of Vesta in the 1-4 micron region, abstract 28.07. 2) Remote observations using the IRTF on 20-21 June 2004 and 28-3 1 August 2004, and reduction of data as described in the grant proposal and descoping document. These observations confirm the presence of two different band shapes among C-class asteroid spectra in the 3-micron region. This allowed a revision of the known distribution of Ceres- and Pallas-type objects. 3) Remote observations using the IRTF on 7-10 August 2004. These observations of Vesta were presented, and the manuscript will be submitted to Icarus in June.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auger, Martin; Del Tutto, Marco; Ereditato, Antonio

    The Fermilab Short Baseline Neutrino (SBN) program aims to observe and reconstruct thousands of neutrino-argon interactions with its three detectors (SBND, MicroBooNE and ICARUS-T600), using their hundred of tonnes Liquid Argon Time Projection Chambers to perform a rich physics analysis program, in particular focused in the search for sterile neutrinos. Given the relatively shallow depth of the detectors, the continuos flux of cosmic ray particles which crossing their volumes introduces a constant background which can be falsely identified as part of the event of interest. Here in this paper we present the Cosmic Ray Tagger (CRT) system, a novel techniquemore » to tag and identify these crossing particles using scintillation modules which measure their time and coordinates relative to events internal to the neutrino detector, mitigating therefore their effect in the event tracking reconstruction.« less

  5. Small meteoroids' major contribution to Mercury's exosphere

    NASA Astrophysics Data System (ADS)

    Grotheer, E. B.; Livi, S. A.

    2014-01-01

    The contribution of the meteoroid population to the generation of Mercury's exosphere is analyzed to determine which segment contributes most greatly to exospheric refilling via the process of meteoritic impact vaporization. For the meteoroid data, a differential mass distribution based on work by Grün et al. (Grün, E., Zook, H.A., Fechtig, H., Giese, R.H. [1985]. Icarus 62(2), 244-272) and a differential velocity distribution based on the work of Zook (Zook, H.A. [1975]. In: 6th Lunar Science Conference, vol. 2. Pergamon Press, Inc., Houston, TX, pp. 1653-1672) is used. These distributions are then evaluated using the method employed by Cintala (Cintala, M.J. [1992]. J. Geophys. Res. 97(E1), 947-974) to determine impact rates for selected mass and velocity segments of the meteoroid population.

  6. Surface composition of near-Earth Asteroid (4953) 1990 MU: Possible fragment of (6) Hebe

    NASA Astrophysics Data System (ADS)

    Kelley, Michael S.; Gaffey, Michael J.; Reddy, Vishnu; Sanchez, Juan A.

    2014-05-01

    Near-Earth asteroids (NEAs) are interesting as both a threat to the Earth and as the immediate parent bodies of most meteorites. We observed NEA (4953) 1990 MU using the NASA Infrared Telescope Facility (IRTF) and University of Hawaii (U.H.) telescopes on Mauna Kea to constrain its surface composition and origin. The surface composition of 1990 MU is similar to ordinary chondrites (H chondrites). The calculated olivine and pyroxene chemistry of 1990 MU (Fa13.5±1.3 and Fs12.7±1.4) are consistent with the olivine and pyroxene chemistry ranges for H chondrites (Fa15-21 and Fs13-19) (Dunn, T.L., McCoy, T.J., Sunshine, J.M., McSween, H.Y. [2010]. Icarus 208, 789-797), although the estimated Fa value is at the lower end of the H chondrite range. The olivine abundance ratio of 1990 MU (0.57 ± 0.03) is slightly higher but not inconsistent with H chondrites (0.47-0.55 ± 0.03). The radar circular polarization ratio (same circular polarization state or SC/opposite circular polarization state or OC) (Benner, L.A.M., Ostro, S.J., Magri, C., Nolan, M.C., Howell, E.S., Giorgini, J.D., Jurgens, R.F., Margot, J.L., Taylor, P.A., Busch, M.W., Shepard, M.K. [2008]. Icarus, 198, 294-304) of 1990 MU is 0.36 ± 0.03, which is higher than the mean SC/OC ratio for S-type NEAs (0.270 ± 0.079). The 1990 MU SC/OC is also higher than those of (25143) Itokawa (0.27 ± 0.04), (4179) Toutatis (0.29 ± 0.01) and (433) Eros (0.28 ± 0.06) suggesting a rougher surface at decimeter scale (Benner, L.A.M., Ostro, S.J., Magri, C., Nolan, M.C., Howell, E.S., Giorgini, J.D., Jurgens, R.F., Margot, J.L., Taylor, P.A., Busch, M.W., Shepard, M.K. [2008]. Icarus, 198, 294-304). We constrained the diameter of 1990 MU (4.4 km) using the average albedo at 0.55 μm of H chondrites (0.21) and absolute magnitude (H) of 14.1 (Flower, J.W., Chillemi J.R. [1992]. IRAS Asteroid Data Processing: The IRAS Minor Planet Survey, Philips Laboratory Technical Report PL-TR-92-2049. Jet Propulsion Laboratory, Pasadena, California, pp. 17-43). This diameter is higher than the 2.8 km value from Harris et al. (Harris, A.W. et al. [2011]. Astron. J. 141, 10) using an albedo of 0.52 for 1990 MU. This albedo value is unusually high for H chondrites, which have an albedo range of 0.12-0.30. We compared olivine and pyroxene chemistries of 1990 MU with main belt Asteroid (6) Hebe, probable parent body of H chondrite meteorites and IIE irons (Gaffey, M.J., Gilbert, S.L. [1998]. Meteor. Planet. Sci. 33, 1281-1295), and found that 1990 MU has more high-calcium pyroxene than Hebe. Fayalite and ferrosilite values of the two asteroids are consistent with H chondrites but do not overlap each other. The differences could be due to compositional variations observed on Hebe by Gaffey and Gilbert (Gaffey, M.J., Gilbert, S.L. [1998]. Meteor. Planet. Sci. 33, 1281-1295), although the observed rotational variation in spectral parameters does not match well with those of 1990 MU.

  7. Properties and evolution of NEO families created by tidal disruption at Earth

    NASA Astrophysics Data System (ADS)

    Schunová, Eva; Jedicke, Robert; Walsh, Kevin J.; Granvik, Mikael; Wainscoat, Richard J.; Haghighipour, Nader

    2014-08-01

    We have calculated the coherence and detectable lifetimes of synthetic near-Earth object (NEO) families created by catastrophic disruption of a progenitor as it suffers a very close Earth approach. The closest or slowest approaches yield the most violent ‘s-class’ disruption events where the largest remaining fragment after disruption and reaccumulation retains less than 50% of the parent’s mass. The resulting fragments have a ‘string of pearls’ configuration after their reaccummulation into gravitationally bound components (Richardson, D.C., Bottke, W.F., Love, S.G. [1998]. Icarus 134, 47-76). We found that the average absolute magnitude (H) difference between the parent body and the largest fragment is ΔH∼1.0. The average slope of the absolute magnitude (H) distribution, N(H)∝10, for the fragments in the s-class families is steeper than the slope of the NEO population (Mainzer, A., et al. [2011]. Astrophys. J. 743, 156) in the same size range. The es remain coherent as statistically significant clusters of orbits within the NEO population for an average of τbarc=(14.7±0.6)×103 yr after disruption. The detectable lifetimes of tidally disrupted families are extremely short compared to the multi-Myr and -Gyr lifetimes of main belt families due to the chaotic dynamical environment in NEO space-they are detectable with the techniques developed by Fu et al. and Schunová et al. (Fu, H., Jedicke, R., Durda, D.D., Fevig, R., Binzel, R.P. [2005]. Icarus 178(2), 434-449 and Schunová, E., Granvik, M., Jedicke, R., Gronchi, G., Wainscoat, R., Abe, S. [2012]. Icarus 220, 1050-1063) for an average duration (τbardet) ranging from about 2000 to about 12,000 years for progenitors in the absolute magnitude (Hp) range from 20 to 13 corresponding to diameters in the range from about 0.5 to 10 km respectively. The maximum absolute magnitude of a progenitor capable of producing an observable NEO family (i.e. detectable by our family finding technique) is Hp,max=20 (about 350 m diameter). The short detectability lifetime explains why zero NEO families have been discovered to-date. Nonetheless, every tidal disruption event of a progenitor with diameter greater than 0.5 km is capable of producing several million fragments in the 1-10 m diameter range that can contribute to temporary local density enhancements of small NEOs in Earth’s vicinity. We expect that there are about 1200 objects in the steady state NEO population in this size range due to tidal disruption assuming that one 1 km diameter NEO tidally disrupts at Earth every 2500 years. These objects may be suitable targets for asteroid retrieval missions due to their Earth-like orbits with corresponding low v∞ which permits low-cost missions. The fragments from the tidal disruptions evolve into orbits that bring them into collision with terrestrial planets or the Sun or they may be ejected from the Solar System on hyperbolic orbits due to deep planetary encounters. The end-state for the fragments from a tidal disruption at Earth have ∼5× the collision probability with Earth compared to the background NEO population.

  8. S3 and S4 abundances and improved chemical kinetic model for the lower atmosphere of Venus

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, Vladimir A.

    2013-07-01

    Mixing ratios of S3 and S4 are obtained from reanalysis of the spectra of true absorption in the visible range retrieved by Maiorov et al. (Maiorov, B.S. et al. [2005]. Solar Syst. Res. 39, 267-282) from the Venera 11 observations. These mixing ratios are fS3 = 11 ± 3 ppt at 3-10 km and 18 ± 3 ppt at 10-19 km, fS4 = 4 ± 4 ppt at 3-10 km and 6 ± 2 ppt at 10-19 km, and show a steep decrease in both S3 and S4 above 19 km. Photolysis rates of S3 and S4 at various altitudes are calculated using the Venera 11 spectra and constant photolysis yields as free parameters. The chemical kinetic model for the Venus lower atmosphere (Krasnopolsky, V.A. [2007]. Icarus 191, 25-37) has been improved by inclusion of the S4 cycle from Yung et al. (Yung, Y.L. et al. [2009]. J. Geophys. Res. 114, E00B34), reduction of the H2SO4 and CO fluxes at the upper boundary of 47 km by a factor of 4 in accord with the recent photochemical models for the middle atmosphere, by using a closed lower boundary for OCS instead of a free parameter for this species at the surface, and some minor updates. Our model with the S4 cycle but without the SO3 + 2 OCS reaction suggested by Krasnopolsky and Pollack (Krasnopolsky, V.A., Pollack, J.B. [1994]. Icarus 109, 58-78) disagrees with the observations of OCS, CO, S3, and S4. However, inclusion of the S4 cycle improves the model fit to all observational constraints. The best-fit activation energy of 7800 K for thermolysis of S4 supports the S4 enthalpy from Mills (Mills, K.C. [1974]. Thermodynamic Data for Inorganic Sulfides, Selenides and Tellurides. Butterworths, London). Chemistry of the Venus lower atmosphere is initiated by disequilibrium products H2SO4 and CO from the middle atmosphere, photolysis of S3 and S4, and thermochemistry in the lowest scale height. The chemistry is mostly driven by sulfur that is formed in a slow reaction SO + SO, produces OCS, and results in dramatic changes in abundances of OCS, CO, and free sulfur allotropes. The SX + OCS fraction is constant and equal to 20 ppm in the lower atmosphere. A source of free sulfur on Venus is in the lower atmosphere, and the calculated S8 mixing ratio is 2.5 ppm above 40 km and results in condensation and formation of aerosol sulfur near 50 km. Therefore the model does not support sulfur as the NUV absorber that was observed by Venera 14 above 58 km. Sources and sinks of the major chemical products in the model are briefly discussed. The model predicts a significant abundance of 3.5 ppb for SO2Cl2 above 25 km. This prediction of SO2Cl2 as well as that in the photochemical model for the middle atmosphere (Krasnopolsky, V.A. [2012]. Icarus 218, 230-246) may stimulate search for this species. A modified concept of the fast and slow sulfur cycles in the middle and lower atmospheres, respectively, has been presented and discussed. Some sources of the model uncertainty are briefly discussed.

  9. Chemistry in Titan

    NASA Astrophysics Data System (ADS)

    Plessis, S.; Carrasco, N.; Pernot, P.

    2009-04-01

    Modelling the chemical composition of Titan's ionosphere is a very challenging issue. Latest works perform either inversion of CASSINI's INMS mass spectra (neutral[1] or ion[2]), or design coupled ion-neutral chemistry models[3]. Coupling ionic and neutral chemistry has been reported to be an essential feature of accurate modelling[3]. Electron Dissociative Recombination (EDR), where free electrons recombine with positive ions to produce neutral species, is a key component of ion-neutral coupling. There is a major difficulty in EDR modelling: for heavy ions, the distribution of neutral products is incompletely characterized by experiments. For instance, for some hydrocarbon ions only the carbon repartition is measured, leaving the hydrogen repartition and thus the exact neutral species identity unknown[4]. This precludes reliable deterministic modelling of this process and of ion-neutral coupling. We propose a novel stochastic description of the EDR chemical reactions which enables efficient representation and simulation of the partial experimental knowledge. The description of products distribution in multi-pathways reactions is based on branching ratios, which should sum to unity. The keystone of our approach is the design of a probability density function accounting for all available informations and physical constrains. This is done by Dirichlet modelling which enables one to sample random variables whose sum is constant[5]. The specifics of EDR partial uncertainty call for a hierarchiral Dirichlet representation, which generalizes our previous work[5]. We present results on the importance of ion-neutral coupling based on our stochastic model. C repartition H repartition (measured) (unknown ) → C4H2 + 3H2 + H .. -→ C4 . → C4H2 + 7H → C3H8. + CH C4H+9 + e- -→ C3 + C .. → C3H3 + CH2 + 2H2 → C2H6 + C2H2 + H .. -→ C2 + C2 . → 2C2H2 + 2H2 + H (1) References [1] J. Cui, R.V. Yelle, V. Vuitton, J.H. Waite Jr., W.T. Kasprzak, D.A. Gell, H.B. Niemann, I.C.F. Müller-Wodarg, N. Borggren, G.G. Fletcher, E.L. Patrick, E. Raaen, and B.A. Magee. Analysis of Titan's neutral upper atmosphere from Cassini ion neutral mass spectrometer measurements. Icarus, In Press, Accepted Manuscript:-, 2008. [2] V. Vuitton, R. V. Yelle, and M.J. McEwan. Ion chemistry and N-containing molecules in Titan's upper atmosphere. Icarus, 191:722-742, 2007. [3] V. De La Haye, J.H. Waite Jr., T.E. Cravens, I.P. Robertson, and S. Lebonnois. Coupled ion and neutral rotating model of Titan's upper atmosphere. Icarus, 197(1):110 - 136, 2008. [4] J. B. A. Mitchell, C. Rebrion-Rowe, J. L. Le Garrec, G. Angelova, H. Bluhme, K. Seiersen, and L. H. Andersen. Branching ratios for the dissociative recombination of hydrocarbon ions. I: The cases of C4H9+ and C4H5+. International Journal of Mass Spectrometry, 227(2):273-279, June 2003. [5] N. Carrasco and P. Pernot. Modeling of branching ratio uncertainty in chemical networks by Dirichlet distributions. Journal of Physical Chemistry A, 11(18):3507-3512, 2007.

  10. Spherical, axisymmetric convection: Applications to Mercury

    NASA Astrophysics Data System (ADS)

    Redmond, H. L.; King, S. D.

    2004-05-01

    Mercury is the densest of the four inner planets and contains a large, iron core that may be up to 75% the size of the planet (Siegfried and Solomon, 1974). The outer shell of the planet is most likely a silicate crust 100-300 km thick and it is believed that Mercury currently has no tectonic activity. Three major observations support this hypothesis: (1) there are no surface expressions supporting the existence of mantle plumes or plate tectonics, implying that the heavily cratered surface of Mercury has changed very little since the period of heavy bombardment; (2) large impact basins, in particular Caloris, have not been greatly altered and lack concentric graben outside their main ring (Strom et al., 1975) suggesting that subsidence of the basins has not taken place, consistent with an early planetary compressive stress field suppressing the development of tensional surface features (Cordell and Strom, 1977); (3) the global absence of extensional features except for a small amount of localized regions within the Caloris basin and the inter-crater plains (Trask and Guest, 1975). The lack of surface tectonic features make it difficult to determine the thermal evolution of Mercury. Normally, when core differentiation occurs in a homogeneous planet, there is a large increase in planetary volume (Solomon, 1976) and extensional features resulting from differentiation are often observed at the surface. However, this is not the case for Mercury. It is more likely that Mercury cooled very rapidly and had completely differentiated prior to the end of the period of extensive bombardment (Trask and Guest, 1975). However, in order to preserve the dynamo explanation for Mercury's magnetic field (Ness et al., 1975), deep mantle heat sources are needed to keep the core largely molten, protecting it against heat loss via mantle convection (Cassen et al., 1976). We present a series of axisymmetric convection calculations with an olivine rheology and thermal history calculations to address the thermal state of Mercury. In particular, we seek to address the rapid early cooling needed to achieve the compressive stress state and the need for high core temperatures today to maintain a dynamo. Preliminary results suggest that convection in the thin mantle of Mercury develops a long-wavelength convection pattern that may aid in the explanation of the more common broad, compressional features and, less common, extensional features observed at the surface. Our calculations thus far, which are purely isoviscous, produce β = 0.26 in the Ra ~ Nuβ relationship, providing us insight on the strength and thickness of the Mercurian lithosphere as well as present day mantle temperatures. By adding thermal history modeling to our calculations and incorporating a non-Newtonian, temperature-dependent rheology we hope to achieve more realistic results while resolving the inconsistencies in the thermal history of Mercury. References: Cassen, P. et al., Icarus, 28, 501-508, 1976. Cordell, B.M. and R.G. Strom, Phys. Earth Planet. Int., 15, 146-155, 1977. Ness, N.F. et al., J. Geophys. Res., 80, 2708-2716, 1975. Siegfried, R.W. and S.C. Solomon, Icarus, 23, 192-205, 1974. Solomon, S.C., Icarus, 28, 509-522, 1976. Strom, R.G. et al., J. Geophys. Res., 80, 2478-2507, 1975. Trask, N.J. and J.E. Guest, J. Geophys. Res., 80, 2461-2477, 1975.

  11. The Changing Surface of Saturn's Titan: Cassini Observations Suggest Active Cryovolcanism

    NASA Astrophysics Data System (ADS)

    Nelson, R. M.

    2008-12-01

    R. M. Nelson(1), L. Kamp(1), R. M. C. Lopes(1), D. L. Matson(1), S. D. Wall(1), R. L. Kirk(2), K. L Mitchell(1), G. Mitri(1), B. W. Hapke(3), M. D. Boryta(4), F. E. Leader(1) , W. D. Smythe(1), K. H. Baines(1), R. Jauman(5), C. Sotin(1), R. N. Clark(6), D. P. Cruikshank(7) , P. Drossart(9), B. J. Buratti(1) , J.Lunine(8), M. Combes(9), G. Bellucci(10), J.-P. Bibring(11), F. Capaccioni(10), P. Cerroni(10), A. Coradini(10), V. Formisano(10), G Filacchione(10), R. Y. Langevin(11), T. B. McCord(12), V. Mennella(13), P. D. Nicholson(14) , B. Sicardy(8) 1-JPL, 4800 Oak Grove Drive, Pasadena CA 91109, 2-USGS, Flagstaff, 3-U Pittsburgh, 4-Mt. Sac Col, 5- DLR, Berlin, 6-USGS Denver, 7-NASA AMES, 8-U Paris-Meudon, 9-Obs de Paris, 10-ISFI-CNR Rome, 11-U Paris -Sud. Orsay, 12-Bear Flt Cntr Winthrop WA, 13-Obs Capodimonte Naples, 14-Cornell U. Several Instruments on the Cassini Saturn Orbiter have been observing the surface of Saturn's moon Titan since mid 2004. The Visual and Infrared Mapping Spectrometer (VIMS) reports that regions near 26oS, 78oW (region 1) and 7oS, 138oW (region 2) exhibit photometric changes consistent with on-going surface activity. These regions are photometrically variable with time(1). Cassini Synthetic Aperture Rader (SAR) has investigated these regions and reports that both of these regions exhibit morphologies consistent with cryovolcanism (2). VIMS observed region 1 eight times and reported that on two occasions the region brightened two-fold and then decreased again on timescales of several weeks. Region 2 was observed on four occasions (Tb-Dec13/2004 ,T8-Oct27/2005, T10-Jan15/2006, T12-Mar18/2006) and exhibited a pronounced change in I/F betweenT8 and T10. Our photometric analysis finds that both regions do not exhibit photometric properties consistent with atmospheric phenomena such as tropospheric clouds. These changes must be at or very near the surface. Radar images of these regions reveal morphology that is consistent with cryovolcanoes. We conclude that the VIMS instrument has found two instances in which selected regions on Titan's surface became unusually reflective and remained reflective on time scales of days to months. In both cases the area of reflectance variability is large (~100000 sq km), larger than either Loki or the Big Island of Hawaii. This is a strong evidence for currently active surface processes on Titan. Pre-Cassini, Titan was thought of as a pre-biotic earth that was frozen in time. Cassini VIMS and SAR observations combined suggest that Titan is the present day is not frozen solid, and is instead an episodically changing or evolving world. References: [1] Nelson R. M. et al, LPSC 2007 , Europlanets 2007, AGU 2007, EGU 2008, Accepted in Icarus 2008. [2] Lopes et al (this meeting), Stofan et al. Icarus 185, 443-456, 2007. Lopes et al. Icarus 186, 395- 412, 2007. Kirk et al., DPS 2007. Acknowledgement: This work done at JPL under contract with NASA

  12. Increased delivery of condensation nuclei during the Late Heavy Bombardment to the terrestrial and martian atmospheres

    NASA Astrophysics Data System (ADS)

    Losiak, Anna

    2014-05-01

    During the period of the Late Heavy Bombardment (LHB), between 4.1 and 3.8 Ga, the impact rate within the entire Solar System was up to a few thousand times higher than the current value (Ryder 2002, Bottke et al. 2012, Fassett and Minton 2013). Multiple basin-forming events on inner planets that occurred during this time had a strong but short-lasting (up to few thousands of years) effect on atmospheres of Earth and Mars (Sleep et al. 1989, Segura et al. 2002, 2012). However, the role of the continuous flux of smaller impactors has not been assessed so far. We calculated the amount of meteoric material in the 10^-3 kg to 106 kg size range delivered to Earth and Mars during the LHB based on the impact flux at the top of the Earth's atmosphere based on results from Bland and Artemieva (2006). Those values were recalculated for Mars based on Ivanov and Hartmann (2009) and then recalculated to the LHB peak based on estimates from Ryder (2002), Bottke et al. (2012), Fassett and Minton (2013). During the LHB, the amount of meteoritic material within this size range delivered to Earth was up to ~1.7*10^10 kg/year and 1.4*10^10 kg/year for Mars. The impactors that ablate and are disrupted during atmospheric entry can serve as cloud condensation nuclei (Rosen 1968, Hunten et al. 1980, Ogurtsov and Raspopov 2011). The amount of material delivered during LHB to the upper stratosphere and lower mezosphere (Hunten et al. 1980, Bland and Artemieva 2006) is comparable to the current terrestrial annual emission of mineral cloud condensation nuclei of 0.5-8*10^12 kg/year (Tegen 2003). On Mars, the availability of condensation nuclei is one of the main factors guiding water-ice cloud formation (Montmessin et al. 2004), which is in turn one of the main climatic factors influencing the hydrological cycle (Michaels et al. 2006) and radiative balance of the planet (Haberle et al. 1999, Wordsworth et al. 2013, Urata and Toon 2013). Increased delivery of condensation nuclei during the LHB should be taken into account when constructing models of terrestrial and Martian climates around 4 Ga. Bland P.A., Artemieva N.A. (2006) Meteorit.Planet.Sci. 41:607-631. Bottke W.F. et al. (2012) Nature 485: 78-81. Fassett C.I., Minton D.A. (2013) Nat.Geosci. 6:520-524 (2013). Hunten D.M. et al. (1980) J.Atmos.Sci. 37:1342-1357. Haberle R.M. et al. (1999) J.Geophys.Res. 104:8957-8974. Ivanov B.A., Hartmann W.K. (2009) Planets and Moons: Treatise on Geophysics (eds. Spohn T.): 207-243. Michaels T.I. et al. (2006) Geophys.Res.Lett. 33:L16201. Montmessin F. et al. (2004) J.Geophys.Res. 109:E10004. Ogurtsov M.G., Raspopov O.M. (2011) Geomagnetism&Aeronomy 51:275-283. Rosen J.M. (1968) Space Sci.Rev. 9:58-89. Ryder G. (2002) J.Geophys.Res. 107: doi:10.1029/2001JE001583. Segura T.L. et al. (2002) Science 298:1977-1980. Segura T.L. et al. (2012) Icarus 220:144-148. Sleep N.S. et al. (1989) Nature 342:139-142. Tegen I. (2003) Quat.Sci.Rev. 22:1821-1834. Urata R.A., Toon O.B. (2013) Icarus 226:229-250. Wordsworth R. et al. (2012) Icarus 222:1-19.

  13. Constraining Cometary Crystal Shapes from IR Spectral Features

    NASA Astrophysics Data System (ADS)

    Wooden, D. H.; Lindsay, S.; Harker, D. E.; Kelley, M. S.; Woodward, C. E.; Murphy, J. R.

    2013-12-01

    A major challenge in deriving the silicate mineralogy of comets is ascertaining how the anisotropic nature of forsterite crystals affects the spectral features' wavelength, relative intensity, and asymmetry. Forsterite features are identified in cometary comae near 10, 11.05-11.2, 16, 19, 23.5, 27.5 and 33 μm [1-10], so accurate models for forsterite's absorption efficiency (Qabs) are a primary requirement to compute IR spectral energy distributions (SEDs, λFλ vs. λ) and constrain the silicate mineralogy of comets. Forsterite is an anisotropic crystal, with three crystallographic axes with distinct indices of refraction for the a-, b-, and c-axis. The shape of a forsterite crystal significantly affects its spectral features [13-16]. We need models that account for crystal shape. The IR absorption efficiencies of forsterite are computed using the discrete dipole approximation (DDA) code DDSCAT [11,12]. Starting from a fiducial crystal shape of a cube, we systematically elongate/reduce one of the crystallographic axes. Also, we elongate/reduce one axis while the lengths of the other two axes are slightly asymmetric (0.8:1.2). The most significant grain shape characteristic that affects the crystalline spectral features is the relative lengths of the crystallographic axes. The second significant grain shape characteristic is breaking the symmetry of all three axes [17]. Synthetic spectral energy distributions using seven crystal shape classes [17] are fit to the observed SED of comet C/1995 O1 (Hale-Bopp). The Hale-Bopp crystalline residual better matches equant, b-platelets, c-platelets, and b-columns spectral shape classes, while a-platelets, a-columns and c-columns worsen the spectral fits. Forsterite condensation and partial evaporation experiments demonstrate that environmental temperature and grain shape are connected [18-20]. Thus, grain shape is a potential probe for protoplanetary disk temperatures where the cometary crystalline forsterite formed. The forsterite crystal shapes (equant, b-platelets, c-platelets, b-colums - excluding a- and c-columns) derived from our modeling [17] of comet Hale-Bopp, compared to laboratory synthesis experiments [18], suggests that these crystals are high temperature condensates. By observing and modeling the crystalline features in comet ISON, we may constrain forsterite crystal shape(s) and link to their formation temperature(s) and environment(s). References: [1] Campins, H., Ryan, E.V. 1989. ApJ, 341, 1059 [2] Crovisier, J., et al. 1997. Science, 275, 1904 [3] Wooden, D.H., et al. 1999. ApJ, 517, 1034 [4] Wooden, D.H., et al. 2004. ApJL, 612, L77 [5] Harker, D.E., et al. 2002. ApJ, 580, 579 [6] --. 2004, ApJ, 615, 1081 [7] Lisse, C.M., et al. 2006. Icarus 195, 941-944. [8] Lisse, C.M., et.al. 2007. Icarus 191, 223-240. [9] Kelley, M.S., et al. 2010, LPSC, 41, #2375 [10] Harker, D.E., et al. 2011, AJ, 141, 26 [11] Draine, B.T., & Flatau, P.J. 1994, J. Opt. Soc. Am. A, 11, 1491 [12] Draine, B.T., & Flatau, P.J. 2008, J. Opt. Soc. Am. A, 25, 2693 [13] Fabian, D., et al., 2001, A&A, 378, 228 [14] Tamanai, A., et al. 2006. ApJ, 648, L147 [15] Tamanai, A., et al. 2009. ASP Conf. Ser., 414, 438 [16] Koike, C., et al. 2010. ApJ, 709, 983 [17] Lindsay, S.S., et al. 2013, ApJ, 766, 54 [18] Tsuchiyama, A. 1998. Mineralogical J., 20, 59 [19] Kobatake, H., et al., 2008. Icarus, 198, 208 [20] Takigawa, A., et al.. 2009. ApJL, 707, L97

  14. Physical properties of dust particles in different comets inferred from observations and experimental simulations

    NASA Astrophysics Data System (ADS)

    Hadamcik, E.; Levasseur-Regourd, A. C.

    2007-08-01

    1.Introduction Remote observations of solar light scattered by cometary dust particles provide information on the dust properties for a large variety of comets, in complement to the exceptional in-situ observations (with or without sample returns). The scattered light is partially linearly polarized, with a polarization degree depending on the geometry of observations (phase angle ?) and on the physical properties of the particles. Differences in polarization have been found in cometary comae, pointing to different physical properties of the dust (e.g. sizes of the grains, of the aggregates, structures and porosities, complex refractive indices) [1, 2]. Such differences, as well as an observed polarimetric wavelength effect, tend to show that large aggregates made of submicron-sized grains could be present in some cometary comae regions [3, 4]. On the opposite, more compact particles seem to be present in other comae regions and/or comets [5, 6]. 2. Results We will present observations of different comets. The variations of the dust properties in the coma and their evolution will be discussed. The results will be compared to the results obtained by other observational techniques. On the images of comet 9P/Tempel 1 (at ?=41°) some hours after Deep Impact, two kinds of dust particles are detected: more compact particles with small velocities and fluffy particles ejected by the impact with larger velocities. On the images of comet 73P/Schwassmann-Wachmann 3, in the tail direction of fragment B, a disruption is observed. The dust coma around fragment C is more symmetric. For both A and B, important dust jets are ejected by the nucleus, which are visible on the intensity images in the solar and antisolar directions, and on the polarization maps. 3. Interpretation and conclusion Numerical (7,8,9) and experimental simulations provide an interpretation of the observations in terms of the physical properties of the particles. Experimental simulations have been performed on numerous levitating samples (compact and fluffy) with the PROGRA2 experiment, either in reduced gravity conditions (parabolic flights) [10,11], or lifted by an air-draught (laboratory conditions) [12,13]. The variations of the polarization are correlated to variations in the size of the grains and aggregates and are a function of the complex refractive index and its evolution. The correlation between the variations of the scattered intensity and the linear polarization maps allows us to disentangle different physical properties of the dust. The results are compared to results obtained from previous observations by the same methods. References [1] E. Hadamcik and A.C. Levasseur-Regourd, JQSRT 79-80, 661-678 (2003) [2] A.C. Levasseur-Regourd, E. Hadamcik, JQSRT 79-80, 903-910 (2003) [3] E. Hadamcik, A.C. Levasseur-Regourd, A&A 403, 757- 768 (2003) [4] L. Kolokolova et al., In: Comets II, M.C. Festou et al. (eds), pp 577 (2004) [5] E. Hadamcik, A.C. Levasseur-Regourd, Icarus 166, 188-194 (2003) [6] E. Hadamcik et al., Icarus, accepted. [7] J. Lasue, A.C. Levasseur-Regourd, JQSRT 100, 220-236 (2006) [8] H. Kimura et al., A&A 449, 1243-1254 (2006) [9] A.C. Levasseur-Regourd et al., PSS, in press, available on line (2007) [10] J.-B. Renard et al. Appl. Opt 41, 609-618 (2002) [11] J.-B. Renard et al., Adv. Space Res. 31, 2511-2518 (2003) [12] E. Hadamcik et al., JQSRT 100, 143-156 (2006) [13] E. Hadamcik et al., Icarus, in press, available on line (2007)

  15. The Surface of Deimos: Contribution of Materials and Processes to Its Unique Appearance

    NASA Astrophysics Data System (ADS)

    Thomas, P. C.; Adinolfi, D.; Helfenstein, P.; Simonelli, D.; Veverka, J.

    1996-10-01

    Among the well-imaged small satellites and asteroids, Deimos displays a unique surface: very smooth with global-scale albedo features. We have examined the disk-resolved photometry of Deimos using Viking Orbiter images for clues to its distinctive appearance. Hapke parameters were fit to characterize the phase behavior and to compute normal reflectance. The opposition surge amplitude (B0) is smaller for Deimos than for Phobos. Outside the range of the opposition effect the two martian satellites have similarly shaped phase curves, but Deimos is about 20-30% brighter than Phobos from 10°-80° phase. The calculated mean normal reflectance of Deimos (λeff= 0.54 μm) is 0.068 ± 0.007. The brighter and darker areas on Deimos exhibit constant contrast between 0.6° and 81° phase; this characteristic allows a calculation of the range of normal reflectances over most of its surface, nearly all of which values are between 0.06 and 0.09. The trailing side of Deimos has a larger relative distribution of the brighter material, and is on average about 10% brighter than the leading side. The mean normal reflectance cannot be formally distinguished from that of Phobos (0.071 ± 0.012; Simonelli, D. P., M. Wisz, A. Switala, D. Adinolfi, J. Veverka, P. C. Thomas, and P. Helfenstein 1996. Submitted toIcarus). Although the statistical distribution of normal reflectances on the two satellites is similar, the geography of the albedo variations is very different. Deimos has gradational changes in albedo downslope from ridge crests, primarily manifested in long albedo “streamers.” On Phobos there is a more patchy global distribution of albedos, apparently related to ejecta from the large crater Stickney. Because of the similarity of mean density, spectral properties, mean normal reflectance, the range of normal reflectance, and phase function outside the opposition effect, Deimos appears to be made of materials with compositions very similar to those on Phobos, although the apparent wider distribution of ejecta on Deimos has been cited as indicating a greater role for strength scaling in cratering on Deimos (Lee, S. W., P. Thomas, and J. Veverka 1986.Icarus68, 77-86). Simple modeling of the formation of the albedo patterns by gardening, creep, and “weathering” of bright material from crater rims suggests that impact gardening contributes very little to the motion of the material downslope, and that vertical mixing and/or “weathering” must be important in addition to an unspecified creep process. The distinction of Deimos is primarily in the smooth surface that allows a particularly large scale of downslope movement of regolith on very gentle slopes. This smoothness is most easily explained by the effects from impact formation of a 10-km concavity at high southern latitudes in the latter half of Deimos' surface history. This impact scar is relatively much larger than is the crater Stickney on Phobos. The effects of this large impact probably include blanketing by an average of nearly 200 m of ejecta, but also may include seismic erasing of craters similar to that proposed for Ida by Asphauget al. (Asphaug, E., J. M. Moore, D. Morrison, W. Benz, and R. A. Sullivan 1996.Icarus120, 158-184).

  16. Ground Ice on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Martineau, N.; Pollard, W.

    2003-12-01

    On Mars, just like on Earth, water exists in various phases and participates in a broad range of key processes. Even though present surface conditions on Mars, as defined by climate and atmospheric pressure, prevents the occurrence of liquid water on the surface, there is strong evidence suggesting that water was an important land-forming agent in the past (Carr 1996). This naturally raises the question, "where has the water gone?" Surficial water reservoirs that are directly observable on Mars include seasonal water ice deposits and permanent water ice deposits at the polar caps (Kieffer and Zent 1992, Clifford et al. 2000). Due to the existence of permafrost landform systems, such as polygonal ground, rootless cones, and frost mounts, it also has been speculated that much more water may be preserved as ground ice (Lucchitta 1981, Squyres and Carr 1986, Lanagan et al. 2001). Nevertheless, comparison of the likely patterns of ground ice on Mars with terrestrial equivalents has been limited. Fortunately, NASA's 2001 Odyssey data lends support to this hypothesis by identifying significant shallow ice-rich sediments by means of flux characteristics of neutrons, and gamma radiation, and spatial correlations to regions where it has been predicted that subsurface ice is stable (Bell 2002). The ice contents and stratigraphic distribution of the subsurface sediments on Mars, derived by the Odyssey Science Team, is not unlike the upper layers of terrestrial permafrost. Terrestrial polar environments, in particular the more stable permafrost and ground ice features like ice wedges and massive ground ice, may thus provide valuable clues in the search for water and ice on Mars. Of importance is the fact that these features of the earth's surface do not owe their origin to the seasonal freezing and thawing of the active layer. Under the cold, dry polar climates of the Arctic and Antarctic, periglacial and permafrost landforms have evolved, giving rise to distinctive landscapes directly related to the aggradation and degradation of ground ice. This paper examines ice stability as a function of climate and geomorphology, and offers suggestions for the exploration of Martian ground ice. It also describes the exploration strategies included in RIGID, a proposal for a capacitive-coupled instrumentation submitted to the Canadian Space Agency's Announcements of Opportunity during the summer of 2003. Bell, J., Tip of the Martian Iceberg? Science, 297, 60-61, 2002. Published online 30 May 2002, 10.1126/science.1074025. Carr, M., Water on Mars, Oxford University Press, New York., 229pp., 1996. Clifford S. M., A Model for the Hydrologic and Climatic Behavior of Water on Mars, J. Geophys. Res., 98, 10 973-11 016, 1993. Clifford et al., The state and future of Mars polar science and exploration, Icarus, 144, 210-242, 2000. Fanale, F.P., J.R. Salvail, A.P. Zentand, and S. E. Postawko, Global Distribution and Migration of Subsurface Ice on Mars, Icarus, 67, 1-18, 1986. Kieffer, H., and A. Zent, Quasi-periodic climate change on Mars, in Mars, edited by H.H. Kieffer et al., pp. 1135-1179, Univ. Arizona Press, Tucson, 1992. Lanagan, P.D., A.S. McEwen, L.P. Keszthelyi, and T. Thordarson, Rootless cones on Mars indicating the presence of shallow equatorial ground ice in recent times, GRL, 28, 2365-2368, 2001. Lucchitta, B., Mars and Earth: Comparison cold climate features. Icarus 45, 264-303, 1981. Squyres, S., and M. Carr, Geomorphic evidence for the distribution of ground ice on Mars, Science, 231, 249-252, 1986.

  17. Hungaria asteroid region telescopic spectral survey (HARTSS) I: Stony asteroids abundant in the Hungaria background population

    NASA Astrophysics Data System (ADS)

    Lucas, Michael P.; Emery, Joshua P.; Pinilla-Alonso, Noemi; Lindsay, Sean S.; Lorenzi, Vania

    2017-07-01

    The Hungaria asteroids remain as survivors of late giant planet migration that destabilized a now extinct inner portion of the primordial asteroid belt and left in its wake the current resonance structure of the Main Belt. In this scenario, the Hungaria region represents a ;purgatory; for the closest, preserved samples of the asteroidal material from which the terrestrial planets accreted. Deciphering the surface composition of these unique samples may provide constraints on the nature of the primordial building blocks of the terrestrial planets. We have undertaken an observational campaign entitled the Hungaria Asteroid Region Telescopic Spectral Survey (HARTSS) to record near-infrared (NIR) reflectance spectra in order to characterize their taxonomy, surface mineralogy, and potential meteorite analogs. The overall objective of HARTSS is to evaluate the compositional diversity of asteroids located throughout the Hungaria region. This region harbors a collisional family of Xe-type asteroids, which are situated among a background (i.e., non-family) of predominantly S-complex asteroids. In order to assess the compositional diversity of the Hungaria region, we have targeted background objects during Phase I of HARTSS. Collisional family members likely reflect the composition of one original homogeneous parent body, so we have largely avoided them in this phase. We have employed NIR instruments at two ground-based telescope facilities: the NASA Infrared Telescope Facility (IRTF), and the Telescopio Nazionale Galileo (TNG). Our data set includes the NIR spectra of 42 Hungaria asteroids (36 background; 6 family). We find that stony S-complex asteroids dominate the Hungaria background population (29/36 objects; ∼80%). C-complex asteroids are uncommon (2/42; ∼5%) within the Hungaria region. Background S-complex objects exhibit considerable spectral diversity as band parameter measurements of diagnostic absorption features near 1- and 2-μm indicate that several different S-subtypes are represented therein, which translates to a variety of surface compositions. We identify the Gaffey S-subtype (Gaffey et al. [1993]. Icarus 106, 573-602) and potential meteorite analogs for 24 of these S-complex background asteroids. Additionally, we estimate the olivine and orthopyroxene mineralogy for 18 of these objects using spectral band parameter analysis established from laboratory-based studies of ordinary chondrite meteorites. Nine of the asteroids have band parameters that are not consistent with ordinary chondrites. We compared these to the band parameters measured from laboratory VIS+NIR spectra of six primitive achondrite (acapulcoite-lodranite) meteorites. These comparisons suggest that two main meteorite groups are represented among the Hungaria background asteroids: unmelted, nebular L- (and possibly LL-ordinary chondrites), and partially-melted primitive achondrites of the acapulcoite-lodranite meteorite clan. Our results suggest a source region for L chondrite like material from within the Hungarias, with delivery to Earth via leakage from the inner boundary of the Hungaria region. H chondrite like mineralogies appear to be absent from the Hungaria background asteroids. We therefore conclude that the Hungaria region is not a source for H chondrite meteorites. Seven Hungaria background asteroids have spectral band parameters consistent with partially-melted primitive achondrites, but the probable source region of the acapulcoite-lodranite parent body remains inconclusive. If the proposed connection with the Hungaria family to fully-melted enstatite achondrite meteorites (i.e., aubrites) is accurate (Gaffey et al. [1992]. Icarus 100, 95-109; Kelley and Gaffey [2002]. Meteorit. Planet. Sci. 37, 1815-1827), then asteroids in the Hungaria region exhibit a full range of petrologic evolution: from nebular, unmelted ordinary chondrites, through partially-melted primitive achondrites, to fully-melted igneous aubrite meteorites.

  18. Analysis of Mars surface hydration through the MEx/OMEGA observation of the 3 μm absorption band.

    NASA Astrophysics Data System (ADS)

    Jouglet, D.; Poulet, F.; Bibring, J. P.; Langevin, Y.; Gondet, B.; Milliken, R. E.; Mustard, J. F.

    The near infrared Mars surface global mapping done by OMEGA gives the first opportunity to study the global and detailed characteristics of the 3µm hydration absorption band on Mars surface. This feature is indistinctly due to bending and stretching vibrations of water bound in minerals or adsorbed at their surface, and of hydroxyl groups (for a review, see e.g. [1] or [2]). Its study may give new elements to determine the geologic and climatic past of Mars, and may put new constrain about the current water cycle of Mars. OMEGA data are processed in a pipeline that converts raw data to radiance, removes atmospheric effects and gets I/F. Specific data reduction scheme has been developed to assess temperature of OMEGA spectra at 5 µm and to remove their thermal part so as to get the albedo from 1.µm to 5.1µm ([2]). Two methods, the Integrated Band Depth and the water content based on comparison with laboratory measures of Yen et al. ([3]), have been used to assess the 3µm band depth. These two methods where applied to OMEGA spectra acquired at a nominal calibration level and not exhibiting water ice features. This corresponds to approximately 35 million spectra ([2]). The data processed show the presence of this absorption feature overall the Martian surface, which could be explained by the presence of adsorbed water up to 1% water mass percentage ([4]) and by rinds or coating resulting from weathering (see e.g. [5] or [6]). A possible increase of hydration with albedo is discussed so as to discriminate between the albedo-dependence of the method and hydration variations. Terrains enriched in phyllosilicates ([7]), sulfates ([8]) or hydroxides exhibit an increased hydration at 3 µm. This terrains show that the 3 µm band can bring additional information about composition, for example by observing a variation in the shape of the band. A decrease of hydration with elevation is observed on the processed data independently of the value of albedo. This correlation may be explained by a decrease of pressure with altitude so that less water can adsorb on minerals. Study of global maps reveals a strong increase of hydration with high latitudes (over 60°N), maybe due to a change in composition [9]. Careful analysis also shows seasonal variations of the hydration of soils with the decrease of hydration between spring and summer for mid latitudes regions (from 40°N to 60°N). This hydration enrichment is not due to instrumental effect or to the presence of aerosols or water ice. It is associated to an increase of hydration with latitude in spring, increase that has disappeared in summer. This temporal variation may be explained by the presence of frost in winter. Frost is in contact with minerals and imposes a high water vapor pressure, which makes water to fix on minerals during winter. Then the hydration of the surface returns to equilibrium with the atmosphere by releasing water. These variations seem to confirm the important role of regolith on water cycle, which was predicted from numerical simulations (e.g. [10]). [1] Cooper C.D. and Mustard J.F. (1999) Icarus 142, 557-570. [2] Jouglet D.et al., article in preparation. [3] Yen A.S. et al (1998) JGR E5, 103, 11,125-11,133. [4] Zent A.P. and Quinn R.C.(1997) JGR E4, 102, 9085-9095. [5] Yen A.S. et al (2005), Nature 436, 49-54. [6] Hurowitz J.A. et al (2006) JGR, 111, E02S19, doi:10.1029/2005JE002515. [7] Poulet F. et al (2005) Nature 438, 623-627. [8] Gendrin A. et al. (2005) Science 307, 1587-1591. [9] Milliken et al, article in preparation. [10] Böttger H.M.et al. (2005) Icarus 177, 174-189. 2

  19. The effect of adsorbed liquid and material density on saltation threshold: Insight from laboratory and wind tunnel experiments

    NASA Astrophysics Data System (ADS)

    Yu, Xinting; Hörst, Sarah M.; He, Chao; Bridges, Nathan T.; Burr, Devon M.; Sebree, Joshua A.; Smith, James K.

    2017-11-01

    Saltation threshold, the minimum wind speed for sediment transport, is a fundamental parameter in aeolian processes. Measuring this threshold using boundary layer wind tunnels, in which particles are mobilized by flowing air, for a subset of different planetary conditions can inform our understanding of physical processes of sediment transport. The presence of liquid, such as water on Earth or methane on Titan, may affect the threshold values to a great extent. Sediment density is also crucial for determining threshold values. Here we provide quantitative data on density and water content of common wind tunnel materials (including chromite, basalt, quartz sand, beach sand, glass beads, gas chromatograph packing materials, walnut shells, iced tea powder, activated charcoal, instant coffee, and glass bubbles) that have been used to study conditions on Earth, Titan, Mars, and Venus. The measured density values for low density materials are higher compared to literature values (e.g., ∼30% for walnut shells), whereas for the high density materials, there is no such discrepancy. We also find that low density materials have much higher water content and longer atmospheric equilibration timescales compared to high density sediments. We used thermogravimetric analysis (TGA) to quantify surface and internal water and found that over 80% of the total water content is surface water for low density materials. In the Titan Wind Tunnel (TWT), where Reynolds number conditions similar to those on Titan can be achieved, we performed threshold experiments with the standard walnut shells (125-150 μm, 7.2% water by mass) and dried walnut shells, in which the water content was reduced to 1.7%. The threshold results for the two scenarios are almost the same, which indicates that humidity had a negligible effect on threshold for walnut shells in this experimental regime. When the water content is lower than 11.0%, the interparticle forces are dominated by adsorption forces, whereas at higher values the interparticle forces are dominated by much larger capillary forces. For materials with low equilibrium water content, like quartz sand, capillary forces dominate. When the interparticle forces are dominated by adsorption forces, the threshold does not increase with increasing relative humidity (RH) or water content. Only when the interparticle forces are dominated by capillary forces does the threshold start to increase with increasing RH/water content. Since tholins have a low methane content (0.3% at saturation, [Curtis, D. B., Hatch, C. D., Hasenkopf, C. A., et al., 2008. Laboratory studies of methane and ethane adsorption and nucleation onto organic particles: Application to Titan's clouds. Icarus, 195, 792. http://dx.doi.org/10.1016/j.icarus.2008.02.003]), we believe tholins would behave similarly to quartz sand when subjected to methane moisture.

  20. Analysis of Ice-Related Intra-Crater Facies in Promethei Terra, Mars

    NASA Astrophysics Data System (ADS)

    Orgel, Csilla; Kereszturi, Ákos; van Gasselt, Stephan

    2014-05-01

    On Mars ice-related landforms have been identified at mid-latitudes between 30° and 50° in both hemispheres including the areas of Tempe Terra, Deuteronilus-Protonilus Mensae, Phlegra Montes and the rims of the southern-hemispheric impact basins Argyre and Hellas [1-7]. Our study area - informally termed hourglass-shaped crater [8] - is located near Reull Vallis on the eastern rim of the Hellas impact basin (39.0°S, 102.8°E). Impact-crater infill was described as debris-covered piedmont-type glacier [8] based on analysis of High Resolution Stereo Camera (HRSC) data, and implies a glacial origin with precipitation of ice during higher obliquity phases. Recent, higher-resolution image data such as data of the High Resolution Imaging Science Experiment (HiRISE) and the Context Imager (CTX) provide a more detailed picture of the lateral distribution of different small-scale surface features indicative of periglacial and/or glacial origin. The aim of this study is to identify qualitative and quantitative characteristics of these ice-related landforms and to separate sources of water ice and related processes. Initial age determinations based on impact-crater size-frequency statistics indicate an age of 3.4 Gyr for the impact-crater and an age of approximately 75 Myr for the infill [8]. In order to identify a possible sequence of surface-feature evolution we calculated the age distribution of four major surface units which span ages ages between 1-47 Myr. Along with detailed age information and a separation of different processes at this confined type location of Mars young-Amazonian landscape evolution and potential cyclic signals are being reconstructed to constrain climate evolution. Carr, M. H. & Schaber, G. G. 1977: Martian permafrost features.- J. Geophys. Res. 82, 4039-4054. Squyres, S. W. 1978: Martian fretted terrain: flow of erosional debris.- Icarus 34, 600-613. Squyres, S. W. 1979: The distribution of lobate debris aprons and similar flows on Mars.- J. Geophys. Res. 84, 8087-8096. Lucchitta, B. K. 1981: Mars and Earth: comparison of cold-climate features.- Icarus 45, 264-303. Lucchitta, B. K. 1984: Ice and debris in the fretted terrain, Mars.- J. Geophys. Res. 89, B409-B418. Squyres, S. W. & Carr, M. H. 1986: Geomorphic evidence for the distribution of ground ice on Mars.- Science 231, 249-252. Kargel, J. S. & Strom, R. G. 1992: Ancient glaciation on Mars.- Geology 20, 3-7. Head, J. W., Neukum, G., Jaumann, R., Hiesinger, H., Hauber, E., Carr, M., Masson, P., Foing, B., Hoffmann, H., Kreslavsky, M., Werner, S., Milkovich, S., van Gasselt, S. & the HRSC Co-Investigator Team 2005: Tropical and mid-latitude snow and ice accumulation, flow and glaciation on Mars.- Nature 434, 346-351.

  1. A post-Rosetta understanding of polarimetric observations of comets

    NASA Astrophysics Data System (ADS)

    Levasseur-Regourd, A. Chantal; Ciarletti, Valérie; Hadamcik, Edith; Lasue, Jérémie; Mannel, Thurid

    2017-04-01

    Numerous polarimetric observations of solar light scattered by dust in cometary comae have been obtained by various teams, providing phase angle and wavelength dependences for many comets and revealing different classes of comets [e.g., 1]. Besides, numerical and experimental simulations have suggested interpretations for such observations. The Rosetta long duration rendezvous with comet 67P/Churyumov-Gerasimenko (thereafter 67P/C-G) now allows us to compare our understanding of the polarimetric properties of cometary dust with the ground-truth provided by the Rosetta mission, at least for two typical results. First, some comets present a highly-polarized positive branch, the most conspicuous case being that of new comet C/1995 O1 Hale-Bopp [2], while other comets suffering a partial fragmentation or a total disruption, such as C/1995 S4 LINEAR [3], present a significant increase in polarization. We will discuss these observations in the context of evidence for changes between the porosity (and possibly the dust/ice ratio) of the subsurface and of the interior of 67P/C-G, a periodic Jupiter Family Comet, as derived from analyses [4] of the CONSERT bi-static radar measurements on board Rosetta and Philae. Secondly, numerical simulations of the phase and wavelength dependence of polarimetric observations of some comets (extensively observed on a wide range of wavelengths and phase angles) have suggested the presence of fractal, likely-porous aggregates and of compact particles within their comae [e.g., 5]. We will review such results in the context of evidence for porous and compact aggregates of submicron-sized grains in the inner coma of 67P/C-G [6], as given by 3D images (with a resolution down to tens of nanometers) of the MIDAS atomic force microscope on board Rosetta. References: [1] Kiselev et al., 2015, In Polarization of stars and planetary systems, CUP 379-404. [2] Levasseur-Regourd & Hadamcik, 2003, JQSRT 79-80, 903-910. [3] Hadamcik & Levasseur-Regourd, 2003, Icarus 166, 188-194. [4] Ciarletti et al., 2015, Astron. Astrophys. 583, A40. [5] Lasue et al., 2009, Icarus 199, 129-144. [6] Mannel et al., 2016, MNRAS 462, S 304-S311.

  2. A Newborn Asteroid Family of Likely Rotational Origin Harboring a Doubly-Synchronous Binary

    NASA Astrophysics Data System (ADS)

    Drahus, Michal; Waniak, Waclaw

    2016-10-01

    From the total number of about twenty active asteroids identified to date, one of the most intriguing is P/2012 F5. The 2-km sized object has a short rotation period of 3.24 hr - the shortest known among main-belt active asteroids and comets - and is trailed by several fragments recently separated from the main nucleus (Drahus et al. 2015, ApJL 802, L8). Our extensive observations with Hubble in late 2015 and early 2016 have revealed that the fragments are real and stable "baby asteroids", still cocooned in their birth dust trail. Consequently, P/2012 F5 is the first known asteroid family forming in the present-day epoch. Given the rapid spin of the main nucleus, the system is also the best candidate for the first "rotational" asteroid family originating from rotational fission (as opposed to the long-known "collisional" families), extending the recently identified class of asteroid pairs (Pravec et al. 2010, Nature 466, 1085). Furthermore, the HST data allowed us to measure a light curve of the brightest fragment of P/2012 F5, several magnitudes fainter than the main nucleus. The light curve has all the characteristics of a close binary with significantly elongated, roughly equal sized components, having equal rotation and orbital periods of about 9 hr. The existence of a doubly-synchronous binary in an ultra-young asteroid family is seemingly inconsistent with the established "slow" binary formation path, in which YORP torques first lead to rotational fission and then tides lead to synchronization (Jacobson & Scheeres 2011, Icarus 214, 161). Instead, we believe that the object fissioned while orbiting the main nucleus and drawing its angular momentum, and was subsequently ejected from the system as a finished doubly-synchronous binary. This scenario is consistent with computer simulations in that the timescales for secondary fission and ejection from the system are indeed very short (Jacobson & Scheeres 2011, Icarus 214, 161). But the empirical evidence that fissioned secondaries can escape as doubly-synchronous binaries came as a surprise, so we seem to have accidentally identified a new, "rapid" formation path of such systems, not yet accounted for by the prevailing theory.

  3. Velocity and vorticity measurements of Jupiter's Great Red Spot using automated cloud feature tracking

    NASA Astrophysics Data System (ADS)

    Choi, David S.; Banfield, Don; Gierasch, Peter; Showman, Adam P.

    2007-05-01

    We have produced mosaics of the Great Red Spot (GRS) using images taken by the Galileo spacecraft in May 2000, and have measured the winds of the GRS using an automated algorithm that does not require manual cloud tracking. Our technique yields a high-density, regular grid of wind velocity vectors that is advantageous over a limited number of scattered wind vectors that result from manual cloud tracking. The high-velocity collar of the GRS is clearly seen from our velocity vector map, and highest wind velocities are measured to be around 170 m s -1. The high resolution of the mosaics has also enabled us to map turbulent eddies inside the chaotic central region of the GRS, similar to those mapped by Sada et al. [Sada, P.V., Beebe, R.F., Conrath, B.J., 1996. Icarus 119, 311-335]. Using the wind velocity measurements, we computed particle trajectories around the GRS as well as maps of relative and absolute vorticities. We have discovered a narrow ring of cyclonic vorticity that surrounds the main anti-cyclonic high-velocity collar. This narrow ring appears to correspond to a ring surrounding the GRS that is bright in 5 μm [Terrile, R.J., Beebe, R.F., 1979. Science 204, 948-951]. It appears that this cyclonic ring is not a transient feature of the GRS, as we have discovered it in a re-analysis of Galileo data taken in 1996 first analyzed by Vasavada et al. [Vasavada, A.R., and 13 colleagues, 1998. Icarus 135, 265-275]. We also calculate how absolute vorticity changes as a function of latitude along a trajectory around the GRS and compare these measurements to similar ones performed by Dowling and Ingersoll [Dowling, T.E., Ingersoll, A.P., 1988. J. Atmos. Sci. 45, 1380-1396] using Voyager data. We show no dramatic evolution in the structure of the GRS since the Voyager era except for additional evidence for a counter-rotating GRS core, an increase in velocity in the main velocity collar, and an overall decrease in the length of the GRS.

  4. Ceres’ Evolution and Potential Habitability

    NASA Astrophysics Data System (ADS)

    Raymond, Carol Anne; Ammannito, Eleonora; Bland, Michael T.; Castillo-Rogez, Julie; De Sanctis, Maria Cristina; Ermakov, Anton; Fu, Roger; McCord, Thomas; Park, Ryan; Prettyman, Thomas H.; Ruesch, Ottaviano; Russell, Christopher T.; Dawn Team

    2017-10-01

    Dawn’s observations at Ceres confirm it is a volatile-rich body that has undergone ice-rock differentiation and global alteration [1-4], indicating that, as predicted by pre-Dawn thermochemical models, Ceres harbored an ancient subsurface ocean [5,6]. Density and shape data indicate that at present, Ceres has a crust composed of silicate, salts, clathrates and ≤ 35% water ice, overlying a denser core of hydrated silicates [7,8,9,10], whereas the original ice-dominated outer shell was likely lost to impact-induced sublimation early in Ceres’ history [11]. The interior structure constrains the maximum internal temperature to have been only a few hundred degrees [9]; however, rather than indicating a late formation for Ceres, it may indicate that circulation of fluids within Ceres modulated the temperature [12].The extent and longevity of the ocean are debatable; however, the modern surface of Ceres shows evidence of brine extrusion [e.g., 13], indicating at least pockets of subsurface liquid remain. Carbonates are found to dominate the composition of the brightest deposits on the surface, attesting to transport of crystallized brine material to the surface [14]. These multiple lines of evidence point to a warm aqueous subsurface environment with complex chemistry early in Ceres’ history and processes that exchanged material between the muddy ocean layer and the surface. Such history and the presence of organic material in localized deposits [15, 16] make Ceres an enticing target for future exploration. [1] Russell et al., Science, 2016 [2] Prettyman et al., Science, 2017 [3] De Sanctis et al., 2015 10.1038/nature18290 [4] Ammannito et al., Science, 2016 [5] McCord and Sotin, JGR, 2005 [6] Castillo-Rogez and McCord, Icarus, 2010 [7] Park et al., Nature, 2016 [8] Ermakov et al., JGR, 2017 [9] Fu et al., EPSL, 2017 [10] Bland et al., Nat. GeoSci., 2016 [11] Castillo-Rogez et al., LPSC, 2016 [12] Travis et al., Icarus, subm. [13] Ruesch et al., Science, 2106 [14] De Sanctis et al., Nature, 2016 [15] De Sanctis et al., Science, 2017 [16] Marchi et al., this meeting. Acknowledgements: Part of this work is being carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA.

  5. Subsurface structure of Planum Boreum from Mars Reconnaissance Orbiter Shallow Radar soundings

    NASA Astrophysics Data System (ADS)

    Putzig, Nathaniel E.; Phillips, Roger J.; Campbell, Bruce A.; Holt, John W.; Plaut, Jeffrey J.; Carter, Lynn M.; Egan, Anthony F.; Bernardini, Fabrizio; Safaeinili, Ali; Seu, Roberto

    2009-12-01

    We map the subsurface structure of Planum Boreum using sounding data from the Shallow Radar (SHARAD) instrument onboard the Mars Reconnaissance Orbiter. Radar coverage throughout the 1,000,000-km 2 area reveals widespread reflections from basal and internal interfaces of the north polar layered deposits (NPLD). A dome-shaped zone of diffuse reflectivity up to 12 μs (˜1-km thick) underlies two-thirds of the NPLD, predominantly in the main lobe but also extending into the Gemina Lingula lobe across Chasma Boreale. We equate this zone with a basal unit identified in image data as Amazonian sand-rich layered deposits [Byrne, S., Murray, B.C., 2002. J. Geophys. Res. 107, 5044, 12 pp. doi:10.1029/2001JE001615; Fishbaugh, K.E., Head, J.W., 2005. Icarus 174, 444-474; Tanaka, K.L., Rodriguez, J.A.P., Skinner, J.A., Bourke, M.C., Fortezzo, C.M., Herkenhoff, K.E., Kolb, E.J., Okubo, C.H., 2008. Icarus 196, 318-358]. Elsewhere, the NPLD base is remarkably flat-lying and co-planar with the exposed surface of the surrounding Vastitas Borealis materials. Within the NPLD, we delineate and map four units based on the radar-layer packets of Phillips et al. [Phillips, R.J., and 26 colleagues, 2008. Science 320, 1182-1185] that extend throughout the deposits and a fifth unit confined to eastern Gemina Lingula. We estimate the volume of each internal unit and of the entire NPLD stack (821,000 km 3), exclusive of the basal unit. Correlation of these units to models of insolation cycles and polar deposition [Laskar, J., Levrard, B., Mustard, J.F., 2002. Nature 419, 375-377; Levrard, B., Forget, F., Montmessin, F., Laskar, J., 2007. J. Geophys. Res. 112, E06012, 18 pp. doi:10.1029/2006JE002772] is consistent with the 4.2-Ma age of the oldest preserved NPLD obtained by Levrard et al. [Levrard, B., Forget, F., Montmessin, F., Laskar, J., 2007. J. Geophys. Res. 112, E06012, 18 pp. doi:10.1029/2006JE002772]. We suggest a dominant layering mechanism of dust-content variation during accumulation rather than one of lag production during periods of sublimation.

  6. Jovian magnetospheric weathering of Europa's nonice surface material

    NASA Astrophysics Data System (ADS)

    Hibbitts, Charles A.; Paranicas, Christopher; Blaney, Diana L.; Murchie, Scott; Seelos, Frank

    2016-10-01

    Jovian plasma and energetic charged particles bombard the Galilean satellites. These satellites vary from volcanically active (Io) to a nearly primordial surface (Callisto). These satellites are imbedded in a harsh and complex particle radiation environment that weathers their surfaces, and thus are virtual laboratories for understanding how particle bombardment alters the surfaces of airless bodies. Europa orbits deeply in the Jovian radiation belts and may have an active surface, where space weathering and geologic processes can interact in complex ways with a range of timescales. At Europa's surface temperature of 80K to 130K, the hydrated nonice material and to a lesser extent, water ice, will be thermally stable over geologic times and will exhibit the effects of weathering. The ice on the surface of Europa is amorphous and contains trace products such as H2O2 [1] due to weathering. The nonice material, which likely has an endogenic component [2] may also be partially amorphous and chemically altered as a result of being weathered by electrons, Iogenic sulfur, or other agents [3]. This hydrated salt or frozen brine likely compositionally 'matures' over time as the more weakly bound constituents are preferentially removed compared with Ca and Mg [4]. Electron bombardment induces chemical reactions through deposition of energy (e.g., ionizations) possibly explaining some of the nonice material's redness [5,6]. Concurrently, micrometeroid gardening mixes the upper surface burying weathered and altered material while exposing both fresh material and previous altered material, potentially with astrobiological implications. Our investigation of the spectral alteration of nonice analog materials irradiated by 10s keV electrons demonstrates the prevalence of this alteration and we discuss relevance to potential measurements by the Europa MISE instrument.References: [1] Moore, M. and R. Hudson, (2000), Icarus, 145, 282-288; [2] McCord et al., (1998), Science, 280, 1242; [3] Carlson et al., (2002), Icarus, 157, 456-463; [4] McCord et al., (2001), JGR, 106, E2, 3311-3319; [5] Hand, K. and R. Carlson, (2015), GRL, 10.1002/2015GRL063559. [6] Hibbitts, C.A. and Paranicas, C., ACS conference, Aug., 2016.

  7. Structure of the Mimas 5:3 Bending Wave in Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Sega, Daniel D.; Colwell, Josh E.

    2016-10-01

    Saturn's moon Mimas is on an inclined orbit with several strong vertical orbital resonances in Saturn's rings. The 5:3 inner vertical resonance with Mimas lies in the outer A ring and produces a prominent spiral bending wave (BW) that propagates away from Mimas. While dozens of density waves in Saturn's rings have been analyzed to determine local surface mass densities and viscosities, the number of bending waves is limited by the requirement for a moon on an inclined orbit and because, unlike the Lindblad resonances that excite density waves, there can be no first order vertical resonances. The Mimas 5:3 BW is the most prominent in the ring system. Bending wave theory was initially developed by Shu et al. (1983, Icarus, 53, 185-206) following the Voyager encounters with Saturn. Later, Gresh et al. (1986, Icarus, 68, 481-502) modeled radio science occultation data of the Mimas 5:3 BW with an imperfect fit to the theory. The multitude of high resolution stellar occultations observed by Cassini UVIS provides an opportunity to reconstruct the full three-dimensional structure of this wave and learn more about local ring properties. Occultations at high elevation angles out of the ring plane are insensitive to the wave structure due to the small angles of the vertical warping of the rings in the wave. They thus reveal the underlying structure in the wave region. There is a symmetric increase in optical depth throughout the Mimas 5:3 BW region. This may be due to an increase in the abundance of small particles without a corresponding increase in surface mass density. We include this feature in a ray-tracing model of the vertical structure of the wave and fit it to multiple UVIS occultations. The observed amplitude of the wave and its damping behavior of are not well-described by the Shu et al. model, which assumes a fluid-like damping mechanism. A different damping behavior of the ring, perhaps radially varying across the wave region due to differences in the particle size distribution and/or structure of the self-gravity wakes in the ring, is needed to match observations.

  8. Time scales of erosion and deposition recorded in the residual south polar cap of Mars

    NASA Astrophysics Data System (ADS)

    Thomas, P. C.; Calvin, W. M.; Gierasch, P.; Haberle, R.; James, P. B.; Sholes, S.

    2013-08-01

    The residual south polar cap (RSPC) of Mars has been subject to competing processes during recent Mars years of high resolution image coverage: continuing erosion of scarps while the maximum extent grows as well as shrinks (Piqueux, S., Christensen, P.R. [2008]. J. Geophys. Res. (Planets) 113, 2006; James, P.B., Thomas, P.C., Malin, M.C. [2010]. Icarus 208, 82-85). Additionally, the cap has a variety of morphologies and erosion (scarp retreat) rates (Thomas, P.C., James, P.B., Calvin, W.M., Haberle, R., Malin, M.C. [2009]. Icarus 203, 352-375). Do these different forms and competing processes indicate an aging and possibly disappearing cap, a growing cap, or a fluctuating cap, and is it possible to infer the timescales of the processes acting on the RSPC? Here we use the latest imaging data from Mars' southern summer in Mars year 30 (Calendar year 2011) to evaluate erosion rates of forms in the RSPC over 6 Mars years, and to map more fully features whose sizes can be used to predict deposit ages. Data through Mars year 30 show that scarp retreat rates in the RSPC have remained approximately the same for at least 6 Mars years and that these rates of erosion also apply approximately over the past 21 Mars years. The thicker units appear to have undergone changes in the locations of new pit formation about 30-50 Mars years ago. The thinner units have some areas that are possibly 80 Mars years old, with some younger materials having accumulated more than a meter in thickness since Mars year 9. Formation of the thicker units probably required over 100 Mars years. The upper surfaces of most areas, especially the thicker units, show little change at the few-cm level over the last 2 Mars years. This observation suggests that current conditions are substantially different from those when the thicker units were deposited. A prime characteristic of the evolution of the RSPC is that some changes are progressive, such as those involving scarp retreat, while others, such as the geography of initiation of new pits or the areal coverage of ice, appear to be more episodic.

  9. Diverse Aqueous Conditions on Mars from New Orbital Detections of Carbonate and Sulfate

    NASA Astrophysics Data System (ADS)

    Wray, James J.; Squyres, S. W.

    2010-10-01

    Diverse aqueous environments on ancient Mars have been a key inference from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on NASA's Mars Reconnaissance Orbiter, which has identified many alteration minerals in a range of settings [e.g., 1-4]. Here we report two new minerals detected using CRISM. In the southern highlands northwest of the Hellas basin, a mid-sized crater exposes carbonate in its central uplift. Spectral absorptions at 1, 2.33, and 2.53 microns are most consistent with Fe-carbonate, distinct from the Mg-carbonates identified from orbit by [5]. Fe-carbonate is associated with Mg-phyllosilicate in fractured materials formerly buried kilometers beneath the surface, and--like the Mg/Fe-carbonate found by the Spirit rover [6]--suggests a reducing, neutral-to-alkaline alteration environment. One of the largest phyllosilicate exposures on Mars occurs in the Mawrth Vallis region [e.g., 7]. We identify bassanite (Ca-sulfate hemihydrate) in layers underlying the phyllosilicate-bearing beds [8], a stratigraphy distinct from that predicted by global models of martian aqueous history [9]. Bassanite could have formed via acid-sulfate alteration of Ca-carbonate, through dehydration of gypsum, or under hydrothermal conditions [10]. These detections expand the known mineralogic diversity of Mars and the range of environments to explore for past habitability. [1] Mustard, J. F. et al. (2008) Nature 454, 305-309. [2] Murchie, S. L. et al. (2009) J. Geophys. Res. 114, E00D06. [3] Ehlmann, B. L. et al. (2009) J. Geophys. Res. 114, E00D08. [4] Wray, J. J. et al. (2009) Geology 37, 1043-1046. [5] Ehlmann, B. L. et al. (2008) Science 322, 1828-1832. [6] Morris, R. V. et al. Science, in press, doi:10.1126/science.1189667. [7] Poulet, F. et al. (2005) Nature 438, 623-627. [8] Wray, J. J. et al. Icarus, in press, doi:10.1016/j.icarus.2010.06.001. [9] Bibring, J.-P. et al. (2006) Science 312, 400-404. [10] Vaniman, D. T. et al. (2009) LPSC 40, 1654.

  10. Surprise! The oft-ignored Moon might actually be important for changing the spins of asteroids during Earth flybys

    NASA Astrophysics Data System (ADS)

    Tuttle Keane, James; Siu, Hosea C.; Moskovitz, Nicholas A.; Binzel, Richard P.

    2015-11-01

    Analysis near-Earth asteroid archival data has revealed that asteroids with Earth MOIDs (minimum orbit intersection distance; a proxy for flyby distance) smaller than 1.0-1.5 lunar distances have a systematically larger dispersion in spin rate than more distant flybys (Siu, et al. 2015, DPS). While tidal torques during close encounters are expected to alter the spin states of asteroids (e.g. Scheeres et al. 2000, Icarus), there is no intrinsic reason to expect the observed sharp transition in spin rate distribution at 1.0-1.5 lunar distances, as tidal forces drop off smoothly with distance.While the Moon itself is too diminutive to directly alter the spin-states of asteroids, we show that its presence is enough to significantly affect asteroid encounter trajectories. Asteroids entering the Earth-Moon system are subject to three-body dynamics (due to the combined gravitational effects of the Earth and Moon). Depending on the flyby geometry, the Moon can act as a temporary sink for the asteroid's geocentric orbital energy. This allows some fraction of asteroids to have closer approaches with the Earth than expected when considering the Earth-Moon barycenter alone. In rare cases (~0.1%) this process enables the capture of temporary moons around the Earth (Granvik et al. 2012, Icarus). Asteroids that undergo these "enhanced" flybys can have both closer-than-expected encounter distances (resulting in more significant tidal perturbations), and repeated encounters with the Earth and Moon before leaving the system (resulting in the accumulation of multiple tidal interactions). By numerically solving the circular restricted three-body problem, we show that this process naturally produces a sharp transition in the asteroid population: asteroids with MOIDs less than 1.5 lunar distances can undergo these enhanced close approaches, possibly explaining the sharp transition in the dispersion of asteroid spin rates at this distance. Future work will investigate the efficiency of this process, and the relationship between the physical response of the asteroid to tidal perturbations and the statistical distribution of asteroid spin rates.

  11. Dust Plasma Environment between Saturn's Rings and Mimas' L Shell

    NASA Astrophysics Data System (ADS)

    Sittler, E. C., Jr.; Johnson, R. E.

    2015-12-01

    We will present a new analysis of the available data on the extension of Saturn's ring atmosphere into the magnetosphere beyond the A-ring outer edge (Johnson et al. 2006) out to the orbit of Mimas. This is an interesting region in Saturn's magnetosphere containing the F and G rings and penetrated by the E-ring and the Enceladus neutral torus. This analysis will include a comparison of the Cassini Plasma Spectrometer (CAPS) plasma data, Radio and Plasma Wave Spectrometer (RPWS) plasma wave observations, RPWS Langmuir Probe (LP) observations and Cassini Dust Analyzer (CDA). The central focus will be on the dust plasma interactions. Specific attention will be paid to the SOI data for which there are considerable differences between the ion and electron densities (Elrod et al., 2012) while for other close flybys inside Mimas' L shell such differences are less obvious but the electron data appear to be highly variable. Using previous identifications of nm particles (Jones et al., 2010) inferred from CAPS data and micron sized particles that can be detected by CDA (Kempf et al., 2006) and the RPWS plasma wave dust impact signatures (Kurth et al., 2006) we will attempt to infer the full particle size distribution between the A-ring and Mimas. These nm to micron sized particles can accumulate considerable charge and under certain circumstances could account for the radial trend in the ion density described in Elrod et al. (2014) a critical issue in preparation for the Cassini proximal orbits. References: Elrod, M.K., W.-L. Tseng, R.J. Wilson, R.E. Johnson, J. Geophys. Res., 117, A03207, 2012. Elrod, M.K., W-L Tseng, A.K. Woodson, R.E. Johnson, Icarus, 242, 130-137,2014. Johnson, R. E., et al., Icarus, 180, 393-402, 2006. Jones, G. H., et al., Geophys. Res. Lett., 36, L16204, 2009. Kempf, S., U. Beckmann, R. Srama, M. Horanyi, S. Auerd, E. Grun, Planet. Space Sci., 54, 999-1006, 2006. Kurth, W. S., T.F. Averkamp, D.A. Gurnett, Z. Wang, Planet. Space Sci., 54, 988-998, 2006.

  12. Mimas: Constraints on Origin and Evolution from Libration Data

    NASA Astrophysics Data System (ADS)

    Neveu, Marc; Rhoden, Alyssa R.

    2016-10-01

    In stark contrast with its neighbor moon Enceladus, Mimas is surprisingly geologically quiet, despite an orbital configuration prone to levels of tidal dissipation 30 times higher. While Mimas' lack of activity could be due to a stiff, frigid interior, libration data from the Cassini spacecraft suggest its interior is not homogeneous [1]. Here, we present 1-D models of Mimas' thermal and structural evolution under two accretion scenarios: primordial, undifferentiated formation in the Saturnian subnebula [2]; and late, layered formation from a debris ring created by the disruption of one or more previous moons [3]. In the primordial scenario, our simulations yield two possible outcomes. If tidal dissipation proceeds at levels higher than those obtained using an Andrade rheology [4], Mimas differentiates and an ocean persists until the present day. This should quickly circularize its orbit, but the current orbit is eccentric. In addition, Mimas lacks surface fractures that should result from strong tidal stresses in an ice shell atop an ocean [5]. If dissipation proceeds at lower levels obtained using a Maxwell rheology, it is too weak to drive differentiation; this does not match the observed libration [1]. In the late accretion scenario, Mimas forms already differentiated. As a result, even its deepest ice is within only 100 km of the frigid surface, and poorly insulated by overlying thermally conductive crystalline ice. Thus, all ice remains cold and poorly dissipative, even if dissipation is an order of magnitude above that provided by the Andrade rheology [4]. If Mimas' rocky core is slightly non-hydrostatic [1], this matches the observed libration. We conclude that Mimas' libration is compatible with a late origin from a debris ring, but not with primordial accretion. Consistent with findings from many authors (e.g. [6]), these models cannot produce an ocean on Enceladus unless its orbital eccentricity is higher than observed.References:[1] Tajeddine et al. (2014) Science 346, 322[2] Peale (1999) Annu Rev Astron Astrophys 37, 533[3] Charnoz et al. (2011) Icarus 216, 535[4] McCarthy & Cooper (2016) EPSL 443, 185[5] Rhoden et al., JGR: Planets, submitted[6] Roberts & Nimmo (2008) Icarus 194, 675

  13. Matching asteroid population characteristics with a model constructed from the YORP-induced rotational fission hypothesis

    NASA Astrophysics Data System (ADS)

    Jacobson, Seth A.; Marzari, Francesco; Rossi, Alessandro; Scheeres, Daniel J.

    2016-10-01

    From the results of a comprehensive asteroid population evolution model, we conclude that the YORP-induced rotational fission hypothesis is consistent with the observed population statistics of small asteroids in the main belt including binaries and contact binaries. These conclusions rest on the asteroid rotation model of Marzari et al. ([2011]Icarus, 214, 622-631), which incorporates both the YORP effect and collisional evolution. This work adds to that model the rotational fission hypothesis, described in detail within, and the binary evolution model of Jacobson et al. ([2011a] Icarus, 214, 161-178) and Jacobson et al. ([2011b] The Astrophysical Journal Letters, 736, L19). Our complete asteroid population evolution model is highly constrained by these and other previous works, and therefore it has only two significant free parameters: the ratio of low to high mass ratio binaries formed after rotational fission events and the mean strength of the binary YORP (BYORP) effect. We successfully reproduce characteristic statistics of the small asteroid population: the binary fraction, the fast binary fraction, steady-state mass ratio fraction and the contact binary fraction. We find that in order for the model to best match observations, rotational fission produces high mass ratio (> 0.2) binary components with four to eight times the frequency as low mass ratio (<0.2) components, where the mass ratio is the mass of the secondary component divided by the mass of the primary component. This is consistent with post-rotational fission binary system mass ratio being drawn from either a flat or a positive and shallow distribution, since the high mass ratio bin is four times the size of the low mass ratio bin; this is in contrast to the observed steady-state binary mass ratio, which has a negative and steep distribution. This can be understood in the context of the BYORP-tidal equilibrium hypothesis, which predicts that low mass ratio binaries survive for a significantly longer period of time than high mass ratio systems. We also find that the mean of the log-normal BYORP coefficient distribution μB ≳10-2 , which is consistent with estimates from shape modeling (McMahon and Scheeres, 2012a).

  14. Changes in blast zone albedo patterns around new martian impact craters

    NASA Astrophysics Data System (ADS)

    Daubar, I. J.; Dundas, C. M.; Byrne, S.; Geissler, P.; Bart, G. D.; McEwen, A. S.; Russell, P. S.; Chojnacki, M.; Golombek, M. P.

    2016-03-01

    "Blast zones" (BZs) around new martian craters comprise various albedo features caused by the initial impact, including diffuse halos, extended linear and arcuate rays, secondary craters, ejecta patterns, and dust avalanches. We examined these features for changes in repeat images separated by up to four Mars years. Here we present the first comprehensive survey of the qualitative and quantitative changes observed in impact blast zones over time. Such changes are most likely due to airfall of high-albedo dust restoring darkened areas to their original albedo, the albedo of adjacent non-impacted surfaces. Although some sites show drastic changes over short timescales, nearly half of the sites show no obvious changes over several Mars years. Albedo changes are more likely to occur at higher-latitude sites, lower-elevation sites, and at sites with smaller central craters. No correlation was seen between amount of change and Dust Cover Index, relative halo size, or historical regional albedo changes. Quantitative albedo measurements of the diffuse dark halos relative to their surroundings yielded estimates of fading lifetimes for these features. The average lifetime among sites with measurable fading is ∼15 Mars years; the median is ∼8 Mars years for a linear brightening. However, at approximately half of sites with three or more repeat images, a nonlinear function with rapid initial fading followed by a slow increase in albedo provides a better fit to the fading behavior; this would predict even longer lifetimes. The predicted lifetimes of BZs are comparable to those of slope streaks, and considered representative of fading by global atmospheric dust deposition; they last significantly longer than dust devil or rover tracks, albedo features that are erased by different processes. These relatively long lifetimes indicate that the measurement of the current impact rate by Daubar et al. (Daubar, I.J. et al. [2013]. Icarus 225, 506-516. http://dx.doi.org/10.1016/j.icarus.2013.04.009) does not suffer significantly from overall under-sampling due to blast zones fading before new impact sites can be initially discovered. However, the prevalence of changes seen around smaller craters may explain in part their shallower size frequency distribution.

  15. A Report of Clouds on Titan

    NASA Astrophysics Data System (ADS)

    Corlies, Paul; Hayes, Alexander; Adamkovics, Mate; Rodriguez, Sebastien; Kelland, John; Turtle, Elizabeth P.; Mitchell, Jonathan; Lora, Juan M.; Rojo, Patricio; Lunine, Jonathan I.

    2017-10-01

    We present in this work a detailed analysis of many of the clouds in the Cassini Visual and Infrared Mapping Spectrometer (VIMS) dataset in order to understand their global and seasonal properties. Clouds are one of the few direct observables in Titan’s atmosphere (Griffith et al 2009, Rodriguez et al 2009, Adamkovics et al 2010), and so determining their characteristics allows for a better understanding of surface atmosphere interactions, winds, transport of volatile material, and general circulation. We find the clouds on Titan generally reside in at 5-15km altitude, which agrees with previous modelling efforts (Rafkin et al. 2015), as well as a power law distribution for cloud optical depth. We assume an average cloud droplet size of 100um. No seasonal dependence is observed with either cloud altitude or optical depth, suggesting there is no preferred seasonal formation mechanisms. Combining these characteristics with cloud size (Kelland et al 2017) can trace the transport of volatiles in Titan’s atmosphere, which can be compared against general circulation models (GCMs) (Lora et al 2015). We also present some specific analysis of interesting cloud systems including hypothesized surface fogs (Brown et al 2009) and orographic cloud formation (Barth et al 2010, Corlies et al 2017). In this analysis we use a correlation between Cassini VIMS and RADAR observations as well as an updated topographic map of Titan’s southern hemisphere to better understand the role that topography plays in influencing and driving atmospheric phenomena.Finally, with the end of the Cassini mission, ground based observing now acts as the only means with which to observe clouds on Titan. We present an update of an ongoing cloud campaign to search for clouds on Titan and to understand their seasonal evolution.References:Adamkovics et al. 2010, Icarus 208:868Barth et al. 2010, Planet. Space Sci. 58:1740Corlies et al. 2017, 48th LPSC, 2870CGriffith et al. 2009, ApJ 702:L105Kelland et al. 2017, 48th LPSC, 2748KLora et al. 2015, Icarus 250:516Rafkin et al. 2015, J. Geophys. Res. 120:739Rodriguez et al. 2009, Nature 459:678

  16. Meteor-Shower on Mars Indicates Cometary Activity Far Away From the Sun

    NASA Astrophysics Data System (ADS)

    Sekhar, Aswin; ASHER, DAVID

    2015-08-01

    Introduction: The close encounter of Comet C/2013 A1 (Siding Spring) with Mars on 2014 Oct 19 at 1830h (UT) generated a lot of interest and modelling work [1] [2] [3] in the solar system community. A recent (on 2014 Nov 7) press release from NASA implied that a meteor shower was detected on Mars by their space instruments some hours after the comet-Mars close encounter. Various work [4] [5] [6] has suggested that very specific meteoroid sizes and ejection conditions may be required to produce meteor phenomena at Mars at the given times.Stream dynamics: Meteoroid stream modelling and their orbital geometry calculations have gained high precision over the years. In this work, we compute in detail the structure of the cloud of meteoroids released by C/2013 A1, showing its dependence on heliocentric ejection distances, 3-dimensional ejection velocities, and particle sizes. Our calculations using numerical integrator MERCURY, [7], incorporating radiation pressure, [8], show that ejection of particles at large heliocentric distances (about 7 au to 13 au) from C/2013 A1 could lead to evolution of a dense meteoroid cloud which intersects Mars a few hours after the comet-Mars close encounter. Hence this detection of a meteor shower on Mars by space instruments is an indirect confirmation of cometary activity at large distances which has rarely been observed directly by telescopes so far. Furthermore it shows that comprehensive threat estimation needs to be done for satellites orbiting the Earth when dynamically new comets come very close to the Earth in future.References:[1] Vaubaillon J., Macquet L., Soja R. 2014. MNRAS. 439: 3294.[2] Moorhead A. V., Wiegert P. A., Cooke W. J. 2014. Icarus. 231:13.[3] Ye Q.-Z., Hui M.-T., 2014, ApJ, 787: 115.[4] Farnocchia D. et al. 2014. ApJL. 790: 114.[5] Kelley M. S. P. et al. 2014, ApJL, 792: 16.[6] Tricarico P. et al., 2014, ApJL, 787: 35.[7] Chambers J. E. 1999. MNRAS. 304: 793.[8] Burns J. A, Lamy P. L., Soter S. 1979. Icarus. 40: 1.

  17. Changes in blast zone albedo patterns around new martian impact craters

    USGS Publications Warehouse

    Daubar, Ingrid J.; Dundas, Colin; Byrne, Shane; Geissler, Paul; Bart, Gwen; McEwen, Alfred S.; Russell, Patrick; Chojnacki, Matthew; Golombek, M.P.

    2016-01-01

    “Blast zones” (BZs) around new martian craters comprise various albedo features caused by the initial impact, including diffuse halos, extended linear and arcuate rays, secondary craters, ejecta patterns, and dust avalanches. We examined these features for changes in repeat images separated by up to four Mars years. Here we present the first comprehensive survey of the qualitative and quantitative changes observed in impact blast zones over time. Such changes are most likely due to airfall of high-albedo dust restoring darkened areas to their original albedo, the albedo of adjacent non-impacted surfaces. Although some sites show drastic changes over short timescales, nearly half of the sites show no obvious changes over several Mars years. Albedo changes are more likely to occur at higher-latitude sites, lower-elevation sites, and at sites with smaller central craters. No correlation was seen between amount of change and Dust Cover Index, relative halo size, or historical regional albedo changes. Quantitative albedo measurements of the diffuse dark halos relative to their surroundings yielded estimates of fading lifetimes for these features. The average lifetime among sites with measurable fading is ∼15 Mars years; the median is ∼8 Mars years for a linear brightening. However, at approximately half of sites with three or more repeat images, a nonlinear function with rapid initial fading followed by a slow increase in albedo provides a better fit to the fading behavior; this would predict even longer lifetimes. The predicted lifetimes of BZs are comparable to those of slope streaks, and considered representative of fading by global atmospheric dust deposition; they last significantly longer than dust devil or rover tracks, albedo features that are erased by different processes. These relatively long lifetimes indicate that the measurement of the current impact rate by Daubar et al. (Daubar, I.J. et al. [2013]. Icarus 225, 506–516. http://dx.doi.org/10.1016/j.icarus.2013.04.009) does not suffer significantly from overall under-sampling due to blast zones fading before new impact sites can be initially discovered. However, the prevalence of changes seen around smaller craters may explain in part their shallower size frequency distribution.

  18. Formation of the Martian Polar Layered Terrains: Quantifying Polar Water Ice and Dust Surface Deposition during Current and Past Orbital Epochs with the NASA Ames GCM

    NASA Astrophysics Data System (ADS)

    Emmett, Jeremy; Murphy, Jim

    2016-10-01

    Structural and compositional variability in the layering sequences comprising Mars' polar layered terrains (PLT's) is likely explained by orbital-forced climatic variations in the sedimentary cycles of water ice and dust from which they formed [1]. The PLT's therefore contain a direct, extensive record of the recent climate history of Mars encoded in their structure and stratigraphy, but deciphering this record requires understanding the depositional history of their dust and water ice constituents. 3D Mars atmosphere modeling enables direct simulation of atmospheric dynamics, aerosol transport and quantification of surface accumulation for a range of past and present orbital configurations. By quantifying the net yearly polar deposition rates of water ice and dust under Mars' current and past orbital configurations characteristic of the last several millions of years, and integrating these into the present with a time-stepping model, the formation history of the north and south PLT's will be investigated, further constraining their age and composition, and, if reproducible, revealing the processes responsible for prominent features and stratigraphy observed within the deposits. Simulating the formation of the deposits by quantifying net deposition rates during past orbital epochs and integrating these into the present, effectively 'rebuilding' the terrains, could aid in understanding deeper stratigraphic trends, correlating between geographically-separated deposits, explaining the presence and shapes of large-scale polar features, and correlating stratigraphy with geological time. Quantification of the magnitude and geographical distribution of surface aerosol accumulation will build on the work of previous GCM-based investigations [3]. Construction and analysis of hypothetical stratigraphic sequences in the PLT's will draw from previous climate-controlled stratigraphy methodologies [2,4], but will utilize GCM-derived net deposition rates to model orbital influences on sedimentation and erosion.[1] Milkovich S.M. and Head J. W. (2005) JGR, 110. [2] Laskar J.B. and Mustard J.F. (2002) Nature, 419, 375-377 [3] Newman C.E. et al. (2005) Icarus, 174, 135-160. [4] Hvidberg C.S. et al. (2012) Icarus, 221, 405-419.

  19. Cryovolcanic Resurfacing on Pluto

    NASA Astrophysics Data System (ADS)

    Singer, K. N.; Schenk, P.; White, O. L.; Moore, J. M.; McKinnon, W. B.; Grundy, W. M.; Spencer, J. R.; Stern, A.; Cook, J. C.; Nimmo, F.; Howard, A. D.; Cruikshank, D. P.; Beyer, R. A.; Umurhan, O. M.; Lauer, T.; Weaver, H. A., Jr.; Young, L. A.; Ennico Smith, K.

    2017-12-01

    Pluto displays several different young geologic terrains with few-to-no identifiable impact craters. Distinct terrains to the southwest of the informally named Sputnik Planitia may have been resurfaced by cryovolcanic processes, of a type and scale so far unique to Pluto [1,2]. The most prominent structures are two very large mounds with deep central depressions. The informally named Wright Mons stands 4 km high and the main mound spans 150 km and Piccard Mons is 7 km high and 225 km wide. Hummocky terrain with a characteristic wavelength of 8-12 km covers the flanks of Wright Mons and much of the surrounding terrain. Smaller boulders, blocks, slabs, or ridges on the order of a few km are superimposed on the hummocks. The large-scale slopes across the broad flanks of the Wright Mons are 3-5°. The central depression walls are typically 10°, but reach 20° in some locations. A number of other cavi or irregular depressions of various sizes (a few to 30 km) are scattered throughout the terrain and do not appear to be impact craters. There are few signs of potential individual flows but the large-scale hummocky texture is suggestive of viscous flow. We will explore a number of potential mechanisms for creation of Wright and Piccard Mons and the nearby terrains. These unique terrains present modeling challenges for building relatively young, large cryovolcanic constructs on outer solar system bodies. Tidal heating is thought to end early in Pluto-system history [3] and radiogenic heating levels are relatively low [4], although a subsurface ocean may still persist into the present day [5]. We will discuss the possible volcanic materials on Pluto and their mobility under different heating scenarios, as well as other possible emplacement processes. [1] Moore et al., (2016) Science 351, 1284-1293. [2] Singer et al. (2016) LPSC absract 47, 2276. [3] Cheng et al. (2014) Icarus 233, 242-258. [4] McKinnon et al. (1997) In: Stern, S.A., Tholen, D.J. (Eds.), Pluto and Charon. UofA Press, 295-343. [5] Robuchon and Nimmo (2011) Icarus 216, 426-439.

  20. Tidal Distortion and Disruption of Earth-Crossing Asteroids

    NASA Astrophysics Data System (ADS)

    Richardson, D. C.; Bottke, W. F.

    1996-09-01

    There is mounting evidence that most km-sized objects in the solar system are ``rubble-piles'', fragile objects composed of loose collections of smaller components all held together by self-gravity rather than tensile strength. The evidence includes: (a) the paucity of fast rotating km-sized asteroids (Harris, 1996, LPSC 27, 977); (b) the tidal disruption of Comet Shoemaker-Levy 9 (SL9) and observations of crater chains on the Moon and Galilean satellites (Schenk et al., 1996, Icarus 121, 149); (c) observations of extremely large craters on Phobos, Gaspra, and Ida; and (d) hydrocode models that realistically treat asteroid impacts (Love and Ahrens, 1996, Icarus, in press). Accordingly, we predict that Earth's tidal forces play a major role in the evolution of rubble-pile Earth-crossing objects (ECOs). By modeling close encounters between the Earth and our rubble-piles (for details, see Bottke et al., this issue), we found that Earth's tidal forces can make the progenitors undergo: (a) ``SL9-type'' disruption (formation of clumps of roughly equal size along the fragment train; this outcome may explain specific crater chains seen on the Moon); (b) mass shedding (over half of the primary remains intact; in many cases, the shed fragments go into orbit around the progenitor, producing binary asteroids, which could explain the population of doublet craters seen on the terrestrial planets (Bottke and Melosh, 1996, Nature 381, 51)); (c) reshaping accompanied by spin-up or spin-down (this mechanism could explain the large aspect ratio (2.76), unusual shape, and short rotation period (5.2 hours) of 1620 Geographos as well as the short rotation periods of many other ECOs). Mass shedding events for ECOs occur more frequently at low velocities relative to Earth than at high velocities, corresponding to low (e, i) values. Thus, Earth's tidal forces should be most effective at disrupting large ECOs (and producing small bodies) in this region. This localized disruption mechanism may explain observations by Rabinowitz et al. (1993, Nature 363, 704), who claim to see an ``excess'' number of small ECOs (D < 50 m) at low (e, i) relative to their expectation based on the number of large ECOs seen elsewhere.

Top