Sample records for ice cap margin

  1. Holocene Fluctuations of North Ice Cap, a Proxy for Climate Conditions along the Northwestern Margin of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Kelly, M. A.; Osterberg, E. C.; Lasher, G. E.; Farnsworth, L. B.; Howley, J. A.; Axford, Y.; Zimmerman, S. R. H.

    2015-12-01

    North Ice Cap (~76.9°N, 68°W, summit elevation 1322 m asl), a small, independent ice cap in northwestern Greenland, is located within ~25 km of the Greenland Ice Sheet margin and Harald Molkte Bræ outlet glacier. We present geochronological, geomorphic and sedimentological data constraining the Holocene extents of North Ice Cap and suggest that its past fluctuations can be used as a proxy for climate conditions along the northwestern margin of the Greenland Ice Sheet. Prior work by Goldthwait (1960) used glacial geomorphology and radiocarbon ages of subfossil plants emerging along shear planes in the ice cap margin to suggest that that North Ice Cap was not present during the early Holocene and nucleated in the middle to late Holocene time, with the onset of colder conditions. Subfossil plants emerging at shear planes in the North Ice Cap margin yield radiocarbon ages of ~4.8-5.9 cal kyr BP (Goldthwait, 1960) and ~AD 1000-1350 (950-600 cal yr BP), indicating times when the ice cap was smaller than at present. In situ subfossil plants exposed by recent ice cap retreat date to ~AD 1500-1840 (450-110 cal yr BP) and indicate small fluctuations of the ice cap margin. 10Be ages of an unweathered, lichen-free drift <100 m from the present North Ice Cap margin range from ~500 to 8000 yrs ago. We suggest that the drift was deposited during the last ~500 yrs and that the older 10Be ages are influenced by 10Be inherited from a prior period of exposure. We also infer ice cap fluctuations using geochemical data from a Holocene-long sediment core from Deltasø, a downstream lake that currently receives meltwater from North Ice Cap. The recent recession of the North Ice Cap margin influenced a catastrophic drainage of a large proglacial lake, Søndre Snesø, that our field team documented in August 2012. To our knowledge, this is the first significant lowering of Søndre Snesø in historical time.

  2. Polar Ice Caps: a Canary for the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Honsaker, W.; Lowell, T. V.; Sagredo, E.; Kelly, M. A.; Hall, B. L.

    2010-12-01

    Ice caps are glacier masses that are highly sensitive to climate change. Because of their hypsometry they can have a binary state. When relatively slight changes in the equilibrium line altitude (ELA) either intersect or rise above the land the ice can become established or disappear. Thus these upland ice masses have a fast response time. Here we consider a way to extract the ELA signal from independent ice caps adjacent to the Greenland Ice Sheet margin. It may be that these ice caps are sensitive trackers of climate change that also impact the ice sheet margin. One example is the Istorvet Ice Cap located in Liverpool Land, East Greenland (70.881°N, 22.156°W). The ice cap topography and the underlying bedrock surface dips to the north, with peak elevation of the current ice ranging in elevation from 1050 to 745 m.a.s.l. On the eastern side of the ice mass the outlet glaciers extending down to sea level. The western margin has several small lobes in topographic depressions, with the margin reaching down to 300 m.a.s.l. Topographic highs separate the ice cap into at least 5 main catchments, each having a pair of outlet lobes toward either side of the ice cap. Because of the regional bedrock slope each catchment has its own elevation range. Therefore, as the ELA changes it is possible for some catchments of the ice cap to experience positive mass balance while others have a negative balance. Based on weather observations we estimate the present day ELA to be ~1000 m.a.s.l, meaning mass balance is negative for the majority of the ice cap. By tracking glacier presence/absence in these different catchments, we can reconstruct small changes in the ELA. Another example is the High Ice Cap (informal name) in Milne Land (70.903°N, 25.626°W, 1080 m), East Greenland. Here at least 4 unconformities in ice layers found near the southern margin of the ice cap record changing intervals of accumulation and ablation. Therefore, this location may also be sensitive to slight

  3. Diatoms as Proxies for a Fluctuating Ice Cap Margin, Hvitarvatn, Iceland

    NASA Astrophysics Data System (ADS)

    Black, J. L.; Miller, G. H.; Geirsdottir, A.

    2005-12-01

    There are no complete records of terrestrial environmental change for the Holocene (11,000yrs) in Iceland and the status of Icelandic glaciers in the early Holocene remains unclear. It is not even known whether Iceland's large ice caps disappeared in the early Holocene, and if they did, when they re-grew. Icelandic lakes are particularly well suited to address these uncertainties as: 1) Glacial erosion and soft bedrock result in high lacustrine sedimentation rates, 2) Diagnostic tephras aid the geochronology, 3) Iceland's sensitivity to changes in North Atlantic circulation should produce clear signals in key environmental proxies (diatoms) preserved in lacustrine sequences, and 4) Ice-cap profiles are relatively flat so small changes in the equilibrium line altitude result in large changes in accumulation area. Hence, large changes in ice-sheet margins during the Holocene will impact sedimentation in glacier-dominated lakes and the diatom assemblages at those times. Hvitarvatn is a glacier dominated lake located on the eastern margin of Langjokull Ice Cap in central-western Iceland. The uppermost Hvitarvatn sediments reflect a glacially dominated system with planktonic, silica-demanding diatom taxa that suggest a high dissolved silica and turbid water environment consistent with high fluxes of glacial flour. Below this are Neoglacial sediments deposited when Langjokull was active, but outlet glaciers were not in contact with Hvitarvatn. The diatom assemblage here shows a small increase in abundance, but is still dominated by planktic, silica-demanding taxa. A distinct shift in lake conditions is reflected in the lowermost sediments, composed of predominantly benthic diatoms and deposited in clear water conditions with long growing seasons likely found in an environment with warmer summers than present and with no glacial erosion. Langjokull must have disappeared in the early Holocene for such a diverse, benthic dominated diatom assemblage to flourish.

  4. Holocene history of North Ice Cap, northwestern Greenland

    NASA Astrophysics Data System (ADS)

    Corbett, L. B.; Kelly, M. A.; Osterberg, E. C.; Axford, Y.; Bigl, M.; Roy, E. P.; Thompson, J. T.

    2013-12-01

    Although much research has focused on the past extents of the Greenland Ice Sheet, less is known about the smaller ice caps on Greenland and how they have evolved over time. These small ice caps respond sensitively to summer temperatures and, to a lesser extent, winter precipitation, and provide valuable information about climatic conditions along the Greenland Ice Sheet margins. Here, we investigate the Holocene history of North Ice Cap (76°55'N 68°00'W), located in the Nunatarssuaq region near Thule, northwest Greenland. Our results are based on glacial geomorphic mapping, 10Be dating, and analyses of sediment cores from a glacially fed lake. Fresh, unweathered and unvegetated boulders comprise moraines and drift that mark an extent of North Ice Cap ~25 m outboard of the present ice margin. It is likely that these deposits were formed during late Holocene time and we are currently employing 10Be surface exposure dating to examine this hypothesis. Just outboard of the fresh moraines and drift, boulders and bedrock show significant weathering and are covered with lichen. Based on glacial geomorphic mapping and detailed site investigations, including stone counts, we suggest that the weathered boulders and bedrock were once covered by erosive Greenland Ice Sheet flow from southeast to northwest over the Nunatarssuaq region. Five 10Be ages from the more weathered landscape only 100-200 m outboard of the modern North Ice Cap margin are 52 and 53 ka (bedrock) and 16, 23, and 31 ka (boulders). These ages indicate that recent ice cover has likely been cold-based and non-erosive, failing to remove inherited cosmogenic nuclides from previous periods of exposure, although the youngest boulder may provide a maximum limiting deglaciation age. Sediment cores collected from Delta Sø, a glacially-fed lake ~1.5 km outside of the modern North Ice Cap margin, contain 130 cm of finely laminated sediments overlying coarse sands and glacial till. Radiocarbon ages from just above

  5. Little Ice Age Fluctuations of Quelccaya Ice Cap, Peru

    NASA Astrophysics Data System (ADS)

    Stroup, J. S.; Kelly, M. A.; Lowell, T.

    2009-12-01

    A record of the past extents of Quelccaya Ice Cap (QIC) provides valuable information about tropical climate change from late glacial to recent time. Here, we examine the timing and regional significance of fluctuations of QIC during the Little Ice Age (LIA; ~1300-1850 AD). One prominent set of moraines, known as the Huancane I moraines, is located ~1 km from the present-day western ice cap margin and provides a near-continuous outline of the most recent advance of QIC. This moraine set was radiocarbon dated (~298 ± 134 and 831 ± 87 yr BP) by Mercer and Palacios (1977) and presented as some of the first evidence for cooling in the tropics during the Little Ice Age. Recent field investigations in the QIC region focused on refining the chronology of the Huancane I moraines. In 2008, new stratigraphic sections exposed by local lake-flooding events revealed multiple layers of peat within the Huancane I moraines. In both 2008 and 2009, samples were obtained for 10Be dating of boulders on Huancane I moraines. A combination of radiocarbon and 10Be ages indicate that the Huancane I moraines were deposited by ice cap expansion after ~3800 yr BP and likely by multiple advances at approximately 1000, 600, 400, and 200 yr BP. Radiocarbon and 10Be chronologies of the Huancane I moraines are compared with the Quelccaya ice core records (Thompson et al., 1985; 1986; 2006). Accumulation data from the ice core records are interpreted to indicate a significant wet period at ~1500-1700 AD followed by a significant drought at ~1720-1860 AD. We examine ice marginal fluctuations during these times to determine influence of such events on the ice cap extent.

  6. Rapid Collapse of the Vavilov Ice Cap, Russian High Arctic.

    NASA Astrophysics Data System (ADS)

    Willis, M. J.; Zheng, W.; Durkin, W. J., IV; Pritchard, M. E.; Ramage, J. M.; Dowdeswell, J. A.; Benham, T. J.; Glazovsky, A.; Macheret, Y.; Porter, C. C.

    2016-12-01

    Cold based ice caps and glaciers are thought to respond slowly to environmental changes. As sea ice cover evolves in the Arctic, a feedback process alters air-temperatures and precipitation patterns across the region. During the last decades of the 20th century the land-terminating western margin of the Vavilov Ice Cap, on October Revolution Island of the Severnaya Zemlya Archipelago, advanced slowly westwards. The advance was driven by precipitation changes that occurred about half a millennia ago. InSAR shows that in 1996 the margin sustained ice speeds of around 20 m/yr. By 2000 the ice front had moved a short distance into the Kara Sea and had transitioned to a marine-terminating front, although an ice apron around the ice margin indicates the ice there was still frozen to the bed and there is no evidence of calving in satellite imagery. In 2013 ice motions near the terminus had accelerated to around 1 m/day. By late 2015 the main trunk of the newly activated outlet glacier attained speeds of 25 m/day and the inland portion of the ice cap thinned at rates of more than 0.3 m/day. The acceleration of the outlet glacier occurred due to its advance over weak, water-saturated marine sediments that provide little resistance to ice flow, and to the removal of lateral resistive stresses as the glacier advanced out into an open embayment. Longitudinal stretching at the front forces an increase in the surface slope upstream. Rapid rates of motion inland generate frictional melt at the bed, possibly aided by cryohydrological warming. Large areas of the interior of the Vavilov ice cap are now below the equilibrium line and the grounded portion of the ice cap is losing mass at a rate of 4.5 km3 w.e./year. The changes at the Vavilov are likely irrecoverable in a warming climate due to a reduction in the accumulation area of the ice cap. Increased precipitation drove the advance, which accelerated due to the presence of soft sediments. The acceleration lowered the elevation

  7. Late-glacial and Holocene history of changes in Quelccaya Ice Cap, Peru

    NASA Astrophysics Data System (ADS)

    Kelly, M. A.; Lowell, T. V.; Schaefer, J. M.; Finkel, R. C.

    2008-12-01

    Quelccaya Ice Cap in the southeastern Peruvian Andes (~13-14° S latitude) is an icon for climate change. Its rapidly receding outlet, Qori Kalis Glacier, has been monitored since the 1970's. Cores from Quelccaya Ice Cap provide high-resolution information about temperature and precipitation during the past 1,500 years. We extend the understanding of past changes in Quelccaya Ice Cap based on mapping and dating of glacial moraines and associated deposits. Our results include fifty 10Be ages of moraines and bedrock as well as twenty-nine 14C ages of organic material associated with moraines. These results form the basis of a chronology of changes in Quelccaya Ice Cap from ~16,000 yr BP to late Holocene time. Results from 10Be and 14C dating indicate that Quelccaya Ice Cap experienced a significant advance at 12,700-11,400 yr BP. Subsequent to this advance, the ice margin deposited at least three recessional moraine sets. Quelccaya Ice Cap receded to near its present-day margin by ~10,000 yr BP. Neoglacial advances began by ~3,000 yr BP and culminated with a maximum advance during the Little Ice Age. This chronology fits well with prior work which indicates a restricted Quelccaya Ice Cap during middle Holocene time. Moreover, the overlap between moraine and ice core data for the last 1,500 years provides a unique opportunity to assess the influences of temperature and precipitation on past ice cap extents.

  8. A comparison of Holocene fluctuations of the eastern and western margins of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Levy, L.; Kelly, M. A.; Lowell, T. V.; Hall, B. L.; Applegate, P. J.; Howley, J.; Axford, Y.

    2013-12-01

    Determining how the Greenland Ice Sheet (GrIS) responded to past temperature fluctuations is important for assessing its future stability in a changing climate. We present a record of the Holocene extents of the western GrIS margin near Kangerlussuaq (67.0°N, 50.7°W) and compare this with the past fluctuations of Bregne ice cap (71°N, 25.6° W), a small ice cap in the Scoresby Sund region 90 km from the eastern GrIS margin, to examine the mechanisms that influenced past ice margin fluctuations. The past extents of the Bregne ice cap are a proxy for the climatic conditions that influenced the nearby GrIS margin. We used glacial geomorphic mapping, 10Be dating of boulders and bedrock, and sediment cores from proglacial and non-glacial lakes. In western Greenland, 10Be ages on the Keglen moraines, 13 km west of the current GrIS margin and the Ørkendalen moraines, ≤2 km west of the current ice margin date to 7.3 × 0.1 ka (n=6) and 6.8 × 0.3 ka (n=9), respectively. Fresh moraines, ≤50 m from the current ice margin date to AD 1830-1950 and are likely associated with advances during the Little Ice Age (LIA). In some areas, the LIA moraines lie stratigraphically above the Ørkendalen moraines, indicating the GrIS was inboard of the Ørkendalen limit from 6.8 ka to the 20th century. In eastern Greenland, 10Be ages show that Bregne ice cap retreated within its late Holocene limit by 10.7 ka. A lack of clastic sediment in a proglacial lake suggests the ice cap was smaller or completely absent from ~10-2.6 ka. A snowline analysis indicates that temperatures ~0.5°C warmer than present would render the entire ice cap into an ablation zone. Glacial silts in the proglacial lake at ~2.6 and ~1.9 cal kyr BP to present indicate advances of Bregne ice cap. Fresh moraines ≤200 m of Bregne ice cap were deposited ≤2.6 cal kyr BP and mark the largest advance of the Holocene. Both the western GrIS margin and Bregne ice cap were influenced by Northern Hemisphere summer

  9. Holocene Activity of the Quelccaya Ice Cap: A Working Model

    NASA Astrophysics Data System (ADS)

    Lowell, T. V.; Smith, C. A.; Kelly, M. A.; Stroup, J. S.

    2012-12-01

    The patterns and magnitudes of past climate change in the topics are still under discussion. We contribute here by reporting on patterns of glacier length changes of the largest glacier in the tropics, Quelccaya Ice Cap (~13.9°S, 70.9°W, summit at 5645 m). This ice cap has several local domes that may have different patterns of length changes because of differing elevations of the domes (high to the north, lower to the south). Prior work (Mark et al. 2003, Abbott et al., 2004; Thompson et al., 2005; Buffen, et al., 2009), new radiocarbon ages, and stratigraphic and geomorphic relationships are used to determine the general pattern of length changes for the outlets from this ice cap. We exploit geomorphic relationships and present new radiocarbon ages on interpreted stratigraphic sections to determine the pattern of length changes for this ice cap. Ice retreated during late glacial times (Rodbell and Seltzer, 2000; Kelly et al., in press). By 11,400 yr BP it had reached a position ~1.2 km beyond its present (2000 AD) extent. While length during the early Holocene is problematic, present evidence permits, but does not prove, extents of 0.5 to 1.0 km down-valley from the present margin. Between 6400 and 4400 yr BP the ice cap was smaller than present, but it advanced multiple times during the late Holocene. Lengths of up to 1 km beyond present were achieved at 3400 yr BP and ~500 yr BP. Additionally, the ice advanced to 0.8 km beyond its present margin at 1600 yr BP. Because these glaciers were temperate, we take these lengths to represent primarily changes in temperature. This may suggest that lowering insolation values in the northern hemisphere during the Holocene provide a first order control on tropical temperatures. Alternatively, it may be that major reorganization of the topical circulation belts about 5000 yr BP yields two configurations of the QIC and hence Holocene temperatures - one at the present ice margin and and the second about 1 km beyond the

  10. Form and flow of the Academy of Sciences Ice Cap, Severnaya Zemlya, Russian High Arctic

    NASA Astrophysics Data System (ADS)

    Dowdeswell, J. A.; Bassford, R. P.; Gorman, M. R.; Williams, M.; Glazovsky, A. F.; Macheret, Y. Y.; Shepherd, A. P.; Vasilenko, Y. V.; Savatyuguin, L. M.; Hubberten, H.-W.; Miller, H.

    2002-04-01

    The 5,575-km2 Academy of Sciences Ice Cap is the largest in the Russian Arctic. A 100-MHz airborne radar, digital Landsat imagery, and satellite synthetic aperture radar (SAR) interferometry are used to investigate its form and flow, including the proportion of mass lost through iceberg calving. The ice cap was covered by a 10-km-spaced grid of radar flight paths, and the central portion was covered by a grid at 5-km intervals: a total of 1,657 km of radar data. Digital elevation models (DEMs) of ice surface elevation, ice thickness, and bed elevation data sets were produced (cell size 500 m). The DEMs were used in the selection of a deep ice core drill site. Total ice cap volume is 2,184 km3 (~5.5 mm sea level equivalent). The ice cap has a single dome reaching 749 m. Maximum ice thickness is 819 m. About 200 km, or 42%, of the ice margin is marine. About 50% of the ice cap bed is below sea level. The central divide of the ice cap and several major drainage basins, in the south and east of the ice cap and of up to 975 km2, are delimited from satellite imagery. There is no evidence of past surge activity on the ice cap. SAR interferometric fringes and phase-unwrapped velocities for the whole ice cap indicate slow flow in the interior and much of the margin, punctuated by four fast flowing features with lateral shear zones and maximum velocity of 140 m yr-1. These ice streams extend back into the slower moving ice to within 5-10 km of the ice cap crest. They have lengths of 17-37 km and widths of 4-8 km. Mass flux from these ice streams is ~0.54 km3 yr-1. Tabular icebergs up to ~1.7 km long are produced. Total iceberg flux from the ice cap is ~0.65 km3 yr-1 and probably represents ~40% of the overall mass loss, with the remainder coming from surface melting. Driving stresses are generally lowest (<40 kPa) close to the ice cap divides and in several of the ice streams. Ice stream motion is likely to include a significant basal component and may involve deformable

  11. The projected demise of Barnes Ice Cap: Evidence of an unusually warm 21st century Arctic

    NASA Astrophysics Data System (ADS)

    Gilbert, A.; Flowers, G. E.; Miller, G. H.; Refsnider, K. A.; Young, N. E.; Radić, V.

    2017-03-01

    As a remnant of the Laurentide Ice Sheet, Barnes Ice Cap owes its existence and present form in part to the climate of the last glacial period. The ice cap has been sustained in the present interglacial climate by its own topography through the mass balance-elevation feedback. A coupled mass balance and ice-flow model, forced by Coupled Model Intercomparison Project Phase 5 climate model output, projects that the current ice cap will likely disappear in the next 300 years. For greenhouse gas Representative Concentration Pathways of +2.6 to +8.5 Wm-2, the projected ice-cap survival times range from 150 to 530 years. Measured concentrations of cosmogenic radionuclides 10Be, 26Al, and 14C at sites exposed near the ice-cap margin suggest the pending disappearance of Barnes Ice Cap is very unusual in the last million years. The data and models together point to an exceptionally warm 21st century Arctic climate.

  12. Geochronology and paleoclimatic implications of the last deglaciation of the Mauna Kea Ice Cap, Hawaii

    USGS Publications Warehouse

    Anslow, Faron S.; Clark, P.U.; Kurz, M.D.; Hostetler, S.W.

    2010-01-01

    We present new 3He surface exposure ages on moraines and bedrock near the summit of Mauna Kea, Hawaii, which refine the age of the Mauna Kea Ice Cap during the Local Last Glacial Maximum (LLGM) and identify a subsequent fluctuation of the ice margin. The 3He ages, when combined with those reported previously, indicate that the local ice-cap margin began to retreat from its LLGM extent at 20.5??2.5ka, in agreement with the age of deglaciation determined from LLGM moraines elsewhere in the tropics. The ice-cap margin receded to a position at least 3km upslope for ~4.5-5.0kyr before readvancing nearly to its LLGM extent. The timing of this readvance at ~15.4ka corresponds to a large reduction of the Atlantic meridional overturning circulation (AMOC) following Heinrich Event 1. Subsequent ice-margin retreat began at 14.6??1.9ka, corresponding to a rapid resumption of the AMOC and onset of the B??lling warm interval, with the ice cap melting rapidly to complete deglaciation. Additional 3He ages obtained from a flood deposit date the catastrophic outburst of a moraine-dammed lake roughly coeval with the Younger Dryas cold interval, suggesting a more active hydrological cycle on Mauna Kea at this time. A coupled mass balance and ice dynamics model is used to constrain the climate required to generate ice caps of LLGM and readvance sizes. The depression of the LLGM equilibrium line altitude requires atmospheric cooling of 4.5??1??C, whereas the mass balance modeling indicates an accompanying increase in precipitation of as much as three times that of present. We hypothesize (1) that the LLGM temperature depression was associated with global cooling, (2) that the temperature depression that contributed to the readvance occurred in response to an atmospheric teleconnection to the North Atlantic, and (3) that the precipitation enhancement associated with both events occurred in response to a southward shift in the position of the inter-tropical convergence zone (ITCZ). Such a

  13. Present and Future Surface Mass Budget of Small Arctic Ice Caps in a High Resolution Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Mottram, Ruth; Langen, Peter; Koldtoft, Iben; Midefelt, Linnea; Hesselbjerg Christensen, Jens

    2016-04-01

    Globally, small ice caps and glaciers make a substantial contribution to sea level rise; this is also true in the Arctic. Around Greenland small ice caps are surprisingly important to the total mass balance from the island as their marginal coastal position means they receive a large amount of precipitation and also experience high surface melt rates. Since small ice caps and glaciers have had a disproportionate number of long-term monitoring and observational schemes in the Arctic, likely due to their relative accessibility, they can also be a valuable source of data. However, in climate models the surface mass balance contributions are often not distinguished from the main ice sheet and the presence of high relief topography is difficult to capture in coarse resolution climate models. At the same time, the diminutive size of marginal ice masses in comparison to the ice sheet makes modelling their ice dynamics difficult. Using observational data from the Devon Ice Cap in Arctic Canada and the Renland Ice Cap in Eastern Greenland, we assess the success of a very high resolution (~5km) regional climate model, HIRHAM5 in capturing the surface mass balance (SMB) of these small ice caps. The model is forced with ERA-Interim and we compare observed mean SMB and the interannual variability to assess model performance. The steep gradient in topography around Renland is challenging for climate models and additional statistical corrections are required to fit the calculated surface mass balance to the high relief topography. Results from a modelling experiment at Renland Ice Cap shows that this technique produces a better fit between modelled and observed surface topography. We apply this statistical relationship to modelled SMB on the Devon Ice Cap and use the long time series of observations from this glacier to evaluate the model and the smoothed SMB. Measured SMB values from a number of other small ice caps including Mittivakkat and A.P. Olsen ice cap are also compared

  14. Sensitivity, stability and future evolution of the world's northernmost ice cap, Hans Tausen Iskappe (Greenland)

    NASA Astrophysics Data System (ADS)

    Zekollari, Harry; Huybrechts, Philippe; Noël, Brice; van de Berg, Willem Jan; van den Broeke, Michiel R.

    2017-03-01

    In this study the dynamics and sensitivity of Hans Tausen Iskappe (western Peary Land, Greenland) to climatic forcing is investigated with a coupled ice flow-mass balance model. The surface mass balance (SMB) is calculated from a precipitation field obtained from the Regional Atmospheric Climate Model (RACMO2.3), while runoff is calculated from a positive-degree-day runoff-retention model. For the ice flow a 3-D higher-order thermomechanical model is used, which is run at a 250 m resolution. A higher-order solution is needed to accurately represent the ice flow in the outlet glaciers. Under 1961-1990 climatic conditions a steady-state ice cap is obtained that is overall similar in geometry to the present-day ice cap. Ice thickness, temperature and flow velocity in the interior agree well with observations. For the outlet glaciers a reasonable agreement with temperature and ice thickness measurements can be obtained with an additional heat source related to infiltrating meltwater. The simulations indicate that the SMB-elevation feedback has a major effect on the ice cap response time and stability. This causes the southern part of the ice cap to be extremely sensitive to a change in climatic conditions and leads to thresholds in the ice cap evolution. Under constant 2005-2014 climatic conditions the entire southern part of the ice cap cannot be sustained, and the ice cap loses about 80 % of its present-day volume. The projected loss of surrounding permanent sea ice and resultant precipitation increase may attenuate the future mass loss but will be insufficient to preserve the present-day ice cap for most scenarios. In a warmer and wetter climate the ice margin will retreat, while the interior is projected to thicken, leading to a steeper ice cap, in line with the present-day observed trends. For intermediate- (+4 °C) and high- warming scenarios (+8 °C) the ice cap is projected to disappear around AD 2400 and 2200 respectively, almost independent of the projected

  15. Glaciological reconstruction of Holocene ice margins in northwestern Greenland

    NASA Astrophysics Data System (ADS)

    Birkel, S. D.; Osterberg, E. C.; Kelly, M. A.; Axford, Y.

    2014-12-01

    The past few decades of climate warming have brought overall margin retreat to the Greenland Ice Sheet. In order to place recent and projected changes in context, we are undertaking a collaborative field-modeling study that aims to reconstruct the Holocene history of ice-margin fluctuation near Thule (~76.5°N, 68.7°W), and also along the North Ice Cap (NIC) in the Nunatarssuaq region (~76.7°N, 67.4°W). Fieldwork reported by Kelly et al. (2013) reveals that ice in the study areas was less extensive than at present ca. 4700 (GIS) and ca. 880 (NIC) cal. years BP, presumably in response to a warmer climate. We are now exploring Holocene ice-climate coupling using the University of Maine Ice Sheet Model (UMISM). Our approach is to first test what imposed climate anomalies can afford steady state ice margins in accord with field data. A second test encompasses transient simulation of the Holocene, with climate boundary conditions supplied by existing paleo runs of the Community Climate System Model version 4 (CCSM4), and a climate forcing signal derived from Greenland ice cores. In both cases, the full ice sheet is simulated at 10 km resolution with nested domains at 0.5 km for the study areas. UMISM experiments are underway, and results will be reported at the meeting.

  16. Paleo ice-cap surfaces and extents

    NASA Astrophysics Data System (ADS)

    Gillespie, A.; Pieri, D.

    2008-12-01

    The distribution, equilibrium-line altitude (ELA) and timing of Pleistocene alpine glaciers are used to constrain paleoclimatic reconstructions. Attention has largely focused on the geomorphic evidence for the former presence of simple valley glaciers; paleo alpine ice caps and their outlet glaciers have proven to be more problematical. This is especially so in the remote continental interior of Asia, where the research invested in the Alps or Rocky Mountains has yet to be duplicated. Even the putative existence and size of paleo ice caps in Tibet and the Kyrgyz Tien Shan is controversial. Remote sensing offers the opportunity to assess vast tracts of land quickly, with images and co-registered digital elevation models (DEMs) offering the most information for studies of paleoglaciers. We pose several questions: (1) With what confidence can nunataks be identified remotely? (2) What insights do their physiographic characteristics offer? (3) What characteristics of the bed of a paleo ice cap can be used to identify its former presence remotely? and (4) Can the geomorphic signatures of the edges of paleo ice caps be recognized and mapped? Reconstruction of the top surface of a paleo ice cap depends on the recognition of nunataks, typically rougher at 1 m to 100 m scales than their surroundings. Nunataks in southern Siberia are commonly notched by multiple sub- horizontal bedrock terraces. These step terraces appear to originate from freeze-thaw action on the rock-ice interface during periods of stability, and presence of multiple terraces suggests stepwise lowering of ice surfaces during deglaciation. An older generation of step-terraced nunataks, distinguished by degraded and eroded terraces, delineates a larger paleo ice cap in the Sayan Range (Siberian - Mongolian border) that significantly pre-dates the last glacial maximum (LGM). Large ice caps can experience pressure melting at their base and can manifest ice streams within the ice cap. Valleys left behind differ

  17. Devon island ice cap: core stratigraphy and paleoclimate.

    PubMed

    Koerner, R M

    1977-04-01

    Valuable paleoclimatic information can be gained by studying the distribution of melt layers in deep ice cores. A profile representing the percentage of ice in melt layers in a core drilled from the Devon Island ice cap plotted against both time and depth shows that the ice cap has experienced a period of very warm summers since 1925, following a period of colder summers between about 1600 and 1925. The earlier period was coldest between 1680 and 1730. There is a high correlation between the melt-layer ice percentage and the mass balance of the ice cap. The relation between them suggests that the ice cap mass balance was zero (accumulation equaled ablation) during the colder period but is negative in the present warmer one. There is no firm evidence of a present cooling trend in the summer conditions on the ice cap. A comparison with the melt-layer ice percentage in cores from the other major Canadian Arctic ice caps shows that the variation of summer conditions found for the Devon Island ice cap is representative for all the large ice caps for about 90 percent of the time. There is also a good correlation between melt-layer percentage and summer sea-ice conditions in the archipelago. This suggests that the search for the northwest passage was influenced by changing climate, with the 19th-century peak of the often tragic exploration coinciding with a period of very cold summers.

  18. Present-day dynamics and future evolution of the world's northernmost ice cap, Hans Tausen Iskappe (Greenland)

    NASA Astrophysics Data System (ADS)

    Zekollari, Harry; Huybrechts, Philippe; Noël, Brice; van de Berg, Willem Jan; van den Broeke, Michiel R.

    2017-04-01

    In this study the dynamics of Hans Tausen Iskappe (western Peary Land, Greenland) are investigated with a coupled ice flow - mass balance model. Precipitation is obtained from the Regional Climate Model RACMO 2.3 and the surface mass balance is calculated from a Positive Degree-Day runoff/retention model, for which the input parameters are derived from field observations. For the ice flow a 3-D higher-order thermo-mechanical model is used, which is run at a 250 m resolution. Under 1961-1990 climatic conditions a steady state ice cap is obtained that is overall similar in geometry to the present-day ice cap. Ice thickness, temperature and flow velocity in the interior agree well with observations. For the outlet glaciers a reasonable agreement with temperature and ice thickness measurements can only be obtained with an additional heat source related to infiltrating meltwater. The simulations indicate that the SMB-elevation feedback has a major effect on the ice cap response time and stability. This causes the southern part of the ice cap to be extremely sensitive to a change in climatic conditions and leads to thresholds in the ice cap evolution. Under constant 2005-2014 climatic conditions the entire southern part of the ice cap cannot be sustained and the ice cap loses about 80% of its present-day volume. The future projected loss of surrounding permanent sea-ice and corresponding potential sharp precipitation increase may however lead to an attenuation of the retreat and even potential stabilization of the ice cap for a warming of up to 2-3°C. In a warmer and wetter climate the ice margin will retreat while the interior is projected to grow, leading to a steeper ice cap, in line with the present-day observed trends. For intermediate (+4°C) and high warming scenarios (+8°C) the ice cap is projected to disappear respectively around 2400 and 2200 A.D., almost irrespective of the projected precipitation regime and the simulated present-day geometry.

  19. Emergent Dead Vegetation and Paired Cosmogenic Isotope Constraints on Ice Cap Activity, Baffin Island, Arctic Canada

    NASA Astrophysics Data System (ADS)

    Pendleton, S.; Miller, G. H.

    2014-12-01

    Recent summer warming has now raised the equilibrium line above almost all ice caps on Baffin Island, resulting in surface lowering and marginal recession everywhere. As cold-based ice recedes it frequently exposes in situ tundra plants that were living at the time ice expanded across the site. Radiocarbon dates for each plant records when cold summers dropped regional snowline below the site, killing the plants, and snowline remained below the site until the collection date. The kill dates also represent the last time that the climate was warm enough to expose the sampling location. Seventy-six vegetation samples collected in 2013 from the Penny Ice Cap region have been dated, with significant age populations at ~0.5, 1.8, 2.3, and 3.6 ka. The absence of ages around ~1, 2, 3, 4.5, and 5.5 ka suggest periods of either no snowline depression or stability. Sixteen vegetation samples returned ages of >45 ka (2 revisited sites from 2010, 14 new). It is postulated that these radiocarbon dead samples were last exposed during the last interglaciation (~120 ka), the last time climate was as warm as present. In addition to plant collections, bedrock exposures at the ice margins were sampled for 26Al/10Be cosmogenic nuclide dating. Seven samples from and around the Penny Ice cap have returned maximum exposure ages from ~ 0.6-0.9 ma and total histories of ~0.6-1.5 ma. In general, samples from the larger Penny Ice Cap exhibited lower amounts of exposure (~20% of total history) than those samples from smaller, localized ice caps (~55%). Radiocarbon dead sites north of the Penny Ice cap experienced significantly more exposure over their lifetimes than their counterparts east of the Penny Ice cap, suggesting significant differences in local and regional land ice fluctuations over the last 2 million years. Utilizing both the method of in situ moss and 26Al/10Be dating provides new insight into both the recent activity and long-term evolution of ice on Baffin Island. In particular

  20. Martian Polar Caps: Folding, Faulting, Flowing Glaciers of Multiple Interbedded Ices

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.

    2001-12-01

    The Martian south polar cap (permanent CO2 cap and polar layered deposits), exhibit abundant, varied, and widespread deformational phenomena. Folding and boudinage are very common. Strike-slip or normal faults are rarer. Common in the vicinity of major troughs and scarps are signs of convergent flow tectonics manifested as wrinkle-ridge-like surface folds, thrust faults, and viscous forebulges with thin-skinned extensional crevasses and wrinkle-ridge folds. Such flow convergence is predicted by theory. Boudinage and folding at the 300-m wavelength scale, indicating rheologically contrasting materials, is widely exposed at deep levels along erosional scarps. Independent morphologic evidence indicates south polar materials of contrasting volatility. Hence, the south polar cap appears to be a multiphase structure of interbedded ices. The north polar cap locally also exhibits flow indicators, though they are neither as common nor as varied as in the south. The large-scale quasi-spiral structure of the polar caps could be a manifestation of large-scale boudinage. According to this scenario, deep-level boudinage continuously originates under the glacial divide (the polar cap summit). Rod-like boudin structures are oriented transverse to flow and migrate outward with the large-scale flow field. Troughs develop over areas between major boudins. A dynamic competition, and possibly a rough balance, develops between the local flow field in the vicinity of a trough (which tends to close the trough by lateral closure and upwelling flow) and sublimation erosion (which tends to widen and deepen them). Over time, the troughs flow to the margins of the polar cap where they, along with other polar structures, are destroyed by sublimation. Major ice types contributing to rheological and volatility layering may include, in order of highest to lowest mechanical strength, CO2 clathrate hydrate, water ice containing inert/insoluble dust, pure water ice, water ice containing traces of

  1. Correlating Ice Cores from Quelccaya Ice Cap with Chronology from Little Ice Age Glacial Extents

    NASA Astrophysics Data System (ADS)

    Stroup, J. S.; Kelly, M. A.; Lowell, T. V.

    2010-12-01

    Proxy records indicate Southern Hemisphere climatic changes during the Little Ice Age (LIA; ~1300-1850 AD). In particular, records of change in and around the tropical latitudes require attention because these areas are sensitive to climatic change and record the dynamic interplay between hemispheres (Oerlemans, 2005). Despite this significance, relatively few records exist for the southern tropics. Here we present a reconstruction of glacial fluctuations of Quelccaya Ice Cap (QIC), Peruvian Andes, from pre-LIA up to the present day. In the Qori Kalis valley, extensive sets of moraines exist beginning with the 1963 AD ice margin (Thompson et al., 2006) and getting progressively older down valley. Several of these older moraines can be traced and are continuous with moraines in the Challpa Cocha valley. These moraines have been dated at <1050-1350-AD (Mercer and Palacios, 1977) and interpreted to have been deposited during the Little Ice Age. We present a new suite of surface exposure and radiocarbon dates collected in 2008 and 2009 that constrain the ages of these moraines. Preliminary 10Be ages of boulder surfaces atop the moraines range from ~350-1370 AD. Maximum and minimum-limiting radiocarbon ages bracketing the moraines are ~0-1800 AD. The chronology of past ice cap extents are correlated with ice core records from QIC which show an accumulation increase during ~1500-1700 AD and an accumulation decrease during ~1720-1860 AD (Thompson et al., 1985; 1986; 2006). In addition, other proxy records from Peru and the tropics are correlated with the records at QIC as a means to understand climate conditions during the LIA. This work forms the basis for future modeling of the glacial system during the LIA at QIC and for modeling of past temperature and precipitation regimes at high altitude in the tropics.

  2. Cold basal conditions during surges control flow of fringing Arctic ice caps in Greenland

    NASA Astrophysics Data System (ADS)

    Cook, Samuel; Christoffersen, Poul; Todd, Joe; Palmer, Steven

    2017-04-01

    Fringing ice caps separated from larger ice sheets are rarely studied, yet they are an important part of earth's cryosphere, which has become the largest source of global sea-level rise. Understanding marginal ice caps is crucial for being able to predict sea-level change as they are responsible for up to 20% of Greenland's mass loss for 2003-2008. Studies of fringing ice caps can furthermore provide useful insights into processes operating on glaciers that surge. Surging has been the focus of much recent glaciological work, especially with reference to thermal evolution of polythermal glaciers in High Mountain Asia and the High Arctic. This has shown that the classic divide between hydrologically-controlled surges ('hard-bed') in Alaska and thermally-regulated ('soft-bed') surges elsewhere is less stark than previously assumed. Studying marginal ice caps can therefore be valuable in several ways. The largest fringing ice cap in Greenland is Flade Isblink. Previous work has established that this ice cap is showing a range of dynamic behaviour, including subglacial lake drainage and varied patterns of mass-balance change. In particular, a substantial surge, assumed to be caused by a version of the thermally-regulated mechanism, occurred between 1996 and 2000, making the ice cap a useful case study for investigating this process. Here we investigate the surge on Flade Isblink using the open-source, Full-Stokes model Elmer/Ice to invert for basal conditions and englacial temperatures using the adjoint method. We specifically study steady-state conditions representative of the active surge phase in 2000, and the subsequent quiescent phase, using patterns of surface velocity observed in 2000, 2005, 2008 and 2015. Under constant geometry, temperature and geothermal heat, it is shown that surging increases basal freezing rates by over 60% across an area that is twice as large as the area over which the bed freezes in the quiescent phase. The process responsible for this

  3. Changes in ice-margin processes and sediment routing during ice-sheet advance across a marginal moraine

    USGS Publications Warehouse

    Knight, P.G.; Jennings, C.E.; Waller, R.I.; Robinson, Z.P.

    2007-01-01

    Advance of part of the margin of the Greenland ice sheet across a proglacial moraine ridge between 1968 and 2002 caused progressive changes in moraine morphology, basal ice formation, debris release, ice-marginal sediment storage, and sediment transfer to the distal proglacial zone. When the ice margin is behind the moraine, most of the sediment released from the glacier is stored close to the ice margin. As the margin advances across the moraine the potential for ice-proximal sediment storage decreases and distal sediment flux is augmented by reactivation of moraine sediment. For six stages of advance associated with distinctive glacial and sedimentary processes we describe the ice margin, the debris-rich basal ice, debris release from the glacier, sediment routing into the proglacial zone, and geomorphic processes on the moraine. The overtopping of a moraine ridge is a significant glaciological, geomorphological and sedimentological threshold in glacier advance, likely to cause a distinctive pulse in distal sediment accumulation rates that should be taken into account when glacial sediments are interpreted to reconstruct glacier fluctuations. ?? 2007 Swedish Society for Anthropology and Geography.

  4. The future of the Devon Ice cap: results from climate and ice dynamics modelling

    NASA Astrophysics Data System (ADS)

    Mottram, Ruth; Rodehacke, Christian; Boberg, Fredrik

    2017-04-01

    The Devon Ice Cap is an example of a relatively well monitored small ice cap in the Canadian Arctic. Close to Greenland, it shows a similar surface mass balance signal to glaciers in western Greenland. Here we use high resolution (5km) simulations from HIRHAM5 to drive the PISM glacier model in order to model the present day and future prospects of this small Arctic ice cap. Observational data from the Devon Ice Cap in Arctic Canada is used to evaluate the surface mass balance (SMB) data output from the HIRHAM5 model for simulations forced with the ERA-Interim climate reanalysis data and the historical emissions scenario run by the EC-Earth global climate model. The RCP8.5 scenario simulated by EC-Earth is also downscaled by HIRHAM5 and this output is used to force the PISM model to simulate the likely future evolution of the Devon Ice Cap under a warming climate. We find that the Devon Ice Cap is likely to continue its present day retreat, though in the future increased precipitation partly offsets the enhanced melt rates caused by climate change.

  5. Remote sensing of the marginal ice zone during Marginal Ice Zone Experiment (MIZEX) 83

    NASA Technical Reports Server (NTRS)

    Shuchman, R. A.; Campbell, W. J.; Burns, B. A.; Ellingsen, E.; Farrelly, B. A.; Gloersen, P.; Grenfell, T. C.; Hollinger, J.; Horn, D.; Johannessen, J. A.

    1984-01-01

    The remote sensing techniques utilized in the Marginal Ice Zone Experiment (MIZEX) to study the physical characteristics and geophysical processes of the Fram Strait Region of the Greenland Sea are described. The studies, which utilized satellites, aircraft, helicopters, and ship and ground-based remote sensors, focused on the use of microwave remote sensors. Results indicate that remote sensors can provide marginal ice zone characteristics which include ice edge and ice boundary locations, ice types and concentration, ice deformation, ice kinematics, gravity waves and swell (in the water and the ice), location of internal wave fields, location of eddies and current boundaries, surface currents and sea surface winds.

  6. Long-term evolution of a small ice cap in Greenland: a dynamic perspective from numerical flow modelling

    NASA Astrophysics Data System (ADS)

    Vieli, Andreas; Lane, Timothy; Adamson, Kathryn

    2017-04-01

    Small ice caps at the periphery of the Greenland ice sheet are often close to the limit of existence and are therefore expected to respond more sensitively to climate change than the land-margin of the neighboring ice sheet. However, their past evolution and dynamic behavior is poorly understood and their use as climate indicators therefore remains so far limited. We here aim to provide a long-term dynamic reconstruction of Lyngmarksbraeen, a small (32km2) ice cap on Disko Island in West Greenland, with a particular focus on the little ice age (LIA, since 1200AD). We use a 2-dim. time-dependent numerical flow model (SIA) and a PDD-mass balance model in combination with historical observations, geomorphological mapping and exposure dating to simulate its long-term evolution and dynamic behaviour. We specifically focus on retreat since the LIA, which is well constrained by geomorphological evidence and historical maps and length records of several small outlet glaciers and data from local and regional climate stations (Qeqertarssuaq and Ilulisat). We also explore aspects related to flow dynamics and find that the dynamic state of this ice cap is, at any time, far from being balanced and is highly sensitive to the surface elevation mass balance feedback and results in an asynchronous response of the different outlets and hysteresis-type behaviour. The modelling is able to reproduce the observed LIA-extent and the almost continuous retreat over the last hundred years well. It further indicates that the ice cap was already dynamically inert since the 1960s. Today, the ice cap has lost almost its entire accumulation area and even without any further warming in the future, the ice cap is expected to vanish within a couple of decades.

  7. Towards multi-decadal to multi-millennial ice core records from coastal west Greenland ice caps

    NASA Astrophysics Data System (ADS)

    Das, Sarah B.; Osman, Matthew B.; Trusel, Luke D.; McConnell, Joseph R.; Smith, Ben E.; Evans, Matthew J.; Frey, Karen E.; Arienzo, Monica; Chellman, Nathan

    2017-04-01

    The Arctic region, and Greenland in particular, is undergoing dramatic change as characterized by atmospheric warming, decreasing sea ice, shifting ocean circulation patterns, and rapid ice sheet mass loss, but longer records are needed to put these changes into context. Ice core records from the Greenland ice sheet have yielded invaluable insight into past climate change both regionally and globally, and provided important constraints on past surface mass balance more directly, but these ice cores are most often from the interior ice sheet accumulation zone, at high altitude and hundreds of kilometers from the coast. Coastal ice caps, situated around the margins of Greenland, have the potential to provide novel high-resolution records of local and regional maritime climate and sea surface conditions, as well as contemporaneous glaciological changes (such as accumulation and surface melt history). But obtaining these records is extremely challenging. Most of these ice caps are unexplored, and thus their thickness, age, stratigraphy, and utility as sites of new and unique paleoclimate records is largely unknown. Access is severely limited due to their high altitude, steep relief, small surface area, and inclement weather. Furthermore, their relatively low elevation and marine moderated climate can contribute to significant surface melting and degradation of the ice stratigraphy. We recently targeted areas near the Disko Bay region of central west Greenland where maritime ice caps are prevalent but unsampled, as potential sites for new multi-decadal to multi-millennial ice core records. In 2014 & 2015 we identified two promising ice caps, one on Disko Island (1250 m. asl) and one on Nuussuaq Peninsula (1980 m. asl) based on airborne and ground-based geophysical observations and physical and glaciochemical stratigraphy from shallow firn cores. In spring 2015 we collected ice cores at both sites using the Badger-Eclipse electromechanical drill, transported by a medley

  8. What Lies Below a Martian Ice Cap

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for larger annotated version

    This image (top) taken by the Shallow Radar instrument on NASA's Mars Reconnaissance Orbiter reveals the layers of ice, sand and dust that make up the north polar ice cap on Mars. It is the most detailed look to date at the insides of this ice cap. The colored map below the radar picture shows the topography of the corresponding Martian terrain (red and white represent higher ground, and green and yellow lower).

    The radar image reveals four never-before-seen thick layers of ice and dust separated by layers of nearly pure ice. According to scientists, these thick ice-free layers represent approximately one-million-year-long cycles of climate change on Mars caused by variations in the planet's tilted axis and its eccentric orbit around the sun. Adding up the entire stack of ice gives an estimated age for the north polar ice cap of about 4 million years a finding that agrees with previous theoretical estimates. The ice cap is about 2 kilometers (1.2 miles) thick.

    The radar picture also shows that the boundary between the ice layers and the surface of Mars underneath is relatively flat (bottom white line on the right). This implies that the surface of Mars is not sagging, or bending, under the weight of the ice cap and this, in turn, suggests that the planet's lithosphere, a combination of the crust and the strong parts of the upper mantle, is thicker than previously thought.

    A thicker lithosphere on Mars means that temperatures increase more gradually with depth toward the interior. Temperatures warm enough for water to be liquid are therefore deeper than previously thought. Likewise, if liquid water does exist in aquifers below the surface of Mars, and if there are any organisms living in that water, they would have to be located deeper in the planet.

    The topography data are from Mars Orbiter Laser Altimeter, which was flown on NASA's Mars Global

  9. Devon Ice cap's future: results from climate and ice dynamics modelling via surface mass balance modelling

    NASA Astrophysics Data System (ADS)

    Rodehacke, C. B.; Mottram, R.; Boberg, F.

    2017-12-01

    The Devon Ice Cap is an example of a relatively well monitored small ice cap in the Canadian Arctic. Close to Greenland, it shows a similar surface mass balance signal to glaciers in western Greenland. Here we various boundary conditions, ranging from ERA-Interim reanalysis data via global climate model high resolution (5km) output from the regional climate model HIRHAM5, to determine the surface mass balance of the Devon ice cap. These SMB estimates are used to drive the PISM glacier model in order to model the present day and future prospects of this small Arctic ice cap. Observational data from the Devon Ice Cap in Arctic Canada is used to evaluate the surface mass balance (SMB) data output from the HIRHAM5 model for simulations forced with the ERA-Interim climate reanalysis data and the historical emissions scenario run by the EC-Earth global climate model. The RCP8.5 scenario simulated by EC-Earth is also downscaled by HIRHAM5 and this output is used to force the PISM model to simulate the likely future evolution of the Devon Ice Cap under a warming climate. We find that the Devon Ice Cap is likely to continue its present day retreat, though in the future increased precipitation partly offsets the enhanced melt rates caused by climate change.

  10. Evaluation of remote-sensing techniques to measure decadal-scale changes of Hofsjokull ice cap, Iceland

    USGS Publications Warehouse

    Hall, D.K.; Williams, R.S.; Barton, J.S.; Sigurdsson, O.; Smith, L.C.; Garvin, J.B.

    2000-01-01

    Dynamic surficial changes and changes in the position of the firn line and the areal extent of Hofsjökull ice cap, Iceland, were studied through analysis of a time series (1973–98) of synthetic-aperture radar (SAR) and Landsat data. A digital elevation model of Hofsjökull, which was constructed using SAR interferometry, was used to plot the SAR backscatter coefficient (σ°) vs elevation and air temperature along transects across the ice cap. Seasonal and daily σ° patterns are caused by freezing or thawing of the ice-cap surface, and abrupt changes in σ° are noted when the air temperature ranges from ∼−5° to 0°C. Late-summer 1997 σ° (SAR) and reflectance (Landsat) boundaries agree and appear to be coincident with the firn line and a SAR σ° boundary that can be seen in the January 1998 SAR image. In January 1994 through 1998, the elevation of this σ° boundary on the ice capwas quite stable, ranging from 1000 to 1300 m, while the equilibrium-line altitude, as measured on the ground, varied considerably. Thus the equilibrium line may be obscured by firn from previous years. Techniques are established to measure long-term changes in the elevation of the firn line and changes in the position of the ice margin.

  11. Perennial water ice identified in the south polar cap of Mars

    NASA Astrophysics Data System (ADS)

    Bibring, Jean-Pierre; Langevin, Yves; Poulet, François; Gendrin, Aline; Gondet, Brigitte; Berthé, Michel; Soufflot, Alain; Drossart, Pierre; Combes, Michel; Bellucci, Giancarlo; Moroz, Vassili; Mangold, Nicolas; Schmitt, Bernard; OMEGA Team; Erard, S.; Forni, O.; Manaud, N.; Poulleau, G.; Encrenaz, T.; Fouchet, T.; Melchiorri, R.; Altieri, F.; Formisano, V.; Bonello, G.; Fonti, S.; Capaccioni, F.; Cerroni, P.; Coradini, A.; Kottsov, V.; Ignatiev, N.; Titov, D.; Zasova, L.; Pinet, P.; Sotin, C.; Hauber, E.; Hoffman, H.; Jaumann, R.; Keller, U.; Arvidson, R.; Mustard, J.; Duxbury, T.; Forget, F.

    2004-04-01

    The inventory of water and carbon dioxide reservoirs on Mars are important clues for understanding the geological, climatic and potentially exobiological evolution of the planet. From the early mapping observation of the permanent ice caps on the martian poles, the northern cap was believed to be mainly composed of water ice, whereas the southern cap was thought to be constituted of carbon dioxide ice. However, recent missions (NASA missions Mars Global Surveyor and Odyssey) have revealed surface structures, altimetry profiles, underlying buried hydrogen, and temperatures of the south polar regions that are thermodynamically consistent with a mixture of surface water ice and carbon dioxide. Here we present the first direct identification and mapping of both carbon dioxide and water ice in the martian high southern latitudes, at a resolution of 2km, during the local summer, when the extent of the polar ice is at its minimum. We observe that this south polar cap contains perennial water ice in extended areas: as a small admixture to carbon dioxide in the bright regions; associated with dust, without carbon dioxide, at the edges of this bright cap; and, unexpectedly, in large areas tens of kilometres away from the bright cap.

  12. Rapid wastage of the Hazen Plateau ice caps, northeastern Ellesmere Island, Nunavut, Canada

    NASA Astrophysics Data System (ADS)

    Serreze, Mark C.; Raup, Bruce; Braun, Carsten; Hardy, Douglas R.; Bradley, Raymond S.

    2017-01-01

    Two pairs of small stagnant ice bodies on the Hazen Plateau of northeastern Ellesmere Island, the St. Patrick Bay ice caps and the Murray and Simmons ice caps, are rapidly shrinking, and the remnants of the St. Patrick Bay ice caps are likely to disappear entirely within the next 5 years. Vertical aerial photographs of these Little Ice Age relics taken during August of 1959 show that the larger of the St. Patrick Bay ice caps had an area of 7.48 km2 and the smaller one 2.93 km2; the Murray and Simmons ice caps covered 4.37 and 7.45 km2 respectively. Outlines determined from ASTER satellite data for July 2016 show that, compared to 1959, the larger and the smaller of the St. Patrick Bay ice caps had both been reduced to only 5 % of their former area, with the Murray and Simmons ice caps faring better at 39 and 25 %, likely reflecting their higher elevation. Consistent with findings from other glaciological studies in the Queen Elizabeth Islands, ASTER imagery in conjunction with past GPS surveys documents a strikingly rapid wastage of the St. Patrick Bay ice caps over the last 15 years. These two ice caps shrank noticeably even between 2014 and 2015, apparently in direct response to the especially warm summer of 2015 over northeastern Ellesmere Island. The well-documented recession patterns of the Hazen Plateau ice caps over the last 55+ years offer an opportunity to examine the processes of plant recolonization of polar landscapes.

  13. Elevation Changes of Ice Caps in the Canadian Arctic Archipelago

    NASA Technical Reports Server (NTRS)

    Abdalati, W.; Krabill, W.; Frederick, E.; Manizade, S.; Martin, C.; Sonntag, J.; Swift, R.; Thomas, R.; Yungel, J.; Koerner, R.

    2004-01-01

    Precise repeat airborne laser surveys were conducted over the major ice caps in the Canadian Arctic Archipelago in the spring of 1995 and 2000 in order to measure elevation changes in the region. Our measurements reveal thinning at lower elevations (below 1600 m) on most of the ice caps and glaciers, but either very little change or thickening at higher elevations in the ice cap accumulation zones. Recent increases in precipitation in the area can account for the slight thickening where it was observed, but not for the thinning at lower elevations. For the northern ice caps on the Queen Elizabeth Islands, thinning was generally less than 0.5 m/yr , which is consistent with what would be expected from the warm temperature anomalies in the region for the 5-year period between surveys and appears to be a continuation of a trend that began in the mid 1980s. Further south, however, on the Barnes and Penny ice caps on Baffin Island, this thinning was much more pronounced at over 1 m/yr in the lower elevations. Here temperature anomalies were very small, and the thinning at low elevations far exceeds any associated enhanced ablation. The observations on Barnes, and perhaps Penny are consistent with the idea that the observed thinning is part of a much longer term deglaciation, as has been previously suggested for Barnes Ice Cap. Based on the regional relationships between elevation and elevation-change in our data, the 1995-2000 mass balance for the region is estimated to be 25 cu km/yr of ice, which corresponds to a sea level increase of 0.064 mm/ yr . This places it among the more significant sources of eustatic sea level rise, though not as substantial as Greenland ice sheet, Alaskan glaciers, or the Patagonian ice fields.

  14. High Arctic Holocene temperature record from the Agassiz ice cap and Greenland ice sheet evolution

    PubMed Central

    Lecavalier, Benoit S.; Fisher, David A.; Milne, Glenn A.; Vinther, Bo M.; Tarasov, Lev; Lacelle, Denis; Main, Brittany; Zheng, James; Bourgeois, Jocelyne; Dyke, Arthur S.

    2017-01-01

    We present a revised and extended high Arctic air temperature reconstruction from a single proxy that spans the past ∼12,000 y (up to 2009 CE). Our reconstruction from the Agassiz ice cap (Ellesmere Island, Canada) indicates an earlier and warmer Holocene thermal maximum with early Holocene temperatures that are 4–5 °C warmer compared with a previous reconstruction, and regularly exceed contemporary values for a period of ∼3,000 y. Our results show that air temperatures in this region are now at their warmest in the past 6,800–7,800 y, and that the recent rate of temperature change is unprecedented over the entire Holocene. The warmer early Holocene inferred from the Agassiz ice core leads to an estimated ∼1 km of ice thinning in northwest Greenland during the early Holocene using the Camp Century ice core. Ice modeling results show that this large thinning is consistent with our air temperature reconstruction. The modeling results also demonstrate the broader significance of the enhanced warming, with a retreat of the northern ice margin behind its present position in the mid Holocene and a ∼25% increase in total Greenland ice sheet mass loss (∼1.4 m sea-level equivalent) during the last deglaciation, both of which have implications for interpreting geodetic measurements of land uplift and gravity changes in northern Greenland. PMID:28512225

  15. Surface mass balance of Greenland mountain glaciers and ice caps

    NASA Astrophysics Data System (ADS)

    Benson, R. J.; Box, J. E.; Bromwich, D. H.; Wahr, J. M.

    2009-12-01

    Mountain glaciers and ice caps contribute roughly half of eustatic sea-level rise. Greenland has thousands of small mountain glaciers and several ice caps > 1000 sq. km that have not been included in previous mass balance calculations. To include small glaciers and ice caps in our study, we use Polar WRF, a next-generation regional climate data assimilation model is run at grid resolution less than 10 km. WRF provides surface mass balance data at sufficiently high resolution to resolve not only the narrow ice sheet ablation zone, but provides information useful in downscaling melt and accumulation rates on mountain glaciers and ice caps. In this study, we refine Polar WRF to simulate a realistic surface energy budget. Surface melting is calculated in-line from surface energy budget closure. Blowing snow sublimation is computed in-line. Melt water re-freeze is calculated using a revised scheme. Our results are compared with NASA's Gravity Recovery and Climate Experiment (GRACE) and associated error is calculated on a regional and local scale with validation from automated weather stations (AWS), snow pits and ice core data from various regions along the Greenland ice sheet.

  16. Evidence for smaller extents of the northwestern Greenland Ice Sheet and North Ice Cap during the Holocene

    NASA Astrophysics Data System (ADS)

    Kelly, M. A.; Osterberg, E. C.; Axford, Y.; Bigl, M.; Birkel, S. D.; Corbett, L. B.; Roy, E. P.; Thompson, J. T.; Whitecloud, S.

    2013-12-01

    The Greenland Ice Sheet (GrIS) and local glaciers on Greenland are responding dynamically to warming temperatures with widespread retreat. GRACE satellite data (e.g., Kahn et al., 2010) and the Petermann Glacier calving events document the recent expansion of ice loss into northwestern Greenland. To improve the ability to estimate future ice loss in a warming climate, we are developing records of the response of the northwestern Greenlandic cryosphere to Holocene climatic conditions, with a focus on past warm periods. Our ongoing research includes analyses of glacial geology, sub-fossil vegetation, lake sediment cores, chironomid assemblages and ice cores combined with glaciological modeling. To constrain past ice extents that were as small as, or smaller than, at present, we recovered sub-fossil vegetation exposed at the receding margins of the GrIS and North Ice Cap (NIC) in the Nunatarssuaq region (~76.7°N, 67.4°W) and of the GrIS near Thule (~76.5°N, 68.7°W). We present vegetation types and radiocarbon ages of 30 plant samples collected in August 2012. In the Nunatarssuaq region, five ages of in situ (rooted) vegetation including Polytrichum moss, Saxifraga nathorstii and grasses located <5 m outboard of the GrIS margin are ~120-200 cal yr BP (range of medians of the 2-sigma calibrated age ranges). Nine ages of in situ Polytrichum, Saxifraga oppositafolia and grasses from ~1-5 m inboard of the NIC margin (excavated from beneath ice) range from ~50 to 310 cal yr BP. The growth of these plants occurred when the GrIS and NIC were at least as small as at present and their ages suggest that ice advances occurred in the last 50-120 yrs. In addition to the in situ samples, we collected plants from well-preserved ground material exposed along shear planes in the GrIS margins. In Nunatarssuaq, two Polytrichum mosses rooted in ground material and exposed along a shear plane in the GrIS margin date to 4680 and 4730 cal yr BP. Near Thule, three ages of Salix arctica

  17. Field-calibrated model of melt, refreezing, and runoff for polar ice caps: Application to Devon Ice Cap

    NASA Astrophysics Data System (ADS)

    Morris, Richard M.; Mair, Douglas W. F.; Nienow, Peter W.; Bell, Christina; Burgess, David O.; Wright, Andrew P.

    2014-09-01

    Understanding the controls on the amount of surface meltwater that refreezes, rather than becoming runoff, over polar ice masses is necessary for modeling their surface mass balance and ultimately for predicting their future contributions to global sea level change. We present a modified version of a physically based model that includes an energy balance routine and explicit calculation of near-surface meltwater refreezing capacity, to simulate the evolution of near-surface density and temperature profiles across Devon Ice Cap in Arctic Canada. Uniquely, our model is initiated and calibrated using high spatial resolution measurements of snow and firn densities across almost the entire elevation range of the ice cap for the summer of 2004 and subsequently validated with the same type of measurements obtained during the very different meteorological conditions of summer 2006. The model captures the spatial variability across the transect in bulk snowpack properties although it slightly underestimates the flow of meltwater into the firn of previous years. The percentage of meltwater that becomes runoff is similar in both years; however, the spatial pattern of this melt-runoff relationship is different in the 2 years. The model is found to be insensitive to variation in the depth of impermeable layers within the firn but is very sensitive to variation in air temperature, since the refreezing capacity of firn decreases with increasing temperature. We highlight that the sensitivity of the ice cap's surface mass balance to air temperature is itself dependent on air temperature.

  18. Ice sheet margins and ice shelves

    NASA Technical Reports Server (NTRS)

    Thomas, R. H.

    1984-01-01

    The effect of climate warming on the size of ice sheet margins in polar regions is considered. Particular attention is given to the possibility of a rapid response to warming on the order of tens to hundreds of years. It is found that the early response of the polar regions to climate warming would be an increase in the area of summer melt on the ice sheets and ice shelves. For sufficiently large warming (5-10C) the delayed effects would include the breakup of the ice shelves by an increase in ice drainage rates, particularly from the ice sheets. On the basis of published data for periodic changes in the thickness and melting rates of the marine ice sheets and fjord glaciers in Greenland and Antarctica, it is shown that the rate of retreat (or advance) of an ice sheet is primarily determined by: bedrock topography; the basal conditions of the grounded ice sheet; and the ice shelf condition downstream of the grounding line. A program of satellite and ground measurements to monitor the state of ice sheet equilibrium is recommended.

  19. Acoustic Monitoring of the Arctic Ice Cap

    NASA Astrophysics Data System (ADS)

    Porter, D. L.; Goemmer, S. A.; Chayes, D. N.

    2012-12-01

    Introduction The monitoring of the Arctic Ice Cap is important economically, tactically, and strategically. In the scenario of ice cap retreat, new paths of commerce open, e.g. waterways from Northern Europe to the Far East. Where ship-going commerce is conducted, the U.S. Navy and U.S. Coast Guard have always stood guard and been prepared to assist from acts of nature and of man. It is imperative that in addition to measuring the ice from satellites, e.g. Icesat, that we have an ability to measure the ice extent, its thickness, and roughness. These parameters play an important part in the modeling of the ice and the processes that control its growth or shrinking and its thickness. The proposed system consists of three subsystems. The first subsystem is an acoustic source, the second is an array of geophones and the third is a system to supply energy and transmit the results back to the analysis laboratory. The subsystems are described below. We conclude with a plan on how to tackle this project and the payoff to the ice cap modeler and hence the users, i.e. commerce and defense. System Two historically tested methods to generate a large amplitude multi-frequency sound source include explosives and air guns. A new method developed and tested by the University of Texas, ARL is a combustive Sound Source [Wilson, et al., 1995]. The combustive sound source is a submerged combustion chamber that is filled with the byproducts of the electrolysis of sea water, i.e. Hydrogen and Oxygen, an explosive mixture which is ignited via a spark. Thus, no additional compressors, gases, or explosives need to be transported to the Arctic to generate an acoustic pulse capable of the sediment and the ice. The second subsystem would be geophones capable of listening in the O(10 Hz) range and transmitting that data back to the laboratory. Thus two single arrays of geophones arranged orthogonal to each other with a range of 1000's of kilometers and a combustive sound source where the two

  20. Ocean-ice interaction in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Peng, Chich Y.

    1994-01-01

    Ocean ice interaction processes in the Marginal Ice Zone (MIZ) by wind, waves, and mesoscale features, such as upwelling and eddies, are studied using ERS-1 Synthetic Aperture Radar (SAR) images and ocean ice interaction model. A sequence of SAR images of the Chukchi Sea MIZ with three days interval are studied for ice edge advance/retreat. Simultaneous current measurements from the northeast Chukchi Sea as well as the Barrow wind record are used to interpret the MIZ dynamics.

  1. Ku band airborne radar altimeter observations of marginal sea ice during the 1984 Marginal Ice Zone Experiment

    NASA Technical Reports Server (NTRS)

    Drinkwater, Mark R.

    1991-01-01

    Pulse-limited, airborne radar data taken in June and July 1984 with a 13.8-GHz altimeter over the Fram Strait marginal ice zone are analyzed with the aid of large-format aerial photography, airborne synthetic aperture radar data, and surface observations. Variations in the radar return pulse waveforms are quantified and correlated with ice properties recorded during the Marginal Ice Zone Experiment. Results indicate that the wide-beam altimeter is a flexible instrument, capable of identifying the ice edge with a high degree of accuracy, calculating the ice concentration, and discriminating a number of different ice classes. This suggests that microwave radar altimeters have a sensitivity to sea ice which has not yet been fully exploited. When fused with SSM/I, AVHRR and ERS-1 synthetic aperture radar imagery, future ERS-1 altimeter data are expected to provide some missing pieces to the sea ice geophysics puzzle.

  2. Polar Cap Formation on Ganymede

    NASA Technical Reports Server (NTRS)

    Pilcher, C. B.; Shaya, E. J.

    1985-01-01

    Since thermal migration is not an effective mechanism for water transport in the polar regions at the Galilean satellites, some other process must be responsible for the formation of Ganymede's polar caps. It is proposed that Ganymede's polar caps are the optical manifestation of a process that began with the distribution of an ice sheet over the surface of Ganymede. The combined processes of impact gardening and thermal migration led, in regions at latitudes less than 40 to 45 deg., to the burial of some fraction of this ice, the migration of some to the polar caps margins, and a depletion of free ice in the optical surface. At higher latitudes, no process was effective in removing ice from the optical surface, so the remanants of the sheet are visible today.

  3. Sedimentary record of a fluctuating ice margin from the Pennsylvanian of western Gondwana: Paraná Basin, southern Brazil

    NASA Astrophysics Data System (ADS)

    Vesely, Fernando F.; Trzaskos, Barbara; Kipper, Felipe; Assine, Mario Luis; Souza, Paulo A.

    2015-08-01

    The Paraná Basin is a key locality in the context of the Late Paleozoic Ice Age (LPIA) because of its location east of the Andean proto-margin of Gondwana and west of contiguous interior basins today found in western Africa. In this paper we document the sedimentary record associated with an ice margin that reached the eastern border of the Paraná Basin during the Pennsylvanian, with the aim of interpreting the depositional environments and discussing paleogeographic implications. The examined stratigraphic succession is divided in four stacked facies associations that record an upward transition from subglacial to glaciomarine environments. Deposition took place during deglaciation but was punctuated by minor readvances of the ice margin that deformed the sediment pile. Tillites, well-preserved landforms of subglacial erosion and glaciotectonic deformational structures indicate that the ice flowed to the north and northwest and that the ice margin did not advance far throughout the basin during the glacial maximum. Consequently, time-equivalent glacial deposits that crop out in other localities of eastern Paraná Basin are better explained by assuming multiple smaller ice lobes instead of one single large glacier. These ice lobes flowed from an ice cap covering uplifted lands now located in western Namibia, where glacial deposits are younger and occur confined within paleovalleys cut onto the Precambrian basement. This conclusion corroborates the idea of a topographically-controlled ice-spreading center in southwestern Africa and does not support the view of a large polar ice sheet controlling deposition in the Paraná Basin during the LPIA.

  4. Interannual observations and quantification of summertime H2O ice deposition on the Martian CO2 ice south polar cap

    USGS Publications Warehouse

    Brown, Adrian J.; Piqueux, Sylvain; Titus, Timothy N.

    2014-01-01

    The spectral signature of water ice was observed on Martian south polar cap in 2004 by the Observatoire pour l'Mineralogie, l'Eau les Glaces et l'Activite (OMEGA) ( Bibring et al., 2004). Three years later, the OMEGA instrument was used to discover water ice deposited during southern summer on the polar cap ( Langevin et al., 2007). However, temporal and spatial variations of these water ice signatures have remained unexplored, and the origins of these water deposits remains an important scientific question. To investigate this question, we have used observations from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument on the Mars Reconnaissance Orbiter (MRO) spacecraft of the southern cap during austral summer over four Martian years to search for variations in the amount of water ice. We report below that for each year we have observed the cap, the magnitude of the H2O ice signature on the southern cap has risen steadily throughout summer, particularly on the west end of the cap. The spatial extent of deposition is in disagreement with the current best simulations of deposition of water ice on the south polar cap (Montmessin et al., 2007). This increase in water ice signatures is most likely caused by deposition of atmospheric H2O ice and a set of unusual conditions makes the quantification of this transport flux using CRISM close to ideal. We calculate a ‘minimum apparent‘ amount of deposition corresponding to a thin H2O ice layer of 0.2 mm (with 70% porosity). This amount of H2O ice deposition is 0.6–6% of the total Martian atmospheric water budget. We compare our ‘minimum apparent’ quantification with previous estimates. This deposition process may also have implications for the formation and stability of the southern CO2 ice cap, and therefore play a significant role in the climate budget of modern day Mars.

  5. The Search for Subsurface Ice Caps on Mercury

    NASA Astrophysics Data System (ADS)

    Allen, R. A.; Barlow, N. G.; Vilas, F.

    1996-03-01

    Recent ground-based radar observations of Mercury have detected strong, highly depolarized echoes from the north and south polar regions which have been interpreted as possible polar ice deposits. These radar echoes have been correlated with a number of impact craters. Theoretical studies indicate that such surface ice can be stable within permanently shadowed areas, such as the floors of high latitude impact craters. One proposed hypothesis suggests that stable subsurface ice caps exist at the poles of Mercury, and that several of the impact events that created the high latitude craters exposed this subsurface ice. Thus, our study focused on the possibility of ice caps extending below the mercurian surface, down to some unknown latitude in the polar regions. We used the experiences from Mars, where the depth/diameter ratio (d/D) is smaller for ice rich areas, to investigate whether a comparable latitudinal change in d/D is detectable on Mercury. We found no significant latitudinal differences within the two polar regions of our study or between the north polar and equatorial quadrangles, but craters in the south polar region tend to have slightly lower d/D than those in the north polar region.

  6. Mass loss of the Greenland peripheral glaciers and ice caps from satellite altimetry

    NASA Astrophysics Data System (ADS)

    Wouters, Bert; Noël, Brice; Moholdt, Geir; Ligtenberg, Stefan; van den Broeke, Michiel

    2017-04-01

    At its rapidly warming margins, the Greenland Ice Sheet is surrounded by (semi-)detached glaciers and ice caps (GIC). Although they cover only roughly 5% of the total glaciated area in the region, they are estimated to account for 15-20% of the total sea level rise contribution of Greenland. The spatial and temporal evolution of the mass changes of the peripheral GICs, however, remains poorly constrained. In this presentation, we use satellite altimetry from ICESat and Cryosat-2 combined with a high-resolution regional climate model to derive a 14 year time series (2003-2016) of regional elevation and mass changes. The total mass loss has been relatively constant during this period, but regionally, the GICs show marked temporal variations. Whereas thinning was concentrated along the eastern margin during 2003-2009, western GICs became the prime sea level rise contributors in recent years. Mass loss in the northern region has been steadily increasing throughout the record, due to a strong atmospheric warning and a deterioration of the capacity of the firn layer to buffer the resulting melt water.

  7. Discharge of debris from ice at the margin of the Greenland ice sheet

    USGS Publications Warehouse

    Knight, P.G.; Waller, R.I.; Patterson, C.J.; Jones, A.P.; Robinson, Z.P.

    2002-01-01

    Sediment production at a terrestrial section of the ice-sheet margin in West Greenland is dominated by debris released through the basal ice layer. The debris flux through the basal ice at the margin is estimated to be 12-45 m3 m-1 a-1. This is three orders of magnitude higher than that previously reported for East Antarctica, an order of magnitude higher than sites reported from in Norway, Iceland and Switzerland, but an order of magnitude lower than values previously reported from tidewater glaciers in Alaska and other high-rate environments such as surging glaciers. At our site, only negligible amounts of debris are released through englacial, supraglacial or subglacial sediment transfer. Glacio-fluvial sediment production is highly localized, and long sections of the ice-sheet margin receive no sediment from glaciofluvial sources. These findings differ from those of studies at more temperate glacial settings where glaciofluvial routes are dominant and basal ice contributes only a minor percentage of the debris released at the margin. These data on debris flux through the terrestrial margin of an outlet glacier contribute to our limited knowledge of debris production from the Greenland ice sheet.

  8. Short-term sea ice forecasting: An assessment of ice concentration and ice drift forecasts using the U.S. Navy's Arctic Cap Nowcast/Forecast System

    NASA Astrophysics Data System (ADS)

    Hebert, David A.; Allard, Richard A.; Metzger, E. Joseph; Posey, Pamela G.; Preller, Ruth H.; Wallcraft, Alan J.; Phelps, Michael W.; Smedstad, Ole Martin

    2015-12-01

    In this study the forecast skill of the U.S. Navy operational Arctic sea ice forecast system, the Arctic Cap Nowcast/Forecast System (ACNFS), is presented for the period February 2014 to June 2015. ACNFS is designed to provide short term, 1-7 day forecasts of Arctic sea ice and ocean conditions. Many quantities are forecast by ACNFS; the most commonly used include ice concentration, ice thickness, ice velocity, sea surface temperature, sea surface salinity, and sea surface velocities. Ice concentration forecast skill is compared to a persistent ice state and historical sea ice climatology. Skill scores are focused on areas where ice concentration changes by ±5% or more, and are therefore limited to primarily the marginal ice zone. We demonstrate that ACNFS forecasts are skilful compared to assuming a persistent ice state, especially beyond 24 h. ACNFS is also shown to be particularly skilful compared to a climatologic state for forecasts up to 102 h. Modeled ice drift velocity is compared to observed buoy data from the International Arctic Buoy Programme. A seasonal bias is shown where ACNFS is slower than IABP velocity in the summer months and faster in the winter months. In February 2015, ACNFS began to assimilate a blended ice concentration derived from Advanced Microwave Scanning Radiometer 2 (AMSR2) and the Interactive Multisensor Snow and Ice Mapping System (IMS). Preliminary results show that assimilating AMSR2 blended with IMS improves the short-term forecast skill and ice edge location compared to the independently derived National Ice Center Ice Edge product.

  9. Dansgaard-Oeschger cycles observed in the Greenland ReCAP ice core project

    NASA Astrophysics Data System (ADS)

    Kjær, Helle Astrid; Vallelonga, Paul; Vinther, Bo; Simonsen, Marius; Maffezzoli, Niccoló; Gkinis, Vasileios; Svensson, Anders; Jensen, Camilla Marie; Dallmayr, Remi; Spolaor, Andrea; Edwards, Ross

    2017-04-01

    The new REnland ice CAP (RECAP) ice core was drilled in summer 2015 in Greenland and measured by means of Continuous flow analysis (CFA) during the last 3 months of 2015. The Renland ice core was obtained as part of the ReCAP project, extending 584.11 meters to the bottom of the Renland ice cap located in east Greenland. The unique position on a mountain saddle above 2000 meters altitude, but close to the coast, ensures that the Renland ice core offers high accumulation, but also reaches far back in time. Results show that despite the short length the RECAP ice core holds ice all the way back to the past warm interglacial period, the Eemian. The glacial section is strongly thinned and covers on 20 meters of the ReCAP core, but nonetheless due to the high resolution of the measurements all 25 expected DO events could be identified. The record was analyzed for multiple elements including the water isotopes, forest fire tracers NH4+ and black carbon, insoluble dust particles by means of Abakus laser particle counter and the dust ion Ca2+, sea salt Na+, and sea ice proxies as well as acidity useful for finding volcanic layers to date the core. Below the glacial section another 20 meters of warm Eemian ice have been analysed. Here we present the chemistry results as obtained by continuous flow analysis (CFA) and compare the glacial section with the chemistry profile from other Greenland ice cores.

  10. The Flemish Cap - Goban Spur conjugate margins: New evidence of asymmetry

    NASA Astrophysics Data System (ADS)

    Gerlings, J.; Louden, K. E.; Minshull, T. A.; Nedimović, M. R.

    2011-12-01

    The combined results of deep multichannel seismic (MCS) and refraction/wide-angle reflection seismic (R/WAR) profiles across the Flemish Cap-Goban Spur conjugate margin pair will be presented to help constrain rifting and breakup processes. Both profiles cross magnetic anomaly 34 and extend into oceanic crust, which makes it possible to observe the complete extensional history from continental rifting through the formation of initial oceanic crust. Kirchhoff poststack time and prestack time and depth migration images of the Flemish Cap MCS data are produced using a velocity model constructed from the MCS and R/WAR data. These new images show improved continuity of the Moho under the thick continental crust of Flemish Cap. The basement morphology image is sharper and reflections observed in the thin crust of the transition zone are more coherent. A basement high at the seaward-most end of the transition zone now displays clear diapiric features. To compare the two margins, the existing migrated MCS data across Goban Spur has been time-to-depth converted using the R/WAR velocity model of the margin. These reimaged seismic profiles demonstrate asymmetries in continental rifting and breakup with a complex transition to oceanic spreading: (1) During initial phases of rifting, the Flemish Cap margin displays a sharper necking profile than that of the Goban Spur margin. (2) Within the ocean-continent-transition zone, constraints from S-wave velocities on both margins indentifies previously interpreted oceanic crust as thinned continental crust offshore Flemish Cap in contrast with primarily serpentinized mantle offshore Goban Spur. (3) Continental breakup and initial seafloor spreading occur in a complex, asymmetric manner where the initial ~50 km of oceanic crust appears different on the two margins. Offshore Flemish Cap, both R/WAR and MCS results indicate a sharp boundary immediately seaward of a ridge feature, where the basement morphology becomes typical of slow

  11. Wave effects on ocean-ice interaction in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Hakkinen, Sirpa; Peng, Chih Y.

    1993-01-01

    The effects of wave train on ice-ocean interaction in the marginal ice zone are studied through numerical modeling. A coupled two-dimensional ice-ocean model has been developed to include wave effects and wind stress for the predictions of ice edge dynamics. The sea ice model is coupled to the reduced-gravity ocean model through interfacial stresses. The main dynamic balance in the ice momentum is between water-ice stress, wind stress, and wave radiation stresses. By considering the exchange of momentum between waves and ice pack through radiation stress for decaying waves, a parametric study of the effects of wave stress and wind stress on ice edge dynamics has been performed. The numerical results show significant effects from wave action. The ice edge is sharper, and ice edge meanders form in the marginal ice zone owing to forcing by wave action and refraction of swell system after a couple of days. Upwelling at the ice edge and eddy formation can be enhanced by the nonlinear effects of wave action; wave action sharpens the ice edge and can produce ice meandering, which enhances local Ekman pumping and pycnocline anomalies. The resulting ice concentration, pycnocline changes, and flow velocity field are shown to be consistent with previous observations.

  12. Retrieving improved multi-temporal CryoSat elevations over ice caps and glaciers - a case study of Barnes ice cap

    NASA Astrophysics Data System (ADS)

    Nilsson, Johan; Burgess, David

    2014-05-01

    The CryoSat mission was launched in 2010 to observe the Earth's cryosphere. In contrast to previous satellite radar altimeters, this mission is expected to monitor the elevation of small ice caps and glaciers, which according to the IPCC will be the largest contributor to 21st century sea level rise. To date the ESA CryoSat SARiN level-2 (L2) elevation product is not yet fully optimized for use over these types of glaciated regions, as its processed with a more universal algorithm. Thus the aim of this study is to demonstrate that with the use of improved processing CryoSat SARiN data can be used for more accurate topography mapping and elevation change detection for ice caps and glaciers. To demonstrate this, elevations and elevation changes over Barnes ice cap, located on Baffin Island in the Canadian Arctic, have been estimated from available data from the years 2010-2013. ESA's CryoSat level-1b (L1b) SARiN baseline "B" data product was used and processed in-house to estimate surface elevations. The resulting product is referred to as DTU-L2. The processing focused on improving the retracker, reducing phase noise and correcting phase ambiguities. The accuracy of the DTU-L2 and the ESA-L2 product was determined by comparing the measured elevations against NASA's IceBridge Airborne Topographic Mapper (ATM) elevations from May 2011. The resulting difference in accuracy was determined by comparing their associated errors. From the multi-temporal measurements spanning the period 2010-2013, elevation changes where estimated and compared to ICESat derived changes from 2003-2009. The result of the study shows good agreement between the NASA measured ATM elevations and the DTU-L2 data. It also shows that the pattern of elevation change is similar to that derived from ICESat data. The accuracy of the DTU-L2 estimated elevations is on average several factors higher compared to the ESA-L2 elevation product. These preliminary results demonstrates that CryoSat elevation data

  13. Tropical Glaciers in the Common Era: Papua, Indonesia, Quelccaya Ice Cap, Peru and Kilimanjaro, Tanzania

    NASA Astrophysics Data System (ADS)

    Thompson, L. G.; Mosley-Thompson, E. S.; Davis, M. E.

    2011-12-01

    High-resolution ice core stratigraphic records of δ18O (temperature proxy) demonstrate that the current warming at high elevations in mid- to lower latitudes is unprecedented for at least the last two millennia, although at many sites the Early Holocene was much warmer than at present. Here we discuss the interaction of El Niño-Southern Oscillation (ENSO) variability and warming trends as recorded in ice core records from high-altitude tropical glaciers and the implications of the warming trends for the future of these glaciers. ENSO has strong impacts on meteorological phenomena that either directly or indirectly affect most regions on the planet and their populations, particularly throughout the Tropics. Here we examine similarities and differences among ice core records from Papua (Indonesia), Quelccaya Ice Cap (Peru) and Kilimanjaro (Tanzania). Quelccaya, Earth's largest tropical ice cap, has provided continuous, annually-resolved proxy records of climatic and environmental variability preserved in many measurable parameters, especially oxygen and hydrogen isotopic ratios (δ18O, δD) and the net mass balance (accumulation) spanning the last 1800 years. The remarkable similarity between changes in the highland and coastal cultures of Peru and climate variability in the Andes, especially with regard to precipitation, implies a strong connection between prehistoric human activities and climate in this region. The well-documented ice loss on Quelccaya, Kilimanjaro in eastern Africa and the ice fields near Puncak Jaya in Papua, Indonesia presents a possible analog for glacier response in the tropics during the Holocene. The ongoing melting of these ice fields is consistent with model predictions of a vertical amplification of temperature in the Tropics. A sequence of over 50 recently exposed, rooted, soft-bodied plant deposits collected between 2002 and 2011 from the retreating margins of the Quelccaya ice cap provide a longer term perspective for the recent

  14. CO2 jets formed by sublimation beneath translucent slab ice in Mars' seasonal south polar ice cap

    USGS Publications Warehouse

    Kieffer, H.H.; Christensen, P.R.; Titus, T.N.

    2006-01-01

    The martian polar caps are among the most dynamic regions on Mars, growing substantially in winter as a significant fraction of the atmosphere freezes out in the form of CO2 ice. Unusual dark spots, fans and blotches form as the south-polar seasonal CO2 ice cap retreats during spring and summer. Small radial channel networks are often associated with the location of spots once the ice disappears. The spots have been proposed to be simply bare, defrosted ground; the formation of the channels has remained uncertain. Here we report infrared and visible observations that show that the spots and fans remain at CO2 ice temperatures well into summer, and must be granular materials that have been brought up to the surface of the ice, requiring a complex suite of processes to get them there. We propose that the seasonal ice cap forms an impermeable, translucent slab of CO2 ice that sublimates from the base, building up high-pressure gas beneath the slab. This gas levitates the ice, which eventually ruptures, producing high-velocity CO 2 vents that erupt sand-sized grains in jets to form the spots and erode the channels. These processes are unlike any observed on Earth. ?? 2006 Nature Publishing Group.

  15. Mountain Glaciers and Ice Caps

    USGS Publications Warehouse

    Ananichheva, Maria; Arendt, Anthony; Hagen, Jon-Ove; Hock, Regine; Josberger, Edward G.; Moore, R. Dan; Pfeffer, William Tad; Wolken, Gabriel J.

    2011-01-01

    Projections of future rates of mass loss from mountain glaciers and ice caps in the Arctic focus primarily on projections of changes in the surface mass balance. Current models are not yet capable of making realistic forecasts of changes in losses by calving. Surface mass balance models are forced with downscaled output from climate models driven by forcing scenarios that make assumptions about the future rate of growth of atmospheric greenhouse gas concentrations. Thus, mass loss projections vary considerably, depending on the forcing scenario used and the climate model from which climate projections are derived. A new study in which a surface mass balance model is driven by output from ten general circulation models (GCMs) forced by the IPCC (Intergovernmental Panel on Climate Change) A1B emissions scenario yields estimates of total mass loss of between 51 and 136 mm sea-level equivalent (SLE) (or 13% to 36% of current glacier volume) by 2100. This implies that there will still be substantial glacier mass in the Arctic in 2100 and that Arctic mountain glaciers and ice caps will continue to influence global sea-level change well into the 22nd century.

  16. Textures in south polar ice cap #1

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Textures of the south polar permanent residual ice cap and polar layered terrains. This 30 x 29 km area image (frame 7709) is centered near 87 degrees south, 77 degrees west.

    Figure caption from Science Magazine

  17. Textures in south polar ice cap #2

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Textures of the south polar permanent residual ice cap and polar layered terrains. This 15 x 14 km area image (frame 7306) is centered near 87 degrees south, 341 degrees west.

    Figure caption from Science Magazine

  18. Holocene fluctuations of Quelccaya Ice Cap, Peru based on lacustrine and surficial geologic archives

    NASA Astrophysics Data System (ADS)

    Stroup, J. S.; Kelly, M. A.; Lowell, T. V.; Beal, S. A.; Smith, C. A.

    2013-12-01

    Peru's Quelccaya Ice Cap (QIC; 13.9°S, 70.8°W, ~5200-5670 m asl) is an important site for understanding tropical paleoclimate, mainly because of annually layered ice cores that provide an ~1800 year long record of tropical paleoclimatic conditions (e.g., Thompson et al., 2013). Here, we present a detailed record of QIC fluctuations using surficial deposits and lake sediments that extend back to late glacial time. We compare the late Holocene records of QIC 10Be-dated moraines and ice core data with lake sediments from a nearby glacially fed lake to establish the framework we use to interpret a Holocene long sediment record from a glacially fed lake. We also examine sediments from a nearby non-glacial lake to constrain non-glacial clastic input. We collected two ~5 m-long sediment cores, one from Laguna Challpacocha, which is currently fed by QIC meltwater, and one from the Laguna Yanacocha, which has not received QIC meltwater since ~12.3 ka. Changes in magnetic susceptibility, loss on ignition, bulk density and X-ray fluorescence chemistry combined with 14C and 210Pb chronologies provide information about sediment transported to the lakes. Retreat from the late Holocene extent defined by the 10Be-dated moraine record (~0.52 ka) is contemporaneous with a sharp transition from organic to clastic sedimentation in the Challpacocha core at ~ 0.52 ka. This implies that glacially-sourced clastic sedimentation, as tracked by loss on ignition, Ti counts and bulk density, increased during ice cap recession. Based on these same proxy data, we suggest the following Holocene history of QIC: QIC receded from the Challpacocha basin by ~10.6 ka. Increased clastic sedimentation at 8.2 - 4.1, 3.6 - 2.7 ka and from 0.55 ka - present are interpreted as times of ice cap recession. The increased clastic sedimentation at ~8.2 - 4.1 ka is consistent with surficial deposits near the present-day ice margin that indicate that at ~7.0 - 4.6 ka QIC was smaller than at present (Buffen et al

  19. Remote sensing of the Fram Strait marginal ice zone

    USGS Publications Warehouse

    Shuchman, R.A.; Burns, B.A.; Johannessen, O.M.; Josberger, E.G.; Campbell, W.J.; Manley, T.O.; Lannelongue, N.

    1987-01-01

    Sequential remote sensing images of the Fram Strait marginal ice zone played a key role in elucidating the complex interactions of the atmosphere, ocean, and sea ice. Analysis of a subset of these images covering a 1-week period provided quantitative data on the mesoscale ice morphology, including ice edge positions, ice concentrations, floe size distribution, and ice kinematics. The analysis showed that, under light to moderate wind conditions, the morphology of the marginal ice zone reflects the underlying ocean circulation. High-resolution radar observations showed the location and size of ocean eddies near the ice edge. Ice kinematics from sequential radar images revealed an ocean eddy beneath the interior pack ice that was verified by in situ oceanographic measurements.

  20. CryoSat swath altimetry to measure ice cap and glacier surface elevation change

    NASA Astrophysics Data System (ADS)

    Tepes, P.; Gourmelen, N.; Escorihuela, M. J.; Wuite, J.; Nagler, T.; Foresta, L.; Brockley, D.; Baker, S.; Roca, M.; Shepherd, A.; Plummer, S.

    2016-12-01

    Satellite altimetry has been used extensively in the past few decades to observe changes affecting large and remote regions covered by land ice such as the Greenland and Antarctic ice sheets. Glaciers and ice caps have been studied less extensively due to limitation of altimetry over complex topography. However their role in current sea-level budgets is significant and is expected to continue over the next century and beyond (Gardner et al., 2011), particularly in the Arctic where mean annual surface temperatures have recently been increasing twice as fast as the global average (Screen and Simmonds, 2010). Radar altimetry is well suited to monitor elevation changes over land ice due to its all-weather year-round capability of observing ice surfaces. Since 2010, the Synthetic Interferometric Radar Altimeter (SIRAL) on board the European Space Agency (ESA) radar altimetry CryoSat (CS) mission has been collecting ice elevation measurements over glaciers and ice caps. Its Synthetic Aperture Radar Interferometric (SARIn) processing feature reduces the size of the footprint along-track and locates the across-track origin of a surface reflector in the presence of a slope. This offers new perspectives for the measurement of regions marked by complex topography. More recently, data from the CS-SARIn mode have been used to infer elevation beyond the point of closest approach (POCA) with a novel approach known as "swath processing" (Hawley et al., 2009; Gray et al., 2013; Christie et al., 2016; Smith et al., 2016). Together with a denser ground track interspacing of the CS mission, the swath processing technique provides unprecedented spatial coverage and resolution for space borne altimetry, enabling the study of key processes that underlie current changes of ice caps and glaciers. In this study, we use CS swath observations to generate maps of ice elevation change for selected ice caps and glaciers. We present a validation exercise and discuss the benefit of swath

  1. Microorganisms on comets, Europa, and the polar ice caps of Mars

    NASA Astrophysics Data System (ADS)

    Hoover, Richard B.; Pikuta, Elena V.

    2004-02-01

    Microbial extremophiles live on Earth wherever there is liquid water and a source of energy. Observations by ground-based observatories, space missions, and satellites have provided strong evidence that water ice exists today on comets, Europa, Callisto, and Ganymede and in the snow, permafrost, glaciers and polar ice caps of Mars. Studies of the cryoconite pools and ice bubble systems of Antarctica suggest that solar heating of dark rocks entrained in ice can cause localized melting of ice providing ideal conditions for the growth of microbial communities with the creation of micro-environments where trapped metabolic gasses produce entrained isolated atmospheres as in the Antarctic ice-bubble systems. It is suggested that these considerations indicate that several groups of microorganisms should be capable of episodic growth within liquid water envelopes surrounding dark rocks in cometary ices and the permafrost and polar caps of Mars. We discuss some of the types of microorganisms we have encountered within the permafrost and snow of Siberia, the cryoconite pools of Alaska, and frozen deep within the Antarctic ice sheet above Lake Vostok.

  2. The role of the margins in ice stream dynamics

    NASA Technical Reports Server (NTRS)

    Echelmeyer, Keith; Harrison, William

    1993-01-01

    At first glance, it would appear that the bed of the active ice stream plays a much more important role in the overall force balance than do the margins, especially because the ratio of the half-width to depth for a typical ice stream is large (15:1 to 50:1). On the other hand, recent observations indicate that at least part of the ice stream is underlain by a layer of very weak till (shear strength about 2 kPa), and this weak basal layer would then imply that some or all of the resistive drag is transferred to the margins. In order to address this question, a detailed velocity profile near Upstream B Camp, which extends from the center of the ice stream, across the chaotic shear margin, and onto the Unicorn, which is part of the slow-moving ice sheet was measured. Comparison of this observed velocity profile with finite-element models of flow shows several interesting features. First, the shear stress at the margin is on the order of 130 kPa, while the mean value along the bed is about 15 kPa. Integration of these stresses along the boundaries indicates that the margins provide 40 to 50 percent, and the bed, 60 to 40 percent of the total resistive drag needed to balance the gravitational driving stress in this region. (The range of values represents calculations for different values of surface slope.) Second, the mean basal stress predicted by the models shows that the entire bed cannot be blanketed by the weak till observed beneath upstream B - instead there must be a distribution of weak till and 'sticky spots' (e.g., 85 percent till and 15 percent sticky spots of resistive stress equal to 100 kPa). If more of the bed were composed of weak till, then the modeled velocity would not match that observed. Third, the ice must exhibit an increasing enhancement factor as the margins are approached (E equals 10 in the chaotic zone), in keeping with laboratory measurements on ice under prolonged shear strain. Also, there is either a narrow zone of somewhat stiffer ice (E

  3. The role of the margins in ice stream dynamics

    NASA Astrophysics Data System (ADS)

    Echelmeyer, Keith; Harrison, William

    1993-07-01

    At first glance, it would appear that the bed of the active ice stream plays a much more important role in the overall force balance than do the margins, especially because the ratio of the half-width to depth for a typical ice stream is large (15:1 to 50:1). On the other hand, recent observations indicate that at least part of the ice stream is underlain by a layer of very weak till (shear strength about 2 kPa), and this weak basal layer would then imply that some or all of the resistive drag is transferred to the margins. In order to address this question, a detailed velocity profile near Upstream B Camp, which extends from the center of the ice stream, across the chaotic shear margin, and onto the Unicorn, which is part of the slow-moving ice sheet was measured. Comparison of this observed velocity profile with finite-element models of flow shows several interesting features. First, the shear stress at the margin is on the order of 130 kPa, while the mean value along the bed is about 15 kPa. Integration of these stresses along the boundaries indicates that the margins provide 40 to 50 percent, and the bed, 60 to 40 percent of the total resistive drag needed to balance the gravitational driving stress in this region. (The range of values represents calculations for different values of surface slope.) Second, the mean basal stress predicted by the models shows that the entire bed cannot be blanketed by the weak till observed beneath upstream B - instead there must be a distribution of weak till and 'sticky spots' (e.g., 85 percent till and 15 percent sticky spots of resistive stress equal to 100 kPa). If more of the bed were composed of weak till, then the modeled velocity would not match that observed. Third, the ice must exhibit an increasing enhancement factor as the margins are approached (E equals 10 in the chaotic zone), in keeping with laboratory measurements on ice under prolonged shear strain. Also, there is either a narrow zone of somewhat stiffer ice (E

  4. Rapid onset of Little Ice Age summer cold in the northern North Atlantic derived from precisely dated ice cap records (Invited)

    NASA Astrophysics Data System (ADS)

    Miller, G. H.; Larsen, D.; Geirsdottir, A.; Refsnider, K. A.; Anderson, C.

    2009-12-01

    Precise radiocarbon dates on dead vegetation emerging beneath retreating non-erosive ice caps in NE Arctic Canada define the onset of ice cap growth, and provide a Holocene context for 20th Century warming. Although most plateau ice caps melted during the Medieval Warm Period, a few that are now disappearing remained intact since at least 350 AD. Little Ice Age ice cap inception occurred in two pulses, centered on 1250-1300 AD and around 1450 AD, with ice caps remaining in an expanded state until the warming of the past few decades. Ice cap inception occurred simultaneously (±10 years) over a 200 m elevational range, suggesting an abrupt onset of Little Ice Age cold, rather than a slow cooling over many decades. Similarly, a 3000 year annually resolved lacustrine record of glacier power and a complementary independent proxy for landscape instability in the highlands of central Iceland show an initial jump in both glacier power and landscape instability between 1250 and 1300 AD, with a second step-increase around 1450 AD, and dramatic increases in both proxies around 1800 AD, retracting in the 20th Century. A sub-decadal record of hillslope stability and within-lake primary productivity in sediments from a low-elevation lake in northern Iceland shows parallel changes at similar times. Sea ice proxies and historical records document the first appearance of sea ice around Iceland following Medieval time about 1250 AD. The similarity in the onset and intensification of Little Ice Age cold-weather proxies across a wide region of the northern North Atlantic suggests at least a regional driver of abrupt climate change. The time intervals for which these abrupt changes occur coincide with the three most intense episodes of multiple explosive volcanic eruptions that introduced large volumes of sulfate aerosols into the stratosphere during the past millennium. Although the direct impacts of volcanic aerosols have a duration of only a few years, the memory stored by the

  5. Dual-sensor mapping of mass balance on Russia's northernmost ice caps

    NASA Astrophysics Data System (ADS)

    Nikolskiy, D.; Malinnikov, V.; Sharov, A.; Ukolova, M.

    2012-04-01

    Mass balance of Russia's northernmost ice caps is poorly known and scarcely mapped. Thorough information about glacier fluctuations in the outer periphery of Russian shelf seas is both lacking and highly desired since it may constitute the relevant benchmark for judging and projecting climate change impacts in the entire Arctic. The present study is focussed on geodetic measurements and medium-scale mapping of the mass balance on a dozen insular ice caps, some large and some smaller, homogeneously situated along the Eurasian boundary of Central Arctic Basin. The study region extends for approx. 2.200 km from Victoria and Arthur islands in the west across Rudolph, Eva-Liv, Ushakova, Schmidt and Komsomolets islands in the north to Bennett and Henrietta islands in the east thereby comprising the most distant and least studied ice caps in the Russian Arctic. The situation of insular ice masses close to the edge of summer minimum sea ice proved helpful in analysing spatial asymmetry of glacier accumulation signal. The overall mapping of glacier elevation changes and quantification of mass balance characteristics in the study region was performed by comparing reference elevation models of study glaciers derived from Russian topographic maps 1:200,000 (CI = 20 or 40 m) representing the glacier state as in the 1950s-1960s with modern elevation data obtained from satellite radar interferometry and lidar altimetry. In total, 14 ERS and 4 TanDEM-X high-quality SAR interferograms of 1995/96 and 2011 were acquired, processed in the standard 2-pass DINSAR manner, geocoded, calibrated, mosaicked and interpreted using reference elevation models and co-located ICESat altimetry data of 2003-2010. The DINSAR analysis revealed the existence of fast-flowing outlet glaciers at Arthur, Rudolph, Eva-Liv and Bennett islands. The calculation of separate mass-balance components is complicated in this case because of generally unknown glacier velocities and ice discharge values for the mid-20

  6. Landscape Evolution and the Reincarnation of the Residual CO2 Ice Cap of Mars

    NASA Astrophysics Data System (ADS)

    Byrne, S.; Zuber, M.

    2006-12-01

    Observations of the southern residual CO2 cap of Mars reveal a wide range of landforms including flat-floored quasi-circular pits with steep walls (dubbed Swiss-cheese features). Interannual comparisons show that these depressions are expanding laterally at rates of ~2m/yr to ~4m/yr, prompting suggestions of climate change. The residual CO2 ice cap is up to 10m thick and underlain by an involatile basement, it also contains layers roughly 2m thick representing different accumulation episodes in the recent past. Changes in the appearance of the residual ice between the Mariner 9 and Viking missions indicate that the top-most layer was deposited in that time-frame, soon after the global dust storm of 1971. The spatial density of the Swiss-cheese features, and the rate at which they expand, mean that it is unlikely that any part of the residual ice cap is older than a few centuries. Given this, we may ask: how can there be a residual cap present today for us to observe? To answer this and other questions we have developed a model to examine the evolution of a CO2 ice landscape. This model reproduces the morphologies and expansion rates seen in the actual residual CO2 ice cap. Our model results indicate that the fate of CO2 ice surfaces is controlled by their surface roughness. Surface roughness always increases with time, which results in an unstable situation. When the surface roughness exceeds a critical point small pits can begin to develop. The walls of these pits rapidly steepen and begin retreating which enlarges and deepens the pit. This situation always occurs even if the surface of the CO2 slab has a high enough albedo to have a net mass gain each year. Once these pits begin expanding they quickly erode the entire ice slab. When the underlying non-CO2 material is exposed, it will not frost over again if Mars were to repeat like clockwork every year. We conclude that interannual climatic variability is actually a requirement for the continued existence of a

  7. Wave-Ice interaction in the Marginal Ice Zone: Toward a Wave-Ocean-Ice Coupled Modeling System

    DTIC Science & Technology

    2015-09-30

    MIZ using WW3 (3 frequency bins, ice retreat in August and ice advance in October); Blue (solid): Based on observations near Antarctica by Meylan...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Wave- Ice interaction in the Marginal Ice Zone: Toward a...Wave-Ocean- Ice Coupled Modeling System W. E. Rogers Naval Research Laboratory, Code 7322 Stennis Space Center, MS 39529 phone: (228) 688-4727

  8. Wave attenuation in the marginal ice zone during LIMEX

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Peng, Chih Y.; Vachon, Paris W.

    1991-01-01

    During LIMEX'87 and '89, the CCRS CV-580 aircraft collected SAR (synthetic aperture radar) data over the marginal ice zone off the coast of Newfoundland. Based upon the wavenumber spectra from SAR data, the wave attenuation rate is estimated and compared with a model. The model-data comparisons are reasonably good for the ice conditions during LIMEX (Labrador Ice Margin Experiment). Both model and SAR-derived wave attenuation rates show a roll-over at high wavenumbers.

  9. South Polar Ice Cap

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-337, 21 April 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the 'swiss cheese' pattern of frozen carbon dioxide on the south polar residual cap. Observation of these materials over two Mars years has revealed that the scarps that bound the mesas and small buttes are retreating-the carbon dioxide ice is subliming away-at a rate of about 3 meters (3 yards) per Mars year in some places. The picture covers an area about 900 m (about 900 yards) wide near 87.1oS, 93.7oW. Sunlight illuminates the scene from the upper left.

  10. Erosion patterns produced by the paleo Haizishan ice cap, SE Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Fu, P.; Stroeven, A. P.; Harbor, J.; Hättestrand, C.; Heyman, J.; Caffee, M. W.

    2017-12-01

    Erosion is a primary driver of landscape evolution, topographic relief production, geochemical cycles, and climate change. Combining in situ 10Be and 26Al exposure age dating, geomorphological mapping, and field investigations, we examine glacial erosion patterns of the almost 4,000 km2 paleo Haizishan ice cap on the southeastern Tibetan Plateau. Our results show that ice caps on the low relief Haizishan Plateau produced a zonal pattern of landscape modification. In locations where apparent exposure ages on bedrock are consistent with the last deglaciation, complete resetting of the cosmogenic exposure age clock indicates glacial erosion of at least a few meters. However, older apparent exposure ages on bedrock in areas known to have been covered by the paleo ice cap during the Last Glacial Maximum indicate inheritance and thus limited glacial erosion. Inferred surface exposure ages from cosmogenic depth profiles through two saprolites vary from resetting and thus saprolite profile truncation to nuclide inheritance indicating limited erosion. Finally, significant nuclide inheritance in river sand samples from basins on the scoured plateau surface also indicate limited glacial erosion during the last glaciation. Hence, for the first time, our study shows clear evidence of preservation under non-erosive ice on the Tibetan Plateau. As patterns of glacial erosion intensity are largely driven by the basal thermal regime, our results confirm earlier inferences from geomorphology for a concentric basal thermal pattern for the paleo Haizishan ice cap during the LGM.

  11. Glacitectonic deformation around the retreating margin of the last Irish ice sheet

    NASA Astrophysics Data System (ADS)

    Knight, J.

    2008-12-01

    Evidence for ice-marginal glacitectonic shunting and deformation of bedrock slabs is described from three sites around the west coast of Ireland. These sites (Brandon Bay, County Kerry; Pigeon Point, County Mayo; Inishcrone, County Sligo) are all locations where the late Devensian ice margin retreated on land and was confined to within limestone bedrock embayments. At these sites, flat-lying bedrock slabs (< 8 m long) have been dissociated from rockhead and moved seaward (in the direction of ice flow) by glacitectonic shunting. At all of the sites, bedrock slabs have been variously stacked, rotated, deformed into open folds, and brecciated. Separating the bedrock slabs is either a thin layer (< 20 cm) of brecciated and mylonitised cemented bedrock that shows internal folding; or a thicker (< 50 cm) normally-graded diamicton with a fine matrix. Together, the presence of these features suggests oscillation of a polythermal and clean basal ice margin that was strongly associated with basal freeze-on and the presence of proglacial permafrost. Subglacial sediment-laden meltwater was focused from behind the ice margin and through permafrost taliks. It is suggested that hydrofracturing under high hydraulic pressure, and through a frozen-bed ice margin, forced sediment injection into bedrock fractures and bedding planes and away from the ice margin, and that bedrock slabs were moved in part by hydraulic lift as well as thrust-style ice-marginal tectonics. The presence of a mosaic of warm and frozen ice-bed patches, in combination with strong geologic control and meltwater generation from behind the ice margin, can help explain formation of these unusual bedrock slab features.

  12. Recent Changes in Arctic Glaciers, Ice Caps, and the Greenland Ice Sheet: Cold Facts About Warm Ice

    NASA Astrophysics Data System (ADS)

    Abdalati, W.

    2005-12-01

    One of the major manifestations of Arctic change can be observed in the state of balance of Arctic glaciers and ice caps and the Greenland ice sheet. These ice masses are estimated to contain nearly 3 million cubic kilometers of ice, which is more than six times greater than all the water stored in the Earth's lakes, rivers, and snow combined and is the equivalent of over 7 meters of sea level. Most of these ice masses have been shrinking in recent in years, but their mass balance is highly variable on a wide range of spatial and temporal scales. On the Greenland ice sheet most of the coastal regions have thinned substantially as melt has increased and some of its outlet glaciers have accelerated. Near the equilibrium line in West Greenland, we have seen evidence of summer acceleration that is linked to surface meltwater production, suggesting a relatively rapid response mechanism of the ice sheet change to a warming climate. At the same time, however, the vast interior regions of the Greenland ice sheet have shown little change or slight growth, as accumulation in these areas may have increased. Throughout much of the rest of the Arctic, many glaciers and ice caps have been shrinking in the past few decades, and in Canada and Alaska, the rate of ice loss seems to have accelerated during the late 1990s. These recent observations offer only a snapshot in time of the long-term behavior, but they are providing crucial information about the current state of ice mass balance and the mechanisms that control it in one of the most climatically sensitive regions on Earth. As we continue to learn more through a combination of remote sensing observations, in situ measurements and improved modeling capabilities, it is important that we coordinate and integrate these approaches effectively in order to predict future changes and their impact on sea level, freshwater discharge, and ocean circulation.

  13. Surface elevation change on ice caps in the Qaanaaq region, northwestern Greenland

    NASA Astrophysics Data System (ADS)

    Saito, Jun; Sugiyama, Shin; Tsutaki, Shun; Sawagaki, Takanobu

    2016-09-01

    A large number of glaciers and ice caps (GICs) are distributed along the Greenland coast, physically separated from the ice sheet. The total area of these GICs accounts for 5% of Greenland's ice cover. Melt water input from the GICs to the ocean substantially contributed to sea-level rise over the last century. Here, we report surface elevation changes of six ice caps near Qaanaaq (77°28‧N, 69°13‧W) in northwestern Greenland based on photogrammetric analysis of stereo pair satellite images. We processed the images with a digital map plotting instrument to generate digital elevation models (DEMs) in 2006 and 2010 with a grid resolution of 500 m. Generated DEMs were compared to measure surface elevation changes between 2006 and 2010. Over the study area of the six ice caps, covering 1215 km2, the mean rate of elevation change was -1.1 ± 0.1 m a-1. This rate is significantly greater than that previously reported for the 2003-2008 period (-0.6 ± 0.1 m a-1) for GICs all of northwestern Greenland. This increased mass loss is consistent with the rise in summer temperatures in this region at a rate of 0.12 °C a-1 for the 1997-2013 period.

  14. Holocene ice marginal fluctuations of the Qassimiut lobe in South Greenland

    PubMed Central

    Larsen, Nicolaj K.; Find, Jesper; Kristensen, Anders; Bjørk, Anders A.; Kjeldsen, Kristian K.; Odgaard, Bent V.; Olsen, Jesper; Kjær, Kurt H.

    2016-01-01

    Knowledge about the Holocene evolution of the Greenland ice sheet (GrIS) is important to put the recent observations of ice loss into a longer-term perspective. In this study, we use six new threshold lake records supplemented with two existing lake records to reconstruct the Holocene ice marginal fluctuations of the Qassimiut lobe (QL) – one of the most dynamic parts of the GrIS in South Greenland. Times when the ice margin was close to present extent are characterized by clastic input from the glacier meltwater, whereas periods when the ice margin was behind its present day extent comprise organic-rich sediments. We find that the overall pattern suggests that the central part of the ice lobe in low-lying areas experienced the most prolonged ice retreat from ~9–0.4 cal. ka BP, whereas the more distal parts of the ice lobe at higher elevation re-advanced and remained close to the present extent during the Neoglacial between ~4.4 and 1.8 cal. ka BP. These results demonstrate that the QL was primarily driven by Holocene climate changes, but also emphasises the role of local topography on the ice marginal fluctuations. PMID:26940998

  15. Satellite microwave and in situ observations of the Weddell Sea ice cover and its marginal ice zone

    NASA Technical Reports Server (NTRS)

    Comiso, J. C.; Sullivan, C. W.

    1986-01-01

    The radiative and physical characteristics of the Weddell Sea ice cover and its marginal ice zone are analyzed using multichannel satellite passive microwave data and ship and helicopter observations obtained during the 1983 Antarctic Marine Ecosystem Research. Winter and spring brightness temperatures are examined; spatial variability in the brightness temperatures of consolidated ice in winter and spring cyclic increases and decrease in brightness temperatures of consolidated ice with an amplitude of 50 K at 37 GHz and 20 K at 18 GHz are observed. The roles of variations in air temperature and surface characteristics in the variability of spring brightness temperatures are investigated. Ice concentrations are derived using the frequency and polarization techniques, and the data are compared with the helicopter and ship observations. Temporal changes in the ice margin structure and the mass balance of fresh water and of biological features of the marginal ice zone are studied.

  16. Waves and mesoscale features in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Peng, Chih Y.

    1993-01-01

    Ocean-ice interaction processes in the Marginal Ice Zone (MIZ) by waves and mesoscale features, such as upwelling and eddies, are studied using ERS-1 Synthetic Aperture Radar (SAR) imagery and wave-ice interaction models. Satellite observations of mesoscale features can play a crucial role in ocean-ice interaction study.

  17. Modeling Wave-Ice Interactions in the Marginal Ice Zone

    NASA Astrophysics Data System (ADS)

    Orzech, Mark; Shi, Fengyan; Bateman, Sam; Veeramony, Jay; Calantoni, Joe

    2015-04-01

    The small-scale (O(m)) interactions between waves and ice floes in the marginal ice zone (MIZ) are investigated with a coupled model system. Waves are simulated with the non-hydrostatic finite-volume model NHWAVE (Ma et al., 2012) and ice floes are represented as bonded collections of smaller particles with the discrete element system LIGGGHTS (Kloss et al., 2012). The physics of fluid and ice are recreated as authentically as possible, to allow the coupled system to supplement and/or substitute for more costly and demanding field experiments. The presentation will first describe the development and validation of the coupled system, then discuss the results of a series of virtual experiments in which ice floe and wave characteristics are varied to examine their effects on energy dissipation, MIZ floe size distribution, and ice pack retreat rates. Although Wadhams et al. (1986) suggest that only a small portion (roughly 10%) of wave energy entering the MIZ is reflected, dissipation mechanisms for the remaining energy have yet to be delineated or measured. The virtual experiments are designed to focus on specific properties and processes - such as floe size and shape, collision and fracturing events, and variations in wave climate - and measure their relative roles the transfer of energy and momentum from waves to ice. Questions to be examined include: How is energy dissipated by ice floe collisions, fracturing, and drag, and how significant is the wave attenuation associated with each process? Do specific wave/floe length scale ratios cause greater wave attenuation? How does ice material strength affect the rate of wave energy loss? The coupled system will ultimately be used to test and improve upon wave-ice parameterizations for large-scale climate models. References: >Kloss, C., C. Goniva, A. Hager, S. Amberger, and S. Pirker (2012). Models, algorithms and validation for opensource DEM and CFD-DEM. Progress in Computational Fluid Dynamics 12(2/3), 140-152. >Ma, G

  18. A coupled ice-ocean model of ice breakup and banding in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Smedstad, O. M.; Roed, L. P.

    1985-01-01

    A coupled ice-ocean numerical model for the marginal ice zone is considered. The model consists of a nonlinear sea ice model and a two-layer (reduced gravity) ocean model. The dependence of the upwelling response on wind stress direction is discussed. The results confirm earlier analytical work. It is shown that there exist directions for which there is no upwelling, while other directions give maximum upwelling in terms of the volume of uplifted water. The ice and ocean is coupled directly through the stress at the ice-ocean interface. An interesting consequence of the coupling is found in cases when the ice edge is almost stationary. In these cases the ice tends to break up a few tenths of kilometers inside of the ice edge.

  19. Improved parameterization of marine ice dynamics and flow instabilities for simulation of the Austfonna ice cap using a large-scale ice sheet model

    NASA Astrophysics Data System (ADS)

    Dunse, T.; Greve, R.; Schuler, T.; Hagen, J. M.; Navarro, F.; Vasilenko, E.; Reijmer, C.

    2009-12-01

    The Austfonna ice cap covers an area of 8120 km2 and is by far the largest glacier on Svalbard. Almost 30% of the entire area is grounded below sea-level, while the figure is as large as 57% for the known surge-type basins in particular. Marine ice dynamics, as well as flow instabilities presumably control flow regime, form and evolution of Austfonna. These issues are our focus in numerical simulations of the ice cap. We employ the thermodynamic, large-scale ice sheet model SICOPOLIS (http://sicopolis.greveweb.net/) which is based on the shallow-ice approximation. We present improved parameterizations of (a) the marine extent and calving and (b) processes that may initiate flow instabilities such as switches from cold to temperate basal conditions, surface steepening and hence, increases in driving stress, enhanced sliding or deformation of unconsolidated marine sediments and diminishing ice thicknesses towards flotation thickness. Space-borne interferometric snapshots of Austfonna revealed a velocity structure of a slow moving polar ice cap (< 10m/a) interrupted by distinct fast flow units with velocities in excess of 100m/a. However, observations of flow variability are scarce. In spring 2008, we established a series of stakes along the centrelines of two fast-flowing units. Repeated DGPS and continuous GPS measurements of the stake positions give insight in the temporal flow variability of these units and provide constrains to the modeled surface velocity field. Austfonna’s thermal structure is described as polythermal. However, direct measurements of the temperature distribution is available only from one single borehole at the summit area. The vertical temperature profile shows that the bulk of the 567m thick ice column is cold, only underlain by a thin temperate basal layer of approximately 20m. To acquire a spatially extended picture of the thermal structure (and bed topography), we used low-frequency (20 MHz) GPR profiling across the ice cap and the

  20. Submesoscale Sea Ice-Ocean Interactions in Marginal Ice Zones

    NASA Astrophysics Data System (ADS)

    Manucharyan, Georgy E.; Thompson, Andrew F.

    2017-12-01

    Signatures of ocean eddies, fronts, and filaments are commonly observed within marginal ice zones (MIZs) from satellite images of sea ice concentration, and in situ observations via ice-tethered profilers or underice gliders. However, localized and intermittent sea ice heating and advection by ocean eddies are currently not accounted for in climate models and may contribute to their biases and errors in sea ice forecasts. Here, we explore mechanical sea ice interactions with underlying submesoscale ocean turbulence. We demonstrate that the release of potential energy stored in meltwater fronts can lead to energetic submesoscale motions along MIZs with spatial scales O(10 km) and Rossby numbers O(1). In low-wind conditions, cyclonic eddies and filaments efficiently trap the sea ice and advect it over warmer surface ocean waters where it can effectively melt. The horizontal eddy diffusivity of sea ice mass and heat across the MIZ can reach O(200 m2 s-1). Submesoscale ocean variability also induces large vertical velocities (order 10 m d-1) that can bring relatively warm subsurface waters into the mixed layer. The ocean-sea ice heat fluxes are localized over cyclonic eddies and filaments reaching about 100 W m-2. We speculate that these submesoscale-driven intermittent fluxes of heat and sea ice can contribute to the seasonal evolution of MIZs. With the continuing global warming and sea ice thickness reduction in the Arctic Ocean, submesoscale sea ice-ocean processes are expected to become increasingly prominent.

  1. Percutaneous Renal Cryoablation: Short-Axis Ice-Ball Margin as a Predictor of Outcome.

    PubMed

    Ge, Benjamin H; Guzzo, Thomas J; Nadolski, Gregory J; Soulen, Michael C; Clark, Timothy W I; Malkowicz, Stanley B; Wein, Alan J; Hunt, Stephen J; Stavropoulos, S William

    2016-03-01

    To determine if CT characteristics of intraprocedural ice balls correlate with outcomes after cryoablation. A retrospective review was performed on 63 consecutive patients treated with renal cryoablation. Preprocedural and intraprocedural images were used to identify the size and location of renal tumors and ice balls as well as the tumor coverage and ice-ball margins. Review of follow-up imaging (1 mo and then 3-6-mo intervals) distinguished successful ablations from cases of residual tumor. Patients who underwent successful ablation (n = 50; 79%) had a mean tumor diameter of 2.5 cm (range, 0.9-4.3 cm) and mean ice-ball margin of 0.4 cm (range, 0.2-1.2 cm). Patients with residual tumor (n = 13; 21%) had a mean tumor diameter of 3.8 cm (range, 1.8-4.5 cm) and mean ice-ball margin of -0.4 cm (range, -0.9 to 0.4 cm). Residual and undertreated tumors were larger and had smaller ice-ball margins than successfully treated tumors (P < .01). Ice-ball diameters were significantly smaller after image reformatting (P < .01). Ice-ball margins of 0.15 cm had 90% sensitivity, 92% specificity, and 98% positive predictive value for successful ablation. Success was independent of tumor location or number of cryoprobes. Ice-ball margin and real-time intraprocedural reformatting could be helpful in predicting renal cryoablation outcomes. Although a 0.5-cm margin is preferred, a well-centered ice ball with a short-axis margin greater than 0.15 cm strongly correlated with successful ablation. Copyright © 2016 SIR. Published by Elsevier Inc. All rights reserved.

  2. Taxon interactions control the distributions of cryoconite bacteria colonizing a High Arctic ice cap.

    PubMed

    Gokul, Jarishma K; Hodson, Andrew J; Saetnan, Eli R; Irvine-Fynn, Tristram D L; Westall, Philippa J; Detheridge, Andrew P; Takeuchi, Nozomu; Bussell, Jennifer; Mur, Luis A J; Edwards, Arwyn

    2016-08-01

    Microbial colonization of glacial ice surfaces incurs feedbacks which affect the melting rate of the ice surface. Ecosystems formed as microbe-mineral aggregates termed cryoconite locally reduce ice surface albedo and represent foci of biodiversity and biogeochemical cycling. Consequently, greater understanding the ecological processes in the formation of functional cryoconite ecosystems upon glacier surfaces is sought. Here, we present the first bacterial biogeography of an ice cap, evaluating the respective roles of dispersal, environmental and biotic filtration occurring at local scales in the assembly of cryoconite microbiota. 16S rRNA gene amplicon semiconductor sequencing of cryoconite colonizing a Svalbard ice cap coupled with digital elevation modelling of physical parameters reveals the bacterial community is dominated by a ubiquitous core of generalist taxa, with evidence for a moderate pairwise distance-decay relationship. While geographic position and melt season duration are prominent among environmental predictors of community structure, the core population of taxa appears highly influential in structuring the bacterial community. Taxon co-occurrence network analysis reveals a highly modular community structured by positive interactions with bottleneck taxa, predominantly Actinobacteria affiliated to isolates from soil humus. In contrast, the filamentous cyanobacterial taxon (assigned to Leptolyngbya/Phormidesmis pristleyi) which dominates the community and binds together granular cryoconite are poorly connected to other taxa. While our study targeted one ice cap, the prominent role of generalist core taxa with close environmental relatives across the global cryosphere indicate discrete roles for cosmopolitan Actinobacteria and Cyanobacteria as respective keystone taxa and ecosystem engineers of cryoconite ecosystems colonizing ice caps. © 2016 John Wiley & Sons Ltd.

  3. Change in the Extent of Baffin Island's Penny Ice Cap in Response to Regional Warming, 1969 - 2014

    NASA Astrophysics Data System (ADS)

    Cox, M. C.; Cormier, H. M.; Gardner, A. S.

    2014-12-01

    Glaciers are retreating globally in response to warmer atmospheric temperatures, adding large volumes of melt water to the world's oceans. The largest glacierized region and present-day contributor to sea level rise outside of the massive ice sheets is the Canadian Arctic. Recent work has shown that the glaciers of the southern Canadian Arctic (Baffin and Bylot Island) have experienced accelerated rates of ice loss in recent decades, but little is known regarding the spatial and temporal variations in rates of loss. For this study we examine in detail changes in the extent of the Penny Ice Cap (a proxy for ice loss) between 1969 and 2014 to better understand the climatic drivers of the recently observed accelerated rates of ice loss on Baffin Island. To do this, we reconstruct the extent of the ice cap for the year 1969 from historical maps and for the years 1985, 1995, 2010, and 2014 from Landsat 5 TM and Landsat 8 OLI imagery. We use 2009 SPOT HRS imagery and a novel extent comparison algorithm to assess the accuracy of glacier extents derived from Landsat imagery. Regional temperature and precipitation records were used to explain the spatial pattern of change. Due to large variation in elevations, hypsometry was also investigated as a contributor to differences in rates of change across the ice cap. Preliminary results show overall retreat throughout the ice cap but with regional differences in area and length change on either side of the Ice Cap divide.

  4. Seasonal Changes in Mars' North Polar Ice Cap

    NASA Technical Reports Server (NTRS)

    1997-01-01

    These images, which seem to have been taken while NASA's Hubble Space Telescope (HST) was looking directly down on the Martian North Pole, were actually created by assembling mosaics of three sets of images taken by HST in October, 1996 and in January and March, 1997 and projecting them to appear as they would if seen from above the pole. This first mosaic is a view which could not actually be seen in nature because at this season a portion of the pole would have actually been in shadow; the last view, taken near the summer solstice, would correspond to the Midnight Sun on Earth with the pole fully illuminated all day. The resulting polar maps begin at 50 degrees N latitude and are oriented with 0 degrees longitude at the 12 o'clock position. This series of pictures captures the seasonal retreat of Mars' north polar cap.

    October 1996 (early spring in the Northern hemisphere): In this map, assembled from images obtained between Oct. 8 and 15, the cap extends down to 60 degrees N latitude, nearly it's maximum winter extent. (The notches are areas where Hubble data were not available). A thin, comma-shaped cloud of dust can be seen as a salmon-colored crescent at the 7 o'clock position. The cap is actually fairly circular about the geographic pole at this season; the bluish 'knobs' where the cap seems to extend further are actually clouds that occurred near the edges of the three separate sets of images used to make the mosaic.

    January 1997 (mid-spring): Increased warming as spring progresses in the northern hemisphere has sublimated the carbon dioxide ice and frost below 70 degrees north latitude. The faint darker circle inside the cap boundary marks the location of circumpolar sand dunes (see March '97 map); these dark dunes are warmed more by solar heating than are the brighter surroundings, so the surface frost sublimates from the dunes earlier than from the neighboring areas. Particularly evident is the marked hexagonal shape of the polar cap at this season

  5. The little ice age as recorded in the stratigraphy of the tropical quelccaya ice cap.

    PubMed

    Thompson, L G; Mosley-Thompson, E; Dansgaard, W; Grootes, P M

    1986-10-17

    The analyses of two ice cores from a southern tropical ice cap provide a record of climatic conditions over 1000 years for a region where other proxy records are nearly absent. Annual variations in visible dust layers, oxygen isotopes, microparticle concentrations, conductivity, and identification of the historical (A.D. 1600) Huaynaputina ash permit accurate dating and time-scale verification. The fact that the Little Ice Age (about A.D. 1500 to 1900) stands out as a significant climatic event in the oxygen isotope and electrical conductivity records confirms the worldwide character of this event.

  6. Palaeoglaciology of the Alexander Island ice cap, western Antarctic Peninsula, reconstructed from marine geophysical and core data

    NASA Astrophysics Data System (ADS)

    Graham, Alastair G. C.; Smith, James A.

    2012-03-01

    The glacial history of the continental shelf northwest of Alexander Island is not well known, due mainly to a lack of targeted marine data on Antarctica's palaeo-ice sheets in their inter-ice-stream areas. Recently it has been argued that the region was ice-free at the Last Glacial Maximum (LGM) and thus a potential site for glacial refugia. In this paper, multibeam swath bathymetry, sub-bottom profiles and sediment cores are used to map the Alexander Island sector of the Antarctic Peninsula margin, in order to reconstruct the shelf's palaeoglaciology. Sea-floor bedforms provide evidence that an independent ice cap persisted on Alexander Island through the LGM and deglaciation. We show that this ice cap drained via two major, previously-undescribed tidewater outlets (Rothschild and Charcot Glaciers) sourced from an ice dome centred over the west of the island and near-shore areas. The glaciers grounded along deep, fjord-like cross-shelf troughs to within at least ˜10-20 km of the shelf edge, and probably reached the shelf break. Only one small outer-shelf zone appears to have remained free of ice throughout an otherwise extensive LGM. During retreat, grounding-line geomorphology indicates periodic stabilisation of Charcot Glacier on the mid-shelf after 13,500 cal yrs BP, while Rothschild Glacier retreated across its mid-shelf by 14,450 cal yrs BP. The timing of these events is in phase with retreat in nearby Marguerite Trough, and we take this as evidence of a common history and forcing with the Antarctic Peninsula Ice Sheet. The fine details of ice flow documented by our new reconstruction highlight the importance of capturing complex ice flow patterns in models (e.g. in inter-stream areas), for understanding how region-specific parts of Antarctica may change in the future. Moreover, the reconstruction shows that glacial refugia, if present, cannot have been extensive on the Alexander Island shelf at the LGM as indicated by previous biological studies; instead

  7. Variability of Mars' North Polar Water Ice Cap: I. Analysis of Mariner 9 and Viking Orbiter Imaging Data

    USGS Publications Warehouse

    Bass, Deborah S.; Herkenhoff, Kenneth; Paige, David A.

    2000-01-01

    Previous studies interpreted differences in ice coverage between Mariner 9 and Viking Orbiter observations of Mars' north residual polar cap as evidence of interannual variability of ice deposition on the cap. However, these investigators did not consider the possibility that there could be significant changes in the ice coverage within the northern residual cap over the course of the summer season. Our more comprehensive analysis of Mariner 9 and Viking Orbiter imaging data shows that the appearance of the residual cap does not show large-scale variance on an interannual basis. Rather we find evidence that regions that were dark at the beginning of summer look bright by the end of summer and that this seasonal variation of the cap repeats from year to year. Our results suggest that this brightening was due to the deposition of newly formed water ice on the surface. We find that newly formed ice deposits in the summer season have the same red-to-violet band image ratios as permanently bright deposits within the residual cap. We believe the newly formed ice accumulates in a continuous layer. To constrain the minimum amount of deposited ice, we used observed albedo data in conjunction with calculations using Mie theory for single scattering and a delta-Eddington approximation of radiative transfer for multiple scattering. The brightening could have been produced by a minimum of (1) a ~35-μm-thick layer of 50-μm-sized ice particles with 10% dust or (2) a ~14-μm-thick layer of 10-μm-sized ice particles with 50% dust.

  8. Microbial diversity on Icelandic glaciers and ice caps.

    PubMed

    Lutz, Stefanie; Anesio, Alexandre M; Edwards, Arwyn; Benning, Liane G

    2015-01-01

    Algae are important primary colonizers of snow and glacial ice, but hitherto little is known about their ecology on Iceland's glaciers and ice caps. Due do the close proximity of active volcanoes delivering large amounts of ash and dust, they are special ecosystems. This study provides the first investigation of the presence and diversity of microbial communities on all major Icelandic glaciers and ice caps over a 3 year period. Using high-throughput sequencing of the small subunit ribosomal RNA genes (16S and 18S), we assessed the snow community structure and complemented these analyses with a comprehensive suite of physical-, geo-, and biochemical characterizations of the aqueous and solid components contained in snow and ice samples. Our data reveal that a limited number of snow algal taxa (Chloromonas polyptera, Raphidonema sempervirens and two uncultured Chlamydomonadaceae) support a rich community comprising of other micro-eukaryotes, bacteria and archaea. Proteobacteria and Bacteroidetes were the dominant bacterial phyla. Archaea were also detected in sites where snow algae dominated and they mainly belong to the Nitrososphaerales, which are known as important ammonia oxidizers. Multivariate analyses indicated no relationships between nutrient data and microbial community structure. However, the aqueous geochemical simulations suggest that the microbial communities were not nutrient limited because of the equilibrium of snow with the nutrient-rich and fast dissolving volcanic ash. Increasing algal secondary carotenoid contents in the last stages of the melt seasons have previously been associated with a decrease in surface albedo, which in turn could potentially have an impact on the melt rates of Icelandic glaciers.

  9. Microbial diversity on Icelandic glaciers and ice caps

    PubMed Central

    Lutz, Stefanie; Anesio, Alexandre M.; Edwards, Arwyn; Benning, Liane G.

    2015-01-01

    Algae are important primary colonizers of snow and glacial ice, but hitherto little is known about their ecology on Iceland's glaciers and ice caps. Due do the close proximity of active volcanoes delivering large amounts of ash and dust, they are special ecosystems. This study provides the first investigation of the presence and diversity of microbial communities on all major Icelandic glaciers and ice caps over a 3 year period. Using high-throughput sequencing of the small subunit ribosomal RNA genes (16S and 18S), we assessed the snow community structure and complemented these analyses with a comprehensive suite of physical-, geo-, and biochemical characterizations of the aqueous and solid components contained in snow and ice samples. Our data reveal that a limited number of snow algal taxa (Chloromonas polyptera, Raphidonema sempervirens and two uncultured Chlamydomonadaceae) support a rich community comprising of other micro-eukaryotes, bacteria and archaea. Proteobacteria and Bacteroidetes were the dominant bacterial phyla. Archaea were also detected in sites where snow algae dominated and they mainly belong to the Nitrososphaerales, which are known as important ammonia oxidizers. Multivariate analyses indicated no relationships between nutrient data and microbial community structure. However, the aqueous geochemical simulations suggest that the microbial communities were not nutrient limited because of the equilibrium of snow with the nutrient-rich and fast dissolving volcanic ash. Increasing algal secondary carotenoid contents in the last stages of the melt seasons have previously been associated with a decrease in surface albedo, which in turn could potentially have an impact on the melt rates of Icelandic glaciers. PMID:25941518

  10. Reconciling records of ice streaming and ice margin retreat to produce a palaeogeographic reconstruction of the deglaciation of the Laurentide Ice Sheet

    NASA Astrophysics Data System (ADS)

    Margold, Martin; Stokes, Chris R.; Clark, Chris D.

    2018-06-01

    This paper reconstructs the deglaciation of the Laurentide Ice Sheet (LIS; including the Innuitian Ice Sheet) from the Last Glacial Maximum (LGM), with a particular focus on the spatial and temporal variations in ice streaming and the associated changes in flow patterns and ice divides. We build on a recent inventory of Laurentide ice streams and use an existing ice margin chronology to produce the first detailed transient reconstruction of the ice stream drainage network in the LIS, which we depict in a series of palaeogeographic maps. Results show that the drainage network at the LGM was similar to modern-day Antarctica. The majority of the ice streams were marine terminating and topographically-controlled and many of these continued to function late into the deglaciation, until the ice sheet lost its marine margin. Ice streams with a terrestrial ice margin in the west and south were more transient and ice flow directions changed with the build-up, peak-phase and collapse of the Cordilleran-Laurentide ice saddle. The south-eastern marine margin in Atlantic Canada started to retreat relatively early and some of the ice streams in this region switched off at or shortly after the LGM. In contrast, the ice streams draining towards the north-western and north-eastern marine margins in the Beaufort Sea and in Baffin Bay appear to have remained stable throughout most of the Late Glacial, and some of them continued to function until after the Younger Dryas (YD). The YD influenced the dynamics of the deglaciation, but there remains uncertainty about the response of the ice sheet in several sectors. We tentatively ascribe the switching-on of some major ice streams during this period (e.g. M'Clintock Channel Ice Stream at the north-west margin), but for other large ice streams whose timing partially overlaps with the YD, the drivers are less clear and ice-dynamical processes, rather than effects of climate and surface mass balance are viewed as more likely drivers. Retreat

  11. Submesoscale sea ice-ocean interactions in marginal ice zones

    NASA Astrophysics Data System (ADS)

    Thompson, A. F.; Manucharyan, G.

    2017-12-01

    Signatures of ocean eddies, fronts and filaments are commonly observed within the marginal ice zones (MIZ) from satellite images of sea ice concentration, in situ observations via ice-tethered profilers or under-ice gliders. Localized and intermittent sea ice heating and advection by ocean eddies are currently not accounted for in climate models and may contribute to their biases and errors in sea ice forecasts. Here, we explore mechanical sea ice interactions with underlying submesoscale ocean turbulence via a suite of numerical simulations. We demonstrate that the release of potential energy stored in meltwater fronts can lead to energetic submesoscale motions along MIZs with sizes O(10 km) and Rossby numbers O(1). In low-wind conditions, cyclonic eddies and filaments efficiently trap the sea ice and advect it over warmer surface ocean waters where it can effectively melt. The horizontal eddy diffusivity of sea ice mass and heat across the MIZ can reach O(200 m2 s-1). Submesoscale ocean variability also induces large vertical velocities (order of 10 m day-1) that can bring relatively warm subsurface waters into the mixed layer. The ocean-sea ice heat fluxes are localized over cyclonic eddies and filaments reaching about 100 W m-2. We speculate that these submesoscale-driven intermittent fluxes of heat and sea ice can potentially contribute to the seasonal evolution of MIZs. With continuing global warming and sea ice thickness reduction in the Arctic Ocean, as well as the large expanse of thin sea ice in the Southern Ocean, submesoscale sea ice-ocean processes are expected to play a significant role in the climate system.

  12. The influence of topographic feedback on a coupled mass balance and ice-flow model for Vestfonna ice-cap, Svalbard

    NASA Astrophysics Data System (ADS)

    Schäfer, Martina; Möller, Marco; Zwinger, Thomas; Moore, John

    2016-04-01

    Using a coupled simulation set-up between a by statistical climate data forced and to ice-cap resolution downscaled mass balance model and an ice-dynamic model, we study coupling effects for the Vestfonna ice cap, Nordaustlandet, Svalbard, by analysing the impacts of different imposed coupling intervals on mass-balance and sea-level rise (SLR) projections. Based on a method to estimate errors introduced by different coupling schemes, we find that neglecting the topographic feedback in the coupling leads to underestimations of 10-20% in SLR projections on century time-scales in our model compared to full coupling (i.e., exchange of properties using smallest occurring time-step). Using the same method it also is shown that parametrising mass-balance adjustment for changes in topography using lapse rates is a - in computational terms - cost-effective reasonably accurate alternative applied to an ice-cap like Vestfonna. We test the forcing imposed by different emission pathways (RCP 2.4, 4.5, 6.0 and 8.5). For most of them, over the time-period explored (2000-2100), fast-flowing outlet glaciers decrease in impacting SLR due to their deceleration and reduced mass flux as they thin and retreat from the coast, hence detaching from the ocean and thereby losing their major mass drainage mechanism, i.e., calving.

  13. A Case for Microorganisms on Comets, Europa and the Polar Ice Caps of Mars

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Pikuta, Elena V.

    2003-01-01

    Microbial extremophiles live on Earth wherever there is liquid water and a source of energy. Observations by ground-based observatories, space missions, and satellites have provided strong evidence that water ice exists today on comets, Europa, Callisto, and Ganymede and in the snow, permafrost, glaciers and polar ice caps of Mars. Studies of the cryoconite pools and ice bubble systems of Antarctica suggest that solar heating of dark rocks entrained in ice can cause localized melting of ice providing ideal conditions for the growth of microbial communities with the creation of micro-environments where trapped metabolic gasses produce entrained isolated atmospheres as in the Antarctic ice-bubble systems. It is suggested that these considerations indicate that several groups of microorganisms should be capable of episodic growth within liquid water envelopes surrounding dark rocks in cometary ices and the permafrost and polar caps of Mars. We discuss some of the types of microorganisms we have encountered within the permafrost and snow of Siberia, the cryoconite pools of Alaska, and frozen deep within the Antarctic ice sheet above Lake Vostok.

  14. Destabilisation of an Arctic ice cap triggered by a hydro-thermodynamic feedback to summer-melt

    NASA Astrophysics Data System (ADS)

    Dunse, T.; Schellenberger, T.; Kääb, A.; Hagen, J. O.; Schuler, T. V.; Reijmer, C. H.

    2014-05-01

    Mass loss from glaciers and ice sheets currently accounts for two-thirds of the observed global sea-level rise and has accelerated since the 1990s, coincident with strong atmospheric warming in the Polar Regions. Here we present continuous GPS measurements and satellite synthetic aperture radar based velocity maps from the Austfonna ice cap, Svalbard, that demonstrate strong links between surface-melt and multiannual ice-flow acceleration. We identify a hydro-thermodynamic feedback that successively mobilizes stagnant ice regions, initially frozen to their bed, thereby facilitating fast basal motion over an expanding area. By autumn 2012, successive destabilization of the marine terminus escalated in a surge of the ice cap's largest drainage basin, Basin-3. The resulting iceberg discharge of 4.2 ± 1.6 Gt a-1 over the period April 2012 to May 2013 triples the calving loss from the entire ice cap. After accounting for the terminus advance, the related sea-level rise contribution of 7.2 ± 2.6 Gt a-1 matches the recent annual ice-mass loss from the entire Svalbard archipelago. Our study highlights the importance of dynamic glacier wastage and illuminates mechanisms that may trigger a sustained increase in dynamic glacier wastage or the disintegration of ice-sheets in response to climate warming, which is acknowledged but not quantified in global projections of sea-level rise.

  15. Multisensor comparison of ice concentration estimates in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Burns, B. A.; Cavalieri, D. J.; Gloersen, P.; Keller, M. R.; Campbell, W. J.

    1987-01-01

    Aircraft remote sensing data collected during the 1984 summer Marginal Ice Zone Experiment in the Fram Strait are used to compare ice concentration estimates derived from synthetic aperture radar (SAR) imagery, passive microwave imagery at several frequencies, aerial photography, and spectral photometer data. The comparison is carried out not only to evaluate SAR performance against more established techniques but also to investigate how ice surface conditions, imaging geometry, and choice of algorithm parameters affect estimates made by each sensor.Active and passive microwave sensor estimates of ice concentration derived using similar algorithms show an rms difference of 13 percent. Agreement between each microwave sensor and near-simultaneous aerial photography is approximately the same (14 percent). The availability of high-resolution microwave imagery makes it possible to ascribe the discrepancies in the concentration estimates to variations in ice surface signatures in the scene.

  16. Test results of Thermal Ice Cap prototype and final comments. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burley, W.

    1982-01-01

    The design and testing of an insulating cover, Ice Cap, for an ice rink are described. The radio-controlled reel system which houses, deploys, and harvests the 17,000 square feet of insulating material is essential to the success of the cover. Photographs showing the use of the system are included. (MHR)

  17. Marginal Ice Zone Processes Observed from Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Zappa, C. J.

    2015-12-01

    Recent years have seen extreme changes in the Arctic. Marginal ice zones (MIZ), or areas where the "ice-albedo feedback" driven by solar warming is highest and ice melt is extensive, may provide insights into the extent of these changes. Furthermore, MIZ play a central role in setting the air-sea CO2 balance making them a critical component of the global carbon cycle. Incomplete understanding of how the sea-ice modulates gas fluxes renders it difficult to estimate the carbon budget in MIZ. Here, we investigate the turbulent mechanisms driving mixing and gas exchange in leads, polynyas and in the presence of ice floes using both field and laboratory measurements. Measurements from unmanned aerial systems (UAS) in the marginal ice zone were made during 2 experiments: 1) North of Oliktok Point AK in the Beaufort Sea were made during the Marginal Ice Zone Ocean and Ice Observations and Processes EXperiment (MIZOPEX) in July-August 2013 and 2) Fram Strait and Greenland Sea northwest of Ny-Ålesund, Svalbard, Norway during the Air-Sea-Ice Physics and Biogeochemistry Experiment (ASIPBEX) April - May 2015. We developed a number of new payloads that include: i) hyperspectral imaging spectrometers to measure VNIR (400-1000 nm) and NIR (900-1700 nm) spectral radiance; ii) net longwave and net shortwave radiation for ice-ocean albedo studies; iii) air-sea-ice turbulent fluxes as well as wave height, ice freeboard, and surface roughness with a LIDAR; and iv) drone-deployed micro-drifters (DDµD) deployed from the UAS that telemeter temperature, pressure, and RH as it descends through the atmosphere and temperature and salinity of the upper meter of the ocean once it lands on the ocean's surface. Visible and IR imagery of melting ice floes clearly defines the scale of the ice floes. The IR imagery show distinct cooling of the skin sea surface temperature (SST) as well as an intricate circulation and mixing pattern that depends on the surface current, wind speed, and near

  18. Science goals for a Mars Polar Cap subsurface mission : optical approaches for investiagations of inclusions in ice

    NASA Technical Reports Server (NTRS)

    Mogensen, Claus T.; Carsey, Frank D.; Behar, Alberto; Engelhardt, Hermann; Lane, Arthur L.

    2002-01-01

    The Mars Polar Caps are highly interesting features of Mars and have received much recent attention with new and exciting data on morphology, basal units, and layered outcroppings. We have examined the climatological, glaciological, and geological issues associated with a subsurface exploration of the Mars North Polar Cap and have determined that a finescale optical examination of ice in a borehole, to examine the stratigraphy, geochemistry and geochronology of the ice, is feasible. This information will enable reconstruction of the development of the cap as well as predication of the properties of its ice. We present visible imagery taken of dust inclusions in archived Greenland ice cores as well as in-situ images of accreted lithologic inclusions in West Antarctica, and we argue for use of this kind of data in Mars climate reconstruction as has been successful with Greenland and Antarctic ice core anlaysis.

  19. Science goals for a Mars Polar Cap subsurface mission : optical approaches for investigations of inclusions in ice

    NASA Technical Reports Server (NTRS)

    Carsey, Frank; Mogensen, Claus T.; Behar, Alberto; Engelhardt, Hermann; Lane, Arthur L.

    2002-01-01

    The Mars Polar Caps are highly interesting features of Mars and have received much recent attention with new and exciting data on morphology, basal units, and layered outcroppings. We have examined the climatological, glaciological, and geological issues associated with a subsurface exploration of the Mars North Polar Cap and have determined that a finescale optical examination of ice in a borehole, to examine the stratigraphy, geochemistry and geochronology of the ice, is feasible. This information will enable reconstruction of the development of the cap as well as prediction of the properties of its ice. We present visible imagery taken of dust inclusions in archived Greenland ice cores as well as in-situ images of accreted lithologic inclusions in West Antarctica, and we argue for use of this kind of data in Mars climate reconstruction as has been successful with Greenland and Antarctic ice core analysis. .

  20. Norwegian remote sensing experiment in a marginal ice zone

    USGS Publications Warehouse

    Farrelly, B.; Johannessen, J.A.; Svendsen, E.; Kloster, K.; Horjen, I.; Matzler, C.; Crawford, J.; Harrington, R.; Jones, L.; Swift, C.; Delnore, V.E.; Cavalieri, D.; Gloersen, P.; Hsiao, S.V.; Shemdin, O.H.; Thompson, T.W.; Ramseier, R.O.; Johannessen, O.M.; Campbell, W.J.

    1983-01-01

    The Norwegian Remote Sensing Experiment in the marginal ice zone north of Svalbard took place in fall 1979. Coordinated passive and active microwave measurements were obtained from shipborne, airborne, and satellite instruments together with in situ observations. The obtained spectra of emissivity (frequency range, 5 to 100 gigahertz) should improve identification of ice types and estimates of ice concentration. Mesoscale features along the ice edge were revealed by a 1.215-gigahertz synthetic aperture radar. Ice edge location by the Nimbus 7 scanning multichannel microwave radiometer was shown to be accurate to within 10 kilometers.

  1. A coupled ice-ocean model of upwelling in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Roed, L. P.; Obrien, J. J.

    1983-01-01

    A dynamical coupled ice-ocean numerical model for the marginal ice zone (MIZ) is suggested and used to study upwelling dynamics in the MIZ. The nonlinear sea ice model has a variable ice concentration and includes internal ice stress. The model is forced by stresses on the air/ocean and air/ice surfaces. The main coupling between the ice and the ocean is in the form of an interfacial stress on the ice/ocean interface. The ocean model is a linear reduced gravity model. The wind stress exerted by the atmosphere on the ocean is proportional to the fraction of open water, while the interfacial stress ice/ocean is proportional to the concentration of ice. A new mechanism for ice edge upwelling is suggested based on a geostrophic equilibrium solution for the sea ice medium. The upwelling reported in previous models invoking a stationary ice cover is shown to be replaced by a weak downwelling due to the ice motion. Most of the upwelling dynamics can be understood by analysis of the divergence of the across ice edge upper ocean transport. On the basis of numerical model, an analytical model is suggested that reproduces most of the upwelling dynamics of the more complex numerical model.

  2. A comparison of radiation budgets in the Fram Strait marginal ice zone

    NASA Technical Reports Server (NTRS)

    Francis, Jennifer A.; Katsaros, Kristina B.; Ackerman, Thomas P.; Lind, Richard J.; Davidson, Kenneth L.

    1991-01-01

    Results are presented from calculations of radiation budgets for the sea-ice and the open-water regimes in the marginal ice zone (MIZ) of the Fram Strait, from measurements of surface irradiances and meteorological conditions made during the 1984 Marginal Ice Zone Experiment. Simultaneous measurements on either side of the ice edge allowed a comparison of the open-water and the sea-ice environments. The results show significant differences between the radiation budgets of the two regimes in the MIZ. The open water absorbed twice as much radiation as did the ice, and the mean cooling rate of the atmosphere over water was approximately 15 percent larger than that over ice. Calculated fluxes and atmospheric cooling rates were found to compare well with available literature data.

  3. Deglaciation-induced uplift of the Petermann glacier ice margin observed with InSAR

    NASA Astrophysics Data System (ADS)

    Lu, Q.; Amelung, F.; Wdowinski, S.

    2016-12-01

    The Greenland ice sheet is rapidly shrinking with the fastest retreat and thinning occurring at the ice sheet margin and near the outlet glaciers. The changes of the ice mass cause an elastic response of the bedrock. Ice mass loss during the summer months is associated with uplift, whereas ice mass increase during the winter months is associated with subsidence.The German TerraSAR-X and TanDEM-X satellites have systematically observed selected sites along the Greenland Petermann ice sheet margin since summer 2012. Here we present ground deformation observations obtained using an InSAR time-series approach based on small baseline interferograms. We observed rapid deglaciation-induced uplift on naked bedrock near the Petermann glacier ice margin Deformation observed by InSAR is consistent with GPS vertical observations. The time series displacement data reveal not only net uplift but also the seasonal variations. There is no strong relative between displacement changes and SMB ice mass change. The seasonal variations in local area may caused by both nearby SMB changes and ice dynamic changes.

  4. Crustal movements due to Iceland's shrinking ice caps mimic magma inflow signal at Katla volcano.

    PubMed

    Spaans, Karsten; Hreinsdóttir, Sigrún; Hooper, Andrew; Ófeigsson, Benedikt Gunnar

    2015-05-20

    Many volcanic systems around the world are located beneath, or in close proximity to, ice caps. Mass change of these ice caps causes surface movements, which are typically neglected when interpreting surface deformation measurements around these volcanoes. These movements can however be significant, and may closely resemble movements due to magma accumulation. Here we show such an example, from Katla volcano, Iceland. Horizontal movements observed by GPS on the flank of Katla have led to the inference of significant inflow of magma into a chamber beneath the caldera, starting in 2000, and continuing over several years. We use satellite radar interferometry and GPS data to show that between 2001 and 2010, the horizontal movements seen on the flank can be explained by the response to the long term shrinking of ice caps, and that erratic movements seen at stations within the caldera are also not likely to signify magma inflow. It is important that interpretations of geodetic measurements at volcanoes in glaciated areas consider the effect of ice mass change, and previous studies should be carefully reevaluated.

  5. Microwave and physical properties of sea ice in the winter marginal ice zone

    NASA Technical Reports Server (NTRS)

    Tucker, W. B., III; Perovich, D. K.; Gow, A. J.; Grenfell, T. C.; Onstott, R. G.

    1991-01-01

    Surface-based active and passive microwave measurements were made in conjunction with ice property measurements for several distinct ice types in the Fram Strait during March and April 1987. Synthesis aperture radar imagery downlinked from an aircraft was used to select study sites. The surface-based radar scattering cross section and emissivity spectra generally support previously inferred qualitative relationships between ice types, exhibiting expected separation between young, first-year and multiyear ice. Gradient ratios, calculated for both active and passive data, appear to allow clear separation of ice types when used jointly. Surface flooding of multiyear floes, resulting from excessive loading and perhaps wave action, causes both active and passive signatures to resemble those of first-year ice. This effect could possibly cause estimates of ice type percentages in the marginal ice zone to be in error when derived from aircraft- or satellite-born sensors.

  6. Retreat of northern margins of George VI and Wilkins Ice Shelves, Antarctic Peninsula

    USGS Publications Warehouse

    Lucchitta, B.K.; Rosanova, C.E.

    1998-01-01

    The George VI and Wilkins Ice Shelves are considered at risk of disintegration due to a regional atmospheric warming trend on the Antarctic Peninsula. Retreat of the northern margin of the George VI Ice Shelf has been observed previously, but the Wilkins Ice Shelf was thought to be stable. We investigated the positions of the northern fronts of these shelves from the literature and looked for changes on 1974 Landsat and 1992 and 1995 European remote-sensing satellite (ERS) synthetic aperture radar images. Our investigation shows that the northern George VI Ice Shelf lost a total of 906 km2 between 1974 and 1992, and an additional 87 km2 by 1995. The northern margin of the Wilkins Ice Shelf lost 796 km2 between 1990 and 1992, and another 564 km2 between 1992 and 1995. Armadas of tabular icebergs were visible in front of this shelf in the ERS images. These two ice shelves mark the southernmost documented conspicuous retreat of ice-shelf margins.

  7. Investigations of Spatial and Temporal Variability of Ocean and Ice Conditions in and Near the Marginal Ice Zone. The “Marginal Ice Zone Observations and Processes Experiment” (MIZOPEX) Final Campaign Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeMott, P. J.; Hill, T. C.J.

    Despite the significance of the marginal ice zones of the Arctic Ocean, basic parameters such as sea surface temperature (SST) and a range of sea-ice characteristics are still insufficiently understood in these areas, and especially so during the summer melt period. The field campaigns summarized here, identified collectively as the “Marginal Ice Zone Ocean and Ice Observations and Processes Experiment” (MIZOPEX), were funded by U.S. National Aeronautic and Space Administration (NASA) with the intent of helping to address these information gaps through a targeted, intensive observation field campaign that tested and exploited unique capabilities of multiple classes of unmanned aerialmore » systems (UASs). MIZOPEX was conceived and carried out in response to NASA’s request for research efforts that would address a key area of science while also helping to advance the application of UASs in a manner useful to NASA for assessing the relative merits of different UASs. To further exercise the potential of unmanned systems and to expand the science value of the effort, the field campaign added further challenges such as air deployment of miniaturized buoys and coordinating missions involving multiple aircraft. Specific research areas that MIZOPEX data were designed to address include relationships between ocean skin temperatures and subsurface temperatures and how these evolve over time in an Arctic environment during summer; variability in sea-ice conditions such as thickness, age, and albedo within the marginal ice zone (MIZ); interactions of SST, salinity, and ice conditions during the melt cycle; and validation of satellite-derived SST and ice concentration fields provided by satellite imagery and models.« less

  8. Cenozoic ice sheet history from East Antarctic Wilkes Land continental margin sediments

    USGS Publications Warehouse

    Escutia, C.; De Santis, L.; Donda, F.; Dunbar, R.B.; Cooper, A. K.; Brancolini, Giuliano; Eittreim, S.L.

    2005-01-01

    The long-term history of glaciation along the East Antarctic Wilkes Land margin, from the time of the first arrival of the ice sheet to the margin, through the significant periods of Cenozoic climate change is inferred using an integrated geophysical and geological approach. We postulate that the first arrival of the ice sheet to the Wilkes Land margin resulted in the development of a large unconformity (WL-U3) between 33.42 and 30 Ma during the early Oligocene cooling climate trend. Above WL-U3, substantial margin progradation takes place with early glacial strata (e.g., outwash deposits) deposited as low-angle prograding foresets by temperate glaciers. The change in geometry of the prograding wedge across unconformity WL-U8 is interpreted to represent the transition, at the end of the middle Miocene "climatic optimum" (14-10 Ma), from a subpolar regime with dynamic ice sheets (i.e., ice sheets come and go) to a regime with persistent but oscillatory ice sheets. The steep foresets above WL-U8 likely consist of ice proximal sediments (i.e., water-lain till and debris flows) deposited when grounded ice-sheets extended into the shelf. On the continental rise, shelf progradation above WL-U3 results in an up-section increase in the energy of the depositional environment (i.e., seismic facies indicative of more proximal turbidite and of bottom contour current deposition from the deposition of the lower WL-S5 sequence to WL-S7). Maximum rates of sediment delivery to the rise occur during the development of sequences WL-S6 and WL-S7, which we infer to be of middle Miocene age. During deposition of the two uppermost sequences, WL-S8 and WL-S9, there is a marked decrease in the sediment supply to the lower continental rise and a shift in the depocenters to more proximal areas of the margin. We believe WL-S8 records sedimentation during the final transition from a dynamic to a persistent but oscillatory ice sheet in this margin (14-10 Ma). Sequence WL-S9 forms under a polar

  9. Structure across the northeastern margin of Flemish Cap, offshore Newfoundland from Erable multichannel seismic reflection profiles: evidence for a transtensional rifting environment

    NASA Astrophysics Data System (ADS)

    Welford, J. Kim; Hall, Jeremy; Sibuet, Jean-Claude; Srivastava, Shiri P.

    2010-11-01

    We present the results from processing and interpreting nine multichannel seismic reflection lines collected during the 1992 Erable experiment over the northeastern margin of Flemish Cap offshore Newfoundland. These lines, combined into five cross-sections, provide increased seismic coverage over this lightly probed section of the margin and reveal tectonically significant along-strike variations in the degree and compartmentalization of crustal thinning. Similar to the southeastern margins of Flemish Cap and the Grand Banks, a transitional zone of exhumed serpentinized mantle is interpreted between thinned continental and oceanic crust. The 25 km wide transitional zone bears similarities to the 120 km wide transitional zone interpreted as exhumed serpentinized mantle on the conjugate Irish Atlantic margin but the significant width difference is suggestive of an asymmetric conjugate pair. A 40-50 km wide zone of inferred strike-slip shearing is interpreted and observed to extend along most of the northeastern margin of Flemish Cap. Individual shear zones (SZs) may represent extensions of SZs and normal faults within the Orphan Basin providing further evidence for the rotation and displacement of Flemish Cap out of Orphan Basin. The asymmetry between the Flemish Cap and Irish conjugate pairs is likely due in large part to the rotation and displacement of Flemish Cap which resulted in the Flemish Cap margin displaying features of both a strike-slip margin and an extensional margin.

  10. Modelled non-linear response to climate of Hardangerjøkulen ice cap, southern Norway, since the mid-Holocene

    NASA Astrophysics Data System (ADS)

    Åkesson, Henning; Nisancioglu, Kerim H.; Giesen, Rianne H.; Morlighem, Mathieu

    2016-04-01

    Glacier and ice cap volume changes currently amount to half of the total cryospheric contribution to sea-level rise and are projected to remain substantial throughout the 21st century. To simulate glacier behavior on centennial and longer time scales, models rely on simplified dynamics and tunable parameters for processes not well understood. Model calibration is often done using present-day observations, even though the relationship between parameters and parametrized processes may be altered for significantly different glacier states. In this study, we simulate the Hardangerjøkulen ice cap in southern Norway since the mid-Holocene, through the Little Ice Age (LIA) and into the future. We run an ensemble for both calibration and transient experiments, using a two-dimensional ice flow model with mesh refinement. For the Holocene, we apply a simple mass balance forcing based on climate reconstructions. For the LIA until 1962, we use geomorphological evidence and measured outlet glacier positions to find a mass balance history, while we use direct mass balance measurements from 1963 until today. Given a linear climate forcing, we show that Hardangerøkulen grew from ice-free conditions in the mid-Holocene, to its maximum LIA extent in a highly non-linear fashion. We relate this to local bed topography and demonstrate that volume and area of some but not all outlet glaciers, as well as the entire ice cap, become decoupled for several centuries during our simulation of the late Holocene, before co-varying approaching the LIA. Our model is able to simulate most recorded ice cap and outlet glacier changes from the LIA until today. We show that present-day Hardangerøkulen is highly sensitive to mass balance changes, and estimate that the ice cap will melt completely by the year 2100.

  11. Effects of deliquescent salts in soils of polar Mars on the flow of the Northern Ice Cap

    NASA Astrophysics Data System (ADS)

    Fisher, D. A.; Hecht, M. H.; Kounaves, S.; Catling, D.

    2008-12-01

    The discovery of substantial amounts of magnesium and perchlorate by Phoenix' "Wet Chemistry Lab" (WCL) in the soil of Polar Mars suggests that magnesium perchlorate could be the dominant salt in the polar region's soils. This prospect opens some unexpected doors for moving liquid water around at temperatures as low as -68C. In its fully hydrated form ,this salt water mixture has a high density (~ 1700 kgm /cubic meter) (Besley and Bottomley,1969) and a freezing point of -68C (Pestova et al., 2005).This perchlorate is very deliquescent and gives off heat as it melts ice. About 1.8 gram of ice can be 'melted' by 1 gm of pure magnesium perchlorate . If the reported 1 percent perchlorate is typical of polar soils and if 5 percent of the Northern Permanent Ice Cap is soil then the perchorate , makes up about 0.0005 the of the ice cap. Given the average thickness of the ice cap is about 2000 meters,this suggests there enough perchorate in the ice cap to generate about 2m of salty water at the bed. Because of its density the perclorate salty water would pool over impervious layers and make the bed into a perchorate sludge that could be mobilized and deformed by the overburden of ice. The deformation of mobile beds is a well known phenomenon on some terrestrial glaciers presently and was thought to have played a major role during the Wisconsinan ice age (Fisher et al., 1985) . The perchorate sludge would be deformed and moved outwards possibly resulting its re-introduction to the polar environment. Having a deliquescent salt sludge at the bed whose melting point is -68C would mean that the ice cap could slide on its deformable bed while the ice itself was still very cold and stiff . This possibility has been modeled with a 2D time varying model . Adding the deformable bed material allows ice cap motion even at ice temperatures cold enough to generate and preserve the scarp/trough features. When the perchlorate formation mechanisms and rates are known the ultimate

  12. Coupling of Waves, Turbulence and Thermodynamics Across the Marginal Ice Zone

    DTIC Science & Technology

    2013-09-30

    under-predict the observed trend of declining sea ice area over the last decade. A potential explanation for this under-prediction is that models...are missing important feedbacks within the ocean- ice system. Results from the proposed research will contribute to improving the upper ocean and sea ...and solar-radiation-driven thermodynamic forcing in the marginal ice zone. Within the MIZ, the ocean- ice - albedo feedback mechanism is coupled to ice

  13. Sensitivity studies with a coupled ice-ocean model of the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Roed, L. P.

    1983-01-01

    An analytical coupled ice-ocean model is considered which is forced by a specified wind stress acting on the open ocean as well as the ice. The analysis supports the conjecture that the upwelling dynamics at ice edges can be understood by means of a simple analytical model. In similarity with coastal problems it is shown that the ice edge upwelling is determined by the net mass flux at the boundaries of the considered region. The model is used to study the sensitivity of the upwelling dynamics in the marginal ice zone to variation in the controlling parameters. These parameters consist of combinations of the drag coefficients used in the parameterization of the stresses on the three interfaces atmosphere-ice, atmosphere-ocean, and ice-ocean. The response is shown to be sensitive to variations in these parameters in that one set of parameters may give upwelling while a slightly different set of parameters may give downwelling.

  14. Extending permanent volcano monitoring networks into Iceland's ice caps

    NASA Astrophysics Data System (ADS)

    Vogfjörd, Kristín S.; Bergsson, Bergur H.; Kjartansson, Vilhjálmur; Jónsson, Thorsteinn; Ófeigsson, Benedikt G.; Roberts, Matthew J.; Jóhannesson, Tómas; Pálsson, Finnur; Magnússon, Eyjólfur; Erlendsson, Pálmi; Ingvarsson, Thorgils; Pálssson, Sighvatur K.

    2015-04-01

    The goals of the FUTUREVOLC project are the establishment of a volcano Supersite in Iceland to enable access to volcanological data from the country's many volcanoes and the development of a multiparametric volcano monitoring and early warning system. However, the location of some of Iceland's most active volcanoes inside the country's largest ice cap, Vatnajökull, makes these goals difficult to achieve as it hinders access and proper monitoring of seismic and deformation signals from the volcanoes. To overcome these obstacles, one of the developments in the project involves experimenting with extending the permanent real-time networks into the ice cap, including installation of stations in the glacier ice. At the onset of the project, only one permanent seismic and GPS site existed within Vatnajökull, on the caldera rim of the Grímsvötn volcano. Two years into the project both seismic and GPS stations have been successfully installed and operated inside the glacier; on rock outcrops as well as on the glacier surface. The specific problems to overcome are (i) harsh weather conditions requiring sturdy and resilient equipment and site installations, (ii) darkness during winter months shutting down power generation for several weeks, (iii) high snow accumulation burying the instruments, solar panels and communication and GPS antennae, and in some locations (iv) extreme icing conditions blocking transmission signals and connection to GPS satellites, as well as excluding the possibility of power generation by wind generators. In 2013, two permanent seismic stations and one GPS station were installed on rock outcrops within the ice cap in locations with 3G connections and powered by solar panels and enough battery storage to sustain operation during the darkest winter months. These sites have successfully operated for over a year with mostly regular maintenance requirements, transmitting data in real-time to IMO for analysis. Preparations for two permanent seismic

  15. Correlation studies of passive and active microwave data in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Comiso, J. C.

    1991-01-01

    The microwave radiative and backscatter characteristics of sea ice in an Arctic marginal ice zone have been studied using near-simultaneous passive and active synthetic aperture radar microwave data. Intermediate-resolution multichannel passive microwave data were registered and analyzed. Passive and active microwave data generally complement each other as the two sensors are especially sensitive to different physical properties of the sea ice. In the inner pack, undeformed first-year ice is observed to have low backscatter values but high brightness temperatures while multiyear ice has generally high backscatter values and low brightness temperatures. However, in the marginal ice zone, the signature and backscatter for multiyear ice are considerably different and closer to those of first-year ice. Some floes identified by photography as snow-covered thick ice have backscatter similar to that of new ice or open water while brash ice has backscatter similar to or higher than that of ridged ice.

  16. Holocene glacier and climate variations in Vestfirðir, Iceland, from the modeling of Drangajökull ice cap

    NASA Astrophysics Data System (ADS)

    Anderson, Leif S.; Flowers, Gwenn E.; Jarosch, Alexander H.; Aðalgeirsdóttir, Guðfinna Th; Geirsdóttir, Áslaug; Miller, Gifford H.; Harning, David J.; Thorsteinsson, Thorsteinn; Magnússon, Eyjólfur; Pálsson, Finnur

    2018-06-01

    Drangajökull is a maritime ice cap located in northwest (Vestfirðir) Iceland. Drangajökull's evolution is therefore closely linked to atmospheric and ocean variability. In order to better constrain the Holocene climate and glacier history of Vestfirðir we model the past evolution of Drangajökull ice cap. Simulations from 10 ka to present are forced by general circulation model output, ice-core-based temperature reconstructions, and sea-surface temperature reconstructions. Based on these 10-thousand year simulations, Drangajökull did not persist through the Holocene. We estimate that air temperatures were 2.5-3.0 °C higher during the Holocene Thermal Maximum than the local 1960-1990 average. Simulations support Drangajökull's late Holocene inception between 2 and 1 ka, though intermittent ice likely occupied cirques as early as 2.6 ka. Drangajökull is primarily a Little Ice Age ice cap: it expanded between 1300 and 1750 CE, with the most rapid growth occurring between 1600 and 1750 CE. The maximum Holocene extent of Drangajökull occurred between 1700 and 1925 CE, despite the lowest late Holocene temperatures, occurring between 1650 and 1720 CE. Between 1700 and 1925 CE temperatures were likely 0.6-0.8 °C lower than the 1950-2015 reference temperature. The modern equilibrium line altitude (ELA) is bracketed by topographic thresholds: a 1 °C temperature increase from the modern ELA would eliminate the ice cap's accumulation area, while a reduction of 0.5 °C would lead to the rapid expansion of the ice cap across Vestfirðir. The proximity of Drangajökull to topographic thresholds may explain its late inception and rapid expansion during the Little Ice Age.

  17. Glaciers and ice caps outside Greenland

    USGS Publications Warehouse

    Sharp, Marin; Wolken, G.; Burgess, D.; Cogley, J.G.; Copland, L.; Thomson, L.; Arendt, A.; Wouters, B.; Kohler, J.; Andreassen, L.M.; O'Neel, Shad; Pelto, M.

    2015-01-01

    Mountain glaciers and ice caps cover an area of over 400 000 km2 in the Arctic, and are a major influence on global sea level (Gardner et al. 2011, 2013; Jacob et al. 2012). They gain mass by snow accumulation and lose mass by meltwater runoff. Where they terminate in water (ocean or lake), they also lose mass by iceberg calving. The climatic mass balance (Bclim, the difference between annual snow accumulation and annual meltwater runoff) is a widely used index of how glaciers respond to climate variability and change. The total mass balance (ΔM) is defined as the difference between annual snow accumulation and annual mass losses (by iceberg calving plus runoff).

  18. Ocean-ice interaction in the marginal ice zone using synthetic aperture radar imagery

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Peng, Chich Y.; Weingartner, Thomas J.

    1994-01-01

    Ocean-ice interaction processes in the marginal ice zone (MIZ) by wind, waves, and mesoscale features, such as up/downwelling and eddies are studied using Earth Remote-Sensing Satellite (ERS) 1 synthetic aperture radar (SAR) images and an ocean-ice interaction model. A sequence of seven SAR images of the MIZ in the Chukchi Sea with 3 or 6 days interval are investigated for ice edge advance/retreat. Simultaneous current measurements from the northeast Chukchi Sea, as well as the Barrow wind record, are used to interpret the MIZ dynamics. SAR spectra of waves in ice and ocean waves in the Bering and Chukchi Sea are compared for the study of wave propagation and dominant SAR imaging mechanism. By using the SAR-observed ice edge configuration and wind and wave field in the Chukchi Sea as inputs, a numerical simulation has been performed with the ocean-ice interaction model. After 3 days of wind and wave forcing the resulting ice edge configuration, eddy formation, and flow velocity field are shown to be consistent with SAR observations.

  19. Dynamic Inland Propagation of Thinning Due to Ice Loss at the Margins of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Wang, Wei Li; Li, Jun J.; Zwally, H. Jay

    2012-01-01

    Mass-balance analysis of the Greenland ice sheet based on surface elevation changes observed by the European Remote-sensing Satellite (ERS) (1992-2002) and Ice, Cloud and land Elevation Satellite (ICESat) (2003-07) indicates that the strongly increased mass loss at lower elevations (<2000 m) of the ice sheet, as observed during 2003-07, appears to induce interior ice thinning at higher elevations. In this paper, we perform a perturbation experiment with a three-dimensional anisotropic ice-flow model (AIF model) to investigate this upstream propagation. Observed thinning rates in the regions below 2000m elevation are used as perturbation inputs. The model runs with perturbation for 10 years show that the extensive mass loss at the ice-sheet margins does in fact cause interior thinning on short timescales (i.e. decadal). The modeled pattern of thinning over the ice sheet agrees with the observations, which implies that the strong mass loss since the early 2000s at low elevations has had a dynamic impact on the entire ice sheet. The modeling results also suggest that even if the large mass loss at the margins stopped, the interior ice sheet would continue thinning for 300 years and would take thousands of years for full dynamic recovery.

  20. Ice Sheet History from Antarctic Continental Margin Sediments: The ANTOSTRAT Approach

    USGS Publications Warehouse

    Barker, P.F.; Barrett, P.J.; Camerlenghi, A.; Cooper, A. K.; Davey, F.J.; Domack, E.W.; Escutia, C.; Kristoffersen, Y.; O'Brien, P.E.

    1998-01-01

    The Antarctic Ice Sheet is today an important part of the global climate engine, and probably has been so for most of its long existence. However, the details of its history are poorly known, despite the measurement and use, over two decades, of low-latitude proxies of ice sheet volume. An additional way of determining ice sheet history is now available, based on understanding terrigenous sediment transport and deposition under a glacial regime. It requires direct sampling of the prograded wedge of glacial sediments deposited at the Antarctic continental margin (and of derived sediments on the continental rise) at a small number of key sites, and combines the resulting data using numerical models of ice sheet development. The new phase of sampling is embodied mainly in a suite of proposals to the Ocean Drilling Program, generated by separate regional proponent groups co-ordinated through ANTOSTRAT (the Antarctic Offshore Acoustic Stratigraphy initiative). The first set of margin sites has now been drilled as ODP Leg 178 to the Antarctic Peninsula margin, and a first, short season of inshore drilling at Cape Roberts, Ross Sea, has been completed. Leg 178 and Cape Roberts drilling results are described briefly here, together with an outline of key elements of the overall strategy for determining glacial history, and of the potential contributions of drilling other Antarctic margins investigated by ANTOSTRAT. ODP Leg 178 also recovered continuous ultra-high-resolution Holocene biogenic sections at two sites within a protected, glacially-overdeepened basin (Palmer Deep) on the inner continental shelf of the Antarctic Peninsula. These and similar sites from around the Antarctic margin are a valuable resource when linked with ice cores and equivalent sections at lower latitude sites for studies of decadal and millenial-scale climate variation.

  1. IR spectral properties of dust and ice at the Mars south polar cap

    NASA Astrophysics Data System (ADS)

    Titus, T. N.; Kieffer, H. H.

    2001-11-01

    Removal of atmospheric dust effects is required to derive surface IR spectral emissivity. Commonly, the atmospheric-surface separation is based on radiative transfer (RT) spectral inversion methods using nadir-pointing observations. This methodology depends on a priori knowledge of the spectral shape of each atmospheric aerosol (e.g. dust or water ice) and a large thermal contrast between the surface and atmosphere. RT methods fail over the polar caps due to low thermal contrast between the atmosphere and the surface. We have used multi-angle Emission Phase Function (EPF) observations to estimate the opacity spectrum of dust over the springtime south polar cap and the underlying surface radiance, and thus, the surface emissivity. We include a few EPFs from Hellas Basin as a basis for comparisons between the spectral shape of polar and non-polar dust. Surface spectral emissivities over the seasonal cap are compared to CO2 models. Our results show that the spectral shape of the polar dust opacity is not constant, but is a two-parameter family that can be characterized by the 9 um and 20 um opacities. The 9 um opacity varies from 0.15 to 0.45 and characterizes the overall atmospheric conditions. The 9 um to 20 um opacity ratio varies from 2.0 to 5.1, suggesting changes in dust size distribution over the polar caps. Derived surface temperatures from the EPFs confirm that the slightly elevated temperatures (relative to CO2 frost temperature) observed in ``cryptic'' regions are a surface effect, not atmospheric. Comparison of broad-band reflectivity and surface emissivities to model spectra suggest the bright regions (e.g. perennial cap, Mountains of Mitchell) have higher albedos due to a thin surface layer of fine-grain CO2 (perhaps either frost or fractured ice) with an underlying layer of either coarse grain or slab CO2 ice.

  2. Advancing land-terminating ice margin in North Greenland - characteristics, evolution, and first field measurements

    NASA Astrophysics Data System (ADS)

    Steiner, J. F.; Prinz, R.; Abermann, J.

    2017-12-01

    More than 40% of the ice sheet in North Greenland terminate on land, however the characteristics of this ice margin and response to a changing climate have so far received little attention. While land-terminating ice cliffs are a feature commonly found and studied in other regions, detailed investigations in Greenland were only carried out more than six decades ago in the Thule area (Red Rock, Northwest Greenland). These studies showed a continuous advance at one location over multiple years, while the local mass balance was reported negative. The purpose of our study is to revisit the location previously studied and extend the analysis to the complete Northern ice margin employing newly available high-resolution digital terrain models (Arctic DEM). First results show that the advance at Red Rock is indeed long-term, continuing unabated today at rates of up to several meter per year. Similar magnitudes were found for large other stretches along the ice margin. With our study we aim to show (a) the main characteristics of the land-terminating ice margin in Northern Greenland, namely its slope and aspect distribution and comparison to spatial datasets of flow velocity and mass balance and (b) to provide further explanations of physical processes driving the advance. We have therefore mapped the complete ice margin and present the first results of this analysis. First field work provides new data on energy fluxes and ice temperatures at the Red Rock site as well as high resolution DEMs obtained with the use of UAVs.

  3. Active/passive microwave sensor comparison of MIZ-ice concentration estimates. [Marginal Ice Zone (MIZ)

    NASA Technical Reports Server (NTRS)

    Burns, B. A.; Cavalieri, D. J.; Keller, M. R.

    1986-01-01

    Active and passive microwave data collected during the 1984 summer Marginal Ice Zone Experiment in the Fram Strait (MIZEX 84) are used to compare ice concentration estimates derived from synthetic aperture radar (SAR) data to those obtained from passive microwave imagery at several frequencies. The comparison is carried out to evaluate SAR performance against the more established passive microwave technique, and to investigate discrepancies in terms of how ice surface conditions, imaging geometry, and choice of algorithm parameters affect each sensor. Active and passive estimates of ice concentration agree on average to within 12%. Estimates from the multichannel passive microwave data show best agreement with the SAR estimates because the multichannel algorithm effectively accounts for the range in ice floe brightness temperatures observed in the MIZ.

  4. Firn thickness variations across the Northeast Greenland Ice Stream margins indicating nonlinear densification rates

    NASA Astrophysics Data System (ADS)

    Riverman, K. L.; Anandakrishnan, S.; Alley, R. B.; Peters, L. E.; Christianson, K. A.; Muto, A.

    2013-12-01

    Northeast Greenland Ice Stream (NEGIS) is the largest ice stream in Greenland, draining approximately 8.4% of the ice sheet's area. The flow pattern and stability mechanism of this ice stream are unique to others in Greenland and Antarctica, and merit further study to ascertain the sensitivity of this ice stream to future climate change. Geophysical methods are valuable tools for this application, but their results are sensitive to the structure of the firn and any spatial variations in firn properties across a given study region. Here we present firn data from a 40-km-long seismic profile across the upper reaches of NEGIS, collected in the summer of 2012 as part of an integrated ground-based geophysical survey. We find considerable variations in firn thickness that are coincident with the ice stream shear margins, where a thinner firn layer is present within the margins, and a thicker, more uniform firn layer is present elsewhere in our study region. Higher accumulation rates in the marginal surface troughs due to drift-snow trapping can account for some of this increased densification; however, our seismic results also highlight enhanced anisotropy within the firn and upper ice column that is confined to narrow bands within the shear margins. We thus interpret these large firn thickness variations and abrupt changes in anisotropy as indicators of firn densification dependent on the effective stress state as well as the overburden pressure, suggesting that the strain rate increases nonlinearly with stress across the shear margins. A GPS strain grid maintained for three weeks across both margins observed strong side shearing, with rapid stretching and then compression along particle paths, indicating large deviatoric stresses in the margins. This work demonstrates the importance of developing a high-resolution firn densification model when conducting geophysical field work in regions possessing a complex ice flow history; it also motivates the need for a more

  5. A Chronology of Late-Glacial and Holocene Advances of Quelccaya Ice Cap, Peru, Based on 10Be and Radiocarbon Dating

    NASA Astrophysics Data System (ADS)

    Kelly, M. A.; Lowell, T. V.; Schaefer, J. M.

    2007-12-01

    The Quelccaya Ice Cap region in the southeastern Peruvian Andes (~13-14°S latitude) is a key location for the development of late-glacial and Holocene terrestrial paleoclimate records in the tropics. We present a chronology of past extents of Quelccaya Ice Cap based on ~thirty internally consistent 10Be dates of boulders on moraines and bedrock as well as twenty radiocarbon dates of organic material associated with moraines. Based on results from both dating methods, we suggest that significant advances of Quelccaya Ice Cap occurred during late-glacial time, at ~12,700-11,400 yr BP, and during Late Holocene time ~400-300 yr BP. Radiocarbon dating of organic material associated with moraines provides maximum and minimum ages for ice advances and recessions, respectively, thus providing an independent check on 10Be dates of boulders on moraines. The opportunity to use both 10Be and radiocarbon dating makes the Quelccaya Ice Cap region a potentially important low-latitude calibration site for production rates of cosmogenic nuclides. Our radiocarbon chronology provides a tighter constraint on maximum ages of late-glacial and Late Holocene ice advances. Upcoming field research will obtain organic material for radiocarbon dating to improve minimum age constrains for late-glacial and Late Holocene ice recessions.

  6. The Effect of CO2 Ice Cap Sublimation on Mars Atmosphere

    NASA Technical Reports Server (NTRS)

    Batterson, Courtney

    2016-01-01

    Sublimation of the polar CO2 ice caps on Mars is an ongoing phenomenon that may be contributing to secular climate change on Mars. The transfer of CO2 between the surface and atmosphere via sublimation and deposition may alter atmospheric mass such that net atmospheric mass is increasing despite seasonal variations in CO2 transfer. My study builds on previous studies by Kahre and Haberle that analyze and compare data from the Phoenix and Viking Landers 1 and 2 to determine whether secular climate change is happening on Mars. In this project, I use two years worth of temperature, pressure, and elevation data from the MSL Curiosity rover to create a program that allows for successful comparison of Curiosity pressure data to Viking Lander pressure data so a conclusion can be drawn regarding whether CO2 ice cap sublimation is causing a net increase in atmospheric mass and is thus contributing to secular climate change on Mars.

  7. Tracking Retreat of the North Seasonal Ice Cap on Mars: Results from the THEMIS Investigation

    NASA Technical Reports Server (NTRS)

    Ivanov, A. B.; Wagstaff, K. L.; Ttus, T. N.

    2005-01-01

    The CO2 ice caps on Mars advance and retreat with the seasons. This phenomenon was first observed by Cassini and then confirmed by numerous ground based observations in 19th and 20th centuries. With the advent of the space age observations of the seasonal ice cap were done by all orbiting spacecraft starting with Mariner 7. Viking Orbiters and more recently the Mars Global Surveyor (particularly Mars Orbiter Camera (MOC) and Thermal Emission Spectrometer (TES) instruments) have accumulated significant data on the retreat of the CO2 seasonal cap. During Mars year 2 of THEMIS operations at Mars, we planned an observational campaign in which the THEMIS instrument (onboard the Mars Odyssey spacecraft) repeatedly observed the north seasonal polar cap from midwinter to late spring. THEMIS allows simultaneous observations in both Thermal IR (12.57 m) and Visible wavelengths (0.65 m). One of the goals for this work is to initiate an interannual program for observations of the seasonal ice caps using the THEMIS instrument. The most efficient way to detect the edge between frost and bare ground is directly onboard of the spacecraft. Prior to onboard software design effort, we have developed two groundbased algorithms for automatically finding the edge of the seasonal polar cap in THEMIS IR data. The first algorithm relies on fully calibrated data and can be used for highly reliable groundbased analyses. The second method was specifically developed for processing raw, uncalibrated data in a highly efficient way. It has the potential to enable automatic, onboard detections of the seasonal cap retreat. We have experimentally confirmed that both methods produce similar results, and we have validated both methods against a model constructed from the MGS TES data from the same season.

  8. Short-term variations of Icelandic ice cap mass inferred from cGPS coordinate time series

    NASA Astrophysics Data System (ADS)

    Compton, Kathleen; Bennett, Richard A.; Hreinsdóttir, Sigrún; van Dam, Tonie; Bordoni, Andrea; Barletta, Valentina; Spada, Giorgio

    2017-06-01

    As the global climate changes, understanding short-term variations in water storage is increasingly important. Continuously operating Global Positioning System (cGPS) stations in Iceland record annual periodic motion—the elastic response to winter accumulation and spring melt seasons—with peak-to-peak vertical amplitudes over 20 mm for those sites in the Central Highlands. Here for the first time for Iceland, we demonstrate the utility of these cGPS-measured displacements for estimating seasonal and shorter-term ice cap mass changes. We calculate unit responses to each of the five largest ice caps in central Iceland at each of the 62 cGPS locations using an elastic half-space model and estimate ice mass variations from the cGPS time series using a simple least squares inversion scheme. We utilize all three components of motion, taking advantage of the seasonal motion recorded in the horizontal. We remove secular velocities and accelerations and explore the impact that seasonal motions due to atmospheric, hydrologic, and nontidal ocean loading have on our inversion results. Our results match available summer and winter mass balance measurements well, and we reproduce the seasonal stake-based observations of loading and melting within the 1σ confidence bounds of the inversion. We identify nonperiodic ice mass changes associated with interannual variability in precipitation and other processes such as increased melting due to reduced ice surface albedo or decreased melting due to ice cap insulation in response to tephra deposition following volcanic eruptions, processes that are not resolved with once or twice-yearly stake measurements.

  9. Insect-Based Holocene (and Last Interglacial?) Paleothermometry from the E and NW Greenland Ice Sheet Margins: A Fly's-Eye View of Warmth on Greenland

    NASA Astrophysics Data System (ADS)

    Axford, Y.; Bigl, M.; Carrio, C.; Corbett, L. B.; Francis, D. R.; Hall, B. L.; Kelly, M. A.; Levy, L.; Lowell, T. V.; Osterberg, E. C.; Richter, N.; Roy, E.; Schellinger, G. C.

    2013-12-01

    records therefore provide opportunities to compare climate inferences based upon ice core data and reconstructed ice margin histories with independent, biologically based estimates of air temperatures for the Holocene and possibly the Last Interglacial. Briner, J.P., Axford, Y., Forman, S.L., Miller, G.H., and Wolfe, A.P. 2007. Multiple generations of interglacial lake sediment preserved beneath the Laurentide Ice Sheet. Geology 35, 887-890. Levy, L.B., Kelly, M.A., Lowell, T.V., Hall, B.L., Hempel, L.A., Honsaker, W.M., Lusas, A.R., Howley, J.A., Axford, Y.L., 2013. Holocene fluctuations of Bregne ice cap, Scoresby Sund, east Greenland: a proxy for climate along the Greenland Ice Sheet margin. In press, Quaternary Science Reviews.

  10. Insect-Based Holocene (and Last Interglacial?) Paleothermometry from the E and NW Greenland Ice Sheet Margins: A Fly's-Eye View of Warmth on Greenland

    NASA Astrophysics Data System (ADS)

    Axford, Y.; Bigl, M.; Carrio, C.; Corbett, L. B.; Francis, D. R.; Hall, B. L.; Kelly, M. A.; Levy, L.; Lowell, T. V.; Osterberg, E. C.; Richter, N.; Roy, E.; Schellinger, G. C.

    2011-12-01

    records therefore provide opportunities to compare climate inferences based upon ice core data and reconstructed ice margin histories with independent, biologically based estimates of air temperatures for the Holocene and possibly the Last Interglacial. Briner, J.P., Axford, Y., Forman, S.L., Miller, G.H., and Wolfe, A.P. 2007. Multiple generations of interglacial lake sediment preserved beneath the Laurentide Ice Sheet. Geology 35, 887-890. Levy, L.B., Kelly, M.A., Lowell, T.V., Hall, B.L., Hempel, L.A., Honsaker, W.M., Lusas, A.R., Howley, J.A., Axford, Y.L., 2013. Holocene fluctuations of Bregne ice cap, Scoresby Sund, east Greenland: a proxy for climate along the Greenland Ice Sheet margin. In press, Quaternary Science Reviews.

  11. Experimental investigation of insolation-driven dust ejection from Mars' CO2 ice caps

    NASA Astrophysics Data System (ADS)

    Kaufmann, E.; Hagermann, A.

    2017-01-01

    Mars' polar caps are - depending on hemisphere and season - partially or totally covered with CO2 ice. Icy surfaces such as the polar caps of Mars behave differently from surfaces covered with rock and soil when they are irradiated by solar light. The latter absorb and reflect incoming solar radiation within a thin layer beneath the surface. In contrast, ices are partially transparent in the visible spectral range and opaque in the infrared. Due to this fact, the solar radiation can penetrate to a certain depth and raise the temperature of the ice or dust below the surface. This may play an important role in the energy balance of icy surfaces in the solar system, as already noted in previous investigations. We investigated the temperature profiles inside CO2 ice samples including a dust layer under Martian conditions. We have been able to trigger dust eruptions, but also demonstrated that these require a very narrow range of temperature and ambient pressure. We discuss possible implications for the understanding of phenomena such as arachneiform patterns or fan shaped deposits as observed in Mars' southern polar region.

  12. Local Effects of Ice Floes on Skin Sea Surface Temperature in the Marginal Ice Zone from UAVs

    NASA Astrophysics Data System (ADS)

    Zappa, C. J.; Brown, S.; Emery, W. J.; Adler, J.; Wick, G. A.; Steele, M.; Palo, S. E.; Walker, G.; Maslanik, J. A.

    2013-12-01

    Recent years have seen extreme changes in the Arctic. Particularly striking are changes within the Pacific sector of the Arctic Ocean, and especially in the seas north of the Alaskan coast. These areas have experienced record warming, reduced sea ice extent, and loss of ice in areas that had been ice-covered throughout human memory. Even the oldest and thickest ice types have failed to survive through the summer melt period in areas such as the Beaufort Sea and Canada Basin, and fundamental changes in ocean conditions such as earlier phytoplankton blooms may be underway. Marginal ice zones (MIZ), or areas where the "ice-albedo feedback" driven by solar warming is highest and ice melt is extensive, may provide insights into the extent of these changes. Airborne remote sensing, in particular InfraRed (IR), offers a unique opportunity to observe physical processes at sea-ice margins. It permits monitoring the ice extent and coverage, as well as the ice and ocean temperature variability. It can also be used for derivation of surface flow field allowing investigation of turbulence and mixing at the ice-ocean interface. Here, we present measurements of visible and IR imagery of melting ice floes in the marginal ice zone north of Oliktok Point AK in the Beaufort Sea made during the Marginal Ice Zone Ocean and Ice Observations and Processes EXperiment (MIZOPEX) in July-August 2013. The visible and IR imagery were taken from the unmanned airborne vehicle (UAV) ScanEagle. The visible imagery clearly defines the scale of the ice floes. The IR imagery show distinct cooling of the skin sea surface temperature (SST) as well as a intricate circulation and mixing pattern that depends on the surface current, wind speed, and near-surface vertical temperature/salinity structure. Individual ice floes develop turbulent wakes as they drift and cause transient mixing of an influx of colder surface (fresh) melt water. The upstream side of the ice floe shows the coldest skin SST, and

  13. Evolution of microwave sea ice signatures during early summer and midsummer in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Onstott, R. G.; Grenfell, T. C.; Matzler, C.; Luther, C. A.; Svendsen, E. A.

    1987-01-01

    Emissivities at frequencies from 5 to 94 GHz and backscatter at frequencies from 1 to 17 GHz were measured from sea ice in Fram Strait during the marginal Ice Zone Experiment in June and July of 1983 and 1984. The ice observed was primarily multiyear; the remainder, first-year ice, was often deformed. Results from this active and passive microwave study include the description of the evolution of the sea ice during early summer and midsummer; the absorption properties of summer snow; the interrelationship between ice thickness and the state and thickness of snow; and the modulation of the microwave signature, especially at the highest frequencies, by the freezing of the upper few centimeters of the ice.

  14. Passive microwave characteristics of the Bering Sea ice cover during Marginal Ice Zone Experiment (MIZEX) West

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Gloersen, P.; Wilheit, T. T.; Calhoon, C.

    1984-01-01

    Passive microwave measurements of the Bering Sea were made with the NASA CV-990 airborne laboratory during February. Microwave data were obtained with imaging and dual-polarized, fixed-beam radiometers in a range of frequencies from 10 to 183 GHz. The high resolution imagery at 92 GHz provides a particularly good description of the marginal ice zone delineating regions of open water, ice compactness, and ice-edge structure. Analysis of the fixed-beam data shows that spectral differences increase with a decrease in ice thickness. Polarization at 18 and 37 GHz distinguishes among new, young, and first-year sea ice types.

  15. Ice Core Records of Recent Northwest Greenland Climate

    NASA Astrophysics Data System (ADS)

    Osterberg, E. C.; Wong, G. J.; Ferris, D.; Lutz, E.; Howley, J. A.; Kelly, M. A.; Axford, Y.; Hawley, R. L.

    2014-12-01

    Meteorological station data from NW Greenland indicate a 3oC temperature rise since 1990, with most of the warming occurring in fall and winter. According to remote sensing data, the NW Greenland ice sheet (GIS) and coastal ice caps are responding with ice mass loss and margin retreat, but the cryosphere's response to previous climate variability is poorly constrained in this region. We are developing multi-proxy records (lake sediment cores, ice cores, glacial geologic data, glaciological models) of Holocene climate change and cryospheric response in NW Greenland to improve projections of future ice loss and sea level rise in a warming climate. As part of our efforts to develop a millennial-length ice core paleoclimate record from the Thule region, we collected and analyzed snow pit samples and short firn cores (up to 21 m) from the coastal region of the GIS (2Barrel site; 76.9317o N, 63.1467o W, 1685 m el.) and the summit of North Ice Cap (76.938o N, 67.671o W, 1273 m el.) in 2011, 2012 and 2014. The 2Barrel ice core record has statistically significant relationships with regional spring and fall Baffin Bay sea ice extent, summertime temperature, and annual precipitation. Here we evaluate relationships between the 2014 North Ice Cap firn core glaciochemical record and climate variability from regional instrumental stations and reanalysis datasets. We compare the coastal North Ice Cap record to more inland records from 2Barrel, Camp Century and NEEM to evaluate spatial and elevational gradients in recent NW Greenland climate change.

  16. An East Siberian ice shelf during the Late Pleistocene glaciations: Numerical reconstructions

    NASA Astrophysics Data System (ADS)

    Colleoni, Florence; Kirchner, Nina; Niessen, Frank; Quiquet, Aurélien; Liakka, Johan

    2016-09-01

    A recent data campaign in the East Siberian Sea has revealed evidence of grounded and floating ice dynamics in regions of up to 1000 m water depth, and which are attributed to glaciations older than the Last Glacial Maximum (21 kyrs BP). The main hypothesis based on this evidence is that a small ice cap developed over Beringia and expanded over the East Siberian continental margin during some of the Late Pleistocene glaciations. Other similar evidence of ice dynamics that have been previously collected on the shallow continental shelves of the Arctic Ocean have been attributed to the penultimate glaciation, i.e. Marine Isotopes Stage 6 (≈140 kyrs BP). We use an ice sheet model, forced by two previously simulated MIS 6 glacial maximum climates, to carry out a series of sensitivity experiments testing the impact of dynamics and mass-balance related parameters on the geometry of the East Siberian ice cap and ice shelf. Results show that the ice cap developing over Beringia connects to the Eurasian ice sheet in all simulations and that its volume ranges between 6 and 14 m SLE, depending on the climate forcing. This ice cap generates an ice shelf of dimensions comparable with or larger than the present-day Ross ice shelf in West Antarctica. Although the ice shelf extent strongly depends on the ice flux through the grounding line, it is particularly sensitive to the choice of the calving and basal melting parameters. Finally, inhibiting a merging of the Beringia ice cap with the Eurasian ice sheet affects the expansion of the ice shelf only in the simulations where the ice cap fluxes are not large enough to compensate for the fluxes coming from the Eurasian ice sheet.

  17. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets.

    PubMed

    Pritchard, Hamish D; Arthern, Robert J; Vaughan, David G; Edwards, Laura A

    2009-10-15

    Many glaciers along the margins of the Greenland and Antarctic ice sheets are accelerating and, for this reason, contribute increasingly to global sea-level rise. Globally, ice losses contribute approximately 1.8 mm yr(-1) (ref. 8), but this could increase if the retreat of ice shelves and tidewater glaciers further enhances the loss of grounded ice or initiates the large-scale collapse of vulnerable parts of the ice sheets. Ice loss as a result of accelerated flow, known as dynamic thinning, is so poorly understood that its potential contribution to sea level over the twenty-first century remains unpredictable. Thinning on the ice-sheet scale has been monitored by using repeat satellite altimetry observations to track small changes in surface elevation, but previous sensors could not resolve most fast-flowing coastal glaciers. Here we report the use of high-resolution ICESat (Ice, Cloud and land Elevation Satellite) laser altimetry to map change along the entire grounded margins of the Greenland and Antarctic ice sheets. To isolate the dynamic signal, we compare rates of elevation change from both fast-flowing and slow-flowing ice with those expected from surface mass-balance fluctuations. We find that dynamic thinning of glaciers now reaches all latitudes in Greenland, has intensified on key Antarctic grounding lines, has endured for decades after ice-shelf collapse, penetrates far into the interior of each ice sheet and is spreading as ice shelves thin by ocean-driven melt. In Greenland, glaciers flowing faster than 100 m yr(-1) thinned at an average rate of 0.84 m yr(-1), and in the Amundsen Sea embayment of Antarctica, thinning exceeded 9.0 m yr(-1) for some glaciers. Our results show that the most profound changes in the ice sheets currently result from glacier dynamics at ocean margins.

  18. Tracking the Martian CO2 Polar Ice Caps in Infrared Images

    NASA Technical Reports Server (NTRS)

    Wagstaff, Kiri L.; Castano, Rebecca; Chien, Steve

    2006-01-01

    Researchers at NASA s Jet Propulsion Laboratory have developed a method for automatically tracking the polar caps on Mars as they advance and recede each year (see figure). The seasonal Mars polar caps are composed mainly of CO2 ice and are therefore cold enough to stand out clearly in infrared data collected by the Thermal Emission Imaging System (THEMIS) onboard the Mars Odyssey spacecraft. The Bimodal Image Temperature (BIT) histogram analysis algorithm analyzes raw, uncalibrated data to identify images that contain both "cold" ("polar cap") and "warm" ("not polar cap") pixels. The algorithm dynamically identifies the temperature that separates these two regions. This flexibility is critical, because in the absence of any calibration, the threshold temperature can vary significantly from image to image. Using the identified threshold, the algorithm classifies each pixel in the image as "polar cap" or "not polar cap," then identifies the image row that contains the spatial transition from "polar cap" to "not polar cap." While this method is useful for analyzing data that has already been returned by THEMIS, it has even more significance with respect to data that has not yet been collected. Instead of seeking the polar cap only in specific, targeted images, the simplicity and efficiency of this method makes it feasible for direct, onboard use. That is, THEMIS could continuously monitor its observations for any detections of the polar-cap edge, producing detections over a wide range of spatial and temporal conditions. This effort can greatly contribute to our understanding of long-term climatic change on Mars.

  19. Timing and east-west correlation of south Swedish ice marginal lines during the Late Weichselian

    NASA Astrophysics Data System (ADS)

    Lundqvist, Jan; Wohlfarth, Barbara

    2000-01-01

    The retreat of the Late Weichselian ice sheet over the southern part of Sweden is marked along the southwest coast by distinct marginal moraine ridges. Their timing can directly and indirectly be assessed based on a number of radiocarbon dates and pollen stratigraphic investigations on lake sediment sequences adjacent to the ice marginal lines. Along the southeastern side of the peninsula, the ice recession has been reconstructed based on a combination of clay-varve chronology, pollen and radiocarbon stratigraphy. A morphological correlation of ice marginal lines between the west and east coast is problematic since the distinct west-coast moraines cannot be followed through the central part of the peninsula towards the east coast. This paper is an attempt to reconstruct an age-equivalent west-east extension of the ice-recession lines on the basis of existing data sets. For our correlation we use calibrated radiocarbon ages for ice marginal deposits on the west coast and compare these with a partly radiocarbon-dated clay-varve chronology on the east coast. We conclude that the two oldest moraines on the west coast formed at ˜18,000-16,000 and ˜15,400-14,500 cal yr BP, respectively. During the following rapid deglaciation, which may have coincided with the beginning of the Bølling pollen zone, large parts of southernmost Sweden became ice free, except for higher elevated areas, where stagnant ice remained for another 400-500 yr. A best guess is that the formation of the next younger ice marginal lines may have occurred at ˜14,400-14,200, ˜14,200 and ˜13,400 cal yr BP and during the Younger Dryas cold event.

  20. Mars residual north polar cap - Earth-based spectroscopic confirmation of water ice as a major constituent and evidence for hydrated minerals

    NASA Technical Reports Server (NTRS)

    Clark, R. N.; Mccord, T. B.

    1982-01-01

    A description is presented of new earth-based reflectance spectra of the Martian north residual polar cap. The spectra indicate that the composition is at least mostly water ice plus another component with a 'gray' reflectance. The other minerals in the ice cap appear to be hydrated. The data were obtained with a cooled circular variable filter spectrometer on February 20, 1978, using the 2.2-m telescope on Mauna Kea, Hawaii. It is pointed out that the identification of water ice in the north polar cap alone does not indicate that water makes up all or even most of the bulk of the cap. Kieffer (1970) has shown that a small amount of water will mask the spectral features of CO2.

  1. Variations of mesoscale and large-scale sea ice morphology in the 1984 Marginal Ice Zone Experiment as observed by microwave remote sensing

    NASA Technical Reports Server (NTRS)

    Campbell, W. J.; Josberger, E. G.; Gloersen, P.; Johannessen, O. M.; Guest, P. S.

    1987-01-01

    The data acquired during the summer 1984 Marginal Ice Zone Experiment in the Fram Strait-Greenland Sea marginal ice zone, using airborne active and passive microwave sensors and the Nimbus 7 SMMR, were analyzed to compile a sequential description of the mesoscale and large-scale ice morphology variations during the period of June 6 - July 16, 1984. Throughout the experiment, the long ice edge between northwest Svalbard and central Greenland meandered; eddies were repeatedly formed, moved, and disappeared but the ice edge remained within a 100-km-wide zone. The ice pack behind this alternately diffuse and compact edge underwent rapid and pronounced variations in ice concentration over a 200-km-wide zone. The high-resolution ice concentration distributions obtained in the aircraft images agree well with the low-resolution distributions of SMMR images.

  2. Calibrating a surface mass-balance model for Austfonna ice cap, Svalbard

    NASA Astrophysics Data System (ADS)

    Schuler, Thomas Vikhamar; Loe, Even; Taurisano, Andrea; Eiken, Trond; Hagen, Jon Ove; Kohler, Jack

    2007-10-01

    Austfonna (8120 km2) is by far the largest ice mass in the Svalbard archipelago. There is considerable uncertainty about its current state of balance and its possible response to climate change. Over the 2004/05 period, we collected continuous meteorological data series from the ice cap, performed mass-balance measurements using a network of stakes distributed across the ice cap and mapped the distribution of snow accumulation using ground-penetrating radar along several profile lines. These data are used to drive and test a model of the surface mass balance. The spatial accumulation pattern was derived from the snow depth profiles using regression techniques, and ablation was calculated using a temperature-index approach. Model parameters were calibrated using the available field data. Parameter calibration was complicated by the fact that different parameter combinations yield equally acceptable matches to the stake data while the resulting calculated net mass balance differs considerably. Testing model results against multiple criteria is an efficient method to cope with non-uniqueness. In doing so, a range of different data and observations was compared to several different aspects of the model results. We find a systematic underestimation of net balance for parameter combinations that predict observed ice ablation, which suggests that refreezing processes play an important role. To represent these effects in the model, a simple PMAX approach was included in its formulation. Used as a diagnostic tool, the model suggests that the surface mass balance for the period 29 April 2004 to 23 April 2005 was negative (-318 mm w.e.).

  3. Mars Secular Obliquity Change Due to Water Ice Caps

    NASA Technical Reports Server (NTRS)

    Rubincam, David P.

    1998-01-01

    Mars may have substantially changed its average axial tilt over geologic time due to the waxing and waning of water ice caps. Depending upon Mars' climate and internal structure, the average obliquity could have increased or decreased through climate friction by tens of degrees. A decrease could account for the apparent youthfulness of the polar layered terrain. Alternatively, Mars' average obliquity may have changed until it became "stuck" at its present value of 24.4 deg.

  4. A coupled dynamic-thermodynamic model of an ice-ocean system in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa

    1987-01-01

    Thermodynamics are incorporated into a coupled ice-ocean model in order to investigate wind-driven ice-ocean processes in the marginal zone. Upswelling at the ice edge which is generated by the difference in the ice-air and air-water surface stresses is found to give rise to a strong entrainment by drawing the pycnocline closer to the surface. Entrainment is shown to be negligible outside the areas affected by the ice edge upswelling. If cooling at the top is included in the model, the heat and salt exchanges are further enhanced in the upswelling areas. It is noted that new ice formation occurs in the region not affected by ice edge upswelling, and it is suggested that the high-salinity mixed layer regions (with a scale of a few Rossby radii of deformation) will overturn due to cooling, possibly contributing to the formation of deep water.

  5. Radar Remote Sensing of Ice and Sea State and Air-Sea Interaction in the Marginal Ice Zone

    DTIC Science & Technology

    2014-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Radar Remote Sensing of Ice and Sea State and Air-Sea...Interaction in the Marginal Ice Zone Hans C. Graber RSMAS – Department of Ocean Sciences Center for Southeastern Tropical Advanced Remote Sensing...scattering and attenuation process of ocean waves interacting with ice . A nautical X-band radar on a vessel dedicated to science would be used to follow the

  6. Holocene temperature history at the west Greenland Ice Sheet margin reconstructed from lake sediments

    NASA Astrophysics Data System (ADS)

    Axford, Y.; Losee, S.; Briner, J. P.; Francis, D.; Langdon, P. G.; Walker, I.

    2011-12-01

    Paleoclimate proxy data can help reduce uncertainties regarding how the Greenland Ice Sheet, and thus global sea level, will respond to future climate change. Studies of terrestrial deposits along Greenland's margins offer opportunities to reconstruct both past temperature changes and the associated changes in Greenland Ice Sheet extent, thus empirically characterizing the ice sheet's response to temperature change. Here we present Holocene paleoclimate reconstructions developed from sediment records of five lakes along the western ice sheet margin, near Jakobshavn Isbræ and Disko Bugt. Insect (Chironomidae, or non-biting midge) remains from North Lake provide quantitative estimates of summer temperatures over the past ca. 7500 years at multi-centennial resolution, and changes in sediment composition at all five lakes offer evidence for glacier fluctuations, changes in lake productivity, and other environmental changes throughout the Holocene. Aims of this study include quantification of warmth in the early to mid Holocene, when summer solar insolation forcing exceeded present-day values at northern latitudes and the local Greenland Ice Sheet margin receded inboard of its present position, and the magnitude of subsequent Neoglacial and Little Ice Age cooling that drove ice sheet expansion. We find that the Jakobshavn Isbrae region experienced the warmest temperatures of the Holocene (with summers 2 to 3.5 degrees C warmer than present) between ~6000 and 4000 years ago. Neoglacial cooling began rather abruptly ~4000 years ago and intensified 3000 years ago. Our proxy data suggest that the coldest summers of the Holocene occurred during the 18th and 19th centuries in the Jakobshavn region. These results agree well with previous glacial geologic studies reconstructing local ice margin positions through the Holocene. Such reconstructions of paleoclimate and past ice sheet extent provide targets for testing and improving ice sheet models.

  7. Upper Ocean Evolution Across the Beaufort Sea Marginal Ice Zone

    NASA Astrophysics Data System (ADS)

    Lee, C.; Rainville, L.; Gobat, J. I.; Perry, M. J.; Freitag, L. E.; Webster, S.

    2016-12-01

    The observed reduction of Arctic summertime sea ice extent and expansion of the marginal ice zone (MIZ) have profound impacts on the balance of processes controlling sea ice evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer and Atlantic waters), and elevated surface wave energy that acts to deform and fracture sea ice. Spatial and temporal variability in ice properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing ice cover, how the balance of processes shift as a function of ice fraction and distance from open water, and how these processes impact sea ice evolution, a network of autonomous platforms sampled the atmosphere-ice-ocean system in the Beaufort, beginning in spring, well before the start of melt, and ending with the autumn freeze-up. Four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal ice zone, deep into the pack during summer 2014 in the Beaufort Sea. Gliders penetrated up to 200 km into the ice pack, under complete ice cover for up to 10 consecutive days. Sections reveal strong fronts where cold, ice-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the ice edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse late in the season as they progress through the MIZ and into open water. Stratification just above the Pacific Summer Water rapidly weakens near the ice edge and temperature variance increases, likely due to mixing or energetic vertical exchange associated with strong

  8. Modelling wave-induced sea ice break-up in the marginal ice zone

    NASA Astrophysics Data System (ADS)

    Montiel, F.; Squire, V. A.

    2017-10-01

    A model of ice floe break-up under ocean wave forcing in the marginal ice zone (MIZ) is proposed to investigate how floe size distribution (FSD) evolves under repeated wave break-up events. A three-dimensional linear model of ocean wave scattering by a finite array of compliant circular ice floes is coupled to a flexural failure model, which breaks a floe into two floes provided the two-dimensional stress field satisfies a break-up criterion. A closed-feedback loop algorithm is devised, which (i) solves the wave-scattering problem for a given FSD under time-harmonic plane wave forcing, (ii) computes the stress field in all the floes, (iii) fractures the floes satisfying the break-up criterion, and (iv) generates an updated FSD, initializing the geometry for the next iteration of the loop. The FSD after 50 break-up events is unimodal and near normal, or bimodal, suggesting waves alone do not govern the power law observed in some field studies. Multiple scattering is found to enhance break-up for long waves and thin ice, but to reduce break-up for short waves and thick ice. A break-up front marches forward in the latter regime, as wave-induced fracture weakens the ice cover, allowing waves to travel deeper into the MIZ.

  9. Reconciling different observations of the CO2 ice mass loading of the Martian north polar cap

    USGS Publications Warehouse

    Haberle, R.M.; Mattingly, B.; Titus, T.N.

    2004-01-01

    The GRS measurements of the peak mass loading of the north polar CO2 ice cap on Mars are about 60% lower than those calculated from MGS TES radiation data and those inferred from the MOLA cap thicknesses. However, the GRS data provide the most accurate measurement of the mass loading. We show that the TES and MOLA data can be reconciled with the GRS data if (1) subsurface heat conduction and atmospheric heat transport are included in the TES mass budget calculations, and (2) the density of the polar deposits is ???600 kg m-3. The latter is much less than that expected for slab ice (???1600 kg m-3) and suggests that processes unique to the north polar region are responsible for the low cap density. Copyright 2004 by the American Geophysical Union.

  10. Satellite and aircraft passive microwave observations during the Marginal Ice Zone Experiment in 1984

    NASA Technical Reports Server (NTRS)

    Gloersen, Per; Campbell, William J.

    1988-01-01

    This paper compares satellite data on the marginal ice zone obtained during the Marginal Ice Zone Experiment in 1984 by Nimbus 7 with simultaneous mesoscale aircraft (in particular, the NASA CV-990 airborne laboratory) and surface observations. Total and multiyear sea ice concentrations calculated from the airborne multichannel microwave radiometer were found to agree well with similar calculations using the Nimbus SMMR data. The temperature dependence of the determination of multiyear sea-ice concentration near the melting point was found to be the same for both airborne and satellite data. It was found that low total ice concentrations and open-water storm effects near the ice edge could be reliably distinguished by means of spectral gradient ratio, using data from the 0.33-cm and the 1.55-cm radiometers.

  11. Recent Changes in High-Latitude Glaciers, Ice Caps, and Ice Sheets

    NASA Technical Reports Server (NTRS)

    Abdalati, Waleed

    2006-01-01

    ). While the expansion of the warming oceans is estimated to be about a third of recent sea level rise, (Miller and Douglas 2004) the greatest potential for significantly increasing sea level lies in the Greenland and Antarctic ice sheets. For different reasons, each exhibits characteristics that suggest they are potentially unstable. In Antarctica, large portions of the ice cover rest on a soft bed that lies below sea level, making it vulnerable to runaway retreat. The Greenland ice sheet experiences considerable melt, which has the potential to rapidly accelerate the flow of ice toward the sea. While smaller ice masses, such as the Alaskan Glaciers and the Canadian ice caps, do not have anywhere near the same potential to impact sea level as the vast ice sheets do, many are melting rapidly, posing a significant near-term threat.

  12. Coupled ice-ocean dynamics in the marginal ice zones Upwelling/downwelling and eddy generation

    NASA Technical Reports Server (NTRS)

    Hakkinen, S.

    1986-01-01

    This study is aimed at modeling mesoscale processes such as upwelling/downwelling and ice edge eddies in the marginal ice zones. A two-dimensional coupled ice-ocean model is used for the study. The ice model is coupled to the reduced gravity ocean model through interfacial stresses. The parameters of the ocean model were chosen so that the dynamics would be nonlinear. The model was tested by studying the dynamics of upwelling. Wings parallel to the ice edge with the ice on the right produce upwelling because the air-ice momentum flux is much greater than air-ocean momentum flux; thus the Ekman transport is greater than the ice than in the open water. The stability of the upwelling and downwelling jets is discussed. The downwelling jet is found to be far more unstable than the upwelling jet because the upwelling jet is stabilized by the divergence. The constant wind field exerted on a varying ice cover will generate vorticity leading to enhanced upwelling/downwelling regions, i.e., wind-forced vortices. Steepening and strengthening of vortices are provided by the nonlinear terms. When forcing is time-varying, the advection terms will also redistribute the vorticity. The wind reversals will separate the vortices from the ice edge, so that the upwelling enhancements are pushed to the open ocean and the downwelling enhancements are pushed underneath the ice.

  13. 10Be dating of late-glacial moraines near the Cordillera Vilcanota and the Quelccaya Ice Cap, Peru

    NASA Astrophysics Data System (ADS)

    Kelly, M. A.; Thompson, L. G.

    2004-12-01

    The surface exposure method, based on the measurement of cosmogenic 10Be produced in quartz, is applied to determine the age of deposition of glacial moraines near the Cordillera Vilcanota and the Quelccaya Ice Cap (about 13° S, 70° W) in southeastern Peru. These data are useful for examining the timing of past glaciation in the tropical Andes and for comparison with chronologies of glaciation at higher latitudes. The preliminary data set consists of more than ten surface exposure ages. Samples used for dating are from the surfaces of boulders on a set of prominent moraines about four kilometers away from the present ice margins. The age of the moraine set was previously bracketed by radiocarbon dating of peat associated with the glacial deposits. Based on radiocarbon ages, these moraines were formed during the late-glacial period, just prior to the last glacial-interglacial transition. The surface exposure dating method enables the direct dating of the moraines. Surface exposure dates are cross-checked with the previously existing radiocarbon dates and provide a means to improve the chronology of past glaciation in the tropical Andes.

  14. Modelling wave-induced sea ice break-up in the marginal ice zone

    PubMed Central

    Squire, V. A.

    2017-01-01

    A model of ice floe break-up under ocean wave forcing in the marginal ice zone (MIZ) is proposed to investigate how floe size distribution (FSD) evolves under repeated wave break-up events. A three-dimensional linear model of ocean wave scattering by a finite array of compliant circular ice floes is coupled to a flexural failure model, which breaks a floe into two floes provided the two-dimensional stress field satisfies a break-up criterion. A closed-feedback loop algorithm is devised, which (i) solves the wave-scattering problem for a given FSD under time-harmonic plane wave forcing, (ii) computes the stress field in all the floes, (iii) fractures the floes satisfying the break-up criterion, and (iv) generates an updated FSD, initializing the geometry for the next iteration of the loop. The FSD after 50 break-up events is unimodal and near normal, or bimodal, suggesting waves alone do not govern the power law observed in some field studies. Multiple scattering is found to enhance break-up for long waves and thin ice, but to reduce break-up for short waves and thick ice. A break-up front marches forward in the latter regime, as wave-induced fracture weakens the ice cover, allowing waves to travel deeper into the MIZ. PMID:29118659

  15. Modelling wave-induced sea ice break-up in the marginal ice zone.

    PubMed

    Montiel, F; Squire, V A

    2017-10-01

    A model of ice floe break-up under ocean wave forcing in the marginal ice zone (MIZ) is proposed to investigate how floe size distribution (FSD) evolves under repeated wave break-up events. A three-dimensional linear model of ocean wave scattering by a finite array of compliant circular ice floes is coupled to a flexural failure model, which breaks a floe into two floes provided the two-dimensional stress field satisfies a break-up criterion. A closed-feedback loop algorithm is devised, which (i) solves the wave-scattering problem for a given FSD under time-harmonic plane wave forcing, (ii) computes the stress field in all the floes, (iii) fractures the floes satisfying the break-up criterion, and (iv) generates an updated FSD, initializing the geometry for the next iteration of the loop. The FSD after 50 break-up events is unimodal and near normal, or bimodal, suggesting waves alone do not govern the power law observed in some field studies. Multiple scattering is found to enhance break-up for long waves and thin ice, but to reduce break-up for short waves and thick ice. A break-up front marches forward in the latter regime, as wave-induced fracture weakens the ice cover, allowing waves to travel deeper into the MIZ.

  16. Rates of Deglaciation during the Last Glaciation and Holocene in the Cordillera Vilcanota-Quelccaya Ice Cap Region, Southeastern Perú

    NASA Astrophysics Data System (ADS)

    Mark, Bryan G.; Seltzer, Geoffrey O.; Rodbell, Donald T.; Goodman, Adam Y.

    2002-05-01

    Moraine chronology is combined with digital topography to model deglacial rates of paleoglacier volumes in both the Huancané Valley on the west side of the Quelccaya Ice Cap and the Upismayo Valley on the northwest side of the Cordillera Vilcanota. The fastest rates of deglaciation (39×10 -5 to 114×10 -5 km 3 yr -1 and 112×10 -5 to 247×10 -5 km 3 yr -1 for each valley, respectively) were calculated for the most recent paleoglaciers, corresponding to the last few centuries. These results are consistent with observations in the Venezuelan Andes showing high rates of deglaciation since the Little Ice Age. These rates also fall within the range of 20th century rates of deglaciation measured on the Quelccaya Ice Cap (29×10 -5 to 220×10 -5 km 3 yr -1, Brecher and Thompson, 1993; Thompson, 2000). These results imply that rates of deglaciation may fluctuate significantly over time and that high rates of deglaciation may not be exclusive to the late 20th century. Equilibrium line altitude (ELA) depressions for the ice volumes of the last glaciation modeled here were computed as 230 m for the Quelccaya Ice Cap and 170 m for the Cordillera Vilcanota. Maximum ELA depressions are lower than previously published: <500 m for the Cordillera Vilcanota and <400 m for the Quelccaya Ice Cap. These lower values could imply a topographic control over paleoglacier extent.

  17. Investigating Variations in Rifting Style Along the Southern Margin of Flemish Cap, Offshore Newfoundland: Results from the Erable Multichannel Seismic Reflection Experiment

    NASA Astrophysics Data System (ADS)

    Welford, J.; Smith, J.; Hall, J.; Deemer, S.; Srivastava, S.; Sibuet, J.

    2009-05-01

    In 1992, the Erable project was undertaken by the Geological Survey of Canada and Ifremer to acquire multiple 2-D multichannel seismic reflection profiles in the Newfoundland Basin and along the margins of Flemish Cap. We present four multichannel seismic reflection profiles from the project collected over the southern margin of Flemish Cap and extending into the Newfoundland Basin. These profiles are between and sub- parallel to lines 1 and 2 from the 2000 SCREECH seismic experiment and provide more comprehensive data coverage over the region. We combine these data with the SCREECH seismic profiles, two ODP drill sites, and other geophysical data to map distinct zones of continental, transitional, and oceanic crust in this region. Just as has been evidenced from the mapped crustal boundaries on their conjugate Galicia Bank and Iberian margins, the Flemish Cap and Newfoundland margins show significant along-margin variability in terms of rifting structures and styles. This along-margin variability is superimposed on the overall asymmetry of the conjugate pairs highlighting the complexity of the margins and the importance of considering three- dimensional influences on rifting evolution. In particular, the hypothesized clockwise rotation and southeastward motion of Flemish Cap and the transfer zones that would have accommodated such movement appear to have affected the distribution of extension along the margins as rifting propagated northward. Meanwhile, activity at the North Atlantic triple junction immediately to the east of Flemish Cap may have initiated slow seafloor spreading while rifting was still active to the south as evidenced along the nearby Erable profiles. While simple two-dimensional rifting models may be appropriate for interpreting individual seismic profiles, three-dimensional rifting models are clearly needed to adequately explain the evolution of Flemish Cap and Galicia Bank relative to the margins to the south. These rifting models must

  18. Wave attenuation in the marginal ice zone during LIMEX

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Vachon, Paris W.; Peng, Chih Y.; Bhogal, A. S.

    1992-01-01

    The effect of ice cover on ocean-wave attenuation is investigated for waves under flexure in the marginal ice zone (MIZ) with SAR image spectra and the results of models. Directional wavenumber spectra are taken from the SAR image data, and the wave-attenuation rate is evaluated with SAR image spectra and by means of the model by Liu and Mollo-Christensen (1988). Eddy viscosity is described by means of dimensional analysis as a function of ice roughness and wave-induced velocity, and comparisons are made with the remotely sensed data. The model corrects the open-water model by introducing the effects of a continuous ice sheet, and turbulent eddy viscosity is shown to depend on ice thickness, floe sizes, significant wave height, and wave period. SAR and wave-buoy data support the trends described in the model results, and a characteristic rollover is noted in the model and experimental wave-attenuation rates at high wavenumbers.

  19. Weddell-Scotia sea marginal ice zone observations from space, October 1984

    NASA Technical Reports Server (NTRS)

    Carsey, F. D.; Holt, B.; Martin, S.; Rothrock, D. A.; Mcnutt, L.

    1986-01-01

    Imagery from the Shuttle imaging radar-B experiment as well as other satellite and meteorological data are examined to learn more about the open sea ice margin of the Weddell-Scotia Seas region. At the ice edge, the ice forms into bandlike aggregates of small ice floes similar to those observed in the Bering Sea. The radar backscatter characteristics of these bands suggest that their upper surface is wet. Further into the pack, the radar imagery shows a transition to large floes. In the open sea, large icebergs and long surface gravity waves are discernable in the radar images.

  20. Glacial Boundary Features Delineated Using Enhanced-resolution Passive-microwave Data to Determine Melt Season Variation of the Vatnajokull Ice Cap, Iceland

    NASA Astrophysics Data System (ADS)

    Marzillier, D. M.; Ramage, J. M.

    2017-12-01

    Temperate glaciers such as those seen in Iceland experience high annual mass flux, thereby responding to small scale changes in Earth's climate. Decadal changes in the glacial margins of Iceland's ice caps are observable in the Landsat record, however twice daily AMSR-E Calibrated Enhanced-Resolution Passive Microwave Daily EASE-Grid 2.0 Brightness Temperature (CETB) Earth System Data Record (ESDR) allow for observation on a daily temporal scale and a 3.125 km spatial scale, which can in turn be connected to patterns seen over longer periods of time. Passive microwave data allow for careful observation of melt onset and duration in Iceland's glacial regions by recording changes in emissivity of the ice surface, known as brightness temperature (TB), which is sensitive to fluctuations in the liquid water content of snow and ice seen during melting in glaciated regions. Enhanced resolution of this data set allows for a determination of a threshold that defines the melting season. The XPGR snowmelt algorithm originally presented by Abdalati and Steffen (1995) is used as a comparison with the diurnal amplitude variation (DAV) values on Iceland's Vatnajokull ice cap located at 64.4N, -16.8W. Ground-based air temperature data in this region, digital elevation models (DEMs), and river discharge dominated by glacial runoff are used to confirm the glacial response to changes in global climate. Results show that Iceland glaciers have a bimodal distribution of brightness temperature delineating when the snow/ice is melting and refreezing. Ground based temperatures have increased on a decadal trend. Clear glacial boundaries are visible on the passive microwave delineating strong features, and we are working to understand their variability and contribution to glacier evolution. The passive microwave data set allows connections to be made between observations seen on a daily scale and the long term glacier changes observed by the Landsat satellite record that integrates the

  1. Early 21st-Century Mass loss of the North-Atlantic Glaciers and Ice Caps (Arne Richter Award for Outstanding Young Scientists Lecture)

    NASA Astrophysics Data System (ADS)

    Wouters, Bert; Ligtenberg, Stefan; Moholdt, Geir; Gardner, Alex S.; Noel, Brice; Kuipers Munneke, Peter; van den Broeke, Michiel; Bamber, Jonathan L.

    2016-04-01

    Historically, ice loss from mountain glaciers and ice caps has been one of the largest contributors to sea level rise over the last century. Of particular interest are the glaciers and ice caps in the North-Atlantic region of the Arctic. Despite the cold climate in this area, considerable melting and runoff occurs in summer. A small increase in temperature will have an immediate effect on these processes, so that a large change in the Arctic ice volume can be expected in response to the anticipated climate change in the coming century. Unfortunately, direct observations of glaciers are sparse and are biased toward glaciers systems in accessible, mostly maritime, climate conditions. Remote sensing is therefore essential to monitor the state of the the North-Atlantic glaciers and ice caps. In this presentation, we will discuss the progress that has been made in estimating the ice mass balance of these regions, with a particular focus on measurements made by ESA's Cryosat-2 radar altimeter mission (2010-present). Compared to earlier altimeter mission, Cryosat-2 provides unprecedented coverage of the cryosphere, with a resolution down to 1 km or better and sampling at monthly intervals. Combining the Cryosat-2 measurements with the laser altimetry data from ICESat (2003-2009) gives us a 12 yr time series of glacial mass loss in the North Atlantic. We find excellent agreement between the altimetry measurements and independent observations by the GRACE mission, which directly 'weighs' the ice caps, albeit at a much lower resolution. Mass loss in the region has increased from 120 Gigatonnes per year in 2003-2009 to roughly 140 Gt/yr in 2010-2014, with an important contribution from Greenland's peripheral glaciers and ice caps. Importantly, the mass loss is not stationary, but shows large regional interannual variability, with mass loss shifting between eastern and western regions from year to year. Comparison with regional climate models shows that these shifts can be

  2. Automatic detection of Floating Ice at Antarctic Continental Margin from Remotely Sensed Image with Object-oriented Matching

    NASA Astrophysics Data System (ADS)

    Zhao, Z.

    2011-12-01

    Changes in ice sheet and floating ices around that have great significance for global change research. In the context of global warming, rapidly changing of Antarctic continental margin, caving of ice shelves, movement of iceberg are all closely related to climate change and ocean circulation. Using automatic change detection technology to rapid positioning the melting Region of Polar ice sheet and the location of ice drift would not only strong support for Global Change Research but also lay the foundation for establishing early warning mechanism for melting of the polar ice and Ice displacement. This paper proposed an automatic change detection method using object-based segmentation technology. The process includes three parts: ice extraction using image segmentation, object-baed ice tracking, change detection based on similarity matching. An approach based on similarity matching of eigenvector is proposed in this paper, which used area, perimeter, Hausdorff distance, contour, shape and other information of each ice-object. Different time of LANDSAT ETM+ data, Chinese environment disaster satellite HJ1B date, MODIS 1B date are used to detect changes of Floating ice at Antarctic continental margin respectively. We select different time of ETM+ data(January 7, 2003 and January 16, 2003) with the area around Antarctic continental margin near the Lazarev Bay, which is from 70.27454853 degrees south latitude, longitude 12.38573410 degrees to 71.44474167 degrees south latitude, longitude 10.39252222 degrees,included 11628 sq km of Antarctic continental margin area, as a sample. Then we can obtain the area of floating ices reduced 371km2, and the number of them reduced 402 during the time. In addition, the changes of all the floating ices around the margin region of Antarctic within 1200 km are detected using MODIS 1B data. During the time from January 1, 2008 to January 7, 2008, the floating ice area decreased by 21644732 km2, and the number of them reduced by 83080

  3. Wave propagation in the marginal ice zone - Model predictions and comparisons with buoy and synthetic aperture radar data

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Holt, Benjamin; Vachon, Paris W.

    1991-01-01

    Ocean wave dispersion relation and viscous attenuation by a sea ice cover are studied for waves propagating into the marginal ice zone (MIZ). The Labrador ice margin experiment (LIMEX), conducted on the MIZ off the east coast of Newfoundland, Canada in March 1987, provided aircraft SAR imagery, ice property and wave buoy data. Wave energy attenuation rates are estimated from SAR data and the ice motion package data that were deployed at the ice edge and into the ice pack, and compared with a model. It is shown that the model data comparisons are quite good for the ice conditions observed during LIMEX 1987.

  4. Proglacial deltaic landforms and stratigraphic architecture as a proxy for reconstructing past ice-sheet margin positions

    NASA Astrophysics Data System (ADS)

    Dietrich, Pierre; Ghienne, Jean-François; Normandeau, Alexandre; Lajeunesse, Patrick

    2016-04-01

    Deltaic landforms and related stratigraphic architectures are frequently used as proxy for reconstruction of past continental or marine environmental evolutions. Indeed, in addition to autocyclic processes, emplacement of deltaic systems is primarily controlled by changes in sediment supply and relative sea-level (RSL). In our study, we investigated several proglacial deltaic complexes emplaced since the last deglaciation over more than 700 km along the St. Lawrence North Shore (Québec, Canada). Their geomorphic and stratigraphic records allowed us to infer the retreat pattern of the Laurentide Ice Sheet fronts. Field investigation of representative deltaic complexes revealed an archetypal morphostratigraphic evolution forced by the retreat of the ice margin in a context of falling RSL (glacio-isostatic rebound). The base of the stratigraphic successions consists of outwash fan deposits emplaced in the early deglaciation when ice margin stillstanded immediately beyond the depositional area. The middle part of the succession consists of proglacial delta deposits corresponding to the retreat of the ice margin in the hinterland. At that time, glaciogenic supplies allowed an active progradation preventing fluvial entrenchment in spite of the forced regressive context. The upper part of the succession consists of staged shoreline deposits reworking the rim of the proglacial deltas. These deposits mark the retreat of the ice margin from the drainage basin and the subsequent drop in glaciogenics. Important fluvial entrenchment occurred in the same time, though rates of RSL fall were reduced. We generalize this stratigraphic framework by using solely the landforms (from DEM, aerial photographs or satellite images) tied to deltaic complex developments along the St. Lawrence North Shore. This approach permits an integrated study at the scale of the whole basin even where no field data is available. Recognizing the three steps evidenced from the stratigraphic record ads

  5. Sea Ice Sensitivities in the 0.72 deg and 0.08 deg Arctic Cap Coupled HYCOM/CICE Models

    DTIC Science & Technology

    2014-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Sea Ice Sensitivities in the 0.72°and 0.08° Arctic Cap...Arctic ice extent, which corresponds to the sea ice that remains during the summer minimum, has decreased over the years 1979–2007 by more than 10% per...Goosse et al. 2009) with the lowest observed sea ice extent in the satellite record (1979-present) occurring in September 2012 (Perovich et al. 2012

  6. Wave evolution in the marginal ice zone - Model predictions and comparisons with on-site and remote data

    NASA Technical Reports Server (NTRS)

    Liu, A. K.; Holt, B.; Vachon, P. W.

    1989-01-01

    The ocean-wave dispersion relation and viscous attenuation by a sea ice cover were studied for waves in the marginal ice zone (MIZ). The Labrador ice margin experiment (Limex), conducted off the east coast of Newfoundland, Canada in March 1987, provided aircraft SAR, wave buoy, and ice property data. Based on the wave number spectrum from SAR data, the concurrent wave frequency spectrum from ocean buoy data, and accelerometer data on the ice during Limex '87, the dispersion relation has been derived and compared with the model. Accelerometers were deployed at the ice edge and into the ice pack. Data from the accelerometers were used to estimate wave energy attenuation rates and compared with the model. The model-data comparisons are reasonably good for the ice conditions observed during Limex' 87.

  7. Late Weichselian ice-sheet dynamics and deglaciation history of the northern Svalbard margin

    NASA Astrophysics Data System (ADS)

    Fransner, O.; Noormets, R. R. N. N.; Flink, A.; Hogan, K.; Dowdeswell, J. A.; O'Regan, M.; Jakobsson, M.

    2016-12-01

    The glacial evolution of the northern Svalbard margin is poorly known compared with the western margin. Gravity cores, swath bathymetric, sub-bottom acoustic and 2D airgun data are used to investigate the Late Weichselian Svalbard-Barents Ice Sheet history on the northern Svalbard margin. Prograding sequences in Kvitøya and Albertini trough mouths (TMs) indicate ice streaming to the shelf edge multiple times during the Quaternary. While Kvitøya Trough has an associated trough-mouth fan (TMF), Albertini TM is cut back into the shelf edge. Down-faulted bedrock below Albertini TM suggests larger sediment accommodation space there, explaining the absence of a TMF. The bathymetry indicates that ice flow in Albertini Trough was sourced from Duvefjorden and Albertinibukta. Exposed crystalline bedrock likely kept the two ice flows separated before merging north of Karl XII-Øya. Subglacial landforms in Rijpfjorden and Duvefjorden indicate that both fjords accommodated northward-flowing ice streams during the LGM. The deeper fjord basin and higher elongation ratios of landforms in Duvefjorden suggest a more focused and/or larger ice flow there. Easily erodible sedimentary rocks are common in Duvefjorden, which may explain different ice flow dynamics in these fjords. Kvitøya TMF is flanked by gullies, probably formed through erosive downslope gravity flows triggered by sediment-laden meltwater during early deglaciation. Glacial landforms in Albertini Trough comprise retreat-related landforms indicating slow deglaciation. Iceberg scours in Albertini Trough suggest the importance of calving for mass-loss. Sets of De Geer moraines in Rijpfjorden imply that slow, grounded retreat continued in <210 m water depth. Lack of retreat-related landforms in deeper areas of Rijpfjorden and in Duvefjorden indicates floating glacier fronts influenced by calving. 14C ages suggest that deglaciation of inner Rijpfjorden and central Duvefjorden were complete before 10,434 cal a BP and 10

  8. Performance of an airborne imaging 92/183 GHz radiometer during the Bering Sea Marginal Ice Zone Experiment (MIZEX-WEST)

    NASA Technical Reports Server (NTRS)

    Gagliano, J. A.; Mcsheehy, J. J.; Cavalieri, D. J.

    1983-01-01

    An airborne imaging 92/183 GHz radiometer was recently flown onboard NASA's Convair 990 research aircraft during the February 1983 Bering Sea Marginal Ice Zone Experiment (MIZEX-WEST). The 92 GHz portion of the radiometer was used to gather ice signature data and to generate real-time millimeter wave images of the marginal ice zone. Dry atmospheric conditions in the Arctic resulted in good surface ice signature data for the 183 GHz double sideband (DSB) channel situated + or - 8.75 GHz away from the water vapor absorption line. The radiometer's beam scanner imaged the marginal ice zone over a + or - 45 degrees swath angle about the aircraft nadir position. The aircraft altitude was 30,000 feet (9.20 km) maximum and 3,000 feet (0.92 km) minimum during the various data runs. Calculations of the minimum detectable target (ice) size for the radiometer as a function of aircraft altitude were performed. In addition, the change in the atmospheric attenuation at 92 GHz under varying weather conditions was incorporated into the target size calculations. A radiometric image of surface ice at 92 GHz in the marginal ice zone is included.

  9. Dynamics of coupled ice-ocean system in the marginal ice zone: Study of the mesoscale processes and of constitutive equations for sea ice

    NASA Technical Reports Server (NTRS)

    Hakkinen, S.

    1984-01-01

    This study is aimed at the modelling of mesoscale processed such as up/downwelling and ice edge eddies in the marginal ice zones. A 2-dimensional coupled ice-ocean model is used for the study. The ice model is coupled to the reduced gravity ocean model (f-plane) through interfacial stresses. The constitutive equations of the sea ice are formulated on the basis of the Reiner-Rivlin theory. The internal ice stresses are important only at high ice concentrations (90-100%), otherwise the ice motion is essentially free drift, where the air-ice stress is balanced by the ice-water stress. The model was tested by studying the upwelling dynamics. Winds parallel to the ice edge with the ice on the right produce upwilling because the air-ice momentum flux is much greater that air-ocean momentum flux, and thus the Ekman transport is bigger under the ice than in the open water. The upwelling simulation was extended to include temporally varying forcing, which was chosen to vary sinusoidally with a 4 day period. This forcing resembles successive cyclone passings. In the model with a thin oceanic upper layer, ice bands were formed.

  10. Early and abrupt retreat of the Laurentide Ice Sheet margin from the Mackenzie River valley, southern Northwest Territories

    NASA Astrophysics Data System (ADS)

    Margold, Martin; Froese, Duane G.; Gosse, John C.; Yang, Guang; McKenna, Jillian; Hidy, Alan J.

    2017-04-01

    The detachment of the Laurentide Ice Sheet margin from the Canadian Cordillera opened the present-day drainage route of the Mackenzie River to the Arctic Ocean and an ice-free corridor that allowed for migration of species between Beringia and the mid-latitudes of North America. The existing ice-margin chronology depicts the southern reach of the Mackenzie River between 61 and 63° N as glaciated until about 13 ka, representing the last portion of the Laurentide Ice Sheet margin abutting the eastern foot of the Cordillera. A substantial retreat of the ice sheet margin in this region has been suggested to have occurred during the subsequent Younger Dryas cold period, despite the fact that in many other regions ice masses stabilised or even re-grew at this time. However, until now, deglacial chronometry for this region and the western LIS margin is sparse and consists mostly of minimum-limiting macrofossil and bulk C-14 ages from organics materials overlying glacial sediment. With the aim to bring new data on the deglaciation history of the Mackenzie River valley, we collected samples for Be-10 exposure dating from glacial erratic boulders in the southern Franklin Mountains that bound the Mackenzie River valley from the east. The sampling elevations ranged between 1480 and 800 m a.s.l., however, the measured ages show only a weak correlation with elevation. Instead, 10 out of 12 measured samples cluster tightly around 15 ka, with the remaining two samples likely containing Be-10 inherited from previous periods of exposure. Our results thus indicate a pre-Younger Dryas rapid down-wasting of the ice sheet surface, which we infer was accompanied by an ice margin retreat to the southeast. The southern reach of the Mackenzie River valley at the eastern foot of the Cordillera was, according to our results, ice free shortly after 15 ka, with the prospect that the ice-free corridor might have opened significantly earlier than hitherto anticipated. Further research is

  11. Atmospheric boundary layer modification in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Bennett, Theodore J., Jr.; Hunkins, Kenneth

    1986-01-01

    A case study of the Andreas et al. (1984) data on atmospheric boundary layer modification in the marginal ice zone is made. The model is a two-dimensional, multilevel, linear model with turbulence, lateral and vertical advection, and radiation. Good agreement between observed and modeled temperature cross sections is obtained. In contrast to the hypothesis of Andreas et al., the air flow is found to be stable to secondary circulations. Adiabatic lifting and, at long fetches, cloud top longwave cooling, not an air-to-surface heat flux, dominate the cooling of the boundary layer. The accumulation with fetch over the ice of changes in the surface wind field is shown to have a large effect on estimates of the surface wind stress. It is speculated that the Andreas et al. estimates of the drag coefficient over the compact sea ice are too high.

  12. Mapping and Assessing Variability in the Antarctic Marginal Ice Zone, the Pack Ice and Coastal Polynyas

    NASA Astrophysics Data System (ADS)

    Stroeve, Julienne; Jenouvrier, Stephanie

    2016-04-01

    Sea ice variability within the marginal ice zone (MIZ) and polynyas plays an important role for phytoplankton productivity and krill abundance. Therefore mapping their spatial extent, seasonal and interannual variability is essential for understanding how current and future changes in these biological active regions may impact the Antarctic marine ecosystem. Knowledge of the distribution of different ice types to the total Antarctic sea ice cover may also help to shed light on the factors contributing towards recent expansion of the Antarctic ice cover in some regions and contraction in others. The long-term passive microwave satellite data record provides the longest and most consistent data record for assessing different ice types. However, estimates of the amount of MIZ, consolidated pack ice and polynyas depends strongly on what sea ice algorithm is used. This study uses two popular passive microwave sea ice algorithms, the NASA Team and Bootstrap to evaluate the distribution and variability in the MIZ, the consolidated pack ice and coastal polynyas. Results reveal the NASA Team algorithm has on average twice the MIZ and half the consolidated pack ice area as the Bootstrap algorithm. Polynya area is also larger in the NASA Team algorithm, and the timing of maximum polynya area may differ by as much as 5 months between algorithms. These differences lead to different relationships between sea ice characteristics and biological processes, as illustrated here with the breeding success of an Antarctic seabird.

  13. Upper Ocean Evolution Across the Beaufort Sea Marginal Ice Zone from Autonomous Gliders

    NASA Astrophysics Data System (ADS)

    Lee, Craig; Rainville, Luc; Perry, Mary Jane

    2016-04-01

    The observed reduction of Arctic summertime sea ice extent and expansion of the marginal ice zone (MIZ) have profound impacts on the balance of processes controlling sea ice evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer (PSW) and Atlantic (AW) waters), and elevated surface wave energy that acts to deform and fracture sea ice. Spatial and temporal variability in ice properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing ice cover, and how the balance of processes shift as a function of ice fraction and distance from open water, four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal ice zone, deep into the pack during summer 2014 in the Beaufort Sea. Sections reveal strong fronts where cold, ice-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the ice edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse as they progress through the MIZ and into open water. The isopynal layer between 1023 and 1024 kgm-3, just above the PSW, consistently thickens near the ice edge, likely due to mixing or energetic vertical exchange associated with strong lateral gradients in this region. This presentation will discuss the upper ocean variability, its relationship to sea ice extent, and evolution over the summer to the start of freeze up.

  14. Upper Ocean Evolution Across the Beaufort Sea Marginal Ice Zone from Autonomous Gliders

    NASA Astrophysics Data System (ADS)

    Lee, C.; Rainville, L.; Perry, M. J.

    2016-02-01

    The observed reduction of Arctic summertime sea ice extent and expansion of the marginal ice zone (MIZ) have profound impacts on the balance of processes controlling sea ice evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer (PSW) and Atlantic (AW) waters), and elevated surface wave energy that acts to deform and fracture sea ice. Spatial and temporal variability in ice properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing ice cover, and how the balance of processes shift as a function of ice fraction and distance from open water, four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal ice zone, deep into the pack during summer 2014 in the Beaufort Sea. Sections reveal strong fronts where cold, ice-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the ice edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse as they progress through the MIZ and into open water. The isopynal layer between 1023 and 1024 kg m-3, just above the PSW, consistently thickens near the ice edge, likely due to mixing or energetic vertical exchange associated with strong lateral gradients in this region. This presentation will discuss the upper ocean variability, its relationship to sea ice extent, and evolution over the summer to the start of freeze up.

  15. Mars Water Ice and Carbon Dioxide Seasonal Polar Caps: GCM Modeling and Comparison with Mars Express Omega Observations

    NASA Technical Reports Server (NTRS)

    Forget, F.; Levrard, B.; Montmessin, F.; Schmitt, B.; Doute, S.; Langevin, Y.; Bibring, J. P.

    2005-01-01

    To better understand the behavior of the Mars CO2 ice seasonal polar caps, and in particular interpret the the Mars Express Omega observations of the recession of the northern seasonal cap, we present some simulations of the Martian Climate/CO2 cycle/ water cycle as modeled by the Laboratoire de Meteorologie Dynamique (LMD) global climate model.

  16. Azimuthal Structure of the Sand Erg that Encircles the North Polar Water-Ice Cap

    NASA Astrophysics Data System (ADS)

    Teodoro, L. A.; Elphic, R. C.; Eke, V. R.; Feldman, W. C.; Maurice, S.; Pathare, A.

    2011-12-01

    The sand erg that completely encircles the perennial water-ice cap that covers the Martian north geographic pole displays considerable azimuthal structure as seen in visible and near-IR images. Much of this structure is associated with the terminations of the many steep troughs that cut spiral the approximately 3 km thick polar ice cap. Other contributions come from the katabatic winds that spill over steep-sided edges of the cap, such as what bounds the largest set of dunes that comprise Olympia Undae. During the spring and summer months when these winds initiate from the higher altitudes that contain sublimating CO2 ice, which is very cold and dry, heat adiabatically when they compress as they lose altitude. These winds should then remove H2O moisture from the uppermost layer of the sand dunes that are directly in their path. Two likely locations where this desiccation may occur preferentially is at the termination of Chasma Boreale and the ice cap at Olympia Undae. We will search for this effect by sharpening the spatial structure of the epithermal neutron counting rates measured at northern high latitudes using the Mars Odyssey Neutron Spectrometer (MONS). The epithermal range of neutron energies is nearly uniquely sensitive to the hydrogen content of surface soils, which should likely be in the form of H2O/OH molecules/radicals. We therefore convert epithermal counting rates in terms of Water-Equivalent-Hydrogen, WEH. However, MONS counting-rate data have a FWHM of ~550 km., which is sufficiently broad to prevent a close association of WEH variability with images of geological features. In this study, we reduce spurious features in the instrument smeared neutron counting rates through deconvolution. We choose the PIXON numerical deconvolution technique for this purpose. This technique uses a statistical approach (Pina 2001, Eke 2001), which is capable of removing spurious features in the data in the presence of noise. We have previously carried out a detailed

  17. Seasonal Variability in Regional Ice Flow Due to Meltwater Injection Into the Shear Margins of Jakobshavn Isbræ

    NASA Astrophysics Data System (ADS)

    Cavanagh, J. P.; Lampkin, D. J.; Moon, T.

    2017-12-01

    The impact of meltwater injection into the shear margins of Jakobshavn Isbræ via drainage from water-filled crevasses on ice flow is examined. We use Landsat-8 Operational Land Imager panchromatic, high-resolution imagery to monitor the spatiotemporal variability of seven water-filled crevasse ponds during the summers of 2013 to 2015. The timing of drainage from water-filled crevasses coincides with an increase of 2 to 20% in measured ice velocity beyond Jakobshavn Isbræ shear margins, which we define as extramarginal ice velocity. Some water-filled crevasse groups demonstrate multiple drainage events within a single melt season. Numerical simulations show that hydrologic shear weakening due to water-filled crevasse drainage can accelerate extramarginal flow by as much as 35% within 10 km of the margins and enhance mass flux through the shear margins by 12%. This work demonstrates a novel mechanism through which surface melt can influence regional ice flow.

  18. Sea ice floe size distribution in the marginal ice zone: Theory and numerical experiments

    NASA Astrophysics Data System (ADS)

    Zhang, Jinlun; Schweiger, Axel; Steele, Michael; Stern, Harry

    2015-05-01

    To better describe the state of sea ice in the marginal ice zone (MIZ) with floes of varying thicknesses and sizes, both an ice thickness distribution (ITD) and a floe size distribution (FSD) are needed. In this work, we have developed a FSD theory that is coupled to the ITD theory of Thorndike et al. (1975) in order to explicitly simulate the evolution of FSD and ITD jointly. The FSD theory includes a FSD function and a FSD conservation equation in parallel with the ITD equation. The FSD equation takes into account changes in FSD due to ice advection, thermodynamic growth, and lateral melting. It also includes changes in FSD because of mechanical redistribution of floe size due to ice ridging and, particularly, ice fragmentation induced by stochastic ocean surface waves. The floe size redistribution due to ice fragmentation is based on the assumption that wave-induced breakup is a random process such that when an ice floe is broken, floes of any smaller sizes have an equal opportunity to form, without being either favored or excluded. To focus only on the properties of mechanical floe size redistribution, the FSD theory is implemented in a simplified ITD and FSD sea ice model for idealized numerical experiments. Model results show that the simulated cumulative floe number distribution (CFND) follows a power law as observed by satellites and airborne surveys. The simulated values of the exponent of the power law, with varying levels of ice breakups, are also in the range of the observations. It is found that floe size redistribution and the resulting FSD and mean floe size do not depend on how floe size categories are partitioned over a given floe size range. The ability to explicitly simulate multicategory FSD and ITD together may help to incorporate additional model physics, such as FSD-dependent ice mechanics, surface exchange of heat, mass, and momentum, and wave-ice interactions.

  19. Modelling seasonal meltwater forcing of the velocity of land-terminating margins of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Koziol, Conrad P.; Arnold, Neil

    2018-03-01

    Surface runoff at the margin of the Greenland Ice Sheet (GrIS) drains to the ice-sheet bed, leading to enhanced summer ice flow. Ice velocities show a pattern of early summer acceleration followed by mid-summer deceleration due to evolution of the subglacial hydrology system in response to meltwater forcing. Modelling the integrated hydrological-ice dynamics system to reproduce measured velocities at the ice margin remains a key challenge for validating the present understanding of the system and constraining the impact of increasing surface runoff rates on dynamic ice mass loss from the GrIS. Here we show that a multi-component model incorporating supraglacial, subglacial, and ice dynamic components applied to a land-terminating catchment in western Greenland produces modelled velocities which are in reasonable agreement with those observed in GPS records for three melt seasons of varying melt intensities. This provides numerical support for the hypothesis that the subglacial system develops analogously to alpine glaciers and supports recent model formulations capturing the transition between distributed and channelized states. The model shows the growth of efficient conduit-based drainage up-glacier from the ice sheet margin, which develops more extensively, and further inland, as melt intensity increases. This suggests current trends of decadal-timescale slowdown of ice velocities in the ablation zone may continue in the near future. The model results also show a strong scaling between average summer velocities and melt season intensity, particularly in the upper ablation area. Assuming winter velocities are not impacted by channelization, our model suggests an upper bound of a 25 % increase in annual surface velocities as surface melt increases to 4 × present levels.

  20. Coupling of Waves, Turbulence and Thermodynamics Across the Marginal Ice Zone

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Coupling of Waves, Turbulence and Thermodynamics across...developing Thermodynamically Forced Marginal Ice Zone. Submitted to JGR. Heiles,A. S., NPS thesis, Sep. 2014 Schmidt, B. K., NPS thesis March 2012 Shaw

  1. Vertical motions of passive margins of Greenland: influence of ice sheet, glacial erosion, and sediment transport

    NASA Astrophysics Data System (ADS)

    Souche, A.; Medvedev, S.; Hartz, E. H.

    2009-04-01

    The sub-ice topography of Greenland is characterized by a central depression below the sea level and by elevated (in some places significantly) margins. Whereas the central depression may be explained by significant load of the Greenland ice sheet, the origin of the peripheral relief remains unclear. We analyze the influence of formation of the ice sheet and carving by glacial erosion on the evolution of topography along the margins of Greenland. Our analysis shows that: (1) The heavy ice loading in the central part of Greenland and consecutive peripheral bulging has a negligible effect on amplitude of the uplifted Greenland margins. (2) First order estimates of uplift due to isostatic readjustment caused by glacial erosion and unloading in the fjord systems is up to 1.1 km. (3) The increase of accuracy of topographic data (comparing several data sets of resolution with grid size from 5 km to 50 m) results in increase of the isostatic response in the model. (4) The analysis of mass redistribution during erosion-sedimentation process and data on age of offshore sediments allows us to estimate the timing of erosion along the margins of Greenland. This ongoing analysis, however, requires careful account for the link between sources (localized glacial erosion) and sinks (offshore sedimentary basins around Greenland).

  2. Observations of the northern seasonal polar cap on Mars: I. Spring sublimation activity and processes

    USGS Publications Warehouse

    Hansen, C.J.; Byrne, S.; Portyankina, G.; Bourke, M.; Dundas, C.; McEwen, A.; Mellon, M.; Pommerol, A.; Thomas, N.

    2013-01-01

    Spring sublimation of the seasonal CO2 northern polar cap is a dynamic process in the current Mars climate. Phenomena include dark fans of dune material propelled out onto the seasonal ice layer, polygonal cracks in the seasonal ice, sand flow down slipfaces, and outbreaks of gas and sand around the dune margins. These phenomena are concentrated on the north polar erg that encircles the northern residual polar cap. The Mars Reconnaissance Orbiter has been in orbit for three Mars years, allowing us to observe three northern spring seasons. Activity is consistent with and well described by the Kieffer model of basal sublimation of the seasonal layer of ice applied originally in the southern hemisphere. Three typical weak spots have been identified on the dunes for escape of gas sublimed from the bottom of the seasonal ice layer: the crest of the dune, the interface of the dune with the interdune substrate, and through polygonal cracks in the ice. Pressurized gas flows through these vents and carries out material entrained from the dune. Furrows in the dunes channel gas to outbreak points and may be the northern equivalent of southern radially-organized channels (“araneiform” terrain), albeit not permanent. Properties of the seasonal CO2 ice layer are derived from timing of seasonal events such as when final sublimation occurs. Modification of dune morphology shows that landscape evolution is occurring on Mars today, driven by seasonal activity associated with sublimation of the seasonal CO2 polar cap.

  3. Discovery of a hypersaline subglacial lake complex beneath Devon Ice Cap, Canadian Arctic

    PubMed Central

    Blankenship, Donald D.; Schroeder, Dustin M.; Dowdeswell, Julian A.

    2018-01-01

    Subglacial lakes are unique environments that, despite the extreme dark and cold conditions, have been shown to host microbial life. Many subglacial lakes have been discovered beneath the ice sheets of Antarctica and Greenland, but no spatially isolated water body has been documented as hypersaline. We use radio-echo sounding measurements to identify two subglacial lakes situated in bedrock troughs near the ice divide of Devon Ice Cap, Canadian Arctic. Modeled basal ice temperatures in the lake area are no higher than −10.5°C, suggesting that these lakes consist of hypersaline water. This implication of hypersalinity is in agreement with the surrounding geology, which indicates that the subglacial lakes are situated within an evaporite-rich sediment unit containing a bedded salt sequence, which likely act as the solute source for the brine. Our results reveal the first evidence for subglacial lakes in the Canadian Arctic and the first hypersaline subglacial lakes reported to date. We conclude that these previously unknown hypersaline subglacial lakes may represent significant and largely isolated microbial habitats, and are compelling analogs for potential ice-covered brine lakes and lenses on planetary bodies across the solar system. PMID:29651462

  4. Late glacial and Holocene history of the Greenland Ice Sheet margin, Nunatarssuaq, Northwestern Greenland

    NASA Astrophysics Data System (ADS)

    Farnsworth, L. B.; Kelly, M. A.; Axford, Y.; Bromley, G. R.; Osterberg, E. C.; Howley, J. A.; Zimmerman, S. R. H.; Jackson, M. S.; Lasher, G. E.; McFarlin, J. M.

    2015-12-01

    Defining the late glacial and Holocene fluctuations of the Greenland Ice Sheet (GrIS) margin, particularly during periods that were as warm or warmer than present, provides a longer-term perspective on present ice margin fluctuations and informs how the GrIS may respond to future climate conditions. We focus on mapping and dating past GrIS extents in the Nunatarssuaq region of northwestern Greenland. During the summer of 2014, we conducted geomorphic mapping and collected rock samples for 10Be surface exposure dating as well as subfossil plant samples for 14C dating. We also obtained sediment cores from an ice-proximal lake. Preliminary 10Be ages of boulders deposited during deglaciation of the GrIS subsequent to the Last Glacial Maximum range from ~30-15 ka. The apparently older ages of some samples indicate the presence of 10Be inherited from prior periods of exposure. These ages suggest deglaciation occurred by ~15 ka however further data are needed to test this hypothesis. Subfossil plants exposed at the GrIS margin on shear planes date to ~ 4.6-4.8 cal. ka BP and indicate less extensive ice during middle Holocene time. Additional radiocarbon ages from in situ subfossil plants on a nunatak date to ~3.1 cal. ka BP. Geomorphic mapping of glacial landforms near Nordsø, a large proglacial lake, including grounding lines, moraines, paleo-shorelines, and deltas, indicate the existence of a higher lake level that resulted from a more extensive GrIS margin likely during Holocene time. A fresh drift limit, characterized by unweathered, lichen-free clasts approximately 30-50 m distal to the modern GrIS margin, is estimated to be late Holocene in age. 10Be dating of samples from these geomorphic features is in progress. Radiocarbon ages of subfossil plants exposed by recent retreat of the GrIS margin suggest that the GrIS was at or behind its present location at AD ~1650-1800 and ~1816-1889. Results thus far indicate that the GrIS margin in northwestern Greenland

  5. A moderate resolution inventory of small glaciers and ice caps surrounding Greenland and the Antarctic peninsula

    NASA Astrophysics Data System (ADS)

    Chen, C.; Box, J. E.; Hock, R. M.; Cogley, J. G.

    2011-12-01

    Current estimates of global Mountain Glacier and Ice Caps (MG&IC) mass changes are subject to large uncertainties due to incomplete inventories and uncertainties in land surface classification. This presentation features mitigative efforts through the creation of a MODIS dependent land ice classification system and its application for glacier inventory. Estimates of total area of mountain glaciers [IPCC, 2007] and ice caps (including those in Greenland and Antarctica) vary 15%, that is, 680 - 785 10e3 sq. km. To date only an estimated 40% of glaciers (by area) is inventoried in the World Glacier Inventory (WGI) and made available through the World Glacier Monitoring System (WGMS) and the National Snow and Ice Data Center [NSIDC, 1999]. Cogley [2009] recently compiled a more complete version of WGI, called WGI-XF, containing records for just over 131,000 glaciers, covering approximately half of the estimated global MG&IC area. The glaciers isolated from the conterminous Antarctic and Greenland ice sheets remain incompletely inventoried in WGI-XF but have been estimated to contribute 35% to the MG&IC sea-level equivalent during 1961-2004 [Hock et al., 2009]. Together with Arctic Canada and Alaska these regions alone make up almost 90% of the area that is missing in the global WGI-XF inventory. Global mass balance projections tend to exclude ice masses in Greenland and Antarctica due to the paucity of data with respect to basic inventory base data such as area, number of glaciers or size distributions. We address the need for an accurate Greenland and Antarctic peninsula land surface classification with a novel glacier surface classification and inventory based on NASA Moderate Resolution Imaging Spectroradiometer (MODIS) data gridded at 250 m pixel resolution. The presentation includes a sensitivity analysis for surface mass balance as it depends on the land surface classification. Works Cited +Cogley, J. G. (2009), A more complete version of the World Glacier

  6. North Polar Cap

    NASA Technical Reports Server (NTRS)

    2004-01-01

    7 September 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a 1.4 m/pixel (5 ft/pixel) view of a typical martian north polar ice cap texture. The surface is pitted and rough at the scale of several meters. The north polar residual cap of Mars consists mainly of water ice, while the south polar residual cap is mostly carbon dioxide. This picture is located near 85.2oN, 283.2oW. The image covers an area approximately 1 km wide by 1.4 km high (0.62 by 0.87 miles). Sunlight illuminates this scene from the lower left.

  7. Sea-ice dynamics strongly promote Snowball Earth initiation and destabilize tropical sea-ice margins

    NASA Astrophysics Data System (ADS)

    Voigt, A.; Abbot, D. S.

    2012-12-01

    The Snowball Earth bifurcation, or runaway ice-albedo feedback, is defined for particular boundary conditions by a critical CO2 and a critical sea-ice cover (SI), both of which are essential for evaluating hypotheses related to Neoproterozoic glaciations. Previous work has shown that the Snowball Earth bifurcation, denoted as (CO2, SI)*, differs greatly among climate models. Here, we study the effect of bare sea-ice albedo, sea-ice dynamics and ocean heat transport on (CO2, SI)* in the atmosphere-ocean general circulation model ECHAM5/MPI-OM with Marinoan (~ 635 Ma) continents and solar insolation (94% of modern). In its standard setup, ECHAM5/MPI-OM initiates a~Snowball Earth much more easily than other climate models at (CO2, SI)* ≈ (500 ppm, 55%). Replacing the model's standard bare sea-ice albedo of 0.75 by a much lower value of 0.45, we find (CO2, SI)* ≈ (204 ppm, 70%). This is consistent with previous work and results from net evaporation and local melting near the sea-ice margin. When we additionally disable sea-ice dynamics, we find that the Snowball Earth bifurcation can be pushed even closer to the equator and occurs at a hundred times lower CO2: (CO2, SI)* ≈ (2 ppm, 85%). Therefore, the simulation of sea-ice dynamics in ECHAM5/MPI-OM is a dominant determinant of its high critical CO2 for Snowball initiation relative to other models. Ocean heat transport has no effect on the critical sea-ice cover and only slightly decreases the critical CO2. For disabled sea-ice dynamics, the state with 85% sea-ice cover is stabilized by the Jormungand mechanism and shares characteristics with the Jormungand climate states. However, there is no indication of the Jormungand bifurcation and hysteresis in ECHAM5/MPI-OM. The state with 85% sea-ice cover therefore is a soft Snowball state rather than a true Jormungand state. Overall, our results demonstrate that differences in sea-ice dynamics schemes can be at least as important as differences in sea-ice albedo for

  8. High Artic Glaciers and Ice Caps Ice Mass Change from GRACE, Regional Climate Model Output and Altimetry.

    NASA Astrophysics Data System (ADS)

    Ciraci, E.; Velicogna, I.; Fettweis, X.; van den Broeke, M. R.

    2016-12-01

    The Arctic hosts more than the 75% of the ice covered regions outside from Greenland and Antarctica. Available observations show that increased atmospheric temperatures during the last century have contributed to a substantial glaciers retreat in all these regions. We use satellite gravimetry by the NASA's Gravity Recovery and Climate Experiment (GRACE), and apply a least square fit mascon approach to calculate time series of ice mass change for the period 2002-2016. Our estimates show that arctic glaciers have constantly contributed to the sea level rise during the entire observation period with a mass change of -170+/-20 Gt/yr equivalent to the 80% of the total ice mass change from the world Glacier and Ice Caps (GIC) excluding the Ice sheet peripheral GIC, which we calculated to be -215+/-32 GT/yr, with an acceleration of 9+/-4 Gt/yr2. The Canadian Archipelago is the main contributor to the total mass depletion with an ice mass trend of -73+/-9 Gt/yr and a significant acceleration of -7+/-3 Gt/yr2. The increasing mass loss is mainly determined by melting glaciers located in the northern part of the archipelago.In order to investigate the physical processes driving the observed ice mass loss we employ satellite altimetry and surface mass balance (SMB) estimates from Regional climate model outputs available for the same time period covered by the gravimetry data. We use elevation data from the NASA ICESat (2003-2009) and ESA CryoSat-2 (2010-2016) missions to estimate ice elevation changes. We compare GRACE ice mass estimates with time series of surface mass balance from the Regional Climate Model (RACMO-2) and the Modèle Atmosphérique Régional (MAR) and determine the portion of the total mass change explained by the SMB signal. We find that in Iceland and in the and the Canadian Archipelago the SMB signal explains most of the observed mass changes, suggesting that ice discharge may play a secondary role here. In other region, e.g. in Svalbar, the SMB signal

  9. The Navy's First Seasonal Ice Forecasts using the Navy's Arctic Cap Nowcast/Forecast System

    NASA Astrophysics Data System (ADS)

    Preller, Ruth

    2013-04-01

    As conditions in the Arctic continue to change, the Naval Research Laboratory (NRL) has developed an interest in longer-term seasonal ice extent forecasts. The Arctic Cap Nowcast/Forecast System (ACNFS), developed by the Oceanography Division of NRL, was run in forward model mode, without assimilation, to estimate the minimum sea ice extent for September 2012. The model was initialized with varying assimilative ACNFS analysis fields (June 1, July 1, August 1 and September 1, 2012) and run forward for nine simulations using the archived Navy Operational Global Atmospheric Prediction System (NOGAPS) atmospheric forcing fields from 2003-2011. The mean ice extent in September, averaged across all ensemble members was the projected summer ice extent. These results were submitted to the Study of Environmental Arctic Change (SEARCH) Sea Ice Outlook project (http://www.arcus.org/search/seaiceoutlook). The ACNFS is a ~3.5 km coupled ice-ocean model that produces 5 day forecasts of the Arctic sea ice state in all ice covered areas in the northern hemisphere (poleward of 40° N). The ocean component is the HYbrid Coordinate Ocean Model (HYCOM) and is coupled to the Los Alamos National Laboratory Community Ice CodE (CICE) via the Earth System Modeling Framework (ESMF). The ocean and ice models are run in an assimilative cycle with the Navy's Coupled Ocean Data Assimilation (NCODA) system. Currently the ACNFS is being transitioned to operations at the Naval Oceanographic Office.

  10. Local response of a glacier to annual filling and drainage of an ice-marginal lake

    USGS Publications Warehouse

    Walder, J.S.; Trabant, D.C.; Cunico, M.; Fountain, A.G.; Anderson, S.P.; Anderson, R. Scott; Malm, A.

    2006-01-01

    Ice-marginal Hidden Creek Lake, Alaska, USA, outbursts annually over the course of 2-3 days. As the lake fills, survey targets on the surface of the 'ice dam' (the glacier adjacent to the lake) move obliquely to the ice margin and rise substantially. As the lake drains, ice motion speeds up, becomes nearly perpendicular to the face of the ice dam, and the ice surface drops. Vertical movement of the ice dam probably reflects growth and decay of a wedge of water beneath the ice dam, in line with established ideas about jo??kulhlaup mechanics. However, the distribution of vertical ice movement, with a narrow (50-100 m wide) zone where the uplift rate decreases by 90%, cannot be explained by invoking flexure of the ice dam in a fashion analogous to tidal flexure of a floating glacier tongue or ice shelf. Rather, the zone of large uplift-rate gradient is a fault zone: ice-dam deformation is dominated by movement along high-angle faults that cut the ice dam through its entire thickness, with the sense of fault slip reversing as the lake drains. Survey targets spanning the zone of steep uplift gradient move relative to one another in a nearly reversible fashion as the lake fills and drains. The horizontal strain rate also undergoes a reversal across this zone, being compressional as the lake fills, but extensional as the lake drains. Frictional resistance to fault-block motion probably accounts for the fact that lake level falls measurably before the onset of accelerated horizontal motion and vertical downdrop. As the overall fault pattern is the same from year to year, even though ice is lost by calving, the faults must be regularly regenerated, probably by linkage of surface and bottom crevasses as ice is advected toward the lake basin.

  11. Peruvian Tropical Glacier May Survive Longer Than Previously Thought: Landsat Image Analysis of Nevado Coropuna Ice Cap, Peru

    NASA Astrophysics Data System (ADS)

    Kochtitzky, W. H.; Edwards, B. R.; Marino, J.; Manrique, N.

    2015-12-01

    Nevado Coropuna is a large volcanic complex in southern Peru (15.56°S, 72.62°N; 6,425 m). The complex is approximately 12 km east-west and 8 km north-south with elevation from ~4,500 m at the base to over 6,000 m at the highest points. This ice cap is the largest hosted by a volcano in the tropics, and one of the ten biggest ice masses in the tropics. Previous workers have predicted that the Coropuna ice cap will completely melt by 2050. We present a new analysis of historic satellite imagery to test this hypothesis. In this study, ice and snow are classified based on unique spectral signatures including spectral band thresholds, Normalized Difference Snow Index, and Band 4/5 ratio. Landsat scenes (L2, 4, 5, 7, and 8) from 1975 to present in addition to one SPOT scene (2013) are used. Previous workers used images from June and July, which are peak snow periods in southern Peru, leading to overestimates of ice area. This study uses November and December images when snow is at an annual minimum. Annual equilibrium line altitudes are calculated for each end of year image (November/December). The glaciers of Nevado Coropuna were found to be shrinking at ~0.5 km2/yr, which is ~1/3 the rate previously published. In this study, SPOT (1.5 m resolution) and Landsat 7 ETM scenes from November 23 and 26, 2013 respectively were used to calibrate the spectral band threshold classification. While this study suggests that the ice cap of Coropuna will persist until 2100 given current rates, water quantity and security remains a concern for Peruvian agriculture. Coropuna is an active volcano, so it poses great risk to surrounding inhabitants from lahars, flooding, and debris avalanches. Our new data suggest that these will continue to be risks late into this century.

  12. Timing of Expansions of the Quelccaya Ice Cap, Peru, and Implications for Cosmogenic Nuclide Production Rate Calibration

    NASA Astrophysics Data System (ADS)

    Lowell, T. V.; Kelly, M. A.; Applegate, P. J.; Smith, C. A.; Phillips, F. M.; Hudson, A. M.

    2010-12-01

    We calibrate the production rate of the cosmogenic nuclide beryllium-10 (10Be) at a low-latitude, high-elevation site, using nuclide concentrations measured in moraine boulders and an independent chronology determined with bracketing radiocarbon dates. The measurement of terrestrial cosmogenic nuclide (TCN) concentrations in earth surface materials has been an important development for understanding a host of earth surface processes. Uncertainty in cosmogenic nuclide production rates has hampered application of this method. Here, we contribute to the estimation of 10Be production rates by reporting both preliminary 10Be concentrations and independent radiocarbon dates from a low latitude, high elevation site. Our study site in the southeastern Peruvian Andes (~13.9°S, 70.9°W, 4850 m asl) is centered on a moraine set, known as the Huancané II moraines, that represents a ~4 km expansion of Quelccaya Ice Cap during late glacial time. At this location, organic material situated both stratigraphically below and above moraines in two adjacent valleys provide material for radiocarbon dating. Based on geomorphic arguments, we correlate results from the two valleys. The timing of ice cap margin advance is bracketed by 13 radiocarbon ages on organic material within the outermost Huancané II moraines that range from 13.6 to 12.5 ka. Two stratigraphic sections upvalley from the moraines yield 6 radiocarbon ages from 11.3 to 12.4 ka, indicating the time of retreat . We computed the probability density function that lies between these two sets of dates, and assign an age of 12.4 ka (+/-???) for the formation of the Huancané II moraines. Calculating beryllium-10 exposure dates from the measured concentrations yield exposure dates that significantly underestimate the independently determined age of the moraine (~8-30%), if existing production rate estimates are used. We suggest that the radiocarbon age for the moraines can be used as a robust independent calibration for 10Be

  13. Numerical modeling of Drangajökull Ice Cap, NW Iceland

    NASA Astrophysics Data System (ADS)

    Anderson, Leif S.; Jarosch, Alexander H.; Flowers, Gwenn E.; Aðalgeirsdóttir, Guðfinna; Magnússon, Eyjólfur; Pálsson, Finnur; Muñoz-Cobo Belart, Joaquín; Þorsteinsson, Þorsteinn; Jóhannesson, Tómas; Sigurðsson, Oddur; Harning, David; Miller, Gifford H.; Geirsdóttir, Áslaug

    2016-04-01

    Over the past century the Arctic has warmed twice as fast as the global average. This discrepancy is likely due to feedbacks inherent to the Arctic climate system. These Arctic climate feedbacks are currently poorly quantified, but are essential to future climate predictions based on global circulation modeling. Constraining the magnitude and timing of past Arctic climate changes allows us to test climate feedback parameterizations at different times with different boundary conditions. Because Holocene Arctic summer temperature changes have been largest in the North Atlantic (Kaufman et al., 2004) we focus on constraining the paleoclimate of Iceland. Glaciers are highly sensitive to changes in temperature and precipitation amount. This sensitivity allows for the estimation of paleoclimate using glacier models, modern glacier mass balance data, and past glacier extents. We apply our model to the Drangajökull ice cap (~150 sq. km) in NW Iceland. Our numerical model is resolved in two-dimensions, conserves mass, and applies the shallow-ice-approximation. The bed DEM used in the model runs was constructed from radio echo data surveyed in spring 2014. We constrain the modern surface mass balance of Drangajökull using: 1) ablation and accumulation stakes; 2) ice surface digital elevation models (DEMs) from satellite, airborne LiDAR, and aerial photographs; and 3) full-stokes model-derived vertical ice velocities. The modeled vertical ice velocities and ice surface DEMs are combined to estimate past surface mass balance. We constrain Holocene glacier geometries using moraines and trimlines (e.g., Brynjolfsson, etal, 2014), proglacial-lake cores, and radiocarbon-dated dead vegetation emerging from under the modern glacier. We present a sensitivity analysis of the model to changes in parameters and show the effect of step changes of temperature and precipitation on glacier extent. Our results are placed in context with local lacustrine and marine climate proxies as well

  14. Ice core records of climate variability on the Third Pole with emphasis on the Guliya ice cap, western Kunlun Mountains

    NASA Astrophysics Data System (ADS)

    Thompson, Lonnie G.; Yao, Tandong; Davis, Mary E.; Mosley-Thompson, Ellen; Wu, Guangjian; Porter, Stacy E.; Xu, Baiqing; Lin, Ping-Nan; Wang, Ninglian; Beaudon, Emilie; Duan, Keqin; Sierra-Hernández, M. Roxana; Kenny, Donald V.

    2018-05-01

    Records of recent climate from ice cores drilled in 2015 on the Guliya ice cap in the western Kunlun Mountains of the Tibetan Plateau, which with the Himalaya comprises the Third Pole (TP), demonstrate that this region has become warmer and moister since at least the middle of the 19th century. Decadal-scale linkages are suggested between ice core temperature and snowfall proxies, North Atlantic oceanic and atmospheric processes, Arctic temperatures, and Indian summer monsoon intensity. Correlations between annual-scale oxygen isotopic ratios (δ18O) and tropical western Pacific and Indian Ocean sea surface temperatures are also demonstrated. Comparisons of climate records during the last millennium from ice cores acquired throughout the TP illustrate centennial-scale differences between monsoon and westerlies dominated regions. Among these records, Guliya shows the highest rate of warming since the end of the Little Ice Age, but δ18O data over the last millennium from TP ice cores support findings that elevation-dependent warming is most pronounced in the Himalaya. This, along with the decreasing precipitation rates in the Himalaya region, is having detrimental effects on the cryosphere. Although satellite monitoring of glaciers on the TP indicates changes in surface area, only a few have been directly monitored for mass balance and ablation from the surface. This type of ground-based study is essential to obtain a better understanding of the rate of ice shrinkage on the TP.

  15. MIZEX: A Program for Mesoscale Air-Ice-Ocean Interaction Experiments in Arctic Marginal Ice Zones. MIZEX Bulletin VII.

    DTIC Science & Technology

    1986-03-01

    8217 ILI L2.2363 31-25 UICRQCCW p O TEST C4ART’OPSMa, -f AoA IV 4 86 9 ’ 5 MIZEX BULLETIN SERIES: INFORMATION FOR CONTRIBUTORS The main purpose of the...Ice-Ocean Interaction Experiments in Arctic Marginal Ice Zones MIZEX BULLETIN VII LEC T E SEP 2 9 1986 ’Jl P March 1986 J A ’QOzltnal OontsSn$ ooLoP...studies in both the northern and southern hemispheres. W.D. HIBLER Ill March 1986 ii CONTENTS* Page P reface

  16. Abnormal Winter Melting of the Arctic Sea Ice Cap Observed by the Spaceborne Passive Microwave Sensors

    NASA Astrophysics Data System (ADS)

    Lee, Seongsuk; Yi, Yu

    2016-12-01

    The spatial size and variation of Arctic sea ice play an important role in Earth’s climate system. These are affected by conditions in the polar atmosphere and Arctic sea temperatures. The Arctic sea ice concentration is calculated from brightness temperature data derived from the Defense Meteorological Satellite program (DMSP) F13 Special Sensor Microwave/Imagers (SSMI) and the DMSP F17 Special Sensor Microwave Imager/Sounder (SSMIS) sensors. Many previous studies point to significant reductions in sea ice and their causes. We investigated the variability of Arctic sea ice using the daily sea ice concentration data from passive microwave observations to identify the sea ice melting regions near the Arctic polar ice cap. We discovered the abnormal melting of the Arctic sea ice near the North Pole during the summer and the winter. This phenomenon is hard to explain only surface air temperature or solar heating as suggested by recent studies. We propose a hypothesis explaining this phenomenon. The heat from the deep sea in Arctic Ocean ridges and/ or the hydrothermal vents might be contributing to the melting of Arctic sea ice. This hypothesis could be verified by the observation of warm water column structure below the melting or thinning arctic sea ice through the project such as Coriolis dataset for reanalysis (CORA).

  17. Wave Attenuation and Gas Exchange Velocity in Marginal Sea Ice Zone

    NASA Astrophysics Data System (ADS)

    Bigdeli, A.; Hara, T.; Loose, B.; Nguyen, A. T.

    2018-03-01

    The gas transfer velocity in marginal sea ice zones exerts a strong control on the input of anthropogenic gases into the ocean interior. In this study, a sea state-dependent gas exchange parametric model is developed based on the turbulent kinetic energy dissipation rate. The model is tuned to match the conventional gas exchange parametrization in fetch-unlimited, fully developed seas. Next, fetch limitation is introduced in the model and results are compared to fetch limited experiments in lakes, showing that the model captures the effects of finite fetch on gas exchange with good fidelity. Having validated the results in fetch limited waters such as lakes, the model is next applied in sea ice zones using an empirical relation between the sea ice cover and the effective fetch, while accounting for the sea ice motion effect that is unique to sea ice zones. The model results compare favorably with the available field measurements. Applying this parametric model to a regional Arctic numerical model, it is shown that, under the present conditions, gas flux into the Arctic Ocean may be overestimated by 10% if a conventional parameterization is used.

  18. Is CO2 ice permanent?

    NASA Technical Reports Server (NTRS)

    Lindner, Bernhard Lee

    1992-01-01

    Carbon dioxide ice has been inferred to exist at the south pole in summertime, but Earth based measurements in 1969 of water vapor in the Martian atmosphere suggest that all CO2 ice sublined from the southern polar cap and exposed underlying water ice. This implies that the observed summertime CO2 ice is of recent origin. It appears possible to construct an energy balance model that maintains seasonal CO2 ice at the south pole year round and still reasonably simulates the polar cap regression and atmospheric pressure data. This implies that the CO2 ice observed in the summertime south polar cap could be seasonal in origin, and that minor changes in climate could cause CO2 ice to completely vanish, as would appear to have happened in 1969. However, further research remains before it is certain whether the CO2 ice observed in the summertime south polar cap is seasonal or is part of a permanent reservoir.

  19. Skin Temperature Processes in the Presence of Sea Ice

    NASA Astrophysics Data System (ADS)

    Brumer, S. E.; Zappa, C. J.; Brown, S.; McGillis, W. R.; Loose, B.

    2013-12-01

    Monitoring the sea-ice margins of polar oceans and understanding the physical processes at play at the ice-ocean-air interface is essential in the perspective of a changing climate in which we face an accelerated decline of ice caps and sea ice. Remote sensing and in particular InfraRed (IR) imaging offer a unique opportunity not only to observe physical processes at sea-ice margins, but also to measure air-sea exchanges near ice. It permits monitoring ice and ocean temperature variability, and can be used for derivation of surface flow field allowing investigating turbulence and shearing at the ice-ocean interface as well as ocean-atmosphere gas transfer. Here we present experiments conducted with the aim of gaining an insight on how the presence of sea ice affects the momentum exchange between the atmosphere and ocean and investigate turbulence production in the interplay of ice-water shear, convection, waves and wind. A set of over 200 high resolution IR imagery records was taken at the US Army Cold Regions Research and Engineering Laboratory (CRREL, Hanover NH) under varying ice coverage, fan and pump settings. In situ instruments provided air and water temperature, salinity, subsurface currents and wave height. Air side profiling provided environmental parameters such as wind speed, humidity and heat fluxes. The study aims to investigate what can be gained from small-scale high-resolution IR imaging of the ice-ocean-air interface; in particular how sea ice modulates local physics and gas transfer. The relationship between water and ice temperatures with current and wind will be addressed looking at the ocean and ice temperature variance. Various skin temperature and gas transfer parameterizations will be evaluated at ice margins under varying environmental conditions. Furthermore the accuracy of various techniques used to determine surface flow will be assessed from which turbulence statistics will be determined. This will give an insight on how ice presence

  20. Mass budget of the glaciers and ice caps of the Queen Elizabeth Islands, Canada, from 1991 to 2015

    NASA Astrophysics Data System (ADS)

    Millan, Romain; Mouginot, Jeremie; Rignot, Eric

    2017-02-01

    Recent studies indicate that the glaciers and ice caps in Queen Elizabeth Islands (QEI), Canada have experienced an increase in ice mass loss during the last two decades, but the contribution of ice dynamics to this loss is not well known. We present a comprehensive mapping of ice velocity using a suite of satellite data from year 1991 to 2015, combined with ice thickness data from NASA Operation IceBridge, to calculate ice discharge. We find that ice discharge increased significantly after 2011 in Prince of Wales Icefield, maintained or decreased in other sectors, whereas glacier surges have little impact on long-term trends in ice discharge. During 1991-2005, the QEI mass loss averaged 6.3 ± 1.1 Gt yr-1, 52% from ice discharge and the rest from surface mass balance (SMB). During 2005-2014, the mass loss from ice discharge averaged 3.5 ± 0.2 Gt yr-1 (10%) versus 29.6 ± 3.0 Gt yr-1 (90%) from SMB. SMB processes therefore dominate the QEI mass balance, with ice dynamics playing a significant role only in a few basins.

  1. The melting sea ice of Arctic polar cap in the summer solstice month and the role of ocean

    NASA Astrophysics Data System (ADS)

    Lee, S.; Yi, Y.

    2014-12-01

    The Arctic sea ice is becoming smaller and thinner than climatological standard normal and more fragmented in the early summer. We investigated the widely changing Arctic sea ice using the daily sea ice concentration data. Sea ice data is generated from brightness temperature data derived from the sensors: Defense Meteorological Satellite Program (DMSP)-F13 Special Sensor Microwave/Imagers (SSM/Is), the DMSP-F17 Special Sensor Microwave Imager/Sounder (SSMIS) and the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) instrument on the NASA Earth Observing System (EOS) Aqua satellite. We tried to figure out appearance of arctic sea ice melting region of polar cap from the data of passive microwave sensors. It is hard to explain polar sea ice melting only by atmosphere effects like surface air temperature or wind. Thus, our hypothesis explaining this phenomenon is that the heat from deep undersea in Arctic Ocean ridges and the hydrothermal vents might be contributing to the melting of Arctic sea ice.

  2. Wave Climate and Wave Mixing in the Marginal Ice Zones of Arctic Seas, Observations and Modelling

    DTIC Science & Technology

    2014-09-30

    At the same time, the PIs participate in Australian efforts of developing wave-ocean- ice coupled models for Antarctica . Specific new physics modules...Wave Mixing in the Marginal Ice Zones of Arctic Seas, Observations and Modelling Alexander V. Babanin Swinburne University of Technology, PO Box...operational forecast. Altimeter climatology and the wave models will be used to study the current and future wind/wave and ice trends. APPROACH

  3. Surface Exposure Dating of the Huancané III Moraines in Peru: A Record of Quelccaya Ice Cap's Maximum Extent during the Last Glacial Period

    NASA Astrophysics Data System (ADS)

    Baranes, H. E.; Kelly, M. A.; Stroup, J. S.; Howley, J. A.; Lowell, T. V.

    2012-12-01

    The climatic conditions that influenced the tropics during the height of the last glacial period are not well defined and controversial. There are disparities in estimates of temperature anomalies (e.g., MARGO, 2009; Rind and Peteet, 1985; CLIMAP, 1976), and critical terrestrial paleotemperature proxy records in tropical regions are poorly dated (e.g., Porter, 2001). Defining these conditions is important for understanding the mechanisms that cause major shifts in climate, as the tropics are a primary driver of atmospheric and oceanic circulation. This study aims to constrain the timing of maximum glacier extents in the Cordillera Oriental in southern Peru during the last glacial period by applying surface exposure (beryllium-10) dating to the Huancané III (Hu-III) moraines. The Hu-III moraines mark the maximum extent of Quelccaya Ice Cap (QIC) (13.93°S, 70.83°W), the largest tropical ice cap, during the last ice age. The eight beryllium-10 ages presented here yield 17,056 ± 520 yrs ago as a minimum age for the onset of recession from the ice cap advance marked by the Hu-III moraines. Comparing this age to other paleoclimate records indicates that the ice cap advance marked by the Hu-III moraines is more likely associated with a North Atlantic climate event known as Heinrich I (H1; 16,800 yrs ago, Bond et al., 1992, 1993) than with global cooling at the Last Glacial Maximum (LGM; ~21,000 yrs ago, Denton and Hughes, 1981). This result suggests that climate processes in the North Atlantic region are linked to climatic conditions in the tropical Andes. A mesoscale climate model and an ice-flow model are currently being developed for QIC. The moraine data presented in this study will be used with these two models to test response of QIC to North Atlantic and global climate events.

  4. Temporal constraints on future accumulation-area loss of a major Arctic ice cap due to climate change (Vestfonna, Svalbard)

    PubMed Central

    Möller, Marco; Schneider, Christoph

    2015-01-01

    Arctic glaciers and ice caps are major contributors to past, present and future sea-level fluctuations. Continued global warming may eventually lead to the equilibrium line altitudes of these ice masses rising above their highest points, triggering unstoppable downwasting. This may feed future sea-level rise considerably. We here present projections for the timing of equilibrium-line loss at the major Arctic ice cap Vestfonna, Svalbard. The projections are based on spatially distributed climatic mass balance modelling driven by the outputs of multiple climate models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) forced by the Representative Concentration Pathways (RCPs) 2.6, 4.5, 6.0 and 8.5. Results indicate strongly decreasing climatic mass balances over the 21st century for all RCPs considered. Glacier-wide mass-balance rates will drop down to −4 m a−1 w.e. (water equivalent) at a maximum. The date at which the equilibrium line rises above the summit of Vestfonna (630 m above sea level) is calculated to range between 2040 and 2150, depending on scenario. PMID:25628045

  5. Changes in Arctic Sea Ice Floe Size Distribution in the Marginal Ice Zone in a Thickness and Floe Size Distribution Model

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Stern, H. L., III; Hwang, P. B.; Schweiger, A. J. B.; Stark, M.; Steele, M.

    2015-12-01

    To better describe the state of sea ice in the marginal ice zone (MIZ) with floes of varying thicknesses and sizes, both an ice thickness distribution (ITD) and a floe size distribution (FSD) are needed. We have developed a FSD theory [Zhang et al., 2015] that is coupled to the ITD theory of Thorndike et al. [1975] in order to explicitly simulate the evolution of FSD and ITD jointly. The FSD theory includes a FSD function and a FSD conservation equation in parallel with the ITD equation. The FSD equation takes into account changes in FSD due to ice advection, thermodynamic growth, and lateral melting. It also includes changes in FSD because of mechanical redistribution of floe size due to ice opening, ridging and, particularly, ice fragmentation induced by stochastic ocean surface waves. The floe size redistribution due to ice fragmentation is based on the assumption that wave-induced breakup is a random process such that when an ice floe is broken, floes of any smaller sizes have an equal opportunity to form, without being either favored or excluded. It is also based on the assumption that floes of larger sizes are easier to break because they are subject to larger flexure-induced stresses and strains than smaller floes that are easier to ride with waves with little bending; larger floes also have higher areal coverages and therefore higher probabilities to break. These assumptions with corresponding formulations ensure that the simulated FSD follows a power law as observed by satellites and airborne surveys. The FSD theory has been tested in the Pan-arctic Ice/Ocean Modeling and Assimilation System (PIOMAS). The existing PIOMAS has 12 categories each for ice thickness, ice enthalpy, and snow depth. With the implementation of the FSD theory, PIOMAS is able to represent 12 categories of floe sizes ranging from 0.1 m to ~3000 m. It is found that the simulated 12-category FSD agrees reasonably well with FSD derived from SAR and MODIS images. In this study, we will

  6. Winter mass balance of Drangajökull ice cap (NW Iceland) derived from satellite sub-meter stereo images

    NASA Astrophysics Data System (ADS)

    Belart, Joaquín M. C.; Berthier, Etienne; Magnússon, Eyjólfur; Anderson, Leif S.; Pálsson, Finnur; Thorsteinsson, Thorsteinn; Howat, Ian M.; Aðalgeirsdóttir, Guðfinna; Jóhannesson, Tómas; Jarosch, Alexander H.

    2017-06-01

    Sub-meter resolution, stereoscopic satellite images allow for the generation of accurate and high-resolution digital elevation models (DEMs) over glaciers and ice caps. Here, repeated stereo images of Drangajökull ice cap (NW Iceland) from Pléiades and WorldView2 (WV2) are combined with in situ estimates of snow density and densification of firn and fresh snow to provide the first estimates of the glacier-wide geodetic winter mass balance obtained from satellite imagery. Statistics in snow- and ice-free areas reveal similar vertical relative accuracy (< 0.5 m) with and without ground control points (GCPs), demonstrating the capability for measuring seasonal snow accumulation. The calculated winter (14 October 2014 to 22 May 2015) mass balance of Drangajökull was 3.33 ± 0.23 m w.e. (meter water equivalent), with ∼ 60 % of the accumulation occurring by February, which is in good agreement with nearby ground observations. On average, the repeated DEMs yield 22 % less elevation change than the length of eight winter snow cores due to (1) the time difference between in situ and satellite observations, (2) firn densification and (3) elevation changes due to ice dynamics. The contributions of these three factors were of similar magnitude. This study demonstrates that seasonal geodetic mass balance can, in many areas, be estimated from sub-meter resolution satellite stereo images.

  7. Acoustic Transients of the Marginal Sea Ice Zone: A Provisional Catalog

    DTIC Science & Technology

    1989-08-01

    Arctic marine mammals is approximately 20 million individuals. Most of these inhabit the marginal sea ice zone (MIZ), but some species, such as ringed ...Food: molluscs, worms, sea urchins, Arctic cod, occasionally other marine mammals, e.g., ringed and bearded seals, narwhals. Dive: to 80 m...called for. TRANSIENT DESCRIPTION Recordings unavailable DATA SOURCE SERIAL _____ 21 SUPPORTING DATA SOURCE IRIS Ringed Seal, Phoca hispida Circumpolar

  8. Greenland ice sheet retreat since the Little Ice Age

    NASA Astrophysics Data System (ADS)

    Beitch, Marci J.

    Late 20th century and 21st century satellite imagery of the perimeter of the Greenland Ice Sheet (GrIS) provide high resolution observations of the ice sheet margins. Examining changes in ice margin positions over time yield measurements of GrIS area change and rates of margin retreat. However, longer records of ice sheet margin change are needed to establish more accurate predictions of the ice sheet's future response to global conditions. In this study, the trimzone, the area of deglaciated terrain along the ice sheet edge that lacks mature vegetation cover, is used as a marker of the maximum extent of the ice from its most recent major advance during the Little Ice Age. We compile recently acquired Landsat ETM+ scenes covering the perimeter of the GrIS on which we map area loss on land-, lake-, and marine-terminating margins. We measure an area loss of 13,327 +/- 830 km2, which corresponds to 0.8% shrinkage of the ice sheet. This equates to an averaged horizontal retreat of 363 +/- 69 m across the entire GrIS margin. Mapping the areas exposed since the Little Ice Age maximum, circa 1900 C.E., yields a century-scale rate of change. On average the ice sheet lost an area of 120 +/- 16 km 2/yr, or retreated at a rate of 3.3 +/- 0.7 m/yr since the LIA maximum.

  9. Various remote sensing approaches to understanding roughness in the marginal ice zone

    NASA Astrophysics Data System (ADS)

    Gupta, Mukesh

    Multi-platform based measurement approaches to understanding complex marginal ice zone (MIZ) are suggested in this paper. Physical roughness measurements using ship- and helicopter-based laser systems combined with ship-based active microwave backscattering (C-band polarimetric coherences) and dual-polarized passive microwave emission (polarization ratio, PR and spectral gradient ratios, GR at 37 and 89 GHz) are presented to study diverse sea ice types found in the MIZ. Autocorrelation functions are investigated for different sea ice roughness types. Small-scale roughness classes were discriminated using data from a ship-based laser profiler. The polarimetric coherence parameter ρHHVH , is not found to exhibit any observable sensitivity to the surface roughness for all incidence angles. Rubble-ridges, pancake ice, snow-covered frost flowers, and dense frost flowers exhibit separable signatures using GR-H and GR-V at >70° incidence angles. This paper diagnosed changes in sea ice roughness on a spatial scale of ∼0.1-4000 m and on a temporal scale of ∼1-240 days (ice freeze-up to summer melt). The coupling of MIZ wave roughness and aerodynamic roughness in conjunction with microwave emission and backscattering are future avenues of research. Additionally, the integration of various datasets into thermodynamic evolution model of sea ice will open pathways to successful development of inversion models of MIZ behavior.

  10. Recent sediment transport and deposition in the Cap-Ferret Canyon, South-East margin of Bay of Biscay

    NASA Astrophysics Data System (ADS)

    Schmidt, Sabine; Howa, Hélène; Diallo, Amy; Martín, Jacobo; Cremer, Michel; Duros, Pauline; Fontanier, Christophe; Deflandre, Bruno; Metzger, Edouard; Mulder, Thierry

    2014-06-01

    The Cap-Ferret Canyon (CFC), a major morphologic feature of the eastern margin of the Bay of Biscay, occupies a deep structural depression that opens about 60 km southwest of the Gironde Estuary. Detailed depth profiles of the particle-reactive radionuclides 234Th and 210Pb in interface sediments were used to characterise the present sedimentation (bioturbation, sediment mass accumulation, and focusing) in the CFC region. Two bathymetric transects were sampled along the CFC axis and the southern adjacent margin. Particle fluxes were recorded from the nearby Landes Plateau by means of sediment traps in 2006 and 2007. This dataset provides a new and comprehensive view of particulate matter transfer in the Cap-Ferret Canyon region, through a direct comparison of the canyon with the adjacent southern margin. Radionuclide profiles (234Th and 210Pb) and mass fluxes demonstrate that significant particle dynamics occur on the SE Aquitanian margin in comparison with nearby margins. The results also suggest show three distinct areas in terms of sedimentary activity. In the upper canyon (<500 m), there is little net sediment accumulation, suggesting a by-pass area. Sediment focusing is apparent at the middle canyon (500-1500 m), that therefore acts as a depocenter for particles from the shelf and the upper canyon. The lower canyon (>2000 m) can be considered inactive at annual or decadal scales. In contrast with the slow and continuous accumulation of relatively fresh material that characterises the middle canyon, the lower canyon receives pulses of sediment via gravity flows on longer time scales. At decadal scale, the CFC can be considered as a relatively quiescent canyon. The disconnection of the CFC from major sources of sediment delivery seems to limit its efficiency in particle transfer from coastal areas to the adjacent ocean basin.

  11. Determination of the Nonlethal Margin Inside the Visible 'Ice-Ball' During Percutaneous Cryoablation of Renal Tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Georgiades, Christos, E-mail: g_christos@hotmail.com; Rodriguez, Ronald, E-mail: rrodrig@jhmi.edu; Azene, Ezana, E-mail: eazene1@jhmi.edu

    2013-06-15

    Objective. The study was designed to determine the distance between the visible 'ice-ball' and the lethal temperature isotherm for normal renal tissue during cryoablation. Methods. The Animal Care Committee approved the study. Nine adult swine were used: three to determine the optimum tissue stain and six to test the hypotheses. They were anesthetized and the left renal artery was catheterized under fluoroscopy. Under MR guidance, the kidney was ablated and (at end of a complete ablation) the nonfrozen renal tissue (surrounding the 'ice-ball') was stained via renal artery catheter. Kidneys were explanted and sent for slide preparation and examination. Frommore » each slide, we measured the maximum, minimum, and an in-between distance from the stained to the lethal tissue boundaries (margin). We examined each slide for evidence of 'heat pump' effect. Results. A total of 126 measurements of the margin (visible 'ice-ball'-lethal margin) were made. These measurements were obtained from 29 slides prepared from the 6 test animals. Mean width was 0.75 {+-} 0.44 mm (maximum 1.15 {+-} 0.51 mm). It was found to increase adjacent to large blood vessels. No 'heat pump' effect was noted within the lethal zone. Data are limited to normal swine renal tissue. Conclusions. Considering the effects of the 'heat pump' phenomenon for normal renal tissue, the margin was measured to be 1.15 {+-} 0.51 mm. To approximate the efficacy of the 'gold standard' (partial nephrectomy, {approx}98 %), a minimum margin of 3 mm is recommended (3 Multiplication-Sign SD). Given these assumptions and extrapolating for renal cancer, which reportedly is more cryoresistant with a lethal temperature of -40 Degree-Sign C, the recommended margin is 6 mm.« less

  12. The Floe Size Distribution in the Marginal Ice Zone of the Beaufort and Chukchi Seas

    NASA Astrophysics Data System (ADS)

    Schweiger, A. J. B.; Stern, H. L., III; Stark, M.; Zhang, J.; Steele, M.; Hwang, P. B.

    2014-12-01

    Several key processes in the Marginal Ice Zone (MIZ) of the Arctic Ocean are related to the size of the ice floes, whose diameters range from meters to tens of kilometers. The floe size distribution (FSD) influences the mechanical properties of the ice cover, air-sea momentum and heat transfer, lateral melting, and light penetration. However, no existing sea-ice/ocean models currently simulate the FSD in the MIZ. Model development depends on observations of the FSD for parameterization, calibration, and validation. To support the development and implementation of the FSD in the Marginal Ice Zone Modeling and Assimilation System (MIZMAS), we have analyzed the FSD in the Beaufort and Chukchi seas using multiple sources of satellite imagery: NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua satellites (250 m pixel size), the USGS Landsat 8 satellite (80 m pixel size), the Canadian Space Agency's synthetic aperture radar (SAR) on RADARSAT (50 meter pixel size), and declassified National Technical Means imagery from the Global Fiducials Library (GFL) of the USGS (1 m pixel size). The procedure for identifying ice floes in the imagery begins with manually delineating cloud-free regions (if necessary). A threshold is then chosen to separate ice from water. Morphological operations and other semi-automated techniques are used to identify individual floes, whose properties are then easily calculated. We use the mean caliper diameter as the measure of floe size. The FSD is adequately described by a power-law in which the exponent characterizes the relative number of large and small floes. Changes in the exponent over time and space reflect changes in physical processes in the MIZ, such as sea-ice deformation, fracturing, and melting. We report results of FSD analysis for the spring and summer of 2013 and 2014, and show how the FSD will be incorporated into the MIZMAS model.

  13. In situ observations of Arctic cloud properties across the Beaufort Sea marginal ice zone

    NASA Astrophysics Data System (ADS)

    Corr, C.; Moore, R.; Winstead, E.; Thornhill, K. L., II; Crosbie, E.; Ziemba, L. D.; Beyersdorf, A. J.; Chen, G.; Martin, R.; Shook, M.; Corbett, J.; Smith, W. L., Jr.; Anderson, B. E.

    2016-12-01

    Clouds play an important role in Arctic climate. This is particularly true over the Arctic Ocean where feedbacks between clouds and sea-ice impact the surface radiation budget through modifications of sea-ice extent, ice thickness, cloud base height, and cloud cover. This work summarizes measurements of Arctic cloud properties made aboard the NASA C-130 aircraft over the Beaufort Sea during ARISE (Arctic Radiation - IceBridge Sea&Ice Experiment) in September 2014. The influence of surface-type on cloud properties is also investigated. Specifically, liquid water content (LWC), droplet concentrations, and droplet size distributions are compared for clouds sampled over three distinct regimes in the Beaufort Sea: 1) open water, 2) the marginal ice zone, and 3) sea-ice. Regardless of surface type, nearly all clouds intercepted during ARISE were liquid-phase clouds. However, differences in droplet size distributions and concentrations were evident for the surface types; clouds over the MIZ and sea-ice generally had fewer and larger droplets compared to those over open water. The potential implication these results have for understanding cloud-surface albedo climate feedbacks in Arctic are discussed.

  14. Subsea ice-bearing permafrost on the U.S. Beaufort Margin: 2. Borehole constraints

    USGS Publications Warehouse

    Ruppel, Carolyn D.; Herman, Bruce M.; Brothers, Laura L.; Hart, Patrick E.

    2016-01-01

    Borehole logging data from legacy wells directly constrain the contemporary distribution of subsea permafrost in the sedimentary section at discrete locations on the U.S. Beaufort Margin and complement recent regional analyses of exploration seismic data to delineate the permafrost's offshore extent. Most usable borehole data were acquired on a ∼500 km stretch of the margin and within 30 km of the contemporary coastline from north of Lake Teshekpuk to nearly the U.S.-Canada border. Relying primarily on deep resistivity logs that should be largely unaffected by drilling fluids and hole conditions, the analysis reveals the persistence of several hundred vertical meters of ice-bonded permafrost in nearshore wells near Prudhoe Bay and Foggy Island Bay, with less permafrost detected to the east and west. Permafrost is inferred beneath many barrier islands and in some nearshore and lagoonal (back-barrier) wells. The analysis of borehole logs confirms the offshore pattern of ice-bearing subsea permafrost distribution determined based on regional seismic analyses and reveals that ice content generally diminishes with distance from the coastline. Lacking better well distribution, it is not possible to determine the absolute seaward extent of ice-bearing permafrost, nor the distribution of permafrost beneath the present-day continental shelf at the end of the Pleistocene. However, the recovery of gas hydrate from an outer shelf well (Belcher) and previous delineation of a log signature possibly indicating gas hydrate in an inner shelf well (Hammerhead 2) imply that permafrost may once have extended across much of the shelf offshore Camden Bay.

  15. Geochronological (OSL) and geomorphological investigations at the presumed Frankfurt ice marginal position in northeast Germany

    NASA Astrophysics Data System (ADS)

    Hardt, Jacob; Lüthgens, Christopher; Hebenstreit, Robert; Böse, Margot

    2016-12-01

    The Weichselian Frankfurt ice marginal position in northeast Germany has been critically discussed in the past owing to weak morphological evidence and a lack of clear sedimentological records. This study aims to contribute to this discussion with new geochronological and geomorphological results. Apart from very few cosmogenic exposure ages, the time frame is to date still based on long distance correlation with radiocarbon chronologies. We selected a study site in a key position regarding the classic location of the Frankfurt ice marginal position and the recently described arcuate ridge structures on the Barnim plateau. For the first time we present Optically Stimulated Luminescence (OSL) ages of quartz from glaciofluvial deposits for this Weichselian phase. Our results indicate an advance of the Scandinavian Ice Sheet (SIS) at around 34.1 ± 4.6 ka. This is in agreement with OSL ages from sandur deposits at the Brandenburg ice marginal position located farther south and could also be correlated with the Klintholm advance in Denmark. The subsequent meltdown phase lasted until around 26.3 ± 3.7 ka. During the meltdown phase a minor oscillation of the SIS caused the formation of the recently described arcuate ridges on the Barnim till plain. Recalculated surface exposure ages of glacigenic boulders with an updated global production rate indicate a landscape stabilization phase at around 22.7 ± 1.6 ka, which is in agreement with our ages. A phase of strong aeolian activity has been dated with OSL to 1 ± 0.1 ka; this may have been triggered by human activities that are documented in this region for the medieval period.

  16. Monitoring and modeling ice-rock avalanches from ice-capped volcanoes: A case study of frequent large avalanches on Iliamna Volcano, Alaska

    USGS Publications Warehouse

    Huggel, C.; Caplan-Auerbach, J.; Waythomas, C.F.; Wessels, R.L.

    2007-01-01

    Iliamna is an andesitic stratovolcano of the Aleutian arc with regular gas and steam emissions and mantled by several large glaciers. Iliamna Volcano exhibits an unusual combination of frequent and large ice-rock avalanches in the order of 1 ?? 106??m3 to 3 ?? 107??m3 with recent return periods of 2-4??years. We have reconstructed an avalanche event record for the past 45??years that indicates Iliamna avalanches occur at higher frequency at a given magnitude than other mass failures in volcanic and alpine environments. Iliamna Volcano is thus an ideal site to study such mass failures and its relation to volcanic activity. In this study, we present different methods that fit into a concept of (1) long-term monitoring, (2) early warning, and (3) event documentation and analysis of ice-rock avalanches on ice-capped active volcanoes. Long-term monitoring methods include seismic signal analysis, and space-and airborne observations. Landsat and ASTER satellite data was used to study the extent of hydrothermally altered rocks and surface thermal anomalies at the summit region of Iliamna. Subpixel heat source calculation for the summit regions where avalanches initiate yielded temperatures of 307 to 613??K assuming heat source areas of 1000 to 25??m2, respectively, indicating strong convective heat flux processes. Such heat flow causes ice melting conditions and is thus likely to reduce the strength at the base of the glacier. We furthermore demonstrate typical seismic records of Iliamna avalanches with rarely observed precursory signals up to two hours prior to failure, and show how such signals could be used for a multi-stage avalanche warning system in the future. For event analysis and documentation, space- and airborne observations and seismic records in combination with SRTM and ASTER derived terrain data allowed us to reconstruct avalanche dynamics and to identify remarkably similar failure and propagation mechanisms of Iliamna avalanches for the past 45??years

  17. Simulating the roles of crevasse routing of surface water and basal friction on the surge evolution of Basin 3, Austfonna ice cap

    NASA Astrophysics Data System (ADS)

    Gong, Yongmei; Zwinger, Thomas; Åström, Jan; Altena, Bas; Schellenberger, Thomas; Gladstone, Rupert; Moore, John C.

    2018-05-01

    The marine-terminating outlet in Basin 3, Austfonna ice cap, has been accelerating since the mid-1990s. Stepwise multi-annual acceleration associated with seasonal summer speed-up events was observed before the outlet entered the basin-wide surge in autumn 2012. We used multiple numerical models to explore hydrologic activation mechanisms for the surge behaviour. A continuum ice dynamic model was used to invert basal friction coefficient distributions using the control method and observed surface velocity data between April 2012 and July 2014. This has provided input to a discrete element model capable of simulating individual crevasses, with the aim of finding locations where meltwater entered the glacier during the summer and reached the bed. The possible flow paths of surface meltwater reaching the glacier bed as well as those of meltwater produced at the bed were calculated according to the gradient of the hydraulic potential. The inverted friction coefficients show the unplugging of the stagnant ice front and expansion of low-friction regions before the surge reached its peak velocity in January 2013. Crevasse distribution reflects the basal friction pattern to a high degree. The meltwater reaches the bed through the crevasses located above the margins of the subglacial valley and the basal melt that is generated mainly by frictional heating flows either to the fast-flowing units or potentially accumulates in an overdeepened region. Based on these results, the mechanisms facilitated by basal meltwater production, crevasse opening and the routing of meltwater to the bed are discussed for the surge in Basin 3.

  18. Multi-frequency SAR, SSM/I and AVHRR derived geophysical information of the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Shuchman, R. A.; Onstott, R. G.; Wackerman, C. C.; Russel, C. A.; Sutherland, L. L.; Johannessen, O. M.; Johannessen, J. A.; Sandven, S.; Gloerson, P.

    1991-01-01

    A description is given of the fusion of synthetic aperture radar (SAR), special sensor microwave imager (SSM/I), and NOAA Advanced Very High Resolution Radiometer (AVHRR) data to study arctic processes. These data were collected during the SIZEX/CEAREX experiments that occurred in the Greenland Sea in March of 1989. Detailed comparisons between the SAR, AVHRR, and SSM/I indicated: (1) The ice edge position was in agreement to within 25 km, (2) The SSM/I SAR total ice concentration compared favorably, however, the SSM/I significantly underpredicted the multiyear fraction, (3) Combining high resolution SAR with SSM/I can potentially map open water and new ice features in the marginal ice zone (MIZ) which cannot be mapped by the single sensors, and (4) The combination of all three sensors provides accurate ice information as well as sea surface temperature and wind speeds.

  19. Exploring changes in vertical ice extent along the margin of the East Antarctic Ice Sheet in western Dronning Maud Land - initial results of the MAGIC-DML collaboration

    NASA Astrophysics Data System (ADS)

    Lifton, N. A.; Newall, J. C.; Fredin, O.; Glasser, N. F.; Fabel, D.; Rogozhina, I.; Bernales, J.; Prange, M.; Sams, S.; Eisen, O.; Hättestrand, C.; Harbor, J.; Stroeven, A. P.

    2017-12-01

    Numerical ice sheet models constrained by theory and refined by comparisons with observational data are a central component of work to address the interactions between the cryosphere and changing climate, at a wide range of scales. Such models are tested and refined by comparing model predictions of past ice geometries with field-based reconstructions from geological, geomorphological, and ice core data. However, on the East Antarctic Ice sheet, there are few empirical data with which to reconstruct changes in ice sheet geometry in the Dronning Maud Land (DML) region. In addition, there is poor control on the regional climate history of the ice sheet margin, because ice core locations, where detailed reconstructions of climate history exist, are located on high inland domes. This leaves numerical models of regional glaciation history in this near-coastal area largely unconstrained. MAGIC-DML is an ongoing Swedish-US-Norwegian-German-UK collaboration with a focus on improving ice sheet models by combining advances in numerical modeling with filling critical data gaps that exist in our knowledge of the timing and pattern of ice surface changes on the western Dronning Maud Land margin. A combination of geomorphological mapping using remote sensing data, field investigations, cosmogenic nuclide surface exposure dating, and numerical ice-sheet modeling are being used in an iterative manner to produce a comprehensive reconstruction of the glacial history of western Dronning Maud Land. We will present an overview of the project, as well as field observations and preliminary in situ cosmogenic nuclide measurements from the 2016/17 expedition.

  20. Seasonal evolution of the Arctic marginal ice zone and its power-law obeying floe size distribution

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Stern, H. L., III; Schweiger, A. J. B.; Steele, M.; Hwang, P. B.

    2017-12-01

    A thickness, floe size, and enthalpy distribution (TFED) sea ice model, implemented numerically into the Pan-arctic Ice-Ocean Modeling and Assimilation System (PIOMAS), is used to investigate the seasonal evolution of the Arctic marginal ice zone (MIZ) and its floe size distribution. The TFED sea ice model, by coupling the Zhang et al. [2015] sea ice floe size distribution (FSD) theory with the Thorndike et al. [1975] ice thickness distribution (ITD) theory, simulates 12-category FSD and ITD explicitly and jointly. A range of ice thickness and floe size observations were used for model calibration and validation. The model creates FSDs that generally obey a power law or upper truncated power law, as observed by satellites and aerial surveys. In this study, we will examine the role of ice fragmentation and lateral melting in altering FSDs in the Arctic MIZ. We will also investigate how changes in FSD impact the seasonal evolution of the MIZ by modifying the thermodynamic processes.

  1. Geodetic glacier mass balancing on ice caps - inseparably connected to firn modelling?

    NASA Astrophysics Data System (ADS)

    Saß, Björn L.; Sauter, Tobias; Seehaus, Thorsten; Braun, Matthias H.

    2017-04-01

    Observed melting of glaciers and ice caps in the polar regions contribute to the ongoing global sea level rise (SLR). A rising sea level and its consequences are one of the major challenges for coastal societies in the next decades to centuries. Gaining knowledge about the main drivers of SLR and bringing it together is one recent key-challenge for environmental science. The high arctic Svalbard archipelago faced a strong climatic change in the last decades, associated with a change in the cryosphere. Vestfonna, a major Arctic ice cap in the north east of Svalbard, harbors land and marine terminating glaciers, which expose a variability of behavior. We use high resolution remote sensing data from space-borne radar (TanDEM-X, TerraSAR-X, Sentinel-1a), acquired between 2009 and 2015, to estimate glacier velocity and high accurate surface elevation changes. For DEM registration we use space-borne laser altimetry (ICESat) and an existing in-situ data archive (IPY Kinnvika). In order to separate individual glacier basin changes for a detailed mass balance study and for further SLR contribution estimates, we use glacier outlines from the Global Land Ice Measurements from Space (GLIMS) project. Remaining challenges of space-borne observations are the reduction of measurement uncertainties, in the case of Synthetic Aperture Radar most notably signal penetration into the glacier surface. Furthermore, in order to convert volume to mass change one has to use the density of the changed mass (conversion factor) and one has to account for the mass conservation processes in the firn package (firn compaction). Both, the conversion factor and the firn compaction are not (yet) measurable for extensive ice bodies. They have to be modelled by coupling point measurements and regional gridded climate data. Results indicate a slight interior thickening contrasted with wide spread thinning in the ablation zone of the marine terminating outlets. While one glacier system draining to the

  2. Changes of Arctic Marine Glaciers and Ice Caps from CryoSat Swath Altimetry

    NASA Astrophysics Data System (ADS)

    Tepes, P.; Gourmelen, N.; Weissgerber, F.; Escorihuela, M. J.; Wuite, J.; Nagler, T.; Foresta, L.; Brockley, D.; Baker, S.; Roca, M.; Shepherd, A.; Plummer, S.

    2017-12-01

    Glaciers and ice caps (GICs) are major contributors to the current budget of global mean sea level change. Ice losses from GICs are expected to increase over the next century and beyond (Gardner et al., 2011), particularly in the Arctic where mean annual surface temperatures have recently been increasing twice as fast as the global average (Screen and Simmonds, 2010). Investigating cryospheric changes over GICs from space-based observations has proven to be challenging due in large part to the limited spatial and temporal resolution of present day observation techniques compared to the relatively small size and the steep and complex terrain that often define GICs. As a result, not much is known about modern changes in ice mass in most of these smaller glaciated regions of the Arctic (Moholdt et al., 2012; Carr et al., 2014). Radar altimetry is well suited to monitoring elevation changes over land ice due to its all-weather year-round capability of observing ice surfaces. Since 2010, the Synthetic Interferometric Radar Altimeter (SIRAL) on board the European Space Agency (ESA) radar altimetry CryoSat (CS) mission has been collecting ice elevation measurements over GICs. Data from the CS-SARIn mode have been used to infer high resolution elevation and elevation change rates using "swath processing" (Hawley et al., 2009; Gray et al., 2013; Christie et al., 2016; Foresta et al., 2016; Smith et al., 2016). Together with a denser ground track interspacing of the CS mission, swath processing provides measurements at unprecedented spatial coverage and resolution, enabling the study of key processes that underlie current changes of GICs in the Arctic. In this study, we use CS swath observations to identify patterns of change of marine versus land-terminating glaciers across the Arctic. We generate maps of ice elevation change rates and present estimates of volumetric changes for GICs outside of Greenland. We then compare marine versus land terminating glaciers in terms of

  3. Climate Changes Documented in Ice Core Records from Third Pole Glaciers, with Emphasis on the Guliya Ice Cap in the Western Kunlun Mountains over the Last 100 Years

    NASA Astrophysics Data System (ADS)

    Thompson, L. G.; Yao, T.; Beaudon, E.; Mosley-Thompson, E.; Davis, M. E.; Kenny, D. V.; Lin, P. N.

    2016-12-01

    The Third Pole (TP) is a rapidly warming region containing 100,000 km2 of ice cover that collectively holds one of Earth's largest stores of freshwater that feeds Asia's largest rivers and helps sustain 1.5 billion people. Information on the accelerating warming in the region, its impact on the glaciers and subsequently on future water resources is urgently needed to guide mitigation and adaptation policies. Ice core histories collected over the last three decades across the TP demonstrate its climatic complexity and diversity. Here we present preliminary results from the flagship project of the Third Pole Environment Program, the 2015 Sino-American cooperative ice core drilling of the Guliya ice cap in the Kunlun Mountains in the western TP near the northern limit of the region influenced by the southwest monsoon. Three ice cores, each 51 meters in length, were recovered from the summit ( 6700 masl) while two deeper cores, one to bedrock ( 310 meters), were recovered from the plateau ( 6200 masl). Across the ice cap the net balance (accumulation) has increased annually by 2.3 cm of water equivalent from 1963-1992 to 1992-2015, and average oxygen isotopic ratios (δ18O) have enriched by 2‰. This contrasts with the recent ablation on the Naimona'nyi glacier located 540 km south of Guliya in the western Himalaya. Borehole temperatures in 2015 on the Guliya plateau have warmed substantially in the upper 30 meters of the ice compared to temperatures in 1992, when the first deep-drilling of the Guliya plateau was conducted. Compared with glaciers in the northern and western TP, the Himalayan ice fields are more sensitive to both fluctuations in the South Asian Monsoon and rising temperatures in the region. We examine the climatic changes of the last century preserved in ice core records from sites throughout the TP and compare them with those reconstructed for earlier warm epochs, such as the Medieval Climate Anomaly ( 950-1250 AD), the early Holocene "Hypsithermal

  4. Variations in the Sea Ice Edge and the Marginal Ice Zone on Different Spatial Scales as Observed from Different Satellite Sensor

    NASA Technical Reports Server (NTRS)

    Markus, Thorsten; Henrichs, John

    2006-01-01

    The Marginal sea Ice Zone (MIZ) and the sea ice edge are the most dynamic areas of the sea ice cover. Knowledge of the sea ice edge location is vital for routing shipping in the polar regions. The ice edge is the location of recurrent plankton blooms, and is the habitat for a number of animals, including several which are under severe ecological threat. Polar lows are known to preferentially form along the sea ice edge because of induced atmospheric baroclinicity, and the ice edge is also the location of both vertical and horizontal ocean currents driven by thermal and salinity gradients. Finally, sea ice is both a driver and indicator of climate change and monitoring the position of the ice edge accurately over long time periods enables assessment of the impact of global and regional warming near the poles. Several sensors are currently in orbit that can monitor the sea ice edge. These sensors, though, have different spatial resolutions, different limitations, and different repeat frequencies. Satellite passive microwave sensors can monitor the ice edge on a daily or even twice-daily basis, albeit with low spatial resolution - 25 km for the Special Sensor Microwave Imager (SSM/I) or 12.5 km for the Advanced Microwave Scanning Radiometer (AMSR-E). Although special methods exist that allow the detection of the sea ice edge at a quarter of that nominal resolution (PSSM). Visible and infrared data from the Advanced Very High Resolution Radiometer (AVHRR) and from the Moderate Resolution Imaging Spectroradiometer (MODIS) provide daily coverage at 1 km and 250 m, respectively, but the surface observations me limited to cloud-free periods. The Landsat 7 Enhanced Thematic Mapper (ETM+) has a resolution of 15 to 30 m but is limited to cloud-free periods as well, and does not provide daily coverage. Imagery from Synthetic Aperture Radar (SAR) instruments has resolutions of tens of meters to 100 m, and can be used to distinguish open water and sea ice on the basis of surface

  5. Sunlight penetration through the Martian polar caps: Effects on the thermal and frost budgets

    NASA Technical Reports Server (NTRS)

    Lindner, Bernhard Lee

    1992-01-01

    An energy balance model of the seasonal polar caps on Mars is modified to include penetration of solar radiation into and through the ice. Penetration of solar radiation has no effect on subsurface temperature or total frost sublimation if seasonal ice overlies a dust surface. An effect is noted for seasonal ice which overlies the residual polar caps. For the case of an exposed water-ice residual polar cap, the temperature at depth is calculated to be up to several degrees warmer and the calculated lifetime of seasonal CO2 frost is slightly lower when penetration of sunlight is properly treated in the model. For the case of a residual polar cap which is perennially covered by CO2 frost, the calculated lifetime of seasonal CO2 frost is very slightly increased as a result of sunlight penetration through the ice. Hence, penetration of sunlight into the ice helps to stabilize the observed dichotomy in the residual polar caps on Mars, although it is a small effect.

  6. Sunlight penetration through the Martian polar caps - Effects on the thermal and frost budgets

    NASA Technical Reports Server (NTRS)

    Lindner, Bernhard L.

    1992-01-01

    An energy balance model of the seasonal polar caps on Mars is modified to include penetration of solar radiation into and through the ice. Penetration of solar radiation has no effect on subsurface temperature or total frost sublimation if seasonal ice overlies a dust surface. An effect is noted for seasonal ice which overlies the residual polar caps. For the case of an exposed water-ice residual polar cap, the temperature at depth is calculated to be up to several degrees warmer, and the calculated lifetime of seasonal CO2 frost is slightly lower when penetration of sunlight is properly treated in the model. For the case of a residual polar cap which is perennially covered by CO2 frost, the calculated lifetime of seasonal CO2 frost is very slightly increased as a result of sunlight penetration through the ice. Hence, penetration of sunlight into the ice helps to stabilize the observed dichotomy in the residual polar caps on Mars, although it is a small effect.

  7. The impacts of intense moisture transport on the deep and marginal sea-ice zones of the Arctic during winter

    NASA Astrophysics Data System (ADS)

    Woods, Cian; Caballero, Rodrigo

    2015-04-01

    warming at the surface. There are an average of 14 such events that enter the polar cap each winter, driving about 50% of the seasonal variation in surface temperature over the deep Arctic. We show that, over the last 30 years, the marginal ice-zones in the Barents, Labrador and Chukchi Seas have experienced roughly a doubling in the frequency of these intense moisture intrusion events during winter. Interestingly, these are the regions that have experienced the most rapid wintertime ice loss in the Arctic, raising the question: to what extent has the recent Arctic warming been driven by local vs. interannual/remote processes?

  8. Differences in Bacterial Diversity and Communities Between Glacial Snow and Glacial Soil on the Chongce Ice Cap, West Kunlun Mountains.

    PubMed

    Yang, Guang Li; Hou, Shu Gui; Le Baoge, Ri; Li, Zhi Guo; Xu, Hao; Liu, Ya Ping; Du, Wen Tao; Liu, Yong Qin

    2016-11-04

    A detailed understanding of microbial ecology in different supraglacial habitats is important due to the unprecedented speed of glacier retreat. Differences in bacterial diversity and community structure between glacial snow and glacial soil on the Chongce Ice Cap were assessed using 454 pyrosequencing. Based on rarefaction curves, Chao1, ACE, and Shannon indices, we found that bacterial diversity in glacial snow was lower than that in glacial soil. Principal coordinate analysis (PCoA) and heatmap analysis indicated that there were major differences in bacterial communities between glacial snow and glacial soil. Most bacteria were different between the two habitats; however, there were some common bacteria shared between glacial snow and glacial soil. Some rare or functional bacterial resources were also present in the Chongce Ice Cap. These findings provide a preliminary understanding of the shifts in bacterial diversity and communities from glacial snow to glacial soil after the melting and inflow of glacial snow into glacial soil.

  9. Basal Freeze-on: An Active Component of Hydrology from the Ice Divide to the Margin

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Tinto, K. J.; Abdi, A.; Creyts, T. T.; Wolovick, M.; Das, I.; Ferraccioli, F.; Csatho, B. M.

    2012-12-01

    Subglacial hydrology is considered a key control of ice sheet dynamics. Here we show that basal freeze-on is a process that can terminate basal hydrologic networks both in the interior of East Antarctica and at the margins of the Greenland Ice Sheet. Basal freeze-on modifies the ice thickness, ice structure, and ice rheology and therefore must be considered in developing accurate understanding of how hydrology interacts with ice dynamics. In East Antarctica, the freeze-on process follows well-defined hydrologic networks within Gamburtsev Mountain valleys. The steep mountain topography strongly controls the routing of the subglacial water. Ice surface slope drives the water up the mountain valleys and freeze-on occurs at the valley heads. Freeze-on ice is characterized by distinct basal radar reflectors that emerge from the hydrologic network. Evidence that these spatially coherent reflectors demark accreted ice is the upward deflection of the overlying internal layers accompanied by thickening of base of the ice sheet. Individual accretion bodies can be 25 km wide across flow, 100 km along flow with average thicknesses of ~500m although the maximum thickness is 1100m. Regional accumulation rates near the accretion sites average 4cm/yr with low ice velocity (1.5 m/yr). The volume of the ice enclosed by the accretion ice reflectors is 45-1064 km3. The accretion occurs beneath 2200-3000m thick ice and has been persistent for at least 50,000yr. Other basal reflectors in northern Greenland appear in radar from NASA's Icebridge mission and CRESIS. To identify freeze-on ice, we use specific criteria: reflectors must originate from the bed, must be spatially continuous from line to line and the meteoric stratigraphy is deflected upward. The absence of coincident gravity anomalies indicates these reflectors define distinct packages of ice rather than frozen sediment or off-nadir subglacial topography. In the Petermann Glacier Catchment, one of the largest in northern

  10. Using Ice Predictions to Guide Submarines

    DTIC Science & Technology

    2016-01-01

    the Arctic Cap Nowcast/ Forecast System (ACNFS) in September 2013. The ACNFS consists of a coupled ice -ocean model that assimilates available real...of the ice cover. The age of the sea ice serves as an indicator of its physical properties including surface roughness, melt pond coverage, and...the Arctic Cap Nowcast/Forecast System (ACNFS). Ice thickness is in meters for 11 September 2015. Thickness ranges from zero to five meters as shown

  11. Marginal Ice Zone Bibliography.

    DTIC Science & Technology

    1985-06-01

    A Voyage of Discovery. George Deacon 70th An-niversary Volume, (M. Angel, ed.), Pergamon Press, Oxford, p.15-41. Coachman, L.K., C.A. Barnes, 1961...some polar contrasts. In: S "" RUsium on Antarctic Ice and Water Masses, ( George Deacon, ed.), Sci- 72 Lebedev, A.A., 1968: Zone of possible icing of...Atlantic and Western Europe. British Meteorological Office. Geophysical Memoirs, 4(41). Brost , R.A., J.C. Wyngaard, 1978: A model study of the stably

  12. Validating Cryosat-2 elevation estimates with airborne laser scanner data for the Greenland ice sheet, Austfonna and Devon ice caps

    NASA Astrophysics Data System (ADS)

    Simonsen, Sebastian B.; Sandberg Sørensen, Louise; Nilsson, Johan; Helm, Veit; Langley, Kirsty A.; Forsberg, Rene; Hvidegaard, Sine M.; Skourup, Henriette

    2015-04-01

    The ESA CryoSat-2 satellite, launched in late 2010, carries a new type of radar altimeter especially designed for monitoring changes of sea and land ice. The radar signal might penetrate into the snow pack and the depth of the radar reflecting surface depends on the ratio between the surface and the volume backscatter, which is a function of several different properties such as snow density, crystal structure and surface roughness. In case of large volume scatter, the radar waveforms become broad and the determination of the range (surface elevation) becomes more difficult. Different algorithms (retrackers) are used for the range determination, and estimated surface penetration is highly dependent on the applied retracker. As part of the ESA-CryoVEx/CryoVal-Land Ice projects, DTU Space has gathered accurate airborne laser scanner elevation measurements. Sites on the Greenland ice sheet, Austfonna and Devon ice caps, has been surveyed repeatedly, aligned with Cryosat-2 ground tracks and surface experiments. Here, we utilize elevation estimates from available Cryosat-2 retrackers (ESA level-2 retracker, DTU retracker, etc.) and validate the elevation measurements against ESA-CryoVEx campaigns. A difference between laser and radar elevations is expected due to radar penetration issues, however an inter-comparison between retrackers will shed light on individual performances and biases. Additionally, the geo-location of the radar return will also be a determining factor for the precision. Ultimately, the use of multiple retrackers can provide information about subsurface conditions and utilize more of the waveform information than presently used in radar altimetry.

  13. Glacio-isostasy and Glacial Ice Load at Law Dome, Wilkes Land, East Antarctica

    NASA Astrophysics Data System (ADS)

    Goodwin, Ian D.; Zweck, Christopher

    2000-05-01

    The Holocene sea-level high stand or "marine limit" in Wilkes Land, East Antarctica, reached ˜30 m above present sea level at a few dispersed sites. The most detailed marine limit data have been recorded for the Windmill Islands and Budd Coast at the margin of the Law Dome ice cap, a dome of the East Antarctic Ice Sheet (EAIS). Relative sea-level lowering of 30 m and the associated emergence of the Windmill Islands have occurred since 6900 14C (corr.) yr B.P. Numerical modeling of the Earth's rheology is used to determine the glacio-isostatic component of the observed relative sea-level lowering. Glaciological evidence suggests that most of EAIS thickening occurred around its margin, with expansion onto the continental shelf. Consequently, a regional ice history for the last glacial maximum (LGM) was applied in the glacio-isostatic modeling to test whether the observed relative sea-level lowering was primarily produced by regional ice-sheet changes. The results of the modeling indicate that the postglacial (13,000 to 8000 14C yr B.P) removal of an ice load of between 770 and 1000 m from around the margin of the Law Dome and adjacent EAIS have produced the observed relative sea-level lowering. Such an additional ice load would have been associated with a 40- to 65-km expansion of the Law Dome to near the continental shelf break, together with a few hundred meters of ice thickening on the adjoining coastal slope of the EAIS up to 2000 m elevation. Whereas the observed changes in relative sea level are shown to be strongly influenced by regional ice sheet changes, the glacio-isostatic response at the Windmill Islands results from a combination of regional and, to a lesser extent, Antarctic-wide effects. The correspondence between the Holocene relative sea-level lowering interpreted at the margin of the Law Dome and the lowering interpreted along the remainder of the Wilkes Land and Oates Land coasts (105°-160° E) suggests that a similar ice load of up to 1000 m

  14. Analysis of vanillic acid in polar ice cores as a biomass burning proxy - preliminary results from the Akademii Nauk Ice Cap in Siberia

    NASA Astrophysics Data System (ADS)

    Grieman, M. M.; Jimenez, R.; McConnell, J. R.; Fritzsche, D.; Saltzman, E. S.

    2013-12-01

    Biomass burning influences global climate change and the composition of the atmosphere. The drivers, effects, and climate feedbacks related to fire are poorly understood. Many different proxies have been used to reconstruct past fire frequency from lake sediments and polar ice cores. Reconstruction of historical trends in biomass burning is challenging because of regional variability and the qualitative nature of various proxies. Vanillic acid (4-hydroxy-3-methoxybenzoic acid) is a product of the combustion of conifer lignin that is known to occur in biomass burning aerosols. Biomass burning is likely the only significant source of vanillic acid in polar ice. In this study we describe an analytical method for quantifying vanillic acid in polar ice using HPLC with electrospray ionization and tandem mass spectrometric detection. The method has a detection limit of 100 pM and a precision of × 10% at the 100 pM level for analysis of 100 μl of ice melt water. The method was used to analyze more than 1000 discrete samples from the Akademii Nauk ice cap on Severnaya Zemlya in the high Russia Arctic (79°30'N, 97°45'E) (Fritzsche et al., 2002; Fritzsche et al., 2005; Weiler et al., 2005). The samples range in age over the past 2,000 years. The results show a mean vanillic acid concentration of 440 × 710 pM (1σ), with elevated levels during the periods from 300-600 and 1450-1550 C.E.

  15. South Polar Cap

    NASA Technical Reports Server (NTRS)

    2005-01-01

    8 December 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows landforms created by sublimation processes on the south polar residual cap of Mars. The bulk of the ice in the south polar residual cap is frozen carbon dioxide.

    Location near: 86.6oS, 342.2oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  16. Short-term sea ice forecasts with the RASM-ESRL coupled model: A testbed for improving simulations of ocean-ice-atmosphere interactions in the marginal ice zone

    NASA Astrophysics Data System (ADS)

    Solomon, A.; Cox, C. J.; Hughes, M.; Intrieri, J. M.; Persson, O. P. G.

    2015-12-01

    The dramatic decrease of Arctic sea-ice has led to a new Arctic sea-ice paradigm and to increased commercial activity in the Arctic Ocean. NOAA's mission to provide accurate and timely sea-ice forecasts, as explicitly outlined in the National Ocean Policy and the U.S. National Strategy for the Arctic Region, needs significant improvement across a range of time scales to improve safety for human activity. Unfortunately, the sea-ice evolution in the new Arctic involves the interaction of numerous physical processes in the atmosphere, ice, and ocean, some of which are not yet understood. These include atmospheric forcing of sea-ice movement through stress and stress deformation; atmospheric forcing of sea-ice melt and formation through energy fluxes; and ocean forcing of the atmosphere through new regions of seasonal heat release. Many of these interactions involve emerging complex processes that first need to be understood and then incorporated into forecast models in order to realize the goal of useful sea-ice forecasting. The underlying hypothesis for this study is that errors in simulations of "fast" atmospheric processes significantly impact the forecast of seasonal sea-ice retreat in summer and its advance in autumn in the marginal ice zone (MIZ). We therefore focus on short-term (0-20 day) ice-floe movement, the freeze-up and melt-back processes in the MIZ, and the role of storms in modulating stress and heat fluxes. This study uses a coupled ocean-atmosphere-seaice forecast model as a testbed to investigate; whether ocean-sea ice-atmosphere coupling improves forecasts on subseasonal time scales, where systematic biases develop due to inadequate parameterizations (focusing on mixed-phase clouds and surface fluxes), how increased atmospheric resolution of synoptic features improves the forecasts, and how initialization of sea ice area and thickness and snow depth impacts the skill of the forecasts. Simulations are validated with measurements at pan-Arctic land

  17. Soft-sediment deformation structures from an ice-marginal storm-tide interactive system, Permo-Carboniferous Talchir Formation, Talchir Coalbasin, India

    NASA Astrophysics Data System (ADS)

    Bhattacharya, H. N.; Bhattacharya, Biplab

    2010-01-01

    Permo-Carboniferous Talchir Formation, Talchir Coalbasin, India, records sedimentation during a phase of climatic amelioration in an ice-marginal storm-affected shelf. Evidences of subtidal processes are preserved only under thick mud drapes deposited during waning storm phases. Various soft-sediment deformation structures in some sandstone/siltstone-mudstone interbeds, like syn-sedimentary faults, deformed laminations, sand-silt flows, convolute laminations and various flame structures, suggest liquefaction and fluidization of the beds due to passage of syn-depositional seismic shocks. In the Late Paleozoic ice-marginal shelf, such earthquake tremors could be generated by crustal movements in response to glacioisostatic adjustments of the basin floor.

  18. Mapping and assessing variability in the Antarctic marginal ice zone, pack ice and coastal polynyas in two sea ice algorithms with implications on breeding success of snow petrels

    NASA Astrophysics Data System (ADS)

    Stroeve, Julienne C.; Jenouvrier, Stephanie; Campbell, G. Garrett; Barbraud, Christophe; Delord, Karine

    2016-08-01

    Sea ice variability within the marginal ice zone (MIZ) and polynyas plays an important role for phytoplankton productivity and krill abundance. Therefore, mapping their spatial extent as well as seasonal and interannual variability is essential for understanding how current and future changes in these biologically active regions may impact the Antarctic marine ecosystem. Knowledge of the distribution of MIZ, consolidated pack ice and coastal polynyas in the total Antarctic sea ice cover may also help to shed light on the factors contributing towards recent expansion of the Antarctic ice cover in some regions and contraction in others. The long-term passive microwave satellite data record provides the longest and most consistent record for assessing the proportion of the sea ice cover that is covered by each of these ice categories. However, estimates of the amount of MIZ, consolidated pack ice and polynyas depend strongly on which sea ice algorithm is used. This study uses two popular passive microwave sea ice algorithms, the NASA Team and Bootstrap, and applies the same thresholds to the sea ice concentrations to evaluate the distribution and variability in the MIZ, the consolidated pack ice and coastal polynyas. Results reveal that the seasonal cycle in the MIZ and pack ice is generally similar between both algorithms, yet the NASA Team algorithm has on average twice the MIZ and half the consolidated pack ice area as the Bootstrap algorithm. Trends also differ, with the Bootstrap algorithm suggesting statistically significant trends towards increased pack ice area and no statistically significant trends in the MIZ. The NASA Team algorithm on the other hand indicates statistically significant positive trends in the MIZ during spring. Potential coastal polynya area and amount of broken ice within the consolidated ice pack are also larger in the NASA Team algorithm. The timing of maximum polynya area may differ by as much as 5 months between algorithms. These

  19. MGS TES observations of the water vapor above the seasonal and perennial ice caps during northern spring and summer

    NASA Astrophysics Data System (ADS)

    Pankine, Alexey A.; Tamppari, Leslie K.; Smith, Michael D.

    2010-11-01

    We report on new retrievals of water vapor column abundances from the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) data. The new retrievals are from the TES nadir data taken above the 'cold' surface areas in the North polar region ( Tsurf < 220 K, including seasonal frost and permanent ice cap) during spring and summer seasons, where retrievals were not performed initially. Retrievals are possible (with some modifications to the original algorithm) over cold surfaces overlaid by sufficiently warm atmosphere. The retrieved water vapor column abundances are compared to the column abundances observed by other spacecrafts in the Northern polar region during spring and summer and good agreement is found. We detect an annulus of water vapor growing above the edge of the retreating seasonal cap during spring. The formation of the vapor annulus is consistent with the previously proposed mechanism for water cycling in the polar region, according to which vapor released by frost sublimation during spring re-condenses on the retreating seasonal CO 2 cap. The source of the vapor in the vapor annulus, according to this model, is the water frost on the surface of the CO 2 at the retreating edge of the cap and the frost on the ground that is exposed by the retreating cap. Small contribution from regolith sources is possible too, but cannot be quantified based on the TES vapor data alone. Water vapor annulus exhibits interannual variability, which we attribute to variations in the atmospheric temperature. We propose that during spring and summer the water ice sublimation is retarded by high relative humidity of the local atmosphere, and that higher atmospheric temperatures lead to higher vapor column abundances by increasing the water holding capacity of the atmosphere. Since the atmospheric temperatures are strongly influenced by the atmospheric dust content, local dust storms may be controlling the release of vapor into the polar atmosphere. Water vapor

  20. Microwave properties of sea ice in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Onstott, R. G.; Larson, R. W.

    1986-01-01

    Active microwave properties of summer sea ice were measured. Backscatter data were acquired at frequencies from 1 to 17 GHz, at angles from 0 to 70 deg from vertical, and with like and cross antenna polarizations. Results show that melt-water, snow thickness, snowpack morphology, snow surface roughness, ice surface roughness, and deformation characteristics are the fundamental scene parameters which govern the summer sea ice backscatter response. A thick, wet snow cover dominates the backscatter response and masks any ice sheet features below. However, snow and melt-water are not distributed uniformly and the stage of melt may also be quite variable. These nonuniformities related to ice type are not necessarily well understood and produce unique microwave signature characteristics.

  1. Natural hazards at the southern margin of the Central Anatolian Plateau (CAP) (southern Turkey): Tsunami evidence

    NASA Astrophysics Data System (ADS)

    Ogretmen, Nazik; Cosentino, Domenico; Gliozzi, Elsa; Cipollari, Paola; Radeff, Giuditta; Yıldırım, Cengiz

    2016-04-01

    In regions that are located in steep, orogenic plateau margins, such as the coastal area of the Central Anatolian Plateau (CAP) southern margin, natural hazard studies related to active tectonics and events that are triggered by active tectonics (e.g., earthquakes, landslides, tsunamis) are very essential in the context of preventing possible damages. This work herein, represents some evidence of the tsunami hazard along the coast between Aydıncık and Narlıkuyu, in southern Turkey. The work is based on a study on out-of-place beachrock-slab boulder acummulation in Aydıncık district, which were transported onshore by sliding process, and on out-of-place more rounded boulders that were transported by saltation process in Narlıkuyu and Yeşilovacık districts. The presence of intertidal organisms (e.g., lithophaga boring, balanids, oysters, etc.) encrusting the boulders of both localities shows that those boulders were carried onland from a marine environment. According to their dimensions and weight, in agreement with out-of-place boulders from areas surely affected by tsunamis, those out-of-place boulders here are interpreted as due to tsunami waves. The tsunamites in the Aydıncık area are located on beachrock slabs. They are platty and some of those blocks are embricated and oriented perpendicular to the shoreline (NE-SW direction). Those boulders have been interpreted as transported by sliding process, in relation with the coastal morphology and the boulder geometry, which means that to move those boulders the energy of the tsunami not necessarily should have been as high as in saltation or rolling transport processes. On the contrary, in Narlıkuyu and Yeşilovacık localities, the boulders are well-rounded and ellipsoidal shaped, suggesting that they were transported by rolling and/or saltation mode rather than by sliding. To carry onland the tsunami boulders observed in the Narlıkuyu and Yeşilovacık districts, which in the Yeşilovacık area they are

  2. Fine Ice Sheet margins topography from swath processing of CryoSat SARIn mode data

    NASA Astrophysics Data System (ADS)

    Gourmelen, N.; Escorihuela, M. J.; Shepherd, A.; Foresta, L.; Muir, A.; Briggs, K.; Hogg, A. E.; Roca, M.; Baker, S.; Drinkwater, M. R.

    2014-12-01

    Reference and repeat-observations of Glacier and Ice Sheet Margin (GISM) topography are critical to identify changes in ice thickness, provide estimates of mass gain or loss and thus quantify the contribution of the cryosphere to sea level change. The lack of such sustained observations was identified in the Integrated Global Observing Strategy (IGOS) Cryosphere Theme Report as a major shortcoming. Conventional altimetry measurements over GISMs exist, but coverage has been sparse and characterized by coarse ground resolution. Additionally, and more importantly, they proved ineffective in the presence of steep slopes, a typical feature of GISM areas. Since the majority of Antarctic and Greenland ice sheet mass loss is estimated to lie within 100 km from the coast, but only about 10% is surveyed, there is the need for more robust and dense observations of GISMs, in both time and space. The ESA Altimetry mission CryoSat aims at gaining better insight into the evolution of the Cryosphere. CryoSat's revolutionary design features a Synthetic Interferometric Radar Altimeter (SIRAL), with two antennas for interferometry. The corresponding SAR Interferometer (SARIn) mode of operation increases spatial resolution while resolving the angular origin of off-nadir echoes occurring over sloping terrain. The SARIn mode is activated over GISMs and the elevation for the Point Of Closest Approach (POCA) is a standard product of the CryoSat mission. Here we present an approach for more comprehensively exploiting the SARIn mode of CryoSat and produce an ice elevation product with enhanced spatial resolution compared to standard CryoSat-2 height products. In this so called L2-swath processing approach, the full CryoSat waveform is exploited under specific conditions of signal and surface characteristics. We will present the rationale, validation exercises and preliminary results from the Eurpean Space Agency's STSE CryoTop study over selected test regions of the margins of the Greenland

  3. Formation processes of sea ice floe size distribution in the interior pack and its relationship to the marginal ice zone off East Antarctica

    NASA Astrophysics Data System (ADS)

    Toyota, Takenobu; Kohout, Alison; Fraser, Alexander D.

    2016-09-01

    To understand the behavior of the Seasonal Ice Zone (SIZ), which is composed of sea-ice floes of various sizes, knowledge of the floe size distribution (FSD) is important. In particular, FSD in the Marginal Ice Zone (MIZ), controlled by wave-ice interaction, plays an important role in determining the retreating rates of sea-ice extent on a global scale because the cumulative perimeter of floes enhances melting. To improve the understanding of wave-ice interaction and subsequent effects on FSD in the MIZ, FSD measurements were conducted off East Antarctica during the second Sea Ice Physics and Ecosystems eXperiment (SIPEX-2) in late winter 2012. Since logistical reasons limited helicopter operations to two interior ice regions, FSD in the interior ice region was determined using a combination of heli-photos and MODIS satellite visible images. The possible effect of wave-ice interaction in the MIZ was examined by comparison with past results obtained in the same MIZ, with our analysis showing: (1) FSD in the interior ice region is basically scale invariant for both small- (<100 m) and large- (>1 km) scale regimes; (2) although fractal dimensions are quite different between these two regimes, they are both rather close to that in the MIZ; and (3) for floes <100 m in diameter, a regime shift which appeared at 20-40 m in the MIZ is absent. These results indicate that one role of wave-ice interaction is to modulate the FSD that already exists in the interior ice region, rather than directly determine it. The possibilities of floe-floe collisions and storm-induced lead formation are considered as possible formation processes of FSD in the interior pack.

  4. Characterization of Mars' seasonal caps using neutron spectroscopy

    USGS Publications Warehouse

    Prettyman, T.H.; Feldman, W.C.; Titus, T.N.

    2009-01-01

    Mars' seasonal caps are characterized during Mars years 26 and 27 (April 2002 to January 2006) using data acquired by the 2001 Mars Odyssey Neutron Spectrometer. Time-dependent maps of the column abundance of seasonal CO 2 surface ice poleward of 60?? latitude in both hemispheres are determined from spatially deconvolved, epithermal neutron counting data. Sources of systematic error are analyzed, including spatial blurring by the spectrometer's broad footprint and the seasonal variations in the abundance of noncondensable gas at high southern latitudes, which are found to be consistent with results reported by Sprague et al. (2004, 2007). Corrections for spatial blurring are found to be important during the recession, when the column abundance of seasonal CO2 ice has the largest latitude gradient. The measured distribution and inventory of seasonal CO2 ice is compared to simulations by a general circulation model (GCM) calibrated using Viking lander pressure data, cap edge functions determined by thermal emission spectroscopy, and other nuclear spectroscopy data sets. On the basis of the amount of CO2 cycled through the caps during years 26 and 27, the gross polar energy balance has not changed significantly since Viking. The distribution of seasonal CO2 ice is longitudinally asymmetric: in the north, deposition rates of CO2 ice are elevated in Acidalia, which is exposed to katabatic winds from Chasma Borealis; in the south, CO2 deposition is highest near the residual cap. During southern recession, CO 2 ice is present longer than calculated by the GCM, which has implications for the local polar energy balance. Copyright 2009 by the American Geophysical Union.

  5. A tipping point in refreezing accelerates mass loss of Greenland's glaciers and ice caps.

    PubMed

    Noël, B; van de Berg, W J; Lhermitte, S; Wouters, B; Machguth, H; Howat, I; Citterio, M; Moholdt, G; Lenaerts, J T M; van den Broeke, M R

    2017-03-31

    Melting of the Greenland ice sheet (GrIS) and its peripheral glaciers and ice caps (GICs) contributes about 43% to contemporary sea level rise. While patterns of GrIS mass loss are well studied, the spatial and temporal evolution of GICs mass loss and the acting processes have remained unclear. Here we use a novel, 1 km surface mass balance product, evaluated against in situ and remote sensing data, to identify 1997 (±5 years) as a tipping point for GICs mass balance. That year marks the onset of a rapid deterioration in the capacity of the GICs firn to refreeze meltwater. Consequently, GICs runoff increases 65% faster than meltwater production, tripling the post-1997 mass loss to 36±16 Gt -1 , or ∼14% of the Greenland total. In sharp contrast, the extensive inland firn of the GrIS retains most of its refreezing capacity for now, buffering 22% of the increased meltwater production. This underlines the very different response of the GICs and GrIS to atmospheric warming.

  6. A tipping point in refreezing accelerates mass loss of Greenland's glaciers and ice caps

    PubMed Central

    Noël, B.; van de Berg, W. J; Lhermitte, S.; Wouters, B.; Machguth, H.; Howat, I.; Citterio, M.; Moholdt, G.; Lenaerts, J. T. M.; van den Broeke, M. R.

    2017-01-01

    Melting of the Greenland ice sheet (GrIS) and its peripheral glaciers and ice caps (GICs) contributes about 43% to contemporary sea level rise. While patterns of GrIS mass loss are well studied, the spatial and temporal evolution of GICs mass loss and the acting processes have remained unclear. Here we use a novel, 1 km surface mass balance product, evaluated against in situ and remote sensing data, to identify 1997 (±5 years) as a tipping point for GICs mass balance. That year marks the onset of a rapid deterioration in the capacity of the GICs firn to refreeze meltwater. Consequently, GICs runoff increases 65% faster than meltwater production, tripling the post-1997 mass loss to 36±16 Gt−1, or ∼14% of the Greenland total. In sharp contrast, the extensive inland firn of the GrIS retains most of its refreezing capacity for now, buffering 22% of the increased meltwater production. This underlines the very different response of the GICs and GrIS to atmospheric warming. PMID:28361871

  7. A tipping point in refreezing accelerates mass loss of Greenland's glaciers and ice caps

    NASA Astrophysics Data System (ADS)

    Noël, B.; van de Berg, W. J.; Lhermitte, S.; Wouters, B.; Machguth, H.; Howat, I.; Citterio, M.; Moholdt, G.; Lenaerts, J. T. M.; van den Broeke, M. R.

    2017-03-01

    Melting of the Greenland ice sheet (GrIS) and its peripheral glaciers and ice caps (GICs) contributes about 43% to contemporary sea level rise. While patterns of GrIS mass loss are well studied, the spatial and temporal evolution of GICs mass loss and the acting processes have remained unclear. Here we use a novel, 1 km surface mass balance product, evaluated against in situ and remote sensing data, to identify 1997 (+/-5 years) as a tipping point for GICs mass balance. That year marks the onset of a rapid deterioration in the capacity of the GICs firn to refreeze meltwater. Consequently, GICs runoff increases 65% faster than meltwater production, tripling the post-1997 mass loss to 36+/-16 Gt-1, or ~14% of the Greenland total. In sharp contrast, the extensive inland firn of the GrIS retains most of its refreezing capacity for now, buffering 22% of the increased meltwater production. This underlines the very different response of the GICs and GrIS to atmospheric warming.

  8. The last forests in Greenland, and the age of the ice sheet

    NASA Astrophysics Data System (ADS)

    Funder, Svend; Schmidt, Astrid M. Z.; Dahl-Jensen, Dorthe; Steffensen, Jørgen Peder; Willerslev, Eske

    2014-05-01

    Recently ancient DNA (aDNA) studies of the basal ice in the Camp Century ice core, northern Greenland, have shown that mixed coniferous-deciduous forest grew here before the area was invaded and permanently covered by the ice sheet. The coring site is situated only 100 km from the present ice margin and more than 500 km from the ice divide, indicating that since this last inception the northern part of the ice sheet never receded more than 100 km from its present margin. Dating of the basal ice and obtaining an age for the forest and for the beginning of the ice sheet's permanency has been attempted by analyzing for optically stimulated luminescence (OSL), meteoric 10Be/36Cl cosmogenic nuclides, 234U/238U recoil. These methods all provide only minimum ages and show that the forest at Cap Century is older than 500 ka. Comparison with other Pleistocene "forest sites" in Greenland - the Kap København Formation in northernmost Greenland, the DYE-3 ice core in the south, the ODP boring 646 south of Greenland, as well as results from basal ice in the GRIP ice core - extends the minimum age to c. 1 ma. The maximum age is provided by the Kap København Formation, which must be older - or contemporaneous. The formation has recently been confirmed to date within the interval 2-2.5 ma, with a preferred age of 2.3-2.4 ma. Surprisingly, application of the molecular clock of insect COI sequences on the Camp Century aDNA now seem to push the minimum age just as far back - to 2.4 ma, suggesting that the timberline boreal forest at Kap København is contemporaneous with the mixed forest at Camp Century, 600 km to the south. From this we conclude that the northern ice sheet dome, which today contains 85% of the total ice sheet volume, has remained within 100 km of its present margin for at least 1 ma, and possibly may go back as far as 2.4 ma. The ice sheet has therefore survived both interglacials and "super interglacials" that were both warmer and longer than the present. This

  9. Selected physical, biological and biogeochemical implications of a rapidly changing Arctic Marginal Ice Zone

    NASA Astrophysics Data System (ADS)

    Barber, David G.; Hop, Haakon; Mundy, Christopher J.; Else, Brent; Dmitrenko, Igor A.; Tremblay, Jean-Eric; Ehn, Jens K.; Assmy, Philipp; Daase, Malin; Candlish, Lauren M.; Rysgaard, Søren

    2015-12-01

    The Marginal Ice Zone (MIZ) of the Arctic Ocean is changing rapidly due to a warming Arctic climate with commensurate reductions in sea ice extent and thickness. This Pan-Arctic review summarizes the main changes in the Arctic ocean-sea ice-atmosphere (OSA) interface, with implications for primary- and secondary producers in the ice and the underlying water column. Changes in the Arctic MIZ were interpreted for the period 1979-2010, based on best-fit regressions for each month. Trends of increasingly open water were statistically significant for each month, with quadratic fit for August-November, illustrating particularly strong seasonal feedbacks in sea-ice formation and decay. Geographic interpretations of physical and biological changes were based on comparison of regions with significant changes in sea ice: (1) The Pacific Sector of the Arctic Ocean including the Canada Basin and the Beaufort, Chukchi and East Siberian seas; (2) The Canadian Arctic Archipelago; (3) Baffin Bay and Hudson Bay; and (4) the Barents and Kara seas. Changes in ice conditions in the Barents sea/Kara sea region appear to be primarily forced by ocean heat fluxes during winter, whereas changes in the other sectors appear to be more summer-autumn related and primarily atmospherically forced. Effects of seasonal and regional changes in OSA-system with regard to increased open water were summarized for photosynthetically available radiation, nutrient delivery to the euphotic zone, primary production of ice algae and phytoplankton, ice-associated fauna and zooplankton, and gas exchange of CO2. Changes in the physical factors varied amongst regions, and showed direct effects on organisms linked to sea ice. Zooplankton species appear to be more flexible and likely able to adapt to variability in the onset of primary production. The major changes identified for the ice-associated ecosystem are with regard to production timing and abundance or biomass of ice flora and fauna, which are related to

  10. Ice thickness measurements and volume estimates for glaciers in Norway

    NASA Astrophysics Data System (ADS)

    Andreassen, Liss M.; Huss, Matthias; Melvold, Kjetil; Elvehøy, Hallgeir; Winsvold, Solveig H.

    2014-05-01

    Whereas glacier areas in many mountain regions around the world now are well surveyed using optical satellite sensors and available in digital inventories, measurements of ice thickness are sparse in comparison and a global dataset does not exist. Since the 1980s ice thickness measurements have been carried out by ground penetrating radar on many glaciers in Norway, often as part of contract work for hydropower companies with the aim to calculate hydrological divides of ice caps. Measurements have been conducted on numerous glaciers, covering the largest ice caps as well as a few smaller mountain glaciers. However, so far no ice volume estimate for Norway has been derived from these measurements. Here, we give an overview of ice thickness measurements in Norway, and use a distributed model to interpolate and extrapolate the data to provide an ice volume estimate of all glaciers in Norway. We also compare the results to various volume-area/thickness-scaling approaches using values from the literature as well as scaling constants we obtained from ice thickness measurements in Norway. Glacier outlines from a Landsat-derived inventory from 1999-2006 together with a national digital elevation model were used as input data for the ice volume calculations. The inventory covers all glaciers in mainland Norway and consists of 2534 glaciers (3143 glacier units) covering an area of 2692 km2 ± 81 km2. To calculate the ice thickness distribution of glaciers in Norway we used a distributed model which estimates surface mass balance distribution, calculates the volumetric balance flux and converts it into thickness using the flow law for ice. We calibrated this model with ice thickness data for Norway, mainly by adjusting the mass balance gradient. Model results generally agree well with the measured values, however, larger deviations were found for some glaciers. The total ice volume of Norway was estimated to be 275 km3 ± 30 km3. From the ice thickness data set we selected

  11. Molecular Markers in the Quelccaya Ice Cap, Peru Describe 20th Century Biomass Burning Variability

    NASA Astrophysics Data System (ADS)

    Makou, M. C.; Thompson, L. G.; Eglinton, T. I.; Montluçon, D. B.

    2007-12-01

    Organic geochemical analytical methods were applied to Andean ice core samples, resulting in a multi- molecular biomass burning record spanning 1915 to 2001 AD. The Quelccaya Ice Cap in Peru is situated on the eastern flank of the Andes at 14°S and is well situated to receive aeolian inputs of organic matter derived from Amazonian forest fire events. Compounds of interest, which occur in trace quantities in ice, were recovered by stir bar sorptive extraction and analyzed by gas chromatography/time-of-flight mass spectrometry coupled with thermal desorption. These methods permitted identification and quantitation of numerous biomarkers in sample volumes of as little as 10 ml. At least one wet and dry season sample was analyzed for every year. Observed biomarkers that may be derived from vegetation fires include several polycyclic aromatic hydrocarbons (PAHs), atraric acid, 2-ethylhexyl p-methoxycinnamate, and a range of other aromatic compounds. Abrupt changes in compound abundances were superimposed on decadal variability. Systematic offsets between wet and dry season abundances were not observed, suggesting that the biomass burning signal is not biased by seasonal depositional effects, such as dust delivery. Inputs likely reflect a combination of sources from anthropogenic burning of the Amazon rainforest as well as natural fires related to aridity, and include both high and low elevation vegetation. These compounds and techniques can be applied to older ice in this and other core locations as an independent estimate of aridity.

  12. Ice-atmosphere interactions in the Canadian High Arctic: Implications for the thermo-mechanical evolution of terrestrial ice masses

    NASA Astrophysics Data System (ADS)

    Wohlleben, Trudy M. H.

    Canadian High Arctic terrestrial ice masses and the polar atmosphere evolve codependently, and interactions between the two systems can lead to feedbacks, positive and negative. The two primary positive cryosphere-atmosphere feedbacks are: (1) The snow/ice-albedo feedback (where area changes in snow and/or ice cause changes in surface albedo and surface air temperatures, leading to further area changes in snow/ice); and (2) The elevation - mass balance feedback (where thickness changes in terrestrial ice masses cause changes to atmospheric circulation and precipitation patterns, leading to further ice thickness changes). In this thesis, numerical experiments are performed to: (1) quantify the magnitudes of the two feedbacks for chosen Canadian High Arctic terrestrial ice masses; and (2) to examine the direct and indirect consequences of surface air temperature changes upon englacial temperatures with implications for ice flow, mass flux divergence, and topographic evolution. Model results show that: (a) for John Evans Glacier, Ellesmere Island, the magnitude of the terrestrial snow/ice-albedo feedback can locally exceed that of sea ice on less than decadal timescales, with implications for glacier response times to climate perturbations; (b) although historical air temperature changes might be the direct cause of measured englacial temperature anomalies in various glacier and ice cap accumulation zones, they can also be the indirect cause of their enhanced diffusive loss; (c) while the direct result of past air temperature changes has been to cool the interior of John Evans Glacier, and its bed, the indirect result has been to create and maintain warm (pressure melting point) basal temperatures in the ablation zone; and (d) for Devon Ice Cap, observed mass gains in the northwest sector of the ice cap would be smaller without orographic precipitation and the mass balance---elevation feedback, supporting the hypothesis that this feedback is playing a role in the

  13. Quantifying the Evolution of Melt Ponds in the Marginal Ice Zone Using High Resolution Optical Imagery and Neural Networks

    NASA Astrophysics Data System (ADS)

    Ortiz, M.; Pinales, J. C.; Graber, H. C.; Wilkinson, J.; Lund, B.

    2016-02-01

    Melt ponds on sea ice play a significant and complex role on the thermodynamics in the Marginal Ice Zone (MIZ). Ponding reduces the sea ice's ability to reflect sunlight, and in consequence, exacerbates the albedo positive feedback cycle. In order to understand how melt ponds work and their effect on the heat uptake of sea ice, we must quantify ponds through their seasonal evolution first. A semi-supervised neural network three-class learning scheme using a gradient descent with momentum and adaptive learning rate backpropagation function is applied to classify melt ponds/melt areas in the Beaufort Sea region. The network uses high resolution panchromatic satellite images from the MEDEA program, which are collocated with autonomous platform arrays from the Marginal Ice Zone Program, including ice mass-balance buoys, arctic weather stations and wave buoys. The goal of the study is to capture the spatial variation of melt onset and freeze-up of the ponds within the MIZ, and gather ponding statistics such as size and concentration. The innovation of this work comes from training the neural network as the melt ponds evolve over time; making the machine learning algorithm time-dependent, which has not been previously done. We will achieve this by analyzing the image histograms through quantification of the minima and maxima intensity changes as well as linking textural variation information of the imagery. We will compare the evolution of the melt ponds against several different array sites on the sea ice to explore if there are spatial differences among the separated platforms in the MIZ.

  14. Ice, Ocean and Atmosphere Interactions in the Arctic Marginal Ice Zone

    DTIC Science & Technology

    2015-09-30

    the northward retreat of the ice edge. Through the long-term measurement of the key oceanic, atmospheric, and sea ice processes that...began to move southward towards the Alaskan coast. In 2104 the anomalous areas of ice retreat were the region north of Alaska...and Siberia. (see figures below). This is not uncommon as these regions have seen the greatest retreat in sea ice. See http://nsidc.org

  15. Annually resolved ice core records of tropical climate variability over the past ~1800 years.

    PubMed

    Thompson, L G; Mosley-Thompson, E; Davis, M E; Zagorodnov, V S; Howat, I M; Mikhalenko, V N; Lin, P-N

    2013-05-24

    Ice cores from low latitudes can provide a wealth of unique information about past climate in the tropics, but they are difficult to recover and few exist. Here, we report annually resolved ice core records from the Quelccaya ice cap (5670 meters above sea level) in Peru that extend back ~1800 years and provide a high-resolution record of climate variability there. Oxygen isotopic ratios (δ(18)O) are linked to sea surface temperatures in the tropical eastern Pacific, whereas concentrations of ammonium and nitrate document the dominant role played by the migration of the Intertropical Convergence Zone in the region of the tropical Andes. Quelccaya continues to retreat and thin. Radiocarbon dates on wetland plants exposed along its retreating margins indicate that it has not been smaller for at least six millennia.

  16. Quantifying the mass loss of peripheral Greenland glaciers and ice caps (1958-2014).

    NASA Astrophysics Data System (ADS)

    Noël, Brice; van de Berg, Willem Jan; Machguth, Horst; van den Broeke, Michiel

    2016-04-01

    Since the 2000s, mass loss from Greenland peripheral glaciers and ice caps (GICs) has accelerated, becoming an important contributor to sea level rise. Under continued warming throughout the 21st century, GICs might yield up to 7.5 to 11 mm sea level rise, with increasing dominance of surface runoff at the expense of ice discharge. However, despite multiple observation campaigns, little remains known about the contribution of GICs to total Greenland mass loss. Furthermore, the relatively coarse resolutions in regional climate models, i.e. 5 km to 20 km, fail to represent the small scale patterns of surface mass balance (SMB) components over these topographically complex regions including also narrow valley glaciers. Here, we present a novel approach to quantify the contribution of GICs to surface melt and runoff, based on an elevation dependent downscaling method. GICs daily SMB components at 1 km resolution are obtained by statistically downscaling the outputs of RACMO2.3 at 11 km resolution to a down-sampled version of the GIMP DEM for the period 1958-2014. This method has recently been successfully validated over the Greenland ice sheet and is now applied to GICs. In this study, we first evaluate the 1 km daily downscaled GICs SMB against a newly available and comprehensive dataset of ablation stake measurements. Then, we investigate present-day trends of meltwater production and SMB for different regions and estimate GICs contribution to total Greenland mass loss. These data are considered valuable for model evaluation and prediction of future sea level rise.

  17. Evolution of Martian polar landscapes - Interplay of long-term variations in perennial ice cover and dust storm intensity

    NASA Technical Reports Server (NTRS)

    Cutts, J. A.; Blasius, K. R.; Roberts, W. J.

    1979-01-01

    The discovery of a new type of Martian polar terrain, called undulating plain, is reported and the evolution of the plains and other areas of the Martian polar region is discussed in terms of the trapping of dust by the perennial ice cover. High-resolution Viking Orbiter 2 observations of the north polar terrain reveal perennially ice-covered surfaces with low relief, wavelike, regularly spaced, parallel ridges and troughs (undulating plains) occupying areas of the polar terrain previously thought to be flat, and associated with troughs of considerable local relief which exhibit at least partial annual melting. It is proposed that the wavelike topography of the undulating plains originates from long-term periodic variations in cyclical dust precipitation at the margin of a growing or receding perennial polar cap in response to changes in insolation. The troughs are proposed to originate from areas of steep slope in the undulating terrain which have lost their perennial ice cover and have become incapable of trapping dust. The polar landscape thus appears to record the migrations, expansions and contractions of the Martian polar cap.

  18. Martian North Polar Water-Ice Clouds During the Viking Era

    NASA Technical Reports Server (NTRS)

    Tamppari, L. K.; Bass, D. S.

    2000-01-01

    The Viking Orbiters determined that the surface of Mars' northern residual cap consists of water ice. Observed atmospheric water vapor abundances in the equatorial regions have been related to seasonal exchange between reservoirs such as the polar caps, the regolith and between different phases in the atmosphere. Kahn modeled the physical characteristics of ice hazes seen in Viking Orbiter imaging limb data, hypothesizing that ice hazes provide a method for scavenging water vapor from the atmosphere and accumulating it into ice particles. Given that Jakosky found that these particles had sizes such that fallout times were of order one Martian sol, these water-ice hazes provided a method for returning more water to the regolith than that provided by adsorption alone. These hazes could also explain the rapid hemispheric decrease in atmospheric water in late northern summer as well as the increase during the following early spring. A similar comparison of water vapor abundance versus polar cap brightness has been done for the north polar region. They have shown that water vapor decreases steadily between L(sub s) = 100-150 deg while polar cap albedo increases during the same time frame. As a result, they suggested that late summer water-ice deposition onto the ice cap may be the cause of the cap brightening. This deposition could be due to adsorption directly onto the cap surface or to snowfall. Thus, an examination of north polar waterice clouds could lend insight into the fate of the water vapor during this time period. Additional information is contained in the original extended abstract.

  19. Basal friction evolution and crevasse distribution during the surge of Basin 3, Austfonna ice-cap - offline coupling between a continuum ice dynamic model and a discrete element model

    NASA Astrophysics Data System (ADS)

    Gong, Yongmei; Zwinger, Thomas; Åström, Jan; Gladstone, Rupert; Schellenberger, Thomas; Altena, Bas; Moore, John

    2017-04-01

    The outlet glacier at Basin 3, Austfonna ice-cap entered its active surge phase in autumn 2012. We assess the evolution of the basal friction during the surge through inverse modelling of basal friction coefficients using recent velocity observation from 2012 to 2014 in a continuum ice dynamic model Elmer/ice. The obtained basal friction coefficient distributions at different time instances are further used as a boundary condition in a discrete element model (HiDEM) that is capable of computing fracturing of ice. The inverted basal friction coefficient evolution shows a gradual 'unplugging' of the stagnant frontal area and northwards and inland expansion of the fast flowing region in the southern basin. The validation between the modeled crevasses distribution and the satellite observation in August 2013 shows a good agreement in shear zones inland and at the frontal area. Crevasse distributions of the summer before and after the glacier reached its maximum velocity in January 2013 (August 2012 and August 2014, respectively) are also evaluated. Previous studies suggest the triggering and development of the surge are linked to surface melt water penetrating through ice to form an efficient basal hydrology system thereby triggering a hydro- thermodynamic feedback. This preliminary offline coupling between a continuum ice dynamic model and a discrete element model will give a hint on future model development of linking supra-glacial to sub-glacial hydrology system.

  20. Lake Sediment Records as an Indicator of Holocene Fluctuations of Quelccaya Ice Cap, Peru and Regional Climate

    NASA Astrophysics Data System (ADS)

    Stroup, J. S.; Kelly, M. A.; Lowell, T. V.; Beal, S. A.; Smith, C. A.; Baranes, H. E.

    2012-12-01

    The past fluctuations of Quelccaya Ice Cap, (QIC; 13°S, 70°W, 5200 m asl) located in the southeastern Peruvian Andes, provide a record of tropical climate since the last glacial-interglacial transition. A detailed surficial geomorphic record of past glacial extents developed over the last several decades (e.g. Mercer and Palacios 1977; Buffen et al. 2009; Kelly et al. 2012 accepted) demonstrates that QIC is a dynamic glacial system. These records show that the ice cap was larger than present and retreating by ~11,500 yr BP, and smaller than present between ~7,000 and ~4,600 yr BP. The most recent advance occurred during the late Holocene (Little Ice Age;LIA), dated with 10Be surface exposure ages (510±90 yrs (n = 8)) (Stroup et al. in prep.). This overrode earlier deposits obscuring a complete Holocene record; we aim to address the gaps in glacial chronology using the sedimentary record archived in lakes. We retrieved two sets cores (8 and 5 m-long) from Laguna Challpacocha (13.91°S, 70.86°W, 5040 m asl), a lake that currently receives meltwater from QIC. Four radiocarbon ages from the cores suggest a continuous record dating to at least ~10,500 cal. yr BP. Variations in magnetic susceptibility, percent organic and inorganic carbon, bulk density, grayscale and X-ray fluorescence chemistry indicate changes in the amount of clastic sediment deposition. We interpret clastic sediments to have been deposited from ice cap meltwater, thus indicating more extensive ice. Clastic sediments compose the top of the core from 4 to 30 cm depth, below there is a sharp transition to organic sediments radiocarbon dated to (500±30 and 550±20 cal. yr BP). The radiocarbon ages are similar to the 10Be dated (LIA) glacial position. At least three other clastic units exist in the core; dating to ~2600-4300, ~4800-7300 and older then ~10,500 cal. yr BP based on a linear age model with four radiocarbon dates. We obtained two, ~4 m long, cores from Laguna Yanacocha (13.95°S,70.87

  1. Pedestal Craters in Utopia Planitia and Malea Planum: Evidence for a Past Ice-Rich Substrate from Marginal Sublimation Pits.

    NASA Astrophysics Data System (ADS)

    Kadish, S. J.; Head, J. W.; Barlow, N. G.; Marchant, D. R.

    2008-09-01

    Introduction: Pedestal craters (Pd) are a subclass of impact craters unique to Mars [1] characterized by a crater perched near the center of a pedestal (mesa or plateau) that is surrounded by a quasi-circular, outward-facing scarp. The marginal scarp is usually several crater diameters from the crater rim (Figs. 2,4,5), and tens to over 100 meters above the surrounding plains (Fig. 2). Pd have been interpreted to form by armoring of the proximal substrate during the impact event. Hypotheses for the armoring mechanism include an ejecta covering [e.g., 3], increased ejecta mobilization caused by volatile substrates [4], distal glassy/melt-rich veneers [5], and/or an atmospheric blast/thermal effect [6]. Subsequently, a marginal scarp forms by preferential erosion of the substrate surrounding the armored region, most commonly thought to involve eolian removal of fine-grained, non-armored material [e.g., 3]. An understanding of the distribution of Pd, which form predominantly poleward of ~40°N and S latitude [7-9] (Fig. 1), and the role of redistribution of ice and dust during periods of climate change [e.g., 10-11], suggests that the substrate might have been volatile-rich [8-9, 12-14]. As such, some researchers [e.g., 8-9] have proposed a model for Pd formation that involves impact during periods of higher obliquity, when mid- to high-latitude substrates were characterized by thick deposits of snow and ice [e.g., 15]. Subsequent sublimation of the volatile units, except below the armored regions, yielded the perched Pd. Thus, this model predicts that thick deposits of snow/ice should underlie Pd. This is in contrast to the eolian model [3], which calls primarily for deflation of sand and dust. Here, we show the results of our study [8,16] that has documented and characterized 2461 Pd on Mars equatorward of ~65° N and S latitude (Fig. 1) in order to test these hypotheses for the origin of pedestal craters. In particular, we report on the detection of 50 Pd in Utopia

  2. Investigating Mars South Residual CO2 Cap with a Global Climate Model

    NASA Technical Reports Server (NTRS)

    Kahre, M. A.; Dequaire, J.; Hollingsworth, J. L.; Haberle, R. M.

    2016-01-01

    The CO2 cycle is one of the three controlling climate cycles on Mars. One aspect of the CO2 cycle that is not yet fully understood is the existence of a residual CO2 ice cap that is offset from the south pole. Previous investigations suggest that the atmosphere may control the placement of the south residual cap (e.g., Colaprete et al., 2005). These investigations show that topographically forced stationary eddies in the south during southern hemisphere winter produce colder atmospheric temperatures and increased CO2 snowfall over the hemisphere where the residual cap resides. Since precipitated CO2 ice produces higher surface albedos than directly deposited CO2 ice, it is plausible that CO2 snowfall resulting from the zonally asymmetric atmospheric circulation produces surface ice albedos high enough to maintain a residual cap only in one hemisphere. The goal of the current work is to further evaluate Colaprete et al.'s hypothesis by investigating model-predicted seasonally varying snowfall patterns in the southern polar region and the atmospheric circulation components that control them.

  3. Late Holocene spatio-temporal variability of the south Greenland Ice Sheet and adjacent mountain glaciers

    NASA Astrophysics Data System (ADS)

    Sinclair, G.; Carlson, A. E.; Rood, D. H.; Axford, Y.

    2017-12-01

    The late Holocene, with its spatially complex pattern of centennial-scale climate variation, is an ideal time period to test the response of the cryosphere to atmospheric and oceanic temperature changes. The south Greenland Ice Sheet (sGrIS), with its proximity to areas of North Atlantic Deep Water formation and a large spectrum of glaciological regimes over a relatively small area, provides an excellent location to examine the spatial heterogeneity of ice-sheet and glacier responses to climate change. Here, we will present 50 Be-10 surface exposure ages from eight moraines in six locations around the margin of the sGrIS. These moraines are located just outboard of historical moraines, and will therefore allow us to constrain the timing of the most extensive prehistoric late-Holocene advance and retreat of ice margins draining the sGrIS and independent valley glaciers. The dataset includes both marine- and land-terminating glaciers draining the sGrIS, the low-altitude Qassimiut lobe, the high-altitude alpine Julianhåb ice cap and isolated valley glaciers. This diverse dataset will allow us to determine to what extent late-Holocene centennial-scale behavior of the ice-sheet and glacier margins were synchronous, perhaps in response to an external climate forcing, or more stochastic, governed instead by local factors such as basal thermal regime, bedrock topography, or microclimates. This has implications for understanding the forcings and responses of cryospheric changes at timescales relevant to human society. In addition to providing context for paleoclimatic and glacial geologic investigations, this work will inform future sea-level projections by providing targets for validating high-resolution ice-sheet and glacier models.

  4. Ice-sheet dynamics through the Quaternary on the mid-Norwegian continental margin inferred from 3D seismic data.

    PubMed

    Montelli, A; Dowdeswell, J A; Ottesen, D; Johansen, S E

    2017-02-01

    Reconstructing the evolution of ice sheets is critical to our understanding of the global environmental system, but most detailed palaeo-glaciological reconstructions have hitherto focused on the very recent history of ice sheets. Here, we present a three-dimensional (3D) reconstruction of the changing nature of ice-sheet derived sedimentary architecture through the Quaternary Ice Age of almost 3 Ma. An extensive geophysical record documents a marine-terminating, calving Fennoscandian Ice Sheet (FIS) margin present periodically on the mid-Norwegian shelf since the beginning of the Quaternary. Spatial and temporal variability of the FIS is illustrated by the gradual development of fast-flowing ice streams and associated intensification of focused glacial erosion and sedimentation since that time. Buried subglacial landforms reveal a complex and dynamic ice sheet, with converging palaeo-ice streams and several flow-switching events that may reflect major changes in topography and basal thermal regime. Lack of major subglacial meltwater channels suggests a largely distributed drainage system beneath the marine-terminating part of the FIS. This palaeo-environmental examination of the FIS provides a useful framework for ice-sheet modelling and shows that fragmentary preservation of buried surfaces and variability of ice-sheet dynamics should be taken into account when reconstructing glacial history from spatially limited datasets.

  5. A daily, 1 km resolution data set of downscaled Greenland ice sheet surface mass balance (1958-2015)

    NASA Astrophysics Data System (ADS)

    Noël, Brice; van de Berg, Willem Jan; Machguth, Horst; Lhermitte, Stef; Howat, Ian; Fettweis, Xavier; van den Broeke, Michiel R.

    2016-10-01

    This study presents a data set of daily, 1 km resolution Greenland ice sheet (GrIS) surface mass balance (SMB) covering the period 1958-2015. Applying corrections for elevation, bare ice albedo and accumulation bias, the high-resolution product is statistically downscaled from the native daily output of the polar regional climate model RACMO2.3 at 11 km. The data set includes all individual SMB components projected to a down-sampled version of the Greenland Ice Mapping Project (GIMP) digital elevation model and ice mask. The 1 km mask better resolves narrow ablation zones, valley glaciers, fjords and disconnected ice caps. Relative to the 11 km product, the more detailed representation of isolated glaciated areas leads to increased precipitation over the southeastern GrIS. In addition, the downscaled product shows a significant increase in runoff owing to better resolved low-lying marginal glaciated regions. The combined corrections for elevation and bare ice albedo markedly improve model agreement with a newly compiled data set of ablation measurements.

  6. Abbot Ice Shelf, the Amundsen Sea Continental Margin and the Southern Boundary of the Bellingshausen Plate Seaward of West Antarctica

    NASA Astrophysics Data System (ADS)

    Cochran, J. R.; Tinto, K. J.; Bell, R. E.

    2014-12-01

    The Abbot Ice Shelf extends 450 km along the coast of West Antarctica between 103°W and 89°W and straddles the boundary between the Bellingshausen Sea continental margin, which overlies a former subduction zone, and Amundsen Sea rifted continental margin. Inversion of NASA Operation IceBridge airborne gravity data for sub-ice bathymetry shows that the western part of the ice shelf, as well as Cosgrove Ice Shelf to the south, are underlain by a series of east-west trending rift basins. The eastern boundary of the rifted terrain coincides with the eastern boundary of rifting between Antarctica and Zealandia and the rifts formed during the early stages of this rifting. Extension in these rifts is minor as rifting quickly jumped north of Thurston Island. The southern boundary of the Cosgrove Rift is aligned with the southern boundary of a sedimentary basin under the Amundsen Embayment continental shelf to the west, also formed by Antarctica-Zealandia rifting. The shelf basin has an extension factor, β, of 1.5 - 1.7 with 80 -100 km of extension occurring in an area now ~250 km wide. Following this extension early in the rifting process, rifting centered to the north of the present shelf edge and proceeded to continental rupture. Since then, the Amundsen Embayment continental shelf has been tectonically quiescent and has primarily been shaped though subsidence, sedimentation and the passage of the West Antarctic Ice Sheet back and forth across it. The former Bellingshausen Plate was located seaward of the Amundsen Sea margin prior to its incorporation into the Antarctic Plate at ~62 Ma. During the latter part of its existence, Bellingshausen plate motion had a clockwise rotational component relative to Antarctica producing convergence between the Bellingshausen and Antarctic plates east of 102°W. Seismic reflection and gravity data show that this convergence is expressed by an area of intensely deformed sediments beneath the continental slope from 102°W to 95°W and

  7. Air-sea interaction regimes in the sub-Antarctic Southern Ocean and Antarctic marginal ice zone revealed by icebreaker measurements

    NASA Astrophysics Data System (ADS)

    Yu, Lisan; Jin, Xiangze; Schulz, Eric W.; Josey, Simon A.

    2017-08-01

    This study analyzed shipboard air-sea measurements acquired by the icebreaker Aurora Australis during its off-winter operation in December 2010 to May 2012. Mean conditions over 7 months (October-April) were compiled from a total of 22 ship tracks. The icebreaker traversed the water between Hobart, Tasmania, and the Antarctic continent, providing valuable in situ insight into two dynamically important, yet poorly sampled, regimes: the sub-Antarctic Southern Ocean and the Antarctic marginal ice zone (MIZ) in the Indian Ocean sector. The transition from the open water to the ice-covered surface creates sharp changes in albedo, surface roughness, and air temperature, leading to consequential effects on air-sea variables and fluxes. Major effort was made to estimate the air-sea fluxes in the MIZ using the bulk flux algorithms that are tuned specifically for the sea-ice effects, while computing the fluxes over the sub-Antarctic section using the COARE3.0 algorithm. The study evidenced strong sea-ice modulations on winds, with the southerly airflow showing deceleration (convergence) in the MIZ and acceleration (divergence) when moving away from the MIZ. Marked seasonal variations in heat exchanges between the atmosphere and the ice margin were noted. The monotonic increase in turbulent latent and sensible heat fluxes after summer turned the MIZ quickly into a heat loss regime, while at the same time the sub-Antarctic surface water continued to receive heat from the atmosphere. The drastic increase in turbulent heat loss in the MIZ contrasted sharply to the nonsignificant and seasonally invariant turbulent heat loss over the sub-Antarctic open water.Plain Language SummaryThe icebreaker Aurora Australis is a research and supply vessel that is regularly chartered by the Australian Antarctic Division during the southern summer to operate in waters between Hobart, Tasmania, and Antarctica. The vessel serves as the main lifeline to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA05742&hterms=CAPS&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DCAPS','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA05742&hterms=CAPS&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DCAPS"><span>Summer South Polar <span class="hlt">Cap</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2004-01-01</p> <p><p/>13 April 2004 The martian south polar residual <span class="hlt">ice</span> <span class="hlt">cap</span> is composed mainly of frozen carbon dioxide. Each summer, a little bit of this carbon dioxide sublimes away. Pits grow larger, and mesas get smaller, as this process continues from year to year. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a view of a small portion of the south polar <span class="hlt">cap</span> as it appeared in mid-summer in January 2004. The dark areas may be places where the frozen carbon dioxide contains impurities, such as dust, or places where sublimation of <span class="hlt">ice</span> has roughened the surface so that it appears darker because of small shadows cast by irregularities in the roughened surface. The image is located near 86.9oS, 7.6oW. The image covers an area about 3 km (1.9 mi) across. Sunlight illuminates the scene from the upper left.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17731883','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17731883"><span><span class="hlt">Ice</span> core evidence for extensive melting of the greenland <span class="hlt">ice</span> sheet in the last interglacial.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Koerner, R M</p> <p>1989-05-26</p> <p>Evidence from <span class="hlt">ice</span> at the bottom of <span class="hlt">ice</span> cores from the Canadian Arctic Islands and Camp Century and Dye-3 in Greenland suggests that the Greenland <span class="hlt">ice</span> sheet melted extensively or completely during the last interglacial period more than 100 ka (thousand years ago), in contrast to earlier interpretations. The presence of dirt particles in the basal <span class="hlt">ice</span> has previously been thought to indicate that the base of the <span class="hlt">ice</span> sheets had melted and that the evidence for the time of original growth of these <span class="hlt">ice</span> masses had been destroyed. However, the particles most likely blew onto the <span class="hlt">ice</span> when the dimensions of the <span class="hlt">ice</span> <span class="hlt">caps</span> and <span class="hlt">ice</span> sheets were much smaller. <span class="hlt">Ice</span> texture, gas content, and other evidence also suggest that the basal <span class="hlt">ice</span> at each drill site is superimposed <span class="hlt">ice</span>, a type of <span class="hlt">ice</span> typical of the early growth stages of an <span class="hlt">ice</span> <span class="hlt">cap</span> or <span class="hlt">ice</span> sheet. If the present-day <span class="hlt">ice</span> masses began their growth during the last interglacial, the <span class="hlt">ice</span> sheet from the earlier (Illinoian) glacial period must have competely or largely melted during the early part of the same interglacial period. If such melting did occur, the 6-meter higher-than-present sea level during the Sangamon cannot be attributed to disintegration of the West Antarctic <span class="hlt">ice</span> sheet, as has been suggested.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3554413','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3554413"><span>Microbial communities in the subglacial waters of the Vatnajökull <span class="hlt">ice</span> <span class="hlt">cap</span>, Iceland</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Thór Marteinsson, Viggó; Rúnarsson, Árni; Stefánsson, Andri; Thorsteinsson, Thorsteinn; Jóhannesson, Tómas; Magnússon, Sveinn H; Reynisson, Eyjólfur; Einarsson, Bergur; Wade, Nicole; Morrison, Hilary G; Gaidos, Eric</p> <p>2013-01-01</p> <p>Subglacial lakes beneath the Vatnajökull <span class="hlt">ice</span> <span class="hlt">cap</span> in Iceland host endemic communities of microorganisms adapted to cold, dark and nutrient-poor waters, but the mechanisms by which these microbes disseminate under the <span class="hlt">ice</span> and colonize these lakes are unknown. We present new data on this subglacial microbiome generated from samples of two subglacial lakes, a subglacial flood and a lake that was formerly subglacial but now partly exposed to the atmosphere. These data include parallel 16S rRNA gene amplicon libraries constructed using novel primers that span the v3–v5 and v4–v6 hypervariable regions. Archaea were not detected in either subglacial lake, and the communities are dominated by only five bacterial taxa. Our paired libraries are highly concordant for the most abundant taxa, but estimates of diversity (abundance-based coverage estimator) in the v4–v6 libraries are 3–8 times higher than in corresponding v3–v5 libraries. The dominant taxa are closely related to cultivated anaerobes and microaerobes, and may occupy unique metabolic niches in a chemoautolithotrophic ecosystem. The populations of the major taxa in the subglacial lakes are indistinguishable (>99% sequence identity), despite separation by 6 km and an <span class="hlt">ice</span> divide; one taxon is ubiquitous in our Vatnajökull samples. We propose that the glacial bed is connected through an aquifer in the underlying permeable basalt, and these subglacial lakes are colonized from a deeper, subterranean microbiome. PMID:22975882</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSHE24A1420P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSHE24A1420P"><span>Modeling Primary Productivity in the <span class="hlt">Margin</span> <span class="hlt">Ice</span> Zone from Glider-Based Measurements of Chlorophyll and Light during the 2014 Miz Program</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Perry, M. J.; Lee, C.; Rainville, L.; Cetinic, I.; Yang, E. J.; Kang, S. H.</p> <p>2016-02-01</p> <p>In late summer 2014 during the <span class="hlt">Marginal</span> <span class="hlt">Ice</span> Zone (MIZ) Experiment, an international project sponsored by ONR, four Seagliders transited open water, through the <span class="hlt">marginal</span> <span class="hlt">ice</span> zone, and under <span class="hlt">ice</span>-covered regions in the Beaufort Sea, penetrating as far as 100 km into the <span class="hlt">ice</span> pack. The gliders navigated either by GPS in open water or, when under the <span class="hlt">ice</span>, by acoustics from sound sources embedded in the MIZ autonomous observing array. The glider sensor suite included temperature, temperature microstructure, salinity, oxygen, chlorophyll fluorescence, optical backscatter, and multi-spectral downwelling irradiance. Cruises on the IBRV Araon operating in the open Beaufort Sea and on the R/V Ukpik and Norseman operating in continental shelf waters off Alaska's north slope allowed us to construct proxy libraries for converting chlorophyll fluorescence to chlorophyll concentration and optical backscatter to particulate organic carbon concentration. Water samples were collected for chlorophyll and particulate organic carbon analysis on the cruises and aligned with optical profiles of fluorescence and backscatter using sensors that were factory calibrated at the same time as the glider sensors. Fields of chlorophyll, particulate organic carbon, light, and primary productivity are constructed from the glider data. Productivity is modeled as a function of chlorophyll and light, using photosynthesis-light (PE) models with available PE parameters from Arctic measurements. During August the region under the <span class="hlt">ice</span> was characterized by a deep chlorophyll maximum layer with low rates of production in overlying waters. A phytoplankton bloom developed in open water at the end of September, preceding the rapid reformation of <span class="hlt">ice</span>, despite shorter days and reduce irradiation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1811691C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1811691C"><span><span class="hlt">Ice</span> <span class="hlt">cap</span> melting and low viscosity crustal root explain narrow geodetic uplift of the Western Alps</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chery, Jean; Genti, Manon; Vernant, Philippe</p> <p>2016-04-01</p> <p>More than 10 years of geodetic measurements demonstrate an uplift rate of 1-3 mm/yr of the high topography region of the Western Alps. By contrast, no significant horizontal motion has been detected. Three uplift mechanisms have been proposed so far: (1) the isostatic response to denudation. However this process is responsible for only a fraction of the observed uplift and (2) the rebound induced by the Wurmian <span class="hlt">ice</span> <span class="hlt">cap</span> melting. This process leads to a broader uplifting region than the one evidenced by geodetic observations. (3) a deep source motion associated with slab motion or some deep isostatic unbalance. Using a numerical model accounting for crustal and mantle rheology of the Alps and its foreland, we model the response to Wurmian <span class="hlt">ice</span> <span class="hlt">cap</span> melting. We show that a crustal viscosity contrast between the foreland and the central part of the Alps, the later being weaker with a viscosity of 1021 Pa.s, is needed to produce a narrow uplift. The vertical rates are enhanced if the strong uppermost mantle beneath the Moho is interrupted across the Alps, therefore allowing a weak vertical rheological anomaly thanks to the continuity between the low viscosity parts of the crust and mantle. References: Champagnac, J.-D., F. Schlunegger, K. Norton, F. von Blanckenburg, L. M. Abbühl, and M. Schwab (2009), Erosion-driven uplift of the modern Central Alps, Tectonophysics, 474(1-2), 236-249. Vernant, P., F. Hivert, J. Chéry, P. Steer, R. Cattin, and A. Rigo (2013), Erosion-induced isostatic rebound triggers extension in low convergent mountain ranges, geology, 41(4), 467-470.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.G31A0888L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.G31A0888L"><span>Deglaciation-induced uplift and seasonal variations patterns of bedrock displacement in Greenland <span class="hlt">ice</span> sheet <span class="hlt">margin</span> observed from GPS, GRACE and InSAR</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lu, Q.; Amelung, F.; Wdowinski, S.</p> <p>2017-12-01</p> <p>The Greenland <span class="hlt">ice</span> sheet is rapidly shrinking with the fastest retreat and thinning occurring at the <span class="hlt">ice</span> sheet <span class="hlt">margin</span> and near the outlet glaciers. The changes of the <span class="hlt">ice</span> mass cause an elastic response of the bedrock. Theoretically, <span class="hlt">ice</span> mass loss during the summer melting season is associated with bedrock uplift, whereas increasing <span class="hlt">ice</span> mass during the winter months is associated with bedrock subsidence. Here we examine the annual changes of the vertical displacements measured at 37 GPS stations and compare the results with Greenland drainage basins' gravity from GRACE. We use both Fourier Series (FS) analysis and Cubic Smoothing Spline (CSS) method to estimate the phases and amplitudes of seasonal variations. Both methods show significant differences seasonal behaviors in southern and northern Greenland. The average amplitude of bedrock displacements (3.29±0.02mm) in south Greenland is about 2 times larger than the north (1.65±0.02mm). The phase of bedrock maximum uplift (November) is considerably consistent with the time of minimum <span class="hlt">ice</span> mass load in south Greenland (October). However, the phase of bedrock maximum uplift in north Greenland (February) is 4 months later than the minimum <span class="hlt">ice</span> mass load in north Greenland basins (October). In addition, we present ground deformation near several famous glaciers in Greenland such as Petermann glacier and Jakobshavn glacier. We process InSAR data from TerraSAR-X and Sentinel satellite, based on small baseline interferograms. We observed rapid deglaciation-induced uplift and seasonal variations on naked bedrock near the glacier <span class="hlt">ice</span> <span class="hlt">margin</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994JGR....9921143C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994JGR....9921143C"><span>Spatial variability in the seasonal south polar <span class="hlt">CAP</span> of Mars</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Calvin, Wendy M.; Martin, Terry Z.</p> <p>1994-10-01</p> <p>The first comprehensive discussion of the south seasonal polar <span class="hlt">cap</span> spectra obtained by the Mariner 7 infrared spectrometer in the short-wavelength region (2-4 microns) is presented. The infrared spectra is correlated with images acquired by the wide-angle camera. Significant spectral variation is noted in the <span class="hlt">cap</span> interior and regions of varying water frost abundance, CO2 <span class="hlt">ice</span>/frost cover, and CO2-<span class="hlt">ice</span> path length can be distinguished. Many of these spectral variations correlate with heterogeneity noted in the camera images, but certain significant infrared spectral variations are not discernible in the visible. Simple reflectance models are used to classify the observed spectral variations into four regions. Region I is at the <span class="hlt">cap</span> edge, where there is enhanced absorption beyond 3 microns inferred to be caused by an increased abundance of water frost. The increase in water abundance over that in the interior is on the level of a few parts per thousand or less. Region II is the typical <span class="hlt">cap</span> interior characterized by spectral features of CO2 <span class="hlt">ice</span> at grain sizes of several millimeters to centimeters. These spectra also indicate the presence of water frost at the parts per thousand level. A third, unusual region (III), is defined by three spectra in which weak CO2 absorption features are as much as twice as strong as in the average <span class="hlt">cap</span> spectra and are assumed to be caused by an increased path length in the CO2. Such large paths are inconsistent with the high reflectance in the visible and at 2.2 microns and suggest layered structures or deposition conditions that are not accounted for in current reflectance models. The final region (IV) is an area of thinning frost coverage or transparent <span class="hlt">ice</span> well in the interior of the seasonal <span class="hlt">cap</span>. These spectra are a combination of CO2 and ground signatures.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950037998&hterms=image+heterogeneity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dimage%2Bheterogeneity','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950037998&hterms=image+heterogeneity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dimage%2Bheterogeneity"><span>Spatial variability in the seasonal south polar <span class="hlt">cap</span> of Mars</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Calvin, Wendy M.; Martin, Terry Z.</p> <p>1994-01-01</p> <p>The first comprehensive discussion of the south seasonal polar <span class="hlt">cap</span> spectra obtained by the Mariner 7 infrared spectrometer in the short-wavelength region (2-4 microns) is presented. The infrared spectra is correlated with images acquired by the wide-angle camera. Significant spectral variation is noted in the <span class="hlt">cap</span> interior and regions of varying water frost abundance, CO2 <span class="hlt">ice</span>/frost cover, and CO2-<span class="hlt">ice</span> path length can be distinguished. Many of these spectral variations correlate with heterogeneity noted in the camera images, but certain significant infrared spectral variations are not discernible in the visible. Simple reflectance models are used to classify the observed spectral variations into four regions. Region I is at the <span class="hlt">cap</span> edge, where there is enhanced absorption beyond 3 microns inferred to be caused by an increased abundance of water frost. The increase in water abundance over that in the interior is on the level of a few parts per thousand or less. Region II is the typical <span class="hlt">cap</span> interior characterized by spectral features of CO2 <span class="hlt">ice</span> at grain sizes of several millimeters to centimeters. These spectra also indicate the presence of water frost at the parts per thousand level. A third, unusual region (III), is defined by three spectra in which weak CO2 absorption features are as much as twice as strong as in the average <span class="hlt">cap</span> spectra and are assumed to be caused by an increased path length in the CO2. Such large paths are inconsistent with the high reflectance in the visible and at 2.2 microns and suggest layered structures or deposition conditions that are not accounted for in current reflectance models. The final region (IV) is an area of thinning frost coverage or transparent <span class="hlt">ice</span> well in the interior of the seasonal <span class="hlt">cap</span>. These spectra are a combination of CO2 and ground signatures.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.P24A..10F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.P24A..10F"><span>Variability of Seasonal CO2 <span class="hlt">Ice</span> <span class="hlt">Caps</span> on Mars for Mars Years 26 through 29</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Feldman, W. C.; Maurice, S.; Prettyman, T. H.</p> <p>2011-12-01</p> <p>We have developed an improved thermal, epithermal, and fast neutron counting-rate time series data of the Mars Odyssey Neutron Spectrometer (MONS), optimized to greatly reduce both statistical and systematic uncertainties. This new data set was applied to study temporal and spatial distributions of the growth, decay, and maximum amount of precipitated CO2 <span class="hlt">ice</span> during Martian years (MY) 26, 27, 28, and 29. For this study, we concentrate on the epithermal counting rate detected using the down-looking prism (P1) of MONS, and a combination of the epithermal and thermal counting rate detected by the forward-looking sensor (P2) of MONS. Although the energy range of neutrons detected by P2 covers both the thermal and epithermal range, it is heavily weighted to the thermal range. We find that the variance of the maximum epithermal counting rate is remarkably small over both north and south seasonal <span class="hlt">caps</span>, varying by less than 3% over the four-year period. In contrast, although the maximum P2 counting rate over both poles is sensibly the same within error bars (about 2%) during the first three years, it drops by 18% over the north pole and 8% over the south pole during MY 29. The most-likely explanation of this drop is that abundances of the non-condensable gases N2 and Ar, are unusually enhanced during MY 29. Movies were also made of maps of the growth and decay of P2 counting rates summed over the first three years of these data. Careful inspection shows that both the growth and decay in the north were cylindrically symmetric, centered near the geographic north pole. In contrast, both the growth and decay of CO2 buildup in the south were skewed off the geographic pole to the center of the CO2 residual <span class="hlt">cap</span>, and contained a small, but definitely distinct ring-like annular enhancement centered at a latitude of about 83.5° S spread over a longitude range that extends between about -35° and +35° E. This arc runs parallel to, and overlays, the very steep drop in altitude from</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009LPI....40.2281F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009LPI....40.2281F"><span>Perchlorate Found by Phoenix Could Provide a Mobile Brine Sludge at the Bed of Mars Northern <span class="hlt">Ice</span> <span class="hlt">Cap</span> that Would Allow Flow with Very Low Basal Temperatures: Possible Mechanism for Water Table Re-Charge</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fisher, D. A.; Hecht, M.; Kounaves, S.; Catling, D.</p> <p>2009-03-01</p> <p>The north <span class="hlt">cap</span> of Mars has basal temperature that precludes the flow of <span class="hlt">ice</span>. Phoenix discovered polar soils contain perchlorate salts. These salts depress the melting point so it could form a sludge that provides a mobile bed that moves the <span class="hlt">ice</span> outwards.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070017882','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070017882"><span>Exposure of Water <span class="hlt">Ice</span> in the Northern Mid-lattitudes of Mars</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Allen, Carlton C.; Kanner, Lisa C.</p> <p>2007-01-01</p> <p>Water <span class="hlt">ice</span> is exposed in the martian north polar <span class="hlt">cap</span>, and is occasionally exposed beyond the <span class="hlt">cap</span> boundary. Orbital gamma ray spectrometry data strongly imply the presence of water <span class="hlt">ice</span> within meters of the surface at latitudes north of approximately 60 deg. We have examined midlatitude areas of the northern plains displaying evidence of residual <span class="hlt">ice</span>-rich layers, and report possible present-day exposures of <span class="hlt">ice</span>. These exposures, if confirmed, could constrain the latitudinal and temporal stability of surface <span class="hlt">ice</span> on Mars.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1511771L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1511771L"><span>The northern Uummannaq <span class="hlt">Ice</span> Stream System, West Greenland: <span class="hlt">ice</span> dynamics and and controls upon deglaciation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lane, Timothy; Roberts, David; Rea, Brice; Cofaigh, Colm Ó.; Vieli, Andreas</p> <p>2013-04-01</p> <p>At the Last Glacial Maximum (LGM), the Uummannaq <span class="hlt">Ice</span> Stream System comprised a series coalescent outlet glaciers which extended along the trough to the shelf edge, draining a large proportion of the West Greenland <span class="hlt">Ice</span> Sheet. Geomorphological mapping, terrestrial cosmogenic nuclide (TCN) exposure dating, and radiocarbon dating constrain warm-based <span class="hlt">ice</span> stream activity in the north of the system to 1400 m a.s.l. during the LGM. Intervening plateaux areas (~ 2000 m a.s.l.) either remained <span class="hlt">ice</span> free, or were covered by cold-based icefields, preventing diffluent or confluent flow throughout the inner to outer fjord region. Beyond the fjords, a topographic sill north of Ubekendt Ejland prevented the majority of westward <span class="hlt">ice</span> flow, forcing it south through Igdlorssuit Sund, and into the Uummannaq Trough. Here it coalesced with <span class="hlt">ice</span> from the south, forming the trunk zone of the UISS. Deglaciation of the UISS began at 14.9 cal. ka BP, rapidly retreating through the overdeepened Uummannaq Trough. Once beyond Ubekendt Ejland, the northern UISS retreated northwards, separating from the south. Retreat continued, and <span class="hlt">ice</span> reached the present fjord confines in northern Uummannaq by 11.6 kyr. Both geomorphological (termino-lateral moraines) and geochronological (14C and TCN) data provide evidence for an <span class="hlt">ice</span> <span class="hlt">marginal</span> stabilisation at within Karrat-Rink Fjord, at Karrat Island, from 11.6-6.9 kyr. The Karrat moraines appear similar in both fjord position and form to 'Fjord Stade' moraines identified throughout West Greenland. Though chronologies constraining moraine formation are overlapping (Fjord Stade moraines - 9.3-8.2 kyr, Karrat moraines - 11.6-6.9 kyr), these moraines have not been correlated. This <span class="hlt">ice</span> <span class="hlt">margin</span> stabilisation was able to persist during the Holocene Thermal Maximum (~7.2 - 5 kyr). It overrode climatic and oceanic forcings, remaining on Karrat Island throughout peaks of air temperature and relative sea-level, and during the influx of the warm West Greenland Current into</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040085689','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040085689"><span>Evolving Technologies for In-Situ Studies of Mars <span class="hlt">Ice</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Carsey, F. D.; Hecht, M. H.</p> <p>2003-01-01</p> <p>Icy sites on Mars continue to be of high scientific importance. These sites include the polar <span class="hlt">caps</span>, the southern mid-latitude subsurface permafrost, and the seasonal frost. These sites have interest due to their roles in climate processes, past climates, surface and near-surface water, astrobiology, geomorphology, and other topics. As is the case for many planetary features, remote sensing, while of great value, cannot answer all questions; in-situ examination is essential, and the motivation for in-situ observations generally leads to the subsurface, which, fortunately, is accessible on Mars. It is clear in fact that a Mars polar <span class="hlt">cap</span> subsurface mission is both scientifically compelling and practical. Recent data from orbiting platforms has provided a remarkable level of information about the Mars <span class="hlt">ice</span> <span class="hlt">caps</span>; we know, for example, the size, shape and annual cycle of the <span class="hlt">cap</span> topography as well as we know that of Earth, and we have more information on stratification that we have of, for example, the <span class="hlt">ice</span> of East Antarctica. To understand the roles that the Mars polar <span class="hlt">caps</span> play, it is necessary to gather information on the <span class="hlt">ice</span> <span class="hlt">cap</span> surface, strata, composition and bed. In this talk the status of in-situ operations and observations will be summarized, and, since we have conveniently at hand another planet with polar <span class="hlt">caps</span>, permafrost and <span class="hlt">ice</span>, the role of testing and validation of experimental procedures on Earth will be addressed.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMGC43E1005H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMGC43E1005H"><span>Glacial-marine sediments record <span class="hlt">ice</span>-shelf retreat during the late Holocene in Beascochea Bay on the western <span class="hlt">margin</span> of the Antarctic Peninsula</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hardin, L. A.; Wellner, J. S.</p> <p>2010-12-01</p> <p>Beascochea Bay has an overall rapid rate of sedimentation due to retreating fast-flowing <span class="hlt">ice</span>, and thus contains high-resolution records of Antarctica’s glacial and climate history. Beascochea Bay is a 16 km long by 8 km wide bay located on the western <span class="hlt">margin</span> of the Antarctica Peninsula, centered between Anvers Island and Renaud Island, but open to the Bellingshausen Sea. Currently, three tidewater glaciers draining the Bruce Plateau of Graham Land enter into the fjords of Beascochea Bay, releasing terrigenous sediments which have left a record of the fluctuations of the Antarctic Peninsula <span class="hlt">Ice</span> <span class="hlt">Cap</span> since the grounded <span class="hlt">ice</span> decoupled from the seafloor after the last glacial maximum. These three glaciers have played a significant role in providing sediment to the main basin, allowing a detailed sediment facies analysis to be conducted from eight sediment cores which were collected during the austral summer of 2007. Pebbly silty clay sediment cores, along with 3.5 kHz seismic data and multibeam swath bathymetry data, are integrated to reconstruct a glacial retreat timeline for the middle to late Holocene, which can be compared to the recent retreat rates over the last century. Paleoenvironment of deposition is determined by mapping lateral facies changes from the side fjords (proximal) to the outer basin (distal), as each region records the transition from glacial-marine sediments to open-marine sediments. As the <span class="hlt">ice</span> retreated from the outer basin to the inner basin, and most recently leaving the side fjords, each facies deposited can be age-constrained by radiocarbon, 210Pb, and 137Cs dating methods. A distinct 137Cs signal is readily seen in two kasten cores from a side fjord and the inner basin of Beascochea Bay. This dating method revealed an average sedimentation rate of 2.7 mm per year for approximately the last century, which is comparable to 210Pb rates obtained in other studies. Lithology variations in each sediment core record indications of <span class="hlt">ice</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP33C1338B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP33C1338B"><span>Inception of the Laurentide <span class="hlt">Ice</span> Sheet using asynchronous coupling of a regional atmospheric model and an <span class="hlt">ice</span> model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Birch, L.; Cronin, T.; Tziperman, E.</p> <p>2017-12-01</p> <p>The climate over the past 0.8 million years has been dominated by <span class="hlt">ice</span> ages. <span class="hlt">Ice</span> sheets have grown about every 100 kyrs, starting from warm interglacials, until they spanned continents. State-of-the-art global climate models (GCMs) have difficulty simulating glacial inception, or the transition of Earth's climate from an interglacial to a glacial state. It has been suggested that this failure may be related to their poorly resolved local mountain topography, due to their coarse spatial resolution. We examine this idea as well as the possible role of <span class="hlt">ice</span> flow dynamics missing in GCMs. We investigate the growth of the Laurentide <span class="hlt">Ice</span> Sheet at 115 kya by focusing on the mountain glaciers of Canada's Baffin Island, where geologic evidence indicates the last inception occurred. We use the Weather Research and Forecasting model (WRF) in a regional, cloud-resolving configuration with resolved mountain terrain to explore how quickly Baffin Island could become glaciated with the favorable yet realizable conditions of 115 kya insolation, cool summers, and wet winters. Using the model-derived mountain glacier mass balance, we force an <span class="hlt">ice</span> sheet model based on the shallow-<span class="hlt">ice</span> approximation, capturing the <span class="hlt">ice</span> flow that may be critical to the spread of <span class="hlt">ice</span> sheets away from mountain <span class="hlt">ice</span> <span class="hlt">caps</span>. The <span class="hlt">ice</span> sheet model calculates the surface area newly covered by <span class="hlt">ice</span> and the change in the <span class="hlt">ice</span> surface elevation, which we then use to run WRF again. Through this type of iterated asynchronous coupling, we investigate how the regional climate responds to both larger areas of <span class="hlt">ice</span> cover and changes in <span class="hlt">ice</span> surface elevation. In addition, we use the NOAH-MP Land model to characterize the importance of land processes, like refreezing. We find that initial <span class="hlt">ice</span> growth on the Penny <span class="hlt">Ice</span> <span class="hlt">Cap</span> causes regional cooling that increases the accumulation on the Barnes <span class="hlt">Ice</span> <span class="hlt">Cap</span>. We investigate how <span class="hlt">ice</span> and topography changes on Baffin Island may impact both the regional climate and the large-scale circulation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.7488S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.7488S"><span>Integrated firn elevation change model for glaciers and <span class="hlt">ice</span> <span class="hlt">caps</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saß, Björn; Sauter, Tobias; Braun, Matthias</p> <p>2016-04-01</p> <p>We present the development of a firn compaction model in order to improve the volume to mass conversion of geodetic glacier mass balance measurements. The model is applied on the Arctic <span class="hlt">ice</span> <span class="hlt">cap</span> Vestfonna. Vestfonna is located on the island Nordaustlandet in the north east of Svalbard. Vestfonna covers about 2400 km² and has a dome like shape with well-defined outlet glaciers. Elevation and volume changes measured by e.g. satellite techniques are becoming more and more popular. They are carried out over observation periods of variable length and often covering different meteorological and snow hydrological regimes. The elevation change measurements compose of various components including dynamic adjustments, firn compaction and mass loss by downwasting. Currently, geodetic glacier mass balances are frequently converted from elevation change measurements using a constant conversion factor of 850 kg m-³ or the density of <span class="hlt">ice</span> (917 kg m-³) for entire glacier basins. However, the natural conditions are rarely that static. Other studies used constant densities for the ablation (900 kg m-³) and accumulation (600 kg m-³) areas, whereby density variations with varying meteorological and climate conditions are not considered. Hence, each approach bears additional uncertainties from the volume to mass conversion that are strongly affected by the type and timing of the repeat measurements. We link and adapt existing models of surface energy balance, accumulation and snow and firn processes in order to improve the volume to mass conversion by considering the firn compaction component. Energy exchange at the surface is computed by a surface energy balance approach and driven by meteorological variables like incoming short-wave radiation, air temperature, relative humidity, air pressure, wind speed, all-phase precipitation, and cloud cover fraction. Snow and firn processes are addressed by a coupled subsurface model, implemented with a non-equidistant layer discretisation. On</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMOS11B1649M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMOS11B1649M"><span>Evolution of a Directional Wave Spectrum in a 3D <span class="hlt">Marginal</span> <span class="hlt">Ice</span> Zone with Random Floe Size Distribution</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Montiel, F.; Squire, V. A.</p> <p>2013-12-01</p> <p>A new ocean wave/sea-<span class="hlt">ice</span> interaction model is proposed that simulates how a directional wave spectrum evolves as it travels through a realistic <span class="hlt">marginal</span> <span class="hlt">ice</span> zone (MIZ), where wave/<span class="hlt">ice</span> dynamics are entirely governed by coherent conservative wave scattering effects. Field experiments conducted by Wadhams et al. (1986) in the Greenland Sea generated important data on wave attenuation in the MIZ and, particularly, on whether the wave spectrum spreads directionally or collimates with distance from the <span class="hlt">ice</span> edge. The data suggest that angular isotropy, arising from multiple scattering by <span class="hlt">ice</span> floes, occurs close to the edge and thenceforth dominates wave propagation throughout the MIZ. Although several attempts have been made to replicate this finding theoretically, including by the use of numerical models, none have confronted this problem in a 3D MIZ with fully randomised floe distribution properties. We construct such a model by subdividing the discontinuous <span class="hlt">ice</span> cover into adjacent infinite slabs of finite width parallel to the <span class="hlt">ice</span> edge. Each slab contains an arbitrary (but finite) number of circular <span class="hlt">ice</span> floes with randomly distributed properties. <span class="hlt">Ice</span> floes are modeled as thin elastic plates with uniform thickness and finite draught. We consider a directional wave spectrum with harmonic time dependence incident on the MIZ from the open ocean, defined as a continuous superposition of plane waves traveling at different angles. The scattering problem within each slab is then solved using Graf's interaction theory for an arbitrary incident directional plane wave spectrum. Using an appropriate integral representation of the Hankel function of the first kind (see Cincotti et al., 1993), we map the outgoing circular wave field from each floe on the slab boundaries into a directional spectrum of plane waves, which characterizes the slab reflected and transmitted fields. Discretizing the angular spectrum, we can obtain a scattering matrix for each slab. Standard recursive</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840008345&hterms=feeling&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dfeeling','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840008345&hterms=feeling&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dfeeling"><span>Radar image interpretation techniques applied to sea <span class="hlt">ice</span> geophysical problems</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Carsey, F. D.</p> <p>1983-01-01</p> <p>The geophysical science problems in the sea <span class="hlt">ice</span> area which at present concern understanding the <span class="hlt">ice</span> budget, where <span class="hlt">ice</span> is formed, how thick it grows and where it melts, and the processes which control the interaction of air-sea and <span class="hlt">ice</span> at the <span class="hlt">ice</span> <span class="hlt">margins</span> is discussed. The science problems relate to basic questions of sea <span class="hlt">ice</span>: how much is there, thickness, drift rate, production rate, determination of the morphology of the <span class="hlt">ice</span> <span class="hlt">margin</span>, storms feeling for the <span class="hlt">ice</span>, storms and influence at the <span class="hlt">margin</span> to alter the pack, and ocean response to a storm at the <span class="hlt">margin</span>. Some of these questions are descriptive and some require complex modeling of interactions between the <span class="hlt">ice</span>, the ocean, the atmosphere and the radiation fields. All involve measurements of the character of the <span class="hlt">ice</span> pack, and SAR plays a significant role in the measurements.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70012038','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70012038"><span>Sea <span class="hlt">ice</span> melting in the <span class="hlt">marginal</span> <span class="hlt">ice</span> zone.</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Josberger, E.G.</p> <p>1983-01-01</p> <p>The heat and salt flux boundary conditions together with the freezing curve relationship are a necessary component of any <span class="hlt">ice</span>- sea water thermodynamic model. A neutral two-layer oceanic planetary boundary layer model that incorporates these boundary conditions is used. The results are discussed. -from Author</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AtmEn.176...91S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AtmEn.176...91S"><span>Atmospheric depositions of natural and anthropogenic trace elements on the Guliya <span class="hlt">ice</span> <span class="hlt">cap</span> (northwestern Tibetan Plateau) during the last 340 years</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sierra-Hernández, M. Roxana; Gabrielli, Paolo; Beaudon, Emilie; Wegner, Anna; Thompson, Lonnie G.</p> <p>2018-03-01</p> <p>A continuous record of 29 trace elements (TEs) has been constructed between 1650 and 1991 CE (Common Era) from an <span class="hlt">ice</span> core retrieved in 1992 from the Guliya <span class="hlt">ice</span> <span class="hlt">cap</span>, on the northwestern Tibetan Plateau. Enrichments of Pb, Cd, Zn and Sb were detected during the second half of the 19th century and the first half of the 20th century (∼1850-1950) while enrichments of Sn (1965-1991), Cd and Pb (1975-1991) were detected during the second half of the 20th century. The EFs increased significantly by 20% for Cd and Sb, and by 10% for Pb and Zn during 1850-1950 relative to the pre-1850s. Comparisons of the Guliya TEs data with other <span class="hlt">ice</span> core-derived and production/consumption data suggest that Northern Hemisphere coal combustion (primarily in Western Europe) is the likely source of Pb, Cd, Zn, and Sb during the 1850-1950 period. Coal combustion in Europe declined as oil replaced coal as the primary energy source. The European shift from coal to oil may have contributed to the observed Sn enrichment in ∼1965 (60% EF increase in 1975-1991), although regional fossil fuel combustion (coal and leaded gasoline) from western China, Central Asia, and South Asia (India, Nepal), as well as Sn mining/smelting in Central Asia, may also be possible sources. The post-1975 Cd and Pb enrichments (40% and 20% EF increase respectively in 1975-1991) may reflect emissions from phosphate fertilizers, fossil fuel combustion, and/or non-ferrous metal production, from western China, Central Asia, and/or South Asia. Leaded gasoline is likely to have also contributed to the post-1975 Pb enrichment observed in this record. The results strongly suggest that the Guliya <span class="hlt">ice</span> <span class="hlt">cap</span> has recorded long-distance emissions from coal combustion since the 1850s with more recent contributions from regional agriculture, mining, and/or fossil fuel combustion. This new Guliya <span class="hlt">ice</span> core record of TEs fills a geographical gap in the reconstruction of the pollution history of this region that extends well beyond modern</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1035130','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1035130"><span>Air-Sea Interactions in the <span class="hlt">Marginal</span> <span class="hlt">Ice</span> Zone</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2016-03-31</p> <p>Arctic Ocean has increased with the significant retreat of the seasonal sea-<span class="hlt">ice</span> extent. Here, we use wind, wave, turbulence, and <span class="hlt">ice</span> measurements to...which has experienced a significant retreat of the seasonal <span class="hlt">ice</span> extent (Comiso and Nishio, 2008; Comiso et al., 2008). Thomson and Rogers (2014) showed</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009IJAsB...8..117W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009IJAsB...8..117W"><span>Mars polar <span class="hlt">cap</span>: a habitat for elementary life1</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wallis, M. K.; Wickramasinghe, N. C.</p> <p>2009-04-01</p> <p><span class="hlt">Ices</span> in the Martian polar <span class="hlt">caps</span> are potential habitats for various species of microorganisms. Salts in the <span class="hlt">ice</span> and biological anti-freeze polymers maintain liquid in cracks in the <span class="hlt">ices</span> far below 0°C, possibly down to the mean 220-240 K. Sub-surface microbial life is shielded from ultraviolet (UV) radiation, but could potentially be activated on south-facing slopes under the midday, midsummer Sun. Such life would be limited by low levels of vapour, little transport of nutrients, low light levels below a protective dirt-crust, frost accumulation at night and in shadows, and little if any active translocation of organisms. As in the Antarctic and in permafrost, movement to new habitats depends on geo-climatic changes, which for Mars's north polar <span class="hlt">cap</span> occur on a 50 000 year scale, except for rare meteorite impacts.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-02-01/pdf/2013-01819.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-02-01/pdf/2013-01819.pdf"><span>78 FR 7259 - Airworthiness Directives; BAE SYSTEMS (OPERATIONS) LIMITED Airplanes</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-02-01</p> <p>... wing leading edge. This AD requires a detailed inspection of the end <span class="hlt">caps</span> on the anti-<span class="hlt">icing</span> piccolo... on the wing leading edge or run-back <span class="hlt">ice</span>, which could lead to a reduction in the stall <span class="hlt">margin</span> on... the loss of the wing leading edge anti- <span class="hlt">icing</span> piccolo tube end <span class="hlt">caps</span> on two aircraft. This was...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930051807&hterms=water+cycles&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dwater%2Bcycles','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930051807&hterms=water+cycles&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dwater%2Bcycles"><span>The Mars water cycle at other epochs - Recent history of the polar <span class="hlt">caps</span> and layered terrain</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jakosky, Bruce M.; Henderson, Bradley G.; Mellon, Michael T.</p> <p>1993-01-01</p> <p>A numerical model is presented of the integrated role of seasonal water cycle on the evolution of polar deposits on Mars over the last 10 million years. From the model, it is concluded that the only major difference between the polar <span class="hlt">caps</span> which affects their long-term behavior is ultimately the difference in their elevations. Because of that difference, there is a preference for CO2 frost to stay longer on the northern polar <span class="hlt">cap</span>. The average difference in sublimation at the <span class="hlt">caps</span> results in a net south-to-north transport of water <span class="hlt">ice</span> over long time scales. Superimposed on any long-term behavior is a transfer of water <span class="hlt">ice</span> between the <span class="hlt">caps</span> on the 10 exp 5 - 10 exp 6 yr time scales. The amount of water exchanged is small compared to the total <span class="hlt">ice</span> content of the polar deposits.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993Icar..102..286J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993Icar..102..286J"><span>The Mars water cycle at other epochs - Recent history of the polar <span class="hlt">caps</span> and layered terrain</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jakosky, B. M.; Henderson, B. G.; Mellon, M. T.</p> <p>1993-04-01</p> <p>A numerical model is presented of the integrated role of seasonal water cycle on the evolution of polar deposits on Mars over the last 10 million years. From the model, it is concluded that the only major difference between the polar <span class="hlt">caps</span> which affects their long-term behavior is ultimately the difference in their elevations. Because of that difference, there is a preference for CO2 frost to stay longer on the northern polar <span class="hlt">cap</span>. The average difference in sublimation at the <span class="hlt">caps</span> results in a net south-to-north transport of water <span class="hlt">ice</span> over long time scales. Superimposed on any long-term behavior is a transfer of water <span class="hlt">ice</span> between the <span class="hlt">caps</span> on the 10 exp 5 - 10 exp 6 yr time scales. The amount of water exchanged is small compared to the total <span class="hlt">ice</span> content of the polar deposits.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1412698F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1412698F"><span>Surface energy balance measurements and modeling on the <span class="hlt">ice</span> <span class="hlt">cap</span> of King George Island, West Antarctica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Falk, U.; Braun, M.; Sala, H.; Menz, G.</p> <p>2012-04-01</p> <p>The Antarctic Peninsula is amongst the fastest warming places on Earth and further temperature increase is to be expected. It has undergone rapid environmental changes in the past decades. Exceptional rates of surface air temperature increases (2.5K in 50 years) are concurrent with retreating glacier fronts, an increase in melt areas, surface lowering and rapid retreat, break-up and disintegration of <span class="hlt">ice</span> shelves. The South Shetland Islands are located on the northern tip of the Peninsula and are especially vulnerable to climate change due to their maritime climate. For King George Island we have compiled a unique data set comprising direct measurements of evaporation and sensible heat flux by eddy covariance on the Warszawa Icefield for the austral summers November 2010 to March 2011 and January to February 2012 in combination with a fully equipped automated weather station measuring long- and short-wave radiation components, profiles of temperature, humidity and wind velocities as well as glacier <span class="hlt">ice</span> temperatures in profile. The combination with the eddy covariance data allows for analysis of variability and seasonality of surface energy balance components on a glacier for an entire year. Repeat measurements of surface lowering at different locations on King George Island are used for analysis of multi-sensor satellite data to identify melt patterns and bare <span class="hlt">ice</span> areas during summer. In combination with long-term time series of weather data, these data give indication of the sensitivity of the inland <span class="hlt">ice</span> <span class="hlt">cap</span> to the ongoing changes. This research is part of the ESF project IMCOAST funded by BMBF. Field work was carried out at the Dallmann laboratory (Jubany, King George Island) in cooperation of the Instituto Antartico Argentino (Argentina) and the Alfred-Wegener Institute (German).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19800042192&hterms=melting+ice+caps&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmelting%2Bice%2Bcaps','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19800042192&hterms=melting+ice+caps&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmelting%2Bice%2Bcaps"><span>Volcano-<span class="hlt">ice</span> interactions on Mars</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Allen, C. C.</p> <p>1979-01-01</p> <p>Central volcanic eruptions beneath terrestrial glaciers have built steep-sided, flat-topped mountains composed of pillow lava, glassy tuff, <span class="hlt">capping</span> flows, and cones of basalt. Subglacial fissure eruptions produced ridges of similar composition. In some places the products from a number of subglacial vents have combined to form widespread deposits. The morphologies of these subglacial volcanoes are distinctive enough to allow their recognition at the resolutions characteristic of Viking orbiter imagery. Analogs to terrestrial subglacial volcanoes have been identified on the northern plains and near the south polar <span class="hlt">cap</span> of Mars. The polar feature provides probable evidence of volcanic eruptions beneath polar <span class="hlt">ice</span>. A mixed unit of rock and <span class="hlt">ice</span> is postulated to have overlain portions of the northern plains, with eruptions into this ground <span class="hlt">ice</span> having produced mountains and ridges analogous to those in Iceland. Subsequent breakdown of this unit due to <span class="hlt">ice</span> melting revealed the volcanic features. Estimated heights of these landforms indicate that the <span class="hlt">ice</span>-rich unit once ranged from approximately 100 to 1200 m thick.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP12C..03L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP12C..03L"><span>Sensitivity of the marine-terminating <span class="hlt">margins</span> to Holocene climate change in south and southeast Greenland</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Levy, L.; Larsen, N. K.; Kjaer, K. H.; Bjork, A. A.; Kjeldsen, K. K.; Funder, S.; Kelly, M. A.; Howley, J. A.</p> <p>2016-12-01</p> <p>The marine-terminating glaciers of the Greenland <span class="hlt">Ice</span> Sheet (GrIS) are responding rapidly to present-day climate change. More than one-third of the GrIS's discharge flows to the ocean through the marine-terminating outlet glaciers of southeastern Greenland, making it a potentially important region of the <span class="hlt">ice</span> sheet. Documenting how these outlet glaciers have responded to longer-term past climate change (i.e. the Holocene) allows for more accurate predictions of their response to future climate changes. Here, we present 36 new 10Be ages on boulders perched on bedrock and on bedrock that record the timing of <span class="hlt">ice</span> <span class="hlt">marginal</span> fluctuations in several fjords in southeast and south Greenland, a region where little is known about past <span class="hlt">ice</span> fluctuations due to its relative inaccessibility. We show that at Skjoldungen Sund (63.4N), deglaciation was rapid, beginning by 10.1 ± 0.4 ka. Deglaciation occurred concurrently at Timmiarmiut Fjord (62.7N), 100 km to the south, at 10.3 ± 0.4 ka. We suggest that this was in response to the warming ocean and air temperatures of the early Holocene. Additionally, 10Be ages on boulders perched on bedrock just distal to the historic­ moraines in Timmiarmiut Fjord date to 1.7 ± 0.1 ka, indicating the presence of a late Holocene advance prior to the Little <span class="hlt">Ice</span> Age. In southern Greenland, deglaciation at Lindenow Fjord (60.6N), which drains the Julienhåb <span class="hlt">ice</span> <span class="hlt">cap</span>, occurred at 11.2 ± 0.4 ka. The <span class="hlt">ice</span> then retreated up-fjord at a rate of 70-100 m yr-1, comparable with modern retreat rates of 30-100 m yr-1. We hypothesize that the earlier deglaciation at Lindenow Fjord by 1 ka may indicate that the Julienhåb <span class="hlt">ice</span> <span class="hlt">cap</span> was more sensitive to early Holocene warming than the GrIS. Additional 10Be ages from Prins Christen Fjord and near Qaqortoq are forthcoming. These new 10Be ages provide a longer-term perspective of marine-terminating outlet glacier fluctuations in Greenland and show that the <span class="hlt">ice</span> sheet responded sensitively to Holocene climate change.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.P23A1706T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.P23A1706T"><span>Comparison of Mars Northern <span class="hlt">Cap</span> Edge Advance and Recession Rates over the Last 6 Mars Years</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Titus, T. N.; Cushing, G. E.; Langevin, Y.; Brown, A. J.; Themis Science Team; CRISM Science Team</p> <p>2011-12-01</p> <p>The most observable parameter that describes the Mars polar seasonal <span class="hlt">caps</span> is their size, which has been measured since the days of Herschel. The advance and retreat of the polar <span class="hlt">cap</span> from year to year may exhibit many clues to help elucidate little understood physical processes. For example, summertime heat storage in the regolith could delay the onset of seasonal CO2 <span class="hlt">cap</span> formation. The evolution of the seasonal <span class="hlt">cap</span> could also be directly affected by the thermal inertia of the near-surface regolith and place constraints on the depth of the <span class="hlt">ice</span> table. Parameterizations of the seasonal <span class="hlt">cap</span> edges provide useful constraints on atmospheric GCMs and mesoscale models. Longitudinally resolving the <span class="hlt">cap</span> edges as they advance and retreat constrains the times when zonal means are appropriate and when longitudinal asymmetries make zonal means invalid. These same kinds of parameterizations can also be used when modeling other data that have low spatial resolutions, such as Gamma Ray Spectrometer (GRS )and Neutron Spectrometer (NS) data. By knowing where the <span class="hlt">cap</span> edge should be, coarse spatial data can correct for subpixel mixing caused by large point-spread functions including both frosted and frost-free areas. The northern <span class="hlt">cap</span> exhibits a near symmetric retreat, which has been well characterized at visible wavelengths by both telescopic and spacecraft observations. However, the advance of the <span class="hlt">cap</span> has not been well characterized until the 21st century. Kieffer and Titus (2001) have used zonal means to observe surface temperature and visible bolometric albedo variations with season using MGS/TES. The TES thermal observations show an almost perfectly symmetrical advance; i.e., condensation at consistent latitude across all longitudes, with the most northern edge of the seasonal <span class="hlt">cap</span> occurring between longitudes 245°E to 265°E and the most southern edge of the seasonal <span class="hlt">cap</span> occurring between 280°E and 30°E. The advance of the northern <span class="hlt">cap</span> typically leads the advance of the edge of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012TCry....6.1483R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012TCry....6.1483R"><span>The first complete inventory of the local glaciers and <span class="hlt">ice</span> <span class="hlt">caps</span> on Greenland</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rastner, P.; Bolch, T.; Mölg, N.; Machguth, H.; Le Bris, R.; Paul, F.</p> <p>2012-12-01</p> <p>Glacier inventories provide essential baseline information for the determination of water resources, glacier-specific changes in area and volume, climate change impacts as well as past, potential and future contribution of glaciers to sea-level rise. Although Greenland is heavily glacierised and thus highly relevant for all of the above points, a complete inventory of its glaciers was not available so far. Here we present the results and details of a new and complete inventory that has been compiled from more than 70 Landsat scenes (mostly acquired between 1999 and 2002) using semi-automated glacier mapping techniques. A digital elevation model (DEM) was used to derive drainage divides from watershed analysis and topographic attributes for each glacier entity. To serve the needs of different user communities, we assigned to each glacier one of three connectivity levels with the <span class="hlt">ice</span> sheet (CL0, CL1, CL2; i.e. no, weak, and strong connection) to clearly, but still flexibly, distinguish the local glaciers and <span class="hlt">ice</span> <span class="hlt">caps</span> (GIC) from the <span class="hlt">ice</span> sheet and its outlet glaciers. In total, we mapped ~ 20 300 glaciers larger than 0.05 km2 (of which ~ 900 are marine terminating), covering an area of 130 076 ± 4032 km2, or 89 720 ± 2781 km2 without the CL2 GIC. The latter value is about 50% higher than the mean value of more recent previous estimates. Glaciers smaller than 0.5 km2 contribute only 1.5% to the total area but more than 50% (11 000) to the total number. In contrast, the 25 largest GIC (> 500 km2) contribute 28% to the total area, but only 0.1% to the total number. The mean elevation of the GIC is 1700 m in the eastern sector and around 1000 m otherwise. The median elevation increases with distance from the coast, but has only a weak dependence on mean glacier aspect.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C53C0741N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C53C0741N"><span>The Acoustic Signature of Glaciated <span class="hlt">Margins</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Newton, A. M. W.; Huuse, M.</p> <p>2016-12-01</p> <p>As climate warms it has become increasingly clear that, in order to fully understand how it might evolve in the future, we need to look for examples of how climate has changed in the past. The Late Cenozoic history of the Arctic Ocean and its surrounding seas has been dominated by glacial-interglacials cycles. This has resulted in major environmental changes in relative sea levels, <span class="hlt">ice</span> volumes, sea <span class="hlt">ice</span> conditions, and ocean circulation as marine and terrestrially-based <span class="hlt">ice</span> sheets waxed and waned. In this work, the acoustic signatures of several glaciated <span class="hlt">margins</span> in the Northern Hemisphere are investigated and compared. This includes: NW Greenland, West Greenland, East Greenland, mid-Norway, Northern Norway, and the North Sea. These shelf successions preserve a geomorphological record of multiple glaciations and are imaged using seismic reflection data. To date, the majority of work in these areas has tended to focus on the most recent glaciations, which are well known. Here, the focus of the work is to look at the overall stratigraphic setting and how it influences (and is influenced by) the evolution of <span class="hlt">ice</span> sheets throughout the glacial succession. Landform records are imaged using seismic data to provide a long-term insight into the styles of glaciation on each <span class="hlt">margin</span> and what relation this may have had on climate, whilst the stratigraphic architectures across each site demonstrate how the inherited geology and tectonic setting can provide a fundamental control on the <span class="hlt">ice</span> sheet and depositional styles. For example, Scoresby Sund is characterised by significant aggradation that is likely related to subsidence induced by lithospheric cooling rather than rapid glacial deposition, whilst the subsidence of the mid-Norwegian <span class="hlt">margin</span> can be related to rapid glacial deposition and trapping of sediments behind inversion structures such as the Helland-Hansen Arch. The insights from this multi-<span class="hlt">margin</span> study allow for regional, basin-wide, glaciological records to be developed</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840052166&hterms=gardening&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dgardening','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840052166&hterms=gardening&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dgardening"><span>Polar <span class="hlt">cap</span> formation on Ganymede</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shaya, E. J.; Pilcher, C. B.</p> <p>1984-01-01</p> <p>It is argued that Ganymede's polar <span class="hlt">caps</span> are the remnants of a more extensive covering of water <span class="hlt">ice</span> that formed during a period in which the satellite was geologically active. It is inferred that the initial thickness of this covering was a significant fraction of the gardening depth since the covering formed. This suggests an initial thickness of at least a few meters over heavily cratered regions such as the south polar grooved terrain. The absence of similar polar <span class="hlt">caps</span> on Callisto apparently reflects the absence of comparable geologic activity in the history of this satellite.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70025908','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70025908"><span>Exposed water <span class="hlt">ice</span> discovered near the south pole of Mars</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Titus, T.N.; Kieffer, H.H.; Christensen, P.R.</p> <p>2003-01-01</p> <p>The Mars Odyssey Thermal Emission Imaging System (THEMIS) has discovered water <span class="hlt">ice</span> exposed near the edge of Mars' southern perennial polar <span class="hlt">cap</span>. The surface H2O <span class="hlt">ice</span> was first observed by THEMIS as a region that was cooler than expected for dry soil at that latitude during the summer season. Diurnal and seasonal temperature trends derived from Mars Global Surveyor Thermal Emission Spectrometer observations indicate that there is H2O <span class="hlt">ice</span> at the surface. Viking observations, and the few other relevant THEMIS observations, indicate that surface H2O <span class="hlt">ice</span> may be widespread around and under the perennial CO2 <span class="hlt">cap</span>.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009QSRv...28.3101G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009QSRv...28.3101G"><span>Reconstructing the last Irish <span class="hlt">Ice</span> Sheet 2: a geomorphologically-driven model of <span class="hlt">ice</span> sheet growth, retreat and dynamics</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Greenwood, Sarah L.; Clark, Chris D.</p> <p>2009-12-01</p> <p>The <span class="hlt">ice</span> sheet that once covered Ireland has a long history of investigation. Much prior work focussed on localised evidence-based reconstructions and <span class="hlt">ice-marginal</span> dynamics and chronologies, with less attention paid to an <span class="hlt">ice</span> sheet wide view of the first order properties of the <span class="hlt">ice</span> sheet: centres of mass, <span class="hlt">ice</span> divide structure, <span class="hlt">ice</span> flow geometry and behaviour and changes thereof. In this paper we focus on the latter aspect and use our new, countrywide glacial geomorphological mapping of the Irish landscape (>39 000 landforms), and our analysis of the palaeo-glaciological significance of observed landform assemblages (article Part 1), to build an <span class="hlt">ice</span> sheet reconstruction yielding these fundamental <span class="hlt">ice</span> sheet properties. We present a seven stage model of <span class="hlt">ice</span> sheet evolution, from initiation to demise, in the form of palaeo-geographic maps. An early incursion of <span class="hlt">ice</span> from Scotland likely coalesced with local <span class="hlt">ice</span> <span class="hlt">caps</span> and spread in a south-westerly direction 200 km across Ireland. A semi-independent Irish <span class="hlt">Ice</span> Sheet was then established during <span class="hlt">ice</span> sheet growth, with a branching <span class="hlt">ice</span> divide structure whose main axis migrated up to 140 km from the west coast towards the east. <span class="hlt">Ice</span> stream systems converging on Donegal Bay in the west and funnelling through the North Channel and Irish Sea Basin in the east emerge as major flow components of the maximum stages of glaciation. <span class="hlt">Ice</span> cover is reconstructed as extending to the continental shelf break. The Irish <span class="hlt">Ice</span> Sheet became autonomous (i.e. separate from the British <span class="hlt">Ice</span> Sheet) during deglaciation and fragmented into multiple <span class="hlt">ice</span> masses, each decaying towards the west. Final sites of demise were likely over the mountains of Donegal, Leitrim and Connemara. Patterns of growth and decay of the <span class="hlt">ice</span> sheet are shown to be radically different: asynchronous and asymmetric in both spatial and temporal domains. We implicate collapse of the <span class="hlt">ice</span> stream system in the North Channel - Irish Sea Basin in driving such asymmetry, since rapid</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017QSRv..167...30S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017QSRv..167...30S"><span>Cosmogenic exposure age constraints on deglaciation and flow behaviour of a marine-based <span class="hlt">ice</span> stream in western Scotland, 21-16 ka</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Small, David; Benetti, Sara; Dove, Dayton; Ballantyne, Colin K.; Fabel, Derek; Clark, Chris D.; Gheorghiu, Delia M.; Newall, Jennifer; Xu, Sheng</p> <p>2017-07-01</p> <p>Understanding how marine-based <span class="hlt">ice</span> streams operated during episodes of deglaciation requires geochronological data that constrain both timing of deglaciation and changes in their flow behaviour, such as that from unconstrained <span class="hlt">ice</span> streaming to topographically restricted flow. We present seventeen new 10Be exposure ages from glacial boulders and bedrock at sites in western Scotland within the area drained by the Hebrides <span class="hlt">Ice</span> Stream, a marine-based <span class="hlt">ice</span> stream that drained a large proportion of the former British-Irish <span class="hlt">Ice</span> Sheet. Exposure ages from Tiree constrain deglaciation of a topographic high within the central zone of the <span class="hlt">ice</span> stream, from which convergent flowsets were produced during <span class="hlt">ice</span> streaming. These ages thus constrain thinning of the Hebrides <span class="hlt">Ice</span> Stream, which, on the basis of supporting information, we infer to represent cessation of <span class="hlt">ice</span> streaming at 20.6 ± 1.2 ka, 3-4 ka earlier than previously inferred. A period of more topographically restricted flow produced flow indicators superimposed on those relating to full <span class="hlt">ice</span> stream conditions, and exposure ages from up-stream of these constrain deglaciation to 17.5 ± 1.0 ka. Complete deglaciation of the marine sector of the Hebrides <span class="hlt">Ice</span> Stream occurred by 17-16 ka at which time the <span class="hlt">ice</span> <span class="hlt">margin</span> was located near the present coastline. Exposure ages from the southernmost Outer Hebrides (Mingulay and Barra) indicate deglaciation at 18.9 ± 1.0 and 17.1 ± 1.0 ka respectively, demonstrating that an independent <span class="hlt">ice</span> <span class="hlt">cap</span> persisted on the southern Outer Hebrides for 3-4 ka after initial <span class="hlt">ice</span> stream deglaciation. This suggests that deglaciation of the Hebrides <span class="hlt">Ice</span> Stream was focused along major submarine troughs. Collectively, our data constrain initial deglaciation and changes in flow regime of the Hebrides <span class="hlt">Ice</span> Stream, final deglaciation of its marine sector, and deglaciation of the southern portion of the independent Outer Hebrides <span class="hlt">Ice</span> <span class="hlt">Cap</span>, providing chronological constraints on future numerical reconstructions of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070006554','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070006554"><span>Present-day Exposures of Water <span class="hlt">Ice</span> in the Northern Mid-latitudes of Mars</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Allen, Carlton C.; Kanner, Lisa C.</p> <p>2007-01-01</p> <p>Water <span class="hlt">ice</span> is exposed in the martian north polar <span class="hlt">cap</span>, but is rarely exposed beyond the <span class="hlt">cap</span> boundary. Orbital gamma ray spectrometry data strongly imply the presence of water <span class="hlt">ice</span> within meters of the surface at latitudes north of approximately 60deg. We have examined mid-latitude areas of the northern plains displaying residual <span class="hlt">ice</span>-rich layers, and report evidence of present-day surface exposures of water <span class="hlt">ice</span>. These exposures, if confirmed, could con-strain the latitudinal and temporal stability of surface <span class="hlt">ice</span> on Mars.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.P54B..04C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.P54B..04C"><span>Radar Detection of Layering in <span class="hlt">Ice</span>: Experiments on a Constructed Layered <span class="hlt">Ice</span> Sheet</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carter, L. M.; Koenig, L.; Courville, Z.; Ghent, R. R.; Koutnik, M. R.</p> <p>2016-12-01</p> <p>The polar <span class="hlt">caps</span> and glaciers of both Earth and Mars display internal layering that preserves a record of past climate. These layers are apparent both in optical datasets (high resolution images, core samples) and in ground penetrating radar (GPR) data. On Mars, the SHARAD (Shallow Radar) radar on the Mars Reconnaissance Orbiter shows fine layering that changes spatially and with depth across the polar <span class="hlt">caps</span>. This internal layering has been attributed to changes in fractional dust contamination due to obliquity-induced climate variations, but there are other processes that can lead to internal layers visible in radar data. In particular, terrestrial sounding of <span class="hlt">ice</span> sheets compared with core samples have revealed that <span class="hlt">ice</span> density and composition differences account for the majority of the radar reflectors. The large cold rooms and <span class="hlt">ice</span> laboratory facility at the U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) provide us a unique opportunity to construct experimental <span class="hlt">ice</span> sheets in a controlled setting and measure them with radar. In a CRREL laboratory, we constructed a layered <span class="hlt">ice</span> sheet that is 3-m deep with a various snow and <span class="hlt">ice</span> layers with known dust concentrations (using JSC Mars-1 basaltic simulant) and density differences. These <span class="hlt">ice</span> sheets were profiled using a commercial GPR, at frequencies of 200, 400 and 900 MHz, to determine how the radar profile changes due to systematic and known changes in snow and <span class="hlt">ice</span> layers, including layers with sub-wavelength spacing. We will report results from these experiments and implications for interpreting radar-detected layering in <span class="hlt">ice</span> on Earth and Mars.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.C53A0294L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.C53A0294L"><span>The Unexpected Re-Growth of <span class="hlt">Ice</span>-Entombed Bryophytes in the Canadian High Arctic</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>La Farge, C.</p> <p>2014-12-01</p> <p>The rapid retreat of glaciers and <span class="hlt">ice</span> <span class="hlt">caps</span> throughout the Canadian Arctic is exposing pristine vegetation preserved beneath cold-based <span class="hlt">ice</span>. For the past half century this vegetation has been consistently reported as dead. This interpretation has been overturned by the successful re-growth of Little <span class="hlt">Ice</span> Age (1550-1850 AD) bryophytes emerging from the Teardrop Glacier, Sverdrup Pass, Ellesmere Island (79° N) collected in 2009. Some populations showed regeneration in the field and lab experiments confirmed their capacity to regrow. The species richness of these subglacial populations is exceptional, comprising >62 species that represent 44% of the extant bryophyte flora of Sverdrup Pass. Cold-based glaciers are known to provide critical habitats for a variety of microbiota (i.e., fungi, algae, cyanobacteria, bacteria and viruses) in high latitude ecosystems. The regeneration of Little <span class="hlt">Ice</span> Age bryophytes fundamentally expands the concept of biological refugia to land plants that was previously restricted to survival above and beyond glacial <span class="hlt">margins</span>. Given this novel understanding of subglacial ecosystems, fieldwork is now being extended southward to plateau <span class="hlt">ice</span> <span class="hlt">caps</span> on Baffin Island, Nunavut, where <span class="hlt">ice</span> retreat is exposing subglacial populations of greater antiquity (thousands to tens of thousands of radiocarbon years before present). Bryophytes by nature are totipotent (stem cell equivalency) and poikilohydric (desiccation tolerance), which facilitate their unique adaptation to extreme environments. Continuity of the Arctic bryophyte flora extends back through the Holocene to the late Tertiary [Beaufort Fm, 2-5 Ma], when the majority of taxa were the same, based on records spanning the archipelago from Ellesmere to Banks Island. This record contrasts with that of vascular plants, which have had a number of extinctions, necessitating recolonization of arctic populations from outside the region. The biological significance of a stable bryophyte element highlights their</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1013719','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1013719"><span><span class="hlt">Marginal</span> <span class="hlt">Ice</span> Zone: Biogeochemical Sampling with Gliders</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-09-30</p> <p>chlorophyll primary productivity model to estimate and compare phytoplankton productivity under full <span class="hlt">ice</span> cover, in the MIZ, and in open <span class="hlt">ice</span>-free water...observing array (Fig. 1). The glider sensor suite included temperature, temperature microstructure, salinity, oxygen, chlorophyll fluorescence, optical...operating in continental shelf waters off Alaska’s north slope allowed us to construct proxy libraries for converting chlorophyll fluorescence to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA145351','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA145351"><span>MIZEX. A Program for Mesoscale Air-<span class="hlt">Ice</span>-Ocean Interaction Experiments in Arctic <span class="hlt">Marginal</span> <span class="hlt">Ice</span> Zones. III. Modeling the <span class="hlt">Marginal</span> <span class="hlt">Ice</span> Zone,</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1984-04-01</p> <p>Ii TS C]r.I2 TAB 0] Unzanro’ unoed 0 justi fica ~r: 0 April 1984 vs - ASValabilitY Codes lvyall and/or U.S. Army Cold Regions Research and Engineering...coupled model. Fig. 1. Annual average simulated velocity fields. 3 192 Aloka 190 / 902 190+ WOO S’,. o <span class="hlt">Ice</span> OnlY Mod" D"’, 55*w F~tth Yea’ <span class="hlt">Ice</span> Ocean Model...A more precise delinga- inflow boundary conditions. 12 4- a. [ o ll ii traspert 00 0 0- 0e a I " i i , - - I I 1161 63 15 67 69 Ti 73 75 77 1980 *= 4h</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4438723','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4438723"><span>Shallow methylmercury production in the <span class="hlt">marginal</span> sea <span class="hlt">ice</span> zone of the central Arctic Ocean</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Heimbürger, Lars-Eric; Sonke, Jeroen E.; Cossa, Daniel; Point, David; Lagane, Christelle; Laffont, Laure; Galfond, Benjamin T.; Nicolaus, Marcel; Rabe, Benjamin; van der Loeff, Michiel Rutgers</p> <p>2015-01-01</p> <p>Methylmercury (MeHg) is a neurotoxic compound that threatens wildlife and human health across the Arctic region. Though much is known about the source and dynamics of its inorganic mercury (Hg) precursor, the exact origin of the high MeHg concentrations in Arctic biota remains uncertain. Arctic coastal sediments, coastal marine waters and surface snow are known sites for MeHg production. Observations on marine Hg dynamics, however, have been restricted to the Canadian Archipelago and the Beaufort Sea (<79°N). Here we present the first central Arctic Ocean (79–90°N) profiles for total mercury (tHg) and MeHg. We find elevated tHg and MeHg concentrations in the <span class="hlt">marginal</span> sea <span class="hlt">ice</span> zone (81–85°N). Similar to other open ocean basins, Arctic MeHg concentration maxima also occur in the pycnocline waters, but at much shallower depths (150–200 m). The shallow MeHg maxima just below the productive surface layer possibly result in enhanced biological uptake at the base of the Arctic marine food web and may explain the elevated MeHg concentrations in Arctic biota. We suggest that Arctic warming, through thinning sea <span class="hlt">ice</span>, extension of the seasonal sea <span class="hlt">ice</span> zone, intensified surface ocean stratification and shifts in plankton ecodynamics, will likely lead to higher marine MeHg production. PMID:25993348</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25993348','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25993348"><span>Shallow methylmercury production in the <span class="hlt">marginal</span> sea <span class="hlt">ice</span> zone of the central Arctic Ocean.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Heimbürger, Lars-Eric; Sonke, Jeroen E; Cossa, Daniel; Point, David; Lagane, Christelle; Laffont, Laure; Galfond, Benjamin T; Nicolaus, Marcel; Rabe, Benjamin; van der Loeff, Michiel Rutgers</p> <p>2015-05-20</p> <p>Methylmercury (MeHg) is a neurotoxic compound that threatens wildlife and human health across the Arctic region. Though much is known about the source and dynamics of its inorganic mercury (Hg) precursor, the exact origin of the high MeHg concentrations in Arctic biota remains uncertain. Arctic coastal sediments, coastal marine waters and surface snow are known sites for MeHg production. Observations on marine Hg dynamics, however, have been restricted to the Canadian Archipelago and the Beaufort Sea (<79 °N). Here we present the first central Arctic Ocean (79-90 °N) profiles for total mercury (tHg) and MeHg. We find elevated tHg and MeHg concentrations in the <span class="hlt">marginal</span> sea <span class="hlt">ice</span> zone (81-85 °N). Similar to other open ocean basins, Arctic MeHg concentration maxima also occur in the pycnocline waters, but at much shallower depths (150-200 m). The shallow MeHg maxima just below the productive surface layer possibly result in enhanced biological uptake at the base of the Arctic marine food web and may explain the elevated MeHg concentrations in Arctic biota. We suggest that Arctic warming, through thinning sea <span class="hlt">ice</span>, extension of the seasonal sea <span class="hlt">ice</span> zone, intensified surface ocean stratification and shifts in plankton ecodynamics, will likely lead to higher marine MeHg production.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992Metic..27R.257M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992Metic..27R.257M"><span>Cosmic Dust in ~50 KG Blocks of Blue <span class="hlt">Ice</span> from <span class="hlt">Cap</span>-Prudhomme and Queen Alexandra Range, Antarctica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maurette, M.; Cragin, J.; Taylor, S.</p> <p>1992-07-01</p> <p>Favorable Antarctic blue <span class="hlt">ice</span> fields have produced a large number of meteorite finds because of the <span class="hlt">ice</span> ablation concentration process (Cassidy et al., 1982). Such <span class="hlt">ice</span> fields should also concentrate cosmic dust grains including both spherules and unmelted micrometeorites. Here we present preliminary results of concentrations of cosmic dust grains in <span class="hlt">ice</span> from two very different Antarctic blue <span class="hlt">ice</span> fields. The first sample (~60 kg) was collected in January 1987 from the surface of the blue <span class="hlt">ice</span> field at <span class="hlt">Cap</span>-Prudhomme (CP), near the French station of Dumont d'Urville, by a team from the "Laboratoire de Glaciologie du CNRS" (A. Barnola). The second sample (~50 kg), was retrieved from a meteorite stranding surface near the Queen Alexandra range (QUE) by a team (M. Burger, W. Cassidy, and R.Walker) of the ANSMET 1990 field expedition in Antarctica. Both samples were transported frozen to the laboratory where they were subdivided and processed. The CP sample was cut with a stainless steel saw into 4 pieces while the QUE sample, which had the top surface identified, was cut into three equal (~15 cm) horizontal layers to provide constituent variability with depth. All subsequent work on both samples was performed in a class 100 clean room using procedures developed by M. de Angelis and M. Maurette aimed at minimizing the loss of extraterrestrial particles. Pieces of both samples were cleaned by rinsing thoroughly with ultrapure water (Milli-O) and then melted in polyethylene containers in a microwave oven. Aliquots were decanted for chemical analysis and the remaining meltwater was filtered through stainless steel sieves for collection of large (>30 micrometers) particles. Using a 30X binocular microscope particles were hand picked for subsequent SEM/EDX analyses. Our initial objective was to compare the cosmic dust concentration in <span class="hlt">ice</span> from the two locations. But this comparison was only partial because in the CP-<span class="hlt">ice</span>, only magnetic spherules of >50 micrometers were studied</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA19033.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA19033.html"><span>North Polar <span class="hlt">Cap</span> - False Color</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2015-01-28</p> <p>The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows the <span class="hlt">margin</span> of the north polar <span class="hlt">cap</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900038314&hterms=water+cycle&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dwater%2Bcycle','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900038314&hterms=water+cycle&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dwater%2Bcycle"><span>The role of water <span class="hlt">ice</span> clouds in the Martian hydrologic cycle</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>James, Philip B.</p> <p>1990-01-01</p> <p>A one-dimensional model for the seasonal cycle of water on Mars has been used to investigate the direction of the net annual transport of water on the planet and to study the possible role of water <span class="hlt">ice</span> clouds, which are included as an independent phase in addition to ground <span class="hlt">ice</span> and water vapor, in the cycle. The calculated seasonal and spatial patterns of occurrence of water <span class="hlt">ice</span> clouds are qualitatively similar to the observed polar hoods, suggesting that these polar clouds are, in fact, an important component of water cycle. A residual dry <span class="hlt">ice</span> in the south acts as a cold trap which, in the absence of sources other than the <span class="hlt">caps</span>, will ultimately attract the water <span class="hlt">ice</span> from the north <span class="hlt">cap</span>; however, in the presence of a source of water in northern midlatitudes during spring, it is possible that the observed distribution of vapor and <span class="hlt">ice</span> can be in a steady state even if a residual CO2 <span class="hlt">cap</span> is a permanent feature of the system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014cosp...40E1879L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014cosp...40E1879L"><span>Possible contemporary evaporites formation at the Martian Northern Polar <span class="hlt">Cap</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Losiak, Anna; Czechowski, Leszek</p> <p></p> <p>Evaporitic minerals are abundant on the surface of Mars (e.g., Wentworth et al. 2005, Velbel 2012, Clark and Van Hart 1981, Wang et al. 2006, Kuzmin et al. 2009), especially within the Circumpolar Dune Field and on the Northern <span class="hlt">Ice</span> <span class="hlt">Cap</span> itself (e.g., Langevin et al., 2005, Roach et al. 2007, Horgan et al. 2009, Masse et al. 2010, 2012). Most of their proposed formation mechanisms require significant amounts of liquid water and are thus not possible under current Martian conditions (Arvidson et al. 2006, Andrews-Hanna et al. 2007, Fishbaugh et al. 2007, Szynkiewicz et al. 2010). Some authors have considered the potential role of <span class="hlt">ice</span> and <span class="hlt">ice</span>- or snowmelt-related alteration in the weathering of Martian materials (e.g., Catling et al. 2006, Zolotov and Mironenko 2007, Niles and Michalski 2009, Masse et al. 2010). However, none of those studies discussed details of the process leading to the formation of the evaporites or the timing of the processes. The aim of this paper is to model numerically if the current radiant heating is sufficient to melt a thin layer of <span class="hlt">ice</span> surrounding a single dust grain exposed within the south facing side of the Martian North Polar <span class="hlt">Cap</span> trench. The results of our initial study suggest that for dust grains with basaltic properties and <span class="hlt">ice</span> with low values of coefficient of heat conduction, and solar constant = 492 W/m2 liquid water may exist below a dust grain for up to 4 hours a sol. This suggest that contemporary evaporites formation on Martian Polar <span class="hlt">Cap</span> is possible.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP13A2055H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP13A2055H"><span>Early Deglaciation of Drangajökull, Vestfirðir, Iceland: Smaller than Present by 9.2 ka</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harning, D.; Geirsdottir, A.; Miller, G. H.; Zalzal, K.</p> <p>2016-12-01</p> <p>The Holocene histories of Iceland's largest <span class="hlt">ice</span> <span class="hlt">caps</span> suggest rapid early Holocene deglaciation and disappearance by 9 ka, other than possible small remnants of Vatnajökull. The least documented is Drangajökull, Vestfirðir, NW Iceland, where our team has been working since 2010. A recent study claims Drangajökull behaved differently than the other Iceland <span class="hlt">ice</span> <span class="hlt">caps</span>, deglaciating much later, and persisting through the Holocene Thermal Maximum (HTM). We test this postulate through a suite of sediment cores from threshold lakes both proximal and distal to the <span class="hlt">ice</span> <span class="hlt">cap</span>'s contemporary <span class="hlt">margin</span>. Distal lakes document rapid early Holocene deglaciation across the southern highland plateau, with the northern <span class="hlt">margin</span> of the <span class="hlt">ice</span> <span class="hlt">cap</span> reaching a size comparable to Drangajökull's contemporary limit by 10.3 ka. A proximal lake to the north records a transient readvance at 9.6 ka, likely in association with meltwater pulses from the disintegrating Laurentide <span class="hlt">Ice</span> Sheet (LIS). Two other southeastern proximal lakes, whose catchments extend well beneath the modern <span class="hlt">ice</span> <span class="hlt">cap</span>, demonstrate that Drangajökull was already smaller than present before 9.2 ka. Supporting evidence for local early Holocene warmth is derived from biological summer temperature proxies in a lake record, with age control (tephra/14C) demonstrating continuous sediment accumulation from 10.3 ka to present. Peak warmth (HTM) inferred from elevated algal productivity occurred between 8.9 and 7.2 ka. The record of terrestrial warmth closely aligns with regional SST and precipitation records that together with lake sediment characteristics provide firm evidence that Drangajökull responded similarly to Iceland's other large <span class="hlt">ice</span> <span class="hlt">caps</span>. Drangajökull was smaller than its contemporary <span class="hlt">margin</span> before 9.2 ka, and likely disappeared entirely during the warmer and drier summers between 9 and 7 ka, reforming in the Late Holocene.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.P53F..07L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.P53F..07L"><span>Can the Solid State Greenhouse Effect Produce ~100 Year Cycles in the Mars South Polar Residual CO2 <span class="hlt">Ice</span> <span class="hlt">Cap</span>?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Line, M. R.; Ingersoll, A. P.</p> <p>2010-12-01</p> <p>Malin et al. (2001) reported that the south perennial <span class="hlt">cap</span> consists of quasi-circular pits ~8 meters deep, with a flat surface in between. The walls of the pits are retreating at a rate of 1 to 3 meters per year. Byrne and Ingersoll (2003a, 2003b) showed evidence that the floors of the pits are water <span class="hlt">ice</span> and the upper layer is CO2. This layer will be gone in a few Martian centuries, if the observations are taken at face value. This raises some difficult questions: How likely is it that mankind would be witnessing the final few hundred years of the residual CO2 frost on Mars? Can one imagine extreme weather events that could recharge the residual CO2 frost once it is gone? Both seem unlikely, and we propose a different mechanism. Kieffer et al. (2000) showed that sunlight can penetrate several meters through the seasonal CO2 frost, where it warms the surface below. We have observational evidence that the same is happening in the perennial CO2 frost. Further, we have a model that shows how this "solid-state greenhouse" can lead to cyclic behavior, in which layers of CO2 build up on a water <span class="hlt">ice</span> substrate, are heated internally by sunlight and lose mass from within. Eventually the layer becomes too weak to support itself, and it collapses to form pits. Then a new CO2 layer accumulates and the process repeats. Our study addresses fundamental questions of long-term stability of the Martian polar <span class="hlt">caps</span> and how the <span class="hlt">caps</span> control the atmospheric pressure. Instead of invoking extreme climate events to explain the data, we propose that processes within the frost itself can lead to cyclic growth and collapse of the pits. Our model implies that there is no long-term change in the ~8 meter layer of CO2 and no extreme weather events to make it change.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900038317&hterms=fine+dust&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dfine%2Bdust','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900038317&hterms=fine+dust&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dfine%2Bdust"><span>H2O grain size and the amount of dust in Mars' residual north polar <span class="hlt">cap</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kieffer, Hugh H.</p> <p>1990-01-01</p> <p>In Mars' north polar <span class="hlt">cap</span>, the probable composition of material residual from the annual condensation cycle is a mixture of fine dust and H2O grains of comparable size and abundance. However, metamorphism of such material will gradually lower its albedo by increasing the size of the H2O grains only. If the <span class="hlt">cap</span> is undergoing net annual sublimation (as inferred from water vapor observations), late summer observations should be of old <span class="hlt">ice</span> with H2O grain sizes of 100 microns or more. <span class="hlt">Ice</span> of this granularity containing 30 percent fine dust has a reflectivity similar to that of dust alone; the observed albedo and computed <span class="hlt">ice</span> grain size imply dust concentrations of 1 part per 1000 or less. The brightness of the icy areas conflicts with what would be expected for a residual <span class="hlt">cap</span> deposited by an annual cycle similar to that observed by Viking and aged for thousands of years. The residual <span class="hlt">cap</span> surface cannot be 'old dirty' <span class="hlt">ice</span>. It could be old, coarse, and clean; or it could be young, fine, and dirty. This brings into question both the source of the late summer water vapor and the formation rate of laminated terrain.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70016320','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70016320"><span>H2O grain size and the amount of dust in Mars' residual North polar <span class="hlt">cap</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kieffer, H.H.</p> <p>1990-01-01</p> <p>In Mars' north polar <span class="hlt">cap</span> the probable composition of material residual from the annual condensation cycle is a mixture of fine dust and H2O grains of comparable size and abundance. However, metamorphism of such material will gradually lower its albedo by increasing the size of the H2O grains only. If the <span class="hlt">cap</span> is undergoing net annual sublimation (as inferred from water vapor observations), late summer observations should be of old <span class="hlt">ice</span> with H2O grain sizes of 100 ??m or more. <span class="hlt">Ice</span> of this granularity containing 30% fine dust has a reflectivity similar to that of dust alone; the observed albedo and computed <span class="hlt">ice</span> grain size imply dust concentrations of 1 part per 1000 or less. The brightness of the icy areas conflicts with what would be expected for a residual <span class="hlt">cap</span> deposited by an annual cycle similar to that observed by Viking and aged for thousands of years. The residual <span class="hlt">cap</span> surface cannot be "old dirty' <span class="hlt">ice</span>. It could be old, coarse, and clean; or it could be young, fine, and dirty. This brings into question both the source of the late summer water vapor and the formation rate of laminated terrain. -Author</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA617625','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA617625"><span><span class="hlt">Marginal</span> <span class="hlt">Ice</span> Zone: Biogeochemical Sampling with Gliders</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-09-30</p> <p>chlorophyll primary productivity model to estimate and compare phytoplankton productivity under full <span class="hlt">ice</span> cover, in the MIZ, and in open <span class="hlt">ice</span>-free water...September, the gliders and still operating but will be retrieved in early October from the R/V Norseman. All gliders carried sensors for chlorophyll ...program, with modification for local conditions. The specific protocols for each sensor – backscatter and chlorophyll fluorescence – are described in</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050170989','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050170989"><span>A GCM Recent History of Northern Martian Polar Layered Deposits: Contribution from Past Equatorial <span class="hlt">Ice</span> Reservoirs</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Levrard, B.; Laskar, J.; Montmessin, F.; Forget, F.</p> <p>2005-01-01</p> <p>Polar layered deposits are exposed in the walls of the troughs cutting the north polar <span class="hlt">cap</span> of Mars. They consist of alternating <span class="hlt">ice</span> and dust layers or layers of an <span class="hlt">ice</span>-dust mixture with varying proportions and are found throughout the <span class="hlt">cap</span>. Layers thickness ranges from meters to several tens of meters with an approximately 30 meter dominant wavelength. Although their formation processes is not known, they are presumed to reflect changes in <span class="hlt">ice</span> and dust stability over orbital and axial variations. Intensive 3-D LMD GCM simulations of the martian water cycle have been thus performed to determine the annual rates of exchange of surface <span class="hlt">ice</span> between the northern <span class="hlt">cap</span> and tropical areas for a wide range of obliquity and orbital parameters values.These rates have been employed to reconstruct an history of the northern <span class="hlt">cap</span> and test simple models of dust-<span class="hlt">ice</span> layers formation over the last 10 Ma orbital variations. We use the 3-D water cycle model simulated by the 3-D LMD GCM with an intermediate grid resolution (7.5 longitude x 5.625 latitude) and 25 vertical levels. The dust opacity is constant and set to 0,15. No exchange of <span class="hlt">ice</span> with regolith is allowed. The evolution of the northern <span class="hlt">cap</span> over obliquity and orbital changes (eccentricity, Longitude of perihelion) has been recently described with this model. High summer insolation favors transfer of <span class="hlt">ice</span> from the northern pole to the Tharsis and Olympus Montes, while at low obliquity, unstable equatorial <span class="hlt">ice</span> is redeposited in high-latitude and polar areas of both hemisphere. The disappearance of the equatorial <span class="hlt">ice</span> reservoir leads to a poleward recession of icy high latitude reservoirs, providing an additional source for the <span class="hlt">cap</span> accumulation during each obliquity or orbital cycle. Furthering the efforts, a quantitative evolution of <span class="hlt">ice</span> reservoirs is here investigated for various astronomical conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70030660','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70030660"><span>Glacial Lake Musselshell: Late Wisconsin slackwater on the Laurentide <span class="hlt">ice</span> <span class="hlt">margin</span> in central Montana, USA</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Davis, N.K.; Locke, W. W.; Pierce, K.L.; Finkel, R.C.</p> <p>2006-01-01</p> <p>Cosmogenic surface exposure ages of glacial boulders deposited in <span class="hlt">ice-marginal</span> Lake Musselshell suggest that the lake existed between 20 and 11.5 ka during the Late Wisconsin glacial stage (MIS 2), rather than during the Late Illinoian stage (MIS 6) as traditionally thought. The altitude of the highest <span class="hlt">ice</span>-rafted boulders and the lowest passes on the modern divide indicate that glacial lake water in the Musselshell River basin reached at least 920-930 m above sea level and generally remained below 940 m. Exposures of rhythmically bedded silt and fine sand indicate that Lake Musselshell is best described as a slackwater system, in which the <span class="hlt">ice</span>-dammed Missouri and Musselshell Rivers rose and fell progressively throughout the existence of the lake rather than establishing a lake surface with a stable elevation. The absence of varves, deltas and shorelines also implies an unstable lake. The changing volume of the lake implies that the Laurentide <span class="hlt">ice</span> sheet was not stable at its southernmost position in central Montana. A continuous sequence of alternating slackwater lake sediment and lacustrine sheetflood deposits indicates that at least three advances of the Laurentide <span class="hlt">ice</span> sheet occurred in central Montana between 20 and 11.5 ka. Between each advance, it appears that Lake Musselshell drained to the north and formed two outlet channels that are now occupied by extremely underfit streams. A third outlet formed when the water in Lake Musselshell fully breached the Larb Hills, resulting in the final drainage of the lake. The channel through the Larb Hills is now occupied by the Missouri River, implying that the present Missouri River channel east of the Musselshell River confluence was not created until the Late Wisconsin, possibly as late as 11.5 ka. ?? 2005 Elsevier B.V. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014BGD....1114531C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014BGD....1114531C"><span>Influence of aeolian activities on the distribution of microbial abundance in glacier <span class="hlt">ice</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Y.; Li, X.-K.; Si, J.; Wu, G.-J.; Tian, L.-D.; Xiang, S.-R.</p> <p>2014-10-01</p> <p>Microorganisms are continuously blown onto the glacier snow, and thus the glacial depth profiles provide excellent archives of microbial communities and climatic and environmental changes. However, it is uncertain about how aeolian processes that cause climatic changes control the distribution of microorganisms in the glacier <span class="hlt">ice</span>. In the present study, microbial density, stable isotopic ratios, 18O / 16O in the precipitation, and mineral particle concentrations along the glacial depth profiles were collected from <span class="hlt">ice</span> cores from the Muztag Ata glacier and the Dunde <span class="hlt">ice</span> <span class="hlt">cap</span>. The <span class="hlt">ice</span> core data showed that microbial abundance was often, but not always associated with high concentrations of particles. Results also revealed clear seasonal patterning with high microbial abundance occurring in both the cooling autumn and warming spring-summer seasons. Microbial comparisons among the neighbouring glaciers display a heterogeneous spatial pattern, with the highest microbial cell density in the glaciers lying adjacent to the central Asian deserts and lowest microbial density in the southwestern <span class="hlt">margin</span> of the Tibetan Plateau. In conclusion, microbial data of the glaciers indicates the aeolian deposits of microorganisms in the glacier <span class="hlt">ice</span> and that the spatial patterns of microorgansisms are related to differences in sources of microbial flux and intensity of aeolian activities in the current regions. The results strongly support our hypothesis of aeolian activities being the main agents controlling microbial load in the glacier <span class="hlt">ice</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.P23B2127J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.P23B2127J"><span>Albedo of Carbon Dioxide <span class="hlt">Ice</span> in Mars' Residual South Polar <span class="hlt">Cap</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>James, P. B.; Wolff, M. J.; Bonev, B.</p> <p>2015-12-01</p> <p>The albedo of surface CO2 deposits in the Residual South Polar <span class="hlt">Cap</span> (RSPC) of Mars controls their net condensation / sublimation over a martian year and is therefore a crucial parameter in determining RSPC stability. The albedo used in previous analyses is obtained by dividing I/F, determined from radiometrically calibrated imaging data, by the cosine of the incidence angle. Because of atmospheric aerosols, the albedo calculated from I/F above the atmosphere is not the surface albedo that enters into stability considerations. In order to determine the surface albedo, we interpolate optical depths determined from CRISM EPF measurements to provide estimates of the dust and <span class="hlt">ice</span> opacities over the RSPC (Wolff et al., 2009) and use these to determine the actual surface albedos from MARCI images using the radiative transport program DISORT (Stamnes et al., 1988). Assuming that dust is the only contributor to atmospheric opacity, the retrieved surface albedos for the longer wavelength MARCI filters in MY 28 and 29 are found to be consistent despite very different dust opacities in the two years (James et al., 2014). However, this model fails to reproduce the short wavelength behavior in early summer and suggests either an additional opacity source or modification of the CRISM dust opacity or the dust phase function. The consequences of these changes will be discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70020753','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70020753"><span>Laurentide glacial landscapes: the role of <span class="hlt">ice</span> streams</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Patterson, C.J.</p> <p>1998-01-01</p> <p>Glacial landforms of the North American prairie can be divided into two suites that result from different styles of <span class="hlt">ice</span> flow: 1) a lowland suite of level-to-streamlined till consistent with formation beneath <span class="hlt">ice</span> streams, and 2) an upland and lobe-<span class="hlt">margin</span> suite of thick, hummocky till and glacial thrust blocks consistent with formation at <span class="hlt">ice</span>-stream and <span class="hlt">ice</span>-lobe <span class="hlt">margins</span>. Southern Laurentide <span class="hlt">ice</span> lobes hypothetically functioned as outlets of <span class="hlt">ice</span> streams. Broad branching lowlands bounded by escarpments mark the stable positions of the <span class="hlt">ice</span> streams that fed the lobes. If the lobes and <span class="hlt">ice</span> streams were similar to modern <span class="hlt">ice</span> streams, their fast flow was facilitated by high subglacial water pressure. Favorable geology and topography in the midcontinent encouraged nonuniform <span class="hlt">ice</span> flow and controlled the location of <span class="hlt">ice</span> streams and outlet lobes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740004942','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740004942"><span>Evaluation of glacier mass balance by observing variations in transient snowline positions. [Jostedalsbreen <span class="hlt">ice</span> <span class="hlt">cap</span>, Norway</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Oestrem, G. (Principal Investigator)</p> <p>1973-01-01</p> <p>The author has identified the following significant results. The transient snowline on five outlet glaciers from the Jostedalsbreen <span class="hlt">ice-cap</span> in Southwestern Norway could be determined from ERTS-1 image 1336-10260, when bands MSS 5, 6, and 7 were combined in an additive color viewer. The snowline was situated at a very low altitude at the time of imagery (24 June 1973) indicating that glacier melt was behind normal schedule, a fact that has a hydrologic bearing: one could expect less melt water in the streams. The idea to use ERTS-1 imagery in snowline determinations proved realistic and relatively easy to apply in practice. The method will be useful to estimate the glaciers' mass balance for large areas, provided some ground truth observations are made. Images from the end of the melt season are of course vital in this work.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013Icar..225..869H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013Icar..225..869H"><span>An examination of Mars' north seasonal polar <span class="hlt">cap</span> using MGS: Composition and infrared radiation balance</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hansen, Gary B.</p> <p>2013-08-01</p> <p>A detailed analysis of data from one revolution of the Mars Global Surveyor (MGS) is presented. Approximately 80% of this revolution observes the mid-winter northern seasonal polar <span class="hlt">cap</span>, which covers the surface to <60°N, and which is predominantly within polar night. The surface composition and temperature are determined through analysis of 6-50 μm infrared spectra from the Thermal Emission Spectrometer (TES). The infrared radiative balance, which is the entire heat balance in the polar night except for small subsurface and atmospheric advection terms, is calculated for the surface and atmospheric column. The primary constituent, CO2 <span class="hlt">ice</span>, also dominates the infrared spectral properties by variations in its grain size and by admixtures of dust and water <span class="hlt">ice</span>, which cause large variations in the 20-50 μm emissivity. This is modified by incomplete areal coverage, and clouds or hazes. This quantitative analysis reveals CO2 grain radii ranging from ˜100 μm in isolated areas, to 1-5 mm in more widespread regions. The water <span class="hlt">ice</span> content varies from none to about one part per thousand by mass, with a clear increase towards the periphery of the polar <span class="hlt">cap</span>. The dust content is typically a few parts per thousand by mass, but is as much as an order of magnitude less abundant in "cold spot" regions, where the low emissivity of pure CO2 <span class="hlt">ice</span> is revealed. This is the first quantitative analysis of thermal spectra of the seasonal polar <span class="hlt">cap</span> and the first to estimate water <span class="hlt">ice</span> content. Our models show that the cold spots represent cleaner, dust-free <span class="hlt">ice</span> rather than finer grained <span class="hlt">ice</span> than the background. Our guess is that the dust in cold spots is hidden in the center of the CO2 frost particles rather than not present. The fringes of the <span class="hlt">cap</span> have more dust and water <span class="hlt">ice</span>, and become patchy, with warmer water snow filling the gaps on the night side, and warmer bare soil on the day side. A low optical depth (<1 in the visible) water <span class="hlt">ice</span> atmospheric haze is apparent on the night side</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050167018','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050167018"><span>Effects of Atmospheric Dust on Residual South Polar <span class="hlt">Cap</span> Stability</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bonrv, B. P.; Bjorkman, J. E.; Hansen, G. B.; James, P. B.; Wolff, M. J.</p> <p>2005-01-01</p> <p>The Martian polar <span class="hlt">caps</span> have been studied from the time of Herschel. Neither polar <span class="hlt">cap</span> normally disappears in summer. The Residual North Polar <span class="hlt">Cap</span> (portion that remains through summer) is composed of a mixture of water <span class="hlt">ice</span> and dust, and its interannual stability is due to its low sublimation rate at the summer temperatures in the North Polar Region. The Residual South Polar <span class="hlt">Cap</span> (RSPC) is more enigmatic, surviving the relatively hot perihelic summer season despite being composed of much more volatile CO2. It is able to do so because of its unusually high albedo, which is larger than that of other bright regions in the seasonal <span class="hlt">cap</span> (e.g. Mountains of Mitchel). The proximity of the albedo of the RSPC to the critical albedo for stability raises the question of whether the RSPC exists in every Martian year. The ground based record is somewhat ambivalent. Douglass and Lowell reported that RSPC suddenly vanished at Ls=297deg in 1894 and did not reappear until Ls=0deg [1], and Kuiper reported that it disappeared in 1956 [2]; but both observations were questioned by contemporaries, who tended to attribute them to obscuring dust. Barker [3] reported a large amount of water vapor over the south polar <span class="hlt">cap</span> in 1969 that could be attributed to exposure of near surface water <span class="hlt">ice</span> during partial removal of the CO2 in the RSPC in 1969.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA601293','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA601293"><span>Coupling of Waves, Turbulence and Thermodynamics Across the <span class="hlt">Marginal</span> <span class="hlt">Ice</span> Zone</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-09-30</p> <p><span class="hlt">ice</span> . The albedo of sea <span class="hlt">ice</span> is large compared to open water, and most of the incoming solar radiation...ocean and the <span class="hlt">ice</span> pack where the seasonal retreat of the main <span class="hlt">ice</span> pack takes place. It is a highly variable sea <span class="hlt">ice</span> environment, usually comprised of...many individual floes of variable shape and size and made of mixed <span class="hlt">ice</span> types, from young forming <span class="hlt">ice</span> to fragmented multiyear <span class="hlt">ice</span> . The presence of sea</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910011738','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910011738"><span>The hemispherical asymmetry of the residual polar <span class="hlt">caps</span> on Mars</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lindner, Bernhard Lee</p> <p>1991-01-01</p> <p>A model of the polar <span class="hlt">caps</span> of Mars was created which allows: (1) for light penetration into the <span class="hlt">cap</span>; (2) <span class="hlt">ice</span> albedo to vary with age, latitude, hemisphere, dust content, and solar zenith angle; and (3) for diurnal variability. The model includes the radiative effects of clouds and dust, and heat transport as represented by a thermal wind. The model reproduces polar <span class="hlt">cap</span> regression data very well, including the survival of CO2 frost at the south pole and reproduces the general trend in the Viking Lander pressure data.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.C33A0669O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.C33A0669O"><span>Recent Increases in Snow Accumulation and Decreases in Sea-<span class="hlt">Ice</span> Concentration Recorded in a Coastal NW Greenland <span class="hlt">Ice</span> Core</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Osterberg, E. C.; Thompson, J. T.; Wong, G. J.; Hawley, R. L.; Kelly, M. A.; Lutz, E.; Howley, J.; Ferris, D. G.</p> <p>2013-12-01</p> <p>A significant rise in summer temperatures over the past several decades has led to widespread retreat of the Greenland <span class="hlt">Ice</span> Sheet (GIS) <span class="hlt">margin</span> and surrounding sea <span class="hlt">ice</span>. Recent observations from geodetic stations and GRACE show that <span class="hlt">ice</span> mass loss progressed from South Greenland up to Northwest Greenland by 2005 (Khan et al., 2010). Observations from meteorological stations at the U.S. Thule Air Force Base, remote sensing platforms, and climate reanalyses indicate a 3.5C mean annual warming in the Thule region and a 44% decrease in summer (JJAS) sea-<span class="hlt">ice</span> concentrations in Baffin Bay from 1980-2010. Mean annual precipitation near Thule increased by 12% over this interval, with the majority of the increase occurring in fall (SON). To improve projections of future <span class="hlt">ice</span> loss and sea-level rise in a warming climate, we are currently developing multi-proxy records (lake sediment cores, <span class="hlt">ice</span> cores, glacial geologic data, glaciological models) of Holocene climate variability and cryospheric response in NW Greenland, with a focus on past warm periods. As part of our efforts to develop a millennial-length <span class="hlt">ice</span> core paleoclimate record from the Thule region, we collected and analyzed snow pit samples and short firn cores (up to 20 m) from the coastal region of the GIS (2Barrel site; 76.9317 N, 63.1467 W) and the summit of North <span class="hlt">Ice</span> <span class="hlt">Cap</span> (76.938 N, 67.671 W) in 2011 and 2012, respectively. The 2Barrel <span class="hlt">ice</span> core was sampled using a continuous <span class="hlt">ice</span> core melting system at Dartmouth, and subsequently analyzed for major anion and trace element concentrations and stable water isotope ratios. Here we show that the 2Barrel <span class="hlt">ice</span> core spanning 1990-2010 records a 25% increase in mean annual snow accumulation, and is positively correlated (r = 0.52, p<0.01) with ERA-Interim precipitation. The 2Barrel annual sea-salt Na concentration is strongly correlated (r = 0.5-0.8, p<0.05) with summer and fall sea-<span class="hlt">ice</span> concentrations in northern Baffin Bay near Thule (Figure 1). We hypothesize that the positive</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B33A2075C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B33A2075C"><span>Multi-proxy Organic Geochemical Reconstruction of Holocene Hydroclimate Near the Western Greenland <span class="hlt">Ice</span> Sheet <span class="hlt">Margin</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cluett, A.; Thomas, E. K.</p> <p>2017-12-01</p> <p>Anthropogenic warming is projected to drive profound change to the Arctic hydrological cycle within the century, most notably in the intensification of rainfall, with potential feedbacks to the climate system and cryosphere. However, the relationship between hydroclimate and cryosphere variability is poorly constrained in the long-term due to a scarcity of high-resolution hydroclimate records from the Arctic. We analyze the stable hydrogen isotopes (dD) of leaf wax biomarkers from lacustrine sediments spanning the Holocene to 9000 cal. year B.P. from Lake Gus (67.032ºN, 52.427ºW, 300 m a.s.l.; informal name), a small lake approximately 90 km from the modern western <span class="hlt">margin</span> of the Greenland <span class="hlt">Ice</span> Sheet. We interpret the signal of aquatic leaf wax isotopes in the context of a survey of 100 modern lake water samples from western Greenland across an aridity gradient to better understand the combined climatological and hydrological controls on lake water dD in the study area. We compare variability of aquatic and terrestrial leaf wax isotopes to infer changes in relative moisture throughout the Holocene, and complement our leaf wax record with analysis of glycerol dialkyl glycerol tetraethers (GDGTs) and alkenones, to produce records of summer temperature. Pairing temperature and leaf wax isotope records provides a means to constrain the changing dD-temperature relationship throughout the Holocene and infer moisture source variability. In combination, these proxies produce a comprehensive hydroclimate record at approximately centennial scale to evaluate shifts in relative moisture, temperature, and moisture source, and to investigate the interaction between hydroclimate and Greenland <span class="hlt">Ice</span> Sheet <span class="hlt">margin</span> fluctuations through the Holocene.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C33G..08B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C33G..08B"><span>Characterizing the Chemical and Physical Signature of the 2015-16 El Niño in the Quelccaya <span class="hlt">Ice</span> <span class="hlt">Cap</span> Snow and <span class="hlt">Ice</span> to Calibrate Past ENSO Reconstructions.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beaudon, E.; Barker, J. D.; Kenny, D. V.; Thompson, L. G.</p> <p>2017-12-01</p> <p>Pacific Sea Surface Temperature (SST) anomalies have reached +3°C in the Niño 3.4 region in November 2015 making this one of the strongest El Niños in 100 years. This warm phase of the El Niño - Southern Oscillation (ENSO) has pronounced differential impacts across the tropical Pacific as well as in South America. Peru statistically experienced flooding in the northern and central regions and drought conditions in the south on the Altiplano. However, the 2015-16 El Nino event led to drought throughout the Peruvian Andes. El Niño is a warm and dry episode, phase locked with the accumulation season on the Quelccaya <span class="hlt">Ice</span> <span class="hlt">Cap</span> (QIC) so that this strong event create conditions favorable for enhanced surface ablation and dry deposition of soluble and insoluble aerosols. Here we present new glaciochemical (major and organic ions, dust, black carbon, oxygen isotopes) results from two consecutive snow and <span class="hlt">ice</span> sampling campaign on QIC framing the climax of the 2015/2016 El Niño episode in Peru. We allocate the ionic and black carbon sources and describe the biogenic and evaporitic contributions to Quelccaya snow chemistry under El Niño atmospheric conditions. Elution factors and ionic budgets are compared to those of the snow and <span class="hlt">ice</span> samples collected prior to the El Niño initiation and thereby assess the magnitude of the impact of El Niño-induced post-depositional processes. Our results provide the database needed to verify that: 1) melt and percolation induced by El Niño is identifiable in the prior year's snow layer and thus might be calibrated to the El Niño's strength; and 2) the concentration and co-association of biogenic (e.g., NH4, black carbon) and evaporitic (salts) species is enhanced and detectable deeper in the <span class="hlt">ice</span> and thereby might serve as a proxy for documenting past El Niño frequency. By capturing the chemical signature of a modern El Niño event occurring in a warming world, these results shed light on past ENSO variability preserved in <span class="hlt">ice</span> core</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24820354','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24820354"><span><span class="hlt">Ice</span> crystallization in ultrafine water-salt aerosols: nucleation, <span class="hlt">ice</span>-solution equilibrium, and internal structure.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hudait, Arpa; Molinero, Valeria</p> <p>2014-06-04</p> <p>Atmospheric aerosols have a strong influence on Earth's climate. Elucidating the physical state and internal structure of atmospheric aqueous aerosols is essential to predict their gas and water uptake, and the locus and rate of atmospherically important heterogeneous reactions. Ultrafine aerosols with sizes between 3 and 15 nm have been detected in large numbers in the troposphere and tropopause. Nanoscopic aerosols arising from bubble bursting of natural and artificial seawater have been identified in laboratory and field experiments. The internal structure and phase state of these aerosols, however, cannot yet be determined in experiments. Here we use molecular simulations to investigate the phase behavior and internal structure of liquid, vitrified, and crystallized water-salt ultrafine aerosols with radii from 2.5 to 9.5 nm and with up to 10% moles of ions. We find that both <span class="hlt">ice</span> crystallization and vitrification of the nanodroplets lead to demixing of pure water from the solutions. Vitrification of aqueous nanodroplets yields nanodomains of pure low-density amorphous <span class="hlt">ice</span> in coexistence with vitrified solute rich aqueous glass. The melting temperature of <span class="hlt">ice</span> in the aerosols decreases monotonically with an increase of solute fraction and decrease of radius. The simulations reveal that nucleation of <span class="hlt">ice</span> occurs homogeneously at the subsurface of the water-salt nanoparticles. Subsequent <span class="hlt">ice</span> growth yields phase-segregated, internally mixed, aerosols with two phases in equilibrium: a concentrated water-salt amorphous mixture and a spherical <span class="hlt">cap</span>-like <span class="hlt">ice</span> nanophase. The surface of the crystallized aerosols is heterogeneous, with <span class="hlt">ice</span> and solution exposed to the vapor. Free energy calculations indicate that as the concentration of salt in the particles, the advance of the crystallization, or the size of the particles increase, the stability of the spherical <span class="hlt">cap</span> structure increases with respect to the alternative structure in which a core of <span class="hlt">ice</span> is fully surrounded by</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007Geo....35..739G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007Geo....35..739G"><span>Pacing the post-Last Glacial Maximum demise of the Animas Valley glacier and the San Juan Mountain <span class="hlt">ice</span> <span class="hlt">cap</span>, Colorado</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guido, Zackry S.; Ward, Dylan J.; Anderson, Robert S.</p> <p>2007-08-01</p> <p>During the Last Glacial Maximum (LGM), a 5000 km2 <span class="hlt">ice</span> <span class="hlt">cap</span> covered the San Juan Mountains of southwest Colorado. The largest valley glacier draining this <span class="hlt">ice</span> <span class="hlt">cap</span> occupied the Animas Valley and flowed 91 km to the south. To characterize the post-LGM demise of the Animas Valley glacier, we employ cosmogenic 10Be to date the LGM terrace outside the terminal moraines and a suite of seven glacially polished bedrock samples. The 10Be depth profile within the terrace sediments suggests abandonment at 19.4 ± 1.5 ka. As deglaciation began, the ponding of Glacial Lake Durango behind the terminal moraines shut off fluvial sediment supply and caused terrace abandonment. The age of the terrace therefore records the initiation of LGM retreat. Negligible 10Be inheritance in the terrace profile suggests that glacial erosion of the bedrock valley floor from which sediments were derived erased all cosmogenic inventory. Glacial polish exposure ages monotonically decrease up-valley from 17.1 to 12.3 ka, with the single exception of a sample collected from a quartzite rib, yielding an average retreat rate of 15.4 m/yr. This trend and the lack of inherited cosmogenic nuclides in the terrace sediments imply that polish ages accurately record the glacial retreat history. Retreat of the Animas lobe began at a time of regional drying recorded in sediments and shoreline elevations of large lakes. Deglaciation lasted for ˜7.2 k.y., and was complete by 12.3 ± 1.0 ka. The retreat history followed the pattern of increasing insolation and was perhaps fastest during a time of regional drying.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030001036','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030001036"><span><span class="hlt">Ice</span> Accretion Formations on a NACA 0012 Swept Wing Tip in Natural <span class="hlt">Icing</span> Conditions</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vargas, Mario; Giriunas, Julius A.; Ratvasky, Thomas P.</p> <p>2002-01-01</p> <p>An experiment was conducted in the DeHavilland DHC-6 Twin Otter <span class="hlt">Icing</span> Research Aircraft at NASA Glenn Research Center to study the formation of <span class="hlt">ice</span> accretions on swept wings in natural <span class="hlt">icing</span> conditions. The experiment was designed to obtain <span class="hlt">ice</span> accretion data to help determine if the mechanisms of <span class="hlt">ice</span> accretion formation observed in the <span class="hlt">Icing</span> Research Tunnel are present in natural <span class="hlt">icing</span> conditions. The experiment in the Twin Otter was conducted using a NACA 0012 swept wing tip. The model enabled data acquisition at 0 deg, 15 deg, 25 deg, 30 deg, and 45 deg sweep angles. Casting data, <span class="hlt">ice</span> shape tracings, and close-up photographic data were obtained. The results showed that the mechanisms of <span class="hlt">ice</span> accretion formation observed in-flight agree well with the ones observed in the <span class="hlt">Icing</span> Research Tunnel. Observations on the end <span class="hlt">cap</span> of the airfoil showed the same strong effect of the local sweep angle on the formation of scallops as observed in the tunnel.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19..187K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19..187K"><span>Last Glacial-Interglacial Transition <span class="hlt">ice</span> dynamics in the Wicklow Mountains, Ireland</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Knight, Lauren; Boston, Clare; Lovell, Harold; Pepin, Nick</p> <p>2017-04-01</p> <p>Understanding of the extent and dynamics of former <span class="hlt">ice</span> masses in the Wicklow Mountains, Ireland, during the Last Glacial-Interglacial Transition (LGIT; 15-10 ka BP) is currently unresolved. Whilst it is acknowledged that the region hosted a local <span class="hlt">ice</span> <span class="hlt">cap</span> within the larger British-Irish <span class="hlt">Ice</span> Sheet at the Last Glacial Maximum (LGM; 27 ka BP), there has been little consideration of <span class="hlt">ice</span> <span class="hlt">cap</span> disintegration to a topographically constrained <span class="hlt">ice</span> mass during the LGIT. This research has produced the first regional glacial geomorphological map, through remote sensing (aerial photograph and digital terrain model interrogation) and field mapping. This has allowed both the style and extent of mountain glaciation and <span class="hlt">ice</span> recession dynamics during the LGIT to be established. This geomorphological mapping has highlighted that evidence for local glaciation in the Wicklow Mountains is more extensive than previously recognised, and that small icefields and associated outlet valley glaciers existed during the LGIT following disintegration of the Wicklow <span class="hlt">Ice</span> <span class="hlt">Cap</span>. A relative chronology based on morphostratigraphic principles is developed, which indicates complex patterns of <span class="hlt">ice</span> mass oscillation characterised by periods of both sustained retreat and minor readvance. Variations in the pattern of recession across the Wicklow Mountains are evident and appear to be influenced, in part, by topographic controls (e.g. slope, aspect, glacier hypsometry). In summary, this research establishes a relative chronology of glacial events in the region during the LGIT and presents constraints on <span class="hlt">ice</span> mass extent, dynamics and retreat patterns, offering an insight into small <span class="hlt">ice</span> mass behaviour in a warming climate.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990JGR....9513411C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990JGR....9513411C"><span>Arctic multiyear <span class="hlt">ice</span> classification and summer <span class="hlt">ice</span> cover using passive microwave satellite data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Comiso, J. C.</p> <p>1990-08-01</p> <p>The ability to classify and monitor Arctic multiyear sea <span class="hlt">ice</span> cover using multispectral passive microwave data is studied. Sea <span class="hlt">ice</span> concentration maps during several summer minima have been analyzed to obtain estimates of <span class="hlt">ice</span> surviving the summer. The results are compared with multiyear <span class="hlt">ice</span> concentrations derived from data the following winter, using an algorithm that assumes a certain emissivity for multiyear <span class="hlt">ice</span>. The multiyear <span class="hlt">ice</span> cover inferred from the winter data is approximately 25 to 40% less than the summer <span class="hlt">ice</span> cover minimum, suggesting that even during winter when the emissivity of sea <span class="hlt">ice</span> is most stable, passive microwave data may account for only a fraction of the total multiyear <span class="hlt">ice</span> cover. The difference of about 2×106 km2 is considerably more than estimates of advection through Fram Strait during the intervening period. It appears that as in the Antarctic, some multiyear <span class="hlt">ice</span> floes in the Arctic, especially those near the summer <span class="hlt">marginal</span> <span class="hlt">ice</span> zone, have first-year <span class="hlt">ice</span> or intermediate signatures in the subsequent winter. A likely mechanism for this is the intrusion of seawater into the snow-<span class="hlt">ice</span> interface, which often occurs near the <span class="hlt">marginal</span> <span class="hlt">ice</span> zone or in areas where snow load is heavy. Spatial variations in melt and melt ponding effects also contribute to the complexity of the microwave emissivity of multiyear <span class="hlt">ice</span>. Hence the multiyear <span class="hlt">ice</span> data should be studied in conjunction with the previous summer <span class="hlt">ice</span> data to obtain a more complete characterization of the state of the Arctic <span class="hlt">ice</span> cover. The total extent and actual areas of the summertime Arctic pack <span class="hlt">ice</span> were estimated to be 8.4×106 km2 and 6.2×106 km2, respectively, and exhibit small interannual variability during the years 1979 through 1985, suggesting a relatively stable <span class="hlt">ice</span> cover.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050167126','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050167126"><span>Palmer Quest: A Feasible Nuclear Fission "Vision Mission" to the Mars Polar <span class="hlt">Caps</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Carsey, F. D.; Beegle, L. W.; Nakagawa, R.; Elliott, J. O.; Matthews, J. B.; Coleman, M. L.; Hecht, M. H.; Ivaniov, A. B.; Head, J. W.; Milkovich, S.</p> <p>2005-01-01</p> <p>We are engaged in a NASA Vision Mission study, called Palmer Quest after the American Antarctic explorer Nathaniel Palmer, to assess the presence of life and evaluate the habitability of the basal domain of the Mars polar <span class="hlt">caps</span>. We address this goal through four objectives: 1. Determine the presence of amino acids, nutrients, and geochemical heterogeneity in the <span class="hlt">ice</span> sheet. 2. Quantify and characterize the provenance of the amino acids in Mars <span class="hlt">ice</span>. 3. Assess the stratification of outcropped units for indications of habitable zones. 4. Determine the accumulation of <span class="hlt">ice</span>, mineralogic material, and amino acids in Mars <span class="hlt">ice</span> <span class="hlt">caps</span> over the present epoch. Because of the defined scientific goal for the vision mission, the Palmer Quest focus is astrobiological; however, the results of the study make us optimistic that aggressive multi-platform in-situ missions that address a wide range of objectives, such as climate change, can be supported by variations of the approach used on this mission. Mission Overview: The Palmer Quest baseline</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.3163L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.3163L"><span>On the possibility of <span class="hlt">ice</span> on Greenland during the Eocene-Oligocene transition</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Langebroek, Petra M.; Nisancioglu, Kerim H.; Lunt, Daniel J.; Kathrine Pedersen, Vivi; Nele Meckler, A.; Gasson, Edward</p> <p>2017-04-01</p> <p>The Eocene-Oligocene transition ( 34 Ma) is one of the major climate transitions of the Cenozoic era. Atmospheric CO2 decreased from the high levels of the Greenhouse world (>1000 ppm) to values of about 600-700 ppm in the early Oligocene. High latitude temperatures dropped by several degrees, causing a large-scale expansion of the Antarctic <span class="hlt">ice</span> sheet. Concurrently, in the Northern Hemisphere, the inception of <span class="hlt">ice</span> <span class="hlt">caps</span> on Greenland is suggested by indirect evidence from <span class="hlt">ice</span>-rafted debris and changes in erosional regime. However, <span class="hlt">ice</span> sheet models have not been able to simulate extensive <span class="hlt">ice</span> on Greenland under the warm climate of the Eocene-Oligocene transition. We show that elevated bedrock topography is key in solving this inconsistency. During the late Eocene / early Oligocene, East Greenland bedrock elevations were likely higher than today due to tectonic and deep-Earth processes related to the break-up of the North Atlantic and the position of the Icelandic plume. When allowing for higher initial bedrock topography, we do simulate a large <span class="hlt">ice</span> <span class="hlt">cap</span> on Greenland under the still relatively warm climate of the early Oligocene. <span class="hlt">Ice</span> inception takes place at high elevations in the colder regions of North and Northeast Greenland; with the size of the <span class="hlt">ice</span> <span class="hlt">cap</span> being strongly dependent on the climate forcing and the bedrock topography applied.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMOS11B1656S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMOS11B1656S"><span>Quantifying the Floe Size Distribution in the <span class="hlt">Marginal</span> <span class="hlt">Ice</span> Zone from Satellite Imagery for use in Model Development and Validation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schweiger, A. J.; Stern, H. L.; Stark, M.; Zhang, J.; Hwang, P.; Steele, M.</p> <p>2013-12-01</p> <p>Several key processes in the <span class="hlt">Marginal</span> <span class="hlt">Ice</span> Zone (MIZ) of the Arctic Ocean are related to the size of the <span class="hlt">ice</span> floes, whose diameters range from meters to tens of kilometers. The floe size distribution (FSD) influences mechanical properties of the <span class="hlt">ice</span> and thus its response to winds, currents, and waves, which is likely to modify the air-sea momentum transfer. The FSD also influences the air-sea heat transfer and the response of the MIZ <span class="hlt">ice</span> cover to the thermal forcing. The FSD also has a significant role in lateral melting. No existing sea-<span class="hlt">ice</span>/ocean models currently simulate the FSD in the MIZ. Significant uncertainties in FSD-related processes hinder model incorporation of the FSD, and model development must heavily depend on observations of the FSD for parameterization, calibration, and validation. To support the development and implementation of the FSD in the <span class="hlt">Marginal</span> <span class="hlt">Ice</span> Zone Modeling and Assimilation System (MIZMAS), we have conducted an analysis of the FSD in the Beaufort and Chukchi seas using three sources of satellite imagery: NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua satellites, the Canadian Space Agency's synthetic aperture radar (SAR) on RADARSAT, and declassified National Technical Means imagery from the Global Fiducials Library (GFL) of the U.S. Geological Survey. The MODIS visible and short-wave infrared bands have a pixel size of 250 meters, and are only useful in cloud-free regions. The SAR imagery is unaffected by clouds and darkness, and has a pixel size of 50 meters. The GFL visible imagery, with a pixel size of 1 meter, is only useful in cloud-free regions. The resolution and spatial extent of the various image products allows us to identify <span class="hlt">ice</span> floes of all sizes from 10 meters to 100 kilometers. The general procedure for identifying <span class="hlt">ice</span> floes in the imagery is as follows: delineate cloud-free regions (if necessary); choose a threshold to separate <span class="hlt">ice</span> from water, and create a binary image; apply the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016QSRv..141...85B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016QSRv..141...85B"><span>Last Glacial Maximum cirque glaciation in Ireland and implications for reconstructions of the Irish <span class="hlt">Ice</span> Sheet</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barth, Aaron M.; Clark, Peter U.; Clark, Jorie; McCabe, A. Marshall; Caffee, Marc</p> <p>2016-06-01</p> <p>Reconstructions of the extent and height of the Irish <span class="hlt">Ice</span> Sheet (IIS) during the Last Glacial Maximum (LGM, ∼19-26 ka) are widely debated, in large part due to limited age constraints on former <span class="hlt">ice</span> <span class="hlt">margins</span> and due to uncertainties in the origin of the trimlines. A key area is southwestern Ireland, where various LGM reconstructions range from complete coverage by a contiguous IIS that extends to the continental shelf edge to a separate, more restricted southern-sourced Kerry-Cork <span class="hlt">Ice</span> <span class="hlt">Cap</span> (KCIC). We present new 10Be surface exposure ages from two moraines in a cirque basin in the Macgillycuddy's Reeks that provide a unique and unequivocal constraint on <span class="hlt">ice</span> thickness for this region. Nine 10Be ages from an outer moraine yield a mean age of 24.5 ± 1.4 ka while six ages from an inner moraine yield a mean age of 20.4 ± 1.2 ka. These ages show that the northern flanks of the Macgillycuddy's Reeks were not covered by the IIS or a KCIC since at least 24.5 ± 1.4 ka. If there was more extensive <span class="hlt">ice</span> coverage over the Macgillycuddy's Reeks during the LGM, it occurred prior to our oldest ages.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018QSRv..186..186N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018QSRv..186..186N"><span>Geomorphology and till architecture of terrestrial palaeo-<span class="hlt">ice</span> streams of the southwest Laurentide <span class="hlt">Ice</span> Sheet: A borehole stratigraphic approach</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Norris, Sophie L.; Evans, David J. A.; Cofaigh, Colm Ó.</p> <p>2018-04-01</p> <p>A multidimensional study, utilising geomorphological mapping and the analysis of regional borehole stratigraphy, is employed to elucidate the regional till architecture of terrestrial palaeo-<span class="hlt">ice</span> streams relating to the Late Wisconsinan southwest Laurentide <span class="hlt">Ice</span> Sheet. Detailed mapping over a 57,400 km2 area of southwestern Saskatchewan confirms previous reconstructions of a former southerly flowing <span class="hlt">ice</span> stream, demarcated by a 800 km long corridor of megaflutes and mega-scale glacial lineations (<span class="hlt">Ice</span> Stream 1) and cross cut by three, formerly southeast flowing <span class="hlt">ice</span> streams (<span class="hlt">Ice</span> Streams 2A, B and C). Analysis of the lithologic and geophysical characteristics of 197 borehole samples within these corridors reveals 17 stratigraphic units comprising multiple tills and associated stratified sediments overlying preglacial deposits, the till thicknesses varying with both topography and distance down corridor. Reconciling this regional till architecture with the surficial geomorphology reveals that surficial units are spatially consistent with a dynamic switch in flow direction, recorded by the cross cutting corridors of <span class="hlt">Ice</span> Streams 1, 2A, B and C. The general thickening of tills towards lobate <span class="hlt">ice</span> stream <span class="hlt">margins</span> is consistent with subglacial deformation theory and variations in this pattern on a more localised scale are attributed to influences of subglacial topography including thickening at buried valley <span class="hlt">margins</span>, thinning over uplands and thickening in overridden <span class="hlt">ice-marginal</span> landforms.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.H23E1429C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.H23E1429C"><span>Continuous monitoring of deep groundwater at the <span class="hlt">ice</span> <span class="hlt">margin</span>, Kangerlussuaq, West Greenland</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Claesson Liljedahl, L.; Lehtinen, A. M.; Ruskeeniemi, T.; Engström, J.; Hansson, K.; Sundberg, J.; Henkemans, E.; Frape, S.; Johansson, S.; Acuna, J.</p> <p>2012-12-01</p> <p>The deep geologic repository (DGR) concept for the long-term management of used nuclear fuel involves the containment and isolation of used nuclear fuel at depths of approximately 500-1000 m below ground surface within a suitable geological formation for hundreds of thousands of years. A key objective of the used fuel DGR research programs of the Swedish, Finnish and Canadian nuclear waste management organizations (SKB, POSIVA and NWMO, respectively) is to further understanding of geosphere stability and long-term evolution. Future glaciation represents an intense external perturbation of a DGR situated in northern latitudes. To advance the understanding of processes associated with glaciation and their impact on the long-term performance of a DGR, the Greenland Analogue Project (GAP) was initiated by SKB, POSIVA and NWMO. The GAP was initiated in 2008 as a four-year field and modelling study utilizing the Greenland <span class="hlt">ice</span> sheet and sub-surface conditions in West Greenland as an analogue for the conditions expected to prevail in Fennoscandia and Canada during future glacial cycles. One of the main aims of the GAP is to improve the understanding of how groundwater flow and water chemistry is influenced by an existing <span class="hlt">ice</span> sheet and continuous permafrost. One way to study this is by monitoring deep drillholes. A 645 m deep drillhole (DH-GAP04) was drilled and instrumented in July 2011 at the <span class="hlt">ice</span>-sheet <span class="hlt">margin</span> in Kangerlussuaq, West Greenland to investigate the hydrogeochemical and hydrogeological conditions of a subglacial environment. Of particular interest is the recharge of glacial meltwater, and understanding to what depth it intrudes into the bedrock and whether it affects the chemistry and physico-chemical properties of the deep groundwater. DH-GAP04 is instrumented with a two-packer multi-sensor system, installed at a depth of 560 m, dividing the hole into three sections. The upper section extends from the base of permafrost (about 350 m) down to the upper packer</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.C53A0279G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.C53A0279G"><span>Rapid Access <span class="hlt">Ice</span> Drill: A New Tool for Exploration of the Deep Antarctic <span class="hlt">Ice</span> Sheets and Subglacial Geology</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goodge, J. W.; Severinghaus, J. P.</p> <p>2014-12-01</p> <p>The Rapid Access <span class="hlt">Ice</span> Drill (RAID) will penetrate the Antarctic <span class="hlt">ice</span> sheets in order to core through deep <span class="hlt">ice</span>, the glacial bed, and into bedrock below. This new technology will provide a critical first look at the interface between major <span class="hlt">ice</span> <span class="hlt">caps</span> and their subglacial geology. Currently in construction, RAID is a mobile drilling system capable of making several long boreholes in a single field season in Antarctica. RAID is interdisciplinary and will allow access to polar paleoclimate records in <span class="hlt">ice</span> >1 Ma, direct observation at the base of the <span class="hlt">ice</span> sheets, and recovery of rock cores from the <span class="hlt">ice</span>-covered East Antarctic craton. RAID uses a diamond rock-coring system as in mineral exploration. Threaded drill-pipe with hardened metal bits will cut through <span class="hlt">ice</span> using reverse circulation of Estisol for pressure-compensation, maintenance of temperature, and removal of <span class="hlt">ice</span> cuttings. Near the bottom of the <span class="hlt">ice</span> sheet, a wireline bottom-hole assembly will enable diamond coring of <span class="hlt">ice</span>, the glacial bed, and bedrock below. Once complete, boreholes will be kept open with fluid, <span class="hlt">capped</span>, and made available for future down-hole measurement of thermal gradient, heat flow, <span class="hlt">ice</span> chronology, and <span class="hlt">ice</span> deformation. RAID will also sample for extremophile microorganisms. RAID is designed to penetrate up to 3,300 meters of <span class="hlt">ice</span> and take sample cores in less than 200 hours. This rapid performance will allow completion of a borehole in about 10 days before moving to the next drilling site. RAID is unique because it can provide fast borehole access through thick <span class="hlt">ice</span>; take short <span class="hlt">ice</span> cores for paleoclimate study; sample the glacial bed to determine <span class="hlt">ice</span>-flow conditions; take cores of subglacial bedrock for age dating and crustal history; and create boreholes for use as an observatory in the <span class="hlt">ice</span> sheets. Together, the rapid drilling capability and mobility of the drilling system, along with <span class="hlt">ice</span>-penetrating imaging methods, will provide a unique 3D picture of the interior Antarctic <span class="hlt">ice</span> sheets.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011EOSTr..92R..88S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011EOSTr..92R..88S"><span>Research Spotlight: No tipping point for Arctic Ocean <span class="hlt">ice</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schultz, Colin</p> <p>2011-03-01</p> <p>Declines in the summer sea <span class="hlt">ice</span> extent have led to concerns within the scientific community that the Arctic Ocean may be nearing a tipping point, beyond which the sea <span class="hlt">ice</span> <span class="hlt">cap</span> could not recover. In such a scenario, greenhouse gases in the atmosphere trap outgoing radiation, and as the Sun beats down 24 hours a day during the Arctic summer, temperatures rise and melt what remains of the polar sea <span class="hlt">ice</span> <span class="hlt">cap</span>. The Arctic Ocean, now less reflective, would absorb more of the Sun’s warmth, a feedback loop that would keep the ocean <span class="hlt">ice</span> free. However, new research by Tietsche et al. suggests that even if the Arctic Ocean sees an <span class="hlt">ice</span>-free summer, it would not lead to catastrophic runaway <span class="hlt">ice</span> melt. The researchers, using a general circulation model of the global ocean and the atmosphere, found that Arctic sea <span class="hlt">ice</span> recovers within 2 years of an imposed <span class="hlt">ice</span>-free summer to the conditions dictated by general climate conditions during that time. Furthermore, they found that this quick recovery occurs whether the <span class="hlt">ice</span>-free summer is triggered in 2000 or in 2060, when global temperatures are predicted to be 2°C warmer. (Geophysical Research Letters, doi:10.1029/2010GL045698, 2011)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..1113700S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..1113700S"><span>Nature and History of Cenozoic Polar <span class="hlt">Ice</span> Covers: The Case of the Greenland <span class="hlt">Ice</span> Sheet</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Spielhagen, R.; Thiede, J.</p> <p>2009-04-01</p> <p>The nature of the modern climate System is characterized by steep temperature gradients between the tropical and polar climatic zones and finds its most spectacular expression in the formation of <span class="hlt">ice</span> <span class="hlt">caps</span> in high Northern and Southern latitudes. While polar regions of Planet Earth have been glaciated repeatedly in the long course of their geological history, the Cenozoic transition from a „greenhouse" to an „icehouse" has in fact produced a unique climatic scenario with bipolar glacation, different from all previous glacial events. The Greenland <span class="hlt">ice</span> sheet is a remainder of the Northern Hemisphere last glacial maximum <span class="hlt">ice</span> sheets and represents hence a spectacular anomaly. Geological records from Tertiary and Quaternary terrestrial and oceanic sections have documented the presence of <span class="hlt">ice</span> <span class="hlt">caps</span> and sea <span class="hlt">ice</span> covers both on the Southern as well on the Northern hemisphere since Eocene times, aqpprox. 45 Mio. years ago. While this was well known in the case of Antarctica already for some time, previous ideas about the origin of Northern hemisphere glaciation during Pliocene times (approx. 2-3 Mio. years ago) have been superceded by the dramatic findings of coarse, terrigenous <span class="hlt">ice</span> rafted detritus in Eocene sediments from Lomonosov Ridge (close to the North Pole) apparently slightly older than the oldest Antarctic records of <span class="hlt">ice</span> rafting.The histories of the onset of Cenozoic glaciation in high Northern and Southern latitudes remain enigmatic and are presently subjects of international geological drilling projects, with prospects to reveal some of their secrets over the coming decades. By virtue of the physical porperties of <span class="hlt">ice</span> and the processes controlling the dynamics of the turn-over of the <span class="hlt">ice</span>-sheets only young records of glacial <span class="hlt">ice</span> <span class="hlt">caps</span> on Antarctica and on Greemnland have been preserved, on Greenland with <span class="hlt">ice</span> probably not older than a few hundred thousand years, on Antarctica potentially as old as 1.5-2 Mio. years. Deep-sea cores with their records od <span class="hlt">ice</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5791158','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5791158"><span>3-D Imaging of Mars’ Polar <span class="hlt">Ice</span> <span class="hlt">Caps</span> Using Orbital Radar Data</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Foss, Frederick J.; Putzig, Nathaniel E.; Campbell, Bruce A.; Phillips, Roger J.</p> <p>2018-01-01</p> <p>Since its arrival in early 2006, various instruments aboard NASA’s Mars Reconnaissance Orbiter (MRO) have been collecting a variety of scientific and engineering data from orbit around Mars. Among these is the SHAllow RADar (SHARAD) instrument, supplied by Agenzia Spaziale Italiana (ASI) and designed for subsurface sounding in the 15–25 MHz frequency band. As of this writing, MRO has completed over 46,000 nearly polar orbits of Mars, 30% of which have included active SHARAD data collection. By 2009, a sufficient density of SHARAD coverage had been obtained over the polar regions to support 3-D processing and analysis of the data. Using tools and techniques commonly employed in terrestrial seismic data processing, we have processed subsets of the resulting collection of SHARAD observations covering the north and south polar regions as SHARAD 3-D volumes, imaging the interiors of the north and south polar <span class="hlt">ice</span> <span class="hlt">caps</span> known, respectively, as Planum Boreum and Planum Australe. After overcoming a series of challenges revealed during the 3-D processing and analysis, a completed Planum Boreum 3-D volume is currently being used for scientific research. Lessons learned in the northern work fed forward into our 3-D processing and analysis of the Planum Australe 3-D volume, currently under way. We discuss our experiences with these projects and present results and scientific insights stemming from these efforts. PMID:29400351</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016QSRv..153..192H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016QSRv..153..192H"><span>Early Holocene deglaciation of Drangajökull, Vestfirðir, Iceland</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harning, David J.; Geirsdóttir, Áslaug; Miller, Gifford H.; Zalzal, Kate</p> <p>2016-12-01</p> <p>The status of Icelandic <span class="hlt">ice</span> <span class="hlt">caps</span> during the early Holocene provides important constraints on North Atlantic climate and the mechanisms behind natural climate variability. A recent study postulates that Drangajökull on Vestfirðir, Iceland, persisted through the Holocene Thermal Maximum (HTM, 7.9-5.5 ka) and may be a relic from the last glacial period. We test this hypothesis with a suite of sediment cores from threshold lakes both proximal and distal to the <span class="hlt">ice</span> <span class="hlt">cap</span>'s modern <span class="hlt">margin</span>. Distal lakes document rapid early Holocene deglaciation from the coast and across the highlands south of the glacier. Sediment from Skorarvatn, a lake to the north of Drangajökull, shows that the northern <span class="hlt">margin</span> of the <span class="hlt">ice</span> <span class="hlt">cap</span> reached a size comparable to its contemporary limit by ∼10.3 ka. Two southeastern lakes with catchments extending well beneath modern Drangajökull confirm that by ∼9.2 ka, the <span class="hlt">ice</span> <span class="hlt">cap</span> was reduced to ∼20% of its current area. A continuous 10.3ka record of biological productivity from Skorarvatn's sediment indicates local peak warmth occurred between 9 and 6.9 ka. The combination of warm and dry summers on Vestfirðir suggests that Drangajökull very likely melted completely shortly after 9.2 ka, similar to most other Icelandic <span class="hlt">ice</span> <span class="hlt">caps</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGC23H..03G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGC23H..03G"><span>Quelccaya <span class="hlt">Ice</span> Core Evidence of Widespread Atmospheric Pollution from Colonial Metallurgy after the Spanish Conquest of South America (1532 AD)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gabrielli, P.; Uglietti, C.; Cooke, C. A.; Thompson, L. G.</p> <p>2014-12-01</p> <p>A few <span class="hlt">ice</span> core records recovered from remote arctic regions suggest a widespread impact of toxic trace elements (Pb, Cu, Sb, As and Bi) to the North Hemisphere atmosphere prior to the onset of the Industrial Revolution (1780s-1830s). In the Southern Hemisphere, evidence for preindustrial trace element emissions are, to date, limited to sediment cores recovered from lakes located within the immediate airshed of major metallurgical centers of South America. Thus it remains unresolved whether they could have had a larger scale impact. Here, we present an annually resolved <span class="hlt">ice</span> core record of anthropogenic trace element deposition from the remote drilling site of the Quelccaya <span class="hlt">Ice</span> <span class="hlt">Cap</span> (Peru) that spans 793-1989 AD. During the pre-Inca period (i.e., prior to ~1450 AD) the deposition of trace elements was dominated by the fallout of aeolian dust from the deglaciated <span class="hlt">margins</span> of the <span class="hlt">ice</span> <span class="hlt">cap</span> and of ash from occasional volcanic eruptions. In contrast, the <span class="hlt">ice</span> core record indicates a clear anthropogenic signal emerging after the onset of large scale colonial mining and metallurgy (1532-1820 AD), ~300 years prior to the Industrial Revolution during the last part of the Little <span class="hlt">Ice</span> Age. This shift was coincidental with a major technological transition for silver extraction (1572 AD), from lead-based smelting to mercury amalgamation, that initiated a major increase in ore mining and milling that likely resulted in an increase of metallic dust emissions. While atmospheric trace element deposition resulting from colonial metallurgy was certainly much larger than during the pre-Colonial period, trace element fallout during the Colonial era was still several factors lower than during the 20th century, when the construction of the trans-Andean railway and highways promoted a widespread societal and industrial development of South America.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20050170951&hterms=CAPS&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DCAPS','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20050170951&hterms=CAPS&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DCAPS"><span>High LMD GCM Resolution Modeling of the Seasonal Evolution of the Martian Northern Permanent <span class="hlt">Cap</span>: Comparison with Mars Express OMEGA Observations</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Levrard, B.; Forget, F.; Montmessin, F.; Schmitt, B.; Doute, S.; Langevin, Y.; Poulet, F.; Bibring, J. P.; Gondet, B.</p> <p>2005-01-01</p> <p>Analyses of imaging data from Mariner, Viking and MGS have shown that surface properties (albedo, temperature) of the northern <span class="hlt">cap</span> present significant differences within the summer season and between Mars years. These observations include differential brightening and/or darkening between polar areas from the end of the spring to midsummer. These differences are attributed to changes in grain size or dust content of surface <span class="hlt">ice</span>. To better understand the summer behavior of the permanent northern polar <span class="hlt">cap</span>, we perfomed a high resolution modeling (approximately 1 deg x 1 deg.) of northern <span class="hlt">cap</span> in the Martian Climate/water cycle as simulated by the Laboratoire de Meteorologie Dynamique (LMD) global climate model. We compare the predicted properties of the surface <span class="hlt">ice</span> (<span class="hlt">ice</span> thickness, temperature) with the Mars Express Omega summer observations of the northern <span class="hlt">cap</span>. albedo and thermal inertia svariations model. In particular, albedo variations could be constrained by OMEGA data. Meteorological predictions of the LMD GCM wil be presented at the conference to interpret the unprecedently resolved OMEGA observations. The specific evolution of regions of interest (<span class="hlt">cap</span> center, Chasma Boreal...) and the possibility of late summer global <span class="hlt">cap</span> brightening will be discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMPP33A2279P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMPP33A2279P"><span>Initial Insights into the Quaternary Evolution of the Laurentide <span class="hlt">Ice</span> Sheet on Southeastern Baffin Island</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pendleton, S.; Anderson, R. S.; Miller, G. H.; Refsnider, K. A.</p> <p>2015-12-01</p> <p>Increasing Arctic summer temperatures in recent decades and shrinking cold-based <span class="hlt">ice</span> <span class="hlt">caps</span> on Cumberland Peninsula, Baffin Island, are exposing ancient landscapes complete with uneroded bedrock surfaces. Previous work has indicated that these upland surfaces covered with cold-based <span class="hlt">ice</span> experience negligible erosion compared with the valleys and fjords systems that contain fast-flowing <span class="hlt">ice</span>. Given the appearance of highly weathered bedrock, it is argued that these landscapes have remained largely unchanged since at least the last interglaciation (~120 ka), and have likely experienced multiple cycles of <span class="hlt">ice</span> expansion and retraction with little erosion throughout the Quaternary. To explore this hypothesis, we use multiple cosmogenic radionuclides (26Al and 10Be) to investigate and provide insight into longer-term cryosphere activity and landscape evolution. 26Al/10Be in surfaces recently exposed exhibit a wide range of exposure-burial histories. Total exposure-burial times range from ~0.3 - 1.5 My and estimated erosion rates from 0.5 - 6.2 m Ma-1. The upland surfaces of the Penny <span class="hlt">Ice</span> <span class="hlt">cap</span> generally experienced higher erosion rates (~0.45 cm ka-1) than those covered by smaller <span class="hlt">ice</span> <span class="hlt">caps</span> (~0.2 cm ka-1). The cumulative burial/exposure histories in high, fjord-edge locations indicate that significant erosion north of the Penny <span class="hlt">Ice</span> <span class="hlt">Cap</span> ceased between ~600 and 800 ka, suggesting that Laurentide <span class="hlt">Ice</span> Sheet (LIS) organization and fjord inception was underway by at least this time. Additionally, 26Al/10Be ratios near production values despite high inventories from a coastal summit 50 km east of the Penny <span class="hlt">Ice</span> Cape suggest that that area has not experienced appreciable burial by <span class="hlt">ice</span>, suggesting that it was never inundated by the LIS. Moreover, these initial data suggest a variable and dynamic cryosphere in the region and provide insight into how large <span class="hlt">ice</span> sheets evolved and organized themselves during the Quaternary.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA138558','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA138558"><span>Investigation of <span class="hlt">Ice</span> Dynamics in the <span class="hlt">Marginal</span> Zone.</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1983-12-01</p> <p>Unclassified SECURITV CLASSIFICATIGON OF THIS PAGE (111mon Dole Rntormi) Unclassified MTY CLASMSFICATION OF THIS PA6SS16M POW & 6m " trength rather...modeling work, two points are recognized to need a deep consideration: transient cases and stochastic modeling. It is not certain how the velocity...if the thickness effect is indeed significant. The nature of the <span class="hlt">ice</span> edge jet should be shown: is it transient or steady, forced or caused by <span class="hlt">ice</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1911611S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1911611S"><span><span class="hlt">Ice</span> crystals classification using airborne measurements in mixing phase</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sorin Vajaiac, Nicolae; Boscornea, Andreea</p> <p>2017-04-01</p> <p>This paper presents a case study of <span class="hlt">ice</span> crystals classification from airborne measurements in mixed-phase clouds. <span class="hlt">Ice</span> crystal shadow is recorded with CIP (Cloud Imaging Probe) component of <span class="hlt">CAPS</span> (Cloud, Aerosol, and Precipitation Spectrometer) system. The analyzed flight was performed in the south-western part of Romania (between Pietrosani, Ramnicu Valcea, Craiova and Targu Jiu), with a Beechcraft C90 GTX which was specially equipped with a <span class="hlt">CAPS</span> system. The temperature, during the fly, reached the lowest value at -35 °C. These low temperatures allow the formation of <span class="hlt">ice</span> crystals and influence their form. For the here presented <span class="hlt">ice</span> crystals classification a special software, OASIS (Optical Array Shadow Imaging Software), developed by DMT (Droplet Measurement Technologies), was used. The obtained results, as expected are influenced by the atmospheric and microphysical parameters. The particles recorded where classified in four groups: edge, irregular, round and small.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70028746','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70028746"><span>Hydrography and circulation of <span class="hlt">ice-marginal</span> lakes at Bering Glacier, Alaska, U.S.A.</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Josberger, E.G.; Shuchman, R.A.; Meadows, G.A.; Savage, S.; Payne, J.</p> <p>2006-01-01</p> <p>An extensive suite of physical oceanographic, remotely sensed, and water quality measurements, collected from 2001 through 2004 in two <span class="hlt">ice-marginal</span> lakes at Bering Glacier, Alaska-Berg Lake and Vitus Lake-show that each has a unique circulation controlled by their specific physical forcing within the glacial system. Conductivity profiles from Berg Lake, perched 135 m a.s.l., show no salt in the lake, but the temperature profiles indicate an apparently unstable situation, the 4??C density maximum is located at 10 m depth, not at the bottom of the lake (90 m depth). Subglacial discharge from the Steller Glacier into the bottom of the lake must inject a suspended sediment load sufficient to <span class="hlt">marginally</span> stabilize the water column throughout the lake. In Vitus Lake, terminus positions derived from satellite imagery show that the glacier terminus rapidly retreated from 1995 to the present resulting in a substantial expansion of the volume of Vitus Lake. Conductivity and temperature profiles from the tidally influenced Vitus Lake show a complex four-layer system with diluted (???50%) seawater in the bottom of the lake. This lake has a complex vertical structure that is the result of convection generated by <span class="hlt">ice</span> melting in salt water, stratification within the lake, and freshwater entering the lake from beneath the glacier and surface runoff. Four consecutive years, from 2001 to 2004, of these observations in Vitus Lake show little change in the deep temperature and salinity conditions, indicating limited deep water renewal. The combination of the lake level measurements with discharge measurements, through a tidal cycle, by an acoustic Doppler Current Profiler (ADCP) deployed in the Seal River, which drains the entire Bering system, showed a strong tidal influence but no seawater entry into Vitus Lake. The ADCP measurements combined with lake level measurements established a relationship between lake level and discharge, which when integrated over a tidal cycle, gives a</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994GeoRu..83..743S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994GeoRu..83..743S"><span>Early Paleozoic paleogeography of the northern Gondwana <span class="hlt">margin</span>: new evidence for Ordovician-Silurian glaciation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Semtner, A.-K.; Klitzsch, E.</p> <p>1994-12-01</p> <p>During the Early Paleozoic, transgressions and the distribution of sedimentary facies on the northern Gondwana <span class="hlt">margin</span> were controlled by a regional NNW-SSE to almost north-south striking structural relief. In Early Silurian times, a eustatic highstand enabled the sea to reach its maximum southward extent. The counterclockwise rotation of Gondwana during the Cambrian and Early Ordovician caused the northern Gondwana <span class="hlt">margin</span> to shift from intertropical to southern polar latitudes in Ordovician times. Glacial and periglacial deposits are reported from many localities in Morocco, Algeria, Niger, Libya, Chad, Sudan, Jordan and Saudi Arabia. The Late Ordovician glaciation phase was followed by a period of a major glacioeustatic sea-level rise in the Early Silurian due to the retreat of the <span class="hlt">ice-cap</span>. As a consequence of the decreasing water circulation in the basin centers (Central Arabia, Murzuk- and Ghadames basins), highly bituminous euxinic shales were deposited. These shales are considered to be the main source rock of Paleozoic oil and gas deposits in parts of Saudi Arabia, Libya and Algeria. The following regression in the southern parts of the Early Silurian sea was probably caused by a second glacial advance, which was mainly restricted to areas in Chad, Sudan and Niger. Evidence for glacial activity and fluvioglacial sedimentation is available from rocks overlying the basal Silurian shale in north-east Chad and north-west Sudan. The Early Silurian <span class="hlt">ice</span> advance is considered to be responsible for the termination of euxinic shale deposition in the basin centers.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.8433B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.8433B"><span>Dynamic behaviour of <span class="hlt">ice</span> streams: the North East Greenland <span class="hlt">Ice</span> Stream</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bons, Paul D.; Jansen, Daniela; Schaufler, Svenja; de Riese, Tamara; Sachau, Till; Weikusat, Ilka</p> <p>2017-04-01</p> <p>The flow of <span class="hlt">ice</span> towards the <span class="hlt">margins</span> of <span class="hlt">ice</span> sheets is far from homogeneous. <span class="hlt">Ice</span> streams show much higher flow velocities than their surroundings and may extend, for example the North East Greenland <span class="hlt">Ice</span> Stream (NEGIS), towards the centre of the sheet. The elevated flow velocity inside an <span class="hlt">ice</span> stream causes <span class="hlt">marginal</span> shearing and convergent flow, which in turn leads to folding of <span class="hlt">ice</span> layers. Such folding was documented in the Petermann Glacier in northern Greenland (Bons et al., 2016). 3-dimensional structural modelling using radargrams shows that folding is more intense adjacent to NEGIS than inside it, despite the strong flow perturbation at NEGIS. Analysis of fold amplitude as a function of stratigraphic level indicates that folding adjacent to NEGIS ceased in the early Holocene, while it is currently active inside NEGIS. The presence of folds adjacent of NEGIS, but also at other sites far in the interior of the Greenland <span class="hlt">Ice</span> Sheet with no direct connection to the present-day surface velocity field, indicates that <span class="hlt">ice</span> flow is not only heterogeneous in space (as the present-day flow velocity field shows), but also in time. The observations suggest that <span class="hlt">ice</span> streams are dynamic, ephemeral structures that emerge and die out, and may possibly shift during their existence, but leave traces within the stratigraphic layering of the <span class="hlt">ice</span>. The dynamic nature of <span class="hlt">ice</span> streams such as NEGIS speaks against deterministic models for their accelerated flow rates, such as bedrock topography or thermal perturbations at their base. Instead, we suggest that <span class="hlt">ice</span> streams can also result from strain localisation induced inside the <span class="hlt">ice</span> sheet by the complex coupling of rheology, anisotropy, grain-size changes and possibly shear heating. Bons, P.D., Jansen, D., Mundel, F., Bauer, C.C., Binder, T., Eisen, O., Jessell, M.W., Llorens, M.-G, Steinbach, F., Steinhage, D. & Weikusat, I. 2016. Converging flow and anisotropy cause large-scale folding in Greenland's <span class="hlt">ice</span> sheet. Nature Communications 7</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70033550','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70033550"><span>Observations of the north polar water <span class="hlt">ice</span> annulus on Mars using THEMIS and TES</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wagstaff, K.L.; Titus, T.N.; Ivanov, A.B.; Castano, R.; Bandfield, J.L.</p> <p>2008-01-01</p> <p>The Martian seasonal CO2 <span class="hlt">ice</span> <span class="hlt">caps</span> advance and retreat each year. In the spring, as the CO2 <span class="hlt">cap</span> gradually retreats, it leaves behind an extensive defrosting zone from the solid CO2 <span class="hlt">cap</span> to the location where all CO2 frost has sublimated. We have been studying this phenomenon in the north polar region using data from the THermal EMission Imaging System (THEMIS), a visible and infra-red (IR) camera on the Mars Odyssey spacecraft, and the Thermal Emission Spectrometer (TES) on Mars Global Surveyor. Recently, we discovered that some THEMIS images of the CO2 defrosting zone contain evidence for a distinct defrosting phenomenon: some areas just south of the CO2 <span class="hlt">cap</span> edge are too bright in visible wavelengths to be defrosted terrain, but too warm in the IR to be CO2 <span class="hlt">ice</span>. We hypothesize that we are seeing evidence for a seasonal annulus of water <span class="hlt">ice</span> (frost) that recedes with the seasonal CO2 <span class="hlt">cap</span>, as predicted by previous workers. In this paper, we describe our observations with THEMIS and compare them to simultaneous observations by TES and OMEGA. All three instruments find that this phenomenon is distinct from the CO2 <span class="hlt">cap</span> and most likely composed of water <span class="hlt">ice</span>. We also find strong evidence that the annulus widens as it recedes. Finally, we show that this annulus can be detected in the raw THEMIS data as it is collected, enabling future long-term onboard monitoring. ?? 2007.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JGRF..117.2029B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JGRF..117.2029B"><span>In situ cosmogenic radiocarbon production and 2-D <span class="hlt">ice</span> flow line modeling for an Antarctic blue <span class="hlt">ice</span> area</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buizert, Christo; Petrenko, Vasilii V.; Kavanaugh, Jeffrey L.; Cuffey, Kurt M.; Lifton, Nathaniel A.; Brook, Edward J.; Severinghaus, Jeffrey P.</p> <p>2012-06-01</p> <p>Radiocarbon measurements at <span class="hlt">ice</span> <span class="hlt">margin</span> sites and blue <span class="hlt">ice</span> areas can potentially be used for <span class="hlt">ice</span> dating, ablation rate estimates and paleoclimatic reconstructions. Part of the measured signal comes from in situ cosmogenic 14C production in <span class="hlt">ice</span>, and this component must be well understood before useful information can be extracted from 14C data. We combine cosmic ray scaling and production estimates with a two-dimensional <span class="hlt">ice</span> flow line model to study cosmogenic 14C production at Taylor Glacier, Antarctica. We find (1) that 14C production through thermal neutron capture by nitrogen in air bubbles is negligible; (2) that including <span class="hlt">ice</span> flow patterns caused by basal topography can lead to a surface 14C activity that differs by up to 25% from the activity calculated using an ablation-only approximation, which is used in all prior work; and (3) that at high ablation <span class="hlt">margin</span> sites, solar modulation of the cosmic ray flux may change the strength of the dominant spallogenic production by up to 10%. As part of this effort we model two-dimensional <span class="hlt">ice</span> flow along the central flow line of Taylor Glacier. We present two methods for parameterizing vertical strain rates, and assess which method is more reliable for Taylor Glacier. Finally, we present a sensitivity study from which we conclude that uncertainties in published cosmogenic production rates are the largest source of potential error. The results presented here can inform ongoing and future 14C and <span class="hlt">ice</span> flow studies at <span class="hlt">ice</span> <span class="hlt">margin</span> sites, including important paleoclimatic applications such as the reconstruction of paleoatmospheric 14C content of methane.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998QSRv...17..243D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998QSRv...17..243D"><span>Glacimarine Sedimentary Processes and Facies on the Polar North Atlantic <span class="hlt">Margins</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dowdeswell, J. A.; Elverhfi, A.; Spielhagen, R.</p> <p></p> <p>Major contrasts in the glaciological, oceanic and atmospheric parameters affecting the Polar North Atlantic, both over space between its eastern and western <span class="hlt">margins</span>, and through time from full glacial to interglacial conditions, have lead to the deposition of a wide variety of sedimentary facies in these <span class="hlt">ice</span>-influenced seas. The dynamics of the glaciers and <span class="hlt">ice</span> sheets on the hinterlands surrounding the Polar North Atlantic have exterted a major influence on the processes, rates and patterns of sedimentation on the continental <span class="hlt">margins</span> of the Norwegian and Greenland seas over the Late Cenozoic. The western <span class="hlt">margin</span> is influenced by the cold East Greenland Current and the Svalbard <span class="hlt">margin</span> by the northernmost extent of the warm North Atlantic Drift and the passage of relatively warm cyclonic air masses. In the fjords of Spitsbergen and the northwestern Barents Sea, glacial meltwater is dominant in delivering sediments. In the fjords of East Greenland the large numbers of icebergs produced from fast-flowing outlets of the Greenland <span class="hlt">Ice</span> Sheet play a more significant role in sedimentation. During full glacials, sediments are delivered to the shelf break from fast-flowing <span class="hlt">ice</span> streams, which drain huge basins within the parent <span class="hlt">ice</span> sheet. Large prograding fans located on the continental slope offshore of these <span class="hlt">ice</span> streams are made up of stacked debris flows. Large-scale mass failures, turbidity currents, and gas-escape structures also rework debris in continental slope and shelf settings. Even during interglacials, both the <span class="hlt">margins</span> and the deep ocean basins beyond them retain a glacimarine overprint derived from debris in far-travelled icebergs and sea <span class="hlt">ice</span>. Under full glacial conditions, the glacier influence is correspondingly stronger, and this is reflected in the glacial and glacimarine facies deposited at these times.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GeoRL..43.3193C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GeoRL..43.3193C"><span><span class="hlt">Ice</span> <span class="hlt">cap</span> melting and low-viscosity crustal root explain the narrow geodetic uplift of the Western Alps</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chéry, J.; Genti, M.; Vernant, P.</p> <p>2016-04-01</p> <p>More than 10 years of geodetic measurements demonstrate an uplift rate of 1-3 mm/yr of the high topography region of the Western Alps. By contrast, no significant horizontal motion has been detected. Two uplift mechanisms have been proposed: (1) the isostatic response to denudation responsible for only a fraction of the observed uplift and (2) the rebound induced by the Wurmian <span class="hlt">ice</span> <span class="hlt">cap</span> melting which predicts a broader uplifting region than the one evidenced by geodetic observations. Using a numerical model to fit the geodetic data, we show that a crustal viscosity contrast between the foreland and the central part of the Alps, the latter being weaker with a viscosity of 1021 Pa s, is needed. The vertical rates are enhanced if the strong uppermost mantle beneath the Moho is interrupted across the Alps, therefore allowing a weak vertical rheological anomaly over the entire lithosphere.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/211927-transport-contaminants-arctic-sea-ice-surface-ocean-currents','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/211927-transport-contaminants-arctic-sea-ice-surface-ocean-currents"><span>Transport of contaminants by Arctic sea <span class="hlt">ice</span> and surface ocean currents</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Pfirman, S.</p> <p>1995-12-31</p> <p>Sea <span class="hlt">ice</span> and ocean currents transport contaminants in the Arctic from source areas on the shelves, to biologically active regions often more than a thousand kilometers away. Coastal regions along the Siberian <span class="hlt">margin</span> are polluted by discharges of agricultural, industrial and military wastes in river runoff, from atmospheric deposition and ocean dumping. The Kara Sea is of particular concern because of deliberate dumping of radioactive waste, as well as the large input of polluted river water. Contaminants are incorporated in <span class="hlt">ice</span> during suspension freezing on the shelves, and by atmospheric deposition during drift. <span class="hlt">Ice</span> releases its contaminant load through brinemore » drainage, surface runoff of snow and meltwater, and when the floe disintegrates. The <span class="hlt">marginal</span> <span class="hlt">ice</span> zone, a region of intense biological activity, may also be the site of major contaminant release. Potentially contaminated <span class="hlt">ice</span> from the Kara Sea is likely to influence the <span class="hlt">marginal</span> <span class="hlt">ice</span> zones of the Barents and Greenland seas. From studies conducted to date it appears that sea <span class="hlt">ice</span> from the Kara Sea does not typically enter the Beaufort Gyre, and thus is unlikely to affect the northern Canadian and Alaskan <span class="hlt">margins</span>.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006DPS....38.6704G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006DPS....38.6704G"><span>The Residual South Polar <span class="hlt">Cap</span> of Mars: Stable or Transitory?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Glenar, David A.; Bonev, B. P.; Hansen, G. B.; James, P. B.; Bjorkman, J. E.</p> <p>2006-09-01</p> <p>It remains uncertain whether the CO2 residual south polar <span class="hlt">cap</span> (RSPC) is a permanent feature of the present Mars climate, or whether it occasionally sublimes completely during years marked by dramatic dust storm activity. While there is no firm evidence for complete disappearance of the <span class="hlt">cap</span> in the past, observations show that the residual <span class="hlt">cap</span> lost significant CO2 material in the spring / summer season prior to the Mariner 9 encounter. On the other hand, little interannual change has been observed in the RSPC during the MGS mission [1], despite the massive early-spring dust storm which occurred in 2001. We discuss whether a global dust storm beginning near perihelion could enhance the net CO2 sublimation sufficiently to completely remove the RSPC. We utilize a surface-plus-aerosol radiative transfer model under conditions of both modest and heavy atmospheric dust loading. The sublimination behavior depends critically on the extended (visible to thermal IR) albedo spectrum of the polar CO2 <span class="hlt">ice</span>, which we have strongly constrained [2] from a combination of HST photometric imaging, ground based near-IR imaging spectroscopy and spectroscopic measurements by the Mars Express PFS. The extension of the <span class="hlt">cap</span> spectrum to thermal IR wavelengths was accomplished by forward modeling using a semi-infinite grid of scattering grains. Results of this analysis depend on the strength of possible feedback mechanisms (increased surface dust content; exposure of water <span class="hlt">ice</span>) as well as on the possibility of dust confinement by the polar vortex; but the general conclusion is that it would require multiple, intense dust storms in a given year in order to completely remove the CO2 <span class="hlt">ice</span> veneer layer. This work has been supported by the NASA Planetary Astronomy and Mars Data Analysis Programs. [1] Benson and James, Icarus 174, 513, 2005; [2] Bonev et al., Planet Space Sci. 2006 (accepted).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMPP13D1850R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMPP13D1850R"><span>Snowball Earth: Skating on Thin <span class="hlt">Ice</span>?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roberson, A. L.; Stout, A. M.; Pollard, D.; Kasting, J. F.</p> <p>2011-12-01</p> <p>There is evidence of at least two intervals of widespread glaciation during the late Neoproterozoic (600-800 Myr ago), which are commonly referred to as "Snowball Earth" episodes. The global nature of these events is indicated by the fact that glacial deposits are found at low paleolatitudes during this time. Models of a global glacial event have produced a variety of solutions at low latitudes: thick <span class="hlt">ice</span>, thin <span class="hlt">ice</span>, slushball, and open ocean . The latter two models are similar, except that the slushball model has its <span class="hlt">ice</span>-line at higher latitudes. To be viable, a model has to be able to account for the survival of life through the glaciations and also explain the existence of <span class="hlt">cap</span> carbonates and other glacial debris deposited at low latitudes. The "thick-<span class="hlt">ice</span>" model is not viable because kilometers of <span class="hlt">ice</span> prevent the penetration of light necessary for the photosynthetic biota below. The "slushball" model is also not viable as it does not allow the formation of <span class="hlt">cap</span> carbonates. The "thin-<span class="hlt">ice</span>" model has been discussed previously and can account for continuation of photosynthetic life and glacial deposits at low paleolatitudes. The recently proposed "open-ocean" or "Jormungand" model also satisfies these requirements. What is it, though, that causes some models to produce thin <span class="hlt">ice</span> near the equator and others to have open water there? We examine this question using a zonally symmetric energy balance climate model (EBM) with flowing sea glaciers to determine what parameter ranges produce each type of solution.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010002409&hterms=water&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D50%26Ntt%3Dwater','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010002409&hterms=water&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D50%26Ntt%3Dwater"><span>The Contribution of Water <span class="hlt">Ice</span> Clouds to the Water Cycle in the North Polar Region of Mars: Preliminary Analysis</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bass, D. S.; Tamppari, L. K.</p> <p>2000-01-01</p> <p>While it has long been known that Mars' north residual polar <span class="hlt">cap</span> and the Martian regolith are significant sources of atmospheric water vapor, the amount of water vapor observed in the northern spring season by the Viking Mars Atmospheric Water Detector instrument (MAWD) cannot be attributed to <span class="hlt">cap</span> and regolith sources alone. Kahn suggested that <span class="hlt">ice</span> hazes may be the mechanism by which additional water is supplied to the Martian atmosphere. Additionally, a significant decrease in atmospheric water vapor was observed in the late northern summer that could not be correlated with the return of the cold seasonal C02 <span class="hlt">ice</span>. While the detection of water <span class="hlt">ice</span> clouds on Mars indicate that water exists in Mars' atmosphere in several different phases, the extent to which water <span class="hlt">ice</span> clouds play a role in moving water through the Martian atmosphere remains uncertain. Work by Bass et. al. suggested that the time dependence of water <span class="hlt">ice</span> <span class="hlt">cap</span> seasonal variability and the increase in atmospheric water vapor depended on the polar <span class="hlt">cap</span> center reaching 200K, the night time saturation temperature. Additionally, they demonstrated that a decrease in atmospheric water vapor may be attributed to deposition of water <span class="hlt">ice</span> onto the surface of the polar <span class="hlt">cap</span>; temperatures were still too warm at this time in the summer for the deposition of carbon dioxide. However, whether water <span class="hlt">ice</span> clouds contribute significantly to this variability is unknown. Additional information is contained in original extended abstract.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C51E..07C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C51E..07C"><span>Investigation of Controls on <span class="hlt">Ice</span> Dynamics in Northeast Greenland from <span class="hlt">Ice</span>-Thickness Change Record Using <span class="hlt">Ice</span> Sheet System Model (ISSM)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Csatho, B. M.; Larour, E. Y.; Schenk, A. F.; Schlegel, N.; Duncan, K.</p> <p>2015-12-01</p> <p>We present a new, complete <span class="hlt">ice</span> thickness change reconstruction of the NE sector of the Greenland <span class="hlt">Ice</span> Sheet for 1978-2014, partitioned into changes due to surface processes and <span class="hlt">ice</span> dynamics. Elevation changes are computed from all available stereoscopic DEMs, and laser altimetry data (ICESat, ATM, LVIS). Surface Mass Balance and firn-compaction estimates are from RACMO2.3. Originating nearly at the divide of the Greenland <span class="hlt">Ice</span> Sheet (GrIS), the dynamically active North East <span class="hlt">Ice</span> Stream (NEGIS) is capable of rapidly transmitting <span class="hlt">ice-marginal</span> forcing far inland. Thus, NEGIS provides a possible mechanism for a rapid drawdown of <span class="hlt">ice</span> from the <span class="hlt">ice</span> sheet interior as <span class="hlt">marginal</span> warming, thinning and retreat continues. Our altimetry record shows accelerating dynamic thinning of Zachariæ Isstrom, initially limited to the deepest part of the fjord near the calving front (1978-2000) and then extending at least 75 km inland. At the same time, changes over the Nioghalvfjerdsfjorden (N79) Glacier are negligible. We also detect localized large dynamic changes at higher elevations on the <span class="hlt">ice</span> sheet. These thickness changes, often occurring at the onset of fast flow, could indicate rapid variations of basal lubrication due to rerouting of subglacial drainage. We investigate the possible causes of the observed spatiotemporal pattern of <span class="hlt">ice</span> sheet elevation changes using the <span class="hlt">Ice</span> Sheet System Model (ISSM). This work build on our previous studies examining the sensitivity of <span class="hlt">ice</span> flow within the Northeast Greenland <span class="hlt">Ice</span> Stream (NEGIS) to key fields, including <span class="hlt">ice</span> viscosity, basal drag. We assimilate the new altimetry record into ISSM to improve the reconstruction of basal friction and <span class="hlt">ice</span> viscosity. Finally, airborne geophysical (gravity, magnetic) and <span class="hlt">ice</span>-penetrating radar data is examined to identify the potential geologic controls on the <span class="hlt">ice</span> thickness change pattern. Our study provides the first comprehensive reconstruction of <span class="hlt">ice</span> thickness changes for the entire NEGIS drainage basin during</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008P%26SS...56..181B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008P%26SS...56..181B"><span>Albedo models for the residual south polar <span class="hlt">cap</span> on Mars: Implications for the stability of the <span class="hlt">cap</span> under near-perihelion global dust storm conditions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bonev, Boncho P.; Hansen, Gary B.; Glenar, David A.; James, Philip B.; Bjorkman, Jon E.</p> <p>2008-02-01</p> <p>It is uncertain whether the residual (perennial) south polar <span class="hlt">cap</span> on Mars is a transitory or a permanent feature in the current Martian climate. While there is no firm evidence for complete disappearance of the <span class="hlt">cap</span> in the past, clearly observable changes have been documented. Observations suggest that the perennial <span class="hlt">cap</span> lost more CO 2 material in the spring/summer season prior to the Mariner 9 mission than in those same seasons monitored by Viking and Mars Global Surveyor. In this paper we examine one process that may contribute to these changes - the radiative effects of a planet encircling dust storm that starts during late Martian southern spring on the stability of the perennial south polar <span class="hlt">cap</span>. To approach this, we model the radiative transfer through a dusty planetary atmosphere bounded by a sublimating CO 2 surface. A critical parameter for this modeling is the surface albedo spectrum from the near-UV to the thermal-IR, which was determined from both space-craft and Earth-based observations covering multiple wavelength regimes. Such a multi-wavelength approach is highly desirable since one spectral band by itself cannot tightly constrain the three-parameter space for polar surface albedo models, namely photon "scattering length" in the CO 2 <span class="hlt">ice</span> and the amounts of intermixed water and dust. Our results suggest that a planet-encircling dust storm with onset near solstice can affect the perennial <span class="hlt">cap</span>'s stability, leading to advanced sublimation in a "dusty" year. Since the total amount of solid CO 2 removed by a single storm may be less than the total CO 2 thickness, a series of dust storms would be required to remove the entire residual CO 2 <span class="hlt">ice</span> layer from the south perennial <span class="hlt">cap</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AcMSn..31....1Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AcMSn..31....1Z"><span>Modeling ocean wave propagation under sea <span class="hlt">ice</span> covers</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Xin; Shen, Hayley H.; Cheng, Sukun</p> <p>2015-02-01</p> <p>Operational ocean wave models need to work globally, yet current ocean wave models can only treat <span class="hlt">ice</span>-covered regions crudely. The purpose of this paper is to provide a brief overview of <span class="hlt">ice</span> effects on wave propagation and different research methodology used in studying these effects. Based on its proximity to land or sea, sea <span class="hlt">ice</span> can be classified as: landfast <span class="hlt">ice</span> zone, shear zone, and the <span class="hlt">marginal</span> <span class="hlt">ice</span> zone. All <span class="hlt">ice</span> covers attenuate wave energy. Only long swells can penetrate deep into an <span class="hlt">ice</span> cover. Being closest to open water, wave propagation in the <span class="hlt">marginal</span> <span class="hlt">ice</span> zone is the most complex to model. The physical appearance of sea <span class="hlt">ice</span> in the <span class="hlt">marginal</span> <span class="hlt">ice</span> zone varies. Grease <span class="hlt">ice</span>, pancake <span class="hlt">ice</span>, brash <span class="hlt">ice</span>, floe aggregates, and continuous <span class="hlt">ice</span> sheet may be found in this zone at different times and locations. These types of <span class="hlt">ice</span> are formed under different thermal-mechanical forcing. There are three classic models that describe wave propagation through an idealized <span class="hlt">ice</span> cover: mass loading, thin elastic plate, and viscous layer models. From physical arguments we may conjecture that mass loading model is suitable for disjoint aggregates of <span class="hlt">ice</span> floes much smaller than the wavelength, thin elastic plate model is suitable for a continuous <span class="hlt">ice</span> sheet, and the viscous layer model is suitable for grease <span class="hlt">ice</span>. For different sea <span class="hlt">ice</span> types we may need different wave <span class="hlt">ice</span> interaction models. A recently proposed viscoelastic model is able to synthesize all three classic models into one. Under suitable limiting conditions it converges to the three previous models. The complete theoretical framework for evaluating wave propagation through various <span class="hlt">ice</span> covers need to be implemented in the operational ocean wave models. In this review, we introduce the sea <span class="hlt">ice</span> types, previous wave <span class="hlt">ice</span> interaction models, wave attenuation mechanisms, the methods to calculate wave reflection and transmission between different <span class="hlt">ice</span> covers, and the effect of <span class="hlt">ice</span> floe breaking on shaping the sea <span class="hlt">ice</span> morphology</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A13O..05S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A13O..05S"><span>Atmospheric Depositions of Natural and Anthropogenic Aerosols on the Guliya <span class="hlt">Ice</span> <span class="hlt">Cap</span> (Northwestern Tibetan Plateau) during the last 340 years</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sierra Hernandez, R.; Gabrielli, P.; Beaudon, E.; Thompson, L. G.; Wegner, A.</p> <p>2017-12-01</p> <p>Anthropogenic emissions (e.g., greenhouse gases, trace elements (TE) including toxic metals) to the atmosphere have dramatically increased since the Industrial Revolution in the 19th century. High temperature processes such as fossil fuel combustion and pyrometallurgy generate fumes and fine particles (< 0.1µm - 10 µm) containing toxic metals (e.g., Cd, Zn, Pb) that if not captured by emission controls can be transported over long distances by air masses and subsequently deposited far from their emission sources. Atmospheric TE monitoring programs, along with emission inventories, have been conducted in recent decades. However, they lack pre-1900 information which is necessary to contextualize current atmospheric changes. Thus, it is necessary to use natural archives (e.g., <span class="hlt">ice</span> cores, lake sediments) to reconstruct atmospheric pollution trends. Glaciers and <span class="hlt">ice</span> sheets preserve atmospheric species that are deposited as snow accumulates over time, creating valuable records of past climatic/environmental conditions. Polar <span class="hlt">ice</span> cores have been used to obtain TE records. However, only a few non-polar <span class="hlt">ice</span> core records provide continuous information back to pre-industrial times. Thus, <span class="hlt">ice</span> core records of TEs from mid- and low-latitudes are needed to assess the spatial and temporal extent and levels of pollution in the environment. Here we present records of 29 TEs spanning the period 1650-1991 CE from the Guliya <span class="hlt">ice</span> <span class="hlt">cap</span> in the western Kunlun Mountains, northwest Tibetan Plateau to assess their natural and anthropogenic sources. The Guliya TEs records show two distinct periods with only crustal contributions prior to the 1850s and non-crustal contributions (Pb, Cd, Sb, Zn, Sn) after the 1850s. Enrichments of Pb, Cd, Sb, and Zn in Guliya between 1850 and 1950 can be attributed primarily to coal combustion emissions from western countries (Europe) while regional emissions (fossil fuel combustion, mining/smelting, fertilizers) from Central Asia, and probably from Kashgar in</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999DSRII..46.2331E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999DSRII..46.2331E"><span>Benthic response of Munnopsurus atlanticus (Crustacea Isopoda) to the carbon content of the near-bottom sedimentary environment on the southern <span class="hlt">margin</span> of the <span class="hlt">Cap</span>-Ferret Canyon (Bay of Biscay, northeastern Atlantic Ocean)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Elizalde, M.; Weber, O.; Pascual, A.; Sorbe, J. C.; Etcheber, H.</p> <p>1999-10-01</p> <p>The response of benthic organisms to organic carbon fluxes in a continental <span class="hlt">margin</span> region was studied by investigating the diet of the suprabenthic isopod Munnopsurus atlanticus, which is well represented on the southern <span class="hlt">margin</span> of the <span class="hlt">Cap</span>-Ferret Canyon (Bay of Biscay). The grain-size distribution, foraminiferal assemblages, particulate organic carbon and pigments found in the sediment and in the gut of the isopods were analyzed. These results suggest that M. atlanticus feeds on benthic agglutinated foraminifers which are in a high "nourishment state" and represent a link between primary and secondary producers.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GeoRL..4311720J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GeoRL..4311720J"><span>Accelerated <span class="hlt">ice</span> shelf rifting and retreat at Pine Island Glacier, West Antarctica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jeong, Seongsu; Howat, Ian M.; Bassis, Jeremy N.</p> <p>2016-11-01</p> <p>Pine Island Glacier has undergone several major iceberg calving events over the past decades. These typically occurred when a rift at the heavily fractured shear <span class="hlt">margin</span> propagated across the width of the <span class="hlt">ice</span> shelf. This type of calving is common on polar <span class="hlt">ice</span> shelves, with no clear connection to ocean-<span class="hlt">ice</span> dynamic forcing. In contrast, we report on the recent development of multiple rifts initiating from basal crevasses in the center of the <span class="hlt">ice</span> shelf, resulted in calving further upglacier than previously observed. Coincident with rift formation was the sudden disintegration of the <span class="hlt">ice</span> mélange that filled the northern shear <span class="hlt">margin</span>, resulting in <span class="hlt">ice</span> sheet detachment from this <span class="hlt">margin</span>. Examination of <span class="hlt">ice</span> velocity suggests that this internal rifting resulted from the combination of a change in <span class="hlt">ice</span> shelf stress regime caused by disintegration of the mélange and intensified melting within basal crevasses, both of which may be linked to ocean forcing.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11858273','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11858273"><span>Self-sustaining Mars colonies utilizing the North Polar <span class="hlt">Cap</span> and the Martian atmosphere.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Powell, J; Maise, G; Paniagua, J</p> <p>2001-01-01</p> <p>A revolutionary new concept for the early establishment of robust, self-sustaining Martian colonies is described. The colonies would be located on the North Polar <span class="hlt">Cap</span> of Mars and utilize readily available water <span class="hlt">ice</span> and the CO2 Martian atmosphere as raw materials to produce all of the propellants, fuel, air, water, plastics, food, and other supplies needed by the colony. The colonists would live in thermally insulated large, comfortable habitats under the <span class="hlt">ice</span> surface, fully shielded from cosmic rays. The habitats and supplies would be produced by a compact, lightweight (~4 metric tons) nuclear powered robotic unit termed ALPH (Atomic Liberation of Propellant and Habitat), which would land 2 years before the colonists arrived. Using a compact, lightweight 5 MW (th) nuclear reactor/steam turbine (1 MW(e)) power source and small process units (e.g., H2O electrolyzer, H2 and O2 liquefiers, methanator, plastic polymerizer, food producer, etc.) ALPH would stockpile many hundreds of tons of supplies in melt cavities under the <span class="hlt">ice</span>, plus insulated habitats, to be in place and ready for use when the colonists landed. With the stockpiled supplies, the colonists would construct and operate rovers and flyers to explore the surface of Mars. ALPH greatly reduces the amount of Earth supplied material needed and enables large permanent colonies on Mars. It also greatly reduces human and mission risks and vastly increases the capability not only for exploration of the surrounding Martian surface, but also the <span class="hlt">ice</span> <span class="hlt">cap</span> itself. The North Polar <span class="hlt">Cap</span> is at the center of the vast ancient ocean that covered much of the Martian Northern Hemisphere. Small, nuclear heated robotic probes would travel deep (1 km or more) inside the <span class="hlt">ice</span> <span class="hlt">cap</span>, collecting data on its internal structure, the composition and properties of the ancient Martian atmosphere, and possible evidence of ancient life forms (microfossils, traces of DNA, etc.) that were deposited either by wind or as remnants of the ancient ocean</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.P41A1913B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.P41A1913B"><span>Dust-Driven Halos on the Martian South Polar Residual <span class="hlt">CAP</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Becerra, P.; Byrne, S.; Brown, A. J.</p> <p>2013-12-01</p> <p>The CO2 <span class="hlt">ice</span> South Polar Residual <span class="hlt">Cap</span> (SPRC) on Mars may be a sensitive indicator of inter-annual planetary climate variability. Imaging by HiRISE [1], and CTX [2] found that many scarps and pits in the 'Swiss cheese terrain' [3] of the SPRC exhibited a bright 'halo' around their edges. These halos appeared during Martian southern summer in Mars Year 28 (MY28, [4]), and have been observed in only one of eight mars years for which observations at high enough resolution exist. We hypothesize that the formation of these features is linked to the late-summer global dust storm of MY28 and report on observations and formation models. We surveyed HiRISE, CTX, and CRISM [5] data to constrain the optical properties and composition of the halos, as well as their time of appearance and location within the SPRC. The halos appeared throughout most of the surface area of the SPRC between Ls 280° and 330° in MY28. The widest portions of the halos occurred adjacent to north-facing walls, and the brightest parts adjacent to sun-facing walls, which points to a connection between insolation and halo appearance. CRISM spectral products rule out the presence of water <span class="hlt">ice</span> as a factor in the halos' appearance. These data also imply larger CO2 <span class="hlt">ice</span> grain sizes where the bright halos were seen, which are normally associated with lower, rather than higher, albedos [6]. Thus, we also ruled out CO2 <span class="hlt">ice</span> grain size differences as the main cause for the halos. The remaining possibility is that the halos appeared due to differences in dust content between the terrain adjacent to the pit walls and the surrounding <span class="hlt">ice</span>. To investigate this we made a Hapke [7] surface reflectance model in which the CO2 <span class="hlt">ice</span> grain size, dust volumetric content and dust particle size were free parameters. We used the HiRISE and CRISM bandpass coefficients to simulate HiRISE I/F values and CRISM spectra, and attempted to match the HiRISE RED I/F, HiRISE BG/RED color ratio, and the CRISM 1.43 μm band depths. A self</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP53D..01T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP53D..01T"><span>A Perspective on the Unprecedented Impact of the 2015/16 El Niño on the Tropical Quelccaya <span class="hlt">Ice</span> <span class="hlt">Cap</span>, Peru from Four Decades of Surface Sampling and Deep Drilling</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thompson, L. G.; Mosley-Thompson, E.; Davis, M. E.; Beaudon, E.; Lin, P. N.</p> <p>2016-12-01</p> <p>Atmospheric warming ( 0.10oC/decade in the last 70 years) has been observed over the Peruvian Andes and is likely the most dominant forcing for recent glacier wasting. The <span class="hlt">margin</span> of the Quelccaya <span class="hlt">ice</span> <span class="hlt">cap</span> (QIC, 13o56'S; 70o50'W 5670 m asl) has been retreating for the last 50 years as the 0oC isotherm now rises seasonally above the QIC summit. Recent major El Niños have augmented the effects of this warming trend, and the impacts of the 2015/16 El Niño were more devastating than those experienced during the 1982/83 event of similar magnitude. The <span class="hlt">ice</span> <span class="hlt">margin</span> has retreated and thinned dramatically over the last year, and currently the QIC is smaller than it has been in over 6 millennia. Since 1974 we have conducted a program of surface sampling and deep drilling on the QIC. The seasonal δ18O oscillations which are obvious in the fresh snow (and underlying firn) deposited within each thermal year are attenuated at depth due to melting and percolation through the firn, and this has become increasingly pronounced over 43 years. Although the trend in δ18O of the top layers has remained constant, the increasing density and decreasing seasonal amplitude suggest that surface warming is enhancing post-depositional effects even on fresh snow. Snow deposited during the 1982/83 and 2015/16 El Niños show comparable isotopic enrichment ( 5‰) over the average of "normal" and La Niña years, but the net balance during the latest event was 55% below average, while that for the 82/83 event was 10% below average. These observations suggest the possibility that a threshold has been crossed such that future El Niños may exert stronger impacts on Peruvian glaciers than in the past. The surface studies on the QIC show that the δ18O composition of the snow is affected by synoptic-scale variations in the upper atmosphere over the tropical western Atlantic and the northern Amazon Basin and by sea surface temperatures in the equatorial Pacific Ocean. During major El Niños the latter</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014Icar..237..315S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014Icar..237..315S"><span>Volcano-<span class="hlt">ice</span> interactions in the Arsia Mons tropical mountain glacier deposits</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Scanlon, Kathleen E.; Head, James W.; Wilson, Lionel; Marchant, David R.</p> <p>2014-07-01</p> <p>Fan-shaped deposits (FSD) superposed on the sides of the Tharsis Montes volcanic edifices are widely interpreted to have been formed by cold-based glaciation during the Late Amazonian, a period when the Tharsis Montes were volcanically active. We survey the ∼166,000 km2 Arsia Mons FSD using new, high-resolution image and topography data and describe numerous landforms indicative of volcano-<span class="hlt">ice</span> interactions. These include (1) steep-sided mounds, morphologically similar to terrestrial tindar that form by subglacial eruptions under low confining pressure; (2) steep-sided, leveed flow-like landforms with depressed centers, interpreted to be subglacial lava flows with chilled <span class="hlt">margins</span>; (3) digitate flows that we interpret as having resulted from lava flow interaction with glacial <span class="hlt">ice</span> at the upslope <span class="hlt">margin</span> of the glacier; (4) a plateau with the steep sides and smooth <span class="hlt">capping</span> flow of a basaltic tuya, a class of feature formed when subglacial eruptions persist long enough to melt through the overlying <span class="hlt">ice</span>; and (5) low, areally extensive mounds that we interpret as effusions of pillow lava, formed by subglacial eruptions under high confining pressure. Together, these eruptions involved hundreds of cubic kilometers of subglacially erupted lava; thermodynamic relationships indicate that this amount of lava would have produced a similar volume of subglacial liquid meltwater, some of which carved fluvial features in the FSD. Landforms in the FSD also suggest that glaciovolcanic heat transfer induced local wet-based flow in some parts of the glacier. Glaciovolcanic environments are important microbial habitats on Earth, and the evidence for widespread liquid water in the Amazonian-aged Arsia Mons FSD makes it one of the most recent potentially habitable environments on Mars. Such environments could have provided refugia for any life that developed on Mars and survived on its surface until the Amazonian.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C23C0797N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C23C0797N"><span>A downscaled 1 km dataset of daily Greenland <span class="hlt">ice</span> sheet surface mass balance components (1958-2014)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Noel, B.; Van De Berg, W. J.; Fettweis, X.; Machguth, H.; Howat, I. M.; van den Broeke, M. R.</p> <p>2015-12-01</p> <p>The current spatial resolution in regional climate models (RCMs), typically around 5 to 20 km, remains too coarse to accurately reproduce the spatial variability in surface mass balance (SMB) components over the narrow ablation zones, <span class="hlt">marginal</span> outlet glaciers and neighbouring <span class="hlt">ice</span> <span class="hlt">caps</span> of the Greenland <span class="hlt">ice</span> sheet (GrIS). In these topographically rough terrains, the SMB components are highly dependent on local variations in topography. However, the relatively low-resolution elevation and <span class="hlt">ice</span> mask prescribed in RCMs contribute to significantly underestimate melt and runoff in these regions due to unresolved valley glaciers and fjords. Therefore, near-km resolution topography is essential to better capture SMB variability in these spatially restricted regions. We present a 1 km resolution dataset of daily GrIS SMB covering the period 1958-2014, which is statistically downscaled from data of the polar regional climate model RACMO2.3 at 11 km, using an elevation dependence. The dataset includes all individual SMB components projected on the elevation and <span class="hlt">ice</span> mask from the GIMP DEM, down-sampled to 1 km. Daily runoff and sublimation are interpolated to the 1 km topography using a local regression to elevation valid for each day specifically; daily precipitation is bi-linearly downscaled without elevation corrections. The daily SMB dataset is then reconstructed by summing downscaled precipitation, sublimation and runoff. High-resolution elevation and <span class="hlt">ice</span> mask allow for properly resolving the narrow ablation zones and valley glaciers at the GrIS <span class="hlt">margins</span>, leading to significant increase in runoff estimate. In these regions, and especially over narrow glaciers tongues, the downscaled products improve on the original RACMO2.3 outputs by better representing local SMB patterns through a gradual ablation increase towards the GrIS <span class="hlt">margins</span>. We discuss the impact of downscaling on the SMB components in a case study for a spatially restricted region, where large elevation</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.4114P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.4114P"><span>Bedrock Erosion Surfaces Record Former East Antarctic <span class="hlt">Ice</span> Sheet Extent</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Paxman, Guy J. G.; Jamieson, Stewart S. R.; Ferraccioli, Fausto; Bentley, Michael J.; Ross, Neil; Armadillo, Egidio; Gasson, Edward G. W.; Leitchenkov, German; DeConto, Robert M.</p> <p>2018-05-01</p> <p>East Antarctica hosts large subglacial basins into which the East Antarctic <span class="hlt">Ice</span> Sheet (EAIS) likely retreated during past warmer climates. However, the extent of retreat remains poorly constrained, making quantifying past and predicted future contributions to global sea level rise from these marine basins challenging. Geomorphological analysis and flexural modeling within the Wilkes Subglacial Basin are used to reconstruct the <span class="hlt">ice</span> <span class="hlt">margin</span> during warm intervals of the Oligocene-Miocene. Flat-lying bedrock plateaus are indicative of an <span class="hlt">ice</span> sheet <span class="hlt">margin</span> positioned >400-500 km inland of the modern grounding zone for extended periods of the Oligocene-Miocene, equivalent to a 2-m rise in global sea level. Our findings imply that if major EAIS retreat occurs in the future, isostatic rebound will enable the plateau surfaces to act as seeding points for extensive <span class="hlt">ice</span> rises, thus limiting extensive <span class="hlt">ice</span> <span class="hlt">margin</span> retreat of the scale seen during the early EAIS.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.2986K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.2986K"><span>First continuous flow analysis results from the Greenland Re<span class="hlt">CAP</span> project</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kjær, Helle Astrid</p> <p>2016-04-01</p> <p>The new Renland <span class="hlt">ice</span> core was drilled in summer 2015 in Greenland and measured by means of Continuous flow analysis during the last 3 months of 2015. The Renland <span class="hlt">ice</span> core was obtained as part of the Re<span class="hlt">CAP</span> project, extending 584.11 meters to the bottom of the Renland <span class="hlt">ice</span> <span class="hlt">cap</span> located in east Greenland. The unique position on a mountain saddle above 2000 meters altitude, but close to the coast, ensures that the Renland <span class="hlt">ice</span> core offers high accumulation, but also reaches far back in time. Preliminary results show that the record holds <span class="hlt">ice</span> from the past warm interglacial period, the Eemian. The record was analyzed for multiple elements including the forest fire tracers NH4+ and black carbon, insoluble dust particles by means of Abakus laser particle counter and the dust ion Ca2+, sea salt Na and acidity useful for finding volcanic layers to date the core. Further H2O2, and the nutrients Fe and dissolved reactive phosphorus was analyzed as well as the temperature indicator δ18O all by means of continuous flow analysis (CFA). The core was melted at a rate of 3 cm/min providing a temporal resolution for most components determined sufficient to resolve annual layers through the Holocene. The glacial section is strongly thinned, but nonetheless due to the high resolution of the measurements all DO events could be identified. Below the glacial section another ˜20 meters of warm Eemian <span class="hlt">ice</span> have been analysed. Here we present the first chemistry results as obtained by continuous flow analysis (CFA).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C13C0846P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C13C0846P"><span>3D Imaging and Automated <span class="hlt">Ice</span> Bottom Tracking of Canadian Arctic Archipelago <span class="hlt">Ice</span> Sounding Data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Paden, J. D.; Xu, M.; Sprick, J.; Athinarapu, S.; Crandall, D.; Burgess, D. O.; Sharp, M. J.; Fox, G. C.; Leuschen, C.; Stumpf, T. M.</p> <p>2016-12-01</p> <p>The basal topography of the Canadian Arctic Archipelago <span class="hlt">ice</span> <span class="hlt">caps</span> is unknown for a number of the glaciers which drain the <span class="hlt">ice</span> <span class="hlt">caps</span>. The basal topography is needed for calculating present sea level contribution using the surface mass balance and discharge method and to understand future sea level contributions using <span class="hlt">ice</span> flow model studies. During the NASA Operation <span class="hlt">Ice</span>Bridge 2014 arctic campaign, the Multichannel Coherent Radar Depth Sounder (MCoRDS) used a three transmit beam setting (left beam, nadir beam, right beam) to illuminate a wide swath across the <span class="hlt">ice</span> glacier in a single pass during three flights over the archipelago. In post processing we have used a combination of 3D imaging methods to produce images for each of the three beams which are then merged to produce a single digitally formed wide swath beam. Because of the high volume of data produced by 3D imaging, manual tracking of the <span class="hlt">ice</span> bottom is impractical on a large scale. To solve this problem, we propose an automated technique for extracting <span class="hlt">ice</span> bottom surfaces by viewing the task as an inference problem on a probabilistic graphical model. We first estimate layer boundaries to generate a seed surface, and then incorporate additional sources of evidence, such as <span class="hlt">ice</span> masks, surface digital elevation models, and feedback from human users, to refine the surface in a discrete energy minimization formulation. We investigate the performance of the imaging and tracking algorithms using flight crossovers since crossing lines should produce consistent maps of the terrain beneath the <span class="hlt">ice</span> surface and compare manually tracked "ground truth" to the automated tracking algorithms. We found the swath width at the nominal flight altitude of 1000 m to be approximately 3 km. Since many of the glaciers in the archipelago are narrower than this, the radar imaging, in these instances, was able to measure the full glacier cavity in a single pass.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70022909','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70022909"><span>North-south geological differences between the residual polar <span class="hlt">caps</span> on Mars</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Thomas, P.C.; Malin, M.C.; Edgett, K.S.; Carr, M.H.; Hartmann, W.K.; Ingersoll, A.P.; James, P.B.; Soderblom, L.A.; Veverka, J.; Sullivan, R.</p> <p>2000-01-01</p> <p>Polar processes can be sensitive indicators of global climate, and the geological features associated with polar <span class="hlt">ice</span> <span class="hlt">caps</span> can therefore indicate evolution of climate with time. The polar regions on Mars have distinctive morphologic and climatologic features: thick layered deposits, seasonal CO2 frost <span class="hlt">caps</span> extending to mid latitudes, and near-polar residual frost deposits that survive the summer. The relationship of the seasonal and residual frost <span class="hlt">caps</span> to the layered deposits has been poorly constrained, mainly by the limited spatial resolution of the available data. In particular, it has not been known if the residual <span class="hlt">caps</span> represent simple thin frost cover or substantial geologic features. Here we show that the residual <span class="hlt">cap</span> on the south pole is a distinct geologic unit with striking collapse and erosional topography; this is very different from the residual <span class="hlt">cap</span> on the north pole, which grades into the underlying layered materials. These findings indicate that the differences between the <span class="hlt">caps</span> are substantial (rather than reflecting short-lived differences in frost cover), and so support the idea of long-term asymmetry in the polar climates of Mars.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017QSRv..163..114D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017QSRv..163..114D"><span>Phased occupation and retreat of the last British-Irish <span class="hlt">Ice</span> Sheet in the southern North Sea; geomorphic and seismostratigraphic evidence of a dynamic <span class="hlt">ice</span> lobe</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dove, Dayton; Evans, David J. A.; Lee, Jonathan R.; Roberts, David H.; Tappin, David R.; Mellett, Claire L.; Long, David; Callard, S. Louise</p> <p>2017-05-01</p> <p>Along the terrestrial <span class="hlt">margin</span> of the southern North Sea, previous studies of the MIS 2 glaciation impacting eastern Britain have played a significant role in the development of principles relating to <span class="hlt">ice</span> sheet dynamics (e.g. deformable beds), and the practice of reconstructing the style, timing, and spatial configuration of palaeo-<span class="hlt">ice</span> sheets. These detailed terrestrially-based findings have however relied on observations made from only the outer edges of the former <span class="hlt">ice</span> mass, as the North Sea Lobe (NSL) of the British-Irish <span class="hlt">Ice</span> Sheet (BIIS) occupied an area that is now almost entirely submarine (c.21-15 ka). Compounded by the fact that marine-acquired data have been primarily of insufficient quality and density, the configuration and behaviour of the last BIIS in the southern North Sea remains surprisingly poorly constrained. This paper presents analysis of a new, integrated set of extensive seabed geomorphological and seismo-stratigraphic observations that both advances the principles developed previously onshore (e.g. multiple advance and retreat cycles), and provides a more detailed and accurate reconstruction of the BIIS at its southern-most extent in the North Sea. A new bathymetry compilation of the region reveals a series of broad sedimentary wedges and associated moraines that represent several terminal positions of the NSL. These former still-stand <span class="hlt">ice</span> <span class="hlt">margins</span> (1-4) are also found to relate to newly-identified architectural patterns (shallow stacked sedimentary wedges) in the region's seismic stratigraphy (previously mapped singularly as the Bolders Bank Formation). With ground-truthing constraint provided by sediment cores, these wedges are interpreted as sub-<span class="hlt">marginal</span> till wedges, formed by complex subglacial accretionary processes that resulted in till thickening towards the former <span class="hlt">ice</span>-sheet <span class="hlt">margins</span>. The newly sub-divided shallow seismic stratigraphy (at least five units) also provides an indication of the relative event chronology of the NSL. While there</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005Icar..174..535T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005Icar..174..535T"><span>South polar residual <span class="hlt">cap</span> of Mars: Features, stratigraphy, and changes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thomas, P. C.; Malin, M. C.; James, P. B.; Cantor, B. A.; Williams, R. M. E.; Gierasch, P.</p> <p>2005-04-01</p> <p>The south residual polar <span class="hlt">cap</span> of Mars, rich in CO 2 <span class="hlt">ice</span>, is compositionally distinct from the north residual <span class="hlt">cap</span> which is dominantly H 2O <span class="hlt">ice</span>. The south <span class="hlt">cap</span> is also morphologically distinct, displaying a bewildering variety of depressions formed in thin layered deposits, which have been observed to change by scarp retreat over an interval of one Mars year (Malin et al., 2001, Science 294, 2146-2148). The climatically sensitive locale of the residual <span class="hlt">caps</span> suggests that their behavior may help in the interpretation of recent fluctuations or repeatability of the Mars climate. We have used Mars Global Surveyor Mars Orbiter Camera (MOC) images obtained in three southern summers to map the variety of features in the south residual <span class="hlt">cap</span> and to evaluate changes over two Mars years (Mars y). The images show that there are two distinct layered units which were deposited at different times separated by a period of degradation. The older unit, ˜10 m thick, has layers approximately 2 m thick. The younger unit has variable numbers of layers, each ˜1 m thick. The older unit is eroding by scarp retreat averaging 3.6 m/Mars y, a rate greater than the retreat of 2.2 m/Mars y observed for the younger unit. The rates of scarp retreat and sizes of the different types of depressions indicate that the history of the residual <span class="hlt">cap</span> has been short periods of deposition interspersed with longer erosional periods. Erosion of the older unit probably occupied ˜100-150 Mars y. One layer may have been deposited after the Mariner 9 observations in 1972. Residual <span class="hlt">cap</span> layers appear to differ from normal annual winter deposits by having a higher albedo and perhaps by having higher porosities. These properties might be produced by differences in the depositional meteorology that affect the fraction of high porosity snow included in the winter deposition.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-12-27/pdf/2012-31125.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-12-27/pdf/2012-31125.pdf"><span>77 FR 76316 - Self-Regulatory Organizations; <span class="hlt">ICE</span> Clear Europe Limited; Notice of Filing and Immediate...</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-12-27</p> <p>... enhancement to the SPAN for the <span class="hlt">ICE</span> <span class="hlt">Margining</span> algorithm employed to calculate Original <span class="hlt">Margin</span>. All capitalized... Allocation Methodology is an enhancement to the SPAN[supreg] \\6\\ for the <span class="hlt">ICE</span> <span class="hlt">Margining</span> algorithm employed to... the SPAN <span class="hlt">margin</span> calculation algorithm itself has not been changed. As of August 30, 2011, Position...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA566290','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA566290"><span><span class="hlt">Marginal</span> <span class="hlt">Ice</span> Zone (MIZ) Program: Science and Experiment Plan</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-10-01</p> <p>decline and greatest loss in arctic summer <span class="hlt">ice</span> (Shimada et al ., 2006 ). The Beaufort Sea lends its name to the Beaufort Gyre, the anti-cyclonic...which in turn influences regional atmospheric circulation patterns and temperature profiles, especially along the seasonal MIZ (Rinke et al ., 2006 ...coupling (Krinner et al ., 2010; Gerdes, 2006 ). Both for scientific and practical reasons, prediction of sea <span class="hlt">ice</span> cover is particularly important as it</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP43B2319S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP43B2319S"><span>Interpreting the Holocene fluctuations of Quelccaya <span class="hlt">Ice</span> <span class="hlt">Cap</span>, Peru: using a combination of glacial and non-glacial lake records</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stroup, J. S.; Kelly, M. A.; Lowell, T. V.; Smith, C.; Beal, S. A., Jr.; Tapia, P. M.</p> <p>2016-12-01</p> <p>The past fluctuations of Quelccaya <span class="hlt">Ice</span> <span class="hlt">Cap</span> (QIC) are an indicator of tropical paleoclimate. At QIC, <span class="hlt">ice</span> core and glacial geological records provide late Holocene climate constraints. However, early and middle Holocene QIC fluctuations are less well-known. To interpret past QIC fluctuations, we present Holocene-long lake sediment records from Challpacocha, a lake fed by QIC meltwater, and Yanacocha, a lake that has not received meltwater during the Holocene. To assess the clastic sediment delivered to Challpacocha by QIC meltwater, we compare visual stratigraphy, X-ray fluorescence chemistry, grainsize, loss on ignition and clastic flux records from both lakes (additional Yanacocha proxies are presented by Axford et al. (this meeting, abstract 157985)). We compare the meltwater derived clastic sediment record from Challpacocha with moraine and stratigraphic records of past <span class="hlt">ice</span> extents during the late Holocene. This comparison indicates that clastic sediment flux in Challpacocha increased during QIC recession and decreased during QIC advance, or significantly reduced QIC extent. We then use the Challpacocha clastic sediment record to interpret early and middle Holocene QIC fluctuations. Based on the Challpacocha sediment record, combined with prior work, we suggest that from 11 to 6.5 ka QIC was similar to or smaller than its late Holocene extent. From 6.9 to 6.5 ka QIC may have been absent from the landscape. At 3-2.4 and 0.62-0.31 ka QIC experienced the most extensive Holocene fluctuations. We compare the clastic sediment fluxes from Challpacocha and Pacococha (a nearby lake fed by QIC; Rodbell et al., 2008) to infer QIC expansion between 6.5-5 ka. This is supported by 14C ages of in-situ subfossil plants which indicate <span class="hlt">ice</span> advance at 6.3-4.7 ka (Thompson et al., 2006, 2013; Buffen et al., 2009). Our study highlights the value of using multiple datasets to improve lake sediment record interpretations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28605854','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28605854"><span>Central Tibetan Plateau atmospheric trace metals contamination: A 500-year record from the Puruogangri <span class="hlt">ice</span> core.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Beaudon, Emilie; Gabrielli, Paolo; Sierra-Hernández, M Roxana; Wegner, Anna; Thompson, Lonnie G</p> <p>2017-12-01</p> <p>A ~500-year section of <span class="hlt">ice</span> core (1497-1992) from the Puruogangri <span class="hlt">ice</span> <span class="hlt">cap</span> has been analyzed at high resolution for 28 trace elements (TEs: Ag, Al, As, Ba, Bi, Cd, Co, Cr, Cs, Cu, Fe, Ga, Li, Mg, Mn, Na, Nb, Ni, Pb, Rb, Sb, Sn, Sr, Ti, Tl, U, V and Zn) to assess different atmospheric contributions to the <span class="hlt">ice</span> and provide a temporal perspective on the diverse atmospheric influences over the central Tibetan Plateau (TP). At least two volcanic depositions have significantly impacted the central TP over the past 500years, possibly originating from the Billy Mitchell (1580, Papua New Guinea) and the Parker Peak (1641, Philippines) eruptions. A decreasing aeolian dust input to the <span class="hlt">ice</span> <span class="hlt">cap</span> allowed the detection of an atmospheric pollution signal. The anthropogenic pollution contribution emerges in the record since the early 1900s (for Sb and Cd) and increases substantially after 1935 (for Ag, Zn, Pb, Cd and Sb). The metallurgy (Zn, Pb and steel smelting) emission products (Cd, Zn, Pb and Ag) from the former Soviet Union and especially from central Asia (e.g., Kyrgyzstan, Kazakhstan) likely enhanced the anthropogenic deposition to the Puruogangri <span class="hlt">ice</span> <span class="hlt">cap</span> between 1935 and 1980, suggesting that the westerlies served as a conveyor of atmospheric pollution to central Tibet. The impact of this industrial pollution cumulated with that of the hemispheric coal and gasoline combustion which are respectively traced by Sb and Pb enrichment in the <span class="hlt">ice</span>. The Chinese steel production accompanying the Great Leap Forward (1958-1961) and the Chinese Cultural Revolution (1966-1976) is proposed as a secondary but proximal source of Pb pollution affecting the <span class="hlt">ice</span> <span class="hlt">cap</span> between 1958 and 1976. The most recent decade (1980-1992) of the enrichment time series suggests that Puruogangri <span class="hlt">ice</span> <span class="hlt">cap</span> recorded the early Sb, Cd, Zn, Pb and Ag pollution originating from developing countries of South (i.e., India) and East (i.e., China) Asia and transported by the summer monsoonal circulation. Published by</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA02373.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA02373.html"><span>Mars South Polar <span class="hlt">Cap</span> "Fingerprint" Terrain</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2000-04-24</p> <p>This picture is illuminated by sunlight from the upper left. Some portions of the martian south polar residual <span class="hlt">cap</span> have long, somewhat curved troughs instead of circular pits. These appear to form in a layer of material that may be different than that in which "swiss cheese" circles and pits form, and none of these features has any analog in the north polar <span class="hlt">cap</span> or elsewhere on Mars. This picture shows the "fingerprint" terrain as a series of long, narrow depressions considered to have formed by collapse and widening by sublimation of <span class="hlt">ice</span>. Unlike the north polar <span class="hlt">cap</span>, the south polar region stays cold enough in summer to retain frozen carbon dioxide. Viking Orbiter observations during the late 1970s showed that very little water vapor comes off the south polar <span class="hlt">cap</span> during summer, indicating that any frozen water that might be there remains solid throughout the year. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image was obtained in early southern spring on August 4, 1999. It shows an area 3 x 5 kilometers (1.9 x 3.1 miles) at a resolution of about 7.3 meters (24 ft) per pixel. Located near 86.0°S, 53.9°W. http://photojournal.jpl.nasa.gov/catalog/PIA02373</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA03093.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA03093.html"><span>Ridges Down South</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2005-11-04</p> <p>This image captured by NASA 2001 Mars Odyssey spacecraft shows part of an area just off the <span class="hlt">margin</span> of the south polar <span class="hlt">cap</span>. The bright and dark markings are identical to some seen on the <span class="hlt">cap</span>, telling us that <span class="hlt">ice</span> is located at the surface.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/prof/p1386c/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/prof/p1386c/"><span>Glaciers of Greenland</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Williams, Richard S.; Ferrigno, Jane G.</p> <p>1995-01-01</p> <p>Landsat imagery, combined with aerial photography, sketch maps, and diagrams, is used as the basis for a description of the geography, climatology, and glaciology, including mass balance, variation, and hazards, of the Greenland <span class="hlt">ice</span> sheet and local <span class="hlt">ice</span> <span class="hlt">caps</span> and glaciers. The Greenland <span class="hlt">ice</span> sheet, with an estimated area of 1,736,095+/-100 km2 and volume of 2,600,000 km3, is the second largest glacier on the planet and the largest relict of the <span class="hlt">Ice</span> Age in the Northern Hemisphere. Greenland also has 48,599+/-100 km2 of local <span class="hlt">ice</span> <span class="hlt">caps</span> and other types of glaciers in coastal areas and islands beyond the <span class="hlt">margin</span> of the <span class="hlt">ice</span> sheet.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990036050&hterms=Viking&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DViking','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990036050&hterms=Viking&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DViking"><span>Topography of the South Polar <span class="hlt">Cap</span> and Layered Deposits of Mars: Viking Stereo Grametry at Regional and Local Scales</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schenk, P.; Moore, J.; Stoker, C.</p> <p>1998-01-01</p> <p>Layered deposits and residual polar <span class="hlt">caps</span> on Mars may record the deposition of <span class="hlt">ice</span> and sediment modulated by periodic climate change. Topographic information relating to layer thicknesses, erosional processes, and formation of dark spirals within these deposits has been sparce or unreliable until the arrival of MOLA in orbit in September 1997. To assist in evaluating these terrains prior to launch and to assess formation and erosion processes in the polar deposits, we have assembled Viking stereo mosaics of the region and have produced the first reliable DEM models of the south polar deposits using automated stereogrammetry tools. Here we report our preliminary topographic results, pending final image pointing updates. The maximum total thickness of the layered deposits in the south polar region is 2.5 km. The thick layered deposits consist of a series of megaterraces. Each terrace is several tens of kilometers wide and is flat or slopes very gently toward the pole. These terraces step downward from a central plateau near the south pole. Terraces are bounded by relatively steep scarps 100-500 meters high that face toward the equator. These scarps correspond to the pattern of dark spirals observed within the residual <span class="hlt">cap</span> in southern summer, and are interpreted as <span class="hlt">ice</span> or frost-free surfaces warmed by solar insolation. Several tongue-shaped troughs, with rounded cirquelike heads, are observed near the <span class="hlt">margins</span> of the deposit. These troughs are 300-600 meters in deep and may be similar to troughs observed in the northern polar deposit.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C33B0825F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C33B0825F"><span>Detecting Near-Surface <span class="hlt">Ice</span> Formation Over Time Using the Kennaugh Elements Approach From TerraSAR-X</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fernandes, L.</p> <p>2016-12-01</p> <p>The summer melting has increased substantially at higher elevations on the Canadian Arctic <span class="hlt">ice</span> <span class="hlt">caps</span>. The resulting meltwater percolates into the upper layers of snow and firn and then refreeze, building massive <span class="hlt">ice</span> bodies. It seems likely that these within-firn <span class="hlt">ice</span> bodies now limit meltwater penetration into the firn and may be creating a feedback whereby the fraction of melt that runs off to the ocean is increasing. Although changes in firn structure as presence of <span class="hlt">ice</span> layers and <span class="hlt">ice</span> bodies are well documented over the Devon <span class="hlt">ice</span> <span class="hlt">cap</span>, the firm has shown that it exerts a crucial role to predict more accurately the contribution of small <span class="hlt">ice</span> <span class="hlt">caps</span> to the sea level rise. However it is still challenging to assess the extent of these features within the shallow subsurface using <span class="hlt">ice</span> cores and GPR (Ground Penetrating Radar) data collected along a limited number of linear transects. Studying changes in the distribution of <span class="hlt">ice</span> bodies' formation over time has the potential to provide information about how the growth of <span class="hlt">ice</span> bodies in the firn is affecting the pattern of water flow in the firn layer. The objective is investigate the potential of Kennaugh Elements (KE) derived from x-band SAR (Synthetic Aperture Radar) for mapping the distribution and growth of large <span class="hlt">ice</span> bodies within the firn and the evolution of their distribution over time. The evaluation of this method could reveal a new approach suitable for other glacierized regions that would reduce the costs and amount of field work for studying such properties.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19759618','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19759618"><span>Holocene thinning of the Greenland <span class="hlt">ice</span> sheet.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vinther, B M; Buchardt, S L; Clausen, H B; Dahl-Jensen, D; Johnsen, S J; Fisher, D A; Koerner, R M; Raynaud, D; Lipenkov, V; Andersen, K K; Blunier, T; Rasmussen, S O; Steffensen, J P; Svensson, A M</p> <p>2009-09-17</p> <p>On entering an era of global warming, the stability of the Greenland <span class="hlt">ice</span> sheet (GIS) is an important concern, especially in the light of new evidence of rapidly changing flow and melt conditions at the GIS <span class="hlt">margins</span>. Studying the response of the GIS to past climatic change may help to advance our understanding of GIS dynamics. The previous interpretation of evidence from stable isotopes (delta(18)O) in water from GIS <span class="hlt">ice</span> cores was that Holocene climate variability on the GIS differed spatially and that a consistent Holocene climate optimum-the unusually warm period from about 9,000 to 6,000 years ago found in many northern-latitude palaeoclimate records-did not exist. Here we extract both the Greenland Holocene temperature history and the evolution of GIS surface elevation at four GIS locations. We achieve this by comparing delta(18)O from GIS <span class="hlt">ice</span> cores with delta(18)O from <span class="hlt">ice</span> cores from small <span class="hlt">marginal</span> icecaps. Contrary to the earlier interpretation of delta(18)O evidence from <span class="hlt">ice</span> cores, our new temperature history reveals a pronounced Holocene climatic optimum in Greenland coinciding with maximum thinning near the GIS <span class="hlt">margins</span>. Our delta(18)O-based results are corroborated by the air content of <span class="hlt">ice</span> cores, a proxy for surface elevation. State-of-the-art <span class="hlt">ice</span> sheet models are generally found to be underestimating the extent and changes in GIS elevation and area; our findings may help to improve the ability of models to reproduce the GIS response to Holocene climate.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930010623','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930010623"><span>Possible recent and ancient glacial <span class="hlt">ice</span> flow in the south polar region of Mars</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kargel, J. S.</p> <p>1992-01-01</p> <p>Martian polar science began almost as soon as small telescopes were trained on the planet. The seasonal expansion and contraction of the polar <span class="hlt">caps</span> and their high albedoes led most astronomers to think that water <span class="hlt">ice</span> is the dominant constituent. In 1911 Lowell perceived a bluish band around the retreating edge of the polar <span class="hlt">caps</span>, and interpreted it as water from melting polar <span class="hlt">ice</span> and seasonal snow. An alternative idea in his time was that the polar <span class="hlt">caps</span> consist of frozen carbonic acid. Lowell rejected the carbonic acid hypothesis on account of his blue band. He also pointed out that carbonic acid would sublimate rather than melt at confining pressures near and below one bar, hence, carbonic acid could not account for the blue band. In comparing Lowell's theories with today's knowledge, it is recognized that (1) sublimation is mainly responsible for the growth and contraction of Mars' polar <span class="hlt">caps</span>, (2) carbon dioxide is a major component of the southern polar <span class="hlt">cap</span>, and (3) Lowell's blue band was probably seasonal dust and/or clouds. Geomorphic evidence that glacial <span class="hlt">ice</span> and glacial melt waters once flowed over broad areas of the southern polar region. Two aspects of the south polar region suggest possible glacial processes during two distinct eras in Mars' history.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C51B0690L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C51B0690L"><span>New constraints on the deglaciation chronology of the southeastern <span class="hlt">margin</span> of the Greenland <span class="hlt">Ice</span> Sheet</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Levy, L.; Larsen, N. K.; Kjaer, K. H.; Bjork, A. A.; Kjeldsen, K. K.; Funder, S.; Kelly, M. A.; Howley, J. A.; Zimmerman, S. R. H.</p> <p>2015-12-01</p> <p>The Greenland <span class="hlt">Ice</span> Sheet (GrIS) is responding rapidly to climate change. Marine terminating outlet glaciers that drain the GrIS have responded especially sensitively to present-day climate change by accelerating, thinning and retreating. In southeastern Greenland several outlet glaciers are undergoing rapid changes in mass balance and <span class="hlt">ice</span> dynamics. To improve our understanding of the future, long-term response of these marine-terminating outlet glaciers to climate change, we focus on the response of three outlet glaciers to climate change since the Last Glacial Maximum. The timing and rates of late-glacial and early Holocene deglaciation of the southeastern sector of the GrIS are relatively unconstrained due to the inaccessibility of the region. Using a helicopter and a sailboat, we collected samples for 10Be surface exposure dating from three fjords in southeastern Greenland: Skjoldungen (63.4N), Uvtorsiutit (62.7N), and Lindenow (60.6N). These fjords drain marine terminating glaciers of the GrIS. Here we present 18 new 10Be ages from ~50 km long transects along these fjords that mark the timing of deglaciation from the outer coast inland to the present-day GrIS <span class="hlt">margin</span>. Together with previously constrained deglaciation chronologies from Bernstorffs, Sermilik, and Kangerdlussuaq fjords in southeastern Greenland, these new chronologies offer insight into the late-glacial and early Holocene dynamics of the southeastern GrIS outlet glaciers. We compare the timing and rate of deglaciation in southeastern Greenland to climate records from the region to examine the mechanisms that drove deglaciation during late-glacial and early Holocene time. These new 10Be ages provide a longer-term perspective of marine terminating outlet glacier fluctuations in southeastern Greenland and can be used to model the <span class="hlt">ice</span> sheet's response to late-glacial and early Holocene climate changes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70032866','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70032866"><span>Sediment geochemical records of productivity and oxygen depletion along the <span class="hlt">margin</span> of western North America during the past 60,000 years: teleconnections with Greenland <span class="hlt">Ice</span> and the Cariaco Basin</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dean, W.E.</p> <p>2007-01-01</p> <p>Many sediment records from the <span class="hlt">margins</span> of the Californias (Alta and Baja) collected in water depths between 60 and 1200 m contain anoxic intervals (laminated sediments) that can be correlated with interstadial intervals as defined by the oxygen-isotope composition of Greenland <span class="hlt">ice</span> (Dansgaard-Oeschger, D-O, cycles). These intervals include all or parts of Oxygen Isotope Stage 3 (OIS3; 60-24 cal ka), the Bo??lling/Allero??d warm interval (B/A; 15-13 cal ka), and the Holocene. This study uses organic carbon (Corg) and trace-element proxies for anoxia and productivity, namely elevated concentrations and accumulation rates of molybdenum and cadmium, in these laminated sediments to suggest that productivity may be more important than ventilation in producing changes in bottom-water oxygen (BWO) conditions on open, highly productive continental <span class="hlt">margins</span>. The main conclusion from these proxies is that during the last glacial interval (LGI; 24-15 cal ka) and the Younger Dryas cold interval (YD; 13-11.6 cal ka) productivity was lower and BWO levels were higher than during OIS3, the B/A, and the Holocene on all <span class="hlt">margins</span> of the Californias. The Corg and trace-element profiles in the LGI-B/A-Holocene transition in the Cariaco Basin on the <span class="hlt">margin</span> of northern Venezuela are remarkably similar to those in the transition on the northern California <span class="hlt">margin</span>. Correlation between D-O cycles in Greenland <span class="hlt">ice</span> with gray-scale measurements in varved sediments in the Cariaco Basin also is well established. Synchronous climate-driven changes as recorded in the sediments on the <span class="hlt">margins</span> of the Californias, sediments from the Cariaco Basin, and in the GISP-2 Greenland <span class="hlt">ice</span> core support the hypothesis that changes in atmospheric dynamics played a major role in abrupt climate change during the last 60 ka. Millennial-scale cycles in productivity and oxygen depletion on the <span class="hlt">margins</span> of the Californias demonstrate that the California Current System was poised at a threshold whereby perturbations of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1031493','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1031493"><span>An Observational and Analytical Study of <span class="hlt">Marginal</span> <span class="hlt">Ice</span> Zone Atmospheric Jets</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2016-12-01</p> <p>layer or in the <span class="hlt">capping</span> temperature inversion just above. The three strongest jets had maximum wind speeds at elevations near 350 m to 400 m...geostrophic wind due to horizontal temperature changes in the atmospheric boundary layer and <span class="hlt">capping</span> inversion . The jets were detected using...temperature inversion just above. The three strongest jets had maximum wind speeds at elevations near 350 m to 400 m elevation; one of these jets had a</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMEP11A..03R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMEP11A..03R"><span>Sediment movement and dispersal patterns on the Grand Banks continental shelf and slope were tied to the dynamics of the Laurentide <span class="hlt">ice</span>-sheet <span class="hlt">margin</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rashid, H.; MacKillop, K.; Piper, D.; Vermooten, M.; Higgins, J.; Marche, B.; Langer, K.; Brockway, B.; Spicer, H. E.; Webb, M. D.; Fournier, E.</p> <p>2015-12-01</p> <p>The expansion and contraction of the late Pleistocene Laurentide <span class="hlt">ice</span>-sheet (LIS) was the crucial determining factor for the geomorphic features and shelf and slope sediment mobility on the eastern Canadian continental <span class="hlt">margin</span>, with abundant mass-transport deposits (MTDs) seaward of <span class="hlt">ice</span> <span class="hlt">margins</span> on the upper slope. Here, we report for the first time sediment failure and mass-transport deposits from the central Grand Banks slope in the Salar and Carson petroleum basins. High-resolution seismic profiles and multibeam bathymetry show numerous sediment failure scarps in 500-1600 m water depth. There is no evidence for an <span class="hlt">ice</span> <span class="hlt">margin</span> on the upper slope younger than MIS 6. Centimeter-scale X-ray fluorescence analysis (XRF), grain size, and oxygen isotope data from piston cores constrain sediment processes over the past 46 ka. Geotechnical measurements including Atterberg limit tests, vane shear measurements and triaxial and multi-stage isotropic consolidation tests allowed us to assess the instability on the continental <span class="hlt">margin</span>. Cores with continuous undisturbed stratigraphy in contourite silty muds show normal downcore increase in bulk density and undrained peak shear strength. Heinrich (H) layers are identifiable by a marked increase in the bulk density, high Ca (ppm), increase in iceberg-rafted debris and lighter δ18O in the polar planktonic foram Neogloboquadrina pachyderma (sinistral): with a few C-14 dates they provide a robust chronology. There is no evidence for significant supply of sediment from the Grand Banks at the last-glacial maximum. Mass-transport deposits (MTD) are marked by variability in the bulk density, undrained shear strength and little variation in bulk density or Ca (ppm) values. The MTD are older than 46 ka on the central Grand Banks slope, whereas younger MTDs are present in southern Flemish Pass. Factor of safety calculations suggest the slope is statically stable up to gradients of 10°, but more intervals of silty mud may fail during earthquake</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ISPAr41B8..481B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ISPAr41B8..481B"><span>Mass Balance Changes and <span class="hlt">Ice</span> Dynamics of Greenland and Antarctic <span class="hlt">Ice</span> Sheets from Laser Altimetry</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Babonis, G. S.; Csatho, B.; Schenk, T.</p> <p>2016-06-01</p> <p>During the past few decades the Greenland and Antarctic <span class="hlt">ice</span> sheets have lost <span class="hlt">ice</span> at accelerating rates, caused by increasing surface temperature. The melting of the two big <span class="hlt">ice</span> sheets has a big impact on global sea level rise. If the <span class="hlt">ice</span> sheets would melt down entirely, the sea level would rise more than 60 m. Even a much smaller rise would cause dramatic damage along coastal regions. In this paper we report about a major upgrade of surface elevation changes derived from laser altimetry data, acquired by NASA's <span class="hlt">Ice</span>, Cloud and land Elevation Satellite mission (ICESat) and airborne laser campaigns, such as Airborne Topographic Mapper (ATM) and Land, Vegetation and <span class="hlt">Ice</span> Sensor (LVIS). For detecting changes in <span class="hlt">ice</span> sheet elevations we have developed the Surface Elevation Reconstruction And Change detection (SERAC) method. It computes elevation changes of small surface patches by keeping the surface shape constant and considering the absolute values as surface elevations. We report about important upgrades of earlier results, for example the inclusion of local <span class="hlt">ice</span> <span class="hlt">caps</span> and the temporal extension from 1993 to 2014 for the Greenland <span class="hlt">Ice</span> Sheet and for a comprehensive reconstruction of <span class="hlt">ice</span> thickness and mass changes for the Antarctic <span class="hlt">Ice</span> Sheets.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20090034380&hterms=europa+glacier&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Deuropa%2Bglacier','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20090034380&hterms=europa+glacier&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Deuropa%2Bglacier"><span>Life in <span class="hlt">Ice</span>: Implications to Astrobiology</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hoover, Richard B.</p> <p>2009-01-01</p> <p>During the 2008 Tawani International Expedition Schirmacher Oasis/Lake Untersee Antarctica Expedition, living and instantly motile bacteria were found in freshly thawed meltwater from <span class="hlt">ice</span> of the Schirmacher Oasis Lakes, the Anuchin Glacier <span class="hlt">ice</span> and samples of the that perennial <span class="hlt">ice</span> sheet above Lake Untersee. This phenomenon of living bacteria encased in <span class="hlt">ice</span> had previously been observed in the 32,000 year old <span class="hlt">ice</span> of the Fox Tunnel. The bacteria found in this <span class="hlt">ice</span> included the strain FTR1T which was isolated and published as valid new species (Carnobacterium pleistocenium) the first validly published living Pleistocene organism still alive today. Living bacteria were also extracted from ancient <span class="hlt">ice</span> cores from Vostok, Antarctica. The discovery that many strains of bacteria are able to survive and remain alive while frozen in <span class="hlt">ice</span> sheets for long periods of time may have direct relevance to Astrobiology. The abundance of viable bacteria in the <span class="hlt">ice</span> sheets of Antarctica suggests that the presence of live bacteria in <span class="hlt">ice</span> is common, rather than an isolated phenomenon. This paper will discuss the results of recent studies at NSSTC of bacteria cryopreserved in <span class="hlt">ice</span>. This paper advances the hypothesis that cryopreserved cells, and perhaps even viable bacterial cells, may exist today--frozen in the water-<span class="hlt">ice</span> of lunar craters, the Polar <span class="hlt">Caps</span> or craters of Mars; or in the permafrost of Mars; <span class="hlt">ice</span> and rocks of comets or water bearing asteroids; or in the frozen crusts of the icy moons of Jupiter and Saturn. The existence of bacterial life in <span class="hlt">ice</span> suggests that it may not be necessary to drill through a thick <span class="hlt">ice</span> crust to reach liquid water seas deep beneath the icy crusts of Europa, Ganymede and Enceladus. The presence of viable bacteria in the <span class="hlt">ice</span> of the Earth s Polar <span class="hlt">Caps</span> suggests that the possibility that cryo-panspermia (i.e., the trans-planetary transfer of microbial life by impact ejection/spallation of bacteria-rich polar <span class="hlt">ice</span> masses) deserves serious consideration and study as a</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26932187','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26932187"><span>Colonization of maritime glacier <span class="hlt">ice</span> by bdelloid Rotifera.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shain, Daniel H; Halldórsdóttir, Katrín; Pálsson, Finnur; Aðalgeirsdóttir, Guðfinna; Gunnarsson, Andri; Jónsson, Þorsteinn; Lang, Shirley A; Pálsson, Hlynur Skagfjörð; Steinþórssson, Sveinbjörn; Arnason, Einar</p> <p>2016-05-01</p> <p>Very few animal taxa are known to reside permanently in glacier <span class="hlt">ice</span>/snow. Here we report the widespread colonization of Icelandic glaciers and <span class="hlt">ice</span> fields by species of bdelloid Rotifera. Specimens were collected within the accumulation zones of Langjökull and Vatnajökull <span class="hlt">ice</span> <span class="hlt">caps</span>, among the largest European <span class="hlt">ice</span> masses. Rotifers reached densities up to ∼100 individuals per liter-equivalent of glacier <span class="hlt">ice</span>/snow, and were freeze-tolerant. Phylogenetic analyses indicate that glacier rotifers are polyphyletic, with independent ancestries occurring within the Pleistocene. Collectively, these data identify a previously undescribed environmental niche for bdelloid rotifers and suggest their presence in comparable habitats worldwide. Copyright © 2016 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1513402T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1513402T"><span>Export of <span class="hlt">Ice</span>-Cavity Water from Pine Island <span class="hlt">Ice</span> Shelf, West Antarctica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thurnherr, Andreas; Jacobs, Stanley; Dutrieux, Pierre</p> <p>2013-04-01</p> <p> significant mean upward motion within the cove strongly suggests that the upwelling takes place within the highly fractured <span class="hlt">ice</span> along the southern shear <span class="hlt">margin</span> of the <span class="hlt">ice</span> shelf. If so, the upwelling water is likely to contribute to both the volume of apparent "basal" melting and to the weakness of that shear <span class="hlt">margin</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70023682','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70023682"><span>Pleistocene reduction of polar <span class="hlt">ice</span> <span class="hlt">caps</span>: Evidence from Cariaco Basin marine sediments</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Poore, R.Z.; Dowsett, H.J.</p> <p>2001-01-01</p> <p>Sea level is projected to rise between 13 and 94 cm over the next 100 yr due to continued climate warming. The sea-level projections assume that polar <span class="hlt">ice</span> sheets will remain stable or even increase on time scales of centuries, but controversial geologic evidence suggests that current polar <span class="hlt">ice</span> sheets have been eliminated or greatly reduced during previous Pleistocene interglacials indicating that modern polar <span class="hlt">ice</span> sheets have become unstable within the natural range of interglacial climates. Sea level may have been more than 20 m higher than today during a presumably very warm interglacial about 400 ka during marine isotope stage 11. Because of the implications for future sea level rise, additional study of the conflicting evidence for warmer conditions and higher sea level during marine isotope stage 11 is needed. Here we present microfossil and isotopic data from marine sediments of the Cariaco Basin supporting the interpretation that global sea level was 10-20 m higher than today during marine isotope stage 11. The increased sea level requires reduction in modern polar <span class="hlt">ice</span> sheets and is consistent with the interpretation that the West Antarctic <span class="hlt">ice</span> sheet and the Greenland <span class="hlt">ice</span> sheet were absent or greatly reduced during marine isotope stage 11. Our results show a warm marine isotope stage 11 interglacial climate with sea level as high as or above modern sea level that lasted for 25 to 30 k.y. Variations in Earth's orbit around the sun (Milankovitch cycles) are considered to be a primary external force driving glacial-interglacial cycles. Current and marine isotope stage 11 Milankovitch forcing are very similar, suggesting that the present interglacial (Holocene) that began ca. 10 ka will continue for another 15 to 20 k.y. Therefore any anthropogenic climate warming will accelerate the natural process toward reduction in polar <span class="hlt">ice</span> sheets. The potential for increased rates of sea level rise related to polar <span class="hlt">ice</span> sheet decay should be considered as a potential natural</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820006693&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dmarginal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820006693&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dmarginal"><span>The Norwegian remote sensing experiment (Norsex) in a <span class="hlt">marginal</span> <span class="hlt">ice</span> zone</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Farrelly, B.; Johannessen, J.; Johannessen, O. M.; Svendson, E.; Kloster, K.; Horjen, I.; Campbell, W. J.; Crawford, J.; Harrington, R.; Jones, L.</p> <p>1981-01-01</p> <p>Passive and active microwave measurements from surface based, airborne, and satellite instruments were obtained together with surface observations northwest of Svalbard. Emissivities of different <span class="hlt">ice</span> patches in the <span class="hlt">ice</span> edge region over the spectral range from 4.9 to 94 GHz are presented. The combination of a 6.6 GHz microwave radiometer with a 14.6 GHz scatterometer demonstrates the usefulness of an active/passive system in <span class="hlt">ice</span> classification. A variety of mesoscale features under different meteorological conditions is revealed by a 1.36 GHz synthetic aperture radar. <span class="hlt">Ice</span> edge location by Nimbus 7 scanning multifrequency microwave radiometer is shown accurate to 10 km when the 37 GHz horizontal polarized channel is used.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70030522','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70030522"><span>Terrestrial <span class="hlt">ice</span> streams-a view from the lobe</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Jennings, C.E.</p> <p>2006-01-01</p> <p>The glacial landforms of Minnesota are interpreted as the products of the lobate extensions of <span class="hlt">ice</span> streams that issued from various <span class="hlt">ice</span> sheds within the Laurentide <span class="hlt">Ice</span> Sheet. Low-relief till plains, trough-shaped lowlands, boulder pavements, and streamlined forms make up the subglacial landsystem in Minnesota that is interpreted as having been formed by streaming <span class="hlt">ice</span>. Extremely uniform tills are created subglacially in a way that remains somewhat mysterious. At the <span class="hlt">ice</span> <span class="hlt">margins</span>, thrust moraines and hummocky stagnation topography are more common than single-crested, simple moraines if the <span class="hlt">ice</span> lobes had repeated advances. Subglacial drainage features are obscure up-<span class="hlt">ice</span> but are present down-<span class="hlt">ice</span> in the form of tunnel valleys, eskers, Spooner hills, and associated <span class="hlt">ice-marginal</span> fans. <span class="hlt">Ice</span> streaming may occur when basal shear stress is lowered as a result of high subglacial water pressure. Subglacial conditions that allow the retention of water will allow an <span class="hlt">ice</span> lobe to extend far beyond the <span class="hlt">ice</span> sheet as long as the <span class="hlt">ice</span> shed also supports the advance by supplying adequate <span class="hlt">ice</span>. Even with adequate <span class="hlt">ice</span> flux, however, the advance of an <span class="hlt">ice</span> lobe may be terminated, at least temporarily, if the subglacial water is drained, through tunnel valleys or perhaps a permeable substrate. Thrust moraines, and <span class="hlt">ice</span> stagnation topography will result from sudden drainage. Although climate change is ultimately responsible for the accumulation of <span class="hlt">ice</span> in the Laurentide <span class="hlt">Ice</span> Sheet, the asynchronous advances and retreats of the <span class="hlt">ice</span> lobes in the mid-continent are strongly overprinted by the internal dynamics of individual <span class="hlt">ice</span> streams as well as the interaction of <span class="hlt">ice</span> sheds, which obscure the climate signal. ?? 2005 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030110723&hterms=BELT+CONVEYOR&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DBELT%2BCONVEYOR','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030110723&hterms=BELT+CONVEYOR&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DBELT%2BCONVEYOR"><span>The Broken Belt: Meteorite Concentrations on Stranded <span class="hlt">Ice</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Harvey, R. P.</p> <p>2003-01-01</p> <p>Since the first Antarctic meteorite concentrations were discovered more than 25 years ago, many theories regarding the role of iceflow in the production of meteorite concentrations have been put forward, and most agree on the basic principles. These models suggest that as the East Antarctic icesheet flows toward the <span class="hlt">margins</span> of the continent, meteorites randomly located within the volume of <span class="hlt">ice</span> are transported toward the icesheet <span class="hlt">margin</span>. Where mountains or subsurface obstructions block glacial flow, diversion of <span class="hlt">ice</span> around or over an obstruction reduces horizontal <span class="hlt">ice</span> movement rates adjacent to the barriers and creates a vertical (upward) component of movement. If local mechanisms for <span class="hlt">ice</span> loss (ablation) exist at such sites, an equilibrium surface will develop according to the balance between <span class="hlt">ice</span> supply and loss, and the cargo of meteorites is exhumed on a blue <span class="hlt">ice</span> surface. The result is a conceptual conveyor belt bringing meteorite-bearing volumes of <span class="hlt">ice</span> from the interior of the continent to stagnant or slowmoving surfaces where <span class="hlt">ice</span> is then lost and a precious cargo is left as a lag deposit. Cassidy et al. provides an excellent overview of how this model has been adapted to several Antarctic stranding surfaces.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-01-03/pdf/2012-31568.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-01-03/pdf/2012-31568.pdf"><span>78 FR 330 - Self-Regulatory Organizations; <span class="hlt">ICE</span> Clear Europe Limited; Notice of Filing and Immediate...</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-01-03</p> <p>... Rule Change To Amend SPAN <span class="hlt">Margin</span> Parameters for <span class="hlt">ICE</span> OTC Natural Gas Liquids Contracts December 27, 2012... Rule Change The purpose of the change is to amend SPAN <span class="hlt">Margin</span> Parameters for <span class="hlt">ICE</span> OTC Natural Gas Liquids (NGL) Contracts. All capitalized terms not defined herein are defined in the <span class="hlt">ICE</span> Clear Europe...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008epsc.conf..540W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008epsc.conf..540W"><span>North-Polar Martian <span class="hlt">Cap</span> as Habitat for Elementary Life</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wallis, M. K.; Wickramasinghe, J. T.; Wickramasinghe, N. C.</p> <p>2008-09-01</p> <p>North-polar <span class="hlt">cap</span> over millenia Atmospheric water in Mars tends currently as for the past millenia to distil onto the polar <span class="hlt">caps</span> and be buried under dust deposits. Diffusive release from ground-<span class="hlt">ice</span> (and its excavation in meteorite impacts [1]) replenishes atmospheric water, allowing the gradual build up of polar <span class="hlt">ice</span>-dust deposits. When sunlit, this warmed and sublimating <span class="hlt">ice</span>-dust mix has interest as a potential habitat for micro-organisms. Modelling shows precipitable vapour at 10-50μm/yr, varying sensitively with small changes in orbitable obliquity around the present 25° [2]. The modelling applies to a globe with regionally uniform albedo, unlike the steep topography and dark layering of the north polar <span class="hlt">cap</span> whose upper 300m have accumulated over the last 500 kyr [3]. The cliffs and ravines of the north-polar <span class="hlt">cap</span> are thought to form through south-facing slopes sublimating and gaining a dirt-encrusted surface, while horizontal surfaces brighten through frost deposits. The two-phase surface derives from the dust and frost feedback on surface albedo [4] and the resulting terrain develops over diurnal cycles of frosting and sublimation, and over annual seasonal cycles. The steep south-facing sides of observed ravines when unshadowed would see for a few hours the full intensity of sunlight at near normal incidence, without the atmospheric dimming at similar inclinations on Earth. As exposed <span class="hlt">ice</span> sublimates at T > 200K (partial pressure exceeds typical martian 0.1 Pa), a crust of dirt develops to maintain quasi-stability. The dirt crust's main function is to buffer the <span class="hlt">ice</span> against diurnal temperature fluctuations, but it also slows down vapour diffusion - analogous to south polar <span class="hlt">ice</span> sublimation [5] and the growth of ground-<span class="hlt">ice</span> [6]. We envisage 1-10 mm/yr as the net sublimation rate, compatible with the 100 kyr life and scales of the north polar ravines. Modelling of icy-dirt crusts in the polar <span class="hlt">cap</span> Plane-parallel layers have been used to model the changing temperature</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.C41E0469B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.C41E0469B"><span><span class="hlt">Ice</span>Bridge Provides Novel Evidence for Thick Units of Basal Freeze-on <span class="hlt">Ice</span> Along Petermann Glacier, Greenland</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bell, R. E.; Tinto, K. J.; Wolovick, M.; Block, A. E.; Frearson, N.; Das, I.; Abdi, A.; Creyts, T. T.; Cochran, J. R.; Csatho, B. M.; Babonis, G. S.</p> <p>2011-12-01</p> <p>The Petermann Glacier, one of the major outlet glaciers in Greenland, drains six percent of the Greenland <span class="hlt">ice</span> from a basin largely below sea level. Petermann Glacier and its large <span class="hlt">ice</span> shelf may be susceptible to increased change as the waters along the Greenland <span class="hlt">margin</span> warm. The 2010 and 2011 Operation <span class="hlt">Ice</span>Bridge mission, acquired a comprehensive aerogeophysical data set over the Petermann Glacier that provides insights into the <span class="hlt">ice</span> sheet structure. This analysis employs most of the data streams acquired by the Icebridge platform including <span class="hlt">ice</span>-penetrating radar, laser altimetry, gravity and magnetics. An orthogonal 10 km grid extends from 60 km upstream of the grounding line to 240 km inland. The <span class="hlt">ice</span> velocities in the region range from <50m/yr to >200m/yr. On the interior lines the internal layers are pulled down over 2-3 km wide regions. Up to 400m of <span class="hlt">ice</span> from the base of the <span class="hlt">ice</span> sheet appears to be absent in these regions. We interpret these pulled down regions as basal melt. These melt regions are mainly located along the upstream side of a 80 km wide east-west trending topographic ridge that separates the interior <span class="hlt">ice</span> from the Petermann Fjord. The <span class="hlt">Ice</span>Bridge magnetic data indicates that this broad flat ridge is the boundary between the Franklinian Basins and the Ellsmerian Foldbelt to the north. Downstream of these pull-down layers we have identified 4 distinct packages of <span class="hlt">ice</span> that thicken downstream and are characterized by a strong upper reflector. These packages develop at the base of the <span class="hlt">ice</span> sheet and reach thicknesses of 500-700m over distances of 10-20 km. These basal packages can be traced for 30-100 km following the direction of flow, and may be present close to the grounding line. These basal reflectors deflect the overlying internal layers upward indicating the addition of <span class="hlt">ice</span> to the base of the <span class="hlt">ice</span> sheet. The <span class="hlt">Ice</span>Bridge gravity data indicates that these features are probably not off-nadir topography since these would show up as around 30mGal anomalies</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C41A0692S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C41A0692S"><span>A Newly Updated Database of Elevation-changes of the Greenand <span class="hlt">Ice</span> Sheet to Study Surface Processes and <span class="hlt">Ice</span> Dynamics</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schenk, A. F.; Csatho, B. M.; van den Broeke, M.; Kuipers Munneke, P.</p> <p>2015-12-01</p> <p>This paper reports about important upgrades of the Greenland <span class="hlt">Ice</span> Sheet (GrIS) surface elevation and elevation-change database obtained with our Surface Elevation And Change detection (SERAC) software suite. We have developed SERAC to derive information from laser altimetry data, particularly time series of elevation changes and their partitioning into changes caused by <span class="hlt">ice</span> dynamics. This allows direct investigation of <span class="hlt">ice</span> dynamic processes that is much needed for improving the predictive power of <span class="hlt">ice</span> sheet models. SERAC is different from most other change detection methods. It is based on detecting changes of surface patches, about 1 km by 1 km in size, rather than deriving elevation changes from individual laser points. The current database consists of ~100,000 time series with satellite laser altimetry data from ICESat, airborne laser observations obtained by NASA's Airborne Topographic Mapper (ATM) and the Land, Vegetation and <span class="hlt">Ice</span> Sensor (LVIS). The upgrade is significant, because not only new observations from 2013 and 2014 have been added but also a number of improvements lead to a more comprehensive and consistent record of elevation-changes. First, we used the model that gives in addition to <span class="hlt">ice</span> sheet also information about <span class="hlt">ice</span> <span class="hlt">caps</span> and glaciers (Rastner et al., 2012) for deciding if a laser point is on the <span class="hlt">ice</span> sheet or <span class="hlt">ice</span> <span class="hlt">cap</span>. Then we added small gaps that exist in the ICESat GLA12 data set because the <span class="hlt">ice</span> sheet mask is not wide enough. The new database is now more complete and will facilitate more accurate comparisons of mass balance studies obtained from the Gravity Recovery and Climate Experiment system (GRACE). For determining the part of a time series caused by <span class="hlt">ice</span> dynamics we used the new firn compaction model and Surface Mass Balance (SMB) estimates from RACMO2.3. The new database spans the time period from 1993 to 2014. Adding new observations amounts to a spatial densification of the old record and at the same time extends the time domain by two</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMEP41D..07N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMEP41D..07N"><span>Boundary Waves on the <span class="hlt">Ice</span> Surface Created by Currents</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Naito, K.; Izumi, N.; Yokokawa, M.; Yamada, T.; de Lima, A. C.</p> <p>2013-12-01</p> <p>The formation of periodic boundary waves, e.g. antidunes and cyclic steps (Parker & Izumi 2000) has been known to be caused by instabilities between flow and bed (e.g. Engelund 1970), and are observed not only on river beds or ocean floors but also on <span class="hlt">ice</span> surfaces, such as the surface of glaciers and underside of river <span class="hlt">ice</span> (Carey 1966). In addition, owing to recent advancements of remote sensing technology, it has been found that the surfaces of the polar <span class="hlt">ice</span> <span class="hlt">caps</span> on Mars as well as on the Earth have step-like formations (Smith & Holt 2010) which are assumed to be boundary waves, because they are generated perpendicularly to the direction of the currents. These currents acting on the polar <span class="hlt">ice</span> <span class="hlt">caps</span> are density airflow, i.e. katabatic wind (Howard et al 2000). The comprehension of the formation process of the Martian polar <span class="hlt">ice</span> <span class="hlt">caps</span> may reveal climate changes which have occurred on Mars. Although the formation of boundary waves on river beds or ocean floors has been studied by a number of researchers, there are few works on their formation on <span class="hlt">ice</span> surfaces. Yokokawa et al (2013) suggested that the temperature distribution of the ambient air, fluid and <span class="hlt">ice</span> is a factor which determines the direction of migration of boundary waves formed on <span class="hlt">ice</span> surfaces through their experiments. In this study, we propose a mathematical model in order to describe the formation process of the boundary waves and the direction of their migration. We consider that a liquid is flowing through a flume filled with a flat <span class="hlt">ice</span> layer on the bottom. The flow is assumed to be turbulent and its temperature is assumed to merge with the ambient temperature at the flow surface and with the melting point of <span class="hlt">ice</span> at the bottom (<span class="hlt">ice</span> surface). The <span class="hlt">ice</span> surface evolution is dependent on the unbalance between the interfacial heat flux of the liquid and <span class="hlt">ice</span>, and we employ the Reynolds-averaged Navier-Stokes equation, the continuity equation, heat transfer equations for the liquid and <span class="hlt">ice</span>, and a heat balance</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70027417','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70027417"><span>Thermal infrared and visual observations of a water <span class="hlt">ice</span> lag in the Mars southern summer</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Titus, T.N.</p> <p>2005-01-01</p> <p>We present thermal infrared and visual evidence for the existence of water <span class="hlt">ice</span> lags in the early southern summer. The observed H2O-<span class="hlt">ice</span> lags lay in and near a chasma and appears to survive between 6-8 sols past the sublimation of the CO2. Possible sources of the H2O that compose the lag are (1) atmospheric H2O that is incorporated into the seasonal <span class="hlt">cap</span> during condensation, (2) cold trapping of atmospheric water vapor onto the surface of the <span class="hlt">cap</span> in the spring, or (3) a combination of the 2 processes where water is released from the sublimating <span class="hlt">cap</span> only to be transported back over the <span class="hlt">cap</span> edge and cold trapped. We refer to this later process as the "Houben" effect which may enrich the amount of water contained in the seasonal <span class="hlt">cap</span> at 85??S by as much as a factor of 15. This phenomenon, which has already been identified for the northern retreating <span class="hlt">cap</span>, may present an important water transport mechanism in the Southern Hemisphere.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910044122&hterms=refraction&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Drefraction','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910044122&hterms=refraction&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Drefraction"><span>Observation of wave refraction at an <span class="hlt">ice</span> edge by synthetic aperture radar</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liu, Antony K.; Vachon, Paris W.; Peng, Chih Y.</p> <p>1991-01-01</p> <p>In this note the refraction of waves at the <span class="hlt">ice</span> edge is studied by using aircraft synthesis aperture radar (SAR). Penetration of a dominant swell from open ocean into the <span class="hlt">ice</span> cover was observed by SAR during the Labrador <span class="hlt">Ice</span> <span class="hlt">Margin</span> Experiment (LIMEX), conducted on the <span class="hlt">marginal</span> <span class="hlt">ice</span> zone (MIZ) off the east coast of Newfoundland, Canada, in March 1987. At an <span class="hlt">ice</span> edge with a large curvature, the dominant swell component disappeared locally in the SAR imagery. Six subscenes of waves in the MIZ from the SAR image have been processed, revealing total reflection, refraction, and energy reduction of the ocean waves by the <span class="hlt">ice</span> cover. The observed variations of wave spectra from SAR near the <span class="hlt">ice</span> edge are consistent with the model prediction of wave refraction at the <span class="hlt">ice</span> edge due to the change of wave dispersion relation in <span class="hlt">ice</span> developed by Liu and Mollo-Christensen (1988).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA602481','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA602481"><span><span class="hlt">Marginal</span> <span class="hlt">Ice</span> Zone: Biogeochemical Sampling with Gliders</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-09-30</p> <p>melt and phytoplankton optical properties under Arctic <span class="hlt">ice</span>. The project specific goals are to build collaboration with Arctic biogeochemists at...the ship to the larger spatial scales sampled by the gliders, and to estimate the contribution of phytoplankton to heating in the water column...Seagliders with from shipboard measurements taken on the R/V Araon and develop optical proxies for phytoplankton concentration, pigment spectral absorption</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA258067','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA258067"><span>Sediment Flux, East Greenland <span class="hlt">Margin</span></span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1991-09-17</p> <p>D.. T 0ATE [3. AEORT TYPE AND ý -2-’S .’:2,E.i 09/17/91 Final Oct. . 1988 - Seot.l. 1991 4. TITLE AND SU.3TITLE S. F*.i1CjG . AU • 12..5 Sediment Flux...and s le ,; its ditribution is unlimited. 13. ABSTRACT (Maximum 2CO words) We investigated sediment flux across an <span class="hlt">ice</span>-dominated, high latitude...investigated an area off the East Greenland <span class="hlt">margin</span> where the world’s second largest <span class="hlt">ice</span> sheet still exists and where information on the extent of glaciation on</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008DSRII..55.2330T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008DSRII..55.2330T"><span>Pelagic and sympagic contribution of organic matter to zooplankton and vertical export in the Barents Sea <span class="hlt">marginal</span> <span class="hlt">ice</span> zone</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tamelander, Tobias; Reigstad, Marit; Hop, Haakon; Carroll, Michael L.; Wassmann, Paul</p> <p>2008-10-01</p> <p> exported from the euphotic zone was derived from pelagic primary production, but at 3 of 11 stations within the <span class="hlt">marginal</span> <span class="hlt">ice</span> zone (MIZ), the <span class="hlt">ice</span> algal signal dominated the isotope composition of sinking material. The δ 13C of settling organic matter was positively related to the vertical flux of particulate organic carbon, with maximum values around -21‰ during the peak bloom phase. Sedimentation of isotopically light copepod faecal pellets (mean δ 13C -25.4‰) was reflected in a depletion of 13C in the sinking material. The results illustrate tight pelagic-benthic coupling in the Barents Sea MIZ through vertical export of fresh phytodetritus during phytoplankton blooms and episodic export of <span class="hlt">ice</span> algae.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23197526','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23197526"><span><span class="hlt">Ice</span>-sheet response to oceanic forcing.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Joughin, Ian; Alley, Richard B; Holland, David M</p> <p>2012-11-30</p> <p>The <span class="hlt">ice</span> sheets of Greenland and Antarctica are losing <span class="hlt">ice</span> at accelerating rates, much of which is a response to oceanic forcing, especially of the floating <span class="hlt">ice</span> shelves. Recent observations establish a clear correspondence between the increased delivery of oceanic heat to the <span class="hlt">ice</span>-sheet <span class="hlt">margin</span> and increased <span class="hlt">ice</span> loss. In Antarctica, most of these processes are reasonably well understood but have not been rigorously quantified. In Greenland, an understanding of the processes by which warmer ocean temperatures drive the observed retreat remains elusive. Experiments designed to identify the relevant processes are confounded by the logistical difficulties of instrumenting <span class="hlt">ice</span>-choked fjords with actively calving glaciers. For both <span class="hlt">ice</span> sheets, multiple challenges remain before the fully coupled <span class="hlt">ice</span>-ocean-atmosphere models needed for rigorous sea-level projection are available.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040085625','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040085625"><span>Constraints on the Within Season and Between Year Variability of the North Residual <span class="hlt">Cap</span> from MGS-TES</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Calvin, W. M.; Titus, T. N.; Mahoney, S. A.</p> <p>2003-01-01</p> <p>There is a long history of telescopic and spacecraft observations of the polar regions of Mars. The finely laminated <span class="hlt">ice</span> deposits and surrounding layered terrains are commonly thought to contain a record of past climate conditions and change. Understanding the basic nature of the deposits and their mineral and <span class="hlt">ice</span> constituents is a continued focus of current and future orbited missions. Unresolved issues in Martian polar science include a) the unusual nature of the CO2 <span class="hlt">ice</span> deposits ("Swiss Cheese", "slab <span class="hlt">ice</span>" etc.) b) the relationship of the <span class="hlt">ice</span> deposits to underlying layered units (which differs from the north to the south), c) understanding the seasonal variations and their connections to the finely laminated units observed in high-resolution images and d) the relationship of dark materials in the wind-swept lanes and reentrant valleys to the surrounding dark dune and surface materials. Our work focuses on understanding these issues in relationship to the north residual <span class="hlt">ice</span> <span class="hlt">cap</span>. Recent work using Mars Global Surveyor (MGS) data sets have described evolution of the seasonal CO2 frost deposits. In addition, the north polar residual <span class="hlt">ice</span> <span class="hlt">cap</span> exhibits albedo variations between Mars years and within the summer season. The Thermal Emission Spectrometer (TES) data set can augment these observations providing additional constraints such as temperature evolution and spectral properties associated with <span class="hlt">ice</span> and rocky materials. Exploration of these properties is the subject of our current study.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.C43C0565R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.C43C0565R"><span>Deglaciation of the Western <span class="hlt">Margin</span> of the Barents Sea <span class="hlt">Ice</span> Sheet - a Swath Bathymetric and Sub-Bottom Seismic Study from Eglacom Nice-Streams Data in the Kveithola Trough</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rebesco, M.; Liu, Y.; Camerlenghi, A.; Winsborrow, M. C.; Laberg, J.; Caburlotto, A.; Diviacco, P.; Accettella, D.; Sauli, C.; Wardell, N.</p> <p>2010-12-01</p> <p>IPY Activity N. 367 focusing on Neogene <span class="hlt">ice</span> streams and sedimentary processes on high- latitude continental <span class="hlt">margins</span> (NICE-STREAMS) resulted in two coordinated cruises on the adjacent Storfjorden and Kveithola trough-mouth fans in the NW Barents Sea: SVAIS Cruise of BIO Hespérides, summer 2007, and EGLACOM Cruise of Cruise R/V OGS-Explora, summer 2008. The objectives were to acquire a high-resolution set of bathymetric, seismic and sediment core data in order to decipher the Neogene architectural development of the glacially-dominated NW Barents Sea continental <span class="hlt">margin</span> in response to natural climate change. The paleo-<span class="hlt">ice</span> streams drained <span class="hlt">ice</span> from southern Spitsbergen, Spitsbergen Bank, and Bear Island. The short distance from the <span class="hlt">ice</span> source to the calving front produced a short residence time of <span class="hlt">ice</span>, and therefore a rapid response to climatic changes. We describe here the EGLACOM data collected within the Kveithola Trough, an E-W trending glacial trough in the NW Barents Sea, NW of the Bear Island. Swath bathymetry shows that the seafloor is characterised by E-W trending mega-scale glacial lineations (MSGL) that record a fast flowing <span class="hlt">ice</span> stream draining the Svalbard/Barents Sea <span class="hlt">Ice</span> Sheet (SBIS) during the Last Glacial Maximum (LGM). MSGL are overprinted by transverse sediment ridges about 15 km apart which give rise to a staircase axial profile of the trough. Such transverse ridges are interpreted as grounding-zone wedges (GZW) formed by deposition of unconsolidated, saturated subglacial till during episodic <span class="hlt">ice</span> stream retreat. Sub-bottom (CHIRP) and multi-channel reflection seismic data show that present-day morphology is largely inherited from the palaeo-seafloor topography at the time of deposition of the transverse ridges, overlain by a draping glaciomarine unit up to over 15 m thick. Our data allow the reconstruction of depositional processes that accompanied the deglaciation of the Spitsbergen Bank area. The sedimentary drape deposited on top of the GZWs which</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA637421','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA637421"><span>On Wave-<span class="hlt">Ice</span> Interaction in the Arctic <span class="hlt">Marginal</span> <span class="hlt">Ice</span> Zone: Dispersion, Attenuation, and <span class="hlt">Ice</span> Response</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2016-06-01</p> <p>PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 2. REPORT TYPE1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 6. AUTHOR(S) 8. PERFORMING...schemes and contributes to a change of wave height (and direction) analogous to shoaling and refraction. A method for jointly measuring dispersion and...46 APPENDEX B: WAVE HEIGHTS MEASURED IN ARTIC <span class="hlt">ICE</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018QSRv..182...93K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018QSRv..182...93K"><span>Changes in sea <span class="hlt">ice</span> cover and <span class="hlt">ice</span> sheet extent at the Yermak Plateau during the last 160 ka - Reconstructions from biomarker records</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kremer, A.; Stein, R.; Fahl, K.; Ji, Z.; Yang, Z.; Wiers, S.; Matthiessen, J.; Forwick, M.; Löwemark, L.; O'Regan, M.; Chen, J.; Snowball, I.</p> <p>2018-02-01</p> <p>The Yermak Plateau is located north of Svalbard at the entrance to the Arctic Ocean, i.e. in an area highly sensitive to climate change. A multi proxy approach was carried out on Core PS92/039-2 to study glacial-interglacial environmental changes at the northern Barents Sea <span class="hlt">margin</span> during the last 160 ka. The main emphasis was on the reconstruction of sea <span class="hlt">ice</span> cover, based on the sea <span class="hlt">ice</span> proxy IP25 and the related phytoplankton - sea <span class="hlt">ice</span> index PIP25. Sea <span class="hlt">ice</span> was present most of the time but showed significant temporal variability decisively affected by movements of the Svalbard Barents Sea <span class="hlt">Ice</span> Sheet. For the first time, we prove the occurrence of seasonal sea <span class="hlt">ice</span> at the eastern Yermak Plateau during glacial intervals, probably steered by a major northward advance of the <span class="hlt">ice</span> sheet and the formation of a coastal polynya in front of it. Maximum accumulation of terrigenous organic carbon, IP25 and the phytoplankton biomarkers (brassicasterol, dinosterol, HBI III) can be correlated to distinct deglaciation events. More severe, but variable sea <span class="hlt">ice</span> cover prevailed at the Yermak Plateau during interglacials. The general proximity to the sea <span class="hlt">ice</span> <span class="hlt">margin</span> is further indicated by biomarker (GDGT) - based sea surface temperatures below 2.5 °C.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21022.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21022.html"><span>North Polar <span class="hlt">Cap</span> Layers and Ledges</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2016-08-24</p> <p>At the edge of Mars' permanent North Polar <span class="hlt">cap</span>, we see an exposure of the internal layers, each with a different mix of water <span class="hlt">ice</span>, dust and dirt. These layers are believed to correspond to different climate conditions over the past tens of thousands of years. When we zoom in closer, we see that the distinct layers erode differently. Some are stronger and more resistant to erosion, others only weakly cemented. The strong layers form ledges. http://photojournal.jpl.nasa.gov/catalog/PIA21022</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850017731&hterms=climate+exchange&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dclimate%2Bexchange','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850017731&hterms=climate+exchange&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dclimate%2Bexchange"><span>Sea <span class="hlt">Ice</span>, Climate and Fram Strait</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hunkins, K.</p> <p>1984-01-01</p> <p>When sea <span class="hlt">ice</span> is formed the albedo of the ocean surface increases from its open water value of about 0.1 to a value as high as 0.8. This albedo change effects the radiation balance and thus has the potential to alter climate. Sea <span class="hlt">ice</span> also partially seals off the ocean from the atmosphere, reducing the exchange of gases such as carbon dioxide. This is another possible mechanism by which climate might be affected. The <span class="hlt">Marginal</span> <span class="hlt">Ice</span> Zone Experiment (MIZEX 83 to 84) is an international, multidisciplinary study of processes controlling the edge of the <span class="hlt">ice</span> pack in that area including the interactions between sea, air and <span class="hlt">ice</span>.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900047002&hterms=water&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D80%26Ntt%3Dwater','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900047002&hterms=water&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D80%26Ntt%3Dwater"><span>Airborne discrimination between <span class="hlt">ice</span> and water - Application to the laser measurement of chlorophyll-in-water in a <span class="hlt">marginal</span> <span class="hlt">ice</span> zone</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hoge, Frank E.; Wright, C. Wayne; Swift, Robert N.; Yungel, James K.</p> <p>1989-01-01</p> <p>The concurrent active-passive measurement capabilities of the NASA Airborne Oceanographic Lidar have been used to (1) discriminate between <span class="hlt">ice</span> and water in a large <span class="hlt">ice</span> field within the Greenland Sea and (2) achieve the detection and measurement of chlorophyll-in-water by laser-induced and water-Raman-normalized pigment fluorescence. Passive upwelled radiances from sea <span class="hlt">ice</span> are significantly stronger than those from the neighboring water, even when the optical receiver field-of-view is only partially filled with <span class="hlt">ice</span>. Thus, weaker passive upwelled radiances, together with concurrently acquired laser-induced spectra, can rather confidently be assigned to the intervening water column. The laser-induced spectrum can then be processed using previously established methods to measure the chlorophyll-in-water concentration. Significant phytoplankton patchiness and elevated chlorophyll concentrations were found within the waters of the melting <span class="hlt">ice</span> compared to <span class="hlt">ice</span>-free regions just outside the <span class="hlt">ice</span> field.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840008344&hterms=sea+world&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsea%2Bworld','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840008344&hterms=sea+world&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsea%2Bworld"><span>Spaceborne SAR and sea <span class="hlt">ice</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Weeks, W. F.</p> <p>1983-01-01</p> <p>A number of remote sensing systems deployed in satellites to view the Earth which are successful in gathering data on the behavior of the world's snow and <span class="hlt">ice</span> covers are described. Considering sea <span class="hlt">ice</span> which covers over 10% of the world ocean, systems that have proven capable to collect useful data include those operating in the visible, near-infrared, infrared, and microwave frequency ranges. The microwave systems have the essential advantage in observing the <span class="hlt">ice</span> under all weather and lighting conditions. Without this capability data are lost during the long polar night and during times of storm passage, periods when <span class="hlt">ice</span> activity can be intense. The <span class="hlt">margins</span> of the <span class="hlt">ice</span> pack, a region of particular interest, is shrouded in cloud between 80 and 90% of the time.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Icar..251..164P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Icar..251..164P"><span>Variability of the martian seasonal CO2 <span class="hlt">cap</span> extent over eight Mars Years</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Piqueux, Sylvain; Kleinböhl, Armin; Hayne, Paul O.; Kass, David M.; Schofield, John T.; McCleese, Daniel J.</p> <p>2015-05-01</p> <p>We present eight Mars Years of nearly continuous tracking of the CO2 seasonal <span class="hlt">cap</span> edges from Mars Year (MY) 24 to 31 using Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) and Mars Reconnaissance Orbiter (MRO) Mars Climate Sounder (MCS) thermal infrared data. Spatial and temporal resolutions are 1 pixel per degree and 10°Ls (aerocentric longitude of the Sun). The seasonal <span class="hlt">caps</span> are defined as the regions where the diurnal radiometric temperature variations at ∼32 μm wavelength do not exceed 5 K. With this definition, terrains with small areal fraction of defrosted regolith able to experience measurable diurnal temperature cycles are not mapped as part of the <span class="hlt">cap</span>. This technique is adequate to distinguish CO2 from H2O <span class="hlt">ices</span>, and effective during the polar night or under low illumination conditions. The present analysis answers outstanding questions stemming from fragmented observations at visible wavelengths: (1) the previously sparsely documented growth of the North seasonal <span class="hlt">caps</span> (160° < Ls < 270°) is shown to be repeatable within 1-2° equivalent latitude, and monotonic over the MY 24-31 time period; high repeatability is observed during the retreat of the <span class="hlt">caps</span> in non-dusty years (∼1° or less equivalent latitude); (2) the MY 25 storm does not seem to have impacted the growth rate, maximal extents, or recession rate of the North seasonal <span class="hlt">caps</span>, whereas the MY 28 dust storm clearly sped up the recession of the <span class="hlt">cap</span> (∼2° smaller on average after the storm, during the recession, compared to other years); (3) during non-dusty years, the growth of the South seasonal <span class="hlt">cap</span> (350° < Ls < 100°) presents noticeable variability (up to ∼4° equivalent latitude near Ls = 20°) with a maximum extent reached near Ls = 90°; (4) the retreat of the Southern seasonal <span class="hlt">cap</span> (100° < Ls < 310°) exhibits large inter-annual variability, especially near 190° < Ls < 220°; (5) the recession of the MY 25 South seasonal <span class="hlt">cap</span> is significantly accelerated during the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840019243','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840019243"><span>Observations of sea <span class="hlt">ice</span> and icebergs from satellite radar altimeters</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rapley, C. G.</p> <p>1984-01-01</p> <p>Satellite radar altimeters can make useful contributions to the study of sea <span class="hlt">ice</span> both by enhancing observations from other instruments and by providing a unique probe of ocean-<span class="hlt">ice</span> interaction in the <span class="hlt">Marginal</span> <span class="hlt">Ice</span> Zone (MIZ). The problems, results and future potential of such observations are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21637255','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21637255"><span>A dynamic early East Antarctic <span class="hlt">Ice</span> Sheet suggested by <span class="hlt">ice</span>-covered fjord landscapes.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Young, Duncan A; Wright, Andrew P; Roberts, Jason L; Warner, Roland C; Young, Neal W; Greenbaum, Jamin S; Schroeder, Dustin M; Holt, John W; Sugden, David E; Blankenship, Donald D; van Ommen, Tas D; Siegert, Martin J</p> <p>2011-06-02</p> <p>The first Cenozoic <span class="hlt">ice</span> sheets initiated in Antarctica from the Gamburtsev Subglacial Mountains and other highlands as a result of rapid global cooling ∼34 million years ago. In the subsequent 20 million years, at a time of declining atmospheric carbon dioxide concentrations and an evolving Antarctic circumpolar current, sedimentary sequence interpretation and numerical modelling suggest that cyclical periods of <span class="hlt">ice</span>-sheet expansion to the continental <span class="hlt">margin</span>, followed by retreat to the subglacial highlands, occurred up to thirty times. These fluctuations were paced by orbital changes and were a major influence on global sea levels. <span class="hlt">Ice</span>-sheet models show that the nature of such oscillations is critically dependent on the pattern and extent of Antarctic topographic lowlands. Here we show that the basal topography of the Aurora Subglacial Basin of East Antarctica, at present overlain by 2-4.5 km of <span class="hlt">ice</span>, is characterized by a series of well-defined topographic channels within a mountain block landscape. The identification of this fjord landscape, based on new data from <span class="hlt">ice</span>-penetrating radar, provides an improved understanding of the topography of the Aurora Subglacial Basin and its surroundings, and reveals a complex surface sculpted by a succession of <span class="hlt">ice</span>-sheet configurations substantially different from today's. At different stages during its fluctuations, the edge of the East Antarctic <span class="hlt">Ice</span> Sheet lay pinned along the <span class="hlt">margins</span> of the Aurora Subglacial Basin, the upland boundaries of which are currently above sea level and the deepest parts of which are more than 1 km below sea level. Although the timing of the channel incision remains uncertain, our results suggest that the fjord landscape was carved by at least two iceflow regimes of different scales and directions, each of which would have over-deepened existing topographic depressions, reversing valley floor slopes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930022698&hterms=HRV&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DHRV','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930022698&hterms=HRV&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DHRV"><span>SPOT satellite mapping of <span class="hlt">Ice</span> Stream B</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Merry, Carolyn J.</p> <p>1993-01-01</p> <p>Numerous features of glaciological significance appear on two adjoining SPOT High Resolution Visible (HRV) images that cover the onset region of <span class="hlt">ice</span> stream B. Many small-scale features, such as crevasses and drift plumes, have been previously observed in aerial photography. Subtle features, such as long flow traces that have not been mapped previously, are also clear in the satellite imagery. Newly discovered features include ladder-like runners and rungs within certain shear <span class="hlt">margins</span>, flow traces that are parallel to <span class="hlt">ice</span> flow, unusual crevasse patterns, and flow traces originating within shear <span class="hlt">margins</span>. An objective of our work is to contribute to an understanding of the genesis of the features observed in satellite imagery. The genetic possibilities for flow traces, other lineations, bands of transverse crevasses, shear <span class="hlt">margins</span>, mottles, and lumps and warps are described.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.C13B0432L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.C13B0432L"><span>Middle to late Holocene fluctuations of the Vindue glacier, an outlet glacier of the Greenland <span class="hlt">Ice</span> Sheet, central East Greenland.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Levy, L.; Hammer, S. K.; Kelly, M. A.; Lowell, T. V.; Hall, B. L.; Howley, J. A.; Wilcox, P.; Medford, A.</p> <p>2014-12-01</p> <p>The <span class="hlt">margins</span> of the Greenland <span class="hlt">Ice</span> Sheet are currently responding to present-day climate changes. Determining how the <span class="hlt">ice</span> sheet <span class="hlt">margins</span> have responded to past climate changes provides a means to understand how they may respond in the future. Here we present a multi-proxy record used to reconstruct the Holocene fluctuations of the Vindue glacier, an <span class="hlt">ice</span> sheet outlet glacier in eastern Greenland. Lake sediment cores from Qiviut lake (informal name), located ~0.75 km from the present-day Vindue glacier <span class="hlt">margin</span> contain a sharp transition from medium sand/coarse silt to laminated gyttja just prior to 6,340±130 cal yr BP. We interpret this transition to indicate a time when the Vindue glacier retreated sufficiently to cease glacial sedimentation into the lake basin. Above this contact the core contains laminated gyttja with prominent, ~0.5 cm thick, silt layers. 10Be ages of boulders on bedrock located between Qiviut lake and the present-day <span class="hlt">ice</span> <span class="hlt">margin</span> date to 6.81 ± 0.67 ka (n = 3), indicating the time of deglaciation. These ages also agree well with the radiocarbon age of the silt-gyttja transition in Qiviut lake cores. 10Be ages on boulders on bedrock located more proximal to the <span class="hlt">ice</span> <span class="hlt">margin</span> (~0.5 km) yield ages of 2.67 ± 0.18 ka (n = 2). These ages indicate either the continued recession of the <span class="hlt">ice</span> <span class="hlt">margin</span> during the late Holocene or an advance at this time. Boulders on the historical moraines show that <span class="hlt">ice</span> retreated from the moraine by AD 1620 ± 20 yrs (n = 2). These results are in contrast with some areas of the western <span class="hlt">margin</span> of the <span class="hlt">ice</span> sheet where 10Be ages indicate that the <span class="hlt">ice</span> sheet was behind its Historical limit from the middle Holocene (~6-7 ka) to Historical time. This may indicate that the eastern <span class="hlt">margin</span> may have responded to late Holocene cooling more sensitively or that the advance associated with the Historical moraines overran any evidence of late Holocene fluctuations along the western <span class="hlt">margin</span> of the <span class="hlt">ice</span> sheet.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.C31C0322H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.C31C0322H"><span>Sedimentation Waves on the Martian North Polar <span class="hlt">Cap</span>: Analogy with Megadunes in Antarctica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Herny, C.; Masse, M.; Bourgeois, O.; Carpy, S.; Le Mouelic, S.; Appéré, T.; Smith, I. B.; Spiga, A.; Perret, L.; Rodriguez, S.; Piquet, T.; Gaudin, D.; Le Menn, E.</p> <p>2014-12-01</p> <p>Complex feedbacks between katabatic winds and the cryosphere may lead to the development of sedimentation waves at the surface of <span class="hlt">ice</span> sheets. These have been first described and named megadunes in Antarctica. Here we use topographic data, optical images, spectroscopic data and radar soundings, acquired by Mars orbiters, to show that the surface of the Martian North Polar <span class="hlt">Cap</span> displays two superimposed sets of sedimentation waves with differing wavelengths. These sedimentation waves grow and migrate upwind in response to the development of periodic accumulation/ablation patterns controlled by katabatic winds. They have similarities with Antarctic megadunes regarding their surface morphology, texture, grain size, and internal stratigraphic architecture. Based on this analogy, we are currently developing a model of <span class="hlt">ice</span>/wind interaction at the surface of <span class="hlt">ice</span> sheets. In Antarctica the accumulation processes on megadunes fields is generally attributed to the wind-blown snow transport while on sedimentation waves of the North Polar <span class="hlt">Cap</span> of Mars the accumulation seems to be dominated by sublimation/condensation processes at the surface. The model is designed to explore the implication of the water vapor mass transfer and heat transfer on the development of sedimentation waves both on Mars and Earth.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993EOSTr..74..225M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993EOSTr..74..225M"><span>Polar continental <span class="hlt">margins</span>: Studies off East Greenland</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mienert, J.; Thiede, J.; Kenyon, N. H.; Hollender, F.-J.</p> <p></p> <p>The passive continental <span class="hlt">margin</span> off east Greenland has been shaped by tectonic and sedimentary processes, and typical physiographic patterns have evolved over the past few million years under the influence of the late Cenozoic Northern Hemisphere glaciations. The Greenland <span class="hlt">ice</span> shield has been particularly affected.GLORIA (Geological Long Range Inclined Asdic), the Institute of Oceanographic Sciences' (IOS) long-range, side-scan sonar, was used on a 1992 RV Livonia cruise to map large-scale changes in sedimentary patterns along the east Greenland continental <span class="hlt">margin</span>. The overall objective of this research program was to determine the variety of large-scale seafloor processes to improve our understanding of the interaction between <span class="hlt">ice</span> sheets, current regimes, and sedimentary processes. In cooperation with IOS and the RV Livonia, a high-quality set of seafloor data has been produced. GLORIA'S first survey of east Greenland's continental <span class="hlt">margin</span> covered several 1000- × 50-km-wide swaths (Figure 1) and yielded an impressive sidescan sonar image of the complete Greenland Basin and <span class="hlt">margin</span> (about 250,000 km2). A mosaic of the data was made at a scale of 1:375,000. The base map was prepared with a polar stereographic projection having a standard parallel of 71°.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.V12B..01G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.V12B..01G"><span><span class="hlt">Ice</span> Thickness, Melting Rates and Styles of Activity in <span class="hlt">Ice</span>-Volcano Interaction</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gudmundsson, M. T.</p> <p>2005-12-01</p> <p>In most cases when eruptions occur within glaciers they lead to rapid <span class="hlt">ice</span> melting, jokulhlaups and/or lahars. Many parameters influence the style of activity and its impact on the environment. These include <span class="hlt">ice</span> thickness (size of glacier), bedrock geometry, magma flow rate and magma composition. The eruptions that have been observed can roughly be divided into: (1) eruptions under several hundred meters thick <span class="hlt">ice</span> on a relatively flat bedrock, (2) eruptions on flat or sloping bed through relatively thin <span class="hlt">ice</span>, and (3) volcanism where effects are limitied to confinement of lava flows or melting of <span class="hlt">ice</span> by pyroclastic flows or surges. This last category (<span class="hlt">ice</span>-contact volcanism) need not cause much <span class="hlt">ice</span> melting. Many of the deposits formed by Pleistocene volcanism in Iceland, British Columbia and Antarctica belong to the first category. An important difference between this type of activity and submarine activity (where pressure is hydrostatic) is that pressure at vents may in many cases be much lower than glaciostatic due to partial support of <span class="hlt">ice</span> cover over vents by the surrounding glacier. Reduced pressure favours explosive activity. Thus the effusive/explosive transition may occur several hundred metres underneath the <span class="hlt">ice</span> surface. Explosive fragmentation of magma leads to much higher rates of heat transfer than does effusive eruption of pillow lavas, and hence much higher melting rates. This effect of reduced pressure at vents will be less pronounced in a large <span class="hlt">ice</span> sheet than in a smaller glacier or <span class="hlt">ice</span> <span class="hlt">cap</span>, since the hydraulic gradient that drives water away from an eruption site will be lower in the large glacier. This may have implications for form and type of eruption deposits and their relationship with <span class="hlt">ice</span> thickness and glacier size.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24365211','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24365211"><span>Prognostic significance of positive circumferential resection <span class="hlt">margin</span> in esophageal cancer: a systematic review and meta-analysis.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wu, Jie; Chen, Qi-Xun; Teng, Li-song; Krasna, Mark J</p> <p>2014-02-01</p> <p>To assess the prognostic significance of positive circumferential resection <span class="hlt">margin</span> on overall survival in patients with esophageal cancer, a systematic review and meta-analysis was performed. Studies were identified from PubMed, EMBASE, and Web of Science. Survival data were extracted from eligible studies to compare overall survival in patients with a positive circumferential resection <span class="hlt">margin</span> with patients having a negative circumferential resection <span class="hlt">margin</span> according to the Royal College of Pathologists (RCP) criteria and the College of American Pathologists (<span class="hlt">CAP</span>) criteria. Survival data were pooled with hazard ratios (HRs) and their corresponding 95% confidence intervals (CIs). A random-effects model meta-analysis on overall survival was performed. The pooled HRs for survival were 1.510 (95% CI, 1.329-1.717; p<0.001) and 2.053 (95% CI, 1.597-2.638; p<0.001) according to the RCP and <span class="hlt">CAP</span> criteria, respectively. Positive circumferential resection <span class="hlt">margin</span> was associated with worse survival in patients with T3 stage disease according to the RCP (HR, 1.381; 95% CI, 1.028-1.584; p=0.001) and <span class="hlt">CAP</span> (HR, 2.457; 95% CI, 1.902-3.175; p<0.001) criteria, respectively. Positive circumferential resection <span class="hlt">margin</span> was associated with worse survival in patients receiving neoadjuvant therapy according to the RCP (HR, 1.676; 95% CI, 1.023-2.744; p=0.040) and <span class="hlt">CAP</span> (HR, 1.847; 95% CI, 1.226-2.78; p=0.003) criteria, respectively. Positive circumferential resection <span class="hlt">margin</span> is associated with poor prognosis in patients with esophageal cancer, particularly in patients with T3 stage disease and patients receiving neoadjuvant therapy. Copyright © 2014 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AdAtS..35...27K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AdAtS..35...27K"><span>Atmospheric precursors of and response to anomalous Arctic sea <span class="hlt">ice</span> in CMIP5 models</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kelleher, Michael; Screen, James</p> <p>2018-01-01</p> <p>This study examines pre-industrial control simulations from CMIP5 climate models in an effort to better understand the complex relationships between Arctic sea <span class="hlt">ice</span> and the stratosphere, and between Arctic sea <span class="hlt">ice</span> and cold winter temperatures over Eurasia. We present normalized regressions of Arctic sea-<span class="hlt">ice</span> area against several atmospheric variables at extended lead and lag times. Statistically significant regressions are found at leads and lags, suggesting both atmospheric precursors of, and responses to, low sea <span class="hlt">ice</span>; but generally, the regressions are stronger when the atmosphere leads sea <span class="hlt">ice</span>, including a weaker polar stratospheric vortex indicated by positive polar <span class="hlt">cap</span> height anomalies. Significant positive midlatitude eddy heat flux anomalies are also found to precede low sea <span class="hlt">ice</span>. We argue that low sea <span class="hlt">ice</span> and raised polar <span class="hlt">cap</span> height are both a response to this enhanced midlatitude eddy heat flux. The so-called "warm Arctic, cold continents" anomaly pattern is present one to two months before low sea <span class="hlt">ice</span>, but is absent in the months following low sea <span class="hlt">ice</span>, suggesting that the Eurasian cooling and low sea <span class="hlt">ice</span> are driven by similar processes. Lastly, our results suggest a dependence on the geographic region of low sea <span class="hlt">ice</span>, with low Barents-Kara Sea <span class="hlt">ice</span> correlated with a weakened polar stratospheric vortex, whilst low Sea of Okhotsk <span class="hlt">ice</span> is correlated with a strengthened polar vortex. Overall, the results support a notion that the sea <span class="hlt">ice</span>, polar stratospheric vortex and Eurasian surface temperatures collectively respond to large-scale changes in tropospheric circulation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20150006626&hterms=CAPS&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DCAPS','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20150006626&hterms=CAPS&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DCAPS"><span>Variations in Surface Texture of the North Polar Residual <span class="hlt">Cap</span> of Mars</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Milkovich, S. M.; Byrne, S.; Russell, P. S.</p> <p>2011-01-01</p> <p>The northern polar residual <span class="hlt">cap</span> (NPRC) of Mars is a water <span class="hlt">ice</span> deposit with a rough surface made up of pits, knobs, and linear depressions on scales of tens of meters. This roughness manifests as a series of bright mounds and dark hollows in visible images; these bright and dark patches have a characteristic wavelength and orientation. Spectral data indicate that the surface of the NPRC is composed of large-grained (and therefore old) water <span class="hlt">ice</span>. Due to the presence of this old <span class="hlt">ice</span>, it is thought that the NPRC is in a current state of net loss of material a result potentially at odds with impact crater statistics, which suggest ongoing deposition over the past 10-20 Kyr.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.C21B0322Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.C21B0322Z"><span>Sensing the bed-rock movement due to <span class="hlt">ice</span> unloading from space using InSAR time-series</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, W.; Amelung, F.; Dixon, T. H.; Wdowinski, S.</p> <p>2014-12-01</p> <p><span class="hlt">Ice</span>-sheets in the Arctic region are retreating rapidly since late 1990s. Typical <span class="hlt">ice</span> loss rates are 0.5 - 1 m/yr at the Canadian Arctic Archipelago, ~ 1 m/yr at the Icelandic <span class="hlt">ice</span> sheets, and several meters per year at the edge of Greenland <span class="hlt">ice</span> sheet. Such load decreasing causes measurable (several millimeter per year) deformation of the Earth's crust from Synthetic Aperture Radar Interferometry (InSAR). Using small baseline time-series analysis, this signal is retrieved after noises such as orbit error, atmospheric delay and DEM error being removed. We present results from Vatnajokull <span class="hlt">ice</span> <span class="hlt">cap</span>, Petermann glacier and Barnes <span class="hlt">ice</span> <span class="hlt">cap</span> using ERS, Envisat and TerraSAR-X data. Up to 2 cm/yr relative radar line-of-sight displacement is detected. The pattern of deformation matches the shape of <span class="hlt">ice</span> sheet very well. The result in Iceland was used to develop a new model for the <span class="hlt">ice</span> mass balance estimation from 1995 to 2010. Other applications of this kind of technique include validation of ICESat or GRACE based <span class="hlt">ice</span> sheet model, Earth's rheology (Young's modulus, viscosity and so on). Moreover, we find a narrow (~ 1km) uplift zone close to the periglacial area of Petermann glacier which may due to a special rheology under the <span class="hlt">ice</span> stream.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGC43C0754S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGC43C0754S"><span>Trace Element Determination from the Guliya <span class="hlt">Ice</span> Core to Characterize Aerosol Deposition over the Western Tibetan Plateau during the Last 500 Years</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sierra Hernandez, R.; Gabrielli, P.; Beaudon, E.; Wegner, A.; Thompson, L. G.</p> <p>2014-12-01</p> <p>The Tibetan Plateau or Third Pole covers over 5 million km2, and has ~46,000 glaciers that collectively contain one of the Earth's largest stores of fresh water. The Guliya <span class="hlt">ice</span> <span class="hlt">cap</span> located in the western Kunlun Shan on the Qinghai-Tibetan Plateau, China, is the largest (> 200 km2) <span class="hlt">ice</span> <span class="hlt">cap</span> in the subtropical zone. In 1992, a 308.6 m <span class="hlt">ice</span> core to bedrock was recovered from the Guliya <span class="hlt">ice</span> <span class="hlt">cap</span>. The deepest 20 meters yielded the first record extending back through the last glacial cycle found outside of the Polar Regions. Because of its continental location on the northwestern side of the Tibetan Plateau, the atmospheric circulation over the Guliya <span class="hlt">ice</span> <span class="hlt">cap</span> is dominated by westerly air flow from the Eurasian region. Therefore the site is expected to be unaffected by the fallout of anthropogenic trace metals originating from the inner Asian continent and rather may serve to characterize trace metal emissions from the western countries. Here we present preliminary results of the determination of 29 trace elements, Rb, Sr, Nb, Mo, Ag, Cd, Sn, Sb, Cs, Ba, Ta, Tl, Pb, Bi, U, Li, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, and As, from Guliya <span class="hlt">ice</span> core samples spanning the period 1500 - 1992 AD at seasonal (1750-1992 AD) and annual (1500-1750 AD) resolution. This Guliya trace element record will complement the developing records from the Dasuopu glacier, central Himalaya, and from the Puruogangri <span class="hlt">ice</span> <span class="hlt">cap</span> in the western Tanggula Shan in central Tibetan Plateau, which in contrast to Guliya are influenced by the monsoon. We investigate the possible sources both natural and anthropogenic of atmospheric trace elements and their fluxes over the Tibetan Plateau during the last 500 years.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017DyAtO..79...10S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017DyAtO..79...10S"><span>Sensitivity of open-water <span class="hlt">ice</span> growth and <span class="hlt">ice</span> concentration evolution in a coupled atmosphere-ocean-sea <span class="hlt">ice</span> model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shi, Xiaoxu; Lohmann, Gerrit</p> <p>2017-09-01</p> <p>A coupled atmosphere-ocean-sea <span class="hlt">ice</span> model is applied to investigate to what degree the area-thickness distribution of new <span class="hlt">ice</span> formed in open water affects the <span class="hlt">ice</span> and ocean properties. Two sensitivity experiments are performed which modify the horizontal-to-vertical aspect ratio of open-water <span class="hlt">ice</span> growth. The resulting changes in the Arctic sea-<span class="hlt">ice</span> concentration strongly affect the surface albedo, the ocean heat release to the atmosphere, and the sea-<span class="hlt">ice</span> production. The changes are further amplified through a positive feedback mechanism among the Arctic sea <span class="hlt">ice</span>, the Atlantic Meridional Overturning Circulation (AMOC), and the surface air temperature in the Arctic, as the Fram Strait sea <span class="hlt">ice</span> import influences the freshwater budget in the North Atlantic Ocean. Anomalies in sea-<span class="hlt">ice</span> transport lead to changes in sea surface properties of the North Atlantic and the strength of AMOC. For the Southern Ocean, the most pronounced change is a warming along the Antarctic Circumpolar Current (ACC), owing to the interhemispheric bipolar seasaw linked to AMOC weakening. Another insight of this study lies on the improvement of our climate model. The ocean component FESOM is a newly developed ocean-sea <span class="hlt">ice</span> model with an unstructured mesh and multi-resolution. We find that the subpolar sea-<span class="hlt">ice</span> boundary in the Northern Hemisphere can be improved by tuning the process of open-water <span class="hlt">ice</span> growth, which strongly influences the sea <span class="hlt">ice</span> concentration in the <span class="hlt">marginal</span> <span class="hlt">ice</span> zone, the North Atlantic circulation, salinity and Arctic sea <span class="hlt">ice</span> volume. Since the distribution of new <span class="hlt">ice</span> on open water relies on many uncertain parameters and the knowledge of the detailed processes is currently too crude, it is a challenge to implement the processes realistically into models. Based on our sensitivity experiments, we conclude a pronounced uncertainty related to open-water sea <span class="hlt">ice</span> growth which could significantly affect the climate system sensitivity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040085646&hterms=Saunders&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D10%26Ntt%3DSaunders%252C%2BM','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040085646&hterms=Saunders&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D10%26Ntt%3DSaunders%252C%2BM"><span>CryoScout: A Descent Through the Mars Polar <span class="hlt">Cap</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hecht, M. H.; Saunders, R. S.</p> <p>2003-01-01</p> <p>CryoScout was proposed as a subsurface investigation of the stratigraphic climate record embedded in Mars North Polar <span class="hlt">cap</span>. After landing on a gentle landscape in the midst of the mild summer season, CryoScout was to use the continuous polar sunlight to power the descent of a cryobot, a thermal probe, into the <span class="hlt">ice</span> at a rate of about 1 m per day. CryoScout would probe deep enough into this time capsule to see the effects of planetary obliquity variations and discrete events such as dust storms or volcanic eruptions. By penetrating tens of meters of <span class="hlt">ice</span>, the mission would explore at least one of the dominant "MOC layers" observed in exposed layered terrain.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013APS..MAR.R0002T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013APS..MAR.R0002T"><span>Earth's Climate History from Glaciers and <span class="hlt">Ice</span> Cores</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thompson, Lonnie</p> <p>2013-03-01</p> <p>Glaciers serve both as recorders and early indicators of climate change. Over the past 35 years our research team has recovered climatic and environmental histories from <span class="hlt">ice</span> cores drilled in both Polar Regions and from low to mid-latitude, high-elevation <span class="hlt">ice</span> fields. Those <span class="hlt">ice</span> core -derived proxy records extending back 25,000 years have made it possible to compare glacial stage conditions in the Tropics with those in the Polar Regions. High-resolution records of δ18O (in part a temperature proxy) demonstrate that the current warming at high elevations in the mid- to lower latitudes is unprecedented for the last two millennia, although at many sites the early Holocene was warmer than today. Remarkable similarities between changes in the highland and coastal cultures of Peru and regional climate variability, especially precipitation, imply a strong connection between prehistoric human activities and regional climate. <span class="hlt">Ice</span> cores retrieved from shrinking glaciers around the world confirm their continuous existence for periods ranging from hundreds to thousands of years, suggesting that current climatological conditions in those regions today are different from those under which these <span class="hlt">ice</span> fields originated and have been sustained. The ongoing widespread melting of high-elevation glaciers and <span class="hlt">ice</span> <span class="hlt">caps</span>, particularly in low to middle latitudes, provides strong evidence that a large-scale, pervasive and, in some cases, rapid change in Earth's climate system is underway. Observations of glacier shrinkage during the 20th and 21st century girdle the globe from the South American Andes, the Himalayas, Kilimanjaro (Tanzania, Africa) and glaciers near Puncak Jaya, Indonesia (New Guinea). The history and fate of these <span class="hlt">ice</span> <span class="hlt">caps</span>, told through the adventure, beauty and the scientific evidence from some of world's most remote mountain tops, provide a global perspective for contemporary climate. NSF Paleoclimate Program</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/5688310-asynchronous-ice-lobe-retreat-glacial-lake-bascom-deglaciation-hoosic-vermont-valleys-southwestern-vermont','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5688310-asynchronous-ice-lobe-retreat-glacial-lake-bascom-deglaciation-hoosic-vermont-valleys-southwestern-vermont"><span>Asynchronous <span class="hlt">ice</span> lobe retreat and glacial Lake Bascom: Deglaciation of the Hoosic and Vermont valleys, southwestern Vermont</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Small, E.; Desimone, D.</p> <p></p> <p>Deglaciation of the Hoosic River drainage basin in southwestern Vermont was more complex than previously described. Detailed surficial mapping, stratigraphic relationships, and terrace levels/delta elevations reveal new details in the chronology of glacial Lake Bascom: (1) a pre-Wisconsinan proglacial lake was present in a similar position to Lake Bascom as <span class="hlt">ice</span> advanced: (2) the northern <span class="hlt">margin</span> of 275m (900 ft) glacial Lake Bascom extended 10 km up the Vermont Valley; (3) the 215m (705 ft) Bascom level was stable and long lived; (4) intermediate water planes existed between 215m and 190m (625 ft) levels; and (5) a separate <span class="hlt">ice</span> tonguemore » existed in Shaftsbury Hollow damming a small glacial lake, here named glacial Lake Emmons. This information is used to correlate <span class="hlt">ice</span> <span class="hlt">margins</span> to different lake levels. Distance of <span class="hlt">ice</span> <span class="hlt">margin</span> retreat during a lake level can be measured. Lake levels are then used as control points on a Lake Bascom relative time line to compare rate of retreat of different <span class="hlt">ice</span> tongues. Correlation of <span class="hlt">ice</span> <span class="hlt">margins</span> to Bascom levels indicates <span class="hlt">ice</span> retreat was asynchronous between nearby tongues in southwestern Vermont. The Vermont Valley <span class="hlt">ice</span> tongue retreated between two and four times faster than the Hoosic Valley tongue during the Bascom 275m level. Rate of retreat of the Vermont Valley tongue slowed to one-half of the Hoosic tongue during the 215m--190m lake levels. Factors responsible for varying rates of retreat are subglacial bedrock gradient, proximity to the Hudson-Champlain lobe, and the presence of absence of a calving <span class="hlt">margins</span>. Asynchronous retreat produced splayed <span class="hlt">ice</span> <span class="hlt">margins</span> in southwestern Vermont. Findings from this study do not support the model of parallel, synchronous retreat proposed by many workers for this region.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC21F..01T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC21F..01T"><span>High-amplitude, centennial-scale climate oscillations during the last glacial in the western Third Pole as recorded in the Guliya <span class="hlt">ice</span> <span class="hlt">cap</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thompson, L. G.; Yao, T.; Mosley-Thompson, E.; Wu, G.; Davis, M. E.; Tian, L.; Lin, P. N.</p> <p>2015-12-01</p> <p>The Guliya <span class="hlt">ice</span> <span class="hlt">cap</span>, located in the Kunlun Mountains in the western Third Pole (TP) region near the northern limit of the southwest monsoon influence, may be the only non-polar <span class="hlt">ice</span> field that provides detailed histories of climate and environment over the last glacial cycle. A continuous climate record from an <span class="hlt">ice</span> core drilled in 1992 contains Eemian <span class="hlt">ice</span>, and basal temperatures measured that year confirmed that the record was not being removed from the bottom. The δ18O record throughout Marine Isotope Stage 2 (MIS2) displays the occurrence of high-amplitude (~20‰) episodes of ~200-year periodicity, and the aerosol records suggest snow cover, regional vegetation and fire frequency that vary in synchrony. These oscillations might reflect the movement of the northernmost penetration of the monsoon precipitation through the Late Glacial Stage, which is restricted by the topographic barrier posed by the Kunlun range, and might also reflect solar-driven nonlinearities in the climate system such as sudden shifts in the jet stream. Recent model simulations suggest that glacial cooling over China was significantly amplified by stationary waves, and the Guliya MIS2 oscillations could reflect cyclical variability in these waves. These results are supported by clumped isotope thermometry of carbonates from the Chinese Loess Plateau, which indicate a 6 to 7oC decrease in Last Glacial Maximum summer temperatures. These studies will lead to a better understanding of the mechanisms driving such high-frequency, high-amplitude oscillations. A review of the 2015 Sino-American cooperative <span class="hlt">ice</span> core drilling program on Guliya is presented. This program will serve as a flagship for the TP Environment Program, an international, multidisciplinary collaboration among professionals and students in 14 countries designed to investigate environmental changes across the TP. The rapidly warming TP contains ~46,000 glaciers that collectively hold one of Earth's largest stores of fresh water that</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.P52A..02R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.P52A..02R"><span>The Arctic Gakkel Vents (AGAVE) Expedition: Technology Development and the Search for Deep-Sea Hydrothermal Vent Fields Under the Arctic <span class="hlt">Ice</span> <span class="hlt">Cap</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reves-Sohn, R. A.; Singh, H.; Humphris, S.; Shank, T.; Jakuba, M.; Kunz, C.; Murphy, C.; Willis, C.</p> <p>2007-12-01</p> <p>Deep-sea hydrothermal fields on the Gakkel Ridge beneath the Arctic <span class="hlt">ice</span> <span class="hlt">cap</span> provide perhaps the best terrestrial analogue for volcanically-hosted chemosynthetic biological communities that may exist beneath the <span class="hlt">ice</span>-covered ocean of Europa. In both cases the key enabling technologies are robotic (untethered) vehicles that can swim freely under the <span class="hlt">ice</span> and the supporting hardware and software. The development of robotic technology for deep- sea research beneath <span class="hlt">ice</span>-covered oceans thus has relevance to both polar oceanography and future astrobiological missions to Europa. These considerations motivated a technology development effort under the auspices of NASA's ASTEP program and NSF's Office of Polar Programs that culminated in the AGAVE expedition aboard the icebreaker Oden from July 1 - August 10, 2007. The scientific objective was to study hydrothermal processes on the Gakkel Ridge, which is a key target for global studies of deep-sea vent fields. We developed two new autonomous underwater vehicles (AUVs) for the project, and deployed them to search for vent fields beneath the <span class="hlt">ice</span>. We conducted eight AUV missions (four to completion) during the 40-day long expedition, which also included ship-based bathymetric surveys, CTD/rosette water column surveys, and wireline photographic and sampling surveys of remote sections of the Gakkel Ridge. The AUV missions, which lasted 16 hours on average and achieved operational depths of 4200 meters, returned sensor data that showed clear evidence of hydrothermal venting, but for a combination of technical reasons and time constraints, the AUVs did not ultimately return images of deep-sea vent fields. Nevertheless we used our wireline system to obtain images and samples of extensive microbial mats that covered fresh volcanic surfaces on a newly discovered set of volcanoes. The microbes appear to be living in regions where reducing and slightly warm fluids are seeping through cracks in the fresh volcanic terrain. These discoveries</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008Icar..196..488V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008Icar..196..488V"><span>Dust aerosols above the south polar <span class="hlt">cap</span> of Mars as seen by OMEGA</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vincendon, M.; Langevin, Y.; Poulet, F.; Bibring, J.-P.; Gondet, B.; Jouglet, D.; Omega Team</p> <p>2008-08-01</p> <p>The time evolution of atmospheric dust at high southern latitudes on Mars has been determined using observations of the south seasonal <span class="hlt">cap</span> acquired in the near infrared (1-2.65 μm) by OMEGA/Mars Express in 2005. Observations at different solar zenith angles and one EPF sequence demonstrate that the reflectance in the 2.64 μm saturated absorption band of the surface CO 2 <span class="hlt">ice</span> is mainly due to the light scattered by aerosols above most places of the seasonal <span class="hlt">cap</span>. We have mapped the total optical depth of dust aerosols in the near-IR above the south seasonal <span class="hlt">cap</span> of Mars from mid-spring to early summer with a time resolution ranging from one day to one week and a spatial resolution of a few kilometers. The optical depth above the south perennial <span class="hlt">cap</span> is determined on a longer time range covering southern spring and summer. A constant set of optical properties of dust aerosols is consistent with OMEGA observations during the analyzed period. Strong variations of the optical depth are observed over small horizontal and temporal scales, corresponding in part to moving dust clouds. The late summer peak in dust opacity observed by Opportunity in 2005 propagated to the south pole contrarily to that observed in mid spring. This may be linked to evidence for dust scavenging by water <span class="hlt">ice</span>-rich clouds circulating at high southern latitudes at this season.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014P%26SS...91...60F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014P%26SS...91...60F"><span>Amazonian mid- to high-latitude glaciation on Mars: Supply-limited <span class="hlt">ice</span> sources, <span class="hlt">ice</span> accumulation patterns, and concentric crater fill glacial flow and <span class="hlt">ice</span> sequestration</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fastook, James L.; Head, James W.</p> <p>2014-02-01</p> <p>Concentric crater fill (CCF) occurs in the interior of impact craters in mid- to high latitudes on Mars and is interpreted to have formed by glacial <span class="hlt">ice</span> flow and debris covering. We use the characteristics and orientation of deposits comprising CCF, the thickness of pedestal deposits in mid- to high-latitude pedestal craters (Pd), the volumes of the current polar <span class="hlt">caps</span>, and information about regional slopes and <span class="hlt">ice</span> rheology to address questions about (1) the maximum thickness of regional <span class="hlt">ice</span> deposits during the Late Amazonian, (2) the likelihood that these deposits flowed regionally, (3) the geological regions and features most likely to induce <span class="hlt">ice</span>-flow, and (4) the locations and environments in which <span class="hlt">ice</span> is likely to have been sequestered up to the present. We find that regional <span class="hlt">ice</span> flow under Late Amazonian climate conditions requires <span class="hlt">ice</span> thicknesses exceeding many hundreds of meters for slopes typical of the vast majority of the surface of Mars, a thickness for the mid-latitudes that is well in excess of the total volume available from polar <span class="hlt">ice</span> reservoirs. This indicates that although conditions for mid- to high-latitude glaciation may have persisted for tens to hundreds of millions of years, the process is “supply limited”, with a steady state reached when the polar <span class="hlt">ice</span> <span class="hlt">cap</span> water <span class="hlt">ice</span> supply becomes exhausted. Impact craters are by far the most abundant landform with associated slopes (interior wall and exterior rim) sufficiently high to induce glacial <span class="hlt">ice</span> flow under Late Amazonian climate conditions, and topographic slope data show that Amazonian impact craters have been clearly modified, undergoing crater interior slope reduction and floor shallowing. We show that these trends are the predictable response of <span class="hlt">ice</span> deposition and preferential accumulation and retention in mid- to high-latitude crater interiors during episodes of enhanced spin-axis obliquity. We demonstrate that flow from a single episode of an inter-crater terrain layer comparable to Pedestal</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.C23B0656F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.C23B0656F"><span>An Imaging System capable of monitoring en-glacial and sub-glacial processes of glaciers, streaming <span class="hlt">ice</span> and <span class="hlt">ice</span> <span class="hlt">margins</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Frearson, N.</p> <p>2012-12-01</p> <p>Columbia University in New York is developing a geophysical instrumentation package that is capable of monitoring dynamic en-glacial and sub-glacial processes. The instruments include a Riegl Scanning Laser for precise measurements of the <span class="hlt">ice</span> surface elevation, Stereo photogrammetry from a high sensitivity (~20mK) Infra-Red camera and a high resolution Visible Imaging camera (2456 x 2058 pixels) to document fine scale <span class="hlt">ice</span> temperature changes and surface features, near surface <span class="hlt">ice</span> penetrating radar and an <span class="hlt">ice</span> depth measuring radar that can be used to study interior and basal processes of <span class="hlt">ice</span> shelves, glaciers, <span class="hlt">ice</span> streams and <span class="hlt">ice</span>-sheets. All instrument data sets will be time-tagged and geo-referenced using precision GPS satellite data. Aircraft orientation will be corrected using inertial measurement technology integrated into the pod. This instrumentation will be flown across some of the planets largest outlet glaciers in Antarctica and Greenland. However, a key aspect of the design is that at the conclusion of the program, the Pod, Deployment Arm, Data Acquisition and Power and Environmental Management system will become available for use by the science community at large to install their own instruments onto. It will also be possible to mount the Icepod onto other airframes. The sensor system will become part of a research facility operated for the science community, and data will be maintained at and made available through a Polar Data Center.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860061009&hterms=northern+hemispheres+mars&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dnorthern%2Bhemispheres%2Bmars','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860061009&hterms=northern+hemispheres+mars&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dnorthern%2Bhemispheres%2Bmars"><span>Measurements of the north polar <span class="hlt">cap</span> of Mars and the earth's Northern Hemisphere <span class="hlt">ice</span> and snow cover</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Foster, J.; Owe, M.; Capen, C.</p> <p>1986-01-01</p> <p>The boundaries of the polar <span class="hlt">caps</span> of Mars have been measured on more than 3000 photographs since 1905 from the plate collection at the Lowell Observatory. For the earth, the polar <span class="hlt">caps</span> have been accurately mapped only since the mid 1960s when satellites were first available to synoptically view the polar regions. The polar <span class="hlt">caps</span> of both planets wax and wane in response to changes in the seasons, and interannual differences in polar <span class="hlt">cap</span> behavior on Mars as well as earth are intimately linked to global energy balance. Data on the year to year variations in the extent of the north polar <span class="hlt">caps</span> of Mars and earth have been assembled and compared, although only 6 years of concurrent data were available for comparison.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23463085','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23463085"><span>Lack of independent significance of a close (<1 mm) circumferential resection <span class="hlt">margin</span> involvement in esophageal and junctional cancer.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>O'Farrell, N J; Donohoe, C L; Muldoon, C; Costelloe, J M; King, S; Ravi, N; Reynolds, J V</p> <p>2013-08-01</p> <p>For rectal cancer, an involved circumferential resection <span class="hlt">margin</span> (CRM), defined as tumor cells within 1 mm of the CRM, is of established prognostic significance. This definition for the esophagus, however, is controversial, with the UK Royal College of Pathologists (RCP) recommending the 1 mm definition, while the College of American Pathologists (<span class="hlt">CAP</span>) advises that only tumor cells at the cut <span class="hlt">margin</span> (0 mm) define an incomplete (R1) resection. The aim of this study was to compare the clinical significance of both definitions in patients with pT3 tumors. <span class="hlt">CAP</span>- and RCP-defined CRM status in patients treated by surgery only or by multimodal therapy was recorded prospectively in a comprehensive database from May 2003 to May 2011. Kaplan-Meier survival curves were generated, and factors affecting survival were assessed by univariate and multivariate analysis. A total of 157 of 340 patients had pT3 esophageal tumors, with RCP-positive CRM in 60 %, and 18 % by <span class="hlt">CAP</span>. There were no significant differences between RCP-positive CRM and negative <span class="hlt">margins</span> for node-positive disease, local recurrence, and survival. <span class="hlt">CAP</span>-positive CRM was associated with positive nodes (P = 0.036) and poorer survival (P = 0.023). Multivariate analysis revealed nodal invasion to be the only independent prognostic variable (P = 0.004). A CRM <span class="hlt">margin</span> of <1 mm is common in pT3 esophageal tumors, a finding consistent with other reports. The <1 mm definition was not associated with node positivity, local recurrence, or survival, in contrast to actual involvement at the <span class="hlt">margin</span>, suggesting lack of independent prognostic significance of the RCP definition and possible superiority of the <span class="hlt">CAP</span> criteria for prospective registration of CRM.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920040056&hterms=data+types&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Ddata%2Btypes','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920040056&hterms=data+types&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Ddata%2Btypes"><span>Effects of weather on the retrieval of sea <span class="hlt">ice</span> concentration and <span class="hlt">ice</span> type from passive microwave data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Maslanik, J. A.</p> <p>1992-01-01</p> <p>Effects of wind, water vapor, and cloud liquid water on <span class="hlt">ice</span> concentration and <span class="hlt">ice</span> type calculated from passive microwave data are assessed through radiative transfer calculations and observations. These weather effects can cause overestimates in <span class="hlt">ice</span> concentration and more substantial underestimates in multi-year <span class="hlt">ice</span> percentage by decreasing polarization and by decreasing the gradient between frequencies. The effect of surface temperature and air temperature on the magnitudes of weather-related errors is small for <span class="hlt">ice</span> concentration and substantial for multiyear <span class="hlt">ice</span> percentage. The existing weather filter in the NASA Team Algorithm addresses only weather effects over open ocean; the additional use of local open-ocean tie points and an alternative weather correction for the <span class="hlt">marginal</span> <span class="hlt">ice</span> zone can further reduce errors due to weather. <span class="hlt">Ice</span> concentrations calculated using 37 versus 18 GHz data show little difference in total <span class="hlt">ice</span> covered area, but greater differences in intermediate concentration classes. Given the magnitude of weather-related errors in <span class="hlt">ice</span> classification from passive microwave data, corrections for weather effects may be necessary to detect small trends in <span class="hlt">ice</span> covered area and <span class="hlt">ice</span> type for climate studies.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70019840','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70019840"><span>Southern Laurentide <span class="hlt">ice</span> lobes were created by <span class="hlt">ice</span> streams: Des Moines Lobe in Minnesota, USA</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Patterson, C.J.</p> <p>1997-01-01</p> <p>Regional mapping in southern Minnesota has illuminated a suite of landforms developed by the Des Moines Lobe that delimit the position of the lobe at its maximum and at lesser readvances. The <span class="hlt">ice</span> lobe repeatedly advanced, discharged its subglacial water, and subsequently stagnated. Recent glaciological research on Antarctic <span class="hlt">ice</span> streams has led some glacial geologists to postulate that <span class="hlt">ice</span> streams drained parts of the marine-based areas of the Laurentide <span class="hlt">Ice</span> Sheet. I postulate that such <span class="hlt">ice</span> streams may develop in land-based areas of an <span class="hlt">ice</span> sheet as well, and that the Des Moines Lobe, 200 km wide and 900 km long, was an outlet glacier of an <span class="hlt">ice</span> stream. It appears to have been able to advance beyond the Laurentide <span class="hlt">Ice</span> Sheet as long as adequate water pressure was maintained. However, the outer part of the lobe stagnated because subglacial water that facilitated the flow was able to drain away through tunnel valleys. Stagnation of the lobe is not equivalent to stoppage of the <span class="hlt">ice</span> stream, because <span class="hlt">ice</span> repeatedly advanced into and onto the stagnant <span class="hlt">margins</span>, stacking <span class="hlt">ice</span> and debris. Similar landforms are also seen in other lobes of the upper midwestern United States.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/14749827','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/14749827"><span>Enhanced <span class="hlt">ice</span> sheet growth in Eurasia owing to adjacent <span class="hlt">ice</span>-dammed lakes.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Krinner, G; Mangerud, J; Jakobsson, M; Crucifix, M; Ritz, C; Svendsen, J I</p> <p>2004-01-29</p> <p>Large proglacial lakes cool regional summer climate because of their large heat capacity, and have been shown to modify precipitation through mesoscale atmospheric feedbacks, as in the case of Lake Agassiz. Several large <span class="hlt">ice</span>-dammed lakes, with a combined area twice that of the Caspian Sea, were formed in northern Eurasia about 90,000 years ago, during the last glacial period when an <span class="hlt">ice</span> sheet centred over the Barents and Kara seas blocked the large northbound Russian rivers. Here we present high-resolution simulations with an atmospheric general circulation model that explicitly simulates the surface mass balance of the <span class="hlt">ice</span> sheet. We show that the main influence of the Eurasian proglacial lakes was a significant reduction of <span class="hlt">ice</span> sheet melting at the southern <span class="hlt">margin</span> of the Barents-Kara <span class="hlt">ice</span> sheet through strong regional summer cooling over large parts of Russia. In our simulations, the summer melt reduction clearly outweighs lake-induced decreases in moisture and hence snowfall, such as has been reported earlier for Lake Agassiz. We conclude that the summer cooling mechanism from proglacial lakes accelerated <span class="hlt">ice</span> sheet growth and delayed <span class="hlt">ice</span> sheet decay in Eurasia and probably also in North America.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/7246961-earthquakes-north-atlantic-passive-margins','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/7246961-earthquakes-north-atlantic-passive-margins"><span>Earthquakes at North Atlantic passive <span class="hlt">margins</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gregersen, S.; Basham, P.W.</p> <p>1989-01-01</p> <p>The main focus of this volume is the earthquakes that occur at and near the continental <span class="hlt">margins</span> on both sides of the North Atlantic. The book, which contains the proceedings of the NATO workshop on Causes and Effects of Earthquakes at Passive <span class="hlt">Margins</span> and in Areas of Postglacial Rebound on Both Sides of the North Atlantic, draws together the fields of geophysics, geology and geodesy to address the stress and strain in the Earth's crust. The resulting earthquakes produced on ancient geological fault zones and the associated seismic hazards these pose to man are also addressed. Postglacial rebound in Northmore » America and Fennoscandia is a minor source of earthquakes today, during the interglacial period, but evidence is presented to suggest that the <span class="hlt">ice</span> sheets suppressed earthquake strain while they were in place, and released this strain as a pulse of significant earthquakes after the <span class="hlt">ice</span> melted about 9000 years ago.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ISPAr42W7.1585Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ISPAr42W7.1585Z"><span><span class="hlt">Ice</span> Water Classification Using Statistical Distribution Based Conditional Random Fields in RADARSAT-2 Dual Polarization Imagery</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Y.; Li, F.; Zhang, S.; Hao, W.; Zhu, T.; Yuan, L.; Xiao, F.</p> <p>2017-09-01</p> <p>In this paper, Statistical Distribution based Conditional Random Fields (STA-CRF) algorithm is exploited for improving <span class="hlt">marginal</span> <span class="hlt">ice</span>-water classification. Pixel level <span class="hlt">ice</span> concentration is presented as the comparison of methods based on CRF. Furthermore, in order to explore the effective statistical distribution model to be integrated into STA-CRF, five statistical distribution models are investigated. The STA-CRF methods are tested on 2 scenes around Prydz Bay and Adélie Depression, where contain a variety of <span class="hlt">ice</span> types during melt season. Experimental results indicate that the proposed method can resolve sea <span class="hlt">ice</span> edge well in <span class="hlt">Marginal</span> <span class="hlt">Ice</span> Zone (MIZ) and show a robust distinction of <span class="hlt">ice</span> and water.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1914576F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1914576F"><span>CALICE: Calibrating Plant Biodiversity in Glacier <span class="hlt">Ice</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Festi, Daniela; Cristofori, Antonella; Vernesi, Cristiano; Zerbe, Stefan; Wellstein, Camilla; Maggi, Valter; Oeggl, Klaus</p> <p>2017-04-01</p> <p>The objective of the project is to reconstruct plant biodiversity and its trend archived in Alpine glacier <span class="hlt">ice</span> by pollen and eDNA (environmental DNA) during the last five decades by analyzing a 40 m <span class="hlt">ice</span> core. For our study we chose the Adamello glacier (Trentino - Südtirol, Lombardia) because of i) the good preservation conditions for pollen and eDNA in <span class="hlt">ice</span>, ii) the thickness of the <span class="hlt">ice</span> <span class="hlt">cap</span> (270m) and iii) the expected high time resolution. The biodiversity estimates gained by pollen analysis and eDNA will be validated by historical biodiversity assessments mainly based on vegetation maps, aerial photos and vegetation surveys in the catchment area of the Adamello glacier for the last five decades. This historical reconstruction of biodiversity trends will be performed on a micro-, meso- and macro-scale (5, 20-50 and 50-100 Km radius, respectively). The results will serve as a calibration data set on biodiversity for future studies, such as the second step of the coring by the POLLiCE research consortium (pollice.fmach.it). In fact, arrangements are currently been made to drill the complete <span class="hlt">ice</span> <span class="hlt">cap</span> and retrieve a 270 m thick core which has the potential to cover a time span of minimum 400 years up to several millennia. This second stage will extend the time scale and enable the evaluation of dissimilarity/similarity of modern biodiversity in relation to Late Holocene trends. Finally, we believe this case study has the potential to be applied in other glaciated areas to evaluate biodiversity for large regions (e.g. central Asian mountain ranges, Tibet and Tian Shan or the Andes).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.C11E0714W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.C11E0714W"><span>The Influence of Subglacial Hydrology on <span class="hlt">Ice</span> Stream Velocity in a Physical Model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wagman, B. M.; Catania, G.; Buttles, J. L.</p> <p>2011-12-01</p> <p>We use a physical model to investigate how changes in subglacial hydrology affect <span class="hlt">ice</span> motion in <span class="hlt">ice</span> streams found in the West Antarctic <span class="hlt">Ice</span> Sheet. <span class="hlt">Ice</span> streams are modeled using silicone polymer placed over a thin water layer to simulate <span class="hlt">ice</span> flow dominated by basal sliding. Dynamic similarity between modeled and natural <span class="hlt">ice</span> streams is achieved through direct comparison of the glacier force balance using the conditions on Whillans <span class="hlt">Ice</span> Stream (WIS) as our goal.This <span class="hlt">ice</span> stream has a force balance that has evolved through time due to increased basal resistance. Currently, between 50-90% of the driving stress is supported by the <span class="hlt">ice</span> stream shear <span class="hlt">margins</span> [Stearns et al., JGlac 2005]. A similar force balance can be achieved in our model with a surface slope of 0.025. We test two hypotheses; 1) the distribution and thickness of the subglacial water layer influences the <span class="hlt">ice</span> flow speed and thus the force balance and can reproduce the observed slowdown of WIS and; 2) shear <span class="hlt">margins</span> are locations where transitions in water layer thickness occur.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1991JGR....96.6829M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1991JGR....96.6829M"><span>Unlocking the <span class="hlt">Ice</span> House: Oligocene-Miocene oxygen isotopes, eustasy, and <span class="hlt">margin</span> erosion</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miller, Kenneth G.; Wright, James D.; Fairbanks, Richard G.</p> <p>1991-04-01</p> <p>Oxygen isotope records and glaciomarine sediments indicate at least an intermittent presence of large continental <span class="hlt">ice</span> sheets on Antarctica since the earliest Oligocene (circa 35 Ma). The growth and decay of <span class="hlt">ice</span> sheets during the Oligocene to modern "<span class="hlt">ice</span> house world" caused glacioeustatic sea level changes. The early Eocene was an <span class="hlt">ice</span>-free "greenhouse world," but it is not clear if <span class="hlt">ice</span> sheets existed during the middle to late Eocene "doubt house world." Benthic foraminiferal δ18O records place limits on the history of glaciation, suggesting the presence of <span class="hlt">ice</span> sheets at least intermittently since the earliest Oligocene. The best indicator of <span class="hlt">ice</span> growth is a coeval increase in global benthic and western equatorial planktonic δ18O records. Although planktonic isotope records from the western equatorial regions are limited, subtropical planktonic foraminifera may also record such <span class="hlt">ice</span> volume changes. It is difficult to apply these established principles to the Cenozoic δ18O record because of the lack of adequate data and problems in stratigraphic correlations that obscure isotope events. We improved Oligocene to Miocene correlations of δ18O records and erected eight oxygen isotope zones (Oi1-Oi2, Mi1-Mi6). Benthic foraminiferal δ18O increases which are associated with the bases of Zones Oil (circa 35.8 Ma), Oi2 (circa 32.5 Ma), and Mil (circa 23.5 Ma) can be linked with δ18O increases in subtropical planktonic foraminifera and with intervals of glacial sedimentation on or near Antarctica. Our new correlations of middle Miocene benthic and western equatorial planktonic δ18O records show remarkable agreement in timing and amplitude. We interpret benthic-planktonic covariance to reflect substantial <span class="hlt">ice</span> volume increases near the bases of Zones Mi2 (circa 16.1 Ma), Mi3 (circa 13.6 Ma), and possibly Mi5 (circa 11.3 Ma). Possible glacioeustatic lowerings are associated with the δ18O increases which culminated with the bases of Zone Mi4 (circa 12.6 Ma) and Mi6 (circa 9</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.C11D0699A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.C11D0699A"><span>Programme for Monitoring of the Greenland <span class="hlt">Ice</span> Sheet - <span class="hlt">Ice</span> Surface Velocities</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Andersen, S. B.; Ahlstrom, A. P.; Boncori, J. M.; Dall, J.</p> <p>2011-12-01</p> <p>In 2007, the Danish Ministry of Climate and Energy launched the Programme for Monitoring of the Greenland <span class="hlt">Ice</span> Sheet (PROMICE) as an ongoing effort to assess changes in the mass budget of the Greenland <span class="hlt">Ice</span> Sheet. Iceberg calving from the outlet glaciers of the Greenland <span class="hlt">Ice</span> Sheet, often termed the <span class="hlt">ice</span>-dynamic mass loss, is responsible for an important part of the mass loss during the last decade. To quantify this part of the mass loss, we combine airborne surveys yielding <span class="hlt">ice</span>-sheet thickness along the entire <span class="hlt">margin</span>, with surface velocities derived from satellite synthetic-aperture radar (SAR). In order to derive <span class="hlt">ice</span> sheet surface velocities from SAR a processing chain has been developed for GEUS by DTU Space based on a commercial software package distributed by GAMMA Remote Sensing. The processor, named SUSIE (Scripts and Utilities for SAR <span class="hlt">Ice</span>-motion Estimation), can use both differential SAR interferometry and offset-tracking techniques to measure the horizontal velocity components, providing also an estimate of the corresponding measurement error. So far surface velocities have been derived for a number of sites including Nioghalvfjerdsfjord Glacier, the Kangerlussuaq region, the Nuuk region, Helheim Glacier and Daugaard-Jensen Glacier using data from ERS-1/ERS-2, ENVISAT ASAR and ALOS Palsar. Here we will present these first results.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22538614','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22538614"><span>Antarctic <span class="hlt">ice</span>-sheet loss driven by basal melting of <span class="hlt">ice</span> shelves.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pritchard, H D; Ligtenberg, S R M; Fricker, H A; Vaughan, D G; van den Broeke, M R; Padman, L</p> <p>2012-04-25</p> <p>Accurate prediction of global sea-level rise requires that we understand the cause of recent, widespread and intensifying glacier acceleration along Antarctic <span class="hlt">ice</span>-sheet coastal <span class="hlt">margins</span>. Atmospheric and oceanic forcing have the potential to reduce the thickness and extent of floating <span class="hlt">ice</span> shelves, potentially limiting their ability to buttress the flow of grounded tributary glaciers. Indeed, recent <span class="hlt">ice</span>-shelf collapse led to retreat and acceleration of several glaciers on the Antarctic Peninsula. But the extent and magnitude of <span class="hlt">ice</span>-shelf thickness change, the underlying causes of such change, and its link to glacier flow rate are so poorly understood that its future impact on the <span class="hlt">ice</span> sheets cannot yet be predicted. Here we use satellite laser altimetry and modelling of the surface firn layer to reveal the circum-Antarctic pattern of <span class="hlt">ice</span>-shelf thinning through increased basal melt. We deduce that this increased melt is the primary control of Antarctic <span class="hlt">ice</span>-sheet loss, through a reduction in buttressing of the adjacent <span class="hlt">ice</span> sheet leading to accelerated glacier flow. The highest thinning rates occur where warm water at depth can access thick <span class="hlt">ice</span> shelves via submarine troughs crossing the continental shelf. Wind forcing could explain the dominant patterns of both basal melting and the surface melting and collapse of Antarctic <span class="hlt">ice</span> shelves, through ocean upwelling in the Amundsen and Bellingshausen seas, and atmospheric warming on the Antarctic Peninsula. This implies that climate forcing through changing winds influences Antarctic <span class="hlt">ice</span>-sheet mass balance, and hence global sea level, on annual to decadal timescales.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1026542','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1026542"><span>Ocean Profile Measurements During the Seasonal <span class="hlt">Ice</span> Zone Reconnaissance Surveys Ocean Profiles</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2017-01-01</p> <p>repeated ocean, <span class="hlt">ice</span>, and atmospheric measurements across the Beaufort-Chukchi sea seasonal sea <span class="hlt">ice</span> zone (SIZ) utilizing US Coast Guard Arctic Domain...contributing to the rapid decline in summer <span class="hlt">ice</span> extent that has occurred in recent years. The SIZ is the region between maximum winter sea <span class="hlt">ice</span> extent and...minimum summer sea <span class="hlt">ice</span> extent. As such, it contains the full range of positions of the <span class="hlt">marginal</span> <span class="hlt">ice</span> zone (MIZ) where sea <span class="hlt">ice</span> interacts with open water</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1914046W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1914046W"><span>Bayesian inference of <span class="hlt">ice</span> thickness from remote-sensing data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Werder, Mauro A.; Huss, Matthias</p> <p>2017-04-01</p> <p>Knowledge about <span class="hlt">ice</span> thickness and volume is indispensable for studying <span class="hlt">ice</span> dynamics, future sea-level rise due to glacier melt or their contribution to regional hydrology. Accurate measurements of glacier thickness require on-site work, usually employing radar techniques. However, these field measurements are time consuming, expensive and sometime downright impossible. Conversely, measurements of the <span class="hlt">ice</span> surface, namely elevation and flow velocity, are becoming available world-wide through remote sensing. The model of Farinotti et al. (2009) calculates <span class="hlt">ice</span> thicknesses based on a mass conservation approach paired with shallow <span class="hlt">ice</span> physics using estimates of the surface mass balance. The presented work applies a Bayesian inference approach to estimate the parameters of a modified version of this forward model by fitting it to both measurements of surface flow speed and of <span class="hlt">ice</span> thickness. The inverse model outputs <span class="hlt">ice</span> thickness as well the distribution of the error. We fit the model to ten test glaciers and <span class="hlt">ice</span> <span class="hlt">caps</span> and quantify the improvements of thickness estimates through the usage of surface <span class="hlt">ice</span> flow measurements.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018RvGeo..56..142P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018RvGeo..56..142P"><span>Ocean Tide Influences on the Antarctic and Greenland <span class="hlt">Ice</span> Sheets</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Padman, Laurie; Siegfried, Matthew R.; Fricker, Helen A.</p> <p>2018-03-01</p> <p>Ocean tides are the main source of high-frequency variability in the vertical and horizontal motion of <span class="hlt">ice</span> sheets near their marine <span class="hlt">margins</span>. Floating <span class="hlt">ice</span> shelves, which occupy about three quarters of the perimeter of Antarctica and the termini of four outlet glaciers in northern Greenland, rise and fall in synchrony with the ocean tide. Lateral motion of floating and grounded portions of <span class="hlt">ice</span> sheets near their marine <span class="hlt">margins</span> can also include a tidal component. These tide-induced signals provide insight into the processes by which the oceans can affect <span class="hlt">ice</span> sheet mass balance and dynamics. In this review, we summarize in situ and satellite-based measurements of the tidal response of <span class="hlt">ice</span> shelves and grounded <span class="hlt">ice</span>, and spatial variability of ocean tide heights and currents around the <span class="hlt">ice</span> sheets. We review sensitivity of tide heights and currents as ocean geometry responds to variations in sea level, <span class="hlt">ice</span> shelf thickness, and <span class="hlt">ice</span> sheet mass and extent. We then describe coupled <span class="hlt">ice</span>-ocean models and analytical glacier models that quantify the effect of ocean tides on lower-frequency <span class="hlt">ice</span> sheet mass loss and motion. We suggest new observations and model developments to improve the representation of tides in coupled models that are used to predict future <span class="hlt">ice</span> sheet mass loss and the associated contribution to sea level change. The most critical need is for new data to improve maps of bathymetry, <span class="hlt">ice</span> shelf draft, spatial variability of the drag coefficient at the <span class="hlt">ice</span>-ocean interface, and higher-resolution models with improved representation of tidal energy sinks.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.B21F..01H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.B21F..01H"><span>Pedogenesis on <span class="hlt">ice</span> (Invited)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hodson, A. J.</p> <p>2010-12-01</p> <p>It is well known from <span class="hlt">ice</span> cores that organic and mineral debris accumulates within glacier <span class="hlt">ice</span> following atmospheric deposition. However, the concentrations of such debris are usually greatest upon the <span class="hlt">ice</span> surface, especially at the <span class="hlt">margins</span> of continental glaciers and <span class="hlt">ice</span> sheets, where it forms mm-scale aggregate particles called “cryoconite”. According to the literature, cryoconite covers about 2 % of the ablation areas of glaciers outside Greenland and Antarctica, equivalent to a mass loading of ca. 25 g/m2. Of the great <span class="hlt">ice</span> sheets not included in this figure, Greenland is the easiest to estimate, and new observations from the NE and SW sectors indicate mass loadings in the range 17 - 440 g/m2. Studies of cryoconite often report the presence of a significant biomass (usually 10^4 - 10^7 cells/g) that is capable of a wide range of biogeochemical functions. The first part of this presentation will therefore explore the contention that the formation of cryoconite represents the first stages of pedogenesis, resulting in the production of soil-type aggregates that inoculate glacial forefields following glacier retreat. Emphasis will be given to the relevant processes that result in aggregate formation, including rapid cell-mineral attachment within melting snowpacks and the slower, biological processes of cementation within thermodynamically stable habitats such as cryoconite holes. The second part of the presentation will use examples from Svalbard, Greenland and Antarctica to consider the carbon balance of the cryoconite during the longest phase of its life cycle: upon the <span class="hlt">ice</span>. It will be demonstrated how the efficacy of photosynthesis is strongly influenced by thermodynamic conditions at or near this surface. Data from the Greenland and Antarctic <span class="hlt">ice</span> sheets will show how thermal equilibration decouples variations in photosynthesis from variations in incident radiation over timescales > 1 d, resulting in an equitable, low-carbon economy for aggregates within</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.4734V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.4734V"><span><span class="hlt">Ice</span>2sea - the future glacial contribution to sea-level rise</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vaughan, D. G.; Ice2sea Consortium</p> <p>2009-04-01</p> <p>The melting of continental <span class="hlt">ice</span> (glaciers, <span class="hlt">ice</span> <span class="hlt">caps</span> and <span class="hlt">ice</span> sheets) is a substantial source of current sea-level rise, and one that is accelerating more rapidly than was predicted even a few years ago. Indeed, the most recent report from Intergovernmental Panel on Climate Change highlighted that the uncertainty in projections of future sea-level rise is dominated by uncertainty concerning continental <span class="hlt">ice</span>, and that understanding of the key processes that will lead to loss of continental <span class="hlt">ice</span> must be improved before reliable projections of sea-level rise can be produced. Such projections are urgently required for effective sea-defence management and coastal adaptation planning. <span class="hlt">Ice</span>2sea is a consortium of European institutes and international partners seeking European funding to support an integrated scientific programme to improve understanding concerning the future glacial contribution to sea-level rise. This includes improving understanding of the processes that control, past, current and future sea-level rise, and generation of improved estimates of the contribution of glacial components to sea-level rise over the next 200 years. The programme will include targeted studies of key processes in mountain glacier systems and <span class="hlt">ice</span> <span class="hlt">caps</span> (e.g. Svalbard), and in <span class="hlt">ice</span> sheets in both polar regions (Greenland and Antarctica) to improve understanding of how these systems will respond to future climate change. It will include fieldwork and remote sensing studies, and develop a suite of new, cross-validated glacier and <span class="hlt">ice</span>-sheet model. <span class="hlt">Ice</span>2sea will deliver these results in forms accessible to scientists, policy-makers and the general public, which will include clear presentations of the sources of uncertainty. Our aim is both, to provide improved projections of the glacial contribution to sea-level rise, and to leave a legacy of improved tools and techniques that will form the basis of ongoing refinements in sea-level projection. <span class="hlt">Ice</span>2sea will provide exciting opportunities for many</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009SPIE.7441E..0PH','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009SPIE.7441E..0PH"><span>Life in <span class="hlt">ice</span>: implications to astrobiology</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hoover, Richard B.; Pikuta, Elena V.</p> <p>2009-08-01</p> <p>During previous research expeditions to Siberia, Alaska and Antarctica, it was observed that glaciers and <span class="hlt">ice</span> wedges contained bacterial cells that became motile as soon as the <span class="hlt">ice</span> melted. This phenomenon of live bacteria in <span class="hlt">ice</span> was first documented for microbes in ancient <span class="hlt">ice</span> cores from Vostok, Antarctica. The first validly published species of Pleistocene bacteria alive on Earth today was Carnobacterium pleistocenium. This extremophile had remained for 32,000 years, encased in <span class="hlt">ice</span> recently exposed in the Fox Tunnel of Alaska. These frozen bacteria began to swim as soon as the <span class="hlt">ice</span> was thawed. Dark field microscopy studies revealed that large numbers of bacteria exhibited motility as soon as glacial <span class="hlt">ice</span> was melted during our recent Expeditions to Alaska and Antarctica led to the conclusion that microbial life in <span class="hlt">ice</span> was not a rare phenomenon. The ability of bacteria to remain alive while frozen in <span class="hlt">ice</span> for long periods of time is of great significance to Astrobiology. In this paper, we describe the recent observations and advance the hypothesis that life in <span class="hlt">ice</span> provides valuable clues to how we can more easily search for evidence of life on the Polar <span class="hlt">Caps</span> of Mars, comets and other icy bodies of our Solar System. It is suggested that cryopanspermia may have played a far more important role in Origin of Life on Earth and the distribution of Life throughout the Cosmos and than previously thought possible.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008JGRF..113.2010F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008JGRF..113.2010F"><span>Mechanisms of basal <span class="hlt">ice</span> formation in polar glaciers: An evaluation of the apron entrainment model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fitzsimons, Sean; Webb, Nicola; Mager, Sarah; MacDonell, Shelley; Lorrain, Regi; Samyn, Denis</p> <p>2008-06-01</p> <p>Previous studies of polar glaciers have argued that basal <span class="hlt">ice</span> can form when these glaciers override and entrain <span class="hlt">ice</span> <span class="hlt">marginal</span> aprons that accumulate adjacent to steep <span class="hlt">ice</span> cliffs. To test this idea, we have studied the morphology, structure, composition, and deformation of the apron and basal <span class="hlt">ice</span> at the terminus of Victoria Upper Glacier in the McMurdo dry valleys, which are located on the western coast of the Ross Sea at 77°S in southern Victoria Land, Antarctica. Our results show that the apron has two structural elements: an inner element that consists of strongly foliated <span class="hlt">ice</span> that has a steep up-glacier dip, and an outer element that lacks a consistent foliation and has a down-glacier, slope-parallel dip. Although strain measurements show that the entire apron is deforming, the inner element is characterized by high strain rates, whereas relatively low rates of strain characterize the outer part of the apron. Co-isotopic analyses of the <span class="hlt">ice</span>, together with analysis of solute chemistry and sedimentary characteristics, show that the apron is compositionally different from the basal <span class="hlt">ice</span>. Our observations show that aprons may become deformed and partially entrained by advancing glaciers. However, such an <span class="hlt">ice</span> <span class="hlt">marginal</span> process does not provide a satisfactory explanation for the origin of basal <span class="hlt">ice</span> observed at the <span class="hlt">ice</span> <span class="hlt">margin</span>. Our interpretation of the origin of basal <span class="hlt">ice</span> is that it is formed by subglacial processes, which are likely to include deformation and entrainment of subglacial permafrost.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26709352','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26709352"><span>Abbot <span class="hlt">Ice</span> Shelf, structure of the Amundsen Sea continental <span class="hlt">margin</span> and the southern boundary of the Bellingshausen Plate seaward of West Antarctica.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cochran, James R; Tinto, Kirsty J; Bell, Robin E</p> <p>2015-05-01</p> <p>Inversion of NASA Operation <span class="hlt">Ice</span>Bridge airborne gravity over the Abbot <span class="hlt">Ice</span> Shelf in West Antarctica for subice bathymetry defines an extensional terrain made up of east-west trending rift basins formed during the early stages of Antarctica/Zealandia rifting. Extension is minor, as rifting jumped north of Thurston Island early in the rifting process. The Amundsen Sea Embayment continental shelf west of the rifted terrain is underlain by a deeper, more extensive sedimentary basin also formed during rifting between Antarctica and Zealandia. A well-defined boundary zone separates the mildly extended Abbot extensional terrain from the deeper Amundsen Embayment shelf basin. The shelf basin has an extension factor, β , of 1.5-1.7 with 80-100 km of extension occurring across an area now 250 km wide. Following this extension, rifting centered north of the present shelf edge and proceeded to continental rupture. Since then, the Amundsen Embayment continental shelf appears to have been tectonically quiescent and shaped by subsidence, sedimentation, and the advance and retreat of the West Antarctic <span class="hlt">Ice</span> Sheet. The Bellingshausen Plate was located seaward of the Amundsen Sea <span class="hlt">margin</span> prior to incorporation into the Antarctic Plate at about 62 Ma. During the latter part of its independent existence, Bellingshausen plate motion had a clockwise rotational component relative to Antarctica producing convergence across the north-south trending Bellingshausen Gravity Anomaly structure at 94°W and compressive deformation on the continental slope between 94°W and 102°W. Farther west, the relative motion was extensional along an east-west trending zone occupied by the Marie Byrd Seamounts. Abbot <span class="hlt">Ice</span> Shelf is underlain by E-W rift basins created at ∼90 Ma Amundsen shelf shaped by subsidence, sedimentation, and passage of the <span class="hlt">ice</span> sheet Bellingshausen plate boundary is located near the base of continental slope and rise.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4681458','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4681458"><span>Abbot <span class="hlt">Ice</span> Shelf, structure of the Amundsen Sea continental <span class="hlt">margin</span> and the southern boundary of the Bellingshausen Plate seaward of West Antarctica</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cochran, James R; Tinto, Kirsty J; Bell, Robin E</p> <p>2015-01-01</p> <p>Inversion of NASA Operation <span class="hlt">Ice</span>Bridge airborne gravity over the Abbot <span class="hlt">Ice</span> Shelf in West Antarctica for subice bathymetry defines an extensional terrain made up of east-west trending rift basins formed during the early stages of Antarctica/Zealandia rifting. Extension is minor, as rifting jumped north of Thurston Island early in the rifting process. The Amundsen Sea Embayment continental shelf west of the rifted terrain is underlain by a deeper, more extensive sedimentary basin also formed during rifting between Antarctica and Zealandia. A well-defined boundary zone separates the mildly extended Abbot extensional terrain from the deeper Amundsen Embayment shelf basin. The shelf basin has an extension factor, β, of 1.5–1.7 with 80–100 km of extension occurring across an area now 250 km wide. Following this extension, rifting centered north of the present shelf edge and proceeded to continental rupture. Since then, the Amundsen Embayment continental shelf appears to have been tectonically quiescent and shaped by subsidence, sedimentation, and the advance and retreat of the West Antarctic <span class="hlt">Ice</span> Sheet. The Bellingshausen Plate was located seaward of the Amundsen Sea <span class="hlt">margin</span> prior to incorporation into the Antarctic Plate at about 62 Ma. During the latter part of its independent existence, Bellingshausen plate motion had a clockwise rotational component relative to Antarctica producing convergence across the north-south trending Bellingshausen Gravity Anomaly structure at 94°W and compressive deformation on the continental slope between 94°W and 102°W. Farther west, the relative motion was extensional along an east-west trending zone occupied by the Marie Byrd Seamounts. Key Points: Abbot <span class="hlt">Ice</span> Shelf is underlain by E-W rift basins created at ∼90 Ma Amundsen shelf shaped by subsidence, sedimentation, and passage of the <span class="hlt">ice</span> sheet Bellingshausen plate boundary is located near the base of continental slope and rise PMID:26709352</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70027322','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70027322"><span>An onboard data analysis method to track the seasonal polar <span class="hlt">caps</span> on Mars</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wagstaff, K.L.; Castano, R.; Chien, S.; Ivanov, A.B.; Pounders, E.; Titus, T.N.; ,</p> <p>2005-01-01</p> <p>The Martian seasonal CO2 <span class="hlt">ice</span> <span class="hlt">caps</span> advance and retreat each year. They are currently studied using instruments such as the THermal EMission Imaging System (THEMIS), a visible and infra-red camera on the Mars Odyssey spacecraft [1]. However, each image must be downlinked to Earth prior to analysis. In contrast, we have developed the Bimodal Image Temperature (BIT) histogram analysis method for onboard detection of the <span class="hlt">cap</span> edge, before transmission. In downlink-limited scenarios when the entire image cannot be transmitted, the location of the <span class="hlt">cap</span> edge can still be identified and sent to Earth. In this paper, we evaluate our method on uncalibrated THEMIS data and find 1) agreement with manual <span class="hlt">cap</span> edge identifications to within 28.2 km, and 2) high accuracy even with a smaller analysis window, yielding large reductions in memory requirements. This algorithm is currently being considered as a capability enhancement for the Odyssey second extended mission, beginning in fall 2006.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19800047931&hterms=sea+ice+albedo&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dsea%2Bice%2Balbedo','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19800047931&hterms=sea+ice+albedo&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dsea%2Bice%2Balbedo"><span>The seasonal cycle of snow cover, sea <span class="hlt">ice</span> and surface albedo</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Robock, A.</p> <p>1980-01-01</p> <p>The paper examines satellite data used to construct mean snow cover <span class="hlt">caps</span> for the Northern Hemisphere. The zonally averaged snow cover from these maps is used to calculate the seasonal cycle of zonally averaged surface albedo. The effects of meltwater on the surface, solar zenith angle, and cloudiness are parameterized and included in the calculations of snow and <span class="hlt">ice</span> albedo. The data allows a calculation of surface albedo for any land or ocean 10 deg latitude band as a function of surface temperature <span class="hlt">ice</span> and snow cover; the correct determination of the <span class="hlt">ice</span> boundary is more important than the snow boundary for accurately simulating the <span class="hlt">ice</span> and snow albedo feedback.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70029193','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70029193"><span>A microphysically-based approach to modeling emissivity and albedo of the martian seasonal <span class="hlt">caps</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Eluszkiewicz, J.; Moncet, J.-L.; Titus, T.N.; Hansen, G.B.</p> <p>2005-01-01</p> <p>A new model of albedo and emissivity of the martian seasonal <span class="hlt">caps</span> represented as porous CO2 slabs containing spherical voids and dust particles is described. In the model, a radiative transfer model is coupled with a microphysical model in order to link changes in albedo and emissivity to changes in porosity caused by <span class="hlt">ice</span> metamorphism. The coupled model is capable of reproducing temporal changes in the spectra of the <span class="hlt">caps</span> taken by the Thermal Emission Spectrometer onboard the Mars Global Surveyor and it can be used as the forward model in the retrievals of the <span class="hlt">caps</span>' physical properties (porosity, dust abundance, void and dust grain size) from the spectra. Preliminary results from such inversion studies are presented. ?? 2004 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC41G..03B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC41G..03B"><span>Central Tibetan Plateau atmospheric trace metals contamination: a 500-year record from the Puruogangri <span class="hlt">ice</span> core</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beaudon, E.; Gabrielli, P.; Sierra Hernandez, R.; Wegner, A.; Thompson, L. G.</p> <p>2017-12-01</p> <p>Since the 1980s, Asia has experienced enormous industrial development from rapid population growth, industrialization and consequent large-scale environmental changes. The inherent generated atmospheric pollution currently contributes to half of all Earth's anthropogenic trace metals emissions. Asian trace metal aerosols, when deposited on glaciers of the surrounding mountains of the Tibetan Plateau (TP), leave a characteristic chemical fingerprint. Interpreting trace element (TE) records from glaciers implies a thorough comprehension of their provenance and temporal variability. It is then essential to discriminate the TEs' natural background components from their anthropogenic components. Here we present 500-year TE records from the Puruogangri <span class="hlt">ice</span> core (Tibet, China) that provide a highly resolved account of the impact of past atmospheric influences, environmental processes and human activities on the central TP. A decreasing aeolian dust input to the <span class="hlt">ice</span> <span class="hlt">cap</span> allowed the detection of an atmospheric pollution signal. The anthropogenic pollution contribution emerges in the record since the early 1900s and increases substantially after 1935. The metallurgy (Zn, Pb and steel smelting) emission products from the former Soviet Union and especially from central Asia likely enhanced the anthropogenic deposition to the Puruogangri <span class="hlt">ice</span> <span class="hlt">cap</span> between 1935 and 1980, suggesting that the westerlies served as a conveyor of atmospheric pollution to central Tibet. The impact of this industrial pollution cumulated with that of the hemispheric coal and gasoline combustion which are respectively traced by Sb and Pb enrichment in the <span class="hlt">ice</span>. The Chinese steel production accompanying the Great Leap Forward (1958-1961) and the Chinese Cultural Revolution (1966-1976) is proposed as a secondary but proximal source of Pb pollution affecting the <span class="hlt">ice</span> <span class="hlt">cap</span> between 1958 and 1976. The most recent decade (1980-1992) of the enrichment time series suggests that Puruogangri <span class="hlt">ice</span> <span class="hlt">cap</span> recorded the early</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.7826N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.7826N"><span><span class="hlt">Ice</span> stream reorganization and glacial retreat on the northwest Greenland shelf</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Newton, A. M. W.; Knutz, P. C.; Huuse, M.; Gannon, P.; Brocklehurst, S. H.; Clausen, O. R.; Gong, Y.</p> <p>2017-08-01</p> <p>Understanding conditions at the grounding-line of marine-based <span class="hlt">ice</span> sheets is essential for understanding <span class="hlt">ice</span> sheet evolution. Offshore northwest Greenland, knowledge of the Last Glacial Maximum (LGM) <span class="hlt">ice</span> sheet extent in Melville Bugt was previously based on sparse geological evidence. This study uses multibeam bathymetry, combined with 2-D and 3-D seismic reflection data, to present a detailed landform record from Melville Bugt. Seabed landforms include mega-scale glacial lineations, grounding-zone wedges, iceberg scours, and a lateral shear <span class="hlt">margin</span> moraine, formed during the last glacial cycle. The geomorphology indicates that the LGM <span class="hlt">ice</span> sheet reached the shelf edge before undergoing flow reorganization. After retreat of 80 km across the outer shelf, the <span class="hlt">margin</span> stabilized in a mid-shelf position, possibly during the Younger Dryas (12.9-11.7 ka). The <span class="hlt">ice</span> sheet then decoupled from the seafloor and retreated to a coast-proximal position. This landform record provides an important constraint on deglaciation history offshore northwest Greenland.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014TCry....8.2409L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014TCry....8.2409L"><span><span class="hlt">Ice</span> and AIS: ship speed data and sea <span class="hlt">ice</span> forecasts in the Baltic Sea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Löptien, U.; Axell, L.</p> <p>2014-12-01</p> <p>The Baltic Sea is a seasonally <span class="hlt">ice</span>-covered <span class="hlt">marginal</span> sea located in a densely populated area in northern Europe. Severe sea <span class="hlt">ice</span> conditions have the potential to hinder the intense ship traffic considerably. Thus, sea <span class="hlt">ice</span> fore- and nowcasts are regularly provided by the national weather services. Typically, the forecast comprises several <span class="hlt">ice</span> properties that are distributed as prognostic variables, but their actual usefulness is difficult to measure, and the ship captains must determine their relative importance and relevance for optimal ship speed and safety ad hoc. The present study provides a more objective approach by comparing the ship speeds, obtained by the automatic identification system (AIS), with the respective forecasted <span class="hlt">ice</span> conditions. We find that, despite an unavoidable random component, this information is useful to constrain and rate fore- and nowcasts. More precisely, 62-67% of ship speed variations can be explained by the forecasted <span class="hlt">ice</span> properties when fitting a mixed-effect model. This statistical fit is based on a test region in the Bothnian Sea during the severe winter 2011 and employs 15 to 25 min averages of ship speed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014TCD.....8.3811L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014TCD.....8.3811L"><span><span class="hlt">Ice</span> and AIS: ship speed data and sea <span class="hlt">ice</span> forecasts in the Baltic Sea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Löptien, U.; Axell, L.</p> <p>2014-07-01</p> <p>The Baltic Sea is a seasonally <span class="hlt">ice</span> covered <span class="hlt">marginal</span> sea located in a densely populated area in northern Europe. Severe sea <span class="hlt">ice</span> conditions have the potential to hinder the intense ship traffic considerably. Thus, sea <span class="hlt">ice</span> fore- and nowcasts are regularly provided by the national weather services. Typically, several <span class="hlt">ice</span> properties are allocated, but their actual usefulness is difficult to measure and the ship captains must determine their relative importance and relevance for optimal ship speed and safety ad hoc. The present study provides a more objective approach by comparing the ship speeds, obtained by the Automatic Identification System (AIS), with the respective forecasted <span class="hlt">ice</span> conditions. We find that, despite an unavoidable random component, this information is useful to constrain and rate fore- and nowcasts. More precisely, 62-67% of ship speed variations can be explained by the forecasted <span class="hlt">ice</span> properties when fitting a mixed effect model. This statistical fit is based on a test region in the Bothnian Bay during the severe winter 2011 and employes 15 to 25 min averages of ship speed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA02373&hterms=fingerprints&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dfingerprints','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA02373&hterms=fingerprints&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dfingerprints"><span>Mars South Polar <span class="hlt">Cap</span> 'Fingerprint' Terrain</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2000-01-01</p> <p>This picture is illuminated by sunlight from the upper left.<p/>Some portions of the martian south polar residual <span class="hlt">cap</span> have long, somewhat curved troughs instead of circular pits. These appear to form in a layer of material that may be different than that in which 'swiss cheese' circles and pits form, and none of these features has any analog in the north polar <span class="hlt">cap</span> or elsewhere on Mars. This picture shows the 'fingerprint' terrain as a series of long, narrow depressions considered to have formed by collapse and widening by sublimation of <span class="hlt">ice</span>. Unlike the north polar <span class="hlt">cap</span>, the south polar region stays cold enough in summer to retain frozen carbon dioxide. Viking Orbiter observations during the late 1970s showed that very little water vapor comes off the south polar <span class="hlt">cap</span> during summer, indicating that any frozen water that might be there remains solid throughout the year.<p/>This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image was obtained in early southern spring on August 4, 1999. It shows an area 3 x 5 kilometers (1.9 x 3.1 miles) at a resolution of about 7.3 meters (24 ft) per pixel. Located near 86.0oS, 53.9oW.<p/>Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.C22B..07G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.C22B..07G"><span>A new, multi-resolution bedrock elevation map of the Greenland <span class="hlt">ice</span> sheet</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Griggs, J. A.; Bamber, J. L.; Grisbed Consortium</p> <p>2010-12-01</p> <p>Gridded bedrock elevation for the Greenland <span class="hlt">ice</span> sheet has previously been constructed with a 5 km posting. The true resolution of the data set was, in places, however, considerably coarser than this due to the across-track spacing of <span class="hlt">ice</span>-penetrating radar transects. Errors were estimated to be on the order of a few percent in the centre of the <span class="hlt">ice</span> sheet, increasing markedly in relative magnitude near the <span class="hlt">margins</span>, where accurate thickness is particularly critical for numerical modelling and other applications. We use new airborne and satellite estimates of <span class="hlt">ice</span> thickness and surface elevation to determine the bed topography for the whole of Greenland. This is a dynamic product, which will be updated frequently as new data, such as that from NASA’s Operation <span class="hlt">Ice</span> Bridge, becomes available. The University of Kansas has in recent years, flown an airborne <span class="hlt">ice</span>-penetrating radar system with close flightline spacing over several key outlet glacier systems. This allows us to produce a multi-resolution bedrock elevation dataset with the high spatial resolution needed for <span class="hlt">ice</span> dynamic modelling over these key outlet glaciers and coarser resolution over the more sparsely sampled interior. Airborne <span class="hlt">ice</span> thickness and elevation from CReSIS obtained between 1993 and 2009 are combined with JPL/UCI/Iowa data collected by the WISE (Warm <span class="hlt">Ice</span> Sounding Experiment) covering the <span class="hlt">marginal</span> areas along the south west coast from 2009. Data collected in the 1970’s by the Technical University of Denmark were also used in interior areas with sparse coverage from other sources. <span class="hlt">Marginal</span> elevation data from the ICESat laser altimeter and the Greenland <span class="hlt">Ice</span> Mapping Program were used to help constrain the <span class="hlt">ice</span> thickness and bed topography close to the <span class="hlt">ice</span> sheet <span class="hlt">margin</span> where, typically, the terrestrial observations have poor sampling between flight tracks. The GRISBed consortium currently consists of: W. Blake, S. Gogineni, A. Hoch, C. M. Laird, C. Leuschen, J. Meisel, J. Paden, J. Plummer, F</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSHE24A1441S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSHE24A1441S"><span><span class="hlt">Ice</span> Floe Breaking in Contemporary Third Generation Operational Wave Models</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sévigny, C.; Baudry, J.; Gauthier, J. C.; Dumont, D.</p> <p>2016-02-01</p> <p>The dynamical zone observed at the edge of the consolidated <span class="hlt">ice</span> area where are found the wave-fractured floes (i.e. <span class="hlt">marginal</span> <span class="hlt">ice</span> zone or MIZ) has become an important topic in ocean modeling. As both operational and climate ocean models now seek to reproduce the complex atmosphere-<span class="hlt">ice</span>-ocean system with realistic coupling processes, many theoretical and numerical studies have focused on understanding and modeling this zone. Few attempts have been made to embed wave-<span class="hlt">ice</span> interactions specific to the MIZ within a two-dimensional model, giving the possibility to calculate both the attenuation of surface waves by sea <span class="hlt">ice</span> and the concomitant breaking of the sea <span class="hlt">ice</span>-cover into smaller floes. One of the first challenges consists in improving the parameterization of wave-<span class="hlt">ice</span> dynamics in contemporary third generation operational wave models. A simple waves-in-<span class="hlt">ice</span> model (WIM) similar to the one proposed by Williams et al. (2013a,b) was implemented in WAVEWATCH III. This WIM considers <span class="hlt">ice</span> floes as floating elastic plates and predicts the dimensionless attenuation coefficient by the use of a lookup-table-based, wave scattering scheme. As in Dumont et al. (2011), the different frequencies are treated individually and floe breaking occurs for a particular frequency when the expected wave amplitude exceeds the allowed strain amplitude, which considers <span class="hlt">ice</span> floes properties and wavelength in <span class="hlt">ice</span> field. The model is here further refined and tested in idealized two-dimensional cases, giving preliminary results of the performance and sensitivity of the parameterization to initial wave and <span class="hlt">ice</span> conditions. The effects of the wave-<span class="hlt">ice</span> coupling over the incident wave spectrum are analyzed as well as the resulting floe size distribution. The model gives prognostic values of the lateral extent of the <span class="hlt">marginal</span> <span class="hlt">ice</span> zone with maximum <span class="hlt">ice</span> floe diameter that progressively increases with distance from the <span class="hlt">ice</span> edge.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSHE34A1451P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSHE34A1451P"><span>Effects of an Arctic under-<span class="hlt">ice</span> phytoplankton bloom on bio-optical properties of surface waters during the Norwegian Young Sea <span class="hlt">Ice</span> Cruise (N-<span class="hlt">ICE</span>2015)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pavlov, A. K.; Granskog, M. A.; Hudson, S. R.; Taskjelle, T.; Kauko, H.; Hamre, B.; Assmy, P.; Mundy, C. J.; Nicolaus, M.; Kowalczuk, P.; Stedmon, C. A.; Fernandez Mendez, M.</p> <p>2016-02-01</p> <p>A thinner and younger Arctic sea-<span class="hlt">ice</span> cover has led to an increase in solar light transmission into the surface ocean, especially during late spring and summer. A description of the seasonal evolution of polar surface water optical properties is essential, in order to understand how changes are affecting light availability for photosynthetic organisms and the surface ocean energy budget. The development of the bio-optical properties of Arctic surface waters under predominantly first-year sea <span class="hlt">ice</span> in the southern Nansen Basin were studied from January to June 2015 during the Norwegian Young Sea <span class="hlt">Ice</span> Cruise (N-<span class="hlt">ICE</span>2015). Observations included inherent optical properties, absorption by colored dissolved organic matter and particles, as well as radiometric measurements. We documented a rapid transition from relatively clear and transparent waters in winter to turbid waters in late May and June. This transition was associated with a strong under-<span class="hlt">ice</span> phytoplankton bloom detected first under the compact <span class="hlt">ice</span> pack and then monitored during drift across the <span class="hlt">marginal</span> <span class="hlt">ice</span> zone. We discuss potential implications of underwater light availability for photosynthesis, heat redistribution in the upper ocean layer, and energy budget of the sea-<span class="hlt">ice</span> - ocean system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1814173L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1814173L"><span>Evaporites on <span class="hlt">Ice</span>: Experimental Assessment of Evaporites Formation on Antarctica (and on Martian North Polar Residual <span class="hlt">Cap</span>)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Losiak, Anna; Derkowski, Arkadiusz; Skala, Aleksander; Trzcinski, Jerzy</p> <p>2016-04-01</p> <p>Evaporites are highly water soluble minerals, formed as a result of the evaporation or freezing of bodies of water. They are common weathering minerals found on rocks (including meteorites) on Antarctic <span class="hlt">ice</span> sheet [1,2,3,4]. The water necessary for the reaction is produced by melting of <span class="hlt">ice</span> below the dark-colored meteorites which can heat up to a few degrees above 0 °C due to insolation heating during wind-free summer days [5,6]. The Martian North Polar Residual <span class="hlt">Cap</span> is surrounded by a young [7] dune field that is rich in evaporitic mineral: gypsum [8]. Its existence implies that relatively recently in the Martian history (in late Amazonian, when surface conditions were comparable to the current ones) there was a significant amount of liquid water present on the Mars surface. One of the proposed solutions to this problem is that gypsum is formed by weathering on/in <span class="hlt">ice</span> [9,10,11,12,13], similarly to the process occurring on the Antarctic <span class="hlt">ice</span> sheet. Recently, Losiak et al. 2015 showed that that during the warmest days of the Martian summer, solar irradiation may be sufficient to melt pure water <span class="hlt">ice</span> located below a layer of dark dust particles lying on the steepest sections of the equator-facing slopes of the spiral troughs within Martian NPRC. Under the current irradiation conditions, melting is possible in very restricted areas of the NPRC and it lasts for up to couple of hours, but during the times of high irradiance at the north pole [15] this process could have been much more pronounced. Liquid water can be metastable at the NPRC because the pressure during the summer season is ~760-650 Pa [16] which is above the triple point of water. The rate of free-surface "clean" liquid water evaporation under average Martian conditions determined experimentally by [17] is comparable to the rate of melting determined by [21] (if there is no wind at the surface). In the current study we attempt to determine experimentally how many melting-freezing cycles are required to form</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EPSC...11.1008C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EPSC...11.1008C"><span>Hyperspectral characterisation of the Martian south polar residual <span class="hlt">cap</span> using CRISM</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Campbell, J. D.; Sidiropoulos, P.; Muller, J.-P.</p> <p>2017-09-01</p> <p>We present our research on hyperspectral characterization of the Martian South Polar Residual <span class="hlt">Cap</span> (SPRC), with a focus on the detection of organic signatures within the dust content of the <span class="hlt">ice</span>. The SPRC exhibits unique CO2 <span class="hlt">ice</span> sublimation features known colloquially as 'Swiss Cheese Terrain' (SCT). These flat floored, circular depressions are highly dynamic, and may expose dust particles previously trapped within the <span class="hlt">ice</span> in the depression walls and partially on the floors. Here we identify suitable regions for potential dust exposure on the SPRC, and utilise data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on board NASA's Mars Reconnaissance Orbiter (MRO) satellite to examine infrared spectra of dark regions to establish their mineral composition, to eliminate the effects of <span class="hlt">ices</span> on sub-pixel dusty features, and to assess whether ther might be signatures indicative of Polycyclic Aromatic Hydrocarbons (PAHs). Spectral mapping has identified compositional differences between depression rims and the majority of the SPRC and CRISM spectra have been corrected to minimise the influence of CO2 and H2O <span class="hlt">ice</span>. Whilst no conclusive evidence for PAHs has been found, depression rims are shown to have higher water content than regions of featureless <span class="hlt">ice</span>, and there are indications of magnesium carbonate within the dark, dusty regions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUFM.P72C..06R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUFM.P72C..06R"><span>Seasonally-Active Water on Mars: Vapour, <span class="hlt">Ice</span>, Adsorbate, and the Possibility of Liquid</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Richardson, M. I.</p> <p>2002-12-01</p> <p>Seasonally-active water can be defined to include any water reservoir that communicates with other reservoirs on time scales of a year or shorter. It is the interaction of these water reservoirs, under the influence of varying solar radiation and in conjunction with surface and atmospheric temperatures, that determines the phase-stability field for water at the surface, and the distribution of water in various forms below, on, and above the surface. The atmosphere is the critical, dynamical link in this cycling system, and also (fortunately) one of the easiest to observe. Viking and Mars Global Surveyor observations paint a strongly asymmetric picture of the global seasonal water cycle, tied proximately to planetary eccentricity, and the existence of residual <span class="hlt">ice</span> <span class="hlt">caps</span> of different composition at the two poles. The northern summer experiences the largest water vapour columns, and is associated with sublimation from the northern residual water <span class="hlt">ice</span> <span class="hlt">cap</span>. The southern summer residual carbon dioxide <span class="hlt">ice</span> <span class="hlt">cap</span> is cold trap for water. Asymmetry in the water cycle is an unsolved problem. Possible solutions may involve the current timing of perihelion (the water <span class="hlt">cap</span> resides at the pole experiencing the longer but cooler summer), the trapping of water <span class="hlt">ice</span> in the northern hemisphere by tropical water <span class="hlt">ice</span> clouds, and the bias in the annual-average, zonal-mean atmospheric circulation resulting from the zonal-mean difference in the elevation of the northern and southern hemispheres. Adsorbed and frozen water have proven harder to constrain. Recent Odyssey Gamma Ray Spectrometer results suggest substantial ground <span class="hlt">ice</span> in the mid- and high-latitudes, but this water is likely below the seasonal skin depth for two reasons: the GRS results are best fit with such a model, and GCM models of the water cycle produce dramatically unrealistic atmospheric vapour distributions when such a very near surface, GRS-like distribution is initialized - ultimately removing the water to the northern and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930010628','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930010628"><span>Antarctic lakes (above and beneath the <span class="hlt">ice</span> sheet): Analogues for Mars</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rice, J. W., Jr.</p> <p>1992-01-01</p> <p>The perennial <span class="hlt">ice</span> covered lakes of the Antarctic are considered to be excellent analogues to lakes that once existed on Mars. Field studies of <span class="hlt">ice</span> covered lakes, paleolakes, and polar beaches were conducted in the Bunger Hills Oasis, Eastern Antarctica. These studies are extended to the Dry Valleys, Western Antarctica, and the Arctic. Important distinctions were made between <span class="hlt">ice</span> covered and non-<span class="hlt">ice</span> covered bodies of water in terms of the geomorphic signatures produced. The most notable landforms produced by <span class="hlt">ice</span> covered lakes are <span class="hlt">ice</span> shoved ridges. These features form discrete segmented ramparts of boulders and sediments pushed up along the shores of lakes and/or seas. Sub-<span class="hlt">ice</span> lakes have been discovered under the Antarctic <span class="hlt">ice</span> sheet using radio echo sounding. These lakes occur in regions of low surface slope, low surface accumulations, and low <span class="hlt">ice</span> velocity, and occupy bedrock hollows. The presence of sub-<span class="hlt">ice</span> lakes below the Martian polar <span class="hlt">caps</span> is possible. The discovery of the Antarctic sub-<span class="hlt">ice</span> lakes raises possibilities concerning Martian lakes and exobiology.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRC..121.7898K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRC..121.7898K"><span>Winter ocean-<span class="hlt">ice</span> interactions under thin sea <span class="hlt">ice</span> observed by IAOOS platforms during N-<span class="hlt">ICE</span>2015: Salty surface mixed layer and active basal melt</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koenig, Zoé; Provost, Christine; Villacieros-Robineau, Nicolas; Sennéchael, Nathalie; Meyer, Amelie</p> <p>2016-10-01</p> <p>IAOOS (<span class="hlt">Ice</span> Atmosphere Arctic Ocean Observing System) platforms, measuring physical parameters at the atmosphere-snow-<span class="hlt">ice</span>-ocean interface deployed as part of the N-<span class="hlt">ICE</span>2015 campaign, provide new insights on winter conditions North of Svalbard. The three regions crossed during the drifts, the Nansen Basin, the Sofia Deep, and the Svalbard northern continental slope featured distinct hydrographic properties and <span class="hlt">ice</span>-ocean exchanges. In the Nansen Basin, the quiescent warm layer was <span class="hlt">capped</span> by a stepped halocline (60 and 110 m) and a deep thermocline (110 m). <span class="hlt">Ice</span> was forming and the winter mixed layer salinity was larger by ˜0.1 g/kg than previously observed. Over the Svalbard continental slope, the Atlantic Water (AW) was very shallow (20 m from the surface) and extended offshore from the 500 m isobath by a distance of about 70 km, sank along the slope (40 m from the surface) and probably shed eddies into the Sofia Deep. In the Sofia Deep, relatively warm waters of Atlantic origin extended from 90 m downward. Resulting from different pathways, these waters had a wide range of hydrographic characteristics. Sea-<span class="hlt">ice</span> melt was widespread over the Svalbard continental slope and ocean-to-<span class="hlt">ice</span> heat fluxes reached values of 400 W m-2 (mean of ˜150 W m-2 over the continental slope). Sea-<span class="hlt">ice</span> melt events were associated with near 12 h fluctuations in the mixed-layer temperature and salinity corresponding to the periodicity of tides and near-inertial waves potentially generated by winter storms, large barotropic tides over steep topography, and/or geostrophic adjustments.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70022977','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70022977"><span>TES premapping data: Slab <span class="hlt">ice</span> and snow flurries in the Martian north polar night</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Titus, T.N.; Kieffer, H.H.; Mullins, K.F.; Christensen, P.R.</p> <p>2001-01-01</p> <p>In the 1970s, Mariner and Viking spacecraft observations of the north polar region of Mars revealed polar brightness temperatures that were significantly below the expected kinetic temperatures for CO2 sublimation. For the past few decades, the scientific community has speculated as to the nature of these Martian polar cold spots. Thermal Emission Spectrometer (TES) thermal spectral data have shown these cold spots to result largely from fine-grained, CO2 and have constrained most of these cold spots to the surface (or near-surface). Cold spot formation is strongly dependent on topography, forming preferentially near craters and on polar slopes. TES data, combined with Mars Orbiter Laser Altimeter (MOLA) cloud data, suggest atmospheric condensates form a small fraction of the observed cold spots. TES observations of spectra close to a blackbody indicate that another major component of the polar <span class="hlt">cap</span> is slab CO2 <span class="hlt">ice</span>; these spectrally bland regions commonly have a low albedo. The cause is uncertain but may result from most of the light being reflected toward the specular direction, from the slab <span class="hlt">ice</span> being intrinsically dark, or from it being transparent. Regions of the <span class="hlt">cap</span> where the difference between the brightness temperatures at 18 ??m (T18) and 25 ??m (T25) is less than 5?? are taken to indicate deposits of slab <span class="hlt">ice</span>. Slab <span class="hlt">ice</span> is the dominant component of the polar <span class="hlt">cap</span> at latitudes outside of the polar night. Copyright 2001 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP51A1043L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP51A1043L"><span>A transient fully coupled climate-<span class="hlt">ice</span>-sheet simulation of the last glacial inception</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lofverstrom, M.; Otto-Bliesner, B. L.; Lipscomb, W. H.; Fyke, J. G.; Marshall, S.; Sacks, B.; Brady, E. C.</p> <p>2017-12-01</p> <p>The last glacial inception occurred around 115 ka, following a relative minimum in the Northern Hemisphere summer insolation. It is believed that small and spatially separated <span class="hlt">ice</span> <span class="hlt">caps</span> initially formed in the high elevation regions of northern Canada, Scandinavia, and along the Siberian Arctic coast. These <span class="hlt">ice</span> <span class="hlt">caps</span> subsequently migrated down in the valleys where they coalesced and formed the initial seeds of the large coherent <span class="hlt">ice</span> masses that covered the northern parts of the North American and Eurasian continents over most of the last glacial cycle. Sea level records show that the initial growth period lasted for about 10 kyrs, and the resulting <span class="hlt">ice</span> sheets may have lowered the global sea level by as much as 30 to 50 meters. Here we examine the transient climate system evolution over the period between 118 and 110 ka, using the fully coupled Community Earth System Model, version 2 (CESM2). This model features a two-way coupled high-resolution (4x4 km) <span class="hlt">ice</span>-sheet component (Community <span class="hlt">Ice</span> Sheet model, version 2; CISM2) that simulates <span class="hlt">ice</span> sheets as an interactive component of the climate system. We impose a transient forcing protocol where the greenhouse gas concentrations and the orbital parameters follow the nominal year in the simulation; the model topography is also dynamically evolving in order to reflect changes in <span class="hlt">ice</span> elevation throughout the simulation. The analysis focuses on how the climate system evolves over this time interval, with a special focus on glacial inception in the high-latitude continents. Results will highlight how the evolving <span class="hlt">ice</span> sheets compare to data and previous model based reconstructions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20403839','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20403839"><span>Response of faults to climate-driven changes in <span class="hlt">ice</span> and water volumes on Earth's surface.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hampel, Andrea; Hetzel, Ralf; Maniatis, Georgios</p> <p>2010-05-28</p> <p>Numerical models including one or more faults in a rheologically stratified lithosphere show that climate-induced variations in <span class="hlt">ice</span> and water volumes on Earth's surface considerably affect the slip evolution of both thrust and normal faults. In general, the slip rate and hence the seismicity of a fault decreases during loading and increases during unloading. Here, we present several case studies to show that a postglacial slip rate increase occurred on faults worldwide in regions where <span class="hlt">ice</span> <span class="hlt">caps</span> and lakes decayed at the end of the last glaciation. Of note is that the postglacial amplification of seismicity was not restricted to the areas beneath the large Laurentide and Fennoscandian <span class="hlt">ice</span> sheets but also occurred in regions affected by smaller <span class="hlt">ice</span> <span class="hlt">caps</span> or lakes, e.g. the Basin-and-Range Province. Our results do not only have important consequences for the interpretation of palaeoseismological records from faults in these regions but also for the evaluation of the future seismicity in regions currently affected by deglaciation like Greenland and Antarctica: shrinkage of the modern <span class="hlt">ice</span> sheets owing to global warming may ultimately lead to an increase in earthquake frequency in these regions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22000675','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22000675"><span>Glaciers and <span class="hlt">ice</span> sheets as a biome.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Anesio, Alexandre M; Laybourn-Parry, Johanna</p> <p>2012-04-01</p> <p>The tundra is the coldest biome described in typical geography and biology textbooks. Within the cryosphere, there are large expanses of <span class="hlt">ice</span> in the Antarctic, Arctic and alpine regions that are not regarded as being part of any biome. During the summer, there is significant melt on the surface of glaciers, <span class="hlt">ice</span> <span class="hlt">caps</span> and <span class="hlt">ice</span> shelves, at which point microbial communities become active and play an important role in the cycling of carbon and other elements within the cryosphere. In this review, we suggest that it is time to recognise the cryosphere as one of the biomes of Earth. The cryospheric biome encompasses extreme environments and is typified by truncated food webs dominated by viruses, bacteria, protozoa and algae with distinct biogeographical structures. Copyright © 2011 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040062528&hterms=melting+ice+caps&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmelting%2Bice%2Bcaps','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040062528&hterms=melting+ice+caps&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmelting%2Bice%2Bcaps"><span>The Subsurface <span class="hlt">Ice</span> Probe (SIPR): A Low-Power Thermal Probe for the Martian Polar Layered Deposits</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cardell, G.; Hecht, M. H.; Carsey, F. D.; Engelhardt, H.; Fisher, D.; Terrell, C.; Thompson, J.</p> <p>2004-01-01</p> <p>The distinctive layering visible in images from Mars Global Surveyor of the Martian polar <span class="hlt">caps</span>, and particularly in the north polar <span class="hlt">cap</span>, indicates that the stratigraphy of these polar layered deposits may hold a record of Martian climate history covering millions of years. On Earth, <span class="hlt">ice</span> sheets are cored to retrieve a pristine record of the physical and chemical properties of the <span class="hlt">ice</span> at depth, and then studied in exacting detail in the laboratory. On the Martian north polar <span class="hlt">cap</span>, coring is probably not a practical method for implementation in an autonomous lander. As an alternative, thermal probes that drill by melting into the <span class="hlt">ice</span> are feasible for autonomous operation, and are capable of reasonable approximations to the scientific investigations performed on terrestrial cores, while removing meltwater to the surface for analysis. The Subsurface <span class="hlt">Ice</span> Probe (SIPR) is such a probe under development at JPL. To explore the dominant climate cycles, it is postulated that tens of meters of depth should be profiled, as this corresponds to the vertical separation of the major layers visible in the MOC images [1]. Optical and spectroscopic analysis of the layers, presumably demarcated by embedded dust and possibly by changes in the <span class="hlt">ice</span> properties, would contribute to the construction of a chronology. Meltwater analysis may be used to determine the soluble chemistry of the embedded dust, and to monitor gradients of atmospheric gases, particularly hydrogen and oxygen, and isotopic variations that reflect atmospheric conditions at the time the layer was deposited. Thermal measurements can be used to determine the geothermal gradient and the bulk mechanical properties of the <span class="hlt">ice</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JGRF..117.2038G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JGRF..117.2038G"><span>Investigation of land <span class="hlt">ice</span>-ocean interaction with a fully coupled <span class="hlt">ice</span>-ocean model: 2. Sensitivity to external forcings</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goldberg, D. N.; Little, C. M.; Sergienko, O. V.; Gnanadesikan, A.; Hallberg, R.; Oppenheimer, M.</p> <p>2012-06-01</p> <p>A coupled <span class="hlt">ice</span> stream-<span class="hlt">ice</span> shelf-ocean cavity model is used to assess the sensitivity of the coupled system to far-field ocean temperatures, varying from 0.0 to 1.8°C, as well as sensitivity to the parameters controlling grounded <span class="hlt">ice</span> flow. A response to warming is seen in grounding line retreat and grounded <span class="hlt">ice</span> loss that cannot be inferred from the response of integrated melt rates alone. This is due to concentrated thinning at the <span class="hlt">ice</span> shelf lateral <span class="hlt">margin</span>, and to processes that contribute to this thinning. Parameters controlling the flow of grounded <span class="hlt">ice</span> have a strong influence on the response to sub-<span class="hlt">ice</span> shelf melting, but this influence is not seen until several years after an initial perturbation in temperatures. The simulated melt rates are on the order of that observed for Pine Island Glacier in the 1990s. However, retreat rates are much slower, possibly due to unrepresented bedrock features.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA02369.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA02369.html"><span>"Cottage Cheese" Texture on the Martian North Polar <span class="hlt">Cap</span> in Summer</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2000-04-24</p> <p>This image is illuminated by sunlight from the upper left. Martian Dairy Products? If parts of the south polar <span class="hlt">cap</span> can look like swiss cheese (see "Martian "Swiss Cheese""), then parts of the north polar <span class="hlt">cap</span> might as well look like some kind of cheese, too. This picture shows a cottage cheese-like texture on the surface of a part of the residual--summertime--north polar <span class="hlt">cap</span>. The north polar <span class="hlt">cap</span> surface is mostly covered by pits, cracks, small bumps and knobs. In this image, the <span class="hlt">cap</span> surface appears bright and the floors of pits look dark. Based upon observations made by the Mariner 9 and Viking orbiters in the 1970s, the north polar residual <span class="hlt">cap</span> is thought to contain mostly water <span class="hlt">ice</span> because its summertime temperature is usually near the freezing point of water and water vapor was observed by the Vikings to be coming off the <span class="hlt">cap</span> during summer. The south residual <span class="hlt">cap</span> is different--its temperatures in summer remain cold enough to freeze carbon dioxide, and very little to no water vapor has been observed to come off the south <span class="hlt">cap</span> in summer. The pits that have developed on the north polar <span class="hlt">cap</span> surface are closely-spaced relative to the very different depressions in the south polar <span class="hlt">cap</span>. The pits are estimated from the length of shadows cast in them to be less than about 2 meters (5.5 feet) deep. These pits probably develop slowly over thousands of years of successive spring and summer seasons. This picture was taken by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) during northern summer on April 5, 1999. The picture is located near 82.1°N, 329.6°W and covers an area 1.5 km wide by 3 km long (0.9 x 1.8 miles) at a resolution of 3 meters (10 ft) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA02369</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016QSRv..146..300W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016QSRv..146..300W"><span>Sedimentary and structural evolution of a Pleistocene small-scale push moraine in eastern Poland: New insight into paleoenvironmental conditions at the <span class="hlt">margin</span> of an advancing <span class="hlt">ice</span> lobe</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Włodarski, Wojciech; Godlewska, Anna</p> <p>2016-08-01</p> <p>Recent studies of push moraines have focused on the interplay between the dynamics of <span class="hlt">ice</span> <span class="hlt">margins</span> and the environmental variables of the foreland into which they advance. These studies showed that the spatial distribution, geometry and style of the glaciotectonic deformation of push moraines are controlled by <span class="hlt">ice</span>-induced stresses, the strain rate, the rheology of the deposits and hydraulic conductivity. In this work, we provide new insight into this interplay at a small spatio-temporal scale, specifically, the ancient glacial system of the Liwiec <span class="hlt">ice</span> lobe within the younger Saalian <span class="hlt">ice</span> sheet in eastern Poland. The paleoenvironmental variables that are analysed here refer to the dynamics of the hydrological processes that affected the patterns and sediment deposition rate on the terminoglacial fan and the resulting mechanical stratigraphy and hydraulic conductivity of the foreland. We document the progradational sequence of the fan deposits that developed as a result of the <span class="hlt">ice</span> lobe thickening and the steepening of its stationary front. The sedimentary features of the fan, the lithology of its basement and the hydraulic conductivity of the foreland strongly influenced the geometry and kinematics of fold growth during the advance of the <span class="hlt">ice</span> lobe. The predominance of flexural slip and the development of fractures, including fold-accommodation faults, were interpreted to be an effect of buckle folding due to horizontal shortening induced by <span class="hlt">ice</span> advance. The partial overriding of the push moraine by the <span class="hlt">ice</span> lobe and, thus, the submarginal conditions for deformation were inferred from the significant hinge migration and internal deformation of the strata under undrained conditions in one of the folds. The synfolding deposition pattern of the fan growth strata allowed us to suggest that the push moraine was probably formed by a sustained advance rather than surge.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C53C0754M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C53C0754M"><span>Quaternary evolution of the Fennoscandian <span class="hlt">Ice</span> Sheet from 3D seismic data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Montelli, A.; Dowdeswell, J. A.; Ottesen, D.; Johansen, S. E.</p> <p>2016-12-01</p> <p>The Quaternary seismic stratigraphy and architecture of the mid-Norwegian continental shelf and slope are investigated using extensive grids of marine 2D and 3D seismic reflection data that cover more than 100,000 km2 of the continental <span class="hlt">margin</span>. At least 26 distinct regional palaeo-surfaces have been interpreted within the stratigraphy of the Quaternary Naust Formation on the mid-Norwegian <span class="hlt">margin</span>. Multiple assemblages of buried glacigenic landforms are preserved within the Naust Formation across most of the study area, facilitating detailed palaeo-glaciological reconstructions. We document a marine-terminating, calving Fennoscandian <span class="hlt">Ice</span> Sheet (FIS) <span class="hlt">margin</span> present periodically on the Norwegian shelf since at least the beginning of the Quaternary. Elongate, streamlined landforms interpreted as mega-scale glacial lineations (MSGLs) have been found within the upper part of the Naust sequence N ( 1.9-1.6 Ma), sugesting the development of fast-flowing <span class="hlt">ice</span> streams since that time. Shifts in the location of depocentres and direction of features indicative of fast <span class="hlt">ice</span>-flow suggest that several reorganisations in the FIS drainage have occurred since 1.5 Ma. Subglacial landforms reveal a complex and dynamic <span class="hlt">ice</span> sheet, with converging palaeo-<span class="hlt">ice</span> streams and several flow-switching events that may reflect major changes in topography and internal <span class="hlt">ice</span>-sheet structure. Lack of subglacial meltwater channels suggests a largely distributed, low-volume meltwater system that drained the FIS through permeable subglacial till without leaving much erosional evidence. This regional palaeo-environmental examination of the FIS provides a useful framework for <span class="hlt">ice</span>-sheet modelling and shows that fragmentary preservation of buried surfaces and variability of <span class="hlt">ice</span>-sheet dynamics should be taken into account when reconstructing glacial history from spatially limited datasets.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=22180','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=22180"><span>Diversity of Holocene life forms in fossil glacier <span class="hlt">ice</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Willerslev, Eske; Hansen, Anders J.; Christensen, Bent; Steffensen, Jørgen Peder; Arctander, Peter</p> <p>1999-01-01</p> <p>Studies of biotic remains of polar <span class="hlt">ice</span> <span class="hlt">caps</span> have been limited to morphological identification of plant pollen and spores. By using sensitive molecular techniques, we now demonstrate a much greater range of detectable organisms; from 2000- and 4000-year-old <span class="hlt">ice</span>-core samples, we obtained and characterized 120 clones that represent at least 57 distinct taxa and reveal a diversity of fungi, plants, algae, and protists. The organisms derive from distant sources as well as from the local arctic environment. Our results suggest that additional taxa may soon be readily identified, providing a plank for future studies of deep <span class="hlt">ice</span> cores and yielding valuable information about ancient communities and their change over time. PMID:10393940</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.4366H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.4366H"><span>Deciphering the evolution of the last Eurasian <span class="hlt">ice</span> sheets</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hughes, Anna; Gyllencreutz, Richard; Mangerud, Jan; Svendsen, John Inge</p> <p>2016-04-01</p> <p>Glacial geologists need <span class="hlt">ice</span> sheet-scale chronological reconstructions of former <span class="hlt">ice</span> extent to set individual records in a wider context and compare interpretations of <span class="hlt">ice</span> sheet response to records of past environmental changes. <span class="hlt">Ice</span> sheet modellers require empirical reconstructions on size and volume of past <span class="hlt">ice</span> sheets that are fully documented, specified in time and include uncertainty estimates for model validation or constraints. Motivated by these demands, in 2005 we started a project (Database of the Eurasian Deglaciation, DATED) to compile and archive all published dates relevant to constraining the build-up and retreat of the last Eurasian <span class="hlt">ice</span> sheets, including the British-Irish, Scandinavian and Svalbard-Barents-Kara Seas <span class="hlt">ice</span> sheets (BIIS, SIS and SBKIS respectively). Over 5000 dates were assessed for reliability and used together with published <span class="hlt">ice</span>-sheet <span class="hlt">margin</span> positions to reconstruct time-slice maps of the <span class="hlt">ice</span> sheets' extent, with uncertainty bounds, every 1000 years between 25-10 kyr ago and at four additional periods back to 40 kyr ago. Ten years after the idea for a database was conceived, the first version of results (DATED-1) has now been released (Hughes et al. 2016). We observe that: i) both the BIIS and SBKIS achieve maximum extent, and commence retreat earlier than the larger SIS; ii) the eastern terrestrial <span class="hlt">margin</span> of the SIS reached its maximum extent up to 7000 years later than the westernmost marine <span class="hlt">margin</span>; iii) the combined maximum <span class="hlt">ice</span> volume (~24 m sea-level equivalent) was reached c. 21 ka; iv) large uncertainties exist; predominantly across marine sectors (e.g. the timing of coalescence and separation of the SIS and BKIS) but also in well-studied areas due to conflicting yet equally robust data. In just three years since the DATED-1 census (1 January 2013), the volume of new information (from both dates and mapped glacial geomorphology) has grown significantly (~1000 new dates). Here, we present the DATED-1 results in the context of the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970003047','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970003047"><span>Multi-Year Elevation Changes Near the West <span class="hlt">Margin</span> of the Greenland <span class="hlt">Ice</span> Sheet from Satellite Radar Altimetry</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lingle, Craig S.; Brenner, Anita C.; Zwally, H. Jay; DiMarzio, John P.</p> <p>1991-01-01</p> <p>Mean changes in the surface elevation near the west <span class="hlt">margin</span> of the Greenland <span class="hlt">ice</span> sheet are measured using Seasat altimetry and altimetry from the Geosat Exact Repeat Mission (ERM). The Seasat data extend from early July through early October 1978. The ERM data extend from winter 1986-87 through fall 1988. Both seasonal and multi-year changes are measured using altimetry referenced to GEM T2 orbits. The possible effects of orbit error are minimized by adjusting the orbits into a common ocean surface. Seasonal mean changes in the surface height are recognizable during the Geosat ERM. The multi-year measurements indicate the surface was lower by 0.4 +/- 0.4 m on average in late summer 1987 than in late summer 1978. The surface was lower by 0.2 +/- 0.5 m on average in late summer 1988 than in late summer 1978. As a control case, the computations art also carried out using altimetry referenced to orbits not adjusted into a common ocean surface.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850017733&hterms=glacier+melt&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dglacier%2Bmelt','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850017733&hterms=glacier+melt&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dglacier%2Bmelt"><span>Potential Climatic Effects on the Greenland <span class="hlt">Ice</span> Sheet</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bindschadler, R. A.</p> <p>1984-01-01</p> <p>The Greenland <span class="hlt">Ice</span> Sheet covers an area of 1,720,000 sq. km and contains approximately 2,600,000 cu km of <span class="hlt">ice</span>. Most of the <span class="hlt">ice</span> sheet receives an excess of snow accumulation over the amount of <span class="hlt">ice</span> lost to wind, meltwater run-off or other ablative processes. The majority of mass loss occurs at the <span class="hlt">margin</span> of the <span class="hlt">ice</span> sheet as either surface melt, which flows into the sea or calving of icebergs from the tongues of outlet glaciers. Many estimates of these processes were published. An average of five published estimates is summarized. If these estimates are correct, then the Greenland <span class="hlt">Ice</span> Sheet is in approximate equilibrium and contributes 490 cu km/a of fresh water to the North Atlantic and Arctic Oceans. Climate effects, <span class="hlt">ice</span> sheet flow, and application of remote sensing to tracking of the <span class="hlt">ice</span> sheet are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016QSRv..152..118H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016QSRv..152..118H"><span>Episodic expansion of Drangajökull, Vestfirðir, Iceland, over the last 3 ka culminating in its maximum dimension during the Little <span class="hlt">Ice</span> Age</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harning, David J.; Geirsdóttir, Áslaug; Miller, Gifford H.; Anderson, Leif</p> <p>2016-11-01</p> <p>Non-linear climate change is often linked to rapid changes in ocean circulation, especially around the North Atlantic. As the Polar Front fluctuated its latitudinal position during the Holocene, Iceland's climate was influenced by both the warm Atlantic currents and cool, sea <span class="hlt">ice</span>-bearing Arctic currents. Drangajökull is Iceland's fifth largest <span class="hlt">ice</span> <span class="hlt">cap</span>. Climate proxies in lake sediment cores, dead vegetation emerging from beneath the <span class="hlt">ice</span> <span class="hlt">cap</span>, and moraine segments identified in a new DEM constrain the episodic expansion of the <span class="hlt">ice</span> <span class="hlt">cap</span> over the past 3 ka. Collectively, our data show that Drangajökull was advancing at ∼320 BCE, 180 CE, 560 CE, 950 CE and 1400 CE and in a state of recession at ∼450 CE, 1250 CE and after 1850 CE. The Late Holocene maximum extent of Drangajökull occurred during the Little <span class="hlt">Ice</span> Age (LIA), occupying 262 km2, almost twice its area in 2011 CE and ∼20% larger than recent estimates of its LIA dimensions. Biological proxies from the sediment fill in a high- and low-elevation lake suggest limited vegetation and soil cover at high elevations proximal to the <span class="hlt">ice</span> <span class="hlt">cap</span>, whereas thick soil cover persisted until ∼750 CE at lower elevations near the coast. As Drangajökull expanded into the catchment of the high-elevation lake beginning at ∼950 CE, aquatic productivity diminished, following a trend of regional cooling supported by proxy records elsewhere in Iceland. Correlations between episodes of Drangajökull's advance and the documented occurrence of drift <span class="hlt">ice</span> on the North Icelandic Shelf suggest export and local production of sea <span class="hlt">ice</span> influenced the evolution of NW Iceland's Late Holocene climate.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19810068605','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19810068605"><span>Effects of <span class="hlt">Ice</span> Formations on Airplane Performance in Level Cruising Flight</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Preston, G. Merritt; Blackman, Calvin C.</p> <p>1948-01-01</p> <p>A flight investigation in natural <span class="hlt">icing</span> conditions was conducted by the NACA to determine the effect of <span class="hlt">ice</span> accretion on airplane performance. The maximum loss in propeller efficiency encountered due to <span class="hlt">ice</span> formation on the propeller blades was 19 percent. During 87 percent of the propeller <span class="hlt">icing</span> encounters, losses of 10 percent or less were observed. <span class="hlt">Ice</span> formations on all of the components of the airplane except the propellers during one <span class="hlt">icing</span> encounter resulted in an increase in parasite drag of the airplane of 81 percent. The control response of the airplane in this condition was <span class="hlt">marginal</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930010622&hterms=water+cycle&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dwater%2Bcycle','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930010622&hterms=water+cycle&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dwater%2Bcycle"><span>The Mars water cycle at other epochs: Recent history of the polar <span class="hlt">caps</span> and layered terrain</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jakosky, Bruce M.; Henderson, Bradley G.; Mellon, Michael T.</p> <p>1992-01-01</p> <p>The Martian polar <span class="hlt">caps</span> and layered terrain presumably evolves by the deposition and removal of small amounts of water and dust each year, the current <span class="hlt">cap</span> attributes therefore represent the incremental transport during a single year as integrated over long periods of time. The role was studied of condensation and sublimation of water <span class="hlt">ice</span> in this process by examining the seasonal water cycle during the last 10(exp 7) yr. In the model, axial obliquity, eccentricity, and L sub s of perihelion vary according to dynamical models. At each epoch, the seasonal variations in temperature are calculated at the two poles, keeping track of the seasonal CO2 <span class="hlt">cap</span> and the summertime sublimation of water vapor into the atmosphere; net exchange of water between the two <span class="hlt">caps</span> is calculated based on the difference in the summertime sublimation between the two <span class="hlt">caps</span> (or on the sublimation from one <span class="hlt">cap</span> if the other is covered with CO2 frost all year). Results from the model can help to explain (1) the apparent inconsistency between the timescales inferred for layer formation and the much older crater retention age of the <span class="hlt">cap</span> and (2) the difference in sizes of the two residual <span class="hlt">caps</span>, with the south being smaller than the north.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA02374&hterms=apron&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D10%26Ntt%3Dapron','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA02374&hterms=apron&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D10%26Ntt%3Dapron"><span>South Polar <span class="hlt">Cap</span> Erosion and Aprons</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2000-01-01</p> <p>This scene is illuminated by sunlight from the upper left.<p/>While Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) images have shown that the north and south polar <span class="hlt">cap</span> surfaces are very different from each other, one thing that the two have in common is that they both seem to have been eroded. Erosion in the north appears mostly to come in the form of pits from which <span class="hlt">ice</span> probably sublimed to vapor and was transported away from the polar <span class="hlt">cap</span> by wind. Erosion in the south takes on a wider range of possible processes that include collapse, slumping and mass-movement on slopes, and probably sublimation. Among the landforms created by these process on the south polar <span class="hlt">cap</span> are the 'aprons' that surround mesas and buttes of remnant layers such as the two almost triangular features in the lower quarter of this image. The upper slopes of the two triangular features show a stair-stepped pattern that suggest these hills are layered.<p/>This image shows part of the south polar residual <span class="hlt">cap</span> near 86.9oS, 78.5oW, and covers an area approximately 1.2 by 1.0 kilometers (0.7 x 0.6 miles) in size. The image has a resolution of 2.2 meters per pixel. The picture was taken on September 11, 1999.<p/>Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004cosp...35.3450Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004cosp...35.3450Z"><span>Recession of the Northern polar <span class="hlt">cap</span> from the PFS Mars Express observations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zasova, L. V.; Formisano, V.; Moroz, V. I.; Giuranna, M.; Grassi, D.; Hansen, G.; Ignatiev, N. I.; Maturilli, A.; Pfs Team</p> <p></p> <p>Planetary Fourier Spectrometer (PFS) has two spectral channels, devoted to the thermal and solar reflected spectral range investigations. The first observations by PFS of the Northern hemisphere ,which includes the North pole, occurred at Ls= 342 (northern winter). Surface temperature alone the orbit shows that the CO2 <span class="hlt">ice</span> polar <span class="hlt">cap</span>, where the surface temperature is found around 150K and below, is extended down to about 62 N. The spectra at latitudes above 80 N are obtained at polar darkness and at latitudes below 80 at illumination by the low Sun. Retrieved temperature profiles of the atmosphere at darkness show that temperature of the atmosphere is low enough to allow the CO2 condensation up to about 25 km. Between 70 and 80 latitude the upper levels of the atmosphere are heated by the Sun, but condensation of the CO2 may occur in the near surface layer below 5 km. The water <span class="hlt">ice</span> clouds exist at lower latitudes with maximum opacity at the edge of the polar <span class="hlt">cap</span>. More detailed investigation of the data obtained in winter as well as of the measurements in the northern spring will be presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C41A0644M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C41A0644M"><span>Modelling of Sea <span class="hlt">Ice</span> Thermodynamics and Biogeochemistry during the N-<span class="hlt">ICE</span>2015 Expedition in the Arctic Ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meyer, A.; Duarte, P.; Mork Olsen, L.; Kauko, H.; Assmy, P.; Rösel, A.; Itkin, P.; Hudson, S. R.; Granskog, M. A.; Gerland, S.; Sundfjord, A.; Steen, H.; Jeffery, N.; Hunke, E. C.; Elliott, S.; Turner, A. K.</p> <p>2016-12-01</p> <p>Changes in the sea <span class="hlt">ice</span> regime of the Arctic Ocean over the last decades from a thick perennial multiyear <span class="hlt">ice</span> to a first year <span class="hlt">ice</span> have been well documented. These changes in the sea <span class="hlt">ice</span> regime will affect feedback mechanisms between the sea <span class="hlt">ice</span>, atmosphere and ocean. Here we evaluate the performance of the Los Alamos Sea <span class="hlt">Ice</span> Model (CICE), a state of the art sea <span class="hlt">ice</span> model, to predict sea <span class="hlt">ice</span> physical and biogeochemical properties at time scales of a few weeks. We also identify the most problematic prognostic variables and what is necessary to improve their forecast. The availability of a complete data set of forcing collected during the Norwegian Young sea <span class="hlt">Ice</span> (N-<span class="hlt">ICE</span>-2015) expedition north of Svalbard opens the possibility to properly test CICE. Oceanographic, atmospheric, sea <span class="hlt">ice</span>, snow, and biological data were collected above, on, and below the <span class="hlt">ice</span> using R/V Lance as the base for the <span class="hlt">ice</span> camps that were drifting south towards the Fram Strait. Over six months, four different drifts took place, from the Nansen Basin, through the <span class="hlt">marginal</span> <span class="hlt">ice</span> zone, to the open ocean. Obtained results from the model show a good performance regarding <span class="hlt">ice</span> thickness, salinity and temperature. Nutrients and sea <span class="hlt">ice</span> algae are however not modelled as accurately. We hypothesize that improvements in biogeochemical modeling may be achieved by complementing brine drainage with a diffusion parameterization and biogeochemical modeling with the introduction of an explicit formulation to forecast chlorophyll and regulate photosynthetic efficiency.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>