Sample records for ice absorption bands

  1. The librational band of water ice in AFGL 961: revisited

    NASA Astrophysics Data System (ADS)

    Smith, R. G.; Wright, C. M.

    2011-07-01

    Of all the water ice absorption bands seen in the laboratory, the librational band near 12-13 μ m has proven the most difficult to conclusively identify in observational spectra. Cox reported the detection of this band in the IRAS spectrum of the massive protostar AFGL 961 near 13.6 μ m; however, the details of the structure of the band were limited by the quality of the IRAS spectrum and the accuracy of the subtracted silicate absorption. AFGL 961 is also a double system comprising two point-like components separated by ˜6 arcsec (AFGL 961E and AFGL 961W) so the IRAS aperture included both components - it is unclear how the combination of the intrinsic spectra of these two sources may have affected the resultant IRAS spectrum. In this paper we report Spitzer and European Southern Observatory (ESO) 3.6-m mid-infrared spectroscopic observations of each component of AFGL 961. We find a broad absorption feature near 13.1 μ m common to both AFGL 961E and W. The profile and peak wavelength of this feature are well matched by the laboratory spectrum of the librational band of amorphous H2O ice in the temperature range 10-30 K, in agreement with the Cox result. Both AFGL 961E and W also have strong CO2 ice absorption near 15.2 μ m, indistinguishable in profile between the two. However, AFGL 961E shows silicates in absorption near 9.7 μ m, while AFGL 961W shows polycyclic aromatic hydrocarbons in emission and, in a small aperture, also silicates in emission. Uncertainty in where the true continuum lies in the 8-13 μ m spectral region for both AFGL 961E and W means we cannot rule out the possibility that a combination of silicate emission and absorption could be responsible for at least some of the features we see in this region. In this case, a much weaker librational band could still be present, but not as a distinct feature. In either case, the ice must be located in a cool, outer envelope surrounding both stars or a cool foreground cloud, far enough away that the

  2. Near-Infrared Band Strengths of Molecules Diluted in N2 and H2O Ice Mixtures Relevant to Interstellar and Planetary Ices

    NASA Technical Reports Server (NTRS)

    Richey, Christina Rae; Gerakines, P.A.

    2012-01-01

    The relative abundances of ices in astrophysical environments rely on accurate laboratory measurements of physical parameters, such as band strengths (or absorption intensities), determined for the molecules of interest in relevant mixtures. In an extension of our previous study on pure-ice samples, here we focus on the near-infrared absorption features of molecules in mixtures with the dominant components of interstellar and planetary ices, H2O and N2. We present experimentally measured near-infrared spectral information (peak positions, widths, and band strengths) for both H2O- and N2-dominated mixtures of CO (carbon monoxide), CO2 (carbon dioxide), CH4 (methane), and NH3 (ammonia). Band strengths were determined during sample deposition by correlating the growth of near-infrared features (10,000-4000 per centimeter, 1-2.5 micrometers) with better-known mid-infrared features (4000-400 per centimeter, 2.5-25 micrometers) at longer wavelengths.

  3. POROSITY AND BAND-STRENGTH MEASUREMENTS OF MULTI-PHASE COMPOSITE ICES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bossa, Jean-Baptiste; Fransen, Coen; Cazaux, Stéphanie

    2015-11-20

    We use experimental mid-infrared optical constants and extended effective medium approximations to determine the porosity and the band strengths of multi-phase composite ices grown at 30 K. A set of porous H{sub 2}O:CH{sub 4} ices are taken as a prototypical example. As a benchmark and proof of concept, the stoichiometry of the ice constituents is retreived with good accuracy from the refractive indices and the extinction coefficients of the reference binary ice mixtures with known compositions. Accurate band strengths are then calculated from experimental mid-infrared spectra of complex ices. We notice that the presence of pores has only a smallmore » effect on the overall band strengths, whereas a water dilution can considerably alter them. Different levels of porosity are observed depending on the abundance of methane used as a gas contaminant premixed with water prior to background deposition. The absorption profiles are also found to vary with deposition rate. To explain this, we use Monte Carlo simulations and we observe that the deposition rate strongly affects the pore size distribution as well as the ice morphology through reorganization processes. Extrapolated to genuine interstellar ices, the methodology presented in this paper can be used to evaluate the porosity and to quantify the relative abundances from observational data.« less

  4. Sensitivity Study of Ice Crystal Optical Properties in the 874 GHz Submillimeter Band

    NASA Technical Reports Server (NTRS)

    Tang, Guanglin; Yang, Ping; Wu, Dong L.

    2015-01-01

    Testing of an 874 GHz submillimeter radiometer on meteorological satellites is being planned to improve ice water content retrievals. In this paper we study the optical properties of ice cloud particles in the 874 GHz band. The results show that the bulk scattering and absorption coefficients of an ensemble of ice cloud particles are sensitive to the particle shape and effective diameter, whereas the latter is also sensitive to temperature. The co-polar back scattering cross-section is not sensitive to particle shape, temperature, and the effective diameter in the range of 50200 m.

  5. Laboratory determination of the infrared band strengths of pyrene frozen in water ice: Implications for the composition of interstellar ices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardegree-Ullman, E. E.; Gudipati, M. S.; Werner, M.

    2014-04-01

    Broad infrared emission features (e.g., at 3.3, 6.2, 7.7, 8.6, and 11.3 μm) from the gas phase interstellar medium have long been attributed to polycyclic aromatic hydrocarbons (PAHs). A significant portion (10%-20%) of the Milky Way's carbon reservoir is locked in PAH molecules, which makes their characterization integral to our understanding of astrochemistry. In molecular clouds and the dense envelopes and disks of young stellar objects (YSOs), PAHs are expected to be frozen in the icy mantles of dust grains where they should reveal themselves through infrared absorption. To facilitate the search for frozen interstellar PAHs, laboratory experiments were conductedmore » to determine the positions and strengths of the bands of pyrene mixed with H{sub 2}O and D{sub 2}O ices. The D{sub 2}O mixtures are used to measure pyrene bands that are masked by the strong bands of H{sub 2}O, leading to the first laboratory determination of the band strength for the CH stretching mode of pyrene in water ice near 3.25 μm. Our infrared band strengths were normalized to experimentally determined ultraviolet band strengths, and we find that they are generally ∼50% larger than those reported by Bouwman et al. based on theoretical strengths. These improved band strengths were used to reexamine YSO spectra published by Boogert et al. to estimate the contribution of frozen PAHs to absorption in the 5-8 μm spectral region, taking into account the strength of the 3.25 μm CH stretching mode. It is found that frozen neutral PAHs contain 5%-9% of the cosmic carbon budget and account for 2%-9% of the unidentified absorption in the 5-8 μm region.« less

  6. Laboratory Determination of the Infrared Band Strengths of Pyrene Frozen in Water Ice: Implications for the Composition of Interstellar Ices

    NASA Technical Reports Server (NTRS)

    Hardegree-Ullman, E.E.; Gudipati, M.S.; Boogert, A.C.A.; Lignell, H.; Allamandola, L.J.; Stapelfeldt, K. R.; Werner, M.

    2014-01-01

    Broad infrared emission features (e.g., at 3.3, 6.2, 7.7, 8.6, and 11.3 micrometers) from the gas phase interstellar medium have long been attributed to polycyclic aromatic hydrocarbons (PAHs). A significant portion (10 to 20%) of the Milky Way's carbon reservoir is locked in PAH molecules, which makes their characterization integral to our understanding of astrochemistry. In molecular clouds and the dense envelopes and disks of young stellar objects (YSOs), PAHs are expected to be frozen in the icy mantles of dust grains where they should reveal themselves through infrared absorption. To facilitate the search for frozen interstellar PAHs, laboratory experiments were conducted to determine the positions and strengths of the bands of pyrene mixed with H2O and deuterium oxide ices. The deuterium oxide mixtures are used to measure pyrene bands that are masked by the strong bands of H2O, leading to the first laboratory determination of the band strength for the CH stretching mode of pyrene in water ice near 3.25 micrometers. Our infrared band strengths were normalized to experimentally determined ultraviolet (UV) band strengths, and we find that they are generally approximately 50% larger than those reported by Bouwman et al. (2011) based on theoretical strengths. These improved band strengths were used to reexamine YSO spectra published by Boogert et al. (2008) to estimate the contribution of frozen PAHs to absorption in the 5 to 8 micrometer spectral region, taking into account the strength of the 3.25 micrometer CH stretching mode. It is found that frozen neutral PAHs contain 5 to 9% of the cosmic carbon budget, and account for 2 to 9% of the unidentified absorption in the 5 to 8 micrometer region.

  7. FIRST INFRARED BAND STRENGTHS FOR AMORPHOUS CO{sub 2}, AN OVERLOOKED COMPONENT OF INTERSTELLAR ICES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerakines, Perry A.; Hudson, Reggie L., E-mail: Reggie.Hudson@NASA.gov

    2015-08-01

    Solid carbon dioxide (CO{sub 2}) has long been recognized as a component of both interstellar and solar system ices, but a recent literature search has revealed significant qualitative and quantitative discrepancies in the laboratory spectra on which the abundances of extraterrestrial CO{sub 2} are based. Here we report new infrared (IR) spectra of amorphous CO{sub 2}-ice along with band intensities (band strengths) of four mid-IR absorptions, the first such results in the literature. A possible thickness dependence for amorphous-CO{sub 2} IR band shapes and positions also is investigated, and the three discordant reports of amorphous CO{sub 2} spectra in themore » literature are addressed. Applications of our results are discussed with an emphasis on laboratory investigations and results from astronomical observations. A careful comparison with earlier work shows that the IR spectra calculated from several databases for CO{sub 2} ices, all ices being made near 10 K, are not for amorphous CO{sub 2}, but rather for crystalline CO{sub 2} or crystalline-amorphous mixtures.« less

  8. Observations of banding in first-year Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Cole, David M.; Eicken, Hajo; Frey, Karoline; Shapiro, Lewis H.

    2004-08-01

    Horizontal banding features, alternating dark and bright horizontal bands apparent in ice cores and stratigraphic cross sections have long been observed in first-year sea ice and are frequently associated with bands of high and low brine or gas porosity. Observations on the land-fast ice near Barrow, Alaska, in recent years have revealed particularly striking banding patterns and prompted a study of their macroscopic and microscopic characteristics. The banding patterns are quantified from photographs of full-depth sections of the ice, and examples are presented from the Chukchi Sea and Elson Lagoon. Statistics on band spacing are presented, and the growth records for three seasons are employed to estimate their time of formation. These data provide insight into the periodicity of the underlying phenomena. Micrographs are used to examine the microstructural variations associated with various banding features and to quantify the geometry of the constituent brine inclusions associated with high- and low-porosity bands. The micrography revealed that the area fraction of brine inclusions varied by a factor of nearly 3 through the more pronounced high- and low-porosity bands. Vertical micrographs obtained shortly after the materials' removal from the ice sheet showed that significantly larger inclusions form abruptly at the start of the high-porosity bands and frequently terminate abruptly at the end of the band. Crystallographic observations indicated that the high-porosity bands supported the nucleation and growth of crystals having substantially different orientations from the very well aligned columnar structure that characterized the bulk of the sheet.

  9. Water ice and sub-micron ice particles on Tethys and Mimas

    NASA Astrophysics Data System (ADS)

    Scipioni, Francesca; Nordheim, Tom; Clark, Roger Nelson; D'Aversa, Emiliano; Cruikshank, Dale P.; Tosi, Federico; Schenk, Paul M.; Combe, Jean-Philippe; Dalle Ore, Cristina M.

    2017-10-01

    IntroductionWe present our ongoing work, mapping the variation of the main water ice absorption bands, and the distribution of the sub-micron particles, across Mimas and Tethys’ surfaces using Cassini-VIMS cubes acquired in the IR range (0.8-5.1 μm). We present our results in the form of maps of variation of selected spectral indicators (depth of absorption bands, reflectance peak height, spectral slopes).Data analysisVIMS acquires hyperspectral data in the 0.3-5.1 μm spectral range. We selected VIMS cubes of Tethys and Mimas in the IR range (0.8-5.1 μm). For all pixels in the selected cubes, we measured the band depths for water-ice absorptions at 1.25, 1.5 and 2.02 μm and the height of the 3.6 μm reflection peak. Moreover, we considered the spectral indictors for particles smaller than 1 µm [1]: (i) the 2 µm absorption band is asymmetric and (ii) it has the minimum shifted to longer λ (iii) the band depth ratio 1.5/2.0 µm decreases; (iv) the reflection peak at 2.6 µm decreases; (v) the Fresnel reflection peak is suppressed; (vi) the 5 µm reflectance is decreased relative to the 3.6 µm peak. To characterize the global variation of water-ice band depths, and of sub-micron particles spectral indicators, across Mimas and Tethys, we sampled the two satellites’ surfacees with a 1°x1° fixed-resolution grid and then averaged the band depths and peak values inside each square cell.3. ResultsFor both moons we find that large geologic features, such as the Odysseus and Herschel impact basins, do not correlate with water ice’s abundance variation. For Tethys, we found a quite uniform surface on both hemispheres. The only deviation from this pattern shows up on the trailing hemisphere, where we notice two north-oriented, dark areas around 225° and 315°. For Mimas, the leading and trailing hemispheres appear to be quite similar in water ice abundance, the trailing portion having water ice absorption bands lightly more suppressed than the leading side

  10. Calcium absorption from fortified ice cream formulations compared with calcium absorption from milk.

    PubMed

    van der Hee, Regine M; Miret, Silvia; Slettenaar, Marieke; Duchateau, Guus S M J E; Rietveld, Anton G; Wilkinson, Joy E; Quail, Patricia J; Berry, Mark J; Dainty, Jack R; Teucher, Birgit; Fairweather-Tait, Susan J

    2009-05-01

    Optimal bone mass in early adulthood is achieved through appropriate diet and lifestyle, thereby protecting against osteoporosis and risk of bone fracture in later life. Calcium and vitamin D are essential to build adequate bones, but calcium intakes of many population groups do not meet dietary reference values. In addition, changes in dietary patterns are exacerbating the problem, thereby emphasizing the important role of calcium-rich food products. We have designed a calcium-fortified ice cream formulation that is lower in fat than regular ice cream and could provide a useful source of additional dietary calcium. Calcium absorption from two different ice cream formulations was determined in young adults and compared with milk. Sixteen healthy volunteers (25 to 45 years of age), recruited from the general public of The Netherlands, participated in a randomized, reference-controlled, double-blind cross-over study in which two test products and milk were consumed with a light standard breakfast on three separate occasions: a standard portion of ice cream (60 g) fortified with milk minerals and containing a low level (3%) of butter fat, ice cream (60 g) fortified with milk minerals and containing a typical level (9%) of coconut oil, and reduced-fat milk (1.7% milk fat) (200 mL). Calcium absorption was measured by the dual-label stable isotope technique. Effects on calcium absorption were evaluated by analysis of variance. Fractional absorption of calcium from the 3% butterfat ice cream, 9% coconut oil ice cream, and milk was 26%+/-8%, 28%+/-5%, and 31%+/-9%, respectively, and did not differ significantly (P=0.159). Results indicate that calcium bioavailability in the two calcium-fortified ice cream formulations used in this study is as high as milk, indicating that ice cream may be a good vehicle for delivery of calcium.

  11. Calcium Absorption from Fortified Ice Cream Formulations Compared with Calcium Absorption from Milk

    PubMed Central

    van der Hee, Regine M.; Miret, Silvia; Slettenaar, Marieke; Duchateau, Guus S.M.J.E.; Rietveld, Anton G.; Wilkinson, Joy E.; Quail, Patricia J.; Berry, Mark J.; Dainty, Jack R.; Teucher, Birgit; Fairweather-Tait, Susan J.

    2009-01-01

    Objective Optimal bone mass in early adulthood is achieved through appropriate diet and lifestyle, thereby protecting against osteoporosis and risk of bone fracture in later life. Calcium and vitamin D are essential to build adequate bones, but calcium intakes of many population groups do not meet dietary reference values. In addition, changes in dietary patterns are exacerbating the problem, thereby emphasizing the important role of calcium-rich food products. We have designed a calcium-fortified ice cream formulation that is lower in fat than regular ice cream and could provide a useful source of additional dietary calcium. Calcium absorption from two different ice cream formulations was determined in young adults and compared with milk. Subjects/setting Sixteen healthy volunteers (25 to 45 years of age), recruited from the general public of The Netherlands, participated in a randomized, reference-controlled, double-blind cross-over study in which two test products and milk were consumed with a light standard breakfast on three separate occasions: a standard portion of ice cream (60 g) fortified with milk minerals and containing a low level (3%) of butter fat, ice cream (60 g) fortified with milk minerals and containing a typical level (9%) of coconut oil, and reduced-fat milk (1.7% milk fat) (200 mL). Calcium absorption was measured by the dual-label stable isotope technique. Statistical analysis Effects on calcium absorption were evaluated by analysis of variance. Results Fractional absorption of calcium from the 3% butterfat ice cream, 9% coconut oil ice cream, and milk was 26%±8%, 28%±5%, and 31%±9%, respectively, and did not differ significantly (P=0.159). Conclusions Results indicate that calcium bioavailability in the two calcium-fortified ice cream formulations used in this study is as high as milk, indicating that ice cream may be a good vehicle for delivery of calcium. PMID:19394469

  12. Antarctic krill under sea ice: elevated abundance in a narrow band just south of ice edge.

    PubMed

    Brierley, Andrew S; Fernandes, Paul G; Brandon, Mark A; Armstrong, Frederick; Millard, Nicholas W; McPhail, Steven D; Stevenson, Peter; Pebody, Miles; Perrett, James; Squires, Mark; Bone, Douglas G; Griffiths, Gwyn

    2002-03-08

    We surveyed Antarctic krill (Euphausia superba) under sea ice using the autonomous underwater vehicle Autosub-2. Krill were concentrated within a band under ice between 1 and 13 kilometers south of the ice edge. Within this band, krill densities were fivefold greater than that of open water. The under-ice environment has long been considered an important habitat for krill, but sampling difficulties have previously prevented direct observations under ice over the scale necessary for robust krill density estimation. Autosub-2 enabled us to make continuous high-resolution measurements of krill density under ice reaching 27 kilometers beyond the ice edge.

  13. Triple-band metamaterial absorption utilizing single rectangular hole

    NASA Astrophysics Data System (ADS)

    Kim, Seung Jik; Yoo, Young Joon; Kim, Young Ju; Lee, YoungPak

    2017-01-01

    In the general metamaterial absorber, the single absorption band is made by the single meta-pattern. Here, we introduce the triple-band metamaterial absorber only utilizing single rectangular hole. We also demonstrate the absorption mechanism of the triple absorption. The first absorption peak was caused by the fundamental magnetic resonance in the metallic part between rectangular holes. The second absorption was generated by induced tornado magnetic field. The process of realizing the second band is also presented. The third absorption was induced by the third-harmonic magnetic resonance in the metallic region between rectangular holes. In addition, the visible-range triple-band absorber was also realized by using similar but smaller single rectangular-hole structure. These results render the simple metamaterials for high frequency in large scale, which can be useful in the fabrication of metamaterials operating in the optical range.

  14. Combined observations of Arctic sea ice with near-coincident colocated X-band, C-band, and L-band SAR satellite remote sensing and helicopter-borne measurements

    NASA Astrophysics Data System (ADS)

    Johansson, A. M.; King, J. A.; Doulgeris, A. P.; Gerland, S.; Singha, S.; Spreen, G.; Busche, T.

    2017-01-01

    In this study, we compare colocated near-coincident X-, C-, and L-band fully polarimetry SAR satellite images with helicopter-borne ice thickness measurements acquired during the Norwegian Young sea ICE 2015 (N-ICE2015) expedition in the region of the Arctic Ocean north of Svalbard in April 2015. The air-borne surveys provide near-coincident snow plus ice thickness, surface roughness data, and photographs. This unique data set allows us to investigate how the different frequencies can complement one another for sea ice studies, but also to raise awareness of limitations. X-band and L-band satellite scenes were shown to be a useful complement to the standard SAR frequency for sea ice monitoring (C-band) for lead ice and newly formed sea ice identification. This may be in part be due to the frequency but also the high spatial resolution of these sensors. We found a relatively low correlation between snow plus ice thickness and surface roughness. Therefore, in our dataset ice thickness cannot directly be observed by SAR which has important implications for operational ice charting based on automatic segmentation.

  15. Spectral properties of ice-particulate mixtures and implications for remote sensing. 1. Intimate mixtures.

    USGS Publications Warehouse

    Clark, R.N.; Lucey, P.G.

    1984-01-01

    The spectral properties of water ice-partitioning mixtures are studied for the purpose of deriving the ice and particulate abundances from remotely obtained spectra (particulates referring to non-icy materials in the form of grains). Reflectance levels and ice absorption band depths are a complex function of the single scattering albedo of the particulates embedded in the ice. The ice absorption band depths are related to the mean optical path length of photons in ice through Beers law, Fresnel reflection from the ice-crystal faces on the surface, and ice absorption coefficient as a function of wavelength. Laboratory spectra of many ice- particulate mixtures are studied with high-, medium-, and low-albedo particulates.-from Authors

  16. Synergistic Measurement of Ice Cloud Microphysics using C- and Ka-Band Radars

    NASA Astrophysics Data System (ADS)

    Ewald, F.; Gross, S.; Hagen, M.; Li, Q.; Zinner, T.

    2017-12-01

    Ice clouds play an essential role in the climate system since they have a large effect on the Earth's radiation budget. Uncertainties associated with their spatial and temporal distribution as well as their optical and microphysical properties still account for large uncertainties in climate change predictions. Substantial improvement of our understanding of ice clouds was achieved with the advent of cloud radars into the field of ice cloud remote sensing. Here, highly variable ice crystal size distributions are one of the key issues remaining to be resolved. With radar reflectivity scaling with the sixth moment of the particle size, the assumed ice crystal size distribution has a large impact on the results of microphysical retrievals. Different ice crystal sizes distributions can, however, be distinguished, when cloud radars of different wavelength are used simultaneously.For this study, synchronous RHI scans were performed for a common measurement range of about 30 km between two radar instruments using different wavelengths: the dual-polarization C-band radar POLDIRAD operated at DLR and the Mira-36 Ka-band cloud radar operated at the University of Munich. For a measurement period over several months, the overlapping region for ice clouds turned out to be quite large. This gives evidence on the presence of moderate-sized ice crystals for which the backscatter is sufficient high to be visible in the C-band as well. In the range between -10 to +10 dBz, reflectivity measurements from both radars agreed quite well indicating the absence of large ice crystals. For reflectivities above +10 dBz, we observed differences with smaller values at the Ka-band due to Mie scattering effects at larger ice crystals.In this presentation, we will show how this differential reflectivity can be used to gain insight into ice cloud microphysics on the basis of electromagnetic scattering calculations. We will further explore ice cloud microphysics using the full polarization agility

  17. L-band radiometry for sea ice applications

    NASA Astrophysics Data System (ADS)

    Heygster, G.; Hedricks, S.; Mills, P.; Kaleschke, L.; Stammer, D.; Tonboe, R.

    2009-04-01

    Although sea ice remote sensing has reached the level of operational exploitation with well established retrieval methods, several important tasks are still unsolved. In particular during freezing and melting periods with mixed ice and water surfaces, estimates of ice concentration with passive and active microwave sensors remain challenging. Newly formed thin ice is also hard to distinguish from open water with radiometers for frequencies above 8 GHz. The SMOS configuration (planned launch 2009) with a radiometer at 1.4 GHz is a promising technique to complement observations at higher microwave frequencies. ESA has initiated a project to investigate the possibilities for an additional Level-2 sea ice data product based on SMOS. In detail, the project objectives are (1) to model the L band emission of sea ice, and to assess the potential (2) to retrieve sea ice parameters, especially concentration and thickness, and (3) to use cold water regions for an external calibration of SMOS. Modelling of L band emission: Several models have are investigated. All of them work on the same basic principles and have a vertically-layered, plane-parallel geometry. They are comprised of three basic components: (1) effective permittivities are calculated for each layer based on ice bulk and micro-structural properties; (2) these are integrated across the total depth to derive emitted brightness temperature; (3) scattering terms can also be added because of the granular structure of ice and snow. MEMLS (Microwave Emission Model of Layered Snowpacks (Wiesmann and Matzler 1999)) is one such model that contains all three elements in a single Matlab program. In the absence of knowledge about the internal structure of the sea ice, three-layer (air, ice and water) dielectric slab models which take as input a single effective permittivity for the ice layer are appropriate. By ignoring scattering effects one can derive a simple analytic expression for a dielectric slab as shown by Apinis and

  18. Light Absorption in Arctic Sea Ice - Black Carbon vs Chlorophyll

    NASA Astrophysics Data System (ADS)

    Ogunro, O. O.; Wingenter, O. W.; Elliott, S.; Hunke, E. C.; Flanner, M.; Wang, H.; Dubey, M. K.; Jeffery, N.

    2015-12-01

    The fingerprint of climate change is more obvious in the Arctic than any other place on Earth. This is not only because the surface temperature there has increased at twice the rate of global mean temperature but also because Arctic sea ice extent has reached a record low of 49% reduction relative to the 1979-2000 climatology. Radiation absorption through black carbon (BC) deposited on Arctic snow and sea ice surface is one of the major hypothesized contributors to the decline. However, we note that chlorophyll-a absorption owing to increasing biology activity in this region could be a major competitor during boreal spring. Modeling of sea-ice physical and biological processes together with experiments and field observations promise rapid progress in the quality of Arctic ice predictions. Here we develop a dynamic ice system module to investigate discrete absorption of both BC and chlorophyll in the Arctic, using BC deposition fields from version 5 of Community Atmosphere Model (CAM5) and vertically distributed layers of chlorophyll concentrations from Sea Ice Model (CICE). To this point, our black carbon mixing ratios compare well with available in situ data. Both results are in the same order of magnitude. Estimates from our calculations show that sea ice and snow around the Canadian Arctic Archipelago and Baffin Bay has the least black carbon absorption while values at the ice-ocean perimeter in the region of the Barents Sea peak significantly. With regard to pigment concentrations, high amounts of chlorophyll are produced in Arctic sea ice by the bottom microbial community, and also within the columnar pack wherever substantial biological activity takes place in the presence of moderate light. We show that the percentage of photons absorbed by chlorophyll in the spring is comparable to the amount attributed to BC, especially in areas where the total deposition rates are decreasing with time on interannual timescale. We expect a continuous increase in

  19. Vibrational renormalisation of the electronic band gap in hexagonal and cubic ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engel, Edgar A., E-mail: eae32@cam.ac.uk; Needs, Richard J.; Monserrat, Bartomeu

    2015-12-28

    Electron-phonon coupling in hexagonal and cubic water ice is studied using first-principles quantum mechanical methods. We consider 29 distinct hexagonal and cubic ice proton-orderings with up to 192 molecules in the simulation cell to account for proton-disorder. We find quantum zero-point vibrational corrections to the minimum electronic band gaps ranging from −1.5 to −1.7 eV, which leads to improved agreement between calculated and experimental band gaps. Anharmonic nuclear vibrations play a negligible role in determining the gaps. Deuterated ice has a smaller band-gap correction at zero-temperature of −1.2 to −1.4 eV. Vibrations reduce the differences between the electronic band gapsmore » of different proton-orderings from around 0.17 eV to less than 0.05 eV, so that the electronic band gaps of hexagonal and cubic ice are almost independent of the proton-ordering when quantum nuclear vibrations are taken into account. The comparatively small reduction in the band gap over the temperature range 0 − 240 K of around 0.1 eV does not depend on the proton ordering, or whether the ice is protiated or deuterated, or hexagonal, or cubic. We explain this in terms of the atomistic origin of the strong electron-phonon coupling in ice.« less

  20. Reconfigurable wave band structure of an artificial square ice

    DOE PAGES

    lacocca, Ezio; Gliga, Sebastian; Stamps, Robert L.; ...

    2016-04-18

    Artificial square ices are structures composed of magnetic nanoelements arranged on the sites of a twodimensional square lattice, such that there are four interacting magnetic elements at each vertex, leading to geometrical frustration. Using a semianalytical approach, we show that square ices exhibit a rich spin-wave band structure that is tunable both by external magnetic fields and the magnetization configuration of individual elements. Internal degrees of freedom can give rise to equilibrium states with bent magnetization at the element edges leading to characteristic excitations; in the presence of magnetostatic interactions these form separate bands analogous to impurity bands in semiconductors.more » Full-scale micromagnetic simulations corroborate our semianalytical approach. Our results show that artificial square ices can be viewed as reconfigurable and tunable magnonic crystals that can be used as metamaterials for spin-wave-based applications at the nanoscale.« less

  1. Reconfigurable wave band structure of an artificial square ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    lacocca, Ezio; Gliga, Sebastian; Stamps, Robert L.

    Artificial square ices are structures composed of magnetic nanoelements arranged on the sites of a twodimensional square lattice, such that there are four interacting magnetic elements at each vertex, leading to geometrical frustration. Using a semianalytical approach, we show that square ices exhibit a rich spin-wave band structure that is tunable both by external magnetic fields and the magnetization configuration of individual elements. Internal degrees of freedom can give rise to equilibrium states with bent magnetization at the element edges leading to characteristic excitations; in the presence of magnetostatic interactions these form separate bands analogous to impurity bands in semiconductors.more » Full-scale micromagnetic simulations corroborate our semianalytical approach. Our results show that artificial square ices can be viewed as reconfigurable and tunable magnonic crystals that can be used as metamaterials for spin-wave-based applications at the nanoscale.« less

  2. Glucose Absorption by the Bacillary Band of Trichuris muris

    PubMed Central

    Hansen, Michael; Nejsum, Peter; Mejer, Helena; Denwood, Matthew; Thamsborg, Stig M.

    2016-01-01

    Background A common characteristic of Trichuris spp. infections in humans and animals is the variable but low efficacy of single-dose benzimidazoles currently used in mass drug administration programmes against human trichuriasis. The bacillary band, a specialised morphological structure of Trichuris spp., as well as the unique partly intracellular habitat of adult Trichuris spp. may affect drug absorption and perhaps contribute to the low drug accumulation in the worm. However, the exact function of the bacillary band is still unknown. Methodology We studied the dependency of adult Trichuris muris on glucose and/or amino acids for survival in vitro and the absorptive function of the bacillary band. The viability of the worms was evaluated using a motility scale from 0 to 3, and the colorimetric assay Alamar Blue was utilised to measure the metabolic activity. The absorptive function of the bacillary band in living worms was explored using a fluorescent glucose analogue (6-NBDG) and confocal microscopy. To study the absorptive function of the bacillary band in relation to 6-NBDG, the oral uptake was minimised or excluded by sealing the oral cavity with glue and agarose. Principal Findings Glucose had a positive effect on both the motility (p < 0.001) and metabolic activity (p < 0.001) of T. muris in vitro, whereas this was not the case for amino acids. The 6-NBDG was observed in the pores of the bacillary band and within the stichocytes of the living worms, independent of oral sealing. Conclusions/Significance Trichuris muris is dependent on glucose for viability in vitro, and the bacillary band has an absorptive function in relation to 6-NBDG, which accumulates within the stichocytes. The absorptive function of the bacillary band calls for an exploration of its possible role in the uptake of anthelmintics, and as a potential anthelmintic target relevant for future drug development. PMID:27588682

  3. Glucose Absorption by the Bacillary Band of Trichuris muris.

    PubMed

    Hansen, Tina V A; Hansen, Michael; Nejsum, Peter; Mejer, Helena; Denwood, Matthew; Thamsborg, Stig M

    2016-09-01

    A common characteristic of Trichuris spp. infections in humans and animals is the variable but low efficacy of single-dose benzimidazoles currently used in mass drug administration programmes against human trichuriasis. The bacillary band, a specialised morphological structure of Trichuris spp., as well as the unique partly intracellular habitat of adult Trichuris spp. may affect drug absorption and perhaps contribute to the low drug accumulation in the worm. However, the exact function of the bacillary band is still unknown. We studied the dependency of adult Trichuris muris on glucose and/or amino acids for survival in vitro and the absorptive function of the bacillary band. The viability of the worms was evaluated using a motility scale from 0 to 3, and the colorimetric assay Alamar Blue was utilised to measure the metabolic activity. The absorptive function of the bacillary band in living worms was explored using a fluorescent glucose analogue (6-NBDG) and confocal microscopy. To study the absorptive function of the bacillary band in relation to 6-NBDG, the oral uptake was minimised or excluded by sealing the oral cavity with glue and agarose. Glucose had a positive effect on both the motility (p < 0.001) and metabolic activity (p < 0.001) of T. muris in vitro, whereas this was not the case for amino acids. The 6-NBDG was observed in the pores of the bacillary band and within the stichocytes of the living worms, independent of oral sealing. Trichuris muris is dependent on glucose for viability in vitro, and the bacillary band has an absorptive function in relation to 6-NBDG, which accumulates within the stichocytes. The absorptive function of the bacillary band calls for an exploration of its possible role in the uptake of anthelmintics, and as a potential anthelmintic target relevant for future drug development.

  4. Sub-band-gap absorption in Ga2O3

    NASA Astrophysics Data System (ADS)

    Peelaers, Hartwin; Van de Walle, Chris G.

    2017-10-01

    β-Ga2O3 is a transparent conducting oxide that, due to its large bandgap of 4.8 eV, exhibits transparency into the UV. However, the free carriers that enable the conductivity can absorb light. We study the effect of free carriers on the properties of Ga2O3 using hybrid density functional theory. The presence of free carriers leads to sub-band-gap absorption and a Burstein-Moss shift in the onset of absorption. We find that for a concentration of 1020 carriers, the Fermi level is located 0.23 eV above the conduction-band minimum. This leads to an increase in the electron effective mass from 0.27-0.28 me to 0.35-0.37 me and a sub-band-gap absorption band with a peak value of 0.6 × 103 cm-1 at 3.37 eV for light polarized along the x or z direction. Both across-the-gap and free-carrier absorption depend strongly on the polarization of the incoming light. We also provide parametrizations of the conduction-band shape and the effective mass as a function of the Fermi level.

  5. Near-Infrared Band Strengths of Molecules Diluted in N2 and H20 Ice Mixtures Relevant to Interstellar and Planetary Ices

    NASA Technical Reports Server (NTRS)

    Richey, C. R.; Richey, Christina R.

    2012-01-01

    In order to determine the column density of a component of an ice from its infrared absorption features, the strengths of these features must be known. The peak positions, widths, profiles, and strengths of a certain ice component's infrared absorption features are affected be the overall composition of the ice. Many satellites within the solar system have surfaces that are dominated by H2O or N2 and ices in the interstellar medium (ISM) are primarily composed of H2O. The experiments presented here focus on the near-infrared absorption features of CO, CO2, CH4, and NH3 (nu=10,000-4,000/cm, lambda=1-2.5 microns) and the effects of diluting these molecules in N2 or H2O ice (mixture ratio of 5:1). This is a continuation of previous results published by our research group.

  6. On the Formation of Interstellar Water Ice: Constraints from a Search for Hydrogen Peroxide Ice in Molecular Clouds

    NASA Technical Reports Server (NTRS)

    Smith, R. G.; Charnely, S. B.; Pendleton, Y. J.; Wright, C. M.; Maldoni, M. M.; Robinson, G.

    2011-01-01

    Recent surface chemistry experiments have shown that the hydrogenation of molecular oxygen on interstellar dust grains is a plausible formation mechanism, via hydrogen peroxide (H2O2), for the production of water (H2O) ice mantles in the dense interstellar medium. Theoretical chemistry models also predict the formation of a significant abundance of H2O2 ice in grain mantles by this route. At their upper limits, the predicted and experimental abundances are sufficiently high that H2O2 should be detectable in molecular cloud ice spectra. To investigate this further, laboratory spectra have been obtained for H2O2/H2O ice films between 2.5 and 200 micron, from 10 to 180 K, containing 3%, 30%, and 97% H2O2 ice. Integrated absorbances for all the absorption features in low-temperature H2O2 ice have been derived from these spectra. For identifying H2O2 ice, the key results are the presence of unique features near 3.5, 7.0, and 11.3 micron. Comparing the laboratory spectra with the spectra of a group of 24 protostars and field stars, all of which have strong H2O ice absorption bands, no absorption features are found that can definitely be identified with H2O2 ice. In the absence of definite H2O2 features, the H2O2 abundance is constrained by its possible contribution to the weak absorption feature near 3.47 micron found on the long-wavelength wing of the 3 micron H2O ice band. This gives an average upper limit for H2O2, as a percentage of H2O, of 9% +/- 4%. This is a strong constraint on parameters for surface chemistry experiments and dense cloud chemistry models.

  7. Multijunction solar cell design revisited: disruption of current matching by atmospheric absorption bands: Disruption of current matching by atmospheric absorption bands

    DOE PAGES

    McMahon, William E.; Friedman, Daniel J.; Geisz, John F.

    2017-05-23

    This paper re-examines the impact of atmospheric absorption bands on series-connected multijunction cell design, motivated by the numerous local efficiency maxima that appear as the number of junctions is increased. Some of the local maxima are related to the bottom subcell bandgap and are already well understood: As the bottom subcell bandgap is varied, a local efficiency maximum is produced wherever the bottom cell bandgap crosses an atmospheric absorption band. The optimal cell designs at these local maxima are generally current matched, such that all subcells have nearly the same short-circuit current. We systematically describe additional local maxima that occurmore » wherever an upper subcell bandgap encounters an atmospheric absorption band. Moreover, these local maxima are not current matched and become more prevalent as the number of junctions increases, complicating the solution space for five-junction and six-junction designs. A systematic framework for describing this complexity is developed, and implications for numerical convergence are discussed.« less

  8. Multijunction solar cell design revisited: disruption of current matching by atmospheric absorption bands: Disruption of current matching by atmospheric absorption bands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMahon, William E.; Friedman, Daniel J.; Geisz, John F.

    This paper re-examines the impact of atmospheric absorption bands on series-connected multijunction cell design, motivated by the numerous local efficiency maxima that appear as the number of junctions is increased. Some of the local maxima are related to the bottom subcell bandgap and are already well understood: As the bottom subcell bandgap is varied, a local efficiency maximum is produced wherever the bottom cell bandgap crosses an atmospheric absorption band. The optimal cell designs at these local maxima are generally current matched, such that all subcells have nearly the same short-circuit current. We systematically describe additional local maxima that occurmore » wherever an upper subcell bandgap encounters an atmospheric absorption band. Moreover, these local maxima are not current matched and become more prevalent as the number of junctions increases, complicating the solution space for five-junction and six-junction designs. A systematic framework for describing this complexity is developed, and implications for numerical convergence are discussed.« less

  9. Dynamical electron-phonon coupling, G W self-consistency, and vertex effect on the electronic band gap of ice and liquid water

    NASA Astrophysics Data System (ADS)

    Ziaei, Vafa; Bredow, Thomas

    2017-06-01

    We study the impact of dynamical electron-phonon (el-ph) effects on the electronic band gap of ice and liquid water by accounting for frequency-dependent Fan contributions in the el-ph mediated self-energy within the many-body perturbation theory (MBPT). We find that the dynamical el-ph coupling effects greatly reduce the static el-ph band-gap correction of the hydrogen-rich molecular ice crystal from-2.46 to -0.23 eV in great contrast to the result of Monserrat et al. [Phys. Rev. B 92, 140302 (2015), 10.1103/PhysRevB.92.140302]. This is of particular importance as otherwise the static el-ph gap correction would considerably reduce the electronic band gap, leading to considerable underestimation of the intense peaks of optical absorption spectra of ice which would be in great disagreement to experimental references. By contrast, the static el-ph gap correction of liquid water is very moderate (-0.32 eV), and inclusion of dynamical effects slightly reduces the gap correction to -0.19 eV. Further, we determine the diverse sensitivity of ice and liquid water to the G W self-consistency and show that the energy-only self-consistent approach (GnWn ) exhibits large implicit vertex character in comparison to the quasiparticle self-consistent approach, for which an explicit calculation of vertex corrections is necessary for good agreement with experiment.

  10. Topologically Nontrivial Magnon Bands in Artificial Square Spin Ices with Dzyaloshinskii-Moriya Interaction

    NASA Astrophysics Data System (ADS)

    Iacocca, Ezio; Heinonen, Olle

    2017-09-01

    Systems that exhibit topologically protected edge states are interesting both from a fundamental point of view as well as for potential applications, the latter because of the absence of backscattering and robustness to perturbations. It is desirable to be able to control and manipulate such edge states. Here, we show that artificial square ices can incorporate both features: an interfacial Dzyaloshinskii-Moriya interaction gives rise to topologically nontrivial magnon bands, and the equilibrium state of the spin ice is reconfigurable with different configurations having different magnon dispersions and topology. The topology is found to develop as odd-symmetry bulk and edge magnon bands approach each other so that constructive band inversion occurs in reciprocal space. Our results show that topologically protected bands are supported in square spin ices.

  11. C- and L-band space-borne SAR incidence angle normalization for efficient Arctic sea ice monitoring

    NASA Astrophysics Data System (ADS)

    Mahmud, M. S.; Geldsetzer, T.; Howell, S.; Yackel, J.; Nandan, V.

    2017-12-01

    C-band Synthetic Aperture Radar (SAR) has been widely used effectively for operational sea ice monitoring, owing to its greater seperability between snow-covered first-year (FYI) and multi-year (MYI) ice types, during winter. However, during the melt season, C-band SAR backscatter contrast reduces between FYI and MYI. To overcome the limitations of C-band, several studies have recommended utlizing L-band SAR, as it has the potential to significantly improve sea ice classification. Given its longer wavelength, L-band can efficiently separate FYI and MYI types, especially during melt season. Therefore, the combination of C- and L-band SAR is an optimal solution for efficient seasonal sea ice monitoring. As SAR acquires images over a range of incidence angles from near-range to far-range, SAR backscatter varies substantially. To compensate this variation in SAR backscatter, incidence angle dependency of C- and L-band SAR backscatter for different FYI and MYI types is crucial to quantify, which is the objective of this study. Time-series SAR imagery from C-band RADARSAT-2 and L-band ALOS PALSAR during winter months of 2010 across 60 sites over the Canadian Arctic was acquired. Utilizing 15 images for each sites during February-March for both C- and L-band SAR, incidence angle dependency was calculated. Our study reveals that L- and C-band backscatter from FYI and MYI decreases with increasing incidence angle. The mean incidence angle dependency for FYI and MYI were estimated to be -0.21 dB/1° and -0.30 dB/1° respectively from L-band SAR, and -0.22 dB/1° and -0.16 dB/1° from C-band SAR, respectively. While the incidence angle dependency for FYI was found to be similar in both frequencies, it doubled in case of MYI from L-band, compared to C-band. After applying the incidence angle normalization method to both C- and L-band SAR images, preliminary results indicate improved sea ice type seperability between FYI and MYI types, with substantially lower number of mixed

  12. Preliminary Analysis of X-Band and Ka-Band Radar for Use in the Detection of Icing Conditions Aloft

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.; Koenig, George G.

    2004-01-01

    NASA and the U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) have an on-going activity to develop remote sensing technologies for the detection and measurement of icing conditions aloft. Radar has been identified as a strong tool for this work. However, since the remote detection of icing conditions with the intent to identify areas of icing hazard is a new and evolving capability, there are no set requirements for radar sensitivity. This work is an initial attempt to quantify, through analysis, the sensitivity requirements for an icing remote sensing radar. The primary radar of interest for cloud measurements is Ka-band, however, since NASA is currently using an X-band unit, this frequency is also examined. Several aspects of radar signal analysis were examined. Cloud reflectivity was calculated for several forms of cloud using two different techniques. The Air Force Geophysical Laboratory (AFGL) cloud models, with different drop spectra represented by a modified gamma distribution, were utilized to examine several categories of cloud formation. Also a fundamental methods approach was used to allow manipulation of the cloud droplet size spectra. And an analytical icing radar simulator was developed to examine the complete radar system response to a configurable multi-layer cloud environment. Also discussed is the NASA vertical pointing X-band radar. The radar and its data system are described, and several summer weather events are reviewed.

  13. Ku/Ka band observations over polar ice sheets

    NASA Astrophysics Data System (ADS)

    Thibaut, Pierre; Lasne, Yannick; Guillot, Amandine; Picot, Nicolas; Rémy, Frédérique

    2015-04-01

    For the first time, comparisons between Ku and Ka altimeter measurements are possible thanks to the new AltiKa instrument embarked onboard the Saral mission launched on February 25, 2013. This comparison is of particular interest when dealing with ice sheet observations because both frequencies have different penetration characteristics. We propose in this paper to revisit the estimation of the ice sheet topography (and other related parameters) with altimeter systems and to present illustrations of the differences observed in Ku and Ka bands using AltiKa, Envisat/RA-2 but also Cryosat-2 measurements. Working on AltiKa waveforms in the frame of the PEACHI project has allowed us to better understand the impact of the penetration depth on the echo shape, to improve the estimation algorithm and to compare its output with historical results obtained on Envisat and ERS missions. In particular, analyses at cross-overs of the Cryosat-2 and Saral data will be presented. Sentinel-3 mission should be launch during 2015. Operating in Ku band and in delay/doppler mode, it will be crucial to account for penetration effects in order to accurately derive the ice sheet heights and trends. The results of the work presented here, will benefit to the Sentinel-3 mission.

  14. An ice-rich flow origin for the banded terrain in the Hellas basin, Mars

    NASA Astrophysics Data System (ADS)

    Diot, X.; El-Maarry, M. R.; Guallini, L.; Schlunegger, F.; Norton, K. P.; Thomas, N.; Sutton, S.; Grindrod, P. M.

    2015-12-01

    The interior of Hellas Basin displays a complex landscape and a variety of geomorphological domains. One of these domains, the enigmatic banded terrain covers much of the northwestern part of the basin. We use high-resolution (Context Camera and High-Resolution Imaging Science Experiment) Digital Terrain Models to show that most of the complex viscous flowing behavior exhibited by the banded terrain is controlled by topography and flow-like interactions between neighboring banded terrain. Furthermore, the interior of the basin hosts several landforms suggestive of the presence of near-surface ice, which include polygonal patterns with elongated pits, scalloped depressions, isolated mounds, and collapse structures. We suggest that thermal contraction cracking and sublimation of near-surface ice are responsible for the formation and the development of most of the ice-related landforms documented in Hellas. The relatively pristine form, lack of superposed craters, and strong association with the banded terrain, suggest an Amazonian (<3 Ga) age of formation for these landforms. Finally, relatively high surface pressures (above the triple point of water) expected in Hellas and summertime temperatures often exceeding the melting point of water ice suggest that the basin may have recorded relatively "temperate" climatic conditions compared to other places on Mars. Therefore, the potentially ice-rich banded terrain may have deformed with lower viscosity and stresses compared to other locations on Mars, which may account for its unique morphology.

  15. Classification of sea ice types with single-band (33.6 GHz) airborne passive microwave imagery

    NASA Astrophysics Data System (ADS)

    Eppler, Duane T.; Farmer, L. Dennis; Lohanick, Alan W.; Hoover, Mervyn

    1986-09-01

    During March 1983 extensive high-quality airborne passive Ka band (33.6 GHz) microwave imagery and coincident high-resolution aerial photography were obtained of ice along a 378-km flight line in the Beaufort Sea. Analysis of these data suggests that four classes of winter surfaces can be distinguished solely on the basis of 33.6-GHz brightness temperature: open water, frazil, old ice, and young/first-year ice. New ice (excluding frazil) and nilas display brightness temperatures that overlap the range of temperatures characteristic of old ice and, to a lesser extent, young/first-year ice. Scenes in which a new ice or nilas are present in appreciable amounts are subject to substantial errors in classification if static measures of Ka band radiometric brightness temperature alone are considered. Textural characteristics of nilas and new ice, however, differ significantly from textural features characteristic of other ice types and probably can be used with brightness temperature data to classify ice type in high-resolution single-band microwave images. In any case, open water is radiometrically the coldest surface observed in any scene. Lack of overlap between brightness temperatures characteristic of other surfaces indicates that estimates of the areal extent of open water based on only 33.6-GHz brightness temperatures are accurate.

  16. Examining Scattering Mechanisms within Bubbled Freshwater Lake Ice using a Time-Series of RADARSAT-2 (C-band) and UW-Scat (X-, Ku-band) Polarimetric Observations

    NASA Astrophysics Data System (ADS)

    Gunn, Grant; Duguay, Claude; Atwood, Don

    2017-04-01

    This study identifies the dominant scattering mechanism for C-, X- and Ku-band for bubbled freshwater lake ice in the Hudson Bay Lowlands near Churchill, Canada, using a winter time series of fully polarimetric ground-based (X- and Ku-band, UW-Scat) scatterometer and spaceborne (C-band) synthetic aperture radar (SAR, Radarsat-2) observations collected coincidentally to in-situ snow and ice measurements. Scatterometer observations identify two dominant backscatter sources from the ice cover: the snow-ice, and ice-water interface. Using in-situ measurements as ground-truth, a winter time series of scatterometer and satellite acquisitions show increases in backscatter from the ice-water interface prior to the timing of tubular bubble development in the ice cover. This timing indicates that scattering in the ice is independent of double-bounce scatter caused by tubular bubble inclusions. Concurrently, the co-polarized phase difference of interactions at the ice-water interface from both scatterometer and SAR observations are centred at 0° throughout the time series, indicating a scattering regime other than double bounce. A Yamaguchi three-component decomposition of SAR observations is presented for C-band acquisitions indicating a dominant single-bounce scattering mechanism regime, which is hypothesized to be a result of an ice-water interface that presents a rough surface or a surface composed of preferentially oriented facets. This study is the first to present a winter time series of coincident ground-based and spaceborne fully polarimetric active microwave observations for bubbled freshwater lake ice.

  17. Atmospheric absorption of high frequency noise and application to fractional-octave bands

    NASA Technical Reports Server (NTRS)

    Shields, F. D.; Bass, H. E.

    1977-01-01

    Pure tone sound absorption coefficients were measured at 1/12 octave intervals from 4 to 100 KHz at 5.5K temperature intervals between 255.4 and 310.9 K and at 10 percent relative humidity increments between 0 percent and saturation in a large cylindrical tube (i.d., 25.4 cm; length, 4.8 m). Special solid-dielectric capacitance transducers, one to generate bursts of sound waves and one to terminate the sound path and detect the tone bursts, were constructed to fit inside the tube. The absorption was measured by varying the transmitter receiver separation from 1 to 4 m and observing the decay of multiple reflections or change in amplitude of the first received burst. The resulting absorption was compared with that from a proposed procedure for computing sound absorption in still air. Absorption of bands of noise was numerically computed by using the pure tone results. The results depended on spectrum shape, on filter type, and nonlinearly on propagation distance. For some of the cases considered, comparison with the extrapolation of ARP-866A showed a difference as large as a factor of 2. However, for many cases, the absorption for a finite band was nearly equal to the pure tone absorption at the center frequency of the band. A recommended prediction procedure is described for 1/3 octave band absorption coefficients.

  18. The effect of sea ice on the solar energy budget in the astmosphere-sea ice-ocean system: A model study

    NASA Technical Reports Server (NTRS)

    Jin, Z.; Stamnes, Knut; Weeks, W. F.; Tsay, Si-Chee

    1994-01-01

    A coupled one-dimensional multilayer and multistream radiative transfer model has been developed and applied to the study of radiative interactions in the atmosphere, sea ice, and ocean system. The consistent solution of the radiative transfer equation in this coupled system automatically takes into account the refraction and reflection at the air-ice interface and allows flexibility in choice of stream numbers. The solar radiation spectrum (0.25 micron-4.0 micron) is divided into 24 spectral bands to account adequately for gaseous absorption in the atmosphere. The effects of ice property changes, including salinity and density variations, as well as of melt ponds and snow cover variations over the ice on the solar energy distribution in the entire system have been studied quantitatively. The results show that for bare ice it is the scattering, determined by air bubbles and brine pockets, in just a few centimeters of the top layer of ice that plays the most important role in the solar energy absorption and partitioning in the entire system. Ice thickness is important to the energy distribution only when the ice is thin, while the absorption in the atmosphere is not sensitive to ice thickness exceeds about 70 cm. The presence of clouds moderates all the sensitivities of the absorptive amounts in each layer to the variations in the ice properties and ice thickness. Comparisons with observational spectral albedo values for two simple ice types are also presented.

  19. Late-summer sea ice segmentation with multi-polarisation SAR features in C and X band

    NASA Astrophysics Data System (ADS)

    Fors, Ane S.; Brekke, Camilla; Doulgeris, Anthony P.; Eltoft, Torbjørn; Renner, Angelika H. H.; Gerland, Sebastian

    2016-02-01

    In this study, we investigate the potential of sea ice segmentation by C- and X-band multi-polarisation synthetic aperture radar (SAR) features during late summer. Five high-resolution satellite SAR scenes were recorded in the Fram Strait covering iceberg-fast first-year and old sea ice during a week with air temperatures varying around 0 °C. Sea ice thickness, surface roughness and aerial photographs were collected during a helicopter flight at the site. Six polarimetric SAR features were extracted for each of the scenes. The ability of the individual SAR features to discriminate between sea ice types and their temporal consistency were examined. All SAR features were found to add value to sea ice type discrimination. Relative kurtosis, geometric brightness, cross-polarisation ratio and co-polarisation correlation angle were found to be temporally consistent in the investigated period, while co-polarisation ratio and co-polarisation correlation magnitude were found to be temporally inconsistent. An automatic feature-based segmentation algorithm was tested both for a full SAR feature set and for a reduced SAR feature set limited to temporally consistent features. In C band, the algorithm produced a good late-summer sea ice segmentation, separating the scenes into segments that could be associated with different sea ice types in the next step. The X-band performance was slightly poorer. Excluding temporally inconsistent SAR features improved the segmentation in one of the X-band scenes.

  20. Water Ice on Kuiper Belt Object 1996 TO66

    NASA Technical Reports Server (NTRS)

    Brown, R. H.; Cruikshank, D. P.; Pendleton, Y.

    1999-01-01

    The 1.40-2.40 micron spectrum of Kuiper Belt object (KBO) 1996 TO66 was measured at the Keck Observatory in September 1998. It's spectrum shows the strong absorptions near 1.5 and 2.0 micron characteristic of water ice--the first such detection on a Kuiper Belt object. The depth of the absorption bands and the continuum reflectance of 1996 TO66 also suggest the presence of a black to slightly blue-colored, spectrally featureless particulate material as a minority component mixed with the water ice. In addition, there is evidence that the intensity of the water bands in the spectrum of 1996 TO66 vary with rotational phase suggesting that it has a "patchy" surface.

  1. Newly Formed Sea Ice in Arctic Leads Monitored by C- and L-Band SAR

    NASA Astrophysics Data System (ADS)

    Johansson, A. Malin; Brekke, Camilla; Spreen, Gunnar; King, Jennifer A.; Gerland, Sebastian

    2016-08-01

    We investigate the scattering entropy and co-polarization ratio for Arctic lead ice using C- and L-band synthetic aperture radar (SAR) satellite scenes. During the Norwegian Young sea ICE (N-ICE2015) cruise campaign overlapping SAR scenes, helicopter borne sea ice thickness measurements and photographs were collected. We can therefore relate the SAR signal to sea ice thickness measurements as well as photographs taken of the sea ice. We show that a combination of scattering and co-polarization ratio values can be used to distinguish young ice from open water and surrounding sea ice.

  2. Early Salt Stress Effects on the Changes in Chemical Composition in Leaves of Ice Plant and Arabidopsis. A Fourier Transform Infrared Spectroscopy Study1

    PubMed Central

    Yang, Jyisy; Yen, Hungchen E.

    2002-01-01

    A technique based on Fourier transform infrared (FT-IR) spectrometry was developed to detect the corresponding changes in chemical composition associated with the rapid changes in sodium and water content in 200 mm NaCl-stressed halophyte ice plants (Mesembryanthemum crystallinum). The changes in glycophyte Arabidopsis stressed with 50 mm NaCl were also examined for comparison. The obtained IR spectra were further processed by deconvolution and curve fitting to examine the chemical nature of the responding sources in the leaves. Using three stages of ice plant leaves, absorption bands corresponding to carbohydrates, cell wall pectin, and proteins were identified, with distinct IR spectra representing each developmental stage. Within 48 h of mild salt stress, the absorption band intensities in the fingerprint region increased continuously in both plants, suggesting that the carbon assimilation was not affected at the early stage of stress. The intensities of ester and amide I absorption bands decreased slightly in Arabidopsis but increased in ice plant, suggesting that the cell expansion and protein synthesis ceased in Arabidopsis but continued in ice plant. In both plants, the shift in amide I absorption band was observed hourly after salt stress, indicating a rapid conformational change of cellular proteins. Analyses of the ratio between major and minor amide I absorption band revealed that ice plant was able to maintain a higher-ordered form of proteins under stress. Furthermore, the changes in protein conformation showed a positive correlation to the leaf sodium contents in ice plant, but not in Arabidopsis. PMID:12376666

  3. Polarimetric C-/X-band Synthetic Aperture Radar Observations of Melting Sea Ice in the Canadian Arctic Archipelago

    NASA Astrophysics Data System (ADS)

    Casey, J. A.; Beckers, J. F.; Brossier, E.; Haas, C.

    2013-12-01

    Operational ice information services rely heavily on space-borne synthetic aperture radar (SAR) data for the production of ice charts to meet their mandate of providing timely and accurate sea ice information to support safe and efficient marine operations. During the summer melt period, the usefulness of SAR data for sea ice monitoring is limited by the presence of wet snow and melt ponds on the ice surface, which can mask the signature of the underlying ice. This is a critical concern for ice services whose clients (e.g. commercial shipping, cruise tourism, resource exploration and extraction) are most active at this time of year when sea ice is at its minimum extent, concentration and thickness. As a result, there is a need to further quantify the loss of ice information in SAR data during the melt season and to identify what information can still be retrieved about ice surface conditions and melt pond evolution at this time of year. To date the majority of studies have been limited to analysis of single-polarization C-band SAR data. This study will investigate the potential complimentary and unique sea ice information that polarimetric C- and X-band SAR data can provide to supplement the information available from traditional single co-polarized C-band SAR data. A time-series of polarimetric C- and X-band SAR data was acquired over Jones Sound in the Canadian Arctic Archipelago, in the vicinity of the Grise Fiord, Nunavut. Five RADARSAT-2 Wide Fine Quad-pol images and 11 TerraSAR-X StripMap dual-pol (HH/VV) images were acquired. The time-series begins at the onset of melt in early June and extends through advanced melt conditions in late July. Over this period several ponding and drainage events and two snowfall events occurred. Field observations of sea ice properties were collected using an Ice Mass Balance (IMB) buoy, hourly photos from a time-lapse camera deployed on a coastal cliff, and manual in situ measurements of snow thickness and melt pond depth

  4. Sensitivity of Cirrus Bidirectional Reflectance at MODIS Bands to Vertical Inhomogeneity of Ice Crystal Habits and Size Distribution

    NASA Technical Reports Server (NTRS)

    Yang, P.; Gao, B.-C.; Baum, B. A.; Wiscombe, W.; Hu, Y.; Nasiri, S. L.; Soulen, P. F.; Heymsfield, A. J.; McFarquhar, G. M.; Miloshevich, L. M.

    2000-01-01

    A common assumption in satellite imager-based cirrus retrieval algorithms is that the radiative properties of a cirrus cloud may be represented by those associated with a specific ice crystal shape (or habit) and a single particle size distribution. However, observations of cirrus clouds have shown that the shapes and sizes of ice crystals may vary substantially with height within the clouds. In this study we investigate the sensitivity of the top-of-atmosphere bidirectional reflectances at two MODIS bands centered at 0.65 micron and 2.11 micron to the cirrus models assumed to be either a single homogeneous layer or three distinct but contiguous, layers. First, we define the single- and three-layer cirrus cloud models with respect to ice crystal habit and size distribution on the basis of in situ replicator data acquired during the First ISCCP Regional Experiment (FIRE-II), held in Kansas during the fall of 1991. Subsequently, fundamental light scattering and radiative transfer theory is employed to determine the single scattering and the bulk radiative properties of the cirrus cloud. Regarding the radiative transfer computations, we present a discrete form of the adding/doubling principle by introducing a direct transmission function, which is computationally straightforward and efficient an improvement over previous methods. For the 0.65 micron band, at which absorption by ice is negligible, there is little difference between the bidirectional reflectances calculated for the one- and three-layer cirrus models, suggesting that the vertical inhomogeneity effect is relatively unimportant. At the 2.11 micron band, the bidirectional reflectances computed for both optically thin (tau = 1) and thick (tau = 10) cirrus clouds show significant differences between the results for the one- and three-layer models. The reflectances computed for the three-layer cirrus model are substantially larger than those computed for the single-layer cirrus. Finally, we find that cloud

  5. Understanding of sub-band gap absorption of femtosecond-laser sulfur hyperdoped silicon using synchrotron-based techniques

    PubMed Central

    Limaye, Mukta V.; Chen, S. C.; Lee, C. Y.; Chen, L. Y.; Singh, Shashi B.; Shao, Y. C.; Wang, Y. F.; Hsieh, S. H.; Hsueh, H. C.; Chiou, J. W.; Chen, C. H.; Jang, L. Y.; Cheng, C. L.; Pong, W. F.; Hu, Y. F.

    2015-01-01

    The correlation between sub-band gap absorption and the chemical states and electronic and atomic structures of S-hyperdoped Si have been extensively studied, using synchrotron-based x-ray photoelectron spectroscopy (XPS), x-ray absorption near-edge spectroscopy (XANES), extended x-ray absorption fine structure (EXAFS), valence-band photoemission spectroscopy (VB-PES) and first-principles calculation. S 2p XPS spectra reveal that the S-hyperdoped Si with the greatest (~87%) sub-band gap absorption contains the highest concentration of S2− (monosulfide) species. Annealing S-hyperdoped Si reduces the sub-band gap absorptance and the concentration of S2− species, but significantly increases the concentration of larger S clusters [polysulfides (Sn2−, n > 2)]. The Si K-edge XANES spectra show that S hyperdoping in Si increases (decreased) the occupied (unoccupied) electronic density of states at/above the conduction-band-minimum. VB-PES spectra evidently reveal that the S-dopants not only form an impurity band deep within the band gap, giving rise to the sub-band gap absorption, but also cause the insulator-to-metal transition in S-hyperdoped Si samples. Based on the experimental results and the calculations by density functional theory, the chemical state of the S species and the formation of the S-dopant states in the band gap of Si are critical in determining the sub-band gap absorptance of hyperdoped Si samples. PMID:26098075

  6. Tunable dual-band nearly perfect absorption based on a compound metallic grating

    NASA Astrophysics Data System (ADS)

    Gao, Hua; Zheng, Zhi-Yuan; Feng, Juan

    2017-02-01

    Traditional metallic gratings and novel metamaterials are two basic kinds of candidates for perfect absorption. Comparatively speaking, metallic grating is the preferred choice for the same absorption effect because it is structurally simpler and more convenient to fabricate. However, to date, most of the perfect absorption effects achieved based on metamaterials are also available using an metallic grating except the tunable dual(multi)-band perfect absorption. To fill this gap, in this paper, by adding subgrooves on the rear surface as well as inside the grating slits to a free-standing metallic grating, tunable dual-band perfect absorption is also obtained for the first time. The grooves inside the slits is to tune the frequency of the Cavity Mode(CM) resonance which enhances the transmission and suppresses the reflectance simultaneously. The grooves on the rear surface give rise to the phase resonance which not only suppresses the transmission but also reinforces the reflectance depression effect. Thus, when the phase resonance and the frequency tunable CM resonance occur together, transmission and reflection can be suppressed simultaneously, dual-band nearly perfect absorption with tunable frequencies is obtained. To our knowledge, this perfect absorption phenomenon is achieved for the first time in a designed metallic grating structure.

  7. Impact of surface roughness on L-band emissivity of the sea ice

    NASA Astrophysics Data System (ADS)

    Miernecki, M.; Kaleschke, L.; Hendricks, S.; Søbjærg, S. S.

    2015-12-01

    In March 2014 a joint experiment IRO2/SMOSice was carried out in the Barents Sea. R/V Lance equipped with meteorological instruments, electromagnetic sea ice thickness probe and engine monitoring instruments, was performing a series of tests in different ice conditions in order to validate the ice route optimization (IRO) system, advising on his route through pack ice. In parallel cal/val activities for sea ice thickness product obtained from SMOS (Soil Moisture and Ocean Salinity mission) L-band radiometer were carried out. Apart from helicopter towing the EMbird thickness probe, Polar 5 aircraft was serving the area during the experiment with L-band radiometer EMIRAD2 and Airborne Laser Scanner (ALS) as primary instruments. Sea ice Thickness algorithm using SMOS brightness temperature developed at University of Hamburg, provides daily maps of thin sea ice (up to 0.5-1 m) in polar regions with resolution of 35-50 km. So far the retrieval method was not taking into account surface roughness, assuming that sea ice is a specular surface. Roughness is a stochastic process that can be characterized by standard deviation of surface height σ and by shape of the autocorrelation function R to estimate it's vertical and horizontal scales respectively. Interactions of electromagnetic radiation with the surface of the medium are dependent on R and σ and they scales with respect to the incident wavelength. During SMOSice the radiometer was observing sea ice surface at two incidence angles 0 and 40 degrees and simultaneously the surface elevation was scanned with ALS with ground resolution of ~ 0.25 m. This configuration allowed us to calculate σ and R from power spectral densities of surface elevation profiles and quantify the effect of surface roughness on the emissivity of the sea ice. First results indicate that Gaussian autocorrelation function is suitable for deformed ice, for other ice types exponential function is the best fit.

  8. C-Band Backscatter Measurements of Winter Sea-Ice in the Weddell Sea, Antarctica

    NASA Technical Reports Server (NTRS)

    Drinkwater, M. R.; Hosseinmostafa, R.; Gogineni, P.

    1995-01-01

    During the 1992 Winter Weddell Gyre Study, a C-band scatterometer was used from the German ice-breaker R/V Polarstern to obtain detailed shipborne measurement scans of Antarctic sea-ice. The frequency-modulated continuous-wave (FM-CW) radar operated at 4-3 GHz and acquired like- (VV) and cross polarization (HV) data at a variety of incidence angles (10-75 deg). Calibrated backscatter data were recorded for several ice types as the icebreaker crossed the Weddell Sea and detailed measurements were made of corresponding snow and sea-ice characteristics at each measurement site, together with meteorological information, radiation budget and oceanographic data. The primary scattering contributions under cold winter conditions arise from the air/snow and snow/ice interfaces. Observations indicate so e similarities with Arctic sea-ice scattering signatures, although the main difference is generally lower mean backscattering coefficients in the Weddell Sea. This is due to the younger mean ice age and thickness, and correspondingly higher mean salinities. In particular, smooth white ice found in 1992 in divergent areas within the Weddell Gyre ice pack was generally extremely smooth and undeformed. Comparisons of field scatterometer data with calibrated 20-26 deg incidence ERS-1 radar image data show close correspondence, and indicate that rough Antarctic first-year and older second-year ice forms do not produce as distinctively different scattering signatures as observed in the Arctic. Thick deformed first-year and second-year ice on the other hand are clearly discriminated from younger undeformed ice. thereby allowing successful separation of thick and thin ice. Time-series data also indicate that C-band is sensitive to changes in snow and ice conditions resulting from atmospheric and oceanographic forcing and the local heat flux environment. Variations of several dB in 45 deg incidence backscatter occur in response to a combination of thermally-regulated parameters

  9. Band gap of corundumlike α -Ga2O3 determined by absorption and ellipsometry

    NASA Astrophysics Data System (ADS)

    Segura, A.; Artús, L.; Cuscó, R.; Goldhahn, R.; Feneberg, M.

    2017-07-01

    The electronic structure near the band gap of the corundumlike α phase of Ga2O3 has been investigated by means of optical absorption and spectroscopic ellipsometry measurements in the ultraviolet (UV) range (400-190 nm). The absorption coefficient in the UV region and the imaginary part of the dielectric function exhibit two prominent absorption thresholds with wide but well-defined structures at 5.6 and 6.3 eV which have been ascribed to allowed direct transitions from crystal-field split valence bands to the conduction band. Excitonic effects with large Gaussian broadening are taken into account through the Elliott-Toyozawa model, which yields an exciton binding energy of 110 meV and direct band gaps of 5.61 and 6.44 eV. The large broadening of the absorption onset is related to the slightly indirect character of the material.

  10. Pluto: The Ice Plot Thickens

    NASA Image and Video Library

    2015-07-15

    The latest spectra from New Horizons Ralph instrument reveal an abundance of methane ice, but with striking differences from place to place across the frozen surface of Pluto. In the north polar cap, methane ice is diluted in a thick, transparent slab of nitrogen ice resulting in strong absorption of infrared light. In one of the visually dark equatorial patches, the methane ice has shallower infrared absorptions indicative of a very different texture. An Earthly example of different textures of a frozen substance: a fluffy bank of clean snow is bright white, but compacted polar ice looks blue. New Horizons' surface composition team has begun the intricate process of analyzing Ralph data to determine the detailed compositions of the distinct regions on Pluto. This is the first detailed image of Pluto from the Linear Etalon Imaging Spectral Array, part of the Ralph instrument on New Horizons. The observations were made at three wavelengths of infrared light, which are invisible to the human eye. In this picture, blue corresponds to light of wavelengths 1.62 to 1.70 micrometers, a channel covering a medium-strong absorption band of methane ice, green (1.97 to 2.05 micrometers) represents a channel where methane ice does not absorb light, and red (2.30 to 2.33 micrometers) is a channel where the light is very heavily absorbed by methane ice. The two areas outlined on Pluto show where Ralph observations obtained the spectral traces at the right. Note that the methane absorptions (notable dips) in the spectrum from the northern region are much deeper than the dips in the spectrum from the dark patch. The Ralph data were obtained by New Horizons on July 12, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19712

  11. Multi-epoch Detections of Water Ice Absorption in Edge-on Disks around Herbig Ae Stars: PDS 144N and PDS 453

    NASA Astrophysics Data System (ADS)

    Terada, Hiroshi; Tokunaga, Alan T.

    2017-01-01

    We report the multi-epoch detections of water ice in 2.8-4.2 μ {{m}} spectra of two Herbig Ae stars, PDS 144N (A2 IVe) and PDS 453 (F2 Ve), which have an edge-on circumstellar disk. The detected water ice absorption is found to originate from their protoplanetary disks. The spectra show a relatively shallow absorption of water ice of around 3.1 μ {{m}} for both objects. The optical depths of the water ice absorption are ˜0.1 and ˜0.2 for PDS 144N and PDS 453, respectively. Compared to the water ice previously detected in low-mass young stellar objects with an edge-on disk with a similar inclination angle, these optical depths are significantly lower. It suggests that stronger UV radiation from the central stars effectively decreases the water ice abundance around the Herbig Ae stars through photodesorption. The water ice absorption in PDS 453 shows a possible variation of the feature among the six observing epochs. This variation could be due to a change of absorption materials passing through our line of sight to the central star. The overall profile of the water ice absorption in PDS 453 is quite similar to the absorption previously reported in the edge-on disk object d216-0939, and this unique profile may be seen only at a high inclination angle in the range of 76°-80°.

  12. Extraction of Late Summer Sea Ice Properties from Polarimetric SAR Features in C- and X-Band

    NASA Astrophysics Data System (ADS)

    Fors, Ane S.; Brekke, Camilla; Gerland, Sebastian; Doulgeris, Anthony P.; Eltoft, Torbjørn

    2015-04-01

    In this study we examine the potential use of six polarimetric features for interpretation of late summer sea ice types. Five high-resolution C and X-band scenes were recorded in the Fram Strait covering fast first-year and old sea ice. In addition sea ice thickness, surface roughness and melt pond fraction were collected during a helicopter flight at the study area. From the SAR scenes, six polarimetric features were extracted. Along sections of the track of the helicopter flight, the mean of the SAR features were compared to mean values of the properties measured during the helicopter flight. The results reveal relations between several of the SAR features and the geophysical properties measured in C-band, and weak relations in X-band.

  13. Absorption band Q model for the Earth

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.; Given, J. W.

    1981-01-01

    Attenuation in solids and liquids, as measured by the quality factor Q, is typically frequency dependent. In seismology, however, Q is usually assumed to be independent of frequency. Body wave, surface wave, and normal mode data are used to place constraints on the frequency dependence of Q in the mantle. Specific features of the absorption band model are: low-Q in the seismic band at both the top and the base of the mantle, low-Q for long-period body waves in the outer core, an inner core Q sub s that increases with period, and low Q sub p/Q sub s at short periods in the middle mantle.

  14. The Mid-Infrared Absorption Spectra of Neutral PAHs in Dense Interstellar Clouds

    NASA Technical Reports Server (NTRS)

    Bernstein, M. P.; Sandford, S. A.; Allamandola, L. J.

    2005-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are common throughout the universe and are expected to be present in dense interstellar clouds. In these environments, some P.4Hs may be present in the gas phase, but most should be frozen into ice mantles or adsorbed onto dust grains and their spectral features are expected to be seen in absorption. Here we extend our previous work on the infrared spectral properties of the small PAH naphthalene (C10H8) in several media to include the full mid-infrared laboratory spectra of 11 other PAHs and related aromatic species frozen in H2O ices. These include the molecules 1,2-dihydronaphthalene, anthracene, 9,1O-dihydroanthracene, phenanthrene, pyrene, benzo[e]pyrene, perylene, benzo(k)fluoranthene, pentacene, benzo[ghi]perylene, and coronene. These results demonstrate that PAHs and related molecules, as a class, show the same spectral behaviors as naphthalene when incorporated into H2O-rich matrices. When compared to the spectra of these same molecules isolated in inert matrices (e.g., Ar or N2), the absorption bands produced when they are frozen in H2O matrices are broader (factors of 3-10), show small position shifts in either direction (usually < 4/cm, always < 10/cm), and show variable changes in relative band strengths (typically factors of 1-3). There is no evidence of systematic increases or decreases in the absolute strengths of the bands of these molecules when they are incorporated in H2O matrices. In H2O-rich ices, their absorption bands are relatively insensitive to concentration over the range of 10 < H2O/PAH < 200): The absorption bands of these molecules are also insensitive to temperature over the 10 K < T < 125 K range, although the spectra can show dramatic changes as the ices are warmed through the temperature range in which amorphous H2O ice converts to its cubic and hexagonal crystalline forms (T > 125 Kj. Given the small observed band shifts cause by H2O, the current database of spectra from Ar matrix

  15. Radiation-Induced Amorphization of Crystalline Ice

    NASA Technical Reports Server (NTRS)

    Fama, M.; Loeffler, M. J.; Raut, U.; Baragiola, R. A.

    2009-01-01

    We study radiation-induced amorphization of crystalline ice, ana lyzing the resu lts of three decades of experiments with a variety of projectiles, irradiation energy, and ice temperature, finding a similar trend of increasing resistance of amorphization with temperature and inconsistencies in results from different laboratories. We discuss the temperature dependence of amorphization in terms of the 'thermal spike' model. We then discuss the common use of the 1.65 micrometer infrared absorption band of water as a measure of degree of crystallinity, an increasingly common procedure to analyze remote sensing data of astronomical icy bodies. The discussion is based on new, high quality near-infrared refl ectance absorption spectra measured between 1.4 and 2.2 micrometers for amorphous and crystalline ices irradiated with 225 keV protons at 80 K. We found that, after irradiation with 10(exp 15) protons per square centimeter, crystalline ice films thinner than the ion range become fully amorphous, and that the infrared absorption spectra show no significant changes upon further irradiation. The complete amorphization suggests that crystalline ice observed in the outer Solar System, including trans-neptunian objects, may results from heat from internal sources or from the impact of icy meteorites or comets.

  16. The 2140 cm(exp -1) (4.673 Microns) Solid CO Band: The Case for Interstellar O2 and N2 and the Photochemistry of Non-Polar Interstellar Ice Analogs

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie; Allamandola, Louis J.; Sandford, Scott A.; Witteborn, Fred C. (Technical Monitor)

    1996-01-01

    The infrared spectra of CO frozen in non-polar ices containing N2, CO2, O2, and H2O, and the ultraviolet photochemistry of these interstellar/precometary ice analogs are reported. The spectra are used to test the hypothesis that the narrow 2140/cm (4.673 micrometer) interstellar absorption feature attributed to solid CO might be produced by CO frozen in ices containing non-polar species such as N2 and O2. It is shown that mixed molecular ices containing CO, N2, O2, and CO2 provide a very good match to the interstellar band at all temperatures between 12 and 30 K both before and after photolysis. The optical constants (real and imaginary parts of the index of refraction) in the region of the solid CO feature are reported for several of these ices.

  17. "Ice Cubes" in the Center of the Milky Way: Water-ice and Hydrocarbons in the Central Parsec

    NASA Astrophysics Data System (ADS)

    Moultaka, J.; Eckart, A.; Mužić, K.

    2015-06-01

    The close environment of the central supermassive black hole of our Galaxy has been studied thoroughly for decades in order to shed light on the behavior of the central regions of galaxies in general and of active galaxies in particular. The Galactic center (GC) has shown a wealth of structures on different scales with a complicated mixture of early- and late-type stars, ionized and molecular gas, dust, and winds. Here we aim to study the distribution of water-ices and hydrocarbons in the central parsec, as well as along the line of sight. This study is made possible thanks to L-band spectroscopy. This spectral band, from 2.8 to 4.2 μm, hosts important signatures of the circumstellar medium and interstellar dense and diffuse media among which deep absorption features are attributed to water-ices and hydrocarbons. We observed the GC in the L band of the ISAAC spectrograph located on the UT1/VLT ESO telescope. By mapping the central half parsec using 27 slit positions, we were able to build the first data cube of the region in this wavelength domain. Thanks to a calibrator spectrum of the foreground extinction in the L band derived in a previous paper, we corrected our data cube for the line-of-sight extinction and validated our calibrator spectrum. The data show that a residual absorption due to water-ices and hydrocarbons is present in the corrected data cube. This suggests that the features are produced in the local environment of the GC, implying very low temperatures well below 80 K. This is in agreement with our finding of local CO ices in the central parsec described in Moultaka et al. Resulting from ESO VLT observations of program ID numbers 71.C-0192A and 077.C-0286A.

  18. Configuration of Pluto's Volatile Ices

    NASA Astrophysics Data System (ADS)

    Grundy, William M.; Binzel, R. P.; Cook, J. C.; Cruikshank, D. P.; Dalle Ore, C. M.; Earle, A. M.; Ennico, K.; Jennings, D. E.; Howett, C. J. A.; Linscott, I. R.; Lunsford, A. W.; Olkin, C. B.; Parker, A. H.; Parker, J. Wm; Protopapa, S.; Reuter, D. C.; Singer, K. N.; Spencer, J. R.; Stern, S. A.; Tsang, C. C. C.; Verbiscer, A. J.; Weaver, H. A.; Young, L. A.; Berry, K.; Buie, M. W.; Stansberry, J. A.

    2015-11-01

    We report on near-infrared remote sensing by New Horizons' Ralph instrument (Reuter et al. 2008, Space Sci. Rev. 140, 129-154) of Pluto's N2, CO, and CH4 ices. These especially volatile ices are mobile even at Pluto's cryogenic surface temperatures. Sunlight reflected from these ices becomes imprinted with their characteristic spectral absorption bands. The detailed appearance of these absorption features depends on many aspects of local composition, thermodynamic state, and texture. Multiple-scattering radiative transfer models are used to retrieve quantitative information about these properties and to map how they vary across Pluto's surface. Using parameter maps derived from New Horizons observations, we investigate the striking regional differences in the abundances and scattering properties of Pluto's volatile ices. Comparing these spatial patterns with the underlying geology provides valuable constraints on processes actively modifying the planet's surface, over a variety of spatial scales ranging from global latitudinal patterns to more regional and local processes within and around the feature informally known as Sputnik Planum. This work was supported by the NASA New Horizons Project.

  19. Resonantly enhanced multiple exciton generation through below-band-gap multi-photon absorption in perovskite nanocrystals.

    PubMed

    Manzi, Aurora; Tong, Yu; Feucht, Julius; Yao, En-Ping; Polavarapu, Lakshminarayana; Urban, Alexander S; Feldmann, Jochen

    2018-04-17

    Multi-photon absorption and multiple exciton generation represent two separate strategies for enhancing the conversion efficiency of light into usable electric power. Targeting below-band-gap and above-band-gap energies, respectively, to date these processes have only been demonstrated independently. Here we report the combined interaction of both nonlinear processes in CsPbBr 3 perovskite nanocrystals. We demonstrate nonlinear absorption over a wide range of below-band-gap excitation energies (0.5-0.8 E g ). Interestingly, we discover high-order absorption processes, deviating from the typical two-photon absorption, at specific energetic positions. These energies are associated with a strong enhancement of the photoluminescence intensity by up to 10 5 . The analysis of the corresponding energy levels reveals that the observed phenomena can be ascribed to the resonant creation of multiple excitons via the absorption of multiple below-band-gap photons. This effect may open new pathways for the efficient conversion of optical energy, potentially also in other semiconducting materials.

  20. ASSIGNMENT OF 5069 A DIFFUSE INTERSTELLAR BAND TO HC{sub 4}H{sup +}: DISAGREEMENT WITH LABORATORY ABSORPTION BAND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maier, J. P.; Chakrabarty, S.; Mazzotti, F. J.

    2011-03-10

    Krelowski et al. have reported a weak, diffuse interstellar band (DIB) at 5069 A which appears to match in both mid-wavelength and width the A {sup 2}{Pi}{sub u}-X {sup 2}{Pi}{sub g} gas-phase origin absorption band of HC{sub 4}H{sup +}. Here, we present laboratory rotational profiles at low temperatures which are then compared with the 5069 A DIB using {approx}0.1 and 0.3 A line widths based on a realistic line-of-sight interstellar velocity dispersion. Neither the band shape nor the wavelength of the maximum absorption match, which makes the association of the 5069 A DIB with HC{sub 4}H{sup +} unlikely. The magneticmore » dipole transition X {sup 2}{Pi}{sub g} {Omega} = 1/2{yields}X {sup 2}{Pi}{sub g} {Omega} = 3/2 within the ground electronic state which competes with collisional excitation is also considered. In addition, we present the laboratory gas-phase spectrum of the A {sup 2}{Pi}{sub u}-X {sup 2}{Pi}{sub g} transition of HC{sub 4}H{sup +} measured at 25 K in an ion trap and identify further absorption bands at shorter wavelengths for comparison with future DIB data.« less

  1. A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part 2: Dependence of absorption and extinction on ice crystal morphology

    NASA Technical Reports Server (NTRS)

    Mitchell, David L.; Arnott, W. Patrick

    1994-01-01

    This study builds upon the microphysical modeling described in Part 1 by deriving formulations for the extinction and absorption coefficients in terms of the size distribution parameters predicted from the micro-physical model. The optical depth and single scatter albedo of a cirrus cloud can then be determined, which, along with the asymmetry parameter, are the input parameters needed by cloud radiation models. Through the use of anomalous diffraction theory, analytical expressions were developed describing the absorption and extinction coefficients and the single scatter albedo as functions of size distribution parameters, ice crystal shapes (or habits), wavelength, and refractive index. The extinction coefficient was formulated in terms of the projected area of the size distribution, while the absorption coefficient was formulated in terms of both the projected area and mass of the size distribution. These properties were formulated as explicit functions of ice crystal geometry and were not based on an 'effective radius.' Based on simulations of the second cirrus case study described in Part 1, absorption coefficients predicted in the near infrared for hexagonal columns and rosettes were up to 47% and 71% lower, respectively, than absorption coefficients predicted by using equivalent area spheres. This resulted in single scatter albedos in the near-infrared that were considerably greater than those predicted by the equivalent area sphere method. Reflectances in this region should therefore be underestimated using the equivalent area sphere approach. Cloud optical depth was found to depend on ice crystal habit. When the simulated cirrus cloud contained only bullet rosettes, the optical depth was 142% greater than when the cloud contained only hexagonal columns. This increase produced a doubling in cloud albedo. In the near-infrared (IR), the single scatter albedo also exhibited a significant dependence on ice crystal habit. More research is needed on the

  2. Varied absorption peaks of dual-band metamaterial absorber analysis by using reflection theory

    NASA Astrophysics Data System (ADS)

    Xiong, Han; Yu, Yan-Tao; Tang, Ming-Chun; Chen, Shi-Yong; Liu, Dan-Ping; Ou, Xiang; Zeng, Hao

    2016-03-01

    Cross-resonator metamaterial absorbers (MMA) have been widely investigated from microwave to optical frequencies. However, only part of the factors influencing the absorption properties were analyzed in previous works at the same time. In order to completely understand how the spacer thickness, dielectric parameter and incidence angle affect the absorption properties of the dual-band MMA, two sets of simulation were performed. It was found that with increasing incident angles, the low-frequency absorption peak showed a blue shift, while the high-frequency absorption peaks showed a red shift. However, with the increase in spacer thickness, both of the absorption peaks showed a red shift. By using the reflection theory expressions, the physical mechanism of the cross-resonator MMA was well explained. This method provides an effective way to analyze multi-band absorber in technology.

  3. Use of the X-Band Radar to Support the Detection of In-Flight Icing Hazards by the NASA Icing Remote Sensing System

    NASA Technical Reports Server (NTRS)

    Serke, David J.; Politovich, Marcia K.; Reehorst, Andrew L.; Gaydos, Andrew

    2009-01-01

    The Alliance Icing Research Study-II (AIRS-II) field program was conducted near Montreal, Canada during the winter of 2003. The NASA Icing Remote Detection System (NIRSS) was deployed to detect in-flight icing hazards and consisted of a vertically pointing multichannel radiometer, a ceilometer and an x-band cloud radar. The radiometer was used to derive atmospheric temperature soundings and integrated liquid water, while the ceilometer and radar were used only to define cloud boundaries. The purpose of this study is to show that the radar reflectivity profiles from AIRS-II case studies could be used to provide a qualitative icing hazard.

  4. Detection and monitoring of H2O and CO2 ice clouds on Mars

    USGS Publications Warehouse

    Bell, J.F.; Calvin, W.M.; Ockert-Bell, M. E.; Crisp, D.; Pollack, James B.; Spencer, J.

    1996-01-01

    We have developed an observational scheme for the detection and discrimination of Mars atmospheric H2O and CO2 clouds using ground-based instruments in the near infrared. We report the results of our cloud detection and characterization study using Mars near IR images obtained during the 1990 and 1993 oppositions. We focused on specific wavelengths that have the potential, based on previous laboratory studies of H2O and CO2 ices, of yielding the greatest degree of cloud detectability and compositional discriminability. We have detected and mapped absorption features at some of these wavelengths in both the northern and southern polar regions of Mars. Compositional information on the nature of these absorption features was derived from comparisons with laboratory ice spectra and with a simplified radiative transfer model of a CO2 ice cloud overlying a bright surface. Our results indicate that both H2O and CO2 ices can be detected and distinguished in the polar hood clouds. The region near 3.00 ??m is most useful for the detection of water ice clouds because there is a strong H2O ice absorption at this wavelength but only a weak CO2 ice band. The region near 3.33 ??m is most useful for the detection of CO2 ice clouds because there is a strong, relatively narrow CO2 ice band at this wavelength but only broad "continuum" H2O ice absorption. Weaker features near 2.30 ??m could arise from CO2 ice at coarse grain sizes, or surface/dust minerals. Narrow features near 2.00 ??m, which could potentially be very diagnostic of CO2 ice clouds, suffer from contamination by Mars atmospheric CO2 absorptions and are difficult to interpret because of the rather poor knowledge of surface elevation at high latitudes. These results indicate that future ground-based, Earth-orbital, and spacecraft studies over a more extended span of the seasonal cycle should yield substantial information on the style and timing of volatile transport on Mars, as well as a more detailed understanding of

  5. Enhancement of broadband optical absorption in photovoltaic devices by band-edge effect of photonic crystals.

    PubMed

    Tanaka, Yoshinori; Kawamoto, Yosuke; Fujita, Masayuki; Noda, Susumu

    2013-08-26

    We numerically investigate broadband optical absorption enhancement in thin, 400-nm thick microcrystalline silicon (µc-Si) photovoltaic devices by photonic crystals (PCs). We realize absorption enhancement by coupling the light from the free space to the large area resonant modes at the photonic band-edge induced by the photonic crystals. We show that multiple photonic band-edge modes can be produced by higher order modes in the vertical direction of the Si photovoltaic layer, which can enhance the absorption on multiple wavelengths. Moreover, we reveal that the photonic superlattice structure can produce more photonic band-edge modes that lead to further optical absorption. The absorption average in wavelengths of 500-1000 nm weighted to the solar spectrum (AM 1.5) increases almost twice: from 33% without photonic crystal to 58% with a 4 × 4 period superlattice photonic crystal; our result outperforms the Lambertian textured structure.

  6. MGS TES Measurements of Dust and Ice Aerosol Behaviors

    NASA Astrophysics Data System (ADS)

    Clancy, R. T.; Wolff, M. J.; Christensen, P. R.

    2000-10-01

    The Thermal Emission Spectrometer (TES, Christensen et al., Science, v279, 1692-1697, 1998) on board the Mars Global Surveyor obtains simultaneous solar band and thermal IR spectral emission-phase-function (EPF) observations with global spatial coverage and continuous seasonal sampling. These measurements allow the first comprehensive study of the coupled visible scattering and thermal IR absorption properties of Mars atmospheric aerosols, a fundamental requirement towards defining opacities, particle sizes, and particle shapes for separable dust and water ice aerosol components. Furthermore, TES limb sounding at solar band and IR wavelengths may be analyzed in the context of these EPF column determinations to constrain the distinctive vertical profile behaviors of dust and ice clouds. We present initial radiative transfer analyses of TES visible and IR EPFs, which indicate surprisingly complex dust and ice aerosol behaviors over all latitudes and seasons. Distinctive backscattering peaks of variable intensity are observed for several types of water ice clouds, along with evidence for ice-coated dust aerosols. We will present a broad spatial and temporal sampling of solar band and spectral IR results for Mars atmospheric ice and dust aerosols observed over the 1998-2000 period. This research is supported by the MGS Participating Scientist and MED Science Data Analysis programs.

  7. Point-Defect Nature of the Ultraviolet Absorption Band in AlN

    NASA Astrophysics Data System (ADS)

    Alden, D.; Harris, J. S.; Bryan, Z.; Baker, J. N.; Reddy, P.; Mita, S.; Callsen, G.; Hoffmann, A.; Irving, D. L.; Collazo, R.; Sitar, Z.

    2018-05-01

    We present an approach where point defects and defect complexes are identified using power-dependent photoluminescence excitation spectroscopy, impurity data from SIMS, and density-functional-theory (DFT)-based calculations accounting for the total charge balance in the crystal. Employing the capabilities of such an experimental computational approach, in this work, the ultraviolet-C absorption band at 4.7 eV, as well as the 2.7- and 3.9-eV luminescence bands in AlN single crystals grown via physical vapor transport (PVT) are studied in detail. Photoluminescence excitation spectroscopy measurements demonstrate the relationship between the defect luminescent bands centered at 3.9 and 2.7 eV to the commonly observed absorption band centered at 4.7 eV. Accordingly, the thermodynamic transition energy for the absorption band at 4.7 eV and the luminescence band at 3.9 eV is estimated at 4.2 eV, in agreement with the thermodynamic transition energy for the CN- point defect. Finally, the 2.7-eV PL band is the result of a donor-acceptor pair transition between the VN and CN point defects since nitrogen vacancies are predicted to be present in the crystal in concentrations similar to carbon-employing charge-balance-constrained DFT calculations. Power-dependent photoluminescence measurements reveal the presence of the deep donor state with a thermodynamic transition energy of 5.0 eV, which we hypothesize to be nitrogen vacancies in agreement with predictions based on theory. The charge state, concentration, and type of impurities in the crystal are calculated considering a fixed amount of impurities and using a DFT-based defect solver, which considers their respective formation energies and the total charge balance in the crystal. The presented results show that nitrogen vacancies are the most likely candidate for the deep donor state involved in the donor-acceptor pair transition with peak emission at 2.7 eV for the conditions relevant to PVT growth.

  8. Simultaneous retrieval of sea ice thickness and snow depth using concurrent active altimetry and passive L-band remote sensing data

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Xu, S.; Liu, J.

    2017-12-01

    The retrieval of sea ice thickness mainly relies on satellite altimetry, and the freeboard measurements are converted to sea ice thickness (hi) under certain assumptions over snow loading. The uncertain in snow depth (hs) is a major source of uncertainty in the retrieved sea ice thickness and total volume for both radar and laser altimetry. In this study, novel algorithms for the simultaneous retrieval of hi and hs are proposed for the data synergy of L-band (1.4 GHz) passive remote sensing and both types of active altimetry: (1) L-band (1.4GHz) brightness temperature (TB) from Soil Moisture Ocean Salinity (SMOS) satellite and sea ice freeboard (FBice) from radar altimetry, (2) L-band TB data and snow freeboard (FBsnow) from laser altimetry. Two physical models serve as the forward models for the retrieval: L-band radiation model, and the hydrostatic equilibrium model. Verification with SMOS and Operational IceBridge (OIB) data is carried out, showing overall good retrieval accuracy for both sea ice parameters. Specifically, we show that the covariability between hs and FBsnow is crucial for the synergy between TB and FBsnow. Comparison with existing algorithms shows lower uncertainty in both sea ice parameters, and that the uncertainty in the retrieved sea ice thickness as caused by that of snow depth is spatially uncorrelated, with the potential reduction of the volume uncertainty through spatial sampling. The proposed algorithms can be applied to the retrieval of sea ice parameters at basin-scale, using concurrent active and passive remote sensing data based on satellites.

  9. Infrared band absorptance correlations and applications to nongray radiation. [mathematical models of absorption spectra for nongray atmospheres in order to study air pollution

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Manian, S. V. S.

    1976-01-01

    Various mathematical models for infrared radiation absorption spectra for atmospheric gases are reviewed, and continuous correlations for the total absorptance of a wide band are presented. Different band absorptance correlations were employed in two physically realistic problems (radiative transfer in gases with internal heat source, and heat transfer in laminar flow of absorbing-emitting gases between parallel plates) to study their influence on final radiative transfer results. This information will be applied to the study of atmospheric pollutants by infrared radiation measurement.

  10. Thermally induced effect on sub-band gap absorption in Ag doped CdSe thin films

    NASA Astrophysics Data System (ADS)

    Kaur, Jagdish; Sharma, Kriti; Bharti, Shivani; Tripathi, S. K.

    2015-05-01

    Thin films of Ag doped CdSe have been prepared by thermal evaporation using inert gas condensation (IGC) method taking Argon as inert gas. The prepared thin films are annealed at 363 K for one hour. The sub-band gap absorption spectra in the as deposited and annealed thin films have been studied using constant photocurrent method (CPM). The absorption coefficient in the sub-band gap region is described by an Urbach tail in both as deposited and annealed thin films. The value of Urbach energy and number density of trap states have been calculated from the absorption coefficient in the sub-band gap region which have been found to increase after annealing treatment indicating increase in disorderness in the lattice. The energy distribution of the occupied density of states below Fermi level has also been studied using derivative procedure of absorption coefficient.

  11. Optical absorption spectra and energy band gap in manganese containing sodium zinc phosphate glasses

    NASA Astrophysics Data System (ADS)

    Sardarpasha, K. R.; Hanumantharaju, N.; Gowda, V. C. Veeranna

    2018-05-01

    Optical band gap energy in the system 25Na2O-(75-x)[0.6P2O5-0.4ZnO]-xMnO2 (where x = 0.5,1,5,10 and 20 mol.%) have been studied. The intensity of the absorption band found to increase with increase of MnO2 content. The decrease in the optical band gap energy with increase in MnO2 content in the investigated glasses is attributed to shifting of absorption edge to a longer wavelength region. The obtained results were discussed in view of the structure of phosphate glass network.

  12. Atomic scale origins of sub-band gap optical absorption in gold-hyperdoped silicon

    NASA Astrophysics Data System (ADS)

    Ferdous, Naheed; Ertekin, Elif

    2018-05-01

    Gold hyperdoped silicon exhibits room temperature sub band gap optical absorption, with potential applications as infrared absorbers/detectors and impurity band photovoltaics. We use first-principles density functional theory to establish the origins of the sub band gap response. Substitutional gold AuSi and substitutional dimers AuSi - AuSi are found to be the energetically preferred defect configurations, and AuSi gives rise to partially filled mid-gap defect bands well offset from the band edges. AuSi is predicted to offer substantial sub-band gap absorption, exceeding that measured in prior experiments by two orders of magnitude for similar Au concentration. This suggests that in experimentally realized systems, in addition to AuSi, the implanted gold is accommodated by the lattice in other ways, including other defect complexes and gold precipitates. We further identify that it is energetically favorable for isolated AuSi to form AuSi - AuSi, which by contrast do not exhibit mid-gap states. The formation of dimers and other complexes could serve as nuclei in the earliest stages of Au precipitation, which may be responsible for the observed rapid deactivation of sub-band gap response upon annealing.

  13. Evidence for sulphur implantation in Europa's UV absorption band

    NASA Technical Reports Server (NTRS)

    Lane, A. L.; Nelson, R. M.; Matson, D. L.

    1981-01-01

    The UV spectral characteristics of the Galilean satellites are investigated (using data from the International Ultraviolet Explorer (IUE) spacecraft) as a function of the orbital position, large-scale areal variability, and temporal dynamics. The discovery of an absorption feature at 280 nm in Europa's reflection spectrum is reported and observations show that the absorption is strongest on the trailing hemisphere (central longitude 270 degrees). The feature resembles SO2 and seems to result from S-O bond formation between deeply implanted sulphur atoms and the adjacent damaged water-ice-lattice. The sulphur supposedly comes from energetic (hundreds of keV) sulphur ions that are present in the Jovian magnetosphere. An appropriate equilibrium condition can be found to match the observed spectral data if sputtering erosion occurs at no greater than approximately 20 meters per one billion years.

  14. Exploration of faint absorption bands in the reflectance spectra of the asteroids by method of optimal smoothing: Vestoids

    NASA Astrophysics Data System (ADS)

    Shestopalov, D. I.; McFadden, L. A.; Golubeva, L. F.

    2007-04-01

    An optimization method of smoothing noisy spectra was developed to investigate faint absorption bands in the visual spectral region of reflectance spectra of asteroids and the compositional information derived from their analysis. The smoothing algorithm is called "optimal" because the algorithm determines the best running box size to separate weak absorption bands from the noise. The method is tested for its sensitivity to identifying false features in the smoothed spectrum, and its correctness of forecasting real absorption bands was tested with artificial spectra simulating asteroid reflectance spectra. After validating the method we optimally smoothed 22 vestoid spectra from SMASS1 [Xu, Sh., Binzel, R.P., Burbine, T.H., Bus, S.J., 1995. Icarus 115, 1-35]. We show that the resulting bands are not telluric features. Interpretation of the absorption bands in the asteroid spectra was based on the spectral properties of both terrestrial and meteorite pyroxenes. The bands located near 480, 505, 530, and 550 nm we assigned to spin-forbidden crystal field bands of ferrous iron, whereas the bands near 570, 600, and 650 nm are attributed to the crystal field bands of trivalent chromium and/or ferric iron in low-calcium pyroxenes on the asteroids' surface. While not measured by microprobe analysis, Fe 3+ site occupancy can be measured with Mössbauer spectroscopy, and is seen in trace amounts in pyroxenes. We believe that trace amounts of Fe 3+ on vestoid surfaces may be due to oxidation from impacts by icy bodies. If that is the case, they should be ubiquitous in the asteroid belt wherever pyroxene absorptions are found. Pyroxene composition of four asteroids of our set is determined from the band position of absorptions at 505 and 1000 nm, implying that there can be orthopyroxenes in all range of ferruginosity on the vestoid surfaces. For the present we cannot unambiguously interpret of the faint absorption bands that are seen in the spectra of 4005 Dyagilev, 4038

  15. Constructing Repairable Meta-Structures of Ultra-Broad-Band Electromagnetic Absorption from Three-Dimensional Printed Patterned Shells.

    PubMed

    Song, Wei-Li; Zhou, Zhili; Wang, Li-Chen; Cheng, Xiao-Dong; Chen, Mingji; He, Rujie; Chen, Haosen; Yang, Yazheng; Fang, Daining

    2017-12-13

    Ultra-broad-band electromagnetic absorption materials and structures are increasingly attractive for their critical role in competing with the advanced broad-band electromagnetic detection systems. Mechanically soft and weak wax-based materials composites are known to be insufficient to serve in practical electromagnetic absorption applications. To break through such barriers, here we developed an innovative strategy to enable the wax-based composites to be robust and repairable meta-structures by employing a three-dimensional (3D) printed polymeric patterned shell. Because of the integrated merits from both the dielectric loss wax-based composites and mechanically robust 3D printed shells, the as-fabricated meta-structures enable bear mechanical collision and compression, coupled with ultra-broad-band absorption (7-40 and 75-110 GHz, reflection loss  smaller than -10 dB) approaching state-of-the-art electromagnetic absorption materials. With the assistance of experiment and simulation methods, the design advantages and mechanism of employing such 3D printed shells for substantially promoting the electromagnetic absorption performance have been demonstrated. Therefore, such universal strategy that could be widely extended to other categories of wax-based composites highlights a smart stage on which high-performance practical multifunction meta-structures with ultra-broad-band electromagnetic absorption could be envisaged.

  16. R-O-C(triple bond)N species produced by ion irradiation of ice mixtures: comparison with astronomical observations

    NASA Technical Reports Server (NTRS)

    Palumbo, M. E.; Strazzulla, G.; Pendleton, Y. J.; Tielens, A. G.

    2000-01-01

    We have investigated the effects induced by ion bombardment of mixtures containing nitrogen-bearing compounds at low temperatures. The results show the formation of a band at 2080 cm-1 in binary mixtures, NH3:CH4 and N2:CH4, which we attribute to HCN embedded in the organic residue formed by ion irradiation. In addition to this band, ternary mixtures containing an oxygen-bearing species (i.e., H2O) form a compound with a prominent absorption band at about 2165 cm-1 (4.62 microns). We ascribe this band to a nitrile compound containing O that is bonded to the organic residue. A detailed comparison of the laboratory results with astronomical data of the 4.62 microns absorption band in protostellar spectra shows good agreement in peak position and profile. Our experimental studies show that N2, which is a more likely interstellar ice component than NH3, can be the molecular progenitor of the carrier of the interstellar band. This is an alternative to the pathway by which UV photolysis of NH3-containing ices produces the 4.62 microns band and implies that ion bombardment may well play an important role in the evolution of interstellar ices. Here, we discuss the implications of our studies for the chemical route by which the carrier of the 4.62 microns band is formed in these laboratory experiments.

  17. R-O-C(triple bond)N species produced by ion irradiation of ice mixtures: comparison with astronomical observations.

    PubMed

    Palumbo, M E; Strazzulla, G; Pendleton, Y J; Tielens, A G

    2000-05-10

    We have investigated the effects induced by ion bombardment of mixtures containing nitrogen-bearing compounds at low temperatures. The results show the formation of a band at 2080 cm-1 in binary mixtures, NH3:CH4 and N2:CH4, which we attribute to HCN embedded in the organic residue formed by ion irradiation. In addition to this band, ternary mixtures containing an oxygen-bearing species (i.e., H2O) form a compound with a prominent absorption band at about 2165 cm-1 (4.62 microns). We ascribe this band to a nitrile compound containing O that is bonded to the organic residue. A detailed comparison of the laboratory results with astronomical data of the 4.62 microns absorption band in protostellar spectra shows good agreement in peak position and profile. Our experimental studies show that N2, which is a more likely interstellar ice component than NH3, can be the molecular progenitor of the carrier of the interstellar band. This is an alternative to the pathway by which UV photolysis of NH3-containing ices produces the 4.62 microns band and implies that ion bombardment may well play an important role in the evolution of interstellar ices. Here, we discuss the implications of our studies for the chemical route by which the carrier of the 4.62 microns band is formed in these laboratory experiments.

  18. Heterogeneous and Evolving Distributions of Pluto's Volatile Surface Ices

    NASA Astrophysics Data System (ADS)

    Grundy, William M.; Olkin, C. B.; Young, L. A.; Buie, M. W.; Young, E. F.

    2013-10-01

    We report observations of Pluto's 0.8 to 2.4 µm reflectance spectrum with IRTF/SpeX on 70 nights over the 13 years from 2001 to 2013. The spectra show numerous vibrational absorption features of simple molecules CH4, CO, and N2 condensed as ices on Pluto's surface. These absorptions are modulated by the planet's 6.39 day rotation period, enabling us to constrain the longitudinal distributions of the three ices. Absorptions of CO and N2 are concentrated on Pluto's anti-Charon hemisphere, unlike absorptions of less volatile CH4 ice that are offset by roughly 90° from the longitude of maximum CO and N2 absorption. In addition to the diurnal/longitudinal variations, the spectra show longer term trends. On decadal timescales, Pluto's stronger CH4 absorption bands have deepened, while the amplitude of their diurnal variation has diminished, consistent with additional CH4 absorption by high northern latitude regions rotating into view as the sub-Earth latitude moves north (as defined by the system's angular momentum vector). Unlike the CH4 absorptions, Pluto's CO and N2 absorptions are declining over time, suggesting more equatorial or southerly distributions of those species. The authors gratefully thank the staff of IRTF for their tremendous assistance over the dozen+ years of this project. The work was funded in part by NSF grants AST-0407214 and AST-0085614 and NASA grants NAG5-4210 and NAG5-12516.

  19. The physical and infrared spectral properties of CO2 in astrophysical ice analogs

    NASA Technical Reports Server (NTRS)

    Sandford, S. A.; Allamandola, L. J.

    1990-01-01

    Results of measurements of the infrared spectroscopic and condensation-vaporization properties of CO2 in pure and mixed ices are presented. Detailed examination of five infrared CO2 bands, 2.20, 2.78, 4.27, 15.2, and 4.39 microns, shows that the peak position, FWHM, and profile of the bands provide important information about the composition, formation, and subsequent thermal history of the ices. Absorption coefficients and their temperature dependence for all five CO2 bands are determined. The temperature dependence variation is found to be less than 15 percent from 10 to 150 K, i.e., the temperature at which H2O ice sublimes. The number of parameters associated with the physical behavior of CO2 in CO2- and H2O-rich ices, including surface binding energies, and condensation and sublimation temperatures, are determined under experimental conditions. The implications of the data obtained for cometary models are considered.

  20. X-Ray Absorption Spectra of Amorphous Ices from GW Quasiparticle Calculation

    NASA Astrophysics Data System (ADS)

    Kong, Lingzhu; Car, Roberto

    2013-03-01

    We use a GW approach[2] to compute the x-ray absorption spectra of model low- and high-density amorphous ice structures(LDA and HDA)[3]. We include the structural effects of quantum zero point motion using colored-noise Langevin molecular dynamics[4]. The calculated spectra differences in the main and post edge region between LDA and HDA agree well with experimental observations. We attribute these differences to the presence of interstitial molecules within the first coordination shell range in HDA. This assignment is further supported by a calculation of the spectrum of ice VIII, a high-pressure structure that maximizes the number of interstitial molecules and, accordingly, shows a much weaker post-edge feature. We further rationalize the spectral similarity between HDA and liquid water, and between LDA and ice Ih in terms of the respective similarities in the H-bond network topology and bond angle distributions. Supported by grants DOE-DE-SC0005180, DOE DE-SC0008626 and NSF-CHE-0956500.

  1. On the retrieval of sea ice thickness and snow depth using concurrent laser altimetry and L-band remote sensing data

    NASA Astrophysics Data System (ADS)

    Zhou, Lu; Xu, Shiming; Liu, Jiping; Wang, Bin

    2018-03-01

    The accurate knowledge of sea ice parameters, including sea ice thickness and snow depth over the sea ice cover, is key to both climate studies and data assimilation in operational forecasts. Large-scale active and passive remote sensing is the basis for the estimation of these parameters. In traditional altimetry or the retrieval of snow depth with passive microwave remote sensing, although the sea ice thickness and the snow depth are closely related, the retrieval of one parameter is usually carried out under assumptions over the other. For example, climatological snow depth data or as derived from reanalyses contain large or unconstrained uncertainty, which result in large uncertainty in the derived sea ice thickness and volume. In this study, we explore the potential of combined retrieval of both sea ice thickness and snow depth using the concurrent active altimetry and passive microwave remote sensing of the sea ice cover. Specifically, laser altimetry and L-band passive remote sensing data are combined using two forward models: the L-band radiation model and the isostatic relationship based on buoyancy model. Since the laser altimetry usually features much higher spatial resolution than L-band data from the Soil Moisture Ocean Salinity (SMOS) satellite, there is potentially covariability between the observed snow freeboard by altimetry and the retrieval target of snow depth on the spatial scale of altimetry samples. Statistically significant correlation is discovered based on high-resolution observations from Operation IceBridge (OIB), and with a nonlinear fitting the covariability is incorporated in the retrieval algorithm. By using fitting parameters derived from large-scale surveys, the retrievability is greatly improved compared with the retrieval that assumes flat snow cover (i.e., no covariability). Verifications with OIB data show good match between the observed and the retrieved parameters, including both sea ice thickness and snow depth. With

  2. Laboratory Measurements of the 940, 1130, and 1370 nm Water Vapor Absorption Band Profiles

    NASA Technical Reports Server (NTRS)

    Giver, Lawrence P.; Gore, Warren J.; Pilewskie, P.; Freedman, R. S.; Chackerian, C., Jr.; Varanasi, P.

    2001-01-01

    We have used the solar spectral flux radiometer (SSFR) flight instrument with the Ames 25 meter base-path White cell to obtain about 20 moderate resolution (8 nm) pure water vapor spectra from 650 to 1650 nm, with absorbing paths from 806 to 1506 meters and pressures up to 14 torr. We also obtained a set at 806 meters with several different air-broadening pressures. Model simulations were made for the 940, 1130, and 1370 nm absorption bands for some of these laboratory conditions using the Rothman, et al HITRAN-2000 linelist. This new compilation of HITRAN includes new intensity measurements for the 940 nm region. We compared simulations for our spectra of this band using HITRAN-2000 with simulations using the prior HITRAN-1996. The simulations of the 1130 nm band show about 10% less absorption than we measured. There is some evidence that the total intensity of this band is about 38% stronger than the sum of the HITRAN line intensities in this region. In our laboratory conditions the absorption depends approximately on the square root of the intensity. Thus, our measurements agree that the band is stronger than tabulated in HITRAN, but by about 20%, substantially less than the published value. Significant differences have been shown between Doppler-limited resolution spectra of the 1370 nm band obtained at the Pacific Northwest National Laboratory and HITRAN simulations. Additional new intensity measurements in this region are continuing to be made. We expect the simulations of our SSFR lab data of this band will show the relative importance of improving the HITRAN line intensities of this band for atmospheric measurements.

  3. Intermediate Band Material of Titanium-Doped Tin Disulfide for Wide Spectrum Solar Absorption.

    PubMed

    Hu, Keyan; Wang, Dong; Zhao, Wei; Gu, Yuhao; Bu, Kejun; Pan, Jie; Qin, Peng; Zhang, Xian; Huang, Fuqiang

    2018-04-02

    Intermediate band (IB) materials are of great significance due to their superior solar absorption properties. Here, two IBs peaking at 0.88 and 1.33 eV are reported to be present in the forbidden gap of semiconducting SnS 2 ( E g = 2.21 eV) by doping titanium up to 6 atom % into the Sn site via a solid-state reaction at 923 K. The solid solution of Sn 1- x Ti x S 2 is able to be formed, which is attributed to the isostructural structure of SnS 2 and TiS 2 . These two IBs were detected in the UV-vis-NIR absorption spectra with the appearance of two additional absorption responses at the respective regions, which in good agreement with the conclusion of first-principles calculations. The valence band maximum (VBM) consists mostly of the S 3p state, and the conduction band minimum (CBM) is the hybrid state composing of Ti 3d (e g ), S 3p, and Sn 5s, and the IBs are mainly the nondegenerate t 2g states of Ti 3d orbitals. The electronic states of Ti 3d reveal a good ability to transfer electrons between metal and S atoms. These wide-spectrum absorption IBs bring about more solar energy utilization to enhance solar thermal collection and photocatalytic degradation of methyl orange.

  4. Estimation of degree of sea ice ridging based on dual-polarized C-band SAR data

    NASA Astrophysics Data System (ADS)

    Gegiuc, Alexandru; Similä, Markku; Karvonen, Juha; Lensu, Mikko; Mäkynen, Marko; Vainio, Jouni

    2018-01-01

    For ship navigation in the Baltic Sea ice, parameters such as ice edge, ice concentration, ice thickness and degree of ridging are usually reported daily in manually prepared ice charts. These charts provide icebreakers with essential information for route optimization and fuel calculations. However, manual ice charting requires long analysis times, and detailed analysis of large areas (e.g. Arctic Ocean) is not feasible. Here, we propose a method for automatic estimation of the degree of ice ridging in the Baltic Sea region, based on RADARSAT-2 C-band dual-polarized (HH/HV channels) SAR texture features and sea ice concentration information extracted from Finnish ice charts. The SAR images were first segmented and then several texture features were extracted for each segment. Using the random forest method, we classified them into four classes of ridging intensity and compared them to the reference data extracted from the digitized ice charts. The overall agreement between the ice-chart-based degree of ice ridging and the automated results varied monthly, being 83, 63 and 81 % in January, February and March 2013, respectively. The correspondence between the degree of ice ridging reported in the ice charts and the actual ridge density was validated with data collected during a field campaign in March 2011. In principle the method can be applied to the seasonal sea ice regime in the Arctic Ocean.

  5. Robust indirect band gap and anisotropy of optical absorption in B-doped phosphorene.

    PubMed

    Wu, Zhi-Feng; Gao, Peng-Fei; Guo, Lei; Kang, Jun; Fang, Dang-Qi; Zhang, Yang; Xia, Ming-Gang; Zhang, Sheng-Li; Wen, Yu-Hua

    2017-12-06

    A traditional doping technique plays an important role in the band structure engineering of two-dimensional nanostructures. Since electron interaction is changed by doping, the optical and electrochemical properties could also be significantly tuned. In this study, density functional theory calculations have been employed to explore the structural stability, and electronic and optical properties of B-doped phosphorene. The results show that all B-doped phosphorenes are stable with a relatively low binding energy. Of particular interest is that these B-doped systems exhibit an indirect band gap, which is distinct from the direct one of pure phosphorene. Despite the different concentrations and configurations of B dopants, such indirect band gaps are robust. The screened hybrid density functional HSE06 predicts that the band gap of B-doped phosphorene is slightly smaller than that of pure phosphorene. Spatial charge distributions at the valence band maximum (VBM) and the conduction band minimum (CBM) are analyzed to understand the features of an indirect band gap. By comparison with pure phosphorene, B-doped phosphorenes exhibit strong anisotropy and intensity of optical absorption. Moreover, B dopants could enhance the stability of Li adsorption on phosphorene with less sacrifice of the Li diffusion rate. Our results suggest that B-doping is an effective way of tuning the band gap, enhancing the intensity of optical absorption and improving the performances of Li adsorption, which could promote potential applications in novel optical devices and lithium-ion batteries.

  6. A sextuple-band ultra-thin metamaterial absorber with perfect absorption

    NASA Astrophysics Data System (ADS)

    Yu, Dingwang; Liu, Peiguo; Dong, Yanfei; Zhou, Dongming; Zhou, Qihui

    2017-08-01

    This paper presents the design, simulation and measurement of a sextuple-band ultra-thin metamaterial absorber (MA). The unit cell of this proposed structure is composed of triangular spiral-shaped complementary structures imprinted on the dielectric substrate backed by a metal ground. The measured results are in good agreement with simulations with high absorptivities of more than 90% at all six absorption frequencies. In addition, this proposed absorber has good performances of ultra-thin, polarization insensitivity and a wide-angle oblique incidence, which can easily be used in many potential applications such as detection, imaging and sensing.

  7. Electromagnetic scattering and absorption by thin walled dielectric cylinders with application to ice crystals

    NASA Technical Reports Server (NTRS)

    Senior, T. B. A.; Weil, H.

    1977-01-01

    Important in the atmospheric heat balance are the reflection, transmission, and absorption of visible and infrared radiation by clouds and polluted atmospheres. Integral equations are derived to evaluate the scattering and absorption of electromagnetic radiation from thin cylindrical dielectric shells of arbitrary cross section when irradiated by a plane wave of any polarization incident in a plane perpendicular to the generators. Application of the method to infinitely long hexagonal cylinders has yielded numerical scattering and absorption data which simulate columnar sheath ice crystals. It is found that the numerical procedures are economical for cylinders having perimeters less than approximately fifteen free-space wavelengths.

  8. Global Temperature Measurement of Supercooled Water under Icing Conditions using Two-Color Luminescent Images and Multi-Band Filter

    NASA Astrophysics Data System (ADS)

    Tanaka, Mio; Morita, Katsuaki; Kimura, Shigeo; Sakaue, Hirotaka

    2012-11-01

    Icing occurs by a collision of a supercooled-water droplet on a surface. It can be seen in any cold area. A great attention is paid in an aircraft icing. To understand the icing process on an aircraft, it is necessary to give the temperature information of the supercooled water. A conventional technique, such as a thermocouple, is not valid, because it becomes a collision surface that accumulates ice. We introduce a dual-luminescent imaging to capture a global temperature distribution of supercooled water under the icing conditions. It consists of two-color luminescent probes and a multi-band filter. One of the probes is sensitive to the temperature and the other is independent of the temperature. The latter is used to cancel the temperature-independent luminescence of a temperature-dependent image caused by an uneven illumination and a camera location. The multi-band filter only selects the luminescent peaks of the probes to enhance the temperature sensitivity of the imaging system. By applying the system, the time-resolved temperature information of a supercooled-water droplet is captured.

  9. Design and characterization of a low cost CubeSat multi-band optical receiver to map water ice on the lunar surface for the Lunar Flashlight mission

    NASA Astrophysics Data System (ADS)

    Vinckier, Quentin; Crabtree, Karlton; Paine, Christopher G.; Hayne, Paul O.; Sellar, Glenn R.

    2017-08-01

    Lunar Flashlight is an innovative NASA CubeSat mission dedicated to mapping water ice in the permanently shadowed regions of the Moon, which may act as cold traps for volatiles. To this end, a multi-band reflectometer will be sent to orbit the Moon. This instrument consists of an optical receiver aligned with four lasers, each of which emits sequentially at a different wavelength in the near-infrared between 1 μm and 2 μm. The receiver measures the laser light reflected from the lunar surface; continuum/absorption band ratios are then analyzed to quantify water ice in the illuminated spot. Here, we present the current state of the optical receiver design. To optimize the optical signal-to-noise ratio, we have designed the receiver so as to maximize the laser signal collected, while minimizing the stray light reaching the detector from solarilluminated areas of the lunar surface outside the field-of-view, taking into account the complex lunar topography. Characterization plans are also discussed. This highly mass- and volume-constrained mission will demonstrate several firsts, including being one of the first CubeSats performing science measurements beyond low Earth orbit.

  10. Modeling the heating and melting of sea ice through light absorption by microalgae

    NASA Astrophysics Data System (ADS)

    Zeebe, Richard E.; Eicken, Hajo; Robinson, Dale H.; Wolf-Gladrow, Dieter; Dieckmann, Gerhard S.

    1996-01-01

    In sea ice of polar regions, high concentrations of microalgae are observed during the spring. Algal standing stocks may attain peak values of over 300 mg chl a m-2 in the congelation ice habitat. As of yet, the effect of additional heating of sea ice through conversion of solar radiation into heat by algae has not been investigated in detail. Local effects, such as a decrease in albedo, increasing melt rates, and a decrease of the physical strength of ice sheets may occur. To investigate the effects of microalgae on the thermal regime of sea ice, a time-dependent, one-dimensional thermodynamic model of sea ice was coupled to a bio-optical model. A spectral one-stream model was employed to determine spectral attenuation by snow, sea ice, and microalgae. Beer's law was assumed to hold for every wavelength. Energy absorption was obtained by calculating the divergence of irradiance in every layer of the model (Δz = 1 cm). Changes in sea ice temperature profiles were calculated by solving the heat conduction equation with a finite difference scheme. Model results indicate that when algal biomass is concentrated at the bottom of congelation ice, melting of ice resulting from the additional conversion of solar radiation into heat may effectively destroy the algal habitat, thereby releasing algal biomass into the water column. An algal layer located in the top of the ice sheet induced a significant increase in sea ice temperature (ΔT > 0.3 K) for snow depths less than 5 cm and algal standing stocks higher than 150 mg chl a m-2. Furthermore, under these conditions, brine volume increased by 21% from 181 to 219 parts per thousand, which decreased the physical strength of the ice.

  11. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays.

    PubMed

    Yin, Xiang; Long, Chang; Li, Junhao; Zhu, Hua; Chen, Lin; Guan, Jianguo; Li, Xun

    2015-10-19

    Microwave absorbers have important applications in various areas including stealth, camouflage, and antenna. Here, we have designed an ultra-broadband light absorber by integrating two different-sized tapered hyperbolic metamaterial (HMM) waveguides, each of which has wide but different absorption bands due to broadband slow-light response, into a unit cell. Both the numerical and experimental results demonstrate that in such a design strategy, the low absorption bands between high absorption bands with a single-sized tapered HMM waveguide array can be effectively eliminated, resulting in a largely expanded absorption bandwidth ranging from 2.3 to 40 GHz. The presented ultra-broadband light absorber is also insensitive to polarization and robust against incident angle. Our results offer a further step in developing practical artificial electromagnetic absorbers, which will impact a broad range of applications at microwave frequencies.

  12. Time-Resolved IR-Absorption Spectroscopy of Hot-Electron Dynamics in Satellite and Upper Conduction Bands in GaP

    NASA Technical Reports Server (NTRS)

    Cavicchia, M. A.; Alfano, R. R.

    1995-01-01

    The relaxation dynamics of hot electrons in the X6 and X7 satellite and upper conduction bands in GaP was directly measured by femtosecond UV-pump-IR-probe absorption spectroscopy. From a fit to the induced IR-absorption spectra the dominant scattering mechanism giving rise to the absorption at early delay times was determined to be intervalley scattering of electrons out of the X7 upper conduction-band valley. For long delay times the dominant scattering mechanism is electron-hole scattering. Electron transport dynamics of the upper conduction band of GaP has been time resolved.

  13. Concentration measurement of NO using self-absorption spectroscopy of the γ band system in a pulsed corona discharge.

    PubMed

    Zhai, Xiaodong; Ding, Yanjun; Peng, Zhimin; Luo, Rui

    2012-07-10

    Nitric oxide (NO) concentrations were measured using the γ band system spectrum based on the strong self-absorption effect of NO in pulsed corona discharges. The radiative transitional intensities of the NO γ band were simulated based on the theory of molecular spectroscopy. The intensities of some bands, especially γ(0,0) and γ(1,0), are weakened by the self-absorption. The correlations between the spectral self-absorption intensities and NO concentration were validated using a modified Beer-Lambert law with a combined factor K relating the branching ratio and the NO concentration, and a nonlinear index α that is applicable to the broadband system. Optical emissive spectra in pulsed corona discharges in NO and N2/He mixtures were used to evaluate the two parameters for various conditions. Good agreement between the experimental and theoretical results verifies the self-absorption behavior seen in the UV spectra of the NO γ bands.

  14. Jet-cooled infrared absorption spectrum of the v4 fundamental band of HCOOH and HCOOD

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Zhang, Yulan; Li, Wenguang; Duan, Chuanxi

    2017-04-01

    The jet-cooled absorption spectrum of the v4 fundamental band of normal formic acid (HCOOH) and deuterated formic acid (HCOOD) was recorded in the frequency range of 1370-1392 cm-1 with distributed-feedback quantum cascade lasers (DFB-QCLs) as the tunable infrared radiations. A segmented rapid-scan data acquisition scheme was developed for pulsed supersonic jet infrared laser absorption spectroscopy based on DFB-QCLs with a moderate vacuum pumping capacity. The unperturbed band-origin and rotational constants in the excited vibrational state were determined for both HCOOH and HCOOD. The unperturbed band-origin locates at 1379.05447(11) cm-1 for HCOOH, and 1366.48430(39) cm-1 for HCOOD, respectively.

  15. The Glacier and Land Ice Surface Topography Interferometer (GLISTIN): A Novel Ka-band Digitally Beamformed Interferometer

    NASA Technical Reports Server (NTRS)

    Moller, Delwyn K.; Heavey, Brandon; Hodges, Richard; Rengarajan, Sembiam; Rignot, Eric; Rogez, Francois; Sadowy, Gregory; Simard, Marc; Zawadzki, Mark

    2006-01-01

    The estimation of the mass balance of ice sheets and glaciers on Earth is a problem of considerable scientific and societal importance. A key measurement to understanding, monitoring and forecasting these changes is ice-surface topography, both for ice-sheet and glacial regions. As such NASA identified 'ice topographic mapping instruments capable of providing precise elevation and detailed imagery data for measurements on glacial scales for detailed monitoring of ice sheet, and glacier changes' as a science priority for the most recent Instrument Incubator Program (IIP) opportunities. Funded under this opportunity is the technological development for a Ka-Band (35GHz) single-pass digitally beamformed interferometric synthetic aperture radar (InSAR). Unique to this concept is the ability to map a significant swath impervious of cloud cover with measurement accuracies comparable to laser altimeters but with variable resolution as appropriate to the differing scales-of-interest over ice-sheets and glaciers.

  16. The safety band of Antarctic ice shelves

    NASA Astrophysics Data System (ADS)

    Fürst, Johannes Jakob; Durand, Gaël; Gillet-Chaulet, Fabien; Tavard, Laure; Rankl, Melanie; Braun, Matthias; Gagliardini, Olivier

    2016-05-01

    The floating ice shelves along the seaboard of the Antarctic ice sheet restrain the outflow of upstream grounded ice. Removal of these ice shelves, as shown by past ice-shelf recession and break-up, accelerates the outflow, which adds to sea-level rise. A key question in predicting future outflow is to quantify the extent of calving that might precondition other dynamic consequences and lead to loss of ice-shelf restraint. Here we delineate frontal areas that we label as `passive shelf ice’ and that can be removed without major dynamic implications, with contrasting results across the continent. The ice shelves in the Amundsen and Bellingshausen seas have limited or almost no `passive’ portion, which implies that further retreat of current ice-shelf fronts will yield important dynamic consequences. This region is particularly vulnerable as ice shelves have been thinning at high rates for two decades and as upstream grounded ice rests on a backward sloping bed, a precondition to marine ice-sheet instability. In contrast to these ice shelves, Larsen C Ice Shelf, in the Weddell Sea, exhibits a large `passive’ frontal area, suggesting that the imminent calving of a vast tabular iceberg will be unlikely to instantly produce much dynamic change.

  17. Properties of the 4.45 eV optical absorption band in LiF:Mg,Ti.

    PubMed

    Nail, I; Oster, L; Horowitz, Y S; Biderman, S; Belaish, Y

    2006-01-01

    The optical absorption (OA) and thermoluminescence (TL) of dosimetric LiF:Mg,Ti (TLD-100) as well as nominally pure LiF single crystal have been studied as a function of irradiation dose, thermal and optical bleaching in order to investigate the role of the 4.45 eV OA band in low temperature TL. Computerised deconvolution was used to resolve the absorption spectrum into individual gaussian bands and the TL glow curve into glow peaks. Although the 4.45 eV OA band shows thermal decay characteristics similar to the 4.0 eV band its dose filling constant and optical bleaching properties suggest that it cannot be associated with the TL of composite peaks 4 or 5. Its presence in optical grade single crystal LiF further suggests that it is an intrinsic defect or possibly associated with chance impurities other than Mg, Ti.

  18. The impact of the snow cover on sea-ice thickness products retrieved by Ku-band radar altimeters

    NASA Astrophysics Data System (ADS)

    Ricker, R.; Hendricks, S.; Helm, V.; Perovich, D. K.

    2015-12-01

    Snow on sea ice is a relevant polar climate parameter related to ocean-atmospheric interactions and surface albedo. It also remains an important factor for sea-ice thickness products retrieved from Ku-band satellite radar altimeters like Envisat or CryoSat-2, which is currently on its mission and the subject of many recent studies. Such satellites sense the height of the sea-ice surface above the sea level, which is called sea-ice freeboard. By assuming hydrostatic equilibrium and that the main scattering horizon is given by the snow-ice interface, the freeboard can be transformed into sea-ice thickness. Therefore, information about the snow load on hemispherical scale is crucial. Due to the lack of sufficient satellite products, only climatological values are used in current studies. Since such values do not represent the high variability of snow distribution in the Arctic, they can be a substantial contributor to the total sea-ice thickness uncertainty budget. Secondly, recent studies suggest that the snow layer cannot be considered as homogenous, but possibly rather featuring a complex stratigraphy due to wind compaction and/or ice lenses. Therefore, the Ku-band radar signal can be scattered at internal layers, causing a shift of the main scattering horizon towards the snow surface. This alters the freeboard and thickness retrieval as the assumption that the main scattering horizon is given by the snow-ice interface is no longer valid and introduces a bias. Here, we present estimates for the impact of snow depth uncertainties and snow properties on CryoSat-2 sea-ice thickness retrievals. We therefore compare CryoSat-2 freeboard measurements with field data from ice mass-balance buoys and aircraft campaigns from the CryoSat Validation Experiment. This unique validation dataset includes airborne laser scanner and radar altimeter measurements in spring coincident to CryoSat-2 overflights, and allows us to evaluate how the main scattering horizon is altered by the

  19. A Model Study of the Thermal Evolution of Astrophysical Ices

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Teolis, B. D.; Baragiola, R. A.

    2006-01-01

    We address the question of the evolution of ices that have been exposed to radiation from stellar sources and cosmic rays. We studied in the laboratory the thermal evolution of a model ice sample: a mixture of water, hydrogen peroxide, dioxygen, and ozone produced by irradiating solid H2O2 with 50 keV H(+) at 17 K. The changes in composition and release of volatiles during warming to 200 K were monitored by infrared spectroscopy, mass spectrometry, and microbalance techniques. We find evidence for voids in the water component from the infrared bands due to dangling H bonds. The absorption from these bands increases during heating and can be observed at temperatures as high as approx. 155 K. More O2 is stored in the radiolyzed film than can be retained by codeposition of O2 and H2O. This O2 remains trapped until approx. 155 K, where it desorbs in an outburst as water ice crystallizes. Warming of the ice also drastically decreases the intrinsic absorbance of O2 by annealing defects in the ice. We also observe loss of O3 in two stages during heating, which correlates with desorption and possibly chemical reactions with radicals stored in the ice, triggered by the temperature increase.

  20. Deciphering sub-micron ice particles on Enceladus surface

    NASA Astrophysics Data System (ADS)

    Scipioni, F.; Schenk, P.; Tosi, F.; D'Aversa, E.; Clark, R.; Combe, J.-Ph.; Ore, C. M. Dalle

    2017-07-01

    The surface of Saturn's moon Enceladus is composed primarily by pure water ice. The Cassini spacecraft has observed present-day geologic activity at the moon's South Polar Region, related with the formation and feeding of Saturn's E-ring. Plumes of micron-sized particles, composed of water ice and other non-ice contaminants (e.g., CO2, NH3, CH4), erupt from four terrain's fractures named Tiger Stripes. Some of this material falls back on Enceladus' surface to form deposits that extend to the North at ∼40°W and ∼220°W, with the highest concentration found at the South Pole. In this work we analyzed VIMS-IR data to identify plumes deposits across Enceladus' surface through the variation in band depth of the main water ice spectral features. To characterize the global variation of water ice band depths across Enceladus, the entire surface was sampled with an angular resolution of 1° in both latitude and longitude, and for each angular bin we averaged the value of all spectral indices as retrieved by VIMS. The position of the plumes' deposits predicted by theoretical models display a good match with water ice band depths' maps on the trailing hemisphere, whereas they diverge significantly on the leading side. Space weathering processes acting on Enceladus' surface ionize and break up water ice molecules, resulting in the formation of particles smaller than one micron. We also mapped the spectral indices for sub-micron particles and we compared the results with the plumes deposits models. Again, a satisfactory match is observed on the trailing hemisphere only. Finally, we investigated the variation of the depth of the water ice absorption bands as a function of the phase angle. In the visible range, some terrains surrounding the Tiger Stripes show a decrease in albedo when the phase angle is smaller than 10°. This unusual effect cannot be confirmed by near infrared data, since observations with a phase angle lower than 10° are not available. For phase angle

  1. Surfaces of Ganymede and Callisto: H2O-ice particle sizes and composition of non-ice materials

    NASA Astrophysics Data System (ADS)

    Stephan, K.; Hoffmann, H.; Hibbitts, C.; Wagner, R. J.; Jaumann, R.

    2017-12-01

    Band depth ratios (BDRs) of the major H2O-ice absorptions in the NIMS spectra of the Galilean satellites Ganymede and Callisto have been found to be mainly unaffected by the abundance of the dark non-ice material(s) and can be leveraged to provide semi-quantitative indicators of variations in the H2O-ice particle sizes across their surfaces. Interestingly, the derived H2O-ice particle sizes vary continuously with geographic latitude on both satellites. H2O-ice particles on Callisto appear slightly larger at low and mid latitude than observed on Ganymede, whereas the BDR values converge toward the poles indicating similarly small H2O-ice particle sizes for both satellites. This smooth latitudinal trend on both satellites may be related to their surface temperatures and the possible thermal migration of water vapor to higher latitudes and grain welding at lower latitudes. It is not expected that the observed relationship between the BDRs and H2O-ice particle sizes occurs for mixtures with every non-ice material expected to exist on planetary surfaces. Therefore, ice mixtures with a variety of considered non-ice materials such as carbon-rich materials, phyllosilicates and salts have been investigated and the validity of this relationship tested depending on different H2O-ice abundances and particle sizes. The relationship seems to be valid for most materials if the amount of the non-ice material in the mixture does not exceed a few percent or the non-ice component is not hydrated, i.e. does not itself possess water-related bands near 1.4 and 1.9 microns. Best results across the nearly full range of percentage could be achieved for carbon-rich material, iron sulfides, and hydroxylated phyllosilicates, which are expected to be the major constituent of carbonaceous chondrites. In contrast, significant amounts of hydrated material, as identified on Europa, significantly changes the BDRs and cannot fully explain the global trend.

  2. Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling.

    PubMed

    Feng, Rui; Qiu, Jun; Liu, Linhua; Ding, Weiqiang; Chen, Lixue

    2014-12-15

    We perform a comprehensive analysis of multi-band absorption by exciting magnetic polaritons in the infrared region. According to the independent properties of the magnetic polaritons, we propose a parallel inductance and capacitance(PLC) circuit model to explain and predict the multi-band resonant absorption peaks, which is fully validated by using the multi-sized structure with identical dielectric spacing layer and the multilayer structure with the same strip width. More importantly, we present the application of the PLC circuit model to preliminarily design a radiative cooling structure realized by merging several close peaks together. This omnidirectional and polarization insensitive structure is a good candidate for radiative cooling application.

  3. Dual-band absorption of mid-infrared metamaterial absorber based on distinct dielectric spacing layers.

    PubMed

    Zhang, Nan; Zhou, Peiheng; Cheng, Dengmu; Weng, Xiaolong; Xie, Jianliang; Deng, Longjiang

    2013-04-01

    We present the simulation, fabrication, and characterization of a dual-band metamaterial absorber in the mid-infrared regime. Two pairs of circular-patterned metal-dielectric stacks are employed to excite the dual-band absorption peaks. Dielectric characteristics of the dielectric spacing layer determine energy dissipation in each resonant stack, i.e., dielectric or ohmic loss. By controlling material parameters, both two mechanisms are introduced into our structure. Up to 98% absorption is obtained at 9.03 and 13.32 μm in the simulation, which is in reasonable agreement with experimental results. The proposed structure holds promise for various applications, e.g., thermal radiation modulators and multicolor infrared focal plane arrays.

  4. Infrared absorption band in deformed qtz crystals analyzed by combining different microstructural methods

    NASA Astrophysics Data System (ADS)

    Stunitz, Holger; Thust, Anja; Behrens, Harald; Heilbronner, Renee; Kilian, Ruediger

    2016-04-01

    Natural single crystals of quartz have been experimentally deformed in two orientations: (1) normal to one prism-plane, (2) In O+ orientation at temperatures of 900 and 1000°C, pressures of 1.0 and 1.5 GPa, and strain rates of ~1 x 10-6s-1. The starting material is milky quartz, consisting of dry quartz (H2O contents of <150 H/106Si) with fluid inclusions (FI). During pressurization many FÍs decrepitate. Cracks heal and small neonate FÍs form, increasing the number of FÍs drastically. During subsequent deformation, the size of FÍs is further reduced (down to ~10 nm). Sample deformation occurs by dominant dislocation glide on selected slip systems, accompanied by some dynamic recovery. Strongly deformed regions show FTIR spectra with a pointed broad absorption band in the ~3400 cm-1 region as a superposition of molecular H2O bands and three discrete absorption bands (at 3367, 3400, and 3434 cm-1). In addition, there is a discrete absorption band at 3585 cm-1, which only occurs in deformed regions. The 3585 cm-1 band is reduced or even disappears after annealing. This band is polarized and represents structurally bound H, its H-content is estimated to be 1-3% of the total H2O-content and appears to be associated with dislocations. The H2O weakening effect in our FI-bearing natural quartz crystals is assigned to the processes of dislocation generation and multiplication at small FÍs. The deformation processes in these crystals represent a recycling of H2O between FÍs, dislocation generation at very small fluid inclusions, incorporation of structurally bound H into dislocation cores, and release of H2O from dislocations back into FÍs during recovery. Cracking and crack healing play an important role in the recycling process and imply a close interrelationship between brittle and crystal plastic deformation. The H2O weakening by this process is of a disequilibrium nature and thus depends on the amount of H2O available.

  5. Topologically Nontrivial Magnon Bands in Artificial Square Spin Ices with Dzyaloshinskii-Moriya Interaction [Topologically Non-Trivial Magnon Bands in Artificial Square Spin Ices Subject to Dzyaloshinskii-Moriya Interaction

    DOE PAGES

    Iacocca, Ezio; Heinonen, Olle

    2017-09-20

    Systems that exhibit topologically protected edge states are interesting both from a fundamental point of view as well as for potential applications, the latter because of the absence of backscattering and robustness to perturbations. It is desirable to be able to control and manipulate such edge states. Here, we demonstrate using a semi-analytical model that artificial square ices can incorporate both features: an interfacial Dzyaloshinksii-Moriya gives rise to topologically non-trivial magnon bands, and the equilibrium state of the spin ice is reconfigurable with different states having different magnon dispersions and topology. Micromagnetic simulations are used to determine the magnetization equilibriummore » states and to validate the semi-analytical model. Lastly, our results are amenable to experimental verification via, e.g., lithographic patterning and micro-focused Brillouin light scattering.« less

  6. Topologically Nontrivial Magnon Bands in Artificial Square Spin Ices with Dzyaloshinskii-Moriya Interaction [Topologically Non-Trivial Magnon Bands in Artificial Square Spin Ices Subject to Dzyaloshinskii-Moriya Interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iacocca, Ezio; Heinonen, Olle

    Systems that exhibit topologically protected edge states are interesting both from a fundamental point of view as well as for potential applications, the latter because of the absence of backscattering and robustness to perturbations. It is desirable to be able to control and manipulate such edge states. Here, we demonstrate using a semi-analytical model that artificial square ices can incorporate both features: an interfacial Dzyaloshinksii-Moriya gives rise to topologically non-trivial magnon bands, and the equilibrium state of the spin ice is reconfigurable with different states having different magnon dispersions and topology. Micromagnetic simulations are used to determine the magnetization equilibriummore » states and to validate the semi-analytical model. Lastly, our results are amenable to experimental verification via, e.g., lithographic patterning and micro-focused Brillouin light scattering.« less

  7. A coupled ice-ocean model of ice breakup and banding in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Smedstad, O. M.; Roed, L. P.

    1985-01-01

    A coupled ice-ocean numerical model for the marginal ice zone is considered. The model consists of a nonlinear sea ice model and a two-layer (reduced gravity) ocean model. The dependence of the upwelling response on wind stress direction is discussed. The results confirm earlier analytical work. It is shown that there exist directions for which there is no upwelling, while other directions give maximum upwelling in terms of the volume of uplifted water. The ice and ocean is coupled directly through the stress at the ice-ocean interface. An interesting consequence of the coupling is found in cases when the ice edge is almost stationary. In these cases the ice tends to break up a few tenths of kilometers inside of the ice edge.

  8. Analysis of wavelength-dependent photoisomerization quantum yields in bilirubins by fitting two exciton absorption bands

    NASA Astrophysics Data System (ADS)

    Mazzoni, M.; Agati, G.; Troup, G. J.; Pratesi, R.

    2003-09-01

    The absorption spectra of bilirubins were deconvoluted by two Gaussian curves of equal width representing the exciton bands of the non-degenerate molecular system. The two bands were used to study the wavelength dependence of the (4Z, 15Z) rightarrow (4Z, 15E) configurational photoisomerization quantum yield of the bichromophoric bilirubin-IXalpha (BR-IX), the intrinsically asymmetric bile pigment associated with jaundice and the symmetrically substituted bilirubins (bilirubin-IIIalpha and mesobilirubin-XIIIalpha), when they are irradiated in aqueous solution bound to human serum albumin (HSA). The same study was performed for BR-IX in ammoniacal methanol solution (NH4OH/MeOH). The quantum yields of the configurational photoprocesses were fitted with a combination function of the two Gaussian bands normalized to the total absorption, using the proportionality coefficients and a scaling factor as parameters. The decrease of the (4Z, 15Z) rightarrow (4Z, 15E) quantum yield with increasing wavelength, which occurs for wavelengths longer than the most probable Franck-Condon transition of the molecule, did not result in a unique function of the exciton absorptions. In particular we found two ranges corresponding to different exciton interactions with different proportionality coefficients and scaling factors. The wavelength-dependent photoisomerization of bilirubins was described as an abrupt change in quantum yield as soon as the resulting excitation was strongly localized in each chromophore. The change was correlated to a variation of the interaction between the two chromophores when the short-wavelength exciton absorption became vanishingly small. With the help of the circular dichroism (CD) spectrum of BR-IX in HSA, a small band was resolved in the bilirubin absorption spectrum, delivering part of the energy required for the (4Z, 15Z) rightarrow (4Z, 15E) photoisomerization of the molecule.

  9. Emergence of Very Broad Infrared Absorption Band By Hyperdoping of Silicon with Chalcogens

    DTIC Science & Technology

    2013-06-03

    measured by Hall effect in Ref. 9 (crosses) as functions of implanted sulfur dose. (c) Calculated reflectivity by Kramers- Kronig transformation of the...MIR band is small enough, this assumption is reasonable according to the Kramers- Kronig relationship between optical absorption and reflectivity...calculated by a Kramers- Kronig transformation of the absorption spectrum shown in Fig. 1(a) and the results are shown in Fig. 1(c). However, the a value

  10. A Laboratory Study of the Effect of Frost Flowers on C Band Radar Backscatter from Sea Ice

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Martin, S.; Perovich, D. K.; Kwok, R.; Drucker, R.; Gow, A. J.

    1997-01-01

    C band images of Arctic sea ice taken by the ERS 1 synthetic aperture radar show transitory regions of enhanced radar backscatter from young sea ice. Published field observations associate this increase with frost flower growth and the capture of blowing snow by the flowers. To investigate the first part of this phenomenon, we carried out a laboratory experiment on the response of C band radar backscatter to frost flowers growing on the surface of newly formed saline ice. The experiment took place in a 5 m by 7 m by 1.2 m deep saline water pool located in a two-story indoor refrigerated facility at the Cold Regions Research and Engineering Laboratory. Sodium chloride ice was grown in this pool at an air temperature of -28 C. The frost flowers first appeared on the ice surface as dendrites and then changed to needles as the ice sheet grew thicker and the surface temperatures became colder. The frost flowers reached to a height of 10-15 mm, and beneath each cluster of frost flowers a slush layer formed to a thickness of approximately 4 mm. Far-field radar measurements of the backscatter from the ice were made at incident angles from 20 to 40 deg and at approximately 6-hour intervals throughout the 3-day period of the experiment. A backscatter minimum occurred early in the flower growth at the time coincident with an abrupt doubling in the ice surface salinity. Once the full flower coverage was achieved, we removed first the crystal flowers and then the slush layer from the ice surface. The results for these cases show that the crystals have little impact on the backscatter, while the underlying slush patches yield a backscatter increase of 3-5 dB over that of bare ice. The laboratory results suggest that this relative backscatter increase of approximately 5 dB can be used as an index to mark the full area coverage of frost flowers.

  11. A Laboratory Study of the Effect of Frost Flowers on C Band Radar Backscatter from Sea Ice

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Martin, S.; Perovich, D. K.; Kwok, R.; Drucker, R.; Gow, A. J.

    1997-01-01

    C band images of Arctic sea ice taken by the ERS 1 synthetic aperture radar show transitory regions of enhanced radar backscatter from young sea ice. Published field observations associate this increase with frost flower growth and the capture of blowing snow by the flowers. To investigate the first part of this phenomenon, we carried out a laboratory experiment on the response of C band radar backscatter to frost flowers growing on the surface of newly formed saline ice. The experiment took place in a 5 m by 7 m by 1.2 m deep saline water pool located in a two-story indoor refrigerated facility at the Cold Regions Research and Engineering Laboratory. Sodium chloride ice was grown in this pool at an air temperature of -28 C. The frost flowers first appeared on the ice surface as dendrites and then changed to needles as the ice sheet grew thicker and the surface temperatures became colder. The frost flowers reached to a height of 10-15 mm, and beneath each cluster of frost flowers a slush layer formed to a thickness of approximately 4 mm. Far-field radar measurements of the backscatter from the ice were made at incident angles from 20 C to 40 C and at approximately 6-hour intervals throughout the 3-day period of the experiment. A backscatter minimum occurred early in the flower growth at the time coincident with an abrupt doubling in the ice surface salinity. Once the full flower coverage was achieved, we removed first the crystal flowers and then the slush layer from the ice surface. The results for these cases show that the crystals have little impact on the backscatter, while the underlying slush patches yield a backscatter increase of 3-5 dB over that o f bare ice. The laboratory results suggest that this relative backscatter increase of approximately 5 dB can be used as an index to mark the full areal coverage of frost flowers.

  12. Retrieval of the thickness of undeformed sea ice from simulated C-band compact polarimetric SAR images

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Dierking, Wolfgang; Zhang, Jie; Meng, Junmin; Lang, Haitao

    2016-07-01

    In this paper we introduce a parameter for the retrieval of the thickness of undeformed first-year sea ice that is specifically adapted to compact polarimetric (CP) synthetic aperture radar (SAR) images. The parameter is denoted as the "CP ratio". In model simulations we investigated the sensitivity of the CP ratio to the dielectric constant, ice thickness, ice surface roughness, and radar incidence angle. From the results of the simulations we deduced optimal sea ice conditions and radar incidence angles for the ice thickness retrieval. C-band SAR data acquired over the Labrador Sea in circular transmit and linear receive (CTLR) mode were generated from RADARSAT-2 quad-polarization images. In comparison with results from helicopter-borne measurements, we tested different empirical equations for the retrieval of ice thickness. An exponential fit between the CP ratio and ice thickness provides the most reliable results. Based on a validation using other compact polarimetric SAR images from the same region, we found a root mean square (rms) error of 8 cm and a maximum correlation coefficient of 0.94 for the retrieval procedure when applying it to level ice between 0.1 and 0.8 m thick.

  13. 3 micron spectrophotometry of Comet Halley - Evidence for water ice

    NASA Technical Reports Server (NTRS)

    Bregman, Jesse D.; Tielens, A. G. G. M.; Witteborn, Fred C.; Rank, David M.; Wooden, Diane

    1988-01-01

    Structure has been observed in the 3-3.6 micron preperihelion spectrum of Comet Halley consistent with either an absorption band near 3.1 microns or emission near 3.3 microns. The results suggest that a large fraction of the water molecules lost by the comet are initially ejected in the form of small ice particles rather than in the gas phase.

  14. Diversity in the Visible-NIR Absorption Band Characteristics of Lunar and Asteroidal Plagioclase

    NASA Technical Reports Server (NTRS)

    Hiroi, T.; Kaiden, H.; Misawa, K.; Kojima, H.; Uemoto, K.; Ohtake, M.; Arai, T.; Sasaki, S.; Takeda, H.; Nyquist, L. E.; hide

    2012-01-01

    Studying the visible and near-infrared (VNIR) spectral properties of plagioclase has been challenging because of the difficulty in obtaining good plagioclase separates from pristine planetary materials such as meteorites and returned lunar samples. After an early study indicated that the 1.25 m band position of plagioclase spectrum might be correlated with the molar percentage of anorthite (An#) [1], there have been few studies which dealt with the band center behavior. In this study, the VNIR absorption band parameters of plagioclase samples have been derived using the modified Gaussian model (MGM) [2] following a pioneering study by [3].

  15. Influence of defects on the absorption edge of InN thin films: The band gap value

    NASA Astrophysics Data System (ADS)

    Thakur, J. S.; Danylyuk, Y. V.; Haddad, D.; Naik, V. M.; Naik, R.; Auner, G. W.

    2007-07-01

    We investigate the optical-absorption spectra of InN thin films whose electron density varies from ˜1017tõ1021cm-3 . The low-density films are grown by molecular-beam-epitaxy deposition while highly degenerate films are grown by plasma-source molecular-beam epitaxy. The optical-absorption edge is found to increase from 0.61to1.90eV as the carrier density of the films is increased from low to high density. Since films are polycrystalline and contain various types of defects, we discuss the band gap values by studying the influence of electron degeneracy, electron-electron, electron-ionized impurities, and electron-LO-phonon interaction self-energies on the spectral absorption coefficients of these films. The quasiparticle self-energies of the valence and conduction bands are calculated using dielectric screening within the random-phase approximation. Using one-particle Green’s function analysis, we self-consistently determine the chemical potential for films by coupling equations for the chemical potential and the single-particle scattering rate calculated within the effective-mass approximation for the electron scatterings from ionized impurities and LO phonons. By subtracting the influence of self-energies and chemical potential from the optical-absorption edge energy, we estimate the intrinsic band gap values for the films. We also determine the variations in the calculated band gap values due to the variations in the electron effective mass and static dielectric constant. For the lowest-density film, the estimated band gap energy is ˜0.59eV , while for the highest-density film, it varies from ˜0.60tõ0.68eV depending on the values of electron effective mass and dielectric constant.

  16. An Unusual Strong Visible-Light Absorption Band in Red Anatase TiO2 Photocatalyst Induced by Atomic Hydrogen-Occupied Oxygen Vacancies.

    PubMed

    Yang, Yongqiang; Yin, Li-Chang; Gong, Yue; Niu, Ping; Wang, Jian-Qiang; Gu, Lin; Chen, Xingqiu; Liu, Gang; Wang, Lianzhou; Cheng, Hui-Ming

    2018-02-01

    Increasing visible light absorption of classic wide-bandgap photocatalysts like TiO 2 has long been pursued in order to promote solar energy conversion. Modulating the composition and/or stoichiometry of these photocatalysts is essential to narrow their bandgap for a strong visible-light absorption band. However, the bands obtained so far normally suffer from a low absorbance and/or narrow range. Herein, in contrast to the common tail-like absorption band in hydrogen-free oxygen-deficient TiO 2 , an unusual strong absorption band spanning the full spectrum of visible light is achieved in anatase TiO 2 by intentionally introducing atomic hydrogen-mediated oxygen vacancies. Combining experimental characterizations with theoretical calculations reveals the excitation of a new subvalence band associated with atomic hydrogen filled oxygen vacancies as the origin of such band, which subsequently leads to active photo-electrochemical water oxidation under visible light. These findings could provide a powerful way of tailoring wide-bandgap semiconductors to fully capture solar light. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Continuum definition for Ceres absorption bands at 3.1, 3.4 and 4.0 μm

    NASA Astrophysics Data System (ADS)

    Galiano, A.; Palomba, E.; Longobardo, A.; Zinzi, A.; De Sanctis, M. C.; Raponi, A.; Carrozzo, F. G.; Ciarniello, M.; Dirri, F.

    2017-09-01

    The images and hyperspectral data acquired during various Dawn mission phases (e.g. Survey, HAMO and LAMO) allowed identifying regions of different albedo on Ceres surface, where absorption bands located at 3.4 and 4.0 μm can assume different shapes. The 3.1 μm feature is observed on the entire Ceres surface except on Cerealia Facula, the brightest spot located on the dome of Occator crater. To perform a mineralogical investigation, absorption bands in reflectance spectra should be properly isolated by removing spectral continuum; hence, parameters as band centers and band depths must be estimated. The problem in the defining the continuum is in the VIR spectral range, which ends at 5.1 μm even though the reliable data, where the thermal contribution is properly removed, stops at 4.2 μm. Band shoulders located at longer wavelengths cannot be estimated. We defined different continua, with the aim to find the most appropriate to isolate the three spectral bands, whatever the region and the spatial resolution of hyperspectral images. The linear continuum seems to be the most suitable definition for our goals. Then, we performed an error evaluation on band depths and band centers introduced by this continuum definition.

  18. Temperature Dependence of Cryogenic Ammonia-Water Ice Mixtures and Implications for Icy Satellite Surfaces

    NASA Technical Reports Server (NTRS)

    Dalton, J. B., III; Curchin, J. M.; Clark, R. N.

    2001-01-01

    Infrared spectra of ammonia-water ice mixtures reveal temperature-dependent absorption bands due to ammonia. These features, at 1.04, 2.0, and 2.25 microns, may shed light on the surface compositions of the Galilean and Saturnian satellites. Additional information is contained in the original extended abstract.

  19. High Resolution 4.7 Micron Keck/NIRSPEC Spectra of Protostars. 1; Ices and Infalling Gas in the Disk of L1489 IRS

    NASA Technical Reports Server (NTRS)

    Boogert, A. C. A.; Hogerheijde, M. R.; Blake, G. A.

    2001-01-01

    We explore the infrared M band (4.7 micron) spectrum of the class I protostar L1489 IRS in the Taurus Molecular Cloud. This is the highest resolution wide coverage spectrum at this wavelength of a low mass protostar observed to date (R =25,000; (Delta)v =12 km s(exp -1). A large number of narrow absorption lines of gas phase (12)CO, (13)CO, and C(sup 18)O are detected, as well as a prominent band of solid (12)CO. The gas phase (12)CO lines have red shifted absorption wings (up to 100 km s(exp -1)), which likely originate from warm disk material falling toward the central object. Both the isotopes and the extent of the (12)CO line wings are successfully fitted with a contracting disk model of this evolutionary transitional object. This shows that the inward motions seen in millimeter wave emission lines continue to within approx. 0.1 AU from the star. The amount of high velocity infalling gas is however overestimated by this model, suggesting that only part of the disk is infalling, e.g. a hot surface layer or hot gas in magnetic field tubes. The colder parts of the disk are traced by the prominent CO ice band. The band profile results from CO in 'polar' ices (CO mixed with H2O), and CO in 'apolar' ices. At the high spectral resolution, the 'apolar' component is, for the first time, resolved into two distinct components, likely due to pure CO and CO mixed with CO2, O2 and/or N2. The ices have probably experienced thermal processing in the upper disk layer traced by our pencil absorption beam: much of the volatile 'apolar' ices has evaporated, the depletion factor of CO onto grains is remarkably low (approx. 7%), and the CO2 traced in the CO band profile was possibly formed energetically. This study shows that high spectral resolution 4.7 micron observations provide important and unique information on the dynamics and structure of protostellar disks and the origin and evolution of ices in these disks.

  20. Water frost and ice - The near-infrared spectral reflectance 0.65-2.5 microns. [observed on natural satellites and other solar system objects

    NASA Technical Reports Server (NTRS)

    Clark, R. N.

    1981-01-01

    The spectral reflectance of water frost and frost on ice as a function of temperature and grain size is presented with 1-1/2% spectral resolution in the 0.65- to 2.5-micron wavelength region. The well-known 2.0-, 1.65-, and 1.5-micron solid water absorption bands are precisely defined along with the little studied 1.25-micron band and the previously unidentified (in reflectance) 1.04-, 0.90-, and 0.81-micron absorption bands. The 1.5-microns band complex is quantitatively analyzed using a nonlinear least squares algorithm to resolve the band into four Gaussian components as a function of grain size and temperature. It is found that the 1.65-micron component, which was thought to be a good temperature sensor, is highly grain-size dependent and poorly suited to temperature sensing. Another Gaussian component appears to show a dependence of width on grain size while being independent of temperature. The relative apparent band depths are different for frost layers on ice than for thick layers of frost and may explain the apparent band depths seen in many planetary reflectance spectra.

  1. On the sub-band gap optical absorption in heat treated cadmium sulphide thin film deposited on glass by chemical bath deposition technique

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, P.; Karim, B.; Guha Roy, S.

    2013-12-01

    The sub-band gap optical absorption in chemical bath deposited cadmium sulphide thin films annealed at different temperatures has been critically analyzed with special reference to Urbach relation. It has been found that the absorption co-efficient of the material in the sub-band gap region is nearly constant up to a certain critical value of the photon energy. However, as the photon energy exceeds the critical value, the absorption coefficient increases exponentially indicating the dominance of Urbach rule. The absorption coefficients in the constant absorption region and the Urbach region have been found to be sensitive to annealing temperature. A critical examination of the temperature dependence of the absorption coefficient indicates two different kinds of optical transitions to be operative in the sub-band gap region. After a careful analyses of SEM images, energy dispersive x-ray spectra, and the dc current-voltage characteristics, we conclude that the absorption spectra in the sub-band gap domain is possibly associated with optical transition processes involving deep levels and the grain boundary states of the material.

  2. Detection of cryogenic water ice contaminants and the IR AI&T environment

    NASA Astrophysics Data System (ADS)

    Lynch, David K.; Russell, Ray W.

    2000-12-01

    Several remote sensing/infrared space surveillance programs in the midst of assembly, integration and test have recently experienced delays when water vapor was deposited as ice on cold surfaces in a sensor under test or calibration. When these surfaces were at critical locations, the sensitivity or response of the sensor decreased significantly because the ice absorbed the incoming signal. The source of water vapor could be from a chamber leak or outgassing from the sensor system or the vacuum chamber itself. In order to quantify the effects of ice deposits on signals in various spectral bands, published optical constants for amorphous and crystalline water ice have been used to calculate the transmission of water ice films as a function of wavelength from 1 to 20 microns. The results are presented in two ways: spectra of the physical thickness of a layer of ice whose absorption optical depth is unity, and transmission spectra for several characteristic layer thicknesses. These tools can be used in estimating the amount of ice - and by inference water vapor - present in the system. Related calculations can also be used to assess the probability that a given hardware setup or resulting data set is showing signs of degradation of response due to ice absorption, and the implications for those trying to interpret the results.

  3. Imaging Breathing Rate in the CO2Absorption Band.

    PubMed

    Fei, Jin; Zhu, Zhen; Pavlidis, Ioannis

    2005-01-01

    Following up on our previous work, we have developed one more non-contact method to measure human breathing rate. We have retrofitted our Mid-Wave Infra-Red (MWIR) imaging system with a narrow band-pass filter in the CO2absorption band (4.3 µm). This improves the contrast between the foreground (i.e., expired air) and background (e.g., wall). Based on the radiation information within the breath flow region, we get the mean dynamic thermal signal. This signal is quasi-periodic due to the interleaving of high and low intensities corresponding to expirations and inspirations respectively. We sample the signal at a constant rate and then determine the breathing frequency through Fourier analysis. We have performed experiments on 9 subjects at distances ranging from 6-8 ft. We compared the breathing rate computed by our novel method with ground-truth measurements obtained via a traditional contact device (PowerLab/4SP from ADInstruments with an abdominal transducer). The results show high correlation between the two modalities. For the first time, we report a Fourier based breathing rate computation method on a MWIR signal in the CO2absorption band. The method opens the way for desktop, unobtrusive monitoring of an important vital sign, that is, breathing rate. It may find widespread applications in preventive medicine as well as sustained physiological monitoring of subjects suffering from chronic ailments.

  4. Quantum simulation of thermally-driven phase transition and oxygen K-edge x-ray absorption of high-pressure ice

    PubMed Central

    Kang, Dongdong; Dai, Jiayu; Sun, Huayang; Hou, Yong; Yuan, Jianmin

    2013-01-01

    The structure and phase transition of high-pressure ice are of long-standing interest and challenge, and there is still a huge gap between theoretical and experimental understanding. The quantum nature of protons such as delocalization, quantum tunneling and zero-point motion is crucial to the comprehension of the properties of high-pressure ice. Here we investigated the temperature-induced phase transition and oxygen K-edge x-ray absorption spectra of ice VII, VIII and X using ab initio path-integral molecular dynamics simulations. The tremendous difference between experiments and the previous theoretical predictions is closed for the phase diagram of ice below 300 K at pressures up to 110 GPa. Proton tunneling assists the proton-ordered ice VIII to transform into proton-disordered ice VII where only thermal activated proton-transfer cannot occur. The oxygen K edge with its shift is sensitive to the order-disorder transition, and therefore can be applied to diagnose the dynamics of ice structures. PMID:24253589

  5. Tunable multi-band absorption in metasurface of graphene ribbons based on composite structure

    NASA Astrophysics Data System (ADS)

    Ning, Renxia; Jiao, Zheng; Bao, Jie

    2017-05-01

    A tunable multiband absorption based on a graphene metasurface of composite structure at mid-infrared frequency was investigated by the finite difference time domain method. The composite structure were composed of graphene ribbons and a gold-MgF2 layer which was sandwiched in between two dielectric slabs. The permittivity of graphene is discussed with different chemical potential to obtain tunable absorption. And the absorption of the composite structure can be tuned by the chemical potential of graphene at certain frequencies. The impedance matching was used to study the perfect absorption of the structure in our paper. The results show that multi-band absorption can be obtained and some absorption peaks of the composite structure can be tuned through the changing not only of the width of graphene ribbons and gaps, but also the dielectric and the chemical potential of graphene. However, another peak was hardly changed by parameters due to a different resonant mechanism in proposed structure. This flexibily tunable multiband absorption may be applied to optical communications such as optical absorbers, mid infrared stealth devices and filters.

  6. Arctic sea ice signatures: L-band brightness temperature sensitivity comparison using two radiation transfer models

    NASA Astrophysics Data System (ADS)

    Richter, Friedrich; Drusch, Matthias; Kaleschke, Lars; Maaß, Nina; Tian-Kunze, Xiangshan; Mecklenburg, Susanne

    2018-03-01

    Sea ice is a crucial component for short-, medium- and long-term numerical weather predictions. Most importantly, changes of sea ice coverage and areas covered by thin sea ice have a large impact on heat fluxes between the ocean and the atmosphere. L-band brightness temperatures from ESA's Earth Explorer SMOS (Soil Moisture and Ocean Salinity) have been proven to be a valuable tool to derive thin sea ice thickness. These retrieved estimates were already successfully assimilated in forecasting models to constrain the ice analysis, leading to more accurate initial conditions and subsequently more accurate forecasts. However, the brightness temperature measurements can potentially be assimilated directly in forecasting systems, reducing the data latency and providing a more consistent first guess. As a first step towards such a data assimilation system we studied the forward operator that translates geophysical parameters provided by a model into brightness temperatures. We use two different radiative transfer models to generate top of atmosphere brightness temperatures based on ORAP5 model output for the 2012/2013 winter season. The simulations are then compared against actual SMOS measurements. The results indicate that both models are able to capture the general variability of measured brightness temperatures over sea ice. The simulated brightness temperatures are dominated by sea ice coverage and thickness changes are most pronounced in the marginal ice zone where new sea ice is formed. There we observe the largest differences of more than 20 K over sea ice between simulated and observed brightness temperatures. We conclude that the assimilation of SMOS brightness temperatures yields high potential for forecasting models to correct for uncertainties in thin sea ice areas and suggest that information on sea ice fractional coverage from higher-frequency brightness temperatures should be used simultaneously.

  7. Late summer sea ice segmentation with multi-polarisation SAR features in C- and X-band

    NASA Astrophysics Data System (ADS)

    Fors, A. S.; Brekke, C.; Doulgeris, A. P.; Eltoft, T.; Renner, A. H. H.; Gerland, S.

    2015-09-01

    In this study we investigate the potential of sea ice segmentation by C- and X-band multi-polarisation synthetic aperture radar (SAR) features during late summer. Five high-resolution satellite SAR scenes were recorded in the Fram Strait covering iceberg-fast first-year and old sea ice during a week with air temperatures varying around zero degrees Celsius. In situ data consisting of sea ice thickness, surface roughness and aerial photographs were collected during a helicopter flight at the site. Six polarimetric SAR features were extracted for each of the scenes. The ability of the individual SAR features to discriminate between sea ice types and their temporally consistency were examined. All SAR features were found to add value to sea ice type discrimination. Relative kurtosis, geometric brightness, cross-polarisation ratio and co-polarisation correlation angle were found to be temporally consistent in the investigated period, while co-polarisation ratio and co-polarisation correlation magnitude were found to be temporally inconsistent. An automatic feature-based segmentation algorithm was tested both for a full SAR feature set, and for a reduced SAR feature set limited to temporally consistent features. In general, the algorithm produces a good late summer sea ice segmentation. Excluding temporally inconsistent SAR features improved the segmentation at air temperatures above zero degrees Celcius.

  8. The impact of different multi-walled carbon nanotubes on the X-band microwave absorption of their epoxy nanocomposites.

    PubMed

    Che, Bien Dong; Nguyen, Bao Quoc; Nguyen, Le-Thu T; Nguyen, Ha Tran; Nguyen, Viet Quoc; Van Le, Thang; Nguyen, Nieu Huu

    2015-01-01

    Carbon nanotube (CNT) characteristics, besides the processing conditions, can change significantly the microwave absorption behavior of CNT/polymer composites. In this study, we investigated the influence of three commercial multi-walled CNT materials with various diameters and length-to-diameter aspect ratios on the X-band microwave absorption of epoxy nanocomposites with CNT contents from 0.125 to 2 wt%, prepared by two dispersion methods, i.e. in solution with surfactant-aiding and via ball-milling. The laser diffraction particle size and TEM analysis showed that both methods produced good dispersions at the microscopic level of CNTs. Both a high aspect ratio resulting in nanotube alignment trend and good infiltration of the matrix in the individual nanotubes, which was indicated by high Brookfield viscosities at low CNT contents of CNT/epoxy dispersions, are important factors to achieve composites with high microwave absorption characteristics. The multi-walled carbon nanotube (MWCNT) with the largest aspect ratio resulted in composites with the best X-band microwave absorption performance, which is considerably better than that of reported pristine CNT/polymer composites with similar or lower thicknesses and CNT loadings below 4 wt%. A high aspect ratio of CNTs resulting in microscopic alignment trend of nanotubes as well as a good level of micro-scale CNT dispersion resulting from good CNT-matrix interactions are crucial to obtain effective microwave absorption performance. This study demonstrated that effective radar absorbing MWCNT/epoxy nanocomposites having small matching thicknesses of 2-3 mm and very low filler contents of 0.25-0.5 wt%, with microwave energy absorption in the X-band region above 90% and maximum absorption peak values above 97%, could be obtained via simple processing methods, which is promising for mass production in industrial applications. Graphical AbstractComparison of the X-band microwave reflection loss of epoxy composites of

  9. Extraction of ice absorptions in comet spectra, and application to VIRTIS/Rosetta

    NASA Astrophysics Data System (ADS)

    Erard, Stéphane; Despan, Daniela; Leyrat, Cédric; Drossart, Pierre; Capaccioni, Fabrizio; Filacchione, Gianrico

    2014-05-01

    Detection of ice spectral features can be difficult on comet surfaces, due to the mixing with dark opaque materials, as shown by Deep Impact and Epoxi observations. We study here the possible use of high-level spectral detection techniques in this context. A method based on wavelet decomposition and a multiscale vision model, partly derived from image analysis techniques, was presented recently (Erard, 2013). It is here used to extract shallow features from spectra in reflected light, up to ~3 µm. The outcome of the analysis is a description of the bands detected, and a quantitative and reliable confidence parameter. The bands can be described either by the most appropriate wavelet scale only (for rapid analyses) or after reconstruction from all scales involved (for more precise measurements). An interesting side effect is the ability to separate even narrow features from random noise, as well as to identify low-frequency variations i.e., wide and shallow bands. Tests are performed on laboratory analogues spectra and available observational data. The technique is expected to provide detection of ice in the early stages of Rosetta observations of 67P this year, from VIRTIS data (Coradini et al., 2009). Strategies are devised to quickly analyze large datasets, e. g., by applying the extraction technique to components first identified by an ACI (Erard et al., 2011). The exact position of the bands can be diagnostic of surface temperature, in particular at 1.6 µm (e. g., Fink & Larson, 1975) and 3.6 µm (Filacchione et al., 2013), and may complement estimates retrieved from the onset of thermal emission longward of 3.5 µm. Erard, S. (2013) 8th EPSC EPSC2013-520. Coradini et al (2009), Rosetta book, Schulz et al Eds. Erard, S. et al (2011) Planet & Space Sc 59, 1842-1852 Fink, U. & Larson, H. (1975) Icarus 24, 411-420 Filacchione et al (2013) AGU Fall Meeting Abstracts A7

  10. Methanol ice in the protostar GL 2136

    NASA Technical Reports Server (NTRS)

    Skinner, C. J.; Tielens, A. G. G. M.; Barlow, M. J.; Justtanont, K.

    1992-01-01

    We present ground-based spectra in the 10 and 20 micron atmospheric windows of the deeply embedded protostar GL 2136. These reveal narrow absorption features at 9.7 and 8.9 microns, which we ascribe to the CO-stretch and CH3 rock (respectively) of solid methanol in grain mantles. The peak position of the 9.7 micron band implies that methanol is an important ice mantle component. However, the CH3OH/H2O abundance ratio derived from the observed column densities is only 0.1. This discrepancy suggests that the solid methanol and water ice are located in independent grain components. These independent components may reflect chemical differentiation during grain mantle formation and/or partial outgassing close to the protostar.

  11. Optical absorption and emission bands of Tm 3+ ions in calcium niobium gallium garnet crystal

    NASA Astrophysics Data System (ADS)

    Tsuboi, Taiju; Tanigawa, Masayuki; Shimamura, Kiyoshi

    2000-12-01

    Absorption spectra of Tm 3+ ions in Ca 3Nb 1.6875Ga 3.1875O 12 (CNGG) crystal have been investigated at various temperatures between 15 and 296 K. Luminescence spectra in a spectral region of 400-1750 nm are investigated under excitation into various excited states of Tm 3+ and the conduction band of CNGG at room temperature. The absorption and emission bands of Tm 3+ in CNGG are observed to be broader than those observed in other Tm 3+-doped crystals such as LiNbO 3. This is due to the disordered structure of CNGG. From the temperature dependence of absorption spectra, five Stark levels are derived for the 3H 6 ground state. The highest Stark level is found to be 351 cm -1 above the ground level. It is suggested that the low efficiency of the 2.02 μm lasing at room temperature is due to the narrow splitting of the Stark levels.

  12. Effect of Atmospheric Absorption Bands on the Optimal Design of Multijunction Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMahon, William E.; Friedman, Daniel J.; Geisz, John F.

    Designing terrestrial multijunction (MJ) cells with 5+ junctions is challenging, in part because the presence of atmospheric absorption bands creates a design space with numerous local maxima. Here we introduce a new taxonomical structure which facilitates both numerical convergence and the visualization of the resulting designs.

  13. Retrieval of the thickness of undeformed sea ice from C-band compact polarimetric SAR images

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Dierking, W.; Zhang, J.; Meng, J. M.; Lang, H. T.

    2015-10-01

    In this paper we introduce a parameter for the retrieval of the thickness of undeformed first-year sea ice that is specifically adapted to compact polarimetric SAR images. The parameter is denoted as "CP-Ratio". In model simulations we investigated the sensitivity of CP-Ratio to the dielectric constant, thickness, surface roughness, and incidence angle. From the results of the simulations we deduced optimal conditions for the thickness retrieval. On the basis of C-band CTLR SAR data, which were generated from Radarsat-2 quad-polarization images acquired jointly with helicopter-borne sea ice thickness measurements in the region of the Sea of Labrador, we tested empirical equations for thickness retrieval. An exponential fit between CP-Ratio and ice thickness provides the most reliable results. Based on a validation using other compact polarimetric SAR images from the same region we found a root mean square (rms) error of 8 cm and a maximum correlation coefficient of 0.92 for the retrieval procedure when applying it on level ice of 0.9 m mean thickness.

  14. The nu sub 9 fundamental of ethane - Integrated intensity and band absorption measurements with application to the atmospheres of the major planets

    NASA Technical Reports Server (NTRS)

    Varanasi, P.; Cess, R. D.; Bangaru, B. R. P.

    1974-01-01

    Measurements of the absolute intensity and integrated band absorption have been performed for the nu sub 9 fundamental band of ethane. The intensity is found to be about 34 per sq cm per atm at STP, and this is significantly higher than previous estimates. It is shown that a Gaussian profile provides an empirical representation of the apparent spectral absorption coefficient. Employing this empirical profile, a simple expression is derived for the integrated band absorption, which is in excellent agreement with experimental values. The band model is then employed to investigate the possible role of ethane as a source of thermal infrared opacity within the atmospheres of Jupiter and Saturn, and to interpret qualitatively observed brightness temperatures for Saturn.

  15. Laboratory Needs for Interstellar Ice Studies

    NASA Astrophysics Data System (ADS)

    Boogert, Abraham C. A.

    2012-05-01

    A large fraction of the molecules in dense interstellar and circumstellar environments is stored in icy grain mantles. The mantles are formed by a complex interplay between chemical and physical processes. Key questions on the accretion and desorption processes and the chemistry on the grain surfaces and within the icy mantles can only be answered by laboratory experiments. Recent infrared (2-30 micron) spectroscopic surveys of large samples of Young Stellar Objects (YSOs) and background stars tracing quiescent cloud material have shown that the ice band profiles and depths vary considerably as a function of environment. Using laboratory spectra in the identification process, it is clear that a rather complex mixture of simple species (CH3OH, CO2, H2O, CO) exists even in the quiescent cloud phase. Variations of the local physical conditions (CO freeze out) and time scales (CH3OH formation) appear to be key factors in the observed variations. Sublimation and thermal processing dominate as YSOs heat their environments. The identification of several ice absorption features is still disputed. I will outline laboratory work (e.g., on salts, PAHs, and aliphatic hydrocarbons) needed to further constrain the ice band identification as well as the thermal and chemical history of the carriers. Such experiments will also be essential to interpret future high spectral resolution SOFIA and JWST observations.

  16. Self-absorption theory applied to rocket measurements of the nitric oxide (1, 0) gamma band in the daytime thermosphere

    NASA Technical Reports Server (NTRS)

    Eparvier, F. G.; Barth, C. A.

    1992-01-01

    Observations of the UV fluorescent emissions of the NO (1, 0) and (0, 1) gamma bands in the lower-thermospheric dayglow, made with a sounding rocket launched on March 7, 1989 from Poker Flat, Alaska, were analyzed. The resonant (1, 0) gamma band was found to be attenuated below an altitude of about 120 km. A self-absorption model based on Holstein transmission functions was developed for the resonant (1, 0) gamma band under varying conditions of slant column density and temperature and was applied for the conditions of the rocket flight. The results of the model agreed with the measured attenuation of the band, indicating the necessity of including self-absorption theory in the analysis of satellite and rocket limb data of NO.

  17. Signature of Arctic first-year ice melt pond fraction in X-band SAR imagery

    NASA Astrophysics Data System (ADS)

    Fors, Ane S.; Divine, Dmitry V.; Doulgeris, Anthony P.; Renner, Angelika H. H.; Gerland, Sebastian

    2017-03-01

    In this paper we investigate the potential of melt pond fraction retrieval from X-band polarimetric synthetic aperture radar (SAR) on drifting first-year sea ice. Melt pond fractions retrieved from a helicopter-borne camera system were compared to polarimetric features extracted from four dual-polarimetric X-band SAR scenes, revealing significant relationships. The correlations were strongly dependent on wind speed and SAR incidence angle. Co-polarisation ratio was found to be the most promising SAR feature for melt pond fraction estimation at intermediate wind speeds (6. 2 m s-1), with a Spearman's correlation coefficient of 0. 46. At low wind speeds (0. 6 m s-1), this relation disappeared due to low backscatter from the melt ponds, and backscatter VV-polarisation intensity had the strongest relationship to melt pond fraction with a correlation coefficient of -0. 53. To further investigate these relations, regression fits were made both for the intermediate (R2fit = 0. 21) and low (R2fit = 0. 26) wind case, and the fits were tested on the satellite scenes in the study. The regression fits gave good estimates of mean melt pond fraction for the full satellite scenes, with less than 4 % from a similar statistics derived from analysis of low-altitude imagery captured during helicopter ice-survey flights in the study area. A smoothing window of 51 × 51 pixels gave the best reproduction of the width of the melt pond fraction distribution. A considerable part of the backscatter signal was below the noise floor at SAR incidence angles above ˜ 40°, restricting the information gain from polarimetric features above this threshold. Compared to previous studies in C-band, limitations concerning wind speed and noise floor set stricter constraints on melt pond fraction retrieval in X-band. Despite this, our findings suggest new possibilities in melt pond fraction estimation from X-band SAR, opening for expanded monitoring of melt ponds during melt season in the future.

  18. Evidence of a Structural Defect in Ice VII and the Side Chain Dependent Response of Small Model Peptides to Increased Pressure

    PubMed Central

    Scott, J. Nathan; Vanderkooi, Jane M.

    2014-01-01

    The effect of high pressure on the OH stretch of dilute HOD in D2O was examined using high pressure FTIR. It was found that at pressures directly above the ice VI to ice VII transition, ice VII displays a splitting in the OH absorption indicative of differing hydrogen bonding environments. This result is contrary to published structures of ice VII in which each OH oscillator should experience an identical electronic environment. The anomalous band was found to decrease in absorbance and finally disappear at ~43.0 kbar. In addition, the pressure response of the amide I′ and II′ bands of three small model peptides was examined. Analysis of these bands’ response to increased pressure indicates significant side chain dependence of their structural rearrangement, which may play a role in the composition of full length proteins of barophilic organisms. PMID:21740637

  19. Ground-based Photon Path Measurements from Solar Absorption Spectra of the O2 A-band

    NASA Technical Reports Server (NTRS)

    Yang, Z.; Wennberg, P. O.; Cageao, R. P.; Pongetti, T. J.; Toon, G. C.; Sander, S. P.

    2005-01-01

    High-resolution solar absorption spectra obtained from Table Mountain Facility (TMF, 34.38degN, 117.68degW, 2286 m elevation) have been analyzed in the region of the O2 A-band. The photon paths of direct sunlight in clear sky cases are retrieved from the O2 absorption lines and compared with ray-tracing calculations based on the solar zenith angle and surface pressure. At a given zenith angle, the ratios of retrieved to geometrically derived photon paths are highly precise (approx.0.2%), but they vary as the zenith angle changes. This is because current models of the spectral lineshape in this band do not properly account for the significant absorption that exists far from the centers of saturated lines. For example, use of a Voigt function with Lorentzian far wings results in an error in the retrieved photon path of as much as 5%, highly correlated with solar zenith angle. Adopting a super-Lorentz function reduces, but does not completely eliminate this problem. New lab measurements of the lineshape are required to make further progress.

  20. Infrared Observations of Hot Gas and Cold Ice Toward the Low Mass Protostar Elias 29

    NASA Technical Reports Server (NTRS)

    Boogert, A. C. A.; Tielens, A. G. G. M.; Ceccarelli, C.; Boonman, A. M. S.; vanDishoeck, E. F.; Keane, J. V.; Whittet, D. C. B.; deGraauw, T.

    2000-01-01

    We have obtained the full 1-200 micrometer spectrum of the low luminosity (36 solar luminosity Class I protostar Elias 29 in the rho Ophiuchi molecular cloud. It provides a unique opportunity to study the origin and evolution of interstellar ice and the interrelationship of interstellar ice and hot core gases around low mass protostars. We see abundant hot CO and H2O gas, as well as the absorption bands of CO, CO2, H2O and "6.85 micrometer" ices. We compare the abundances and physical conditions of the gas and ices toward Elias 29 with the conditions around several well studied luminous, high mass protostars. The high gas temperature and gas/solid ratios resemble those of relatively evolved high mass objects (e.g. GL 2591). However, none of the ice band profiles shows evidence for significant thermal processing, and in this respect Elias 29 resembles the least evolved luminous protostars, such as NGC 7538 : IRS9. Thus we conclude that the heating of the envelope of the low mass object Elias 29 is qualitatively different from that of high mass protostars. This is possibly related to a different density gradient of the envelope or shielding of the ices in a circumstellar disk. This result is important for our understanding of the evolution of interstellar ices, and their relation to cometary ices.

  1. The flaky porous Fe3O4 with tunable dimensions for enhanced microwave absorption performance in X and C bands.

    PubMed

    Zhao, Huanqin; Cheng, Yan; Liu, Wei; Yang, Zhihong; Zhang, Baoshan; Ji, Guangbin; Du, Youwei

    2018-07-20

    Special electric and magnetic characteristics make Fe 3 O 4 widely applied in the electromagnetic (EM) wave absorption region. However, for pure Fe 3 O 4 , it is still a challenge to simultaneously obtain high absorption intensity and broadband absorption at a low thickness, owing to its low dielectric property. As we realized, flake configuration and the porous structure have obviously promote the EM wave absorption property. Because the former can lead to multi-reflection between flakes and the latter is conductive to interface polarization, flaky Fe 3 O 4 with a porous and coarse surface was designed to overcome the deficiency of traditional Fe 3 O 4 particles. The experimental results demonstrate that the flaky configuration is conductive to enhancing the dielectric coefficient and optimizing impedance matching. Moreover, the complex permittivity rises with the aspect ratio of the sheet. Under a suitable dimension, the flaky Fe 3 O 4 could acquire targeted EM wave absorption capacity in the X band (8-12 GHz). In detail, the maximum reflection loss (RL) could reach a strong intensity of -49 dB at 2.05 mm. The effective absorption bandwidth (EAB) with RL below -10 dB is 4.32 (7.52-11.84) GHz, which is almost equivalent to the whole X band (8-12 GHz). Even more exciting, when regulating the thickness between 2.05 and 3.05 mm, the EAB could cover the entire C and X bands (4-12 GHz). This study provides a good reference for the future development of other ferromagnetic materials toward specific microwave bands.

  2. High-resolution spectroscopy and global analysis of CF4 rovibrational bands to model its atmospheric absorption

    NASA Astrophysics Data System (ADS)

    Carlos, M.; Gruson, O.; Richard, C.; Boudon, V.; Rotger, M.; Thomas, X.; Maul, C.; Sydow, C.; Domanskaya, A.; Georges, R.; Soulard, P.; Pirali, O.; Goubet, M.; Asselin, P.; Huet, T. R.

    2017-11-01

    CF4, or tetrafluoromethane, is a chemically inert and strongly absorbing greenhouse gas, mainly of anthropogenic origin. In order to monitor and reduce its atmospheric emissions and concentration, it is thus necessary to obtain an accurate model of its infrared absorption. Such models allow opacity calculations for radiative transfer atmospheric models. In the present work, we perform a global analysis (divided into two distinct fitting schemes) of 17 rovibrational bands of CF4. This gives a reliable model of many of its lower rovibrational levels and allows the calculation of the infrared absorption in the strongly absorbing ν3 region (1283 cm-1 / 7.8 μm), including the main hot band, namely ν3 +ν2 -ν2 as well as ν3 +ν1 -ν1 ; we could also extrapolate the ν3 +ν4 -ν4 absorption. This represents almost 92% of the absorption at room temperature in this spectral region. A new accurate value of the C-F bond length is evaluated to re = 1.314860(21) Å. The present results have been used to update the HITRAN, GEISA and TFMeCaSDa (VAMDC) databases.

  3. Analysis of Mars surface hydration through the MEx/OMEGA observation of the 3 μm absorption band.

    NASA Astrophysics Data System (ADS)

    Jouglet, D.; Poulet, F.; Bibring, J. P.; Langevin, Y.; Gondet, B.; Milliken, R. E.; Mustard, J. F.

    The near infrared Mars surface global mapping done by OMEGA gives the first opportunity to study the global and detailed characteristics of the 3µm hydration absorption band on Mars surface. This feature is indistinctly due to bending and stretching vibrations of water bound in minerals or adsorbed at their surface, and of hydroxyl groups (for a review, see e.g. [1] or [2]). Its study may give new elements to determine the geologic and climatic past of Mars, and may put new constrain about the current water cycle of Mars. OMEGA data are processed in a pipeline that converts raw data to radiance, removes atmospheric effects and gets I/F. Specific data reduction scheme has been developed to assess temperature of OMEGA spectra at 5 µm and to remove their thermal part so as to get the albedo from 1.µm to 5.1µm ([2]). Two methods, the Integrated Band Depth and the water content based on comparison with laboratory measures of Yen et al. ([3]), have been used to assess the 3µm band depth. These two methods where applied to OMEGA spectra acquired at a nominal calibration level and not exhibiting water ice features. This corresponds to approximately 35 million spectra ([2]). The data processed show the presence of this absorption feature overall the Martian surface, which could be explained by the presence of adsorbed water up to 1% water mass percentage ([4]) and by rinds or coating resulting from weathering (see e.g. [5] or [6]). A possible increase of hydration with albedo is discussed so as to discriminate between the albedo-dependence of the method and hydration variations. Terrains enriched in phyllosilicates ([7]), sulfates ([8]) or hydroxides exhibit an increased hydration at 3 µm. This terrains show that the 3 µm band can bring additional information about composition, for example by observing a variation in the shape of the band. A decrease of hydration with elevation is observed on the processed data independently of the value of albedo. This correlation

  4. The spectrum of Pluto, 0.40-0.93 μm. I. Secular and longitudinal distribution of ices and complex organics

    NASA Astrophysics Data System (ADS)

    Lorenzi, V.; Pinilla-Alonso, N.; Licandro, J.; Cruikshank, D. P.; Grundy, W. M.; Binzel, R. P.; Emery, J. P.

    2016-01-01

    Context. During the past 30 years the surface of Pluto has been characterized and its variability monitored through continuous near-infrared spectroscopic observations. But in the visible range only a few data are available. Aims: The aim of this work is to define Pluto's relative reflectance in the visible range to characterize the different components of its surface, and to provide ground based observations in support of the New Horizons mission. Methods: We observed Pluto on six nights between May and July 2014 with the imager/spectrograph ACAM at the William Herschel Telescope (La Palma, Spain). The six spectra obtained cover a whole rotation of Pluto (Prot = 6.4 days). For all the spectra, we computed the spectral slope and the depth of the absorption bands of methane ice between 0.62 and 0.90 μm. To search for shifts in the center of the methane bands, which are associated with dilution of CH4 in N2, we compared the bands with reflectances of pure methane ice. Results: All the new spectra show the methane ice absorption bands between 0.62 and 0.90 μm. Computation of the depth of the band at 0.62 μm in the new spectra of Pluto and in the spectra of Makemake and Eris from the literature, allowed us to estimate the Lambert coefficient at this wavelength at temperatures of 30 K and 40 K, which has never been measured before. All the detected bands are blueshifted with respect to the position for pure methane ice, with minimum shifts correlated to the regions where the abundance of methane is higher. This could be indicative of a dilution of CH4:N2 that is more saturated in CH4. The longitudinal and secular variations in the parameters measured in the spectra are in accordance with results previously reported in the literature and with the distribution of the dark and bright materials that show the Pluto's color maps from New Horizons.

  5. Absorption band oscillator strengths of N2 transitions between 95.8 and 99.4 nm

    NASA Technical Reports Server (NTRS)

    Stark, G.; Smith, Peter L.; Huber, K. P.; Yoshino, K.; Stevens, M. H.; Ito, K.

    1992-01-01

    Molecular nitrogen plays a central role in the energetics of the earth's upper atmosphere and is the major constituent of the atmospheres of the planetary satellites Titan and Triton. This paper reports a new set of absorption oscillator strengths measured at higher resolution for seven bands in the 95.8-99.4 nm region. The results are compared with earlier, lower resolution absorption measurements, electron scattering measurements, and calculations based on a deperturbation analysis of the excited states.

  6. An L Band Spectrum of the Coldest Brown Dwarf

    NASA Astrophysics Data System (ADS)

    Morley, Caroline V.; Skemer, Andrew J.; Allers, Katelyn N.; Marley, Mark. S.; Faherty, Jacqueline K.; Visscher, Channon; Beiler, Samuel A.; Miles, Brittany E.; Lupu, Roxana; Freedman, Richard S.; Fortney, Jonathan J.; Geballe, Thomas R.; Bjoraker, Gordon L.

    2018-05-01

    The coldest brown dwarf, WISE 0855, is the closest known planetary-mass, free-floating object and has a temperature nearly as cold as the solar system gas giants. Like Jupiter, it is predicted to have an atmosphere rich in methane, water, and ammonia, with clouds of volatile ices. WISE 0855 is faint at near-infrared wavelengths and emits almost all its energy in the mid-infrared. Skemer et al. presented a spectrum of WISE 0855 from 4.5–5.1 μm (M band), revealing water vapor features. Here, we present a spectrum of WISE 0855 in the L band, from 3.4–4.14 μm. We present a set of atmosphere models that include a range of compositions (metallicities and C/O ratios) and water ice clouds. Methane absorption is clearly present in the spectrum. The mid-infrared color can be better matched with a methane abundance that is depleted relative to solar abundance. We find that there is evidence for water ice clouds in the M band spectrum, and we find a lack of phosphine spectral features in both the L and M band spectra. We suggest that a deep continuum opacity source may be obscuring the near-infrared flux, possibly a deep phosphorous-bearing cloud, ammonium dihyrogen phosphate. Observations of WISE 0855 provide critical constraints for cold planetary atmospheres, bridging the temperature range between the long-studied solar system planets and accessible exoplanets. The James Webb Space Telescope will soon revolutionize our understanding of cold brown dwarfs with high-precision spectroscopy across the infrared, allowing us to study their compositions and cloud properties, and to infer their atmospheric dynamics and formation processes.

  7. Accumulation Rates in the Dry Snow Zone of the Greenland Ice Sheet Inferred from L-band InSAR Data

    NASA Astrophysics Data System (ADS)

    Chen, A. C.; Zebker, H. A.

    2012-12-01

    The Greenland ice sheet contains about 2.9 million km3 of ice and would raise global sea levels by about 7.1 m if it melted completely. Two unusually large iceberg calving events at Petermann Glacier in the past several years, along with the unusually large extent of ice sheet melt this summer point to the relevance of understanding the mass balance of the Greenland ice sheet. In this study, we use data from the PALSAR instrument aboard the ALOS satellite to form L-band (23-centimeter carrier wavelength) InSAR images of the dry snow zone of the Greenland ice sheet. We form geocoded differential interferograms, using the ice sheet elevation model produced by Howat et.al. [1]. By applying phase and radiometric calibration, we can examine interferograms formed between any pair of transmit and receive polarization channels. In co-polarized interferograms, the InSAR correlation ranges from about 0.35 at the summit (38.7 deg W, 73.0 deg N) where accumulation is about 20 cm w.e./yr to about 0.70 at the north-eastern part of the dry snow zone (35.1 deg W, 77.1 deg N), where accumulation is about 11.7 cm w.e./yr. Cross-polarized interferograms show similar geographic variation with overall lower correlation. We compare our InSAR data with in-situ measurements published by Bales et.al. [2]. We examine the applicability of dense-medium radiative transfer electromagnetic scattering models for estimating accumulation rates from L-band InSAR data. The large number and broad coverage of ALOS scenes acquired between 2007 and 2009 with good InSAR coherence at 46-day repeat times and 21.5 degree incidence angles gives us the opportunity to examine the empirical relationship between in-situ accumulation rate observations and the polarimetric InSAR correlation and radar brightness at this particular imaging geometry. This helps us quantify the accuracy of accumulation rates estimated from InSAR data. In some regions, 46-day interferograms acquired in the winters of several consecutive

  8. Snow depth retrieval from L-band satellite measurements on Arctic and Antarctic sea ice

    NASA Astrophysics Data System (ADS)

    Maaß, N.; Kaleschke, L.; Wever, N.; Lehning, M.; Nicolaus, M.; Rossmann, H. L.

    2017-12-01

    The passive microwave mission SMOS provides daily coverage of the polar regions and measures at a low frequency of 1.4 GHz (L-band). SMOS observations have been used to operationally retrieve sea ice thickness up to 1 m and to estimate snow depth in the Arctic for thicker ice. Here, we present how SMOS-retrieved snow depths compare with airborne measurements from NASA's Operation IceBridge mission (OIB) and with AMSR-2 satellite retrievals at higher frequencies, and we show first applications to Antarctic sea ice. In previous studies, SMOS and OIB snow depths showed good agreement on spatial scales from 50 to 1000 km for some days and disagreement for other days. Here, we present a more comprehensive comparison of OIB and SMOS snow depths in the Arctic for 2011 to 2015. We find that the SMOS retrieval works best for cold conditions and depends on auxiliary information on ice surface temperature, here provided by MODIS thermal imagery satellite data. However, comparing SMOS and OIB snow depths is difficult because of the different spatial resolutions (SMOS: 40 km, OIB: 40 m). Spatial variability within the SMOS footprint can lead to different snow conditions as seen from SMOS and OIB. Ideally the comparison is made for uniform conditions: Low lead and open water fraction, low spatial and temporal variability of ice surface temperature, no mixture of multi- and first-year ice. Under these conditions and cold temperatures (surface temperatures below -25°C), correlation coefficients between SMOS and OIB snow depths increase from 0.3 to 0.6. A finding from the comparison with AMSR-2 snow depths is that the SMOS-based maps depend less on the age of the sea ice than the maps derived from higher frequencies. Additionally, we show first results of SMOS snow depths for Antarctic sea ice. SMOS observations are compared to measurements of autonomous snow buoys drifting in the Weddell Sea since 2014. For a better comparability of these point measurements with SMOS data, we use

  9. Reassignment of the Iron (3) Absorption Bands in the Spectra of Mars

    NASA Technical Reports Server (NTRS)

    Sherman, D. M.

    1985-01-01

    Absorption features in the near-infrared and visible region reflectance spectra of Mars have been assigned to specific Fe (3+) crystal-field and o(2-) yields Fe(3+) charge transfer transitions. Recently, near-ultraviolet absorption spectra of iron oxides were obtained and the energies of o(2-) yields Fe(3+) charge-transfer (LMCT) transitions were determined from accurate SCF-X # alpha-SW molecular orbital calculations on (FeO6)(9-) and (FeO4)(5-) clusters. Both the theoretical and experimental results, together with existing data in the literature, show that some of the previous Fe(3+) band assignments in the spectra of Mars need to be revised. The theory of Fe(3+) spectra in minerals is discussed and applied to the spectrum of Mars.

  10. The flaky porous Fe3O4 with tunable dimensions for enhanced microwave absorption performance in X and C bands

    NASA Astrophysics Data System (ADS)

    Zhao, Huanqin; Cheng, Yan; Liu, Wei; Yang, Zhihong; Zhang, Baoshan; Ji, Guangbin; Du, Youwei

    2018-07-01

    Special electric and magnetic characteristics make Fe3O4 widely applied in the electromagnetic (EM) wave absorption region. However, for pure Fe3O4, it is still a challenge to simultaneously obtain high absorption intensity and broadband absorption at a low thickness, owing to its low dielectric property. As we realized, flake configuration and the porous structure have obviously promote the EM wave absorption property. Because the former can lead to multi-reflection between flakes and the latter is conductive to interface polarization, flaky Fe3O4 with a porous and coarse surface was designed to overcome the deficiency of traditional Fe3O4 particles. The experimental results demonstrate that the flaky configuration is conductive to enhancing the dielectric coefficient and optimizing impedance matching. Moreover, the complex permittivity rises with the aspect ratio of the sheet. Under a suitable dimension, the flaky Fe3O4 could acquire targeted EM wave absorption capacity in the X band (8–12 GHz). In detail, the maximum reflection loss (RL) could reach a strong intensity of ‑49 dB at 2.05 mm. The effective absorption bandwidth (EAB) with RL below ‑10 dB is 4.32 (7.52–11.84) GHz, which is almost equivalent to the whole X band (8–12 GHz). Even more exciting, when regulating the thickness between 2.05 and 3.05 mm, the EAB could cover the entire C and X bands (4–12 GHz). This study provides a good reference for the future development of other ferromagnetic materials toward specific microwave bands.

  11. Airborne imaging spectrometer data of the Ruby Mountains, Montana: Mineral discrimination using relative absorption band-depth images

    USGS Publications Warehouse

    Crowley, J.K.; Brickey, D.W.; Rowan, L.C.

    1989-01-01

    Airborne imaging spectrometer data collected in the near-infrared (1.2-2.4 ??m) wavelength range were used to study the spectral expression of metamorphic minerals and rocks in the Ruby Mountains of southwestern Montana. The data were analyzed by using a new data enhancement procedure-the construction of relative absorption band-depth (RBD) images. RBD images, like bandratio images, are designed to detect diagnostic mineral absorption features, while minimizing reflectance variations related to topographic slope and albedo differences. To produce an RBD image, several data channels near an absorption band shoulder are summed and then divided by the sum of several channels located near the band minimum. RBD images are both highly specific and sensitive to the presence of particular mineral absorption features. Further, the technique does not distort or subdue spectral features as sometimes occurs when using other data normalization methods. By using RBD images, a number of rock and soil units were distinguished in the Ruby Mountains including weathered quartz - feldspar pegmatites, marbles of several compositions, and soils developed over poorly exposed mica schists. The RBD technique is especially well suited for detecting weak near-infrared spectral features produced by soils, which may permit improved mapping of subtle lithologic and structural details in semiarid terrains. The observation of soils rich in talc, an important industrial commodity in the study area, also indicates that RBD images may be useful for mineral exploration. ?? 1989.

  12. Enhanced Photocatalytic Activity of La3+-Doped TiO2 Nanotubes with Full Wave-Band Absorption

    NASA Astrophysics Data System (ADS)

    Xia, Minghao; Huang, Lingling; Zhang, Yubo; Wang, Yongqian

    2018-06-01

    TiO2 nanotubes doped with La3+ were synthesized by anodic oxidation method and the photocatalytic activity was detected by photodegrading methylene blue. As-prepared samples improved the absorption of both ultraviolet light and visible light and have a great enhancement on the photocatalytic activity while contrasting with the pristine TiO2 nanotubes. A tentative mechanism for the enhancement of photocatalytic activity with full wave-band absorption is proposed.

  13. The development of blue ice moraines from englacial debris bands as detected by GPR, Mt Achernar, central Transantarctic Mountains, Antarctica

    NASA Astrophysics Data System (ADS)

    Kassab, C.; Lindback, K.; Pettersson, R.; Licht, K.; Graly, J. A.; Kaplan, M. R.

    2016-12-01

    Blue ice moraines cover a small percentage of Antarctica, but can contain a significant record of ice sheet dynamics and climate over multiple glacial cycles. Previous work has focused on the temporal and provenance record contained within these moraines and less on mechanisms by which such deposits form and their temporal evolution. In order to create a conceptual model of their formation, >25 km of ground penetrating radar transects at 25 and 100 MHz frequencies were collected at the Mt Achernar moraine adjacent to Law Glacier. Here, ice ablation causes debris bands to emerge and deliver sediment to the surface. Most transects were collected perpendicular to the ice-moraine margin, and extend from the actively flowing Law Glacier ice to a distance of 2 km into the moraine. The 25 and 100 MHz transects penetrate to a depth of 200 m and 60 m respectively and reveal a relatively complex internal stratigraphy. Closest to the ice-moraine margin, stratigraphy is not well resolved due to a high amount of clutter. Steeply dipping parallel reflections first emerge 400m away from the ice margin and dip toward Law Glacier. These reflections continue inwards to 1450m, where the reflections become more closely spaced. Hummocky topography and parallel ridge/trough topography dominate the geomorphic expression. The hummocky topography corresponds to the region where reflections are not well resolved. The ridges are interpreted to be debris bands that are emerging at the surface, similar to those along the margin of the Law Glacier where debris is newly emerging. The reflections in the GPR transects indicate that debris is transported from depth to the surface of the ice where it accumulates forming the Mt Achernar moraine. It appears that the various reflection patterns correspond to unique surface geomorphic expressions. The reflections also indicate that at least the first 2 km of debris rich buried ice in the moraine can be linked to the actively flowing Law Glacier

  14. Theoretical modeling of low-energy electronic absorption bands in reduced cobaloximes

    DOE PAGES

    Bhattacharjee, Anirban; Chavarot-Kerlidou, Murielle; Dempsey, Jillian L.; ...

    2014-08-11

    Here, we report that the reduced Co(I) states of cobaloximes are powerful nucleophiles that play an important role in the hydrogen-evolving catalytic activity of these species. In this work we have analyzed the low energy electronic absorption bands of two cobaloxime systems experimentally and using a variety of density functional theory and molecular orbital ab initio quantum chemical approaches. Overall we find a reasonable qualitative understanding of the electronic excitation spectra of these compounds but show that obtaining quantitative results remains a challenging task.

  15. On Sea Ice Characterisation By Multi-Frequency SAR

    NASA Astrophysics Data System (ADS)

    Grahn, Jakob; Brekke, Camilla; Eltoft, Torbjorn; Holt, Benjamin

    2013-12-01

    By means of polarimetric target decomposition, quad-pol SAR data of sea ice is analysed at two frequency bands. In particular, the non negative eigenvalue decomposition (NNED) is applied on L- and C-band NASA/JPL AIR- SAR data acquired over the Beaufort sea in 2004. The de- composition separates the scattered radar signal into three types, dominated by double, volume and single bounce scattering respectively. Using ground truth derived from RADARSAT-1 and meteorological data, we investigate how the different frequency bands compare in terms of these scattering types. The ground truth contains multi year ice and three types of first year ice of different age and thickness. We find that C-band yields a higher scattered intensity in most ice and scattering types, as well as a more homogeneous intensity. L-band on the other hand yields more pronounced deformation features, such as ridges. The mean intensity contrast between the two thinnest ice types is highest in the double scattering component of C- band, although the contrast of the total signal is greater in L-band. This may indicate that the choice of polarimetric parameters is important for discriminating thin ice types.

  16. Anisotropy of band gap absorption in TlGaSe2 semiconductor by ferroelectric phase transformation

    NASA Astrophysics Data System (ADS)

    Gulbinas, Karolis; Grivickas, Vytautas; Gavryushin, Vladimir

    2014-12-01

    The depth-resolved free-carrier absorption and the photo-acoustic response are used to examine the band-gap absorption in 2D-TlGaSe2 layered semiconductor after its transformation into the ferroelectric F-phase below 107 K. The absorption exhibits unusual behavior with a biaxial character in respect to the light polarization on the layer plane. A spectral analysis shows that the anisotropy is associated to the lowest Γ-direct optical transition. The Γ-absorption and the localized exciton at 2.11 eV are dipole-prohibited or partially allowed in two nearly perpendicular polarization directions. The shift of anisotropy axis in respect to crystallographic a- and b-directions demonstrates the non-equivalent zigzag rearrangement of the interlayer connecting Tl+ ions, which is responsible for occurrence of the F-phase.

  17. Collision-induced absorption in the region of the ν2 + ν3 band of carbon dioxide

    NASA Astrophysics Data System (ADS)

    Baranov, Yu. I.

    2018-03-01

    The IR absorption spectra of pure carbon dioxide in the region of the forbidden ν2 + ν3 vibrational transition at 3004 cm-1 have been recorded using a Fourier-transform spectrometer. A multipass-optical cell with the path length of 100 m was used in the study. The data were taken at room temperature of 294.8 K with a resolution of 0.02 cm-1 over the spectral region 2500-3500 cm-1. A sample pressures varied from 207 to 463 kPa (2.04-4.57 atm). The measured binary absorption coefficients provide the band integrated intensity value of (2.39 ± 0.04) ∗ 10-4 cm-2 amagat-2. The result is compared with those from previous works. The observed band profile features are discussed.

  18. Detection of metal stress in boreal forest species using the 0.67-micron chlorophyll absorption band

    NASA Technical Reports Server (NTRS)

    Singhroy, Vernon H.; Kruse, Fred A.

    1991-01-01

    Several recent studies have shown that a shift of the red-edge inflection near 0.70 micron in vegetation reflectance spectra is an indicator of metal stress, partially attributable to changes in chlorophyll concentration. This 'red-edge shift', however, is difficult to detect and has been reported both toward longer (red) and shorter (blue) wavelengths. Our work demonstrates that direct measurement of the depth and width of the chlorophyll absorption band at 0.67 micron using digital feature extraction and absorption band characterization procedures developed for the analysis of mineral spectra is a more consistent indicator of metal stress. Additionally, the magnitude of these parameters is generally greater than that of the red edge shift and thus should be more amenable to detection and mapping using field and aircraft spectrometers.

  19. OPTICAL CONSTANTS AND BAND STRENGTHS OF CH{sub 4}:C{sub 2}H{sub 6} ICES IN THE NEAR- AND MID-INFRARED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molpeceres, Germán; Ortigoso, Juan; Escribano, Rafael

    2016-07-10

    We present a spectroscopic study of methane–ethane ice mixtures. We have grown CH{sub 4}:C{sub 2}H{sub 6} mixtures with ratios 3:1, 1:1, and 1:3 at 18 and 30 K, plus pure methane and ethane ices, and have studied them in the near-infrared (NIR) and mid-infrared (MIR) ranges. We have determined densities of all species mentioned above. For amorphous ethane grown at 18 and 30 K we have obtained a density of 0.41 and 0.54 g cm{sup −3}, respectively, lower than a previous measurement of the density of the crystalline species, 0.719 g cm{sup −3}. As far as we know this ismore » the first determination of the density of amorphous ethane ice. We have measured band shifts of the main NIR methane and ethane features in the mixtures with respect to the corresponding values in the pure ices. We have estimated band strengths of these bands in the NIR and MIR ranges. In general, intensity decay in methane modes was detected in the mixtures, whereas for ethane no clear tendency was observed. Optical constants of the mixtures at 30 and 18 K have also been evaluated. These values can be used to trace the presence of these species in the surface of trans-Neptunian objects. Furthermore, we have carried out a theoretical calculation of these ice mixtures. Simulation cells for the amorphous solids have been constructed using a Metropolis Monte Carlo procedure. Relaxation of the cells and prediction of infrared spectra have been carried out at density functional theory level.« less

  20. Infrared Spectra and Band Strengths of Amorphous and Crystalline N2O

    NASA Technical Reports Server (NTRS)

    Hudson, R. L.; Loeffler, M. J.; Gerakines, P. A.

    2017-01-01

    Infrared transmission spectra from 4000 to 400 cm (exp -1), and associated band strengths and absorption coefficients, are presented for the first time for both amorphous and crystalline N2O. Changes in the spectra as a function of ice thickness and ice temperature are shown. New measurements of density, refractive index, and specific refraction are reported for amorphous and crystalline N2O. Comparisons are made to published results, and the most-likely reason for some recent disagreements in the literature is discussed. As with CO2, its isoelectronic congener, the formation of amorphous N2O is found to require greater care than the formation of amorphous solids from more-polar molecules.

  1. Ices on Charon: Distribution of H2O and NH3 from New Horizons LEISA observations

    NASA Astrophysics Data System (ADS)

    Dalle Ore, C. Morea; Protopapa, S.; Cook, J. C.; Grundy, W. M.; Cruikshank, D. P.; Verbiscer, A. J.; Ennico, K.; Olkin, C. B.; Stern, S. A.; Weaver, H. A.; Young, L. A.; New Horizons Science Team

    2018-01-01

    Charon, the largest moon of Pluto, appeared as a fairly homogeneous, gray, icy world to New Horizons during closest approach on July 14th, 2015. Charon's sub-Pluto hemisphere was scanned by the Ralph/LEISA near-IR spectrograph providing an unprecedented opportunity to measure its surface composition. We apply a statistical clustering tool to identify spectrally distinct terrains and a radiative transfer approach to study the variations of the 2.0-μm H2O ice band. We map the distribution of the ices previously reported to be present on Charon's surface, namely H2O and the products of NH3 in H2O. We find that H2O ice is mostly in the crystalline phase, confirming previous studies. The regions with the darkest albedos show the strongest signature of amorphous-phase ice, although the crystalline component is still strong. The brighter albedo regions, often corresponding to crater ejecta blankets, are characterized by larger H2O grains, possibly an indication of a younger age. We observe two different behaviors for the two absorption bands representing NH3 in H2O. The 2.21-μm band tends to cluster more in the northern areas compared to the ∼2.01-μm band. Both bands are present in the brighter crater rays, but not all craters show both bands. The 2.21-μm band is also clearly present on the smaller moons Hydra and Nix. These results hint that different physical conditions may determine the appearance or absence of these two different forms of NH3 in H2O ice in the Pluto system. We also investigate the blue slope affecting the spectrum at wavelengths longer than ∼1.8 μm previously reported by several authors. We find that the slope is common among the objects in the Pluto system, Charon, the smaller moons Nix and Hydra, and the darkest terrains on Pluto. It also characterizes the analog ice tholin obtained from irradiation of Pluto-specific materials (a mixture of N2, CH4, and CO ices) in the laboratory. Our modeling results show that Pluto ice tholins are

  2. Effect of pressure on infrared spectra of ice 7

    NASA Technical Reports Server (NTRS)

    Holzapfel, W. B.; Seiler, B.; Nicol, M.

    1983-01-01

    The effect of pressure on the infrared spectra of H2O and D2O ice VII was studied at room temperature and pressures between 2 and 15 GPa with a Fourier transform infrared spectrometer and a diamond anvil high pressure cell. Two librational modes, one bending mode, and various overtone bands are well resolved. The stretching modes, nu sub 1 and nu sub 3 are poorly resolved due to overlap with diamond window absorption. Differences between the spectra of H2O and D2O are discussed.

  3. Electronic absorption band broadening and surface roughening of phthalocyanine double layers by saturated solvent vapor treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jinhyun; Yim, Sanggyu, E-mail: sgyim@kookmin.ac.kr

    2012-10-15

    Variations in the electronic absorption (EA) and surface morphology of three types of phthalocyanine (Pc) thin film systems, i.e. copper phthalocyanine (CuPc) single layer, zinc phthalocyanine (ZnPc) single layer, and ZnPc on CuPc (CuPc/ZnPc) double layer film, treated with saturated acetone vapor were investigated. For the treated CuPc single layer film, the surface roughness slightly increased and bundles of nanorods were formed, while the EA varied little. In contrast, for the ZnPc single layer film, the relatively high solubility of ZnPc led to a considerable shift in the absorption bands as well as a large increase in the surface roughnessmore » and formation of long and wide nano-beams, indicating a part of the ZnPc molecules dissolved in acetone, which altered their molecular stacking. For the CuPc/ZnPc film, the saturated acetone vapor treatment resulted in morphological changes in mainly the upper ZnPc layer due to the significantly low solubility of the underlying CuPc layer. The treatment also broadened the EA band, which involved a combination of unchanged CuPc and changed ZnPc absorption.« less

  4. X-ray absorption and reflection as probes of the GaN conduction bands: Theory and experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambrecht, W.R.L.; Rashkeev, S.N.; Segall, B.

    1997-04-01

    X-ray absorption measurements are a well-known probe of the unoccupied states in a material. The same information can be obtained by using glancing angle X-ray reflectivity. In spite of several existing band structure calculations of the group III nitrides and previous optical studies in UV range, a direct probe of their conduction band densities of states is of interest. The authors performed a joint experimental and theoretical investigation using both of these experimental techniques for wurtzite GaN.

  5. Infrared spectoscopy of Triton and Pluto ice analogs: The case for saturated hydrocarbons

    NASA Technical Reports Server (NTRS)

    Bohn, Robert B.; Sandford, Scott A.; Allamandola, Louis J.; Cruikshank, Dale P.

    1994-01-01

    The infrared transmission spectra and photochemical behavior of various organic compounds isolated in solid N2 ices, appropriate for applications to Triton ad Pluto, are presented. It is shown that excess absorption in the surface spectra of Triton and Pluto, i.e., absorption not explained by present models incorporating molecules already identified on these bodies (N2, CH4, CO, and CO2), that starts near 4450/cm (2.25 microns) and extends to lower frequencies, may be due to alkanes (C(n)H(2n+2)) and related molecules frozen in the nitrogen. Branched and linear alkanes may be responsible. Experiments in which the photochemstry of N2: CH4 and N2: CH4: CO ices was explored demonsrtrate that the surface ices of Triton and Pluto may contain a wide variety of additional species containing H, C, O, and N. Of these, the reactive molecule diazomethane, CH2N2, is particularly important since it may be largely responsible for the synthesis of larger alkanes from CH4 and other small alkanes. Diazomethane would also be expected to drive chemical reactions involving organics in the surface ices of Triton and Pluto toward saturation, i.e., to reduce multiple CC bonds. The positions and intrinsic strengths (A values) of many of the infrared absorption bands of N2 matrix-isolated molecules of relevance to Triton and Pluto have also been determined. These can be used to aid in their search and to place constraints on their abundances.

  6. Detection of the 2165 Inverse Centimeter (4.619 Micron) XCN Band in the Spectrum of L1551 IRS 5

    NASA Technical Reports Server (NTRS)

    Tegler, Stephen C.; Weintraub, David A.; Allamandola, Louis J.; Sandford, Scott A.; Rettig, Terrence W.; Campins, Humberto

    1993-01-01

    We report the detection of a broad absorption band at 2165 cm (4.619 microns) in the spectrum of L1551 IRS 5. New laboratory results over the 2200-2100 /cm wavenumber interval (4.55-4.76 microns), performed with realistic interstellar ice analogs, suggest that this feature is due to a CN-containing compound. We will refer to this compound as XCN. We also confirm the presence of frozen CO (both in nonpolar and polar matrices) through absorption bands at 2140 /cm (4.67 microns) and 2135 /cm (4.68 microns). The relative abundance of solid-state CO to frozen H2O is approx. 0.13 while the abundance of XCN seems comparable to that of frozen CO.

  7. Information content of thermal infrared a microwave bands for simultaneous retrieval of cirrus ice water path and particle effective diameter

    NASA Astrophysics Data System (ADS)

    Bell, A.; Tang, G.; Yang, P.; Wu, D.

    2017-12-01

    Due to their high spatial and temporal coverage, cirrus clouds have a profound role in regulating the Earth's energy budget. Variability of their radiative, geometric, and microphysical properties can pose significant uncertainties in global climate model simulations if not adequately constrained. Thus, the development of retrieval methodologies able to accurately retrieve ice cloud properties and present associated uncertainties is essential. The effectiveness of cirrus cloud retrievals relies on accurate a priori understanding of ice radiative properties, as well as the current state of the atmosphere. Current studies have implemented information content theory analyses prior to retrievals to quantify the amount of information that should be expected on parameters to be retrieved, as well as the relative contribution of information provided by certain measurement channels. Through this analysis, retrieval algorithms can be designed in a way to maximize the information in measurements, and therefore ensure enough information is present to retrieve ice cloud properties. In this study, we present such an information content analysis to quantify the amount of information to be expected in retrievals of cirrus ice water path and particle effective diameter using sub-millimeter and thermal infrared radiometry. Preliminary results show these bands to be sensitive to changes in ice water path and effective diameter, and thus lend confidence their ability to simultaneously retrieve these parameters. Further quantification of sensitivity and the information provided from these bands can then be used to design and optimal retrieval scheme. While this information content analysis is employed on a theoretical retrieval combining simulated radiance measurements, the methodology could in general be applicable to any instrument or retrieval approach.

  8. C-band Joint Active/Passive Dual Polarization Sea Ice Detection

    NASA Astrophysics Data System (ADS)

    Keller, M. R.; Gifford, C. M.; Winstead, N. S.; Walton, W. C.; Dietz, J. E.

    2017-12-01

    A technique for synergistically-combining high-resolution SAR returns with like-frequency passive microwave emissions to detect thin (<30 cm) ice under the difficult conditions of late melt and freeze-up is presented. As the Arctic sea ice cover thins and shrinks, the algorithm offers an approach to adapting existing sensors monitoring thicker ice to provide continuing coverage. Lower resolution (10-26 km) ice detections with spaceborne radiometers and scatterometers are challenged by rapidly changing thin ice. Synthetic Aperture Radar (SAR) is high resolution (5-100m) but because of cross section ambiguities automated algorithms have had difficulty separating thin ice types from water. The radiometric emissivity of thin ice versus water at microwave frequencies is generally unambiguous in the early stages of ice growth. The method, developed using RADARSAT-2 and AMSR-E data, uses higher-ordered statistics. For the SAR, the COV (coefficient of variation, ratio of standard deviation to mean) has fewer ambiguities between ice and water than cross sections, but breaking waves still produce ice-like signatures for both polarizations. For the radiometer, the PRIC (polarization ratio ice concentration) identifies areas that are unambiguously water. Applying cumulative statistics to co-located COV levels adaptively determines an ice/water threshold. Outcomes from extensive testing with Sentinel and AMSR-2 data are shown in the results. The detection algorithm was applied to the freeze-up in the Beaufort, Chukchi, Barents, and East Siberian Seas in 2015 and 2016, spanning mid-September to early November of both years. At the end of the melt, 6 GHz PRIC values are 5-10% greater than those reported by radiometric algorithms at 19 and 37 GHz. During freeze-up, COV separates grease ice (<5 cm thick) from water. As the ice thickens, the COV is less reliable, but adding a mask based on either the PRIC or the cross-pol/co-pol SAR ratio corrects for COV deficiencies. In general

  9. Study on ice cloud optical thickness retrieval with MODIS IR spectral bands

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Li, Jun

    2005-01-01

    The operational Moderate-Resolution Imaging Spectroradiometer (MODIS) products for cloud properties such as cloud-top pressure (CTP), effective cloud amount (ECA), cloud particle size (CPS), cloud optical thickness (COT), and cloud phase (CP) have been available for users globally. An approach to retrieve COT is investigated using MODIS infrared (IR) window spectral bands (8.5 mm, 11mm, and 12 mm). The COT retrieval from MODIS IR bands has the potential to provide microphysical properties with high spatial resolution during night. The results are compared with those from operational MODIS products derived from the visible (VIS) and near-infrared (NIR) bands during day. Sensitivity of COT to MODIS spectral brightness temperature (BT) and BT difference (BTD) values is studied. A look-up table is created from the cloudy radiative transfer model accounting for the cloud absorption and scattering for the cloud microphysical property retrieval. The potential applications and limitations are also discussed. This algorithm can be applied to the future imager systems such as Visible/Infrared Imager/Radiometer Suite (VIIRS) on the National Polar-orbiting Operational Environmental Satellite System (NPOESS) and Advanced Baseline Imager (ABI) on the Geostationary Operational Environmental Satellite (GOES)-R.

  10. On the origin of the water vapor continuum absorption within rotational and fundamental vibrational bands

    NASA Astrophysics Data System (ADS)

    Serov, E. A.; Odintsova, T. A.; Tretyakov, M. Yu.; Semenov, V. E.

    2017-05-01

    Analysis of the continuum absorption in water vapor at room temperature within the purely rotational and fundamental ro-vibrational bands shows that a significant part (up to a half) of the observed absorption cannot be explained within the framework of the existing concepts of the continuum. Neither of the two most prominent mechanisms of continuum originating, namely, the far wings of monomer lines and the dimers, cannot reproduce the currently available experimental data adequately. We propose a new approach to developing a physically based model of the continuum. It is demonstrated that water dimers and wings of monomer lines may contribute equally to the continuum within the bands, and their contribution should be taken into account in the continuum model. We propose a physical mechanism giving missing justification for the super-Lorentzian behavior of the intermediate line wing. The qualitative validation of the proposed approach is given on the basis of a simple empirical model. The obtained results are directly indicative of the necessity to reconsider the existing line wing theory and can guide this consideration.

  11. High resolution absorption cross sections in the transmission window region of the Schumann-Runge bands and Herzberg continuum of O2

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Esmond, J. R.; Cheung, A. S.-C.; Freeman, D. E.; Parkinson, W. H.

    1992-01-01

    Results are presented on measurements, conducted in the wavelength region 180-195 nm, and at different pressures of oxygen (between 2.5-760 torr) in order to separate the pressure-dependent absorption from the main cross sections, of the absorption cross sections of the Schumann-Runge bands in the window region between the rotational lines of S-R bands of O2. The present cross sections supersede the earlier published cross sections (Yoshino et al., 1983). The combined cross sections are presented graphically; they are available at wavenumber intervals of about 0.1/cm from the National Space Science Data Center. The Herzberg continuum cross sections are derived after subtracting calculated contributions from the Schumann-Runge bands. These are significantly smaller than any previous measurements.

  12. Toward Improving Ice Water Content and Snow Rate Retrievals from Spaceborne Radars, Emphasizing Ku and Ka-Bands

    NASA Astrophysics Data System (ADS)

    Heymsfield, A.; Bansemer, A.; Tanelli, S.; Poellot, M.

    2015-12-01

    This study uses a data set from either overflying aircraft or ground-based radars operating at Ku and Ka bands, combined with in-situ microphysical measurements to develop radar reflectivity (Ze)-ice water content (IWC) and Ze-snowfall rate (S) relationships that are suited for retrieval of snowfall rate from the GPM radars. During GCPEX, the NASA DC-8 aircraft, carrying the JPL APR-2 KU and KA band radars overflew the UND Citation aircraft, making microphysical measurements in the ice clouds below. On two days, 19 and 28 January 2011, there are a total of almost 7000 1-sec colocations of the aircraft, where a collocation was defined as having a combination of a spatial separation of less than 3 km and a time separation of less than 10 minutes. During the NASA GPM Mid-latitude Continental Convective Cloud Experiment (MC3E), the Citation aircraft made in-situ observations over Oklahoma in 2011. We evaluated the data from two types of collocations. First, there were two Citation spirals on 27 April 2011, over the NPOL radar. At the same time, the UHF-band KUZR radar was collecting data in a vertically-pointing mode. Also, the Ka band KAZR Doppler radar was operating in a zenith orientation. Reflectivities and Doppler velocities, without and with appreciable Mie-scattering effects of the hydrometers (for KUZR and KAZR, respectively), are thus available during the spirals. Also during MC3E, six deep convective clouds with a total of more than 5000 5-sec samples and a range of temperatures from -40 to 0C were sampled by the Citation at the same time that NEXRAD reflectivities were measured at about the same position. These data allows us to evaluate various backscatter models and to develop multi-wavelength Z-IWC and Z-S relationships. We will present the results of this study.

  13. Highly vibrationally excited O2 molecules in low-pressure inductively-coupled plasmas detected by high sensitivity ultra-broad-band optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Foucher, Mickaël; Marinov, Daniil; Carbone, Emile; Chabert, Pascal; Booth, Jean-Paul

    2015-08-01

    Inductively-coupled plasmas in pure O2 (at pressures of 5-80 mTorr and radiofrequency power up to 500 W) were studied by optical absorption spectroscopy over the spectral range 200-450 nm, showing the presence of highly vibrationally excited O2 molecules (up to vʺ = 18) by Schumann-Runge band absorption. Analysis of the relative band intensities indicates a vibrational temperature up to 10,000 K, but these hot molecules only represent a fraction of the total O2 density. By analysing the (11-0) band at higher spectral resolution the O2 rotational temperature was also determined, and was found to increase with both pressure and power, reaching 900 K at 80 mTorr 500 W. These measurements were achieved using a new high-sensitivity ultra-broad-band absorption spectroscopy setup, based on a laser-plasma light source, achromatic optics and an aberration-corrected spectrograph. This setup allows the measurement of weak broadband absorbances due to a baseline variability lower than 2   ×   10-5 across a spectral range of 250 nm.

  14. On the state of water ice on saturn's moon Titan and implications to icy bodies in the outer solar system.

    PubMed

    Zheng, Weijun; Jewitt, David; Kaiser, Ralf I

    2009-10-22

    The crystalline state of water ice in the Solar System depends on the temperature history of the ice and the influence of energetic particles to which it has been exposed. We measured the infrared absorption spectra of amorphous and crystalline water ice in the 10-50 K and 10-140 K temperature ranges, respectively, and conducted a systematic experimental study to investigate the amorphization of crystalline water ice via ionizing radiation irradiation at doses of up to 160 +/- 30 eV per molecule. We found that crystalline water ice can be converted only partially to amorphous ice by electron irradiation. The experiments showed that a fraction of the 1.65 microm band, which is characteristic for crystalline water ice, survived the irradiation, to a degree that strongly depends on the temperature. Quantitative kinetic fits of the temporal evolution of the 1.65 mum band clearly demonstrate that there is a balance between thermal recrystallization and irradiation-induced amorphization, with thermal recrystallizaton dominant at higher temperatures. Our experiments show the amorphization at 40 K was incomplete, in contradiction to Mastrapa and Brown's conclusion (Icarus 2006, 183, 207.). At 50 K, the recrystallization due to thermal effects is strong, and most of the crystalline ice survived. Temperatures of most icy objects in the Solar System, including Jovian satellites, Saturnian satellites (including Titan), and Kuiper Belt Objects, are equal to or above 50 K; this explains why water ice detected on those objects is mostly crystalline.

  15. Microwave absorption properties of flake-shaped Co particles composites at elevated temperature (293-673 K) in X band

    NASA Astrophysics Data System (ADS)

    Wang, Guowu; Li, Xiling; Wang, Peng; Zhang, Junming; Wang, Dian; Qiao, Liang; Wang, Tao; Li, Fashen

    2018-06-01

    The complex permeability and permittivity of the easy-plane anisotropic Co/polyimide composite at high temperature (293-673 K) in X band were measured. The results show that both the complex permeability and permittivity increase with the increase of temperature in the measured temperature range. The calculated absorption properties display that the intensity of the reflection loss (RL) peak first increases and then decreases with the increase of temperature, and reaches the maximum (-52 dB) at 523 K. At each temperature, the composite can achieve the RL exceeding -10 dB in the whole X band. The composite can even work stably for more than 20 min with the excellent absorption performance under 673 K. In addition, the RL performance of the composite at high temperature is better than that at room temperature.

  16. Design of an ultra-thin absorption layer with magnetic materials based on genetic algorithm at the S band

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Yang, Xiaoning; Liu, Xiaoning; Niu, Tiaoming; Wang, Jing; Mei, Zhonglei; Jian, Yabin

    2018-04-01

    In this work, we design an ultra-thin absorption coating at the S band, and the total thickness is less than 2 mm. For incident angle less than 30 degree and the whole S band, the reflection is less than -5 dB. The coating is constructed with 4/3 layers of magnetic material with different thicknesses, which are optimized by using genetic algorithm. Analytic and simulation results confirm the correctness of the design.

  17. Temperature-Induced Large Broadening and Blue Shift in the Electronic Band Structure and Optical Absorption of Methylammonium Lead Iodide Perovskite.

    PubMed

    Yang, Jia-Yue; Hu, Ming

    2017-08-17

    The power conversion efficiency of hybrid halide perovskite solar cells is profoundly influenced by the operating temperature. Here we investigate the temperature influence on the electronic band structure and optical absorption of cubic CH 3 NH 3 PbI 3 from first-principles by accounting for both the electron-phonon interaction and thermal expansion. Within the framework of density functional perturbation theory, the electron-phonon coupling induces slightly enlarged band gap and strongly broadened electronic relaxation time as temperature increases. The large broadening effect is mainly due to the presence of cation organic atoms. Consequently, the temperature-dependent absorption peak exhibits blue-shift position, decreased amplitude, and broadened width. This work uncovers the atomistic origin of temperature influence on the optical absorption of cubic CH 3 NH 3 PbI 3 and can provide guidance to design high-performance hybrid halide perovskite solar cells at different operating temperatures.

  18. Amorphous and Crystalline H20 Ice at Rhea's Inktomi Crater

    NASA Technical Reports Server (NTRS)

    Lewis, Emma M.; Dalle Ore, Cristina M.; Cruikshank, Dale P.; White, Oliver L.

    2014-01-01

    We present the analysis of Cassini spectral data from spectral mapping of Saturnian icy moons Dione and Rhea, to investigate possible effects of impact crater formation on the relative abundances of crystalline and amorphous water ice in the moons' ice crusts. Both moons display morphologically young ray craters as well as older craters. Possible changes in ice properties due to crater formation are conjectured to be more visible in younger craters, and as such Rhea's well imaged ray crater Inktomi is analysed, as are older craters for comparison. We used data from Cassini's Visual and Infrared Mapping Spectrometer (VIMS). For each pixel in the VIMS maps, spectral data were extracted in the near-infrared range (1.75 micrometers less than lambda less than 2.45 micrometers). Analysis was begun by fitting a single Gaussian to the peak in absorption at 2.0 micrometers, which was then subtracted from the data, leaving residuals with a minimum on either side of the original 2.0-micrometers band. The spectra of the individual spatial pixels were then clustered by the differences between these minima, which are sensitive to changes in both ice grain size and crystallinity. This yielded preliminary maps which approximated the physical characteristics of the landscape and were used to identify candidates for further analysis. Spectra were then clustered by the properties of the 1.5-micrometers band, to divide the map into regions based on inferred grain size. For each region, the predicted differences in minima from the Gaussian residuals, over a range of crystallinities, were calculated based on the found grain sizes. This model was used to find the crystallinity of each pixel via grain size and characteristics of the residual function. Preliminary results show a greater degree of crystallization of young crater interiors, particularly in Rhea's ray crater Inktomi, where ice showed crystalline ice abundances between 33 percent and 61 percent. These patterns in ice

  19. Windows in Arctic sea ice: Light transmission and ice algae in a refrozen lead

    NASA Astrophysics Data System (ADS)

    Kauko, Hanna M.; Taskjelle, Torbjørn; Assmy, Philipp; Pavlov, Alexey K.; Mundy, C. J.; Duarte, Pedro; Fernández-Méndez, Mar; Olsen, Lasse M.; Hudson, Stephen R.; Johnsen, Geir; Elliott, Ashley; Wang, Feiyue; Granskog, Mats A.

    2017-06-01

    The Arctic Ocean is rapidly changing from thicker multiyear to thinner first-year ice cover, with significant consequences for radiative transfer through the ice pack and light availability for algal growth. A thinner, more dynamic ice cover will possibly result in more frequent leads, covered by newly formed ice with little snow cover. We studied a refrozen lead (≤0.27 m ice) in drifting pack ice north of Svalbard (80.5-81.8°N) in May-June 2015 during the Norwegian young sea ICE expedition (N-ICE2015). We measured downwelling incident and ice-transmitted spectral irradiance, and colored dissolved organic matter (CDOM), particle absorption, ultraviolet (UV)-protecting mycosporine-like amino acids (MAAs), and chlorophyll a (Chl a) in melted sea ice samples. We found occasionally very high MAA concentrations (up to 39 mg m-3, mean 4.5 ± 7.8 mg m-3) and MAA to Chl a ratios (up to 6.3, mean 1.2 ± 1.3). Disagreement in modeled and observed transmittance in the UV range let us conclude that MAA signatures in CDOM absorption spectra may be artifacts due to osmotic shock during ice melting. Although observed PAR (photosynthetically active radiation) transmittance through the thin ice was significantly higher than that of the adjacent thicker ice with deep snow cover, ice algal standing stocks were low (≤2.31 mg Chl a m-2) and similar to the adjacent ice. Ice algal accumulation in the lead was possibly delayed by the low inoculum and the time needed for photoacclimation to the high-light environment. However, leads are important for phytoplankton growth by acting like windows into the water column.

  20. Facile Generation and Storage of Polycyclic Aromatic Hydrocarbon Ions in Astrophysical Ices

    NASA Technical Reports Server (NTRS)

    Gudipati, Murthy S.; Allamandola, Louis J.

    2003-01-01

    In situ ultraviolet-visible absorption and emission studies of vacuum ultraviolet (VUV) irradiated water-rich, cosmic ice analogs containing polycyclic aromatic hydrocarbons (PAHs) are described. W V irradiation of 12 K water ices containing the PAHs naphthalene (H2O/C10H8 = 200) and 4-methylpyrene (H2O/C17H12 > 500) readily converts the PAHs into their cation form (PAH(+)). Under these conditions, PAH photoionization is the predominant reaction. These ions are trapped and stored in the ices at temperatures between 10 and 50 K, a temperature domain common to ices throughout interstellar clouds and the solar system. Unlike the approx.15% ionization typical after W V irradiation of PAHs isolated in rare-gas matrices, in water ice, PAH photoionization and storage proceed efficiently and almost quantitatively with a greater than 70% ionization yield. As the temperature is increased from 50 to 150 K, the PAH ion bands slowly diminish as the PAH ions ultimately react to form more complex organic species involving the water host. The chemical, spectroscopic, and physical properties of these ion-rich ices can be important in icy objects such as molecular clouds, comets, and planets. Several astrophysical applications are presented.

  1. Ku band airborne radar altimeter observations of marginal sea ice during the 1984 Marginal Ice Zone Experiment

    NASA Technical Reports Server (NTRS)

    Drinkwater, Mark R.

    1991-01-01

    Pulse-limited, airborne radar data taken in June and July 1984 with a 13.8-GHz altimeter over the Fram Strait marginal ice zone are analyzed with the aid of large-format aerial photography, airborne synthetic aperture radar data, and surface observations. Variations in the radar return pulse waveforms are quantified and correlated with ice properties recorded during the Marginal Ice Zone Experiment. Results indicate that the wide-beam altimeter is a flexible instrument, capable of identifying the ice edge with a high degree of accuracy, calculating the ice concentration, and discriminating a number of different ice classes. This suggests that microwave radar altimeters have a sensitivity to sea ice which has not yet been fully exploited. When fused with SSM/I, AVHRR and ERS-1 synthetic aperture radar imagery, future ERS-1 altimeter data are expected to provide some missing pieces to the sea ice geophysics puzzle.

  2. Parameterization of Shortwave Cloud Optical Properties for a Mixture of Ice Particle Habits for use in Atmospheric Models

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah; Lee, Kyu-Tae; Yang, Ping; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Based on the single-scattering optical properties pre-computed with an improved geometric optics method, the bulk absorption coefficient, single-scattering albedo, and asymmetry factor of ice particles have been parameterized as a function of the effective particle size of a mixture of ice habits, the ice water amount, and spectral band. The parameterization has been applied to computing fluxes for sample clouds with various particle size distributions and assumed mixtures of particle habits. It is found that flux calculations are not overly sensitive to the assumed particle habits if the definition of the effective particle size is consistent with the particle habits that the parameterization is based. Otherwise, the error in the flux calculations could reach a magnitude unacceptable for climate studies. Different from many previous studies, the parameterization requires only an effective particle size representing all ice habits in a cloud layer, but not the effective size of individual ice habits.

  3. Band gap tuning and optical absorption in type-II InAs/GaSb mid infrared short period superlattices: 14 bands K Dot-Operator p study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    AbuEl-Rub, Khaled M.

    2012-09-06

    The MBE growth of short-period InAs/GaSb type-II superlattice structures, varied around 20.5 A InAs/24 A GaSb were [J. Applied physics, 96, 2580 (2004)] carried out by Haugan et al. These SLs were designed to produce devices with an optimum mid-infrared photoresponse and a sharpest photoresponse cutoff. We have used a realistic and reliable 14-band k.p formalism description of the superlattice electronic band structure to calculate the absorption coefficient in such short-period InAs/GaSb type-II superlattices. The parameters for this formalism are known from fitting to independent experiments for the bulk materials. The band-gap energies are obtained without any fitting parameters, andmore » are in good agreement with experimental data.« less

  4. Physical processes contributing to an ice free Beaufort Sea during September 2012

    NASA Astrophysics Data System (ADS)

    Babb, D. G.; Galley, R. J.; Barber, D. G.; Rysgaard, S.

    2016-01-01

    During the record September 2012 sea ice minimum, the Beaufort Sea became ice free for the first time during the observational record. Increased dynamic activity during late winter enabled increased open water and seasonal ice coverage that contributed to negative sea ice anomalies and positive solar absorption anomalies which drove rapid bottom melt and sea ice loss. As had happened in the Beaufort Sea during previous years of exceptionally low September sea ice extent, anomalous solar absorption developed during May, increased during June, peaked during July, and persisted into October. However in situ observations from a single floe reveal less than 78% of the energy required for bottom melt during 2012 was available from solar absorption. We show that the 2012 sea ice minimum in the Beaufort was the result of anomalously large solar absorption that was compounded by an arctic cyclone and other sources of heat such as solar transmission, oceanic upwelling, and riverine inputs, but was ultimately made possible through years of preconditioning toward a younger, thinner ice pack. Significant negative trends in sea ice concentration between 1979 and 2012 from June to October, coupled with a tendency toward earlier sea ice reductions have fostered a significant trend of +12.9 MJ m-2 yr-1 in cumulative solar absorption, sufficient to melt an additional 4.3 cm m-2 yr-1. Overall through preconditioning toward a younger, thinner ice pack the Beaufort Sea has become increasingly susceptible to increased sea ice loss that may render it ice free more frequently in coming years.

  5. Physical Processes contributing to an ice free Beaufort Sea during September 2012

    NASA Astrophysics Data System (ADS)

    Babb, D.; Galley, R.; Barber, D. G.; Rysgaard, S.

    2016-12-01

    During the record September 2012 sea ice minimum the Beaufort Sea became ice free for the first time during the observational record. Increased dynamic activity during late winter enabled increased open water and seasonal ice coverage that contributed to negative sea ice anomalies and positive solar absorption anomalies which drove rapid bottom melt and sea ice loss. As had happened in the Beaufort Sea during previous years of exceptionally low September sea ice extent, anomalous solar absorption developed during May, increased during June, peaked during July and persisted into October. However in situ observations from a single floe reveal less than 78% of the energy required for bottom melt during 2012 was available from solar absorption. We show that the 2012 sea ice minimum in the Beaufort was the result of anomalously large solar absorption that was compounded by an arctic cyclone and other sources of heat such as solar transmission, oceanic upwelling and riverine inputs, but was ultimately made possible through years of preconditioning towards a younger, thinner ice pack. Significant negative trends in sea ice concentration between 1979 and 2012 from June to October, coupled with a tendency towards earlier sea ice reductions have fostered a significant trend of +12.9 MJ m-2 year-1 in cumulative solar absorption, sufficient to melt an additional 4.3 cm m-2 year-1. Overall through preconditioning towards a younger, thinner ice pack the Beaufort Sea has become increasingly susceptible to increased sea ice loss that may render it ice free more frequently in coming years.

  6. Semi-Empirical Validation of the Cross-Band Relative Absorption Technique for the Measurement of Molecular Mixing Ratios

    NASA Technical Reports Server (NTRS)

    Pliutau, Denis; Prasad, Narasimha S

    2013-01-01

    Studies were performed to carry out semi-empirical validation of a new measurement approach we propose for molecular mixing ratios determination. The approach is based on relative measurements in bands of O2 and other molecules and as such may be best described as cross band relative absorption (CoBRA). . The current validation studies rely upon well verified and established theoretical and experimental databases, satellite data assimilations and modeling codes such as HITRAN, line-by-line radiative transfer model (LBLRTM), and the modern-era retrospective analysis for research and applications (MERRA). The approach holds promise for atmospheric mixing ratio measurements of CO2 and a variety of other molecules currently under investigation for several future satellite lidar missions. One of the advantages of the method is a significant reduction of the temperature sensitivity uncertainties which is illustrated with application to the ASCENDS mission for the measurement of CO2 mixing ratios (XCO2). Additional advantages of the method include the possibility to closely match cross-band weighting function combinations which is harder to achieve using conventional differential absorption techniques and the potential for additional corrections for water vapor and other interferences without using the data from numerical weather prediction (NWP) models.

  7. Incorporation of stratospheric acids into water ice

    NASA Technical Reports Server (NTRS)

    Elliott, Scott; Turco, Richard P.; Toon, Owen B.; Hamill, Patrick

    1990-01-01

    Hydrochloric and hydrofluoric acids are absorbed within the water ice lattice at mole fractions maximizing below 0.00001 and 0.0001 in a variety of solid impurity studies. The absorption mechanism may be substitutional or interstitial, leading in either case to a weak permeation of stratospheric ices by the acids at equilibrium. Impurities could also inhabit grain boundaries, and the acid content of atmospheric ice crystals will then depend on details of their surface and internal microstructures. Limited evidence indicates similar properties for the absorption of HNO3. Water ice lattices saturated with acid cannot be a significant local reservoir for HCl in the polar stratosphere.

  8. Correlation of Comet 67P/CG'S Morphology with the Occurrence of Exposed Water Ice Patches

    NASA Astrophysics Data System (ADS)

    Arnold, G.; Weller, D.; Zeilinger, G.; Kappel, D.; Hviid, S.; Kührt, E.; Moroz, L. V.; Markus, K.; Henckel, D.; Capaccioni, F.; Filacchione, G.; Erard, S.; Bockelee-Morvan, D.

    2017-04-01

    Introduction: Comet 67P's surface is quite homogeneously covered by dark refractory materials rich in organics [1,2]. Rare water ice expo- sures on the surface, most likely originating from sub-surface layers, have recently been discovered [3,4]. Such H2O ice patches on 67P's Imhotep region in the pre-perihelion phase were ex- amined and related to the local morphology to understand the exposure mechanisms [5]. Methods: H2O ice was identified in two study areas using characteristic H2O spectral features observed by the VIRTIS-M instrument [1]: absorption bands at 1.04, 1.25, 1.52, 2.02, 2.96 μm, and the VIS spectral slope (0.5-0.8 μm). Corresponding normalized spectral indicators were projected onto a 3D digital shape model (DSM) of 67P [6], along with high spatial resolution images acquired by OSIRIS [7] for morphological context. Results and conclusions: The 2.0-μm absorption band proved to be the most sensitive H2O indicator in the IR. Flat (bluer) normalized VIS slopes correlate very well with depths of H2O ice absorption bands. The DSM projections show a significant spatial correlation between spectral H2O indicators and morphological features. H2O ice deposits were identified in two areas, each extending over hundreds of square meters. Both are located at the bases of steep-sloped (>60°) walls of Consolidated Cometary Material (CCM) on debris falls that came to rest on moderately inclined (20°-30°) terrain, pointing towards gravitational lows. Both deposits are located in poorly illuminated areas due to shadowing from close-by steep walls. The morphological and photometrical properties of these deposits appear to be stable over months. Spectral modeling [3,4] indicated the presence of large (mm-sized) H2O ice grains. Such grains form through vapor diffusion in ice-rich colder layers or by sintering and are exposed by erosion [3]. The CCM in both study areas was fractured and weakened by thermal fatigue and sublimation, leading to the collapse of

  9. Wide angle and narrow-band asymmetric absorption in visible and near-infrared regime through lossy Bragg stacks

    PubMed Central

    Shu, Shiwei; Zhan, Yawen; Lee, Chris; Lu, Jian; Li, Yang Yang

    2016-01-01

    Absorber is an important component in various optical devices. Here we report a novel type of asymmetric absorber in the visible and near-infrared spectrum which is based on lossy Bragg stacks. The lossy Bragg stacks can achieve near-perfect absorption at one side and high reflection at the other within the narrow bands (several nm) of resonance wavelengths, whereas display almost identical absorption/reflection responses for the rest of the spectrum. Meanwhile, this interesting wavelength-selective asymmetric absorption behavior persists for wide angles, does not depend on polarization, and can be ascribed to the lossy characteristics of the Bragg stacks. Moreover, interesting Fano resonance with easily tailorable peak profiles can be realized using the lossy Bragg stacks. PMID:27251768

  10. Band gap opening and optical absorption enhancement in graphene using ZnO nanocluster

    NASA Astrophysics Data System (ADS)

    Monshi, M. M.; Aghaei, S. M.; Calizo, I.

    2018-05-01

    Electronic, optical and transport properties of the graphene/ZnO heterostructure have been explored using first-principles density functional theory. The results show that Zn12O12 can open a band gap of 14.5 meV in graphene, increase its optical absorption by 1.67 times covering the visible spectrum which extends to the infra-red (IR) range, and exhibits a slight non-linear I-V characteristic depending on the applied bias. These findings envisage that a graphene/Zn12O12 heterostructure can be appropriate for energy harvesting, photodetection, and photochemical devices.

  11. Laboratory Spectra of CO2 Vibrational Modes in Planetary Ice Analogs

    NASA Technical Reports Server (NTRS)

    White, Douglas; Mastrapa, Rachel M.; Sandford, Scott

    2012-01-01

    Laboratory spectra have shown that CO2 is a powerful diagnostic tool for analyzing infrared data from remote observations, as it has been detected on icy moons in the outer Solar System as well as dust grain surfaces in the interstellar medium (ISM). IR absorption band profiles of CO2 within ice mixtures containing H2O and CH3OH change with respect to temperature and mixture ratios. In this particular study, the CO2 asymmetric stretching mode near 4.3 m (2350 cm (exp-1)), overtone mode near 1.97 m (5080 cm (exp-1)), and the combination bands near 2.7 m (3700 cm (exp-1)), 2.8 m (3600 cm (exp-1)), and 2.02 m (4960 cm (exp -1)), are systematically observed in different mixtures with H2O and CH3OH in temperature ranges from 15K to 150 K. Additionally, some high-temperature deposits (T greater than 50 K) of H2O, CH3OH, and CO2 ice mixtures were performed. These data may then be used to interpret infrared observational data obtained from icy surfaces in the outer Solar System and beyond.

  12. Far infrared spectra of amorphous and crystalline water ice and changes in these phases as the result of proton irradiation

    NASA Technical Reports Server (NTRS)

    Hudson, Reggie L.; Moore, Marla H.

    1992-01-01

    Far infrared spectra from 20 microns (500 cm(sup -1)) to 100 microns (100 cm(sup -1)) of water ice were measured. Amorphous ice deposited at 13 K has one absorption band at 45 microns (220 cm(sup -1)). Amorphous ice evolves into a crystalline form with absorptions at 44 microns (229 cm(sup -1)) and 62 microns (162 cm(sup -1)) as the temperature is increased to 155 K. Spectra documenting this phase change are presented as well as spectra of crystalline ice at temperatures between 13 K and 155 K. Far infrared spectra of amorphous and crystalline water ice before and after proton irradiation are also presented. Changes in these two forms are discussed in relation to ices in comets, grains, and planetary satellites in various radiation environments. Observations of non-terrestrial clathrate hydrates are still lacking despite the fact that clathrates first were suggested to exist in cometary and interstellar ices over forty years ago. Spectroscopy, the most direct method of astronomical detection, has been hampered by the similarity of clathrate hydrate spectra to those of unenclathrated guest molecules and solid H2O. A methanol (CH3OH) clathrate hydrate, using a recently published procedure, was prepared and its far-IR spectrum investigated. The spectrum is quite differenct from that of either unenclathrated CH3OH or solid H2O and so should be of value in astronomical searches for this clathrate.

  13. Band Formation and Ocean-Surface Interaction on Europa and Ganymede

    NASA Astrophysics Data System (ADS)

    Howell, Samuel M.; Pappalardo, Robert T.

    2018-05-01

    Geologic activity in the outer H2O ice shells of Europa and Ganymede, Galilean moons of Jupiter, may facilitate material exchange between global water oceans and the icy surface, fundamentally affecting potential habitability and the future search for life. Spacecraft imagery reveals surfaces rich with tectonic bands, predominantly attributed to the extension of brittle ice overlaying a convecting ice layer. However, the details of band-forming processes and links to potential ocean-surface exchange have remained elusive. We simulate ice shell faulting and convection with two-dimensional numerical models and track the movement of "fossil" ocean material frozen into the base of the ice shell and deformed through geologic time. We find that distinct band types form within a spectrum of extensional terrains correlated to lithosphere strength, governed by lithosphere thickness and cohesion. Furthermore, we find that smooth bands formed in weak lithosphere promote exposure of fossil ocean material at the surface.

  14. Photochemistry of polycyclic aromatic hydrocarbons in cosmic water ice. II. Near UV/VIS spectroscopy and ionization rates

    NASA Astrophysics Data System (ADS)

    Bouwman, J.; Cuppen, H. M.; Steglich, M.; Allamandola, L. J.; Linnartz, H.

    2011-05-01

    Context. Mid-infrared emission features originating from polycyclic aromatic hydrocarbons (PAHs) are observed towards photon dominated regions in space. Towards dense clouds, however, these emission features are quenched. Observations of dense clouds show that many simple volatile molecules are frozen out on interstellar grains, forming thin layers of ice. Recently, observations have shown that more complex non-volatile species, presumably including PAHs, also freeze out and contribute to the ongoing solid-state chemistry. Aims: The study presented here aims at obtaining reaction rate data that characterize PAH photochemistry upon vacuum ultraviolet (VUV) irradiation in an interstellar H2O ice analogue to explore the potential impact of PAH:H2O ice reactions on overall interstellar ice chemistry. To this end, the experimental results are implemented in a chemical model under simple interstellar cloud conditions. Methods: Time-dependent near-UV/VIS spectroscopy on the VUV photochemistry of anthracene, pyrene, benzo[ghi]perylene and coronene containing interstellar H2O ice analogs is performed at 25 and 125 K, using an optical absorption setup. Results: Near-UV/VIS absorption spectra are presented for these four PAHs and their photoproducts including cationic species trapped in H2O ice. Oscillator strengths of the cation absorption bands are derived relative to the oscillator strength of the neutral parent PAH. The loss of the parent and growth of PAH photoproducts are measured as a function of VUV dose, yielding solid state reaction constants. The rate constants are used in an exploratory astrochemical model, to assess the importance of PAH:H2O ice photoprocessing in UV exposed interstellar environments, compared with the timescales in which PAH molecules are incorporated in interstellar ices. Conclusions: All four PAHs studied here are found to be readily ionized upon VUV photolysis when trapped in H2O ice and exhibit similar rates for ionization at astronomically

  15. Photodissociation dynamics of bromoiodomethane from the first and second absorption bands. A combined velocity map and slice imaging study.

    PubMed

    Marggi Poullain, Sonia; Chicharro, David V; Navarro, Eduardo; Rubio-Lago, Luis; González-Vázquez, Jesús; Bañares, Luis

    2018-01-31

    The photodissociation dynamics of bromoiodomethane (CH 2 BrI) have been investigated at the maximum of the first A and second A' absorption bands, at 266 and 210 nm excitation wavelengths, respectively, using velocity map and slice imaging techniques in combination with a probe detection of both iodine and bromine fragments, I( 2 P 3/2 ), I*( 2 P 1/2 ), Br( 2 P 3/2 ) and Br*( 2 P 1/2 ) via (2 + 1) resonance enhanced multiphoton ionization. Experimental results, i.e. translational energy and angular distributions, are reported and discussed in conjunction with high level ab initio calculations of potential energy curves and absorption spectra. The results indicate that in the A-band, direct dissociation through the 5A' excited state leads to the I( 2 P 3/2 ) channel while I*( 2 P 1/2 ) atoms are produced via the 5A' → 4A'/4A'' nonadiabatic crossing. The presence of Br and Br* fragments upon excitation to the A-band is attributed to indirect dissociation via a curve crossing between the 5A' with upper excited states such as the 9A'. The A'-band is characterized by a strong photoselectivity leading exclusively to the Br( 2 P 3/2 ) and Br*( 2 P 1/2 ) channels, which are likely produced by dissociation through the 9A' excited state. Avoided crossings between several excited states from both the A and A' bands entangle however the possible reaction pathways.

  16. Poster 7: Could PAH or HAC explain the Titan's stratosphere absorption around 3.4 µm revealed by solar occultations?

    NASA Astrophysics Data System (ADS)

    Cordier, Daniel; Cours, Thibaud; Rey, Michael; Maltagliati, Luca; Seignovert, Benoit; Biennier, Ludovic

    2016-06-01

    In 2006, during Cassini's 10th flyby of Titan (T10), Bellucci et al. (2009) observed a solar occultation by Titan's atmosphere through the solar port of the Cassini/VIMS instrument. These authors noticed the existence of an unexplained additional absorption superimposed to the CH4 3.3 µm band. Because they were unable to model this absorption with gases, they attributed this intriguing feature to the signature of solid state organic components. Kim et al. (2011) revisited the data collected by Bellucci et al. (2009) and they considered the possible contribution of aerosols formed by hydrocarbon ices. They specifically took into account C2H6, CH4, CH3CN, C5H12 and C6H12 ices. More recently, Maltagliati et al. (2015) analyzed a set of four VIMS solar occultations, corresponding to flybys performed between January 2006 and September 2011 at different latitudes. They confirmed the presence of the 3.3 µm absorption in all occultations and underlined the possible importance of gaseous ethane, which has a strong plateau of absorption lines in that wavelength range.In this work, we show that neither hydrocarbon ices nor molecular C2H6 cannot satisfactorily explain the observed absorption. Our simulations speak in favor of an absorption due to the presence of PAH molecules or HAC in the stratosphere of Titan. PAH have been already considered by Lopes-Puertas et al. (2013) at altitudes larger than ˜900 km and tentatively identified in the stratosphere by Maltagliati et al. (2015); PAH and HAC are good candidates for Titan's aerosols precursors.

  17. Photochemistry of PAHs in cosmic water ice. The effect of concentration on UV-VIS spectroscopy and ionization efficiency

    NASA Astrophysics Data System (ADS)

    Cuylle, Steven H.; Allamandola, Louis J.; Linnartz, Harold

    2014-02-01

    Context. Observations and models show that polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the interstellar medium. Like other molecules in dense clouds, PAHs accrete onto interstellar dust grains, where they are embedded in an ice matrix dominated by water. In the laboratory, mixed molecular ices (not containing PAHs) have been extensively studied using Fourier transform infrared absorption spectroscopy. Experiments including PAHs in ices have started, however, the concentrations used are typically much higher than the concentrations expected for interstellar ices. Optical spectroscopy offers a sensitive alternative. Aims: We report an experimental study of the effect PAH concentration has on the electronic spectra and the vacuum UV (VUV) driven processes of PAHs in water-rich ices. The goal is to apply the outcome to cosmic ices. Methods: Optical spectroscopic studies allow us to obtain in-situ and quasi real-time electronic solid state spectra of two prototypical PAHs (pyrene and coronene) embedded in water ice under VUV photoprocessing. The study is carried out on PAH:H2O concentrations in the range of 1:30 000 to pure PAH, covering the temperature range from 12 to 125 K. Results: PAH concentration strongly influences the efficiency of PAH cation formation. At low concentrations, ionization efficiencies are over 60% dropping to about 15% at 1:1000. Increasing the PAH concentration reveals spectral broadening in neutral and cation PAH spectra attributed to PAH clustering inside the ice. At the PAH concentrations expected for interstellar ices, some 10 to 20% may be present as cations. The presence of PAHs in neutral and ion form will add distinctive absorption bands to cosmic ice optical spectra and this may serve as a tool to determine PAH concentrations.

  18. Cirrus Cloud Optical and Microphysical Property Retrievals from eMAS During SEAC4RS Using Bi-Spectral Reflectance Measurements Within the 1.88 micron Water Vapor Absorption Band

    NASA Technical Reports Server (NTRS)

    Meyer, K.; Platnick, S.; Arnold, G. T.; Holz, R. E.; Veglio, P.; Yorks, J.; Wang, C.

    2016-01-01

    Previous bi-spectral imager retrievals of cloud optical thickness (COT) and effective particle radius (CER) based on the Nakajima and King (1990) approach, such as those of the operational MODIS cloud optical property retrieval product (MOD06), have typically paired a non-absorbing visible or near-infrared wavelength, sensitive to COT, with an absorbing shortwave or midwave infrared wavelength sensitive to CER. However, in practice it is only necessary to select two spectral channels that exhibit a strong contrast in cloud particle absorption. Here it is shown, using eMAS observations obtained during NASAs SEAC4RS field campaign, that selecting two absorbing wavelength channels within the broader 1.88 micron water vapor absorption band, namely the 1.83 and 1.93 micron channels that have sufficient differences in ice crystal single scattering albedo, can yield COT and CER retrievals for thin to moderately thick single-layer cirrus that are reasonably consistent with other solar and IR imager-based and lidar-based retrievals. A distinct advantage of this channel selection for cirrus cloud retrievals is that the below cloud water vapor absorption minimizes the surface contribution to measured cloudy TOA reflectance, in particular compared to the solar window channels used in heritage retrievals such as MOD06. This reduces retrieval uncertainty resulting from errors in the surface reflectance assumption, as well as reduces the frequency of retrieval failures for thin cirrus clouds.

  19. Cirrus cloud optical and microphysical property retrievals from eMAS during SEAC4RS using bi-spectral reflectance measurements within the 1.88 µm water vapor absorption band

    NASA Astrophysics Data System (ADS)

    Meyer, Kerry; Platnick, Steven; Arnold, G. Thomas; Holz, Robert E.; Veglio, Paolo; Yorks, John; Wang, Chenxi

    2016-04-01

    Previous bi-spectral imager retrievals of cloud optical thickness (COT) and effective particle radius (CER) based on the Nakajima and King (1990) approach, such as those of the operational MODIS cloud optical property retrieval product (MOD06), have typically paired a non-absorbing visible or near-infrared wavelength, sensitive to COT, with an absorbing shortwave or mid-wave infrared wavelength sensitive to CER. However, in practice it is only necessary to select two spectral channels that exhibit a strong contrast in cloud particle absorption. Here it is shown, using eMAS observations obtained during NASA's SEAC4RS field campaign, that selecting two absorbing wavelength channels within the broader 1.88 µm water vapor absorption band, namely the 1.83 and 1.93 µm channels that have sufficient differences in ice crystal single scattering albedo, can yield COT and CER retrievals for thin to moderately thick single-layer cirrus that are reasonably consistent with other solar and IR imager-based and lidar-based retrievals. A distinct advantage of this channel selection for cirrus cloud retrievals is that the below-cloud water vapor absorption minimizes the surface contribution to measured cloudy top-of-atmosphere reflectance, in particular compared to the solar window channels used in heritage retrievals such as MOD06. This reduces retrieval uncertainty resulting from errors in the surface reflectance assumption and reduces the frequency of retrieval failures for thin cirrus clouds.

  20. Experimental study of IR-signature of water ices between 1 and 2.5 µm : a thermal probe for icy moons

    NASA Astrophysics Data System (ADS)

    Taffin, C.; Grasset, O.; Le Menn, E.; Le Mouélic, S.

    2009-12-01

    Near IR signatures of water ices are known to depend on temperature and grain size, a property that could be used to constrain the surface characteristics of icy moons1,2,3. Models indicate that the 1.65 µm absorption band depends strongly on temperature2,4,5 and on grain size. Other bands (1.03, 1.27, 1.50 and 2 µm) show a strong dependence with grain size (e.g. (6) for the 1.03 µm band). But the respective influence of temperature and grain size is still not fully understood. In this work, we focus on the 1.50 and 1.55 µm absorption bands. Characteristics of near-IR spectra of pure ice Ih grains have been experimentally investigated using temperature and pressure ranges relevant for icy moons. Nineteen experiments have been conducted both at microscopic (individual grains smaller than 100 mm) and macroscopic (grains ranging from 200 to 800 µm) scales, using a FTIR spectrometer. Position, area and depth of the four main absorption bands in the near-IR domain (1.50, 1.55, 1.65 and 2 µm) have been studied . It will be shown that the positions of the 1.50 µm and the 1.55 µm bands are very good indicators of grain size and of temperature, respectively (Fig.1). The scaling laws established from experimental data can be used to characterize the surface properties of icy moons. Preliminary tests are conducted on extensively studied regions to validate the approach. An application to the Tiger Stripes on Enceladus will be presented. The estimated temperatures are at first order consistent with those obtained by CIRS7, but they still appear slightly higher in average (between 10 and 20 K). Grain size are also bigger than in a previous model8 but the same tendency is observed, i.e., the grain size is larger on the Tiger Stripes than in the surroundings. Ref. : 1-Fink and Larson, Icarus, 1975. 2-Leto et al. Mem. S.A.It. Suppl. 2005. 3-Grundy, Icarus, 1999. 4-Grundy and Schmitt, JGR. 1998. 5-Mastrapa et al. Icarus, 2008. 6-Nolin and Dozier Rem. Sens. Environ. 2000. 7

  1. Volcanic ash layers in blue ice fields (Beardmore Glacier Area, Antarctica): Iridium enrichments

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian

    1988-01-01

    Dust bands on blue ice fields in Antarctica have been studied and have been identified to originate from two main sources: bedrock debris scraped up from the ground by the glacial movement (these bands are found predominantly at fractures and shear zones in the ice near moraines), and volcanic debris deposited on and incorporated in the ice by large-scale eruptions of Antarctic (or sub-Antractic) volcanoes. Ice core studies have revealed that most of the dust layers in the ice cores are volcanic (tephra) deposits which may be related to some specific volcanic eruptions. These eruptions have to be related to some specific volcanic eruptions. These eruptions have to be relatively recent (a few thousand years old) since ice cores usually incorporate younger ice. In contrast, dust bands on bare blue ice fields are much older, up to a few hundred thousand years, which may be inferred from the rather high terrestrial age of meteorites found on the ice and from dating the ice using the uranium series method. Also for the volcanic ash layers found on blue ice fields correlations between some specific volcanoes (late Cenozoic) and the volcanic debris have been inferred, mainly using chemical arguments. During a recent field expedition samples of several dust bands found on blue ice fields at the Lewis Cliff Ice Tongue were taken. These dust band samples were divided for age determination using the uranium series method, and chemical investigations to determine the source and origin of the dust bands. The investigations have shown that most of the dust bands found at the Ice Tongue are of volcanic origin and, for chemical and petrological reasons, may be correlated with Cenozoic volcanoes in the Melbourne volcanic province, Northern Victoria Land, which is at least 1500 km away. Major and trace element data have been obtained and have been used for identification and correlation purposes. Recently, some additional trace elements were determined in some of the dust band

  2. Precise ro-vibrational analysis of molecular bands forbidden in absorption: The ν8 +ν10 band of the 12C2H4 molecule

    NASA Astrophysics Data System (ADS)

    Ulenikov, O. N.; Gromova, O. V.; Bekhtereva, E. S.; Kashirina, N. V.; Bauerecker, S.; Horneman, V.-M.

    2015-07-01

    The highly accurate (experimental accuracy in line positions ∼ (1 - 2) ×10-4 cm-1) ro-vibrational spectrum of the ν8 +ν10 band of the 12C2H4 molecule was recorded for the first time with high resolution Fourier transform spectrometry and analyzed in the region of 1650-1950 cm-1 using the Hamiltonian model which takes into account Coriolis resonance interactions between the studied ν8 +ν10 band, which is forbidden in absorption, and the bands ν4 +ν8 and ν7 +ν8 . About 1570 transitions belonging to the ν8 +ν10 band were assigned in the experimental spectra with the maximum values of quantum numbers Jmax. = 35 and Kamax . = 18 . On that basis, a set of 38 vibrational, rotational, centrifugal distortion, and resonance interaction parameters was obtained from the fit. They reproduce values of 598 initial "experimental" ro-vibrational energy levels (positions of about 1570 experimentally recorded and assigned transitions) with the rms error drms = 0.00045 cm-1 (drms = 0.00028 cm-1 when upper ro-vibrational energies obtained from blended and very weak transitions were deleted from the fit).

  3. A study of the structure of the ν1(HF) absorption band of the СH3СN…HF complex

    NASA Astrophysics Data System (ADS)

    Gromova, E. I.; Glazachev, E. V.; Bulychev, V. P.; Koshevarnikov, A. M.; Tokhadze, K. G.

    2015-09-01

    The ν1(HF) absorption band shape of the CH3CN…HF complex is studied in the gas phase at a temperature of 293 K. The spectra of gas mixtures CH3CN/HF are recorded in the region of 4000-3400 cm-1 at a resolution from 0.1 to 0.005 cm-1 with a Bruker IFS-120 HR vacuum Fourier spectrometer in a cell 10 cm in length with wedge-shaped sapphire windows. The procedure used to separate the residual water absorption allows more than ten fine-structure bands to be recorded on the low-frequency wing of the ν1(HF) band. It is shown that the fine structure of the band is formed primarily due to hot transitions from excited states of the low-frequency ν7 librational vibration. Geometrical parameters of the equilibrium nuclear configuration, the binding energy, and the dipole moment of the complex are determined from a sufficiently accurate quantum-chemical calculation. The frequencies and intensities for a number of spectral transitions of this complex are obtained in the harmonic approximation and from variational solutions of anharmonic vibrational problems.

  4. Space Radar Image of Weddell Sea Ice

    NASA Image and Video Library

    1999-04-15

    This is the first calibrated, multi-frequency, multi-polarization spaceborne radar image of the seasonal sea-ice cover in the Weddell Sea, Antarctica. The multi-channel data provide scientists with details about the ice pack they cannot see any other way and indicates that the large expanse of sea-ice is, in fact, comprised of many smaller rounded ice floes, shown in blue-gray. These data are particularly useful in helping scientists estimate the thickness of the ice cover which is often extremely difficult to measure with other remote sensing systems. The extent, and especially thickness, of the polar ocean's sea-ice cover together have important implications for global climate by regulating the loss of heat from the ocean to the cold polar atmosphere. The image was acquired on October 3, 1994, by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour. This image is produced by overlaying three channels of radar data in the following colors: red (C-band, HH-polarization), green (L-band HV-polarization), and blue (L-band, HH-polarization). The image is oriented almost east-west with a center location of 58.2 degrees South and 21.6 degrees East. Image dimensions are 45 kilometers by 18 kilometers (28 miles by 11 miles). Most of the ice cover is composed of rounded, undeformed blue-gray floes, about 0.7 meters (2 feet) thick, which are surrounded by a jumble of red-tinged deformed ice pieces which are up to 2 meters (7 feet) thick. The winter cycle of ice growth and deformation often causes this ice cover to split apart, exposing open water or "leads." Ice growth within these openings is rapid due to the cold, brisk Antarctic atmosphere. Different stages of new-ice growth can be seen within the linear leads, resulting from continuous opening and closing. The blue lines within the leads are open water areas in new fractures which are roughened by wind. The bright red lines are an intermediate stage of new-ice

  5. Sea-Ice Feature Mapping using JERS-1 Imagery

    NASA Technical Reports Server (NTRS)

    Maslanik, James; Heinrichs, John

    1994-01-01

    JERS-1 SAR and OPS imagery are examined in combination with other data sets to investigate the utility of the JERS-1 sensors for mapping fine-scale sea ice conditions. Combining ERS-1 C band and JERS-1 L band SAR aids in discriminating multiyear and first-year ice. Analysis of OPS imagery for a field site in the Canadian Archipelago highlights the advantages of OPS's high spatial and spectral resolution for mapping ice structure, melt pond distribution, and surface albedo.

  6. Ozone Production in Irradiated Laboratory Ices Relevant to Europa and Ganymede

    NASA Astrophysics Data System (ADS)

    Cooper, P. D.; Moore, M. H.; Hudson, R. L.

    2005-08-01

    Observations suggest ozone (O3) is present on the icy surfaces of Ganymede (1), and Rhea and Dione (2). Molecular oxygen (O2) has also been observed on Europa (3) and Ganymede (4). The formation and trapping of such molecules in ice and their subsequent transportation to a sub-surface ocean may be potentially important for sustaining astrobiological life (5). It is assumed that ozone is produced in these icy surfaces by the addition of an oxygen atom to molecular oxygen, with the latter formed by prior irradiation of the water ice. The infrared absorption band of ozone in ice at 1037 cm-1 is strong and thus makes ozone a good tracer for the presence of molecular oxygen which is difficult to detect. We will present results of water/oxygen ices irradiated with 800 keV protons and show the band position and growth of ozone with increasing radiation dose. The thermal stability of this radiolytically-produced ozone has also been measured and comparisons made to the Jovian satellites. P. Cooper is grateful for the support from the National Academies Research Associateship Program. (1) Noll, K.S., Johnson, R.E., Lane, A.L., Domingue, D.L., Weaver, H.A., Science, 273, 341-343, (1996). (2) Noll, K.S., Roush, T.L., Cruikshank, D.P., Johnson, R.E., Pendleton, Y.J., Nature, 388, 45-47, (1997). (3) Spencer, J.R., Calvin, W.M., Astron. J., 124, 3400-3403, (2002). (4) Spencer, J.R., Calvin, W.M., Person, M. J., J. Geo. Res. 100 (E9), 19049-19056 (1995). (5) Chyba, C.F., Hand, K.P., Science, 292, 2026-2027, (2001).

  7. Mapping Greenland's Firn Aquifer using L-band Microwave Radiometry

    NASA Astrophysics Data System (ADS)

    Miller, J.; Bringer, A.; Jezek, K. C.; Johnson, J. T.; Scambos, T. A.; Long, D. G.

    2016-12-01

    Greenland's recently discovered firn aquifer is one of the most interesting, yet still mysterious, components of the ice sheet system. Many open questions remain regarding timescales of refreezing and/or englacial drainage of liquid meltwater, and the connections of firn aquifers to the subglacial hydrological system. If liquid meltwater production at the surface of the Greenland ice sheet continues to increase, subsequent increases in the volume of mobile liquid meltwater retained within Greenland's firn aquifer may increase the possibility of crevasse-deepening via hydrofracture. Hydrofracture is an important component of supraglacial lake drainage leading to at least temporary accelerated flow velocities and ice sheet mass balance changes. Firn aquifers may also support hydrofracture-induced drainage and thus are potentially capable of significantly influencing ice sheet mass balance and sea level rise. Spaceborne L-band microwave radiometers provide an innovative tool for ice-sheet wide mapping of the spatiotemporal variability of Greenland's firn aquifer. Both refreezing and englacial drainage may be observable given the sensitivity of the microwave response to the upper surface of liquid meltwater retained within snow and firn pore space as well as the ability of L band instruments to probe the ice sheet from the surface to the firn-ice transition at pore close-off depth. Here we combine L-band (1.4 GHz) brightness temperature observations from multiple sources to demonstrate the potential of mapping firn aquifers on ice sheets using L-band microwave radiometry. Data sources include the interferometric MIRAS instrument aboard ESA's Soil Moisture and Ocean Salinity (SMOS) satellite mission and the radiometer aboard NASA's Soil Moisture Active Passive (SMAP) satellite mission. We will also present mulit-frequency L-band brightness temperature data (0.5-2 GHz) that will be collected over several firn aquifer areas on the Greenland ice sheet by the Ohio State

  8. Processing Mechanisms for Interstellar Ices: Connections to the Solar System

    NASA Technical Reports Server (NTRS)

    Pendleton, Y. J.; Cuzzi, Jeffrey N. (Technical Monitor)

    1995-01-01

    The organic component of the interstellar medium, which has revealed itself through the ubiquitous 3.4 micrometers hydrocarbon absorption feature, is widespread throughout the disk of our galaxy and has been attributed to dust grains residing in the diffuse interstellar medium. The absorption band positions near 3.4 micrometers are characteristic of C-H stretching vibrations in the -CH3 and -CH2- groups of saturated aliphatic hydrocarbons associated with perturbing chemical groups. The production of complex molecules is thought to occur within dense molecular clouds when ice-mantled grains are processed by various energetic mechanisms. Studies of the processing of interstellar ices and the subsequent production of organic residues have relevance to studies of ices in the solar system, because primitive, icy solar system bodies such as those in the Kuiper belt are likely reservoirs of organic material, either preserved from the interstellar medium or produced in situ. Connections between the interstellar medium and the early solar nebula have long been a source of interest. A comparison of the interstellar organics and the Murchison meteorite illustrates the importance of probing the interstellar connection to the solar system, because although the carbonaceous meteorites are undoubtedly highly processed, they do retain specific interstellar signatures (such as diamonds, SiC grains, graphite and enriched D/H). The organic component, while not proven interstellar, has a remarkable similarity to the interstellar organics observed in over a dozen sightlines through our galaxy. This paper compares spectra from laboratory organics produced through the processing of interstellar ice analog materials with the high resolution infrared observations of the interstellar medium in order to investigate the mechanisms (such as ion bombardment, plasma processing, and UV photolysis) that may be producing the organics in the ISM.

  9. Mid and Near-IR Absorption Spectra of PAH Neutrals and Ions in H20 Ice to Facilitate their Astronomical Detection

    NASA Technical Reports Server (NTRS)

    Bernstein, Max P.; Sandford, Scott A.; Allamandola, Louis J.

    2004-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are believed to be the most abundant and widespread class of organic compounds in the universe, having been observed in emission towards energetic regions and absorption towards colder ones.We will present IR spectra of PAHs and their cations in H20 ice measured in the laboratory in the hopes that this will facilitate the detection of these features in the interstellar medium.

  10. Extreme absorption enhancement in ZnTe:O/ZnO intermediate band core-shell nanowires by interplay of dielectric resonance and plasmonic bowtie nanoantennas.

    PubMed

    Nie, Kui-Ying; Li, Jing; Chen, Xuanhu; Xu, Yang; Tu, Xuecou; Ren, Fang-Fang; Du, Qingguo; Fu, Lan; Kang, Lin; Tang, Kun; Gu, Shulin; Zhang, Rong; Wu, Peiheng; Zheng, Youdou; Tan, Hark Hoe; Jagadish, Chennupati; Ye, Jiandong

    2017-08-08

    Intermediate band solar cells (IBSCs) are conceptual and promising for next generation high efficiency photovoltaic devices, whereas, IB impact on the cell performance is still marginal due to the weak absorption of IB states. Here a rational design of a hybrid structure composed of ZnTe:O/ZnO core-shell nanowires (NWs) with Al bowtie nanoantennas is demonstrated to exhibit strong ability in tuning and enhancing broadband light response. The optimized nanowire dimensions enable absorption enhancement by engineering leaky-mode dielectric resonances. It maximizes the overlap of the absorption spectrum and the optical transitions in ZnTe:O intermediate-band (IB) photovoltaic materials, as verified by the enhanced photoresponse especially for IB states in an individual nanowire device. Furthermore, by integrating Al bowtie antennas, the enhanced exciton-plasmon coupling enables the notable improvement in the absorption of ZnTe:O/ZnO core-shell single NW, which was demonstrated by the profound enhancement of photoluminescence and resonant Raman scattering. The marriage of dielectric and metallic resonance effects in subwavelength-scale nanowires opens up new avenues for overcoming the poor absorption of sub-gap photons by IB states in ZnTe:O to achieve high-efficiency IBSCs.

  11. Type-II GaSb/GaAs quantum-dot intermediate band with extended optical absorption range for efficient solar cells

    NASA Astrophysics Data System (ADS)

    Boustanji, Hela; Jaziri, Sihem

    2018-02-01

    GaSb/GaAs type-II quantum-dot solar cells (QD SCs) have attracted attention as highly efficient intermediate band SCs due to their infrared absorption. Type-II QDs exhibited a staggered confinement potential, where only holes are strongly confined within the dots. Long wavelength light absorption of the QDSCs is enhanced through the improved carriers number in the IB. The absorption of dots depends on their shape, material quality, and composition. Therefore, the optical properties of the GaSbGaAs QDs before and after thermal treatment are studied. Our intraband studies have shown an extended absorption into the long wavelength region 1.77 μ {m}. The annealed QDs have shown significantly more infrared response of 7.2 μ {m} compared to as-grown sample. The photon absorption and hole extraction depend strongly on the thermal annealing process. In this context, emission of holes from localized states in GaSb QDs has been studied using conductance-voltage ( G- V ) characteristics.

  12. Thin Ice Area Extraction in the Seasonal Sea Ice Zones of the Northern Hemisphere Using Modis Data

    NASA Astrophysics Data System (ADS)

    Hayashi, K.; Naoki, K.; Cho, K.

    2018-04-01

    Sea ice has an important role of reflecting the solar radiation back into space. However, once the sea ice area melts, the area starts to absorb the solar radiation which accelerates the global warming. This means that the trend of global warming is likely to be enhanced in sea ice areas. In this study, the authors have developed a method to extract thin ice area using reflectance data of MODIS onboard Terra and Aqua satellites of NASA. The reflectance of thin sea ice in the visible region is rather low. Moreover, since the surface of thin sea ice is likely to be wet, the reflectance of thin sea ice in the near infrared region is much lower than that of visible region. Considering these characteristics, the authors have developed a method to extract thin sea ice areas by using the reflectance data of MODIS (NASA MYD09 product, 2017) derived from MODIS L1B. By using the scatter plots of the reflectance of Band 1 (620 nm-670 nm) and Band 2 (841 nm-876 nm)) of MODIS, equations for extracting thin ice area were derived. By using those equations, most of the thin ice areas which could be recognized from MODIS images were well extracted in the seasonal sea ice zones in the Northern Hemisphere, namely the Sea of Okhotsk, the Bering Sea and the Gulf of Saint Lawrence. For some limited areas, Landsat-8 OLI images were also used for validation.

  13. Multilayer Cloud Detection with the MODIS Near-Infrared Water Vapor Absorption Band

    NASA Technical Reports Server (NTRS)

    Wind, Galina; Platnick, Steven; King, Michael D.; Hubanks, Paul A,; Pavolonis, Michael J.; Heidinger, Andrew K.; Yang, Ping; Baum, Bryan A.

    2009-01-01

    Data Collection 5 processing for the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the NASA Earth Observing System EOS Terra and Aqua spacecraft includes an algorithm for detecting multilayered clouds in daytime. The main objective of this algorithm is to detect multilayered cloud scenes, specifically optically thin ice cloud overlying a lower-level water cloud, that presents difficulties for retrieving cloud effective radius using single layer plane-parallel cloud models. The algorithm uses the MODIS 0.94 micron water vapor band along with CO2 bands to obtain two above-cloud precipitable water retrievals, the difference of which, in conjunction with additional tests, provides a map of where multilayered clouds might potentially exist. The presence of a multilayered cloud results in a large difference in retrievals of above-cloud properties between the CO2 and the 0.94 micron methods. In this paper the MODIS multilayered cloud algorithm is described, results of using the algorithm over example scenes are shown, and global statistics for multilayered clouds as observed by MODIS are discussed. A theoretical study of the algorithm behavior for simulated multilayered clouds is also given. Results are compared to two other comparable passive imager methods. A set of standard cloudy atmospheric profiles developed during the course of this investigation is also presented. The results lead to the conclusion that the MODIS multilayer cloud detection algorithm has some skill in identifying multilayered clouds with different thermodynamic phases

  14. Easily Dispersible NiFe2O4/RGO Composite for Microwave Absorption Properties in the X-Band

    NASA Astrophysics Data System (ADS)

    Bateer, Buhe; Zhang, Jianjao; Zhang, Hongchen; Zhang, Xiaochen; Wang, Chunyan; Qi, Haiqun

    2018-01-01

    Composites with good dispersion and excellent microwave absorption properties have important applications. Therefore, an easily dispersible NiFe2O4/reduced graphene oxide (RGO) composite has been prepared conveniently through a simple hydrothermal method. Highly crystalline, small size (about 7 nm) monodispersed NiFe2O4 nanoparticles (NPs) are evenly distributed on the surface of RGO. The microwave absorbability revealed that the NiFe2O4/RGO composite exhibits excellent microwave absorption properties in the X-band (8-12 GHz), and the minimum reflection loss of the NiFe2O4/RGO composite is -27.7 dB at 9.2 GHz. The NiFe2O4/RGO composite has good dispersibility in nonpolar solvent, which facilitates the preparation of stable commercial microwave absorbing coatings. It can be a promising candidate for lightweight microwave absorption materials in many application fields.

  15. Evolution of microwave sea ice signatures during early summer and midsummer in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Onstott, R. G.; Grenfell, T. C.; Matzler, C.; Luther, C. A.; Svendsen, E. A.

    1987-01-01

    Emissivities at frequencies from 5 to 94 GHz and backscatter at frequencies from 1 to 17 GHz were measured from sea ice in Fram Strait during the marginal Ice Zone Experiment in June and July of 1983 and 1984. The ice observed was primarily multiyear; the remainder, first-year ice, was often deformed. Results from this active and passive microwave study include the description of the evolution of the sea ice during early summer and midsummer; the absorption properties of summer snow; the interrelationship between ice thickness and the state and thickness of snow; and the modulation of the microwave signature, especially at the highest frequencies, by the freezing of the upper few centimeters of the ice.

  16. Analysis of airborne imaging spectrometer data for the Ruby Mountains, Montana, by use of absorption-band-depth images

    NASA Technical Reports Server (NTRS)

    Brickey, David W.; Crowley, James K.; Rowan, Lawrence C.

    1987-01-01

    Airborne Imaging Spectrometer-1 (AIS-1) data were obtained for an area of amphibolite grade metamorphic rocks that have moderate rangeland vegetation cover. Although rock exposures are sparse and patchy at this site, soils are visible through the vegetation and typically comprise 20 to 30 percent of the surface area. Channel averaged low band depth images for diagnostic soil rock absorption bands. Sets of three such images were combined to produce color composite band depth images. This relative simple approach did not require extensive calibration efforts and was effective for discerning a number of spectrally distinctive rocks and soils, including soils having high talc concentrations. The results show that the high spectral and spatial resolution of AIS-1 and future sensors hold considerable promise for mapping mineral variations in soil, even in moderately vegetated areas.

  17. Estimation of Melt Ponds over Arctic Sea Ice using MODIS Surface Reflectance Data

    NASA Astrophysics Data System (ADS)

    Ding, Y.; Cheng, X.; Liu, J.

    2017-12-01

    Melt ponds over Arctic sea ice is one of the main factors affecting variability of surface albedo, increasing absorption of solar radiation and further melting of snow and ice. In recent years, a large number of melt ponds have been observed during the melt season in Arctic. Moreover, some studies have suggested that late spring to mid summer melt ponds information promises to improve the prediction skill of seasonal Arctic sea ice minimum. In the study, we extract the melt pond fraction over Arctic sea ice since 2000 using three bands MODIS weekly surface reflectance data by considering the difference of spectral reflectance in ponds, ice and open water. The preliminary comparison shows our derived Arctic-wide melt ponds are in good agreement with that derived by the University of Hamburg, especially at the pond distribution. We analyze seasonal evolution, interannual variability and trend of the melt ponds, as well as the changes of onset and re-freezing. The melt pond fraction shows an asymmetrical growth and decay pattern. The observed melt ponds fraction is almost within 25% in early May and increases rapidly in June and July with a high fraction of more than 40% in the east of Greenland and Beaufort Sea. A significant increasing trend in the melt pond fraction is observed for the period of 2000-2017. The relationship between melt pond fraction and sea ice extent will be also discussed. Key Words: melt ponds, sea ice, Arctic

  18. Dual band metamaterial perfect absorber based on artificial dielectric "molecules".

    PubMed

    Liu, Xiaoming; Lan, Chuwen; Li, Bo; Zhao, Qian; Zhou, Ji

    2016-07-13

    Dual band metamaterial perfect absorbers with two absorption bands are highly desirable because of their potential application areas such as detectors, transceiver system, and spectroscopic imagers. However, most of these dual band metamaterial absorbers proposed were based on resonances of metal patterns. Here, we numerically and experimentally demonstrate a dual band metamaterial perfect absorber composed of artificial dielectric "molecules" with high symmetry. The artificial dielectric "molecule" consists of four "atoms" of two different sizes corresponding to two absorption bands with near unity absorptivity. Numerical and experimental absorptivity verify that the dual-band metamaterial absorber is polarization insensitive and can operate in wide-angle incidence.

  19. Sea Ice Detection Based on an Improved Similarity Measurement Method Using Hyperspectral Data.

    PubMed

    Han, Yanling; Li, Jue; Zhang, Yun; Hong, Zhonghua; Wang, Jing

    2017-05-15

    Hyperspectral remote sensing technology can acquire nearly continuous spectrum information and rich sea ice image information, thus providing an important means of sea ice detection. However, the correlation and redundancy among hyperspectral bands reduce the accuracy of traditional sea ice detection methods. Based on the spectral characteristics of sea ice, this study presents an improved similarity measurement method based on linear prediction (ISMLP) to detect sea ice. First, the first original band with a large amount of information is determined based on mutual information theory. Subsequently, a second original band with the least similarity is chosen by the spectral correlation measuring method. Finally, subsequent bands are selected through the linear prediction method, and a support vector machine classifier model is applied to classify sea ice. In experiments performed on images of Baffin Bay and Bohai Bay, comparative analyses were conducted to compare the proposed method and traditional sea ice detection methods. Our proposed ISMLP method achieved the highest classification accuracies (91.18% and 94.22%) in both experiments. From these results the ISMLP method exhibits better performance overall than other methods and can be effectively applied to hyperspectral sea ice detection.

  20. Sea Ice Detection Based on an Improved Similarity Measurement Method Using Hyperspectral Data

    PubMed Central

    Han, Yanling; Li, Jue; Zhang, Yun; Hong, Zhonghua; Wang, Jing

    2017-01-01

    Hyperspectral remote sensing technology can acquire nearly continuous spectrum information and rich sea ice image information, thus providing an important means of sea ice detection. However, the correlation and redundancy among hyperspectral bands reduce the accuracy of traditional sea ice detection methods. Based on the spectral characteristics of sea ice, this study presents an improved similarity measurement method based on linear prediction (ISMLP) to detect sea ice. First, the first original band with a large amount of information is determined based on mutual information theory. Subsequently, a second original band with the least similarity is chosen by the spectral correlation measuring method. Finally, subsequent bands are selected through the linear prediction method, and a support vector machine classifier model is applied to classify sea ice. In experiments performed on images of Baffin Bay and Bohai Bay, comparative analyses were conducted to compare the proposed method and traditional sea ice detection methods. Our proposed ISMLP method achieved the highest classification accuracies (91.18% and 94.22%) in both experiments. From these results the ISMLP method exhibits better performance overall than other methods and can be effectively applied to hyperspectral sea ice detection. PMID:28505135

  1. Microorganisms Trapped Within Permafrost Ice In The Fox Permafrost Tunnel, Alaska

    NASA Astrophysics Data System (ADS)

    Katayama, T.; Tanaka, M.; Douglas, T. A.; Cai, Y.; Tomita, F.; Asano, K.; Fukuda, M.

    2008-12-01

    Several different types of massive ice are common in permafrost. Ice wedges are easily recognized by their shape and foliated structure. They grow syngenetically or epigenetically as a result of repeated cycles of frost cracking followed by the infiltration of snow, melt water, soil or other material into the open frost cracks. Material incorporated into ice wedges becomes frozen and preserved. Pool ice, another massive ice type, is formed by the freezing of water resting on top of frozen thermokarst sediment or melting wedges and is not foliated. The Fox Permafrost Tunnel in Fairbanks was excavated within the discontinuous permafrost zone of central Alaska and it contains permafrost, ice wedges, and pool ice preserved at roughly -3°C. We collected samples from five ice wedges and three pool ice structures in the Fox Permafrost Tunnel. If the microorganisms were incorporated into the ice during its formation, a community analysis of the microorganisms could elucidate the environment in which the ice was formed. Organic material from sediments in the tunnel was radiocarbon-dated between 14,000 and 30,000 years BP. However, it is still not clear when the ice wedges were formed or subsequently deformed because they are only partially exposed and their upper surfaces are above the tunnel walls. The objectives of our study were to determine the biogeochemical conditions during massive ice formation and to analyze the microbial community within the ices by incubation-based and DNA-based analyses. The geochemical profile and the PCR-DGGE band patterns of bacteria among five ice wedge and 3 portions of pool ice samples were markedly different. The DGGE band patterns of fungi were simple with a few bands of fungi or yeast. The dominant bands of ice wedge and pool ice samples were affiliated with the genus Geomyces and Doratomyces, respectively. Phylogenetic analysis using rRNA gene ITS regions indicated isolates of Geomyces spp. from different ice wedges were affiliated

  2. Bio-optical properties of Arctic drift ice and surface waters north of Svalbard from winter to spring

    NASA Astrophysics Data System (ADS)

    Kowalczuk, Piotr; Meler, Justyna; Kauko, Hanna M.; Pavlov, Alexey K.; Zabłocka, Monika; Peeken, Ilka; Dybwad, Christine; Castellani, Giulia; Granskog, Mats A.

    2017-06-01

    We have quantified absorption by CDOM, aCDOM(λ), particulate matter, ap(λ), algal pigments, aph(λ), and detrital material, aNAP(λ), coincident with chlorophyll a in sea ice and surface waters in winter and spring 2015 in the Arctic Ocean north of Svalbard. The aCDOM(λ) was low in contrast to other regions of the Arctic Ocean, while ap(λ) has the largest contribution to absorption variability in sea ice and surface waters. ap(443) was 1.4-2.8 times and 1.3-1.8 times higher than aCDOM(443) in surface water and sea ice, respectively. aph(λ) contributed 90% and 81% to ap(λ), in open leads and under-ice waters column, and much less (53%-74%) in sea ice, respectively. Both aCDOM(λ) and ap(λ) followed closely the vertical distribution of chlorophyll a in sea ice and the water column. We observed a tenfold increase of the chlorophyll a concentration and nearly twofold increase in absorption at 443 nm in sea ice from winter to spring. The aCDOM(λ) dominated the absorption budget in the UV both in sea ice and surface waters. In the visible range, absorption was dominated by aph(λ), which contributed more than 50% and aCDOM(λ), which contributed 43% to total absorption in water column. Detrital absorption contributed significantly (33%) only in surface ice layer. Algae dynamics explained more than 90% variability in ap(λ) and aph(λ) in water column, but less than 70% in the sea ice. This study presents detailed absorption budget that is relevant for modeling of radiative transfer and primary production.

  3. The impact of short-term heat storage on the ice-albedo feedback loop

    NASA Astrophysics Data System (ADS)

    Polashenski, C.; Wright, N.; Perovich, D. K.; Song, A.; Deeb, E. J.

    2016-12-01

    The partitioning of solar energy in the ice-ocean-atmosphere environment is a powerful control over Arctic sea ice mass balance. Ongoing transitions of the sea ice toward a younger, thinner state are enhancing absorption of solar energy and contributing to further declines in sea ice in a classic ice-albedo feedback. Here we investigate the solar energy balance over shorter timescales. In particular, we are concerned with short term delays in the transfer of absorbed solar energy to the ice caused by heat storage in the upper ocean. By delaying the realization of ice melt, and hence albedo decline, heat storage processes effectively retard the intra-season ice-albedo feedback. We seek to quantify the impact and variability of such intra-season storage delays on full season energy absorption. We use in-situ data collected from Arctic Observing Network (AON) sea ice sites, synthesized with the results of imagery processed from high resolution optical satellites, and basin-scale remote sensing products to approach the topic. AON buoys are used to monitor the storage and flux of heat, while satellite imagery allows us to quantify the evolution of surrounding ice conditions and predict the aggregate scale solar absorption. We use several test sites as illustrative cases and demonstrate that temporary heat storage can have substantial impacts on seasonal energy absorption and ice loss. A companion to this work is presented by N. Wright at this meeting.

  4. Simple and Low-Cost Dual-Band Printed Microwave Absorber for 2.4- and 5-GHz-Band Applications

    NASA Astrophysics Data System (ADS)

    Khoomwong, Ekajit; Phongcharoenpanich, Chuwong

    2017-10-01

    In this research, a dual-band thin printed-circuit-board (PCB) microwave absorber has been proposed for applications in 2.4 and 5 GHz frequency bands. Each unit cell of the absorber consists of a square ring and a thick cross-dipole, augmented with the tuning elements. In the design process, numerical simulations were performed for the optimal characteristics of the absorber and an absorber prototype was fabricated using the simple print-transferring and etching process. The measured absorption bandwidths (50 %) of 170 MHz (2.36-2.53 GHz) and 830 MHz (5.09-5.92 GHz) were achieved for the first and second bands, respectively, with the wideband characteristic at the second operating band. The absorption rates near the center frequencies (2.45 and 5.5 GHz) were respectively 97.85 % and 97.76 %. The simulation and measured results are in good agreement. Furthermore, the incidence-angle dependencies of the absorber were of moderately wide angles with the absorption capacity of at least 50 % for both operating bands. The proposed absorber is suitable for a variety of applications requiring absorption in the 2.4/5 GHz bands.

  5. Spatial variability and trends of seasonal snowmelt processes over Antarctic sea ice observed by satellite scatterometers

    NASA Astrophysics Data System (ADS)

    Arndt, S.; Haas, C.

    2017-12-01

    Snow is one of the key drivers determining the seasonal energy and mass budgets of sea ice in the Southern Ocean. Here, we analyze radar backscatter time series from the European Remote Sensing Satellites (ERS)-1 and-2 scatterometers, from the Quick Scatterometer (QSCAT), and from the Advanced Scatterometer (ASCAT) in order to observe the regional and inter-annual variability of Antarctic snowmelt processes from 1992 to 2014. On perennial ice, seasonal backscatter changes show two different snowmelt stages: A weak backscatter rise indicating the initial warming and metamorphosis of the snowpack (pre-melt), followed by a rapid rise indicating the onset of internal snowmelt and thaw-freeze cycles (snowmelt). In contrast, similar seasonal backscatter cycles are absent on seasonal ice, preventing the periodic retrieval of spring/summer transitions. This may be due to the dominance of ice bottom melt over snowmelt, leading to flooding and ice disintegration before strong snowmelt sets in. Resulting snowmelt onset dates on perennial sea ice show the expected latitudinal gradient from early melt onsets (mid-November) in the northern Weddell Sea towards late (end-December) or even absent snowmelt conditions further south. This result is likely related to seasonal variations in solar shortwave radiation (absorption). In addition, observations with different microwave frequencies allow to detect changing snow properties at different depths. We show that short wavelengths of passive microwave observations indicate earlier pre-melt and snowmelt onset dates than longer wavelength scatterometer observations, in response to earlier warming of upper snow layers compared to lower snow layers. Similarly, pre-melt and snowmelt onset dates retrieved from Ku-Band radars were earlier by an average of 11 and 23 days, respectively, than those retrieved from C-Band. This time difference was used to correct melt onset dates retrieved from Ku-Band to compile a consistent time series from

  6. Surface Composition and Physical Mixture State of the Regoliths of Outer Solar System Satellites: The Role of Scattering and Absorption by the non-Ice Components and Implications for Rayleigh Absorption and Rayleigh Scattering

    NASA Astrophysics Data System (ADS)

    Clark, R. N.; Perlman, Z. S.; Pearson, N.; Hendrix, A. R.; Cuzzi, J. N.; Cruikshank, D. P.; Bradley, E. T.; Filacchione, G.; Nicholson, P. D.; Hedman, M. M.; Brown, R. H.; Buratti, B. J.; Baines, K. H.; Sotin, C.; Nelson, R. M.

    2014-12-01

    Many outer Solar System satellites have surfaces dominated by water ice and a mysterious material(s) causing strong visible to ultraviolet absorption along with trace other compounds with infrared absorptions, including CO2 and organics. Various mechanisms have been proposed for the UV absorber, including tholins, iron oxides, and nano-sized metallic iron particles (e.g. see Clark et al., 2012, Icarus v218 p831, and references therein). We have constructed extensive laboratory analog measurements and radiative transfer modeling of the materials and scattering conditions that can contribute to the optical properties seen on outer Solar System satellites. We have successfully modeled Rayleigh absorption and Rayleigh scattering to produce spectral shapes typical of those seen in spectra of icy Solar System satellites, including those in the Saturn system observed with the Cassini UVIS and VIMS instruments. While it is easy to create these absorptions with radiative transfer modeling, it has been more difficult to do with laboratory analogs. We are finding that laboratory analogs refine and restricts the possible mixing states of the UV absorber in icy satellite surfaces. We have found that just because a particle is highly absorbing, as in metallic iron, if the particle is not embedded in another matrix, scattering will dominate over absorption and Rayleigh absorption will not be observed. Further, the closer the indices of refraction match between the absorbing particle and the matrix, there will be less scattering and more absorption will occur. But we have also found this to be true with other absorbing material, like Tholins. It is very difficult to obtain the very low reflectances observed in the UV in icy satellite spectra using traditional intimate mixtures, as scattering and first surface reflections contribute significantly to the reflectance. The solution, both from radiative transfer modeling and laboratory analogs point to embedded absorbing materials. For

  7. Design of a dual band metamaterial absorber for Wi-Fi bands

    NASA Astrophysics Data System (ADS)

    Alkurt, Fatih Özkan; Baǧmancı, Mehmet; Karaaslan, Muharrem; Bakır, Mehmet; Altıntaş, Olcay; Karadaǧ, Faruk; Akgöl, Oǧuzhan; Ünal, Emin

    2018-02-01

    The goal of this work is to design and fabrication of a dual band metamaterial based absorber for Wireless Fidelity (Wi-Fi) bands. Wi-Fi has two different operating frequencies such as 2.45 GHz and 5 GHz. A dual band absorber is proposed and the proposed structure consists of two layered unit cells, and different sized square split ring (SSR) resonators located on each layers. Copper is used for metal layer and resonator structure, FR-4 is used as substrate layer in the proposed structure. This designed dual band metamaterial absorber is used in the wireless frequency bands which has two center frequencies such as 2.45 GHz and 5 GHz. Finite Integration Technique (FIT) based simulation software used and according to FIT based simulation results, the absorption peak in the 2.45 GHz is about 90% and the another frequency 5 GHz has absorption peak near 99%. In addition, this proposed structure has a potential for energy harvesting applications in future works.

  8. Dynamics of coupled ice-ocean system in the marginal ice zone: Study of the mesoscale processes and of constitutive equations for sea ice

    NASA Technical Reports Server (NTRS)

    Hakkinen, S.

    1984-01-01

    This study is aimed at the modelling of mesoscale processed such as up/downwelling and ice edge eddies in the marginal ice zones. A 2-dimensional coupled ice-ocean model is used for the study. The ice model is coupled to the reduced gravity ocean model (f-plane) through interfacial stresses. The constitutive equations of the sea ice are formulated on the basis of the Reiner-Rivlin theory. The internal ice stresses are important only at high ice concentrations (90-100%), otherwise the ice motion is essentially free drift, where the air-ice stress is balanced by the ice-water stress. The model was tested by studying the upwelling dynamics. Winds parallel to the ice edge with the ice on the right produce upwilling because the air-ice momentum flux is much greater that air-ocean momentum flux, and thus the Ekman transport is bigger under the ice than in the open water. The upwelling simulation was extended to include temporally varying forcing, which was chosen to vary sinusoidally with a 4 day period. This forcing resembles successive cyclone passings. In the model with a thin oceanic upper layer, ice bands were formed.

  9. Origin of Vibrational Spectroscopic Response at Ice Surface.

    PubMed

    Ishiyama, Tatsuya; Takahashi, Hideaki; Morita, Akihiro

    2012-10-18

    Since the basal plane surface of ice was first observed by sum frequency generation, an extraordinarily intense band for the hydrogen(H)-bonded OH stretching vibration has been a matter of debate. We elucidate the remarkable spectral feature of the ice surface by quantum mechanics/molecular mechanics calculations. The intense H-bonded band is originated mostly from the "bilayer-stitching" modes of a few surface bilayers, through significant intermolecular charge transfer. The mechanism of enhanced signal is sensitive to the order of the tetrahedral ice structure, as the charge transfer is coupled to the vibrational delocalization.

  10. Infrared spectroscopy of Triton and Pluto ice analogs: the case for saturated hydrocarbons.

    PubMed

    Bohn, R B; Sandford, S A; Allamandola, L J; Cruikshank, D P

    1994-09-01

    The infrared transmission spectra and photochemical behavior of various organic compounds isolated in solid N2 ices, appropriate for applications to Triton and Pluto, are presented. It is shown that excess absorption in the surface spectra of Triton and Pluto, i.e., absorption not explained by present models incorporating molecules already identified on these bodies (N2, CH4, CO, and CO2), that starts near 4450 cm-1 (2.25 micrometers) and extends to lower frequencies, may be due to alkanes (C(n)H2n+2) and related molecules frozen in the nitrogen. Branched and linear alkanes may be responsible. Experiments in which the photochemistry of N2:CH4 and N(2):CH4:CO ices was explored demonstrate that the surface ices of Triton and Pluto may contain a wide variety of additional species containing H, C, O, and N. Of these, the reactive molecule diazomethane, CH2N2, is particularly important since it may be largely responsible for the synthesis of larger alkanes from CH4 and other small alkanes. Diazomethane would also be expected to drive chemical reactions involving organics in the surface ices of Triton and Pluto toward saturation, i.e., to reduce multiple CC bonds. The positions and intrinsic strengths (A values) of many of the infrared absorption bands of N2 matrix-isolated molecules of relevance to Triton and Pluto have also been determined. These can be used to aid in their search and to place constraints on their abundances. For example, using these A values the abundance ratios CH4/N2 approximately 1.3 x 10(-3), C2H4/N2 < or = 9.5 x 10(-7) and H2CO/N2 < or = 7.8 x 10(-7) are deduced for Triton and CH4/N2 approximately 3.1 x 10(-3), C2H4/N2 < or = 4.1 x 10(-6), and H2CO/N2 < or = 5.2 x 10(-6) deduced for Pluto. The small amounts of C2H4 and H2CO in the surface ices of these bodies are in disagreement with the large abundances expected from many theoretical models.

  11. Sublimation of water ice mixed with silicates and tholins: Evolution of surface texture and reflectance spectra, with implications for comets

    NASA Astrophysics Data System (ADS)

    Poch, Olivier; Pommerol, Antoine; Jost, Bernhard; Carrasco, Nathalie; Szopa, Cyril; Thomas, Nicolas

    2016-03-01

    The surfaces of many objects in the Solar System comprise substantial quantities of water ice sometimes mixed with minerals and/or organic molecules. The sublimation of the ice changes the structural and optical properties of these objects. We present laboratory data on the evolution of the structure and the visible and near-infrared spectral reflectance of icy surface analogues of cometary ices, made of water ice, complex organic matter (tholins) and silicates, as they undergo sublimation under low temperature (<-70 °C) and pressure (10-5 mbar) conditions inside the SCITEAS simulation chamber. As the water ice sublimated, we observed in situ the formation of a porous sublimation lag deposit, or sublimation mantle, at the top of the ice. This mantle is a network of filaments made of the non-volatile particles. Organics or phyllosilicates grains, able to interact via stronger inter-particulate forces than olivine grains, can form a foam-like structure having internal cohesiveness, holding olivine grains together. As this mantle builds-up, the band depths of the sub-surface water ice are attenuated until complete extinction under only few millimeters of mantle. Optically thick sublimation mantles are mainly featureless in the near infrared. The absorption bands of the minerals present in the mantle are weak, or even totally absent if minerals are mixed with organics which largely dominate the VIS-NIR reflectance spectrum. During sublimation, ejections of large fragments of mantle, triggered by the gas flow, expose ice particles to the surface. The contrast of brightness between mantled and ice-exposed areas depends on the wavelength range and the dust/ice ratio considered. We describe how the chemical nature of the non-volatiles, the size of their particles, the way they are mixed with the ice and the dust/ice mass ratio influence the texture, activity and spectro-photometric properties of the sublimation mantles. These data provide useful references for

  12. Thermodynamic derivatives of infrared absorptance

    NASA Technical Reports Server (NTRS)

    Broersma, S.; Walls, W. L.

    1974-01-01

    Calculation of the concentration, pressure, and temperature dependence of the spectral absorptance of a vibrational absorption band. A smooth thermodynamic dependence was found for wavelength intervals where the average absorptance is less than 0.65. Individual rotational lines, whose parameters are often well known, were used as bases in the calculation of medium resolution spectra. Two modes of calculation were combined: well-separated rotational lines plus interaction terms, or strongly overlapping lines that were represented by a compound line of similar shape plus corrections. The 1.9- and 6.3-micron bands of H2O and the 4.3-micron band of CO2 were examined in detail and compared with experiment.

  13. Estimation of Antarctic Land-Fast Sea Ice Algal Biomass and Snow Thickness From Under-Ice Radiance Spectra in Two Contrasting Areas

    NASA Astrophysics Data System (ADS)

    Wongpan, P.; Meiners, K. M.; Langhorne, P. J.; Heil, P.; Smith, I. J.; Leonard, G. H.; Massom, R. A.; Clementson, L. A.; Haskell, T. G.

    2018-03-01

    Fast ice is an important component of Antarctic coastal marine ecosystems, providing a prolific habitat for ice algal communities. This work examines the relationships between normalized difference indices (NDI) calculated from under-ice radiance measurements and sea ice algal biomass and snow thickness for Antarctic fast ice. While this technique has been calibrated to assess biomass in Arctic fast ice and pack ice, as well as Antarctic pack ice, relationships are currently lacking for Antarctic fast ice characterized by bottom ice algae communities with high algal biomass. We analyze measurements along transects at two contrasting Antarctic fast ice sites in terms of platelet ice presence: near and distant from an ice shelf, i.e., in McMurdo Sound and off Davis Station, respectively. Snow and ice thickness, and ice salinity and temperature measurements support our paired in situ optical and biological measurements. Analyses show that NDI wavelength pairs near the first chlorophyll a (chl a) absorption peak (≈440 nm) explain up to 70% of the total variability in algal biomass. Eighty-eight percent of snow thickness variability is explained using an NDI with a wavelength pair of 648 and 567 nm. Accounting for pigment packaging effects by including the ratio of chl a-specific absorption coefficients improved the NDI-based algal biomass estimation only slightly. Our new observation-based algorithms can be used to estimate Antarctic fast ice algal biomass and snow thickness noninvasively, for example, by using moored sensors (time series) or mapping their spatial distributions using underwater vehicles.

  14. Modulating the band structure and sub-bandgap absorption of Co-hyperdoped silicon by co-doping with shallow-level elements

    NASA Astrophysics Data System (ADS)

    Dong, Xiao; Fang, Xiuxiu; Wang, Yongyong; Song, Xiaohui; Lu, Zhansheng

    2018-06-01

    Hyperdoped group-III elements can lower the Fermi energy in the band structures of Co-hyperdoped silicon. When the Co-to-X (X = B, Al, Ga) ratio is 2:1, the intermediate band (IB) in the bandgap includes the Fermi energy and is partially filled by electrons, which is in accordance with the requirement of an IB material. The hyperdoped X atoms can cause the blueshift of the sub-bandgap absorption of the compound compared with the material with no shallow-level elements, which is due to the enlargement of the electronic excitation energy of the Co,X-co-doped silicon.

  15. Band-engineering of TiO2 as a wide-band gap semiconductor using organic chromophore dyes

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Kartini, I.; Ramelan, A. H.; Saputri, L. N. M. Z.; Munawaroh, H.

    2017-07-01

    Bond-engineering as applied to semiconductor materials refers to the manipulation of the energy bands in order to control charge transfer processes in a device. When the device in question is a photoelectrochemical cell, the charges affected by drift become the focus of the study. The ideal band gap of semiconductors for enhancement of photocatalyst activity can be lowered to match with visible light absorption and the location of conduction Band (CB) should be raised to meet the reducing capacity. Otherwise, by the addition of the chromofor organic dyes, the wide-band gab can be influences by interacation resulting between TiO2 surface and the dyes. We have done the impruvisation wide-band gap of TiO2 by the addition of organic chromophore dye, and the addition of transition metal dopand. The TiO2 morphology influence the light absorption as well as the surface modification. The organic chromophore dye was syntesized by formation complexes compound of Co(PAR)(SiPA)(PAR)= 4-(2-piridylazoresorcinol), SiPA = Silyl propil amine). The result showed that the chromophore groups adsorbed onto TiO2 surface can increase the visible light absorption of wide-band gab semiconductor. Initial absorption of a chromophore will affect light penetration into the material surfaces. The use of photonic material as a solar cell shows this phenomenon clearly from the IPCE (incident photon to current conversion efficiency) measurement data. Organic chromophore dyes of Co(PAR)(SiPA) exhibited the long wavelength absorption character compared to the N719 dye (from Dyesol).

  16. The Detection of Water Ice in Comet Hale-Bopp

    NASA Technical Reports Server (NTRS)

    Davies, John K.; Roush, Ted L.; Cruikshank, Dale P.; Bartholomew, Mary Jane; Geballe, Thomas R.; Owen, Tobias

    1996-01-01

    We present spectra of Comet Hale-Bopp (C/1995 01) covering the range 1.4-2.5 micron that were recorded when the comet was 7 AU from the Sun. These show I)road absorption features at 1.5 and 2.05 micron. We show that some, but not all, of this absorption could be matched by an intimate mixture of water ice and a low albedo material such as carbon on the nucleus. However, we recognize that it is more likely that the ice features are produced by scattering from icy grains in the coma. The absence of absorption at 1.65 micron suggests that this ice is probably in the amorphous state. An unidentified additional component may be required to account for the downward slope at the longwavelength end of the spectrum.

  17. Complexities in pyroxene compositions derived from absorption band centers: Examples from Apollo samples, HED meteorites, synthetic pure pyroxenes, and remote sensing data

    NASA Astrophysics Data System (ADS)

    Moriarty, D. P.; Pieters, C. M.

    2016-02-01

    We reexamine the relationship between pyroxene composition and near-infrared absorption bands, integrating measurements of diverse natural and synthetic samples. We test an algorithm (PLC) involving a two-part linear continuum removal and parabolic fits to the 1 and 2 μm bands—a computationally simple approach which can easily be automated and applied to remote sensing data. Employing a suite of synthetic pure pyroxenes, the PLC technique is shown to derive similar band centers to the modified Gaussian model. PLC analyses are extended to natural pyroxene-bearing materials, including (1) bulk lunar basalts and pyroxene separates, (2) diverse lunar soils, and (3) HED meteorites. For natural pyroxenes, the relationship between composition and absorption band center differs from that of synthetic pyroxenes. These differences arise from complexities inherent in natural materials such as exsolution, zoning, mixing, and space weathering. For these reasons, band center measurements of natural pyroxene-bearing materials are compositionally nonunique and could represent three distinct scenarios (1) pyroxene with a narrow compositional range, (2) complexly zoned pyroxene grains, or (3) a mixture of multiple pyroxene (or nonpyroxene) components. Therefore, a universal quantitative relationship between band centers and pyroxene composition cannot be uniquely derived for natural pyroxene-bearing materials without additional geologic context. Nevertheless, useful relative relationships between composition and band center persist in most cases. These relationships are used to interpret M3 data from the Humboldtianum Basin. Four distinct compositional units are identified (1) Mare Humboldtianum basalts, (2) distinct outer basalts, (3) low-Ca pyroxene-bearing materials, and (4) feldspathic materials.

  18. High-Density Amorphous Ice, the Frost on Interstellar Grains

    NASA Technical Reports Server (NTRS)

    Jenniskens, P.; Blake, D. F.; Wilson, M. A.; Pohorille, A.

    1995-01-01

    Most water ice in the universe is in a form which does not occur naturally on Earth and of which only minimal amounts have been made in the laboratory. We have encountered this 'high-density amorphous ice' in electron diffraction experiments of low-temperature (T less than 30 K) vapor-deposited water and have subsequently modeled its structure using molecular dynamics simulations. The characteristic feature of high-density amorphous ice is the presence of 'interstitial' oxygen pair distances between 3 and 4 A. However, we find that the structure is best described as a collapsed lattice of the more familiar low-density amorphous form. These distortions are frozen in at temperatures below 38 K because, we propose, it requires the breaking of one hydrogen bond, on average, per molecule to relieve the strain and to restructure the lattice to that of low-density amorphous ice. Several features of astrophysical ice analogs studied in laboratory experiments are readily explained by the structural transition from high-density amorphous ice into low-density amorphous ice. Changes in the shape of the 3.07 gm water band, trapping efficiency of CO, CO loss, changes in the CO band structure, and the recombination of radicals induced by low-temperature UV photolysis all covary with structural changes that occur in the ice during this amorphous to amorphous transition. While the 3.07 micrometers ice band in various astronomical environments can be modeled with spectra of simple mixtures of amorphous and crystalline forms, the contribution of the high-density amorphous form nearly always dominates.

  19. Radar Remote Sensing of Ice and Sea State and Air-Sea Interaction in the Marginal Ice Zone

    DTIC Science & Technology

    2014-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Radar Remote Sensing of Ice and Sea State and Air-Sea...Interaction in the Marginal Ice Zone Hans C. Graber RSMAS – Department of Ocean Sciences Center for Southeastern Tropical Advanced Remote Sensing...scattering and attenuation process of ocean waves interacting with ice . A nautical X-band radar on a vessel dedicated to science would be used to follow the

  20. Comparison of radar backscatter from Antarctic and Arctic sea ice

    NASA Technical Reports Server (NTRS)

    Hosseinmostafa, R.; Lytle, V.

    1992-01-01

    Two ship-based step-frequency radars, one at C-band (5.3 GHz) and one at Ku-band (13.9 GHz), measured backscatter from ice in the Weddell Sea. Most of the backscatter data were from first-year (FY) and second-year (SY) ice at the ice stations where the ship was stationary and detailed snow and ice characterizations were performed. The presence of a slush layer at the snow-ice interface masks the distinction between FY and SY ice in the Weddell Sea, whereas in the Arctic the separation is quite distinct. The effect of snow-covered ice on backscattering coefficients (sigma0) from the Weddell Sea region indicates that surface scattering is the dominant factor. Measured sigma0 values were compared with Kirchhoff and regression-analysis models. The Weibull power-density function was used to fit the measured backscattering coefficients at 45 deg.

  1. Theoretical infrared and electronic absorption spectra of C16H10 isomers, their ions and doubly ions

    NASA Astrophysics Data System (ADS)

    Naganathappa, Mahadevappa; Chaudhari, Ajay

    2012-09-01

    Polycyclic aromatic hydrocarbons (PAHs) or PAH-related molecules are considered to be responsible for the unidentified infrared (UIR) emission features at 3.3, 6.2, 7.7, 8.6 and 11.2 μm. However, the exact identification of PAH or PAH-related molecules is difficult. There have been several investigations on the spectroscopic characterization of PAH molecules. But none of them compared the spectra of isomers of PAHs, which might have help in the identification of the UIR emission features. This work presents the infrared and electronic absorption spectra of isomers of C16H10. The aim of the present work is to compare infrared and electronic absorption spectra of four isomers of C16H10 PAH viz. pyrene, aceanthrylene, acephenanthrylene and fluoranthene, their ions and doubly ions. We also compare the spectra of pyrene in the gas-phase and in H2O ice. We have used the density functional theory with B3LYP exchange and correlation functional and 6-311++g** basis set to study the infrared spectra. The time-dependent density functional theory (TDDFT) has been used to obtain the electronic absorption spectra. Significant difference in the CC stretching, CH in-plane bending and CH out-of-plane bending vibration modes is observed for the isomers of C16H10 whereas there is no large difference in the CH stretching vibration band. A significant change in the vibrational band is observed for pyrene in H2O ice compared to gas-phase pyrene. Though isomers of C16H10 PAH have the same number of carbon and hydrogen atoms, their spectroscopic characteristics are different. This study should help in identifying the isomers of C16H10, their ions and doubly cation in the interstellar medium.

  2. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression

    USGS Publications Warehouse

    Kokaly, R.F.; Clark, R.N.

    1999-01-01

    We develop a new method for estimating the biochemistry of plant material using spectroscopy. Normalized band depths calculated from the continuum-removed reflectance spectra of dried and ground leaves were used to estimate their concentrations of nitrogen, lignin, and cellulose. Stepwise multiple linear regression was used to select wavelengths in the broad absorption features centered at 1.73 ??m, 2.10 ??m, and 2.30 ??m that were highly correlated with the chemistry of samples from eastern U.S. forests. Band depths of absorption features at these wavelengths were found to also be highly correlated with the chemistry of four other sites. A subset of data from the eastern U.S. forest sites was used to derive linear equations that were applied to the remaining data to successfully estimate their nitrogen, lignin, and cellulose concentrations. Correlations were highest for nitrogen (R2 from 0.75 to 0.94). The consistent results indicate the possibility of establishing a single equation capable of estimating the chemical concentrations in a wide variety of species from the reflectance spectra of dried leaves. The extension of this method to remote sensing was investigated. The effects of leaf water content, sensor signal-to-noise and bandpass, atmospheric effects, and background soil exposure were examined. Leaf water was found to be the greatest challenge to extending this empirical method to the analysis of fresh whole leaves and complete vegetation canopies. The influence of leaf water on reflectance spectra must be removed to within 10%. Other effects were reduced by continuum removal and normalization of band depths. If the effects of leaf water can be compensated for, it might be possible to extend this method to remote sensing data acquired by imaging spectrometers to give estimates of nitrogen, lignin, and cellulose concentrations over large areas for use in ecosystem studies.We develop a new method for estimating the biochemistry of plant material using

  3. Signatures of a conical intersection in photofragment distributions and absorption spectra: Photodissociation in the Hartley band of ozone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Picconi, David; Grebenshchikov, Sergy Yu., E-mail: Sergy.Grebenshchikov@ch.tum.de

    Photodissociation of ozone in the near UV is studied quantum mechanically in two excited electronic states coupled at a conical intersection located outside the Franck-Condon zone. The calculations, performed using recent ab initio PESs, provide an accurate description of the photodissociation dynamics across the Hartley/Huggins absorption bands. The observed photofragment distributions are reproduced in the two electronic dissociation channels. The room temperature absorption spectrum, constructed as a Boltzmann average of many absorption spectra of rotationally excited parent ozone, agrees with experiment in terms of widths and intensities of diffuse structures. The exit channel conical intersection contributes to the coherent broadeningmore » of the absorption spectrum and directly affects the product vibrational and translational distributions. The photon energy dependences of these distributions are strikingly different for fragments created along the adiabatic and the diabatic paths through the intersection. They can be used to reverse engineer the most probable geometry of the non-adiabatic transition. The angular distributions, quantified in terms of the anisotropy parameter β, are substantially different in the two channels due to a strong anticorrelation between β and the rotational angular momentum of the fragment O{sub 2}.« less

  4. Observation of Sea Ice Surface Thermal States Under Cloud Cover

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Perovich, D. K.; Gow, A. J.; Kwok, R.; Barber, D. G.; Comiso, J. C.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    Clouds interfere with the distribution of short-wave and long-wave radiations over sea ice, and thereby strongly affect the surface energy balance in polar regions. To evaluate the overall effects of clouds on climatic feedback processes in the atmosphere-ice-ocean system, the challenge is to observe sea ice surface thermal states under both clear sky and cloudy conditions. From laboratory experiments, we show that C-band radar (transparent to clouds) backscatter is very sensitive to the surface temperature of first-year sea ice. The effect of sea ice surface temperature on the magnitude of backscatter change depends on the thermal regimes of sea ice thermodynamic states. For the temperature range above the mirabilite (Na2SO4.10H20) crystallization point (-8.2 C), C-band data show sea ice backscatter changes by 8-10 dB for incident angles from 20 to 35 deg at both horizontal and vertical polarizations. For temperatures below the mirabilite point but above the crystallization point of MgCl2.8H2O (-18.0 C), relatively strong backwater changes between 4-6 dB are observed. These backscatter changes correspond to approximately 8 C change in temperature for both cases. The backscattering mechanism is related to the temperature which determines the thermodynamic distribution of brine volume in the sea ice surface layer. The backscatter is positively correlated to temperature and the process is reversible with thermodynamic variations such as diurnal insolation effects. From two different dates in May 1993 with clear and overcast conditions determined by the Advanced Very High Resolution Radiometer (AVHRR), concurrent Earth Resources Satellite 1 (ERS-1) C-band ice observed with increases in backscatter over first-year sea ice, and verified by increases in in-situ sea ice surface temperatures measured at the Collaborative-Interdisciplinary Cryosphere Experiment (C-ICE) site.

  5. Inter-band optoelectronic properties in quantum dot structure of low band gap III-V semiconductors

    NASA Astrophysics Data System (ADS)

    Dey, Anup; Maiti, Biswajit; Chanda Sarkar, Debasree

    2014-04-01

    A generalized theory is developed to study inter-band optical absorption coefficient (IOAC) and material gain (MG) in quantum dot structures of narrow gap III-V compound semiconductor considering the wave-vector (k→) dependence of the optical transition matrix element. The band structures of these low band gap semiconducting materials with sufficiently separated split-off valance band are frequently described by the three energy band model of Kane. This has been adopted for analysis of the IOAC and MG taking InAs, InSb, Hg1-xCdxTe, and In1-xGaxAsyP1-y lattice matched to InP, as example of III-V compound semiconductors, having varied split-off energy band compared to their bulk band gap energy. It has been found that magnitude of the IOAC for quantum dots increases with increasing incident photon energy and the lines of absorption are more closely spaced in the three band model of Kane than those with parabolic energy band approximations reflecting the direct the influence of energy band parameters. The results show a significant deviation to the MG spectrum of narrow-gap materials having band nonparabolicity compared to the parabolic band model approximations. The results reflect the important role of valence band split-off energies in these narrow gap semiconductors.

  6. Selective coherent perfect absorption in metamaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nie, Guangyu; Shi, Quanchao; Zhu, Zheng

    2014-11-17

    We show multi-band coherent perfect absorption (CPA) in simple bilayered asymmetrically split ring metamaterials. The selectivity of absorption can be accomplished by separately excited electric and magnetic modes in a standing wave formed by two coherent counterpropagating beams. In particular, each CPA can be completely switched on/off by the phase of a second coherent wave. We propose a practical scheme for realizing multi-band coherent perfect absorption of 100% that is allowed to work from microwave to optical frequency.

  7. Optimal Reflectance, Transmittance, and Absorptance Wavebands and Band Ratios for the Estimation of Leaf Chlorophyll Concentration

    NASA Technical Reports Server (NTRS)

    Carter, Gregory A.; Spiering, Bruce A.

    2000-01-01

    The present study utilized regression analysis to identify: wavebands and band ratios within the 400-850 nm range that could be used to estimate total chlorophyll concentration with minimal error; and simple regression models that were most effective in estimating chlorophyll concentrations were measured for two broadleaved species, a broadleaved vine, a needle-leaved conifer, and a representative of the grass family.Overall, reflectance, transmittance, and absorptance corresponded most precisely with chlorophyll concentration at wavelengths near 700 nm, although regressions were strong as well in the 550-625 nm range.

  8. Geographic Distribution of N2, CH4, CO2, and H2O Ices on Triton from Near-IR Spectroscopic Monitoring

    NASA Astrophysics Data System (ADS)

    Grundy, W. M.; Young, L. A.; Young, E. F.; Buie, M. W.; Spencer, J. R.

    2004-11-01

    We present new 0.8 to 2.4 μ m spectral observations of Neptune's satellite Triton, obtained at IRTF\\slash SpeX between 2001 and 2004 as part of an ongoing search for time-variable phenomena associated with Triton's seasonal volatile transport processes, and also perhaps with reported shorter-term "reddening" events. The ability to detect spectral changes on these time scales depends critically on accurate characterization of any cyclic variations resulting from Triton's 5.877 day rotation period. We will report on our observations of periodic variations of Triton's near-IR absorption bands of N2, CH4, and H2O ices, but not of CO2 ice, in this initial stage of our Triton monitoring program. The observed variations (or lack thereof) give an indication of how these four ice species are distributed in longitude. The most heterogeneously distributed ice is N2, which shows nearly twice as much absorption on Triton's Neptune-facing hemisphere as on the anti-Neptune hemisphere. Comparison with Voyager-era, visual wavelength imaging of Triton's surface suggest that the observed N2 ice is concentrated on low-latitude regions of Triton's polar cap, which are predominantly located on the Neptune-facing hemisphere. Non-volatile H2O ice seems to be slightly concentrated on Triton's leading hemisphere. Despite being highly diluted in N2 ice, the longitudinal distribution of Triton's CH4 ice differs from that of Triton's N2 ice, being slightly concentrated on Triton's trailing hemisphere. Triton's CO2 ice shows the least longitudinal variation, suggesting that it is either very uniformly distributed or that it is confined to high latitudes. This work was supported by NASA's Planetary Astronomy and Planetary Geology &\\ Geophysics programs, and by NSF's Planetary Astronomy program. \\hangindent=0.3truein Grundy, W.M., and L.A. Young (2004) Near infrared spectral monitoring of Triton with IRTF\\slash SpeX I: Establishing a baseline. Icarus (in press).

  9. Condensation and Vaporization Studies of CH3OH and NH3 Ices: Major Implications for Astrochemistry

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Allamandola, Louis J.

    1993-01-01

    In an extension of previously reported work on ices containing H20, CO, CO2, SO2, H2S, and H2, We present measurements of the physical and infrared spectral properties of ices containing CH30H and NH3.The condensation and sublimation behavior of these ice systems is discussed and surface binding energies are presented for all of these molecules. The surface binding energies can be used to calculate the residence times of the molecules on grain surfaces as a function of temperature. It is demonstrated that many of the molecules used to generate radio maps of and probe conditions in dense clouds, for example CO and NH3, will be significantly depleted from the gas phase by condensation onto dust grains. Attempts to derive total column densities solely from radio maps that do not take condensation effects into account may vastly underestimate the true column densities of any given species. Simple CO condensation onto and vaporization off of grains appears to be capable of explaining the observed 87 of gas phase CO in cold, dense molecular cores. This is not the case for NH3, however, where thermal considerations alone predict that all of the NH3 should be condensed onto grains. The fact that some gas phase NH3 is observed indicates that additional desorption processes must be involved. The surface binding energies of CH3OH, in conjunction with this molecule's observed behavior during warm up in H2O-rich ices, is shown to provide an explanation of the large excess of CH3OH seen in many warm, dense molecular cores. The near-infrared spectrum and associated integrated band strengths of CH3OH-containing ice are given, as are middle infrared absorption band strengths for both CH3OH and NH3.

  10. Condensation and vaporization studies of CH3OH and NH3 ices: Major implications for astrochemistry

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Allamandola, Louis J.

    1993-01-01

    In an extension of previously reported work on ices containing H2O, CO, CO2, SO2, H2S, and H2, we present measurements of the physical and infrared spectral properties of ices containing CH3OH and NH3. The condensation and sublimation behavior of these ice systems is discussed and surface binding energies are presented for all of these molecules. The surface binding energies can be used to calculate the residence times of the molecules on grain surfaces as a function of temperature. It is demonstrated that many of the molecules used to generate radio maps of and probe conditions in dense clouds, for example CO and NH3, will be significantly depleted from the gas phase by condensation onto dust grains. Attempts to derive total column densities solely from radio maps that do not take condensation effects into account may vastly underestimate the true column densities of any given species. Simple CO condensation onto and vaporization off of grains appears to be capable of explaining the observed depletion of gas phase CO in cold, dense molecular cores. This is not the case for NH3, however, where thermal considerations alone predict that all of the NH3 should be condensed onto grains. The fact that some gas phase NH3 is observed indicates that additional desorption processes must be involved. The surface binding energies of CH3OH, in conjunction with this molecule's observed behavior during warm up in H2O-rich ices, is shown to provide an explanation of the large excess of CH3OH seen in many warm, dense molecular cores. The near-infrared spectrum and associated integrated band strengths of CH3OH-containing ice are given, as are middle infrared absorption band strengths for both CH3OH and NH3.

  11. Optical Thickness and Effective Radius Retrievals of Liquid Water Clouds over Ice and Snow Surface

    NASA Technical Reports Server (NTRS)

    Platnick, S.; King, M. D.; Tsay, S.-C.; Arnold, G. T.; Gerber, H.; Hobbs, P. V.; Rangno, A.

    1999-01-01

    Cloud optical thickness and effective radius retrievals from solar reflectance measurements traditionally depend on a combination of spectral channels that are absorbing and non-absorbing for liquid water droplets. Reflectances in non-absorbing channels (e.g., 0.67, 0.86 micrometer bands) are largely dependent on cloud optical thickness, while longer wavelength absorbing channels (1.6, 2.1, and 3.7 micrometer window bands) provide cloud particle size information. Retrievals are complicated by the presence of an underlying ice/snow surface. At the shorter wavelengths, sea ice is both bright and highly variable, significantly increasing cloud retrieval uncertainty. However, reflectances at the longer wavelengths are relatively small and may be comparable to that of dark open water. Sea ice spectral albedos derived from Cloud Absorption Radiometer (CAR) measurements during April 1992 and June 1995 Arctic field deployments are used to illustrate these statements. A modification to the traditional retrieval technique is devised. The new algorithm uses a combination of absorbing spectral channels for which the snow/ice albedo is relatively small. Using this approach, preliminary retrievals have been made with the MODIS Airborne Simulator (MAS) imager flown aboard the NASA ER-2 during FIRE-ACE. Data from coordinated ER-2 and University of Washington CV-580 aircraft observations of liquid water stratus clouds on June 3 and June 6, 1998 have been examined. Size retrievals are compared with in situ cloud profile measurements of effective radius made with the CV-580 PMS FSSP probe, and optical thickness retrievals are compared with extinction profiles derived from the Gerber Scientific "g-meter" probe. MAS retrievals are shown to be in good agreement with the in situ measurements.

  12. The ÖX˜ absorption of vinoxy radical revisited: Normal and Herzberg-Teller bands observed via cavity ringdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Thomas, Phillip S.; Chhantyal-Pun, Rabi; Kline, Neal D.; Miller, Terry A.

    2010-03-01

    The ÖX˜ electronic absorption spectrum of vinoxy radical has been investigated using room temperature cavity ringdown spectroscopy. Analysis of the observed bands on the basis of computed vibrational frequencies and rotational envelopes reveals that two distinct types of features are present with comparable intensities. The first type corresponds to "normal" allowed electronic transitions to the origin and symmetric vibrations in the à state. The second type is interpreted in terms of excitations to asymmetric à state vibrations, which are only vibronically allowed by Herzberg-Teller coupling to the B˜ state. Results of electronic structure calculations indicate that the magnitude of the Herzberg-Teller coupling is appropriate to produce vibronically induced transitions with intensities comparable to those of the normal bands.

  13. Visible-light absorption and large band-gap bowing of GaN 1-xSb x from first principles

    DOE PAGES

    Sheetz, R. Michael; Richter, Ernst; Andriotis, Antonis N.; ...

    2011-08-01

    Applicability of the Ga(Sb x)N 1-x alloys for practical realization of photoelectrochemical water splitting is investigated using first-principles density functional theory incorporating the local density approximation and generalized gradient approximation plus the Hubbard U parameter formalism. Our calculations reveal that a relatively small concentration of Sb impurities is sufficient to achieve a significant narrowing of the band gap, enabling absorption of visible light. Theoretical results predict that Ga(Sb x)N 1-x alloys with 2-eV band gaps straddle the potential window at moderate to low pH values, thus indicating that dilute Ga(Sb x)N 1-x alloys could be potential candidates for splitting watermore » under visible light irradiation.« less

  14. Contribution of mycosporine-like amino acids and colored dissolved and particulate matter to sea ice optical properties and ultraviolet attenuation

    PubMed Central

    Uusikivi, Jari; Vähätalo, Anssi V.; Granskog, Mats A.; Sommaruga, Ruben

    2010-01-01

    In the Baltic Sea ice, the spectral absorption coefficients for particulate matter (PM) were about two times higher at ultraviolet wavelengths than at photosynthetically available radiation (PAR) wavelengths. PM absorption spectra included significant absorption by mycosporine-like amino acids (MAAs) between 320 and 345 nm. In the surface ice layer, the concentration of MAAs (1.37 μg L−1) was similar to that of chlorophyll a, resulting in a MAAs-to-chlorophyll a ratio as high as 0.65. Ultraviolet radiation (UVR) intensity and the ratio of UVR to PAR had a strong relationship with MAAs concentration (R2 = 0.97, n = 3) in the ice. In the surface ice layer, PM and especially MAAs dominated the absorption (absorption coefficient at 325 nm: 0.73 m−1). In the columnar ice layers, colored dissolved organic matter was the most significant absorber in the UVR (< 380 nm) (absorption coefficient at 325 nm: 1.5 m−1). Our measurements and modeling of UVR and PAR in Baltic Sea ice show that organic matter, both particulate and dissolved, influences the optical properties of sea ice and strongly modifies the UVR exposure of biological communities in and under snow-free sea ice. PMID:20585592

  15. The Rovibrational Intensities of the (40 deg 1) and (00 deg 0) Pentad Absorption Bands of 12C16O2 Between 7284 and 7921 cm(exp-1)

    NASA Technical Reports Server (NTRS)

    Giver, L. P.; Chackerian, C., Jr.; Spencer, N.; Brown, L. R.; Wattson, R. B.; Gore, Warren J. (Technical Monitor)

    1995-01-01

    Carbon dioxide is the major constituent of the atmospheres of both Mars and Venus. Correct interpretations of spectra of these atmospheres require accurate knowledge of a substantial number of absorption bands of this gas. This is especially true for Venus; many weak CO2 bands that are insignificant in the earth's atmosphere are prominent absorbers in Venus' hot, dense lower atmosphere. Yet, recent near-infrared spectra of Venus' nightside have discovered emission windows, which occur between CO2 absorption bands, at 4040-4550 cm(exp-1), 5700-5900 cm(exp-1), and several smaller ones between 7500 and 9400 cm(exp-1). This radiation is due to thermal emission from Venus' lower atmosphere, diminished by scattering and absorption within the sulfuric acid clouds on its way to space. Simulations of these data with radiative transfer models can provide improved information on the abundances of a number of constituents of the lower atmosphere (e.g. H2O, CO, HDO, HCl, HF, and OCS) and the optical properties of the clouds, whose spatial variation modulates the brightness of the emissions. However, the accuracy of these retrievals has been limited by insufficient knowledge of the opacity of some of the gas species, including CO2, at the large pathlengths and high temperatures and pressures that exist on Venus. In particular, modeling the emission spectrum did not produce a good fit for the emission window centered at 7830 cm(exp-1). In an ongoing effort to assist analyses of these Venus spectra, we have been making laboratory intensity measurements of several weak bands of CO2 which are significant absorbers in these Venus emission windows. The CO2 bands that are prominent in the 7830 cm(exp-1) region belong to the vibrational sequence 4v1+v3 and associated hot bands. Only 2 of the 5 bands of this sequence have been previously measured. Modeling Venus' emission spectrum in the 7830 cm(exp-1) region had to rely on calculated intensity values for the weak ground state band at

  16. The Sea-Ice Floe Size Distribution

    NASA Astrophysics Data System (ADS)

    Stern, H. L., III; Schweiger, A. J. B.; Zhang, J.; Steele, M.

    2017-12-01

    The size distribution of ice floes in the polar seas affects the dynamics and thermodynamics of the ice cover and its interaction with the ocean and atmosphere. Ice-ocean models are now beginning to include the floe size distribution (FSD) in their simulations. In order to characterize seasonal changes of the FSD and provide validation data for our ice-ocean model, we calculated the FSD in the Beaufort and Chukchi seas over two spring-summer-fall seasons (2013 and 2014) using more than 250 cloud-free visible-band scenes from the MODIS sensors on NASA's Terra and Aqua satellites, identifying nearly 250,000 ice floes between 2 and 30 km in diameter. We found that the FSD follows a power-law distribution at all locations, with a seasonally varying exponent that reflects floe break-up in spring, loss of smaller floes in summer, and the return of larger floes after fall freeze-up. We extended the results to floe sizes from 10 m to 2 km at selected time/space locations using more than 50 high-resolution radar and visible-band satellite images. Our analysis used more data and applied greater statistical rigor than any previous study of the FSD. The incorporation of the FSD into our ice-ocean model resulted in reduced sea-ice thickness, mainly in the marginal ice zone, which improved the simulation of sea-ice extent and yielded an earlier ice retreat. We also examined results from 17 previous studies of the FSD, most of which report power-law FSDs but with widely varying exponents. It is difficult to reconcile the range of results due to different study areas, seasons, and methods of analysis. We review the power-law representation of the FSD in these studies and discuss some mathematical details that are important to consider in any future analysis.

  17. CO-ices in embedded Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Teixeira, Teresa Cláeira V. S.

    1998-09-01

    Stars are born in dense cores within molecular clouds, enshrouded in large cocoons of gas and dust which completely obscure the forming star. The large degree of obscuration towards the young stars is due to the presence of solid dust grains in their circumstellar envelopes, which efficiently absorb the radiation from the star at visual and ultraviolet wavelengths, reradiating that energy at far-infrared and submillimeter wavelengths. The composition and structure of the dust grains is not well known, but current studies point to grains having a refractory core and acquiring ice mantles in the cool, shielded conditions of molecular clouds. Such ice mantles are the subject of this thesis. Infrared spectroscopy is an important tool in the study of the complex ice mantles on interstellar grains. A variety of absorption features at these wavelengths, which have been identified as the vibrational transitions of the molecules in the ices, can provide important information on the composition, structure and evolution of the grains. The work reported in this thesis consists of an observational study of the composition of the ice mantles acquired by the dust grains in molecular clouds (with particular emphasis on the CO-ices in the material surrounding embedded Young Stellar Objects in nearby molecular clouds), what can be learned from that about the physical conditions in the regions where the ice mantles exist, and what may affect their survival and evolution. In this work, spectra of the 4.67 micron solid CO absorption feature are presented, mostly towards embedded objects in Taurus. The thesis starts with a brief overview of technical aspects of spectroscopic observations at thermal infrared wavelengths, where the CO stretch absorption feature is located. The observations and data reduction procedures are then reported and discussed in detail. The likely composition of the CO-bearing ices is analysed by fitting the observations with laboratory data. The statistical

  18. Hyperspectral Features of Oil-Polluted Sea Ice and the Response to the Contamination Area Fraction

    PubMed Central

    Li, Ying; Liu, Chengyu; Xie, Feng

    2018-01-01

    Researchers have studied oil spills in open waters using remote sensors, but few have focused on extracting reflectance features of oil pollution on sea ice. An experiment was conducted on natural sea ice in Bohai Bay, China, to obtain the spectral reflectance of oil-contaminated sea ice. The spectral absorption index (SAI), spectral peak height (SPH), and wavelet detail coefficient (DWT d5) were calculated using stepwise multiple linear regression. The reflectances of some false targets were measured and analysed. The simulated false targets were sediment, iron ore fines, coal dust, and the melt pool. The measured reflectances were resampled using five common sensors (GF-2, Landsat8-OLI, Sentinel3-OLCI, MODIS, and AVIRIS). Some significant spectral features could discriminate between oil-polluted and clean sea ice. The indices correlated well with the oil area fractions. All of the adjusted R2 values exceeded 0.9. The SPH model1, based on spectral features at 507–670 and 1627–1746 nm, displayed the best fitting. The resampled data indicated that these multi-spectral and hyper-spectral sensors could be used to detect crude oil on the sea ice if the effect of noise and spatial resolution are neglected. The spectral features and their identified changes may provide reference on sensor design and band selection. PMID:29342945

  19. Impacts of Organic Macromolecules, Chlorophyll and Soot on Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Ogunro, O. O.; Wingenter, O. W.; Elliott, S.; Flanner, M.; Dubey, M. K.

    2014-12-01

    Recent intensification of Arctic amplification can be strongly connected to positive feedback relating black carbon deposition to sea ice surface albedo. In addition to soot deposition on the ice and snow pack, ice algal chlorophyll is likely to compete as an absorber and redistributor of energy. Hence, solar radiation absorption by chlorophyll and some components of organic macromolecules in/under the ice column is currently being examined to determine the level of influence on predicted rate of ice loss. High amounts of organic macromolecules and chlorophyll are produced in global sea ice by the bottom microbial community and also in vertically distributed layers where substantial biological activities take place. Brine channeling in columnar ice can allow for upward flow of nutrients which leads to greater primary production in the presence of moderate light. Modeling of the sea-ice processes in tandem with experiments and field observations promises rapid progress in enhancing Arctic ice predictions. We are designing and conducting global climate model experiments to determine the impact of organic macromolecules and chlorophyll on Arctic sea ice. Influences on brine network permeability and radiation/albedo will be considered in this exercise. Absorption by anthropogenic materials such as soot and black carbon will be compared with that of natural pigments. We will indicate areas of soot and biological absorption dominance in the sense of single scattering, then couple into a full radiation transfer scheme to attribute the various contributions to polar climate change amplification. The work prepares us to study more traditional issues such as chlorophyll warming of the pack periphery and chemical effects of the flow of organics from ice internal communities. The experiments started in the Arctic will broaden to include Antarctic sea ice and shelves. Results from the Arctic simulations will be presented.

  20. Ice shelf structure derived from dispersion curve analysis of ambient seismic noise, Ross Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Diez, A.; Bromirski, P. D.; Gerstoft, P.; Stephen, R. A.; Anthony, R. E.; Aster, R. C.; Cai, C.; Nyblade, A.; Wiens, D. A.

    2016-05-01

    An L-configured, three-component short period seismic array was deployed on the Ross Ice Shelf, Antarctica during November 2014. Polarization analysis of ambient noise data from these stations shows linearly polarized waves for frequency bands between 0.2 and 2 Hz. A spectral peak at about 1.6 Hz is interpreted as the resonance frequency of the water column and is used to estimate the water layer thickness below the ice shelf. The frequency band from 4 to 18 Hz is dominated by Rayleigh and Love waves propagating from the north that, based on daily temporal variations, we conclude were generated by field camp activity. Frequency-slowness plots were calculated using beamforming. Resulting Love and Rayleigh wave dispersion curves were inverted for the shear wave velocity profile within the firn and ice to ˜150 m depth. The derived density profile allows estimation of the pore close-off depth and the firn-air content thickness. Separate inversions of Rayleigh and Love wave dispersion curves give different shear wave velocity profiles within the firn. We attribute this difference to an effective anisotropy due to fine layering. The layered structure of firn, ice, water and the seafloor results in a characteristic dispersion curve below 7 Hz. Forward modelling the observed Rayleigh wave dispersion curves using representative firn, ice, water and sediment structures indicates that Rayleigh waves are observed when wavelengths are long enough to span the distance from the ice shelf surface to the seafloor. The forward modelling shows that analysis of seismic data from an ice shelf provides the possibility of resolving ice shelf thickness, water column thickness and the physical properties of the ice shelf and underlying seafloor using passive-source seismic data.

  1. Surface ices and the atmospheric composition of Pluto

    NASA Technical Reports Server (NTRS)

    Owen, Tobias C.; Roush, Ted L.; Cruikshank, Dale P.; Elliot, James L.; Young, Leslie A.; De Bergh, Catherine; Schmitt, Bernard; Geballe, Thomas R.; Brown, Robert H.; Bartholomew, Mary J.

    1993-01-01

    Observations of the 1.4- to 2.4-micrometer spectrum of Pluto reveal absorptions of carbon monoxide and nitrogen ices and confirm the presence of solid methane. Frozen nitrogen is more abundant than the other two ices by a factor of about 50; gaseous nitrogen must therefore be the major atmospheric constituent. The absence of carbon dioxide absorptions is one of several differences between the spectra of Pluto and Triton in this region. Both worlds carry information about the composition of the solar nebula and the processes by which icy planetesimals formed.

  2. Production of photocurrent due to intermediate-to-conduction-band transitions: a demonstration of a key operating principle of the intermediate-band solar cell.

    PubMed

    Martí, A; Antolín, E; Stanley, C R; Farmer, C D; López, N; Díaz, P; Cánovas, E; Linares, P G; Luque, A

    2006-12-15

    We present intermediate-band solar cells manufactured using quantum dot technology that show for the first time the production of photocurrent when two sub-band-gap energy photons are absorbed simultaneously. One photon produces an optical transition from the intermediate-band to the conduction band while the second pumps an electron from the valence band to the intermediate-band. The detection of this two-photon absorption process is essential to verify the principles of operation of the intermediate-band solar cell. The phenomenon is the cornerstone physical principle that ultimately allows the production of photocurrent in a solar cell by below band gap photon absorption, without degradation of its output voltage.

  3. SAR data for river ice monitoring. How to meet requirements?

    NASA Astrophysics Data System (ADS)

    Łoś, Helena; Osińska-Skotak, Katarzyna; Pluto-Kossakowska, Joanna

    2017-04-01

    Although river ice is a natural element of rivers regime it can lead to severe problems such as winter floods or damages of bridges and bank revetments. Services that monitor river ice condition are still often based on field observation. For several year, however, Earth observation data have become of a great interest, especially SAR images, which allows to observe ice and river condition independently of clouds and sunlight. One of requirements of an effective monitoring system is frequent and regular data acquisition. To help to meet this requirement we assessed an impact of selected SAR data parameters into automatic ice types identification. Presented work consists of two parts. The first one focuses on comparison of C-band and X-band data in terms of the main ice type detection. The second part contains an analysis of polarisation reduction from quad-pol to dual-pol data. As the main element of data processing we chose the supervised classification with maximum likelihood algorithm adapted to Wishart distribution. The classification was preceded by statistical analysis of radar signal obtained for selected ice types including separability measures. Two river were selected as areas of interest - the Peace River in Canada and the Vistula in Poland. The results shows that using data registered in both bands similar accuracy of classification into main ice types can be obtain. Differences appear with details e.g. thin initial ice. Classification results obtained from quad-pol and dual-pol data were similar while four classes were selected. With six classes, however, differences between polarisation types have been noticed.

  4. Ice chemistry on outer solar system bodies: Carboxylic acids, nitriles, and urea detected in refractory residues produced from the UV photolysis of N{sub 2}:CH{sub 4}:CO-containing ices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Materese, Christopher K.; Cruikshank, Dale P.; Sandford, Scott A.

    Radiation processing of the surface ices of outer solar system bodies may result in the production of new chemical species even at low temperatures. Many of the smaller, more volatile molecules that are likely produced by the photolysis of these ices have been well characterized by laboratory experiments. However, the more complex refractory material formed in these experiments remains largely uncharacterized. In this work, we present a series of laboratory experiments in which low-temperature (15-20 K) N{sub 2}:CH{sub 4}:CO ices in relative proportions 100:1:1 are subjected to UV irradiation, and the resulting materials are studied with a variety of analyticalmore » techniques including infrared spectroscopy, X-ray absorption near-edge structure spectroscopy, gas chromatography coupled with mass spectrometry, and high-resolution mass spectroscopy. Despite the simplicity of the reactants, these experiments result in the production of a highly complex mixture of molecules from relatively low-mass volatiles (tens of daltons) to high-mass refractory materials (hundreds of daltons). These products include various carboxylic acids, nitriles, and urea, which are also expected to be present on the surface of outer solar system bodies, including Pluto and other transneptunian objects. If these compounds occur in sufficient concentrations in the ices of outer solar system bodies, their characteristic bands may be detectable in the near-infrared spectra of these objects.« less

  5. Optical band gap of thermally deposited Ge-S-Ga thin films

    NASA Astrophysics Data System (ADS)

    Rana, Anjli; Heera, Pawan; Singh, Bhanu Pratap; Sharma, Raman

    2018-05-01

    Thin films of Ge20S80-xGax glassy alloy, obtained from melt quenching technique, were deposited on the glass substrate by thermal evaporation technique under a high vacuum conditions (˜ 10-5 Torr). Absorption spectrum fitting method (ASF) is employed to obtain the optical band gap from absorption spectra. This method requires only the measurement of the absorption spectrum of the sample. The width of the band tail was also determined. Optical band gap computed from absorption spectra is found to decrease with an increase in Ga content. The evaluated optical band gap (Eg) is in well agreement with the theoretically predicted Eg and obtained from transmission spectra.

  6. Infrared radiation parameterizations for the minor CO2 bands and for several CFC bands in the window region

    NASA Technical Reports Server (NTRS)

    Kratz, David P.; Chou, Ming-Dah; Yan, Michael M.-H.

    1993-01-01

    Fast and accurate parameterizations have been developed for the transmission functions of the CO2 9.4- and 10.4-micron bands, as well as the CFC-11, CFC-12, and CFC-22 bands located in the 8-12-micron region. The parameterizations are based on line-by-line calculations of transmission functions for the CO2 bands and on high spectral resolution laboratory measurements of the absorption coefficients for the CFC bands. Also developed are the parameterizations for the H2O transmission functions for the corresponding spectral bands. Compared to the high-resolution calculations, fluxes at the tropopause computed with the parameterizations are accurate to within 10 percent when overlapping of gas absorptions within a band is taken into account. For individual gas absorption, the accuracy is of order 0-2 percent. The climatic effects of these trace gases have been studied using a zonally averaged multilayer energy balance model, which includes seasonal cycles and a simplified deep ocean. With the trace gas abundances taken to follow the Intergovernmental Panel on Climate Change Low Emissions 'B' scenario, the transient response of the surface temperature is simulated for the period 1900-2060.

  7. A Multi-Band Analytical Algorithm for Deriving Absorption and Backscattering Coefficients from Remote-Sensing Reflectance of Optically Deep Waters

    NASA Technical Reports Server (NTRS)

    Lee, Zhong-Ping; Carder, Kendall L.

    2001-01-01

    A multi-band analytical (MBA) algorithm is developed to retrieve absorption and backscattering coefficients for optically deep waters, which can be applied to data from past and current satellite sensors, as well as data from hyperspectral sensors. This MBA algorithm applies a remote-sensing reflectance model derived from the Radiative Transfer Equation, and values of absorption and backscattering coefficients are analytically calculated from values of remote-sensing reflectance. There are only limited empirical relationships involved in the algorithm, which implies that this MBA algorithm could be applied to a wide dynamic range of waters. Applying the algorithm to a simulated non-"Case 1" data set, which has no relation to the development of the algorithm, the percentage error for the total absorption coefficient at 440 nm a (sub 440) is approximately 12% for a range of 0.012 - 2.1 per meter (approximately 6% for a (sub 440) less than approximately 0.3 per meter), while a traditional band-ratio approach returns a percentage error of approximately 30%. Applying it to a field data set ranging from 0.025 to 2.0 per meter, the result for a (sub 440) is very close to that using a full spectrum optimization technique (9.6% difference). Compared to the optimization approach, the MBA algorithm cuts the computation time dramatically with only a small sacrifice in accuracy, making it suitable for processing large data sets such as satellite images. Significant improvements over empirical algorithms have also been achieved in retrieving the optical properties of optically deep waters.

  8. Comparison of band model calculations of upper atmospheric cooling rates for the 15-micrometer carbon dioxide band

    NASA Technical Reports Server (NTRS)

    Boughner, R. E.

    1985-01-01

    Within the atmosphere of the earth, absorption and emission of thermal radiation by the 15-micron CO2 bands are the largest contributors to infrared cooling rates in the stratosphere. Various techniques for calculating cooling rates due to these bands have been described. These techniques can be classified into one of two categories, including 'exact' or line-by-line calculations and other methods. The latter methods are based on broad band emissivity and band absorptance formulations. The present paper has the objective to present comparisons of the considered computational approaches. It was found that the best agreement with the exact line-by-line calculations of Fels and Schwarzkopf (1981) could be obtained by making use of a new Doppler band model which is described in the appendix of the paper.

  9. Ice shelf structure and stability: Larsen C Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Hubbard, B. P.; Ashmore, D.; Bevan, S. L.; Booth, A. D.; Holland, P.; Jansen, D.; Kuipers Munneke, P.; Kulessa, B.; Luckman, A. J.; Sevestre, H.; O'Leary, M.

    2017-12-01

    We report on recent empirical investigations of the internal structure and stability (or otherwise) of Larsen C Ice Shelf (LCIS), Antarctica, focusing on research carried out for the MIDAS research project between 2014 and 2017. Borehole- and surface geophysics-based fieldwork carried out in austral springs 2014 and 2015 revealed that ephemeral surface ponds, preferentially located within the major inlets within the northern sector of the ice shelf, result in the formation of several tens of metres of (relatively dense) subsurface ice within what would otherwise have been a progressively densifying snow and firn column. Five boreholes were drilled throughout the sector and logged by optical televiewer, showing this refrozen ice to be extensive and of variable composition depending on its process of formation. Mapping the depth-distribution of the resulting ice types and associating each with a simple flow-line model of ice motion and accumulation indicates that this area of LCIS has experienced substantial melting for some centuries but that surface ponding has only occurred in recent decades, possibly restricted to the past 20 years. We also present near-surface temperature data that reveal surprising temporal patterns in foehn wind activity and intensity. Finally, we report on the geometrical extension and widening of a rift that was responsible for calving a 5,800 km^2 iceberg from the LCIS in July 2017. The nature of rift propagation through `suture' ice bands, widely considered to be composed of marine ice, is contrasted with that of its propagation through meteoric ice.

  10. Infrared Spectra and Optical Constants of Astronomical Ices: I. Amorphous and Crystalline Acetylene

    NASA Technical Reports Server (NTRS)

    Hudson, R. L.; Ferrante, R. F.; Moore, M. H.

    2013-01-01

    Here we report recent measurements on acetylene (C2H2) ices at temperatures applicable to the outer Solar System and the interstellar medium. New near- and mid-infrared data, including optical constants (n, k), absorption coefficients (alpha), and absolute band strengths (A), are presented for both amorphous and crystalline phases of C2H2 that exist below 70 K. Comparisons are made to earlier work. Electronic versions of the data are made available, as is a computer routine to use our reported n and k values to simulate the observed IR spectra. Suggestions are given for the use of the data and a comparison to a spectrum of Makemake is made.

  11. Skylab floating ice experiment

    NASA Technical Reports Server (NTRS)

    Campbell, W. J. (Principal Investigator); Ramseier, R. O.; Weaver, R. J.; Weeks, W. F.

    1975-01-01

    The author has identified the following significant results. Coupling of the aircraft data with the ground truth observations proved to be highly successful with interesting results being obtained with IR and SLAR passive microwave techniques, and standard photography. Of particular interest were the results of the PMIS system which operated at 10.69 GHz with both vertical and horizontal polarizations. This was the first time that dual polarized images were obtained from floating ice. In both sea and lake ice, it was possible to distinguish a wide variety of thin ice types because of their large differences in brightness temperatures. It was found that the higher brightness temperature was invariably obtained in the vertically polarized mode, and as the age of the ice increases the brightness temperature increases in both polarizations. Associated with this change in age, the difference in temperature was observed as the different polarizations decreased. It appears that the horizontally polarized data is the most sensitive to variations in ice type for both fresh water and sea ice. The study also showed the great amount of information on ice surface roughness and deformation patterns that can be obtained from X-band SLAR observations.

  12. Saturn's Icy satellites: The Role of Sub-Micron Ice Particles and Nano-sized Contaminants (Invited)

    NASA Astrophysics Data System (ADS)

    Clark, R. N.; Cruikshank, D. P.; Dalle Ore, C. M.; Jaumann, R.; Brown, R. H.; Stephan, K.; Buratti, B. J.; Filacchione, G.; Baines, K. H.; Nicholson, P.

    2010-12-01

    The Visual and Infrared Mapping Spectrometer (VIMS) has obtained spatially resolved imaging spectroscopy data on numerous satellites of Saturn. The spectral trends on individual satellites and as compositional gradients within the Saturn system show systematic trends that indicate variable ice grain sizes and contaminants. Compositional mapping shows that the satellite surfaces are composed largely of H2O ice, with small amounts of CO2, trace organics, bound water or OH-bearing minerals, and possible signatures of ammonia, H2O or OH-bearing minerals, and dark, fine-grained materials. The E-ring coats the inner satellites with sub-micron ice particles. The Cassini Rev 49 Iapetus fly-by on September 10, 2007, provided imaging spectroscopy data on both the dark material and the transition zone between the dark material and the visually bright ice on the trailing side. The dark material has very low albedo with a linear increase in reflectance with wavelength, a 3-micron water absorption, and a CO2 absorption. The only reflectance models that can explain the trends include highly absorbing sub-micron materials that create Rayleigh absorption. Radiative transfer models that include diffraction from Rayleigh scattering and Rayleigh absorption are necessary to match observed data. The dark material is well matched by a high component of fine-grained metallic iron plus a small component of nano-phase hematite. Spatially resolved Iapetus data show mixing of dark material with ice and the mixtures display a blue scattering peak and a UV absorption. The blue scattering peak and UV-Visible absorption is observed in spectra of all satellites at some locations where dark material is mixed with the ice. Rayleigh scattering and Rayleigh absorption have also been observed in spectral properties of the Earth's moon. Rayleigh absorption requires high absorption coefficient nano-sized particles, which is also consistent with metallic iron. The UV absorber appears to have increased

  13. Photoionization bands of rubidium molecule

    NASA Astrophysics Data System (ADS)

    Rakić, M.; Pichler, G.

    2018-03-01

    We studied the absorption spectrum of dense rubidium vapor generated in a T-type sapphire cell with a special emphasis on the structured photoionization continuum observed in the 200-300 nm spectral region. The photoionization spectrum has a continuous atomic contribution with a pronounced Seaton-Cooper minimum at about 250 nm and a molecular photoionization contribution with many broad bands. We discuss the possible origin of the photoionization bands as stemming from the absorption from the ground state of the Rb2 molecule to excited states of Rb2+* and to doubly excited autoionizing states of Rb2** molecule. All these photoionization bands are located above the Rb+ and Rb2+ ionization limits.

  14. Near-infrared absorption spectroscopy of interstellar hydrocarbon grains

    NASA Astrophysics Data System (ADS)

    Pendleton, Y. J.; Sandford, S. A.; Allamandola, L. J.; Tielens, A. G. G. M.; Sellgren, K.

    1994-12-01

    We present new 3600 - 2700/cm (2.8 - 3.7 micrometer) spectra of objects whose extinction is dominated by dust in the diffuse interstellar medium. The observations presented here augment an ongoing study of the organic component of the diffuse interstellar medium. These spectra contain a broad feature centered near 3300/cm (3.0 micrometers) and/or a feature with a more complex profile near 2950/cm (3.4 micrometers), the latter of which is attributed to saturated aliphatic hydrocarbons in interstellar grains and is the primary interest of this paper. As in our earlier work, the similarity of the absorption bands near 2950/cm (3.4 micrometers) along different lines of sight and the correlation of these features with interstellar extinction reveal that the carrier of this band lies in the dust in the diffuse interstellar medium (DISM). At least 2.5% of the cosmic carbon in the local interstellar medium and 4% toward the Galactic center is tied up in the carrier of the 2950/cm (3.4 micrometer) band. The spectral structure of the diffuse dust hydrocarbon C-H stretch absorption features is reasonably similar to UV photolyzed laboratory ice residues and is quite similar to the carbonaceous component of the Murchison meteorite. The similarity between the DISM and the meteoritic spectrum suggests that some of the interstellar material originally incorporated into the solar nebula may have survived relatively untouched in primitive solar system bodies. Comparisons of the DISM spectrum to hydrogenated amorphous carbon and quenched carbonaceous composite are also presented. The AV/tau ratio for the 2950/cm (3.4 micrometer) feature is lower toward the Galactic center than toward sources in the local solar neighborhood (approximately 150 for the Galactic center sources vs. approximately 250 for the local ISM sources). A similar trend has been observed previously for silicates in the diffuse medium by Roche & Aitken, suggesting that (1) the silicate and carbonaceous materials in

  15. Near-infrared absorption spectroscopy of interstellar hydrocarbon grains

    NASA Technical Reports Server (NTRS)

    Pendleton, Y. J.; Sandford, S. A.; Allamandola, L. J.; Tielens, A. G. G. M.; Sellgren, K.

    1994-01-01

    We present new 3600 - 2700/cm (2.8 - 3.7 micrometer) spectra of objects whose extinction is dominated by dust in the diffuse interstellar medium. The observations presented here augment an ongoing study of the organic component of the diffuse interstellar medium. These spectra contain a broad feature centered near 3300/cm (3.0 micrometers) and/or a feature with a more complex profile near 2950/cm (3.4 micrometers), the latter of which is attributed to saturated aliphatic hydrocarbons in interstellar grains and is the primary interest of this paper. As in our earlier work, the similarity of the absorption bands near 2950/cm (3.4 micrometers) along different lines of sight and the correlation of these features with interstellar extinction reveal that the carrier of this band lies in the dust in the diffuse interstellar medium (DISM). At least 2.5% of the cosmic carbon in the local interstellar medium and 4% toward the Galactic center is tied up in the carrier of the 2950/cm (3.4 micrometer) band. The spectral structure of the diffuse dust hydrocarbon C-H stretch absorption features is reasonably similar to UV photolyzed laboratory ice residues and is quite similar to the carbonaceous component of the Murchison meteorite. The similarity between the DISM and the meteoritic spectrum suggests that some of the interstellar material originally incorporated into the solar nebula may have survived relatively untouched in primitive solar system bodies. Comparisons of the DISM spectrum to hydrogenated amorphous carbon and quenched carbonaceous composite are also presented. The A(sub V)/tau ratio for the 2950/cm (3.4 micrometer) feature is lower toward the Galactic center than toward sources in the local solar neighborhood (approximately 150 for the Galactic center sources vs. approximately 250 for the local ISM sources). A similar trend has been observed previously for silicates in the diffuse medium by Roche & Aitken, suggesting that (1) the silicate and carbonaceous

  16. Enhanced Solar Energy Absorption by Internally-mixed Black Carbon in Snow Grains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flanner, M. G.; Liu, Xiaohong; Zhou, Cheng

    2012-05-30

    Here we explore light absorption by snowpack containing black carbon (BC) particles residing within ice grains. Basic considerations of particle volumes and BC/snow mass concentrations show that there are generally 0:05-109 BC particles for each ice grain. This suggests that internal BC is likely distributed as multiple inclusions within ice grains, and thus the dynamic effective medium approximation (DEMA) (Chylek and Srivastava, 1983) is a more appropriate optical representation for BC/ice composites than coated-sphere or standard mixing approximations. DEMA calculations show that the 460 nm absorption cross-section of BC/ice composites, normalized to the mass of BC, is typically enhanced bymore » factors of 1.8-2.1 relative to interstitial BC. BC effective radius is the dominant cause of variation in this enhancement, compared with ice grain size and BC volume fraction. We apply two atmospheric aerosol models that simulate interstitial and within-hydrometeor BC lifecycles. Although only {approx}2% of the atmospheric BC burden is cloud-borne, 71-83% of the BC deposited to global snow and sea-ice surfaces occurs within hydrometeors. Key processes responsible for within-snow BC deposition are development of hydrophilic coatings on BC, activation of liquid droplets, and subsequent snow formation through riming or ice nucleation by other species and aggregation/accretion of ice particles. Applying deposition fields from these aerosol models in offline snow and sea-ice simulations, we calculate that 32-73% of BC in global surface snow resides within ice grains. This fraction is smaller than the within-hydrometeor deposition fraction because meltwater flux preferentially removes internal BC, while sublimation and freezing within snowpack expose internal BC. Incorporating the DEMA into a global climate model, we simulate increases in BC/snow radiative forcing of 43-86%, relative to scenarios that apply external optical properties to all BC. We show that snow

  17. Decomposition of mineral absorption bands using nonlinear least squares curve fitting: Application to Martian meteorites and CRISM data

    NASA Astrophysics Data System (ADS)

    Parente, Mario; Makarewicz, Heather D.; Bishop, Janice L.

    2011-04-01

    This study advances curve-fitting modeling of absorption bands of reflectance spectra and applies this new model to spectra of Martian meteorites ALH 84001 and EETA 79001 and data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). This study also details a recently introduced automated parameter initialization technique. We assess the performance of this automated procedure by comparing it to the currently available initialization method and perform a sensitivity analysis of the fit results to variation in initial guesses. We explore the issues related to the removal of the continuum, offer guidelines for continuum removal when modeling the absorptions and explore different continuum-removal techniques. We further evaluate the suitability of curve fitting techniques using Gaussians/Modified Gaussians to decompose spectra into individual end-member bands. We show that nonlinear least squares techniques such as the Levenberg-Marquardt algorithm achieve comparable results to the MGM model ( Sunshine and Pieters, 1993; Sunshine et al., 1990) for meteorite spectra. Finally we use Gaussian modeling to fit CRISM spectra of pyroxene and olivine-rich terrains on Mars. Analysis of CRISM spectra of two regions show that the pyroxene-dominated rock spectra measured at Juventae Chasma were modeled well with low Ca pyroxene, while the pyroxene-rich spectra acquired at Libya Montes required both low-Ca and high-Ca pyroxene for a good fit.

  18. Design of triple-band polarization controlled terahertz metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Wang, Ben-Xin; Xie, Qin; Dong, Guangxi; Huang, Wei-Qing

    2018-02-01

    A kind of triple-band polarization tunable terahertz absorber based on a metallic mirror and a metallic patch structure with two indentations spaced by an insulating medium layer is presented. Results prove that three near-perfect absorption peaks with average absorption coefficients of 98.25% are achieved when the polarization angle is equal to zero, and their absorptivities gradually decrease (and even disappear) by increasing the angle of polarization. When the polarization angle is increased to 90°, three new resonance modes with average absorption rates of 96.59% can be obtained. The field distributions are given to reveal the mechanisms of the triple-band absorption and the polarization tunable characteristics. Moreover, by introducing photosensitive silicon materials (its conductivity can be changed by the pump beam) in the indentations of the patch structure, the number of resonance peaks of the device can be actively tuned from triple-band to dual-band. The presented absorbers have potential applications, such as controlling thermal emissivity, and detection of polarization direction of the incident waves.

  19. Water ice grains in comet C/2013 US10 (Catalina)

    NASA Astrophysics Data System (ADS)

    Protopapa, Silvia; Kelley, Michael S. P.; Yang, Bin; Woodward, Charles E.; Sunshine, Jessica M.

    2017-10-01

    Knowledge of the the physical properties of water ice in cometary nuclei is critical in determining how the Solar System was formed. While it is difficult to directly study the properties of water ice in comet nuclei, we can study comet interiors through their comae. Cometary activity makes the interiors of these objects available for characterization. However, the properties (grain size, abundance, purity, chemical state) of water-ice grains detected in the coma do not necessarily represent the characteristics of the water ice on the surface and/or in the interior of the nucleus. This is due to the potential physical and chemical evolution of the emitted material. Once in the coma, water-ice grains are heated by sunlight, and if temperatures are warm enough, they sublime. In this case, their sizes and potentially their ice-to-dust fractions are reduced.We present IRTF/SpeX measurements of the Oort cloud comet C/2013 US10 (Catalina), which reached perihelion in Nov 2015 at a heliocentric distance Rh=0.822 AU. Observations of US10 were acquired on UT 2014-08-13, 2016-01-12, and 2016-08-13 (Rh=5.9, 1.3, and 3.9 AU). This set of measurements, spanning a broad range in Rh, are rare and fundamental for estimating how ice grains evolve in the coma. The spectrum obtained close to perihelion is featureless and red sloped, which is consistent with a dust-dominated coma. Conversely, the spectra acquired on August 2014 and 2016 display neutral slopes and absorption bands at 1.5 and 2.0 μm, consistent with the presence of water-ice grains. These variations in water ice with heliocentric distance are correlated with sublimation rates. Additionally, the measurements obtained at 5.8 AU and 3.9 AU are nearly identical, suggesting that water-ice grains, once in the coma, do not sublime significantly. Therefore, the properties of these long-lived water-ice grains may represent their state in the nucleus or immediately after insertion into the coma. We will present radiative

  20. Mapping Solid and Liquid Meltwater Retention on the Greenland and Antarctic Ice Sheets from Space

    NASA Astrophysics Data System (ADS)

    Miller, J.; Bringer, A.; Jezek, K. C.; Johnson, J. T.; Scambos, T.; Forster, R. R.; Long, D. G.

    2017-12-01

    We use satellite and airborne microwave radiometry to explore the potential for mapping both solid (infiltration ice) and liquid (firn aquifers) meltwater retention on ice sheets. Meltwater retention in firn is currently poorly understood, especially on an ice sheet-scale, however, critical to understanding the ultimate fate of liquid meltwater produced at the surface of ice sheets. Is it contributing to sea level? Or, is it being buffered prior to escaping into the ocean? We previously developed a simple satellite retrieval technique to map firn aquifers on the Greenland ice sheet using distinct L-band brightness temperature signatures that decrease on timescales of months following surface freeze-up, however, similar L-band brightness temperature signatures that decrease on timescales ranging from weeks to days are also present throughout the percolation facies of both the Greenland and Antarctic ice sheets. We hypothesize this characteristic family of temporal signatures represents meltwater retention within firn, where slowly decreasing signatures are characteristic of meltwater retention within perennial firn aquifers, and rapidly decreasing signatures are characteristic of meltwater retention as superimposed ice. Decreasing signatures on timescales between likely represent a continuum of firn characteristics, such as transient firn aquifers, perched firn aquifers, ice layers, ice pipes and lenses, and iced firn. To investigate these temporal signatures, we use L-band (1.4 GHz) brightness temperature observations collected over the Greenland and Antarctic ice sheets by the interferometric MIRAS instrument aboard ESA's Soil Moisture and Ocean Salinity (SMOS) satellite, and the radiometer aboard NASA's Soil Moisture Active Passive (SMAP) satellite. We will also investigate spectral signatures using multi-frequency L-band brightness temperature data (0.5-2 GHz) to be collected over several firn aquifer areas on the Greenland ice sheet by the Ohio State University

  1. Distribution of icy particles across Enceladus' surface as derived from Cassini-VIMS measurements

    USGS Publications Warehouse

    Jaumann, R.; Stephan, K.; Hansen, G.B.; Clark, R.N.; Buratti, B.J.; Brown, R.H.; Baines, K.H.; Newman, S.F.; Bellucci, G.; Filacchione, G.; Coradini, A.; Cruikshank, D.P.; Griffith, C.A.; Hibbitts, C.A.; McCord, T.B.; Nelson, R.M.; Nicholson, P.D.; Sotin, Christophe; Wagner, R.

    2008-01-01

    The surface of Enceladus consists almost completely of water ice. As the band depths of water ice absorptions are sensitive to the size of particles, absorptions can be used to map variations of icy particles across the surface. The Visual and Infrared Mapping Spectrometer (VIMS) observed Enceladus with a high spatial resolution during three Cassini flybys in 2005 (orbits EN 003, EN 004 and EN 011). Based on these data we measured the band depths of water ice absorptions at 1.04, 1.25, 1.5, and 2 ??m. These band depths were compared to water ice models that represent theoretically calculated reflectance spectra for a range of particle diameters between 2 ??m and 1 mm. The agreement between the experimental (VIMS) and model values supports the assumption that pure water ice characterizes the surface of Enceladus and therefore that variations in band depth correspond to variations in water ice particle diameters. Our measurements show that the particle diameter of water ice increases toward younger tectonically altered surface units with the largest particles exposed in relatively "fresh" surface material. The smallest particles were generally found in old densely cratered terrains. The largest particles (???0.2 mm) are concentrated in the so called "tiger stripes" at the south pole. In general, the particle diameters are strongly correlated with geologic features and surface ages, indicating a stratigraphic evolution of the surface that is caused by cryovolcanic resurfacing and impact gardening. ?? 2007 Elsevier Inc. All rights reserved.

  2. Effects of an Arctic under-ice phytoplankton bloom on bio-optical properties of surface waters during the Norwegian Young Sea Ice Cruise (N-ICE2015)

    NASA Astrophysics Data System (ADS)

    Pavlov, A. K.; Granskog, M. A.; Hudson, S. R.; Taskjelle, T.; Kauko, H.; Hamre, B.; Assmy, P.; Mundy, C. J.; Nicolaus, M.; Kowalczuk, P.; Stedmon, C. A.; Fernandez Mendez, M.

    2016-02-01

    A thinner and younger Arctic sea-ice cover has led to an increase in solar light transmission into the surface ocean, especially during late spring and summer. A description of the seasonal evolution of polar surface water optical properties is essential, in order to understand how changes are affecting light availability for photosynthetic organisms and the surface ocean energy budget. The development of the bio-optical properties of Arctic surface waters under predominantly first-year sea ice in the southern Nansen Basin were studied from January to June 2015 during the Norwegian Young Sea Ice Cruise (N-ICE2015). Observations included inherent optical properties, absorption by colored dissolved organic matter and particles, as well as radiometric measurements. We documented a rapid transition from relatively clear and transparent waters in winter to turbid waters in late May and June. This transition was associated with a strong under-ice phytoplankton bloom detected first under the compact ice pack and then monitored during drift across the marginal ice zone. We discuss potential implications of underwater light availability for photosynthesis, heat redistribution in the upper ocean layer, and energy budget of the sea-ice - ocean system.

  3. Non-uniform temperature and species concentration measurements in a laminar flame using multi-band infrared absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Ma, Liu Hao; Lau, Lok Yin; Ren, Wei

    2017-03-01

    We report in situ measurements of non-uniform temperature, H2O and CO2 concentration distributions in a premixed methane-air laminar flame using tunable diode laser absorption spectroscopy (TDLAS). A mid-infrared, continuous-wave, room-temperature interband cascade laser (ICL) at 4183 nm was used for the sensitive detection of CO2 at high temperature.The H2O absorption lines were exploited by one distributed feedback (DFB) diode laser at 1343 nm and one ICL at 2482 nm to achieve multi-band absorption measurements with high species concentration sensitivity, high temperature sensitivity, and immunity to variations in ambient conditions. A novel profile-fitting function was proposed to characterize the non-uniform temperature and species concentrations along the line-of-sight in the flame by detecting six absorption lines of CO2 and H2O simultaneously. The flame temperature distribution was measured at different heights above the burner (5-20 mm), and compared with the thermocouple measurement with heat-transfer correction. Our TDLAS measured temperature of the central flame was in excellent agreement (<1.5% difference) with the thermocouple data.The TDLAS results were also compared with the CFD simulations using a detailed chemical kinetics mechanism (GRI 3.0) and considering the heat loss to the surroundings.The current CFD simulation overpredicted the flame temperature in the gradient region, but was in excellent agreement with the measured temperature and species concentration in the core of the flame.

  4. Hydrothermal Synthesis of Reduced Graphene Oxide Using Urea as Reduction Agent: Excellent X-band Electromagnetic Absorption Properties

    NASA Astrophysics Data System (ADS)

    Agusu, L.; Ahmad, L. O.; Alimin; Nurdin, M.; Herdianto; Mitsudo, S.; Kikuchi, H.

    2018-05-01

    We report a strong absorption of microwave energy at X-band (8 GHz to 12 GHz) by N-doped graphene. Attachment of nitrogen on the layered structure of GO improves the reflection loss of GO slab (2.0 mm, thickness) from –10 dB to –25.0 dB with a sharp bandwidth ∼0.3 GHz. As for the broader bandwidth of about 1.4 GHz, reflection loss is –10.5 dB. This significant absorption may take place by improvement of magnetic property of NG through high magnetic coupling of localized spins induced by a defect on the surface of graphene. N atoms play as the electron trapper, easily influenced by self-magnetic moments and incoming electromagnetic fields to produce electric and/or magnetic losses. Here, urea acts as the reducing agent and N atoms donor for graphene oxide in hydrothermal process at a temperature of 190 °C.

  5. Antarctic Analog for Dilational Bands on Europa

    NASA Technical Reports Server (NTRS)

    Hurford, T. A.; Brunt, K. M.

    2014-01-01

    Europa's surface shows signs of extension, which is revealed as lithospheric dilation expressed along ridges, dilational bands and ridged bands. Ridges, the most common tectonic feature on Europa, comprise a central crack flanked by two raised banks a few hundred meters high on each side. Together these three classes may represent a continuum of formation. In Tufts' Dilational Model ridge formation is dominated by daily tidal cycling of a crack, which can be superimposed with regional secular dilation. The two sources of dilation can combine to form the various band morphologies observed. New GPS data along a rift on the Ross Ice Shelf, Antarctica is a suitable Earth analog to test the framework of Tufts' Dilational Model. As predicted by Tufts' Dilational Model, tensile failures in the Ross Ice Shelf exhibit secular dilation, upon which a tidal signal can be seen. From this analog we conclude that Tufts' Dilational Model for Europan ridges and bands may be credible and that the secular dilation is most likely from a regional source and not tidally driven.

  6. The Effect of Surface Ice and Topography on the Atmospheric Circulation and Distribution of Nitrogen Ice on Pluto

    NASA Astrophysics Data System (ADS)

    Rafkin, Scot C. R.; Soto, Alejandro; Michaels, Timothy I.

    2016-10-01

    A newly developed general circulation model (GCM) for Pluto is used to investigate the impact of a heterogeneous distribution of nitrogen surface ice and large scale topography on Pluto's atmospheric circulation. The GCM is based on the GFDL Flexible Modeling System (FSM). Physics include a gray model radiative-conductive scheme, subsurface conduction, and a nitrogen volatile cycle. The radiative-conductive model takes into account the 2.3, 3.3 and 7.8 μm bands of CH4 and CO, including non-local thermodynamic equilibrium effects. including non-local thermodynamic equilibrium effects. The nitrogen volatile cycle is based on a vapor pressure equilibrium assumption between the atmosphere and surface. Prior to the arrival of the New Horizons spacecraft, the expectation was that the volatile ice distribution on the surface of Pluto would be strongly controlled by the latitudinal temperature gradient. If this were the case, then Pluto would have broad latitudinal bands of both ice covered surface and ice free surface, as dictated by the season. Further, the circulation, and the thus the transport of volatiles, was thought to be driven almost exclusively by sublimation and deposition flows associated with the volatile cycle. In contrast to expectations, images from New Horizon showed an extremely complex, heterogeneous distribution of surface ices draped over substantial and variable topography. To produce such an ice distribution, the atmospheric circulation and volatile transport must be more complex than previously envisioned. Simulations where topography, surface ice distributions, and volatile cycle physics are added individually and in various combinations are used to individually quantify the importance of the general circulation, topography, surface ice distributions, and condensation flows. It is shown that even regional patches of ice or large craters can have global impacts on the atmospheric circulation, the volatile cycle, and hence, the distribution of

  7. Thickness of ice on perennially frozen lakes

    USGS Publications Warehouse

    McKay, C.P.; Clow, G.D.; Wharton, R.A.; Squyres, S. W.

    1985-01-01

    The dry valleys of southern Victoria Land, constituting the largest ice-free expanse in the Antarctic, contain numerous lakes whose perennial ice cover is the cause of some unique physical and biological properties 1-3. Although the depth, temperature and salinity of the liquid water varies considerably from lake to lake, the thickness of the ice cover is remarkably consistent1, ranging from 3.5 to 6m, which is determined primarily by the balance between conduction of energy out of the ice and the release of latent heat at the ice-water interface and is also affected by the transmission and absorption of sunlight. In the steady state, the release of latent heat at the ice bottom is controlled by ablation from the ice surface. Here we present a simple energy-balance model, using the measured ablation rate of 30 cm yr-1, which can explain the observed ice thickness. ?? 1985 Nature Publishing Group.

  8. Saturn's satellites - Near-infrared spectrophotometry (0.65-2.5 microns) of the leading and trailing sides and compositional implications

    NASA Technical Reports Server (NTRS)

    Steele, A.; Clark, R. N.; Brown, R. H.; Owensby, P. D.

    1984-01-01

    Water ice absorptions at 2.0, 1.5, and 1.25 microns are noted in near-IR spectra of Tethys, Dione, Rhea, Iapetus, and Hyperion, and the weak 1.04-micron ice absorption, which is detected for Rhea and Dione, is studied to establish band depth upper limits. The leading-trailing side 1.04-micron ice band depth differences on Saturn's satellites are similar to those for the Galilean satellites, indicating possible surface modification by magnetospheric charged particle bombardment. Limits are obtained for the amounts of particulates, trapped gases, and ammonium hydroxide on the surface. With the exception of the dark side of Iapetus, the surfaces of all of Saturn's satellites are nearly pure ice water.

  9. Cermet based metamaterials for multi band absorbers over NIR to LWIR frequencies

    NASA Astrophysics Data System (ADS)

    Pradhan, Jitendra K.; Behera, Gangadhar; Agarwal, Amit K.; Ghosh, Amitava; Ramakrishna, S. Anantha

    2017-06-01

    Cermets or ceramic-metals are known for their use in solar thermal technologies for their absorption across the solar band. Use of cermet layers in a metamaterial perfect absorber allows for flexible control of infra-red absorption over the short wave infra-red, to long wave infra-red bands, while keeping the visible/near infra-red absorption properties constant. We design multilayered metamaterials consisting of a conducting ground plane, a low metal volume fraction cermet/ZnS as dielectric spacer layers, and a top structured layer of an array of circular discs of metal/high volume metal fraction cermet that give rise to specified absorption bands in the near-infra-red (NIR) frequencies, as well as any specified band at SWIR-LWIR frequencies. Thus, a complete decoupling of the absorption at optical/NIR frequencies and the infra-red absorption behaviour of a structured metamaterial is demonstrated.

  10. The application of remote sensing image sea ice monitoring method in Bohai Bay based on C4.5 decision tree algorithm

    NASA Astrophysics Data System (ADS)

    Ye, Wei; Song, Wei

    2018-02-01

    In The Paper, the remote sensing monitoring of sea ice problem was turned into a classification problem in data mining. Based on the statistic of the related band data of HJ1B remote sensing images, the main bands of HJ1B images related with the reflectance of seawater and sea ice were found. On the basis, the decision tree rules for sea ice monitoring were constructed by the related bands found above, and then the rules were applied to Liaodong Bay area seriously covered by sea ice for sea ice monitoring. The result proved that the method is effective.

  11. Absorption of light dark matter in semiconductors

    DOE PAGES

    Hochberg, Yonit; Lin, Tongyan; Zurek, Kathryn M.

    2017-01-01

    Semiconductors are by now well-established targets for direct detection of MeV to GeV dark matter via scattering off electrons. We show that semiconductor targets can also detect significantly lighter dark matter via an absorption process. When the dark matter mass is above the band gap of the semiconductor (around an eV), absorption proceeds by excitation of an electron into the conduction band. Below the band gap, multiphonon excitations enable absorption of dark matter in the 0.01 eV to eV mass range. Energetic dark matter particles emitted from the sun can also be probed for masses below an eV. We derivemore » the reach for absorption of a relic kinetically mixed dark photon or pseudoscalar in germanium and silicon, and show that existing direct detection results already probe new parameter space. Finally, with only a moderate exposure, low-threshold semiconductor target experiments can exceed current astrophysical and terrestrial constraints on sub-keV bosonic dark matter.« less

  12. Electromagnetic and Microwave Absorption Properties of the Flake-Shaped Pr-Ho-Fe Alloys in the C-Band

    NASA Astrophysics Data System (ADS)

    Luo, Jialiang; Pan, Shunkang; Qiao, Ziqiang; Cheng, Lichun; Wang, Zhenzhong; Lin, Peihao; Chang, Junqing

    2018-01-01

    The polycrystalline samples Pr x Ho2- x Fe17 ( x = 0.0, 0.1, 0.2, 0.3, 0.4) were prepared by arc melting and high-energy ball milling method. The influences of Pr substitution on phase structure, morphology, saturation magnetization and electromagnetic parameters were investigated by x-ray diffraction, scanning electron microscopy, vibrating-sample magnetometry and vector network analyzer, respectively. The results show that the particle size increased and the saturation magnetization decreased with increasing Pr content. The minimum absorption peak frequency shifted towards a lower-frequency region with increasing Pr concentration. The minimum RL of Pr0.3Ho1.7Fe17 powder was -41.03 dB at 6.88 GHz with a coating thickness of 2.0 mm. With different thickness of 1.8-2.8 mm, the minimum reflection loss (RL) of Pr0.3Ho1.7Fe17 powder was less than -20 dB in the whole C-band (4-8 GHz). The microwave-absorbing properties of the composite with different weight ratios of Pr0.3Ho1.7Fe17/Co were researched. The microwave-absorbing peaks of the composites shifted to a lower frequency with increasing Co content. The minimum RL of Pr0.3Ho1.7Fe17/Co(10%) was -42.51 dB at 4.72 GHz with a coating thickness of 2.6 mm. This suggests that the Pr-Ho-Fe will be a promising microwave absorption material in higher-gigahertz frequency, especially in the C-band.

  13. Airborne Multi-Band SAR in the Arctic

    NASA Astrophysics Data System (ADS)

    Gardner, J. M.; Brozena, J. M.; Liang, R.; Ball, D.; Holt, B.; Thomson, J.

    2016-12-01

    As one component of the Office of Naval Research supported Sea State Departmental Research Initiative during October of 2015 the Naval Research Laboratory flew an ultrawide-band, low-frequency, polarimetric SAR over the southward advancing sea ice in Beaufort Sea. The flights were coordinated with the research team aboard the R/V Sikuliaq working near and in the advancing pack ice. The majority of the SAR data were collected with the L-Band sensor (1000-1500 MHz) from an altitude of 10,000', providing a useful swath 6 km wide with 75o and 25 o angles of incidence at the inner and outer edge of the swath respectively. Some data were also collected with the P-Band SAR (215-915 MHz). The extremely large bandwidths allowed for formation of image pixels as small as 30 cm, however, we selected 60 cm pixel size to reduce image speckle. The separate polarimetric images are calibrated to one pixel to allow for calculations such as polarimetric decompositions that require the images to be well aligned. Both frequencies are useful particularly for the detection of ridges and areas of deformed ice. There are advantages and disadvantages to airborne SAR imagery compared to satellites. The chief advantages being the enormous allowable bandwidth leading to very fine range resolution, and the ability to fly arbitrary trajectories on demand. The latter permits specific areas to be imaged at a given time with a specified illumination direction. An area can even be illuminated from all directions by flying a circular trajectory around the target area. This captures ice features that are sensitive to illumination direction such as cracks, sastrugi orientation, and ridges. The disadvantages include variation of intensity across the swath with range and incidence angle. In addition to the SAR data, we collected photogrammetric imagery from a DSS-439, scanning lidar from a Riegl Q560 and surface brightness temperatures from a KT-19. However, since all of these sensors are nadir pointing

  14. Flexural-gravity Wave Attenuation in a Thick Ice Shelf

    NASA Astrophysics Data System (ADS)

    Stephen, R. A.; Bromirski, P. D.; Gerstoft, P.; Chen, Z.; Wiens, D.; Aster, R. C.; Nyblade, A.

    2016-12-01

    A thirty-four station broadband seismic array was deployed on the Ross Ice Shelf, Antarctica from November 2014 to November 2017. Analyses indicate that phase speeds of infra-gravity wave and tsunami excitation in the 0.003 to 0.02 Hz band are 70 m/s, corresponding to the low frequency limit of flexural-gravity waves. Median spectral amplitudes in this band decay exponentially with distance from the shelf edge in a manner consistent with intrinsic attenuation. Seismic Q is typically 7-9, with an RMS amplitude decay of 0.04-0.05dB/km and an e-folding distance of 175-220 km. Amplitudes do not appear to drop crossing crevasse fields. Vertical and horizontal acceleration levels at stations on the floating ice shelf are 50 dB higher than those on grounded ice. Horizontal accelerations are about 15 dB higher than vertical accelerations. Median spectral levels at 0.003 Hz are within 6 dB for stations from 2 to 430 km from the shelf edge. In contrast, the levels drop by 90 dB at 0.02 Hz. Ocean gravity wave excitation has been proposed as a mechanism that can weaken ice shelves and potentially trigger disintegration events. These measurements indicate that the propensity for shelf weakening and disintegration decays exponentially with distance from the ice front for gravity waves in the 0.003 to 0.02Hz band.

  15. Laboratory study of methyl isocyanate ices under astrophysical conditions

    NASA Astrophysics Data System (ADS)

    Maté, B.; Molpeceres, G.; Timón, V.; Tanarro, I.; Escribano, R.; Guillemin, J. C.; Cernicharo, J.; Herrero, V. J.

    2017-10-01

    Methyl isocyanate has been recently detected in comet 67P/Churyumov-Gerasimenko (67P/CG) and in the interstellar medium. New physicochemical studies on this species are now necessary as tools for subsequent studies in astrophysics. In this work, infrared spectra of solid CH3NCO have been obtained at temperatures of relevance for astronomical environments. The spectra are dominated by a strong, characteristic multiplet feature at 2350-2250 cm-1, which can be attributed to the asymmetric stretching of the NCO group. A phase transition from amorphous to crystalline methyl isocyanate is observed at ˜90 K. The band strengths for the absorptions of CH3NCO in ice at 20 K have been measured. Deuterated methyl isocyanate is used to help with the spectral assignment. No X-ray structure has been reported for crystalline CH3NCO. Here we advance a tentative theoretical structure, based on density functional theory (DFT) calculations, derived taking the crystal of isocyanic acid as a starting point. A harmonic theoretical spectrum is then calculated for the proposed structure and compared with the experimental data. A mixed ice of H2O and CH3NCO was formed by simultaneous deposition of water and methyl isocyanate at 20 K. The absence of new spectral features indicates that methyl isocyanate and water do not react appreciably at 20 K, but form a stable mixture. The high CH3NCO/H2O ratio reported for comet 67P/CG, and the characteristic structure of the 2350-2250 cm-1 band, makes it a very good candidate for future astronomical searches.

  16. Intercomparison of synthetic- and real-aperture radar observations of Arctic sea ice during winter MIZEX '87

    NASA Technical Reports Server (NTRS)

    Schuchmann, R. A.; Onstott, R. G.; Sutherland, L. L.; Wackerman, C. C.

    1988-01-01

    Active microwave measurements were made of various sea ice forms in March and April 1987 during the Marginal Ice Zone Experiment, at 1, 5, 10, 18, and 35 GHz using a synthetic aperture radar (SAR) and helicopter and ship-based scatterometers. The X-band (9.8 GHz) SAR data were compared to the scatterometer data and it was determined that for 5 GHz and higher frequencies both the SAR and scatterometers can differentiate open water, new ice (5 to 30 cm), first-year ice with rubble (0.60 -1.5 m), and multiyear ice. The analysis further confirmed that the C-band (5 GHz) SAR's flying on ESA ERS-1 and Radarsat will differentiate the mentioned ice types.

  17. LABORATORY STUDIES ON THE FORMATION OF FORMIC ACID (HCOOH) IN INTERSTELLAR AND COMETARY ICES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Chris J.; Kim, Yong Seol; Kaiser, Ralf I.

    2011-01-20

    Mixtures of water (H{sub 2}O) and carbon monoxide (CO) ices were irradiated at 10 K with energetic electrons to simulate the energy transfer processes that occur in the track of galactic cosmic-ray particles penetrating interstellar ices. We identified formic acid (HCOOH) through new absorption bands in the infrared spectra at 1690 and 1224 cm{sup -1} (5.92 and 8.17 {mu}m, respectively). During the subsequent warm-up of the irradiated samples, formic acid is evident from the mass spectrometer signal at the mass-to-charge ratio, m/z = 46 (HCOOH{sup +}) as the ice sublimates. The detection of formic acid was confirmed using isotopically labeledmore » water-d2 with carbon monoxide, leading to formic acid-d2 (DCOOD). The temporal fits of the reactants, reaction intermediates, and products elucidate two reaction pathways to formic acid in carbon monoxide-water ices. The reaction is induced by unimolecular decomposition of water forming atomic hydrogen (H) and the hydroxyl radical (OH). The dominating pathway to formic acid (HCOOH) was found to involve addition of suprathermal hydrogen atoms to carbon monoxide forming the formyl radical (HCO); the latter recombined with neighboring hydroxyl radicals to yield formic acid (HCOOH). To a lesser extent, hydroxyl radicals react with carbon monoxide to yield the hydroxyformyl radical (HOCO), which recombined with atomic hydrogen to produce formic acid. Similar processes are expected to produce formic acid within interstellar ices, cometary ices, and icy satellites, thus providing alternative processes for the generation of formic acid whose abundance in hot cores such as Sgr-B2 cannot be accounted for solely by gas-phase chemistry.« less

  18. Intrinsic defect oriented visible region absorption in zinc oxide films

    NASA Astrophysics Data System (ADS)

    Rakhesh, V.; Shankar, Balakrishnan

    2018-05-01

    Zinc Oxide films were deposited on the glass substrate using vacuum arc sputtering technology. Films were prepared in oxygen ambience for 10mA and 15 mA deposition current separately. The UV-Visible spectroscopy of the samples showed that both samples possess sharp absorption near 3.5eV which is the characteristic band gap absorption energy of ZnO films. The absorption coefficient were calculated for the samples and the (αℎϑ)2 vs energy plot is drawn. The plot suggested that in addition to the sharp band edge absorption, the sample prepared at 10mA deposition current showed sharp absorption edge near 1.51eV and that at 15 mA showed absorption edge near 1.47eV. This refers to the presence of an intrinsic defect level which is likely to be deep in the band gap.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engel, Edgar A., E-mail: eae32@cam.ac.uk; Needs, Richard J.; Monserrat, Bartomeu

    Surface energies of hexagonal and cubic water ice are calculated using first-principles quantum mechanical methods, including an accurate description of anharmonic nuclear vibrations. We consider two proton-orderings of the hexagonal and cubic ice basal surfaces and three proton-orderings of hexagonal ice prism surfaces, finding that vibrations reduce the surface energies by more than 10%. We compare our vibrational densities of states to recent sum frequency generation absorption measurements and identify surface proton-orderings of experimental ice samples and the origins of characteristic absorption peaks. We also calculate zero point quantum vibrational corrections to the surface electronic band gaps, which range frommore » −1.2 eV for the cubic ice basal surface up to −1.4 eV for the hexagonal ice prism surface. The vibrational corrections to the surface band gaps are up to 12% smaller than for bulk ice.« less

  20. Water Ice on Pluto

    NASA Image and Video Library

    2015-10-16

    The Ralph instrument on NASA's New Horizons spacecraft detected water ice on Pluto's surface, picking up on the ice's near-infrared spectral characteristics. (See featured image from Oct. 8, 2015.) The middle panel shows a region west of Pluto's "heart" feature -- which the mission team calls Tombaugh Regio -- about 280 miles (450 kilometers) across. It combines visible imagery from Ralph's Multispectral Visible Imaging Camera (MVIC) with infrared spectroscopy from the Linear Etalon Imaging Spectral Array (LEISA). Areas with the strongest water ice spectral signature are highlighted in blue. Major outcrops of water ice occur in regions informally called Viking Terra, along Virgil Fossa west of Elliot crater, and in Baré Montes. Numerous smaller outcrops are associated with impact craters and valleys between mountains. In the lower left panel, LEISA spectra are shown for two regions indicated by cyan and magenta boxes. The white curve is a water ice model spectrum, showing similar features to the cyan spectrum. The magenta spectrum is dominated by methane ice absorptions. The lower right panel shows an MVIC enhanced color view of the region in the white box, with MVIC's blue, red and near-infrared filters displayed in blue, green and red channels, respectively. The regions showing the strongest water ice signature are associated with terrains that are actually a lighter shade of red. http://photojournal.jpl.nasa.gov/catalog/PIA20030

  1. Raman spectroscopic study of hydrogen ordered ice XIII and of its reversible phase transition to disordered ice V.

    PubMed

    Salzmann, Christoph G; Hallbrucker, Andreas; Finney, John L; Mayer, Erwin

    2006-07-14

    Raman spectra of recovered ordered H(2)O (D(2)O) ice XIII doped with 0.01 M HCl (DCl) recorded in vacuo at 80 K are reported in the range 3600-200 cm(-1). The bands are assigned to the various types of modes on the basis of isotope ratios. On thermal cycling between 80 and 120 K, the reversible phase transition to disordered ice V is observed. The remarkable effect of HCl (DCl) on orientational ordering in ice V and its phase transition to ordered ice XIII, first reported in a powder neutron diffraction study of DCl doped D(2)O ice V (C. G. Salzmann, P. G. Radaelli, A. Hallbrucker, E. Mayer, J. L. Finney, Science, 2006, 311, 1758), is demonstrated by Raman spectroscopy and discussed. The dopants KOH and HF have only a minor effect on hydrogen ordering in ice V, as shown by the Raman spectra.

  2. Improved spectral absorption coefficient grouping strategy of wide band k-distribution model used for calculation of infrared remote sensing signal of hot exhaust systems

    NASA Astrophysics Data System (ADS)

    Hu, Haiyang; Wang, Qiang

    2018-07-01

    A new strategy for grouping spectral absorption coefficients, considering the influences of both temperature and species mole ratio inhomogeneities on correlated-k characteristics of the spectra of gas mixtures, has been deduced to match the calculation method of spectral overlap parameter used in multiscale multigroup wide band k-distribution model. By comparison with current spectral absorption coefficient grouping strategies, for which only the influence of temperature inhomogeneity on the correlated-k characteristics of spectra of single species was considered, the improvements in calculation accuracies resulting from the new grouping strategy were evaluated using a series of 0D cases in which radiance under 3-5-μm wave band emitted by hot combustion gas of hydrocarbon fuel was attenuated by atmosphere with quite different temperature and mole ratios of water vapor and carbon monoxide to carbon dioxide. Finally, evaluations are presented on the calculation of remote sensing thermal images of transonic hot jet exhausted from a chevron ejecting nozzle with solid wall cooling system.

  3. Space Radar Image of Patagonian Ice Fields

    NASA Image and Video Library

    1999-04-15

    This pair of images illustrates the ability of multi-parameter radar imaging sensors such as the Spaceborne Imaging Radar-C/X-band Synthetic Aperture radar to detect climate-related changes on the Patagonian ice fields in the Andes Mountains of Chile and Argentina. The images show nearly the same area of the south Patagonian ice field as it was imaged during two space shuttle flights in 1994 that were conducted five-and-a-half months apart. The images, centered at 49.0 degrees south latitude and 73.5degrees west longitude, include several large outlet glaciers. The images were acquired by SIR-C/X-SAR on board the space shuttle Endeavour during April and October 1994. The top image was acquired on April 14, 1994, at 10:46 p.m. local time, while the bottom image was acquired on October 5,1994, at 10:57 p.m. local time. Both were acquired during the 77th orbit of the space shuttle. The area shown is approximately 100 kilometers by 58 kilometers (62 miles by 36 miles) with north toward the upper right. The colors in the images were obtained using the following radar channels: red represents the C-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and received); blue represents the L-band (horizontally transmitted and vertically received). The overall dark tone of the colors in the central portion of the April image indicates that the interior of the ice field is covered with thick wet snow. The outlet glaciers, consisting of rough bare ice, are the brightly colored yellow and purple lobes which terminate at calving fronts into the dark waters of lakes and fiords. During the second mission the temperatures were colder and the corresponding change in snow and ice conditions is readily apparent by comparing the images. The interior of the ice field is brighter because of increased radar return from the dryer snow. The distinct green/orange boundary on the ice field indicates an abrupt change in the structure of the snowcap

  4. Photophysiology and albedo-changing potential of the ice algal community on the surface of the Greenland ice sheet

    PubMed Central

    Yallop, Marian L; Anesio, Alexandre M; Perkins, Rupert G; Cook, Joseph; Telling, Jon; Fagan, Daniel; MacFarlane, James; Stibal, Marek; Barker, Gary; Bellas, Chris; Hodson, Andy; Tranter, Martyn; Wadham, Jemma; Roberts, Nicholas W

    2012-01-01

    Darkening of parts of the Greenland ice sheet surface during the summer months leads to reduced albedo and increased melting. Here we show that heavily pigmented, actively photosynthesising microalgae and cyanobacteria are present on the bare ice. We demonstrate the widespread abundance of green algae in the Zygnematophyceae on the ice sheet surface in Southwest Greenland. Photophysiological measurements (variable chlorophyll fluorescence) indicate that the ice algae likely use screening mechanisms to downregulate photosynthesis when exposed to high intensities of visible and ultraviolet radiation, rather than non-photochemical quenching or cell movement. Using imaging microspectrophotometry, we demonstrate that intact cells and filaments absorb light with characteristic spectral profiles across ultraviolet and visible wavelengths, whereas inorganic dust particles typical for these areas display little absorption. Our results indicate that the phototrophic community growing directly on the bare ice, through their photophysiology, most likely have an important role in changing albedo, and subsequently may impact melt rates on the ice sheet. PMID:23018772

  5. Photophysiology and albedo-changing potential of the ice algal community on the surface of the Greenland ice sheet.

    PubMed

    Yallop, Marian L; Anesio, Alexandre M; Perkins, Rupert G; Cook, Joseph; Telling, Jon; Fagan, Daniel; MacFarlane, James; Stibal, Marek; Barker, Gary; Bellas, Chris; Hodson, Andy; Tranter, Martyn; Wadham, Jemma; Roberts, Nicholas W

    2012-12-01

    Darkening of parts of the Greenland ice sheet surface during the summer months leads to reduced albedo and increased melting. Here we show that heavily pigmented, actively photosynthesising microalgae and cyanobacteria are present on the bare ice. We demonstrate the widespread abundance of green algae in the Zygnematophyceae on the ice sheet surface in Southwest Greenland. Photophysiological measurements (variable chlorophyll fluorescence) indicate that the ice algae likely use screening mechanisms to downregulate photosynthesis when exposed to high intensities of visible and ultraviolet radiation, rather than non-photochemical quenching or cell movement. Using imaging microspectrophotometry, we demonstrate that intact cells and filaments absorb light with characteristic spectral profiles across ultraviolet and visible wavelengths, whereas inorganic dust particles typical for these areas display little absorption. Our results indicate that the phototrophic community growing directly on the bare ice, through their photophysiology, most likely have an important role in changing albedo, and subsequently may impact melt rates on the ice sheet.

  6. Composition of bands in Argadnel Regio, Europa: Implications for Volcanic Resurfacing.

    NASA Astrophysics Data System (ADS)

    Prockter, L. M.; Shirley, J. H.; Dalton, J. B.; Kamp, L. W.

    2012-04-01

    Bands on Europa are dark or grey features which formed as a result of the pulling apart of cracks in Europa's surface, allowing new cryovolcanic material to be emplaced into the newly formed gaps. Bands have been shown to be sites of extensive resurfacing, and appear to have brightened over time, although the exact cause is not known. Thus the relative albedo of a band can be used as a proxy for age, as has been observed on Europa's surface, where the darkest bands crosscut, and are therefore younger than, lighter, or "grey" bands. We here combine Galileo Near-Infrared Mapping Spectrometer (NIMS) and Solid State Imager (SSI) data, using the methods of Shirley et al., [2010], to determine the surface compositions and water ice grain sizes of dark and grey bands in Europa's anti-Jovian Argadnel Regio, and to understand their relative histories. Preliminary results show that the total amount of hydrated salts modeled in the grey bands tends to be less than that seen in the dark bands (from ~19 to ~38% and ~38 to 47% respectively). One dark band contains hydrated sulfuric acid which is >5% lower than that of the surrounding ridged plains, as well as only 9% water ice of small grain size. These observations are interpreted as evidence that this band has been less processed by radiolysis, and so is relatively young or has been recently resurfaced. Relatively larger ice grain sizes are observed in the grey bands, as might be expected if they are older than the dark bands, and all the bands contain less large-grained ice than the surrounding ridged plains, thought to be the oldest unit on Europa's surface. We also find a wedge-shaped band that exhibits a different composition across its northern part, and appears to have undergone resurfacing as the result of the formation of a large, shallow trough that cuts diagonally across the band. We speculate that this resurfacing could be due to processes such as (1) the removal of frost due to surface shaking during the tectonic

  7. Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8-mum room-temperature diode laser.

    PubMed

    Sonnenfroh, D M; Allen, M G

    1997-10-20

    We describe the development of a room-temperature diode sensor for in situ monitoring of combustion-generated NO. The sensor is based on a near-IR diode laser operating near 1.8 mum, which probes isolated transitions in the second overtone (3, 0) absorption band of NO. Based on absorption cell data, the sensitivity for ambient atmospheric pressure conditions is of the order of 30 parts in 10(6) by volume for a meter path (ppmv-m), assuming a minimum measurable absorbance of 10(-5). Initial H(2) -air flame measurements are complicated by strong water vapor absorption features that constrain the available gain and dynamic range of the present detection system. Preliminary results suggest that detection limits in this environment of the order of 140 ppmv-m could be achieved with optimum baseline correction.

  8. Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8- m room-temperature diode laser

    NASA Astrophysics Data System (ADS)

    Sonnenfroh, David M.; Allen, Mark G.

    1997-10-01

    We describe the development of a room-temperature diode sensor for in situ monitoring of combustion-generated NO. The sensor is based on a near-IR diode laser operating near 1.8 m, which probes isolated transitions in the second overtone (3,0) absorption band of NO. Based on absorption cell data, the sensitivity for ambient atmospheric pressure conditions is of the order of 30 parts in 10 6 by volume for a meter path (ppmv m), assuming a minimum measurable absorbance of 10 5 . Initial H 2 air flame measurements are complicated by strong water vapor absorption features that constrain the available gain and dynamic range of the present detection system. Preliminary results suggest that detection limits in this environment of the order of 140 ppmv m could be achieved with optimum baseline correction.

  9. Thermal emission and absorption of radiation in finite inverted-opal photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Florescu, Marian; Stimpson, Andrew J.; Lee, Hwang

    We study theoretically the optical properties of a finite inverted-opal photonic crystal. The light-matter interaction is strongly affected by the presence of the three-dimensional photonic crystal and the alterations of the light emission and absorption processes can be used to suppress or enhance the thermal emissivity and absorptivity of the dielectric structure. We investigate the influence of the absorption present in the system on the relevant band edge frequencies that control the optical response of the photonic crystal. Our study reveals that the absorption processes cause spectral broadening and shifting of the band edge optical resonances, and determine a strongmore » reduction of the photonic band gap spectral range. Using the angular and spectral dependence of the band edge frequencies for stop bands along different directions, we argue that by matching the blackbody emission spectrum peak with a prescribed maximum of the absorption coefficient, it is possible to achieve an angle-sensitive enhancement of the thermal emission/absorption of radiation. This result opens a way to realize a frequency-sensitive and angle-sensitive photonic crystal absorbers/emitters.« less

  10. NASA IceBridge: Scientific Insights from Airborne Surveys of the Polar Sea Ice Covers

    NASA Astrophysics Data System (ADS)

    Richter-Menge, J.; Farrell, S. L.

    2015-12-01

    The NASA Operation IceBridge (OIB) airborne sea ice surveys are designed to continue a valuable series of sea ice thickness measurements by bridging the gap between NASA's Ice, Cloud and Land Elevation Satellite (ICESat), which operated from 2003 to 2009, and ICESat-2, which is scheduled for launch in 2017. Initiated in 2009, OIB has conducted campaigns over the western Arctic Ocean (March/April) and Southern Oceans (October/November) on an annual basis when the thickness of sea ice cover is nearing its maximum. More recently, a series of Arctic surveys have also collected observations in the late summer, at the end of the melt season. The Airborne Topographic Mapper (ATM) laser altimeter is one of OIB's primary sensors, in combination with the Digital Mapping System digital camera, a Ku-band radar altimeter, a frequency-modulated continuous-wave (FMCW) snow radar, and a KT-19 infrared radiation pyrometer. Data from the campaigns are available to the research community at: http://nsidc.org/data/icebridge/. This presentation will summarize the spatial and temporal extent of the OIB campaigns and their complementary role in linking in situ and satellite measurements, advancing observations of sea ice processes across all length scales. Key scientific insights gained on the state of the sea ice cover will be highlighted, including snow depth, ice thickness, surface roughness and morphology, and melt pond evolution.

  11. Ground-Based Icing Condition Remote Sensing System Definition

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.; Koenig, George G.

    2001-01-01

    This report documents the NASA Glenn Research Center activities to assess and down select remote sensing technologies for the purpose of developing a system capable of measuring icing condition hazards aloft. The information generated by such a remote sensing system is intended for use by the entire aviation community, including flight crews. air traffic controllers. airline dispatchers, and aviation weather forecasters. The remote sensing system must be capable of remotely measuring temperature and liquid water content (LWC), and indicating the presence of super-cooled large droplets (SLD). Technologies examined include Profiling Microwave Radiometer, Dual-Band Radar, Multi-Band Radar, Ka-Band Radar. Polarized Ka-Band Radar, and Multiple Field of View (MFOV) Lidar. The assessment of these systems took place primarily during the Mt. Washington Icing Sensors Project (MWISP) in April 1999 and the Alliance Icing Research Study (AIRS) from November 1999 to February 2000. A discussion of the various sensing technologies is included. The result of the assessment is that no one sensing technology can satisfy all of the stated project goals. Therefore a proposed system includes radiometry and Ka-band radar. A multilevel approach is proposed to allow the future selection of the fielded system based upon required capability and available funding. The most basic level system would be the least capable and least expensive. The next level would increase capability and cost, and the highest level would be the most capable and most expensive to field. The Level 1 system would consist of a Profiling Microwave Radiometer. The Level 2 system would add a Ka-Band Radar. The Level 3 system would add polarization to the Ka-Band Radar. All levels of the system would utilize hardware that is already under development by the U.S. Government. However, to meet the needs of the aviation community, all levels of the system will require further development. In addition to the proposed system

  12. A Flexible Parameterization for Shortwave Optical Properties of Ice Crystals

    NASA Technical Reports Server (NTRS)

    VanDiedenhoven, Bastiaan; Ackerman, Andrew S.; Cairns, Brian; Fridlind, Ann M.

    2014-01-01

    A parameterization is presented that provides extinction cross section sigma (sub e), single-scattering albedo omega, and asymmetry parameter (g) of ice crystals for any combination of volume, projected area, aspect ratio, and crystal distortion at any wavelength in the shortwave. Similar to previous parameterizations, the scheme makes use of geometric optics approximations and the observation that optical properties of complex, aggregated ice crystals can be well approximated by those of single hexagonal crystals with varying size, aspect ratio, and distortion levels. In the standard geometric optics implementation used here, sigma (sub e) is always twice the particle projected area. It is shown that omega is largely determined by the newly defined absorption size parameter and the particle aspect ratio. These dependences are parameterized using a combination of exponential, lognormal, and polynomial functions. The variation of (g) with aspect ratio and crystal distortion is parameterized for one reference wavelength using a combination of several polynomials. The dependences of g on refractive index and omega are investigated and factors are determined to scale the parameterized (g) to provide values appropriate for other wavelengths. The parameterization scheme consists of only 88 coefficients. The scheme is tested for a large variety of hexagonal crystals in several wavelength bands from 0.2 to 4 micron, revealing absolute differences with reference calculations of omega and (g) that are both generally below 0.015. Over a large variety of cloud conditions, the resulting root-mean-squared differences with reference calculations of cloud reflectance, transmittance, and absorptance are 1.4%, 1.1%, and 3.4%, respectively. Some practical applications of the parameterization in atmospheric models are highlighted.

  13. Omnidirectional polarization insensitive tunable absorption in graphene metamaterial of nanodisk structure

    NASA Astrophysics Data System (ADS)

    Ning, Renxia; Bao, Jie; Jiao, Zheng; Xu, Yuan

    2015-11-01

    Tunable absorption based on graphene metamaterial with nanodisk structure at near-infrared frequency was investigated using the finite difference time domain method. The absorption of the nanodisk structure which consisting of Au-MgF2-graphene-Au-polyimide (from bottom to top) can be tuned by the chemical potential of graphene at certain diameter of nanodisk. The permittivity of graphene is discussed with different chemical potential to obtain tunable absorption. It is shown that the increased value of the chemical potential of graphene can lead to blue-shifted of the absorption peaks and the values decreased. Moreover, dual-band and triple-band absorption can be achieved for resonance frequencies at normal incidence. Compared with diameter of nanodisks, the multilayer structure shows multi-band absorber, and an omnidirectional absorption at 195.25 THz is insensitive to TE/TM polarization. This omnidirectional polarization insensitive absorption may be applied by optical communications such as optical absorber, near infrared stealth, and filter.

  14. Texture analysis of radiometric signatures of new sea ice forming in Arctic leads

    NASA Technical Reports Server (NTRS)

    Eppler, Duane T.; Farmer, L. Dennis

    1991-01-01

    Analysis of 33.6-GHz, high-resolution, passive microwave images suggests that new sea ice accumulating in open leads is characterized by a unique textural signature which can be used to discriminate new ice forming in this environment from adjacent surfaces of similar radiometric temperature. Ten training areas were selected from the data set, three of which consisted entirely of first-year ice, four entirely of multilayer ice, and three of new ice in open leads in the process of freezing. A simple gradient operator was used to characterize the radiometric texture in each training region in terms of the degree to which radiometric gradients are oriented. New ice in leads has a sufficiently high proportion of well-oriented features to distinguish it uniquely from first-year ice and multiyear ice. The predominance of well-oriented features probably reflects physical processes by which new ice accumulates in open leads. Banded structures, which are evident in aerial photographs of new ice, apparently give rise to the radiometric signature observed, in which the trend of brightness temperature gradients is aligned parallel to lead trends. First-year ice and multiyear ice, which have been subjected to a more random growth and process history, lack this banded structure and therefore are characterized by signatures in which well-aligned elements are less dominant.

  15. Photo-induced intersubband absorption in {Si}/{SiGe} quantum wells

    NASA Astrophysics Data System (ADS)

    Boucaud, P.; Gao, L.; Visocekas, F.; Moussa, Z.; Lourtioz, J.-M.; Julien, F. H.; Sagnes, I.; Campidelli, Y.; Badoz, P.-A.; Vagos, P.

    1995-12-01

    We have investigated photo-induced intersubband absorption in the valence band of {Si}/{SiGe} quantum wells. Carriers are optically generated in the quantum wells using an argon ion laser. The resulting infrared absorption is probed with a step-scan Fourier transform infrared spectrometer. The photo-induced infrared absorption in SiGe quantum wells is dominated by two contributions: the free carrier absorption, which is similar to bulk absorption in a uniformly doped SiGe layer, and the valence subband absorption in the quantum wells. Both p- and s-polarized intersubband absorptions are measured. We have observed that the photo-induced intersubband absorption in doped samples is shifted to lower energy as compared to direct intersubband absorption. This absorption process is attributed to carriers away from the Brillouin zone center. We show that the photo-induced technique is appropriate to study valence band mixing effects and their influence on intersubband absorption.

  16. The effect of host star spectral energy distribution and ice-albedo feedback on the climate of extrasolar planets.

    PubMed

    Shields, Aomawa L; Meadows, Victoria S; Bitz, Cecilia M; Pierrehumbert, Raymond T; Joshi, Manoj M; Robinson, Tyler D

    2013-08-01

    Planetary climate can be affected by the interaction of the host star spectral energy distribution with the wavelength-dependent reflectivity of ice and snow. In this study, we explored this effect with a one-dimensional (1-D), line-by-line, radiative transfer model to calculate broadband planetary albedos as input to a seasonally varying, 1-D energy balance climate model. A three-dimensional (3-D) general circulation model was also used to explore the atmosphere's response to changes in incoming stellar radiation, or instellation, and surface albedo. Using this hierarchy of models, we simulated planets covered by ocean, land, and water-ice of varying grain size, with incident radiation from stars of different spectral types. Terrestrial planets orbiting stars with higher near-UV radiation exhibited a stronger ice-albedo feedback. We found that ice extent was much greater on a planet orbiting an F-dwarf star than on a planet orbiting a G-dwarf star at an equivalent flux distance, and that ice-covered conditions occurred on an F-dwarf planet with only a 2% reduction in instellation relative to the present instellation on Earth, assuming fixed CO(2) (present atmospheric level on Earth). A similar planet orbiting the Sun at an equivalent flux distance required an 8% reduction in instellation, while a planet orbiting an M-dwarf star required an additional 19% reduction in instellation to become ice-covered, equivalent to 73% of the modern solar constant. The reduction in instellation must be larger for planets orbiting cooler stars due in large part to the stronger absorption of longer-wavelength radiation by icy surfaces on these planets in addition to stronger absorption by water vapor and CO(2) in their atmospheres, which provides increased downwelling longwave radiation. Lowering the IR and visible-band surface ice and snow albedos for an M-dwarf planet increased the planet's climate stability against changes in instellation and slowed the descent into global ice

  17. Laboratory IR Studies and Astrophysical Implications of C2H2-Containing Binary Ices

    NASA Technical Reports Server (NTRS)

    Knez, C.; Moore, M.; Ferrante, R.; Hudson, R.

    2012-01-01

    Studies of molecular hot cores and protostellar environments have shown that the observed abundance of gas-phase acetylene (C2H2) cannot be matched by chemical models without the inclusion of C2H2 molecules subliming from icy grain mantles. Searches for infrared (IR) spectral features of solid-phase acetylene are under way, but few laboratory reference spectra of C2H2 in icy mixtures, which are needed for spectral fits to observational data, have been published. Here, we report a systematic study of the IR spectra of condensed-phase pure acetylene and acetylene in ices dominated by carbon monoxide (CO), carbon dioxide (CO2), methane (CH4), and water (H2O). We present new spectral data for these ices, including band positions and intrinsic band strengths. For each ice mixture and concentration, we also explore the dependence of acetylene's nu5-band position (743 cm-1, 13.46 micrometers) and FWHM on temperature. Our results show that the nu5 feature is much more cleanly resolved in ices dominated by non-polar and low-polarity molecules, specifically CO, CO2, and CH4, than in mixtures dominated by H2O-ice. We compare our laboratory ice spectra with observations of a quiescent region in Serpens.

  18. Combinatorial Broadening Mechanism of O-H Stretching Bands in H-Bonded Molecular Clusters

    NASA Astrophysics Data System (ADS)

    Pitsevich, G. A.; Doroshenko, I. Yu.; Pogorelov, V. E.; Pettersson, L. G. M.; Sablinskas, V.; Sapeshko, V. V.; Balevicius, V.

    2016-07-01

    A new mechanism for combinatorial broadening of donor-OH stretching-vibration absorption bands in molecular clusters with H-bonds is proposed. It enables the experimentally observed increase of the O-H stretching-vibration bandwidth with increasing number of molecules in H-bonded clusters to be explained. Knowledge of the half-width of the OH stretching-vibration absorption band in the dimer and the number of H-bonds in the analyzed cluster is suffi cient in the zeroth-order approximation to estimate the O-H stretching-absorption bands in clusters containing several molecules. Good agreement between the calculated and published experimental half-widths of the OH stretching-vibration absorption bands in MeOH and PrOH clusters was obtained using this approach.

  19. An ultra-thin compact polarization-independent hexa-band metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Munaga, Praneeth; Bhattacharyya, Somak; Ghosh, Saptarshi; Srivastava, Kumar Vaibhav

    2018-04-01

    In this paper, an ultra-thin compact hexa-band metamaterial absorber has been presented using single layer of dielectric. The proposed design is polarization independent in nature owing to its fourfold symmetry and exhibits high angular stability up to 60° angles of incidences for both TE and TM polarizations. The structure is ultrathin in nature with 2 mm thickness, which corresponds to λ/11.4 ( λ is the operating wavelength with respect to the highest frequency of absorption). Six distinct absorption frequencies are obtained from the design, which can be distributed among three regions, namely lower band, middle band and higher band; each region consists of two closely spaced frequencies. Thereafter, the dimensions of the proposed structure are adjusted in such a way that bandwidth enhancement occurs at each region separately. Simultaneous bandwidth enhancements at middle and higher bands have also been achieved by proper optimization of the geometrical parameters. The structure with simultaneous bandwidth enhancements at X- and Ku-bands is later fabricated and the experimental absorptivity response is in agreement with the simulated one.

  20. Pseudopotential calculations and photothermal lensing measurements of two-photon absorption in solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, W.T. III

    1985-11-04

    We have studied two-photon absorption in solids theoretically and experimentally. We have shown that it is possible to use accurate band structure techniques to compute two-photon absorption spectra within 15% of measured values in a wide band-gap material, ZnS. The empirical pseudopotential technique that we used is significantly more accurate than previous models of two-photon absorption in zinc blende materials, including present tunneling theories (which are essentially parabolic-band results in disguise) and the nonparabolic-band formalism of Pidgeon et al. and Weiler. The agreement between our predictions and previous measurements allowed us to use ZnS as a reference material in ordermore » to validate a technique for measuring two-photon absorption that was previously untried in solids, pulsed dual-beam thermal lensing. With the validated technique, we examined nonlinear absorption in one other crystal (rutile) and in several glasses, including silicates, borosilicates, and one phosphate glass. Initially, we believed that the absorption edges of all the materials were comparable; however, subsequent evidence suggested that the effective band-gap energies of the glasses were above the energy of two photons in our measurement. Therefore, we attribute the nonlinear absorption that we observed in glasses to impurities or defects. The measured nonlinear absorption coefficients were of the order of a few cm/TW in the glasses and of the order of 10 cm/GW in the crystals, four orders of magnitude higher than in glasses. 292 refs.« less

  1. Perfect narrow band absorber for sensing applications.

    PubMed

    Luo, Shiwen; Zhao, Jun; Zuo, Duluo; Wang, Xinbing

    2016-05-02

    We design and numerically investigate a perfect narrow band absorber based on a metal-metal-dielectric-metal structure which consists of periodic metallic nanoribbon arrays. The absorber presents an ultra narrow absorption band of 1.11 nm with a nearly perfect absorption of over 99.9% in the infrared region. For oblique incidence, the absorber shows an absorption more than 95% for a wide range of incident angles from 0 to 50°. Structure parameters to the influence of the performance are investigated. The structure shows high sensing performance with a high sensitivity of 1170 nm/RIU and a large figure of merit of 1054. The proposed structure has great potential as a biosensor.

  2. Arctic Sea Ice Classification and Mapping for Surface Albedo Parameterization in Sea Ice Modeling

    NASA Astrophysics Data System (ADS)

    Nghiem, S. V.; Clemente-Colón, P.; Perovich, D. K.; Polashenski, C.; Simpson, W. R.; Rigor, I. G.; Woods, J. E.; Nguyen, D. T.; Neumann, G.

    2016-12-01

    A regime shift of Arctic sea ice from predominantly perennial sea ice (multi-year ice or MYI) to seasonal sea ice (first-year ice or FYI) has occurred in recent decades. This shift has profoundly altered the proportional composition of different sea ice classes and the surface albedo distribution pertaining to each sea ice class. Such changes impacts physical, chemical, and biological processes in the Arctic atmosphere-ice-ocean system. The drastic changes upset the traditional geophysical representation of surface albedo of the Arctic sea ice cover in current models. A critical science issue is that these profound changes must be rigorously and systematically observed and characterized to enable a transformative re-parameterization of key model inputs, such as ice surface albedo, to ice-ocean-atmosphere climate modeling in order to obtain re-analyses that accurately reproduce Arctic changes and also to improve sea ice and weather forecast models. Addressing this challenge is a strategy identified by the National Research Council study on "Seasonal to Decadal Predictions of Arctic Sea Ice - Challenges and Strategies" to replicate the new Arctic reality. We review results of albedo characteristics associated with different sea ice classes such as FYI and MYI. Then we demonstrate the capability for sea ice classification and mapping using algorithms developed by the Jet Propulsion Laboratory and by the U.S. National Ice Center for use with multi-sourced satellite radar data at L, C, and Ku bands. Results obtained with independent algorithms for different radar frequencies consistently identify sea ice classes and thereby cross-verify the sea ice classification methods. Moreover, field observations obtained from buoy webcams and along an extensive trek across Elson Lagoon and a sector of the Beaufort Sea during the BRomine, Ozone, and Mercury EXperiment (BROMEX) in March 2012 are used to validate satellite products of sea ice classes. This research enables the mapping

  3. Chemoselectivity-induced multiple interfaces in MWCNT/Fe3O4@ZnO heterotrimers for whole X-band microwave absorption.

    PubMed

    Wang, Zhijiang; Wu, Lina; Zhou, Jigang; Jiang, Zhaohua; Shen, Baozhong

    2014-11-07

    A chemoselective route to induce Fe3O4@ZnO core-shell nanoparticles decorating carbon nanotubes to form MWCNT/Fe3O4@ZnO heterotrimers has been developed. Charges are redistributed in the heterotrimers through C-O-Zn, C-O-Fe and Fe-O-Zn bondings, giving rise to multiple electronic phases. The generated significant interfacial polarization and synergetic interaction between dielectric and magnetic absorbers result in the MWCNT/Fe3O4@ZnO heterotrimers with high-performance microwave absorption in an entire X band.

  4. CMOS image sensor with organic photoconductive layer having narrow absorption band and proposal of stack type solid-state image sensors

    NASA Astrophysics Data System (ADS)

    Takada, Shunji; Ihama, Mikio; Inuiya, Masafumi

    2006-02-01

    Digital still cameras overtook film cameras in Japanese market in 2000 in terms of sales volume owing to their versatile functions. However, the image-capturing capabilities such as sensitivity and latitude of color films are still superior to those of digital image sensors. In this paper, we attribute the cause for the high performance of color films to their multi-layered structure, and propose the solid-state image sensors with stacked organic photoconductive layers having narrow absorption bands on CMOS read-out circuits.

  5. Quantifying the ice-albedo feedback through decoupling

    NASA Astrophysics Data System (ADS)

    Kravitz, B.; Rasch, P. J.

    2017-12-01

    The ice-albedo feedback involves numerous individual components, whereby warming induces sea ice melt, inducing reduced surface albedo, inducing increased surface shortwave absorption, causing further warming. Here we attempt to quantify the sea ice albedo feedback using an analogue of the "partial radiative perturbation" method, but where the governing mechanisms are directly decoupled in a climate model. As an example, we can isolate the insulating effects of sea ice on surface energy and moisture fluxes by allowing sea ice thickness to change but fixing Arctic surface albedo, or vice versa. Here we present results from such idealized simulations using the Community Earth System Model in which individual components are successively fixed, effectively decoupling the ice-albedo feedback loop. We isolate the different components of this feedback, including temperature change, sea ice extent/thickness, and air-sea exchange of heat and moisture. We explore the interactions between these different components, as well as the strengths of the total feedback in the decoupled feedback loop, to quantify contributions from individual pieces. We also quantify the non-additivity of the effects of the components as a means of investigating the dominant sources of nonlinearity in the ice-albedo feedback.

  6. A search for formic acid in the upper troposphere - A tentative identification of the 1105-per cm nu-6 band Q branch in high-resolution balloon-borne solar absorption spectra

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Murcray, F. H.; Murcray, D. G.; Rinsland, C. P.

    1984-01-01

    Infrared solar absorption spectra recorded at 0.02-per cm resolution during a balloon flight from Alamogordo, NM (33 deg N), on March 23, 1981, have been analyzed for the possible presence of absorption by formic acid (HCOOH). An absorption feature at 1105 per cm has been tentatively identified in upper tropospheric spectra as due to the nu-6 band Q branch. A preliminary analysis indicates a concentration of about 0.6 ppbv and 0.4 ppbv near 8 and 10 km, respectively.

  7. Radiative Transfer Modeling to Estimate the Impact of CDOM on Light Absorption within Changing Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Carns, R.; Light, B.; Frey, K. E.

    2016-12-01

    First-year sea ice differs from multi-year sea ice in several ways that can influence its optical properties. It is thinner than multi-year ice, which tends to increase light transmission. Also, first-year ice retains higher brine volumes in comparison to more heavily drained multi-year ice, in isolated pockets and channels. During melt season, patterns of pond formation on first-year sea ice differ from those on multi-year ice. As first-year sea ice comprises an increasingly large fraction of Arctic sea ice, it becomes more important to understand how much sunlight reaches the ecosystems within the ice, and how those changing ecosystems can feed back into the transmission of light. Colored dissolved organic matter (CDOM) and chlorophyll within the ice can absorb light, heating the ice and reducing transmission to the ocean below. Light also encourages algal growth within the ice while degrading CDOM, creating complex feedbacks. We use radiative transfer models to determine the overall effect of colored dissolved organic matter on the light regime within sea ice, both on the overall amount of energy transmitted and on the spectral distribution of energy. Using models allows us to estimate the impact of varying CDOM levels on a wide range of sea ice types, improving our ability to respond to conditions in a rapidly changing Arctic and predict important phenomena such as algal blooms.

  8. Radiative transfer model of snow for bare ice regions

    NASA Astrophysics Data System (ADS)

    Tanikawa, T.; Aoki, T.; Niwano, M.; Hosaka, M.; Shimada, R.; Hori, M.; Yamaguchi, S.

    2016-12-01

    Modeling a radiative transfer (RT) for coupled atmosphere-snow-bare ice systems is of fundamental importance for remote sensing applications to monitor snow and bare ice regions in the Greenland ice sheet and for accurate climate change predictions by regional and global climate models. Recently, the RT model for atmosphere-snow system was implemented for our regional and global climate models. However, the bare ice region where recently it has been expanded on the Greenland ice sheet due to the global warming, has not been implemented for these models, implying that this region leads miscalculations in these climate models. Thus, the RT model of snow for bare ice regions is needed for accurate climate change predictions. We developed the RT model for coupled atmosphere-snow-bare ice systems, and conducted a sensitivity analysis of the RT model to know the effect of snow, bare ice and geometry parameters on the spectral radiant quantities. The RT model considers snow and bare-ice inherent optical properties (IOPs), including snow grain size, air bubble size and its concentration and bare ice thickness. The conventional light scattering theory, Mie theory, was used for IOP calculations. Monte Carlo method was used for the multiple scattering. The sensitivity analyses showed that spectral albedo for the bare ice increased with increasing the concentration of the air bubble in the bare ice for visible wavelengths because the air bubble is scatterer with no absorption. For near infrared wavelengths, spectral albedo has no dependence on the air bubble due to the strong light absorption by ice. When increasing solar zenith angle, the spectral albedo were increased for all wavelengths. This is the similar trend with spectral snow albedo. Cloud cover influenced the bare ice spectral albedo by covering direct radiation into diffuse radiation. The purely diffuse radiation has an effective solar zenith angle near 50°. Converting direct into diffuse radiation reduces the

  9. Parameterization of Photon Tunneling with Application to Ice Cloud Optical Properties at Terrestrial Wavelengths

    NASA Astrophysics Data System (ADS)

    Mitchell, D. L.

    2006-12-01

    Sometimes deep physical insights can be gained through the comparison of two theories of light scattering. Comparing van de Hulst's anomalous diffraction approximation (ADA) with Mie theory yielded insights on the behavior of the photon tunneling process that resulted in the modified anomalous diffraction approximation (MADA). (Tunneling is the process by which radiation just beyond a particle's physical cross-section may undergo large angle diffraction or absorption, contributing up to 40% of the absorption when wavelength and particle size are comparable.) Although this provided a means of parameterizing the tunneling process in terms of the real index of refraction and size parameter, it did not predict the efficiency of the tunneling process, where an efficiency of 100% is predicted for spheres by Mie theory. This tunneling efficiency, Tf, depends on particle shape and ranges from 0 to 1.0, with 1.0 corresponding to spheres. Similarly, by comparing absorption efficiencies predicted by the Finite Difference Time Domain Method (FDTD) with efficiencies predicted by MADA, Tf was determined for nine different ice particle shapes, including aggregates. This comparison confirmed that Tf is a strong function of ice crystal shape, including the aspect ratio when applicable. Tf was lowest (< 0.36) for aggregates and plates, and largest (> 0.9) for quasi- spherical shapes. A parameterization of Tf was developed in terms of (1) ice particle shape and (2) mean particle size regarding the large mode (D > 70 mm) of the ice particle size distribution. For the small mode, Tf is only a function of ice particle shape. When this Tf parameterization is used in MADA, absorption and extinction efficiency differences between MADA and FDTD are within 14% over the terrestrial wavelength range 3-100 mm for all size distributions and most crystal shapes likely to be found in cirrus clouds. Using hyperspectral radiances, it is demonstrated that Tf can be retrieved from ice clouds. Since Tf

  10. Temperature-dependence laws of absorption line shape parameters of the CO2 ν3 band

    NASA Astrophysics Data System (ADS)

    Wilzewski, J. S.; Birk, M.; Loos, J.; Wagner, G.

    2018-02-01

    To improve the understanding of temperature-dependence laws of spectral line shape parameters, spectra of the ν3 rovibrational band of CO2 perturbed by 10, 30, 100, 300 and 1000 mbar of N2 were recorded at nine temperatures between 190 K and 330 K using a 22 cm long single-pass absorption cell in a Bruker IFS125 HR Fourier Transform spectrometer. The spectra were fitted employing a quadratic speed-dependent hard collision model in the Hartmann-Tran implementation extended to account for line mixing in the Rosenkranz approximation by means of a multispectrum fitting approach developed at DLR. This enables high accuracy parameter retrievals to reproduce the spectra down to noise level and we present the behavior of line widths, shifts, speed-dependence-, collisional narrowing- and line mixing-parameters over this 140 K temperature range.

  11. Green icebergs formed by freezing of organic-rich seawater to the base of Antarctic ice shelves

    NASA Astrophysics Data System (ADS)

    Warren, Stephen G.; Roesler, Collin S.; Morgan, Vincent I.; Brandt, Richard E.; Goodwin, Ian D.; Allison, Ian

    1993-01-01

    Although most icebergs are blue, green icebergs are seen occasionally in the Antarctic ocean. Chemical and isotopic analysis of samples from green icebergs indicate that the ice consists of desalinated frozen seawater, as does the basal ice from the Amery Ice Shelf. Spectral reflectance of a green iceberg measured near 67°S, 62°E, confirms that the color is inherent to the ice, not an artifact of the illumination. Pure ice appears blue owing to its absorption of red photons. Addition of a constituent that absorbs blue photons can shift the peak reflectance from blue to green. Such a constituent was identified by spectrophotometric analysis of core samples from this iceberg and from the Amery basal ice, and of seawater samples from Prydz Bay off the Amery Ice Shelf. Analysis of the samples by fluorescence spectroscopy indicates that the blue absorption, and hence the inherent green color, is due to the presence of marine-derived organic matter in the green iceberg, basal ice, and seawater. Thick accumulations of green ice, in icebergs and at the base of ice shelves, indicate that high concentrations of organic matter exist in seawater for centuries at the depth of basal freezing.

  12. Interactions Between Ice Thickness, Bottom Ice Algae, and Transmitted Spectral Irradiance in the Chukchi Sea

    NASA Astrophysics Data System (ADS)

    Arntsen, A. E.; Perovich, D. K.; Polashenski, C.; Stwertka, C.

    2015-12-01

    The amount of light that penetrates the Arctic sea ice cover impacts sea-ice mass balance as well as ecological processes in the upper ocean. The seasonally evolving macro and micro spatial variability of transmitted spectral irradiance observed in the Chukchi Sea from May 18 to June 17, 2014 can be primarily attributed to variations in snow depth, ice thickness, and bottom ice algae concentrations. This study characterizes the interactions among these dominant variables using observed optical properties at each sampling site. We employ a normalized difference index to compute estimates of Chlorophyll a concentrations and analyze the increased attenuation of incident irradiance due to absorption by biomass. On a kilometer spatial scale, the presence of bottom ice algae reduced the maximum transmitted irradiance by about 1.5 orders of magnitude when comparing floes of similar snow and ice thicknesses. On a meter spatial scale, the combined effects of disparities in the depth and distribution of the overlying snow cover along with algae concentrations caused maximum transmittances to vary between 0.0577 and 0.282 at a single site. Temporal variability was also observed as the average integrated transmitted photosynthetically active radiation increased by one order of magnitude to 3.4% for the last eight measurement days compared to the first nine. Results provide insight on how interrelated physical and ecological parameters of sea ice in varying time and space may impact new trends in Arctic sea ice extent and the progression of melt.

  13. The discrimination of sea ice types using SAR backscatter statistics

    NASA Technical Reports Server (NTRS)

    Shuchman, Robert A.; Wackerman, Christopher C.; Maffett, Andrew L.; Onstott, Robert G.; Sutherland, Laura L.

    1989-01-01

    X-band (HH) synthetic aperture radar (SAR) data of sea ice collected during the Marginal Ice Zone Experiment in March and April of 1987 was statistically analyzed with respect to discriminating open water, first-year ice, multiyear ice, and Odden. Odden are large expanses of nilas ice that rapidly form in the Greenland Sea and transform into pancake ice. A first-order statistical analysis indicated that mean versus variance can segment out open water and first-year ice, and skewness versus modified skewness can segment the Odden and multilayer categories. In additions to first-order statistics, a model has been generated for the distribution function of the SAR ice data. Segmentation of ice types was also attempted using textural measurements. In this case, the general co-occurency matrix was evaluated. The textural method did not generate better results than the first-order statistical approach.

  14. Ion Irradiation of H2-Laden Porous Water-ice Films: Implications for Interstellar Ices

    NASA Astrophysics Data System (ADS)

    Raut, U.; Mitchell, E. H.; Baragiola, R. A.

    2015-10-01

    To understand the effects of cosmic-ray (CR) impacts on interstellar icy grains immersed in H2 gas, we have irradiated porous water-ice films loaded with H2 with 100 keV H+. The ice films were exposed to H2 gas at different pressures following deposition and during irradiation. A net H2 loss is observed during irradiation due to competition between ion-induced sputtering and gas adsorption. The initial H2 loss cross-section, 4(1) × 10-14 cm2, was independent of film thickness, H2, and proton fluxes. In addition to sputtering, irradiation also closes nanopores, trapping H2 in the film with binding that exceeds physical absorption energies. As a result, 2%-7% H2 is retained in the ice following irradiation to high fluences. We find that the trapped H2 concentration increases with decreasing Φ, the ratio of ion to H2 fluxes, suggesting that as high as 8% solid H2 can be trapped in interstellar ice by CR or stellar wind impacts.

  15. Tsunami and infragravity waves impacting Antarctic ice shelves

    NASA Astrophysics Data System (ADS)

    Bromirski, P. D.; Chen, Z.; Stephen, R. A.; Gerstoft, P.; Arcas, D.; Diez, A.; Aster, R. C.; Wiens, D. A.; Nyblade, A.

    2017-07-01

    The responses of the Ross Ice Shelf (RIS) to the 16 September 2015 8.3 (Mw) Chilean earthquake tsunami (>75 s period) and to oceanic infragravity (IG) waves (50-300 s period) were recorded by a broadband seismic array deployed on the RIS from November 2014 to November 2016. Here we show that tsunami and IG-generated signals within the RIS propagate at gravity wave speeds (˜70 m/s) as water-ice coupled flexural-gravity waves. IG band signals show measureable attenuation away from the shelf front. The response of the RIS to Chilean tsunami arrivals is compared with modeled tsunami forcing to assess ice shelf flexural-gravity wave excitation by very long period (VLP; >300 s) gravity waves. Displacements across the RIS are affected by gravity wave incident direction, bathymetry under and north of the shelf, and water layer and ice shelf thicknesses. Horizontal displacements are typically about 10 times larger than vertical displacements, producing dynamical extensional motions that may facilitate expansion of existing fractures. VLP excitation is continuously observed throughout the year, with horizontal displacements highest during the austral winter with amplitudes exceeding 20 cm. Because VLP flexural-gravity waves exhibit no discernable attenuation, this energy must propagate to the grounding zone. Both IG and VLP band flexural-gravity waves excite mechanical perturbations of the RIS that likely promote tabular iceberg calving, consequently affecting ice shelf evolution. Understanding these ocean-excited mechanical interactions is important to determine their effect on ice shelf stability to reduce uncertainty in the magnitude and rate of global sea level rise.

  16. A laboratory investigation into microwave backscattering from sea ice. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Bredow, Jonathan W.

    1989-01-01

    The sources of scattering of artificial sea ice were determined, backscatter measurements semi-quantitatively were compared with theoretical predictions, and inexpensive polarimetric radars were developed for sea ice backscatter studies. A brief review of the dielectric properties of sea ice and of commonly used surface and volume scattering theories is presented. A description is provided of the backscatter measurements performed and experimental techniques used. The development of inexpensive short-range polarimetric radars is discussed. The steps taken to add polarimetric capability to a simple FM-W radar are considered as are sample polarimetric phase measurements of the radar. Ice surface characterization data and techniques are discussed, including computation of surface rms height and correlation length and air bubble distribution statistics. A method is also presented of estimating the standard deviation of rms height and correlation length for cases of few data points. Comparisons were made of backscatter measurements and theory. It was determined that backscatter from an extremely smooth saline ice surface at C band cannot be attributed only to surface scatter. It was found that snow cover had a significant influence on backscatter from extremely smooth saline ice at C band.

  17. Temperature, grain size, and CO2-clathrate hydrates maps of Enceladus and Dione

    NASA Astrophysics Data System (ADS)

    Taffin, C.; Combe, J.; Grasset, O.; Le Menn, E.; McCord, T. B.; Bollengier, O.; Oancea, A.; Giraud, M.; Tobie, G.

    2011-12-01

    Reflectance spectra of water ice have absorption bands at 1.30 and 1.50 μm that depend on temperature and grain size. Band shape measurements can be used to characterize the surface properties of icy celestial bodies1,2,3. Moreover, CO2-clathrates have a diagnostic and unique absorption band at 2.7 μm. Mapping of these properties and components of the surface can be used to better constrain the internal activity and surface tectonics. We present an analysis of the 1.30 and 1.50 μm water ice absorption bands and the 2.7-μm CO2-clathrates absorption band in reflectance spectra from VIMS on Cassini in order to understand the geological history of the South Pole of Enceladus and an equatorial area of Dione. We have synthesized samples of pure ice Ih grains and acquired reflectance spectra between 1 and 5 μm with a Nicolet Fourier Transform spectrometer to investigate the characteristics of near-IR spectra using temperature and pressure ranges relevant for the icy satellites of Saturn. Forty-seven spectra of crystalline water ice have been acquired. We have derived two empirical laws to calculate temperature and grain size from pure crystalline water ice spectrum4. We have also synthesized samples of CO2-clathrates and acquired reflectance spectra for the band. These two spectra have been used as end-member. A linear sum is computed using the end-member spectra: [CRF×(clathrate)+(1-CRF)×(pure water ice)], where CRF is the to-be-determined clathrate ratio factor, 'clathrate' and 'pure water ice' are the reference spectra (end-member). Figure 1 shows results on one equatorial area where craters and ridges can be observed. Temperature appears to be higher besides the ridges (Figure 1f), but this may indicate that water ice is amorphous, which results in overestimating the temperature. Along the ridge, grain size is larger (Figure 1e), and CO2-clathrates have higher concentration near the ridges (Figure 1d). All these clues indicate a recent activity that we are

  18. Longwave radiative effects of Saharan dust during the ICE-D campaign

    NASA Astrophysics Data System (ADS)

    Brooke, Jennifer; Havemann, Stephan; Ryder, Claire; O'Sullivan, Debbie

    2017-04-01

    The Havemann-Taylor Fast Radiative Transfer Code (HT-FRTC) is a fast radiative transfer model based on Principal Components. Scattering has been incorporated into HT-FRTC which allows simulations of aerosol as well as clear-sky atmospheres. This work evaluates the scattering scheme in HT-FRTC and investigates dust-affected brightness temperatures using in-situ observations from Ice in Clouds Experiment - Dust (ICE-D) campaign. The ICE-D campaign occurred during August 2015 and was based from Cape Verde. The ICE-D campaign is a multidisciplinary project which achieved measurements of in-situ mineral dust properties of the dust advected from the Sahara, and on the aerosol-cloud interactions using the FAAM BAe-146 research aircraft. ICE-D encountered a range of low (0.3), intermediate (0.8) and high (1.3) aerosol optical depths, AODs, and therefore provides a range of atmospheric dust loadings in the assessment of dust scattering in HT-FRTC. Spectral radiances in the thermal infrared window region (800 - 1200 cm-1) are sensitive to the presence of mineral dust; mineral dust acts to reduce the upwelling infrared radiation caused by the absorption and re-emission of radiation by the dust layer. ARIES (Airborne Research Interferometer Evaluation System) is a nadir-facing interferometer, measuring infrared radiances between 550 and 3000 cm-1. The ARIES spectral radiances are converted to brightness temperatures by inversion of the Planck function. The mineral dust size distribution is important for radiative transfer applications as it provides a measure of aerosol scattering. The longwave spectral mineral dust optical properties including the mass extinction coefficients, single scattering albedos and the asymmetry parameter have been derived from the mean ICE-D size distribution. HT-FRTC scattering simulations are initialised with vertical mass fractions which can be derived from extinction profiles from the lidar along with the specific extinction coefficient, kext (m2

  19. Two Photon Absorption And Refraction in Bulk of the Semiconducting Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumari, Vinay; Department of Physics, DCRUST Murthal, Haryana; Kumar, Vinod

    2011-10-20

    Fast electronic detection systems have opened up a number of new fields like nonlinear optics, optical communication, coherent optics, optical bistability, two/four wave mixing. The interest in this field has been stimulated by the importance of multiphoton processes in many fundamental aspects of physics. It has proved to be an invaluable tool for determining the optical and electronic properties of the solids because of the fact that one gets the information about the bulk of the material rather than the surface one. In this paper we report, the measurement of the nonlinear absorption and refraction from the band gap tomore » half-band gap region of bulk of semiconductors in the direct and indirect band gap crystals with nanosecond laser. The measured theoretical calculated values of two-photon absorption coefficients ({beta}) and nonlinear refraction n{sub 2}({omega}) of direct band gap crystal match the earlier reported theoretical predictions. By making use of these theoretical calculated values, we have estimated {beta} and n{sub 2}({omega}) in the case of indirect band gap crystals. Low value of absorption coefficient in case of indirect band gap crystals have been attributed to phonon assisted transition while reduction in nonlinear refraction is due to the rise in saturation taking place in the absorption.« less

  20. On the size dependence of the scattering greenhouse effect of CO2 ice particles

    NASA Astrophysics Data System (ADS)

    Kitzmann, D.; Patzer, A. B. C.; Rauer, H.

    2011-10-01

    In this contribution we study the potential greenhouse effect due to scattering of CO2 ice clouds for atmospheric conditions of terrestrial extrasolar planets. Therefore, we calculate the scattering and absorption properties of CO2 ice particles using Mie theory for assumed particle size distributions with different effective radii and particle densities to determine the scattering and absorption characteristics of such clouds. Implications especially in view of a potential greenhouse warming of the planetary surface are discussed.

  1. High-sensitivity Raman spectrometer to study pristine and irradiated interstellar ice analogs.

    PubMed

    Bennett, Chris J; Brotton, Stephen J; Jones, Brant M; Misra, Anupam K; Sharma, Shiv K; Kaiser, Ralf I

    2013-06-18

    We discuss the novel design of a sensitive, normal-Raman spectrometer interfaced to an ultra-high vacuum chamber (5 × 10(-11) Torr) utilized to investigate the interaction of ionizing radiation with low temperature ices relevant to the solar system and interstellar medium. The design is based on a pulsed Nd:YAG laser which takes advantage of gating techniques to isolate the scattered Raman signal from the competing fluorescence signal. The setup incorporates innovations to achieve maximum sensitivity without detectable heating of the sample. Thin films of carbon dioxide (CO2) ices of 10 to 396 nm thickness were prepared and characterized using both Fourier transform infrared (FT-IR) spectroscopy and HeNe interference techniques. The ν+ and ν- Fermi resonance bands of CO2 ices were observed by Raman spectroscopy at 1385 and 1278 cm(-1), respectively, and the band areas showed a linear dependence on ice thickness. Preliminary irradiation experiments are conducted on a 450 nm thick sample of CO2 ice using energetic electrons. Both carbon monoxide (CO) and the infrared inactive molecular oxygen (O2) products are readily detected from their characteristic Raman bands at 2145 and 1545 cm(-1), respectively. Detection limits of 4 ± 3 and 6 ± 4 monolayers of CO and O2 were derived, demonstrating the unique power to detect newly formed molecules in irradiated ices in situ. The setup is universally applicable to the detection of low-abundance species, since no Raman signal enhancement is required, demonstrating Raman spectroscopy as a reliable alternative, or complement, to FT-IR spectroscopy in space science applications.

  2. Probing the Origin and Evolution of Interstellar and Protoplanetary Biogenic Ices with SPHEREx

    NASA Astrophysics Data System (ADS)

    Melnick, Gary; SPHEREx Science Team

    2018-01-01

    Many of the most important building blocks of life are locked in interstellar and protoplanetary ices. Examples include H2O, CO, CO2, and CH3OH, among others. There is growing evidence that within the cores of dense molecular clouds and the mid-plane of protoplanetary disks the abundance of these species in ices far exceeds that in the gas phase. As a result, collisions between ice-bearing bodies and newly forming planets are thought to be a major means of delivering these key species to young planets. There currently exist fewer than 250 ice absorption spectra toward Galactic molecular clouds, which is insufficient to reliably trace the ice content of clouds through the various evolutionary stages of collapse to form stars and planets. Likewise, the current number of spectra is inadequate to assess the effects of environment, such as cloud density and temperature, presence or absence of embedded sources, external FUV and X-ray radiation, gas-phase composition, or cosmic-ray ionization rate, on the ice composition of clouds at similar stages of evolution. Ultimately, our goal is to understand how these findings connect to our own Solar System.SPHEREx will be a game changer for the study of interstellar, circumstellar, and protoplanetary disk ices. SPHEREx will obtain spectra over the entire sky in the optical and near-IR, including the 2.5 to 5.0 micron region, which contains the above biogenic ice features. SPHEREx will detect millions of potential background continuum point sources already catalogued by NASA’s Wide-field Infrared Survey Explorer (WISE) at 3.4 and 4.6 microns for which there is evidence for intervening gas and dust based on the 2MASS+WISE colors with sufficient sensitivity to yield ice absorption spectra with SNR ≥ 100 per spectral resolution element. The resulting > 100-fold increase in the number of high-quality ice absorption spectra toward a wide variety of regions distributed throughout the Galaxy will reveal correlations between ice

  3. Weekly Gridded Aquarius L-band Radiometer-Scatterometer Observations and Salinity Retrievals over the Polar Regions - Part 2: Initial Product Analysis

    NASA Technical Reports Server (NTRS)

    Brucker, L.; Dinnat, E. P.; Koenig, L. S.

    2014-01-01

    Following the development and availability of Aquarius weekly polar-gridded products, this study presents the spatial and temporal radiometer and scatterometer observations at L band (frequency1.4 GHz) over the cryosphere including the Greenland and Antarctic ice sheets, sea ice in both hemispheres, and over sub-Arctic land for monitoring the soil freeze-thaw state. We provide multiple examples of scientific applications for the L-band data over the cryosphere. For example, we show that over the Greenland Ice Sheet, the unusual 2012 melt event lead to an L-band brightness temperature (TB) sustained decrease of 5 K at horizontal polarization. Over the Antarctic ice sheet, normalized radar cross section (NRCS) observations recorded during ascending and descending orbits are significantly different, highlighting the anisotropy of the ice cover. Over sub-Arctic land, both passive and active observations show distinct values depending on the soil physical state (freeze-thaw). Aquarius sea surface salinity (SSS) retrievals in the polar waters are also presented. SSS variations could serve as an indicator of fresh water input to the ocean from the cryosphere, however the presence of sea ice often contaminates the SSS retrievals, hindering the analysis. The weekly grided Aquarius L-band products used a redistributed by the US Snow and Ice Data Center at http:nsidc.orgdataaquariusindex.html, and show potential for cryospheric studies.

  4. Modelling the viscoplastic behavior and the heterogeneous intracrystalline deformation of columnar ice polycrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lebensohn, Ricardo A; Montagnat, Maurine; Mansuy, Philippe

    2008-01-01

    A full-field formulation based on Fast Fourier Transforms (FFT) has been adapted and used to predict the micromechanical fields that develop in columnar Ih ice polycrystals deforming in compression by dislocation creep. The predicted intragranular mechanical fields are in qualitative good agreement with experimental observations, in particular those involving the formation of shear and kink bands. These localization bands are associated with the large internal stresses that develop during creep in such anisotropic material, and their location, intensity, morphology and extension are found to depend strongly on the crystallographic orientation of the grains and on their interaction with neighbor crystals.more » The predictions of the model are also discussed in relation with the deformation of columnar sea and lake ice, and with the mechanical behavior of granular ice of glaciers and polar ice sheets, as well.« less

  5. Direct Observation of Two-Step Photon Absorption in an InAs/GaAs Single Quantum Dot for the Operation of Intermediate-Band Solar Cells.

    PubMed

    Nozawa, Tomohiro; Takagi, Hiroyuki; Watanabe, Katsuyuki; Arakawa, Yasuhiko

    2015-07-08

    We present the first direct observation of two-step photon absorption in an InAs/GaAs single quantum dot (QD) using photocurrent spectroscopy with two lasers. The sharp peaks of the photocurrent are shifted due to the quantum confined Stark effect, indicating that the photocurrent from a single QD is obtained. In addition, the intensity of the peaks depends on the power of the secondary laser. These results reveal the direct demonstration of the two-step photon absorption in a single QD. This is an essential result for both the fundamental operation and the realization of ultrahigh solar-electricity energy conversion in quantum dot intermediate-band solar cells.

  6. Backscatter for Ice Sheet 2 Growth Phase in the Winter 1994 Winter Sea Ice Experiment

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.

    1996-01-01

    None. This is raw data from a data set taken during the CRRELEX94 experiment. The data are polarimetric C-band radar measurements of a saline ice sheet grown in the outdoor Geophysical Research Facility at the Cold Regions Research and Engineering Lab. See references for other descriptions of data.

  7. Superheating of ice crystals in antifreeze protein solutions

    PubMed Central

    Celik, Yeliz; Graham, Laurie A.; Mok, Yee-Foong; Bar, Maya; Davies, Peter L.; Braslavsky, Ido

    2010-01-01

    It has been argued that for antifreeze proteins (AFPs) to stop ice crystal growth, they must irreversibly bind to the ice surface. Surface-adsorbed AFPs should also prevent ice from melting, but to date this has been demonstrated only in a qualitative manner. Here we present the first quantitative measurements of superheating of ice in AFP solutions. Superheated ice crystals were stable for hours above their equilibrium melting point, and the maximum superheating obtained was 0.44 °C. When melting commenced in this superheated regime, rapid melting of the crystals from a point on the surface was observed. This increase in melting temperature was more appreciable for hyperactive AFPs compared to the AFPs with moderate antifreeze activity. For each of the AFP solutions that exhibited superheating, the enhancement of the melting temperature was far smaller than the depression of the freezing temperature. The present findings clearly show that AFPs adsorb to ice surfaces as part of their mechanism of action, and this absorption leads to protection of ice against melting as well as freezing. PMID:20215465

  8. Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating.

    PubMed

    Jiang, Zhi Hao; Yun, Seokho; Toor, Fatima; Werner, Douglas H; Mayer, Theresa S

    2011-06-28

    Metamaterials offer a new approach to create surface coatings with highly customizable electromagnetic absorption from the microwave to the optical regimes. Thus far, efficient metamaterial absorbers have been demonstrated at microwave frequencies, with recent efforts aimed at much shorter terahertz and infrared wavelengths. The present infrared absorbers have been constructed from arrays of nanoscale metal resonators with simple circular or cross-shaped geometries, which provide a single band response. In this paper, we demonstrate a conformal metamaterial absorber with a narrow band, polarization-independent absorptivity of >90% over a wide ±50° angular range centered at mid-infrared wavelengths of 3.3 and 3.9 μm. The highly efficient dual-band metamaterial was realized by using a genetic algorithm to identify an array of H-shaped nanoresonators with an effective electric and magnetic response that maximizes absorption in each wavelength band when patterned on a flexible Kapton and Au thin film substrate stack. This conformal metamaterial absorber maintains its absorption properties when integrated onto curved surfaces of arbitrary materials, making it attractive for advanced coatings that suppress the infrared reflection from the protected surface.

  9. What band rocks the MTB? (Invited)

    NASA Astrophysics Data System (ADS)

    Kind, J.; García-Rubio, I.; Gehring, A. U.

    2013-12-01

    Magnetotactic bacteria (MTB) are a polyphyletic group of bacteria that have been found in marine and lacustrine environments and soils [e.g. 1]. The hallmark of MTB is their intracellular formation of magnetosomes, single-domain ferrimagnetic particles that are aligned in chains. The chain configuration generates a strong magnetic dipole, which is used as magnetic compass to move the MTB into their favorable habit. The term band corresponds to a frequency window of microwaves in the gigahertz (GHz) range. Ferromagnetic resonance (FMR) spectroscopy uses the microwave absorption in a magnetic field to analyze the anisotropy properties and the domain state of magnetic materials. Specific microwave frequency causes absorption in a characteristic magnetic field range. For the investigation of MTB we use S-band (4.02 GHz), X-band (9.47 GHz), and Q-band (34.16 GHz). Experiments on cultured MTB and on sediment samples of Holocene age showed that absorption in X- and Q-band occurs when the sample is in a saturated or nearly saturated state [2, 3]. By contrast, absorption in the S-band appears in lower magnetic fields, where the sample is far from saturation. All FMR spectra show two distinct low-field features that can be assigned to magnetite particles in chains, aligned parallel and perpendicular to the external magnetic field. The detailed separation of the parallel and perpendicular components in the bulk samples is hampered, because of the random orientation of the chains in the sample. The comparison of S-, X-, and Q-band shows that the lower the frequency the better the separation of the components. In the S-band FMR spectroscopy, the separation of chains parallel to the external magnetic field is supported by the internal field of the sample. This field is caused by the remanence that contributes to the external magnetic field to fulfill the resonance condition [3,4]. Considering the different FMR responses, it can be postulated that a lower microwave frequency

  10. Understanding Effective Diameter and Its Application to Terrestrial Radiation in Ice Clouds

    NASA Technical Reports Server (NTRS)

    Mitchell, D. L.; Lawson, R. P.; Baker, B.

    2011-01-01

    The cloud property known as "effective diameter" or "effective radius", which in essence is the cloud particle size distribution (PSD) volume at bulk density divided by its projected area, is used extensively in atmospheric radiation transfer, climate modeling and remote sensing. This derives from the assumption that PSD optical properties can be uniquely described in terms of their effective diameter, D(sub e), and their cloud water content (CWC), henceforth referred to as the D(sub e)-CWC assumption. This study challenges this assumption, showing that while the D(sub e)-CWC assumption appears generally valid for liquid water clouds, it appears less valid for ice clouds in regions where (1) absorption is not primarily a function of either the PSD ice water content (IWC) or the PSD projected area, and (2) where wave resonance (i.e. photon tunneling) contributes significantly to absorption. These two regions often strongly coincide at terrestrial wavelengths when De less than 60 m, which is where this D(sub e)-CWC assumption appears poorest. Treating optical properties solely in terms of D(sub e) and IWC may lead to errors up to 24%, 26% and 20% for terrestrial radiation in the window region regarding the absorption and extinction coefficients and the single scattering albedo, respectively. Outside the window region, errors may reach 33% and 42% regarding absorption and extinction. The magnitude and sign of these errors can change rapidly with wavelength, which may produce significant errors in climate modeling, remote sensing and other applications concerned with the wavelength dependence of radiation. Where the D(sub e)-CWC assumption breaks down, ice cloud optical properties appear to depend on D(sub e), IWC and the PSD shape. Optical property parameterizations in climate models and remote sensing algorithms based on historical PSD measurements may exhibit errors due to previously unknown PSD errors (i.e. the presence of ice artifacts due to the shattering of

  11. Cryogenic Infrared Reflectance Spectra of Organic Ices and Their Relevance to the Surface Composition of Titan

    NASA Astrophysics Data System (ADS)

    Curchin, John; Clark, R. N.; Hoefen, T. M.

    2006-09-01

    In order to properly interpret reflectance spectra of Titan's surface, laboratory spectra of candidate materials for comparative analysis is needed. Although the common cosmochemical species (H2O, CO2, CO, NH3, and CH4) are well represented in the spectroscopic literature, comparatively little reflectance work has been done on organics at cryotemperatures at visible to near infrared wavelengths. Measurement of reflectance is required for characterizing weak features not seen in transmittance. Such features may be important in remote sensing of planetary surfaces. The USGS Spectroscopy Laboratory uses Nicolet FT-IR and ASD field spectrometers in combination with cryogenic chambers to acquire reflectance spectra of organic ices at approximately 80-90 ºK in a wavelength range of 0.35 to 15.5 microns. This region encompasses the fundamental absorptions and many overtones and combinations of major organic molecules including those with hydrogen-carbon, carbon-carbon (single, double and triple bonds), carbon-oxygen, oxygen-hydrogen, carbon-nitrogen, and nitrogen-hydrogen bonds. Because most organic compounds belong to families with similar structure and composition, individual species identification within a narrow wavelength range may be ambiguous. Only by measuring spectral reflectance of the pure laboratory ices from the visible through the near and mid-infrared can absorption bands unique to each be observed, cataloged and compared to planetary reflectance data. We present here spectra of organic ices belonging to eight families, the alkanes, cycloalkanes, alkenes, alkynes, aromatics, nitriles, amines, and cyanides. Many of these compounds are predicted to coat the surface of Titan and indeed, a number of atmospheric windows, particularly at 5 microns, have allowed their identification with VIMS (Clark et al., DPS 2006, this volume). The spectral properties of these materials have applications to other solar system surfaces and remote sensing of terrestrial

  12. THE MID-INFRARED EXTINCTION LAW AND ITS VARIATION IN THE COALSACK NEBULA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Shu; Gao Jian; Jiang, B. W.

    In recent years, the wavelength dependence of interstellar extinction from the ultraviolet (UV) to the near- and mid-infrared (IR) has been studied extensively. Although it is well established that the UV/optical extinction law varies significantly among the different lines of sight, it is not clear how IR extinction varies among various environments. In this work, using the color-excess method and taking red giants as the extinction tracer, we determine interstellar extinction A{sub {lambda}} in the four Spitzer/IRAC bands in [3.6], [4.5], [5.8], [8.0] {mu}m (relative to A{sub K{sub s}}, extinction in the Two Micron All Sky Survey (2MASS) K{sub s}more » band at 2.16 {mu}m) of the Coalsack nebula, a nearby starless dark cloud, based on the data obtained from the 2MASS and Spitzer/GLIMPSE surveys. We select five individual regions across the nebula that span a wide variety of physical conditions ranging from diffuse and translucent to dense environments, as traced by the visual extinction, the Spitzer/MIPS 24 {mu}m emission, and CO emission. We find that A{sub {lambda}}/A{sub K{sub s}}, mid-IR extinction relative to A{sub K{sub s}}, decreases from diffuse to dense environments, which may be explained in terms of ineffective dust growth in dense regions. The mean extinction (relative to A{sub K{sub s}}) is calculated for the four IRAC bands as well and exhibits a flat mid-IR extinction law consistent with previous determinations for other regions. Extinction in the IRAC 4.5 {mu}m band is anomalously high, much higher than that of the other three IRAC bands, and cannot be explained in terms of CO and CO{sub 2} ice. Mid-IR extinction in the four IRAC bands has also been derived for four representative regions in the Coalsack Globule 2, which respectively exhibit strong ice absorption, moderate or weak ice absorption, and very weak or no ice absorption. The derived mid-IR extinction curves are all flat, with A{sub {lambda}}/A{sub K{sub s}} increasing with the decrease

  13. THz Time-Domain Spectroscopy of Interstellar Ice Analogs

    NASA Astrophysics Data System (ADS)

    Ioppolo, Sergio; McGuire, Brett A.; de Vries, Xander; Carroll, Brandon; Allodi, Marco; Blake, Geoffrey

    2015-08-01

    The unambiguous identification of nearly 200 molecular species in different astronomical environments proves that our cosmos is a ‘Molecular Universe’. The cumulative outcome of recent observations, laboratory studies, and astrochemical models indicates that there is a strong interplay between the gas and the solid phase throughout the process of forming molecules in space. Observations of interstellar ices are generally limited to lines-of-sight along which infrared absorption spectroscopy is possible. Therefore, the identification of more complex prebiotic molecules in the mid-IR is difficult because of their low expected interstellar abundances and the overlap of their absorption features with those from the more abundant species. In the THz region, telescopes can detect Interstellar ices in emission or absorption against dust continuum. Thus, THz searches do not require a background point source. Moreover, since THz spectra are the fingerprint of inter- and intramolecular forces, complex species can present unique modes that do not overlap with those from simpler, more abundant molecules. THz modes are also sensitive to temperature and phase changes in the ice. Therefore, spectroscopy at THz frequencies has the potential to better characterize the physics and chemistry of the ISM. Currently, the Herschel Space Telescope, SOFIA, and ALMA databases contain a vast amount of new THz spectral data that require THz laboratory spectra for interpretation. The latter, however, are largely lacking. We have recently constructed a new THz time-domain spectroscopy system operating in the range between 0.3 - 7.5 THz. This work focuses on the laboratory investigation of the composition and structure of the most abundant interstellar ice analogs compared to some more complex species. Different temperatures, mixing ratios, and matrix isolation experiments will be shown. The ultimate goal of this research is to provide the scientific community with an extensive THz ice

  14. Evaluation of the operational SAR based Baltic sea ice concentration products

    NASA Astrophysics Data System (ADS)

    Karvonen, Juha

    Sea ice concentration is an important ice parameter both for weather and climate modeling and sea ice navigation. We have developed an fully automated algorithm for sea ice concentration retrieval using dual-polarized ScanSAR wide mode RADARSAT-2 data. RADARSAT-2 is a C-band SAR instrument enabling dual-polarized acquisition in ScanSAR mode. The swath width for the RADARSAT-2 ScanSAR mode is about 500 km, making it very suitable for operational sea ice monitoring. The polarization combination used in our concentration estimation is HH/HV. The SAR data is first preprocessed, the preprocessing consists of geo-rectification to Mercator projection, incidence angle correction fro both the polarization channels. and SAR mosaicking. After preprocessing a segmentation is performed for the SAR mosaics, and some single-channel and dual-channel features are computed for each SAR segment. Finally the SAR concentration is estimated based on these segment-wise features. The algorithm is similar as introduced in Karvonen 2014. The ice concentration is computed daily using a daily RADARSAT-2 SAR mosaic as its input, and it thus gives the concentration estimated at each Baltic Sea location based on the most recent SAR data at the location. The algorithm has been run in an operational test mode since January 2014. We present evaluation of the SAR-based concentration estimates for the Baltic ice season 2014 by comparing the SAR results with gridded the Finnish Ice Service ice charts and ice concentration estimates from a radiometer algorithm (AMSR-2 Bootstrap algorithm results). References: J. Karvonen, Baltic Sea Ice Concentration Estimation Based on C-Band Dual-Polarized SAR Data, IEEE Transactions on Geoscience and Remote Sensing, in press, DOI: 10.1109/TGRS.2013.2290331, 2014.

  15. IR Spectroscopy and Photo-Chemistry of Extraterrestrial Ices

    NASA Technical Reports Server (NTRS)

    Bernstein, Max P.; Mastrapa, Rachel; Elsila, Jamie; Sandford, Scott

    2005-01-01

    Dense molecular clouds from which planetary systems form and the outer Solar System are both cold environments dominated by ices. Infrared (IR) spectroscopy is used to probe these ices, but the IR absorptions of molecules depend on the conditions. As a result appropriate lab data is needed to correctly fit spectra of extraterrestrial ices. Such fits have shown that most of these ices are composed primarily of H2O, but also contain 1-10 percent of other simple molecules such as CO2, CO, CH4, & NH3;. We shall present near IR spectra of ice mixtures of relevance to icy outer Solar System bodies and show that they still hold surprises, such as the Cheshire cat-like CO2 (2v3) overtone near 2.134 micrometers (4685 cm-1) that is absent from spectra of pure CO2 but present in H2O-CO2 mixtures.

  16. The Effect of Host Star Spectral Energy Distribution and Ice-Albedo Feedback on the Climate of Extrasolar Planets

    PubMed Central

    Meadows, Victoria S.; Bitz, Cecilia M.; Pierrehumbert, Raymond T.; Joshi, Manoj M.; Robinson, Tyler D.

    2013-01-01

    Abstract Planetary climate can be affected by the interaction of the host star spectral energy distribution with the wavelength-dependent reflectivity of ice and snow. In this study, we explored this effect with a one-dimensional (1-D), line-by-line, radiative transfer model to calculate broadband planetary albedos as input to a seasonally varying, 1-D energy balance climate model. A three-dimensional (3-D) general circulation model was also used to explore the atmosphere's response to changes in incoming stellar radiation, or instellation, and surface albedo. Using this hierarchy of models, we simulated planets covered by ocean, land, and water-ice of varying grain size, with incident radiation from stars of different spectral types. Terrestrial planets orbiting stars with higher near-UV radiation exhibited a stronger ice-albedo feedback. We found that ice extent was much greater on a planet orbiting an F-dwarf star than on a planet orbiting a G-dwarf star at an equivalent flux distance, and that ice-covered conditions occurred on an F-dwarf planet with only a 2% reduction in instellation relative to the present instellation on Earth, assuming fixed CO2 (present atmospheric level on Earth). A similar planet orbiting the Sun at an equivalent flux distance required an 8% reduction in instellation, while a planet orbiting an M-dwarf star required an additional 19% reduction in instellation to become ice-covered, equivalent to 73% of the modern solar constant. The reduction in instellation must be larger for planets orbiting cooler stars due in large part to the stronger absorption of longer-wavelength radiation by icy surfaces on these planets in addition to stronger absorption by water vapor and CO2 in their atmospheres, which provides increased downwelling longwave radiation. Lowering the IR and visible-band surface ice and snow albedos for an M-dwarf planet increased the planet's climate stability against changes in instellation and slowed the descent into global

  17. Ice fall streaks in a warm front . An S-band polarimetric radar study

    NASA Astrophysics Data System (ADS)

    Keppas, Stavros; Crosier, Jonathan; Choularton, Thomas; Bower, Keith

    2017-04-01

    On 21st January 2009, a maturing low pressure system approached the UK along with several associated systems. An observational research flight (part of the APPRAISE-Clouds project) took place in southern England, sampling the leading warm front of this system. During the flight, the Warm Conveyor Belt (WCB) was well depicted by the radar Doppler velocity parameter. Simultaneously, extensive ice fall streaks appeared on ZDR RHI scans as long slanted zones of high ZDR. It seems that there is a connection between the WCB activity and the formation and structure of the ice fall streaks. The Kelvin-Helmholtz instability caused by the WCB played a key role on their formation. Moreover, in-situ measurements showed that the ice fall streaks had a very specific substance and they can affect the surface precipitation.

  18. Dual-band polarization-/angle-insensitive metamaterial absorber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Han; Chongqing University, College of Communication Engineering, Chongqing, 400044; Zhong, Lin-Lin

    A dual-band metamaterial absorber (MA) based on triangular resonators is designed and investigated in this paper. It is composed of a two-dimensional periodic metal-dielectric-metal sandwiches array on a dielectric substrate. The simulation results clearly show that this absorber has two absorption peaks at 14.9 and 18.9 GHz, respectively, and experiments are conducted to verify the proposed designs effectively. For each polarization, the dual-band absorber is insensitive to the incident angle (up to 60°) and the absorption peaks remain high for both transverse electric (TE) and transverse magnetic (TM) radiation. To study the physical mechanism of power loss, the current distributionmore » at the dual absorption peaks is given. The MA proposed in this paper has potential applications in many scientific and martial fields.« less

  19. The contribution of mycosporine-like amino acids, chromophoric dissolved organic matter and particles to the UV protection of sea-ice organisms in the Baltic Sea.

    PubMed

    Piiparinen, Jonna; Enberg, Sara; Rintala, Janne-Markus; Sommaruga, Ruben; Majaneva, Markus; Autio, Riitta; Vähätalo, Anssi V

    2015-05-01

    The effects of ultraviolet radiation (UVR) on the synthesis of mycosporine-like amino acids (MAAs) in sea-ice communities and on the other UV-absorption properties of sea ice were studied in a three-week long in situ experiment in the Gulf of Finland, Baltic Sea in March 2011. The untreated snow-covered ice and two snow-free ice treatments, one exposed to wavelengths > 400 nm (PAR) and the other to full solar spectrum (PAR + UVR), were analysed for MAAs and absorption coefficients of dissolved (aCDOM) and particulate (ap) fractions, the latter being further divided into non-algal (anap) and algal (aph) components. Our results showed that the diatom and dinoflagellate dominated sea-ice algal community responded to UVR down to 25-30 cm depth by increasing their MAA : chlorophyll-a ratio and by extending the composition of MAA pool from shinorine and palythine to porphyra-334 and an unknown compound with absorption peaks at ca. 335 and 360 nm. MAAs were the dominant absorbing components in algae in the top 10 cm of ice, and their contribution to total absorption became even more pronounced under UVR exposure. In addition to MAAs, the high absorption by chromophoric dissolved organic matter (CDOM) and by deposited atmospheric particles provided UV-protection for sea-ice organisms in the exposed ice. Efficient UV-protection will especially be of importance under the predicted future climate conditions with more frequent snow-free conditions.

  20. Determining Greenland Ice Sheet Accumulation Rates from Radar Remote Sensing

    NASA Technical Reports Server (NTRS)

    Jezek, Kenneth C.

    2002-01-01

    An important component of NASA's Program for Arctic Regional Climate Assessment (PARCA) is a mass balance investigation of the Greenland Ice Sheet. The mass balance is calculated by taking the difference between the areally Integrated snow accumulation and the net ice discharge of the ice sheet. Uncertainties in this calculation Include the snow accumulation rate, which has traditionally been determined by interpolating data from ice core samples taken from isolated spots across the ice sheet. The sparse data associated with ice cores juxtaposed against the high spatial and temporal resolution provided by remote sensing , has motivated scientists to investigate relationships between accumulation rate and microwave observations as an option for obtaining spatially contiguous estimates. The objective of this PARCA continuation proposal was to complete an estimate of surface accumulation rate on the Greenland Ice Sheet derived from C-band radar backscatter data compiled in the ERS-1 SAR mosaic of data acquired during, September-November, 1992. An empirical equation, based on elevation and latitude, is used to determine the mean annual temperature. We examine the influence of accumulation rate, and mean annual temperature on C-band radar backscatter using a forward model, which incorporates snow metamorphosis and radar backscatter components. Our model is run over a range of accumulation and temperature conditions. Based on the model results, we generate a look-up table, which uniquely maps the measured radar backscatter, and mean annual temperature to accumulation rate. Our results compare favorably with in situ accumulation rate measurements falling within our study area.

  1. Weekly gridded Aquarius L-band radiometer/scatterometer observations and salinity retrievals over the polar regions - Part 2: Initial product analysis

    NASA Astrophysics Data System (ADS)

    Brucker, L.; Dinnat, E. P.; Koenig, L. S.

    2014-05-01

    Following the development and availability of Aquarius weekly polar-gridded products, this study presents the spatial and temporal radiometer and scatterometer observations at L band (frequency ~1.4 GHz) over the cryosphere including the Greenland and Antarctic ice sheets, sea ice in both hemispheres, and over sub-Arctic land for monitoring the soil freeze/thaw state. We provide multiple examples of scientific applications for the L-band data over the cryosphere. For example, we show that over the Greenland Ice Sheet, the unusual 2012 melt event lead to an L-band brightness temperature (TB) sustained decrease of ~5 K at horizontal polarization. Over the Antarctic ice sheet, normalized radar cross section (NRCS) observations recorded during ascending and descending orbits are significantly different, highlighting the anisotropy of the ice cover. Over sub-Arctic land, both passive and active observations show distinct values depending on the soil physical state (freeze/thaw). Aquarius sea surface salinity (SSS) retrievals in the polar waters are also presented. SSS variations could serve as an indicator of fresh water input to the ocean from the cryosphere, however the presence of sea ice often contaminates the SSS retrievals, hindering the analysis. The weekly grided Aquarius L-band products used are distributed by the US Snow and Ice Data Center at http://nsidc.org/data/aquarius/index.html , and show potential for cryospheric studies.

  2. Understanding effective diameter and its application to terrestrial radiation in ice clouds

    NASA Astrophysics Data System (ADS)

    Mitchell, D. L.; Lawson, R. P.; Baker, B.

    2010-12-01

    The cloud property known as "effective diameter" or "effective radius", which in essence is the cloud particle size distribution (PSD) volume at bulk density divided by its projected area, is used extensively in atmospheric radiation transfer, climate modeling and remote sensing. This derives from the assumption that PSD optical properties can be uniquely described in terms of their effective diameter, De, and their cloud water content (CWC), henceforth referred to as the De-CWC assumption. This study challenges this assumption, showing that while the De-CWC assumption appears generally valid for liquid water clouds, it appears less valid for ice clouds in regions where (1) absorption is not primarily a function of either the PSD ice water content (IWC) or the PSD projected area, and (2) where wave resonance (i.e. photon tunneling) contributes significantly to absorption. These two regions often strongly coincide at terrestrial wavelengths when De<∼60 μm, which is where this De-CWC assumption appears poorest. Treating optical properties solely in terms of De and IWC may lead to errors up to 24%, 26% and 20% for terrestrial radiation in the window region regarding the absorption and extinction coefficients and the single scattering albedo, respectively. Outside the window region, errors may reach 33% and 42% regarding absorption and extinction. The magnitude and sign of these errors can change rapidly with wavelength, which may produce significant errors in climate modeling, remote sensing and other applications concerned with the wavelength dependence of radiation. Where the De-CWC assumption breaks down, ice cloud optical properties appear to depend on De, IWC and the PSD shape. Optical property parameterizations in climate models and remote sensing algorithms based on historical PSD measurements may exhibit errors due to previously unknown PSD errors (i.e. the presence of ice artifacts due to the shattering of larger ice particles on the probe inlet tube

  3. Preliminary observations of Labrador Sea marginal ice zone rheology using C-band SAR

    NASA Technical Reports Server (NTRS)

    Drinkwater, Mark R.; Squire, Vernon A.

    1989-01-01

    SAR imagery collected in the Labrador Sea during Limex '87 are used to interpret modes of sea-ice deformation. The ice canopy exhibited two distinct rheologies separated by a clear line of shear; a quasi-brittle inner regime and a nonlinear viscous outer regime. A single constitutive relation capable of modeling both is unlikely within a plastic rate-independent formulation. Rate dependent effects are discussed as an explanation for brittle fracture in ductile materials.

  4. CHEMICAL PROCESSING OF PURE AMMONIA AND AMMONIA-WATER ICES INDUCED BY HEAVY IONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bordalo, V.; Da Silveira, E. F.; Lv, X. Y.

    Cosmic rays are possibly the main agents to prevent the freeze-out of molecules onto grain surfaces in cold dense clouds. Ammonia (NH{sub 3}) is one of the most abundant molecules present in dust ice mantles, with a concentration of up to 15% relative to water (H{sub 2}O). FTIR spectroscopy is used to monitor pure NH{sub 3} and NH{sub 3}-H{sub 2}O ice samples as they are irradiated with Ni and Zn ion beams (500-600 MeV) at GANIL/France. New species, such as hydrazine (N{sub 2}H{sub 4}), diazene (N{sub 2}H{sub 2} isomers), molecular hydrogen (H{sub 2}), and nitrogen (N{sub 2}) were identified aftermore » irradiation of pure NH{sub 3} ices. Nitrous oxide (N{sub 2}O), nitrogen oxide (NO), nitrogen dioxide (NO{sub 2}), and hydroxylamine (NH{sub 2}OH) are some of the products of the NH{sub 3}-H{sub 2}O ice radiolysis. The spectral band at 6.85 {mu}m was observed after irradiation of both types of ice. Besides the likely contribution of ammonium (NH{sub 4}{sup +}) and amino (NH{sub 2}) radicals, data suggest a small contribution of NH{sub 2}OH to this band profile after high fluences of irradiation of NH{sub 3}-H{sub 2}O ices. The spectral shift of the NH{sub 3} ''umbrella'' mode (9.3 {mu}m) band is parameterized as a function of NH{sub 3}/H{sub 2}O ratio in amorphous ices. Ammonia and water destruction cross-sections are obtained, as well as the rate of NH{sub 3}-H{sub 2}O (1:10) ice compaction, measured by the OH dangling bond destruction cross-section. Ammonia destruction is enhanced in the presence of H{sub 2}O in the ice and a power law relationship between stopping power and NH{sub 3} destruction cross-section is verified. Such results may provide relevant information for the evolution of molecular species in dense molecular clouds.« less

  5. Weddell-Scotia sea marginal ice zone observations from space, October 1984

    NASA Technical Reports Server (NTRS)

    Carsey, F. D.; Holt, B.; Martin, S.; Rothrock, D. A.; Mcnutt, L.

    1986-01-01

    Imagery from the Shuttle imaging radar-B experiment as well as other satellite and meteorological data are examined to learn more about the open sea ice margin of the Weddell-Scotia Seas region. At the ice edge, the ice forms into bandlike aggregates of small ice floes similar to those observed in the Bering Sea. The radar backscatter characteristics of these bands suggest that their upper surface is wet. Further into the pack, the radar imagery shows a transition to large floes. In the open sea, large icebergs and long surface gravity waves are discernable in the radar images.

  6. Absolute Infrared Intensities and Interstellar Ice Abundances- From Neutrals to Ions

    NASA Astrophysics Data System (ADS)

    Gerakines, Perry

    Infrared (IR) telescopes, such as Spitzer and SOFIA, have revealed a rich variety of chemical species trapped in interstellar ices. However, quantifying the abundances of these species has been difficult because some molecules, such as formaldehyde (H2CO), and some ions, such as ammonium (NH4+), have poorly-known IR optical parameters, such as band strengths and optical constants. In the case of NH4+, the most widely used band-intensity values are from a mere two measurements published over a decade ago. Those two experiments cannot be repeated or checked as the original publication provided no information on reaction temperature, heating rate, spectral resolution, and so forth, and the two authors are no longer active in the field. Moreover, neither kinetic data nor statistics on the two measurements were provided, clearly an unsatisfactory situation. Exacerbating the problem is that NH4+ is sometimes used as a check on the IR spectral intensities of other ions, such as OCN- (cyanate), which has its own checkered past. We propose to correct these problems associated with abundance determinations of selected interstellar ices. We will combine two recent successful efforts from our laboratory and measure band intensities for NH4+ and OCN-, as well as HCOO- (formate). To unravel the interstellar formate band requires that we also properly determine its spectral baseline to distinguish from co-absorbing species, primarily formaldehyde (H2CO). Since the latter also has, at best, poorly-determined IR absolute intensities, we will measure them at multiple temperatures and ice phases for this project. This work will build on our recent success in deriving optical constants from IR spectra for interstellar hydrocarbon and nitrile ices (Hudson et al., 2014a, 2014b), and in generating NH4+ in situ for a study of Jupiter's atmosphere (Loeffler and Hudson, 2015). As a bonus, the proposed measurements also will enable the determination of band-strengths for such ions as CN-, NO

  7. Experimental evidence for superionic water ice using shock compression

    NASA Astrophysics Data System (ADS)

    Millot, Marius; Hamel, Sebastien; Rygg, J. Ryan; Celliers, Peter M.; Collins, Gilbert W.; Coppari, Federica; Fratanduono, Dayne E.; Jeanloz, Raymond; Swift, Damian C.; Eggert, Jon H.

    2018-03-01

    In stark contrast to common ice, Ih, water ice at planetary interior conditions has been predicted to become superionic with fast-diffusing (that is, liquid-like) hydrogen ions moving within a solid lattice of oxygen. Likely to constitute a large fraction of icy giant planets, this extraordinary phase has not been observed in the laboratory. Here, we report laser-driven shock-compression experiments on water ice VII. Using time-resolved optical pyrometry and laser velocimetry measurements as well as supporting density functional theory-molecular dynamics (DFT-MD) simulations, we document the shock equation of state of H2O to unprecedented extreme conditions and unravel thermodynamic signatures showing that ice melts near 5,000 K at 190 GPa. Optical reflectivity and absorption measurements also demonstrate the low electronic conductivity of ice, which, combined with previous measurements of the total electrical conductivity under reverberating shock compression, provides experimental evidence for superionic conduction in water ice at planetary interior conditions, verifying a 30-year-old prediction.

  8. Dynamics of hydrogen guests in ice XVII nanopores

    NASA Astrophysics Data System (ADS)

    del Rosso, Leonardo; Celli, Milva; Colognesi, Daniele; Rudić, Svemir; English, Niall J.; Burnham, Christian J.; Ulivi, Lorenzo

    2017-11-01

    The present high-resolution inelastic neutron scattering experiment on ice XVII, containing molecular hydrogen with a different ortho/para ratio, allows one to assign the H2 motion spectral bands to rotational and center-of-mass translational transitions of either para- or ortho-H2. Due to its structure, ice XVII confines H2 molecules to move in spiral channels of molecular size. Reported data demonstrate that H2 molecules rotate almost freely in these nanometric channels, though showing larger perturbation than in clathrate hydrates, and perform a translational motion exhibiting two low-frequency excitations. The agreement between the experimental spectra and the corresponding molecular dynamics results clearly enables one to portray a picture of the confined motions of a hydrophobic guest within a metastable ice framework, i.e., ice XVII.

  9. Optical properties of melting first-year Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Light, Bonnie; Perovich, Donald K.; Webster, Melinda A.; Polashenski, Christopher; Dadic, Ruzica

    2015-11-01

    The albedo and transmittance of melting, first-year Arctic sea ice were measured during two cruises of the Impacts of Climate on the Eco-Systems and Chemistry of the Arctic Pacific Environment (ICESCAPE) project during the summers of 2010 and 2011. Spectral measurements were made for both bare and ponded ice types at a total of 19 ice stations in the Chukchi and Beaufort Seas. These data, along with irradiance profiles taken within boreholes, laboratory measurements of the optical properties of core samples, ice physical property observations, and radiative transfer model simulations are employed to describe representative optical properties for melting first-year Arctic sea ice. Ponded ice was found to transmit roughly 4.4 times more total energy into the ocean, relative to nearby bare ice. The ubiquitous surface-scattering layer and drained layer present on bare, melting sea ice are responsible for its relatively high albedo and relatively low transmittance. Light transmittance through ponded ice depends on the physical thickness of the ice and the magnitude of the scattering coefficient in the ice interior. Bare ice reflects nearly three-quarters of the incident sunlight, enhancing its resiliency to absorption by solar insolation. In contrast, ponded ice absorbs or transmits to the ocean more than three-quarters of the incident sunlight. Characterization of the heat balance of a summertime ice cover is largely dictated by its pond coverage, and light transmittance through ponded ice shows strong contrast between first-year and multiyear Arctic ice covers.

  10. Observation of Cosmic-Ray Anisotropy with the IceTop Air Shower Array

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker Tjus, J.; Becker, K.-H.; Bell, M.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohaichuk, S.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Brown, A. M.; Bruijn, R.; Brunner, J.; Carson, M.; Casey, J.; Casier, M.; Chirkin, D.; Christy, B.; Clark, K.; Clevermann, F.; Cohen, S.; Cowen, D. F.; Cruz Silva, A. H.; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; De Ridder, S.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eagan, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Franke, R.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Goodman, J. A.; Góra, D.; Grant, D.; Gross, A.; Grullon, S.; Gurtner, M.; Ha, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hanson, K.; Heereman, D.; Heimann, P.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Jlelati, O.; Kappes, A.; Karg, T.; Karle, A.; Kiryluk, J.; Kislat, F.; Kläs, J.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krasberg, M.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Landsman, H.; Larson, M. J.; Lauer, R.; Lesiak-Bzdak, M.; Lünemann, J.; Madsen, J.; Maruyama, R.; Mase, K.; Matis, H. S.; McNally, F.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pirk, N.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rädel, L.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Riedel, B.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Ruzybayev, B.; Ryckbosch, D.; Saba, S. M.; Salameh, T.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Scheel, M.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönherr, L.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Sheremata, C.; Smith, M. W. E.; Soiron, M.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stössl, A.; Strahler, E. A.; Ström, R.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Usner, M.; van der Drift, D.; van Eijndhoven, N.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wasserman, R.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zierke, S.; Zilles, A.; Zoll, M.; IceCube Collaboration

    2013-03-01

    We report on the observation of anisotropy in the arrival direction distribution of cosmic rays at PeV energies. The analysis is based on data taken between 2009 and 2012 with the IceTop air shower array at the south pole. IceTop, an integral part of the IceCube detector, is sensitive to cosmic rays between 100 TeV and 1 EeV. With the current size of the IceTop data set, searches for anisotropy at the 10-3 level can, for the first time, be extended to PeV energies. We divide the data set into two parts with median energies of 400 TeV and 2 PeV, respectively. In the low energy band, we observe a strong deficit with an angular size of about 30° and an amplitude of (- 1.58 ± 0.46stat ± 0.52sys) × 10-3 at a location consistent with previous observations of cosmic rays with the IceCube neutrino detector. The study of the high energy band shows that the anisotropy persists to PeV energies and increases in amplitude to (- 3.11 ± 0.38stat ± 0.96sys) × 10-3.

  11. RADARSAT-2 Polarimetry for Lake Ice Mapping

    NASA Astrophysics Data System (ADS)

    Pan, Feng; Kang, Kyung-Kuk; Duguay, Claude

    2016-04-01

    Changes in the ice regime of lakes can be employed to assess long-term climate trends and variability in high latitude regions. Lake ice cover observations are not only useful for climate monitoring, but also for improving ice and weather forecasts using numerical prediction models. In recent years, satellite remote sensing has assumed a greater role in observing lake ice cover for both purposes. Radar remote sensing has become an essential tool for mapping lake ice at high latitudes where cloud cover and polar darkness severely limits ice observations from optical systems. In Canada, there is an emerging interest by government agencies to evaluate the potential of fully polarimetric synthetic aperture radar (SAR) data from RADARSAT-2 (C-band) for lake ice monitoring. In this study, we processed and analyzed the polarization states and scattering mechanisms of fully polarimetric RADARSAT-2 data obtained over Great Bear Lake, Canada, to identify open water and different ice types during the freeze-up and break-up periods. Polarimetric decompositions were employed to separate polarimetric measurements into basic scattering mechanisms. Entropy, anisotropy, and alpha angle were derived to characterize the scattering heterogeneity and mechanisms. Ice classes were then determined based on entropy and alpha angle using the unsupervised Wishart classifier and results evaluated against Landsat 8 imagery. Preliminary results suggest that the RADARSAT-2 polarimetric data offer a strong capability for identifying open water and different lake ice types.

  12. Evidence for subduction in the ice shell of Europa

    NASA Astrophysics Data System (ADS)

    Kattenhorn, Simon A.; Prockter, Louise M.

    2014-10-01

    Jupiter’s icy moon Europa has one of the youngest planetary surfaces in the Solar System, implying rapid recycling by some mechanism. Despite ubiquitous extension and creation of new surface area at dilational bands that resemble terrestrial mid-ocean spreading zones, there is little evidence of large-scale contraction to balance the observed extension or to recycle ageing terrains. We address this enigma by presenting several lines of evidence that subduction may be recycling surface material into the interior of Europa’s ice shell. Using Galileo spacecraft images, we produce a tectonic reconstruction of geologic features across a 134,000 km2 region of Europa and find, in addition to dilational band spreading, evidence for transform motions along prominent strike-slip faults, as well as the removal of approximately 20,000 km2 of the surface along a discrete tabular zone. We interpret this zone as a subduction-like convergent boundary that abruptly truncates older geological features and is flanked by potential cryolavas on the overriding ice. We propose that Europa’s ice shell has a brittle, mobile, plate-like system above convecting warmer ice. Hence, Europa may be the only Solar System body other than Earth to exhibit a system of plate tectonics.

  13. A new photometric ozone reference in the Huggins bands: the absolute ozone absorption cross section at the 325 nm HeCd laser wavelength

    NASA Astrophysics Data System (ADS)

    Janssen, Christof; Elandaloussi, Hadj; Gröbner, Julian

    2018-03-01

    The room temperature (294.09 K) absorption cross section of ozone at the 325 nm HeCd wavelength has been determined under careful consideration of possible biases. At the vacuum wavelength of 325.126 nm, thus in a region used by a variety of ozone remote sensing techniques, an absorption cross-section value of σ = 16.470×10-21 cm2 was measured. The measurement provides the currently most accurate direct photometric absorption value of ozone in the UV with an expanded (coverage factor k = 2) standard uncertainty u(σ) = 31×10-24 cm2, corresponding to a relative level of 2 ‰. The measurements are most compatible with a relative temperature coefficient cT = σ-1 ∂ Tσ = 0.0031 K-1 at 294 K. The cross section and its uncertainty value were obtained using generalised linear regression with correlated uncertainties. It will serve as a reference for ozone absorption spectra required for the long-term remote sensing of atmospheric ozone in the Huggins bands. The comparison with commonly used absorption cross-section data sets for remote sensing reveals a possible bias of about 2 %. This could partly explain a 4 % discrepancy between UV and IR remote sensing data and indicates that further studies will be required to reach the accuracy goal of 1 % in atmospheric reference spectra.

  14. Determination of optical band gap of powder-form nanomaterials with improved accuracy

    NASA Astrophysics Data System (ADS)

    Ahsan, Ragib; Khan, Md. Ziaur Rahman; Basith, Mohammed Abdul

    2017-10-01

    Accurate determination of a material's optical band gap lies in the precise measurement of its absorption coefficients, either from its absorbance via the Beer-Lambert law or diffuse reflectance spectrum via the Kubelka-Munk function. Absorption coefficients of powder-form nanomaterials calculated from absorbance spectrum do not match those calculated from diffuse reflectance spectrum, implying the inaccuracy of the traditional optical band gap measurement method for such samples. We have modified the Beer-Lambert law and the Kubelka-Munk function with proper approximations for powder-form nanomaterials. Applying the modified method for powder-form nanomaterial samples, both absorbance and diffuse reflectance spectra yield exactly the same absorption coefficients and therefore accurately determine the optical band gap.

  15. Lifetime enhancement for multiphoton absorption in intermediate band solar cells

    NASA Astrophysics Data System (ADS)

    Bezerra, Anibal T.; Studart, Nelson

    2017-08-01

    A semiconductor structure consisting of two coupled quantum wells embedded into the intrinsic region of a p-i-n junction is proposed as an intermediate band solar cell with a photon ratchet state, which would lead to increasing the cell efficiency. The conduction subband of the right-hand side quantum well works as the intermediated band, whereas the excited conduction subband of the left-hand side quantum well operates as the ratchet state. The photoelectrons in the intermediate band are scattered through the thin wells barrier and accumulated into the ratchet subband. A rate equation model for describing the charge transport properties is presented. The efficiency of the current generation is analyzed by studying the occupation of the wells subbands, taking into account the charge dynamic behavior provided by the electrical contacts connected to the cell. The current generation efficiency depends essentially from the relations between the generation, recombination rates and the scattering rate to the ratchet state. The inclusion of the ratchet states led to both an increase and a decrease in the cell current depending on the transition rates. This suggests that the coupling between the intermediate band and the ratchet state is a key point in developing an efficient solar cell.

  16. Design of Quad-Band Terahertz Metamaterial Absorber Using a Perforated Rectangular Resonator for Sensing Applications.

    PubMed

    Xie, Qin; Dong, Guangxi; Wang, Ben-Xin; Huang, Wei-Qing

    2018-05-08

    Quad-band terahertz absorber with single-sized metamaterial design formed by a perforated rectangular resonator on a gold substrate with a dielectric gap in between is investigated. The designed metamaterial structure enables four absorption peaks, of which the first three peaks have large absorption coefficient while the last peak possesses a high Q (quality factor) value of 98.33. The underlying physical mechanisms of these peaks are explored; it is found that their near-field distributions are different. Moreover, the figure of merit (FOM) of the last absorption peak can reach 101.67, which is much higher than that of the first three absorption modes and even absorption bands of other works operated in the terahertz frequency. The designed device with multiple-band absorption and high FOM could provide numerous potential applications in terahertz technology-related fields.

  17. Design of Quad-Band Terahertz Metamaterial Absorber Using a Perforated Rectangular Resonator for Sensing Applications

    NASA Astrophysics Data System (ADS)

    Xie, Qin; Dong, Guangxi; Wang, Ben-Xin; Huang, Wei-Qing

    2018-05-01

    Quad-band terahertz absorber with single-sized metamaterial design formed by a perforated rectangular resonator on a gold substrate with a dielectric gap in between is investigated. The designed metamaterial structure enables four absorption peaks, of which the first three peaks have large absorption coefficient while the last peak possesses a high Q (quality factor) value of 98.33. The underlying physical mechanisms of these peaks are explored; it is found that their near-field distributions are different. Moreover, the figure of merit (FOM) of the last absorption peak can reach 101.67, which is much higher than that of the first three absorption modes and even absorption bands of other works operated in the terahertz frequency. The designed device with multiple-band absorption and high FOM could provide numerous potential applications in terahertz technology-related fields.

  18. Atmospheric pressure and temperature profiling using near IR differential absorption lidar

    NASA Technical Reports Server (NTRS)

    Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Weng, C. Y.

    1983-01-01

    The present investigation is concerned with differential absorption lidar techniques for remotely measuring the atmospheric temperature and pressure profile, surface pressure, and cloud top pressure-height. The procedure used in determining the pressure is based on the conduction of high-resolution measurements of absorption in the wings of lines in the oxygen A band. Absorption with respect to these areas is highly pressure sensitive in connection with the mechanism of collisional line broadening. The method of temperature measurement utilizes a determination of the absorption at the center of a selected line in the oxygen A band which originates from a quantum state with high ground state energy.

  19. Novel quad-band terahertz metamaterial absorber based on single pattern U-shaped resonator

    NASA Astrophysics Data System (ADS)

    Wang, Ben-Xin; Wang, Gui-Zhen

    2017-03-01

    A novel quad-band terahertz metamaterial absorber using four different modes of single pattern resonator is demonstrated. Four obvious frequencies with near-perfect absorption are realized. Near-field distributions of the four modes are provided to reveal the physical picture of the multiple-band absorption. Unlike most previous quad-band absorbers that typically require four or more patterns, the designed absorber has only one resonant structure, which is simpler than previous works. The presented quad-band absorber has potential applications in biological sensing, medical imaging, and material detection.

  20. Infrared spectra of complex organic molecules in astronomically relevant ice matrices. I. Acetaldehyde, ethanol, and dimethyl ether

    NASA Astrophysics Data System (ADS)

    Terwisscha van Scheltinga, J.; Ligterink, N. F. W.; Boogert, A. C. A.; van Dishoeck, E. F.; Linnartz, H.

    2018-03-01

    Context. The number of identified complex organic molecules (COMs) in inter- and circumstellar gas-phase environments is steadily increasing. Recent laboratory studies show that many such species form on icy dust grains. At present only smaller molecular species have been directly identified in space in the solid state. Accurate spectroscopic laboratory data of frozen COMs, embedded in ice matrices containing ingredients related to their formation scheme, are still largely lacking. Aim. This work provides infrared reference spectra of acetaldehyde (CH3CHO), ethanol (CH3CH2OH), and dimethyl ether (CH3OCH3) recorded in a variety of ice environments and for astronomically relevant temperatures, as needed to guide or interpret astronomical observations, specifically for upcoming James Webb Space Telescope observations. Methods: Fourier transform transmission spectroscopy (500-4000 cm-1/20-2.5 μm, 1.0 cm-1 resolution) was used to investigate solid acetaldehyde, ethanol and dimethyl ether, pure or mixed with water, CO, methanol, or CO:methanol. These species were deposited on a cryogenically cooled infrared transmissive window at 15 K. A heating ramp was applied, during which IR spectra were recorded until all ice constituents were thermally desorbed. Results: We present a large number of reference spectra that can be compared with astronomical data. Accurate band positions and band widths are provided for the studied ice mixtures and temperatures. Special efforts have been put into those bands of each molecule that are best suited for identification. For acetaldehyde the 7.427 and 5.803 μm bands are recommended, for ethanol the 11.36 and 7.240 μm bands are good candidates, and for dimethyl ether bands at 9.141 and 8.011 μm can be used. All spectra are publicly available in the Leiden Database for Ice.

  1. Atmospheric solar heating rate in the water vapor bands

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah

    1986-01-01

    The total absorption of solar radiation by water vapor in clear atmospheres is parameterized as a simple function of the scaled water vapor amount. For applications to cloudy and hazy atmospheres, the flux-weighted k-distribution functions are computed for individual absorption bands and for the total near-infrared region. The parameterization is based upon monochromatic calculations and follows essentially the scaling approximation of Chou and Arking, but the effect of temperature variation with height is taken into account in order to enhance the accuracy. Furthermore, the spectral range is extended to cover the two weak bands centered at 0.72 and 0.82 micron. Comparisons with monochromatic calculations show that the atmospheric heating rate and the surface radiation can be accurately computed from the parameterization. Comparisons are also made with other parameterizations. It is found that the absorption of solar radiation can be computed reasonably well using the Goody band model and the Curtis-Godson approximation.

  2. Constraints on the Opening Rate of Bands on Europa

    NASA Technical Reports Server (NTRS)

    Stempel, M. M.; Barr, A. C.; Pappalardo, R. T.

    2004-01-01

    The opening rates of two bands on Europa, inferred to be sites of spreading of the icy lithosphere, are constrained based on a mid-ocean ridge analog model. Estimates of brittle-ductile transition depth combined with a conductive cooling model limit active band lifetimes to 0.24 - 35 Myr and strain rates of 8.1 x 10(exp -13) - 8.2 x 10(exp -15)/s. These values suggest tensile strengths for ice on Europa of 0.46 - 2.3 MPa, consistent with nonsynchronous rotation as the dominant driving mechanism for band opening.

  3. Laboratory Studies of Solid Carbon Dioxide in Planetary and Interstellar Ices

    NASA Technical Reports Server (NTRS)

    White, Douglas; Sandford, Scott A.; Mastrapa, Rachel M.

    2012-01-01

    Laboratory spectra have shown that CO2. is a powerful diagnostic tool for analyzing infrared data from remote observations, as it has been detected on icy moons in the outer solar system as well as dust grain surfaces in the interstellar medium. IR absorption profiles of CO2 wi thin ice mixtures containing H2O and CH30H change with respect to tem perature and mixture ratios. In this particular study, the CO2 stretch mode around 235O cm (exp -1) (4.3 rricrons) is systematically observ ed in different mixtures with H2O and CH30H in temperature ranges from 15K to 150 K, as well as vibrational modes in the near-IR such as th e combination bands near 3700 cm (exp -1) (2.7 microns) and 5080 (exp -1) (2.0 microns). Additionally, some high?temperature deposits (T > 50 K) of H2O, CH30H, and CO2 ice mixtures were performed to determine the maximum temperatures at which CO2 will deposit on the sample win dow. These data may then be used to interpret spectra obtained from remote IR observations. This research was sponsored by Oak Ridge Associ ated Universities (ORAU) through the NASA Postdoctoral Program (NPP) as well as Ames Research Center and the SETI institute who provided fa cilities and equipment.

  4. Characterization of thin film CO2 ice through the infrared ν1 + ν3 combination mode

    NASA Astrophysics Data System (ADS)

    He, Jiao; Vidali, Gianfranco

    2018-01-01

    Carbon dioxide is abundant in ice mantles of dust grains; some is found in the pure crystalline form as inferred from the double peak splitting of the bending profile at about 650 cm-1. To study how CO2 segregates into the pure form from water-rich mixtures of ice mantles and how it then crystallizes, we used Reflection Absorption InfraRed Spectroscopy to study the structural change of pure CO2 ice as a function of both ice thickness and temperature. We found that the ν1 + ν3 combination mode absorption profile at 3708 cm-1 provides an excellent probe to quantify the degree of crystallinity in CO2 ice. We also found that between 20 and 30 K, there is an ordering transition that we attribute to reorientation of CO2 molecules, while the diffusion of CO2 becomes significant at much higher temperatures. In the formation of pure crystalline CO2 in interstellar medium ices, the rate limiting process is the diffusion/segregation of CO2 molecules in the ice instead of the phase transition from amorphous to crystalline after clusters/islands of CO2 are formed.

  5. The mid-IR Absorption Cross Sections of α- and β-NAT (HNO3 · 3H2O) in the range 170 to 185 K and of metastable NAD (HNO3 · 2H2O) in the range 172 to 182 K

    NASA Astrophysics Data System (ADS)

    Iannarelli, R.; Rossi, M. J.

    2015-11-01

    Growth and Fourier transform infrared (FTIR) absorption in transmission of the title nitric acid hydrates have been performed in a stirred flow reactor (SFR) under tight control of the H2O and HNO3 deposition conditions affording a closed mass balance of the binary mixture. The gas and condensed phases have been simultaneously monitored using residual gas mass spectrometry and FTIR absorption spectroscopy, respectively. Barrierless nucleation of the metastable phases of both α-NAT (nitric acid trihydrate) and NAD (nitric acid dihydrate) has been observed when HNO3 was admitted to the SFR in the presence of a macroscopic thin film of pure H2O ice of typically 1 µm thickness. The stable β-NAT phase was spontaneously formed from the precursor α-NAT phase through irreversible thermal rearrangement beginning at 185 K. This facile growth scheme of nitric acid hydrates requires the presence of H2O ice at thicknesses in excess of approximately hundred nanometers. Absolute absorption cross sections in the mid-IR spectral range (700-4000 cm-1) of all three title compounds have been obtained after spectral subtraction of excess pure ice at temperatures characteristic of the upper troposphere/lower stratosphere. Prominent IR absorption frequencies correspond to the antisymmetric nitrate stretch vibration (ν3(NO3-)) in the range 1300 to 1420 cm-1 and the bands of hydrated protons in the range 1670 to 1850 cm-1 in addition to the antisymmetric O-H stretch vibration of bound H2O in the range 3380 to 3430 cm-1 for NAT.

  6. Parameterizing Size Distribution in Ice Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeSlover, Daniel; Mitchell, David L.

    2009-09-25

    of ice cloud optical properties formulated in terms of PSD parameters in combination with remote measurements of thermal radiances to characterize the small mode. This is possible since the absorption efficiency (Qabs) of small mode crystals is larger at 12 µm wavelength relative to 11 µm wavelength due to the process of wave resonance or photon tunneling more active at 12 µm. This makes the 12/11 µm absorption optical depth ratio (or equivalently the 12/11 µm Qabs ratio) a means for detecting the relative concentration of small ice particles in cirrus. Using this principle, this project tested and developed PSD schemes that can help characterize cirrus clouds at each of the three ARM sites: SGP, NSA and TWP. This was the main effort of this project. These PSD schemes and ice sedimentation velocities predicted from them have been used to test the new cirrus microphysics parameterization in the GCM known as the Community Climate Systems Model (CCSM) as part of an ongoing collaboration with NCAR. Regarding the second problem, we developed and did preliminary testing on a passive thermal method for retrieving the total water path (TWP) of Arctic mixed phase clouds where TWPs are often in the range of 20 to 130 g m-2 (difficult for microwave radiometers to accurately measure). We also developed a new radar method for retrieving the cloud ice water content (IWC), which can be vertically integrated to yield the ice water path (IWP). These techniques were combined to determine the IWP and liquid water path (LWP) in Arctic clouds, and hence the fraction of ice and liquid water. We have tested this approach using a case study from the ARM field campaign called M-PACE (Mixed-Phase Arctic Cloud Experiment). This research led to a new satellite remote sensing method that appears promising for detecting low levels of liquid water in high clouds typically between -20 and -36 oC. We hope to develop this method in future research.« less

  7. Precise Determination of the Absorption Maximum in Wide Bands

    ERIC Educational Resources Information Center

    Eriksson, Karl-Hugo; And Others

    1977-01-01

    A precise method of determining absorption maxima where Gaussian functions occur is described. The method is based on a logarithmic transformation of the Gaussian equation and is suited for a mini-computer. (MR)

  8. Between ice and gas: CO2 on the icy satellites of Jupiter and Saturn

    NASA Astrophysics Data System (ADS)

    Hibbitts, C.

    2010-12-01

    CO2 exists in the surfaces of the icy Galilean and Saturnian satellites [1-6], yet despite its discovery over a decade ago on Ganymede, and five years ago on the Saturnian satellites, its nature is still debated [7]. On the Galilean satellites Callisto and Ganymede, the CO2 that is detected is bound to, or trapped within, the non-ice materials that prevent it from sublimating or otherwise escaping from the surface. On Europa, it resides within both the ice and nonice materials [8,9]. While greater abundances of CO2 may exist in the interiors of these moons, or small amounts may be continually created through particle bombardment of the surface, the observed CO2 is only a trace material, with a few hundred molecules responsible for the deepest absorption features and an estimated molar abundance of 0.1% [2; 10-12]. Yet its presence may provide essential clues to processes that shape the surfaces of the moon [13] and potentially key to understanding the composition of potential oceans in the subsurfaces. We continue measurements of the infrared properties associated with CO2 adsorbed onto nonice materials under pressures and at temperatures relevant to these icy satellites using bidirectional reflectance spectroscopy from ~ 1.5 to 5.5 μm. Previous measurements, using transmission spectroscopy, demonstrated both a compositional and a temperature dependence on the spectral signature of adsorbed CO2 [14]. Bidirectional spectroscopy enables detection of lower concentrations of adsorbate on fine-grained materials such as clays due to their large surface area to volume ratios and thus large surface areas that may be covered by adsorbate [15]. The effectiveness of transmission spectroscopy was also limited by the strong absorption of light within the pressed sample and its impermeability, which limited the coverage by adsorbate to the pellet’s outer surface. All measurements demonstrate that CO2 adsorbs onto montmorillonite clays, possibly due to its quadrupole moment

  9. Dependence of the electronic absorption spectra of aqueous solutions of iodine monochloride on the conditions of dilution and storage time

    NASA Astrophysics Data System (ADS)

    Klyubin, V. V.; Klyubina, K. A.; Makovetskaya, K. N.

    2017-04-01

    The electronic absorption spectra of aqueous solutions of iodine monochloride ICl are studied. The spectra of as-prepared solutions display the absorption band associated with hydrated ICl molecules. An additional band indicating that molecular iodine was formed in the solution emerges in the spectrum as dissolution takes place. Only the band belonging to iodine monochloride remains in the absorption spectra, and no additional bands appear after chloride anions Cl- are added to the solution. The absorption spectrum becomes more complex when ICl is dissolved in an alkaline medium. The band belonging to molecular iodine emerges in the spectra at low alkali concentrations, while being transformed to other shorter-wavelength bands at high alkali concentrations (pH ≥ 12).

  10. Non-water-ice constituents in the surface material of the icy Galilean satellites from the Galileo near-infrared mapping spectrometer investigation

    USGS Publications Warehouse

    McCord, T.B.; Hansen, G.B.; Clark, R.N.; Martin, P.D.; Hibbitts, C.A.; Fanale, F.P.; Granahan, J.C.; Segura, M.; Matson, D.L.; Johnson, T.V.; Carlson, R.W.; Smythe, W.D.; Danielson, G.E.

    1998-01-01

    We present evidence for several non-ice constituents in the surface material of the icy Galilean satellites, using the reflectance spectra returned by the Galileo near infrared mapping spectrometer (NIMS) experiment. Five new absorption features are described at 3.4, 3.88, 4.05, 4.25, and 4.57 ??m for Callisto and Ganymede, and some seem to exist for Europa as well. The four absorption bands strong enough to be mapped on Callisto and Ganymede are each spatially distributed in different ways, indicating different materials are responsible for each absorption. The spatial distributions are correlated at the local level in complex ways with surface features and in some cases show global patterns. Suggested candidate spectrally active groups, perhaps within larger molecules, producing the five absorptions include C-H, S-H, SO2, CO2, and C???N. Organic material like tholins are candidates for the 4.57- and 3.4-??m features. We suggest, based on spectroscopic evidence, that CO2 is present as a form which does not allow rotational modes and that SO2 is present neither as a frost nor a free gas. The CO2, SO2, and perhaps cyanogen (4.57 ??m) may be present as very small collections of molecules within the crystal structure, perhaps following models for radiation damage and/or for comet and interstellar grain formation at low temperatures. Some of the dark material on these surfaces may be created by radiation damage of the CO2 and other carbon-bearing species and the formation of graphite. These spectra suggest a complex chemistry within the surface materials and an important role for non-ice materials in the evolution of the satellite surfaces. Copyright 1998 by the American Geophysical Union.

  11. Water Ice on Triton

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.; Roush, Ted L.; Owen, Tobias C.; Schmitt, Bernard; Quirico, Eric; Geballe, Thomas R.; deBergh, Catherine; Bartholomew, Mary Jane; DalleOre, Cristina M.; Doute, Sylvain

    1999-01-01

    We report the spectroscopic detection of H2O ice on Triton, evidenced by the broad absorptions in the near infrared at 1.55 and 2.04 micron. The detection on Triton confirms earlier preliminary studies (D. P. Cruikshank, R. H. Brown, and R. N. Clark, Icarus 58, 293-305, 1984). The spectra support the contention that H2O ice on Triton is in a crystalline (cubic or hexagonal) phase. Our spectra (1.87-2.5 micron) taken over an interval of nearly 3.5 years do not show any significant changes that might relate to reports of changes in Triton's spectral reflectance (B. Buratti, M. D. Hicks, and R. L. Newburn, Jr., Nature 397, 219, 1999), or in Triton's volatile inventory (J. L. Elliot et al., Nature 393, 765-767, 1998).

  12. Microwave remote sensing of sea ice in the AIDJEX Main Experiment. [Arctic Ice Dynamics Joint Experiment

    NASA Technical Reports Server (NTRS)

    Campbell, W. J.; Wayenberg, J.; Ramseyer, J. B.; Ramseier, R. O.; Vant, M. R.; Weaver, R.; Redmond, A.; Arsenault, L.; Gloersen, P.; Zwally, H. J.

    1978-01-01

    A microwave remote sensing program of sea ice in the Beaufort Sea was conducted during the Arctic Ice Dynamics Joint Experiment (AIDJEX). Several types of both passive and active sensors were used to perform surface and aircraft measurements during all seasons of the year. In situ observations were made of physical properties (salinity, temperature, density, surface roughness), dielectric properties, and passive microwave measurements were made of first-year, multiyear, and first-year/multiyear mixtures. Airborne passive microwave measurements were performed with the electronically scanning microwave radiometer while airborne active microwave measurements were performed by synthetic aperture radar, X- and L-band radar, and a scatterometer.

  13. Cumulates, Dykes and Pressure Solution in the Ice-Salt Mantle of Europa: Geological Consequences of Pressure Dependent Liquid Compositions and Volume Changes During Ice-Salt Melting Reactions.

    NASA Astrophysics Data System (ADS)

    Day, S.; Asphaug, E.; Bruesch, L.

    2002-12-01

    Water-salt analogue experiments used to investigate cumulate processes in silicate magmas, along with observations of sea ice and ice shelf behaviour, indicate that crystal-melt separation in water-salt systems is a rapid and efficient process even on scales of millimetres and minutes. Squeezing-out of residual melts by matrix compaction is also predicted to be rapid on geological timescales. We predict that the ice-salt mantle of Europa is likely to be strongly stratified, with a layered structure predictable from density and phase relationships between ice polymorphs, aqueous saline solutions and crystalline salts such as hydrated magnesium sulphates (determined experimentally by, inter alia, Hogenboom et al). A surface layer of water ice flotation cumulate will be separated from denser salt cumulates by a cotectic horizon. This cotectic horizon will be both the site of subsequent lowest-temperature melting and a level of neutral buoyancy for the saline melts produced. Initial melting will be in a narrow depth range owing to increasing melting temperature with decreasing pressure: the phase relations argue against direct melt-though to the surface unless vesiculation occurs. Overpressuring of dense melts due to volume expansion on cotectic melting is predicted to lead to lateral dyke emplacement and extension above the dyke tips. Once the liquid leaves the cotectic, melting of water ice will involve negative volume change. Impact-generated melts will drain downwards through the fractured zones beneath crater floors. A feature in the complex crater Mannan'an, with elliptical ring fractures around a conical depression with a central pit, bears a close resemblance to Icelandic glacier collapse cauldrons produced by subglacial eruptions. Other structures resembling Icelandic cauldrons occur along Europan banded structures, while resurgence of ice rubble within collapse structures may produce certain types of chaos region. More general contraction of the ice mantle

  14. Optical absorption spectra of substitutional Co2+ ions in Mgx Cd1-x Se alloys

    NASA Astrophysics Data System (ADS)

    Jin, Moon-Seog; Kim, Chang-Dae; Jang, Kiwan; Park, Sang-An; Kim, Duck-Tae; Kim, Hyung-Gon; Kim, Wha-Tek

    2006-09-01

    Optical absorption spectra of substitutional Co2+ ions in Mgx Cd1-x Se alloys were investigated in the composition region of 0.0 x 0.4 and in the wavelength region of 300 to 2500 nm at 4.8 K and 290 K. We observed several absorption bands in the wavelength regions corresponding to the 4A2(4F) 4T1(4P) transition and the 4A2(4F) 4T1(4F) transition of Co2+ at a tetrahedral Td point symmetry point in the host crystals, as well as unknown absorption bands. The several absorption bands were analyzed in the framework of the crystal-field theory along with the second-order spin-orbit coupling. The unknown absorption bands were assigned as due to phonon-assisted absorption bands. We also investigated the variations of the crystal-field parameter Dq and the Racah parameter B with composition x in the Mgx Cd1-x Se system. The results showed that the crystal-field parameter (Dq ) increases, on the other hand, the Racah parameter (B ) decreases with increasing composition x, which may be connected with an increase in the covalency of the metal-ligand bond with increasing composition x in the Mgx Cd1-x Se system.

  15. Combining the absorptive and radiative loss in metasurfaces for multi-spectral shaping of the electromagnetic scattering.

    PubMed

    Pan, Wenbo; Huang, Cheng; Pu, Mingbo; Ma, Xiaoliang; Cui, Jianhua; Zhao, Bo; Luo, Xiangang

    2016-02-19

    The absorptive and radiative losses are two fundamental aspects of the electromagnetic responses, which are widely occurring in many different systems such as waveguides, solar cells, and antennas. Here we proposed a metasurface to realize the control of the absorptive and radiative loss and to reduce the radar cross section (RCS) in multi-frequency bands. The anti-phase gradient and absorptive metasurfaces were designed that consists of metallic square patch and square loop structure inserted with resistors, acting as an phase gradient material in the X and Ku band, while behaving as an absorber in the S band. The simulation and experiment results verified the double-band, wideband and polarization-independent RCS reduction by the absorptive and anti-phase gradient metasurfaces.

  16. Transition state region in the A-Band photodissociation of allyl iodide—A femtosecond extreme ultraviolet transient absorption study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacherjee, Aditi, E-mail: abhattacherjee@berkeley.edu, E-mail: andrewattar@berkeley.edu; Attar, Andrew R., E-mail: abhattacherjee@berkeley.edu, E-mail: andrewattar@berkeley.edu; Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720

    2016-03-28

    Femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy based on a high-harmonic generation source is used to study the 266 nm induced A-band photodissociation dynamics of allyl iodide (CH{sub 2} =CHCH{sub 2}I). The photolysis of the C—I bond at this wavelength produces iodine atoms both in the ground ({sup 2}P{sub 3/2}, I) and spin-orbit excited ({sup 2}P{sub 1/2}, I*) states, with the latter as the predominant channel. Using XUV absorption at the iodine N{sub 4/5} edge (45–60 eV), the experiments constitute a direct probe of not only the long-lived atomic iodine reaction products but also the fleeting transition state region ofmore » the repulsive n{sub I}σ{sup ∗}{sub C—I} excited states. Specifically, three distinct features are identified in the XUV transient absorption spectrum at 45.3 eV, 47.4 eV, and 48.4 eV (denoted transients A, B, and C, respectively), which arise from the repulsive valence-excited nσ{sup ∗} states and project onto the high-lying core-excited states of the dissociating molecule via excitation of 4d(I) core electrons. Transients A and B originate from 4d(I) → n(I) core-to-valence transitions, whereas transient C is best assigned to a 4d(I) →σ{sup ∗}(C—I) transition. The measured differential absorbance of these new features along with the I/I* branching ratios known from the literature is used to suggest a more definitive assignment, albeit provisional, of the transients to specific dissociative states within the A-band manifold. The transients are found to peak around 55 fs–65 fs and decay completely by 145 fs–185 fs, demonstrating the ability of XUV spectroscopy to map the evolution of reactants into products in real time. The similarity in the energies of transients A and B with analogous features observed in methyl iodide [Attar et al. J. Phys. Chem. Lett. 6, 5072, (2015)] together with the new observation of transient C in the present work provides a more complete picture of the valence

  17. Sea Ice in McClure Strait

    NASA Image and Video Library

    2017-12-08

    NASA image acquired August 17, 2010 In mid-August 2010, the Northwest Passage was almost—but not quite—free of ice. The ice content in the northern route through the passage (through the Western Parry Channel) was very light, but ice remained in McClure (or M’Clure) Strait. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite captured this natural-color image on August 17, 2010. Although most of McClure Strait looks perfectly ice-free, immediately west of Prince Patrick Island, a band of sea ice stretches southward across the strait (left edge of the image). The National Snow and Ice Data Center Sea Ice News and Analysis blog reported that even more ice remained in the southern route (through Amundsen’s Passage) of the Northwest Passage in mid-August 2010. Nevertheless, the ice content in the northern route was not only well below the 1968–2000 average, but also nearly a month ahead of the clearing observed in 2007, when Arctic sea ice set a record low. As of mid-August 2010, however, overall sea ice extent was higher than it had been at the same time of year in 2007. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team Caption by Michon Scott. To learn more go to: earthobservatory.nasa.gov/NaturalHazards/view.php?id=45333 Instrument: Terra - MODIS NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook Click here to see more images from NASA Goddard’s Earth Observatory

  18. Historical Carbon Dioxide Record from the Siple Station Ice Core (1734-1983)

    DOE Data Explorer

    Neftel, A. [Physics Institute, University of Bern, Bern, Switzerland; Friedli, H. [Physics Institute, University of Bern, Bern, Switzerland; Moor, E. [Physics Institute, University of Bern, Bern, Switzerland; Lotscher, H. [Physics Institute, University of Bern, Bern, Switzerland; Oeschger, H. [Physics Institute, University of Bern, Bern, Switzerland; Siegenthaler, U. [Physics Institute, University of Bern, Bern, Switzerland; Stauffer, B. [Physics Institute, University of Bern, Bern, Switzerland

    1994-09-01

    Determinations of ancient atmospheric CO2 concentrations for Siple Station, located in West Antarctica, were derived from measurements of air occluded in a 200-m core drilled at Siple Station in the Antarctic summer of 1983-84. The core was drilled by the Polar Ice Coring Office in Nebraska and the Physics Institute at the University of Bern. The ice could be dated with an accuracy of approximately ±2 years to a depth of 144 m (which corresponds to the year 1834) by counting seasonal variations in electrical conductivity. Below that depth, the core was dated by extrapolation (Friedli et al. 1986). The gases from ice samples were extracted by a dry-extraction system, in which bubbles were crushed mechanically to release the trapped gases, and then analyzed for CO2 by infrared laser absorption spectroscopy or by gas chromatography (Neftel et al. 1985). After the ice samples were crushed, the gas expanded over a cold trap, condensing the water vapor at -80°C in the absorption cell. The analytical system was calibrated for each ice sample measurement with a standard mixture of CO2 in nitrogen and oxygen. For further details on the experimental and dating procedures, see Neftel et al. (1985), Friedli et al. (1986), and Schwander and Stauffer (1984).

  19. Method and apparatus for aerosol particle absorption spectroscopy

    DOEpatents

    Campillo, Anthony J.; Lin, Horn-Bond

    1983-11-15

    A method and apparatus for determining the absorption spectra, and other properties, of aerosol particles. A heating beam source provides a beam of electromagnetic energy which is scanned through the region of the spectrum which is of interest. Particles exposed to the heating beam which have absorption bands within the band width of the heating beam absorb energy from the beam. The particles are also illuminated by light of a wave length such that the light is scattered by the particles. The absorption spectra of the particles can thus be determined from an analysis of the scattered light since the absorption of energy by the particles will affect the way the light is scattered. Preferably the heating beam is modulated to simplify the analysis of the scattered light. In one embodiment the heating beam is intensity modulated so that the scattered light will also be intensity modulated when the particles absorb energy. In another embodiment the heating beam passes through an interferometer and the scattered light reflects the Fourier Transform of the absorption spectra.

  20. Emergent reduced dimensionality by vertex frustration in artificial spin ice

    DOE PAGES

    Gilbert, Ian; Lao, Yuyang; Carrasquillo, Isaac; ...

    2015-10-26

    Reducing the dimensionality of a physical system can have a profound effect on its properties, as in the ordering of low-dimensional magnetic materials, phonon dispersion in mercury chain salts, sliding phases, and the electronic states of graphene. Here we explore the emergence of quasi-one-dimensional behaviour in two-dimensional artificial spin ice, a class of lithographically fabricated nanomagnet arrays used to study geometrical frustration. We extend the implementation of artificial spin ice by fabricating a new array geometry, the so-called tetris lattice. We demonstrate that the ground state of the tetris lattice consists of alternating ordered and disordered bands of nanomagnetic moments.more » The disordered bands can be mapped onto an emergent thermal one-dimensional Ising model. Furthermore, we show that the level of degeneracy associated with these bands dictates the susceptibility of island moments to thermally induced reversals, thus establishing that vertex frustration can reduce the relevant dimensionality of physical behaviour in a magnetic system.« less

  1. Emergent reduced dimensionality by vertex frustration in artificial spin ice

    NASA Astrophysics Data System (ADS)

    Gilbert, Ian; Lao, Yuyang; Carrasquillo, Isaac; O'Brien, Liam; Watts, Justin D.; Manno, Michael; Leighton, Chris; Scholl, Andreas; Nisoli, Cristiano; Schiffer, Peter

    2016-02-01

    Reducing the dimensionality of a physical system can have a profound effect on its properties, as in the ordering of low-dimensional magnetic materials, phonon dispersion in mercury chain salts, sliding phases, and the electronic states of graphene. Here we explore the emergence of quasi-one-dimensional behaviour in two-dimensional artificial spin ice, a class of lithographically fabricated nanomagnet arrays used to study geometrical frustration. We extend the implementation of artificial spin ice by fabricating a new array geometry, the so-called tetris lattice. We demonstrate that the ground state of the tetris lattice consists of alternating ordered and disordered bands of nanomagnetic moments. The disordered bands can be mapped onto an emergent thermal one-dimensional Ising model. Furthermore, we show that the level of degeneracy associated with these bands dictates the susceptibility of island moments to thermally induced reversals, thus establishing that vertex frustration can reduce the relevant dimensionality of physical behaviour in a magnetic system.

  2. The seasonal cycle of snow cover, sea ice and surface albedo

    NASA Technical Reports Server (NTRS)

    Robock, A.

    1980-01-01

    The paper examines satellite data used to construct mean snow cover caps for the Northern Hemisphere. The zonally averaged snow cover from these maps is used to calculate the seasonal cycle of zonally averaged surface albedo. The effects of meltwater on the surface, solar zenith angle, and cloudiness are parameterized and included in the calculations of snow and ice albedo. The data allows a calculation of surface albedo for any land or ocean 10 deg latitude band as a function of surface temperature ice and snow cover; the correct determination of the ice boundary is more important than the snow boundary for accurately simulating the ice and snow albedo feedback.

  3. Absorption and emission spectra of Li atoms trapped in rare gas matrices

    NASA Astrophysics Data System (ADS)

    Wright, J. J.; Balling, L. C.

    1980-10-01

    Pulsed-dye-laser excitation has been used to investigate the optical absorption and emission spectra of Li atoms trapped in Ar, Kr, and Xe matrices at 10 °K. Attempts to stabilize Li atoms in a Ne matrix at 2 °K were unsuccessful. Results for all three rare gases were qualitatively the same. White light absorption scans showed a single absorption with three peaks centered near the free-atom 2s→2p transition wavelength. The intensity of fluorescence produced by dye-laser excitation within this absorption band was measured as a function of emission wavelength. Excitation of the longest- and shortest-wavelength absorption peaks produced identical emission profiles, but no distinct fluorescence signal was detected when the laser was tuned to the central absorption peaks, indicating that the apparent absorption triplet is actually the superposition of a singlet and a doublet absorption originating from two different trapping sites. No additional absorption bands were detected.

  4. Optical absorption in disordered monolayer molybdenum disulfide

    NASA Astrophysics Data System (ADS)

    Ekuma, C. E.; Gunlycke, D.

    2018-05-01

    We explore the combined impact of sulfur vacancies and electronic interactions on the optical properties of monolayer MoS2. First, we present a generalized Anderson-Hubbard Hamiltonian that accounts for both randomly distributed sulfur vacancies and the presence of dielectric screening within the material. Second, we parametrize this energy-dependent Hamiltonian from first-principles calculations based on density functional theory and the Green's function and screened Coulomb (GW) method. Third, we apply a first-principles-based many-body typical medium method to determine the single-particle electronic structure. Fourth, we solve the Bethe-Salpeter equation to obtain the charge susceptibility χ with its imaginary part being related to the absorbance A . Our results show that an increased vacancy concentration leads to decreased absorption both in the band continuum and from exciton states within the band gap. We also observe increased absorption below the band-gap threshold and present an expression, which describes Lifshitz tails, in excellent qualitative agreement with our numerical calculations. This latter increased absorption in the 1.0 -2.5 eV range makes defect engineering of potential interest for solar cell applications.

  5. CO Diffusion into Amorphous H2O Ices

    NASA Astrophysics Data System (ADS)

    Lauck, Trish; Karssemeijer, Leendertjan; Shulenberger, Katherine; Rajappan, Mahesh; Öberg, Karin I.; Cuppen, Herma M.

    2015-03-01

    The mobility of atoms, molecules, and radicals in icy grain mantles regulates ice restructuring, desorption, and chemistry in astrophysical environments. Interstellar ices are dominated by H2O, and diffusion on external and internal (pore) surfaces of H2O-rich ices is therefore a key process to constrain. This study aims to quantify the diffusion kinetics and barrier of the abundant ice constituent CO into H2O-dominated ices at low temperatures (15-23 K), by measuring the mixing rate of initially layered H2O(:CO2)/CO ices. The mixed fraction of CO as a function of time is determined by monitoring the shape of the infrared CO stretching band. Mixing is observed at all investigated temperatures on minute timescales and can be ascribed to CO diffusion in H2O ice pores. The diffusion coefficient and final mixed fraction depend on ice temperature, porosity, thickness, and composition. The experiments are analyzed by applying Fick’s diffusion equation under the assumption that mixing is due to CO diffusion into an immobile H2O ice. The extracted energy barrier for CO diffusion into amorphous H2O ice is ˜160 K. This is effectively a surface diffusion barrier. The derived barrier is low compared to current surface diffusion barriers in use in astrochemical models. Its adoption may significantly change the expected timescales for different ice processes in interstellar environments.

  6. Design of a five-band terahertz perfect metamaterial absorber using two resonators

    NASA Astrophysics Data System (ADS)

    Meng, Tianhua; Hu, Dan; Zhu, Qiaofen

    2018-05-01

    We present a polarization-insensitive five-band terahertz perfect metamaterial absorber composed of two metallic circular rings and a metallic ground film separated by a dielectric layer. The calculated results show that the absorber has five distinctive absorption bands whose peaks are greater than 99% on average. The physical origin of the absorber originates from the combination of dipolar, hexapolar, and surface plasmon resonance of the patterned metallic structure, which is different from the work mechanism of previously reported absorbers. In addition, the influence of the structural parameters on the absorption spectra is analyzed to further confirm the origin of the five-band absorption peaks. The proposed absorber has potential applications in terahertz imaging, refractive index sensing, and material detecting.

  7. Anomalous absorption of isolated silver nanoparticulate films in visible region of electromagnetic field.

    PubMed

    Kim, Sang Woo; Hui, Bang Jae; Bae, Dong-Sik

    2008-02-01

    Anomalous absorption of isolated silver nanoparticulate films with different morphological patterns prepared by the wet colloidal route and followed by thermal treatment were investigated. A polymer embedded silver nanoparticulate film thermally treated at 200 degrees C showed maximum absorbance at approximately 412 nm. The peak position of the surface plasmon band was slightly different but still consistent with theoretical prediction derived by the Mie theory. An isolated nanopariculate film thermally treated at 300 degrees C showed anomalous absorption. Its maximum absorption band was shifted to green regime of 506.9 nm and the bandwidth at half-maximum absorbance of the surface plasmon band was greatly broadened. The plasmon band and its bandwidth were much deviated compared to the theoretical prediction calculated for the silver nanoparticles in the surrounding medium of air and poly(vinyl pyrrolidone) or soda-lime-silica glass. Even though there was no significant growth of silver nanoparticles during thermal treatment at 300 degrees C, the anomalous absorption was observed. The anomalous absorption was not attributed to effects of particle shape and size but to effects of pores induced by development of a great number of pores in the nanoparticulate film. The anomalous absorption greatly decreased with increase in heating temperature from 400 degrees C to 500 degrees C. The extraordinary plasmon damping of the isolated film decreased and the plasmon absorption band was re-shifted to violet regime of 416 nm because of large decrease in size of particles with dramatic change of pore morphology from circular pores with rim to small continuous pores induced by spontaneous formation of new silver nanoparticles.

  8. An analytic formula for heating due to ozone absorption

    NASA Technical Reports Server (NTRS)

    Lindzen, R. S.; Will, D. I.

    1972-01-01

    An attempt was made to devise a simple expression or formula to describe radiative heating in the atmosphere by ozone absorption. Such absorption occurs in the Hartley, Huggins, and Chappuis bands and is only slightly temperature and pressure dependent.

  9. Airborne Lidar Measurements of Atmospheric Pressure Made Using the Oxygen A-Band

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Rodriquez, Michael; Allan, Graham R.; Hasselbrack, William E.; Stephen, Mark A.; Abshire, James B.

    2011-01-01

    We report on airborne measurements of atmospheric pressure using a fiber-laser based lidar operating in the oxygen A-band near 765 nm and the integrated path differential absorption measurement technique. Our lidar uses fiber optic technology and non-linear optics to generate tunable laser radiation at 765 nm, which overlaps an absorption line pair in the Oxygen A-band. We use a pulsed time resolved technique, which rapidly steps the laser wavelength across the absorption line pair, a 20 cm telescope and photon counting detector to measure Oxygen concentrations.

  10. Phonon-assisted optical absorption in BaSnO 3 from first principles

    NASA Astrophysics Data System (ADS)

    Monserrat, Bartomeu; Dreyer, Cyrus E.; Rabe, Karin M.

    2018-03-01

    The perovskite BaSnO3 provides a promising platform for the realization of an earth-abundant n -type transparent conductor. Its optical properties are dominated by a dispersive conduction band of Sn 5 s states and by a flatter valence band of O 2 p states, with an overall indirect gap of about 2.9 eV . Using first-principles methods, we study the optical properties of BaSnO3 and show that both electron-phonon interactions and exact exchange, included using a hybrid functional, are necessary to obtain a qualitatively correct description of optical absorption in this material. In particular, the electron-phonon interaction drives phonon-assisted optical absorption across the minimum indirect gap and therefore determines the absorption onset, and it also leads to the temperature dependence of the absorption spectrum. Electronic correlations beyond semilocal density functional theory are key to determine the dynamical stability of the cubic perovskite structure, as well as the correct energies of the conduction bands that dominate absorption. Our work demonstrates that phonon-mediated absorption processes should be included in the design of novel transparent conductor materials.

  11. Automated detection of Martian water ice clouds: the Valles Marineris

    NASA Astrophysics Data System (ADS)

    Ogohara, Kazunori; Munetomo, Takafumi; Hatanaka, Yuji; Okumura, Susumu

    2016-10-01

    We need to extract water ice clouds from the large number of Mars images in order to reveal spatial and temporal variations of water ice cloud occurrence and to meteorologically understand climatology of water ice clouds. However, visible images observed by Mars orbiters for several years are too many to visually inspect each of them even though the inspection was limited to one region. Therefore, an automated detection algorithm of Martian water ice clouds is necessary for collecting ice cloud images efficiently. In addition, it may visualize new aspects of spatial and temporal variations of water ice clouds that we have never been aware. We present a method for automatically evaluating the presence of Martian water ice clouds using difference images and cross-correlation distributions calculated from blue band images of the Valles Marineris obtained by the Mars Orbiter Camera onboard the Mars Global Surveyor (MGS/MOC). We derived one subtracted image and one cross-correlation distribution from two reflectance images. The difference between the maximum and the average, variance, kurtosis, and skewness of the subtracted image were calculated. Those of the cross-correlation distribution were also calculated. These eight statistics were used as feature vectors for training Support Vector Machine, and its generalization ability was tested using 10-fold cross-validation. F-measure and accuracy tended to be approximately 0.8 if the maximum in the normalized reflectance and the difference of the maximum and the average in the cross-correlation were chosen as features. In the process of the development of the detection algorithm, we found many cases where the Valles Marineris became clearly brighter than adjacent areas in the blue band. It is at present unclear whether the bright Valles Marineris means the occurrence of water ice clouds inside the Valles Marineris or not. Therefore, subtracted images showing the bright Valles Marineris were excluded from the detection of

  12. First-principles C band absorption spectra of SO2 and its isotopologues

    NASA Astrophysics Data System (ADS)

    Jiang, Bin; Kumar, Praveen; Kłos, Jacek; Alexander, Millard H.; Poirier, Bill; Guo, Hua

    2017-04-01

    The low-energy wing of the C ˜ B12 ←X˜ 1A1 absorption spectra for SO2 in the ultraviolet region is computed for the 32S,33S,34S and 36S isotopes, using the recently developed ab initio potential energy surfaces (PESs) of the two electronic states and the corresponding transition dipole surface. The state-resolved absorption spectra from various ro-vibrational states of SO2(X˜ 1A1 ) are computed. When contributions of these excited ro-vibrational states are included, the thermally averaged spectra are broadened but maintain their key characters. Excellent agreement with experimental absorption spectra is found, validating the accuracy of the PESs. The isotope shifts of the absorption peaks are found to increase linearly with energy, in good agreement with experiment.

  13. CIRS-Observed Titan’s Stratospheric Ice Clouds Studied in the Laboratory

    NASA Astrophysics Data System (ADS)

    Nna-Mvondo, Delphine; Anderson, Carrie; Samuelson, Robert E.

    2018-06-01

    Stratospheric ice clouds have been repeatedly observed in Titan’s atmosphere by the Cassini Composite InfraRed Spectrometer (CIRS) since the Cassini spacecraft entered into orbit around Saturn in 2004. Most of these stratospheric ice clouds form as a result of vapor condensation, composed of a combination of pure and mixed nitriles and hydrocarbons. So far, the crystalline cyanoacetylene (HC3N) ν6 band at 506 cm‑1 and a co-condensed nitrile ice feature at 160 cm‑1, dominated by a mixture of HCN and HC3N ices, have been identified in the CIRS limb spectra. However, the presence of other observed stratospheric ice emission features, such as the ν8 band of dicyanoacetylene (C4N2) at 478 cm‑1 and the Haystack emission feature at 220 cm‑1, are puzzling since they have no associated observed vapor emission features. As well, recently, a massive stratospheric ice cloud system, the High-Altitude South Polar (HASP) cloud, was discovered in Titan’s early southern winter stratosphere with an emission feature near 210 cm‑1. We are investigating in laboratory these perplexing stratospheric ices to better understand their formation mechanisms, identify their chemical compositions, and determine their optical properties. We perform transmission spectroscopy of thin films of pure and mixed nitrile ices, as well as ices combined with hydrocarbons, from 50 cm‑1 to 11700 cm‑1, at deposition temperature 30 K - 150 K, using the SPECTRAL high-vacuum chamber at NASA GSFC. The spectral evolution with time and temperature is studied, the ice phase formation identified, and optical constants computed. The first surprising yet significant result reveals that the libration mode of HCN is drastically altered by the surrounding molecules when mixing occurs in a co-condensed phase. For propionitrile ice, we observe peculiar temperature and time-driven ice phase transitions, revealed by significant spectral changes until a stable crystalline phase is achieved. Comparing our

  14. Dual-band quantum well infrared photodetector with metallic structure

    NASA Astrophysics Data System (ADS)

    Wu, Yang; Liu, Hongmei; Li, Pingzhou

    2018-02-01

    The quantum efficiency of the dual bands quantum well infrared photodetectors(QWIP) has been widely concerned in recent years. A novel structure for the dual-band quantum well infrared detectors which is based on GaAs/AlGaAs designed in this paper is aimed to improve the absorption efficiency. The structure replaces the conventional grating with a metallic grating based on surface plasmon polaritons(SPPS), and we further insert a metal structure in the periodic quantum well layer. The simulation result shows that the use of the different shapes of the metal holes can remarkably improve the optical coupling efficiency due to the surface plasmon effect. By optimizing parameters of the structure, it can work in the dual infrared bands of 3-5um and 8-12um. Moreover, the absorption rate increased by 20% compared with traditional structure of Dual-band QWIP.

  15. Glacier-derived permafrost ground ice, Bylot Island, Nunavut

    NASA Astrophysics Data System (ADS)

    Coulombe, S.; Fortier, D.; Lacelle, D.; Godin, E.; Veillette, A.

    2014-12-01

    Massive icy bodies are important components of permafrost geosystems. In situ freezing of water in the ground by ice-segregation processes forms most of these icy bodies. Other hypotheses for the origin of massive ice include the burial of ice (e.g. glacier, snow, lake, river, sea). The analysis of ground-ice characteristics can give numerous clues about the geomorphologic processes and the thermal conditions at the time when permafrost developed. Massive underground ice therefore shows a great potential as a natural archive of the earth's past climate. Identifying the origin of massive ice is a challenge for permafrost science since the different types of massive ice remain difficult to distinguish on the sole basis of field observations. There is actually no clear method to accurately assess the origin of massive ice and identification criteria need to be defined. The present study uses physico-chemical techniques to characterize buried glacier ice observed on Bylot Island, Nunavut. Combined to the analysis of cryostratigraphy, massive-ice cores crystallography and high-resolution imagery of the internal structure of the ice cores were obtained using micro-computed tomography techniques. These techniques are well suited for detailed descriptions (shape, size, orientation) of crystals, gas inclusions and sediment inclusions. Oxygen and hydrogen isotopes ratios of massive-ice cores were also obtained using common equilibrium technique. Preliminary results suggest the occurrence of two types of buried massive-ice of glacial origin similar to those found on contemporary glaciers: 1) Englacial ice: clear to whitish ice, with large crystals (cm) and abundant gas bubbles at crystal intersections; 2) Basal glacier ice: ice-rich, banded, micro-suspended to suspended cryostructures and ice-rich lenticular to layered cryostructures, with small ice crystals (mm) and a few disseminated gas bubbles. Glacier-derived permafrost contains antegenetic ice, which is ice that

  16. 40 CFR 796.1050 - Absorption in aqueous solution: Ultraviolet/visible spectra.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... by both molar absorption coefficient (molar extinction coefficient) and band width. However, the..., expressed in cm; and the molar absorption (extinction) coefficient,εi, of each species. The absorbance...

  17. 40 CFR 796.1050 - Absorption in aqueous solution: Ultraviolet/visible spectra.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... by both molar absorption coefficient (molar extinction coefficient) and band width. However, the..., expressed in cm; and the molar absorption (extinction) coefficient,εi, of each species. The absorbance...

  18. 40 CFR 796.1050 - Absorption in aqueous solution: Ultraviolet/visible spectra.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... by both molar absorption coefficient (molar extinction coefficient) and band width. However, the..., expressed in cm; and the molar absorption (extinction) coefficient,εi, of each species. The absorbance...

  19. High-resolution mapping of Martian water ice clouds using Mars Express OMEGA observations - Derivation of the diurnal cloud life cycle

    NASA Astrophysics Data System (ADS)

    Szantai, Andre; Audouard, Joachim; Madeleine, Jean-Baptiste; Forget, Francois; Pottier, Alizée; Millour, Ehouarn; Gondet, Brigitte; Langevin, Yves; Bibring, Jean-Pierre

    2016-10-01

    The mapping in space and time of water ice clouds can help to explain the Martian water cycle and atmospheric circulation. For this purpose, an ice cloud index (ICI) corresponding to the depth of a water ice absorption band at 3.4 microns is derived from a series of OMEGA images (spectels) covering 5 Martian years. The ICI values for the corresponding pixels are then binned on a high-resolution regular grid (1° longitude x 1° latitude x 5° Ls x 1 h local time) and averaged. Inside each bin, the cloud cover is calculated by dividing the number of pixels considered as cloudy (after comparison to a threshold) to the number of all (valid) pixelsWe compare the maps of clouds obtained around local time 14:00 with collocated TES cloud observations (which were only obtained around this time of the day). A good agreement is found.Averaged ICI compared to the water ice column variable from the Martian Climate Database (MCD) show a correct correlation (~0.5) , which increases when values limited to the tropics only are compared.The number of gridpoints containing ICI values is small ( ~1%), but by taking several neighbor gridpoints and over longer periods, we can observe a cloud life cycle during daytime. An example in the the tropics, around the northern summer solstice, shows a decrease of cloudiness in the morning followed by an increase in the afternoon.

  20. Evaluating suitability of Pol-SAR (TerraSAR-X, Radarsat-2) for automated sea ice classification

    NASA Astrophysics Data System (ADS)

    Ressel, Rudolf; Singha, Suman; Lehner, Susanne

    2016-05-01

    Satellite borne SAR imagery has become an invaluable tool in the field of sea ice monitoring. Previously, single polarimetric imagery were employed in supervised and unsupervised classification schemes for sea ice investigation, which was preceded by image processing techniques such as segmentation and textural features. Recently, through the advent of polarimetric SAR sensors, investigation of polarimetric features in sea ice has attracted increased attention. While dual-polarimetric data has already been investigated in a number of works, full-polarimetric data has so far not been a major scientific focus. To explore the possibilities of full-polarimetric data and compare the differences in C- and X-bands, we endeavor to analyze in detail an array of datasets, simultaneously acquired, in C-band (RADARSAT-2) and X-band (TerraSAR-X) over ice infested areas. First, we propose an array of polarimetric features (Pauli and lexicographic based). Ancillary data from national ice services, SMOS data and expert judgement were utilized to identify the governing ice regimes. Based on these observations, we then extracted mentioned features. The subsequent supervised classification approach was based on an Artificial Neural Network (ANN). To gain quantitative insight into the quality of the features themselves (and reduce a possible impact of the Hughes phenomenon), we employed mutual information to unearth the relevance and redundancy of features. The results of this information theoretic analysis guided a pruning process regarding the optimal subset of features. In the last step we compared the classified results of all sensors and images, stated respective accuracies and discussed output discrepancies in the cases of simultaneous acquisitions.

  1. Water ice clouds observations with PFS on Mars Express

    NASA Astrophysics Data System (ADS)

    Moroz, V. I.; Zasova, L. V.; Formisano, V.; Grassi, D.; Ignatiev, N. I.; Giuranna, M.; Maturilli, A.; Pfs Team

    The water ice cloud observation is one of the scientific goals of PFS. Presence and properties of the ice particles are identified from absorption features, observed in both spectral ranges of PFS. Being in the near perihelion condition, the temperature of the Martian atmosphere is pretty high and ice clouds exist only in some places, for example, related to topography or at north high latitudes et etc. The ice clouds are observed often above the tops of the volcanoes. We have found the ice clouds above Olympus (orbit 37) and Ascraeus Mons (orbit 68). Effective radius of particles according to the thermal IR is preliminary estimated of 1 μ m, which leads to the visual opacity of 0.2 -0.3 above Olympus and of maximum of 0.6 above Ascraeus Mons. In the case of Ascraeus Mons the ice clouds are observed on the south slope near the top of the volcano. The maximum surface temperature, observed there, results in the upward flux of warm air, which, cooling, provides the condensation of H2O. We will present a detailed analysis of the ice clouds, observed over the planet in the IR spectral range.

  2. Downscaled ice-ocean simulations for the Chukchi and Eastern Siberian Seas from an oceanic re-analysis product

    NASA Astrophysics Data System (ADS)

    Fujisaki-Manome, A.; Wang, J.

    2016-12-01

    Arctic summer sea ice has been declining at the rate that is much faster than any climate models predict. While the accelerated sea ice melting in the recent few decades could be attributed to several mechanisms such as the Arctic temperature amplification and the ice-albedo feedback, this does not necessarily explain why climate models underestimate the observed rate of summer sea ice loss. Clearly, an improved understanding is needed in what processes could be missed in climate models and could play roles in unprecedented loss of sea ice. This study evaluates contributions of sub-mesoscale processes in the ice edge (i.e. the boundary region between open water and ice covered area), which include eddies, ice bands, and the vertical mixing associated with ice bands, to the melting of sea ice and how they explain the underestimation of sea ice loss in the current state-of-art climate models. The focus area is in the pacific side of the Arctic Ocean. First, several oceanic re-analysis products including NCEP-Climate Forecast System Reanalysis (CFSR) and Modern-Era Retrospective Analysis for Research and Applications (MERRA) are evaluated in comparison with the in-situ observations from the Russian-American Long-term Census of the Arctic (RUSALCA) project. Second, the downscaled ice-ocean simulations are conducted for the Chukchi and East Siberian Seas with initial and open boundary conditions provided from a selected oceanic re-analysis product.

  3. Active Microwave Remote Sensing Observations of Weddell Sea Ice

    NASA Technical Reports Server (NTRS)

    Drinkwater, Mark R.

    1997-01-01

    Since July 1991, the European Space Agency's ERS-1 and ERS-2 satellites have acquired radar data of the Weddell Sea, Antarctica. The Active Microwave Instrument on board ERS has two modes; SAR and Scatterometer. Two receiving stations enable direct downlink and recording of high bit-rate, high resolution SAR image data of this region. When not in an imaging mode, when direct SAR downlink is not possible, or when a receiving station is inoperable, the latter mode allows normalized radar cross-section data to be acquired. These low bit-rate ERS scatterometer data are tape recorded, downlinked and processed off-line. Recent advances in image generation from Scatterometer backscatter measurements enable complementary medium-scale resolution images to be made during periods when SAR images cannot be acquired. Together, these combined C-band microwave image data have for the first time enabled uninterrupted night and day coverage of the Weddell Sea region at both high (25 m) and medium-scale (-20 km) resolutions. C-band ERS-1 radar data are analyzed in conjunction with field data from two simultaneous field experiments in 1992. Satellite radar signature data are compared with shipborne radar data to extract a regional and seasonal signature database for recognition of ice types in the images. Performance of automated sea-ice tracking algorithms is tested on Antarctic data to evaluate their success. Examples demonstrate that both winter and summer ice can be effectively tracked. The kinematics of the main ice zones within the Weddell Sea are illustrated, together with the complementary time-dependencies in their radar signatures. Time-series of satellite images are used to illustrate the development of the Weddell Sea ice cover from its austral summer minimum (February) to its winter maximum (September). The combination of time-dependent microwave signatures and ice dynamics tracking enable various drift regimes to be defined which relate closely to the circulation of the

  4. connecting the dots between Greenland ice sheet surface melting and ice flow dynamics (Invited)

    NASA Astrophysics Data System (ADS)

    Box, J. E.; Colgan, W. T.; Fettweis, X.; Phillips, T. P.; Stober, M.

    2013-12-01

    This presentation is of a 'unified theory' in glaciology that first identifies surface albedo as a key factor explaining total ice sheet mass balance and then surveys a mechanistic self-reinforcing interaction between melt water and ice flow dynamics. The theory is applied in a near-real time total Greenland mass balance retrieval based on surface albedo, a powerful integrator of the competing effects of accumulation and ablation. New snowfall reduces sunlight absorption and increases meltwater retention. Melting amplifies absorbed sunlight through thermal metamorphism and bare ice expansion in space and time. By ';following the melt'; we reveal mechanisms linking existing science into a unified theory. Increasing meltwater softens the ice sheet in three ways: 1.) sensible heating given the water temperature exceeds that of the ice sheet interior; 2.) Some infiltrating water refreezes, transferring latent heat to the ice; 3.) Friction from water turbulence heats the ice. It has been shown that for a point on the ice sheet, basal lubrication increases ice flow speed to a time when an efficient sub-glacial drainage network develops that reduces this effect. Yet, with an increasing melt duration the point where the ice sheet glides on a wet bed increases inland to a larger area. This effect draws down the ice surface elevation, contributing to the ';elevation feedback'. In a perpetual warming scenario, the elevation feedback ultimately leads to ice sheet loss reversible only through much slower ice sheet growth in an ice age environment. As the inland ice sheet accelerates, the horizontal extension pulls cracks and crevasses open, trapping more sunlight, amplifying the effect of melt accelerated ice. As the bare ice area increases, the direct sun-exposed crevassed and infiltration area increases further allowing the ice warming process to occur more broadly. Considering hydrofracture [a.k.a. hydrofracking]; surface meltwater fills cracks, attacking the ice integrity

  5. Extrapolation of earth-based solar irradiance measurements to exoatmospheric levels for broad-band and selected absorption-band observations

    NASA Technical Reports Server (NTRS)

    Reagan, John A.; Pilewskie, Peter A.; Scott-Fleming, Ian C.; Herman, Benjamin M.; Ben-David, Avishai

    1987-01-01

    Techniques for extrapolating earth-based spectral band measurements of directly transmitted solar irradiance to equivalent exoatmospheric signal levels were used to aid in determining system gain settings of the Halogen Occultation Experiment (HALOE) sunsensor being developed for the NASA Upper Atmosphere Research Satellite and for the Stratospheric Aerosol and Gas (SAGE) 2 instrument on the Earth Radiation Budget Satellite. A band transmittance approach was employed for the HALOE sunsensor which has a broad-band channel determined by the spectral responsivity of a silicon detector. A modified Langley plot approach, assuming a square-root law behavior for the water vapor transmittance, was used for the SAGE-2 940 nm water vapor channel.

  6. The ammonia absorption behavior on Jupiter during 2005-2015

    NASA Astrophysics Data System (ADS)

    Tejfel, Victor G.; V.G.Tejfel, V.D.Vdovichenko, A.M.Karimov, P.G.Lysenko, , G.A.Kirienko, , V.A.Filippov, G.A.Kharitonova, A.S. Khozhenetz

    2017-10-01

    V.G.Tejfel, V.D.Vdovichenko, A.M.Karimov, P.G.Lysenko, , G.A.Kirienko, , V.A.Filippov, G.A.Kharitonova, A.S. KhozhenetzFessenkov Astrophysical Institute, Almaty, KazakhstanWe measured the intensity of the 645 and 787 nm NH3 absorption bands in five latitudinal belts of Jupiter (STrZ, SEB, EZ, NEB and NTrZ) during almost full period of its revolution around the Sun: from 2005 to 2015. The variations in the equivalent widths of the bands were investigated. The permanently lowered intensity of the 787 nm NH3 band in NEB is confirmed. There are also some systematic differences in latitudinal and temporal variations between the 645 and 787 nm ammonia bands. The equivalent width of the 787 nm NH3 band was averaged for all years of observations. Its maximum (W = 18.95 ± 0.75 A) corresponds to EZ, its minimum (W = 15.82 ± 0.68 A) corresponds to NEB. The 645 nm NH3 band shows the maximum in SEB (W = 6.78 ± 0.45 A), and the minimum in NTrZ (W = 5.38 ± 0.36 A). The weakened ammonia absorption is also observed in the Great Red Spot. However, this is due to the increased density of the clouds inside the Spot storm, but not to decreased gaseous ammonia abundance, in contrast to NEB. The brightness temperature of GRS in the infrared and millimeter ranges of thermal radiation is lower, in contrast to NEB, where an increased brightness temperature is observed. The enhanced cloud density may explain also a pretty high brightness of GRS observed in strong methane absorption bands such as the 887 nm CH4 band and more long waved ones.

  7. Identification of water ice on the Centaur 1997 CU26.

    PubMed

    Brown, R H; Cruikshank, D P; Pendleton, Y; Veeder, G J

    1998-05-29

    Spectra of the Centaur 1997 CU26 were obtained at the Keck Observatory on 27 October 1997 (universal time). The data show strong absorptions at 1.52 and 2.03 micrometers attributable to water ice on the surface of 1997 CU26. The reflectance spectrum of 1997 CU26 is matched by the spectrum of a mixture of low-temperature, particulate water ice and spectrally featureless but otherwise red-colored material. Water ice dominates the spectrum of 1997 CU26, whereas methane or methane-like hydrocarbons apparently dominate the spectrum of the Kuiper belt object 1993 SC, perhaps indicating different origins, thermal histories, or both for these two objects.

  8. Possible recent and ancient glacial ice flow in the south polar region of Mars

    NASA Technical Reports Server (NTRS)

    Kargel, J. S.

    1992-01-01

    Martian polar science began almost as soon as small telescopes were trained on the planet. The seasonal expansion and contraction of the polar caps and their high albedoes led most astronomers to think that water ice is the dominant constituent. In 1911 Lowell perceived a bluish band around the retreating edge of the polar caps, and interpreted it as water from melting polar ice and seasonal snow. An alternative idea in his time was that the polar caps consist of frozen carbonic acid. Lowell rejected the carbonic acid hypothesis on account of his blue band. He also pointed out that carbonic acid would sublimate rather than melt at confining pressures near and below one bar, hence, carbonic acid could not account for the blue band. In comparing Lowell's theories with today's knowledge, it is recognized that (1) sublimation is mainly responsible for the growth and contraction of Mars' polar caps, (2) carbon dioxide is a major component of the southern polar cap, and (3) Lowell's blue band was probably seasonal dust and/or clouds. Geomorphic evidence that glacial ice and glacial melt waters once flowed over broad areas of the southern polar region. Two aspects of the south polar region suggest possible glacial processes during two distinct eras in Mars' history.

  9. Phononic glass: a robust acoustic-absorption material.

    PubMed

    Jiang, Heng; Wang, Yuren

    2012-08-01

    In order to achieve strong wide band acoustic absorption under high hydrostatic pressure, an interpenetrating network structure is introduced into the locally resonant phononic crystal to fabricate a type of phononic composite material called "phononic glass." Underwater acoustic absorption coefficient measurements show that the material owns high underwater sound absorption coefficients over 0.9 in 12-30 kHz. Moreover, the quasi-static compressive behavior shows that the phononic glass has a compressive strength over 5 MPa which is crucial for underwater applications.

  10. Dynamically tunable extraordinary light absorption in monolayer graphene

    NASA Astrophysics Data System (ADS)

    Safaei, Alireza; Chandra, Sayan; Vázquez-Guardado, Abraham; Calderon, Jean; Franklin, Daniel; Tetard, Laurene; Zhai, Lei; Leuenberger, Michael N.; Chanda, Debashis

    2017-10-01

    The high carrier mobility of graphene makes it an attractive material for electronics, however, graphene's application for optoelectronic systems is limited due to its low optical absorption. We present a cavity-coupled nanopatterned graphene absorber designed to sustain temporal and spatial overlap between localized surface plasmon resonance and cavity modes, thereby resulting in enhanced absorption up to an unprecedented value of theoretically (60 %) and experimentally measured (45 %) monolayer graphene in the technologically relevant 8-12-μm atmospheric transparent infrared imaging band. We demonstrate a wide electrostatic tunability of the absorption band (˜2 μ m ) by modifying the Fermi energy. The proposed device design allows enhanced absorption and dynamic tunability of chemical vapor deposition grown low carrier mobility graphene which provides a significant advantage over previous strategies where absorption enhancement was limited to exfoliated high carrier mobility graphene. We developed an analytical model that incorporates the coupling of the graphene electron and substrate phonons, providing valuable and instructive insights into the modified plasmon-phonon dispersion relation necessary to interpret the experimental observations. Such gate voltage and cavity tunable enhanced absorption in chemical vapor deposited large area monolayer graphene paves the path towards the scalable development of ultrasensitive infrared photodetectors, modulators, and other optoelectronic devices.

  11. Active microwave measurements of Arctic sea ice under summer conditions

    NASA Technical Reports Server (NTRS)

    Onstott, R. G.; Gogineni, S. P.

    1985-01-01

    Radar provides a valuable tool in the study of sea-ice conditions and the solution of sea-ice operational problems. For this reason, the U.S. and Canada have conducted studies to define a bilateral synthetic aperture radar (SAR) satellite program. The present paper is concerned with work which has been performed to explore the needs associated with the study of sea-ice-covered waters. The design of a suitable research or operational spaceborne SAR or real aperture radar must be based on an adequate knowledge of the backscatter coefficients of the ice features which are of interest. In order to obtain the needed information, studies involving the use of a helicopter were conducted. In these studies L-C-X-Ku-band calibrated radar data were acquired over areas of Arctic first-year and multiyear ice during the first half of the summer of 1982. The results show that the microwave response in the case of sea ice is greatly influenced by summer melt, which produces significant changes in the properties of the snowpack and ice sheet.

  12. Band-edge absorption coefficients from photoluminescence in semiconductor multiple quantum wells

    NASA Technical Reports Server (NTRS)

    Kost, Alan; Zou, Yao; Dapkus, P. D.; Garmire, Elsa; Lee, H. C.

    1989-01-01

    A novel approach to determining absorption coefficients in thin films using luminescence is described. The technique avoids many of the difficulties typically encountered in measurements of thin samples, Fabry-Perot effects, for example, and can be applied to a variety of materials. The absorption edge for GaAs/AlGaAs multiple quantum well structures, with quantum well widths ranging from 54 to 193 A is examined. Urbach (1953) parameters and excitonic linewidths are tabulated.

  13. Depolarisation of light scattered by disperse systems of low-dimensional potassium polytitanate nanoparticles in the fundamental absorption band

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimnyakov, D A; Yuvchenko, S A; Pravdin, A B

    2014-07-31

    The results of experimental studies of depolarising properties of disperse systems on the basis of potassium polytitanate nanoplatelets and nanoribbons in the visible and near-UV spectral regions are presented. It is shown that in the fundamental absorption band of the nanoparticle material the increase in the depolarisation factor takes place for the radiation scattered perpendicularly to the direction of the probing beam. For nanoribbons a pronounced peak of depolarisation is observed, which is caused by the essential anisotropy of the particles shape and the peculiarities of the behaviour of the material dielectric function. The empirical data are compared with themore » theoretical results for 'nanodiscs' and 'nanoneedles' with the model dielectric function, corresponding to that obtained from optical constants of the titanium dioxide dielectric function. (laser biophotonics)« less

  14. Studies of solid carbon dioxide in interstellar ice analogs subject to thermal processing

    NASA Astrophysics Data System (ADS)

    White, Douglas W.

    2010-09-01

    Solid CO2 has been detected in many lines of sight in the interstellar medium from infrared observatories. Spectral profiles from space-based observatories have suggested that CO2 on icy grain mantles is mixed with other common molecules such as H2O and CH 3OH in interstellar regions and that thermal annealing has occurred. The vibrational mode at 658 cm-1 (15.2 mum) is suspected to be a powerful diagnostic tool as to the composition of species on icy grain mantles as well as thermal histories. However, previous studies have not systematically investigated ice composition and temperature. Laboratory spectra of interstellar ice analogs have been created in this study order to better understand the physical properties of solid CO2 in these interstellar environments. Existing databases of ice composition studies and effects of ice thermal history were updated in this study to include a more systematic approach. The 658 cm-1 (15.2 mum) bending mode feature of CO2 is examined here and the subsequent astrophysical implications stated. In the first set of experiments, 47 mixtures of H2O,CH3OH, andCO2 were slowly warmed and mid-infrared absorption spectra were recorded at 5K intervals. The second set of experiments involved examining the CO2 bending mode feature of 10 different CO2-containing ice mixtures at different temperatures where ice segregation was suspected. In these experiments, the ice mixtures were slowly heated to the desired temperature for increasing time intervals before cooling down and recording mid-IR absorption spectra. These studies may be used to analyze IR data from space-based observatories such as the Spitzer Space Telescope Infrared Spectrograph as well other future IR observations of the interstellar medium. Finally, mass spectroscopy measurements were taken from temperature programmed desorption (TPD) experiments performed on several binary mixtures of H2O + CO2 and CH 3OH + CO2. Physical properties such as desorption energy of CO2 can be

  15. Empirical conversion of the vertical profile of reflectivity from Ku-band to S-band frequency

    NASA Astrophysics Data System (ADS)

    Cao, Qing; Hong, Yang; Qi, Youcun; Wen, Yixin; Zhang, Jian; Gourley, Jonathan J.; Liao, Liang

    2013-02-01

    ABSTRACT This paper presents an empirical method for converting reflectivity from Ku-band (13.8 GHz) to S-band (2.8 GHz) for several hydrometeor species, which facilitates the incorporation of Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) measurements into quantitative precipitation estimation (QPE) products from the U.S. Next-Generation Radar (NEXRAD). The development of empirical dual-frequency relations is based on theoretical simulations, which have assumed appropriate scattering and microphysical models for liquid and solid hydrometeors (raindrops, snow, and ice/hail). Particle phase, shape, orientation, and density (especially for snow particles) have been considered in applying the T-matrix method to compute the scattering amplitudes. Gamma particle size distribution (PSD) is utilized to model the microphysical properties in the ice region, melting layer, and raining region of precipitating clouds. The variability of PSD parameters is considered to study the characteristics of dual-frequency reflectivity, especially the variations in radar dual-frequency ratio (DFR). The empirical relations between DFR and Ku-band reflectivity have been derived for particles in different regions within the vertical structure of precipitating clouds. The reflectivity conversion using the proposed empirical relations has been tested using real data collected by TRMM-PR and a prototype polarimetric WSR-88D (Weather Surveillance Radar 88 Doppler) radar, KOUN. The processing and analysis of collocated data demonstrate the validity of the proposed empirical relations and substantiate their practical significance for reflectivity conversion, which is essential to the TRMM-based vertical profile of reflectivity correction approach in improving NEXRAD-based QPE.

  16. Teleseismic Earthquake Signals Observed on an Ice Shelf

    NASA Astrophysics Data System (ADS)

    Baker, M. G.; Aster, R. C.; Anthony, R. E.; Wiens, D.; Nyblade, A.; Bromirski, P. D.; Stephen, R. A.; Gerstoft, P.

    2015-12-01

    The West Antarctic Rift System (WARS) is one of Earth's largest continental extension zones. Study of the WARS is complicated by the presence of the West Antarctic Ice Sheet, the Ross Ice Shelf, and the Ross Sea. Recent deployments of broadband seismographs in the POLENET project have allowed passive seismic techniques, such as receiver function analysis and surface wave dispersion, to be widely utilized to infer crustal and mantle velocity structure across much of the WARS and West Antarctica. However, a large sector of the WARS lies beneath the Ross Ice Shelf. In late 2014, 34 broadband seismographs were deployed atop the ice shelf to jointly study deep Earth structure and the dynamics of the ice shelf. Ice shelf conditions present strong challenges to broadband teleseismic imaging: 1) The presence of complicating signals in the microseism through long-period bands due to the influence of ocean gravity waves; 2) The strong velocity contrasts at the ice-water and water-sediment interfaces on either side of the water layer give rise to large amplitude reverberations; 3) The water layer screens S-waves or P-to-S phases originating from below the water layer. We present an initial analysis of the first teleseismic earthquake arrivals collected on the ice shelf at the end of the 2014 field season from a limited subset of these stations.

  17. Analysis of gaseous ammonia (NH3) absorption in the visible spectrum of Jupiter

    NASA Astrophysics Data System (ADS)

    Irwin, Patrick G. J.; Bowles, Neil; Braude, Ashwin S.; Garland, Ryan; Calcutt, Simon

    2018-03-01

    Observations of the visible/near-infrared reflectance spectrum of Jupiter have been made with the Very Large Telescope (VLT) Multi Unit Spectroscopic Explorer (MUSE) instrument in the spectral range 0.48-0.93 μm in support of the NASA/Juno mission. These spectra contain spectral signatures of gaseous ammonia (NH3), whose abundance above the cloud tops can be determined if we have reliable information on its absorption spectrum. While there are a number of sources of NH3 absorption data in this spectral range, they cover small sub-ranges, which do not necessarily overlap and have been determined from a variety of sources. There is thus considerable uncertainty regarding the consistency of these different sources when modelling the reflectance of the entire visible/near-IR range. In this paper we analyse the VLT/MUSE observations of Jupiter to determine which sources of ammonia absorption data are most reliable. We find that the band model coefficients of Bowles et al. (2008) provide, in general, the best combination of reliability and wavelength coverage over the MUSE range. These band data appear consistent with ExoMOL ammonia line data of Yurchenko et al. (2011), at wavelengths where they overlap, but these latter data do not cover the ammonia absorption bands at 0.79 and 0.765 μm, which are prominent in our MUSE observations. However, we find the band data of Bowles et al. (2008) are not reliable at wavelengths less than 0.758 μm. At shorter wavelengths we find the laboratory observations of Lutz and Owen (1980) provide a good indication of the position and shape of the ammonia absorptions near 0.552 μm and 0.648 μm, but their absorption strengths appear inconsistent with the band data of Bowles et al. (2008) at longer wavelengths. Finally, we find that the line data of the 0.648 μm absorption band of Giver et al. (1975) are not suitable for modelling these data as they account for only 17% of the band absorption and cannot be extended reliably to the cold

  18. Physical characteristics of summer sea ice across the Arctic Ocean

    USGS Publications Warehouse

    Tucker, W. B.; Gow, A.J.; Meese, D.A.; Bosworth, H.W.; Reimnitz, E.

    1999-01-01

    Sea ice characteristics were investigated during July and August on the 1994 transect across the Arctic Ocean. Properties examined from ice cores included salinity, temperature, and ice structure. Salinities measured near zero at the surface, increasing to 3-4??? at the ice-water interface. Ice crystal texture was dominated by columnar ice, comprising 90% of the ice sampled. Surface albedos of various ice types, measured with radiometers, showed integrated shortwave albedos of 0.1 to 0.3 for melt ponds, 0.5 for bare, discolored ice, and 0.6 to 0.8 for a deteriorated surface or snow-covered ice. Aerial photography was utilized to document the distribution of open melt ponds, which decreased from 12% coverage of the ice surface in late July at 76??N to almost none in mid-August at 88??N. Most melt ponds were shallow, and depth bore no relationship to size. Sediment was pervasive from the southern Chukchi Sea to the north pole, occurring in bands or patches. It was absent in the Eurasian Arctic, where it had been observed on earlier expeditions. Calculations of reverse trajectories of the sediment-bearing floes suggest that the southernmost sediment was entrained during ice formation in the Beaufort Sea while more northerly samples probably originated in the East Siberian Sea, some as far west as the New Siberian Islands.

  19. Above-Cloud Precipitable Water Retrievals using the MODIS 0.94 micron Band with Applications for Multi-Layer Cloud Detection

    NASA Technical Reports Server (NTRS)

    Platnick, S.; Wind, G.

    2004-01-01

    In order to perform satellite retrievals of cloud properties, it is important to account for the effect of the above-cloud atmosphere on the observations. The solar bands used in the operational MODIS Terra and Aqua cloud optical and microphysical algorithms (visible, NIR, and SWIR spectral windows) are primarily affected by water vapor, and to a lesser extent by well-mixed gases. For water vapor, the above-cloud column amount, or precipitable water, provides adequate information for an atmospheric correction; details of the vertical vapor distribution are not typically necessary for the level of correction required. Cloud-top pressure has a secondary effect due to pressure broadening influences. For well- mixed gases, cloud-top pressure is also required for estimates of above-cloud abundances. We present a method for obtaining above-cloud precipitable water over dark Ocean surfaces using the MODIS 0.94 pm vapor absorption band. The retrieval includes an iterative procedure for establishing cloud-top temperature and pressure, and is useful for both single layer water and ice clouds. Knowledge of cloud thermodynamic phase is fundamental in retrieving cloud optical and microphysical properties. However, in cases of optically thin cirrus overlapping lower water clouds, the concept of a single unique phase is ill- defined and depends, at least, on the spectral region of interest. We will present a method for multi-layer and multi-phase cloud detection which uses above-cloud precipitable water retrievals along with several existing MODIS operational cloud products (cloud-top pressure derived from a C02 slicing algorithm, IR and SWIR phase retrievals). Results are catagorized by whether the radiative signature in the MODIS solar bands is primarily that of a water cloud with ice cloud contamination, or visa-versa. Examples in polar and mid-latitude regions will be shown.

  20. Assessing deformation and morphology of Arctic landfast sea ice using InSAR to support use and management of coastal ice

    NASA Astrophysics Data System (ADS)

    Dammann, D. O.; Eicken, H.; Meyer, F. J.; Mahoney, A. R.

    2016-12-01

    Arctic landfast sea ice provides important services to people, including coastal communities and industry, as well as key marine biota. In many regions of the Arctic, the use of landfast sea ice by all stakeholders is increasingly limited by reduced stability of the ice cover, which results in more deformation and rougher ice conditions as well as reduced extent and an increased likelihood of detachment from the shore. Here, we use Synthetic Aperture Radar Interferometry (InSAR) to provide stakeholder-relevant data on key constraints for sea ice use, in particular ice stability and morphology, which are difficult to assess using conventional SAR. InSAR has the capability to detect small-scale landfast ice displacements, which are linked to important coastal hazards, including the formation of cracks, ungrounding of ice pressure ridges, and catastrophic breakout events. While InSAR has previously been used to identify the extent of landfast ice and regions of deformation within, quantitative analysis of small-scale ice motion has yet to be thoroughly validated and its potential remains largely underutilized in sea ice science. Using TanDEM-X interferometry, we derive surface displacements of landfast ice within Elson Lagoon near Barrow, Alaska, which we validate using in-situ DGPS data. We then apply an inverse model to estimate rates and patterns of shorefast ice deformation in other regions of landfast ice using interferograms generated with long-temporal baseline L-band ALOS-1 PALSAR-1 data. The model is able to correctly identify deformation modes and proxies for the associated relative internal elastic stress. The derived potential for fractures corresponds well with large-scale sea ice patterns and local in-situ observations. The utility of InSAR to quantify sea ice roughness has also been explored using TanDEM-X bistatic interferometry, which eliminates the effects of temporal changes in the ice cover. The InSAR-derived DEM shows good correlation with a high

  1. Ice Nucleation Activity of Graphene and Graphene Oxides

    PubMed Central

    2018-01-01

    Aerosols can act as cloud condensation nuclei and/or ice-nucleating particles (INPs), influencing cloud properties. In particular, INPs show a variety of different and complex mechanisms when interacting with water during the freezing process. To gain a fundamental understanding of the heterogeneous freezing mechanisms, studies with proxies for atmospheric INPs must be performed. Graphene and its derivatives offer suitable model systems for soot particles, which are ubiquitous aerosols in the atmosphere. In this work, we present an investigation of the ice nucleation activity (INA) of different types of graphene and graphene oxides. Immersion droplet freezing experiments as well as additional analytical analyses, such as X-ray photoelectron spectroscopy, Raman spectroscopy, and transmission electron microscopy, were performed. We show within a group of samples that a highly ordered graphene lattice (Raman G band intensity >50%) can support ice nucleation more effectively than a lowly ordered graphene lattice (Raman G band intensity <20%). Ammonia-functionalized graphene revealed the highest INA of all samples. Atmospheric ammonia is known to play a primary role in the formation of secondary particulate matter, forming ammonium-containing aerosols. The influence of functionalization on interactions between the particle interface and water molecules, as well as on hydrophobicity and agglomeration processes, is discussed. PMID:29707097

  2. Atypical Presentation of Iridocorneal Endothelial Syndrome With Band Keratopathy but No Corneal Edema Managed With Descemet Membrane Endothelial Keratoplasty.

    PubMed

    Zygoura, Vasiliki; Lavy, Itay; Verdijk, Robert M; Santander-García, Diana; Baydoun, Lamis; Dapena, Isabel; Melles, Gerrit R J

    2018-04-17

    To report an unusual presentation of iridocorneal endothelial (ICE) syndrome associated with band keratopathy and its management with ethylenediamine-tetraacetic acid (EDTA) chelation and Descemet membrane endothelial keratoplasty (DMEK). A 57-year-old female patient presented with unilateral progressive painless visual impairment, corneal band keratopathy, and morphological corneal endothelial changes without corneal edema or any previous ophthalmic, medical, or family history. Routine specular and confocal microscopy imaging, as well as biomicroscopy, best-corrected visual acuity, and pachymetry measurements were performed before and after the surgical procedures. Histopathologic and immunohistochemical evaluations of the surgically excised diseased DM-endothelium were performed. Superficial epithelial keratectomy with EDTA chelation was performed. After an initial period of a few months of corneal clearance, the patient presented with recurrence of visually significant band keratopathy. After 1 year, she underwent retreatment with superficial epithelial keratectomy and EDTA chelation, followed by DMEK. Histopathologic and immunohistochemical analysis showed ICE syndrome. Two years after DMEK surgery, the cornea was still clear and band keratopathy had not recurred. To the best of our knowledge, this is the first case in the literature that reports the association of ICE syndrome with band keratopathy. As band keratopathy recurred shortly after EDTA chelation, endothelial keratoplasty (DMEK) may be indicated to successfully treat such cases.

  3. Arctic sea ice concentration observed with SMOS during summer

    NASA Astrophysics Data System (ADS)

    Gabarro, Carolina; Martinez, Justino; Turiel, Antonio

    2017-04-01

    The Arctic Ocean is under profound transformation. Observations and model predictions show dramatic decline in sea ice extent and volume [1]. A retreating Arctic ice cover has a marked impact on regional and global climate, and vice versa, through a large number of feedback mechanisms and interactions with the climate system [2]. The launch of the Soil Moisture and Ocean Salinity (SMOS) mission, in 2009, marked the dawn of a new type of space-based microwave observations. Although the mission was originally conceived for hydrological and oceanographic studies [3,4], SMOS is also making inroads in the cryospheric sciences by measuring the thin ice thickness [5,6]. SMOS carries an L-band (1.4 GHz), passive interferometric radiometer (the so-called MIRAS) that measures the electromagnetic radiation emitted by the Earth's surface, at about 50 km spatial resolution, continuous multi-angle viewing, large wide swath (1200-km), and with a 3-day revisit time at the equator, but more frequently at the poles. A novel radiometric method to determine sea ice concentration (SIC) from SMOS is presented. The method uses the Bayesian-based Maximum Likelihood Estimation (MLE) approach to retrieve SIC. The advantage of this approach with respect to the classical linear inversion is that the former takes into account the uncertainty of the tie-point measured data in addition to the mean value, while the latter only uses a mean value of the tie-point data. When thin ice is present, the SMOS algorithm underestimates the SIC due to the low opacity of the ice at this frequency. However, using a synergistic approach with data from other satellite sensors, it is possible to obtain accurate thin ice thickness estimations with the Bayesian-based method. Despite its lower spatial resolution relative to SSMI or AMSR-E, SMOS-derived SIC products are little affected by the atmosphere and the snow (almost transparent at L-band). Moreover L-band measurements are more robust in front of the

  4. Extrapolation of Earth-based solar irradiance measurements to exoatmospheric levels for broad-band and selected absorption-band observations

    NASA Technical Reports Server (NTRS)

    Reagan, J. A.; Pilewskie, P. A.; Scott-Fleming, I. C.; Hermann, B. M.

    1986-01-01

    Techniques for extrapolating Earth-based spectral band measurements of directly transmitted solar irradiance to equivalent exoatmospheric signal levels were used to aid in determining system gain settings of the Halogen Occultation Experiment (HALOE) sunsensor system being developed for the NASA Upper Atmosphere Research Satellite and for the Stratospheric Aerosol and Gas (SAGE) 2 instrument on the Earth Radiation Budget Satellite. A band transmittance approach was employed for the HALOE sunsensor which has a broad-band channel determined by the spectral responsivity of a silicon detector. A modified Langley plot approach, assuming a square-root law behavior for the water vapor transmittance, was used for the SAGE-2 940 nm water vapor channel.

  5. Vacuum ultraviolet emission spectrum measurement of a microwave-discharge hydrogen-flow lamp in several configurations: Application to photodesorption of CO ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y.-J.; Wu, C.-Y. R.; Chuang, K.-J.

    2014-01-20

    We report measurements of the vacuum ultraviolet (VUV) emission spectra of a microwave-discharge hydrogen-flow lamp (MDHL), a common tool in astrochemistry laboratories working on ice VUV photoprocessing. The MDHL provides hydrogen Ly-α (121.6 nm) and H{sub 2} molecular emission in the 110-180 nm range. We show that the spectral characteristics of the VUV light emitted in this range, in particular the relative proportion of Ly-α to molecular emission bands, strongly depend on the pressure of H{sub 2} inside the lamp, the lamp geometry (F type versus T type), the gas used (pure H{sub 2} versus H{sub 2} seeded in He),more » and the optical properties of the window used (MgF{sub 2} versus CaF{sub 2}). These different configurations are used to study the VUV irradiation of CO ice at 14 K. In contrast to the majority of studies dedicated to the VUV irradiation of astrophysical ice analogs, which have not taken into consideration the emission spectrum of the MDHL, our results show that the processes induced by photons in CO ice from a broad energy range are different and more complex than the sum of individual processes induced by monochromatic sources spanning the same energy range, as a result of the existence of multistate electronic transitions and discrepancy in absorption cross sections between parent molecules and products in the Ly-α and H{sub 2} molecular emission ranges.« less

  6. Deep Space Detection of Oriented Ice Crystals

    NASA Astrophysics Data System (ADS)

    Marshak, A.; Varnai, T.; Kostinski, A. B.

    2017-12-01

    The deep space climate observatory (DSCOVR) spacecraft resides at the first Lagrangian point about one million miles from Earth. A polychromatic imaging camera onboard delivers nearly hourly observations of the entire sun-lit face of the Earth. Many images contain unexpected bright flashes of light over both ocean and land. We constructed a yearlong time series of flash latitudes, scattering angles and oxygen absorption to demonstrate conclusively that the flashes over land are specular reflections off tiny ice crystals floating in the air nearly horizontally. Such deep space detection of tropospheric ice can be used to constrain the likelihood of oriented crystals and their contribution to Earth albedo.

  7. Geological Evidence for Recent Ice Ages on Mars

    NASA Astrophysics Data System (ADS)

    Head, J. W.; Mustard, J. F.; Kreslavsky, M. A.; Milliken, R. E.; Marchant, D. R.

    2003-12-01

    A primary cause of ice ages on Earth is orbital forcing from variations in orbital parameters of the planet. On Mars such variations are known to be much more extreme. Recent exploration of Mars has revealed abundant water ice in the near-surface at high latitudes in both hemispheres. We outline evidence that these near-surface, water-ice rich mantling deposits represent a mixture of ice and dust that is layered, meters thick, and latitude dependent. These units were formed during a geologically recent major martian ice age, and were emplaced in response to the changing stability of water ice and dust on the surface during variations in orbital parameters. Evidence for these units include a smoothing of topography at subkilometer baselines from about 30o north and south latitudes to the poles, a distinctive dissected texture in MOC images in the +/-30o-60o latitude band, latitude-dependent sets of topographic characteristics and morphologic features (e.g., polygons, 'basketball' terrain texture, gullies, viscous flow features), and hydrogen concentrations consistent with the presence of abundant ice at shallow depths above 60o latitude. The most equatorward extent of these ice-rich deposits was emplaced down to latitudes equivalent to Saudi Arabia and the southern United States on Earth during the last major martian ice age, probably about 0.4-2.1 million years ago. Mars is currently in an inter-ice age period and the ice-rich deposits are presently undergoing reworking, degradation and retreat in response to the current stability relations of near-surface ice. Unlike Earth, martian ice ages are characterized by warmer climates in the polar regions and the enhanced role of atmospheric water ice and dust transport and deposition to produce widespread and relatively evenly distributed smooth deposits at mid-latitudes during obliquity maxima.

  8. Relative Band Oscillator Strengths for Carbon Monoxide: Alpha (1)Pi-Chi (1)Sigma(+) Transitions

    NASA Technical Reports Server (NTRS)

    Federman, S. R.; Menningen, K. L.; Lee, Wei; Stoll, J. B.

    1997-01-01

    Band oscillator strengths for CO transitions between the electronic states A (l)Pi and X(1)Sigma(+) were measured via absorption with a synchrotron radiation source. When referenced to the well-characterized (5,0) band oscillator strength, our relative values for the (7,0) to (11,0) bands are most consistent with the recent experiments of Chan et al. and the theoretical predictions of Kirby & Cooper. Since the results from various laboratory techniques and theory now agree, analyses of interstellar CO based on absorption from A-X bands are no longer hindered by uncertainties in oscillator strength.

  9. [Acoustic detection of absorption of millimeter-band electromagnetic waves in biological objects].

    PubMed

    Polnikov, I G; Putvinskiĭ, A V

    1988-01-01

    Principles of photoacoustic spectroscopy were applied to elaborate a new method for controlling millimeter electromagnetic waves absorption in biological objects. The method was used in investigations of frequency dependence of millimeter wave power absorption in vitro and in vivo in the commonly used experimental irradiation systems.

  10. Evolution of dielectric function of Al-doped ZnO thin films with thermal annealing: effect of band gap expansion and free-electron absorption.

    PubMed

    Li, X D; Chen, T P; Liu, Y; Leong, K C

    2014-09-22

    Evolution of dielectric function of Al-doped ZnO (AZO) thin films with annealing temperature is observed. It is shown that the evolution is due to the changes in both the band gap and the free-electron absorption as a result of the change of free-electron concentration of the AZO thin films. The change of the electron concentration could be attributed to the activation of Al dopant and the creation/annihilation of the donor-like defects like oxygen vacancy in the thin films caused by annealing.

  11. Would the solvent effect be the main cause of band shift in the theoretical absorption spectrum of large lanthanide complexes?

    NASA Astrophysics Data System (ADS)

    Freire, Ricardo O.; Rodrigues, Nailton M.; Rocha, Gerd B.; Gimenez, Iara F.; da Costa Junior, Nivan B.

    2011-06-01

    As most reactions take place in solution, the study of solvent effects on relevant molecular properties - either by experimental or theoretical methods - is crucial for the design of new processes and prediction of technological properties. In spite of this, only few works focusing the influence of the solvent nature specifically on the spectroscopic properties of lanthanide complexes can be found in the literature. The present work describes a theoretical study of the solvent effect on the prediction of the absorption spectra for lanthanide complexes, but other possible relevant factors have been also considered such as the molecular geometry and the excitation window used for interaction configuration (CI) calculations. The [Eu(ETA) 2· nH 2O] +1 complex has been chosen as an ideal candidate for this type of study due to its small number of atoms (only 49) and also because the absorption spectrum exhibits a single band. Two Monte Carlo simulations were performed, the first one considering the [Eu(ETA) 2] +1 complex in 400 water molecules, evidencing that the complex presents four coordinated water molecules. The second simulation considered the [Eu(ETA) 2·4H 2O] +1 complex in 400 ethanol molecules, in order to evaluate the solvent effect on the shift of the maximum absorption in calculated spectra, compared to the experimental one. Quantum chemical studies were also performed in order to evaluate the effect of the accuracy of calculated ground state geometry on the prediction of absorption spectra. The influence of the excitation window used for CI calculations on the spectral shift was also evaluated. No significant solvent effect was found on the prediction of the absorption spectrum for [Eu(ETA) 2·4H 2O] +1 complex. A small but significant effect of the ground state geometry on the transition energy and oscillator strength was also observed. Finally it must be emphasized that the absorption spectra of lanthanide complexes can be predicted with great accuracy

  12. Southern Alaska Glaciers: Spatial and Temporal Variations in Ice Volume

    NASA Technical Reports Server (NTRS)

    Sauber, J.; Molnia, B. F.; Lutchke, S.; Rowlands, D.; Harding, D.; Carabajal, C.; Hurtado, J. M.; Spade, G.

    2004-01-01

    Although temperate mountain glaciers comprise less than 1% of the glacier-covered area on Earth, they are important because they appear to be melting rapidly under present climatic conditions and, therefore, make significant contributions to rising sea level. In this study, we use ICESat observations made in the last 1.5 years of southern Alaska glaciers to estimate ice elevation profiles, ice surface slopes and roughness, and bi-annual and/or annual ice elevation changes. We report initial results from the near coastal region between Yakutat Bay and Cape Suckling that includes the Malaspina and Bering Glaciers. We show and interpret ice elevations changes across the lower reaches of the Bagley Ice Valley for the period between October 2003 and May 2004. In addition, we use off-nadir pointing observations to reference tracks over the Bering and Malaspina Glaciers in order to estimate annual ice elevation change. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Shuttle Radar Topography Mission (SRTM) derived DEMs are used to estimate across track regional slopes between ICESat data acquisitions. Although the distribution and quantity of ICESat elevation profiles with multiple, exact repeat data is currently limited in Alaska, individual ICESat data tracks, provide an accurate reference surface for comparison to other elevation data (e.g. ASTER and SRTM X- and C-band derived DEMs). Specifically we report the elevation change over the Malaspina Glacier's piedmont lobe between a DEM derived from SRTM C-band data acquired in Feb. 2000 and ICESat Laser #2b data from Feb.-March 2004. We also report use of ICESat elevation data to enhance ASTER derived absolute DEMs. Mountain glaciers generally have rougher surfaces and steeper regional slopes than the ice sheets for which the ICESat design was optimized. Therefore, rather than averaging ICESat observations over large regions or relying on crossovers, we are working with well-located ICESat

  13. Abundant Methanol Ice toward a Massive Young Stellar Object in the Central Molecular Zone

    NASA Astrophysics Data System (ADS)

    An, Deokkeun; Sellgren, Kris; Boogert, A. C. Adwin; Ramírez, Solange V.; Pyo, Tae-Soo

    2017-07-01

    Previous radio observations revealed widespread gas-phase methanol (CH3OH) in the Central Molecular Zone (CMZ) at the Galactic center (GC), but its origin remains unclear. Here, we report the discovery of CH3OH ice toward a star in the CMZ, based on a Subaru 3.4-4.0 μm spectrum, aided by NASA/IRTF L\\prime imaging and 2-4 μm spectra. The star lies ˜8000 au away in projection from a massive young stellar object (MYSO). Its observed high CH3OH ice abundance (17 % +/- 3 % relative to H2O ice) suggests that the 3.535 μm CH3OH ice absorption likely arises in the MYSO’s extended envelope. However, it is also possible that CH3OH ice forms with a higher abundance in dense clouds within the CMZ, compared to within the disk. Either way, our result implies that gas-phase CH3OH in the CMZ can be largely produced by desorption from icy grains. The high solid CH3OH abundance confirms the prominent 15.4 μm shoulder absorption observed toward GC MYSOs arises from CO2 ice mixed with CH3OH. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  14. Ultra-narrow band perfect absorbers based on Fano resonance in MIM metamaterials

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Fang, Jiawen; Zhang, Fei; Chen, Junyan; Yu, Honglin

    2017-12-01

    Metallic nanostructures have attracted numerous attentions in the past decades due to their attractive plasmonic properties. Resonant plasmonic perfect absorbers have promising applications in a wide range of technologies including photothermal therapy, thermophotovoltaics, heat-assisted magnetic recording and biosensing. However, it remains to be a great challenge to achieve ultra-narrow band in near-infrared band with plasmonic materials due to the large optical losses in metals. In this letter, we introduced Fano resonance in MIM metamaterials composed of an asymmetry double elliptic cylinders (ADEC), which can achieve ultra-narrow band perfect absorbers. In theoretical calculations, we observed an ultranarrow band resonant absorption peak with the full width at half maximum (FWHM) of 8 nm and absorption amplitude exceeding 99% at 930 nm. Moreover, we demonstrate that the absorption increases with the increase of asymmetry and the absorption resonant wavelength can be tuned by changing the size and arrangement of the unit cell. The asymmetry metallic nanostructure also exhibit a higher refractive sensitivity as large as 503 nm/RIU with high figure of merit of 63, which is promising for high sensitive sensors. Results of this work are desirable for various potential applications in micro-technological structures such as biological sensors, narrowband emission, photodetectors and solar thermophotovoltaic (STPV) cells.

  15. Life in Ice: Implications to Astrobiology

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2009-01-01

    possible natural phenomenon of the solar system that may have played a profoundly important role in the Origin of Life on Earth and the Distribution of Life in the Cosmos. The paper concludes with a consideration of the protective properties of ice by absorption of UV-B, UV-C, h-rays, gamma-rays and the high energy proton environment of the Jupiter Radiation Belt. A proposed instrument that may provide additional data on the potential survivability of microbial extremophiles encased in ice and subjected to the simulated space environment will be briefly described.

  16. Radar Differential Phase Signatures of Ice Orientation for the Prediction of Lightning Initiation and Cessation

    NASA Technical Reports Server (NTRS)

    Carey, L.D.; Petersen, W.A.; Deierling, W.

    2009-01-01

    other co-polar back-scattering radar measurements like differential reflectivity (Z(sub dr)) typically measured by operational dual-polarimetric radars are not sensitive to these changes in ice crystal orientation. However, prior research has demonstrated that oriented ice crystals cause significant propagation effects that can be routinely measured by most dual-polarimetric radars from X-band (3 cm) to S-band (10 cm) wavelengths using the differential propagation phase shift (often just called differential phase, phi(sub dp)) or its range derivative, the specific differential phase (K(sub dp)). Advantages of the differential phase include independence from absolute or relative power calibration, attenuation, differential attenuation and relative insensitivity to ground clutter and partial beam occultation effects (as long as the signal remains above noise). In research mode, these sorts of techniques have been used to anticipate initial cloud electrification, lightning initiation, and cessation. In this study, we develop a simplified model of ice crystal size, shape, orientation, dielectric, and associated radar scattering and propagation effects in order to simulate various idealized scenarios of ice crystals responding to a hypothetical electric field and their dual-polarimetric radar signatures leading up to lightning initiation and particularly cessation. The sensitivity of the K(sub dp) ice orientation signature to various ice properties and radar wavelength will be explored. Since K(sub dp) is proportional to frequency in the Rayleigh- Gans scattering regime, the ice orientation signatures should be more obvious at higher (lower) frequencies (wavelengths). As a result, simulations at radar wavelengths from 10 cm down to 1 cm (Ka-band) will be conducted. Resonance effects will be considered using the T-matrix method. Since most K(sub dp) Vbased observations have been shown at S-band, we will present ice orientation signatures from C-band (UAH/NASA ARMOR) and X

  17. On the Impact of Snow Salinity on CryoSat-2 First-Year Sea Ice Thickness Retrievals

    NASA Astrophysics Data System (ADS)

    Nandan, V.; Yackel, J.; Geldsetzer, T.; Mahmud, M.

    2017-12-01

    European Space Agency's Ku-band altimeter CryoSat-2 (CS-2) has demonstrated its potential to provide extensive basin-scale spatial and temporal measurements of Arctic sea ice freeboard. It is assumed that CS-2 altimetric returns originate from the snow/sea ice interface (assumed to be the main scattering horizon). However, in newly formed thin ice ( 0.6 m) through to thick first-year sea ice (FYI) ( 2 m), upward wicking of brine into the snow cover from the underlying sea ice surface produces saline snow layers, especially in the bottom 6-8 cm of a snow cover. This in turn modifies the brine volume at/or near the snow/sea ice interface, altering the dielectric and scattering properties of the snow cover, leading to strong Ku-band microwave attenuation within the upper snow volume. Such significant reductions in Ku-band penetration may substantially affect CS-2 FYI freeboard retrievals. Therefore, the goal of this study is to evaluate a theoretical approach to estimate snow salinity induced uncertainty on CS-2 Arctic FYI freeboard measurements. Using the freeboard-to-thickness hydrostatic equilibrium equation, we quantify the error differences between the CS-2 FYI thickness, (assuming complete penetration of CS-2 radar signals to the snow/FYI interface), and the FYI thickness based on the modeled Ku-band main scattering horizon for different snow cover cases. We utilized naturally occurring saline and non-saline snow cover cases ranging between 6 cm to 32 cm from the Canadian Arctic, observed during late-winter from 1993 to 2017, on newly-formed ice ( 0.6 m), medium ( 1.5 m) and thick FYI ( 2 m). Our results suggest that irrespective of the thickness of the snow cover overlaying FYI, the thickness of brine-wetted snow layers and actual FYI freeboard strongly influence the amount with which CS-2 FYI freeboard estimates and thus thickness calculations are overestimated. This effect is accentuated for increasingly thicker saline snow covers overlaying newly-formed ice

  18. Investigations of electromagnetic scattering by columnar ice crystals

    NASA Technical Reports Server (NTRS)

    Weil, H.; Senior, T. B. A.

    1976-01-01

    An integral equation approach was developed to determine the scattering and absorption of electromagnetic radiation by thin walled cylinders of arbitrary cross-section and refractive index. Based on this method, extensive numerical data was presented at infrared wavelengths for hollow hexagonal cross section cylinders which simulate columnar sheath ice crystals.

  19. Compositional analysis of Hyperion with the Cassini Visual and Infrared Mapping Spectrometer

    NASA Astrophysics Data System (ADS)

    Brad Dalton, J.; Cruikshank, Dale P.; Clark, Roger N.

    2012-08-01

    Compositional mapping of the surface of Hyperion using Cassini Visual and Infrared Mapping Spectrometer (VIMS) observations reveals a heterogeneous surface dominated by water ice accompanied by additional materials. Carbon dioxide, as evidenced by a prominent absorption band centered at 4.26 μm, is distributed over most of the surface, including icy regions. This does not represent exposures of pure CO2 ice, but concentrations of CO2 molecules adsorbed on other materials or complexed in H2O, perhaps as a clathrate (Cruikshank, D.P., Meyer, A.W., Brown, R.H., Clark, R.N., Jaumann, R., Stephan, K., Hibbitts, C.A., Sandford, S.A., Mastrapa, R., Filacchione, G., Dalle Ore, C.M., Nicholson, P.D., Buratti, B.J., McCord, T.B., Nelson, R.M., Dalton, J.B., Baines, K.H., Matson, D.L., The VIMS Team [2010]. Icarus 206, 561-572). Localized deposits of low-albedo material in subcircular depressions exhibit spectral absorptions indicative of C-H in aromatic (3.29 μm) and aliphatic (3.35-3.50 μm) hydrocarbons. An absorption band at 2.42 μm that is also seen on other saturnian satellites, tentatively identified as H2 (Clark, R.N. et al. [2011]. In: Proc. AAS-DPS Meeting, 43, 1563; Clark et al., in preparation, 2012) adsorbed on dark material grains, is also prominent. Our best spectral models included H2O and CO2 ice, with small amounts of nanophase Fe and Fe2O3. Weaker and more spatially scattered absorption features are also found at 4.48, 4.60, and 4.89 μm, although no clear molecular identifications have yet been made. While strongest in the low-albedo deposits, the CO2, hydrocarbon and putative H2 bands vary in strength throughout the icy regions, as do the 4.48-, 4.60- and 4.89-μm bands, suggesting that this background ice is laced with a complex mixture of non-ice compounds.

  20. Europa's Broken Ice

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Jupiter's moon Europa, as seen in this image taken June 27, 1996 by NASA's Galileo spacecraft, displays features in some areas resembling ice floes seen in Earth's polar seas. Europa, about the size of Earth's moon, has an icy crust that has been severely fractured, as indicated by the dark linear, curved, and wedged-shaped bands seen here. These fractures have broken the crust into plates as large as 30 kilometers (18.5 miles) across. Areas between the plates are filled with material that was probably icy slush contaminated with rocky debris. Some individual plates were separated and rotated into new positions. Europa's density indicates that it has a shell of water ice as thick as 100 kilometers (about 60 miles), parts of which could be liquid. Currently, water ice could extend from the surface down to the rocky interior, but the features seen in this image suggest that motion of the disrupted icy plates was lubricated by soft ice or liquid water below the surface at the time of disruption. This image covers part of the equatorial zone of Europa and was taken from a distance of 156,000 kilometers (about 96,300 miles) by the solid-state imager camera on the Galileo spacecraft. North is to the right and the sun is nearly directly overhead. The area shown is about 360 by 770 kilometers (220-by-475 miles or about the size of Nebraska), and the smallest visible feature is about 1.6 kilometers (1 mile) across. The Jet Propulsion Laboratory manages the Galileo mission for NASA's Office of Space Science.

  1. Sea Ice Thickness Estimates from Data Collected Using Airborne Sensors and Coincident In Situ Data

    NASA Astrophysics Data System (ADS)

    Gardner, J. M.; Brozena, J. M.; Abelev, A.; Hagen, R. A.; Liang, R.; Ball, D.

    2016-12-01

    The Naval Research Laboratory collected data using Airborne sensors and coincident in-situ measurements over multiple sites of floating, but land-fast ice north of Barrow, AK. The in-situ data provide ground-truth for airborne measurements from a scanning LiDAR (Riegl Q 560i), digital photogrammetry (Applanix DSS-439), a low-frequency SAR (P-band in 2014 and P and L bands in 2015 and 2016) and a snow/Ku radar procured from the Center for Remote Sensing of Ice Sheets of the University of Kansas. The CReSIS radar was updated in 2015 to integrate the snow and Ku radars into a single continuous chirp, thus improving resolution. The objective of the surveys was to aid our understanding of the accuracy of ice thickness estimation via the freeboard method using the airborne sensor suite. Airborne data were collected on multiple overflights of the transect areas. The LiDAR measured total freeboard (ice + snow) referenced to leads in the ice, and produced swaths 200-300 m wide. The SAR imaged the ice beneath the snow and the snow/Ku radar measured snow thickness. The freeboard measurements and snow thickness are used to estimate ice thickness via isostasy and density estimates. Comparisons and processing methodology will be shown using data from three field seasons (2014-2016). The results of this ground-truth experiment will inform our analysis of grids of airborne data collected over areas of sea-ice illuminated by Cryosat-2.

  2. Io: Near-Infrared Absorptions Not Attributable to SO2

    NASA Astrophysics Data System (ADS)

    Shirley, J. H.; Clark, R. N.; Soderblom, L. A.; Carlson, R. W.; Kamp, L. W.; Galileo NIMS Team

    2001-11-01

    The Near-Infrared Mapping Spectrometer (NIMS) onboard the Galileo spacecraft imaged the leading side of Jupiter's satellite Io at full spectral resolution and with triple Nyquist spatial sampling during the fifteenth orbital encounter (E15). New despiking and "dejittering" algorithms have been applied to this high S/N observation (15INHRSPEC01A). Spectral absorption features not attributable to SO2 are found between 3.0-3.4 microns and near 4.65 microns. The patterns of the spatial distributions of both absorbers differ from that of the omnipresent SO2. The broad 3.0-3.4 micron absorption is most pronounced in polar regions. Preliminary work suggests that the 4.65 micron feature may be associated with an unidentified sulfate mineral, while the 3.0-3.4 micron feature may result from the presence of more than one absorbing material. Hydrogen-bearing species are likely candidates. For example, H2O ice provides a good match for the absorption near 3.2 microns, but the absorption is shifted to wavelengths longer than that in pure H2O ice. If only one absorber is present, then hydrogen bonding of small numbers of H2O molecules could perhaps account for the shift. The absorption is weak; if H20 related, optical path lengths of a fraction of a micron are indicated. Portions of this research were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  3. Efficient Sub-Bandgap Light Absorption and Signal Amplification in Silicon Photodetectors

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Hsin

    This thesis focuses on two areas in silicon photodetectors, the first being enhancing the sub-bandgap light absorption of IR wavelenghts in silicon, and the second being intrinsic signal amplification in silicon photodetectors. Both of these are achieved using heavily doped p-n junction devices which create localized states that relax the k-selection rule of indirect bandgap material. The probability of transitions between impurity band and the conduction/valence band would be much more efficient than the one between band-to-band transition. The waveguide-coupled epitaxial p-n photodetector was demonstrated for 1310 nm wavelength detection. Incorporated with the Franz-Keldysh effect and the quasi-confined epitaxial layer design, an absorption coefficient around 10 cm-1 has been measured and internal quantum efficiency nearly 100% at -2.5V. The absorption coefficient is calculated from the wave function of the electron and hole in p-n diode. The heavily doped impurity wave function can be formulated as a delta function, and the quasi-confined conduction band energy states, and the wave function on each level can be obtained from the Silvaco software. The calculated theoretical absorption coefficient increases with the increasing applied bias and the doping concentration, which matches the experimental results. To solve the issues of large excess noise and high operation bias for avalanche photodiodes based on impact ionization, I presented a detector using the Cycling Excitation Process (CEP) for signal amplification. This can be realized in a heavily doped and highly compensated Si p-n junction, showing ultra high gain about 3000 at very low bias (<4 V), and possessing an intrinsic, phonon-mediated regulation process to keep the device stable without any quenching device required in today's Geiger-mode avalanche detectors. The CEP can be formulated with the rate equations in conduction bands and impurity states. The gain expression, which is a function of the

  4. An experimental and numerical study of the light scattering properties of ice crystals with black carbon inclusions

    NASA Astrophysics Data System (ADS)

    Arienti, Marco; Geier, Manfred; Yang, Xiaoyuan; Orcutt, John; Zenker, Jake; Brooks, Sarah D.

    2018-05-01

    We investigate the optical properties of ice crystals nucleated on atmospheric black carbon (BC). The parameters examined in this study are the shape of the ice crystal, the volume fraction of the BC inclusion, and its location inside the crystal. We report on new spectrometer measurements of forward scattering and backward polarization from ice crystals nucleated on BC particles and grown under laboratory-controlled conditions. Data from the Cloud and Aerosol Spectrometer with Polarization (CASPOL) are used for direct comparison with single-particle calculations of the scattering phase matrix. Geometrical optics and discrete dipole approximation techniques are jointly used to provide the best compromise of flexibility and accuracy over a broad range of size parameters. Together with the interpretation of the trends revealed by the CASPOL measurements, the numerical results confirm previous reports on absorption cross-section magnification in the visible light range. Even taking into account effects of crystal shape and inclusion position, the ratio between absorption cross-section of the compound particle and the absorption cross-section of the BC inclusion alone (the absorption magnification) has a lower bound of 1.5; this value increases to 1.7 if the inclusion is centered with respect to the crystal. The simple model of BC-ice particle presented here also offers new insights on the effect of the relative position of the BC inclusion with respect to the crystal's outer surfaces, the shape of the crystal, and its size.

  5. The characteristics of dissolved organic matter (DOM) and chromophoric dissolved organic matter (CDOM) in Antarctic sea ice

    NASA Astrophysics Data System (ADS)

    Norman, Louiza; Thomas, David N.; Stedmon, Colin A.; Granskog, Mats A.; Papadimitriou, Stathys; Krapp, Rupert H.; Meiners, Klaus M.; Lannuzel, Delphine; van der Merwe, Pier; Dieckmann, Gerhard S.

    2011-05-01

    An investigation of coloured dissolved organic matter (CDOM) and its relationships to physical and biogeochemical parameters in Antarctic sea ice and oceanic water have indicated that ice melt may both alter the spectral characteristics of CDOM in Antarctic surface waters and serve as a likely source of fresh autochthonous CDOM and labile DOC. Samples were collected from melted bulk sea ice, sea ice brines, surface gap layer waters, and seawater during three expeditions: one during the spring to summer and two during the winter to spring transition period. Variability in both physical (temperature and salinity) and biogeochemical parameters (dissolved and particulate organic carbon and nitrogen, as well as chlorophyll a) was observed during and between studies, but CDOM absorption coefficients measured at 375 nm (a 375) did not differ significantly. Distinct peaked absorption spectra were consistently observed for bulk ice, brine, and gap water, but were absent in the seawater samples. Correlation with the measured physical and biogeochemical parameters could not resolve the source of these peaks, but the shoulders and peaks observed between 260 and 280 nm and between 320 to 330 nm respectively, particularly in the samples taken from high light-exposed gap layer environment, suggest a possible link to aromatic and mycosporine-like amino acids. Sea ice CDOM susceptibility to photo-bleaching was demonstrated in an in situ 120 hour exposure, during which we observed a loss in CDOM absorption of 53% at 280 nm, 58% at 330 nm, and 30% at 375 nm. No overall coincidental loss of DOC or DON was measured during the experimental period. A relationship between the spectral slope (S) and carbon-specific absorption (a *375) indicated that the characteristics of CDOM can be described by the mixing of two broad end-members; and aged material, present in brine and seawater samples characterised by high S values and low a *375; and a fresh material, due to elevated in situ

  6. Solid and gaseous inclusions in the EDML deep ice core: origins and implications for the physical properties of polar ice

    NASA Astrophysics Data System (ADS)

    Faria, S. H.; Kipfstuhl, S.; Garbe, C. S.; Bendel, V.; Weikusat, C.; Weikusat, I.

    2010-12-01

    The great value of polar deep ice cores stems mainly from two essential features of polar ice: its crystalline structure and its impurities. They determine the physical properties of the ice matrix and provide proxies for the investigation of past climates. Experience shows that these two essential features of polar ice manifest themselves in a multiscale diversity of dynamic structures, including dislocations, grain boundaries, solid particles, air bubbles, clathrate hydrates and cloudy bands, among others. The fact that these structures are dynamic implies that they evolve with time through intricate interactions between the crystalline structure, impurities, and the ice flow. Records of these interactions have been carefully investigated in samples of the EPICA deep ice core drilled in Dronning Maud Land, Antarctica (75°S, 0°E, 2882 m elevation, 2774.15 m core length). Here we show how the distributions of sizes and shapes of air bubbles correlate with impurities and the crystalline structure, how the interaction between moving grain boundaries and micro-inclusions changes with ice depth and temperature, as well as the possible causes for the abrupt change in ice rheology observed in the MIS6-MIS5e transition. We also discuss how these observations may affect the flow of the ice sheet and the interpretation of paleoclimate records. Micrograph of an EDML sample from 555m depth. One can identify air bubbles (dark, round objects), microinclusions (tiny defocused spots), and a grain boundary pinned by a bubble. The width of the image is 700 micrometers.

  7. Computational Confirmation of the Carrier for the ``XCN'' Interstellar Ice Band: OCN- Charge Transfer Complexes

    NASA Astrophysics Data System (ADS)

    Park, Jin-Young; Woon, David E.

    2004-01-01

    Recent experimental studies provide evidence that the carrier for the so-called XCN feature at 2165 cm-1 (4.62 μm) in young stellar objects is an OCN-/NH+4 charge transfer (CT) complex that forms in energetically processed interstellar icy grain mantles. Although other RCN nitriles and RNC isonitriles have been considered, Greenberg's conjecture that OCN- is associated with the XCN feature has persisted for over 15 years. In this work, we report a computational investigation that thoroughly confirms the hypothesis that the XCN feature observed in laboratory studies can result from OCN-/NH+4 CT complexes arising from HNCO and NH3 in a water ice environment. Density functional theory calculations with HNCO, NH3, and up to 12 waters reproduce seven spectroscopic measurements associated with XCN: the band origin of the asymmetric stretching mode of OCN-, shifts due to isotopic substitutions of C, N, O, and H, and two weak features. However, very similar values are also found for the OCN-/NH+4 CT complex arising from HOCN and NH3. In both cases, the complex forms by barrierless proton transfer from HNCO or HOCN to NH3 during the optimization of the solvated system. Scaled B3LYP/6-31+G** harmonic frequencies for the HNCO and HOCN cases are 2181 and 2202 cm-1, respectively.

  8. The Fundamental Quadrupole Band of (14)N2: Line Positions from High-Resolution Stratospheric Solar Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Zander, R.; Goldman, A.; Murcray, F. J.; Murcray, D. G.; Grunson, M. R.; Farmer, C. B.

    1991-01-01

    The purpose of this note is to report accurate measurements of the positions of O- and S-branch lines of the (1-0) vibration-rotation quadrupole band of molecular nitrogen ((14)N2) and improved Dunham coefficients derived from a simultaneous least-squares analysis of these measurements and selected infrared and far infrared data taken from the literature. The new measurements have been derived from stratospheric solar occultation spectra recorded with Fourier transform spectrometer (FTS) instruments operated at unapodized spectral resolutions of 0.002 and 0.01 /cm. The motivation for the present investigation is the need for improved N2 line parameters for use in IR atmospheric remote sensing investigations. The S branch of the N2 (1-0) quadrupole band is ideal for calibrating the line-of-sight airmasses of atmospheric spectra since the strongest lines are well placed in an atmospheric window, their absorption is relatively insensitive to temperature and is moderately strong (typical line center depths of 10 to 50% in high-resolution ground-based solar spectra and in lower stratospheric solar occultation spectra), and the volume mixing ratio of nitrogen is constant in the atmosphere and well known. However, a recent investigation has'shown the need to improve the accuracies of the N2 fine positions, intensities, air-broadened half-widths, and their temperature dependences to fully exploit this calibration capability (1). The present investigation addresses the problem of improving the accuracy of the N2 line positions.

  9. SPICE: Sentinel-3 Performance Improvement for Ice Sheets

    NASA Astrophysics Data System (ADS)

    McMillan, M.; Escola, R.; Roca, M.; Thibaut, P.; Aublanc, J.; Shepherd, A.; Remy, F.; Benveniste, J.; Ambrózio, A.; Restano, M.

    2017-12-01

    For the past 25 years, polar-orbiting satellite radar altimeters have provided a valuable record of ice sheet elevation change and mass balance. One of the principle challenges associated with radar altimetry comes from the relatively large ground footprint of conventional pulse-limited radars, which reduces their capacity to make measurements in areas of complex topographic terrain. In recent years, progress has been made towards improving ground resolution, through the implementation of Synthetic Aperture Radar (SAR), or Delay-Doppler, techniques. In 2010, the launch of CryoSat-2 heralded the start of a new era of SAR Interferometric (SARIn) altimetry. However, because the satellite operated in SARIn and LRM mode over the ice sheets, many of the non-interferometric SAR altimeter processing techniques have been optimized for water and sea ice surfaces only. The launch of Sentinel-3, which provides full non-interferometric SAR coverage of the ice sheets, therefore presents the opportunity to further develop these SAR processing methodologies over ice sheets. Here we present results from SPICE, a 2 year study that focuses on (1) developing and evaluating Sentinel-3 SAR altimetry processing methodologies over the Polar ice sheets, and (2) investigating radar wave penetration through comparisons of Ku- and Ka-band satellite measurements. The project, which is funded by ESA's SEOM (Scientific Exploitation of Operational Missions) programme, has worked in advance of the operational phase of Sentinel-3, to emulate Sentinel-3 SAR and pseudo-LRM data from dedicated CryoSat-2 SAR acquisitions made at the Lake Vostok, Dome C and Spirit sites in East Antarctica, and from reprocessed SARIn data in Greenland. In Phase 1 of the project we have evaluated existing processing methodologies, and in Phase 2 we are investigating new evolutions to the Delay-Doppler Processing (DDP) and retracking chains. In this presentation we (1) evaluate the existing Sentinel-3 processing chain by

  10. A dual-band THz absorber based on graphene sheet and ribbons

    NASA Astrophysics Data System (ADS)

    Xing, Rui; Jian, Shuisheng

    2018-03-01

    A dual-band graphene absorber is proposed and investigated in this paper. The absorber consists of the gold substrate, the graphene sheet sandwiched by dielectric layers and the array of graphene ribbon placed on the top. The two absorption peaks of the dual-band are 99.8% at 4.95 THz and 99.6% at 9.2 THz, respectively. Due to the characteristic of tunable surface conductivity of graphene, the absorption can be controlled by adjusting the chemical potential of graphene. We also investigate the dependence of the absorption curve of the proposed absorber on the structure parameters. In addition, the structure of the absorber is very simple and it can be manufactured by chemical vapor deposition (CVD).

  11. The Penetration of Solar Radiation Into Carbon Dioxide Ice

    NASA Astrophysics Data System (ADS)

    Chinnery, H. E.; Hagermann, A.; Kaufmann, E.; Lewis, S. R.

    2018-04-01

    Icy surfaces behave differently to rocky or regolith-covered surfaces in response to irradiation. A key factor is the ability of visible light to penetrate partially into the subsurface. This results in the solid-state greenhouse effect, as ices can be transparent or translucent to visible and shorter wavelengths, while opaque in the infrared. This can lead to significant differences in shallow subsurface temperature profiles when compared to rocky surfaces. Of particular significance for modeling the solid-state greenhouse effect is the e-folding scale, otherwise known as the absorption scale length, or penetration depth, of the ice. While there have been measurements for water ice and snow, pure and with mixtures, to date, there have been no such measurements published for carbon dioxide ice. After an extensive series of measurements we are able to constrain the e-folding scale of CO2 ice for the cumulative wavelength range 300 to 1,100 nm, which is a vital parameter in heat transfer models for the Martian surface, enabling us to better understand surface-atmosphere interactions at Mars' polar caps.

  12. The two-photon absorptivity of rotational transitions in the A2 Sigma hyperon + (v prime = O) - X-2 pion (v prime prime = O) gamma band of nitric oxide

    NASA Technical Reports Server (NTRS)

    Gross, K. P.; Mckenzie, R. L.

    1982-01-01

    A predominantly single-mode pulsed dye laser system giving a well characterized spatial and temporal output suitable for absolute two-photon absorptivity measurements was used to study the NO gamma(0,0) S11 + R21 (J double prime = 7-1/2) transition. Using a calibrated induced-fluorescence technique, an absorptivity parameter of 2.8 + or - 1.4 x 10 to the minus 51st power cm to the 6th power was obtained. Relative strengths of other rotational transitions in the gamma(0,0) band were also measured and shown to compare well with predicted values in all cases except the O12 (J double prime = 10-1/2) transition.

  13. Ultraviolet absorption spectrum of HOCl

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.

    1993-01-01

    The room temperature UV absorption spectrum of HOCl was measured over the wavelength range 200 to 380 nm with a diode array spectrometer. The absorption spectrum was identified from UV absorption spectra recorded following UV photolysis of equilibrium mixtures of Cl2O/H2O/HOCl. The HOCl spectrum is continuous with a maximum at 242 nm and a secondary peak at 304 nm. The measured absorption cross section at 242 nm was (2.1 +/- 0.3) x 10 exp -19/sq cm (2 sigma error limits). These results are in excellent agreement with the work of Knauth et al. (1979) but in poor agreement with the more recent measurements of Mishalanie et al. (1986) and Permien et al. (1988). An HOCl nu2 infrared band intensity of 230 +/- 35/sq cm atm was determined based on this UV absorption cross section. The present results are compared with these previous measurements and the discrepancies are discussed.

  14. Differential absorption lidar measurements of atmospheric temperature and pressure profiles

    NASA Technical Reports Server (NTRS)

    Korb, C. L.

    1981-01-01

    The theory and methodology of using differential absorption lidar techniques for the remote measurement of atmospheric pressure profiles, surface pressure, and temperature profiles from ground, air, and space-based platforms are presented. Pressure measurements are effected by means of high resolution measurement of absorption at the edges of the oxygen A band lines where absorption is pressure dependent due to collisional line broadening. Temperature is assessed using measurements of the absorption at the center of the oxygen A band line originating from a quantum state with high ground state energy. The population of the state is temperature dependent, allowing determination of the temperature through the Boltzmann term. The results of simulations of the techniques using Voigt profile and variational analysis are reported for ground-based, airborne, and Shuttle-based systems. Accuracies in the 0.5-1.0 K and 0.1-0.3% range are projected.

  15. Detection of Deuterium in Icy Surfaces and the D/H Ratio of Icy Objects

    NASA Astrophysics Data System (ADS)

    Clark, Roger Nelson; Brown, Robert H.; Swayze, Gregg A.; Cruikshank, Dale P.

    2017-10-01

    Water ice in crystalline or amorphous form is orientationally disordered, which results in very broad absorptions. Deuterium in trace amounts goes into an ordered position, so is not broadened like H2O absorptions. The D-O stretch is located at 4.13 microns with a width of 0.027 micron. Laboratory spectral measurements on natural H2O and deuterium doped ice show the absorption is slightly asymmetric and in reflectance the band shifts from 4.132 to 4.137 microns as abundance decreases. We derive a preliminary absorption coefficient of ~ 80,000 cm^-1 for the D-O stretch compared to about 560 cm^-1 in H2O ice at 4.13 microns, enabling the detection of deuterium at levels less than Vienna Standard Mean Ocean Water (VSMOW), depending on S/N. How accurate the D/H ratios can be derived will require additional lab work and radiative transfer modeling to simultaneously derive the grain size distribution, the abundance of any contaminants, and deuterium abundance. To first order, the grain size distribution can be compensated by computing the D-O stretch band depth to 2-micron H2O ice band depth ratio, which we call Dratio. Colorado fresh water (~80% of VSMOW) has a Dratio of 0.036, at a D/H = 0.0005, the Dratio = 0.15, and at a D/H = 0.0025, the Dratio = 0.42. The VSMOW Dratio is ~ 0.045.We have used VIMS data from the Cassini spacecraft to compute large spectral averages to detect the deuterium in the rings and on the icy satellite surfaces. A B-ring, 21,882 pixel average, at 640 ms/pixel, or 3.89 hours of integration time, shows a 3.5% O-D stretch band depth and a Dratio = 0.045, indicating deuterium abundance equal to VSMOW. Rhea, using 1.89 hours of integration time shows Dratio = 0.052, or slightly higher than VSMOW. Phoebe has an unusually deep O-D stretch band of 1.85% considering the high abundance of dark material suppressing the ice absorptions. We measure a Dratio = 0.11, an enhancement of ~2.4 over VSMOW, but detailed radiative transfer modeling is needed to

  16. Direct optical band gap measurement in polycrystalline semiconductors: A critical look at the Tauc method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolgonos, Alex; Mason, Thomas O.; Poeppelmeier, Kenneth R., E-mail: krp@northwestern.edu

    2016-08-15

    The direct optical band gap of semiconductors is traditionally measured by extrapolating the linear region of the square of the absorption curve to the x-axis, and a variation of this method, developed by Tauc, has also been widely used. The application of the Tauc method to crystalline materials is rooted in misconception–and traditional linear extrapolation methods are inappropriate for use on degenerate semiconductors, where the occupation of conduction band energy states cannot be ignored. A new method is proposed for extracting a direct optical band gap from absorption spectra of degenerately-doped bulk semiconductors. This method was applied to pseudo-absorption spectramore » of Sn-doped In{sub 2}O{sub 3} (ITO)—converted from diffuse-reflectance measurements on bulk specimens. The results of this analysis were corroborated by room-temperature photoluminescence excitation measurements, which yielded values of optical band gap and Burstein–Moss shift that are consistent with previous studies on In{sub 2}O{sub 3} single crystals and thin films. - Highlights: • The Tauc method of band gap measurement is re-evaluated for crystalline materials. • Graphical method proposed for extracting optical band gaps from absorption spectra. • The proposed method incorporates an energy broadening term for energy transitions. • Values for ITO were self-consistent between two different measurement methods.« less

  17. Infrared absorption spectra of molecular crystals: Possible evidence for small-polaron formation?

    NASA Astrophysics Data System (ADS)

    Pržulj, Željko; Čevizović, Dalibor; Zeković, Slobodan; Ivić, Zoran

    2008-09-01

    The temperature dependence of the position of the so-called anomalous band peaked at 1650cm in the IR-absorption spectrum of crystalline acetanilide (ACN) is theoretically investigated within the small-polaron theory. Its pronounced shift towards the position of the normal band is predicted with the rise of temperature. Interpretation of the IR-absorption spectra in terms of small-polaron model has been critically assessed on the basis of these results.

  18. A Changing Arctic Sea Ice Cover and the Partitioning of Solar Radiation

    NASA Astrophysics Data System (ADS)

    Perovich, D. K.; Light, B.; Polashenski, C.; Nghiem, S. V.

    2010-12-01

    Certain recent changes in the Arctic sea ice cover are well established. There has been a reduction in sea ice extent, an overall thinning of the ice cover, reduced prevalence of perennial ice with accompanying increases in seasonal ice, and a lengthening of the summer melt season. Here we explore the effects of these changes on the partitioning of solar energy between reflection to the atmosphere, absorption within the ice, and transmission to the ocean. The physical changes in the ice cover result in less light reflected and more light absorbed in the ice and transmitted to the ocean. These changes directly affect the heat and mass balance of the ice as well as the amount of light available for photosynthesis within and beneath the ice cover. The central driver is that seasonal ice covers tend to have lower albedo than perennial ice throughout the melt season, permitting more light to penetrate into the ice and ocean. The enhanced light penetration increases the amount of internal melting of the ice and the heat content of the upper ocean. The physical changes in the ice cover mentioned above have affected both the amount and the timing of the photosynthetically active radiation (PAR) transmitted into the ice and ocean, increasing transmitted PAR, particularly in the spring. A comparison of the partitioning of solar irradiance and PAR for both historical and recent ice conditions will be presented.

  19. Low-refractive-index dye-aggregate films with small absorption based on anomalous dispersion.

    PubMed

    Wakamatsu, Takashi; Watanabe, Keita; Saito, Kazuhiro

    2005-02-20

    Complex-refractive-index spectra of Squarylium (SQ) dye-aggregate films deposited upon metal films have been investigated by measurements of properties of the films including absorption spectra (AS) and attenuated total reflection. Complex refractive indices are estimated by Kramers-Kronig analysis for the AS and by a theoretical curve-fitting analysis for attenuated total reflection. The dye-aggregate films exhibited an absorption that was blueshifted from that of a monomer, as a result of the H-aggregate formation of SQ molecules, and had a changing refractive index with anomalous dispersion about the H-absorption band. From both measurements of the SQ films it was found that there is a region of low absorption in the short-wavelength side of the absorption band and that the refractive index there is lower than that of glass.

  20. Low-refractive-index dye-aggregate films with small absorption based on anomalous dispersion

    NASA Astrophysics Data System (ADS)

    Wakamatsu, Takashi; Watanabe, Keita; Saito, Kazuhiro

    2005-02-01

    Complex-refractive-index spectra of Squarylium (SQ) dye-aggregate films deposited upon metal films have been investigated by measurements of properties of the films including absorption spectra (AS) and attenuated total reflection. Complex refractive indices are estimated by Kramers-Kronig analysis for the AS and by a theoretical curve-fitting analysis for attenuated total reflection. The dye-aggregate films exhibited an absorption that was blueshifted from that of a monomer, as a result of the H-aggregate formation of SQ molecules, and had a changing refractive index with anomalous dispersion about the H-absorption band. From both measurements of the SQ films it was found that there is a region of low absorption in the short-wavelength side of the absorption band and that the refractive index there is lower than that of glass.

  1. Ice Shelf-Ocean Interactions Near Ice Rises and Ice Rumples

    NASA Astrophysics Data System (ADS)

    Lange, M. A.; Rückamp, M.; Kleiner, T.

    2013-12-01

    The stability of ice shelves depends on the existence of embayments and is largely influenced by ice rises and ice rumples, which act as 'pinning-points' for ice shelf movement. Of additional critical importance are interactions between ice shelves and the water masses underlying them in ice shelf cavities, particularly melting and refreezing processes. The present study aims to elucidate the role of ice rises and ice rumples in the context of climate change impacts on Antarctic ice shelves. However, due to their smaller spatial extent, ice rumples react more sensitively to climate change than ice rises. Different forcings are at work and need to be considered separately as well as synergistically. In order to address these issues, we have decided to deal with the following three issues explicitly: oceanographic-, cryospheric and general topics. In so doing, we paid particular attention to possible interrelationships and feedbacks in a coupled ice-shelf-ocean system. With regard to oceanographic issues, we have applied the ocean circulation model ROMBAX to ocean water masses adjacent to and underneath a number of idealized ice shelf configurations: wide and narrow as well as laterally restrained and unrestrained ice shelves. Simulations were performed with and without small ice rises located close to the calving front. For larger configurations, the impact of the ice rises on melt rates at the ice shelf base is negligible, while for smaller configurations net melting rates at the ice-shelf base differ by a factor of up to eight depending on whether ice rises are considered or not. We employed the thermo-coupled ice flow model TIM-FD3 to simulate the effects of several ice rises and one ice rumple on the dynamics of ice shelf flow. We considered the complete un-grounding of the ice shelf in order to investigate the effect of pinning points of different characteristics (interior or near calving front, small and medium sized) on the resulting flow and stress fields

  2. Defect-induced band-edge reconstruction of a bismuth-halide double perovskite for visible-light absorption

    DOE PAGES

    Slavney, Adam H.; Leppert, Linn; Bartesaghi, Davide; ...

    2017-03-29

    In this study, halide double perovskites have recently been developed as less toxic analogs of the lead perovskite solar-cell absorbers APbX 3 (A = monovalent cation; X = Br or I). However, all known halide double perovskites have large bandgaps that afford weak visible-light absorption. The first halide double perovskite evaluated as an absorber, Cs 2AgBiBr 6 (1), has a bandgap of 1.95 eV. Here, we show that dilute alloying decreases 1’s bandgap by ca. 0.5 eV. Importantly, time-resolved photoconductivity measurements reveal long-lived carriers with microsecond lifetimes in the alloyed material, which is very promising for photovoltaic applications. The alloyedmore » perovskite described herein is the first double perovskite to show comparable bandgap energy and carrier lifetime to those of (CH 3NH 3)PbI 3. By describing how energy- and symmetry-matched impurity orbitals, at low concentrations, dramatically alter 1’s band edges, we open a potential pathway for the large and diverse family of halide double perovskites to compete with APbX 3 absorbers.« less

  3. Assessing backscatter change due to backscatter gradient over the Greenland ice sheet using Envisat and SARAL altimetry

    NASA Astrophysics Data System (ADS)

    Su, Xiaoli; Luo, Zhicai; Zhou, Zebing

    2018-06-01

    Knowledge of backscatter change is important to accurately retrieve elevation change time series from satellite radar altimetry over continental ice sheets. Previously, backscatter coefficients generated in two cases, namely with and without accounting for backscatter gradient (BG), are used. However, the difference between backscatter time series obtained separately in these two cases and its impact on retrieving elevation change are not well known. Here we first compare the mean profiles of the Ku and Ka band backscatter over the Greenland ice sheet (GrIS), with results illustrating that the Ku-band backscatter is 3 ∼ 5 dB larger than that of the Ka band. We then conduct statistic analysis about time series of backscatter formed separately in the above two cases for both Ku and Ka bands over two regions in the GrIS. It is found that the standard deviation of backscatter time series becomes slightly smaller after removing the BG effect, which suggests that the method for the BG correction is effective. Furthermore, the impact on elevation change from backscatter change due to the BG effect is separately assessed for both Ku and Ka bands over the GrIS. We conclude that Ka band altimetry would benefit from a BG induced backscatter analysis (∼10% over region 2). This study may provide a reference to form backscatter time series towards refining elevation change time series from satellite radar altimetry over ice sheets using repeat-track analysis.

  4. Tunable angle absorption of hyperbolic metamaterials based on plasma photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Zheng; Ning, Renxia, E-mail: nrxxiner@hsu.edu.cn; Xu, Yuan

    2016-06-15

    We present the design of a multilayer structure of hyperbolic metamaterials based on plasma photonic crystals which composed of two kinds of traditional dielectric and plasma. The relative permittivity of hyperbolic metamaterials has been studied at certain frequency range. The absorption and reflection of the multilayer period structure at normal and oblique incident have been investigated by the transfer matrix method. We discussed that the absorption is affected by the thickness of material and the electron collision frequency γ of the plasma. The results show that an absorption band at the low frequency can be obtained at normal incident anglemore » and another absorption band at the high frequency can be found at a large incident angle. The results may be applied by logical gate, stealth, tunable angle absorber, and large angle filter.« less

  5. Implications of New Methane Absorption Coefficients on Uranus Vertical Structure Derived from Near-IR Spectra

    NASA Astrophysics Data System (ADS)

    Fry, Patrick M.; Sromovsky, L. A.

    2009-09-01

    Using new methane absorption coefficients from Karkoschka and Tomasko (2009, submitted to Icarus, "Methane Absorption Coefficients for the Jovian Planets from Laboratory, Huygens, and HST Data"), we fit Uranus near-IR spectra previously analyzed in Sromovsky et al. (2006, Icarus 182, 577-593, Fink and Larson, 1979 J- and H-band), Sromovsky and Fry (2008, Icarus 193, 252-266, 2006 NIRC2 J- and H-band, 2006 SpeX) using Irwin et al. (2006, Icarus 181, 309-319) methane absorption coefficients. Because the new absorption coefficients usually result in higher opacities at the low temperatures seen in Uranus' upper troposphere, our previously derived cloud altitudes are expected to generally rise to higher altitudes. For example, using Lindal et al. (1987, JGR 92, 14987-15001) model D temperature and methane abundance profiles, we are better able to fit the J-band 43-deg. south bright band with the new coefficients (chi-square=205, vs. 315 for Irwin), with the pressure of the upper tropospheric cloud decreasing to 1.6 bars (from 2.4 bars using Irwin coefficients). Improvements in fitting H-band spectra from the same latitude are not as readily obtained. Derived upper tropospheric cloud pressures are very similar using the two absorption datasets (1.6-1.7 bars), but the character of the fits differs. New Karkoschka and Tomasko coefficients better fit some details in the 1.5-1.58 micron region, but Irwin fits the broad absorption band wing at 1.61-1.62 microns better, and the fit chi-square values are similar (K&T: 243, Irwin: 220). Results for a higher methane concentration (Lindal et al. model F) were similar. Whether the new coefficients will simply raise derived altitudes across the planet or will result in fundamental changes in structure is as yet unclear. This work was suported by NASA planetary astronomy and planetary atmospheres programs.

  6. Intensity Measurements of the 01(sup 1)21-00(sup 0)01 Perpendicular CO2 band at 5315 cm (sup -1) and 4 related hot bands

    NASA Technical Reports Server (NTRS)

    Giver, Lawrence P.; Chackerian, Charles, Jr.; Spencer, Mark N.; Brown, Linda R.; Wattson, Richard B.; Gore, Warren J. (Technical Monitor)

    1994-01-01

    The near-infrared thermal emission windows in the spectrum of the night-side of Venus have stimulated new determinations of the intensities of weak CO2 bands which are prominent absorption features in Venus spectra. We have previously measured the 31(sup 1)04-00(sup 0)01 band at 4416 cm (sup -1), which dominates a portion of the 2.2 micrometer window, using the 25-meter White absorption cell at Ames. Parameters for many of the unmeasured bands have been recomputed for the HITRAN compilation using direct numerical diagonalization. This procedure has some uncertainties, particularly for higher overtone-combination perpendicular bands, and substantial differences were noted for these bands when comparing the 1986 HITRAN tabulation with the 1992 values. To clarify this situation, we decided to measure the intensities of several of these bands; L.R.B. obtained spectra using the McMath FTS and 6 meter White cell, covering the region 3800 to 7700 cm (sup -1). A table is provided in which we compare our measured intensities and Herman-Wallis al parameters for the 01(sup 1)21-00(sup 0)01 band and 4 associated hot bands with both Hitran tabulations. It is anticipated that these measured values will be useful in further DND calculations of many very weak unmeasurable bands.

  7. Under Sea Ice phytoplankton bloom detection and contamination in Antarctica

    NASA Astrophysics Data System (ADS)

    Zeng, C.; Zeng, T.; Xu, H.

    2017-12-01

    Previous researches reported compelling sea ice phytoplankton bloom in Arctic, while seldom reports studied about Antarctic. Here, lab experiment showed sea ice increased the visible light albedo of the water leaving radiance. Even a new formed sea ice of 10cm thickness increased water leaving radiance up to 4 times of its original bare water. Given that phytoplankton preferred growing and accumulating under the sea ice with thickness of 10cm-1m, our results showed that the changing rate of OC4 estimated [Chl-a] varied from 0.01-0.5mg/m3 to 0.2-0.3mg/m3, if the water covered by 10cm sea ice. Going further, varying thickness of sea ice modulated the changing rate of estimating [Chl-a] non-linearly, thus current routine OC4 model cannot estimate under sea ice [Chl-a] appropriately. Besides, marginal sea ice zone has a large amount of mixture regions containing sea ice, water and snow, where is favorable for phytoplankton. We applied 6S model to estimate the sea ice/snow contamination on sub-pixel water leaving radiance of 4.25km spatial resolution ocean color products. Results showed that sea ice/snow scale effectiveness overestimated [Chl-a] concentration based on routine band ratio OC4 model, which contamination increased with the rising fraction of sea ice/snow within one pixel. Finally, we analyzed the under sea ice bloom in Antarctica based on the [Chl-a] concentration trends during 21 days after sea ice retreating. Regardless of those overestimation caused by sea ice/snow sub scale contamination, we still did not see significant under sea ice blooms in Antarctica in 2012-2017 compared with Arctic. This research found that Southern Ocean is not favorable for under sea ice blooms and the phytoplankton bloom preferred to occur in at least 3 weeks after sea ice retreating.

  8. EPR, optical absorption and luminescence studies of Cr3+-doped antimony phosphate glasses

    NASA Astrophysics Data System (ADS)

    De Vicente, F. S.; Santos, F. A.; Simões, B. S.; Dias, S. T.; Siu Li, M.

    2014-12-01

    Antimony phosphate glasses (SbPO) doped with 3 and 6 mol% of Cr3+ were studied by Electron Paramagnetic Resonance (EPR), UV-VIS optical absorption and luminescence spectroscopy. The EPR spectra of Cr3+-doped glasses showed two principal resonance signals with effective g values at g = 5.11 and g = 1.97. UV-VIS optical absorption spectra of SbPO:Cr3+ presented four characteristics bands at 457, 641, 675, and 705 nm related to the transitions from 4A2(F) to 4T1(F), 4T2(F), 2T1(G), and 2E(G), respectively, of Cr3+ ions in octahedral symmetry. Optical absorption spectra of SbPO:Cr3+ allowed evaluating the crystalline field Dq, Racah parameters (B and C) and Dq/B. The calculated value of Dq/B = 2.48 indicates that Cr3+ ions in SbPO glasses are in strong ligand field sites. The optical band gap for SbPO and SbPO:Cr3+ were evaluated from the UV optical absorption edges. Luminescence measurements of pure and Cr3+-doped glasses excited with 350 nm revealed weak emission bands from 400 to 600 nm due to the 3P1 → 1S0 electronic transition from Sb3+ ions. Cr3+-doped glasses excited with 415 nm presented Cr3+ characteristic luminescence spectra composed by two broad bands, one band centered at 645 nm (2E → 4A2) and another intense band from 700 to 850 nm (4T2 → 4A2).

  9. Probing Individual Ice Nucleation Events with Environmental Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Bingbing; China, Swarup; Knopf, Daniel; Gilles, Mary; Laskin, Alexander

    2016-04-01

    Heterogeneous ice nucleation is one of the processes of critical relevance to a range of topics in the fundamental and the applied science and technologies. Heterogeneous ice nucleation initiated by particles proceeds where microscopic properties of particle surfaces essentially control nucleation mechanisms. Ice nucleation in the atmosphere on particles governs the formation of ice and mixed phase clouds, which in turn influence the Earth's radiative budget and climate. Heterogeneous ice nucleation is still insufficiently understood and poses significant challenges in predictive understanding of climate change. We present a novel microscopy platform allowing observation of individual ice nucleation events at temperature range of 193-273 K and relative humidity relevant for ice formation in the atmospheric clouds. The approach utilizes a home built novel ice nucleation cell interfaced with Environmental Scanning Electron Microscope (IN-ESEM system). The IN-ESEM system is applied for direct observation of individual ice formation events, determining ice nucleation mechanisms, freezing temperatures, and relative humidity onsets. Reported microanalysis of the ice nucleating particles (INP) include elemental composition detected by the energy dispersed analysis of X-rays (EDX), and advanced speciation of the organic content in particles using scanning transmission x-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). The performance of the IN-ESEM system is validated through a set of experiments with kaolinite particles with known ice nucleation propensity. We demonstrate an application of the IN-ESEM system to identify and characterize individual INP within a complex mixture of ambient particles.

  10. The color of melt ponds on Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Lu, Peng; Leppäranta, Matti; Cheng, Bin; Li, Zhijun; Istomina, Larysa; Heygster, Georg

    2018-04-01

    Pond color, which creates the visual appearance of melt ponds on Arctic sea ice in summer, is quantitatively investigated using a two-stream radiative transfer model for ponded sea ice. The upwelling irradiance from the pond surface is determined and then its spectrum is transformed into RGB (red, green, blue) color space using a colorimetric method. The dependence of pond color on various factors such as water and ice properties and incident solar radiation is investigated. The results reveal that increasing underlying ice thickness Hi enhances both the green and blue intensities of pond color, whereas the red intensity is mostly sensitive to Hi for thin ice (Hi < 1.5 m) and to pond depth Hp for thick ice (Hi > 1.5 m), similar to the behavior of melt-pond albedo. The distribution of the incident solar spectrum F0 with wavelength affects the pond color rather than its intensity. The pond color changes from dark blue to brighter blue with increasing scattering in ice, and the influence of absorption in ice on pond color is limited. The pond color reproduced by the model agrees with field observations for Arctic sea ice in summer, which supports the validity of this study. More importantly, the pond color has been confirmed to contain information about meltwater and underlying ice, and therefore it can be used as an index to retrieve Hi and Hp. Retrievals of Hi for thin ice (Hi < 1 m) agree better with field measurements than retrievals for thick ice, but those of Hp are not good. The analysis of pond color is a new potential method to obtain thin ice thickness in summer, although more validation data and improvements to the radiative transfer model will be needed in future.

  11. Ultra-Wideband Radiometry Remote Sensing of Polar Ice Sheet Temperature Profile, Sea Ice and Terrestrial Snow Thickness: Forward Modeling and Data Analysis

    NASA Astrophysics Data System (ADS)

    Tsang, L.; Tan, S.; Sanamzadeh, M.; Johnson, J. T.; Jezek, K. C.; Durand, M. T.

    2017-12-01

    The recent development of an ultra-wideband software defined radiometer (UWBRAD) operating over the unprotected spectrum of 0.5 2.0 GHz using radio-frequency interference suppression techniques offers new methodologies for remote sensing of the polar ice sheets, sea ice, and terrestrial snow. The instrument was initially designed for remote sensing of the intragalcial temperature profile of the ice sheet, where a frequency dependent penetration depth yields a frequency dependent brightness temperature (Tb) spectrum that can be linked back to the temperature profile of the ice sheet. The instrument was tested during a short flight over Northwest Greenland in September, 2016. Measurements were successfully made over the different snow facies characteristic of Greenland including the ablation, wet snow and percolation facies, and ended just west of Camp Century during the approach to the dry snow zone. Wide-band emission spectra collected during the flight have been processed and analyzed. Results show that the spectra are highly sensitive to the facies type with scattering from ice lenses being the dominant reason for low Tbs in the percolation zone. Inversion of Tb to physical temperature at depth was conducted on the measurements near Camp Century, achieving a -1.7K ten-meter error compared to borehole measurements. However, there is a relatively large uncertainty in the lower part possibly due to the large scattering near the surface. Wideband radiometry may also be applicable to sea ice and terrestrial snow thickness retrieval. Modeling studies suggest that the UWBRAD spectra reduce ambiguities inherent in other sea ice thickness retrievals by utilizing coherent wave interferences that appear in the Tb spectrum. When applied to a lossless medium such as terrestrial snow, this coherent oscillation turns out to be the single key signature that can be used to link back to snow thickness. In this paper, we report our forward modeling findings in support of instrument

  12. Simplified procedure for computing the absorption of sound by the atmosphere

    DOT National Transportation Integrated Search

    2007-10-31

    This paper describes a study that resulted in the development of a simplified : method for calculating attenuation by atmospheric-absorption for wide-band : sounds analyzed by one-third octave-band filters. The new method [referred to : herein as the...

  13. Polarimetric Scattering Database for Non-spherical Ice Particles at Microwave Wavelengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aydin, Kultegin; Verlinde, Johannes; Clothiaux, Eugene

    A database containing polarimetric single-scattering properties of various types of ice particles at millimeter to centimeter wavelengths is presented. This database is complementary to earlier ones in that it contains complete (polarimetric) scattering property information for each ice particle - 44 plates, 30 columns, 405 branched planar crystals, 660 aggregates, and 640 conical graupel - and direction of incident radiation but is limited to four frequencies (W-, Ka-, Ku- and X-bands), does not include temperature dependencies of the single-scattering properties and does not include scattering properties averaged over randomly oriented ice particles. Rules for constructing the morphologies of ice particlesmore » from one database to the next often differ; consequently, analyses that incorporate all of the different databases will contain the most variability, while illuminating important differences between them.« less

  14. Toward a Lake Ice Phenology Derived from VIIRS Data

    NASA Astrophysics Data System (ADS)

    Sütterlin, Melanie; Duguay-Tetzlaff, Anke; Wunderle, Stefan

    2017-04-01

    Ice cover on lakes plays an essential role in the physical, chemical, and biological processes of freshwater systems (e.g., ice duration controls the seasonal heat budget of lakes), and it also has many economic implications (e.g., for hydroelectricity, transportation, winter tourism). The variability and trends in the seasonal cycle of lake ice (e.g., timing of freeze-up and break-up) represent robust and direct indicators of climate change; they therefore emphasize the importance of monitoring lake ice phenology. Satellite remote sensing has proven its great potential for detecting and measuring the ice cover on lakes. Different remote sensing systems have been successfully used to collect recordings of freeze-up, break-up, and ice thickness and increase the spatial and temporal coverage of ground-based observations. Therefore, within the Global Climate Observing System (GCOS) Swiss project, "Integrated Monitoring of Ice in Selected Swiss Lakes," initiated by MeteoSwiss, satellite images from various sensors and different approaches are used and compared to perform investigations aimed at integrated monitoring of lake ice in Switzerland and contributing to the collection of lake ice phenology recordings. Within the framework of this project, the Remote Sensing Research Group of the University of Bern (RSGB) utilizes data acquired in the fine-resolution imagery (I) bands (1-5) of the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor that is mounted onboard the SUOMI-NPP. Visible and near-infrared reflectances, as well as thermal infrared-derived lake surface water temperatures (LSWT), are used to retrieve lake ice phenology dates. The VIIRS instrument, which combines a high temporal resolution ( 2 times per day) with a reasonable spatial resolution (375 m), is equipped with a single broad-band thermal I-channel (I05). Thus, a single-channel LSWT retrieval algorithm is employed to correct for the atmospheric influence. The single channel algorithm applied in

  15. Probing the Origin and Evolution of Interstellar and Protoplanetary Biogenic Molecules:A Comprehensive Survey of Interstellar Ices with SPHEREx

    NASA Astrophysics Data System (ADS)

    Melnick, Gary J.; SPHEREx Science Team

    2016-01-01

    Many of the most important building blocks of life are locked in interstellar and protoplanetary ices. Examples include H2O, CO, CO2, and CH3OH, among others. There is growing evidence that in some environments, such as within the cores of dense molecular clouds and the mid-plane of protoplanetary disks, the amounts of these species in ices far exceeds that in the gas phase. As a result, collisions between ice-bearing bodies and newly forming planets are thought to be a major means of delivering these key species to young planets. There currently exist fewer than 250 ice absorption spectra toward Galactic molecular clouds, which is insufficient to reliably trace the ice content of clouds through the various stages of collapse to star and planet formation, or assess the effects of their environments and physical conditions, such as cloud density, internal temperature, presence or absence of embedded sources, external UV and X-ray radiation, gas-phase composition, or cosmic-ray ionization rate, on the ice composition for clouds at similar evolutionary stages. Ultimately, our goal is to understand how these findings connect to our own Solar System.SPHEREx, which is a mission in NASA's Small Explorer (SMEX) program that was selected for a Phase A study in July 2015, will be a game changer for the study of interstellar, circumstellar, and protoplanetary disk ices. SPHEREx will obtain spectra over the entire sky in the optical and near-IR, including the 2.5 to 4.8 micron region, which contains the above biogenic ice features. SPHEREx will detect millions of potential background continuum point sources already catalogued by NASA's Wide-field Infrared Survey Explorer (WISE) at 3.4 and 4.6 microns for which there is evidence for intervening gas and dust based on the 2MASS+WISE colors with sufficient sensitivity to yield ice absorption spectra with SNR ≥ 100 per spectral resolution element. The resulting > 100-fold increase in the number of high-quality ice absorption

  16. Gas-phase Absorption of {{\\rm{C}}}_{70}^{2+} below 10 K: Astronomical Implications

    NASA Astrophysics Data System (ADS)

    Campbell, E. K.; Holz, M.; Maier, J. P.

    2017-02-01

    The electronic spectrum of the fullerene dication {{{C}}}702+ has been measured in the gas phase at low temperature in a cryogenic radiofrequency ion trap. The spectrum consists of a strong origin band at 7030 Å and two weaker features to higher energy. The bands have FWHMs of 35 Å indicating an excited state lifetime on the order of one-tenth of a picosecond. Absorption cross-section measurements yield (2 ± 1) × 10-15 cm2 at 7030 Å. These results are used to predict the depth of diffuse interstellar bands (DIBs) due to the absorption by {{{C}}}702+. At an assumed column density of 2 × 1012 cm-2 the attenuation of starlight at 7030 Å is around 0.4% and thus the detection of such a shallow and broad interstellar band would be difficult. The electronic spectrum of {{{C}}}602+ shows no absorptions in the visible. Below 4000 Å the spectra of C60, {{{C}}}60+ and {{{C}}}602+ are similar. The large intrinsic FWHM of the features in this region, ˜200 Å for the band near 3250 Å, make them unsuitable for DIB detection.

  17. Mapping Pluto Methane Ice

    NASA Image and Video Library

    2015-09-24

    The Ralph/LEISA infrared spectrometer on NASA's New Horizons spacecraft mapped compositions across Pluto's surface as it flew past the planet on July 14, 2015. On the left, a map of methane ice abundance shows striking regional differences, with stronger methane absorption indicated by the brighter purple colors, and lower abundances shown in black. Data have only been received so far for the left half of Pluto's disk. At right, the methane map is merged with higher-resolution images from the spacecraft's Long Range Reconnaissance Imager (LORRI). http://photojournal.jpl.nasa.gov/catalog/PIA19953

  18. HIGH-ENERGY ELECTRON IRRADIATION OF INTERSTELLAR CARBONACEOUS DUST ANALOGS: COSMIC-RAY EFFECTS ON THE CARRIERS OF THE 3.4 μ m ABSORPTION BAND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maté, Belén; Molpeceres, Germán; Jiménez-Redondo, Miguel

    2016-11-01

    The effects of cosmic rays on the carriers of the interstellar 3.4 μ m absorption band have been investigated in the laboratory. This band is attributed to stretching vibrations of CH{sub 3} and CH{sub 2} in carbonaceous dust. It is widely observed in the diffuse interstellar medium, but disappears in dense clouds. Destruction of CH{sub 3} and CH{sub 2} by cosmic rays could become relevant in dense clouds, shielded from the external ultraviolet field. For the simulations, samples of hydrogenated amorphous carbon (a-C:H) have been irradiated with 5 keV electrons. The decay of the band intensity versus electron fluence reflectsmore » a-C:H dehydrogenation, which is well described by a model assuming that H{sub 2} molecules, formed by the recombination of H atoms liberated through CH bond breaking, diffuse out of the sample. The CH bond destruction rates derived from the present experiments are in good accordance with those from previous ion irradiation experiments of HAC. The experimental simplicity of electron bombardment has allowed the use of higher-energy doses than in the ion experiments. The effects of cosmic rays on the aliphatic components of cosmic dust are found to be small. The estimated cosmic-ray destruction times for the 3.4 μ m band carriers lie in the 10{sup 8} yr range and cannot account for the disappearance of this band in dense clouds, which have characteristic lifetimes of 3 × 10{sup 7} yr. The results invite a more detailed investigation of the mechanisms of CH bond formation and breaking in the intermediate region between diffuse and dense clouds.« less

  19. Comparison of In-Situ, Model and Ground Based In-Flight Icing Severity

    NASA Technical Reports Server (NTRS)

    Johnston, Christopher J.; Serke, David J.; Adriaansen, Daniel R.; Reehorst, Andrew L.; Politovich, Marica K.; Wolff, Cory A.; McDonough, Frank

    2011-01-01

    As an aircraft flies through supercooled liquid water, the liquid freezes instantaneously to the airframe thus altering its lift, drag, and weight characteristics. In-flight icing is a contributing factor to many aviation accidents, and the reliable detection of this hazard is a fundamental concern to aviation safety. The scientific community has recently developed products to provide in-flight icing warnings. NASA's Icing Remote Sensing System (NIRSS) deploys a vertically--pointing Ka--band radar, a laser ceilometer, and a profiling multi-channel microwave radiometer for the diagnosis of terminal area in-flight icing hazards with high spatial and temporal resolution. NCAR s Current Icing Product (CIP) combines several meteorological inputs to produce a gridded, three-dimensional depiction of icing severity on an hourly basis. Pilot reports are the best and only source of information on in-situ icing conditions encountered by an aircraft. The goal of this analysis was to ascertain how the testbed NIRSS icing severity product and the operational CIP severity product compare to pilot reports of icing severity, and how NIRSS and CIP compare to each other. This study revealed that the icing severity product from the ground-based NASA testbed system compared very favorably with the operational model-based product and pilot reported in-situ icing.

  20. Ionospheric Correction of InSAR for Accurate Ice Motion Mapping at High Latitudes

    NASA Astrophysics Data System (ADS)

    Liao, H.; Meyer, F. J.

    2016-12-01

    Monitoring the motion of the large ice sheets is of great importance for determining ice mass balance and its contribution to sea level rise. Recently the first comprehensive ice motion of the Greenland and the Antarctica have been generated with InSAR. However, these studies have indicated that the performance of InSAR-based ice motion mapping is limited by the presence of the ionosphere. This is particularly true at high latitudes and for low-frequency SAR data. Filter-based and empirical methods (e.g., removing polynomials), which have often been used to mitigate ionospheric effects, are often ineffective in these areas due to the typically strong spatial variability of ionospheric phase delay in high latitudes and due to the risk of removing true deformation signals from the observations. In this study, we will first present an outline of our split-spectrum InSAR-based ionospheric correction approach and particularly highlight how our method improves upon published techniques, such as the multiple sub-band approach to boost estimation accuracy as well as advanced error correction and filtering algorithms. We applied our work flow to a large number of ionosphere-affected dataset over the large ice sheets to estimate the benefit of ionospheric correction on ice motion mapping accuracy. Appropriate test sites over Greenland and the Antarctic have been chosen through cooperation with authors (UW, Ian Joughin) of previous ice motion studies. To demonstrate the magnitude of ionospheric noise and to showcase the performance of ionospheric correction, we will show examples of ionospheric-affected InSAR data and our ionosphere corrected result for comparison in visual. We also compared the corrected phase data to known ice velocity fields quantitatively for the analyzed areas from experts in ice velocity mapping. From our studies we found that ionospheric correction significantly reduces biases in ice velocity estimates and boosts accuracy by a factor that depends on a